
THE
LOGIC
BOOK
Fifth Edition

MERRIE BERGMANN Smith College, Emerita

JAMES MOOR Dartmouth College

JACK NELSON Arizona State University

Published by McGraw-Hill, an imprint of The McGraw-Hill Companies, Inc.,
1221 Avenue of the Americas, New York, NY 10020. Copyright © 2009, 2004, 1998,
1990, and 1980 by Merrie Bergmann, James Moor, and Jack Nelson. All rights reserved.
No part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written consent
of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or
other electronic storage or transmission, or broadcast for distance learning.

This book is printed on acid-free paper.

1 2 3 4 5 6 7 8 9 0 DOC/DOC 0 9 8

ISBN 978-0-07-353563-0
MHID 0-07-353563-X

Editor in Chief: Michael Ryan
Publisher: Beth Mejia
Sponsoring Editor: Mark Georgiev
Marketing Manager: Pamela S. Cooper
Production Editor: Leslie LaDow
Designer: Margarite Reynolds
Production Supervisor: Tandra Jorgensen
Media Project Manager: Thomas Brierly
Composition: 10/12 New Baskerville by Aptara, Inc.
Printing: 45# New Era Matte Plus by R.R. Donnelley & Sons

Cover: Jacopo de'Barbari, (c.1460/70–c.1516). Portrait of the mathematician Luca
Pacioli, the “father of accounting,” and an unknown young man. Museo Nazionale di
Capodimonte, Naples, Italy. © Scala/Art Resource, NY

Library of Congress Cataloging-in-Publication Data

Bergmann, Merrie.
The logic book / Merrie Bergmann, James Moor, Jack Nelson.—5th ed.

p. cm.
Includes bibliographical references and index.
ISBN–13: 978-0-07-353563-0 (alk. paper)
ISBN–10: 0-07-353563-X (alk. paper)

1. Logic, Symbolic and mathematical. 2. Predicate (Logic) I. Moor,
James, 1942-II. Nelson, Jack, 1944-III. Title.

BC135.B435 2009
160—dc22

2008020421

The Internet addresses listed in the text were accurate at the time of publication.
The inclusion of a Web site does not indicate an endorsement by the authors or
McGraw-Hill, and McGraw-Hill does not guarantee the accuracy of the information
presented at these sites.

www.mhhe.com

ABOUT THE AUTHORS iii

ABOUT THE AUTHORS

MERRIE BERGMANN received her Ph.D. in philosophy from the University of
Toronto. She is an emerita professor of computer science at Smith College. She
has published articles in formal semantics and logic, philosophy of logic, phi-
losophy of language, philosophy of humor, and computational linguistics and
is author of An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras,
and Derivation Systems. She and her husband are currently circumnavigating the
earth on their 44 sailboat.

JAMES MOOR received his Ph.D. in history and philosophy of science from
Indiana University. He is currently a professor of philosophy at Dartmouth Col-
lege. He has published articles in philosophy of science, philosophy of mind,
logic, philosophy of artificial intelligence, and computer ethics. He is author
of The Turing Test: The Elusive Standard of Artificial Intelligence, and co-editor, with
Terrell Bynum, of Cyberphilosophy: The Intersection of Computing and Philosophy and
The Digital Phoenix: How Computers Are Changing Philosophy. Moor is also editor
of Minds and Machines.

JACK NELSON received his Ph.D. in philosophy from the University of
Chicago. He is currently Interim Chair of the Philosophy Department of Ari-
zona State University and Associate Dean for Student and Academic Programs
in the College of Liberal Arts and Sciences. He has published articles in epis-
temology, identity, and the philosophy of science and is co-author, with Lynn
Hankinson Nelson, of On Quine.

CONTENTS v

CONTENTS

Preface xi

CHAPTER 1 BASIC NOTIONS OF LOGIC 1

1.1 Background 1

1.2 Why Study Logic? 6

1.3 Sentences, Truth-Values, and Arguments 7

1.4 Deductive Validity and Soundness 12

1.5 Inductive Arguments 17

1.6 Logical Consistency, Truth, Falsity, and Equivalence 19

1.7 Special Cases of Validity 24

CHAPTER 2 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX 28

2.1 Symbolization and Truth-Functional Connectives 28

2.2 Complex Symbolizations 50

2.3 Non-Truth-Functional Connectives 60

2.4 The Syntax of SL 67

CHAPTER 3 SENTENTIAL LOGIC: SEMANTICS 75

3.1 Truth-Value Assignments and Truth-Tables for Sentences 75

3.2 Truth-Functional Truth, Falsity, and Indeterminacy 83

vi CONTENTS

3.3 Truth-Functional Equivalence 93

3.4 Truth-Functional Consistency 98

3.5 Truth-Functional Entailment and Truth-Functional
Validity 101

3.6 Truth-Functional Properties and Truth-Functional
Consistency 110

CHAPTER 4 SENTENTIAL LOGIC: TRUTH-TREES 115

4.1 The Truth-Tree Method 115

4.2 Truth-Tree Rules for Sentences Containing ‘∼’, ‘∨’,
and ‘&’ 116

4.3 Rules for Sentences Containing ‘⊃’ and ‘ ’ 130

4.4 More Complex Truth-Trees 137

4.5 Using Truth-Trees to Test for Truth-Functional Truth, Falsity,
and Indeterminacy 144

4.6 Truth-Functional Equivalence 150

4.7 Truth-Functional Entailment and Truth-Functional
Validity 153

CHAPTER 5 SENTENTIAL LOGIC: DERIVATIONS 160

5.1 The Derivation System SD 160

5.2 Basic Concepts of SD 189

5.3 Strategies for Constructing Derivations in SD 193

5.4 The Derivation System SD 228

CHAPTER 6 SENTENTIAL LOGIC: METATHEORY 240

6.1 Mathematical Induction 240

6.2 Truth-Functional Completeness 248

6.3 The Soundness of SD and SD 258

6.4 The Completeness of SD and SD 266

CHAPTER 7 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX 276

7.1 The Limitations of SL 276

7.2 Predicates, Individual Constants, and Quantity Terms of
English 279

7.3 Introduction to PL 284

7.4 Quantifiers Introduced 290

7.5 The Formal Syntax of PL 297

7.6 A-, E-, I-, and O-Sentences 308

CONTENTS vii

7.7 Symbolization Techniques 322

7.8 Multiple Quantifiers with Overlapping Scope 342

7.9 Identity, Definite Descriptions, Properties of Relations, and
Functions 359

CHAPTER 8 PREDICATE LOGIC: SEMANTICS 378

8.1 Informal Semantics for PL 378

8.2 Quantificational Truth, Falsehood, and Indeterminacy 391

8.3 Quantificational Equivalence and Consistency 398

8.4 Quantificational Entailment and Validity 403

8.5 Truth-Functional Expansions 409

8.6 Semantics for Predicate Logic with Identity and Functors 424

8.7 Formal Semantics of PL and PLE 443

CHAPTER 9 PREDICATE LOGIC: TRUTH-TREES 458

9.1 Expanding the Rules for Truth-Trees 458

9.2 Truth-Trees and Quantificational Consistency 467

9.3 Truth-Trees and Other Semantic Properties 474

9.4 Fine-Tuning the Tree Method 482

9.5 Trees for PLE 498

9.6 Fine-Tuning the Tree Method for PLE 514

CHAPTER 10 PREDICATE LOGIC: DERIVATIONS 532

10.1 The Derivation System PD 532

10.2 Using Derivations to Establish Syntactic Properties of PD 551

10.3 The Derivation System PD 583

10.4 The Derivation System PDE 588

CHAPTER 11 PREDICATE LOGIC: METATHEORY 608

11.1 Semantic Preliminaries for PL 608

11.2 Semantic Preliminaries for PLE 623

11.3 The Soundness of PD, PD , and PDE 627

11.4 The Completeness of PD, PD , and PDE 633

11.5 The Soundness of the Tree Method 650

11.6 The Completeness of the Tree Method 660

Selected Bibliography B-1

Index I-1

Index of Symbols I-7

In the fifth edition of The Logic Book we retain our overall goal: to present sym-
bolic logic in an accessible yet formally rigorous manner. This involved a major
overhaul of several chapters, along with some terminological and notational
changes.

Most of the material in Chapters 5 and 10 is new or extensively rewrit-
ten. We have tried to present the derivation systems we develop in ways that make
them more transparent. We emphasize the need for and use of specific strategies
in constructing derivations, and in each chapter we explicitly list those strategies.
We have also introduced new annotations for the assumptions that begin sub-
derivations, annotations that specify the reason these assumptions are being made.
We use the notation “A / I”, for example, to indicate that an auxiliary assump-
tion has been made to introduce a Conditional Introduction subderivation. We
believe that these annotations underscore the point that auxiliary assumptions
should always be made with clear strategies in mind. We have significantly
expanded the number and variety of exercises in these chapters as well.

There are also significant changes to Chapters 4 and 9. The latter sections
of Chapter 9 have been reorganized so that systematic trees for PL are presented
prior to, and independently of, trees for PLE, and the sections motivating the rules
for PLE are less circuitous. In Chapter 4 we dispense with talk of fragments of
truth-value assignments and instead adopt the convention that a display such as

A B C D
T F T T

specifies the infinitely many truth-value assignments that each assign the spec-
ified values to ‘A’, ‘B’, ‘C’, and ‘D’. In both chapters we have also introduced

PREFACE ix

PREFACE

x PREFACE

a new annotation for trees to indicate completed open branches (‘o’) as well
as closed ones (‘x’).

Chapter 8 now introduces the concept of a model, to be used there and
in subsequent chapters.

As always, we have corrected known errors and typos from previous
editions.

The Logic Book presupposes no previous training in logic, and because
it covers sentential logic through the metatheory of first-order predicate logic,
it is suitable for both introductory and intermediate courses in symbolic logic.
There is sufficient material in the text for a one- or two-semester course. There
are several sequences of chapters that would form good syllabi for courses in
symbolic logic. If an instructor has two semesters (or one semester with
advanced students), it is possible to work through the entire book.

The instructor who does not want to emphasize metatheory can sim-
ply omit Chapters 6 and 11. The chapters on truth-trees and the chapters on
derivations are independent, so it is possible to cover truth-trees but not deri-
vations, and vice versa. The chapters on truth-trees do depend on the chapters
presenting semantics; that is, Chapter 4 depends on Chapter 3, and Chapter 9
depends on Chapter 8. And although most instructors will want to cover seman-
tics before derivations, the opposite order is possible. Finally, in covering pred-
icate logic, the instructor has the option in each chapter of skipping material
on identity and functions, as well as the option of including the material on
identity but omitting that on functions.

The Logic Book includes large numbers of exercises in all chapters.
Answers to the starred exercises appear in the Instructor’s Manual; answers to
the unstarred exercises appear in the Student Solutions Manual.

SOFTWARE

Two software packages, BERTIE and TWOOTIE, are available for use with The
Logic Book. BERTIE is a program that allows students to construct derivations
online and checks those derivations for accuracy. TWOOTIE allows students to
construct truth-trees online (and checks those trees for accuracy) and also pro-
duces trees for specified sets of sentences. Both programs were written by
Austen Clarke; BERTIE is based on an earlier program by James Moor and Jack
Nelson. Both programs run in a DOS environment. Information on the soft-
ware can be found at

http://selfpace.uconn.edu/BertieTwootie/software.htm

Both software packages can also be downloaded from this site.

PREFACE xi

ACKNOWLEDGMENTS

We are grateful to Lorne Falkenstein, Richard Grandy, Richard Shedenhelm
and his students at the University of Georgia, and Takashi Yagisawa for valu-
able comments and suggestions on the previous edition.

M.B.
J.M.
J.N.

1.1 BACKGROUND 1

Chapter 1
BASIC NOTIONS

OF LOGIC

1.1 BACKGROUND

This is a text in deductive logic—more specifically, in symbolic deductive logic.
Chapters 1–5 are devoted to sentential logic, that branch of symbolic deduc-
tive logic that takes sentences as the fundamental units of logical analysis.
Chapters 7–10 are devoted to predicate logic, that branch of symbolic deduc-
tive logic that takes predicates and individual terms as the fundamental units
of logical analysis. Chapter 6 is devoted to the metatheory of sentential logic;
Chapter 11, to the metatheory of predicate logic.

In the following chapters we will explore sentential and predicate logic
in considerable detail. Here, we try to place that material in a larger context.
Historically two overlapping concerns have driven research in deductive logic
and the development of specific formal systems of deductive logic: the desire
to formulate canons or principles of good reasoning in everyday life, as well as
in science and mathematics, and the desire to formalize and systematize exist-
ing and emerging work in mathematics and science. Common to these con-
cerns is the view that what distinguishes good reasoning from bad reasoning,
and what makes good deductive reasoning “logical” as opposed to “illogical”,
is truth preservation.

2 BASIC NOTIONS OF LOGIC

A method or pattern of reasoning is truth-preserving if it never takes
one from truths to a falsehood. The hallmark of good deductive reasoning is
that it is truth-preserving. If one starts from truths and uses good deductive
reasoning, the results one arrives at will also be true. Because we are all inter-
ested, as students and scholars, in everyday life and in our careers, in gaining
truths and avoiding falsehoods, we all have reason to be interested in reasoning
that is truth-preserving.

Most of the deductive systems of reasoning that have been developed
for geometry, mathematics, and selected areas of science have been axiomatic
systems. And most of us are familiar with at least one axiomatic system—that
of Euclidean plane geometry. Euclid, a Greek scholar of the third century B.C.,
may have been the first person to develop a reasonably complete axiomatic sys-
tem. Axiomatic systems start with a relatively small number of basic principles,
referred to variously as axioms, definitions, postulates, and assumptions, and
provide a way of deducing or deriving from them the rest of the claims or asser-
tions of the discipline being axiomatized (in Euclid’s case plane geometry). If
the starting principles are significantly altered, a new theory may emerge. For
example, when Euclid’s fifth postulate (the parallel postulate) is modified,
theorems of non-Euclidean geometry can be deduced.

Through the centuries scholars have attempted to produce axiomatic
systems for a wide variety of disciplines, ranging from plane and solid geome-
try, to arithmetic (which was successfully axiomatized by Giuseppe Peano in
1889), to parts of the natural and social sciences. Since successful axiomatic sys-
tems use only rules of reasoning that are truth-preserving, that never take one
from truths to a falsehood, the advantage of successfully axiomatizing a body
of knowledge is that it makes all the claims of that body of knowledge as cer-
tain as are the starting principles and the rules of reasoning used.

At about the same time that Euclid was developing his axiomatic
treatment of plane geometry, another Greek scholar, Aristotle (384–322
B.C.), was developing a general system of logic intended to incorporate the
basic principles of good reasoning and to provide a way of evaluating spe-
cific cases of reasoning. The system Aristotle produced is variously known as
syllogistic, traditional, or Aristotelian logic. Predecessors of Aristotle, in the
Greek world and elsewhere, were interested in reasoning well—in offering
cogent arguments for their theses and theories and in identifying flaws and
fallacies in their own and others’ reasoning. But Aristotle was apparently the
first person in the Western world to offer at least the outlines of a compre-
hensive system for codifying and evaluating a wide range of arguments and
reasoning.

The following is an argument that has the form of an Aristotelian
syllogism:

All mammals are vertebrates.

Some sea creatures are mammals.

Some sea creatures are vertebrates.

1.1 BACKGROUND 3

The horizontal line separates the two premises of this syllogistic argument from
the conclusion. This syllogism is an example of good reasoning—it constitutes
a good argument—because it is truth-preserving. If the first two sentences (the
premises) of the syllogism are true, the third sentence (the conclusion) must
also be true. Aristotle’s achievement was not in identifying this particular
argument about vertebrates, mammals, and sea creatures as a good or truth-
preserving argument, but rather in providing an explanation of why this and
all reasoning of this form are instances of good reasoning. Aristotle would
classify the preceding syllogism as being of the form

All As are Bs.

Some Cs are As.

Some Cs are Bs.

And this form or schema produces truth-preserving reasoning whenever ‘A’,
‘B’, and ‘C’ are uniformly replaced by general terms, as in

All cardiologists are wealthy individuals.

Some doctors are cardiologists.

Some doctors are wealthy individuals.

Aristotelian logic is a variety of deductive symbolic logic. It is symbolic
because it analyzes reasoning by identifying the form or structure of good
reasoning, independent of the specific content of particular instances of such
reasoning. It is deductive because the requirement it lays down for good rea-
soning is full truth-preservation. Argument forms all of whose instances are
truth-preserving, as well as the arguments that are of those forms, are tradi-
tionally termed valid. The syllogistic form just displayed is a valid form; that
is, no syllogism of this form has true premises and a false conclusion. All
actual arguments that can be cast in this syllogistic form are therefore valid
arguments.

An example of an invalid syllogistic form is

Some As are Bs.

All Cs are As.

All Cs are Bs.

There are, to be sure, actual arguments that are of this form and have true
premises and a true conclusion—for example,

Some birds are hawks.

All osprey are birds.

All osprey are hawks.

4 BASIC NOTIONS OF LOGIC

But there are also arguments of this form that have true premises and a false
conclusion—for example,

Some positive numbers are even numbers.

All numbers greater than zero are positive numbers.

All numbers greater than zero are even numbers.

The two premises of this syllogism are true, but the conclusion, ‘All numbers
greater than zero are even’, is false. The syllogistic form just displayed is an
invalid form precisely because there are instances of it that have true premises
and a false conclusion.

Aristotelian logic is very powerful. During the centuries following Aris-
totle, the rules and techniques associated with syllogistic logic were refined, and
various test procedures developed, by Roman, Arabic, medieval, and modern
logicians. Until the late nineteenth century Aristotelian logic remained the pre-
dominant system for formalizing and evaluating reasoning. It is still taught
today in many introductory courses.

Nonetheless, there are important drawbacks to Aristotelian logic.
Syllogisms are at the heart of Aristotelian logic, and each syllogism must have
exactly two premises and a conclusion. Moreover, every sentence of a syllogism
must be of one of the four following forms:

All As are Bs.
No As are Bs.
Some As are Bs.
Some As are not Bs.

Aristotelian logic is thus best suited to reasoning about relations among groups:
‘All members of this group are members of that group’, ‘Some members of this
group are members of that group’, and so on. Aristotelian logic thus strains to
handle reasoning about individuals. For example, ‘Socrates is human’ must be
recast as something like ‘All things that are Socrates [there is, we here assume,
only one] are things that are human’.

The Aristotelian requirement that every conclusion be drawn from
exactly two premises is unduly restrictive and does not mirror the complexity
of actual reasoning and argumentation, a single instance of which may make
use of a very large number of premises. Consider, for example, the following
reasoning:

Sarah and Hank are the only finalists for a position with Bowles,
Blithers, and Blimy, an accounting firm. Whoever is hired will have
a baccalaureate degree in accounting. Hank will get his baccalaure-
ate in accounting only if he passes all the business courses he is taking
this semester and completes the general education requirements.

1.1 BACKGROUND 5

Sarah will get her baccalaureate only if she passes all her courses
and raises her grade point average to 2.5. Hank will fail logic and
so will not complete the general education requirements. Sarah will
pass all her courses, but her grade point average will not reach
2.5. Therefore Bowles, Blithers, and Blimy will hire neither of the
finalists.

The above reasoning is truth-preserving. That is, if the premises are all true,
then the conclusion, the last sentence of the paragraph, must also be true. But
it would be extremely difficult to recast this chain of reasoning in syllogistic
terms.

Finally reasoning that relies on relations1 cannot readily be accommo-
dated within Aristotelian logic. For example, the reasoning ‘Sarah is taller than
Tom, and Tom is taller than Betty; therefore Sarah is taller than Betty’
presupposes the transitivity of the taller-than relation, that is, presupposes the
following truth:

For any three things, if the first is taller than the second, and the
second is taller than the third, then the first is taller than the third.

Principles such as the above and arguments relying on them cannot be incor-
porated within the Aristotelian framework in any intuitive way.

For these and other reasons, logicians in the mid-to-late 1800s looked
for alternatives to Aristotelian logic. This work involved the development
of systems of sentential logic, that is, systems based on the way sentences
of natural languages can be generated from other sentences by the use of
such expressions as ‘or’, ‘and’, ‘if . . . then . . .’, and ‘not’. Consider this
example:

Karen is either in Paris or in Nairobi. She is not in Nairobi. So Karen
is in Paris.

Simple arguments such as this one are not readily represented within syllogis-
tic logic. Yet the argument is clearly an example of good reasoning. Whenever
the first two sentences are true, the last sentence is also true. Reasoning of this
sort can readily be symbolized in systems of sentential logic.

On the other hand, sentential logic cannot easily deal with reasoning
that rests on claims about all, some, or none of this sort of thing being of that
sort—the sort of claims Aristotelian logic can often handle. Predicate logic
incorporates sentential logic and is also able to handle all the kinds of sen-
tences that are expressible in Aristotelian logic, as well as many of those that
pose difficulties for Aristotelian logic.

1See Chapter 7 for an explication of relations.

6 BASIC NOTIONS OF LOGIC

1.2 WHY STUDY LOGIC?

There are a variety of reasons for studying logic. It is a well-developed discipline
that many find interesting in its own right, a discipline that has a rich history
and important current research programs and practical applications. Certainly,
anyone who plans to major or do graduate work in areas such as philosophy,
mathematics, computer science, or linguistics should have a solid grounding in
symbolic logic. In general, the study of formal logic also helps develop the skills
needed to present and evaluate arguments in any discipline.

Another reason for studying symbolic logic is that, in learning to sym-
bolize natural language sentences (in our case English sentences) in a formal
language, students become more aware and more appreciative of the importance
of the structure and complexities of natural languages. Precisely what words are
used often has a major bearing on whether an argument is valid or invalid, a
piece of reasoning convincing or unconvincing. For example, distinguishing
between ‘Roberta will pass if she completes all the homework’ and ‘Roberta will
pass only if she completes all the homework’ is essential to anyone who wants to
reason well about the prospects for Roberta’s passing.

However, the focus of this text is not primarily on sharpening the crit-
ical and evaluative skills readers bring to bear on everyday discourse, newspa-
per columns, and the rhetoric of politicians. Inculcating these skills is the goal
of texts on “critical thinking” or “informal logic”, where the primary emphasis
is on nonformal techniques for identifying fallacies, figuring out puzzles, and
constructing persuasive arguments. Formal or symbolic logic, which is the
domain of this book, is a discipline with its own body of theory and results, just
as are mathematics and physics. This text is an introduction to that discipline,
a discipline whose principles underlie the techniques presented in informal
logic texts. This text will help readers not only identify good and bad argu-
ments but also understand why arguments are good arguments or bad argu-
ments. Even though only the most avid devotees of formal systems will be
constructing truth-tables, truth-trees, or derivations after completing this text,
mastering these formal techniques is a way of coming to understand the prin-
ciples underlying reasoning and the relations among sentences and sets of
sentences.

There is another, quite practical, reason for studying symbolic logic. In
most of the chapters that follow, the discussion will center on seven or fewer
central concepts. These concepts are related, from chapter to chapter. For
example, the concept of truth-functional validity developed in Chapter 3 is one
way of refining the concept of logical validity laid out in this chapter. All these
concepts are abstract. They cannot be touched or weighed or examined under
a microscope. Mastering these concepts and the relations among them is an
exercise in abstract thinking. The skills involved are, we think, important and
will be useful in a wide variety of theoretical and applied fields. For these rea-
sons the “theory questions” found at the end of most exercise sets are in many
ways the most important part of the exercise sets.

1.3 SENTENCES, TRUTH-VALUES, AND ARGUMENTS 7

1.3 SENTENCES, TRUTH-VALUES, AND ARGUMENTS

‘True’ and ‘false’ are properties of sentences. That is, it is sentences that are
either true or false.2 Throughout this text we will use the notion of a truth-

value. We will say that true sentences have the truth-value T, and false sen-
tences the truth-value F. ‘Washington, DC, is the capital of the United States’
and ‘The volume of a gas is directly proportional to its temperature and
inversely proportional to its pressure’ are both true, and so both have the
truth-value T. The truth of the first derives from the political organization of
the United States, and the truth of the second from the fundamentals of
physics and chemistry. ‘Toronto is the capital of Canada’ and ‘Atoms are indi-
visible’ are both false, so both have the truth-value F—the first for reasons hav-
ing to do with the political organization of Canada, and the second for rea-
sons having to do with the existence and behavior of subatomic particles.
Although it is only sentences that are either true or false, not every sentence
of English is one or the other. Sentences that are obviously neither true nor
false include questions (‘Where is Kansas City?’), requests (‘Please shut the
door when you leave’), commands (‘Don’t darken my door again’), and
exclamations (‘Ouch!’). The formal systems we develop in this text are
intended to deal only with sentences that are either true or false as asserted
on a particular occasion in a particular context. To say that the sentences we
will be dealing with are those that are either true or false is not, of course, to
say that for any given sentence we know which it is, true or false, but only that
it is one or the other.

Much of this text is devoted to the study of arguments. Previously,
in discussing syllogistic arguments, we presented them by listing the premises
followed by the conclusion, with a horizontal line separating the premises
from the conclusion. Arguments so displayed are presented in standard form.
Of course, in natural languages, whether in spoken discourse or in writing,
arguments are rarely presented in standard form. Indeed, in English and
other natural languages, arguments, or bits of reasoning that can be recon-
structed as one or more arguments, generally neither occur in what we call
standard form nor are set off from preceding and following discourse.
Moreover, the premises are not always given first and the conclusion last.
Consider

Michael will not get the job, for whoever gets the job will have strong
references, and Michael’s references are not strong.

2Many philosophical disputes arise about such basic concepts as sentences, meaning, context, and truth. For
example, some philosophers argue that propositions are the kinds of entities that are really true or false, propo-
sitions being taken to be the meanings of sentences and to exist independently of any particular language. Other
philosophers eschew propositions as unnecessary metaphysical baggage. Because we have to adopt some termi-
nology and because all philosophers agree that sentences play some role in language, we shall talk of sentences
as being true or false. But we consider such talk to be shorthand for talk of sentences that have certain mean-
ings as used in particular contexts.

8 BASIC NOTIONS OF LOGIC

This single sentence can be recast as the following explicit argument in stan-
dard form:

Whoever gets the job will have strong references.

Michael’s references are not strong.

Michael will not get the job.

As we just saw, in everyday discourse the conclusion is sometimes given
before the premises. The conclusion can also come between premises, with the
whole argument being buried in an ongoing text:

I’ve got more relatives than I know what to do with. I’ve got relatives
in Idaho and in New Jersey, in Ireland and in Israel. Among them are
a couple of cousins, Tom and Fred Culverson. Both Tom and Fred are
hard working, and Tom is as tenacious as a bulldog. So Tom is sure to
be a success, for if there is one thing I have learned in life, it is that
everyone who is both hard working and tenacious succeeds. But I’m
sure success won’t change Tom. He’ll work just as hard after he makes
his first million as he does now. He is, after all, a Culverson. And no
one is as predictable as a Culverson, unless it’s a Hutchings. There are
lots of Hutchings on my mother’s side, but I haven’t had much to do
with them. . . .

The following explicit argument can be extracted from this passage and placed
in standard form:

Tom and Fred are hard working.

Tom is tenacious.

Everyone who is both hard working and tenacious succeeds.

Tom will succeed.

There is a lot of information in this passage that is not relevant to the specific
argument we have extracted. This is frequently the case.

The first step in analyzing arguments is to extract them from the dis-
course within which they are embedded and present them in standard form.
Doing so requires practice. In natural language the presence of an argument
is often signaled by the use of premise and/or conclusion indicator words.
Conclusion indicator words—that is, words indicating that what follows is intended
as the conclusion of an argument—include

therefore
thus
it follows that

1.3 SENTENCES, TRUTH-VALUES, AND ARGUMENTS 9

so
hence
consequently
as a result

Premise indicator words—that is, words whose use signals that what follows is
intended as a premise of an argument—include

since
for
because
on account of
inasmuch as
for the reason that

Not every piece of discourse is intended as an argument. Consider

Our galaxy is made up of our sun and billions of other stars. The galaxy
is a huge, flat spiral system that rotates like a wheel, and the myriad of
stars move around its center somewhat as the planets revolve around
our sun. There are millions of other galaxies in addition to our galaxy.

Each of the sentences in this passage is either true or false, but there is no good
reason to treat one of the sentences as a conclusion and the others as premises.

So far we have given examples of arguments, talked about them, and
presented several of them in standard form. But we have not defined ‘argu-
ment’, and it is time do so. In our definition we make use, as we frequently
will throughout the rest of this text, of the notion of a set of sentences. Sets
are abstract objects that have members (no members, one member, two mem-
bers, . . . an infinite number of members). The identity of a set is determined
by its members. That is, if set A and set B have exactly the same members, then
they are the same set; if they do not, they are different sets.

An argument is a set of two or more sentences, one of which is designated as
the conclusion and the others as the premises.

This is a very broad notion of an argument. For example, it allows us to count
the following as an argument:

Herbert is four years old.

The sun will shine tomorrow.

This is, of course, a paradigm of a bad argument. The one premise supplies
no support whatsoever for the conclusion. The advantage of this broad

10 BASIC NOTIONS OF LOGIC

definition is that it sidesteps the problem of having to give an account of how
plausible a line of reasoning has to be to count as an argument or of how likely
it is that a given group of sentences will be taken to support a designated
sentence in order for those sentences together to count as an argument.

Given our broad definition, we could recast the passage about our
galaxy as an argument for one or another of the constituent claims. But there
is no reason to do so except to demonstrate that, by our account, any set of
two or more sentences can be taken as an argument and evaluated as such. It
is, in fact, our contention that it is the job of the logician, not to set limits on
what counts as an argument, but rather to provide means of distinguishing
good arguments from bad ones. And this we will do. That said, most (but not
all) of the examples of arguments we use in this text will be ones in which
someone might think that the premises do support the conclusion.

Sometimes an argument turns out to be a good argument even when
the premises do not appear, on first review, to support the conclusion. This is
another reason for not appealing to some level of apparent support in the def-
inition of an argument. Consider, for example, this passage:

Everyone loves a lover. Tom loves Alice. Everyone loves everyone.

If by ‘lover’ we mean ‘someone who loves someone’, and if we take the last
sentence as the conclusion of an argument of which the first two sentences are
premises, we have a valid argument. The conclusion does follow, though not
obviously, from the premises. The missing reasoning is this: If Tom loves Alice,
then Tom is a lover. It follows from the first premise, ‘Everyone loves a lover’,
that everyone loves Tom. And if a lover is someone who loves someone, it fur-
ther follows that everyone is a lover (because everyone loves Tom). And if
everyone is a lover and everyone loves a lover, it follows, finally, that everyone
loves everyone. Of course, this reasoning does not work if ‘loves’ is not being
used in the same way in all its occurrences in the original argument, and it
may not be (‘Everyone loves a lover’ may be being used, for example, in the
sense of ‘Everyone is fond of a person who is in love’).

1.3E EXERCISES

(Note: The accompanying Solutions Manual contains answers to all unstarred
exercises.)

1. For each of the following, indicate whether it is the kind of sentence that falls
within the scope of this text—that is, is either true or false. If it is not, explain
why not.

a. George Washington was the second president of the United States.
*b. The next president of the United States will be a Republican.

c. Turn in your homework on time or not at all.
*d. Would that John Kennedy had not been assassinated.

e. Two is the smallest prime number.

1.3 SENTENCES, TRUTH-VALUES, AND ARGUMENTS 11

*f. One is the smallest prime number.
g. George Bush senior was the immediate predecessor to George W. as president.

*h. On January 15, 1134, there was a snowstorm in what is now Manhattan, at
3:00 p.m. EST.

i. Sentence m below is true.
*j. May you live long and prosper.
k. Never look a gift horse in the mouth.
*l. Who created these screwy examples?
m. This sentence is false.
*n. Beware of Greeks bearing gifts.

2. For each of the following passages, specify what argument, if any, is being
advanced. Where the intent is probably not to express an argument, explain
why this is so. Where an argument is probably being expressed, restate the
argument in standard form.

a. When Mike, Sharon, Sandy, and Vicky are all out of the office, no important
decisions get made. Mike is off skiing, Sharon is in Spokane, Vicky is in
Olympia, and Sandy is in Seattle. So no decisions will be made today.

*b. Our press releases are always crisp and upbeat. That’s because, though Jack
doesn’t like sound bytes, Mike does. And Mike is the press officer.

c. Shelby and Noreen are wonderful in dealing with irate students and faculty.
Stephanie is wonderful at managing the chancellor’s very demanding sched-
ule, and Tina keeps everything moving and cheers everyone up.

*d. This is a great office to work in. Shelby and Noreen are wonderful in dealing
with irate students and faculty. Stephanie is wonderful at managing the chan-
cellor’s very demanding schedule, and Tina keeps everything moving and
cheers everyone up.

e. The galvanized nails, both common and finishing, are in the first drawer. The
plain nails are in the second drawer. The third drawer contains Sheetrock
screws of various sizes, and the fourth drawer contains wood screws. The bot-
tom drawer contains miscellaneous hardware.

*f. The galvanized nails, both common and finishing, are in the first drawer. The
plain nails are in the second drawer. The third drawer contains Sheetrock
screws of various sizes, and the fourth drawer contains wood screws. The bot-
tom drawer contains miscellaneous hardware. So we should have everything we
need to repair the broken deck chair.

g. The weather is perfect; the view is wonderful; and we’re on vacation. So why
are you unhappy?

*h. The new kitchen cabinets are done, and the installers are scheduled to come
Monday. But there will probably be a delay of at least a week, for the old cab-
inets haven’t been removed, and the carpenter who is to do the removal is off
for a week of duck hunting in North Dakota.

i. Wood boats are beautiful, but they require too much maintenance. Fiberglass
boats require far less maintenance, but they tend to be more floating bathtubs
than real sailing craft. Steel boats are hard to find, and concrete boats never
caught on. So there’s no boat that will please me.

*j. Sarah, John, Rita, and Bob have all worked hard and all deserve promotion.
But the company is having a cash flow problem and is offering those over 55
a $50,000 bonus if they will retire at the end of this year. Sarah, John, and Bob
are all over 55 and will take early retirement. So Rita will be promoted.

12 BASIC NOTIONS OF LOGIC

k. Everyone from anywhere who’s anyone knows Barrett. All those who know her
respect her and like her. Friedman is from Minneapolis and Barrett is from
Duluth. Friedman doesn’t like anyone from Duluth. Therefore, either Fried-
man is a nobody or Minneapolis is a nowhere.

*l. I’m not going to die today. I didn’t die yesterday, and I didn’t die the day
before that, or the day before that, and so on back some fifty years.

m. Having cancer is a good, for whatever is required by something that is a good
is itself a good. Being cured of cancer is a good, and being cured of cancer
requires having cancer.

*n. The Soviet Union disintegrated because the perceived need for the military
security offered by the union disappeared with the end of the cold war and
because over 70 years of union had produced few economic benefits. More-
over the Soviet Union never successfully addressed the problem of how to
inspire loyalty to a single state by peoples with vastly different cultures and
histories.

o. Only the two-party system is compatible both with effective governance and
with the presenting and contesting of dissenting views, for when there are more
than two political parties, support tends to split among the parties, with no
party receiving the support of a majority of voters. And no party can govern
effectively without majority support. When there is only one political party, dis-
senting views are neither presented nor contested. When there are two or more
viable parties, dissenting views are presented and contested.

*p. Humpty Dumpty sat on a wall. Humpty Dumpty had a great fall. All the king’s
horses and all the king’s men couldn’t put Humpty together again. So they
made him into an omelet and had a great lunch.3

1.4 DEDUCTIVE VALIDITY AND SOUNDNESS

We have already noted that truth-preservation is what distinguishes good rea-
soning from bad reasoning. A deductively valid argument is one whose form
or structure is fully truth-preserving—that is, whose form or structure is such
that instances of it never proceed from true premises to a false conclusion.4 A
deductively invalid argument is one whose form or structure is such that
instances of it do, on occasion, proceed from true premises to a false conclusion.

An example of a valid deductive argument is

There are three, and only three, people in the room: Juarez, Sloan,
and Wang.

Juarez is left-handed.

Sloan is left-handed.

Wang is left-handed.

All the people in the room are left-handed.

3With apologies to Lewis Carroll.
4There are good arguments that are not valid deductive arguments. See Section 1.5.

1.4 DEDUCTIVE VALIDITY AND SOUNDNESS 13

This argument is truth-preserving. That is, if the premises (‘There are three,
and only three, people in the room: Juarez, Sloan, and Wang’, ‘Juarez is
left-handed’, ‘Sloan is left-handed’, and ‘Wang is left-handed’) are all true, then
the conclusion (‘All the people in the room are left-handed’) must also be true.
Arguments that are truth-preserving in this strong sense, where it is not possi-
ble at the same time for all the premises to be true and the conclusion false,
are said to be deductively valid. Such arguments never have true premises and
a false conclusion.

An argument is deductively valid if and only if it is not possible for the prem-
ises to be true and the conclusion false. An argument is deductively invalid if
and only if it is not deductively valid.

Consider this example of an invalid deductive argument:

Sloan is left-handed.

Wang is left-handed.

Everyone is left-handed.

It is invalid because, whereas the premises may well be true, the conclusion is
false. Not everyone is left-handed.

Logic is about the relations among sentences and groups of sentences.
For example, if we are told that a given argument is deductively valid, we can con-
clude that if the premises are true the conclusion must also be true. But we can-
not conclude, given only that the argument is valid, that the premises are true or
that the conclusion is true. Consider, for example, the following argument:

The corner grocery store was burglarized, and whoever did it both
knew the combination to the safe and was in town the night of the
burglary.

Carolyn, Albert, and Barbara are the only ones who knew the
combination to the safe.

Albert and Barbara were out of town the night of the burglary.

Carolyn committed the burglary.

This argument is deductively valid; that is, if the premises are true, the con-
clusion must also be true. But it does not follow that the premises are true,
and hence it does not follow that the conclusion is true. If we have good rea-
son to believe each of the premises, then we also have good reason to believe
the conclusion. But note that it is also the case that, if we have good reason to
doubt the conclusion (suppose, for example, that we know Carolyn and also
know that burglary is just not her style), then we have good reason to believe
that at least one of the premises is false.

14 BASIC NOTIONS OF LOGIC

The important point to note here is that, given only that an argument
is deductively valid, it may still be reasonable to doubt the conclusion or to
doubt one or more premises. But what is not reasonable is to accept the prem-
ises and doubt or reject the conclusion. One who accepts the premises of a
deductively valid argument ought, on pain of irrationality, also accept the con-
clusion. Correspondingly one who denies the conclusion of a deductively
valid argument ought, again on pain of irrationality, reject at least one of the
premises of that argument. (In the previous case, no police detective would
be impressed by a “defense” of Carolyn that consisted of accepting the prem-
ises of the argument but steadfastly denying that Carolyn committed the
burglary. If Carolyn did not commit the burglary, then either there was no
burglary, or the burglar was not someone who knew the combination, or
more people than those mentioned knew the combination, or Carolyn did
not know the combination, or Albert and Barbara were not both out of town
the night of the burglary, or Carolyn was out of town the night of the bur-
glary, or the person who committed the burglary was not in town the night
of the burglary.)

It follows from the definition of deductive validity that if an argument
is deductively valid then it does not have all true premises and a false conclu-
sion. But every other combination is possible. For example, a deductively valid
argument may have all true premises and a true conclusion. The following is
such as argument:

In 2000 Bush and Gore were the only major party candidates in the
presidential election.

A major party candidate won.

Gore did not win.

Bush won the presidential election in 2000.

Deductively valid arguments all of whose premises are true are said to be deduc-
tively sound.

An argument is deductively sound if and only if it is deductively valid and its
premises are true. An argument is deductively unsound if and only if it is not
deductively sound.

The foregoing argument concerning Bush and Gore is both deductively valid
and deductively sound.

A deductively valid argument may also have one or more false prem-
ises and a conclusion that is false. Here is such an argument:

France and Great Britain were the major powers in the Napoleonic Wars.

France had the largest army, Great Britain the largest navy.

1.4 DEDUCTIVE VALIDITY AND SOUNDNESS 15

The power with the largest army won in the end.

France won in the end.

The third premise, ‘The power with largest army won in the end’, is false (and
the argument is, for this reason, deductively unsound). The conclusion is also
false. (Great Britain won the Napoleonic Wars when Wellington defeated
Napoleon at the Battle of Waterloo in 1815.)

Finally a deductively valid argument may have a true conclusion and
one or more false premises. An example is

Chicago is the capital of the United States.

The capital of the United States is in Illinois.

Chicago is in Illinois.

Both premises of this argument are false (and the argument is therefore deduc-
tively unsound); the conclusion is true. This illustrates that good reasoning can
move from one or more false premises to a true conclusion.

A deductively invalid argument may have any combination of truths
and falsehoods as premises and conclusion. That is, such an argument may have
all true premises and a true conclusion, or all true premises and a false con-
clusion, or one or more false premises and a true conclusion, or one or more
false premises and a false conclusion. Here are some examples:

Albany is the capital of New York State.

Annapolis is the capital of Maryland.

Columbus is the capital of Ohio.

Denver is the capital of Colorado.

The three premises and the conclusion are all true. But the argument is obvi-
ously deductively invalid. Were the legislature of Colorado to vote to move the
capital to Boulder, the three premises of this argument would be true and the
conclusion false. So it is possible for the premises to be true and the conclu-
sion false. Consider

Albany is the capital of New York State.

Annapolis is the capital of Maryland.

Columbus is the capital of Ohio.

Minneapolis is the capital of Minnesota.

This deductively invalid argument has true premises and a false conclusion.
(St. Paul, not Minneapolis, is the capital of Minnesota.) It is also easy to

16 BASIC NOTIONS OF LOGIC

produce a deductively invalid argument with at least one false premise (two in
the following case) and a true conclusion:

Albany is the capital of New York State.

Minneapolis is the capital of Minnesota.

Annapolis is the capital of Maryland.

Boulder is the capital of Colorado.

Columbus is the capital of Ohio.

The conclusion of this argument is true; the second and fourth premises are
false. By changing the conclusion to ‘Dayton is the capital of Ohio’, we pro-
duce a deductively invalid argument with at least one (here two) false premise
and a false conclusion.

The point to remember is that the only time we can determine whether
an argument is deductively valid, given only the truth-values of the premises
and conclusion, is when the premises are all true and the conclusion false. We
know, again, that such an argument is deductively invalid. In all other cases, to
determine whether an argument is deductively valid, we have to consider not
what the actual truth-values of the premises and conclusion are, but whether
it is possible for the premises all to be true and the conclusion false. For
example, consider this argument:

No sea creatures are mammals.

Dolphins are sea creatures.

Dolphins are not mammals.

It has one false premise (the first), one true premise (the second), and a false
conclusion. This information does not determine whether the argument is
deductively valid or deductively invalid. Rather, we come to see that the argu-
ment is deductively valid when we realize that if both premises were true then
the conclusion would have to be true as well—that is, that dolphins, being sea
creatures, would have to be nonmammals. This argument is valid because it is
not possible for the premises to be true and the conclusion false.

1.4E EXERCISES

1. Which of the following are true and which are false? Explain your answers, giv-
ing examples as appropriate.

a. If an argument is valid, all the premises of that argument are true.
*b. If all the premises of an argument are true, the argument is valid.

c. All sound arguments are valid.
*d. All valid arguments are sound.

1.5 INDUCTIVE ARGUMENTS 17

e. No argument with a false conclusion is valid.
*f. Every argument with a true conclusion is valid.
g. If all the premises of an argument are true and the conclusion is true, then

the argument is valid.
*h. If all the premises of an argument are true and the conclusion is false, the

argument is invalid.
i. There are sound arguments with false conclusions.

*j. There are sound arguments with at least one false premise.

2. Give arguments with the following characteristics:
a. A valid argument with true premises and a true conclusion.

*b. A valid argument with at least one false premise and a true conclusion.
c. A valid argument with a false conclusion.

*d. An invalid argument all of whose premises are true and whose conclusion is
true.

e. An invalid argument all of whose premises are true and whose conclusion is
false.

*f. An invalid argument with at least one false premise and a false conclusion.

1.5 INDUCTIVE ARGUMENTS

There are good arguments that are not deductively valid—that is, whose use
involves some acceptable risk of proceeding from true premises to a false con-
clusion. Consider the following example:

Juarez, Sloan, and Wang are all left-handed.

Juarez and Sloan both have trouble using can openers made for
right-handed people.

Wang also has trouble using can openers made for right-handed
people.

This argument is not deductively valid. But the conclusion, ‘Wang also has trou-
ble using can openers made for right-handed people’, is to some extent proba-
ble given the fact that Wang is left-handed and that Juarez and Sloan, who are
also left-handed, have trouble using can openers made for right-handed people.
Nonetheless, the premises could be true and the conclusion false. This might
be the case if, for example, Wang is especially adroit with kitchen implements
or if the trouble the other two have derives from their having arthritis rather
than from their being left-handed.

An argument that is not deductively valid can still be a useful
argument—the premises can, as in the prior case, make the conclusion likely
even though not certain. Such arguments are said to have inductive strength,
the strength being proportional to the degree of probability the premises lend
to the conclusion.

18 BASIC NOTIONS OF LOGIC

An argument has inductive strength to the extent that the conclusion is
probable given the premises.

Inductive strength is thus a matter of degree.
Inductive reasoning is extremely common both in science and in every-

day life. Walter Reed’s hypothesizing that mosquitoes spread yellow fever is an
example of inductive reasoning. While serving in Cuba after the Spanish-American
War, Reed, a physician, noticed that those stricken with yellow fever always had
recent mosquito bites and that those not stricken tended to work in areas not
infested by mosquitoes. Based on these observations, Reed hypothesized that mos-
quitoes spread yellow fever. He then asked volunteers not infected with yellow fever
to allow themselves to be bitten by mosquitoes that had recently bitten yellow-fever-
infected patients. The volunteers quickly contracted yellow fever. Reed concluded
that mosquitoes transmit yellow fever. His reasoning can be represented as follows:

Individuals stricken with yellow fever have recent mosquito bites.

Individuals not stricken with yellow fever tend to work in areas not
infested with mosquitoes.

Most individuals bitten by mosquitoes that have recently bitten yellow
fever patients soon contract yellow fever.

Mosquitoes transmit yellow fever.

Reed’s observations made his conclusion probable but not certain. The mech-
anism of transmission might have turned out to be an airborne bacterium that
survives only under conditions that also encourage a high density of mosqui-
toes. It might have been a coincidence that the volunteers contracted yellow
fever soon after being bitten by the test mosquitoes. So we can say of this
argument that it is inductively strong but deductively invalid.

Deductive logic, which is the province of this text, and inductive logic,
which lies beyond the scope of this text, both provide methods for evaluating
arguments, and methods of both sorts can be applied to the same argument,
as above. Which methods are most appropriately applied depends on the con-
text. If an argument is given with the assumption that if the premises are true
the conclusion must also be true, then the argument should be evaluated by
the standards of deductive logic. However, if an argument is given with the
weaker assumption that if the premises are true the conclusion is probable,
then the argument should be evaluated by the standards of inductive logic.

1.5E EXERCISES

Evaluate the passages in Exercise 2 in Section 1.3 that contain arguments. In
each case say whether deductive or inductive standards are most appropriate.
If the former, state whether the argument is deductively valid. If the latter, state
to what extent the argument is inductively strong.

1.6 LOGICAL CONSISTENCY, TRUTH, FALSITY, AND EQUIVALENCE 19

1.6 LOGICAL CONSISTENCY, TRUTH, FALSITY, AND EQUIVALENCE

One of the important relations that can hold among a set of sentences is
consistency.

A set of sentences is logically consistent if and only if it is possible for all the
members of that set to be true. A set of sentences is logically inconsistent if
and only if it is not logically consistent.

We will indicate that we are talking about a set of sentences by enclosing the
component sentences within curly braces— ‘{’ and ‘}’. The following set is log-
ically consistent:

{Texas is larger than Oklahoma. The Phlogiston theory of heat has
been disproven. The United States Congress consists of the Senate and
the House of Representatives.}5

Note that there is no requirement that the members of a set have “something
to do with each other”. The three sentences listed are largely if not entirely
unrelated. Together they constitute a consistent set because it is possible that
all three are true at the same time. (In fact, all three are true.) We obtain a
different but also consistent set by replacing the second sentence, ‘The Phlo-
giston theory of heat has been disproven’, with ‘The Phlogiston theory of heat
has been proven’.

{Texas is larger than Oklahoma. The Phlogiston theory of heat has
been proven. The United States Congress consists of the Senate and
the House of Representatives.}

Someone who believes all the members of this new set has, to be sure, at least
one false belief (‘The Phlogiston theory of heat has been proven’), but this
does not make the set inconsistent. There is nothing in the nature of the
three sentences and their relations to one another that keeps all three from
being true. What keeps the second listed sentence from being true is the
nature of heat, that it does not behave the way the Phlogiston theory says it
behaves.

The following set of sentences is inconsistent:

{Michael and Benjamin both applied for positions at the local fast-food
outlet, and at least one of them will be hired. No one who applied for
a position will get it.}

5Technically what should be listed between the curly braces are the names of the members of the set—here the
names of sentences. These are formed by placing single quotation marks around the sentences. See Chapter 2,
Section 2.4.

20 BASIC NOTIONS OF LOGIC

If the first listed sentence is true, then the second sentence, ‘No one who
applied for a position will get it’, is false. In contrast, if the second sentence is
true, then it cannot be (as the first sentence claims it is) that Michael and
Benjamin both applied and that at least one of them will be hired. That is, if
the second sentence is true, then the first sentence is false. So it is not possi-
ble for both members of this set to be true. We are able to figure this out with-
out knowing who Michael and Benjamin are. The relationships between the
members of the set make it impossible for all the members to be true.

The following set is also inconsistent:

{Anyone who takes astrology seriously is foolish. Alice is my sister, and
no sister of mine has a husband who is foolish. Horace is Alice’s hus-
band, and he reads the horoscope column every morning. Anyone who
reads the horoscope column every morning takes astrology seriously.}

A little reflection shows that not all the members of the foregoing set can be true.
If the first, third, and fourth sentences are true, the second cannot be. Alterna-
tively, if the second, third, and fourth are true, the first cannot be. And so on.

Logic cannot normally tell us whether a given sentence is true or false,
but we can use logic to discover whether a set is consistent or inconsistent. And
if a set is inconsistent, we know that at least one member of it is false, and
hence that believing all the members of the set would involve believing at least
one false sentence, something we don’t want to do. Establishing that a set is
consistent does not establish that all, or even any, of its members are true; but
it does establish that it is possible for all the members to be true.

Although logic cannot normally be used to determine whether a par-
ticular sentence is true or false, there are two special cases. Some sentences are
true because of their form or structure. For example, ‘Either Cynthia will get a
job or she will not get a job’ is true no matter how Cynthia fares vis-à-vis her
job-seeking activities. Indeed, every sentence that is of the form ‘either . . . or
. . .’ and is such that what comes after the ‘or’ is the denial of what comes after
the ‘either’ is true. Sentences such as these do not give us any new information.
They do not “tell us anything about the world”. Whoever Cynthia is, we all know
that she either will or will not get a job, and so being told this does not convey
any new information. Other sentences of this type include ‘If Henry gets fired,
he gets fired’, ‘If everyone passes, Denise will pass’, and ‘If Sarah will go moun-
tain climbing if and only if Marjorie does, then if Marjorie does not go, neither
will Sarah’. Sentences of this sort are said to be logically true.

A sentence is logically true if and only if it is not possible for the sentence to
be false.

Just as some sentences are true by virtue of their form or structure, so
too some sentences are false by virtue of their form or structure. These include
‘Sarah is an A student and Sarah is not an A student’, ‘All lions are ferocious but

1.6 LOGICAL CONSISTENCY, TRUTH, FALSITY, AND EQUIVALENCE 21

there are lions in zoos that are not ferocious’, ‘I’m here and nobody is here’, and
‘Some dollar bills are not dollar bills’. Such sentences are said to be logically false.

A sentence is logically false if and only if it is not possible for the sentence to
be true.

Logically false sentences, like logically true sentences, give us no information
about the world.6

Sentences that purport to give us information about the world—and
these constitute most of the sentences we encounter outside logic and mathe-
matics—are neither logically true nor logically false. They include ‘Ivan is
driving from Boston to New Orleans’, ‘Anyone who takes astrology seriously is
foolish’, and ‘Perkins advocates the relaxation of air pollution standards
because he owns a lot of stock in a company producing coal with a high sulfur
content’. Such sentences claim that the world, or some part of it, is a certain
way, and to determine whether they are true we have to gather information
about the world, and not merely about how those sentences are constructed.
Such sentences are said to be logically indeterminate.

A sentence is logically indeterminate if and only if it is neither logically true
nor logically false.

The final concept we introduce in this chapter is that of logical equiv-
alence. Sentences are sometimes related in such a way that, because of their
structure or form, if one is true the other is as well, and vice versa. Examples
of such pairs of sentences include these:

Henry loves Sarah.
Sarah is loved by Henry.

Both Sarah and Henry will pass.
Both Henry and Sarah will pass.

Not all tumors are cancerous.
Some tumors are not cancerous.

Of course, the members of this pair, perhaps to Henry’s dismay, are not
logically equivalent:

Henry loves Sarah.
Sarah loves Henry.

6But logically true sentences are useful in ways that logically false sentences are not. By some accounts mathe-
matics consists exclusively of logical truths.

22 BASIC NOTIONS OF LOGIC

The members of a pair of sentences are logically equivalent if and only if it is
not possible for one of the sentences to be true while the other sentence is
false.

Note that we allow a sentence to be equivalent to itself, by counting, for
example, ‘Sarah is very bright’ and ‘Sarah is very bright’ as constituting a pair
of (identical) sentences. On this definition of logical equivalence, it also follows
that all logically true sentences are logically equivalent and that all logically false
sentences are logically equivalent. But it does not follow that all logically inde-
terminate sentences are logically equivalent. Clearly, logically indeterminate sen-
tences with different truth-values—for example, ‘Philadelphia is in Pennsylvania’
(true) and ‘Denver is in Wyoming’ (false)—are not logically equivalent. More-
over, not all logically indeterminate sentences with the same truth-value are log-
ically equivalent. ‘California produces red wine’ and ‘California produces white
wine’ are both true, but these claims are not logically equivalent. The test for
logical equivalence is not sameness of truth-value, but rather whether the sen-
tences in question must have the same truth-value—whether it is impossible for
them to have different truth-values. Since it is possible for ‘California produces
white wine’ to be true but ‘California produces red wine’ to be false (California
vintners might decide that all the money is to be made in white wine and stop
producing red wine), these sentences are not logically equivalent.

1.6E EXERCISES

1. Where possible, give an example of each of the following. Where not possible,
explain why no example can be given.

a. A consistent set all of whose members are true.
*b. A consistent set with at least one true member and at least one false member.

c. An inconsistent set all of whose members are true.
*d. A consistent set all of whose members are false.

2. For each of the following sets of sentences, indicate whether the set is consis-
tent or inconsistent, and why.

a. {Good vegetables are hard to find. The Dodgers are no longer in Brooklyn.
Today is hotter than yesterday.}

*b. {Henry likes real ice cream. Real ice cream is a dairy product. There isn’t a
dairy product Henry likes.}

c. {Washington, D.C., is the capital of the United States. Paris is the capital of
France. Ottawa is the capital of Canada.}

*d. {Washington, D.C., is the capital of the United States. Paris is the capital of
France. Toronto is the capital of Canada.}

e. {The weather is fine. Tomorrow is Tuesday. Two plus two equals four. We’re
almost out of gas.}

*f. {Sue is taller than Tom. Tom is taller than Henry. Henry is just as tall as Sue.}
g. {Tom, Sue, and Robin are all bright. No one who fails “Poetry for Scientists”

is bright. Tom failed “Poetry for Scientists”.}

1.6 LOGICAL CONSISTENCY, TRUTH, FALSITY, AND EQUIVALENCE 23

*h. {The United States does not support dictatorships. In the 1980s the United
State supported Iraq. Iraq has been a dictatorship since 1979.}

i. {Roosevelt was a better president than Truman, as was Eisenhower. Eisenhower
was also a better president than his successor, Kennedy. Kennedy was the best
president we ever had.}

*j. { Jones and his relatives own all the land in Gaylord, Minnesota. Smith is no
relation to Jones. Smith owns land in Gaylord, Minnesota.}

k. {Everyone who likes film classics likes Casablanca. Everyone who likes
Humphrey Bogart likes Casablanca. Sarah likes Casablanca, but she doesn’t like
most film classics and she doesn’t like Humphrey Bogart.}

*l. {Everyone who likes film classics likes Casablanca. Everyone who likes
Humphrey Bogart likes Casablanca. Sarah likes film classics and she likes
Humphrey Bogart, but she can’t stand Casablanca.}

3. Give an example of each of the following. Explain, in each case, why the given
example is of the sort requested.

a. A logically true sentence
*b. A logically false sentence

c. A logically indeterminate sentence

4. For each of the following, indicate whether it is logically true, logically false,
or logically indeterminate, and why.

a. Sarah passed the bar exam but she never went to law school.
*b. Helen is a doctor but not an MD.

c. Helen is an MD but not a doctor.
*d. Bob is in London but his heart is in Texas.

e. Robin will either make it to class by starting time or she won’t.
*f. Robin will either make it to class by starting time or she will be late.
g. Bob knows everyone in the class, which includes Robin, whom he doesn’t know.

*h. Sarah likes all kinds of fish but she doesn’t like ocean fish.
i. If Sarah likes all kinds of fish, then she likes ocean fish.

*j. Anyone who likes rare beef likes rare emu.
k. Anyone who loves everyone is lacking in discrimination.
*l. Anyone who loves everyone loves a lot of people.

5. Where possible, give examples of the following. Where not possible, explain
why not.

a. A pair of sentences, both of which are logically indeterminate and are logically
equivalent.

*b. A pair of sentences that are not logically equivalent but that are both true.
c. A pair of sentences that are logically equivalent, one of which is logically true

and one of which is not.
*d. A pair of sentences that are logically equivalent and both false.

e. A pair of sentences, at least one of which is logically true, that are logically
equivalent.

*f. A pair of sentences that are logically equivalent, one of which is logically false
and the other of which is logically true.

6. For each of the following pairs of sentences, indicate whether the sentences
are logically equivalent, and explain why.

a. Henry is in love with Sue.
Sue is in love with Henry.

24 BASIC NOTIONS OF LOGIC

*b. Sue married Barbara
Barbara married Sue.

c. Tom likes all kinds of fish.
Tom claims to like all kinds of fish.

*d. Bill and Mary were both admitted to the Golden Key Honor Society.
Bill was admitted to the Golden Key Honor Society and Mary was admitted to
the Golden Key Honor Society.

e. Neither Bill nor Mary will get into law school.
Bill will not get into law school or Mary will get into law school.

*f. The judge pronounced Bill and Mary husband and wife.
Bill and Mary got married.

g. Only Mariner fans came to the rally.
All Mariner fans came to the rally.

*h. I know there are people who are starving in every large city in America.
In every large city in America I know people who are starving.

i. Every newscast reported that a strike is imminent.
A strike is imminent.

*j. A bad day of sailing is better than a good day at work.
A good day at work isn’t as good as a bad day of sailing.

k. Sarah and Anna won’t both be elected president of the senior class.
Either Sarah will be elected president of the senior class or Anna will be elected
president of the senior class.

*l. Sarah and Anna won’t both be elected president of the senior class.
Either Sarah will not be elected president of the senior class or Anna will not
be elected president of the senior class.

m. Everyone dislikes someone.
There is someone whom everyone dislikes.

*n. Everyone dislikes someone.
There is no universally liked person.

o. Everyone likes someone.
Someone is liked by everyone.

*p. Not everyone likes someone.
There is someone who doesn’t like anyone.

1.7 SPECIAL CASES OF VALIDITY

Having introduced the notions of logical consistency, logical truth, and logical
falsity, we are now in a position to consider some special and rather counterin-
tuitive cases of validity. We have defined a deductively valid argument to be one
in which it is impossible for the premises to be true and the conclusion false.
Such an argument, we have said, is truth-preserving in that it never takes us from
true premises to a false conclusion. Here we consider two special cases of valid-
ity. Consider first an argument whose conclusion is logically true. An example is

The Philadelphia Phillies are the best team in the National League.

Either the next president will be a woman or the next president will
not be a woman.

1.7 SPECIAL CASES OF VALIDITY 25

The conclusion of this argument is clearly logically true. No matter who wins
the next presidential election, that person either will or will not be a woman.
The premise is, at the moment of this writing, anything but true. Note that the
premise is utterly unconnected with the conclusion. For the latter reason one
might very well be tempted to say that this is an invalid argument, for surely
the premises of a valid argument must be relevant to (have some connection
with) the conclusion. But recall our definition of validity: An argument is
deductively valid if and only if it is not possible for the premises to be true and
the conclusion false. The above argument does satisfy this requirement. It is
not possible for the conclusion, a logical truth, to be false. Therefore it is not
possible for the premises to be true and the conclusion false—again, because
the conclusion cannot be false.7

To put the point another way, this argument is truth-preserving. It will
never lead us from truths to a falsehood because it will never lead us to a false-
hood—because the conclusion is logically true. There is no risk of reaching a
false conclusion here precisely because there is no risk that the conclusion is
false. All arguments whose conclusions are logically true are deductively valid
for this reason.8

Consider next arguments whose premises form logically inconsistent
sets. This may be because one or more of an argument’s premises are logically
false (in which case it is impossible for those premises to be true, and hence
impossible for all the premises to be true), or it may be because, while no sin-
gle premise is logically false, the premises taken together are nonetheless
logically inconsistent. The following is a case of the latter sort:

Albert is brighter than all his sisters.

Albert and Sally are brother and sister.

Sally is brighter than all her brothers.

Tyrannosaurus rex was the fiercest of all dinosaurs.

In this case, if the first and second premises are both true, the third premise
cannot be true. And, if the second and third premises are both true, the first
premise cannot be true. So not all the premises can be true. The set consist-
ing of the premises is logically inconsistent. Here, as in the preceding case,
there is no obvious connection between the premises and the conclusion. Yet
the argument does satisfy our definition of deductive validity because it is
impossible for all the premises of this argument to be true and therefore

7Arguments whose conclusions are logically true are deductively valid whether or not their conclusions are related
to their premises. For example,

The Philadelphia Phillies are the best team in the National League; therefore the Phillies either will
or will not win the National League pennant

is a deductively valid argument, not because the premise and conclusion both concern the Phillies but because
the conclusion is logically true and it is therefore impossible for the premise to be true and the conclusion false.
8One way to think of such an argument is that, since the conclusion is logically true, it requires no support.
Hence, whatever support the premises provide (even if it is none at all—even if the premises are utterly unre-
lated to the conclusion) is enough.

26 BASIC NOTIONS OF LOGIC

impossible for all the premises to be true and the conclusion false. The argu-
ment is truth-preserving because it will never take us from truths to a false-
hood. It will not do so because the premises cannot all be true, and hence
there is no possibility of going from truths to a falsehood. Arguments whose
premises are inconsistent, while valid, are of course never sound.

Every argument whose premises constitute a logically inconsistent set
is thus deductively valid. As a further example, consider

Sandra will get an A in the course and Sandra will not get an A in
the course.

Sandra will graduate.

The one premise of this argument is logically false. Therefore that premise can-
not be true. And so it is impossible for every premise of this argument (there
is only one) to be true and the conclusion false. The conclusion may be false,
but not while the premise is true.

Arguments of the sort we are discussing here are sometimes dismissed
as not being arguments at all, precisely because their validity does not depend
on a relation between the premises and conclusion. There are, however, sys-
tematic reasons for allowing these cases to constitute arguments and thus for
recognizing them as valid deductive arguments. It is important to remember
that such arguments are valid because they meet the requirement of truth
preservation—they will never take us from truths to a falsehood—not because
the premises support the conclusion in any intuitive way.

1.7E EXERCISES

1. Which of the following are true, and which are false? Explain your answers giv-
ing examples where appropriate.

a. If at least one member of a set of sentences is logically false, then the set is
logically inconsistent.

*b. No two false sentences are logically equivalent.
c. Every argument whose conclusion is logically equivalent to one of its premises

is valid.
*d. Any argument that includes among its premises ‘Everyone is a scoundrel’ and

‘I’m no scoundrel’ is deductively valid.
e. Every argument that has ‘Whatever will be, will be’ as a conclusion is deduc-

tively valid.
*f. Every argument that has ‘Everyone is a scoundrel and I’m no scoundrel’ as a

conclusion is deductively invalid.
g. Every argument all of whose premises are logically true is deductively valid.

2. Answer each of the following:
a. Does every person who believes that New York City is the capital of the United

States have inconsistent beliefs?
*b. Need one be engaged in a disagreement or dispute to have use for an argu-

ment as we have been using the term ‘argument’? Explain.

GLOSSARY 27

c. Explain why logic cannot normally tell us whether a valid argument is sound.
Under what conditions could we decide, on logical grounds alone, that a valid
argument is sound?

*d. Suppose an argument is valid but has a false conclusion. What can we con-
clude about the premises? Explain.

e. Explain why an argument with at least one logically false premise must be valid
no matter what the other premises are and no matter what the conclusion is.

*f. Suppose an argument has a premise that is logically equivalent to a logical false-
hood. Must the argument be valid? Explain.

g. Suppose an argument has a logical truth as its conclusion. Explain why the
argument must be valid no matter what its premises are. Explain why some
such arguments are sound and some are not.

*h. Suppose the premises of an argument form an inconsistent set of sentences.
Explain why the argument must be valid but unsound.

i. Suppose a set of a million sentences is consistent. Now suppose a new set of
sentences is constructed so that every sentence in the new set is logically equiv-
alent to at least one of the sentences in the old set. Must the new set be con-
sistent? Explain.

GLOSSARY

ARGUMENT: An argument is a set of two or more sentences, one of which is desig-
nated as the conclusion and the others as the premises.

DEDUCTIVE VALIDITY: An argument is deductively valid if and only if it is not possi-
ble for the premises to be true and the conclusion false. An argument is deductively

invalid if and only if it is not deductively valid.
DEDUCTIVE SOUNDNESS: An argument is deductively sound if and only if it is

deductively valid and all its premises are true. An argument is deductively unsound if
and only if it is not deductively sound.

INDUCTIVE STRENGTH: An argument has inductive strength to the extent that the
conclusion is probable given the premises.

LOGICAL CONSISTENCY: A set of sentences is logically consistent if and only if it is
possible for all the members of that set to be true. A set of sentences is logically

inconsistent if and only if it is not logically consistent.
LOGICAL TRUTH: A sentence is logically true if and only if it is not possible for the

sentence to be false.
LOGICAL FALSITY: A sentence is logically false if and only if it is not possible for the

sentence to be true.
LOGICAL INDETERMINACY: A sentence is logically indeterminate if and only if it is

neither logically true nor logically false.
LOGICAL EQUIVALENCE: The members of a pair of sentences are logically equivalent

if and only if it is not possible for one of the sentences to be true while the other
sentence is false.

28 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

Chapter 2
SENTENTIAL LOGIC:

SYMBOLIZATION

AND SYNTAX

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES

Sentential logic, as the name suggests, is a branch of formal logic in which
sentences are the basic units. In this chapter we shall introduce SL, a symbolic
language for sentential logic, which will facilitate our development of formal
techniques for assessing the logical relations among sentences and groups of
sentences. The sentences of English that can be symbolized in SL are those that
are either true or false, that is, have truth-values.

In English there are various ways of generating sentences from other
sentences. One way is to place a linking term such as ‘and’ between them. The
result, allowing for appropriate adjustments in capitalization and punctuation,
will itself be a sentence of English. In this way we can generate

Socrates is wise and Aristotle is crafty

by writing ‘and’ between ‘Socrates is wise’ and ‘Aristotle is crafty’. Some other
linking terms of English are ‘or’, ‘although’, ‘unless’, ‘before’, and ‘if and only
if ’. As used to generate sentences from other sentences, these terms are called

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 29

sentential connectives (they connect or join sentences to produce further
sentences).

Some sentence-generating words and expressions do not join two
sentences together but rather work on a single sentence. Examples are ‘it is
not the case that’ and ‘it is alleged that’. Prefacing a sentence with either of
these expressions generates a further sentence. Since these expressions do
not literally connect two sentences, the term “sentential connective” is per-
haps a little misleading. Nonetheless, such sentence-generating devices as
these are commonly classified as sentential connectives, and we shall follow
this usage.

Sentences generated from other sentences by means of sentential
connectives are compound sentences. All other sentences are simple sentences.
In developing sentential logic we shall be especially interested in the truth-
functional use of sentential connectives. Intuitively a compound sentence
generated by a truth-functional connective is one in which the truth-value
of the compound is a function of, or is fixed by, the truth-values of its
components.

A sentential connective is used truth-functionally if and only if it is used to
generate a compound sentence from one or more sentences in such a way
that the truth-value of the generated compound is wholly determined by the
truth-values of those one or more sentences from which the compound is
generated, no matter what those truth-values may be.

Few, if any, connectives of English are always used truth-functionally.
However, many connectives of English are often so used. We shall call these
connectives, as so used, truth-functional connectives. A truth-functionally
compound sentence is a compound sentence generated by a truth-functional
connective.

In English ‘and’ is often used truth-functionally. Consider the com-
pound sentence

Alice is in England and Bertram is in France.

Suppose that Alice is in Belgium, not England. Then ‘Alice is in England’ is
false. The compound sentence is then clearly also false. Similarly, if ‘Bertram
is in France’ is false, the compound ‘Alice is in England and Bertram is in
France’ is false as well. In fact, this compound will be true if and only if both
of the sentences from which it is generated are true. Hence the truth-value
of this compound is wholly determined by the truth-values of the component
sentences from which it is generated. Given their truth-values, whatever they
may be, we can always compute the truth-value of the compound in question.
This is just what we mean when we say that ‘and’ functions as a truth-functional
connective.

30 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

SENTENCES OF SENTENTIAL LOGIC

In SL capital Roman letters are used to abbreviate individual sentences of
English. Thus

Socrates is wise

can be abbreviated as

W

Of course, we could have chosen any capital letter for the abbreviation, but it
is common practice to select a letter that reminds us of the sentence being
abbreviated. In this case ‘W’ reminds us of the word ‘wise’. But it is essential
to remember that the capital letters of SL abbreviate entire sentences and not

individual words within sentences.
To ensure that we have enough sentences in our symbolic language to

represent any number of English sentences, we shall also count capital Roman
letters with positive-integer subscripts as sentences of SL. Thus all the follow-
ing are sentences of SL:

A, B, Z, T25, Q6

In SL capital letters with or without subscripts are atomic sentences. Sentences
of SL that are made up of one or more atomic sentences and one or more sen-
tential connectives of SL are molecular sentences.

CONJUNCTION

We could abbreviate

Socrates is wise and Aristotle is crafty

in our symbolic language as ‘A’, but in doing so we would bury important
information about this English sentence. This sentence is a compound made
up of two simple sentences: ‘Socrates is wise’ and ‘Aristotle is crafty’. Fur-
thermore, in this case the word ‘and’, which connects the two sentences, is
serving as a truth-functional connective. This compound sentence is true
if both of its component sentences are true and is false otherwise. We
shall use ‘&’ (ampersand) as the sentential connective of SL that captures
the force of this truth-functional use of ‘and’ in English. Instead of symbol-
izing ‘Socrates is wise and Aristotle is crafty’ as ‘A’, we can now symbolize
it as

W & C

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 31

where ‘W’ abbreviates ‘Socrates is wise’ and ‘C’ abbreviates ‘Aristotle is crafty’.
Remember that the letters abbreviate entire sentences, not merely specific
words like the words ‘wise’ and ‘crafty’. The compound sentence ‘W & C’ is an
example of a molecular sentence of SL.

A sentence of the form

P & Q

where P and Q are sentences of SL, is a conjunction.1 P and Q are the conjuncts
of the conjunction. Informally we shall use the terms “conjunction” and “con-
junct” in talking of English sentences that can be symbolized as conjunctions
of SL. The relation between the truth or falsity of a conjunction and the truth
or falsity of its conjuncts can be simply put: A conjunction is true if and only
if both of its conjuncts are true. This is summarized by the following table:

P Q P & Q

T T T
T F F
F T F
F F F

Such a table is called a characteristic truth-table because it defines the use of ‘&’
in SL. The table is read horizontally, row by row. The first row contains three
T’s. The first two indicate that we are considering the case in which P has the
truth-value T and Q has the truth-value T. The last item in the first row is a T,
indicating that the conjunction has the truth-value T under these conditions.
The second row indicates that, when P has the truth-value T and Q has the
truth-value F, the conjunction has the truth-value F. The third row shows that,
when P has the truth-value F and Q has the truth-value T, the conjunction has
the truth-value F. The last row indicates that when both P and Q have the truth-
value F, the conjunction has the truth-value F as well.

Sometimes an English sentence that is not itself a compound sentence
can be paraphrased as a compound sentence. The sentence

Fred and Nancy passed their driving examinations

can be paraphrased as

Both Fred passed his driving examination and Nancy passed her driv-
ing examination.

We underscore the connectives in paraphrases to emphasize that we are
using those connectives truth-functionally. We use ‘both . . . and . . .’,

1Our use of boldface letters to talk generally about the sentences of SL is explained in Section 2.4.

32 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

rather than just ‘and’, to mark off the conjuncts unambiguously. Where the
example being paraphrased is complex, we shall sometimes also use paren-
theses—‘(’ and ‘)’—and brackets—‘[’ and ‘]’—to indicate grouping. The
foregoing paraphrase is an adequate paraphrase of the original sentence
inasmuch as both the original sentence and the paraphrase are true if and
only if ‘Fred passed his driving examination’ and ‘Nancy passed her driving
examination’ are both true. The paraphrase is a conjunction and can be sym-
bolized as

F & N

where ‘F’ abbreviates ‘Fred passed his driving examination’ and ‘N’ abbreviates
‘Nancy passed her driving examination’.

Symbolizing English sentences in SL should be thought of as a two-step
process. First, we construct in English a truth-functional paraphrase of the
original English sentence; next, we symbolize that paraphrase in SL. The par-
aphrase stage serves to remind us that the compounds symbolized as molecu-
lar sentences of SL are always truth-functional compounds.

The preceding example illustrates that the grammatical structure of an
English sentence is not a completely reliable indication of its logical structure.
Key words like ‘and’ serve as clues but are not infallible guides to symboliza-
tion. The sentence

Two jiggers of gin and a few drops of dry vermouth make a great martini

cannot be fairly paraphrased as

Both two jiggers of gin make a great martini and a few drops of dry
vermouth make a great martini.

Together these ingredients may make a great martini, but separately they make
no martini at all. Such a paraphrase completely distorts the sense of the orig-
inal sentence. Thus the original sentence must be regarded as a simple sen-
tence and symbolized in SL as an atomic sentence, say

M

Many sentences generated by such other connectives of English as ‘but’, ‘how-
ever’, ‘although’, ‘nevertheless’, ‘nonetheless’, and ‘moreover’ can be closely
paraphrased using ‘and’ in its truth-functional sense. Consider some examples:

Susan loves country music, but she hates opera

can be paraphrased as

Both Susan loves country music and Susan hates opera.

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 33

The paraphrase can be symbolized as ‘L & H’, where ‘L’ abbreviates ‘Susan
loves country music’ and ‘H’ abbreviates ‘Susan hates opera’.

The members came today; however, the meeting is tomorrow

can be paraphrased as

Both the members came today and the meeting is tomorrow

which can be symbolized as ‘C & M’, where ‘C’ abbreviates ‘The members came
today’ and ‘M’ abbreviates ‘The meeting is tomorrow’.

Although George purchased a thousand raffle tickets, he lost

can be paraphrased as

Both George purchased a thousand raffle tickets and George lost

which can be symbolized as ‘P & L’, where ‘P’ abbreviates ‘George purchased
a thousand raffle tickets’ and ‘L’ abbreviates ‘George lost’.

In each of these cases, the paraphrase perhaps misses part of the sense
of the original English sentence. In the last example, for instance, there is the
suggestion that it is surprising that George could have purchased a thousand
raffle tickets and still have lost the raffle. Truth-functional paraphrases often
fail to capture all the nuances present in the sentences of which they are par-
aphrases. This loss is usually not important for the purposes of logical analysis.

In symbolizing sentences of a natural language—in our case English—
grammatical structure and key words provide important clues, but they are not
infallible guides to correct symbolizations. Ultimately we have to ask ourselves,
as speakers of English, whether the sentence can be reasonably paraphrased as
a truth-functional compound. If so, we can symbolize it as a molecular sentence
of SL. If not, we have to symbolize it as an atomic sentence of SL.

DISJUNCTION

Another sentential connective of English is ‘or’, used in such sentences as

Henry James was a psychologist or William James was a psychologist.

This English sentence contains two simple sentences as components: ‘Henry
James was a psychologist’ and ‘William James was a psychologist’. The truth-
value of the compound wholly depends upon the truth-values of the compo-
nent sentences. As long as at least one of the component sentences is true,
the compound is true; but if both the components are false, then the com-
pound is false. When used in this way, ‘or’ serves as a truth-functional

34 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

connective of English. In SL ‘∨’ (wedge) is the symbol that expresses this truth-
functional relation. Thus the sentence about Henry and William James can be
symbolized as

H ∨ W

where ‘H’ abbreviates ‘Henry James was a psychologist’ and ‘W’ abbreviates
‘William James was a psychologist’. ‘H ∨ W’ is true if ‘H’ is true or ‘W’ is true,
and it is false only when both ‘H’ and ‘W’ are false.

A sentence of the form

P ∨ Q

where P and Q are sentences of SL, is a disjunction. P and Q are the disjuncts
of the sentence. Informally we shall use the terms “disjunction” and “disjunct”
in talking of English sentences that can be symbolized as disjunctions of SL. A
disjunction is true if and only if at least one of its disjuncts is true. This is sum-
marized by the following characteristic truth-table:

P Q P ∨ Q

T T T
T F T
F T T
F F F

The only case in which a disjunction has the truth-value F is when both dis-
juncts have the truth-value F.

Some sentences of English that do not contain the word ‘or’ can be
paraphrased as a disjunction. For instance,

At least one of the two hikers, Jerry and Amy, will get to the top of the
mountain

can adequately be paraphrased as

Either Jerry will get to the top of the mountain or Amy will get to the
top of the mountain.

This paraphrase can be symbolized as ‘J ∨ A’, where ‘J’ abbreviates ‘Jerry will
get to the top of the mountain’ and ‘A’ abbreviates ‘Amy will get to the top of
the mountain’. Remember, the letters abbreviate the entire sentences, not just
the words ‘Jerry’ and ‘Amy’. In paraphrasing English sentences as disjunctions
of SL, we use the ‘either . . . or . . .’ construction to mark off the two dis-
juncts unambiguously.

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 35

In English sentences that can be paraphrased as disjunctions, ‘or’ does
not always occur between full sentences. For example,

Nietzsche is either a philosopher or a mathematician

can be paraphrased as

Either Nietzsche is a philosopher or Nietzsche is a mathematician.

This truth-functional paraphrase can be symbolized as ‘P ∨ M’, where ‘P’ abbre-
viates ‘Nietzsche is a philosopher’ and ‘M’ abbreviates ‘Nietzsche is a mathe-
matician’.

We use the wedge to symbolize disjunctions in the inclusive sense.
Suppose the following appears on a menu:

With your meal you get apple pie or chocolate cake.

We might try to paraphrase this as

Either with your meal you get apple pie or with your meal you get
chocolate cake.

Since we use ‘or’ only in the inclusive sense in paraphrases, this paraphrase is
true if either or both of the disjuncts are true. In ordinary English, on the
other hand, ‘or’ is sometimes used in a more restrictive sense. In the present
example, if someone orders both pie and cake, the waiter is likely to point out
that either cake or pie, but not both, comes with the dinner. This is the exclu-
sive sense of ‘or’—either one or the other but not both. Although this sense
of ‘or’ cannot be captured by ‘∨’ alone, there is, as we shall soon see, a com-
bination of connectives of SL that will allow us to express the exclusive sense
of ‘or’.

NEGATION

‘It is not the case that’ is a sentential connective of English. Consider the fol-
lowing compound generated by this connective:

It is not the case that Franklin Pierce was president.

This sentence is true if its component sentence, ‘Franklin Pierce was presi-
dent’, is false, and it is false if that component sentence is true. ‘It is not the
case that’ is a truth-functional connective because the truth-value of the gen-
erated sentence is wholly determined by the truth-value of the component
sentence. In SL ‘∼ ’ (tilde) is the sentential connective that captures this

36 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

truth-functional relationship. Thus the sentence in question can be symbol-
ized as

∼ F

where ‘F’ abbreviates ‘Franklin Pierce was president’. The tilde is a unary con-
nective, because it “connects” only one sentence. On the other hand, ‘&’ and
‘∨’ are binary connectives since each connects two sentences. When ‘∼ ’ is placed
in front of a sentence, the truth-value of the generated sentence is the opposite
of the truth-value of the original sentence. So the characteristic truth-table for
negation is this:

P ∼ P

T F
F T

Notice that, because ‘∼ ’ is a unary connective, we need a truth-table of only
two rows to represent all the possible “combinations” of truth-values that a sin-
gle sentence to which ‘~ ’ is attached might have.

Putting a ‘~ ’ in front of a sentence forms the negation of that sen-
tence. Hence ‘~ A’ is the negation of ‘A’ (though ‘A’ is not the negation of
‘~ A’), ‘~ ∼ A’ is the negation of ‘∼ A’ (though ‘∼ A’ is not the negation of
‘∼ ∼ A’), and so forth. Informally we shall use the term “negation” in talking
about sentences of English that can be symbolized as negations in SL. Thus

It is not the case that Franklin Pierce was president

is the negation of

Franklin Pierce was president.

Whether an English sentence should be symbolized as a negation
depends on the context. As before, grammar and key words give us clues. Con-
sider some examples:

Not all sailors are good swimmers

is readily paraphrased as

It is not the case that all sailors are good swimmers.

This paraphrase can be symbolized as ‘∼ G’, where ‘G’ abbreviates ‘All sailors
are good swimmers’. But the following example is not as straightforward:

No doctors are rich.

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 37

One might be tempted to paraphrase this sentence as ‘It is not the case that
all doctors are rich’, but to do so is to treat ‘No doctors are rich’ as the negation
of ‘All doctors are rich’. This is a mistake because a sentence and its negation
are so related that, if one is true, the other is false, and vice versa. In fact, since
some doctors are rich and some doctors are not rich, both ‘All doctors are rich’
and ‘No doctors are rich’ are false. Hence the latter cannot be the negation of
the former. Rather, ‘No doctors are rich’ is the negation of ‘Some doctors are
rich’. ‘No doctors are rich’ is true if and only if ‘Some doctors are rich’ is false,
so the former sentence can be paraphrased as

It is not the case that some doctors are rich.

This can be symbolized as ‘∼ D’, where ‘D’ abbreviates ‘Some doctors are rich’.
Some further examples will be helpful:

Chlorine is not a metal

can plausibly be understood as

It is not the case that chlorine is a metal.

This paraphrase can be symbolized as ‘∼ C’, where ‘C’ abbreviates ‘Chlorine is
a metal’. Notice that ‘Chlorine is a metal’ and ‘Chlorine is not a metal’ are
such that if either is true the other is false, which must be the case if the lat-
ter is to be the negation of the former. But now consider an apparently simi-
lar case:

Some humans are not male.

This sentence should not be paraphrased as ‘It is not the case that some
humans are male’. The latter sentence is true if and only if no humans are
male, which is not the claim made by the original sentence. The proper para-
phrase is

It is not the case that all humans are male

which can be symbolized as ‘∼ H’, where ‘H’ abbreviates ‘All humans are male’.
Often sentences containing words with such prefixes as ‘un-’, ‘in-’, and ‘non-’
are best paraphrased as negations. But we must be careful here.

Kant was unmarried

can be understood as

It is not the case that Kant was married

38 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

and then symbolized as ‘∼ K’, where ‘K’ abbreviates ‘Kant was married’. ‘Kant
was unmarried’ is the negation of ‘Kant was married’. But

Some people are unmarried

should not be paraphrased as ‘It is not the case that some people are married’.
‘Some people are married’ and ‘Some people are unmarried’ are both true. A
proper paraphrase in this case is

It is not the case that all people are married

which can be symbolized as ‘∼ M’, where ‘M’ abbreviates ‘All people are
married’.

COMBINATIONS OF SENTENTIAL CONNECTIVES

So far we have discussed three types of truth-functional compounds—
conjunctions, disjunctions, and negations—and the corresponding sentential con-
nectives of SL— ‘&’, ‘∨’, and ‘∼ ’. These connectives can be used in combination
to symbolize complex passages. Suppose we wish to symbolize the following:

Either the steam engine or the computer was the greatest modern
invention, but the zipper, although not the greatest modern invention,
has made life much easier.

The main connective in this sentence is ‘but’, and the sentence can be para-
phrased as a conjunction. The left conjunct can be paraphrased as a disjunc-
tion, and the right can be paraphrased as a conjunction making the claim that
the zipper was not the greatest modern invention and the claim that the zip-
per has made life much easier. Finally the claim that the zipper was not the
greatest modern invention can be paraphrased as a negation. The resulting
truth-functional paraphrase is

Both (either the steam engine was the greatest modern invention or
the computer was the greatest modern invention) and (both it is not
the case that the zipper was the greatest modern invention and the
zipper has made life much easier).

For clarity we have inserted some parentheses in the paraphrase to emphasize
the grouping of the components. The order of placement of ‘both’ and ‘either’
is important. In this case ‘both’ occurring before ‘either’ at the beginning
shows that the overall sentence is a conjunction, not a disjunction. The para-
phrase can be symbolized as

(S ∨ C) & (∼ Z & E)

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 39

where ‘S’ abbreviates ‘The steam engine was the greatest modern invention’,
‘C’ abbreviates ‘The computer was the greatest modern invention’, ‘Z’ abbre-
viates ‘The zipper was the greatest modern invention’, and ‘E’ abbreviates ‘The
zipper has made life much easier’.

The connectives ‘&’, ‘∨’, and ‘~ ’ can be used in combination to
symbolize English sentential connectives such as ‘neither . . . nor . . .’. The
sentence

Neither Sherlock Holmes nor Watson is fond of criminals

can be paraphrased as

Both it is not the case that Sherlock Holmes is fond of criminals and
it is not the case that Watson is fond of criminals.

This can be symbolized as

∼ H & ∼ W

where ‘H’ abbreviates ‘Sherlock Holmes is fond of criminals’ and ‘W’ abbrevi-
ates ‘Watson is fond of criminals’.

Another equally good paraphrase of the original sentence is

It is not the case that either Sherlock Holmes is fond of criminals or
Watson is fond of criminals.

This paraphrase can be symbolized using the above abbreviations as

∼ (H ∨ W)

Note that the original sentence, the paraphrases, and the symbolic sentences
are all true if Sherlock Holmes is not fond of criminals and Watson is not fond
of criminals, and they are all false otherwise.

A similar, but nonequivalent, connective is ‘not both . . . and . . .’.
Consider this claim:

A Republican and a Democrat will not both become president.

Truth-functionally paraphrased this becomes

It is not the case that both a Republican will become president and a
Democrat will become president

which is symbolized as

∼ (R & D)

40 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

This sentence does not maintain that neither a Republican nor a Democrat
will become president but only that not both of them will become president.
‘∼ (R ∨ D)’ is not an acceptable symbolization, but ‘∼ (R & D)’ is. Another
possible and acceptable paraphrase of this particular ‘not both . . . and . . .’
claim is

Either it is not the case that a Republican will become president or it
is not the case that a Democrat will become president

which when symbolized becomes

∼ R ∨ ∼ D

Here is a table summarizing the truth conditions for ‘neither . . . nor . . .’.
Notice that a ‘neither . . . nor . . .’ expression is true only when both of its
components, P and Q, are false.

Truth Conditions for

‘Neither . . . nor . . .’

P Q ∼ P & ∼ Q ∼ (P ∨ Q)

T T F F
T F F F
F T F F
F F T T

Compare this table with the next table, which shows the truth conditions for
‘not both . . . and . . .’:

Truth Conditions for

‘Not both . . . and . . .’

P Q ∼ (P & Q) ∼ P ∨ ∼ Q

T T F F
T F T T
F T T T
F F T T

A ‘not both . . . and . . .’ expression is false only when both of its compo-
nents, P and Q, are true.

A combination of the sentential connectives of SL can also be used to
capture the exclusive sense of ‘or’ discussed earlier. Recall that the sentence

With your meal you get apple pie or chocolate cake

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 41

is true in the exclusive sense of ‘or’ if with your meal you get apple pie or
chocolate cake but not both apple pie and chocolate cake. We now know how
to paraphrase the ‘not both . . . and . . .’ portion of the sentence. The para-
phrase of the whole sentence is

Both (either with your meal you get apple pie or with your meal you
get chocolate cake) and it is not the case that (both with your meal
you get apple pie and with your meal you get chocolate cake).

This can be symbolized as

(A ∨ C) & ∼ (A & C)

where ‘A’ abbreviates ‘With your meal you get apple pie’ and ‘C’ abbreviates
‘With your meal you get chocolate cake’. Here is a table showing the truth con-
ditions for exclusive ‘or’:

Truth Conditions for Exclusive ‘Or’

P Q (P ∨ Q) & ∼ (P & Q)

T T F
T F T
F T T
F F F

MATERIAL CONDITIONAL

One of the most common sentential connectives of English is ‘if . . . then . . .’.
A simple example is

If Jones got the job then he applied for it.

This can be paraphrased as

Either it is not the case that Jones got the job or Jones applied for the
job

which can be symbolized as

∼ G ∨ A

where ‘G’ abbreviates ‘Jones got the job’ and ‘A’ abbreviates ‘Jones applied for
the job’. It will be convenient to have a symbol in SL that expresses the truth-
functional sense of ‘if . . . then . . .’; we introduce ‘⊃’ (horseshoe) for this

42 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

purpose. The sentence ‘If Jones got the job then Jones applied for the job’ can
then be symbolized as

G ⊃ A

A sentence of the form P ⊃ Q, where P and Q are sentences of SL, is
a material conditional. P, the sentence on the left of the ‘⊃’, is the antecedent,
and Q, the sentence on the right of the ‘⊃’, is the consequent of the conditional.
It is important to remember that, whenever we write a sentence of the form
P ⊃ Q, we could express it as ∼ P ∨ Q. A sentence of the form ∼ P ∨ Q is a
disjunction, and a disjunction is false in only one case—when both disjuncts
are false. Thus a sentence of the form ∼ P ∨ Q is false when ∼ P is false and
Q is false, that is, when P is true and Q is false. This is also the only case in
which a sentence of the form P ⊃ Q is false, that is, when the antecedent is
true and the consequent is false. The characteristic truth-table is shown here:

P Q P ⊃ Q

T T T
T F F
F T T
F F T

Informally we can regard the ‘if’ clause of an English conditional as
the antecedent of that conditional and the ‘then’ clause as the consequent.
Here is an example of an English conditional converted to a truth-functional
paraphrase that is symbolized by the material conditional:

If Michelle is in Paris then she is in France.

Expressed in a truth-functional paraphrase this becomes

If Michelle is in Paris then Michelle is in France.

The truth-functional paraphrase can be symbolized as a material conditional

P ⊃ F

Notice that the truth-functional paraphrase is false if Michelle is in Paris but is
not in France—that is, if the antecedent is true and the consequent is false.
But the truth-functional paraphrase is true under all other conditions. Thus, if
Michelle is in Paris and in France, the paraphrase is true. If Michelle is not in
Paris but is somewhere else in France, the paraphrase is true. If Michelle is not
in Paris and not in France, the paraphrase is true.

However, the material conditional is not adequate as a complete treat-
ment of conditional sentences in English. Material conditionals are truth-
functional, but conditionals in English frequently convey information that exceeds

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 43

a truth-functional analysis. For instance, ‘if . . . then . . .’ constructions some-
times have a causal force that is lost in a truth-functional paraphrase. Consider:

1. If this rod is made of metal then it will expand when heated.

2. If this rod is made of metal then it will contract when heated.

Each of these sentences can be used to make a causal claim, to assert a causal
relation between the substance of which the rod in question is composed and
the reaction of the rod to heat. But sentence 1 is in accord with the laws of
nature, and sentence 2 is not. So, as used to make causal claims, sentence 1
is true and sentence 2 is false, even if it is false that the rod is made of metal.

Now suppose we paraphrase these two sentences as material condi-
tionals:

1a. If this rod is made of metal then this rod will expand when heated.

2a. If this rod is made of metal then this rod will contract when heated.

These paraphrases can be symbolized as

1b. M ⊃ E

2b. M ⊃ C

where ‘M’ abbreviates ‘The rod is made of metal’, ‘E’ abbreviates ‘This rod will
expand when heated’, and ‘C’ abbreviates ‘This rod will contract when heated’.
Remember that a material conditional is true if the antecedent is false. If the
rod in the example is not made of metal, then both sentences 1a and 2a, and
consequently their symbolizations 1b and 2b, are true. Sentence 1 says more
than either 1a or 1b, and sentence 2 says more than either 2a or 2b. The fact
that sentence 2 is false, whereas 2a and 2b are both true, shows this. It follows
that when they are used to assert a causal relation, sentences 1 and 2, like many
other English conditionals, are not truth-functional compounds. When it is and
when it is not appropriate to paraphrase such sentences as material condi-
tionals will be discussed further in Section 2.3.

Here are further examples of English sentences that can be para-
phrased by using ‘if . . . then . . .’, but here and elsewhere we must keep in
mind that sometimes information contained in the English conditionals will be
lost in truth-functional paraphrasing.

Larry will become wealthy provided that he inherits the family fortune

can be paraphrased as

If Larry inherits the family fortune then Larry will become wealthy

which can be symbolized as

F ⊃ W

44 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

where ‘F’ abbreviates ‘Larry inherits the family fortune’ and ‘W’ abbreviates
‘Larry will become wealthy’.

The Democratic candidate will win the election if he wins in the big cities

can be paraphrased as

If the Democratic candidate wins in the big cities then the Democratic
candidate will win the election

which can be symbolized as ‘C ⊃ E’, where ‘C’ abbreviates ‘The Democratic
candidate wins in the big cities’ and ‘E’ abbreviates ‘The Democratic candidate
will win the election’.

Betty is in London only if Betty is in England

can be paraphrased as

If Betty is in London then Betty is in England

which can be symbolized as ‘L ⊃ E’, where ‘L’ abbreviates ‘Betty is in London’
and ‘E’ abbreviates ‘Betty is in England’. In this case be sure to notice the order
in which the sentences are paraphrased. A common mistake in paraphrasing
the sentential connective ‘only if ’ is to ignore the word ‘only’ and reverse the
order of the sentences. It is incorrect to paraphrase the original as ‘If Betty is in
England then Betty is in London’.

A connective that can be paraphrased either as a disjunction or as a
conditional is ‘unless’. Consider the sentence

This plant will die unless it is watered.

The only circumstance under which this sentence is false is the situation in
which this plant does not die and is not watered. If either of the sentences that
‘unless’ connects is true, then the whole sentence is true. The simplest para-
phrase is to treat the sentence as the disjunction

Either this plant will die or it is watered

which can be symbolized as

D ∨ W

We can also understand the sentence ‘This plant will die unless it is watered’
as expressing a conditional:

If it is not the case that it is watered, then this plant will die

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 45

which can be symbolized as

∼ W ⊃ D

Equally well, we can understand the sentence as expressing the equivalent con-
ditional:

If it is not the case that this plant will die, then it is watered

which when symbolized is

∼ D ⊃ W

The two conditional paraphrases look different from each other and from the
disjunction, but they make identical truth-functional claims. The disjunction
claims that at least one of its component sentences is true. Each of the condi-
tionals claims that, if one of two component sentences is not true, the other
one is true. Here is a table that shows the truth-functional equivalence of the
symbolizations for ‘unless’:

Truth Conditions for ‘Unless’

P Q P ∨ Q ∼ P ⊃ Q ∼ Q ⊃ P

T T T T T
T F T T T
F T T T T
F F F F F

MATERIAL BICONDITIONAL

In English the connective ‘if and only if’ is used to express more than either
the connective ‘if’ or the connective ‘only if’. For example

John will get an A in the course if and only if he does well on the final
examination

can be paraphrased as

Both (if John will get an A in the course then John does well on the
final examination) and (if John does well on the final examination
then John will get an A in the course).

We can symbolize the paraphrase as

(C ⊃ E) & (E ⊃ C)

46 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

where ‘C’ abbreviates ‘John will get an A in the course’ and ‘E’ abbreviates
‘John does well on the final examination’. The original sentence can also be
paraphrased as

Either (both John will get an A in the course and John does well on
the final examination) or (both it is not the case that John will get an
A in the course and it is not the case that John does well on the final
examination).

Using the same abbreviations, this paraphrase is symbolized as

(C & E) ∨ (∼ C & ∼ E)

Both of these paraphrases and their corresponding symbolizations are truth-
functional compounds. Each is true just in case either both atomic sentences
are true or both atomic sentences are false. We introduce the connective ‘ ’
(triple bar) to capture the truth-functional use of the connective ‘if and only
if’. The original English sentence can be symbolized as

C E

A sentence of the form

P Q

where P and Q are sentences of SL, is a material biconditional. Informally we
shall use the term “material biconditional” when describing English sentences
that can be symbolized as material biconditionals in SL. Here is the character-
istic truth-table for ‘ ’:

P Q P Q

T T T
T F F
F T F
F F T

The connective ‘just in case’ is sometimes used in English as an equiv-
alent to ‘if and only if’.

Andy will win the lottery just in case Andy has the winning ticket

can be properly paraphrased as

Andy will win the lottery if and only if Andy has the winning ticket

and symbolized as

W T

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 47

However, care must be taken when paraphrasing ‘just in case’ because this
connective sometimes is used in ways not equivalent to ‘if and only if’.
Consider

Marty takes her umbrella to work just in case it rains.

This does not mean ‘Marty takes her umbrella to work if and only if it rains’.
Rather, the sentence means

Marty takes her umbrella to work because it may rain.

SUMMARY OF SOME COMMON CONNECTIVES

Note that we use lowercase boldface ‘p’ and ‘q’ to designate sentences of English and upper-
case boldface ‘P’ and ‘Q’ to designate sentences of SL.

English Connectives Paraphrases Symbolizations

not p it is not the case that p ∼ P

p and q both p and q P & Q
p but q
p however q
p although q
p nevertheless q
p nonetheless q
p moreover q

p or q either p or q P ∨ Q

p or q [exclusive] both either p or q and it is not the (P ∨ Q) & ∼ (P & Q)
case that both p and q

if p then q if p then q P ⊃ Q
p only if q
q if p
q provided that p
q given p

p if and only if q p if and only if q P Q
p if but only if q
p just in case q

neither p nor q both it is not the case that p and ∼ P & ∼ Q
it is not the case that q it is not the ∼ (P ∨ Q)
case that either p or q

not both p and q it is not the case that both p and q ∼ (P & Q)
either it is not the case that p ∼ P ∨ ∼ Q
or it is not the case that q

p unless q either p or q P ∨ Q
if it is not the case that p then q ∼ P ⊃ Q
if it is not the case that q then p ∼ Q ⊃ P

48 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

The connective ‘because’ is not truth-functional. (‘Because’ can join two true
sentences resulting in a true sentence and ‘because’ can join two true sentences
resulting in a false sentence.) Hence ‘Marty takes her umbrella to work just in
case it rains’ should be symbolized by a single sentence letter such as ‘M’.

In our discussion of the material conditional and the material bicon-
ditional, we have been careful to distinguish among connectives such as ‘if’,
‘only if’, and ‘if and only if ’. These distinctions are very important in logic,
philosophy, and mathematics. However, in everyday discourse people speak
casually. For example, people may use ‘if’ or ‘only if’ when they mean ‘if and
only if’. Our general policy in this book is to take disjunctions and condition-
als in their weaker rather than their stronger senses. That is, normally ‘or’ will
be read in the inclusive sense, and ‘if . . . then . . .’ (and other conditional
connectives) will be taken in the material conditional sense (not the bicondi-
tional sense). When stronger readings are intended, we will indicate that by
explicitly using expressions such as ‘either . . . or . . . but not both’ and ‘if
and only if ’.

2.1E EXERCISES

1. For each of the following sentences, construct a truth-functional paraphrase
and symbolize the paraphrase in SL. Use these abbreviations:

A: Albert jogs regularly.
B: Bob jogs regularly.
C: Carol jogs regularly.

a. Bob and Carol jog regularly.
*b. Bob does not jog regularly, but Carol does.

c. Either Bob jogs regularly or Carol jogs regularly.
*d. Albert jogs regularly and so does Carol.

e. Neither Bob nor Carol jogs regularly.
*f. Bob does jog regularly; however, Albert doesn’t.
g. Bob doesn’t jog regularly unless Carol jogs regularly.

*h. Albert and Bob and also Carol do not jog regularly.
i. Either Bob jogs regularly or Albert jogs regularly, but they don’t both jog reg-

ularly.
*j. Although Carol doesn’t jog regularly, either Bob or Albert does.
k. It is not the case that Carol or Bob jogs regularly; moreover Albert doesn’t jog

regularly either.
*l. It is not the case that Albert, Bob, or Carol jogs regularly.
m. Either Albert jogs regularly or he doesn’t.
*n. Neither Albert nor Carol nor Bob jogs regularly.

2. Using the abbreviations given in Exercise 1, construct idiomatic English sen-
tences from the following sentences of SL:

a. A & B
*b. A ∨ ∼ A

2.1 SYMBOLIZATION AND TRUTH-FUNCTIONAL CONNECTIVES 49

c. A ∨ C
*d. ∼ (A ∨ C)

e. ∼ A & ∼ C
*f. ∼ ∼ B
g. B & (A ∨ C)

*h. (A ∨ C) & ∼ (A & C)
i. (A & C) & B

*j. ∼ A ∨ (∼ B ∨ ∼ C)
k. (B ∨ C) ∨ ∼ (B ∨ C)

3. Assuming that ‘Albert jogs regularly’ is true, ‘Bob jogs regularly’ is false, and
‘Carol jogs regularly’ is true, which of the symbolic sentences in Exercise 2 are
true and which are false? Use your knowledge of the characteristic truth-tables
in answering.

4. Paraphrase each of the following using the phrase ‘it is not the case that’. Sym-
bolize the results, indicating what your abbreviations are.

a. Some joggers are not marathon runners.
*b. Bob is not a marathon runner.

c. Each and every marathon runner is not lazy.
*d. Some joggers are unhealthy.

e. Nobody is perfect.

5. For each of the following sentences, construct a truth-functional paraphrase
and symbolize the paraphrase in SL. Use these abbreviations:

A: Albert jogs regularly.
B: Bob jogs regularly.
C: Carol jogs regularly.
L: Bob is lazy.
M: Carol is a marathon runner.
H: Albert is healthy.

a. If Bob jogs regularly he is not lazy.
*b. If Bob is not lazy he jogs regularly.

c. Bob jogs regularly if and only if he is not lazy.
*d. Carol is a marathon runner only if she jogs regularly.

e. Carol is a marathon runner if and only if she jogs regularly.
*f. If Carol jogs regularly, then if Bob is not lazy he jogs regularly.
g. If both Carol and Bob jog regularly, then Albert does too.

*h. If either Carol or Bob jogs regularly, then Albert does too.
i. If either Carol or Bob does not jog regularly, then Albert doesn’t either.

*j. If neither Carol nor Bob jogs regularly, then Albert doesn’t either.
k. If Albert is healthy and Bob is not lazy, then both jog regularly.
*l. If Albert is healthy, he jogs regularly if and only if Bob does.
m. Assuming Carol is not a marathon runner, she jogs regularly if and only if

Albert and Bob both jog regularly.
*n. Although Albert is healthy he does not jog regularly, but Carol does jog regu-

larly if Bob does.
o. If Carol is a marathon runner and Bob is not lazy and Albert is healthy, then

they all jog regularly.

50 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

*p. If Albert jogs regularly, then Carol does provided Bob does.
q. If Albert jogs regularly if Carol does, then Albert is healthy and Carol is a

marathon runner.
*r. If Albert is healthy if he jogs regularly, then if Bob is lazy he doesn’t jog regularly.
s. If Albert jogs regularly if either Carol or Bob does, then Albert is healthy and

Bob isn’t lazy.
*t. If Albert is not healthy, then Bob and Albert do not both jog regularly.

6. Using the abbreviations given in Exercise 5, construct idiomatic English sen-
tences from the following sentences of SL.

a. L ∨ ∼ L
*b. M ⊃ C

c. A H
*d. C & ∼ B

e. ∼ B & ∼ C
*f. [A ∨ (B ∨ C)] ⊃ [A & (B & C)]
g. (∼ A ∨ ∼ C) ⊃ B

*h. ∼ (A ∨ C) ⊃ B
i. C ⊃ (A & ∼ B)

*j. B (∼ L & A)
k. C & ∼ C
*l. A & (C B)
m. (L ⊃ L) & B
*n. ∼ ∼ H & ∼ A

o. ∼ A ⊃ (∼ B ⊃ ∼ C)
*p. (C ⊃ A) & (A ⊃ B)
q. ∼ A & (B ∼ L)

*r. (H ⊃ A) ⊃ (∼ L ⊃ B)

7. Give a truth-functional paraphrase for each of the following, and symbolize the
paraphrase in SL.

a. Neither men nor women are from Mars or Venus.
*b. This dog won’t hunt; moreover he is not even a good pet.

c. Not both Butch Cassidy and the Sundance Kid escaped.
*d. The tea will not taste robust unless it steeps for a while.

e. That lady was both cut in half and torn asunder unless it was a magic trick.
*f. Neither wind nor rain nor dark of night will stop the mail.
g. The prisoner will receive either a life sentence or the death penalty.

*h. Unless snowstorms arrive, skiing and snowboarding will be impossible.

8. What are the truth-conditions for the exclusive ‘or’? How might the exclusive
‘or’ be expressed as a biconditional?

2.2 COMPLEX SYMBOLIZATIONS

Going through the paraphrase stage is useful when learning how to symbolize
sentences. The paraphrases serve as reminders of exactly what is being sym-
bolized in SL. Each sentence of a paraphrase will be either a simple sentence,
a truth-functionally compound sentence, or a non-truth-functionally compound

2.2 COMPLEX SYMBOLIZATIONS 51

sentence. The simple sentences and non-truth-functionally compound sen-
tences are to be symbolized as atomic sentences of SL. The truth-functionally
compound sentences are to be symbolized as molecular sentences of SL. In
constructing a paraphrase, we must be alert to the grammar, wording, and con-
text of the original passage. Sometimes there will be a loss of information in
moving from the original passage to the paraphrase, but often the loss of infor-
mation will not matter.

GUIDELINES FOR PARAPHRASING

In paraphrasing sentences, following several guidelines will be useful:

1. Any sentence of the original passage that is going to be treated as
a simple sentence, that will eventually be abbreviated as an atomic
sentence in SL, can be copied as its own paraphrase.

2. Any sentence of the original passage that is going to be paraphrased
as a truth-functionally compound sentence can be paraphrased using
one or more of the connectives ‘both . . . and . . .’, ‘either . . .
or . . .’, ‘it is not the case that’, ‘if . . . then . . .’, and ‘if and only
if’. We underscore these connectives in the paraphrases to
emphasize their truth-functional usage.

3. Ambiguities should be eliminated in the paraphrase. For instance,
sometimes it may be clearer to insert parentheses in the para-
phrase to establish how sentences are to be grouped. If the
connective ‘it is not the case that’ is applied to an entire material
biconditional, rather than just to the first component, parenthe-
ses will show this, as in ‘It is not the case that (the Republican
candidate will win if and only if he is supported by big business)’.

4. If the passage is an argument, put the paraphrased argument in
standard form. That is, list the paraphrased premises first, draw a
line, and then list the paraphrased conclusion.

5. Where an English passage contains two or more different
wordings of the same claim, use just one wording in constructing
a paraphrase of that passage.

The intent of the last of these guidelines can be made clear through the use
of examples. Suppose someone offers the following rather trivial argument:

If Sue and Bill got married yesterday, they are honeymooning today.
They did get married yesterday. So they are honeymooning today.

The sentence ‘They did get married yesterday’ is not the antecedent of ‘If Sue
and Bill got married yesterday, they are honeymooning today’. Yet, in the con-
text of this passage, ‘they’ refers to Sue and Bill. So the second premise of our

52 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

paraphrase should be ‘Sue and Bill got married yesterday’, not ‘They did get
married yesterday’. The full paraphrase will be

If Sue and Bill got married yesterday, then Sue and Bill are honey-
mooning today.

Sue and Bill got married yesterday.

Sue and Bill are honeymooning today.

Note that we have replaced ‘they’ with ‘Sue and Bill’ throughout. Here is
another example in which rewording is necessary in constructing a paraphrase:

Either Jim will not pass the test or Jim spent last night studying logic.
Jim’s night was not spent poring over his logic text. Hence Jim will fail
the test.

In constructing a paraphrase of this argument, it is important to word the
premises and conclusion so that we can use a minimum number of sentential
letters to symbolize the paraphrase. Suppose someone gives the following
paraphrase:

Either it is not the case that Jim will pass the test or Jim spent last
night studying logic.

It is not the case that Jim’s night was spent poring over his logic text.

Jim will fail the test.

To symbolize this argument, we need four sentence letters: ‘J’, ‘S’, ‘O’,
and ‘F’.

∼ J ∨ S

∼ O

F

Here ‘J’ abbreviates ‘Jim will pass the test’, ‘S’ abbreviates ‘Jim spent last night
studying logic’, ‘O’ abbreviates ‘Jim’s night was spent poring over his logic text’,
and ‘F’ abbreviates ‘Jim will fail the test’. Symbolized in this way our argument
is invalid. But the original English argument is valid. The following is a far bet-
ter paraphrase:

Either it is not the case that Jim will pass the test or Jim spent last
night studying logic.

It is not the case that Jim spent last night studying logic.

It is not the case that Jim will pass the test.

2.2 COMPLEX SYMBOLIZATIONS 53

‘Jim will not pass the test’ and ‘Jim will fail the test’ express the same claim in
this context. So do ‘He spent last night studying logic’ and ‘Jim’s night was
spent poring over his logic text’. Our second paraphrase reflects this and allows
us to give the following symbolization:

∼ J ∨ S

∼ S

∼ J

This symbolic argument is valid, as our formal techniques will show.
We shall now present and symbolize more complex sentences and

groups of sentences. In our first series of examples, we shall consider sentences
about an international yacht race in which there are just three major com-
petitors: the Americans, the British, and the Canadians. In symbolizing these
sentences we shall make use of the following abbreviations:

M: The Americans win the race.
R: The British win the race.
N: The Canadians win the race.
A: The Americans have good luck.
B: The British have good luck.
C: The Canadians have good luck.
E: Everyone is surprised.
T: A major tradition is broken.

Our first two examples illustrate the important difference between sen-
tences compounded by ‘if . . . then . . .’ and those compounded by ‘only if’:

1. The British will win if neither of the other two major competitors
wins.

2. The British will win only if neither of the other two major com-
petitors wins.

The first of these sentences tells us, in effect, that the British do not have to
worry about the minor competitors. According to sentence 1, for the British to
win all that is needed is that the Americans and Canadians not win. The sec-
ond sentence makes a more modest claim—it expresses only the truism that
for the British to win the other major competitors must not win. Here are our
truth-functional paraphrases of these sentences:

1a. If both it is not the case that the Americans win the race and it is not
the case that the Canadians win the race, then the British win the race.

2a. If the British win the race, then both it is not the case that the
Americans win the race and it is not the case that the Canadians
win the race.

54 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

The rule to remember here is that a sentence compounded by ‘if’ rather than
by ‘only if ’ should be paraphrased as a conditional whose antecedent is the sen-
tence following ‘if ’ in the original compound. A sentence compounded by
‘only if’ should be paraphrased as a conditional whose consequent is the sen-
tence following ‘only if ’ in the original compound. The symbolizations of these
paraphrases will be

1b. (∼ M & ∼ N) ⊃ R

2b. R ⊃ (∼ M & ∼ N)

In sentences 1 and 2 some of the verbs are in the present tense and
some are in the future tense. But in these particular examples, the difference
in tense does not reflect a difference in the temporal order of the events under
discussion. (‘The British will win if neither of the other two major competi-
tors wins’ does not mean that if neither of the other two major competitors
wins now, then the British will win later.) Accordingly in our paraphrases we
have made all the verbs present tense. We could, alternatively, have made them
all future tense. In giving paraphrases it is often useful to make as many of
the verbs as possible the same tense; but this should be done only when doing
so does not distort the truth-functional connections between the sentences in
the passage.

Often there is more than one correct paraphrase of a sentence. For
example, in paraphrasing both sentence 1 and sentence 2, we could have used
‘or’ instead of ‘and’. For sentence 1 we would then have

If it is not the case that either the Americans win the race or the Cana-
dians win the race then the British win the race.

Here the symbolization is

∼ (M ∨ N) ⊃ R

Recall that ‘neither . . . nor . . .’ after paraphrasing will be symbolized by a
sentence of the form

∼ P & ∼ Q or ∼ (P ∨ Q)

and ‘not both . . . and . . .’ by a sentence of the form

∼ (P & Q) or ∼ P ∨ ∼ Q

Further examples will help illustrate.

3. The Canadians will win if both the other major competitors do not
have good luck.

2.2 COMPLEX SYMBOLIZATIONS 55

4. The Canadians will win if either of the other major competitors
does not have good luck.

5. The Canadians will win if not both of the other major competitors
have good luck.

These are best paraphrased as

3a. If (both it is not the case that the Americans have good luck and
it is not the case that the British have good luck) then the Cana-
dians win the race.

4a. If (either it is not the case that the Americans have good luck or
it is not the case that the British have good luck) then the Cana-
dians win the race.

5a. If it is not the case that (both the Americans have good luck and
the British have good luck) then the Canadians win the race.

In SL these become

3b. (∼ A & ∼ B) ⊃ N

4b. (∼ A ∨ ∼ B) ⊃ N

5b. ∼ (A & B) ⊃ N

Sentences 4a and 5a are equivalent, as are 4b and 5b. To say that either one
or the other of the major competitors does not have good luck is to say only
that they will not both have good luck. Where ‘not’ goes in relation to ‘both’ is
important, as we shall see if we compare sentences 3 and 5. The phrase ‘both
. . . not . . .’ means that each of the two things in question does not have the
property in question. But the phrase ‘not both’ means only that at least one of
those two things does not have the property in question.

Here are two more examples:

6. The Americans will win unless the British have good luck, in which
case the British will win.

7. A major tradition will be broken if but only if no major competi-
tor wins.

In sentence 6 the phrase ‘in which case’ is to be understood as ‘in case the
British have good luck’. The proper paraphrase is thus

6a. Both if it is not the case that the British have good luck then the
Americans win the race and if the British have good luck then the
British win the race.

56 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

This is symbolized as

6b. (∼ B ⊃ M) & (B ⊃ R)

In paraphrasing sentence 7 we need only remember that there are exactly three
major competitors: the Americans, the British, and the Canadians.

7a. A major tradition will be broken if and only if it is not the case
that [either (either the Americans win the race or the British win
the race) or the Canadians win the race].

In symbols this becomes

7b. T ∼ [(M ∨ R) ∨ N]

Sometimes sentences containing such quantity terms as ‘at least’, ‘at
most’, and ‘all’ can be paraphrased as truth-functional compounds. This will
be the case when the number of things or events or cases we are talking about
is finite. All the following can be given truth-functional paraphrases:

8. At least one of the major competitors will have good luck.

9. Exactly one of the major competitors will have good luck.

10. At least two of the major competitors will have good luck.

11. Exactly two of the major competitors will have good luck.

Since there are three major competitors, to say that at least one of them will
have good luck is equivalent to saying that either the first, the second, or the
third will have good luck. So

8a. Either the Americans have good luck or (either the British have
good luck or the Canadians have good luck).

And in symbols we have

8b. A ∨ (B ∨ C)

The grouping here is arbitrary. We could just as well have written ‘(A ∨ B) ∨

C’. But grouping is necessary, since ‘A ∨ B ∨ C’ is not a sentence of SL. (The
connectives of SL are all, except for ‘∼’, binary connectives; that is, each con-
nects two sentences. When the parentheses are removed from sentence 8b, it
is unclear which sentences the first ‘∨’ connects. So the expression is not well
formed; that is, it is not a sentence of SL.)

Since ‘∨’ is used to capture the inclusive sense of disjunction, we have
to work some to say that one and only one of the three major competitors will
have good luck. One way of doing it is this:

2.2 COMPLEX SYMBOLIZATIONS 57

9a. Either [both the Americans have good luck and it is not the case
that (either the British have good luck or the Canadians have
good luck)] or (either [both the British have good luck and it is
not the case that (either the Americans have good luck or the
Canadians have good luck)] or [both the Canadians have good
luck and it is not the case that (either the Americans have good
luck or the British have good luck)]).

The symbolic version of sentence 9 is a good deal more perspicuous than is
the paraphrase:

9b. [A & ∼ (B ∨ C)] ∨ ([B & ∼ (A ∨ C)] ∨ [C & ∼ (A ∨ B)])

As sentence 9a illustrates, truth-functional paraphrases of complex English pas-
sages can themselves become very complex. Constructing truth-functional para-
phrases is of most value when one is first learning to symbolize English sen-
tences in SL. After some facility with the techniques of symbolization has been
gained, the paraphrase stage can be skipped, except when there is something
especially difficult or interesting about the passage being symbolized. Hence
hereafter we shall sometimes omit the paraphrase stage. Sentence 10 is fairly
readily symbolized as

10b. (A & B) ∨ [(A & C) ∨ (B & C)]

Sentence 11 is a repeat of sentence 10 with the additional proviso that not all
the teams have good luck. One appropriate symbolization is

11b. [(A & B) ∨ [(A & C) ∨ (B & C)]] & ∼ [A & (B & C)]

We can symbolize an argument using the following abbreviations:

R: The Australians raise their spinnaker.
I: The wind increases.
A: The Australians win the race.
C: The Australians capsize.
L: The Australians look foolish.
J: The Australians strike their jib.
M: The Australians reef their main.

If the Australians raise their spinnaker then if the wind doesn’t increase
they will win the race, but if they raise their spinnaker and the wind
does increase they will lose the race and look foolish. The wind will
increase and the Australians will reef their main and strike their jib,
and will not raise their spinnaker. So if they don’t capsize the Aus-
tralians will win the race.

58 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

In symbolizing this argument we shall identify losing the race with not winning
the race. In the context this is surely permissible. Here is our symbolization of
the argument:

[R ⊃ (∼ I ⊃ A)] & [(R & I) ⊃ (∼ A & L)]

[I & (M & J)] & ∼ R

∼ C ⊃ A

Our formal techniques will reveal that this argument is truth-functionally
invalid.

2.2E EXERCISES

1. Paraphrase the following sentences about the performance of the French, Ger-
man, and Danish teams in the next Olympics, and symbolize the paraphrases
as sentences in SL using these abbreviations:

F: The French team will win at least one gold medal.
G: The German team will win at least one gold medal.
D: The Danish team will win at least one gold medal.
P: The French team is plagued with injuries.
S: The star German runner is disqualified.
R: It rains during most of the competition.

a. At least one of the French, German, or Danish teams will win a gold medal.
*b. At most one of them will win a gold medal.

c. Exactly one of them will win a gold medal.
*d. They will not all win gold medals.

e. At least two of them will win gold medals.
*f. At most two of them will win gold medals.
g. Exactly two of them will win gold medals.

*h. They will all win gold medals.

2. Using the abbreviations given in Exercise 1, construct idiomatic English sen-
tences from the following sentences of SL.

a. ∼ F & (∼ G & ∼ D)
*b. ∼ (F & (G & D))

c. ∼ (F ∨ (G ∨ D))
*d. ∼ (F ∨ G) ∨ (∼ (G ∨ D) ∨ ∼ (F ∨ D))

e. (F ∨ G) ∨ ((G ∨ D) ∨ (F ∨ D))
*f. (F & G) ∨ ((G & D) ∨ (F & D))
g. F & ((G ∨ D) & ∼ (G & D))

*h. (F & G) ∨ (F & D)

2.2 COMPLEX SYMBOLIZATIONS 59

3. Paraphrase the following and, using the abbreviations given in Exercise 1, sym-
bolize the resulting paraphrases as sentences in SL.

a. If any of them wins a gold medal so will the other two.
*b. The French will win a gold medal only if they are not plagued with injuries,

in which case they won’t win.
c. If the star German runner is disqualified, the Germans will win a gold medal

only if neither of the other two teams does.
*d. Provided it doesn’t rain during most of the competition and their star runner

isn’t disqualified, the Germans will win a gold medal if either of the other
teams does.

e. The Danes will win a gold medal if and only if the French are plagued with
injuries and the star German runner is disqualified.

*f. The Germans will win a gold medal only if it doesn’t rain during most of the
competition and their star runner is not disqualified.

g. If the French are plagued with injuries, they will win a gold medal only if nei-
ther of the other teams does and it rains during most of the competition.

*h. The Danes will win a gold medal unless it rains during most of the competition,
in which case they won’t but the other two teams will win gold medals.

4. Using the abbreviations given in Exercise 1, construct idiomatic English sen-
tences from the following sentences of SL.

a. (S ⊃ ∼ G) & S
*b. ∼ (F ∨ G) ⊃ D

c. ∼ G (D & F)
*d. (P & S) ⊃ D

e. [(G ⊃ F) & (F ⊃ D)] ⊃ (G ⊃ D)
*f. R ⊃ [(∼ F & ∼ G) & ∼ D]
g. [F ∨ (G ∨ D)] ∨ [P ∨ (S ∨ R)]

*h. D ∨ [(F & ∼ P) ∨ (G & ∼ S)]

5. Paraphrase and then symbolize the following passages, being careful to indi-
cate the abbreviations you are using.

a. Robert’s Rules of Order was written by an engineer or a clergyman if it was not
written by a politician. The author of Robert’s Rules of Order was motivated to
write the book by an unruly church meeting but was not a clergyman. The
book’s author was not a politician and could not persuade a publisher that the
book would make money, forcing him to publish the book himself. Robert’s

Rules of Order was written by an engineer.
*b. Either George doesn’t have a high cholesterol level or cholesterol is trapped

in the walls of his arteries. If cholesterol is trapped in his arteries, then plaque
will build up and block his arteries, and with such a buildup and blockage,
he is a candidate for a heart attack. Hence George is a candidate for a heart
attack.

c. Either the maid or the butler committed the murder unless the cook did it.
The cook did it only if a knife was the murder weapon; moreover, if a knife
was used, neither the butler nor the maid did it. The murder weapon was a
knife. Therefore the cook did it.

*d. If neither Henry nor Fred will play the lawyer, then Morris will not be upset;
and moreover, if Morris will not be upset the drama will be successful. Thus
the drama will get good reviews. After all, both Henry and Fred will not play

60 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

the part of the lawyer, and the drama will get good reviews if and only if the
drama will be a success.

e. The candidate will win at least two of three states—California, New York, and
Texas—for if the candidate is perceived as conservative, she will not win New
York but will win the other two. She is perceived as conservative if her adver-
tising campaign is effective; and she has an effective advertising campaign.

*f. Assuming Betty is the judge, Peter won’t get a suspended sentence. The trial
will be long unless the district attorney is brief, but the district attorney is not
brief. Fred is the defense lawyer. However, if Fred is the defense lawyer, Peter
will be found guilty; and if Peter will be found guilty, he will be given a sen-
tence. Consequently after a long trial Peter will be given a sentence, which
won’t be suspended by the judge.

2.3 NON-TRUTH-FUNCTIONAL CONNECTIVES

As stated in Section 2.1,

A sentential connective is used truth-functionally if and only if it is used
to generate a compound sentence from one or more sentences in
such a way that the truth-value of the generated compound is wholly
determined by the truth-values of those one or more sentences from
which the compound is generated, no matter what those truth-values
may be.

The sentential connectives of SL have only truth-functional uses. Many sen-
tential connectives of English have truth-functional uses, but many do not. And
many of those that do are not always used truth-functionally.

Determining whether a particular connective is or is not being used in
a truth-functional sense is a complex matter. But a good rule of thumb is this:
If the connective is being used truth-functionally, we should be able to con-
struct a truth-table that adequately characterizes that use. (This is just what we
did for standard uses of the English connectives introduced in Section 2.1.) If
a truth-table that adequately characterizes the use of a connective in a partic-
ular sentence cannot be constructed, then that connective is not being used
truth-functionally in the sentence in question.

To see how this rule of thumb operates, consider the use of ‘if . . .
then . . .’ in the following sentence:

If Germany’s U-boats had been able to shut off the flow of supplies to
Great Britain, then Germany would have won the war.

If ‘if . . . then . . .’ is being used truth-functionally in this conditional, it is
probably being used in the sense captured by the horseshoe of SL, in the sense
characterized by this table:

2.3 NON-TRUTH-FUNCTIONAL CONNECTIVES 61

P Q P ⊃ Q

T T T
T F F
F T T
F F T

The truth-functional paraphrase of the sentence would be

If Germany’s U-boats were able to shut off the flow of supplies to Great
Britain then Germany won the war.

In fact, Germany’s U-boats were not able to shut off the flow of supplies to
Great Britain; that is, the antecedent of this material conditional is false. The
material conditional is therefore true. But historians do not all think the orig-
inal conditional is true. Some think it true, and some false, depending upon
their appraisal of the historical evidence.

One might still argue that in the example ‘if . . . then . . .’ is being
used in some truth-functional sense. If so, we should be able to construct a para-
phrase and a truth-table that express that sense. But a little reflection will show
that no rearrangement of the Ts and Fs in the final column will produce such
a table. This is because such conditionals are claims about what would happen
in certain situations, regardless of whether those specified situations actually
obtain. That is, knowledge of whether the situation described by the antecedent
and consequent obtain is not sufficient to determine the truth-value of such
conditionals. Some of these conditionals are true when the situations described
do not hold (‘If Germany had won World War II, Britain would have lost’ is
one), and some are false (‘If Germany had invaded Spain, Germany would have
won World War II’).

Conditionals such as we have just been discussing are called subjunctive

conditionals (because they are in the subjunctive, rather than the indicative,
mood), and ‘if . . . then . . .’ as used in subjunctive conditionals is not truth-
functional. In this case and others in which connectives are not being used
truth-functionally, the safest course is to abbreviate the compounds generated
by the connectives as atomic sentences of SL.

But being safe has it costs. Many arguments do make use of subjunc-
tive conditionals, and we do want to evaluate the validity of these arguments
whenever it is possible to do so. Consider the case of a doctor testifying at an
inquest. He claims that the deceased did not die of strychnine poisoning and,
when asked by the coroner to support his claim, argues as follows:

Had the deceased died of strychnine poisoning, there would have
been traces of that poison in the body. The autopsy would have found
those traces had they been there. The autopsy did not reveal any
traces of strychnine. Hence the deceased did not die of strychnine
poisoning.

62 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

Here the following truth-functional paraphrase seems appropriate:

If the deceased died of strychnine poisoning, then there were traces
of strychnine in the body.

If there were traces of strychnine in the body, then the autopsy
found traces of strychnine in the body.

It is not the case that the autopsy found traces of strychnine in the
body.

It is not the case that the deceased died of strychnine poisoning.

Symbolizing this argument yields

S ⊃ T

T ⊃ R

∼ R

∼ S

This symbolic argument is valid, and so is the English paraphrase of our orig-
inal argument. In constructing that paraphrase, we weakened the premises but
not the conclusion. A sentence p is weaker than a sentence q if and only if the
truth of q guarantees the truth of p, but not vice versa. If p is weaker than q,
q is stronger than p. Sentences p and q are equivalent if and only if p guaran-
tees the truth of q and q guarantees the truth of p. Consequently, if the prem-
ises of the original argument are true, then so are those of the paraphrase.
And, since the paraphrase is valid, its conclusion is true if its premises are.
The conclusion of the paraphrase is merely a rewording of the conclusion of
the original argument. Hence, if the premises of the original argument are
true, the conclusion of that argument is also true. That is, the original argu-
ment is also valid.

Here is another argument using subjunctive conditionals:

If Hitler had kept his treaty with Stalin, he would have defeated
England. Hitler did not keep his treaty with Stalin. Therefore, if Hitler
had kept his treaty with Stalin, he would have freed all the Jews and
disbanded the SS.

Suppose we construct the following truth-functional paraphrase:

If Hitler kept his treaty with Stalin then Hitler defeated England.
It is not the case that Hitler kept his treaty with Stalin.

If Hitler kept his treaty with Stalin, then both Hitler freed all the
Jews and Hitler disbanded the SS.

2.3 NON-TRUTH-FUNCTIONAL CONNECTIVES 63

This paraphrase can be readily symbolized as

K ⊃ E

∼ K

K ⊃ (F & D)

Here the conclusion is equivalent to ‘∼ K ∨ (F & D)’ and hence accurately sym-
bolizes only ‘Either Hitler did not keep his treaty with Stalin or Hitler did free
all the Jews and Hitler disbanded the SS’. This claim does validly follow from
the second premise of the argument. So our paraphrase is valid (as, of course,
is the symbolic version of it). But the original English argument is clearly
invalid. What has happened is that in paraphrasing that argument we made the
conclusion, which is a subjunctive conditional, a material conditional. And if
we weaken a conclusion in constructing a truth-functional paraphrase, there
can be no guarantee that the symbolic argument we obtain by symbolizing that
paraphrase will be valid only if the original English argument is valid. It may
well be impossible for certain premises to be true and a weak conclusion false,
where it is not impossible for those same premises to be true and a stronger
conclusion false.

Although it may appear from the examples so far that truth-functional
paraphrases will always be equivalent to or weaker than the original passages,
this is not always the case. Sometimes the truth-functional paraphrase will be
stronger. Consider this argument:

It is not the case that if astronauts were to travel to Venus, they would
find the surface of the planet hospitable. Hence astronauts travel to
Venus.

Here the premise is the negation of a subjunctive conditional. Because the sur-
face conditions of Venus are most unpleasant, astronauts would not find the
planet hospitable if they traveled there. Therefore the premise is true. The con-
clusion of the argument is false because astronauts do not travel to Venus. The
argument is invalid. But now consider a truth-functional paraphrase of the
argument:

It is not the case that if astronauts travel to Venus, then astronauts
find the surface of the planet hospitable.

Astronauts travel to Venus.

This paraphrased argument is valid. Suppose the conclusion is false. The
conclusion, ‘Astronauts travel to Venus’, is also the antecedent of the embed-
ded conditional in the premise. If the antecedent of a truth-functional
conditional is false, then the conditional is true. And, if the conditional is
true, its negation is false. Therefore, whenever the conclusion is false, the

64 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

premise will be false as well. Hence the paraphrased argument and its
symbolization

∼ (V ⊃ H)

V

are valid!
Why is the original argument invalid but its truth-functional paraphrase

and symbolization valid? The answer is that, because subjunctive conditionals
are usually stronger than material conditionals, negated subjunctive condition-
als are generally weaker than their truth-functional counterparts. Because the
truth-functional premise is stronger, it can support a conclusion the original
premise cannot. In such cases the validity of a truth-functionally paraphrased
argument and its symbolization will not establish the validity of the original
argument containing the negated subjective conditional.

In view of these examples a further guideline for paraphrasing and
symbolizing non-truth-functional compounds is in order:

6. The safest policy in dealing with non-truth-functional compounds is
to paraphrase them as single sentences. In constructing a para-
phrase for an argument, if non-truth-functional compounds are
paraphrased as truth-functional compounds, be sure that the para-
phrased premises are equivalent to or weaker than the original
premises and that the paraphrased conclusion is equivalent to or
stronger than the original conclusion.2

There are many connectives of English that have no truth-functional
senses. One such connective is ‘before’. When placed between two English sen-
tences, ‘before’ does generate a further sentence (though sometimes an awk-
ward one). From the sentences ‘Nixon was elected president’ and ‘Bush’s son
was elected president’ we can in this way obtain

Nixon was elected president before Bush’s son was elected president.

This compound is true. But writing ‘before’ between two true sentences does
not always produce a true sentence. A case in point is

Nixon was elected president before Kennedy was elected president.

This compound is false though the sentences from which it is generated are
both true. Reflection should show that there is no truth-functional use of

2For this policy, which differs from the one we proposed in earlier editions, we are indebted to David Sherry.
In his article “Note on the Scope of Truth-Functional Logic,” (Journal of Philosophical Logic, 28 [1999], 327–328),
Sherry explains why our earlier policy was inadequate.

2.3 NON-TRUTH-FUNCTIONAL CONNECTIVES 65

‘before’ because there is no use of ‘before’ in which the truth-value of

p before q

is determined, given only that p and q are both true. Similar considerations
will show that ‘after’, ‘when’, and ‘because’ lack truth-functional senses in
English.

There are also unary connectives of English that operate only non-
truth-functionally. ‘It is well known that’ is one such connective. There is no
use of this connective in which knowing only the truth-value of p always allows
one to calculate the truth-value of

It is well known that p.

For example, both ‘Cleveland is a city in Ohio’ and ‘Arcadia is a town in Ohio’
are true. And, though ‘It is well known that Cleveland is a city in Ohio’ is true,
‘It is well known that Arcadia is a town in Ohio’ is false. Such considerations
show that this unary connective has no truth-functional use. Similar reasoning
will show that such other unary connectives as ‘necessarily’, ‘probably’, ‘possi-
bly’, ‘it is alleged that’, and ‘many people fear that’ have no truth-functional
senses.

Such expressions as ‘Tom believes that’, ‘Tom knows that’, and ‘Tom
hopes that’ can be attached to sentences to generate further sentences. But
sentences generated in this way are not truth-functionally compound sentences.
For example, ‘Paris is in France’ is true, but knowing this does not allow us to
calculate the truth-value of

Tom believes that Paris is in France.

For all we know, Tom may believe that Paris is in Belgium, not France. Tom,
like most of us, has some true beliefs and some false beliefs.

We have yet to consider the rather special case of a non-truth-
functional connective generating a compound sentence from sentences that are
themselves truth-functionally compound. For example,

Either Mary is late or the clock is wrong

is clearly a truth-functionally compound sentence. But

Tom believes that either Mary is late or the clock is wrong

is not. Nor should it be paraphrased as a truth-functional compound—for
example,

Either Tom believes that Mary is late or Tom believes that the clock is
wrong.

66 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

Tom may well believe the disjunction about Mary and the clock without believing
either disjunct, just as one might believe that one will either pass or fail a given
course, without either believing that one will pass or believing that one will fail.
(We can often reasonably predict that one or the other of two events will hap-
pen, without being able to predict which one will happen.)

Similarly

Probably the coin will come up heads or tails

cannot fairly be paraphrased as

Either the coin will probably come up heads or the coin will probably
come up tails.

In fact, if the coin is a fair coin the odds are very high that it will come up
either heads or tails (that it will not stand on edge). But the odds that it will
come up heads are slightly less than one in two, as are the odds that it will
come up tails (it just might stand on edge). So the truth-functional paraphrase
is false, even though the claim it allegedly paraphrases is true.

But now consider

Probably Alice and Tom will both pass the course.

It certainly seems appropriate to paraphrase this sentence as

Both probably Alice will pass the course and probably Tom will pass
the course.

If a conjunction is probable, then each conjunct is probable. But a disjunction
can be probable without either disjunct alone being probable. The same rea-
soning holds for such sentence-compounding expressions as ‘necessarily’ and
‘certainly’. Roughly speaking, when either ‘necessary’ or ‘probably’ is attached
to a sentence that can be paraphrased as a conjunction, the result can itself be
paraphrased as a conjunction; but this is not the case when one of these terms
is attached to a sentence that is a disjunction or to other kinds of truth-
functional compounds.

2.3E EXERCISES

1. Decide which of the following sentences are truth-functional compounds, and
explain why the remaining sentences are not. Symbolize all the sentences in SL.

a. It’s possible that every family on this continent owns a television set.
*b. Rocky knows who will arrive on the train or George knows.

c. Necessarily, the coin will come up heads or tails.
*d. Tamara won’t be visiting tonight because she is working late.

2.4 THE SYNTAX OF SL 67

e. Although Tamara won’t stop by, she has promised to phone early in the evening.
*f. If the defendant had originally pleaded guilty, the trial would have lasted twice

as long.
g. John believes that our manuscript has been either lost or stolen.

*h. John believes that our manuscript has been stolen, and Howard believes that
it has been lost.

i. The defendant relented only after much testimony was discredited.

2. Symbolize the following arguments in SL, being sure to state the abbreviations
you are using.

a. The murder was committed by the maid only if she believed her life was in
danger. Had the butler done it, it would have been done silently and the body
would not have been mutilated. As a matter of fact it was done silently; how-
ever, the maid’s life was not in danger. The butler did it if and only if the maid
failed to do it. Hence the maid did it.

*b. If this piece of metal is gold, then it has atomic number 79. Nordvik believes
this piece of metal is gold. Therefore Nordvik believes this piece of metal has
atomic number 79.

c. If Charles Babbage had had the theory of the modern computer and had had
modern electronic parts, then the modern computer would have been developed
before the beginning of the twentieth century. In fact, although he lived in the
early nineteenth century, Babbage had the theory of the modern computer. But
he did not have access to modern electronic parts, and he was forced to construct
his computers out of mechanical gears and levers. Therefore, if Charles Babbage
had had modern electronic parts available to him, the modern computer would
have been developed before the beginning of the twentieth century.

2.4 THE SYNTAX OF SL

Symbolic languages have a precision that everyday languages lack and that facil-
itates examination of the logical properties of sentences and arguments. We
have already seen a large sample of sentences of SL. In this section a precise
specification of the expressions of SL will be given. To ensure that our discus-
sion of SL is as clear as possible, it will be helpful to draw some distinctions
that are usually neither formulated nor observed in everyday language.

OBJECT LANGUAGE AND METALANGUAGE, USE AND MENTION

We have been talking about the language SL in this chapter. When we talk
about a language, we call that language the object language. In this text SL is
an object language, and English is the metalanguage used to discuss it. A meta-
language is a language used to discuss or describe some object language. The
distinction between object language and metalanguage is a relative one. If we
talk about the German language in English, German is the object language
and English the metalanguage; if we talk about the English language in
German, then English is the object language and German the metalanguage.

68 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

Ordinarily we employ words and expressions to talk about something
other than those words themselves. But occasionally we do want to talk about
expressions themselves, and we must use words to do so. For instance, in the
sentence

Minnesota was the thirty-second state admitted to the Union

the word ‘Minnesota’ is being used to designate a political subdivision of the
United States. On the other hand, in the sentence

‘Minnesota’ is an Indian word

the word ‘Minnesota’ itself is under discussion. When a word or expression is
being talked about, we say that that word or expression is being mentioned rather
than used. One way to mention an expression is to use a name of that expres-
sion, and the standard way to form the name of an expression is to enclose
that expression in single quotation marks. Throughout this text we use this
method of forming the names of expressions. Thus in

‘Saratoga’ contains four syllables

the word ‘Saratoga’ is mentioned, not used. Omitting the single quotation
marks produces a false sentence:

Saratoga contains four syllables.

Saratoga is a city, not a word; it contains buildings and people, not syllables.
In discussing the object language SL, we often need to refer to, that is,

to mention, specific expressions. We do so by using names of those expressions.
One way to form the name of an expression is to enclose that expression in
single quotation marks. The sentence

‘∼ B’ is a negation

is about the expression of SL enclosed within single quotation marks. We also
mention expressions by displaying them. The expression

(A ∨ B)

is a sentence of SL and is mentioned here by being displayed.
Note that the names of expressions in the language we are talking

about do not themselves have to be part of that language. In fact, the names of
expressions of SL are not part of the language SL. So an expression like

‘(A ∨ B)’

is not an expression of SL although the expression named

(A ∨ B)

2.4 THE SYNTAX OF SL 69

is an expression SL. This is because single quotation marks are not part of the
vocabulary of the language SL. We use names of expressions of SL in order to
talk about those expressions; hence in this text these names are part of the
metalanguage that we are using.

METAVARIABLES

Besides naming specific expressions of SL, we sometimes want to talk about
these expressions more generally. For this purpose we use metalinguistic vari-
ables, or metavariables for short. A metavariable is an expression in the meta-
language that is used to talk generally about expressions of the object language.
In this text we use the boldface letters ‘P’, ‘Q’, ‘R’, and ‘S’ as metavariables
that range over the expressions of our symbolic languages. (We used these
metavariables in Section 2.1 in giving the characteristic truth-tables for the
truth-functional connectives of SL.)

When we say

If ‘∼ (H ∨ I)’ is an expression of SL consisting of a tilde followed by a
sentence of SL, then ‘∼ (H ∨ I)’ is a negation

we are making a claim about a specific sentence of SL. But by using metavari-
ables we can talk generally about expressions of SL. Thus we may write

If P is an expression of SL consisting of a tilde followed by a sentence
of SL, then P is a negation.

Here ‘P’ is a metavariable that ranges over (is used to talk about) expressions of
the object language. The displayed sentence means: Every expression of SL that
consists of a tilde followed by a sentence is a negation. The displayed sentence is
not about the metavariable ‘P’, for ‘P’ is not an expression of SL. Rather, the
sentence is about all the values of P, that is, all those expressions that are expres-
sions of SL. (When we want to talk about a metavariable, that is, to mention a
metavariable, we place that metavariable in single quotation marks.)

THE LANGUAGE SL

We are now in a position to provide a rigorous definition of the sentences of
the language SL. This is done in two steps: The vocabulary of SL is specified,
and then the grammar is specified. The specification of the vocabulary involves
stating what the basic expressions of SL are. These are like the words and punc-
tuation marks of English, in the sense that the items in the vocabulary of basic
expressions of SL are the building blocks from which all sentences of SL are
generated. The difference is that in SL we do not have words and punctua-
tion marks; rather, we have sentence letters, truth-functional connectives,
and punctuation marks. The sentence letters are capitalized Roman letters

70 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

(nonboldface) with or without positive-integer subscripts:

A, B, C, . . . , A1, B1, C1, . . . , A2, B2, C2, . . .

Note that a capitalized Roman letter with a numerical subscript counts as one

sentence letter, so ‘A1’ is a single sentence letter. The connectives of SL are the
five truth-functional connectives:

∼ & ∨ ⊃

The connective ‘∼’ is a unary connective; the others are binary connectives. The
punctuation marks consist of the left and right parentheses:

()

Other expressions of SL are formed by writing one basic expression
after another. But, just as the expression ‘Some and vanity men will left’ is not
a sentence of the English language even though it is formed entirely of En-
glish words, so there are expressions that consist entirely of basic expressions
of SL but are not themselves sentences of SL. We specify the grammar of SL by
specifying what expressions of SL count as sentences of SL. The sentences of
SL are defined as follows:

1. Every sentence letter is a sentence.

2. If P is a sentence, then ∼ P is a sentence.3

3. If P and Q are sentences, then (P & Q) is a sentence.

4. If P and Q are sentences, then (P ∨ Q) is a sentence.

3The expression ‘∼ P’ is a hybrid insofar as the connective ‘∼ ’ belongs to the object language SL, whereas the
metavariable ‘P’ does not. We use the expression

∼ P

as an expression of our metalanguage to stand for any sentence of SL that consists of a tilde followed by a sen-
tence of SL. Similarly

(P ∨ Q)

is a metalinguistic expression that we use to stand for any sentence of SL that consists of the following sequence
of expressions: a left parenthesis, a sentence of SL, a wedge, a sentence of SL, a right parenthesis.

In such contexts we do not place single quotes around these metalinguistic expressions because we want to
talk about sentences of SL rather than about the metalinguistic expressions. That is,

‘∼ P’ is a sentence of SL

says falsely that the metavariable ‘P’ preceded by a tilde is a sentence of SL. When we do place single quotes
around an expression containing a metavariable, it is because we want to talk about that expression, not about
a sentence of SL.

We adopt the following conventions: Whenever we use expressions consisting of both metavariables and
expressions of SL, we let the expressions of SL occurring therein function as their own names, while the metavari-
ables continue to function as metavariables (not as their own names). Thus each symbol that occurs in such an
expression is being used to designate some expression(s) of SL. Moreover the order of the symbols in such an
expression indicates the order of the symbols in the object language sentences that the expression stands for.
(We shall observe the same conventions in the second half of this book when we discuss the language PL.)

2.4 THE SYNTAX OF SL 71

5. If P and Q are sentences, then (P ⊃ Q) is a sentence.

6. If P and Q are sentences, then (P Q) is a sentence.

7. Nothing is a sentence unless it can be formed by repeated
application of clauses 1–6.

The sentences specified by the first clause—the sentence letters of SL—
are the atomic sentences of SL. Clauses 1–6 specify how sentences are built up
from shorter sentences. The final clause specifies that only expressions that can be
formed in accordance with clauses 1–6 are sentences. This is an example of a
recursive definition, in which complex cases are defined in terms of simpler ones.

The definition provides the basis for an effective method of determin-
ing whether an expression is a sentence. This means that we can determine in
a finite number of mechanical steps whether an expression is a sentence. We
may show that an expression is a sentence by beginning with the sentence let-
ters that occur in the expression and continually using the clauses of the defi-
nition until we have generated the sentence in question. To illustrate this, we
shall use this definition to show that ‘(∼ B & (∼ B ∨ A))’ is a sentence. By clause
1, ‘A’ and ‘B’ are sentences. By clause 2, ‘∼ B’ is a sentence. By clause 4, ‘(∼ B
∨ A)’ is a sentence. Finally, by clause 3, ‘(∼ B & (∼ B ∨ A))’ is a sentence.

The following expressions are not sentences of SL:

(B ∨ C ∨ D)
∼ & A
(BC ⊃ D)
(B ⊂ (C ∨ D))
(p q)
(((A & B) & (C ∨ D))

The reasons in each case are as follows:

‘(B ∨ C ∨ D)’ needs another pair of parentheses because it contains
two binary connectives.

‘& A’ is not a sentence since ‘&’ is a binary connective; so ‘∼ & A’
cannot be a sentence.

‘(BC ⊃ D)’ contains two consecutive sentence letters, but no rule
allows us to form a sentence in which sentence letters appear
consecutively.

‘(B ⊂ (C ∨ D))’ is not a sentence because ‘⊂’ is not an expression of
SL.

‘(p q)’ contains symbols that are not expressions of SL—the two
lowercase letters.

‘(((A & B) & (C ∨ D))’ contains more left parentheses than right,
and the clauses that introduce parentheses introduce them in pairs.

72 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

We adopt the convention that the outermost parentheses of a sentence
may be dropped whenever that sentence occurs by itself (when it is not part
of another sentence). We followed this convention in earlier sections of this
chapter. So we may write ‘A ⊃ (B & C)’ instead of ‘(A ⊃ (B & C))’, but we
may not write ‘∼ B ∨ C’ instead of ‘∼ (B ∨ C)’. The second sentence is a
negation; the first is not. Our convention also covers the outermost paren-
theses of metalinguistic expressions ranging over sentences of SL; for
example, we write ‘P ∨ Q’ instead of ‘(P ∨ Q)’. Finally we adopt the con-
vention, for both sentences of SL and metalinguistic expressions, that brack-
ets may be used in place of parentheses. Thus ‘(A ∨ B) & C’ may be written
as ‘[A ∨ B] & C’.

In this section we have been discussing SL syntactically. The syntactical
study of a language is the study of the expressions of the language and the rela-
tions among them, without regard to possible interpretations of these expres-
sions. Thus, for example, we have defined sentences of SL only in terms of
expressions of SL; nowhere in the definition are the possible interpretations of
the expressions mentioned. Of course, we have certain interpretations of these
expressions in mind. We intend the connective ‘&’ to symbolize the English
connective ‘and’ in its truth-functional sense, the sentence letters to abbreviate
sentences of English, and so on. But we could have presented this syntactic dis-
cussion of SL without regard to the possible interpretations of the expressions.
When we specify and investigate interpretations of the expressions of a lan-
guage, we are looking at the semantics of the language. For instance, the spec-
ification of the characteristic truth-tables for the truth-functional connectives is
part of the specification of a semantics for SL.

Before closing this section, we shall introduce four more syntactic con-
cepts: the main connective of a sentence and the immediate sentential com-
ponents, sentential components, and atomic components of a sentence. These
are defined in terms of the specification of sentences as follows:

1. If P is an atomic sentence, P contains no connectives and hence
does not have a main connective. P has no immediate sentential
components.

2. If P is of the form ∼ Q, where Q is a sentence, then the main
connective of P is the tilde that occurs before Q, and Q is the
immediate sentential component of P.

3. If P is of the form Q & R, Q ∨ R, Q ⊃ R, or Q R, where Q
and R are sentences, then the main connective of P is the
connective that occurs between Q and R, and Q and R are the
immediate sentential components of P.

The sentential components of a sentence include the sentence itself, its immedi-
ate sentential components, and the sentential components of its immediate sen-
tential components. The atomic components of a sentence are all the sentential
components that are atomic sentences.

2.4 THE SYNTAX OF SL 73

2.4E EXERCISES

1. Which of the following are true and which are false?
a. Copper is copper.

*b. ‘Copper’ is the name of copper.
c. The chemical symbol ‘Cu’ names ‘copper’.

*d. ‘Copper’ is copper.
e. Copper is the name of copper.

*f. Some coins are made of copper.
g. ‘Copper’ is a metal.

2. In each of the following sentences, ‘Deutschland’ is either used or mentioned.
Indicate where that word is being used or mentioned and explain how this is
being done.

a. The only German word mentioned in the instructions to these exercises con-
tains eleven letters.

*b. Some people think Deutschland and Germany are two different countries, but
actually ‘Deutschland’ is the German name of Germany.

c. The German name of Germany is mentioned several times in these examples
but only is used once.

*d. ‘Deutschland’ is ‘Deutschland’.
e. The word ‘Deutschland’ is not being used in this sentence.

*f. Deutschland is the German name of Germany.

3. Which of the following are sentences of SL and which are not? For those that
are not explain why they are not.

a. B & Z *f. P ∨ Q
*b. & H g. (I ∨ [T & E])

c. ∼ O *h. (U & C & ∼ L)
*d. M ∼ N i. (F K) ⊃ [M ∨ K]

e. J ⊃ (K ⊃ (A ∨ N)) *j. [(G ∨ E) ⊃ (∼ H & (K ∨ B)]

4. For each of the following sentences, specify the main connective and the imme-
diate sentential components. Then list all the sentential components, indicat-
ing which ones are atomic.

a. ∼ A & H *d. K ⊃ (∼ K ⊃ K)
*b. ∼ (A & H) e. (C K) ∨ (∼ H ∨ (M & N))

c. ∼ (S & G) ∨ B *f. M ⊃ [∼ N ⊃ ((B & C) ∼ [(L ⊃ J) ∨ X])]

5. Which of the following sentences are of the form ∼ P ⊃ Q? In each case jus-
tify your answer.

a. A ⊃ B *f. ∼ ∼ A ⊃ ∼ B
*b. ∼ A ⊃ B g. ∼ (∼ A ⊃ B)

c. ∼ A ⊃ ∼ B *h. ∼ ∼ (A ⊃ B) ⊃ (C ⊃ D)
*d. ∼ ∼ A ⊃ B i. ∼ (A ∨ ∼ B) ⊃ ∼ (C & ∼ D)

e. ∼ (A ⊃ B) *j. ∼ (A B) & (∼ C ⊃ D)

6. Which of the following characters can occur immediately to the left of ‘∼ ’ in
a sentence of SL? When one can so occur, give a sentence of SL in which it
does; when it cannot so occur, explain why. Which of these characters could
occur immediately to the right of ‘A’ in a sentence of SL? When one can so

74 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX

occur, give a sentence of SL in which it does; when it cannot so occur, explain
why.

a. H *d.)
*b. & e. [

c. (*f. ∼

GLOSSARY

TRUTH-FUNCTIONAL USE OF A CONNECTIVE: A sentential connective is used
truth-functionally if and only if it is used to generate a compound sentence from
one or more sentences in such a way that the truth-value of the generated com-
pound is wholly determined by the truth-values of those one or more sentences
from which the compound is generated, no matter what those truth-values may be.

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 75

Chapter 3
SENTENTIAL LOGIC:

SEMANTICS

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES

In Chapter 1 we introduced logical concepts such as logical truth and deductive
validity and used them to evaluate sentences and arguments stated in English.
In this chapter we shall develop formal tests for truth-functional versions of
the concepts introduced in Section 1.4—specifically truth-functional truth,
falsity, and indeterminacy; truth-functional consistency; truth-functional entail-
ment; and truth-functional validity. All these concepts fall within the realm of
semantics: They concern the truth-values and truth-conditions of sentences.
Before defining these truth-functional concepts for sentences and arguments
of SL, our first task is to specify how truth-values and truth-conditions for
sentences of SL are determined.

Every sentence of SL can be built up from its atomic components in
accordance with the definition of sentences. Similarly the truth-value of a sen-
tence of SL is determined completely by the truth-values of its atomic compo-
nents in accordance with the characteristic truth-tables for the connectives.
We repeat the characteristic truth-tables here:

P ∼ P P Q P & Q P Q P ∨ Q

T F T T T T T T
F T T F F T F T

F T F F T T
F F F F F F

76 SENTENTIAL LOGIC: SEMANTICS

P Q P ⊃ Q P Q P Q

T T T T T T
T F F T F F
F T T F T F
F F T F F T

These tables tell us how to determine the truth-value of a truth-functionally
compound sentence given the truth-values of its immediate sentential compo-
nents. And, if the immediate sentences of a truth-functionally compound sen-
tence are themselves truth-functionally compound, we can use the information
in the characteristic truth-tables to determine how the truth-value of each
immediate component depends on the truth-values of its immediate compo-
nents, and so on until we arrive at atomic components.

The truth-values of atomic sentences are fixed by truth-value assignments:

A truth-value assignment is an assignment of truth-values (Ts or Fs) to
the atomic sentences of SL.

Truth-value assignment is the basic semantic concept of SL. Intuitively each
truth-value assignment gives us a description of a way the world might be, for
in each we consider a combination of truth-values that atomic sentences might
have. We assume that the atomic sentences of SL are truth-functionally
independent—that is, that the truth-value assigned to one does not affect the
truth-value assigned to any other. For generality we stipulate that a truth-value
assignment must assign a truth-value to every atomic sentence of SL. Thus a
truth-value assignment gives a complete description of a way the world might be.
It tells us of each atomic sentence of SL whether or not that sentence is true.
The truth-values of truth-functionally compound sentences of SL are deter-
mined uniquely and completely by the truth-values of their atomic components.
Because every atomic sentence of SL is assigned a truth-value by a truth-value
assignment, it follows that every truth-functionally compound sentence also has
a truth-value on each truth-value assignment.

A truth-table for a sentence of SL is used to record its truth-value on
each truth-value assignment. Because each truth-value assignment assigns truth-
values to an infinite number of atomic sentences (SL has infinitely many atomic
sentences), we cannot list an entire truth-value assignment in a truth-table.
Instead, we list all the possible combinations of truth-values that the sentence’s
atomic components may have on a truth-value assignment. As an example here
is the beginning of a truth-table for ‘∼ B ⊃ C’:

B C ∼ B ⊃ C

T T
T F
F T
F F

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 77

The atomic components of the sentence are ‘B’ and ‘C’, and there are four
combinations of truth-values that these components might have, as indicated in
the four rows of the table. (Rows in truth-tables go from left to right; columns
go from top to bottom.) Each row represents an infinite number of truth-value
assignments, namely, all the truth-value assignments that assign to ‘B’ and ‘C’
the values indicated in that row. Since the truth-value of ‘∼ B ⊃ C’ on a truth-
value assignment depends upon only the truth-values that its atomic components
have on that assignment (and not, say, on the truth-value of ‘D’), the four com-
binations that we have displayed will allow us to determine the truth-value of
‘∼ B ⊃ C’ on any truth-value assignment. That is, no matter which of the infinitely
many truth-value assignments we might select, that truth-value assignment will
assign one of the four pairs of truth-values displayed in the table to ‘B’ and ‘C’.

The first step in constructing a truth-table for a sentence P of SL is to
determine the number of different combinations of truth-values that its atomic
components might have. There is a simple way to do this. Consider first the
case in which P has one atomic component. There are two different combina-
tions of truth-values that the single atomic component may have: T and F. Now
suppose that P is a sentence with two atomic components. In this case there
are four combinations of truth-values that the atomic components of P might
have, as we have seen in the case of ‘∼ B ⊃ C’ above.

If P has three atomic components, there are eight combinations of
truth-values that its atomic components might have. To see this, suppose we
were to add a third sentence letter to the truth-table for ‘∼ B ⊃ C’:

A B C (∼ B ⊃ C) & (A B)

T T
T F
F T
F F

What truth-tables do we enter in the first row under ‘A’? The combination of
truth-values that would be displayed by entering T there is different from the
combination that would be displayed by entering F. And we see that the same
holds for each row. So we need to list each of the four combinations of truth-
values that ‘B’ and ‘C’ may have twice in order to represent all combinations
of truth-values for the three atomic components.

A B C (∼ B ⊃ C) & (A B)

T T T
T T F
T F T
T F F
F T T
F T F
F F T
F F F

78 SENTENTIAL LOGIC: SEMANTICS

Extending this reasoning, we find that every time we add a new atomic sen-
tence to the list the number of rows in the truth-table doubles. If P has n atomic
components, there are 2n different combinations of truth-values for its atomic
components.1 (If the same sentence letter occurs more than once in P, we do
not count each occurrence as a different atomic component of P. To deter-
mine the number of atomic components, we count the number of different sen-
tence letters that occur in P.)

In constructing a truth-table, we adopt a systematic method of listing
the combinations of truth-values that the atomic components of a sentence P
might have. We first list the atomic components of P to the left of the vertical
line at the top of the truth-table, in alphabetical order.2

Under the first sentence letter listed, write a column of 2n entries, the
first half of which are Ts and the second half of which are Fs. In the second
column the number of Ts and Fs being alternated is half the number alter-
nated in the first column. In the column under the third sentence letter listed,
the number of Ts and Fs being alternated will again be half the number in the
second column. We repeat this process until a column has been entered under
each sentence letter to the left of the vertical line. The column under the last
sentence letter in this list will then consist of single Ts alternating with single
Fs. Thus, for a truth-table with n sentence letters, the first column consists of
2n 1 Ts alternating with 2n 1 Fs, the second of 2n 2 Ts alternating with 2n 2

Fs, and in general the ith column consists of 2n i Ts alternating with 2n i Fs.
(Note that 20

 1.)
Now we can complete the rest of the truth-table for ‘(∼ B ⊃ C) &

(A B)’. We first repeat under ‘A’, ‘B’, and ‘C’, wherever these occur, the
columns we have already entered to the left of the vertical line:

A B C (∼ B ⊃ C) & (A B)

T T T T T T T
T T F T F T T
T F T F T T F
T F F F F T F
F T T T T F T
F T F T F F T
F F T F T F F
F F F F F F F

Next we may enter the column for the component ‘∼ B’ under its main con-
nective, the tilde. In each row in which ‘B’ has the truth-value T, ‘∼ B’ has the

12n is 2 if n 1, 2 2 if n 2, 2 2 2 if n 3, and so on.
2This is an extended sense of ‘alphabetical order’ since some sentence letters have subscripts. In this order all
the nonsubscripted letters appear first, then all letters subscripted with ‘1’, then all letters subscripted with ‘2’,
and so on.

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 79

truth-value F, and in each row in which ‘B’ has the truth-value F, ‘∼ B’ has the
truth-value T:

A B C (∼ B ⊃ C) & (A B)

T T T F T T T T
T T F F T F T T
T F T T F T T F
T F F T F F T F
F T T F T T F T
F T F F T F F T
F F T T F T F F
F F F T F F F F

The column for ‘∼ B ⊃ C’ is entered under the horseshoe:

A B C (∼ B ⊃ C) & (A B)

T T T F T T T T T
T T F F T T F T T
T F T T F T T T F
T F F T F F F T F
F T T F T T T F T
F T F F T T F F T
F F T T F T T F F
F F F T F F F F F

The truth-values of the immediate components of ‘A B’ for each row
have been recorded, so we can now complete the column for ‘A B’ in accor-
dance with the characteristic truth-table for ‘ ’:

A B C (∼ B ⊃ C) & (A B)

T T T F T T T T T T
T T F F T T F T T T
T F T T F T T T F F
T F F T F F F T F F
F T T F T T T F F T
F T F F T T F F F T
F F T T F T T F T F
F F F T F F F F T F

Remember that a material biconditional has the truth-value T on all truth-value
assignments on which its immediate components have the same truth-value,

80 SENTENTIAL LOGIC: SEMANTICS

and the truth-value F on all other truth-value assignments. Finally we enter the
column for ‘(∼ B ⊃ C) & (A B)’ under its main connective, the ampersand:

↓

A B C (∼ B ⊃ C) & (A B)

T T T F T T T T T T T
T T F F T T F T T T T
T F T T F T T F T F F
T F F T F F F F T F F
F T T F T T T F F F T
F T F F T T F F F F T
F F T T F T T T F T F
F F F T F F F F F T F

We use arrows to indicate the main connective of the sentence for which a
truth-table has been constructed. Each row of the truth-table displays, under-
neath the arrow, the truth-value that the sentence has on every truth-value
assignment that assigns to the atomic components of that sentence the truth-
values displayed to the left of the vertical line.

Here is the truth-table for the sentence ‘[A (B A)] ∨ ∼ C’:

↓

A B C [A (B A)] ∨ ∼ C

T T T T T T T T T F T
T T F T T T T T T T F
T F T T F F F T F F T
T F F T F F F T T T F
F T T F T T F F T F T
F T F F T T F F T T F
F F T F F F T F F F T
F F F F F F T F T T F

The column for ‘∼ C’ is constructed in accordance with the characteristic truth-
table for the tilde. ‘∼ C’ has the truth-value T on all and only those truth-value
assignments on which ‘C’ has the truth-value F, and ‘∼ C’ has the truth-value
F on every assignment on which ‘C’ has the truth-value T. The column for
‘∼ C’ appears directly underneath the tilde. The immediate components of
‘(B A)’ are ‘B’ and ‘A’. The characteristic truth-value for ‘ ’ tells us that a
material biconditional has the truth-value T on all and only those truth-value
assignments on which both of its immediate sentential components have the
same truth-value (both have the truth-value T or both have the truth-value F).
Thus ‘(B A)’ has the truth-value T for the combinations of truth-values dis-
played in the first two and last two rows of the truth-table and the truth-value
F for the other combinations.

3.1 TRUTH-VALUE ASSIGNMENTS AND TRUTH-TABLES FOR SENTENCES 81

Similarly ‘[A (B A)]’ has the truth-value T on exactly those truth-
value assignments on which ‘A’ and ‘(B A)’ have the same truth-value. The
column for ‘[A (B A)]’ appears directly underneath its main connective,
which is the first occurrence of the triple bar. ‘[A (B A)] ∨ ∼ C’ has the
truth-value T on exactly those truth-value assignments on which at least one
disjunct has the truth-value T. The disjuncts are ‘[A (B A)]’ and ‘∼ C’.
So [A (B A)] ∨ ∼ C’ has the truth-value T on every truth-value assignment
on which either ‘[A (B A)]’ or ‘∼ C’ has the truth-value T. Where both
disjuncts have the truth-value F, so does ‘[A (B A)] ∨ ∼ C’. The truth-
value of the entire sentence for each combination of truth-values assigned to
its atomic components is written in the column directly underneath the wedge,
the sentence’s main connective.

Here is the truth-table for the sentence ‘∼ [(U ∨ (W ⊃ ∼ U)) W]’:

↓

U W ∼ [(U ∨ (W ⊃ ∼ U)) W]

T T F T T T F F T T T
T F T T T F T F T F F
F T F F T T T T F T T
F F T F T F T T F F F

The column under the first occurrence of the tilde represents the truth-value
of the entire sentence ‘∼ [(U ∨ (W ⊃ ∼ U)) W]’ for each combination of
truth-values that its atomic components might have. The truth-table tells us that
‘∼ [(U ∨ (W ⊃ ∼ U)) W]’ has the truth-value T on those truth-value assign-
ments on which either ‘U’ is assigned the truth-value T and ‘W’ is assigned the
truth-value F or both ‘U’ and ‘W’ are assigned the truth-value F; the sentence
is false on every other truth-value assignment.

Sometimes we are not interested in determining the truth-values of a
sentence P for every truth-value assignment but are interested only in the truth-
value of P on a particular truth-value assignment. In that case we may construct
a shortened truth-table for P that records only the truth-values that its atomic
components are assigned by that truth-value assignment. For example, suppose
we want to know the truth-value of ‘(A & B) ⊃ B’ on a truth-value assignment
that assigns F to ‘A’ and T to ‘B’ and all the other atomic sentences of SL. We
head the shortened truth-table as before, with the atomic components of the
sentence to the left of the vertical line and ‘(A & B) ⊃ B’ itself to the right.
We list only one combination of truth-values for ‘A’ and ‘B’, namely, the truth-
values they have on the assignment we are interested in:

↓

A B (A & B) ⊃ B

F T F F T T T

82 SENTENTIAL LOGIC: SEMANTICS

The truth-values of ‘(A & B)’ and ‘(A & B) ⊃ B’ are determined in accordance
with the characteristic truth-tables, as before. Thus ‘(A & B)’ has the truth-
value F on this truth-value assignment, for ‘A’ has the truth-value F. Since the
antecedent of ‘(A & B) ⊃ B’ has the truth-value F and the consequent the truth-
value T, ‘(A & B) ⊃ B’ has the truth-value T.

We emphasize that, when we want to determine the truth-value of a
sentence on a particular truth-value assignment, we do not display the full
truth-value assignment in question. Truth-value assignments assign truth-
values to every atomic sentence of SL. Rather, we display only the combina-
tions of truth-values that the atomic components of the sentence in question
have on the assignment. There is no loss here because the truth-value of a
sentence on a truth-value assignment depends only upon the truth-values of
its atomic components on that assignment. Conversely each row of a truth-
table for a sentence gives information about infinitely many truth-value
assignments. It tells us the truth-value of the sentence on every truth-value
assignment that assigns to the atomic components of the sentence the com-
bination of truth-values displayed in that row (there are infinitely many such
assignments).

To review: The truth-value of a sentence P on a truth-value assignment
is determined by starting with the truth-values of the atomic components of P
on the truth-value assignment and then using the characteristic truth-tables for
the connectives of SL to compute the truth-values of larger and larger senten-
tial components of P on the truth-value assignment. Ultimately we determine
the truth-value of the largest sentential component of P, namely, P itself. This
procedure is used in the construction of a truth-table for P, where each row
displays a different combination of truth-values for the atomic components of
P. The truth-value of P for each such combination is recorded directly under-
neath the main connective of P in the row representing that combination. (If
P is atomic, the truth-value is recorded under P.)

We also define the notions of being true on a truth-value assignment
and false on a truth-value assignment:

A sentence is true on a truth-value assignment if and only if it has the
truth-value T on the truth-value assignment.

A sentence is false on a truth-value assignment if and only if it has the
truth-value F on the truth-value assignment.

3.1E EXERCISES

1. How many rows will be in the truth-table for each of the following sentences?
a. A (∼ A A)

*b. [∼ D & (B ∨ G)] ⊃ [∼ (H & A) ∨ ∼ D]
c. (B & C) ⊃ [B ∨ (C & ∼ C)]

3.2 TRUTH--FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 83

2. Construct truth-tables for the following sentences.
a. ∼ ∼ (E & ∼ E)

*b. (A & B) ∼ B
c. A [J (A J)]

*d. [A ⊃ (B ⊃ C)] & [(A ⊃ B) ⊃ C]
e. [∼ A ∨ (H ⊃ J)] ⊃ (A ∨ J)

*f. (∼ ∼ A & ∼ B) ⊃ (∼ A B)
g. ∼ (A ∨ B) ⊃ (∼ A ∨ ∼ B)

*h. ∼ D & [∼ H ∨ (D & E)]
i. ∼ (E & [H ⊃ (B & E)])

*j. ∼ (D (∼ A & B)) ∨ (∼ D ∨ ∼ B)
k. ∼ [D & (E ∨ F)] [∼ D & (E & F)]

*l. (J & [(E ∨ F) & (∼ E & ∼ F)]) ⊃ ∼ J
m. (A ∨ (∼ A & (H ⊃ J))) ⊃ (J ⊃ H)

3. Construct shortened truth-tables to determine the truth-value of each of the
following sentences on the truth-value assignment that assigns T to ‘B’ and ‘C’,
and F to ‘A’ and to every other atomic sentence of SL.

a. ∼ [∼ A ∨ (∼ C ∨ ∼ B)]
*b. ∼ [A ∨ (∼ C & ∼ B)]

c. (A ⊃ B) ∨ (B ⊃ C)
*d. (A ⊃ B) ⊃ (B ⊃ C)

e. (A B) ∨ (B C)
*f. ∼ A ⊃ (B C)
g. ∼ [B ⊃ (A ∨ C)] & ∼ ∼ B

*h. ∼ [∼ A ∼ (B ∼ [A (B & C)])]
i. ∼ [∼ (A ∼ B) ∼ A] (B ∨ C)

*j. ∼ (B ⊃ ∼ A) & [C (A & B)]

4. Construct a truth-table for each of the sentences in Exercise 1 in Section 2.2E.

5. Construct a truth-table for each of the sentences in Exercise 3 in Section 2.2E.

3.2 TRUTH-FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY

In Chapter 1 we introduced the concepts of logical truth, logical falsity, and
logical indeterminacy. A logically true sentence of English, it will be remem-
bered, is one that cannot possibly be false. A sentence that is logically true (or
logically false) may be so on purely truth-functional grounds. For example, we
may symbolize ‘Either Cynthia will get a job or Cynthia will not get a job’ as
‘C ∨ ∼ C’, and the truth-table for this sentence shows that it is true on every
truth-value assignment:

↓

C C ∨ ∼ C

T T T F T
F F T T F

84 SENTENTIAL LOGIC: SEMANTICS

Thus the sentence cannot possibly be false. A sentence that is logically true on
truth-functional grounds is a truth-functionally true sentence.

A sentence P of SL is truth-functionally true if and only if P is true on every
truth-value assignment.3

Since every sentence of SL has exactly one of the two truth-values on any truth-
value assignment, it follows that a sentence P is truth-functionally true if and
only if there is no truth-value assignment on which P is false.

Once the truth-table for a sentence has been constructed, it is a simple
matter to determine whether the sentence is truth-functionally true. Simply
examine the column of truth-values under its main connective. The sentence
is truth-functionally true if and only if that column consists solely of Ts. Since
the rows of the truth-table represent all combinations of truth-values that may
be assigned to the atomic components of the sentence by any truth-value assign-
ment, the absence of Fs under the sentence’s main connective shows that there
is no truth-value assignment on which the sentence is false.

Here is the truth-table for another truth-functionally true sentence:

↓

X Z Z ⊃ (X ∨ Z)

T T T T T T T
T F F T T T F
F T T T F T T
F F F T F F F

The column under the main connective of ‘Z ⊃ (X ∨ Z)’ contains only Ts.
Note that the immediate sentential components of a truth-functionally true sen-
tence need not themselves be truth-functionally true.

Truth-functional falsity is also defined in terms of truth-value assign-
ments.

A sentence P of SL is truth-functionally false if and only if P is false on every
truth-value assignment.

It follows that if P is truth-functionally false then there is no truth-value assign-
ment on which P is true. We can show that a sentence of SL is truth-functionally
false by constructing a truth-table for the sentence; if the column of truth-values
under the sentence’s main connective contains only Fs, then the sentence is

3Truth-functionally true sentences are sometimes called tautologies or truth-functionally valid sentences. Truth-
functionally false sentences (introduced shortly) are sometimes called contradictions, or self-contradictory sentences.
Truth-functionally indeterminate sentences (also to be introduced) are sometimes called contingent sentences.

3.2 TRUTH--FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 85

truth-functionally false. Here are truth-tables for two truth-functionally false
sentences:

↓

A A & ∼ A

T T F F T
F F F T F

↓

H K [(H ∨ K) ⊃ ∼ (H ∨ K)] & H

T T T T T F F T T T F T
T F T T F F F T T F F T
F T F T T F F F T T F F
F F F F F T T F F F F F

Note that the immediate sentential components of a truth-functionally false
sentence need not themselves be truth-functionally false. When we negate
a truth-functionally true sentence, we end up with a truth-functionally false
sentence:

↓

A ∼ (A ∨ ∼ A)

T F T T F T
F F F T T F

If we add another tilde to obtain ‘∼ ∼ (A ∨ ∼ A)’, we will have a truth-functionally
true sentence again.

Although the two sentences ‘A ⊃ (B ⊃ A)’ and ‘(A ⊃ B) ⊃ A’ look very
much alike, one is truth-functionally true and the other is not:

↓

A B A ⊃ (B ⊃ A)

T T T T T T T
T F T T F T T
F T F T T F F
F F F T F T F

↓

A B (A ⊃ B) ⊃ A

T T T T T T T
T F T F F T T
F T F T T F F
F F F T F F F

86 SENTENTIAL LOGIC: SEMANTICS

‘A ⊃ (B ⊃ A)’ is true on every truth-value assignment, whereas ‘(A ⊃ B) ⊃ A’
is not. The latter sentence is truth-functionally indeterminate.

A sentence P of SL is truth-functionally indeterminate if and only if P is neither
truth-functionally true nor truth-functionally false.

A truth-functionally indeterminate sentence is true on at least one truth-
value assignment and false on at least one truth-value assignment. We can
use a truth-table to show that a truth-functionally compound sentence is
truth-functionally indeterminate by showing that the column under its main
connective contains at least one T and at least one F. Every atomic sentence
of SL is truth-functionally indeterminate. For example, the truth-table for
‘H’ is

↓

H H

T T
F F

‘H’ is true on every truth-value assignment on which it is assigned the truth-
value T, and false on every other truth-value assignment. Truth-tables for sev-
eral truth-functionally indeterminate sentences appeared in Section 3.1. Every
sentence of SL is either truth-functionally true, truth-functionally false, or truth-
functionally indeterminate.

Sometimes we can show that a sentence is not truth-functionally true
or is not truth-functionally false by displaying only one row of the sentence’s
truth-table—that is, by constructing a shortened truth-table. Consider the sen-
tence ‘(A & ∼ A) ∨ ∼ A’. If this sentence is truth-functionally true, then there
is no truth-value assignment on which it is false. So, if we can show that the
sentence is false for some combination of truth-values its atomic components
might have, then we can conclude that it is not truth-functionally true. The
following shortened truth-table represents such a combination:

↓

A (A & ∼ A) ∨ ∼ A

T T F F T F F T

This shortened truth-table shows that the sentence ‘(A & ∼ A) ∨ ∼ A’ is false
on every truth-value assignment that assigns the truth-value T to ‘A’. Note that
the shortened table shows only that ‘(A & ∼ A) ∨ ∼ A’ is not truth-functionally
true. The table does not show whether the sentence is true on those truth-
value assignments on which ‘A’ is assigned the truth-value F. If it is, then the

3.2 TRUTH--FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 87

sentence is truth-functionally indeterminate; if not, the sentence is truth-
functionally false.

Similarly we may construct a shortened truth-table in order to show that
‘J & (∼ K ∨ ∼ J)’ is not truth-functionally false:

↓

J K J & (∼ K ∨ ∼ J)

T F T T T F T F T

This truth-table shows that the sentence is true on every truth-value assignment
that assigns T to ‘J’ and F to ‘K’. We thus know that the sentence is either truth-
functionally indeterminate or truth-functionally true.

There is a systematic way to develop a shortened truth-table that shows
that a sentence is true on at least one truth-value assignment or false on at least
one truth-value assignment. Let’s first consider the previous example, in which
we wanted to show that ‘J & (∼ K ∨ ∼ J)’ is true on at least one truth-value
assignment. We start by placing a T under the main connective:

↓

J K J & (∼ K ∨ ∼ J)

T

Because the main connective is an ampersand, we know that each conjunct
must be true as well:

↓

J K J & (∼ K ∨ ∼ J)

T T T

Whenever we place a T or F under a sentence letter, we repeat it under all
occurrences of that sentence letter:

↓

J K J & (∼ K ∨ ∼ J)

T T T T T

Once we have placed a T under ‘J’, we know that we must fill in an F under
the last tilde, since a negation is false if the negated sentence is true:

↓

J K J & (∼ K ∨ ∼ J)

T T T T FT

88 SENTENTIAL LOGIC: SEMANTICS

Now we have a true disjunction with one false disjunct, so we know that
the other disjunct must be true (otherwise the disjunction could not be
true):

↓

J K J & (∼ K ∨ ∼ J)

T T T T T FT

And if ‘∼ K’ is true, then ‘K’ must be false:

↓

J K J & (∼ K ∨ ∼ J)

T F T T T F T FT

Note that we also placed an F under the occurrence of ‘K’ to the left of the
vertical bar. This completes our shortened truth-table.

Now consider the earlier example, in which we wanted to show that
‘(A & ∼ A) ∨ ∼ A’ is false on at least one truth-value assignment. We begin by
placing an F under the sentence’s main connective:

↓

A (A & ∼ A) ∨ ∼ A

F

If a disjunction is false, both of its disjuncts must be false:

↓

A (A & ∼ A) ∨ ∼ A

F F F

We have just recorded an F for ‘∼ A’, and since ‘∼ A’ occurs elsewhere in the
sentence, we repeat the F there:

↓

A (A & ∼ A) ∨ ∼ A

F F F F

Note that we have now assigned the value F to one of the conjuncts of
‘(A & ∼ A)’, thus ensuring that the conjunction is false, so it won’t matter if

3.2 TRUTH--FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 89

we end up assigning the value T to the other conjunct. Next we note that if
‘∼ A’ is false then ‘A’ must be true:

↓

A (A & ∼ A) ∨ ∼ A

T T F F T F F T

And this completes the shortened truth-value.
In these two examples every addition to the table is dictated by

some previous truth-value that had been entered: If a conjunction is true, both
conjuncts must be true; if a disjunction is false, both disjuncts must be false; a
negation is true if and only if the negated sentence is false; and a component
of a sentence must have the same truth-value for each of its occurrences. But
sometimes we have examples where choices need to be made. For example,
suppose we want to show that the sentence ‘(A ⊃ B) (B ⊃ A)’ is not truth-
functionally true. We can begin constructing a shortened truth-table with an F
under the sentence’s main connective as follows:

↓

A B (A ⊃ B) (B ⊃ A)

F

At this point we have to make a choice, because there are two ways that a bicon-
ditional can be false. Either the first immediate component is true and the sec-
ond false, or the first immediate component is false and the second true. There
is no simple rule of thumb to follow in this case. So we’ll try one of the pos-
sibilities and see where it leads:

↓

A B (A ⊃ B) (B ⊃ A)

T F F

Since ‘(B ⊃ A)’ is false, we know that ‘B’ must be true and ‘A’ false. We’ll add
these values in two steps. First, we have

↓

A B (A ⊃ B) (B ⊃ A)

F T T F T F F

We also need to add the values under the other occurrences of ‘A’ and ‘B’—
but in doing so we must make sure that these values are consistent with the

90 SENTENTIAL LOGIC: SEMANTICS

assignment of T to the conditional ‘(A ⊃ B)’:

↓

A B (A ⊃ B) (B ⊃ A)

F T F T T F T F F

Fortunately they are: A conditional with a false antecedent and a true con-
sequent is itself true. So we have successfully completed the shortened table.

It turns out that we could have assigned F to the first immediate com-
ponent of the biconditional and T to the second and produced another short-
ened truth-table representing a different set of truth-value assignments on
which the biconditional is false. But sometimes, when we have a choice, one
possible way of assigning truth-values won’t work while another one will.
Suppose, for example, that we want to show that the sentence ‘(A ⊃ B) ⊃

(B ⊃ ∼ A)’ is not truth-functionally false—that is, that there is at least one truth-
value assignment on which it is true. We start with

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T

There are three ways in which a conditional can be true: Both the antecedent
and consequent are true, or the antecedent is false and the consequent is true, or
the antecedent is false and the consequent is false. We might try the first case first:

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T

We now have two true conditionals whose immediate components do not have
truth-values. We’ll work with the first one, and again, let’s make its antecedent
true and its consequent true:

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T T T

Filling in T under each ‘A’ and ‘B’—because ‘A’ and ‘B’ have each been
assigned the truth-value T—we get

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T T T T T T T

3.2 TRUTH--FUNCTIONAL TRUTH, FALSITY, AND INDETERMINACY 91

Now we must put F under the tilde:

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T T T T T T F T FAILURE!

The problem is that the conditional ‘(B ⊃ ∼ A)’ cannot be true if ‘B’ is true
and ‘∼ A’ is false—there is no such truth-value assignment.

But we must not conclude that the sentence cannot be true. All we con-
clude is that we haven’t come up with a way of assigning truth-values that will
make it true. We can go back to

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

T T T

and try another way to make the conditional ‘(A ⊃ B)’ true—say, by making
‘A’ false and ‘B’ true. This yields

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

F T F T T T T T F

and we can fill in a T under the tilde:

↓

A B (A ⊃ B) ⊃ (B ⊃ ∼ A)

F T F T T T T T T F

Note that this time the conditional ‘(B ⊃ ∼ A)’ will be true since both of its
immediate components are, so we have correctly produced a shortened truth-
table. But even if this hadn’t worked, there are still other possibilities, including
trying to make the entire sentence true by a different assignment of truth-
values to its immediate components.4

Of course, we may fail even when we try all the possibilities—which
means that, although we thought a sentence might be true (or false) on some
truth-value assignment, we were incorrect. The sentence is, in fact, truth-
functionally false (or true), so there is no such assignment. Here’s a simple

4Sometimes we have to try every possibility before coming up with a correct shortened truth-table (or conclud-
ing that there is no such table). The problem in constructing a shortened truth-table to show that a sentence
can be true or that it can be false is one of a class of problems known to theoreticians as ‘‘NP-complete prob-
lems.’’ These are problems for which the only known solutions guaranteed to produce a correct result are solu-
tions that require us, in the worst case, to try every possibility.

92 SENTENTIAL LOGIC: SEMANTICS

example: We’ll try to produce a shortened truth-table with an assignment of
truth-values that makes the sentence ‘A ⊃ A’ false:

↓

A A ⊃ A

F

If the conditional is false, the antecedent must be true and the consequent false:

↓

A A ⊃ A

T F F FAILURE!

We failed because ‘A’ cannot have two different truth-values on the same truth-
value assignment. Here we have, in fact, tried all the possibilities for making
the conditional false (the antecedent must be true and the conclusion must
be false)—unsuccessfully. That’s as it should be, since the sentence is truth-
functionally true.

3.2E EXERCISES

1. Determine whether each of the following sentences is truth-functionally true,
truth-functionally false, or truth-functionally indeterminate by constructing
truth-tables.

a. ∼ A ⊃ A
*b. J ⊃ (K ⊃ J)

c. (A ∼ A) ⊃ ∼ (A ∼ A)
*d. (E H) ⊃ (∼ E ⊃ ∼ H)

e. (∼ B & ∼ D) ∨ ∼ (B ∨ D)
*f. ([(C ⊃ D) & (D ⊃ E)] & C) & ∼ E
g. [(A ∨ B) & (A ∨ C)] ⊃ ∼ (B & C)

*h. ∼ [[(A ∨ B) & (B ∨ B)] & (∼ A & ∼ B)]
i. (J ∨ ∼ K) ∼ ∼ (K ⊃ J)

*j. ∼ B ⊃ [(B ∨ D) ⊃ D]
k. [(A ∨ ∼ D) & ∼ (A & D)] ⊃ ∼ D
*l. (M ∼ N) & (M N)

2. For each of the following sentences, either show that the sentence is truth-func-
tionally true by constructing a full truth-table or show that the sentence is not
truth-functionally true by constructing an appropriate shortened truth-table.

a. (F ∨ H) ∨ (∼ F H) *d. A (B A)
*b. (F ∨ H) ∨ ∼ (∼ F ⊃ H) e. [(C ∨ ∼ C) ⊃ C] ⊃ C

c. ∼ A ⊃ [(B & A) ⊃ C] *f. [C ⊃ (C ∨ ∼ D)] ⊃ (C ∨ D)

3. For each of the following sentences, either show that the sentence is truth-
functionally false by constructing a full truth-table or show that the sentence is

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 93

not truth-functionally false by constructing an appropriate shortened truth-table.
a. (B D) & (B ∼ D)

*b. (B ⊃ H) & (B ⊃ ∼ H)
c. A (B A)

*d. [(F & G) ⊃ (C & ∼ C)] & F
e. [(C ∨ D) C] ⊃ ∼ C

*f. [∼ (A & F) ⊃ (B ∨ A)] & ∼ [∼ B ⊃ ∼ (F ∨ A)]

4. Which of the following are true? Explain.
a. A conjunction with one truth-functionally true conjunct must itself be truth-

functionally true.
*b. A disjunction with one truth-functionally true disjunct must itself be truth-

functionally true.
c. A material conditional with a truth-functionally true consequent must itself be

truth-functionally true.
*d. A conjunction with one truth-functionally false conjunct must itself be truth-

functionally false.
e. A disjunction with one truth-functionally false disjunct must itself be truth-

functionally false.
*f. A material conditional with a truth-functionally false consequent must itself be

truth-functionally false.
g. A sentence is truth-functionally true if and only if its negation is truth-

functionally false.
*h. A sentence is truth-functionally indeterminate if and only if its negation is

truth-functionally indeterminate.
i. A material conditional with a truth-functionally true antecedent must itself be

truth-functionally true.
*j. A material conditional with a truth-functionally false antecedent must itself be

truth-functionally false.

5. Answer the following questions; explain your answers.
a. Suppose that P is a truth-functionally true sentence and Q is a truth-functionally

false sentence. On the basis of this information, can you determine whether
P Q is truth-functionally true, false, or indeterminate? If so, which is it?

*b. Suppose that P and Q are truth-functionally indeterminate sentences. Does it
follow that P & Q is truth-functionally indeterminate?

c. Suppose that P and Q are truth-functionally indeterminate. Does it follow that
P ∨ Q is truth-functionally indeterminate?

*d. Suppose that P is a truth-functionally true sentence and that Q is truth-
functionally indeterminate. On the basis of this information, can you determine
whether P ⊃ Q is truth-functionally true, false, or indeterminate? If so, which is it?

3.3 TRUTH-FUNCTIONAL EQUIVALENCE

We now introduce the concept of truth-functional equivalence.

Sentences P and Q of SL are truth-functionally equivalent if and only if there
is no truth-value assignment on which P and Q have different truth-values.

94 SENTENTIAL LOGIC: SEMANTICS

Hence, to show that P and Q are truth-functionally equivalent, we construct a sin-
gle truth-table for both P and Q and show that in each row the two sentences have
the same truth-value. The columns under the main connectives must be identical.

The sentences ‘A & A’ and ‘A ∨ A’ are truth-functionally equivalent, as
shown by the following truth-table:

↓ ↓

A A & A A ∨ A

T T T T T T T
F F F F F F F

On any truth-value assignment that assigns T to ‘A’, both ‘A & A’ and ‘A ∨ A’
are true. On any truth-value assignment that assigns F to ‘A’, both ‘A & A’ and
‘A ∨ A’ are false. The sentences ‘(W & Y) ⊃ H’ and ‘W ⊃ (Y ⊃ H)’ are also
truth-functionally equivalent:

↓ ↓

H W Y (W & Y) ⊃ H W ⊃ (Y ⊃ H)

T T T T T T T T T T T T T
T T F T F F T T T T F T T
T F T F F T T T F T T T T
T F F F F F T T F T F T T
F T T T T T F F T F T F F
F T F T F F T F T T F T F
F F T F F T T F F T T F F
F F F F F F T F F T F T F

The columns under the main connectives of ‘(W & Y) ⊃ H’ and ‘W ⊃

(Y ⊃ H)’ are identical, which shows that the two sentences have the same truth-
value on every truth-value assignment.

It is important to remember that two sentences are truth-functionally
equivalent only if they have the same truth-value on every truth-value assign-
ment. That is, their truth-table columns (in the same truth-table) must be iden-
tical. Consider the following truth-table:

↓ ↓

E H J E ∨ H (H ∨ J) ∨ E

T T T T T T T T T T T
T T F T T T T T F T T
T F T T T F F T T T T
T F F T T F F F F T T
F T T F T T T T T T F
F T F F T T T T F T F
F F T F F F F T T T F
F F F F F F F F F F F

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 95

The table shows that the sentences ‘E ∨ H’ and ‘(H ∨ J) ∨ E’ are not truth-
functionally equivalent, for they have different truth-values on any truth-
value assignment that assigns F to ‘E’ and ‘H’ and T to ‘J’. The fact that
‘E ∨ H’ and ‘(H ∨ J) ∨ E’ have the same truth-value for all other truth-
value assignments is irrelevant to the question of whether the two sen-
tences are truth-functionally equivalent. When we want to show that two
sentences are not truth-functionally equivalent, we will circle at least one
row of the truth-table in which the sentences do not have the same truth-
value.

All truth-functionally true sentences are truth-functionally equivalent.
This is because every truth-functionally true sentence has the truth-value T on
every truth-value assignment. In a table for two truth-functionally true sen-
tences, the columns under the main connectives of those sentences are always
identical. For example, ‘∼ (C & ∼ C)’ and ‘A ⊃ (B ⊃ A)’ are truth-functionally
equivalent:

↓ ↓

A B C ∼ (C & ∼ C) A ⊃ (B ⊃ A)

T T T T T F F T T T T T T
T T F T F F T F T T T T T
T F T T T F F T T T F T T
T F F T F F T F T T F T T
F T T T T F F T F T T F F
F T F T F F T F F T T F F
F F T T T F F T F T F T F
F F F T F F T F F T F T F

Likewise all truth-functionally false sentences are truth-functionally equivalent.
But not all truth-functionally indeterminate sentences are truth-

functionally equivalent—for example,

↓ ↓

B D B & D ∼ B & D

T T T T T F T F T
T F T F F F T F F
F T F F T T F T T
F F F F F T F F F

On any truth-value assignment on which ‘B’ and ‘D’ are both true, or ‘B’ is
false and ‘D’ is true, the sentences ‘B & D’ and ‘∼ B & D’ have different truth-
values. Hence they are not truth-functionally equivalent.

If P and Q are not truth-functionally equivalent, we can construct a
shortened truth-table to show this. The shortened truth-table will display a com-
bination of truth-values for which one sentence is true and the other false. For
example, the following shortened truth-table shows that ‘A’ and ‘A ∨ B’ are not
truth-functionally equivalent:

96 SENTENTIAL LOGIC: SEMANTICS

↓ ↓

A B A A ∨ B

F T F F T T

The shortened truth-table shows that, on any truth-value assignment that assigns
F to ‘A’ and T to ‘B’, ‘A’ is false and ‘A ∨ B’ is true. Hence the sentences are
not truth-functionally equivalent. Note that, if we construct a shortened truth-
table that displays a row in which both sentences have the same truth-value, this
is not sufficient to show that they are truth-functionally equivalent. This is
because they are truth-functionally equivalent if and only if they have the same
truth-value on every truth-value assignment. To show this, we must consider every
combination of truth-values that their atomic components might have.

We may construct our shortened truth-tables for two (or more) sen-
tences in a systematic way, just as we did for single sentences in Section 3.2.
For example, we could begin constructing the previous table by assigning the
sentence ‘A’ the truth-value F and ‘B’ the truth-value T:

↓ ↓

A B A A ∨ B

F T

(We might first have tried to make ‘A’ true and ‘A ∨ B’ false, but this would
not lead to a correct truth-table since we would have a false disjunction with a
true disjunct.) Filling in F under all the other occurrences of ‘A’ yields

↓ ↓

A B A A ∨ B

F F F T

Now we can make ‘B’ true, which will secure the truth of the disjunction:

↓ ↓

A B A A ∨ B

F T F F T T

3.3E EXERCISES

1. Decide, by constructing truth-tables, in which of the following pairs the sen-
tences are truth-functionally equivalent.

a. ∼ (A & B) ∼ (A ∨ B)
*b. A ⊃ (B ⊃ A) (C & ∼ C) ∨ (A ⊃ A)

c. K H ∼ K ∼ H
*d. C & (B ∨ A) (C & B) ∨ A

3.3 TRUTH-FUNCTIONAL EQUIVALENCE 97

e. (G ⊃ F) ⊃ (F ⊃ G) (G F) ∨ (∼ F ∨ G)
*f. ∼ C ⊃ ∼ B B ⊃ C
g. ∼ (H & J) (J ∼ K) (H & J) ⊃ ∼ K

*h. ∼ (D ∨ B) ⊃ (C ⊃ B) C ⊃ (D & B)
i. [A ∨ ∼ (D & C)] ⊃ ∼ D [D ∨ ∼ (A & C)] ⊃ ∼ A

*j. A ⊃ [B ⊃ (A ⊃ B)] B ⊃ [A ⊃ (B ⊃ A)]
k. F ∨ ∼ (G ∨ ∼ H) (H ∼ F) ∨ G

2. For each of the following pairs of sentences, either show that the sentences are
truth-functionally equivalent by constructing a full truth-table or show that they
are not truth-functionally equivalent by constructing an appropriate shortened
truth-table.

a. G ∨ H ∼ G ⊃ H
*b. ∼ (B & ∼ A) A ∨ B

c. (D A) & D D & A
*d. F & (J ∨ H) (F & J) ∨ H

e. A (∼ A A) ∼ (A ⊃ ∼ A)
*f. ∼ (∼ B ∨ (∼ C ∨ ∼ D)) (D ∨ C) & ∼ B

3. Symbolize each of the following pairs of sentences and determine whether the
sentences are truth-functionally equivalent by constructing truth-tables.

a. Unless the sky clouds over, the night will be clear and the moon will shine
brightly.
The moon will shine brightly if and only if the night is clear and the sky
doesn’t cloud over.

*b. Although the new play at the Roxy is a flop, critics won’t ignore it unless it is
canceled.
The new play at the Roxy is a flop, and if it is canceled critics will ignore it.

c. If the Daily Herald reports on our antics, then the antics are effective.
If our antics aren’t effective, then the Daily Herald won’t report on them.

*d. The year 1972 wasn’t a good vintage year, 1973 was, and neither 1974 nor 1975
was.
Neither 1974 nor 1972 was a good vintage year, and not both 1973 and 1975
were.

e. If Mary met Tom and she liked him, then Mary didn’t ask George to the
movies.
If Mary met Tom and she didn’t like him, then Mary asked George to the
movies.

*f. Either the blue team or the red team will win the tournament, and they won’t
both win.
The red team will win the tournament if and only if the blue team won’t win
the tournament.

4. Answer the following questions; explain your answers.
a. Suppose that two sentences P and Q are truth-functionally equivalent. Are ∼ P

and ∼ Q truth-functionally equivalent as well?
*b. Suppose that two sentences P and Q are truth-functionally equivalent. Show

that it follows that P and P & Q are truth-functionally equivalent as well.
c. Suppose that two sentences P and Q are truth-functionally equivalent. Show

that it follows that ∼ P ∨ Q is truth-functionally true.

98 SENTENTIAL LOGIC: SEMANTICS

3.4 TRUTH-FUNCTIONAL CONSISTENCY

To define truth-functional consistency, we need the notion of a set of sen-
tences, informally introduced in Chapter 1. A set of sentences of SL is a
group, or collection, of sentences of SL. We have special notation for repre-
senting finite sets of sentences (sets consisting of a finite number of sen-
tences): We write the names of the sentences, separated by commas, and
enclose the whole list in braces. Thus {‘A’, ‘B ⊃ H’, ‘C ∨ A’} is the set of sen-
tences consisting of ‘A’, ‘B ⊃ H’, and ‘C ∨ A’. We say that these three sen-
tences are members of the set. For convenience we will drop the single quotes
from names of sentences when they are written between the braces; our con-
vention is that this is merely a way of abbreviating the set notation. So we may
write

{A, B ⊃ H, C ∨ A}

instead of

{‘A’, ‘B ⊃ H’, ‘C ∨ A’}

All sets of sentences that have at least one member are nonempty sets of sen-
tences. ‘∅’ is the name of the empty set; the empty set of sentences of SL is
the set that contains no members at all. In what follows we shall use the vari-
able ‘Γ’ (gamma), with or without a subscript, to range over sets of sentences
of SL.

Truth-functional consistency may now be introduced.

A set of sentences of SL is truth-functionally consistent if and only if there is at
least one truth-value assignment on which all the members of the set are
true. A set of sentences of SL is truth-functionally inconsistent if and only if it
is not truth-functionally consistent.

The set {A, B ⊃ H, B} is truth-functionally consistent, as is shown by the fol-
lowing truth-table:

↓ ↓ ↓

A B H A B ⊃ H B

T T T T T T T T
T T F T T F F T
T F T T F T T F
T F F T F T F F
F T T F T T T T
F T F F T F F T
F F T F F T T F
F F F F F T F F

3.4 TRUTH-FUNCTIONAL CONSISTENCY 99

The truth-table shows that, on any truth-value assignment on which ‘A’, ‘B’,
and ‘H’ are all true, all three set members are true. So the set is truth-
functionally consistent. We have circled the row of the truth-table that shows
this. (Sometimes when we construct a truth-table to test a set of sentences for
truth-functional consistency, we will find that there is more than one row in
which all the members of the set are true. In such cases we shall circle only
one of these rows of the truth-table.)

The set of sentences {L, L ⊃ J, ∼ J} is truth-functionally inconsistent:

↓ ↓ ↓

J L L L ⊃ J ∼ J

T T T T T T F T
T F F F T T F T
F T T T F F T F
F F F F T F T F

In each row at least one of the three sentences has the truth-value F in the col-
umn under its main connective. Hence there is no single truth-value assign-
ment on which all three set members are true. The following set of sentences
is also truth-functionally inconsistent: {C ∨ ∼ C, ∼ C & D, ∼ D}.

↓ ↓ ↓

C D C ∨ ∼ C ∼ C & D ∼ D

T T T T F T F T F T F T
T F T T F T F T F F T F
F T F T T F T F T T F T
F F F T T F T F F F T F

In this case it does not matter that one of the sentences, ‘C ∨ ∼ C’, is true on
every truth-value assignment. All that matters for establishing truth-functional
inconsistency is that there is no single truth-value assignment on which all three
members are true.

We can show that a set of sentences is truth-functionally consistent by
constructing a shortened truth-table that lists one row in which all the set
members are true. For instance, the following shortened truth-table shows that
the set {(E H) E, H & ∼ E} is truth-functionally consistent:

↓ ↓

E H (E H) E H & ∼ E

F T F F T T F T T T F

The table shows that, on any truth-value assignment on which ‘E’ is false and
‘H’ is true, the set members will all be true. Note that if we construct a short-
ened table that lists a row in which not all the members of the set are true,
this is not sufficient to show that the set is truth-functionally inconsistent. This

100 SENTENTIAL LOGIC: SEMANTICS

is because a set of sentences is truth-functionally inconsistent if and only if there
is no truth-value assignment on which every member of the set is true. To show
this, we would have to consider every combination of truth-values that the
atomic components of the set members might have.

3.4E EXERCISES

1. Using truth-tables, determine which of the following sets are truth-functionally
consistent.

a. {A ⊃ B, B ⊃ C, A ⊃ C}
*b. {B (J & K), ∼ J, ∼ B ⊃ B}

c. {∼ [J ∨ (H ⊃ L)], L (∼ J ∨ ∼ H), H (J ∨ L)}
*d. {(A & B) & C, C ∨ (B ∨ A), A (B ⊃ C)}

e. {(J ⊃ J) ⊃ H, ∼ J, ∼ H}
*f. {U ∨ (W & H), W (U ∨ H), H ∨ ∼ H}
g. {A, B, C}

*h. {∼ (A & B), ∼ (B & C), ∼ (A & C), A ∨ (B & C)}
i. {(A & B) ∨ (C ⊃ B), ∼ A, ∼ B}

*j. {A ⊃ (B ⊃ (C ⊃ A)), B ⊃ ∼ A}

2. For each of the following sets of sentences, either show that the set is truth-func-
tionally consistent by constructing an appropriate shortened truth-table or show
that the set is truth-functionally inconsistent by constructing a full truth-table.

a. {B ⊃ (D ⊃ E), ∼ D & B}
*b. {H (∼ H ⊃ H)}

c. {F ⊃ (J ∨ K), F ∼ J}
*d. {∼ (∼ C ∨ ∼ B) & A, A ∼ C}

e. {(A ⊃ B) (∼ B ∨ B), A}
*f. {H ⊃ J, J ⊃ K, K ⊃ ∼ H}

3. Symbolize each of the following passages and determine whether the set consist-
ing of those sentences is truth-functionally consistent by constructing a truth-table.

a. If space is infinitely divisible, then Zeno’s paradoxes are compelling. Zeno’s
paradoxes are neither convincing nor compelling. Space is infinitely divisible.

*b. Newtonian mechanics can’t be right if Einsteinian mechanics is. But Einstein-
ian mechanics is right if and only if space is non-Euclidean. Space is non-
Euclidean, or Newtonian mechanics is correct.

c. Eugene O’Neil was an alcoholic. His plays show it. But The Iceman Cometh must
have been written by a teetotaler. O’Neill was an alcoholic unless he was a fake.

*d. Neither sugar nor saccharin is desirable if and only if both are lethal. Sugar is
lethal if and only if saccharin is desirable. Sugar is undesirable if and only if
saccharin isn’t lethal.

e. If the Red Sox win next Sunday, then if Joan bet $5 against them she’ll buy Ed
a hamburger. The Red Sox won’t win, and Joan won’t buy Ed a hamburger.

*f. Either Johnson or Hartshorne pleaded guilty, or neither did. If Johnson
pleaded guilty, then the newspaper story is incorrect. The newspaper story is
correct, and Hartshorne pleaded guilty.

4.a. Prove that {P} is truth-functionally inconsistent if and only if ∼ P is truth-
functionally true.

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 101

*b. If {P} is truth-functionally consistent, must {∼ P} be truth-functionally consistent
as well? Show that you are right.

c. If P and Q are truth-functionally indeterminate, does it follow that {P, Q} is
truth-functionally consistent? Explain your answer.

*d. Prove that if P Q is truth-functionally true then {P, ∼ Q} is truth-functionally
inconsistent.

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND
TRUTH-FUNCTIONAL VALIDITY

Truth-functional entailment is a relation that may hold between a sentence of
SL and a set of sentences of SL.

A set Γ of sentences of SL truth-functionally entails a sentence P if and only if
there is no truth-value assignment on which every member of Γ is true and
P is false.

In other words Γ truth-functionally entails P just in case P is true on every
truth-value assignment on which every member of Γ is true. We have a special
symbol for truth-functional entailment: the double turnstile ‘ ’. The expression

Γ P

is read

Γ truth-functionally entails P.

To indicate that Γ does not truth-functionally entail P, we write

Γ P

Thus

{A, B & C} ‘B’

and

{A, B ∨ C} ‘B’

mean, respectively,

{A, B & C} truth-functionally entails ‘B’

and

{A, B ∨ C} does not truth-functionally entail ‘B’.

|=/

|=

|=/

|=

|=

102 SENTENTIAL LOGIC: SEMANTICS

Henceforth we adopt the convention that, when using the turnstile notation,
we drop the single quotation marks around the sentence following the turn-
stile. We also have a special abbreviation to indicate that a sentence is truth-
functionally entailed by the empty set of sentences:

P

The expression ‘ P’ is an abbreviation for ‘∅ P’. All and only truth-
functionally true sentences are truth-functionally entailed by the empty set of
sentences; the proof of this is left as an exercise in Section 3.6.

If Γ is a finite set, we can determine whether Γ truth-functionally entails
P by constructing a truth-table for the members of Γ and for P. If there is a
row in the truth-table in which all the members of Γ have the truth-value T
and P has the truth-value F, then Γ does not truth-functionally entail P. If there
is no such row, then Γ truth-functionally entails P. We can see that {A, B & C}
B by checking the following truth-table:

↓ ↓ ↓

A B C A B & C B

T T T T T T T T
T T F T T F F T
T F T T F F T F
T F F T F F F F
F T T F T T T T
F T F F T F F T
F F T F F F T F
F F F F F F F F

There is only one row in which both members of {A, B & C} are true, namely,
the row in which ‘A’, ‘B’, and ‘C’ all have the truth-value T. But since ‘B’ is
true in this row, it follows that there is no combination of truth-values for the
atomic components of all these sentences that will make both ‘A’ and ‘B & C’
true and ‘B’ false. Hence there is no truth-value assignment on which ‘A’ and
‘B & C’ are true and ‘B’ is false: {A, B & C} B.

In the same way we can show that {W ∨ J, (W ⊃ Z) ∨ (J ⊃ Z), ∼ Z}
∼ (W & J):

↓ ↓ ↓ ↓

J W Z W ∨ J (W ⊃ Z) ∨ (J ⊃ Z) ∼ Z ∼ (W & J)

T T T T T T T T T T T T T F T F T T T
T T F T T T T F F F T F F T F F T T T
T F T F T T F T T T T T T F T T F F T
T F F F T T F T F T T F F T F T F F T
F T T T T F T T T T F T T F T T T F F
F T F T T F T F F T F T F T F T T F F
F F T F F F F T T T F T T F T T F F F
F F F F F F F T F T F T F T F T F F F

|=
|=

|=

|=|=

|=

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 103

The fourth and sixth rows are the only ones in which all the set members are
true; ‘∼ (W & J)’ is true in these rows as well. The following truth-table shows
that {K ∨ J, ∼ (K ∨ J)} K:

↓ ↓ ↓

J K K ∨ J ∼ (K ∨ J) K

T T T T T F T T T T
T F F T T F F T T F
F T T T F F T T F T
F F F F F T F F F F

There is no row in which ‘K ∨ J’ and ‘∼ (K ∨ J)’ are both true, and hence
no truth-value assignment on which the set members are both true. Con-
sequently there is no truth-value assignment on which the members
of the set are both true and ‘K’ is false; so the set truth-functionally entails
‘K’.

On the other hand, {A, B ∨ C} does not truth-functionally entail ‘B’.
The following truth-table shows this:

↓ ↓ ↓

A B C A B ∨ C B

T T T T T T T T
T T F T T T F T
T F T T F T T F
T F F T F F F F
F T T F T T T T
F T F F T T F T
F F T F F T T F
F F F F F F F F

The circled row shows that ‘A’ and ‘B ∨ C’ are both true and ‘B’ is false on
any truth-value assignment that assigns T to ‘A’ and ‘C’ and F to ‘B’.

An argument of SL is a group of two or more sentences of SL, one of
which is designated as the conclusion and the others as the premises.

An argument of SL is truth-functionally valid if and only if there is no truth-
value assignment on which all the premises are true and the conclusion is
false. An argument of SL is truth-functionally invalid if and only if it is not
truth-functionally valid.

Thus an argument of SL is truth-functionally valid just in case on every truth-
value assignment on which the premises are true the conclusion is true as well.
This means that an argument is truth-functionally valid if and only if the set
consisting of the premises of the argument truth-functionally entails the con-
clusion.

|=

104 SENTENTIAL LOGIC: SEMANTICS

The argument

F G

F ∨ G

F & G

is truth-functionally valid, as the following truth-table shows:

↓ ↓ ↓

F G F G F ∨ G F & G

T T T T T T T T T T T
T F T F F T T F T F F
F T F F T F T T F F T
F F F T F F F F F F F

The first row lists the only combination of truth-values for the atomic compo-
nents of these sentences for which the premises, ‘F G’ and ‘F ∨ G’, are both
true; the conclusion, ‘F & G’, is true in this row as well. Similarly the argument

(A & G) ∨ (B ⊃ G)

∼ G ∨ B

∼ B ∨ G

is truth-functionally valid:

↓ ↓ ↓

A B G (A & G) ∨ (B ⊃ G) ∼ G ∨ B ∼ B ∨ G

T T T T T T T T T T F T T T F T T T
T T F T F F F T F F T F T T F T F F
T F T T T T T F T T F T F F T F T T
T F F T F F T F T F T F T F T F T F
F T T F F T T T T T F T T T F T T T
F T F F F F F T F F T F T T F T F F
F F T F F T T F T T F T F F T F T T
F F F F F F T F T F T F T F T F T F

The conclusion, ‘∼ B ∨ G’, is true on every truth-value assignment on which
the premises are true.

The following argument is truth-functionally invalid:

D (∼ W ∨ G)

G ∼ D

∼ D

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 105

This is shown by the following truth-table:

↓ ↓ ↓

D G W D (∼ W ∨ G) G ∼ D ∼ D

T T T T T F T T T T F F T F T
T T F T T T F T T T F F T F T
T F T T F F T F F F T F T F T
T F F T T T F T F F T F T F T
F T T F F F T T T T T T F T F
F T F F F T F T T T T T F T F
F F T F T F T F F F F T F T F
F F F F F T F T F F F T F T F

The premises, ‘D (∼ W ∨ G)’ and ‘G ∼ D’, are both true on every truth-
value assignment that assigns T to ‘D’ and F to ‘G’ and ‘W’, and the conclu-
sion, ‘∼ D’, is false on these truth-value assignments.

Where an argument is truth-functionally invalid, we can show this by
constructing a shortened truth-table that displays a row in which the premises
are true and the conclusion false. The argument

∼ (B ∨ D)

∼ H

B

is truth-functionally invalid, as the following shortened truth-table shows:

↓ ↓ ↓

B D H ∼ (B ∨ D) ∼ H B

F F F T F F F T F F

For any argument of SL that has a finite number of premises, we may
form a sentence called the corresponding material conditional, and that sentence is
truth-functionally true if and only if the argument is truth-functionally valid. First,
we may form an iterated conjunction (. . . (P1 & P2) & . . . & Pn) from the sentences
P1, . . . , Pn. The iterated conjunction for the sentences ‘∼ (A ⊃ B)’, ‘D’, and
‘J ∨ H’ is ‘((∼ (A ⊃ B) & D) & (J ∨ H))’. The corresponding material conditional
for an argument is then formed by constructing a material conditional with the
iterated conjunction of the premises as antecedent and the conclusion of the argu-
ment as consequent. The corresponding material conditional for the argument

∼ (A ⊃ B)

D

J ∨ H

∼ H ∨ ∼ A

106 SENTENTIAL LOGIC: SEMANTICS

is ‘[[∼ (A ⊃ B) & D] & (J ∨ H)] ⊃ (∼ H ∨ ∼ A)’, and the corresponding mate-
rial conditional for the argument

A

A ⊃ B

B

is ‘[A & (A ⊃ B)] ⊃ B’.5

An argument with a finite number of premises is truth-functionally
valid if and only if its corresponding material conditional is truth-functionally
true (see Exercise 5). We can show that the argument

A

A ⊃ B

B

is truth-functionally valid by showing that the corresponding material condi-
tional ‘[A & (A ⊃ B)] ⊃ B’ is truth-functionally true:

↓

A B [A & (A ⊃ B)] ⊃ B

T T T T T T T T T
T F T F T F F T F
F T F F F T T T T
F F F F F T F T F

There is no truth-value assignment on which ‘A & (A ⊃ B)’ is true and ‘B’
is false, which means that there is no truth-value assignment on which
‘A’ and ‘A ⊃ B’ are both true and ‘B’ is false. And we can show that the
argument

∼ A ∼ B

B ∨ A

∼ A

5Strictly speaking, an argument with more than one premise will have more than one corresponding material
conditional. This is because the premises of an argument can be conjoined in more than one order. But all the
corresponding material conditionals for any one argument are truth-functionally equivalent, and so we speak
loosely of the corresponding material conditional for a given argument.

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 107

is truth-functionally invalid by showing that the corresponding material condi-
tional is not truth-functionally true:

↓

A B [(∼ A ∼ B) & (B ∨ A)] ⊃ ∼ A

T T F T T F T T T T T F F T
T F F T F T F F F T T T F T
F T T F F F T F T T F T T F
F F T F T T F F F F F T T F

The first row represents truth-value assignments on which the antecedent is
true and the consequent false. On these truth-value assignments the premises
of the argument, ‘∼ A ∼ B’ and ‘B ∨ A’, are both true and the conclusion,
‘∼ A’, is false. Hence the argument is truth-functionally invalid.

3.5E EXERCISES

1. Use truth-tables to determine whether the following arguments are truth-
functionally valid.

a. A ⊃ (H & J)

J H

∼ J

∼ A

*b. B ∨ (A & ∼ C)

(C ⊃ A) B

∼ B ∨ A

∼ (A ∨ C)

c. (D ∼ G) & G

(G ∨ [(A ⊃ D) & A]) ⊃ ∼ D

G ⊃ ∼ D

*d. ∼ (Y A)

∼ Y

∼ A

W & ∼ W

e. (C ⊃ D) ⊃ (D ⊃ E)

D

C ⊃ E

108 SENTENTIAL LOGIC: SEMANTICS

*f. B ∨ B

[∼ B ⊃ (∼ D ∨ ∼ C)] & [(∼ D ∨ C) ∨ (∼ B ∨ C)]

C

g. (G H) ∨ (∼ G H)

(∼ G ∼ H) ∨ ∼ (G H)

*h. [(J & T) & Y] ∨ (∼ J ⊃ ∼ Y)

J ⊃ T

T ⊃ Y

Y T

i. ∼ ∼ F ⊃ ∼ ∼ G

∼ G ⊃ ∼ F

G ⊃ F

*j. [A & (B ∨ C)] (A ∨ B)

B ⊃ ∼ B

C ∨ A

2. For each of the following arguments, either show that the argument is truth-
functionally invalid by constructing an appropriate shortened truth-table or show
that the argument is truth-functionally valid by constructing a full truth-table.

a. (J ∨ M) ⊃ ∼ (J & M)

M (M ⊃ J)

M ⊃ J

*b. B & F

∼ (B & G)

G

c. A ⊃ ∼ A

(B ⊃ A) ⊃ B

A ∼ B

*d. J ∨ [M ⊃ (T J)]

(M ⊃ J) & (T ⊃ M)

T & ∼ M

e. A & ∼ [(B & C) (C ⊃ A)]

B ⊃ ∼ B

∼ C ⊃ C

3.5 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 109

3. Construct the corresponding material conditional for each of the following
arguments. For each of the arguments, either show that the argument is truth-
functionally invalid by constructing an appropriate shortened truth-table for
the corresponding material conditional or show that the argument is truth-
functionally valid by constructing a full truth-table for the corresponding
material conditional.

a. B & C

B ∨ C

*b. K L

L ⊃ J

∼ J

∼ K ∨ L

c. (J ⊃ T) ⊃ J

(T ⊃ J) ⊃ T

∼ J ∨ ∼ T

*d. (A ∨ C) & ∼ H

∼ C

e. B & C

B ∨ D

D

*f. ∼ [A ∨ ∼ (B ∨ ∼ C)]

B ⊃ (A ⊃ C)

∼ A ∼ B

4. Symbolize each of the following arguments and use truth-tables to test for
truth-functional validity.

a. ‘Stern’ means the same as ‘star’ if ‘Nacht’ means the same as ‘day’. But ‘Nacht’
doesn’t mean the same as ‘day’; therefore ‘Stern’ means something different
from ‘star’.

*b. Many people believe that war is inevitable. But war is inevitable if and only if
our planet’s natural resources are nonrenewable. So many people believe that
our natural resources are nonrenewable.

c. Thirty days hath September, April, and November. But February has forty days,
since April has thirty days if and only if May doesn’t, and May has thirty days
if November does.

*d. The town hall is now a grocery store, and, unless I’m mistaken, the little red
schoolhouse is a movie theater. No, I’m not mistaken. The old schoolhouse
is a boutique, and the old theater is an elementary school if the little
red schoolhouse is a movie theater. So the little red schoolhouse is a movie
theater.

110 SENTENTIAL LOGIC: SEMANTICS

e. Computers can think if and only if they can have emotions. If computers can
have emotions, then they can have desires as well. But computers can’t think
if they have desires. Therefore computers can’t think.

*f. If the butler murdered Devon, then the maid is lying, and if the gardener mur-
dered Devon, then the weapon was a slingshot. The maid is lying if and only
if the weapon wasn’t a slingshot, and if the weapon wasn’t a slingshot, then the
butler murdered Devon. Therefore the butler murdered Devon.

5.a. Show that (. . . (P1 & P2) & . . . & Pn) ⊃ Q is truth-functionally true if and
only if

P1

Pn

Q

is truth-functionally valid.
*b. Show that {P} Q and {Q} P if and only if P and Q are truth-functionally

equivalent.
c. Suppose that {P} Q ∨ R. Does it follow that either {P} Q or {P} R? Show

that you are right.
*d. Show that if {P} Q and {Q} R, then {P} R.

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL
CONSISTENCY

In this section we show that the truth-functional concepts of truth-functional
truth, truth-functional falsehood, truth-functional indeterminacy, truth-
functional entailment, and truth-functional validity can all be explicated in
terms of truth-functional consistency. This is important because in Chapter
4 we shall introduce an alternative test for truth-functional consistency,
and the possibility of explicating the other concepts in terms of truth-
functional consistency means that we shall be able to use the test to deter-
mine other truth-functional properties of sentences and sets of sentences as
well.

A sentence P is truth-functionally false if and only if {P} is truth-functionally

inconsistent.

(We call {P} the unit set of P.) To prove that this is so, we first assume that P is
truth-functionally false. Then, by definition, there is no truth-value assignment
on which P is true. Consequently, as P is the only member of the unit set
{P}, there is no truth-value assignment on which every member of that set is
true. So {P} is truth-functionally inconsistent. Now assume that {P} is truth-
functionally inconsistent. Then, by definition, there is no truth-value assign-
ment on which every member of {P} is true. Since P is the only member of

|=|=|=

|=|=|=

|=|=

o

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL CONSISTENCY 111

its unit set, there is no truth-value assignment on which P is true. Hence P is
truth-functionally false.

The corresponding relation for truth-functionally true sentences is
more complicated:

A sentence P is truth-functionally true if and only if {∼ P} is truth-

functionally inconsistent.

We first assume that P is truth-functionally true. Then, by definition, P is
true on every truth-value assignment. We know that a sentence is true on a
truth-value assignment if and only if the negation of the sentence is false
on that truth-value assignment. So it follows from our assumption that ∼ P
is false on every truth-value assignment; that is, there is no truth-value
assignment on which ∼ P is true. But then there is no truth-value assign-
ment on which every member of {∼ P} is true, which means that {∼ P} is
truth-functionally inconsistent. The proof of the converse, that if {∼ P} is
truth-functionally inconsistent then P is truth-functionally true, is left as
an exercise.

Since a sentence P is truth-functionally true if and only if {∼ P} is truth-
functionally inconsistent and P is truth-functionally false if and only if {P} is
truth-functionally inconsistent, it follows that

A sentence P is truth-functionally indeterminate if and only if both {∼ P}
and {P} are truth-functionally consistent.

Now we turn to truth-functional equivalence. Where P and Q are sen-
tences of SL, P Q is their corresponding material biconditional. P and Q are
truth-functionally equivalent if and only if their corresponding material bicon-
ditional P Q is truth-functionally true. If we assume that P and Q are truth-
functionally equivalent, then, by definition, P and Q have the same truth-value
on every truth-value assignment. But we know that a material biconditional has
the truth-value T on every truth-value assignment on which its immediate sen-
tential components have the same truth-value. So, on our assumption, P Q
is true on every truth-value assignment and hence is truth-functionally true.
The converse of this, that if P Q is truth-functionally true then P and Q
are truth-functionally equivalent, is left as an exercise. It follows from these
results that

Sentences P and Q are truth-functionally equivalent if and only if
{∼ (P Q)} is truth-functionally inconsistent.

Consider: P Q is truth-functionally true if and only if {∼ (P Q)} is truth-
functionally inconsistent, by our previous result concerning truth-functional
truths. Moreover we have just shown that P and Q are truth-functionally equiv-
alent if and only if P Q is truth-functionally true.

112 SENTENTIAL LOGIC: SEMANTICS

To make these results more concrete, we shall consider an example.
The set {∼ [(A ∨ B) (∼ A ⊃ B)]} is truth-functionally inconsistent, as shown
by the following truth-table:

↓

A B ∼ [(A ∨ B) (∼ A ⊃ B)]

T T F T T T T F T T T
T F F T T F T F T T F
F T F F T T T T F T T
F F F F F F T T F F F

The set is truth-functionally inconsistent because there is no truth-value assign-
ment on which every member of the set (in this case there is just one mem-
ber) is true. From this we know the following:

1. ‘∼ [(A ∨ B) (∼ A ⊃ B)]’ is truth-functionally false. (P is truth-
functionally false if and only if {P} is truth-functionally
inconsistent. Here {∼ [(A ∨ B) (∼ A ⊃ B)]} is truth-functionally
inconsistent. Hence there is no truth-value assignment on which
the only member of that set, ‘∼ [(A ∨ B) (∼ A ⊃ B)]’, is true.
That one member is thus truth-functionally false.)

2. ‘(A ∨ B) (∼ A ⊃ B)’ is truth-functionally true. (P is truth-
functionally true if and only if {∼ P} is truth-functionally
inconsistent. We have just reasoned that ‘∼ [(A ∨ B) (∼ A ⊃
B)]’ is truth-functionally false. Hence the sentence of which it is
the negation, ‘(A ∨ B) (∼ A ⊃ B)’, is true on every truth-value
assignment—it is a truth-functionally true sentence.)

3. ‘A ∨ B’ and ‘∼ A ⊃ B’ are truth-functionally equivalent. (P and Q
are truth-functionally equivalent if and only if {∼ (P Q)} is
truth-functionally inconsistent. Since ‘(A ∨ B) (∼ A ⊃ B)’ is
truth-functionally true, ‘A ∨ B’ and ‘∼ A ⊃ B’ have the same truth-
value on every truth-value assignment—they are truth-functionally
equivalent.)

Of course, each of these claims can be directly verified by examining the truth-
table, but our general proofs show that this is not necessary.

Next we relate the concepts of truth-functional entailment and truth-
functional consistency. Where Γ is a set of sentences of SL and P is any sen-
tence of SL, we may form a set that contains P and all the members of Γ. This
set is represented as

Γ ∪ {P}

which is read as

the union of gamma and the unit set of P

3.6 TRUTH-FUNCTIONAL PROPERTIES AND TRUTH-FUNCTIONAL CONSISTENCY 113

Thus, if Γ is {A, A ⊃ B} and P is ‘J’, then Γ ∪ {P}—that is, {A, A ⊃ B} ∪ { J}—
is {A, A ⊃ B, J}. Of course, if P is a member of Γ, then Γ ∪ {P} is identical
with Γ. So {A, A ⊃ B} ∪ {A ⊃ B} is simply {A, A ⊃ B}. In the case where Γ is
∅ (the empty set), Γ ∪ {P} is simply {P}. This follows because ∅ contains no
members.

We may now prove that, if Γ P, for some sentence P and set of sen-
tences Γ, then Γ ∪ {∼ P} is truth-functionally inconsistent. Suppose that Γ P.
Then, by definition, there is no truth-value assignment on which every mem-
ber of Γ is true and P is false. But we know that ∼ P is true on a truth-value
assignment if and only if P is false on that truth-value assignment. So it follows
from our assumption that there is no truth-value on which every member of Γ
is true and ∼ P is true. But then there is no truth-value assignment on which
every member of the set Γ ∪ {∼ P} is true—so the set is truth-functionally incon-
sistent. It follows from this proof that since { J ∨ C} ∼ (∼ J & ∼ C) the set
{ J ∨ C, ∼ ∼ (∼ J & ∼ C)} is truth-functionally inconsistent. The converse, that if
Γ ∪ {∼ P} is truth-functionally inconsistent then Γ P, holds as well. The proof
is left as an exercise.

It follows from this result, as well as the fact that an argument is truth-
functionally valid if and only if the set consisting of the argument’s premises
truth-functionally entails the conclusion, that

An argument of SL is truth-functionally valid if and only if the set con-
taining as its only members the premises of the argument and the nega-
tion of the conclusion is truth-functionally inconsistent.

So the argument

(A ⊃ D) & H

F ∨ H

D

is truth-functionally valid if and only if {(A ⊃ D) & H, F ∨ H, ∼ D} is truth-
functionally inconsistent.

3.6E EXERCISES

1. Prove each of the following:
a. If {∼ P} is truth-functionally inconsistent, where P is a sentence of SL, then P

is truth-functionally true.
*b. If P Q is truth-functionally true, where P and Q are sentences of SL, then

P and Q are truth-functionally equivalent.
c. If Γ ∪ {∼ P} is truth-functionally inconsistent, where Γ is a set of sentences of

SL and P is a sentence of SL, then Γ P.|=

|=

|=

|=
|=

114 SENTENTIAL LOGIC: SEMANTICS

2. Prove each of the following:
a. A sentence P is truth-functionally true if and only if ∅ P.

*b. Γ P ⊃ Q, where Γ is a set of sentences of SL and P and Q are sentences of
SL, if and only if Γ ∪ {P} Q.

c. If Γ is truth-functionally inconsistent, where Γ is a set of sentences of SL, then
Γ truth-functionally entails every sentence of SL.

*d. For any set Γ of sentences of SL and any truth-functionally false sentence P of
SL, Γ ∪ {P} is truth-functionally inconsistent.

3. Prove each of the following:
a. If a set Γ of sentences of SL is truth-functionally consistent and P is a truth-

functionally true sentence of SL, then Γ ∪ {P} is truth-functionally consistent.
*b. If Γ P and Γ ∼ P, for some sentence P and set Γ of sentences of SL, then

Γ is truth-functionally inconsistent.

4. Prove each of the following:
a. If {P} Q and {∼ P} R, where P, Q, and R are sentences of SL, then Q ∨ R

is truth-functionally true.
*b. If P and Q are truth-functionally equivalent, where P and Q are sentences of

SL, then for any sentence R of SL, {P} R if and only if {Q} R.
c. If Γ P and Γ Q, where Γ and Γ are sets of sentences of SL and P and Q

are sentences of SL, then Γ ∪ Γ P & Q, where Γ ∪ Γ is the set that con-
tains all the sentences in Γ and all the sentences in Γ .

GLOSSARY

TRUTH-FUNCTIONAL TRUTH: A sentence P of SL is truth-functionally true if and
only if P is true on every truth-value assignment.

TRUTH-FUNCTIONAL FALSITY: A sentence P of SL is truth-functionally false if and
only if P is false on every truth-value assignment.

TRUTH-FUNCTIONAL INDETERMINACY: A sentence P of SL is truth-functionally

indeterminate if and only if P is neither truth-functionally true nor truth-functionally
false.

TRUTH-FUNCTIONAL EQUIVALENCE: Sentences P and Q of SL are truth-functionally

equivalent if and only if there is no truth-value assignment on which P and Q have
different truth-values.

TRUTH-FUNCTIONAL CONSISTENCY: A set of sentences of SL is truth-functionally

consistent if and only if there is at least one truth-value assignment on which all the
members of the set are true. A set of sentences of SL is truth-functionally inconsistent

if and only if the set is not truth-functionally consistent.
TRUTH-FUNCTIONAL ENTAILMENT: A set Γ of sentences of SL truth-functionally

entails a sentence P of SL if and only if there is no truth-value assignment on
which every member of Γ is true and P is false.

TRUTH-FUNCTIONAL VALIDITY: An argument of SL is truth-functionally valid if and
only if there is no truth-value assignment on which all the premises are true and
the conclusion is false. An argument of SL is truth-functionally invalid if and only if
it is not truth-functionally valid.

|=
|=|=

|=|=

|=|=

|=|=

|=
|=

|=

4.1 THE TRUTH-TREE METHOD 115

Chapter 4
SENTENTIAL LOGIC:

TRUTH-TREES

4.1 THE TRUTH-TREE METHOD

In Chapter 3 we used the notion of a truth-value assignment to give formal

accounts of the important semantic concepts of truth-functional logic. At the

end of Chapter 3, we saw that, once truth-functional consistency has been

defined based on the concept of a truth-value assignment, the remaining seman-

tic concepts of sentential logic can be explicated in terms of truth-functional

consistency. In this chapter we make use of this fact to provide an additional

method, the truth-tree method, of determining whether truth-functional prop-

erties hold for sentences and sets of sentences of SL. Truth-trees provide a

systematic method of searching for truth-value assignments that are of special

interest—for example, a truth-value assignment on which a given sentence of

SL is false, or a truth-value assignment on which the premises of a given argu-

ment of SL are true and the conclusion false. The truth-tree method also

reveals when no such truth-value assignments exist.

The truth-table method is mechanical. And the truth-tree method we

develop in this chapter can easily be made so. The advantage of truth-tables is

that they graphically display how the truth-values of truth-functionally com-

pound sentences are generated from the truth-values of their components. The

116 SENTENTIAL LOGIC: TRUTH-TREES

disadvantage of truth-tables is that they become unwieldy when the number of
distinct atomic components of the sentence or sentences being tested is much
greater than 3. Truth-trees, it must be admitted, can also become unwieldy.
However, the size and complexity of truth-trees are not as direct a function of
the number of distinct atomic components of the sentences being tested as are
the size and complexity of truth-tables. Sets of sentences with a large number
of distinct atomic components frequently have reasonably concise truth-trees.
What is of theoretical importance here, as with truth-tables, is that the truth-
tree system can be used, for any finite set of sentences of SL, to yield, in a finite
number of steps, an answer to the question ‘Is this set truth-functionally con-
sistent?’ We establish this claim in Chapter 11.

The rules we will use in constructing truth-trees are derived directly
from the characteristic truth-tables for the five truth-functional connectives. For
this reason, and because truth-value assignments on which all the members of
the set being tested are true can readily be recovered from truth-trees for con-
sistent sets, we take truth-trees to constitute a second semantic method of deter-
mining whether the truth-functional properties defined in Chapter 3 hold for
sentences and finite sets of sentences of SL.

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’

Recall that a set of sentences is truth-functionally consistent if and only if there
is at least one truth-value assignment on which all the members of that set are
true. Sometimes we can tell at a glance that a set is truth-functionally consis-
tent or that it is truth-functionally inconsistent. For example, {A & ∼ B, C} is
fairly obviously a consistent set, and {A & ∼ B, ∼ A} is fairly obviously an
inconsistent set. But most of us cannot tell immediately whether {(∼ B & C) &
(A ∨ B), A & C} is consistent or inconsistent. Truth-trees provide us with a sys-
tematic method for determining, for any finite set of sentences of SL, whether
that set is truth-functionally consistent.

We begin with some easy examples. First, we show that {A & ∼ B, C}
is indeed truth-functionally consistent. In constructing a truth-tree, the first
step is to display the members of the set being tested, one above another, in
a column:

A & ∼ B
C

What we want to know is whether there is a truth-value assignment on which
all the sentences in the column are true. The first sentence in the column is
a conjunction, and we know that a conjunction is true on a truth-value assign-
ment if and only if both its conjuncts are true on that assignment. So we can
break down or decompose ‘A & ∼ B’ into its conjuncts, adding these conjuncts,
one below the other, to our column:

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’ , ‘∨’, AND ‘&’ 117

A & ∼ B
C
A

∼ B

We put a check mark after ‘A & ∼ B’ to indicate that we are finished with it.
We have, in effect, replaced it in our list of sentences with two simpler sen-
tences. This replacement is appropriate inasmuch as ‘A & ∼ B’ is true if and
only if both ‘A’ and ‘∼ B’ are true. All the sentences on the tree either have
been decomposed (and checked off) or are atomic sentences or negations of
atomic sentences. We shall call a sentence that is either an atomic sentence
or the negation of an atomic sentence a literal. Once we have a tree on
which the only undecomposed sentences are literals, it is easy to determine
whether there is a truth-value assignment on which all the members of the
set we are testing are true—that is, whether the set is truth-functionally con-
sistent. We try to generate the desired assignment by reading up the column
of sentences, starting at the bottom. We pay attention only to the literals. If a
literal is an atomic sentence, we assign the truth-value T to that atomic sen-
tence. If the literal is the negation of an atomic sentence, we assign the truth-
value F to the atomic sentence (not to the literal). Applying this procedure to
the tree, we generate the following assignments:

A B C

T F T

Clearly every member of the set we are testing, {A & ∼ B, C}, is true on every
truth-value assignment that assigns these truth-values to ‘A’, ‘B’, and ‘C’. There-
fore the set we are testing is truth-functionally consistent.

Next we shall use the truth-tree method to show that {A & ∼ B, ∼ A} is
truth-functionally inconsistent. We begin, as before, by listing the members of
the set in a column. Then we decompose the conjunction ‘A & ∼ B’.

A & ∼ B
∼ A

A
∼ B

All the literals on this tree must be true for the members of our set to be true.
‘∼ B’ occurs on the tree. To make it true we must assign ‘B’ the truth-value F.
‘A’ and ‘∼ A’ both occur on the tree. To make the former true, we must assign
‘A’ the truth-value T. To make the latter true, we must assign ‘A’ the truth-
value F. But clearly there is no truth-value assignment on which ‘A’ is assigned
both the truth-value T and the truth-value F. Hence there is no truth-value
assignment on which all the literals on this tree are true. We entered the literals

118 SENTENTIAL LOGIC: TRUTH-TREES

‘A’ and ‘∼ B’ because they must be true if the first sentence, ‘A & ∼ B’, is to
be true, so it follows that there is no truth-value assignment on which the mem-
bers of the set {A & ∼ B, ∼A} that we are testing are both true. The set is there-
fore truth-functionally inconsistent.

The truth-trees we have constructed so far both consist of single
branches, that is, of single columns of sentences of SL. However, many trees
are more complex. We can illustrate how multiple branches are formed by con-
structing a tree for {A & ∼ B, C, ∼ A ∨ ∼ C}. We formed this set by adding one
more sentence, ‘∼ A ∨ ∼ C’, to the first set we tested. Thus we can use our tree
for the first set as a model for the first part of our tree for this set, adding the
additional sentence in the set being tested after the first two:

A & ∼ B

C

∼ A ∨ ∼ C

A

∼ B

This tree is not yet complete; it contains a truth-functionally compound sen-
tence, ‘∼ A ∨ ∼ C’, that is not a literal and that has not been decomposed.
We must decompose this sentence in such a way as to show what sentences
must be true for this disjunction to be true. For a disjunction to be true,
only one of its disjuncts need be true (though both may be true). If we add
both disjuncts to our list, one below the other, we would incorrectly be
requiring that both those disjuncts be true. But we can represent the fact
that there are alternative ways in which a disjunction can be made true by
branching our tree:

A & ∼ B

C

∼ A ∨ ∼ C

A

∼ B

∼ A ∼ C

By displaying ‘∼ A’ and ‘∼ C’ on a single line, rather than one below the other,
we show that making either of them true is sufficient to make the sentence we
are decomposing true. We now have two branches, and we have to inspect each
to see whether there is a way of making all the sentences we are testing true.
If there is such a way, it will involve either making all the literals on the left
branch true or making all the literals on the right branch true (or both, since
‘∨’ is inclusive). A branch, in our sense, consists of all the sentences that can
be reached by starting with a sentence at the bottom of the tree and tracing a

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 119

path upward through the tree, never moving down or horizontally, and ending

with the sentence at the top of the tree. A sentence may thus occur just once

on a tree but still be on several branches. In our present example the mem-

bers of the set we are testing, along with the literals ‘A’ and ‘∼ B’, occur on

both branches of the tree, the branch ending in ‘∼ A’ and the branch ending

in ‘∼ C’.

Inspecting the branches of this tree, we can see that neither branch

will yield a truth-value assignment on which all the members of the set we are

testing are true. The left-hand branch shows us that to obtain such an assign-

ment we would have to assign ‘A’ the truth-value F and also the truth-value T,

since both ‘∼ A’ and ‘A’ occur on that branch. Similarly the right-hand branch

shows us that to obtain such an assignment we would have to assign ‘C’ both

the truth-value F and the truth-value T since both ‘∼ C’ and ‘C’ occur on that

branch. Neither alternative can produce a truth-value assignment. So there is

no truth-value assignment on which all the members of the set we are testing

are true; that set is truth-functionally inconsistent.

In constructing truth-trees we decompose truth-functionally com-

pound sentences that are not literals in such a way as to display the truth-

conditions for those compounds. Truth-trees are, in effect, ways of searching

for truth-value assignments on which the sentences in the set being tested

are true. A branch that contains both an atomic sentence and the negation

of that sentence represents a failure to find such an assignment, for no truth-

value assignment assigns any atomic sentence both the truth-value T and

the truth-value F. A branch that does contain both an atomic sentence and

the negation of that sentence is a closed branch. A branch that is not closed

is open. Eventually each branch will either close or become a completed

open branch, that is, an open branch such that every sentence on it either

is a literal or has been decomposed. Note that since a completed open

branch is a kind of open branch it will not contain an atomic sentence and

the negation of that sentence. Any truth-value assignment on which all the

literals on a completed open branch are true will be, owing to the tree rules,

an assignment on which the members of the set being tested are also all

true.1 To generate such an assignment from an open branch, we assign T

to every atomic sentence occurring on that branch, F to every atomic

sentence whose negation occurs on that branch, and either T or F (it does

not matter which) to every other atomic sentence in the language SL.

Accordingly:

A finite set of sentences of SL is truth-functionally consistent if and only if

has a truth-tree with at least one completed open branch.

1These results are proven in Chapter 11.

120 SENTENTIAL LOGIC: TRUTH-TREES

We will call a truth-tree each of whose branches is closed a closed truth-tree.

Accordingly we can also say this:

A finite set of sentences of SL is truth-functionally inconsistent if and only if

 has a closed truth-tree.

We note a special case. The truth-tree for the empty set is the null tree, that

is, the truth-tree that has no sentences on its single null branch. The null

branch therefore is not closed and trivially counts as a completed open

branch, so the empty set is truth-functionally consistent by our account, a

desirable result.2

A completed tree is a tree each of whose branches is either closed or

is a completed open branch. An open tree is a tree that is not closed. (Note

that an open tree need not be a completed tree, and that an open tree that is

not completed may become a closed tree.) In summary, we shall use the

following vocabulary for truth-trees:

Branch: All the sentences that can be reached by

starting with a sentence at the bottom of a

tree and tracing an upward path through

the tree, ending with the first sentence listed

at the top of the tree

Closed branch: A branch containing both an atomic

sentence and the negation of that sentence

Closed truth-tree: A truth-tree each of whose branches is

closed

Open branch: A branch that is not closed

Completed open An open branch such that every sentence

branch: on it is either a literal or has been

decomposed

Completed truth-tree: A truth-tree each of whose branches is either

closed or is a completed open branch

Open truth-tree: A truth-tree that is not closed

For the sake of clarity, we adopt the convention of numbering the lines

of our truth-trees in a column on the left. We also include a justification column

2Our truth-trees can only be used to test finite sets of sentences; hence the restrictions in the boxes. But we
know that infinite sets of sentences of SL are also either consistent or inconsistent. In Chapter 6 we shall prove
that an infinite set of sentences of SL is truth-functionally consistent if and only if every finite subset of that set
is truth-functionally consistent. Therefore, we can also say that an infinite set of sentences of SL is truth-
functionally consistent if and only if every finite subset of has a truth-tree with at least one completed open
branch, and an infinite set of sentences of SL is truth-functionally inconsistent if and only if at least one finite
subset of has a closed truth-tree.

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 121

on the right. The column of line numbers and the column of justifications are
not, strictly speaking, parts of truth-trees. They are notational devices we use
to make the structure and logic of trees more transparent. The lines contain-
ing the members of the set we are testing for truth-functional consistency will
all be justified by entering the abbreviation ‘SM’ for ‘set member’. Later lines
will be justified by entering a line number and a rule abbreviation. The two
rules we have presented so far are Conjunction Decomposition and Disjunction

Decomposition, abbreviated ‘&D’ and ‘∨D’, respectively. When these conventions
are followed, our last tree appears as follows:

1. A & ∼ B SM

2. C SM

3. ∼ A ∨ ∼ C SM

4. A 1 &D

5. ∼ B 1 &D

6. ∼ A ∼ C 3 ∨D

For the sake of clarity, no line of the justification column is allowed to contain
more than one rule abbreviation or reference to more than one previous line.
An ‘ ’ under a branch of a tree indicates that that branch is closed. We use
‘O’ to indicate that a branch is a completed open branch, so our first tree will
now look like this:

1. A & ~ B SM

2. C SM

3. A 1 &D

4. ~ B 1 &D

O

As with line numbers and justifications, check marks after decomposed sen-
tences as well as closed branch and completed open branch indicators (‘ ’ and
‘O’) are notational conveniences and are not literally parts of truth-trees.

We noted earlier that the set {(∼ B & C) & (A ∨ B), A & C} is neither
obviously consistent nor obviously inconsistent. We can now use the truth-tree
method to test this set for truth-functional consistency. We begin our tree in
the usual way:

1. (∼ B & C) & (A ∨ B) SM

2. A & C SM

3. ∼ B & C 1 &D

4. A ∨ B 1 &D

Here the results of using the rule Conjunction Decomposition are themselves
truth-functionally compound sentences that will have to be decomposed.

122 SENTENTIAL LOGIC: TRUTH-TREES

First we decompose ‘A & C’, and then we decompose ‘∼ B & C’ and
‘A ∨ B’.

1. (∼ B & C) & (A ∨ B) SM
2. A & C SM
3. ∼ B & C 1 &D
4. A ∨ B 1 &D
5. A 2 &D
6. C 2 &D
7. ∼ B 3 &D
8. C 3 &D

9. A B 4 ∨D
o

The only sentences on this tree that have not been decomposed are literals,
so there are no more sentences that can be decomposed. The branch on the
left is therefore a completed open branch. This tree is the first one we have
encountered that has at least one completed open branch and at least one
closed branch. A completed open truth-tree often has one or more closed
branches.

The literals on the completed open branch of the preceding tree can
be used to describe truth-value assignments on which every member of the set
{(∼ B & C) & (A ∨ B), A & C} will be true. To make all of those literals true, we
must assign ‘A’ and ‘C’ the truth-value T and ‘B’ the truth-value F (since ‘∼ B’
occurs on the open branch). The literals, and therefore the set members being
tested, will therefore all be true on every truth-value assignment that assigns
the following values to ‘A’, ‘B’, and ‘C’:

A B C

T F T

That ‘A’ and ‘C’ each occur twice on the open branch has no special signifi-
cance for recovering truth-value assignments; they so occur because their truth
is required by two different members of the set we are testing.

The process of describing those truth-value assignments that will make all
of the literals on a completed open branch true is called recovering a set of truth-

value assignments. In recovering truth-value assignments we write down only the
relevant (finite) parts of those truth-value assignments: we specify only the assign-
ments made to the atomic components of the sentence or set of sentences for
which the tree was constructed. However, it should be remembered that a truth-
value assignment assigns values to every atomic sentence of SL. So when we spec-
ify the assignments that are made to several atomic sentences of SL, as we did in
the previous paragraph, we have not thereby specified a single truth-value assign-
ment. Rather, we have described a set of truth-value assignments, those that assign

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 123

the specified values to the relevant atomic sentences and that additionally assign
truth-values to all other atomic sentences of the language (and there are infinitely
many of these). For example, the set of truth-value assignments that we recovered
in the previous paragraph will all assign T to ‘A’, F to ‘B’, and T to ‘C’. One of
these truth-value assignments will assign T to all other atomic sentences, one will
assign F to all other atomic sentences, and the rest (there are infinitely many) will
assign T to some of the remaining atomic sentences and F to the others. So
although we will only display truth-values assigned to a small number of atomic
sentences, we will always be recovering sets of truth-value assignments, those that
agree on the truth-values assigned to the relevant atomic sentences.

In the previous example we decomposed the two conjunctions ‘B & C’
and ‘A & C’ before we decomposed the disjunction ‘A ∨ B’. There is no rule stat-
ing that we must do this. Any order of decomposition would have led to a tree
with a completed open branch. Altering the order of decomposition sometimes
makes a tree more or less complex, but it never alters the final result. For a given
set of sentences, if one order of decomposition generates a completed open
branch, all orders of decomposition generate completed open branches. And if
one order of decomposition generates a closed tree, all orders of decomposition
generate closed trees. In the present case decomposing ‘A ∨ B’ earlier would
produce the following tree:

1. (∼ B & C) & (A ∨ B) SM
2. A & C SM
3. ∼ B & C 1 &D
4. A ∨ B 1 &D

5. A B 4 ∨D
6. A A 2 &D
7. C C 2 &D
8. ∼ B ∼ B 3 &D
9. C C 3 &D

o

In decomposing ‘A ∨ B’ before ‘A & C and ‘∼ B & C’, we produced a branch-
ing early in the tree. Consequently we had to enter the results of decomposing
the remaining sentences on both open branches, thus considerably complicat-
ing the tree. (It is important to remember that when a sentence is decomposed
the results of that decomposition must be entered on every open branch passing

through the sentence being decomposed.) But this more complex tree also has a com-
pleted open branch, so the end result is the same. Note also that the ‘ ’ was
not placed under the right-hand branch until both ‘∼ B’ and ‘C’ had been
entered on that branch, even though the closure here occurs because the
branch contains the pair of literals ‘B’ and ‘∼ B’. We do not stop halfway
through the application of a decomposition rule to mark closures.

So far we have presented the rules for decomposing conjunctions and
disjunctions but not those for decomposing conditionals, biconditionals, and

124 SENTENTIAL LOGIC: TRUTH-TREES

negations. To be able to construct truth-trees for all finite sets of sentences of

SL, we need to know how to decompose these truth-functionally compound

sentences as well. How a negation is to be decomposed depends upon the kind

of sentence being negated, and we shall have separate rules for decomposing

negated conjunctions, negated disjunctions, negated material conditionals,

negated material biconditionals, and negated negations. Literals—that is,

atomic sentences and negations of atomic sentences—are not decomposed.

We have already used the rules for decomposing conjunctions and dis-

junctions. Schematically these rules are

Conjunction Decomposition (&D) Disjunction Decomposition (∨D)

P & Q P ∨ Q
P
Q

P Q

The rule for decomposing negated negations is also obvious. A sentence of the

form ∼ ∼ P is true if and only if P is true. Hence we have the rule

Negated Negation Decomposition (∼ ∼ D)

∼ ∼ P

P

Turning to negated conjunctions, a sentence of the form ∼ (P & Q) is

truth-functionally equivalent to the corresponding sentence of the form ∼ P ∨

∼ Q, and sentences of this latter form are disjunctions. The rule for decom-

posing disjunctions is a branching rule, that is, a rule that increases the num-

ber of branches on a tree, so the rule for decomposing negated conjunctions

will be a branching rule as well:

Negated Conjunction Decomposition (∼ &D)

∼ (P & Q)

∼ P ∼ Q

Similarly we know that, for any sentences P and Q, ∼ (P ∨ Q) and

∼ P & ∼ Q are truth-functionally equivalent sentences, and we already know

how to decompose conjunctions. So we have

Negated Disjunction Decomposition (∼ ∨D)

∼ (P ∨ Q)

∼ P

∼ Q

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 125

We now have all the rules we need to decompose sentences that
contain only the connectives ‘&’, ‘∨’, and ‘∼’. It will be useful to pause here to
construct a few truth-trees for sets consisting of sentences whose only con-
nectives are those just mentioned. Consider first the set {A & ∼ B, ∼ (B ∨ ∼ A),
(B & A) ∨ (B & ∼ A)}. This set is truth-functionally inconsistent, as the follow-
ing truth-tree shows:

1. A & ∼ B SM
2. ∼ (B ∨ ∼ A) SM
3. (B & A) ∨ (B & ∼ A) SM
4. A 1 &D
5. ∼ B 1 &D
6. ∼ B 2 ∼ ∨D
7. ∼ ∼ A 2 ∼ ∨D
8. A 7 ∼ ∼ D

9. B & A B & ∼ A 3 ∨D
10. B B 9 &D
11. A ∼ A 9 &D

Both branches of this tree are closed, so the tree is closed, and no truth-value
assignment can be recovered from it. Hence there is no truth-value assign-
ment on which every member of the set being tested is true. Therefore that
set is truth-functionally inconsistent. Note that decomposing the sentences on
lines 1 and 2 does not increase the number of branches, whereas decom-
posing the sentence on line 3 does. Since branching makes for complexity,
we decomposed the sentences on lines 1 and 2 before we decomposed the
sentence on line 3. This is a use of the first of several strategies we will develop
for keeping trees simple.

Strategy 1: Give priority to decomposing sentences whose decompositions
do not require branching.

Note also that the justifications given for lines 10 and 11 actually apply
to the decomposition of two sentences, ‘B & A’ and ‘B & ∼ A’. No confusion
results here because both sentences occur on line 9, both are conjunctions,
and both are therefore decomposed by the rule Conjunction Decomposition.
For the sake of expository clarity, we shall avoid writing the products of multi-
ple decompositions on the same line except where those products are, as here,
obtained by applying the same decomposition rule multiple times to sentences
occurring on the same earlier line.

126 SENTENTIAL LOGIC: TRUTH-TREES

Consider next a set whose members contain three distinct atomic
sentences: {G ∨ (H ∨ I), ∼ (G ∨ H), ∼ (H ∨ I), ∼ (I ∨ G)}. Here is a tree for
this set:

This tree has three branches, all of which are closed. Hence the set being tested
is truth-functionally inconsistent.

Next we construct a truth-tree for the set {∼ (∼ S ∨ T) & ∼ (T ∨ R),
(T & ∼ R) ∨ ∼ (R & S), ∼ ∼ R ∨ (S & ∼ T)}. Following our maxim of not using
rules that produce branching until forced to do so, we obtain the following as
the first part of our truth-tree for this set:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

G ∨ (H ∨ I)⻬

∼ (G ∨ H)⻬

∼ (H ∨ I)⻬

∼ (I ∨ G)⻬

∼ G

∼ H

∼ H

∼ I

∼ I

∼ G

SM

SM

SM

SM

2 ∼ ∨D

2 ∼ ∨D

3 ∼ ∨D

3 ∼ ∨D

4 ∼ ∨D

4 ∼ ∨D

1 ∨D

11 ∨D

G

H ∨ I⻬

H

I

1. ∼ (∼ S ∨ T) & ∼ (T ∨ R) SM
2. (T & ∼ R) ∨ ∼ (R & S) SM
3. ∼ ∼ R ∨ (S & ∼ T) SM
4. ∼ (∼ S ∨ T) 1 &D
5. ∼ (T ∨ R) 1 &D
6. ∼ ∼ S 4 ∼ ∨D
7. ∼ T 4 ∼ ∨D
8. ∼ T 5 ∼ ∨D
9. ∼ R 5 ∼ ∨D

10. S 6 ∼ ∼ D

Note that decomposing ‘∼ (∼ S ∨ T)’ (using the rule Negated Disjunction
Decomposition) yields ‘∼ ∼ S’ and ‘∼ T’ on lines 6 and 7, respectively, not ‘ S’
and ‘∼ T’. To get ‘S’ we had to apply Negated Negation Decomposition to the
sentence ‘∼ ∼ S’. The tree can be completed as follows:

This tree has three closed branches and one completed open branch. The set
we are testing is therefore truth-functionally consistent. The truth-value assign-
ments that can be recovered from the open branch must all assign F to ‘R’, F
to ‘T’, and T to ‘S’:

11.

12.

13.

14.

15.

16.

17.

18.

T & ∼ R

 T

 ∼ R

∼ (R & S) 2 ∨D

11 &D

11 &D

3 ∨D

14 ∼ ∼D

14 &D

14 &D

11 ∼ &D

∼ ∼ R

 R

S & ∼ T

 S

 ∼ T

∼ R

ο

∼ S

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 127

R S T

F T F

The three set members will all be true on every truth-value assignment that
assigns these values to ‘R’, ‘S’, and ‘T’, no matter what values are assigned to
the other atomic sentences of SL.

Completed truth-trees frequently contain more than one completed
open branch. Consider this tree for the set {∼ (H & G) & ∼ (H & I), G ∨ I,
∼ (H ∨ ∼ I)):

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

∼ (H & G) & ∼ (H & I)

 G ∨ I

∼ (H ∨ ∼ I)

∼ (H & G)

∼ (H & I)

∼ H

∼ ∼ I

 I

SM

SM

SM

1 &D

1 &D

3 ∼ ∨D

3 ∼ ∨D

7 ∼ ∼ D

2 ∨D

4 ∼ &D

5 ∼ &D

G I

∼ H∼ H

∼ H

 o o o

∼ H∼ H∼ I

∼ G∼ G

∼ I

∼ I

The tree has three open branches. The truth-value assignments that we can

recover from the leftmost branch make the following assignments to ‘H’, ‘G’,

and I:

128 SENTENTIAL LOGIC: TRUTH-TREES

G H I

T F T

The truth-value assignments that we can recover from the middle open

branch must assign the following values to ‘H’ and ‘T’, but that branch is

mute concerning ‘G’:

G H I

F T

The significance of this is that the members of the set being tested are all true

on every truth-value assignment that assigns F to ‘H’ and T to ‘I’. What is

assigned to ‘G’, given these assignments to ‘H’ and ‘I’, does not matter. Hence

we can recover two sets of truth-value assignments from this branch, that is,

those that assign the values in the first row to ‘G’, ‘H’, and T, and those that

assign the values in the second row:

G H I

T F T

F F T

We complete this discussion by giving two additional sample trees. Both

are closed, so in each case the set being tested is truth-functionally inconsistent.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

∼ (∼ B ∨ ∼ C)

 B &(∼ C ∨ ∼ D)

∼ (C & ∼ D)

∼ ∼ B

∼ ∼ C

B

∼ C ∨ ∼ D

B

C

SM

SM

SM

1 ∼ ∨D

1 ∼ ∨D

2 &D

2 &D

4 ∼ ∼ D

5 ∼ ∼ D

3 ∼ &D

10 ∼ ∼ D

7 ∨D

∼ C

∼ C

∼ D

∼ ∼ D

D

4.2 TRUTH-TREE RULES FOR SENTENCES CONTAINING ‘∼’, ‘∨’, AND ‘&’ 129

1. ∼ [(A ∨ B)∨ ∼ C] SM
2. C & ∼ (A & B) SM
3. (A ∨ C) & (A ∨ B) SM
4. A SM
5. ∼ (A ∨ B) 1 ∼ ∨D
6. ∼ ∼ C 1 ∼ ∨D
7. C 2 &D
8. ∼ (A & B) 2 &D
9. A ∨ C 3 &D

10. A ∨ B 3 &D
11. ∼ A 5 ∼ ∨D
12. ∼ B 5 ∼ ∨D

4.2E EXERCISES

1. Use the truth-tree method to test each of the following sets of sentences for
truth-functional consistency. If a set is consistent, recover from one completed
open branch the set of truth-value assignments on which every member of the
set is true.

a. {A & ∼ (B ∨ A)}
*b. {A & ∼ (B & A)}

c. {∼ (A ∨ B) & (A ∨ ∼ B)}
*d. {∼ A & ∼ (A & B), B}

e. {(A ∨ B) & (A ∨ ∼ B)}
*f. {(J & ∼ K) & I, ∼ I ∨ K}
g. {(J ∨ ∼ K) & I, ∼ I ∨ K}

*h. {(H & ∼ I) & (I ∨ ∼ H)}
i. {(H ∨ ∼ I) & I, ∼ (H & I)}

*j. {(A & B) ∨ (A & C), ∼ (A & B)}
k. {∼ (A & B), ∼ (∼ C ∨ B), ∼ (A & C)}

*l. {(A & B) ∨ (A & C), ∼ (A ∨ B)}
m. {(A ∨ B) & (A ∨ C), ∼ C & ∼ A}
*n. {(A ∨ B) & (A ∨ C), C & ∼ A, ∼ B ∨ ∼ A}

o. {(H & ∼ I) ∨ (I ∨ ∼ H), J ∨ I, ∼ J}

2. Use the truth-tree method to test each of the following sets of sentences for
truth-functional consistency. If a set is consistent, recover from one completed
open branch the set of truth-value assignments on which every member of the
set is true.

a. {∼ (H & I), H ∨ I}
*b. {∼ [(F ∨ ∼ F) & G]}

c. {∼ (H & I) ∨ J, ∼ (J ∨ ∼ I)}
*d. {∼ [(A ∨ B) ∨ C], ∼ D ∨ C, D}

e. {A & (B & C), ∼ [A & (B & C)]}
*f. {A & (B & ∼ C), ∼ [A & (B & C)]}
g. {∼ C ∨ (A & B), C, ∼ (A & B)}

*h. {∼ (∼ A ∨ B), A ∨ ∼ B, ∼ (∼ B & ∼ A)}
i. {(∼ F & ∼ G) & [(G ∨ ∼ I) & (I ∨ ∼ H)]}

130 SENTENTIAL LOGIC: TRUTH-TREES

*j. {∼ (∼ A ∨ ∼ B), ∼ [A & ∼ (B & C)], A ∨ (B ∨ C)}

k. {(F ∨ ∼ G) & [(G ∨ ∼ I) & (I ∨ ∼ H)]}

*1. {∼ [A & (∼ B & ∼ C)], ∼ A ∨ ∼ C, ∼ (∼ B ∨ ∼ ∼ C)}

m. {A ∨ (B ∨ C), ∼ (A ∨ B), ∼ (B & C), ∼ (A & C)}

*n. {H ∨ ∼ I) & (I ∨ ∼ G), ∼ (H & G), H ∨ (∼ I & ∼ G)}

4.3 RULES FOR SENTENCES CONTAINING ‘⊃’ AND ‘ ’

We now need to develop decomposition rules for material conditionals, for
material biconditionals, and for the negations of each of these. We know that,
for any sentences P and Q of SL, P ⊃ Q is equivalent to ∼ P ∨ Q. And we have
already developed a rule for decomposing disjunctions:

Disjunction Decomposition (∨D)

P ∨ Q

P Q

Given this, and the fact that P ⊃ Q is equivalent to ∼ P ∨ Q, the appropriate
decomposition rule for P ⊃ Q is

Conditional Decomposition (⊃D)

P ⊃ Q

∼ P Q

The negation of a material conditional, ∼ (P ⊃ Q), is true if and only
if that conditional is false, and a conditional is false if and only if its antecedent
is true and its consequent is false. In other words, for any sentences P and Q
of SL, ∼ (P ⊃ Q) and P & ∼ Q are truth-functionally equivalent sentences. Given
the rule already developed for decomposing conjunctions, the appropriate rule
for decomposing negated conditionals is clearly

Negated Conditional Decomposition (∼ ⊃D)

∼ (P ⊃ Q)
P

∼ Q

4.3 RULES FOR SENTENCES CONTAINING ‘⊃’ AND ‘ ’ 131

The only rules we have left to present are those for material bicon-

ditionals and negated material biconditionals. A material biconditional is

true if and only if either its immediate components are both true or its

immediate components are both false. Alternatively, for any sentences P and

Q, P Q is truth-functionally equivalent to (P & Q) ∨ (∼ P & ∼ Q). The

rule for material biconditionals can thus be thought of as a combination of

the rule for disjunctions and the rule for conjunctions. Decomposing a

material biconditional splits every open branch running through that mate-

rial biconditional into two branches, and on each new branch we enter two

sentences:

Biconditional Decomposition (D)

P Q

P ∼ P

Q ∼ Q

The rule for decomposing negations of material biconditionals is also

a branching rule. Since a material biconditional is true if and only if its imme-

diate components have the same truth-value, the negation of a material bicon-

ditional will be true if and only if the immediate components of the material

biconditional have different truth-values. In other words, for ∼ (P Q) to be

true, either P must be true and Q false, or P must be false and Q true. So,

for any sentences P and Q, ∼ (P Q) is truth-functionally equivalent to

(P & ∼ Q) ∨ (∼ P & Q). Hence

Negated Biconditional Decomposition (∼ D)

P Q

P ∼ P

∼ Q Q

We present on the following page our complete set of rules for decom-

posing sentences of SL:

132 SENTENTIAL LOGIC: TRUTH-TREES

In learning how to construct trees, the best procedure is not simply to memo-
rize the rules. Instead, try to grasp the rationale for the rules. One way to do
this, as we have tried to show, is first to understand the bases for the simple
rules for conjunctions, disjunctions, and negated negations and then to see how
the other rules can be viewed as applications of these three simple rules.

We begin with a few straightforward examples. Here is a tree for the
set {A ⊃ B, B ⊃ A, ∼ A}:

Earlier we noted that, when given a choice of decomposing a sentence that will
produce branching or a sentence that will not, decomposing the latter generally

1.

2.

3.

4.

5.

A ⊃ B

B ⊃ A

∼ A

SM

SM

SM

1 ⊃D

2 ⊃D

∼ A

∼ B

o

∼ B

B

A

A

Sentential Truth-Tree Rules

∼ ∼ P (∼ ∼ D)

P

P

Q

(&D)P & Q

P

Q

(∨D)P ∨ Q

Q

P ⊃ Q (⊃D)

∼ P Q

P Q (D)

∼ P

∼ Q

∼ (P & Q) (∼ &D)

∼ P ∼ Q

∼ (P ∨ Q) (∼ ∨D)

∼ P

∼ Q

∼ (P Q) (∼ D)

P

∼ Q

∼ P

Q

∼ (P ⊃ Q) (∼ ⊃D)

P

∼ Q

P

4.3 RULES FOR SENTENCES CONTAINING ‘⊃’ AND ‘ ’ 133

produces a simpler tree. In this case we had no such choice, for the set con-
sists of a literal and two conditionals, and the rule for decomposing condi-
tionals is a branching rule, that is, a rule that produces branches. After decom-
posing the first member of the set, we have two open branches, one ending in
‘∼ A’, the other in ‘B’. Decomposing the second member of the set yields four
branches, but three of them close, leaving us a completed tree with one open
branch. The set is therefore truth-functionally consistent. All of the set mem-
bers will be true on the recoverable truth-value assignments, those that assign
F both to ‘A’ and to ‘B’.

Here is another tree for the same set:

This tree is at least marginally simpler than the first; it has a total of three
branches, whereas the first one had four branches. Although the sentences on
lines 1 and 2 both produce multiple branches when decomposed, one of the
branches produced by decomposing the sentence on line 2, the one ending in
‘A’, closes immediately. We can now formulate a second strategy for keeping
trees simple:

Strategy 2: Give priority to decomposing sentences whose decompositions
result in the closing of one or more branches.

Here is a tree for the set {∼ (A ⊃ B), B ⊃ A}:

We decomposed the sentence on line 1 first because the rule Negated Condi-
tional Decomposition does not branch. The tree has two completed open
branches, so the set is truth-functionally consistent. The members of the set are
all true on every truth-value assignment that assigns T to ‘A’ and F to ‘B’.

1.

2.

3.

4.

5.

∼ (A ⊃ B)⻬

 B ⊃ A⻬

 A

 ∼ B

SM

SM

1 ∼ ⊃D

1 ∼ ⊃D

2 ⊃D∼ B

 o

A

o

1.

2.

3.

4.

5.

A ⊃ B⻬

B ⊃ A⻬

 ∼ A

SM

SM

SM

2 ⊃D

1 ⊃D

∼ B A

⫻

B

⫻

∼ A

o

134 SENTENTIAL LOGIC: TRUTH-TREES

Next we construct a tree for {H G, G I, H, ∼ I}:

The tree is closed, so the set is truth-functionally inconsistent. Here the order
of decomposition makes no difference. Both the sentence on line 1 and the
sentence on line 2 branch when decomposed; whichever is decomposed first
produces one closed branch.

The set {∼ (H I), I J, ∼ H} yields a tree with a completed open
branch:

Here the order of decomposition does matter. Decomposing the sentence on
line 1 first produces two branches, one of which immediately closes. Decom-
posing the sentence on line 2 first would produce two branches, neither of
which would close immediately. From the one completed open branch we know
that the set members will be true on every truth-value assignment that assigns
F to ‘H’ and T to ‘I’ and ‘J’, and that the set is therefore truth-functionally
consistent. It is important to remember, as illustrated here, that both the rule
for decomposing material biconditionals and the rule for decomposing negated
material biconditionals branch, and both introduce tildes.

1.
2.
3.

4.
5.

6.
7.

∼ (H I)⻬
I J⻬

∼ H

SM
SM
SM

1 ∼ D
1 ∼ D

2 D
2 D

∼ H
I

 H
∼ I

I
J

∼ I
∼ J

 o

1.

2.

3.

4.

5.

6.

7.

8.

H G⻬

G I⻬

 H

 ∼ I

SM

SM

SM

SM

1 D

1 D

2 D

2 D

H

G

G

I

⫻

∼ H

∼ G

⫻

∼ G

∼ I

 ⫻

4.3 RULES FOR SENTENCES CONTAINING ‘⊃’ AND ‘ ’ 135

Finally consider the set {A ⊃ (B C), ∼ (C ⊃ A)}. Here is a tree:

The tree has two completed open branches, so the set is truth-functionally
consistent. We can recover two sets of truth-value assignments from the com-
pleted open branches. The set members will be true on every truth-value
assignment that assigns one of the following combinations of values to ‘A’, ‘B’,
and ‘C’:

1.

2.

3.

4.

5.

6.

7.

A ⊃ (B C)

 ∼ (C ⊃ A)

 C

 ∼ A

SM

SM

2 ∼ ⊃D

2 ∼ ⊃D

1 ⊃D

5 D

5 D

∼ A

 o

B C

B

C

o

∼ B

∼ C

A B C

F T T

F F T

What is of interest here is that the left-hand open branch becomes a completed
open branch at line 5. At this point we know the set we are testing is truth-
functionally consistent because we know the tree we are constructing has, and
will continue to have, at least one completed branch, no matter what happens
to the other open branch of the tree (the branch containing ‘B C’ on line 5).
This suggests a third strategy:

Strategy 3: Stop when a tree yields an answer to the question being asked.

Of course, nothing less than a completed tree, with every branch closed, shows
that a set is truth-functionally inconsistent. But if our only interest is in deter-
mining whether a set is consistent, and an incomplete tree for it has a com-
pleted open branch, there is no virtue in completing the tree. As soon as a
branch becomes a completed open branch, we know the answer to the question
we are asking: The set is truth-functionaly consistent. We can recover truth-value

136 SENTENTIAL LOGIC: TRUTH-TREES

assignments demonstrating the set’s consistency from the completed open
branch.3 So in the present case we could just as well have stopped after line 5,
that is, with the open but incomplete tree:

3We will continue, however, to show completed trees in our solutions to exercise problems. We do so because alter-
native orders of deomposition produce alternative trees, and the truth-value assignments that are recoverable
from the first completed open branch on one tree may not coincide with those that can be recovered from the
first complete open branch on another tree.

There is another way in which truth-trees could be shortened, namely, by defining a closed branch to be a
branch that contains, for any sentence P, literal or not, both P and ~ P. Exactly the same sets would have closed
trees, given this revised system, as they do in the present system, and exactly the same sets would have trees with
at least one completed open branch as they do in the present system.

1. A ⊃ (B C) SM

2. ∼ (C ⊃ A) SM

3. C 2 ∼ ⊃D

4. ∼ A 2 ∼ ⊃D

5. ∼ A B C 1 ⊃D

o

4.3E EXERCISES

1. Use the truth-tree method to test each of the following sets of sentences

for truth-functional consistency. If a set is consistent, recover one set of

truth-value assignments on which every member of the set of sentences is

true.

a. {∼ (A ⊃ B), ∼ (B ⊃ A)}

*b. {∼ [∼ A ⊃ (B ⊃ C)], A ⊃ C}

c. {B ⊃ (D ⊃ E), D & B}

*d. {H G, ∼ H, G}

e. {H G, ∼ G}

*f. {(H G) ∼ H}

g. {H G, ∼ (H ⊃ G)}

*h. {H ∼ G, H ⊃ G}

i. {H G, G I, ∼ (H ⊃ I)}

*j. {A ⊃ ∼ (A B,) ∼ (A ⊃ B)}

k. {L (J & K), ∼ J, ∼ L ⊃ L}

*l. {B D, B ∼ D}

m. {∼ [A (B A)]}

*n. {[B ⊃ (A ∨ C)] & ∼ ∼ B, A ∼ B}

o. {H ⊃ J, J ⊃ K, K ⊃ ∼ H}

*p. {A ⊃ (B ⊃ (C ⊃ A)), ∼ (B ⊃ ∼ A)}

4.4 MORE COMPLEX TRUTH-TREES 137

2. Use the truth-tree method to test each of the following sets of sentences for

truth-functional consistency. If a set is consistent, recover one set of truth- value

assignments on which every member of the set of sentences is true.

a. {∼ [(A ⊃ ∼ B) ⊃ (B ⊃ A)], ∼ (∼ A ⊃ ∼ B)}

*b. {∼ [(A ⊃ ∼ B) ⊃ (B ⊃ A)], ∼ (∼ A ⊃ B)}

c. {(A & ∼ C) ∨ (A & ∼ B), A ⊃ B, C}

*d. { J ⊃ K, K ⊃ J, ∼ (J K)}

e. {∼ [A ⊃ (B C)], A ∼ C, A B}

*f. {∼ (A & ∼ B) ⊃ ∼ A, ∼ (∼ A & B) ⊃ ∼ B, B & ∼ A}

g. {∼ (A ∨ B) ⊃ ∼ A, ∼ (A ∨ B) ⊃ ∼ B, A}

*h. {∼ (A ∨ B) ⊃ A, ∼ (A ∨ B) ⊃ B, ∼ B}

i. {A (B & ∼ C), ∼ A ∨ ∼ B, ∼ (∼ B C)}

*j. {A (B & ∼ C), ∼ A ∨ ∼ B, B ⊃ ∼ C}

k. {A (∼ B C), ∼ A ⊃ (B ⊃ ∼ C), ∼ (A ⊃ ∼ C)}

*l. {∼ [A ⊃ (B C)], A ∼ C, A B}

m. { J ⊃ (H ∼ I), ∼ (J H)}

*n. {(A & ∼ B) (C & ∼ E), ∼ A E, B C}

4.4 MORE COMPLEX TRUTH-TREES

Consider the set {A ⊃ (B & ∼ C), ∼ (C ∨ A), C ∼ A}. In constructing a truth-
tree for this set, we start, as always, by listing the members of the set, one below
the other:

1. A ⊃ (B & ∼ C) SM

2. ∼ (C ∨ A) SM

3. C ∼ A SM

No member of the set is a literal; hence all are candidates for decomposition.
Which sentence should we decompose first? In one sense it does not matter:
If any order of decomposition yields a completed open branch, all will; and, if
any order of decomposition yields a closed tree, all will. However, as noted ear-
lier, it is desirable to keep truth-trees as concise as possible, and one strategy
for doing this is to decompose sentences that do not branch before decom-
posing those that do.

The sentence on line 1, a material conditional, will branch when
decomposed. So will the sentence on line 3, a material biconditional. But the
sentence on line 2, a negated disjunction, will not branch, so we decompose it
first. This leaves two undecomposed sentences on the tree that are not literals,
‘A ⊃ (B & ∼ C)’ and ‘C ∼ A’, both of which will branch when decomposed.
Decomposing the material conditional will yield two open branches, one end-
ing in ‘∼ A’ and the other in ‘B & ∼ C’. Neither of these branches will close

138 SENTENTIAL LOGIC: TRUTH-TREES

immediately. However, decomposing the material biconditional yields an imme-
diate branch closure:

1. A ⊃ (B & ∼ C) SM
2. ∼ (C ∨ A) SM
3. C ∼ A SM
4. ∼ C 2 ∼ ∨D
5. ∼ A 2 ∼ ∨D

6. C ∼ C 3 D
7. ∼ A ∼ ∼ A 3 D

We are now left with just one open branch. There are two undecomposed non-
literals on that branch, ‘A ⊃ (B & ∼ C)’ and ‘∼ ∼ A’. We decompose ‘∼ ∼ A’
first, since negated negations do not branch when decomposed. Moreover,
when we decompose ‘∼ ∼ A’, we add ‘A’ to the one open branch of our tree
and thus close that branch and the tree:

1. A ⊃ (B & ∼ C) SM
2. ∼ (C ∨ A) SM
3. C ∼ A SM
4. ∼ C 2 ∼ ∨D
5. ∼ A 2 ∼ ∨D

6. C ∼ C 3 D
7. ∼ A ∼ ∼ A 3 D

8. A 7 ∼ ∼ D

Several aspects of this tree are of interest. First, the tree is closed, and the
set we are testing, {A ⊃ (B & ∼ C), ∼ (C ∨ A), C ∼ A}, is therefore truth-
functionally inconsistent. Every attempt to find a truth-value assignment on
which every member of that set is true ended in failure. Second, we have shown
that the set is inconsistent without decomposing every nonliteral on the tree. The
sentence on line 1 was never decomposed, since decomposing the other nonlit-
erals on the tree generated a closed tree. What this shows is that the set we are
testing would be inconsistent even without its first member, ‘A ⊃ (B & ∼ C)’.
Whenever a branch closes we are through with that branch, even if it contains
one or more undecomposed nonliterals.

This fairly concise tree was generated by following our strategies of giv-
ing priority to sentences whose decomposition does not require branching and

4.4 MORE COMPLEX TRUTH-TREES 139

to sentences whose decomposition generates one or more closed branches. Had
we ignored these strategies and simply worked straight down the tree, always
decomposing every nonliteral on a given level before moving to a lower level,
the result would have been the following more complex tree:

Here we have four branches, whereas in the earlier tree we had only two. More-
over this tree takes eleven lines to construct; the earlier one took only eight.
But the difference between the trees is only one of complexity. Each tree shows
equally well that the set of sentences we are testing is truth-functionally incon-
sistent, for each tree is closed.

The last of the preceding trees can be used to illustrate two important
aspects of tree construction. Note that when we decompose ‘∼ (C ∨ A)’ at lines
5 and 6, the tree already has two open branches. Hence the results of decom-
posing this sentence must be entered on each of these open branches. The
results of decomposing a sentence must always be entered on every open branch

that runs through the sentence being decomposed.

Consider the tree after line 8 is completed: Two branches are closed,
but two are open. We next decompose ‘B & ∼ C’ on the right-hand branch
only, at lines 9 and 10 (not on the left-hand branch because, although it is
open, it does not go through ‘B & ∼ C’). We then decompose each occurrence
of ‘∼ ∼ A’ on line 8 by writing ‘A’ on line 11, at the end of each branch (since
each branch does go through ‘∼ ∼ A’). Why didn’t we put ‘A’ on the left-hand
branch at line 9 at the same time that we put ‘B’ on the right-hand branch at
line 9? It is because the policy we follow is this: Trees are to be so constructed that

every line of the tree is fully justified either by writing ‘SM’ in the justification column

or by entering the number of one and only one earlier line and one and only one rule

abbreviation in the justification column. All the entries made on line 7 come from

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

A ⊃ (B & ∼ C)

 ∼ (C ∨ A)

 C ∼ A

SM

SM

SM

1 ⊃D

2 ∼ ∨D

2 ∼ ∨D

3 D

3 D

4 &D

4 &D

8 ∼ ∼ D

∼ A

∼ C

∼ A

B & ∼ C

 ∼ C

 ∼ A

 C

∼ A

 ∼ C

∼ ∼ A

 C

 ∼ A

 ∼ C

 ∼ ∼ A

 B

 ∼ C

 A

A

140 SENTENTIAL LOGIC: TRUTH-TREES

line 3, and they are all obtained by one rule, Material Biconditional Decom-
position. Had we tried to write ‘A’ at line 9 on the second branch from the
left, we would have had two entries on that line coming from two different
lines, by the use of two different rules, and thus would have been forced to
enter both ‘8 ∼ ∼ D’ and ‘4 &D’ in the justification column for line 9, in clear
violation of this policy.

We have so far specified three strategies for keeping truth-trees con-
cise. We repeat them here and add a fourth:

Strategies for Constructing Truth-Trees

1. Give priority to decomposing sentences whose decompositions do not require

branching.

2. Give priority to decomposing sentences whose decompositions result in the

closing of one or more branches.

3. Stop when a tree yields an answer to the question being asked.

4. Where strategies 1–3 are not applicable, decompose the more complex sen-

tences first.

The rationale for the first three strategies should be clear by now. The fourth
strategy is designed to save tedious work, for a complex sentence takes more
work to decompose than does a less complex one. Moreover, if a complex sen-
tence is decomposed early in a tree, chances are there will be only a few open
branches on which the results must be entered. If complex sentences are left
until the end, it is likely that the results of decomposing them will have to be
entered on many open branches. Roughly speaking, a sentence P is more com-
plex than a sentence Q if decomposing P requires entering more sentences or
longer sentences on a tree than does decomposing Q. In this sense longer sen-
tences are generally more complex than shorter ones, and material bicondi-
tionals and negations of material biconditionals are more complex than other
sentences of approximately the same length.

The strategies we have presented provide guidelines, not rules, for con-
structing truth-trees.4 Disregarding one or more of them may produce a more
complex tree than is necessary but will never yield a completed open branch
where following them would yield a closed tree, or vice versa.

As a final example we construct a truth-tree for {(C & ∼ D) A,
(A & C) ⊃ ∼ (D ∨ A)}:

4We said earlier that the truth-tree method could easily be made mechanical. We can do so by replacing our
guidelines for decomposing sentences with some mandatory order of decomposition.

4.4 MORE COMPLEX TRUTH-TREES 141

(C & ∼ D) A⻬

(A & C) ⊃ ∼ (D ∨ A)⻬

C & ∼ D⻬ ∼ (C & ∼ D)⻬

∼ (A & C)⻬∼ (A & C)⻬

A

C

∼ D

∼ A

∼ A ∼ A∼ C

∼ C

∼ (D ∨ A)⻬ ∼ (D ∨ A)⻬

∼ D

∼ A

∼ D

∼ A

SM

SM

1 D

1 D

3 &D

3 &D

2 ⊃D

7 ∼ ∨D

7 ∼ &D

3 ∼ &D

11 ∼ ∼ D

7 ∼ ∨D

 o o

 o o o

∼ ∼ D⻬ ∼ C ∼ ∼ D⻬

D

∼ C

∼ C ∼ ∼ D⻬

 D D

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

This tree has five completed open branches. The literals occurring on the left-

most completed open branch are ‘∼ C’ and ‘∼ A’. Hence this branch tells us

that, to make all the sentences in the set we are testing true, it is sufficient to

make ‘∼ C’ and ‘∼ A’ both true, and, to do this, we must assign the truth-value

F to both ‘A’ and ‘C’. But note that ‘D’ is also an atomic component of both

members of that set. No assignment has yet been made to ‘D’ because neither

‘D’ nor ‘∼ D’ occurs on the open branch just examined. The significance of the

nonoccurrence of both ‘D’ and ‘∼ D’ is this: It does not matter which truth-

value we assign to ‘D’; the sentences we are testing will both be true as long as

we assign the truth-value F to ‘A’ and to ‘C’, no matter what we assign to ‘D’.

Thus we can recover two sets of truth-value assignments from the left-hand open

branch, those that assign the values in the first row and those that assign the

values in the second row:

A C D

F F T

F F F

The next open branch we come to contains the literals ‘D’ and ‘∼ A’.

Neither ‘C’ nor ‘∼ C’ occurs on this second open branch. Hence we can expect

to recover two sets of truth-value assignments from this branch as well, those

142 SENTENTIAL LOGIC: TRUTH-TREES

that assign the values indicated in the first row below and those that assign the

values indicated in the second row:

A C D

F T T

F F T

In fact, only the first of these rows specifies a new set of truth-value assign-

ments; the second set we also obtained from the first open branch. The third

open branch contains the same literals as the first, so here there are no new

truth-value assignments to be recovered. The fourth open branch contains the

literals ‘D’, ‘∼ C’, and ‘∼ A’; from this branch we can recover the set of truth-

value assignments that assign the following values to ‘A’, ‘C’, and ‘D’:

A C D

F F T

This set is also yielded by the other three open branches we have examined.

The last open branch contains the literals ‘∼ C’, ‘∼ A’, and ‘∼ D’ and so yields

the set of truth-value assignments that assign the following values to ‘A’, ‘C’,

and ‘D’:

A C D

F F F

This is also not a new set of truth-value assignments; we can recover

this set from the first and third open branches as well. In sum, we have five

completed open branches on our tree, and these branches yield three distinct

sets of truth-value assignments. The number of open branches on a completed

truth-tree is, again, no guide to the number of distinct sets of truth-value

assignments that can be recovered from that tree. Of course, to show that a set

of sentences is truth-functionally consistent, we need only show that there is at

least one truth-value assignment on which all the members of the set are true.

And, to show that there is such an assignment, it suffices to recover one set of

truth-value assignments.

Truth-value assignments can be recovered only from completed open

branches. Closed branches represent unsuccessful attempts to find such assign-

ments. Thus the branches of a truth-tree should not be thought of as corre-

sponding to the rows of a truth-table. They do not. However, constructing a

truth-tree for a set of sentences does tell us a lot about what the truth-table

for the same set of sentences would be like. If the tree is closed, we know that

there is no row in the corresponding truth-table in which every member of

the set in question has a T under its main connective. If the tree has a

4.4 MORE COMPLEX TRUTH-TREES 143

completed open branch, we know that there is at least one row in that table
in which every member of the set in question has a T under its main con-
nective. And, if we count the number of distinct sets of truth-value assignments
we can recover, we know that there will be exactly that many rows in the cor-
responding truth-table such that every member of the set in question has a T
under its main connective.

4.4E EXERCISES

1. Construct truth-trees to test each of the following sets of sentences for truth-

functional consistency. If a set is consistent, recover one set of truth-value

assignments from your tree that shows this.

a. {H ∨ G, ∼ G & ∼ H}

*b. {K ∨ (M & ∼ M), J & ∼ C)

c. {∼ ∼ C, C & [U ∨ (∼ C & B)]}

*d. {∼ (M & ∼ N), ∼ (K ∨ M) & ∼ ∼ M, ∼ ∼ ∼ K}

e. {∼ [∼ (E ∨ ∼ C) & A], ∼ (E ∨ ∼ C) & A}

*f. {∼ [∼ (L ∨ ∼ L) & (N ∨ ∼ N)]}

g. {∼ A ∨ ∼ ∼ [∼ (K & ∼ A) ∨ R], ∼ [D ∨ (A & ∼ K)], A & (R ∨ K)}

*h. {∼ [∼ (J ⊃ M) (J & ∼ M)]}

i. {B ⊃ J, H J, ∼ H ∨ B}

*j. {H & (∼ K ⊃ M), ∼ K, ∼ (H ⊃ M)}

k. {∼ [(B & J) ∼ (W ∨ Z)], ∼ (J & W)}

*l. {∼ ∼ ∼ [(K ∨ M) ⊃ ∼ G], G (J & U), U ⊃ (∼ G & K), K & ∼ U)}

2. Which of the following claims are true? Explain your reasoning.

a. If a completed truth-tree contains at least one open branch, then at least one

set of truth-value assignments on which all the members of the set being tested

are true can be recovered from that open branch.

*b. A completed open branch of a truth-tree yields at most one set of truth-value

assignments on which every member of the set being tested is true.

c. If a set of sentences has a truth-tree with a completed open branch, then that

set is truth-functionally consistent.

*d. If a truth-tree is closed, there are no open branches on the tree.

e. If a truth-tree is closed, the set of sentences being tested is truth-functionally

inconsistent.

*f. If a truth-tree is closed, every sentence on the tree either has been decom-

posed or is a literal.

g. If there are eight distinct atomic components of the members of a set of sen-

tences of SL, then a completed tree for will have eight branches.

*h. A completed truth-tree with at least one open branch and at least one closed

branch is an open tree.

i. If a tree has a closed branch, then there is a truth-value assignment on which

all the members of the set being tested are false.

*j. If a set of sentences of SL has a tree with a completed open branch, then

every nonempty subset of also has a tree with a completed open branch.

k. If no member of a set of sentences of SL contains a tilde, then no tree for

 will have a closed branch.

144 SENTENTIAL LOGIC: TRUTH-TREES

3. Use the truth-tree method to test symbolizations of the following passages

for truth-functional consistency. If your symbolization is truth-functionally

consistent, recover one set of truth-value assignments from your tree that

shows this.

a. Poison caused the victim’s death if and only if there was a change in his blood

chemistry or a residue of poison in the stomach. There was neither a change

in blood chemistry nor a residue of poison in his stomach, but there were

puncture marks on the body. Poison was injected by a needle only if there were

puncture marks on the body. Either poison was the cause of the victim’s death

or there were no puncture marks on the body.

*b. Either the bullet was fired from an intermediate distance or it wasn’t. If it

wasn’t, there are powder burns on the body (provided the bullet was fired at

close range) or signs of a rifle bullet (provided the bullet was fired at a great

distance). Although there are no powder burns on the body, there are signs

of a rifle bullet. Unless the angle at which the bullet entered the body was

elevated, the bullet wasn’t fired from an intermediate distance, and the angle

wasn’t elevated.

c. The murder was committed by at least one of the staff—the butler, the maid,

and the gardener—but not by all three. The butler did it only if the crime was

committed indoors; and if it was not committed indoors, the gardener didn’t

do it. If poison was used, then the butler did it unless the maid did; but the

maid didn’t do it. Poison was used; moreover the crime was not committed

indoors.

*d. Exactly two of Albert, Betty, and Christine will find employment when they

graduate from law school. If Albert gets a job, Betty and Christine surely will

too. Betty will not get a job unless Albert does. Christine is a first-rate lawyer

and will certainly be hired by a good law firm.

4.5 USING TRUTH-TREES TO TEST FOR TRUTH-FUNCTIONAL TRUTH,
FALSITY, AND INDETERMINACY

We know that each sentence of SL is either truth-functionally true, truth-
functionally false, or truth-functionally indeterminate. Truth-trees can be used
to determine into which of these categories a particular sentence of SL falls.
Truth-trees test for the consistency of finite sets of sentences of SL. Suppose
that we want to know whether a sentence P is truth-functionally false. Remem-
ber that, if P is not truth-functionally false, there is some truth-value assign-
ment on which it is true; hence the unit set {P} will be truth-functionally con-
sistent. However, if P is truth-functionally false, there is no truth-value
assignment on which it is true; hence there is no assignment on which every
member of {P} is true, and so {P} is truth-functionally inconsistent.

A sentence P of SL is truth-functionally false if and only if the set {P} has a
closed truth-tree.

4.5 USING TRUTH-TREES TO TEST 145

Here is a tree for the set {[A ⊃ (B & C] & [∼ (A ⊃ B) ∨ ∼ (A ⊃ C)]}:

All the branches of this tree do close, so there is no truth-value assignment on
which the one member of the set we are testing is true. Hence the set is truth-
functionally inconsistent, and its single member is truth-functionally false. In
constructing this tree we were able to save work at lines 5 and 6 by decom-
posing two sentences, ‘∼ (A ⊃ B)’ and ‘∼ (A ⊃ C)’, in one step. We could do
so because these sentences occur on the same line, line 4, and are decomposed
by the same rule, Negated Conditional Decomposition. Of course, we also
could have done them separately.

Next we use the tree method to determine whether ‘A ⊃ [B ⊃ (A ⊃ B)]’
is truth-functionally false:

This tree obviously has a completed open branch (in fact it has four), so the
unit set we are testing is truth-functionally consistent. Hence there is at least
one truth-value assignment on which the one member of that set is true, and
that sentence is thus not truth-functionally false. (Note that we could have
stopped at line 2, where the first completed open branch ends.)

Although we know that ‘A ⊃ [B ⊃ (A ⊃ B)]’ is not truth-functionally false,
we do not yet know whether this sentence is truth-functionally indeterminate or

1.

2.

3.

4.

A ⊃ [B ⊃ (A ⊃ B)] SM

1 ⊃D

2 ⊃D

3 ⊃D

∼ A

 o

∼ B

 o

B

o

B ⊃ (A ⊃ B)

A ⊃ B

∼ A

 o

1.

2.

3.

4.

5.

6.

7.

8.

9.

[A ⊃ (B & C)] & [∼ (A ⊃ B) ∨ ∼ (A ⊃ C)]

 A ⊃ (B & C)

 ∼ (A ⊃ B) ∨ ∼ (A ⊃ C)

SM

1 &D

1 &D

3 ∨D

4 ∼ ⊃D

4 ∼ ⊃D

2 ⊃D

7 &D

7 &D

∼ (A ⊃ B)

 A

∼ B

∼ (A ⊃ C)

 A

∼ C

B & C ∼ A

∼ A

B & C

B

C

B

C

146 SENTENTIAL LOGIC: TRUTH-TREES

truth-functionally true. We can find out by constructing another tree. Suppose that
the sentence we are concerned with, ‘A ⊃ [B ⊃ (A ⊃ B)]’, is truth-functionally
true. Then its negation, ‘∼ (A ⊃ [B ⊃ (A ⊃ B)])’, must be truth-functionally false.
So we can determine whether the sentence is truth-functionally true by testing
whether its negation is truth-functionally false, that is, by seeing whether the unit
set of its negation has a closed tree. Here is a tree for that set:

1. ∼ (A ⊃ [B ⊃ (A ⊃ B)]) SM
2. A 1 ∼ ⊃D
3. ∼ [B ⊃ (A ⊃ B)] 1 ∼ ⊃D
4. B 3 ∼ ⊃D
5. ∼ (A ⊃ B) 3 ∼ ⊃D
6. A 5 ∼ ⊃D
7. ∼ B 5 ∼ ⊃D

The tree is closed. So there is no truth-value assignment on which the sen-
tence ‘∼ (A ⊃ [B ⊃ (A ⊃ B)])’ is true. Since that sentence is a negation, there
is no truth-value assignment on which the sentence of which it is a negation,
‘A ⊃ [B ⊃ (A ⊃ B)]’, is false. That sentence is therefore truth-functionally true.

A sentence P of SL is truth-functionally true if and only if the set {∼ P} has a
closed tree.

A sentence is truth-functionally indeterminate if and only if it is neither truth-
functionally true nor truth-functionally false. Therefore

A sentence P of SL is truth-functionally indeterminate if and only if neither the
set {P} nor the set {∼ P} has a closed tree.

When we are interested in determining the truth-functional status of a
sentence, the trees we construct will be trees for unit sets of sentences. However,
we shall allow ourselves to talk informally of constructing a tree for P or for
∼ P. Such talk is to be understood as shorthand for talk of trees for unit sets.

When determining the truth-functional status of a sentence P, we shall
sometimes end up constructing two trees, one for P and one for ∼ P. Of course,
if we suspect that P is truth-functionally true, we should first do a truth-tree for
∼ P; if we suspect that P is truth-functionally false, we should first do a truth-
tree for P itself.

Recall that all of the branches of our tree for ‘A ⊃ [B ⊃ (A ⊃ B)]’ were
completed open branches. One might think that it follows from this alone that
‘A ⊃ [B ⊃ (A ⊃ B)]’ is truth-functionally true, for surely, if that sentence were
not truth-functionally true, a tree for that sentence would have at least one
closed branch. But this reasoning is mistaken. Many sentences that are not
truth-functional truths have trees all of whose branches are completed open

4.5 USING TRUTH-TREES TO TEST 147

branches, and many truth-functional truths have trees with some closed
branches. Consider the truth-tree for the simple disjunction ‘A ∨ B’:

Both branches of this tree are completed open branches. Yet we know that
‘A ∨ B’ is not a truth-functional truth. Its truth-table will mirror the charac-
teristic truth-table for disjunctions; that is, the first three rows under its main
connective will contain T, and the fourth row will contain F.

To see that not all truth-functional truths have completed truth-trees
all of whose branches are open, consider the sentence ‘(A ∨ ∼ A) ⊃ (B ⊃ B)’.
This sentence is a truth-functional truth inasmuch as its consequent is a truth-
functional truth (its antecedent is as well), and for this reason there is no truth-
value assignment on which ‘(A ∨ ∼ A) ⊃ (B ⊃ B)’ is false. But this tree for the
sentence does have one closed branch:

There is a way we can avoid constructing two truth-trees for one sentence.
Suppose that we construct a tree for a sentence P, thinking it may be truth-
functionally false, but the tree does not close. We now know that P is either truth-
functionally true or truth-functionally indeterminate. If it is true on all truth-value
assignments, it is truth-functionally true; if it is true on only some assignments, it
is truth-functionally indeterminate. We can find out which is the case by count-
ing the number of distinct sets of truth-value assignments that are recoverable
from the completed open tree—for these sets correspond to the rows of the truth-
table for the sentence being tested in which there is a T under that sentence’s
main connective. If P has n atomic components, we shall recover 2n distinct sets
of truth-value assignments from our tree if and only if P is truth-functionally true.

Recall our tree for ‘A ∨ B’, which has two open and no closed branches.
The only literal occurring on the left-hand branch is ‘A’, so from that branch
we can recover two sets of truth-value assignments, one set assigning the truth-
value T to ‘B’ and one set assigning the truth-value F to ‘B’:

1.

2.

3.

4.

5.

6.

(A ∨ ∼ A) ⊃ (B ⊃ B) SM

1 ⊃D

2 ∼ ∨D

2 ∼ ∨D

4 ∼ ∼ D

2 ⊃D

 ∼ (A ∨ ∼ A)

 ∼ A

 ∼ ∼ A

 A

B ⊃ B

∼ B B
oo

1.

2.

A ∨ B SM

1 ∨DA

o

B
o

A B

T T

T F

148 SENTENTIAL LOGIC: TRUTH-TREES

We can also recover two sets of truth-value assignments from the right-hand

open branch. But only one of these is a new set:

A B

F T

From neither branch can we recover the set of truth-value assignments that assign

the truth-value F to both ‘A’ and ‘B’, and this is just what we expected, for a

disjunction is false when (and only when) both its disjuncts are false. By iden-

tifying all of the recoverable sets of truth-value assignments—and finding that

there are only three such sets—we have shown that ‘A ∨ B’ is truth-functionally

indeterminate, without having to construct two trees for that sentence.

We can use this same procedure with our last truth-tree to verify that

‘(A ∨ ∼ A) ⊃ (B ⊃ B)’ is indeed truth-functionally true. This sentence has two

atomic components, so we can expect to recover four distinct sets of truth-value

assignments from the tree for this sentence, each set representing one combi-

nation of values that the atomic components ‘A’ and ‘B’ can have. The tree

has two completed open branches. The only literal on the left-hand branch is

‘∼ B’, so this branch yields two sets of truth-value assignments:

A B

T F

F F

The only literal occurring on the right-hand branch is ‘B’, so this branch yields

two new fragments:

A B

T T

F T

We have recovered four distinct sets of truth-value assignments, thus showing

that the sentence being tested is true on every truth-value assignment. We have

verified that it is truth-functionally true, even though the tree for that sentence

has one closed branch.

Suppose we suspect that a sentence P is truth-functionally true and

accordingly construct a tree for the negation of that sentence, ∼ P. Suppose

also that our tree has at least one completed open branch, and thus that in

this case our suspicions were wrong: P is not truth-functionally true. The stan-

dard procedure would now be to construct a tree for P to see whether that sen-

tence is truth-functionally false or truth-functionally indeterminate. Instead, we

can see which distinct sets of truth-value assignments can be recovered from

the tree we have already constructed for ∼ P. The sets of truth-value assignments

we can recover are those on which ∼ P is true. If we can recover all sets of

truth-value assignments, each set assigning a distinct combination of values to

the atomic components of P, then we know that ∼ P is true on every truth-value

assignment and is thus truth-functionally true. And if ∼ P is truth-functionally

4.5 USING TRUTH-TREES TO TEST 149

true, P is truth-functionally false. If we cannot recover all sets of truth-value
assignments from our tree, we know that there is at least one set of truth-
value assignments on which ∼ P is false, and hence on which P is true. In this
case P is truth-functionally indeterminate.

The method of recovering truth-value assignments always allows us to
avoid constructing a second tree. However, to use the method, we must com-
plete the tree we are working with (rather than stopping when we have one
completed open branch). As a result, when the tree is complex and the num-
ber of distinct combinations of truth-values that can be assigned to the atomic
components of a sentence is relatively large—eight, sixteen, thirty-two, or
more—it is often easier to construct a second tree than to recover and count
distinct sets of truth-value assignments.

4.5E EXERCISES

1. For each of the following sentences, use the truth-tree method to determine

its truth-functional status—that is, whether it is truth-functionally true, truth-

functionally false, or truth-functionally indeterminate.

a. M & ∼ M

*b. M ∨ ∼ M

c. ∼ M ∨ ∼ M

*d. (C ⊃ R) ⊃ [∼ R ⊃ ∼ (C & J)]

e. (C ⊃ R) & [(C ⊃ ∼ R) & ∼ (∼ C ∨ R)]

*f. (K W) ∨ (A & W)

g. (∼ A ∼Z) & (A & ∼ Z)

*h. [L ∨ (J ∨ ∼ K)] & (K & [(J ∨ L) ⊃ ∼ K])

i. (A ∨ B) & ∼ (A ∨ B)

*j. (A ∨ B) ⊃ ∼ (A ∨ B)

k. (A ∨ B) ∼ (A ∨ B)

*l. ∼ (D ∨ F) ∼ (D & F)

m. ∼ (D ∨ F) (∼ D ∨ ∼ F)

*n. ∼ (D ∨ F) (∼ D & ∼ F)

2. For each of the following sentences, use the truth-tree method to determine

whether the sentence is truth-functionally true. Where appropriate, recover a

set of truth-value assignments that supports your answer.

a. (B ⊃ L) ∨ (L ⊃ B)

*b. (B ⊃ L) & (L ⊃ B)

c. (A K) ⊃ (A ∨ K)

*d. (A K) ⊃ (∼ A ∨ K)

e. [(J ⊃ Z) & ∼ Z] ⊃ ∼ J

*f. [(J ⊃ Z) & ∼ J] ⊃ ∼ Z

g. (B ⊃ (M ⊃ H)) [(B ⊃ M) ⊃ (B ⊃ H)]

*h. M ⊃ [L (∼ M ∼ L)]

i. (A & ∼ B) ⊃ ∼ (A ∨ B)

*j. (A & ∼ B) ⊃ ∼ (A & B)

k. [(A & B) ⊃ C] [(A ⊃ ∼ B) ∨ C]

*l. (D ∼ E) ∼ (D E)

m. [A ⊃ (B & C)] ⊃ [A ⊃ (B ⊃ C)]

150 SENTENTIAL LOGIC: TRUTH-TREES

*n. [A ⊃ (B & C)] [A ⊃ (B ⊃ C)]

o. [(A & B) ⊃ C] [A ⊃ (B ⊃ C)]

3. For each of the following sentences, use the truth-tree method to determine

its truth-functional status—that is, whether it is truth-functionally true, truth-

functionally false, or truth-functionally indeterminate. In each case construct

a tree only for the given sentence. If the tree does not close, determine the

truth-functional status of the sentence by recovering and counting distinct sets

of truth-value assignments.

a. ∼ (∼ A ⊃ A)

*b. J ⊃ (K ⊃ L)

c. (A ∼ A) ⊃ ∼ (A ∼ A)

*d. (E H) ⊃ (∼ E ⊃ ∼ H)

e. (∼ B & ∼ D) ∨ ∼ (B ∨ D)

*f. ([(C ⊃ D) & (D ⊃ E)] & C) & ∼ E

g. [(A ∨ B) & (A ∨ C)] ⊃ ∼ (B & C)

*h. ∼ ([(A ∨ B) & (B ∨ C)] & (∼ A & ∼ B))

i. (J ∨ ∼ K) ∼ ∼ (K ⊃ J)

*j. ∼ B ⊃ [(B ∨ D) ⊃ D]

4. Decide which of the following claims are true and which are false. In each case

explain and defend your reasoning. Use examples where appropriate.

a. If a completed tree for the unit set of P, {P} has at least one open branch and

at least one closed branch, then P is truth-functionally indeterminate.

*b. If P is truth-functionally true and has four atomic components, then a com-

pleted tree for {P} will have four open branches.

c. If a completed tree for {P} has all open branches, then P is truth-functionally true.

*d. If {P} has a closed tree and {Q} has a closed tree, then the unit set of every

truth-functionally compound sentence whose immediate components are P

and Q will also have a closed tree.

e. If {P} and {Q} each has a tree with at least one completed open branch, then

the unit set of every truth-functionally compound sentence that has P and Q

as its immediate components will have a completed tree with an open branch.

*f. If a completed truth-tree for {P} has exactly one open branch, then ∼ P is truth-

functionally indeterminate.

g. If P and Q are both truth-functionally true, then P & Q, P ∨ Q, P ⊃ Q, and

P Q will each have a completed tree all of whose branches are open.

*h. If P and Q are both truth-functionally true, then P & Q, P ∨ Q, P ⊃ Q, and

P Q will each have a tree with at least two completed open branches.

i. If P and Q are both truth-functionally false, then P & Q, P ∨ Q, P ⊃ Q, and

P Q will each have a closed tree.

*j. If P and Q are both truth-functionally false, then P & Q, P ∨ Q, P ⊃ Q, and

P Q will each have a completed tree with at least one closed branch.

k. If P is truth-functionally true and Q is truth-functionally false, then P & Q, P ∨

Q, P ⊃ Q, and P Q will each have a completed tree with at least one open

branch and one closed branch.

4.6 TRUTH-FUNCTIONAL EQUIVALENCE

Sentences P and Q of SL are truth-functionally equivalent if and only if there
is no truth-value assignment on which P and Q have different truth-values. It

follows that sentences P and Q are truth-functionally equivalent if and only if
their corresponding material biconditional, P Q, is truth-functionally true.
And a material biconditional P Q is truth-functionally true if and only if the
tree for the negation of that biconditional is closed. That is, to determine
whether a biconditional is truth-functionally true, we simply apply the test for
truth-functional truth developed in the previous section.

Sentences P and Q of SL are truth-functionally equivalent if and only if the set
{∼ (P Q)} has a closed tree.

In Chapter 3, we showed that ‘(W & Y) ⊃ H’ is truth-functionally equi-
valent to ‘W ⊃ (Y ⊃ H)’ by producing a truth-table revealing that these two
sentences have the same truth-value on every truth-value assignment. We can
now use the truth-tree method to show the same result. To show that these sen-
tences are equivalent, we need show only that their corresponding material
biconditional is truth-functionally true:

1.

2.

3.

4.

5.

6.

7.

8.

9.

 10.

11.

12.

13.

14.

15.

SM

1 ∼ D

1 ∼ D

3 ∼ ⊃D

3 ∼ ⊃D

5 ∼ ⊃D

5 ∼ ⊃D

2 ⊃D

8 ∼ &D

2 ∼ ⊃D

10 &D

10 &D

3 ⊃D

14 ⊃D

∼ ([(W & Y)] ⊃ H] [W ⊃ (Y ⊃ H)])

(W & Y) ⊃ H

 ∼ [W ⊃ (Y ⊃ H)]

 W

∼ (Y ⊃ H)

 Y

 ∼ H

∼ [(W & Y) ⊃ H]

 W ⊃ (Y ⊃ H)

∼ (W & Y)

H

H

∼ W

∼ Y

∼ Y

W & Y

 ∼ H

 W

 Y

∼ W

Y ⊃ H

4.6 TRUTH-FUNCTIONAL EQUIVALENCE 151

152 SENTENTIAL LOGIC: TRUTH-TREES

This tree is closed. The sentence at the top of the tree is therefore false on

every truth-value assignment, and the biconditional of which it is the nega-

tion is therefore true on every truth-value assignment. So the immediate

components of that biconditional, ‘(W & Y) ⊃ H’ and ‘W ⊃ (Y ⊃ H)’, are

truth-functionally equivalent.

In Chapter 3 we also showed that ‘E ∨ H’ and ‘(H ∨ J) ∨ E’ are not

truth-functionally equivalent. We can now show this by using the truth-tree

method. These sentences are truth-functionally equivalent if and only if their

corresponding material biconditional, ‘(E ∨ H) [(H ∨ J) ∨ E]’, is truth-

functionally true. And that biconditional is truth-functionally true if and only

if the tree for its negation closes:

Since this truth-tree has a completed open branch, there is at least one truth-

value assignment on which the sentence at the top of the tree is true. That

sentence is therefore not truth-functionally false, and the biconditional of

which it is the negation is thus not truth-functionally true. It follows that the

sentences that are the immediate components of that biconditional, ‘E ∨ H’

and ‘(H ∨ J) ∨ E’, are not truth-functionally equivalent. They have different

truth-values on every truth-value assignment that assigns the following values

to ‘E’, ‘H’, and ‘J’:

1.

2.
3.
4.
5.
6.
7.

8.

9.
10.

11.

12.

SM

1 ∼ D
1 ∼ D
3 ∼ ∨D
3 ∼ ∨D
4 ∼ ∨D
4 ∼ ∨D

2 ∨D

2 ∼ ∨D
2 ∼ ∨D

3 ∨D

11 ∨D

∼ ((E ∨ H) [(H ∨ J) ∨ E])

∼ (E ∨ H)
 (H ∨ J) ∨ E

 E ∨ H
∼ [(H ∨ J) ∨ E]
 ∼ (H ∨ J)
 ∼ E
 ∼ Η

 ∼ J

E

H

E

H

∼ E
∼ H

H ∨ J

J
 o

E H J

F F T

4.7 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 153

4.6E EXERCISES

1. Use the truth-tree method to determine whether the following pairs of sentences
are truth-functionally equivalent. For those pairs that are not truth-functionally
equivalent, recover a set of truth-value assignments that shows this.

a. ∼ (Z ∨ K) ∼ Z & ∼ K
*b. ∼ (Z ∨ K) ∼ Z ∨ ∼ K

c. (B & C) ⊃ R (B ⊃ R) & (C ⊃ R)
*d. (B ∨ C) ⊃ R (B ⊃ R) & (C ⊃ R)

e. A & (B ∨ C) (A & B) ∨ (A & C)
*f. A ∨ (B & C) (A ∨ B) & (A ∨ C)
g. D ⊃ (L ⊃ M) (D ⊃ L) ⊃ M

*h. J ⊃ (K L) (J ⊃ K) (J ⊃ L)
i. A ⊃ A B ⊃ B

*j. A & ∼ A B & ∼ B
k. A & ∼ B ∼ A ∨ B

*l. ∼ (A ∨ B) ∼ (A & B)
m. ∼ (A B) ∼ A ∼ B
*n. A ⊃ (B ⊃ C) (A ⊃ B) ⊃ C

o. A & (B ∨ C) (A & B) ∨ (A & C)
*p. A ⊃ (B ⊃ C) A ⊃ (B & C)

2. Decide which of the following claims are true and which are false. In each case
explain and defend your reasoning. If P and Q are truth-functionally equiva-
lent, then

a. A completed truth-tree for {P Q} will be open.
*b. A completed truth-tree for {P ∼ Q} will be open.

c. A completed truth-tree for the set {P, Q} will be open.
*d. A completed truth-tree for {∼ P ∼ Q} will be open.

4.7 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL
VALIDITY

We can use truth-trees to test for truth-functional entailment. Recall that,
where P is a sentence and is a set of sentences, truth-functionally entails
P—that is, P if and only if there is no truth-value assignment on which
every member of is true and P is false. Put another way, a set of sentences
truth-functionally entails a sentence P if and only if the set of sentences
 ∪ {∼P} is truth-functionally inconsistent. Hence, to see if a finite set truth-
functionally entails P, we construct a tree for the members of ∪ {∼ P}. Here
we have to be careful to negate the allegedly entailed sentence before con-
structing the tree.

A finite set of sentences of SL truth-functionally entails a sentence P of SL

if and only if the set ∪ {∼ P} has a closed truth-tree.

|=

154 SENTENTIAL LOGIC: TRUTH-TREES

Does the set {B & K, N ⊃ ∼ K, K ∨ ∼ K} truth-functionally entail ‘B ⊃ N’?
We can find out by constructing a tree for {B & K, N ⊃ ∼ K, K ∨ ∼ K, ∼ (B ⊃ N)}:

B K N

T T F

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.

 B & K
 N ⊃ ∼ K

 K ∨ ∼ K
∼ (B ⊃ N)
 B
 K
 B
 ∼ N

SM
SM
SM
SM
1 &D
1 &D
4 ∼ ⊃D
4 ∼ ⊃D

3 ∨D

2 ⊃D

K

o

∼ K

∼ K

∼ N

Since this truth-tree has a completed open branch, there is a truth-value
assignment on which all the sentences we are testing are true. Hence there is
an assignment on which the members of the set {B & K, N ⊃ ∼ K, K ∨ ∼ K} are
all true and the sentence ‘B ⊃ N’ is false. So the entailment does not in fact
hold. The set members are true while ‘B ⊃ N’ is false on every truth-value
assignment that assigns the following values to ‘B’, ‘K’, and ‘N’:

On the other hand, {∼ J ∨ S, S ⊃ E} does truth-functionally entail ‘J ⊃ E’, as
the following closed truth-tree shows:

1.
2.
3.
4.
5.

6.

7.

SM
SM
SM
3 ∼ ⊃D
3 ∼ ⊃D

1 ∨D

2 ⊃D

 ∼ J ∨ S
 S ⊃ E
 ∼ (J ⊃ E)
 J
 ∼ E

∼ J

∼ S

 E

S

An argument is truth-functionally valid if and only if there is no truth-
value assignment on which the premises are true and the conclusion false.

4.7 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 155

Alternatively, an argument is truth-functionally valid if and only if there is no
truth-value assignment on which both the premises and the negation of the con-
clusion are true. Hence an argument is truth-functionally valid if and only if
the set consisting of the premises and the negation of the conclusion is truth-
functionally inconsistent:

An argument of SL with a finite number of premises is truth-functionally valid

if and only if the set consisting of the premises and the negation of the con-
clusion has a closed truth-tree.

In our next example we use the tree method to determine whether the
following argument is truth-functionally valid:

(∼ B ∨ ∼ H) ⊃ M

K & ∼ M

B

Trees here are no different from the trees we have already constructed, but we
must remember to construct a tree for the premises and the negation of the
conclusion, rather than for the premises and the conclusion:

This truth-tree is closed. So we know that the set consisting of the sentences
we are testing is truth-functionally inconsistent, and hence that the argument
from which the set was formed is truth-functionally valid. Our reasoning is
this: The closed tree shows that there is no truth-value assignment on which
the premises of our argument are all true and the negation of the conclu-
sion is also true. Therefore there is no truth-value assignment on which those
premises are true and the conclusion false, so the argument is truth-
functionally valid.

1.

2.

3.

4.

5.

6.

7.

8.

9.

SM

SM

SM

2 &D

2 &D

1 ⊃D

6 ∼ ∨D

6 ∼ ∨D

7 ∼ ∼ D

 (∼ B ∨ ∼ H) ⊃ M

 K & ∼ M

∼ B

 K

∼ M

∼ (∼ B ∨ ∼ H) M

∼ ∼ B

∼ ∼ H

 B

156 SENTENTIAL LOGIC: TRUTH-TREES

As another example, we’ll construct a truth-tree to test the following

argument:

∼ W & ∼ L

(J ⊃ ∼ W) ∼ L

H

J & H

Our tree for this argument follows. Again, it is the negation of the conclusion

that we use along with the premises, not the conclusion itself:

Because this tree has at least one completed open branch, we can recover a set

of truth-value assignments on which the premises and the negation of the con-

clusion are true, and hence on which the premises are true and the conclu-

sion false. So the argument we are testing is truth-functionally invalid. The

recoverable truth-value assignments assign the following values to the four

atomic sentences that occur in the premises and conclusion:

1.
2.
3.
4.
5.
6.

7.
8.
9.

10.

12.

SM
SM
SM
SM
1 &D
1 &D

2 D
2 D
8 ∼ ∼ D

7 ⊃D

4 ∼ &D

∼ W & ∼ L

 (J ⊃ ∼ W) ∼ L

H
∼ (J & H)

 ∼ W
∼ L

J ⊃ ∼ W

∼ L
∼ (J ⊃ ∼ W)

∼ ∼ L

 L

∼ J

∼ J
 o o

∼ H

∼ W

∼ J ∼ H

H J L W

T F F F

Because an argument is truth-functionally valid if and only if the set con-

sisting of the premises of that argument truth-functionally entails the conclusion

of that argument, the procedures for constructing truth-trees to test for truth-

functional validity and for truth-functional entailment are similar. In the case of

testing for truth-functional validity, the conclusion is negated; in the case of test-

ing for truth-functional entailment, the allegedly entailed sentence is negated.

4.7 TRUTH-FUNCTIONAL ENTAILMENT AND TRUTH-FUNCTIONAL VALIDITY 157

a. M ⊃ (K ⊃ B)

∼ K ⊃ ∼ M

L & M

B

*b. (∼ J ∨ K) ⊃ (L & M)

∼ (∼ J ∨ K)

∼ (L & M)

c. A & (B ∨ C)

(∼ C ∨ H) & (H ⊃ ∼ H)

A & B

*d. (D ∼ G) & G

[G ∨ ((A ⊃ D) & A)] ⊃ ∼ D

G ⊃ ∼ D

e. (M K) ∨ ∼ (K & D)

∼ M ⊃ ∼ K

∼ D ⊃ ∼ (K & D)

M

*f. (J ⊃ T) ⊃ J

(T ⊃ J) ⊃ T

∼ J ∨ ∼ T

g. B & (H ∨ Z)

∼ Z ⊃ K

(B Z) ⊃ ∼ Z

∼ K

M & N

*h. A ∨ ∼ (B & C)

∼ B

∼ (A ∨ C)

A

i. A & (B ⊃ C)

(A & C) ∨ (A & ∼ B)

*j. (G H) ∨ (∼ G H)

(∼ G ∼ H) ∨ ∼ (G H)

4.7E EXERCISES

1. Use the truth-tree method to determine which of the following claims are true
and which are false. For those that are false, recover a set of truth- value assign-
ments that shows this.

a. {A ⊃ (B & C), C B, ∼ C} ∼ A
*b. {K ⊃ H, H ⊃ L, L ⊃ M} K ⊃ M

c. {∼ (A B), ∼ A, ∼ B} C & ∼ C
*d. {∼ (∼ A & ∼ B)} A & B

e. {∼ ∼ F ⊃ ∼ ∼ G, ∼ G ⊃ ∼ F} G ⊃ F
*f. {A & (B ⊃ C)} (A & C) ∨ (A & B)
g. {[(C ∨ D) & H] ⊃ A, D} H ⊃ A

*h. {(G H) ∨ (∼ G H)} (∼ G ∼ H) ∨ ∼ (G H)
i. {(J ∨ M) ⊃ ∼ (J & M), M (M ⊃ J)} M ⊃ J

*j. [A ∨ ((K ⊃ ∼ H) & ∼ A)] ∨ ∼ A
k. ∼ (A B) ⊃ (∼ A ∼ B)

*l. ∼ (C C) (C ∨ ∼ C)
m. [(A ⊃ B) ⊃ (C ⊃ D)] ⊃ [C ⊃ (B ⊃ D)]

2. Use the truth-tree method to determine which of the following arguments are
truth-functionally valid and which are truth-functionally invalid. For those that are
truth-functionally invalid, recover a set of a truth-value assignments that show this.

|=
|=
|=
|=

|=
|=
|=

|=
|=

|=
|=

|=
|=

158 SENTENTIAL LOGIC: TRUTH-TREES

3. Symbolize each of the following arguments and then use the truth-tree method

to determine whether the symbolized argument is truth-functionally valid. If

an argument is not truth-functionally valid, recover a set of truth-value assign-

ments that show this.

a. The social security system will succeed if and only if more money is collected

through social security taxes. Unless the social security system succeeds, many

senior citizens will be in trouble. Although members of Congress claim to be

sympathetic to senior citizens, more money won’t be collected through social

security taxes. Hence the social security system will not succeed.

*b. Either the president and the senators will support the legislation, or the pres-

ident and the representatives will support it. Moreover, the representatives will

support the legislation, provided that a majority of the people support it. The

people don’t support it. Thus the senators will support the legislation.

c. If the president acts quickly the social security system will be saved, and if the

social security system is saved, senior citizens will be delighted. If the president

is pressured by members of the Senate, by members of the House of Repre-

sentatives, or by senior citizens, he will act quickly. However, neither members

of the Senate nor members of the House will pressure the president, but sen-

ior citizens will. Therefore senior citizens will be delighted.

*d. The president won’t veto the bill if Congress passes it, and Congress will pass

it if and only if both the Senate passes it and the House of Representatives

passes it. But the House of Representatives will pass it only if a majority of

Democrats will vote for it; and indeed, a majority of Democrats will vote for it.

Therefore the president won’t veto the bill.

e. At most, one of the two houses of Congress will pass the bill. If either the House

of Representatives or the Senate passes it, the voters will be pleased; but if both

houses of Congress pass the bill, the president will not be pleased. If the pres-

ident is not pleased, not all the members of the White House will be happy.

Hence some members of the White House will not be happy.

4. Show that constructing a tree for the premises and conclusion (not the nega-

tion of the conclusion) of an argument of SL yields no useful information con-

cerning the validity of the argument by completing the following exercises.

a. Give two arguments of SL, one valid and the other invalid, such that the trees

for the premises and conclusion of these arguments both have at least one com-

pleted open branch. Construct the trees and explain why they are not useful in

determining whether the arguments in question are truth-functionally valid.

*b. Give two arguments of SL, one valid and the other invalid, such that the trees

for the premises and conclusion of these arguments are both closed. Construct

the trees and explain why they are not useful in determining whether the argu-

ments in question are truth-functionally valid.

c. Explain why (a) and (b) together constitute a proof that there is no useful

information concerning the validity of an argument to be obtained by doing

a tree for the premises and conclusion of the argument.

k. A ⊃ ∼ A

(B ⊃ A) ⊃ B

A ∼ B

*l. B ∨ (A & ∼ C)

(C ∨ A) B

∼ B ∨ A

∼ (A ∨ C)

SUMMARY 159

5. Suppose we define a new connective, ‘|’, thus:

P Q

T T F

T F T

F T T

F F T

To accommodate this new connective, we have to add two new rules to our

truth-tree system, one for decomposing sentences of the form P|Q and one for

decomposing sentences of the form ∼ (P|Q).

a. Give the rules needed for sentences of these two forms.

b. Use the new rules to test the sentences ‘A|B’ and ‘(A|A) ∨ (B|B)’ for truth-

functional equivalence, using the truth-tree method. State your result.

SUMMARY

Key Semantic Properties

TRUTH-FUNCTIONAL CONSISTENCY: A finite set of sentences of SL is truth-

functionally consistent if and only if has a truth-tree with at least one completed

open branch.

TRUTH-FUNCTIONAL INCONSISTENCY: A finite set of sentences of SL is truth-

functionally inconsistent if and only has a closed truth-tree.

TRUTH-FUNCTIONAL FALSITY: A sentence P of SL is truth-functionally false if and

only if the set {P} has a closed truth-tree.

TRUTH-FUNCTIONAL TRUTH: A sentence P of SL is truth-functionally true if and

only if the set {~ P} has a closed truth-tree.

TRUTH-FUNCTIONAL INDETERMINACY: A sentence P of SL is truth-functionally inde-

terminate if and only if neither the set {P} nor the set {~ P} has a closed truth-tree.

TRUTH-FUNCTIONAL EQUIVALENCE: Sentences P and Q of SL are truth-functionally

equivalent if and only if the set {~ (P Q)} has a closed truth-tree.

TRUTH-FUNCTIONAL ENTAILMENT: A finite set of sentences of SL truth-functionally

entails a sentence P of SL if and only if the set ∪ {∼ P} has a closed truth-tree.

TRUTH-FUNCTIONAL VALIDITY: An argument of SL with a finite number of prem-

ises is truth-functionally valid if and only if the set consisting of the premises and

the negation of the conclusion has a closed truth-tree.

Key Truth-Tree Concepts

CLOSED BRANCH: A branch containing both an atomic sentence and the negation

of that sentence.

CLOSED TRUTH-TREE: A truth-tree each of whose branches is closed.

OPEN BRANCH: A truth-tree branch that is not closed.

COMPLETED OPEN BRANCH: An open truth-tree branch on which every sentence

either is a literal or has been decomposed.

COMPLETED TRUTH-TREE: A truth-tree each of whose branches either is closed or

is a completed open branch.

OPEN TRUTH-TREE: A truth-tree that is not closed.

P|Q

160 SENTENTIAL LOGIC: DERIVATIONS

Chapter 5
SENTENTIAL LOGIC:

DERIVATIONS

5.1 THE DERIVATION SYSTEM SD

In Chapters 3 and 4 we gave semantic accounts of consistency, validity, equiva-
lence, entailment, and of the status of individual sentences of SL (truth-functional
truth, truth-functional falsity, truth-functional indeterminacy). The semantic truth-
table and truth-tree tests we developed show whether there is or is not a truth-
value assignment of a particular kind for a particular sentence or group of
sentences. These test procedures can hardly be said to reflect the reasoning we
do in everyday discourse when we are trying to show, for example, that an argu-
ment is valid or that a set of sentences is consistent. In this chapter we develop
techniques that do parallel to a considerable extent the kind of reasoning we do
make use of in everyday discourse. These techniques rely on the form or struc-
ture of sentences of SL and are not intended to reveal whether there is or is not
a truth-value assignment of a certain sort. These are therefore syntactic techniques.

How might we, in everyday discourse, convince ourselves that the fol-
lowing argument is valid?

If Marshall survives the current scandal and if her opponent doesn’t
outspend her then Marshall will be reelected. If it continues to be pol-
itics as usual Marshall will survive the latest scandal. The scandal is no
longer front page news, so it is going to be politics as usual. Marshall’s
opponent will not outspend her. So Marshall will be reelected.

5.1 THE DERIVATION SYSTEM SD 161

Here, as in earlier chapters, it is useful to start by constructing truth-functional
paraphrases of the premises and conclusion:

If both Marshall survives the current scandal and it is not the case
that Marshall’s opponent outspends Marshall, then Marshall will be
reelected.

If it continues to be politics as usual, then Marshall will survive the
current scandal.

Both it is not the case that the scandal is still front page news and it
is going to be politics as usual.

It is not the case that Marshall’s opponent outspends Marshall.

Marshall will be reelected.

Note that we paraphrased the third premise as a conjunction. The task before
us is to show that starting with the premises as assumptions we can, by a series
of obvious inferences, reach the conclusion. We can do this as follows.

1. If both Marshall survives the current
scandal and it is not the case that
Marshall’s opponent outspends Marshall,
then Marshall will be reelected. Assumption

2. If it continues to be politics as usual,
then Marshall will survive the current
scandal. Assumption

3. Both it is not the case that the scandal is
still front page news and it will continue
to be politics as usual. Assumption

4. It is not the case that Marshall’s
opponent will outspend Marshall. Assumption

5. It will continue to be politics as usual. From 3

6. Marshall will survive the current scandal. From 2 and 5

7. Marshall will survive the current scandal
and it is not the case that Marshall’s
opponent will outspend Marshall. From 6 and 4

8. Marshall will be reelected. From 1 and 7

The structure of our reasoning may be more apparent when we symbolize these
steps in SL:

1 (S & ~ O) R Assumption

2 C S Assumption

3 ~ F & C Assumption

162 SENTENTIAL LOGIC: DERIVATIONS

4 ~ O Assumption

5 C From 3

6 S From 2 and 5

7 S & ~ O From 6 and 4

8 R From 1 and 7

In this chapter we will develop two systems of syntactic rules, SD and
SD (SD will include all the rules of SD and additional rules). Each of the
inferences represented by lines 5 through 8 will be justified by a syntactic rule
that tells us, roughly, that if we have a sentence or sentences of such-and-such
forms or structures, then we may infer a sentence of such-and-such a form or
structure. We will call these rules derivation rules and the structures we
construct using them derivations.

5.1.1 REITERATION AND INTRODUCTION AND ELIMINATION RULES FOR
‘&’AND ‘⊃’

REITERATION

The simplest of the derivation rules we will present is Reiteration. This rule
simply allows one to enter on a line of a derivation a sentence that occurs on
an earlier line of the derivation. Schematically:

Reiteration (R)

P

 P

Here, and in the other rule schema presented below, the ‘ ’ sign indicates the
sentence that can be derived using the rule in question. Here is a simple and
admittedly uninteresting use of Reiteration:

1 A Assumption

2 A 1 R

As we will see later in this chapter, Reiteration is often used in strategies that
involve subderivations.

INTRODUCTION AND ELIMINATION RULES FOR ‘&’

The derivation system SD includes two rules for each connective, one for deriv-
ing a sentence from a sentence with a specified connective as its main connec-
tive, and one for introducing the connective (deriving a sentence whose main
connective is the connective after which the rule is named). The former are

5.1 THE DERIVATION SYSTEM SD 163

called elimination rules because they take us from a sentence whose main con-
nective is the connective after which the rule is named to one that may have
a different—or no—main connective. The latter are, analogously, called intro-

duction rules, because the sentence introduced has as its main connective the
connective for which the rule is named. Here is the elimination rule for the
ampersand (&):

Conjunction Elimination (&E)

P & Q P & Q
or

 P Q

This rule specifies that from a conjunction one can infer or derive either the
left conjunct or the right conjunct (or both, in two steps). We implicitly used
this rule at line 5 earlier, where we inferred ‘C’ from ‘~ F & C’. The intro-
duction rule for the ampersand is

Conjunction Introduction (&I)

P

Q

 P & Q

We used this rule at line 7 when we derived ‘S & ~ O’ from ‘S’ on line 6 and
‘∼ O’ on line 4. This schema should be interpreted as allowing the derivation
of a conjunction when each of its conjuncts appears earlier in the derivation
in any order. That is, the left conjunct may occur on an earlier line, or on a
later line, than the line on which the right conjunct appears.

INTRODUCTION AND ELIMINATION RULES FOR ‘ ⊃’

In our first example we also used the rule Conditional Elimination:

Conditional Elimination (⊃E)

P ⊃ Q

P

 Q

This rule specifies that if, in a derivation, we have already obtained both a mate-
rial conditional and the sentence that is the antecedent of that conditional (in
either order), then we may enter the consequent of that conditional. We used
this rule at line 6 where we derived ‘S’ from ‘C ⊃ S’ (line 2) and ‘C’ (line 5),

164 SENTENTIAL LOGIC: DERIVATIONS

and again at line 8, where we derived ‘R’ from ‘(S & ∼ O) ⊃ R’ (line 1) and
‘S & ∼ O’(line 7).

Hereafter we will adopt the convention of writing the name of the rule
we use to the right of each sentence entered in a derivation (or, where the sen-
tence is an assumption, the word ‘Assumption’). We will also specify the line
or lines from which the sentence we have entered is derived. Finally, we will
draw a horizontal line to separate the initial assumptions of the derivation
(which we will call the primary assumptions) from subsequent lines, and a ver-
tical line to the left of the column of derived sentences. Using these notational
conventions, our first derivation becomes:

Derive: R

1 (S & ∼ O) ⊃ R Assumption
2 C ⊃ S Assumption
3 ∼ F & C Assumption
4 ∼ O Assumption

5 C 3 &E
6 S 2, 5 ⊃E
7 S & ∼ O 4, 6 &I
8 R 1, 7 ⊃E

Here is another derivation that uses just the three rules already introduced:

Derive: A ⊃ B

1 C ⊃ [(C & D) ⊃ (A ⊃ B)] Assumption
2 D ⊃ C Assumption
3 D & B Assumption

4 D 4 &E
5 C 2, 4 ⊃E
6 (C & D) ⊃ (A ⊃ B) 1, 5 ⊃E
7 C & D 4, 5 &I
8 A ⊃ B 6, 7 ⊃D

It is worth pausing here to discuss how the derivation rules of SD and
SD are selected. Derivation rules are syntactic templates. They specify that if,
in a derivation, we have a sentence or sentences of such-and-such form we may
enter a sentence of such-and-such form. Consider the following template, which
is not a derivation rule of SD.

Conditional Elimination2 (⊃E2) (A very bad rule!)

P ⊃ Q

Q

 P

This unacceptable rule specifies that if, in a derivation, we have obtained a con-
ditional and the consequent of that conditional we may enter the antecedent of
the conditional. Why do we include Conditional Elimination and not Conditional

5.1 THE DERIVATION SYSTEM SD 165

Elimination2 among the rules of SD? The answer is that the rules of SD (and
every acceptable derivation system) are selected on a semantic basis. The rules
we do include in SD will never take us from truths to a falsehood: they are truth-
preserving. That is, there will be no truth-value assignment on which the sentence
or sentences the rule cites in a derivation are true and the derived sentence false.
Recall the characteristic truth-table for the material conditional:

P Q P ⊃ Q

T T T

T F F

F T T

F F T

This table demonstrates that the rule Conditional Elimination is truth-
preserving: there is no row in which the material conditional and the
antecedent of that conditional both have the truth-value T and the consequent
has the truth-value F. (Wherever the conditional and the antecedent of the
conditional have a value of T the consequent also has the value T.) The same
characteristic truth-table shows that Conditional Elimination2 is not truth-
preserving. Consider the third row of the table. In this row the conditional has
the value T as does the consequent of the conditional, but the antecedent has
the value F. So Conditional Elimination2 does sometimes take us from truths
to a falsehood. Conditional Elimination meets the semantic requirement of
truth-preservation whereas Conditional Elimination2 does not. All of the rules
of SD and SD are truth-preserving. We prove this in Chapter 6.

Here is the introduction rule for ‘⊃’:

Conditional Introduction (⊃I)

P

Q

 P ⊃ Q

This rule makes use of a new structure, that of a subderivation, the idea of
which is this. We want to derive a conditional, a sentence of the form P ⊃ Q.
To do so we take P, the antecedent of the desired conditional, as a new assump-
tion. We then show that from that new assumption, and all other available
assumptions, we can derive Q, the consequent of the desired material condi-
tional. This amounts to showing that if P then Q , or P ⊃ Q, follows from the
assumptions that are were available before we assumed P.

To illustrate, consider the argument

If Wendy is on the Eiffel Tower, then she is in Paris.

If she is in Paris, then she is in France.

If Wendy is on the Eiffel Tower, then she is in France.

166 SENTENTIAL LOGIC: DERIVATIONS

To show that the conclusion follows from the premises, we might reason as fol-
lows: We take the premises of the argument as our assumptions, and temporarily
add a further assumption, namely that Wendy is on the Eiffel Tower. On the
basis of this assumption and the first premise, we can infer that Wendy is in
Paris. And from ‘Wendy is in Paris’ and the second premise, we can infer that
Wendy is in France. Of course, we have not shown that from the premises alone
it follows that Wendy is in France. Rather we have shown that from those prem-
ises and an additional assumption, that Wendy is on the Eiffel Tower, it follows
that Wendy is in France. But this amounts to showing that from the premises
alone it follows that if Wendy is on the Eiffel Tower then Wendy is in France.

Here is a derivation for a symbolic version of this argument:

Derive: E ⊃ F

1 E ⊃ P Assumption

2 P ⊃ F Assumption

3 E A / ⊃Ι

4 P 1, 3 ⊃E

5 F 2, 4 ⊃E

6 E ⊃ F 3–5 ⊃I

There are several important points to note here. The vertical lines in a derivation
are called scope lines. Assumptions with just one scope line to their left are the
primary assumptions of the derivation—they are the assumptions we are given at
the beginning of our work, for example the premises of an argument whose valid-
ity we are seeking to establish. The scope line to the left of primary assumptions
continues to the end of the derivation and indicates that the primary assumptions
are in force—are being assumed—for the entire derivation. Each subderivation
begins with an auxiliary assumption whose scope is indicated by the scope line
immediately to its left. An auxiliary assumption is in force, is available for use,
only as long as the vertical line immediately to its left continues. In the above
example there is one subderivation, occupying lines 3 through 5. The assumption
of that subderivation is in force only through line 5. Subderivations are con-
structed so that we can use a rule that requires that there be a subderivation of
a certain sort. In the above example the rule we intend to use is Conditional Intro-
duction, which calls for assuming, as an auxiliary assumption, the antecedent of
the material conditional we wish to obtain. In the justification column for a sen-
tence entered as an auxiliary assumption we enter ‘A’ (for ‘Assumption’), and the
abbreviation for the rule that calls a subderivation of the sort we are constructing
(here ‘⊃I’), with the two notations separated by a slash (‘/’).

We end a successful subderivation by using the rule indicated on the
assumption line of the subderivation to derive a sentence outside of the sub-
derivation, citing the entire subderivation. When we do so we of course also
terminate the scope line of the subderivation. It is the entire subderivation
that justifies applying a subderivation rule. In our last example, it is the sub-
derivation occurring on lines 3 thorough 5 that justifies entering the sentence

5.1 THE DERIVATION SYSTEM SD 167

on line 6. Note that the notation in the justification column for line 6 is
‘3–5 ⊃I’ not ‘3, 5 ⊃I’. This is because we are citing not the individual lines 3
and 5. Rather, we are citing the subderivation that occurs on lines 3 through 5.
When a subderivation is ended we say that the assumption of that subderivation
has been discharged; it is no longer in force and may not be cited on subse-
quent lines. We will also refer to assumptions that have not been discharged as
being open, and to those that have been discharged as being closed. In our
example, the scope of the assumption on line 3 ends after line 5; the assump-
tion was only made to license deriving the conditional ‘E ⊃ F’ on line 6.

We can now explain the concept of accessibility: A sentence is accessi-
ble at a given line of a derivation if and only if it is either an open assumption
(one that has not been discharged) or falls within the scope of an open assump-
tion. Scope lines, the vertical lines to the left of the sentences of a derivation,
provide a visual way of telling when a sentence is accessible. The leftmost ver-
tical line is the scope line of the entire derivation. Primary assumptions, if any,
appear to the immediate right of this scope line at the top of the derivation.
Every auxiliary assumption has its own scope line, a line that continues only so
long as that assumption remains open. A sentence is accessible only as long as
the scope line to its immediate left continues. Primary assumptions, of course,
are never discharged. If a sentence is accessible at a given line of a derivation
then it can be appealed to in justifying the sentence entered on that line. In
the preceding example, the assumption on line 3 is accessible through line 5
but is not accessible after line 5. (In justifying a step of a derivation we cannot
cite an earlier line or subderivation that falls within the scope of an assump-
tion that is no longer accessible. For example, if we were to continue the pre-
ceding derivation beyond line 6 the sentences on lines 1 and 2 (the primary
assumptions) would continue to be accessible, as would the sentence on line
6. But the sentences on lines 3 through 5 would not be accessible because they
fall within the scope of the assumption on line 3, which is no longer accessible.

A subderivation is accessible so long as every scope line to the left of that
subderivation continues. Note that we take the scope line of the subderivation,
the one that begins when the auxiliary assumption of the subderivation is
entered, as being part of the subderivation and therefore not to the left of the
subderivation. In the preceding derivation, the subderivation occurring on lines
3 through 5 is accessible at line 6 and is cited at line 6.

Here is an example that violates the accessibility requirement:

Derive: A & B

1 C ⊃ A Assumption
2 A ⊃ B Assumption

3 C A / ⊃I

4 A 1, 3 ⊃E
5 B 4, 2 ⊃E
6 C ⊃ B 3–5 ⊃I
7 A & B 4, 5 &I MISTAKE!

168 SENTENTIAL LOGIC: DERIVATIONS

At line 7 it is a mistake to cite lines 4 and 5 because not all of the assumptions
within whose scope the sentences on those lines, ‘A’ and ‘B’, occur are still acces-
sible, and this is not so. The sentences on lines 4 and 5 fall within the scope of
the assumption at line 3, which is not accessible at line 7. At line 7 the assump-
tion at line 3 is closed, not open. Note again that this restriction does not pre-
vent us from citing, at line 6, the entire subderivation occurring on lines 3
through 5. For all the assumptions within whose scope that entire subderivation
falls, namely the primary assumptions of the derivation, are still open.

Subderivations can be nested inside other subderivations. Here is an
example:

Derive: G ⊃ (H ⊃ K)

1 (G & H) ⊃ K Assumption

2 G A / ⊃I

3 H A / ⊃I

4 G & H 2, 3 &I
5 K 1, 4 ⊃E
6 H ⊃ K 3–5 ⊃I
7 G ⊃ (H ⊃ K) 2–6 ⊃I

Line 7 cites the subderivation occurring on lines 2 through 6. This is permis-
sible because the only assumption within which that subderivation falls, the
primary assumption on line 1, is still accessible at line 7. Line 6 cites the sub-
derivation occurring on lines 3 through 5. This is also permissible because the
assumptions within whose scope that subderivation falls, those on lines 1 and
2, are both accessible at line 6.

5.1.1E EXERCISES

1. Complete the following derivations.

a. Derive: A & B

1 A Assumption
2 A ⊃ B Assumption

*b. Derive: ∼ C

1 A ⊃ (B & ∼ C) Assumption
2 A & B Assumption

c. Derive: A ⊃ (∼ C & ∼ B)

1 A ⊃ (∼ B & ∼ C) Assumption

5.1 THE DERIVATION SYSTEM SD 169

*d. Derive: (E & D) & (∼ B & C)

1 ∼ B ⊃ (D & E) Assumption

2 (A & ∼ B) & C Assumption

e. Derive: ∼ A ⊃ [B & (D & C)]

1 ∼ A ⊃ B Assumption

2 B ⊃ D Assumption

3 ∼ A ⊃ C Assumption

*f. Derive: (H & ∼ J) ⊃ (∼ I & K)

1 H ⊃ (∼ I & ∼ L) Assumption

2 ∼ J ⊃ (K & M) Assumption

g. Derive: [(K ∨ L) ⊃ I] & [(K ∨ L) ⊃ ∼ J]

1 (K ∨ L) ⊃ (I & ∼ J) Assumption

*h. Derive: M & ∼ N

1 (K & ∼ L) & (∼ I & J) Assumption

2 ∼ L ⊃ M Assumption

3 (K & ∼ I) ⊃ ∼ N Assumption

i. Derive: A ⊃ (B ⊃ C)

1 (A & B) ⊃ C Assumption

*j. Derive: (A & B) ⊃ C

1 A ⊃ (B & C) Assumption

k. Derive: (A & B) ⊃ (C & D)

1 (B & A) ⊃ (D & C) Assumption

*l. Derive: M ⊃ (L & ∼ L)

1 (M ⊃ ∼ L) & (M ⊃ L) Assumption

m. Derive: (A & B) ⊃ E

1 A ⊃ C Assumption

2 B ⊃ D Assumption

3 (C & D) ⊃ E Assumption

170 SENTENTIAL LOGIC: DERIVATIONS

5.1.2 INTRODUCTION AND ELIMINATION RULES FOR ‘∼’

A strategy that is probably as old as is intelligent thought is that of establishing

a thesis by assuming its opposite and showing that this assumption leads to

clearly unacceptable results. By ‘assuming its opposite’ we mean that if P is the

thesis to be established, then not P is assumed, and if not P is the thesis to be

established, P is assumed. If such an assumption leads to an unacceptable

result, this constitutes grounds for rejecting the assumption and accepting the

original thesis. This general strategy is commonly known as the ‘reductio ad
absurdum’ strategy.

Consider the argument:

If management will not negotiate the union will strike. If the union

strikes, production will cease. If production ceases, management will

negotiate. Therefore, management will negotiate.

We want to show that management will negotiate. So we assume the opposite,

that management will not negotiate. From this and the first premise it follows

that the union will strike. And from this result and the second premise it fol-

lows that production will cease. And from ‘Production will cease’ and the last

premise it follows that management will negotiate. We now have the “unac-

ceptable” result, namely the first premise, which says management will not

negotiate, and the result of our last inference, which is that management will

negotiate. Both cannot be the case. Since we got to this unacceptable result by

assuming management will not negotiate, we reject that assumption and con-

clude that management will negotiate. In SD the rule that parallels the rea-

soning we have just completed is Negation Elimination:

Negation Elimination (∼ E)

∼ P

Q

∼ Q

 P

This rule calls for us to assume the negation of the sentence we want to

establish and then derive a sentence, any sentence, and its negation from

the accessible assumptions. The “absurdity,” of course, is in having reached

both a sentence and its negation. Here is a derivation for a symbolized

version of the above argument:

5.1 THE DERIVATION SYSTEM SD 171

Derive: N

1 ∼ N ⊃ S Assumption
2 S ⊃ C Assumption
3 C ⊃ N Assumption

4 ∼ N A / ∼ E

5 S 1, 4 ⊃E
6 C 2, 5 ⊃E
7 N 3, 6 ⊃E
8 ∼ N 4 R
9 N 5–8 ∼ E

We used Reiteration to obtain ‘∼ N’ at line 8, and this gives us both ‘N’ and
‘∼ N’ in the scope of the assumption on line 4. In the present case it happens
that the sentence we want to derive, ‘N’, also serves as one member of the
pair Q and ∼ Q we derive within the scope of the subderivation starting at line
4. That the sentence to be derived be used as one member of the required
contradictory pair is allowed but not required. Any sentence and its negation
will do.

Note that Reiteration is frequently useful in derivations employing
either Negation Elimination or Negation Introduction, for both rules require
the derivation of a sentence and its negation, meaning the sentence and its
negation must occur below the horizontal line marking the auxiliary assump-
tion with which the negation subderivation begins.

The introduction rule for ‘∼’ is

Negation Introduction (∼ I)

P

Q

∼ Q

 ∼ P

Here is a very simple derivation that uses this rule:

Derive: ∼ H

1 H ⊃ F Assumption
2 ∼ F Assumption

3 H A / ∼ I

4 F 1, 3 ⊃E
5 ∼ F 2 R
6 ∼ H 3–5 ∼I

172 SENTENTIAL LOGIC: DERIVATIONS

Notice that in SD given a material conditional and its antecedent we can

obtain the consequent of the material conditional in one step, by Condi-

tional Elimination. But there is no rule in SD that takes us from a material

conditional and the negation of its consequent to the negation of its

antecedent. Rather, in such a case a negation subderivation such as we’ve

used is appropriate.

It is important to remember that both negation rules call for deriving

a sentence, any sentence, and its negation. An assumption, primary or auxil-

iary, often serves as one of these sentences. And a truth-functional compound

sentence and its negation, as well as an atomic sentence and its negation, can

serve as the pair of derived sentences both rules call for. Suppose we are given

the following derivation to complete:

Derive: ∼ B

1 ∼ (A ⊃ B) Assumption

∼ B

No rule of SD that we have introduced to this point (other than Reiteration),

nor any that remain to be introduced, allows us to draw an inference directly

from the negation of a material conditional. Realizing this, we might decide

that the best way to obtain ‘∼ B’ is through Negation Introduction. So we fill

in the next step:

Derive: ∼ B

1 ∼ (A ⊃ B) Assumption

2 B A / ∼ E

∼B 2–__ ∼ E

Here and throughout the rest of this chapter we fill in as much of the justifi-

cation column as we can as we construct the derivation. In this instance we use

the notation ‘2–__’ to indicate that we expect ‘∼ B’ to be obtained by Nega-

tion Elimination using a subderivation beginning on line 2. We do not yet know

what the line number of the last line will be, hence the underscore.

We know we need to derive a sentence and its negation. A negation,

‘∼ (A ⊃ B)’, is already available, so we decide to use it and make our other goal

‘A ⊃ B’. We can now fill in two more lines of our derivation:

5.1 THE DERIVATION SYSTEM SD 173

Derive: ∼ B

1 ∼ (A ⊃ B) Assumption

2 B A / ∼ E

A ⊃ B
∼ (A ⊃ B) 1 R

∼ B 2–__ ∼ E

We can complete the derivation if we can just find a way to derive ‘A ⊃ B’ from
our accessible assumptions on lines 1 and 2. Our goal ‘A ⊃ B’ is a material con-
ditional, and the rule for introducing material conditionals is Conditional
Introduction. So we might try this:

Derive: ∼ B

1 ∼ (A ⊃ B) Assumption

2 B A / ∼ E

3 A A / ⊃I

B
A ⊃ B 3–__ ⊃I
∼ (A ⊃ B) 1 R

∼ B 2–__ ∼ E

Note that the new subderivation is constructed within the subderivation begin-
ning at line 2; this is necessary if we want to derive ‘A ⊃ B’ within the sub-
derivation beginning at line 2.

At this point our task is to find a way to get from our auxiliary assump-
tion on line 3 to ‘B’. And here is where it is important to learn to see what we
have available to us. We want ‘B’. What lines are accessible at this point? The
answer is lines 1 through 3. And the sentence we want, ‘B’, does occur on one
of those lines—line 2. We can get it at line 4 by Reiteration and complete the
derivation as follows:

Derive: ∼ B

1 ∼ (A ⊃ B) Assumption

2 B A / ∼ E

3 A A / ⊃I

4 B 2 R
5 A ⊃ B 3–4 ⊃I
6 ∼ (A ⊃ B) 1 R
7 ∼B 2–6 ∼ I

174 SENTENTIAL LOGIC: DERIVATIONS

The sentence ‘∼ (A ⊃ B)’ that served as the negation ∼ Q in this use of Nega-
tion Introduction is the negation of a compound sentence and is one of our
primary assumptions. Notice also that in this example we constructed our der-
ivation by working from our final goal, which we entered some distance below
our primary assumption, backwards. We filled in the missing steps by working
from the bottom up. This bottom up strategy is almost always the preferred
strategy for constructing derivations.

Notice also that in this example the assumption we made in order to
use Negation Elimination does not, by itself, lead to an absurdity. Rather, it is
that assumption in combination with the other accessible assumption, the sentence
on line 1, that gives us the absurdity. What we know, when we get to line 6, is
that the sentences on lines 1 and 2 cannot both hold, for together they lead
to a contradiction (the sentences on lines 5 and 6). Since the point of deriva-
tions is to show what can be derived from given primary assumptions, we hold
on to our primary assumption and reject the auxiliary assumption which,
together with the primary assumption, led to the absurdity.

Suppose we are next asked to complete the following derivation:

Derive: C

1 A & B Assumption

2 ∼ (A & B) Assumption

C

‘C’ is not a component of either primary assumption, so how can it possibly be
derived from those assumptions? It is actually quite easy to derive ‘C’. The “trick”,
again, is in learning to see what is available to us. We have a sentence ‘A & B’
and the negation of that sentence, ‘∼ (A & B)’. Negation Elimination allows us
to derive any sentence we want so long as we can assume its negation and derive
some sentence Q and its negation. We can easily do that here:

Derive: C

1 A & B Assumption

2 ∼ (A & B) Assumption

3 ∼ C A / ∼ E

4 A & B 1 R

5 ∼ (A & B) 2 R

6 C 3–5 ∼ E

Here, having assumed ‘∼ C’ and derived a sentence and its negation, we use
Negation Elimination to derive ‘C’. What this shows is not that ‘C’ has been

5.1 THE DERIVATION SYSTEM SD 175

established on its own, but rather that ‘C’ follows from our primary assump-
tions. The primary assumptions themselves are inconsistent. And what this
example shows is that any sentence can be derived from inconsistent assump-
tions, because we could use any sentence in place of ‘C’ in this derivation.

5.1.2E EXERCISES

1. Complete the following derivations.

a. Derive: ∼ G

1 (G ⊃ I) & ∼ I Assumption

*b. Derive: K

1 M & ∼ M Assumption

c. Derive: ∼ ∼ B

1 ∼ B ⊃ A Assumption

2 ∼ B ⊃ ∼ A Assumption

*d. Derive: I & M

1 ∼(I & M) ⊃ (L & ∼ N) Assumption

2 N Assumption

e. Derive: A

1 (∼ A ⊃ ∼ B) & (∼ B ⊃ B) Assumption

5.1.3 INTRODUCTION AND ELIMINATION RULES FOR ‘∨’

The introduction rule for ∨ is Disjunction Introduction:

Disjunction Introduction (∨I)

P P
or

 P ∨ Q Q ∨ P

A common reaction to this rule is that it gives us something for nothing—
by allowing us to derive P ∨ Q, where Q is any sentence whatsoever, from P.
But we are not really getting something for nothing. To see this we need
only remember that a disjunction is true if at least one of its disjuncts is true.

176 SENTENTIAL LOGIC: DERIVATIONS

So given that P is true, it follows that P ∨ Q is also true. Disjunction Intro-
duction is a useful rule. Consider the argument:

Business is booming although the cost of energy is up.

If either the cost of energy is up or food prices are increasing,
inflation will continue.

Inflation will continue.

Derive: I

1 B & E Assumption

2 (E ∨ F) ⊃ I Assumption

3 E l &E

4 E ∨ F 3 ∨I

5 I 2, 4 ⊃E

At line 3 we obtain ‘E’. But what we need to get ‘I’ by Conditional Elimination
is ‘E ∨ F’, the antecedent of the conditional on line 2. And we obtain ‘E ∨ F’
at line 4 by Disjunction Introduction.

The elimination rule for ‘∨’ is Disjunction Elimination:

Disjunction Elimination (∨E)

P ∨ Q

P

R
Q

R

 R

This rule specifies that if we have a disjunction, P ∨ Q, and can, through two
subderivations, derive a sentence R from each disjunct then we can infer R.
Disjunction Elimination parallels a pattern of reasoning we often use in ordi-
nary discourse. We know that if a disjunction is true then at least one of its dis-
juncts is true. Even if we don’t know which disjunct is true, if we can derive
the claim we are interested in from each disjunct then we know it follows from
the disjunction, for it follows no matter which disjunct of that disjunction is
true. We can use Disjunction Elimination to derive the conclusion of the fol-
lowing argument from its premises:

The mill manager will either resign or be fired. If she resigns she will
keep her pension and move back east. If she is fired she will lose her
pension and move back east. So the mill manager will move back east.

5.1 THE DERIVATION SYSTEM SD 177

Derive: E

1 R ∨ F Assumption
2 R ⊃ (K & E) Assumption
3 F ⊃ (∼ K & E) Assumption

4 R A / ∨E

5 K & E 2, 4 ⊃E
6 E 5 &E
7 F A / ∨E

8 ∼ K & E 3, 7 ⊃E
9 E 8 &E

10 E 1, 4–6, 7–9 ∨E

If the primary assumptions hold, then since ‘R ∨ F’ is one of those assumptions
either ‘R’ holds or ‘F’ holds as well. In the two subderivations we show that ‘E’
follows from the primary assumptions and ‘R’ and that it follows from the primary
assumptions and ‘F’. Therefore ‘E’ follows from the primary assumptions alone.

Note that the justification for line 10 cites the line on which the
disjunction occurs (line 1), and the two subderivations beginning with the indi-
vidual disjunctions (the subderivation occurring on lines 4 through 6 and that
occurring on lines 7 through 9).

5.1.3E EXERCISES

1. Complete the following derivations.

a. Derive B ∨ (K ∨ G)

1 K Assumption

*b. Derive: A

1 B ∨ C Assumption
2 B ⊃ A Assumption
3 C ⊃ A Assumption

c. Derive: D ∨ E

1 E ∨ D Assumption

*d. Derive: I ∨ J

1 K ∨ G Assumption
2 K ⊃ I Assumption
3 G ⊃ J Assumption

178 SENTENTIAL LOGIC: DERIVATIONS

e. Derive: F
1 ∼ E ∨ F Assumption
2 ∼ E ⊃ F Assumption

5.1.4 INTRODUCTION AND ELIMINATION RULES FOR ‘ ’

Sentences of the form P Q are called biconditionals for good reason. They
are equivalent to the conjunction of two conditionals. That is, a sentence of
the form P Q is equivalent to a sentence of the form (P ⊃ Q) & (Q ⊃ P).
Bearing this in mind, it should not be surprising that the introduction rule for
‘ ’ involves two subderivations:

Biconditional Introduction (I)

P

Q

Q

P

 P Q

As this schema indicates, to derive P Q it is sufficient to derive Q from P
and P from Q.

We can use Biconditional Introduction to derive the conclusion of the
following simple argument from its premises.

If Alice will get into law school, then Betty will also. If Betty will get
into law school, then both Charles and Alice will get into law school.
So Betty and Charles will both get into law school if and only if Alice
will get into law school.

Derive: (B & C) A

1 A ⊃ B Assumption
2 B ⊃ (C & A) Assumption

3 B & C A / I

4 B 3 &E
5 C & A 2, 4 ⊃E
6 A 5 &E
7 A A / I

8 B 7, 1 ⊃E
9 C & A 2, 8 ⊃E

10 C 9 &E
11 B & C 8, 10 &I
12 (B & C) A 3–6, 7–11 I

5.1 THE DERIVATION SYSTEM SD 179

Note that while the sentences on lines 8 and 9 do occur earlier in the deriva-
tion, on lines 4 and 5, they cannot be obtained in their second occurrences by
Reiteration, for lines 4 and 5 are not accessible after line 6.

Biconditional Elimination is straightforward:

Biconditional Elimination (E)

P Q P Q

P or Q

 Q P

From a material biconditional and one of its immediate components we can
derive the other immediate component.

We use Biconditional Elimination twice in deriving the conclusion of
the following argument from the argument’s premises.

Alex will graduate if and only if she passes both logic and physics. Alex
will pass physics but she will pass logic if and only if she aces the final
and does all the remaining homework assignments. Alex never does
homework. So Alex won’t graduate.

Derive: ∼ G

1 G (L & P) Assumption
2 P & [L (A & H)] Assumption
3 ∼ H Assumption

4 G A / ∼ I

5 L & P 1, 4 E
6 L 5 &E
7 L (A & H) 2 &E
8 A & H 6, 7 E
9 H 8 &E

10 ∼ H 3 R
11 ∼ G 4–10 ∼ I

In this derivation we selected ‘H’ and ‘∼ H’ as the Q and ∼ Q of our sub-
derivation largely because ‘∼ H’ is readily available—it can be gotten by
Reiteration on line 3.

5.1.4E EXERCISES

1. Complete the following derivations.
a. Derive: L

1 K (∼ E & L) Assumption
2 K Assumption

180 SENTENTIAL LOGIC: DERIVATIONS

*b. Derive: ∼ D E

1 (∼ D ⊃ E) & (E ⊃ ∼ D) Assumption

c. Derive: S & ∼ A

1 (S ∼ I) & N Assumption

2 (N ∼ I) & ∼ A Assumption

*d. Derive: N

1 A ∨ L Assumption

2 A N Assumption

3 L ⊃ N Assumption

e. Derive: E O

1 (E ⊃ T) & (T ⊃ O) Assumption

2 O ⊃ E Assumption

5.1.5 RULE SUMMARY

All the derivation rules of SD have been introduced. We repeat them here for

easy reference. They can also be found on the inside front cover of this text.

Reiteration (R)

P

 P

Conjunction Introduction (&I)

P

Q

 P & Q

Conjunction Elimination (&E)

P & Q P & Q

or

 P Q

Conditional Introduction (⊃I)

P

Q

 P ⊃ Q

Conditional Elimination2 (⊃E2)

P ⊃ Q

Q

 Q

5.1 THE DERIVATION SYSTEM SD 181

We have presented the derivation rules of SD and constructed a fair
number of derivations. But we haven’t actually defined the term ‘derivation in
SD’. We do so now:

A derivation in SD is a series of sentences of SL, each of which is either an
assumption or is obtained from previous sentences by one of the rules of SD.

We will continue to annotate our derivations with line numbers, scope and
assumption lines, and line justifications. However, these annotations are not,
as the above definition makes clear, officially parts of derivations.

There are many truth-preserving templates we do not include as rules
of either SD or SD . Why are some included and others not? For SD the answer

Disjunction Introduction (∨I)

P P

or

 P ∨ Q Q ∨ P

Disjunction Elimination (∨E)

P ∨ Q

P

R

Q

R

 R

Biconditional Introduction (I)

P

Q

Q

P

 P Q

Biconditional Elimination (E)

P Q P Q

P or Q

 Q P

Negation Introduction (∼ I)

P

Q

∼ Q

 ∼ P

Negation Elimination (∼ E)

∼ P

Q

∼ Q

 P

182 SENTENTIAL LOGIC: DERIVATIONS

is fairly simple. We want a derivation system to be truth-preserving (include no
rule that ever takes us from truths to a falsehood). A system that has this prop-
erty, never takes us from truths to a falsehood, is said to be sound. We also
want our derivation systems to be complete. A derivation system is complete if
and only if every sentence that is truth-functionally entailed by a set of sen-
tences can be derived from that set. SD is complete in this sense and it is a
fairly minimalist derivation system—it includes only two rules for each con-
nective.1 SD will also be complete but includes additional derivation rules,
some because they mirror reasoning patterns that are common in everyday dis-
course, some because they have historically been included in derivation systems.
We prove that both SD and SD are complete in Chapter 6.

Before ending this section we will take time to caution against some
mistakes that are commonly made while constructing derivations. First, the der-
ivation rules of SD are rules of inference, which is to say that when they appeal
to a line earlier in the derivation they appeal to the entire sentence on that
line, not to a sentence that is a component of a longer sentence. Here is an
attempt at a derivation that misuses Conjunction Elimination by appealing to
a component of a longer sentence.

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2 A A / ⊃I

3 C l &E MISTAKE!

4 A ⊃ C 2–3 ⊃I

The mistake at line 3 results from trying to apply Conjunction Elimination to
a component of a longer sentence. The sentence on line 1 is not of the form
P & Q, and while a component of that sentence, ‘B & C’, is of that form, rules
of inference work, again, on sentences that are not themselves parts of longer
sentences. A correct derivation for this problem is

Derive A ⊃ C

1 A ⊃ (B & C) Assumption

2 A A / ⊃I

3 B & C 1, 2 ⊃E

4 C 3 &E

5 A ⊃ C 2–4 ⊃I

The sentence on line 3 is of the form P & Q. It is not part of a longer sen-
tence on that line. So we can apply Conjunction Elimination to it and obtain
‘C’ at line 4.

1Two rules of SD, Reiteration and Negation Introduction, could be dropped without making the system incom-
plete. This is not true of any of the other rules of SD.

5.1 THE DERIVATION SYSTEM SD 183

Here is a similar misuse of a derivation rule.

Derive: C

1 B ⊃ (A ⊃ C) Assumption
2 A Assumption

3 C 1, 2 ⊃E MISTAKE!

Here an attempt has been made to apply Conditional Elimination to a com-
ponent, ‘A ⊃ C’ of the longer sentence ‘B ⊃ (A ⊃ C)’ and this cannot be done.
In this case there is no correct derivation. ‘C’ does not follow from the assump-
tions on lines 1 and 2.

Another common mistake is to appeal to lines or subderivations that
are not accessible. In a derivation a sentence or subderivation is accessible at
line n (it can be appealed to when justifying a sentence on line n) if and
only if that sentence or subderivation does not lie within the scope of a
closed assumption, that is, an assumption that has been discharged prior to
line n. Here is an attempt at a derivation that twice violates the accessibility
requirement:

Derive: B

1 B A / ⊃I

2 A A / ⊃I

3 B 1 R
4 A ⊃ B 2–3 ⊃I
5 B ⊃ (A ⊃ B) 1–4 ⊃I
6 A ⊃ B 2–3 ⊃I MISTAKE!

7 B 2, 6 ⊃E MISTAKE!

Line 6 is a mistake because it appeals to a subderivation, that occurring on
lines 2 through 3, that is no longer accessible. It is not accessible at line 6,
because not every scope line to the left of that subderivation (there are two)
continues to line 6. The auxiliary assumption occurring on line 2 was dis-
charged at line 4, when Conditional Introduction was used. (We also cannot
use Reiteration to obtain A ⊃ B on line 6, because the sentence on line 4 is
inaccessible at that point.) Line 7 is a mistake because it appeals to a line,
line 2, which is no longer accessible. Of course, it is also a mistake because
it appeals to a line, line 6, which is itself a mistake. In fact, neither line 6
nor line 7 can be derived in the main derivation without primary assump-
tions. On the other hand, part of the above attempt, namely the part con-
sisting of lines 1 through 5, is correct, demonstrating that some sentences
can be derived starting from no primary assumptions. ‘B ⊃ (A ⊃ B)’ is one
such sentence.

184 SENTENTIAL LOGIC: DERIVATIONS

The following derivation is correctly done.

Derive: ∼ U ⊃ ∼ S

1 ∼ U ⊃ ∼ W Assumption
2 ∼ W ⊃ ∼ S Assumption

3 ∼ U A / ⊃I

4 ∼W 1, 3 ⊃E
5 ∼ S 2, 4 ⊃E
6 ∼ U ⊃ ∼S 3–5 ⊃I

Line 4 cites lines 1 and 3, which are both accessible at line 4. The sentences
on lines 1 and 3 do not lie within the scope of an assumption that has been
discharged prior to line 4. (Neither the sentence on line 1 nor the sentence
on line 3 has a scope line to its left that is not also to the left of the sentence
on line 4.) Similarly line 5 cites lines 2 and 4, which are both accessible at
line 5. Line 6 cites the subderivation from lines 3–5. This subderivation is
accessible at line 6 because the subderivation does not lie within the scope of
an assumption that has been closed prior to line 6.

To summarize, once an assumption has been discharged or closed,
none of the lines or subderivations within the subderivation that began with
the now closed assumption is accessible for justifying sentences on later lines.
In the last example, once the assumption on line 3 is closed, none of the
lines within the scope of that assumption is accessible. This as is as it should
be, for the sentences within the closed subderivation may have been derived
using the assumption of the subderivation, an assumption that has been dis-
charged. There is no guarantee that sentences derived using an assumption
can be derived without it. So it would be incorrect to continue the derivation
as follows:

Derive: ∼ U ⊃ ∼ S

1 ∼ U ⊃ ∼ W Assumption
2 ∼ W ⊃ ∼ S Assumption

3 ∼ U A / ⊃I

4 ∼ W 1, 3 ⊃E
5 ∼ S 2, 4 ⊃E
6 ∼ U ⊃ ∼ S 3–5 ⊃I
7 ∼ S 2, 4 ⊃E MISTAKE!

The mistake at line 7 is citing line 4, which is not accessible at line 7. This is
because the sentence on line 4 does lie within the scope of an assumption (the
one on line 3) that has been discharged before line 7. (There is a scope line
to the left of the sentence on line 4 that does not appear to the left of the
sentence on line 7.)

5.1 THE DERIVATION SYSTEM SD 185

Here is another example in which an inaccessible subderivation is cited:

Derive A C

1 ∼ C Assumption
2 B ⊃ C Assumption
3 ∼ A & ∼ B Assumption

4 A A / I

5 ∼ B A / ∼ E

6 ∼ A 3 &E
7 A 4 R
8 B 5–7 ∼E
9 C 2, 8 ⊃E

10 C A / I

11 ∼ B ⊃ A 5–7 ⊃I MISTAKE!

12 ∼ B 3 &E
13 A 11, 12 ⊃E
14 A C 4–9, 10–13 I

The mistake at line 11 is that of citing a subderivation that is not available at
line 11. That it is not available is indicated by there being a scope line to the
left of the subderivation, the scope line running from line 4 through line 9,
that is not to the left of the sentence entered at line 11. More substantively, ‘A’
was derived at line 7 by Reiteration on line 4. The assumption at line 4 is not
available at line 11, and neither are results obtained while it was available.

In fact, it is possible to derive ‘A C’ from the above primary assump-
tions. Here is a derivation that does so.

Derive A C

1 ∼ C Assumption
2 B ⊃ C Assumption
3 ∼ A & ∼ B Assumption

4 A A / I

5 ∼ C A / ∼ E

6 ∼ A 3 &E
7 A 4 R
8 C 2, 7 ⊃E
9 C A / I

10 ∼ A A / ∼ E

11 C 9 R
12 ∼ C 1 R
13 A 10–12
14 A C 4–8, 9–13 I

186 SENTENTIAL LOGIC: DERIVATIONS

It is possible to use a single auxiliary assumption to generate a sub-
derivation that allows the use of two different subderivation rules. Here is such
a case:

Derive: C & (A ⊃ C)

1 A ∨ B Assumption
2 A ⊃ D Assumption
3 B ⊃ D Assumption
4 ∼ C ⊃ ∼ D Assumption

5 A A / ∨E / ⊃I

6 ∼ C A ∼ E

7 ∼ D 4, 6 ⊃E
8 D 2, 5 ⊃E
9 C 6–8 ∼ E

10 B A / ∨E

11 ∼ C A ∼ E

12 ∼ D 11, 4 ⊃E
13 D 3, 10 ⊃E
14 C 11–13 ∼ E
15 C 1, 5–9, 10–14 ∨E
16 A ⊃ C 5–9 ⊃I
17 C & (A ⊃ C) 15, 16 &I

Notice that the subderivation occupying lines 5 through 9 is cited twice, once
as part of an application of the rule Disjunction Elimination (at line 15) and
once as the basis for entering a conditional at line 16. In the present case it
is unlikely that when the assumption at line 5 is made it was foreseen that
the subderivation to be constructed would be used in both of the above indi-
cated ways. So most likely at the time the assumption was made the only nota-
tion entered in the justification column was ‘A / ∨E’. It is only after reach-
ing ‘C’ at line 15 and wondering how ‘A ⊃ C’ can be obtained that it became
apparent that work already done, the subderivation on lines 5 through 9,
could be reused. So the extra notation ‘/ ⊃I’ was added to line 5 when line
16 was entered.

In the above example identical subderivations occur on lines 6 through
8 and lines 11 through 13. We had to do this work twice because when trying
to get from ‘B’ at line 10 to ‘C’ on a subsequent line the subderivation occu-
pying lines 6 through 8 is no longer available.

Finally, it is possible to end a subderivation at any time, without
using one of the introduction rules that requires a subderivation. This is
likely to occur when one decides the strategy being pursued is unproduc-
tive and simply abandons the work done within the subderivation. Here is
an example:

5.1 THE DERIVATION SYSTEM SD 187

Derive: A ⊃ (B ⊃ C)

1 A A / ⊃I

2 ∼ (B ⊃ A) A / ∼ I

3 A 1 R
4 B A / ⊃I

5 A 1 R
6 B ⊃ A 4–5 ⊃I
7 A ⊃ (B ⊃ A) 1–6 ⊃I

Here the subderivation on lines 2–3 is in effect wasted work, work we have
thrown away. It does no harm, but neither does it do any good.

5.1.5E EXERCISES

1. Complete each of the following derivations by entering the appropriate
justifications.

a. Derive: (A & C) ∨ (B & C)

1 (A ∨ B) & C

2 A ∨ B
3 C
4 A

5 A & C
6 (A & C) ∨ (B & C)

7 B

8 B & C
9 (A & C) ∨ (B & C)

10 (A & C) ∨ (B & C)

*b. Derive: A ⊃ (B ⊃ C)

1 (A & B) ⊃ C

2 A

3 B

4 A & B
5 C
6 B ⊃ C
7 A ⊃ (B ⊃ C)

c. Derive: ∼ B

1 B ⊃ (A & ∼ B)

2 B

3 A & ∼ B
4 ∼ B
5 B
6 ∼ B

*d. Derive: A ⊃ B

1 (A & ∼ B) ⊃ (∼ B & C)
2 C ⊃ ∼ A

3 A

4 ∼ B

5 A & ∼ B
6 ∼ B & C
7 C
8 ∼ A
9 A

10 B
11 A ⊃ B

188 SENTENTIAL LOGIC: DERIVATIONS

e. Derive: C ⊃ (~ A & B)

1 ∼ D
2 C ⊃ (A B)
3 (D ∨ B) ⊃ ∼ A
4 (A B) ⊃ (D & E)
5 ∼ B ⊃ D

6 C

7 A B
8 D & E
9 D

10 D ∨ B
11 ∼ A
12 ∼ B

13 D
14 ∼ D
15 B
16 ∼ A & B
17 C ⊃ (∼ A & B)

*f. Derive: A ⊃ (B ∨ C)

1 (∼ B & ∼ C) ⊃ ∼ A

2 A

3 ∼ (B ∨ C)

4 B

5 B ∨ C
6 ∼ (B ∨ C)

7 ∼ B
8 C

9 B ∨ C
10 ∼ (B ∨ C)

12 ∼ C
13 ∼ B & ∼ C
14 ∼ A
15 A
16 B ∨ C
17 A ⊃ (B ∨ C)

g. Derive: A B

1 ∼ A & ∼ B

2 A

3 ∼ B

4 ∼ A
5 A
6 B

7 B

8 ∼ A

9 B
10 ∼ B
11 A
12 A B

*h. Derive: A (B ∨ C)

1 (A B) & (A C)

2 A

3 A B
4 B
5 B ∨ C

6 B ∨ C

7 B

8 A B
9 A

10 C

11 A C
12 A
13 A
14 A (B ∨ C)

2. Find and explain each mistake in the following attempted derivations.

a. Derive: ∼ D

1 ∼ ∼ A ⊃ (B & ∼ D) Assumption
2 ∼ A Assumption

3 B & ∼ D 1, 2 ⊃E
4 ∼ D 3 &E

5.2 BASIC CONCEPTS OF SD 189

*b. Derive: B

1 C ⊃ [D (A & B)] Assumption
2 C & D Assumption

3 C 2 &E
4 A & B 1, 3 E
5 B 4 &E

c. Derive: H & A

1 B ⊃ A Assumption
2 H Assumption

3 B Assumption

4 A 1, 3 ⊃E
5 A & A 4, 4 &I
6 B ⊃ (A & A) 3–5 ⊃I
7 H & A 2, 4 &I

*d. Derive: M

1 (G ⊃ ∼ ∼ M) & G Assumption

2 G 1 &E
3 G ⊃ ∼ ∼ M 1 &E
4 ∼ ∼ M 2, 3 ⊃E
5 M 4 ∼ E

5.2 BASIC CONCEPTS OF SD

We now define the key concepts of SD. These are all syntactical concepts as
each is defined by reference to there being a derivation of a certain sort—no
reference is made in any of these definitions either to truth-values or to truth-
value assignments.

Derivability: A sentence P of SL is derivable in SD from a set of
sentences of SL if and only if there is a derivation in SD in which all
the primary assumptions are members of and P occurs within the
scope of only the primary assumptions.

Valid in SD: An argument of SL is valid in SD if and only if the
conclusion of the argument is derivable in SD from the set
consisting of the premises. An argument of SL is invalid in SD if
and only if it is not valid in SD.

Theorem in SD: A sentence P of SL is a theorem in SD if and only if
P is derivable in SD from the empty set.

Equivalence in SD: Sentences P and Q are equivalent in SD if and only
if Q is derivable in SD from {P} and P is derivable in SD from {Q}.

190 SENTENTIAL LOGIC: DERIVATIONS

Inconsistent in SD: A set of sentences of SL is inconsistent in SD if

and only if there is a sentence P such that both P and ∼ P are

derivable in SD from . A set is consistent in SD if and only if it is

not inconsistent in SD.

A few additional notational conventions will be useful. We will use the

single turnstile, ‘ ’ to assert derivability, and will read

 P

as ‘P is derivable from ’. We will read ‘ P’ as ‘P is not derivable from ’.

This parallels our use of the double turnstile in previous chapters, where we

read

 P

as ‘ truth-functionally entails P’ and ‘ P’ as ‘ does not truth-functionally

entail P’. The parallelism is for good reason. It will turn out that for any finite

set of sentences of SL and any sentence P of SL,

 P in SD if and only if P.

This is a key claim of metatheory that we prove in Chapter 6. Finally, we will

read

P

as ‘P is a theorem’. This notation derives from ‘∅ P’, which is read ‘P is deriv-

able from the empty set’. And of course a sentence of SL is a theorem of SD

if and only if it is derivable in SD from the empty set. We will also refer to a

derivation of a sentence of SL from no primary assumptions as a proof of the

theorem that is the last line of that derivation.

The careful reader will recall that there are seven key semantical concepts

of SL: Truth-functional consistency, truth-functional truth, truth-functional falsity,

truth-functional indeterminacy, truth-functional equivalence, truth-functional

validity, and truth-functional entailment. We have syntactic parallels for only five

of those concepts. These pair up as follows:

Truth-functional consistency Consistency in SD

Truth-functional truth Theorem in SD

Truth-functional equivalence Equivalence in SD

Truth-functional validity Valid in SD

Truth-functional entailment Derivability in SD

There is no syntactic counterpart to either truth-functional falsity or truth-

functional indeterminacy. Introducing such counterparts is easy enough—we

 =

|=/

 =

5.2 BASIC CONCEPTS OF SD 191

could define an anti-theorem of SD as a sentence P of SL whose negation, ∼ P,
is a theorem of SD. And we could take a sentence P of SL to be syntactically

undetermined in SD if and only if neither it nor its negation is a theorem of SD.

We would then have syntactic counterparts to all seven central semantic con-
cepts, but historically logicians have never felt the need to add these or equiv-
alent definitions. We will follow their lead.

Below we construct a derivation that establishes that the following sim-
ple argument is valid in SD:

A ⊃ B

∼ B

∼ A

Derive: ∼ A

1 A ⊃ B Assumption

2 ∼ B Assumption

3 A A /∼ I

4 B 1, 3 ⊃E

5 ∼ B 2 R

6 ∼ A 3–5 ∼ I

This derivation establishes that the above argument is valid in SD. (The con-
clusion of the argument has been derived from the set consisting of the prem-
ises of the argument.)

On the other hand, the following does not establish the validity of the
above argument:

Derive: ∼ A

1 A ⊃ B Assumption

2 ∼ B Assumption

3 ∼ A A

4 ∼ A 3 R

Here ‘∼ A’, the conclusion of the argument, has not been derived from the set
consisting of the premises of the argument. Rather, it has been derived from
those sentences and ‘∼ A’—that is, from the primary assumptions and an aux-
iliary assumption. We have not shown that ‘∼ A’ is derivable from the set con-
sisting of the premises A ⊃ B and ∼ A.

Note that no notation has been made on line 3 as to the reason for
assuming ‘∼ A’. Someone constructing a derivation such as this may well have
reasoned “I want to obtain ‘∼ A’. Since I can assume anything, I will assume what
I want, namely ‘∼ A’, and then use Reiteration to derive my goal, ‘∼ A’.” It is true
that any sentence of SL can be assumed at any time. But there is no point to

assuming a sentence unless one has a rule in mind for discharging that assump-
tion. This is why we require the justification column for auxiliary assumptions to
include both the indication that the sentence just entered is an assumption (‘A’)
and an indication of what rule will be used to discharge the assumption. There
are only five rules (Conditional Introduction, Disjunction Elimination, Negation
Introduction, Negation Elimination, and Biconditional Introduction) that
require an assumption be made. Hence there are only five rules for discharging
an assumption. Requiring a notation that indicates what rule will be used to
discharge an assumption largely prevents the making of assumptions that do not
serve a strategic purpose.

A theorem of SD is a sentence of SL that can be derived from no pri-
mary assumptions. A derivation of such a sentence is said to be a proof of that
sentence. Here is a proof of the theorem ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’:

Derive: [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]

1 A ⊃ (B ⊃ C) A / ⊃I

2 A & B A / ⊃I

3 A 2 &E
4 B ⊃ C 3, 1 ⊃E
5 B 2 &E
6 C 5, 4 ⊃E
7 (A & B) ⊃ C 2–6 ⊃I
8 [A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C] 1–7 ⊃I

There are no primary assumptions in this derivation, and every auxiliary
assumption has been closed. The sentence ‘[A ⊃ (B ⊃ C)] ⊃ [(A & B) ⊃ C]’
on the last line does not lie within the scope of any assumption. Hence it has
been derived from the empty set and is a theorem of SD.

The sentences ‘A ⊃ B’ and ‘∼ B ⊃ ∼ A’ are equivalent in SD, as the
following two derivations show. (Establishing equivalence in SD of two distinct
sentences of SL requires two derivations because we must show that each sen-
tence is derivable from the unit set of the other.)2

Derive: ∼ B ⊃ ∼ A

1 A ⊃ B Assumption

2 ∼ B A / ⊃I

3 A A / ∼ I

4 B 1, 3 ⊃E
5 ∼ B 2 R
6 ∼ A 3–5 ∼ I
7 ∼ B ⊃ ∼ A 2–6 ⊃I

192 SENTENTIAL LOGIC: DERIVATIONS

2Each sentence of SL is equivalent in SD to itself. And to show this we need only one derivation, a derivation of
the sentence in question from itself.

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 193

Having derived ‘∼ B ⊃ ∼ A’ from ‘A ⊃ B’, we now derive ‘A ⊃ B’ from
‘∼ B ⊃ ∼ A’. Talk of reversing the process makes it sound like the derivations will be

one the reverse of the other

Derive: A ⊃ B

1 ∼ B ⊃ ∼ A Assumption

2 A A / ⊃I

3 ∼ B A / ∼ E

4 ∼ A 3, 1 ⊃E
5 A 2 R
6 B 3–5 ⊃I
7 A ⊃ B 2–6 ⊃I

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD

Derivations are unlike truth-tables and truth-trees in two important respects. First,
when one of the syntactic properties we have defined holds (for a sentence, a
pair of sentences, an argument, etc.) there is a derivation that demonstrates that
this property holds. For example, if an argument is valid in SD it is the existence
of a derivation of the conclusion of the argument from the set consisting of the
argument’s premises that makes this so. But if an argument is invalid in SD there
is no derivation that demonstrates this. Rather, it is the absence of a derivation
that makes an argument invalid in SD. But while one can use the derivation sys-
tem SD to show that there is a derivation of a certain sort (by producing such a
derivation), one cannot use it to show that there is no derivation of a certain
sort. No number of unsuccessful attempts to construct a derivation of a certain
sort proves that there is no such derivation. Hence, the system SD can be used
to establish validity in SD, but not invalidity in SD. So too for equivalence in SD,

inconsistency in SD, and theoremhood in SD. That is, one cannot use the system
SD to prove that the members of a pair of sentences are not equivalent in SD,

that a set is consistent in SD, or that a sentence is not a theorem in SD. In this
way the derivation system is unlike truth-tables and truth-trees, for those proce-
dures are able to establish, for each key semantic concept of SL, whether that
concept holds or does not hold for a sentence or set of sentences of SL.

A second important difference between truth-tables and truth-trees
and derivations is that while it is fairly easy to see how an explicit procedure
can be developed for constructing truth-tables and truth-trees such that fol-
lowing the procedure does not call for making any choices and always results
in a truth-table or truth-tree that yields an answer to the question being asked
(e.g., is this set truth-functionally consistent), it is considerably harder to spec-
ify such an explicit procedure for constructing derivations. Procedures that do
determine every step of the construction process, whether for truth-tables,
trees, or derivations, are said to be mechanical procedures. While mechanical

procedures for constructing derivations in systems like SD (derivation systems

for sentential logic)—procedures that will always produce a derivation of a cer-

tain sort when one does exist—have been formulated, they are very complex

and we will make no attempt to present such a procedure here.3 There are

thus two ways in which one’s efforts to construct a derivation of a certain sort

might end in frustration—where there is no such derivation and where there

is one but all attempts one makes to find it fail. Of course these are very

different situations; the first results from trying to do what is impossible, the

second from failing to find a solution that does exist.

While we will not present a mechanical procedure for constructing der-

ivations we will provide some useful strategies, strategies that can help avoid frus-

tration of the second sort just alluded to. The overarching strategy is that of goal

analysis. In every derivation the goal is to derive a sentence, or sentences, from

primary assumptions where there are such, otherwise from no assumptions. Goal

analysis is the process of determining how a goal sentence can be derived, and

involves working backward from the intended last line of the derivation as well

as forward from the primary assumptions, if any, of the derivation.

No matter what the goal sentence is, the derivation step that produces

that sentence might be the application of any of the elimination rules. To see this

one need only remember that the elimination rules tell us nothing about the

derived sentence—in each case it might be an atomic sentence, a conjunction, a

disjunction, a conditional, a negation, or a biconditional. On the other hand, the

introduction rules do tell us a lot about the sentence derived by using one of

these rules. First, atomic sentences cannot be derived by using an introduction

rule, for all such rules produce truth-functionally compound sentences. Second,

we know, for each introduction rule, what the main connective is of a sentence

obtained by that rule. Conjunction Introduction produces conjunctions, Disjunc-

tion Introduction disjunctions, and so on.

The first step in goal analysis is therefore to determine what kind of a

sentence the goal sentence is. If it is an atomic sentence it must be obtained

by one of the elimination rules (or by Reiteration). If it is a truth-functional

compound sentence it might be obtained by any of the elimination rules or by

the appropriate introduction rules, namely the introduction rule that produces

sentences whose main connective is the main connective of the goal sentence.

The bottom line, of course, is that there will always be multiple ways in which

the goal sentence might be derived. But some ways will generally be more plau-

sible than others, as we will soon see.

Having picked one way in which a goal sentence can be obtained, the

next step is to determine whether this way of obtaining the goal sentence gen-

erates one or more new goal sentences, and then to ask of each of these how

they might be obtained. The idea is that eventually the rule picked as a way of

194 SENTENTIAL LOGIC: DERIVATIONS

3These procedures are generally called theorem provers because what the procedure does, in the first instance,
is give mechanical instructions for constructing a proof of a theorem. These procedures are very complicated. It
is also important to note that such procedures, when applied to a sentence that is not a theorem of the system,
will produce no result that shows the sentence in question is not a theorem.

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 195

obtaining the current goal can be applied directly to currently available sen-
tences, thus completing the derivation. Multiple examples will, we hope, make
all of this much clearer.

We here enumerate the strategies we will use throughout the rest of
this chapter:

• If the sentence that is the current goal can be derived by using an
elimination rule or some sequence of elimination rules to accessi-
ble sentences, then that is the strategy to follow.

• If the current goal can be obtained by an introduction rule, that
is the strategy to follow.

• In most cases the successful strategy will make use of several of
these approaches, working from the “bottom up” and from the
“top down” as the occasion indicates.

• When using a negation rule try to use a negation that is readily
available as the ∼ Q that the rule requires within the negation
subderivation.

• If a sentence is derivable from a set of sentences, then it is deriv-
able using a negation rule as the primary strategy. So if no other
strategy suggests itself it is useful to consider a negation strategy.
But like all strategies, just because a negation strategy is available
doesn’t mean it is always the best choice.

• There will often be more than one plausible strategy, and often
more than one will lead to success. Rather than trying to figure
out which of these is the most promising it is often wise to just
pick one and pursue it.

Suppose we are trying to derive ‘(A & B) ⊃ C’ from {A ⊃ C}. The
derivation will obviously have just one primary assumption. So we start work as
follows:

Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

G (A & B) ⊃ C

Our current goal is the sentence ‘(A & B) ⊃ C’. We have indicated this by
writing ‘G’ where a line number will eventually be placed. We will follow this
convention, of indicating goal sentences by writing ‘G’ where the number of
the line will eventually be, throughout the rest of this section. Readers should

196 SENTENTIAL LOGIC: DERIVATIONS

follow this convention when constructing their own derivations only if they are

working in pencil and can erase these goal sentence markers and replace them

with line numbers as appropriate. We write this goal sentence a substantial dis-

tance below the primary assumptions, because we do not know, at this stage,

how many steps it will take to derive this sentence. At this early stage we know

neither the line number nor the justification for the final line of the deriva-

tion. We note that the goal sentence is a material conditional. Hence, in prin-

ciple it could come by any one of the elimination rules, by Reiteration, or by

Conditional Introduction. Reiteration is not plausible, as the goal sentence is

not among the primary assumptions (there is only one). An elimination rule

is not a likely way of generating the goal sentence because the only accessible

sentence is the conditional on line 1 and Conditional Elimination requires

that we have both a conditional and the antecedent of that conditional. In this

case we do not have the antecedent of ‘A ⊃ C’, and even if we did the result

of applying Conditional Elimination would be ‘C’, not ‘(A & B) ⊃ C’. So Con-

ditional Introduction seems to be the most likely rule to have produced our

goal sentence. We now note that to use Conditional Introduction we need a

subderivation whose assumption is the antecedent of our goal sentence,

namely ‘A & B’, and we need to derive the consequent of our goal sentence,

‘C’, within the scope of that assumption. That is, we know our derivation will

look like this:

Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2 A & B A / ⊃I

G C

G (A & B) ⊃ C 2–__ ⊃I

We still do not know the line number of the last line of our derivation, but we

do know we will use Conditional Introduction to obtain it and that we will cite

a subderivation that begins on line 2. We note this in the justification column

for the last line by entering ‘2–__ ⊃I’ where the underscore marks the space

where we will subsequently enter the number of the preceding line. We also

know that line 2 will be an auxiliary assumption made for the purpose of doing

Conditional Introduction. We are now in a position to stop wondering how

‘(A & B) ⊃ C’ will be obtained. We have a strategy for obtaining that sentence,

Conditional Introduction. Accordingly we now switch our focus to how we can

complete the subderivation we have started. That is, how can we get from our

two assumptions, one primary and one auxiliary, to ‘C’? ‘C’ is an atomic sen-

tence, so we know we will not use an introduction rule to obtain this sentence.

Nor will Reiteration generate ‘C’. So we are left with the elimination rules.

Which elimination rule seems promising? Here it is important to learn to “see”

what is available to us at this point in our work. We have two sentences to work

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 197

from, ‘A ⊃ C’ and ‘A & B’. We want ‘C’. We know that ‘C’ can be obtained
from ‘A ⊃ C’ by Conditional Elimination if we have ‘A’. We do not currently
have ‘A’. But we do have ‘A & B’, and ‘A’ can be obtained from ‘A & B’ by
Conjunction Elimination. So we now see a path to the completion of our
derivation:

Derive: (A & B) ⊃ C

1 A ⊃ C Assumption

2 A & B A / ⊃I

3 A 2 &E

4 C 1, 3 ⊃E

5 (A & B) ⊃ C 2–4 ⊃I

ARGUMENTS

Consider next the following argument.

∼ N

(∼ N ⊃ L) & [D (∼ N ∨ A)]

L & D

To show that this argument is valid in SD we need to derive the conclusion
from the set consisting of the premises. So we start as follows:

Derive: L & D

1 ∼ N Assumption

2 (∼ N ⊃ L) & [D (∼ N ∨ A)] Assumption

G L & D —, — &I

Our goal is a conjunction. It seems unlikely that it will be obtained by an
elimination rule, in part because ‘L & D’ does not occur as a component of
any accessible sentence. An introduction rule seems more promising, and
since the main connective of our goal sentence is ‘&’ it is Conjunction Intro-
duction that seems most promising. We have noted this by writing ‘&I’ in the
justification column for our goal sentence, and we have indicated with two
underscores that two line numbers will need to be supplied later. If we are
to use Conjunction Introduction we will need to have the two conjuncts ‘L’

198 SENTENTIAL LOGIC: DERIVATIONS

and ‘D’ available on accessible earlier lines. So we now add two subgoals to

our derivation structure:

Derive: L & D

1 ∼ N Assumption

2 (∼ N ⊃ L) & [D (∼ N ∨ A)] Assumption

G L

G D

G L & D —, — &I

If we can obtain both ‘L’ and ‘D’ we can use Conjunction Introduction to

obtain ‘L & D’. Our new goal sentences, ‘L’ and ‘D’ are both atomic sentences,

so neither will come by an introduction rule. We note that ‘L’ occurs as the

consequent of a conditional embedded in our second primary assumption. If

we could get that conditional, ‘∼ N ⊃ L’, out of line 2 we could obtain ‘L’ by

Conditional Elimination, as we do have the antecedent of that conditional

‘∼ N’ at line 1. Conjunction Elimination does allow us to extract ‘∼ N ⊃ L’ from

line 2:

Derive: L & D

1 ∼ N Assumption

2 (∼ N ⊃ L) & [D (∼ N ∨ A)] Assumption

3 ∼ N ⊃ L 2 &E

4 L 1, 3 ⊃E

G D

G L & D 4, — &I

The remaining task, then, is to obtain ‘D’. We note that this sentence occurs

in the biconditional embedded in line 2. Since the main connective of the sen-

tence on line 2 is ‘&’, we can obtain the biconditional by Conjunction Elimi-

nation. To get ‘D’ from that biconditional we can use Biconditional Elimina-

tion, if we have ‘∼ N ∨ A’. This reasoning allows us to add the following steps

to our derivation:

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 199

Derive: L & D

1 ∼ N Assumption
2 (∼ N ⊃ L) & [D (∼ N ∨ A)] Assumption

3 ∼ N ⊃ L 2 &E
4 L 1, 3 ⊃E
5 D (∼ N ∨ L) 2 &E
G ∼ N ∨ L
G D 5, — E
G L & D 4, — &I

Note that we have added ‘∼ N ∨ L’ as a new goal sentence. The main connective
of this sentence is ‘∨’, so if we had either ‘∼ N’ or ‘L’ we could obtain our current
goal by Disjunction Introduction. As it happens, we do have ‘∼ N’—it occurs as a
primary assumption on line 1. So we can now complete our derivation.

Derive: L & D

1 ∼ N Assumption
2 (∼ N ⊃ L) & [D (∼ N ∨ A)] Assumption

3 ∼ N ⊃ L 2 &E
4 L 1, 3 ⊃E
5 D (∼ N ∨ L) 2 &E
6 ∼ N ∨ L 1 ∨I
7 D 5, 6 E
8 L & D 4, 7, &I

We will next show that the following argument is valid in SD by deriv-
ing its conclusion from the set consisting of its premises.

∼ A ∨ B
∼ A ⊃ B
B C

C

We begin as always, by taking the premises as primary assumptions and making
the conclusion our primary goal.

Derive: C

1 ∼ A ∨ B Assumption
2 ∼ A ⊃ B Assumption
3 B C Assumption

G C

200 SENTENTIAL LOGIC: DERIVATIONS

After some reflection, two strategies suggest themselves: using Negation Elimi-

nation to obtain ‘C’ and using Disjunction Elimination to obtain ‘C’. Both will,

in the end, work. We choose to use Disjunction Elimination.

Derive: C

1 ∼ A ∨ B Assumption

2 ∼ A ⊃ B Assumption

3 B C Assumption

4 ∼ A A / ∨E

G C

B A / ∨E

G C

G C 1, 4–—, —–— ∨E

Our strategy, as the above schema indicates, is to show that the conclusion of

the argument, ‘C’, can be derived from each disjunct of ‘∼ A ∨ B’, and hence

that ‘C’ itself can be obtained by Disjunction Elimination. Completing the

second subderivation is trivial, for ‘C’ can be obtained from line 3 and our sec-

ond auxiliary assumption by Biconditional Elimination.

Derive: C

1 ∼ A ∨ B Assumption

2 ∼ A ⊃ B Assumption

3 B C Assumption

4 ∼ A A / ∨E

G C

B A / ∨E

G C 3, — E

G C 1, 4–—, —–— ∨E

Completing the first subderivation is only slightly more challenging. From lines

4 and 2 we can obtain ‘B’ by Conditional Elimination. And we can then use

Biconditional Elimination to obtain ‘C’.

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 201

Derive: C

1 ∼ A ∨ B Assumption
2 ∼ A ⊃ B Assumption
3 B C Assumption

4 ∼ A A / ∨E

5 B 2, 4 ⊃E
6 C 3, 5 E
7 B A / ∨E

8 C 3, 7 E
9 C 1, 4–6, 7–8 ∨E

THEOREMS

Next we will construct proofs of several theorems. We start with a very obvious
theorem, ‘A ∨ ∼ A’, whose proof is not obvious. Our task is to derive this sen-
tence using no primary assumptions.

Derive: A ∨ ∼ A

1

G A ∨ ∼ A

Our goal is ‘A ∨ ∼ A’ and here it should be obvious that though this sentence
is a disjunction we will not be able to obtain it by Disjunction Introduction.
Neither ‘A’ nor ‘∼ A’ is a theorem, and neither can be derived given no pri-
mary assumptions. So the only sensible strategy is to use Negation Elimination.

Derive: A ∨ ∼ A

1 ∼ (A ∨ ∼ A) A / ∼ E

G A ∨ ∼ A 1–— ∼ E

202 SENTENTIAL LOGIC: DERIVATIONS

Note that the only accessible sentence, the sentence on line 1, is a negation.

There is no rule of SD that allows us to “take apart” a negation. In the pres-

ent context, we can use Reiteration on line 1, but there is little else we can

do with it. Fortunately, this will be useful. Our current strategy is to use Nega-

tion Elimination and to do so we need to derive a sentence and its negation.

So we will use the assumption on line 1 as the negation and make ‘A ∨ ∼ A’

our new goal.

Derive: A ∨ ∼ A

1 ∼ (A ∨ ∼ A) A/ ∼ E

G A ∨ ∼ A

∼ (A ∨ ∼ A) 1 R

G A ∨ ∼ A 1–— ∼ E

We noted above that obtaining the last line of our derivation by Disjunction

Introduction will not work because neither ‘A’ nor ‘∼ A’ is a theorem. But

our current goal, which is the same sentence as that occurring on the last

line of the derivation, is to be obtained with the help of the auxiliary assump-

tion ‘∼ (A ∨ ∼ A)’, and here it is reasonable to hope to use Disjunction Intro-

duction. We will make ‘A’ our new goal and try to derive it by Negation

Elimination.

Derive: A ∨ ∼ A

1 ∼ (A ∨ ∼ A) A / ∼ E

2 ∼A A / ∼ E

G A —–— ∼E

G A ∨ ∼ A — ∨I

G ∼ (A ∨ ∼ A) 1 R

G A ∨ ∼ A 1–— ∼ E

One of the points we have emphasized is that when using a Negation Elimi-

nation subderivation it is wise to use as the ∼ Q we need to derive a negation

that is readily available. In the present instance two negations are readily avail-

able, ‘∼ A’ and ‘∼ (A ∨ ∼ A)’. There may be a temptation to select ‘∼ A’ as ∼

Q. But this would be a mistake, for doing so would require that Q be ‘A’ and

that sentence is not readily derived from the available assumptions. (We should

take a hint from the fact that the point of our current subderivation is to obtain

‘A’. If there were an easy way to obtain it we would not be involved in the current

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 203

Negation Elimination subderivation.) But if we take ∼ Q to be ‘∼ (A ∨ ∼ A)’
then our new goal becomes ‘A ∨ ∼ A’ and this sentence is readily derived—by
applying Disjunction Introduction to line 2. We are now able to complete the
derivation.

Derive: A ∨ ∼ A

1 ∼ (A ∨ ∼ A) A / ∼ E

2 ∼ A A / ∼ E

3 A ∨ ∼ A 2 ∨I
4 ∼ (A ∨ ∼ A) 1 R
5 A 2–4 ∼ E
6 A ∨ ∼ A 5 ∨I
7 ∼ (A ∨ ∼ A) 1 R
8 A ∨ ∼ A 1–7 ∼ E

Next we will prove the theorem ‘∼ (A ∨ B) (∼ A & ∼ B)’. This theo-
rem is a biconditional, so it is plausible the last line will come from Biconditional
Introduction, and that rule requires two subderivations, one in which we derive
‘∼ A & ∼ B’ from {∼ (A ∨ B)} and the other in which we derive ‘∼ (A ∨ B)’ from
{∼ A & ∼ B}.

Derive: ∼ (A ∨ B) (∼ A & ∼ B)

1 ∼ (A ∨ B) A / I

G ∼ A & ∼ B

∼ A & ∼ B A / I

G ∼ (A ∨ B)
G ∼(A ∨ B) (∼ A & ∼ B) 1–—, —–— I

We now have two goals, ‘∼ A & ∼ B’ in the first subderivation and ‘∼ (A ∨ B)’
in the second subderivation. We will work on the upper subderivation first.
Since our goal is a conjunction, we will take as new subgoals the two conjuncts
of that conjunction, ‘∼ A’ and ‘∼ B’, and attempt to derive each by Negation
Introduction.

204 SENTENTIAL LOGIC: DERIVATIONS

Derive: ∼ (A ∨ B) (∼ A & ∼ B)

1 ∼ (A ∨ B) A / I

2 A A / ∼ I

3 A ∨ B 2 ∨I
4 ∼ (A ∨ B) 1 R
5 ∼ A 2–4 ∼ I
6 B A / ∼ I

7 A ∨ B 6 ∨I
8 ∼ (A ∨ B) 1 R
9 ∼ B 6–8 ∼ I

10 ∼ A & ∼ B 5, 9 &I

11 ∼ A & ∼ B A / I

G ∼ (A ∨ B)
G ∼ (A ∨ B) (∼ A & ∼ B) 1–10, 11–— I

Note that within the first of our two main subderivations we twice use
Negation Introduction, and in each case use ‘A ∨ B’ and ‘∼ (A ∨ B)’ as Q
and ∼ Q.

Completing our second main subderivation requires deriving ‘∼ (A ∨ B)’,
and this invites a Negation Introduction subderivation, giving us a new assump-
tion, ‘A ∨ B’, which in turn invites a Disjunction Elimination strategy:

11 ∼ A & ∼ B A / I

12 A ∨ B A / ∼ I

13 A A / ∨E

B

G ∼ (A ∨ B) 12–— ∼ I
G ∼ (A ∨ B) (∼ A & ∼ B) 1–10, 11–— I

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 205

The question now is what sentence we want to play the role of ‘R’ in our Dis-
junction Elimination subderivation. We need a sentence and its negation to make
our Negation Elimination subderivation, began at line 12, work. Two negations
are readily available, ‘∼ A’ and ‘∼ B’. So we will arbitrarily select one of these, say
‘∼ B’ and then make ‘B’ the sentence we try to obtain by Disjunction Elimination:

11 ∼ A & ∼ B A / I

12 A ∨ B A / ∼ I

13 A A / ∨E

G B

B A / ∨E

G B
G B 2, 3–—, —–— ∨E
G ∼ (A ∨ B) 12–— ∼ I
G ∼ (A ∨ B) (∼ A & ∼ B) 1–10, 11–— I

We now have two subderivations to complete. The second is, in fact, already
complete, for it involves deriving ‘B’ from an auxiliary assumption of ‘B’, so Reit-
eration will accomplish the task. The first involves deriving ‘B’ from the assump-
tions on lines 11 through 13. Fortunately a sentence, ‘A’, and its negation, ‘∼ A’
are both readily available. So Negation Elimination will yield the desired result:

11 ∼ A & ∼ B A / I

12 A ∨ B A /∼ I

13 A A / ∨E

14 ∼ B A / ∼ E

15 ∼ A 11 &E
16 A 13 R
17 B 14–16 ∼ E

18 B A / ∨E

19 B 18 R
20 B 12, 13–17, 18–19 ∨E
21 ∼ B 11 &E
22 ∼ (A ∨ B) 12–21 ∼ I
23 ∼ (A ∨ B) (∼ A & ∼ B) 1–10, 11–22 I

This completes our proof of the theorem ‘∼ (A ∨ B) (∼ A & ∼ B)’.

206 SENTENTIAL LOGIC: DERIVATIONS

We will conclude our discussion of theorems by constructing a proof

of what has become known as Peirce’s Law.4

[(A ⊃ B) ⊃ A] ⊃ A

Since the theorem is a conditional it is plausible that we will be using Condi-

tional Introduction as our primary strategy.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

G A

G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

But how we should proceed next may not be obvious. We could derive our cur-

rent goal, ‘A’, from line 1 by Conditional Elimination if we also had ‘A ⊃ B’,

but we do not. So perhaps we should take the sentence ‘A ⊃ B’ as our new

goal, and try to obtain it by Conditional Introduction.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 A A / ⊃I

G B

G A ⊃ B 2–— ⊃I

G A 1, — ⊃E

G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

So far, one might think, so good. But how are we to obtain ‘B’ from the sentences

on lines 1 and 2? We could assume ‘∼ B’ and hope to use Negation Elimination.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 A A / ⊃I

3 ∼ B A / ∼ E

G B

G A ⊃ B 2–— ⊃I

G A 1, — ⊃E

G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

4The first proof of this theorem was given by Charles Peirce, a nineteenth century American philosopher.

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 207

Unfortunately, the only negation now available is ‘∼ B’, so it appears that to
make Negation Elimination work we will have to derive ‘∼ B’ (by Reiteration)
and ‘B’. But how do we derive ‘B’? We seem to be back where we were before
we assumed ‘∼ B’. That is, ‘B’ is again our goal sentence.

We appear to be on the wrong track. Suppose that when we had ‘A’ as
our goal, instead of planning on deriving ‘A’ by Conditional Elimination we try
to derive it by Negation Elimination.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ∼A A / ∼ E

G A 2–— ∼ E

G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

Since we have a negation available, ‘∼ A’, perhaps we should take ‘A’ and ‘∼ A’
as the sentences Q and ∼ Q we need to use Negation Elimination and accord-
ingly make ‘A’ our new goal. This may seem no more promising than was the
line of reasoning recently abandoned, since deriving ‘A’ was our goal before
assuming ‘∼ A’. But we are, in fact, making progress.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ∼ A A / ∼ E

G A

∼ A 2 R

G A 2–— ∼ E

G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

We can obtain ‘A’ from line 1 by Conditional Elimination if we can first obtain
‘A ⊃ B’. This is, of course, the position we were in at the start of our work. But
now we have an additional assumption available to us, namely ‘∼ A’.

208 SENTENTIAL LOGIC: DERIVATIONS

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ∼ A A / ∼ E

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I
G A 1–— ⊃E

∼ A 2 R
G A 2–— ∼ E
G [(A ⊃ B) ⊃ A] ⊃ A 1–— ⊃I

And now we can see our way to the end. We need ‘B’ and we have a sentence
and its negation readily available (‘A’ and ‘∼ A’), so we can assume ‘∼ B’ and
use Negation Elimination. Here is the completed derivation.

Derive: [(A ⊃ B) ⊃ A] ⊃ A

1 (A ⊃ B) ⊃ A A / ⊃I

2 ∼ A A / ∼ E

3 A A / ⊃I

4 ∼ B A / ∼ E

5 A 3 R
6 ∼Α 2 R
7 B 4–6 ∼ E
8 A ⊃ B 3–7 ⊃I
9 A 1, 8 ⊃E

10 ∼A 2 R
11 A 2–10 ∼ E
12 [(A ⊃ B) ⊃ A] ⊃ A 1–11 ⊃I

It is worth noting that in this example, as is frequently the case, a strategy
that at first seems obvious (using Conditional Elimination to obtain ‘A’ as the
penultimate line of the derivation) but proves problematic can successfully
be used as a secondary strategy inside an alternative strategy (here Negation
Elimination).

EQUIVALENCE

Suppose we want to establish that ‘A ∼ B’ and ‘∼ A B’ are equivalent
in SD (they are). Two derivations are required, one deriving ‘∼ A B’ from

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 209

{A ∼ B} and one deriving ‘A ∼ B’ from {∼ A B}. Here is a start for
the first of these:

Derive: ∼ A B

1 A ∼ B Assumption

G ∼ A B

It should be apparent that our goal, ‘∼ A B’ is not going to be obtained by
an elimination rule. We have too little to work with by way of primary assump-
tions for that to be a viable strategy. Since the main connective of our goal
sentence is ‘ ’, Biconditional Introduction may be a viable strategy. So we
continue our derivation thus:

Derive: ∼ A B

1 A ∼ B Assumption

2 ∼ A A / I

G B

B A / I

G ∼ A

G ∼ A B 2–—, —–— I

210 SENTENTIAL LOGIC: DERIVATIONS

We now have two subderivations to complete. The goal of the first is ‘B’, and
it can be obtained by Negation Elimination. The goal of the second, ‘∼ A’, can
be obtained by Negation Introduction:

Derive: ∼ A B

1 A ∼ B Assumption

2 ∼ A A / I

3 ∼ B A / ∼ E

4 A 1, 3 E
5 ∼ A 2 R
6 B 3–5 ∼ E

7 B A / I

8 A A / ∼ I

9 ∼ B 1, 8 E
10 B 7 R
11 ∼ A 8–10 ∼ I
12 ∼ A B 2–6, 7–11 I

The second half of our current task is to derive ‘A ∼ B’ from {∼A B}.

Derive: A ∼ B

1 ∼ A B Assumption

G A ∼ B

Biconditional Introduction is also a good strategy in this case.

Derive: A ∼ B

1 ∼ A B Assumption

2 A A / I

G ∼ B A / I

∼ B

G A
G A ∼ B 2–—, —–— I

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 211

Here, too, negation strategies will yield the desired results:

Derive: A ∼ B

1 ∼ A B Assumption

2 A A / I

3 B A / ∼ I

4 ∼ A 1, 2 E
5 A 2 R
6 ∼ B 3–5 ∼ I

7 ∼ B A / I

8 ∼ A A / ∼ E

9 B 1, 7 E
10 ∼ B 7 R
11 A 8–10 ∼ E
12 A ∼ B 2–6, 7–11 I

We next show that ‘A ⊃ B’ and ‘∼ A ∨ B’ are equivalent in SD. To do so
will require deriving each sentence from the unit set of the other. So we will be
doing two derivations. Both of these derivations are rather difficult but also highly
instructive as they will allow us to illustrate strategies associated with a number
of introduction and elimination rules. We set up our first derivation as follows:

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

G ∼ A ∨ B

Our goal sentence is ‘∼ A ∨ B’, a disjunction. So we might be tempted to try
to obtain our goal by Disjunction Introduction. While this strategy will not
work, we will explore it anyway to illustrate how one can fall into unproductive
strategies. If we are to use Disjunction Introduction we will need to first obtain
either ‘∼ A’ or ‘B’. We will take ‘B’ as our new goal ‘B’. (In fact, neither ‘B’
nor ‘∼ A’ is obtainable given just ‘A ⊃ B’.)

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

G B
G ∼ A ∨ B — ∨I

212 SENTENTIAL LOGIC: DERIVATIONS

Since our goal is now ‘B’, and we have ‘A ⊃ B’ at line 1, it might seem like a
good idea to assume ‘A’ and then use Conditional Elimination to obtain ‘B’.

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

2 A A

3 B 1, 2 ⊃E

4 B 3 R MISTAKE!

5 ∼ A ∨ B 4 ∨ I

Line 4 is a mistake because it appeals to a sentence, ‘B’, on line 3 that is not
accessible at line 4. There is a scope line to the left of ‘B’ at line 3 that does
not continue through line 4. We had two chances to avoid going down this
path to a mistake. First, thinking we could get ‘∼ A ∨ B’ by first deriving ‘B’
from the assumption on line 1 was a bad idea. That assumption is ‘A ⊃ B’. We
are trying to show that ‘A ⊃ B’ and ‘∼ A ∨ B’ are equivalent in SD, as indeed
they are. Although we are here concerned with syntactic properties of sentences
and sets of sentences of SL, it is well to remember that for any set of sen-
tences of SL and any sentence P of SL,

 P in SD if and only if P.

Our ill-advised strategy involved trying to show that

{A ⊃ B} B

where in fact ‘B’ is not derivable from {A ⊃ B}. For if this derivability claim did
hold then it would also have to be the case that

{A ⊃ B} B

and this claim is false. There are truth-value assignments on which ‘A ⊃ B’ is
true and ‘B’ false, namely every truth-value assignment on which ‘A’ and ‘B’
are both assigned F.

We had a second chance to avoid going down an unpromising road
when we assumed ‘A’ at line 2. Note that there is nothing in the justification
column for line 2 indicating why we are making this assumption. Had we been
paying attention at that time we would have realized that we have no good rea-
son for assuming ‘A’. There is no subderivation strategy that will allow us to
assume ‘A’, derive some sentence or sentences, and then end the subderivation
and enter ‘B’ as the next line.

A more promising strategy for completing our first derivation, though
one that does not initially come to mind when one is first learning to do der-
ivations, is to use Negation Elimination to obtain ‘∼ A ∨ B’.

 =

 =

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 213

Derive: ∼ A ∨ B

1 A ⊃ B A / I

2 ∼ (∼ A ∨ B) A / ∼ E

G ∼ A ∨ B 2–— ∼ E

This strategy will seem unpromising if one thinks either that the Q and ∼ Q
that need to be derived to use a negation rule must be an atomic sentence and
its negation, or that a negation must be among or easily obtained from the sen-
tences that are accessible before one makes the auxiliary assumption that
begins a negation subderivation. Neither is the case. The Q and ∼ Q that both
negation rules require deriving can be a compound sentence and its negation
as well as an atomic sentence and its negation. And the ∼ Q that is derived can
occur as the auxiliary assumption that initiates the negation subderivation.
Keeping this in mind we proceed as follows:

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

2 ∼ (∼ A ∨ B) A / ∼ E

G ∼ A ∨ B

∼ (∼ A ∨ B) 2 R

G ∼ A ∨ B 2–— ∼ E

It certainly might appear that we are making no progress. The goal of this der-
ivation is ‘∼ A ∨ B’. And this same sentence is now our goal within the sub-
derivation begun at line 2. But in fact we are making progress. We noted earlier
that we cannot derive ‘∼ A ∨ B’ by Disjunction Introduction when the only
accessible sentence is ‘A ⊃ B’. But we now have two accessible sentences to
appeal to, those at lines 1 and 2. If we can use these two assumptions to derive
‘∼ A’, we can obtain our current goal, ‘∼ A ∨ B’ by Disjunction Introduction.
This suggests we try to obtain ‘∼ A’ by Negation Introduction.

214 SENTENTIAL LOGIC: DERIVATIONS

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

2 ∼ (∼ A ∨ B) A / ∼ E

3 A A / ∼ I

G ∼ A 3–— ∼ I
G ∼ A ∨ B

∼ (∼ A ∨ B) 2 R
G ∼ A ∨ B 2–— ∼ E

We are again at the point where it is essential to be able to “see” what
we can obtain from the sentences that are accessible at the point where we are
working (inside the subderivation that we began at line 3). The accessible sen-
tences are those on lines 1–3. At line 3 we have ‘A’. At line 1 we have ‘A ⊃ B’.
From these two sentences we can obtain ‘B’ by Conditional Elimination. From
‘B’ we can obtain ‘∼ A ∨ B’ by Disjunction Introduction, and we can derive the
negation of this sentence, ‘∼ (∼ A ∨ B)’ by Reiteration on line 2. These steps
will complete the first half of our current task, that of showing that ‘A ⊃ B’
and ‘∼ A ∨ B’ are equivalent in SD.

Derive: ∼ A ∨ B

1 A ⊃ B Assumption

2 ∼ (∼ A ∨ B) A / ∼ E

3 A A / ∼ I

4 B 3, 1 ⊃E
5 ∼ A ∨ B 4 ∨I
6 ∼ (∼ A ∨ B) 2 R
7 ∼ A 3–6 ∼ I
8 ∼ A ∨ B 7 ∨I
9 ∼ (∼ A ∨ B) 2 R

10 ∼ A ∨ B 2–9 ∼ E

This derivation of ‘∼ A ∨ B’ from ‘A ⊃ B’ is instructive in several ways. First, given
that a disjunction is derivable, it does not follow that the last step in that deriva-
tion is Disjunction Introduction. Second, in picking a goal sentence it is wise to
consider whether it is plausible that the selected sentence is derivable from the
currently accessible sentences. Third, when using a negation rule the Q and ∼ Q
to be derived within the scope of the assumption called for by the rule may well
both be compound sentences. Fourth, it does sometimes happen that one sen-
tence is a goal in multiple parts of a derivation. Fifth, in using a negation rule it

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 215

is advisable to use as ∼ Q a sentence that is readily available, and it may be avail-
able as the assumption of the very subderivation in which we are working. Finally,
there is nothing wrong with using two or more instances of negation rules within
which the same sentences (on different lines) play the roles of Q and ∼ Q.

The second part of our proof that ‘A ⊃ B’ and ‘∼ A ∨ B’ are equiva-
lent in SD, a derivation of ‘A ⊃ B’ from {∼ A ∨ B}, is also instructive.

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

G A ⊃ B

We now need a strategy for getting from ‘∼ A ∨ B’ to ‘A ⊃ B’. A little reflec-
tion suggests two alternative strategies. Since the goal sentence is a material
conditional, we could use Conditional Introduction, and accordingly assume
‘A’ at line 2 for the purpose of using Conditional Introduction. Alternatively,
since the only accessible sentence, the one at line 1, is a disjunction, we could
plan to work to the conditional we want by using Disjunction Elimination. That
is, in this case we can either let our goal sentence drive our strategy, working
from the bottom up, or we can let our one accessible sentence drive our strat-
egy, working from the top down. Here, as is often the case, both strategies will
work. Moreover, whichever strategy we pick as our primary strategy we will end
up using the other strategy within the first strategy. This is also often the case.
Picking Disjunction Elimination as our primary strategy yields the following:

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 ∼ A A / ∨E

G A ⊃ B

B A / ∨E

G A ⊃ B

G A ⊃ B 1, 2–—, —–— ∨E

Lines 1 and 2, by themselves, don’t suggest a strategy for deriving
‘A ⊃ B’. But ‘A ⊃ B’ is a material conditional and this suggests we use Con-
ditional Introduction to obtain it.

216 SENTENTIAL LOGIC: DERIVATIONS

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 ∼ A A / ∨E

3 A A / ⊃I

G B
G A ⊃ B 3–— ⊃I

B A / ∨E

G A ⊃ B
G A ⊃ B 1, 2–—, —–— ∨E

Our goal within the subderivation beginning on line 3 is ‘B’. We now note that
the three accessible sentences include both ‘A’ and ‘∼ A’. Their availability
invites a negation strategy. To obtain ‘B’ we thus assume ‘∼ B’ and derive ‘A’
and ‘∼ A’, both by Reiteration.

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 ∼ A A / ∨E

3 A A / ⊃I

4 ∼ B A / ∼ E

5 A 3 R
6 ∼ A 2 R
7 B 4–6 ∼ E
8 A ⊃ B 3–7 ⊃I

9 B A / ∨E

G A ⊃ B
G A ⊃ B l, 2–8, 9–— ∨E

What remains is to derive ‘A ⊃ B’ from ‘B’. This is actually quite easy. We can use
Conditional Introduction, assuming ‘A’ and deriving ‘B’ by Reiteration on line 9.

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 217

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 ∼ A A / ∨E

3 A A / ⊃I

4 ∼B A / ∼ E

5 A 3 R
6 ∼ A 2 R
7 B 4–6 ∼ E
8 A ⊃ B 3–7 ⊃I
9 B A / ∨E

10 A A / ⊃I

11 B 9 R
12 A ⊃ B 10–11 ⊃I
13 A ⊃ B 1, 2–8, 9–12 ∨E

We have derived ‘∼ A ∨ B’ from {A ⊃ B} and ‘A ⊃ B’ from {∼ A ∨ B},
thus demonstrating that these sentences are equivalent in SD. Two important
lessons about material conditionals are illustrated in our last derivation. The
first is that a conditional can be derived from the negation of its antecedent,
as we did in lines 2 through 8 above. The second is that a material conditional
can be derived from its consequent as we did in lines 9–12 above.

In our last derivation we used Disjunction Elimination as our primary
strategy. Using Conditional Introduction as the primary strategy works just as well:

Derive: A ⊃ B

1 ∼ A ∨ B Assumption

2 A A / ⊃I

3 ∼ A A / ∨E

4 ∼ B A / ∼ E

5 A 2 R
6 ∼ A 3 R
7 B 4–6 ∼ E
8 B A / ∨E

9 B 8 R
10 B 1, 3–7, 8–9 ∨E
11 A ⊃ B 2–10 ⊃I

INCONSISTENCY

We will conclude our illustration of strategies for constructing derivations in
SD by doing several derivations that demonstrate the inconsistency of given sets.

218 SENTENTIAL LOGIC: DERIVATIONS

Consider first the set {∼ (A ⊃ B), B}. To show this set is inconsistent in SD we
need to derive from it some sentence Q and its negation ∼ Q. In planning a
strategy it helps to remember that Q need not be an atomic sentence, and
that it is often useful to use as ∼ Q a sentence that is readily available. In the
present case the only readily available negation is ‘∼ (A ⊃ B)’. This suggests
the following strategy:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 B Assumption

G A ⊃ B

G ∼ (A ⊃ B) 1 R

Our goal is now to derive ‘A ⊃ B’ from our two assumptions. Since this goal
sentence is a conditional, we will plan on using Conditional Introduction:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 B Assumption

3 A A / ⊃I

G B

G A ⊃ B 3–— ⊃I

G ∼ (A ⊃ B) 1 R

It is now apparent that our derivation is effectively done. Our only remaining
goal, ‘B’, can be obtained by Reiteration on line 2:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 B Assumption

3 A A / ⊃I

4 B 2 R

5 A ⊃ B 3–4 ⊃I

6 ∼ (A ⊃ B) 1 R

Establishing that the following set is inconsistent in SD is only modestly
more challenging:

{A ∼ B, B C, A C}

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 219

In this example the only negation that occurs as a component of any of the
members of the set is ‘∼ B’. So perhaps our goal should be to derive both ‘B’
and ‘∼ B’, even though neither can be derived by Reiteration or by any other
rule in a single step.

Derive: B, ∼ B

1 A ∼ B Assumption

2 B C Assumption

3 A C Assumption

G B

G ∼ B

To obtain our first goal, ‘B’, we might try using Negation Elimination:

Derive: B, ∼ B

1 A ∼ B Assumption

2 B C Assumption

3 A C Assumption

4 ∼ B A / ∼ I

G B 4–— ∼ E

G ∼ B 4–— ∼ I

220 SENTENTIAL LOGIC: DERIVATIONS

A cursory inspection of the sentences on lines 1–4 reveals that we can obtain
‘∼ B’ by Reiteration and ‘B’ by repeated uses of Biconditional Elimination:

Derive: B, ∼ B

1 A ∼ B Assumption
2 B C Assumption
3 A C Assumption

4 ∼ B A / ∼ I

5 A 4, 1 E
6 C 5, 3 E
7 B 6, 2 E
8 ∼ B 4 R
9 B 4–8 ∼ I

G ∼ B

The remaining task is to derive ‘∼ B’, and this too can be accomplished by
repeated applications of Biconditional Elimination:

Derive: B, ∼ B

1 A ∼ B Assumption
2 B C Assumption
3 A C Assumption

4 ∼ B A / ∼ I

5 A 4, 1 E
6 C 5, 3 E
7 B 6, 2 E
8 ∼ B 4 R
9 B 4–8 ∼ I

10 C 9, 2 E
11 A 10, 3 E
12 ∼ B 11, 1 E

Finally, we will show that the set {∼ (A ⊃ B), ∼ (B ⊃ C)} is inconsistent
in SD. This is a challenging exercise. We do have two negations immediately
available, so we will probably use one of them as ∼ Q; which one makes no dif-
ference. So we set up our derivation this way:

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 221

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 ∼ (B ⊃ C) Assumption

G A ⊃ B

∼ (A ⊃ B) 1 R

We cannot apply any elimination rule to either assumption since they are both
negations. So we proceed by asking how our current goal, ‘A ⊃ B’, could be
obtained by an introduction rule, and the answer is of course by Conditional
Introduction:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 ∼ (B ⊃ C) Assumption

3 A A / ⊃I

G B

G A ⊃ B 3–— ⊃I

∼ (A ⊃ B) 1 R

Our new goal is ‘B’. The only strategy for obtaining ‘B’ that seems remotely
promising is that of Negation Elimination:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 ∼ (B ⊃ C) Assumption

3 A A / ⊃I

4 ∼ B A / ∼ E

G B 4–— ∼ E

G A ⊃ B 3–— ⊃I

∼ (A ⊃ B) 1 R

222 SENTENTIAL LOGIC: DERIVATIONS

We need to derive, within the subderivation beginning on line 4, a sentence Q
and its negation ∼ Q. Three negations, ‘∼ (A ⊃ B)’, ‘∼ (B ⊃ C)’, and ‘∼B’ are
readily available. Since the presumed inconsistency of the set we are testing
fairly clearly derives from the interplay of those two assumptions—that is, nei-
ther assumption by itself is problematic—we will eventually have to appeal to
both assumptions. And we are already using ‘∼ (A ⊃ B)’ (as the last line of our
derivation), so perhaps it is time to find a role for ‘∼ (B ⊃ C)’. Accordingly we
will try to obtain ‘B ⊃ C’ and ‘∼ (B ⊃ C)’.

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 ∼ (B ⊃ C) Assumption

3 A A / ⊃I

4 ∼ B A / ∼ E

B ⊃ C

∼ (B ⊃ C) 2 R

B 4–— ∼ E

A ⊃ B 3–— ⊃I

∼ (A ⊃ B) 1 R

Our new goal, ‘B ⊃ C’, is a conditional, so Conditional Introduction seems
appropriate:

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption

2 ∼ (B ⊃ C) Assumption

3 A A / ⊃I

4 ∼B A / ∼ E

5 B A / ⊃I

C

B ⊃ C 5–— ⊃I

∼ (B ⊃ C) 2 R

B 4–— ∼ E

A ⊃ B 3–— ⊃I

∼ (A ⊃ B) 1 R

At this point, as is often the case, the “trick” is to be aware of what sentences
are available to us—in this case the sentences on lines 1–5—and what we can do
with those sentences. Note that we have both ‘B’ (at line 5) and ‘∼ B’ (at line 4),

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 223

and we know that whenever we can obtain a sentence and its negation we can
obtain any sentence whatsoever by the appropriate negation strategy. We want
‘C’, so we will obtain it by Negation Elimination.

Derive: A ⊃ B, ∼ (A ⊃ B)

1 ∼ (A ⊃ B) Assumption
2 ∼ (B ⊃ C) Assumption

3 A A / ⊃I

4 ∼ B A / ∼ E

5 B A / ⊃I

6 ∼ C A / ∼ E

7 B 5 R
8 ∼ B 4 R
9 C 6–8 ∼ E

10 B ⊃ C 5–9 ⊃I
11 ∼ (B ⊃ C) 2 R
12 B 4–11 ∼ E
13 A ⊃ B 3–12 ⊃I
14 ∼ (A ⊃ B) 1 R

5.3E EXERCISES

1. Construct derivations that establish the following derivability claims. In each
case start by setting up the main structure of the derivation—with the primary
assumption or assumptions at the top and the sentence to be derived at the
bottom, and then identify the initial subgoal or goals. Complete the derivation,
remembering to consider both the form of the current goal sentence and the
content of the accessible sentences in selecting appropriate subgoals.

a. {A ⊃ B} A ⊃ (A & B)
*b. {∼ B A} A ⊃ ∼ B

c. {(K ⊃ L) & (L ⊃ K)} L K
*d. {M P, ∼ P} ∼ M

e. {B & ∼ B} C
*f. {D} A ⊃ (B ⊃ D)
g. {A ⊃ C, (∼ A ∨ C) ⊃ (D ⊃ B)} D ⊃ B

*h. {∼ A ⊃ ∼ B, A ⊃ C, B ∨ D, D ⊃ E} E ∨ C
i. {A ⊃ B, ∼ (B & ∼ C) ⊃ A} B

*j. {∼ A ⊃ B, C ⊃ ∼ B, ∼ (∼ C & ∼ A)} A
k. {A ∨ (B & C), C ⊃ ∼ A} B ∨ ∼ C
*l. {(A ⊃ B) ⊃ ∼ B} ∼ B
m. {A ∨ B) ⊃ C, (D ∨ E) ⊃ [(F ∨ G) ⊃ A]} D ⊃ (F ⊃ C)
*n. {(F ∨ G) ⊃ (H & I)} ∼ F ∨ H

o. {A ⊃ ∼ (B ∨ C), (C ∨ D) ⊃ A, ∼ F ⊃ (D & ∼ E)} B ⊃ F
*p. {(A & B (A ∨ B), C & (C ∼ ∼ A)} B
q. {F ⊃ (G ∨ H), ∼ (∼ F ∨ H), ∼ G} H

*r. {∼ (A ⊃ B) & (C & ∼ D), (B ∨ ∼ A) ∨ [(C & E) ⊃ D]} ∼ E

224 SENTENTIAL LOGIC: DERIVATIONS

2. Show that each of the following arguments is valid in SD.

a. A ⊃ ∼ B

∼ B ⊃ C

A ⊃ C

*b. B ⊃ (A & ∼ B)

∼ B

c. A B

∼ A

∼ B

*d. A ⊃ (B & C)

∼ C

∼ A

e. D

A ⊃ [B ⊃ (C ⊃ D)]

*f. A B

B C

A C

g. A ⊃ (B ⊃ C)

D ⊃ B

A ⊃ (D ⊃ C)

*h. ∼ B ⊃ A

C ∨ ∼ B

∼ C

A

i. ∼ A ∨ B

B ⊃ C

A ⊃ C

*j. (E ⊃ T) & (T ⊃ O)

O ⊃ E

(E O) & (O E)

k. A ⊃ (C ⊃ B)

∼ C ⊃ ∼ A

A

B

*l. ∼ F

∼ G

∼ (F ∨ G)

m. F G

F ∨ G

F & G

3. Prove that each of the following is a theorem in SD.

a. A ⊃ (A ∨ B)

*b. A ⊃ (B ⊃ A)

c. A ⊃ [B ⊃ (A & B)]

*d. (A & B) ⊃ [(A ∨ C) & (B ∨ C)]

e. (A B) ⊃ (A ⊃ B)

*f. (A & ∼ A) ⊃ (B & ∼ B)

g. (A ⊃ B) ⊃ [(C ⊃ A) ⊃ (C ⊃ B)]

*h. A ∨ ∼ A

i. [(A ⊃ B) & ∼ B] ⊃ ∼ A

*j. (A & A) A

k. A ⊃ [B ⊃ (A ⊃ B)]

*l. ∼ A ⊃ [(B & A) ⊃ C]

m. (A ⊃ B) ⊃ [∼B ⊃ ∼ (A & D)]

*n. [(A ⊃ B) ⊃ A] ⊃ A

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 225

4. Show that the members of each of the following pairs of sentences are equiv-

alent in SD.

a. A & ∼ A B & ∼ B

*b. A & A A ∨ A

c. (A ∨ B) ⊃ A B ⊃ A

*d. ∼ (A ⊃ B) A & ∼ B

e. ∼ (A B) (A & ∼ B) ∨ (B & ∼ A)

*f. A ∼ B ∼ (A B)

5. Show that each of the following sets of sentences is inconsistent in SD.

a. {∼ (A ⊃ A)}

*b. {A ⊃ (B & ∼ B), A}

c. {A B, B ⊃ ∼ A, A}

*d. {A ∼ (A A), A}

e. {A ⊃ ∼ A, ∼ A ⊃ A}

*f. {A ⊃ (C ⊃ B), ∼ C ⊃ B, A & ∼ B}

g. {∼ (A ∨ B), C ⊃ A, ∼ C ⊃ B}

*h. {∼ (B A), ∼ B, ∼ A}

i. {∼ (F ∨ G) (A ⊃ A), H ⊃ F, ∼ H ⊃ F}

6. Show that the following derivability claims hold in SD.

a. {A ⊃ B, ∼ A ⊃ ∼ B)} A B

*b. {F ∼ (G ∼ H), ∼ (F ∨ G)} H

c. {A ∼ (B ∨ C), B ⊃ C} A

*d. {G ∨ ∼ H, ∼ G ∨ ∼ H} ∼ H

e. {B ∨ (C ∨ D), C ⊃ A, A ⊃ ∼ C} B ∨ D

*f. {(A ⊃ B) ⊃ C, (A ⊃ B) ∨ ∼ C ∼ C ∼ (A ⊃ B)

g. {(A ⊃ (D & B), (∼ D B) & (C ⊃ A)} (A ⊃ B) ⊃ ∼ C

*h. {∼ (A B) (A & ∼ B) ∨ (B & ∼ A)

7. Show that each of the following arguments is valid in SD.

a. ∼ (C ∨ A)

∼ (C ∼ A)

*b. C ∨ ∼ D

C ⊃ E

D

E

c. ∼ A & ∼ B

A B

*d. ∼ (F ∨ ∼ G) (∼ (H ∨ I)

F ∨ I

H ∨ I

e. H ∼ (I & ∼ J)

∼ I ∼ H

J ⊃ ∼ I

∼ H

*f. ∼ (F ⊃ G)

∼ (G ⊃ H)

I

g. (F ∨ G) ∨ (H ∨ ∼ I)

F ⊃ H

I ⊃ ∼ G

H ∨ ∼ I

226 SENTENTIAL LOGIC: DERIVATIONS

8. Prove that each of the following is a theorem in SD.

a. ∼ (A ⊃ B) ⊃ ∼ (A B)

*b. ∼ (A B) ⊃ ∼ (A & B)

c. (A ⊃ B) ∨ (B ⊃ A)

*d. [A ⊃ (B ⊃ C)] [(A ⊃ B) ⊃ (A ⊃ C)]

e. [(A ∨ B) ⊃ C] [(A ⊃ C) & (B ⊃ C)]

*f. [A ∨ (B ∨ C)] ⊃ [(D ⊃ A) ∨ ((D ⊃ B) ∨ (D ⊃ C))]

g. ∼ (A B) (A ∼ B)

9. Show that the members of each of the following pairs of sentences are equiv-

alent in SD.

a. A ∼ ∼ A Double Negation

*b. A A & A Idempotence

c. A A ∨ A Idempotence

*d. A & B B & A Commutation

e. A ∨ B B ∨ A Commutation

*f. A & (B & C) (A & B) & C Association

g. A ∨ (B ∨ C) (A ∨ B) ∨ C Association

*h. A ⊃ (B ⊃ C) (A & B) ⊃ C Exportation

i. A ⊃ B ∼ B ⊃ ∼ A Transposition

*j. A B (A ⊃ B) & (B ⊃ A) Equivalence

k. A B (A & B) ∨ (∼ A & ∼ B) Equivalence

*l. A & (B ∨ C) (A & B) ∨ (A & C) Distribution

m. A ∨ (B & C) (A ∨ B) & (A ∨ C) Distribution

*n. ∼ (A ∨ B) ∼ A & ∼ B De Morgan

o. ∼ (A & B) ∼ A ∨ ∼ B De Morgan

*p. A ⊃ B ∼ A ∨ B Implication

10. Show that each of the following sets of sentences of SL is inconsistent in SD.

a. {(A ⊃ B) & (A ⊃ ∼ B), (C ⊃ A) & (∼ C ⊃ A)}

*b. {B (A & ∼ A), ∼ B ⊃ (A & ∼ A)}

*h. ∼ D

C ⊃ (A B)

(D ∨ B) ⊃ ∼ A

(A B) ⊃ (D & E)

∼ B ⊃ D

C ⊃ (∼ A & B)

i. ∼ (F ∨ ∼ G) ∼ (H ∨ I)

F ∨ I

F ∨ (I & ∼ G)

*j. (A ∨ ∼ B) ⊃ (C & D)

A ∼ D

∼ B ∼ C

∼ (A ∨ B)

k. (∼ A ∼ C) (B ∼ D)

∼ A ⊃ ∼ B

C ⊃ ∼ D

(∼ A ∼ C) ⊃ (∼ A D)

*l. F ⊃ (G ∨ H)

∼ (∼ F ∨ H)

∼ G

H

m. ∼ (A ⊃ B) & (C & ∼ D)

(B ∨ ∼ A) ∨ [(C & E) ⊃ D]

∼ E

5.3 STRATEGIES FOR CONSTRUCTING DERIVATIONS IN SD 227

c. {C ∼ A, C A}

*d. {∼ (F ∨ G) (∼ F ⊃ ∼ F), ∼ G ⊃ F}

e. {∼ [A ∨ (B ∨ C)], A ∼ C}

*f. {F ∨ (G ⊃ H), ∼ H & ∼ (F ∨ ∼ G)}

g. {A & (B ∨ C), (∼ C ∨ H) & (H ⊃ ∼ H), ∼ B}

*h. {[(A B) (D & ∼ D)] B, A}

11. Symbolize the following arguments in SL. Then show that the symbolized argu-

ments are valid in SD.

a. Spring has sprung, and the flowers are blooming. If the flowers are blooming,

the bees are happy. If the bees are happy but aren’t making honey, then spring

hasn’t sprung. So the bees are making honey.

*b. If Luscious Food Industries goes out of business, then food processing

won’t be improved. And if they go out of business, canned beans will be available

if and only if Brockport Company stays in business. But Brockport Company is

going out of business, and canned beans will be available. Hence Luscious Food

Industries is staying in business unless food processing is improved.

c. If civil disobedience is moral, then not all resistance to the law is morally pro-

hibited, although our legal code is correct if all resistance to the law is morally

prohibited. But civil disobedience is moral if and only if either civil disobedi-

ence is moral or our legal code is correct. Our judges have acted well only if

all resistance to the law is morally prohibited. So our judges haven’t acted well.

*d. If oranges contain citric acid so do lemons, or if lemons don’t contain citric

acid neither do grapefruit. Thus, if oranges and grapefruit contain citric acid,

so do lemons.

e. Neither rubber nor wood is a good conductor of electricity. But either rubber

is a good conductor if and only if metal is, or if metal or glass is a good con-

ductor then wood is a good conductor if and only if metal is. So metal isn’t a

good conductor of electricity.

*f. If the trains stop running then airline prices will increase, and buses will reduce

their fares provided that trains don’t stop running. If airline prices increase,

then buses won’t lose their customers. Hence buses will lose their customers

only if they reduce their fares.

g. If the house is built and taxes increase, Jones will go bankrupt. If Smith becomes

mayor, then the tax director will quit; and Smith will become mayor unless the

tax director quits. But taxes won’t increase if but only if the tax director doesn’t

quit and Smith becomes mayor. So if the house is built, Jones will go bankrupt.

*h. Jim is a Democrat only if Howard or Rhoda is. If Howard is a Democrat, so

are Barbara and Allen. If Barbara is a Democrat, then Allen is a Democrat only

if Freda is. But not both Freda and Jim are Democrats. Therefore Jim is a

Democrat only if Rhoda is too.

i. If life is a carnival, then I’m a clown or a trapeze artist. But either life isn’t a

carnival or there are balloons, and either there aren’t any balloons or I’m not

a clown. So, if life is a carnival, then I’m a trapeze artist.

12. Symbolize the following passages in SL and show that the resulting sets of sen-

tences are inconsistent in SD.

a. If motorcycling is dangerous sailboating is also dangerous, and if sailboating is

dangerous parachuting is dangerous. Motorcycling is dangerous but parachut-

ing is not.

228 SENTENTIAL LOGIC: DERIVATIONS

*b. If the recipe doesn’t call for flavoring or it doesn’t call for eggs, it’s not a recipe

for tapioca. If the recipe calls for eggs, then it’s a tapioca recipe and it doesn’t

call for flavoring. But this recipe calls for eggs.

c. Bach is popular only if Beethoven is ignored. If Bach is unpopular and

Beethoven isn’t ignored, then current musical tastes are hopeless. Current

musical tastes aren’t hopeless, and Beethoven isn’t ignored.

*d. Historians are right just in case theologians are mistaken, if and only if Darwin’s the-

ory is correct. And if historians or philosophers are right, then Darwinian theory is

correct and theologians are mistaken. Historians are right if and only if philosophers

are wrong. But if Darwinian theory is correct, then historians are mistaken.

e. Either Martha was commissioned to write the ballet or, if the fund-raising sale was

a failure, Tony was commissioned. Nancy will dance if and only if Tony wasn’t

commissioned. But the fund-raiser was a failure, Nancy will dance, and Martha

wasn’t commissioned.

13. Explain:

a. Why we would not want to include the following derivation rule in SD.

P ∨ Q

P

*b. Why Negation Introduction is a dispensable rule in SD. We take a rule to be

dispensible in SD if and only if the last line of every derivation that makes use

of the rule in question can also be derived from the given assumptions with-

out using that rule.

c. Why Reiteration is a dispensable rule in SD.

*d. Why deriving a sentence and its negation within the scope of an auxilliary

assumption does not show that the primary assumptions constitute an inconsis-

tent set but does show that the set that consists of the primary assumptions and

the assumptions of all open subderivations is inconsistent.

e. Why an argument of SL that has as one of its premises the negation of a the-

orem is valid in SD.

14. In Chapter 6 (see Sections 6.3 and 6.4) we prove that, for any sentence P and

set of sentences of SL,

 P in SD if and only if P.

Show that a-c below follow from this result.

a. An argument of SL is valid in SD if and only if the argument is truth-functionally

valid.

*b. A sentence P of SL is a theorem in SD if and only if P is truth-functionally true.

c. Sentences P and Q of SL are equivalent in SD if and only if P and Q are truth-

functionally equivalent.

5.4 THE DERIVATION SYSTEM SD

In this section we introduce a new natural deduction system, SD , which con-
tains all the derivation rules of SD plus some more. However, SD is not a
stronger system than SD in the sense that more arguments of SL can be shown

 =

5.4 THE DERIVATION SYSTEM SD 229

to be valid or that more sentences of SL are theorems in SD than are in SD .

That is

 P in SD

if and only if

 P in SD

However, historically a larger set of rules, such as those constituting SD , have
been used in many derivation systems. This larger set contains some rules
absent from SD that do correspond to reasoning patterns commonly used in
ordinary discourse, and often derivations in SD are shorter than correspon-
ding derivations in SD.

RULES OF INFERENCE

Suppose that prior to line n of a derivation two accessible lines, i and j, contain
P ⊃ Q and ∼ Q, respectively. In SD we can derive ∼ P as follows:

i P ⊃ Q

j ∼ Q

n P A / ∼ Ι

n 1 Q i, j ⊃E

n 2 ∼ Q j R

n 3 ∼ P n n 2 ∼ I

To avoid going through this routine every time such a situation arises, we intro-
duce the rule Modus Tollens:

Modus Tollens (MT)

P ⊃ Q

∼ Q

 ∼ Q

Now suppose that prior to line n of a derivation two accessible lines, i and j,
contain P ⊃ Q and Q ⊃ R. A routine to derive P ⊃ R in SD beginning at line
i is as follows:

i P ⊃ Q

j Q ⊃ R

n P A / ∼ Ι

n 1 Q i, j ⊃E

n 2 R j, n 2 ⊃E

n 3 P ⊃ R n n 2 ⊃I

230 SENTENTIAL LOGIC: DERIVATIONS

To avoid this routine, we introduce the rule Hypothetical Syllogism:

Hypothetical Syllogism (HS)

P ⊃ Q

Q ⊃ R

 P ⊃ R

Finally suppose that prior to the line n of a derivation two accessible lines, i

and j, contain P ∨ Q and ∼ P and that we wish to derive Q. A routine for
accomplishing this in SD is as follows:

i P ∨ Q

j ∼ P

n P A / ∨E

n 1 ∼ Q A / ∼ Ε

n 2 P n R
n 3 ∼ P j R
n 4 Q n 1 n 3 ∼ E

n 5 Q A / ∨E

n 6 Q n 5 R
n 7 Q i, n n 4, n 5 n 6 ∨E

The rule of Disjunctive Syllogism allows us to avoid going through this routine
for this and similar cases.

Disjunctive Syllogism (DS)

P ∨ Q P ∨ Q

∼ P or ∼ Q

Q P

The three rules of inference just introduced can be thought of as
derived rules. They are added for convenience only; whatever we can derive
with them, we can derive without them, using only the rules of SD.

RULES OF REPLACEMENT

In addition to rules of inference, there are also derivation rules known as rules

of replacement. Rules of replacement, as their name suggests, allow us to derive

5.5 THE DERIVATION SYSTEM SD 231

some sentences from other sentences by replacing sentential components. For
example, from the sentence

G ∨ (H & K)

we can certainly infer

G ∨ (∼ ∼ H & K)

In this instance the sentential component ‘H’ has been replaced with ‘∼ ∼ H’.
Similarly from

G ∨ (∼ ∼ H & K)

we can certainly infer

G ∨ (H & K)

Double Negation is the rule of replacement that licenses such moves within a
derivation.

Double Negation (DN)

P ∼ ∼ P

That is, by using Double Negation, we can derive from a sentence Q that con-
tains P as a sentential component another sentence that is like Q, except that
one occurrence of the sentential component P has been replaced with ∼ ∼ P.
And, by using Double Negation, we can derive from a sentence Q that con-
tains ∼ ∼ P as a sentential component another sentence that is like Q, except
that one occurrence of the sentential component ∼ ∼ P has been replaced
with P.

Double Negation can be applied to any of the sentential components
of a sentence. For instance, from

G ∨ (H & K)

Double Negation permits us to derive

G ∨ ∼ ∼ (H & K)

And from

G ∨ ∼ ∼ (H & K)

232 SENTENTIAL LOGIC: DERIVATIONS

Double Negation allows us to derive

G ∨ (H & K)

Since every sentence is a sentential component of itself, Double Negation

applies to the entire sentence as well. In a derivation Double Negation permits

us to go from

G ∨ (H & K)

to

∼ ∼ [G ∨ (H & K)]

and from

∼ ∼ [G ∨ (H & K)]

to

G ∨ (H & K)

Here are the rules of replacement for SD :

Commutation (Com)

P & Q Q & P

P ∨ Q Q ∨ P

Implication (Impl)

P ⊃ Q ∼ P ∨ Q

De Morgan (DeM)

∼ (P & Q) ∼ P ∨ ∼ Q

∼ (P ∨ Q) ∼ P & ∼ Q

Transposition (Trans)

P ⊃ Q ∼ Q ⊃ ∼ P

Association (Assoc)

P & (Q & R) (P & Q) & R

P ∨ (Q ∨ R) (P ∨ Q) ∨ R

Double Negation (DN)

P ∼ ∼ P

Idempotence (Idem)

P P & P

P P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) (P & Q) ∨ (P & R)

P ∨ (Q & R) (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P Q (P ⊃ Q) & (Q ⊃ P)

P Q (P & Q) ∨ (∼ P & ∼ Q)

5.4 THE DERIVATION SYSTEM SD 233

Rules of replacement always allow the replacement of sentential components. In
addition, all these rules of replacement are two-way rules; that is, a sentential
component that has the form of the sentence on the left of ‘ ’ can be replaced
with a sentential component that has the form of the sentence on the right of
‘ ’, and vice versa.

Consider the following derivation:

Derive: J ⊃ [M ∨ (G ∨ I)]

1 J ⊃ [K ∨ (L ∨ H)] Assumption
2 [(K ∨ L) ∨ H] ⊃ [(M ∨ G) ∨ I] Assumption

3 J ⊃ [(K ∨ L) ∨ H] 1 Assoc
4 J ⊃ [(M ∨ G) ∨ I] 2, 3 HS
5 J ⊃ [M ∨ (G ∨ I)] 4 Assoc

Here the replacement rule Association has been used twice—first to replace a
sentential component of the form P ∨ (Q ∨ R) with a sentential component of
the form (P ∨ Q) ∨ R and then to replace a sentential component of the form
(P ∨ Q) ∨ R with a sentential component of the form P ∨ (Q ∨ R).

Since all the derivation rules of SD are derivation rules of SD , the
procedures for properly applying the rules of SD apply to SD as well. The
rules of inference of SD , including Modus Tollens, Hypothetical Syllogism,
and Disjunctive Syllogism, must be applied to entire sentences on a line. Rules
of replacement, on the other hand, can be applied to all sentential compo-
nents. The following derivation illustrates the proper use of several of the rules
of replacement:

Derive: ∼ C E

1 (D ∨ B) ∨ (E ⊃ ∼ C) Assumption
2 ∼ B & [∼ D & (∼ E ⊃ C)] Assumption

3 (∼ B & ∼ D) & (∼ E ⊃ C) 2 Assoc
4 ∼ (B ∨ D) & (∼ E ⊃ C) 3 DeM
5 ∼ (B ∨ D) 4 &E
6 ∼ (D ∨ B) 5 Com
7 E ⊃ ∼ C 1, 6 DS
8 ∼ E ⊃ C 3 &E
9 ∼ C ⊃ ∼ ∼ E 8 Trans

10 ∼ C ⊃ E 9 DN
11 (∼ C ⊃ E) & (E ⊃ ∼ C) 10, 7 &I
12 ∼ C E 11 Equiv

Notice that each application of a derivation rule requires a separate line. More-
over care must be taken to apply each derivation rule only to sentences that

234 SENTENTIAL LOGIC: DERIVATIONS

have the proper form (or, in the case of rules of replacement, sentences that
have components that have the proper form).

Here is an example in which these points are ignored:

Derive: ∼ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ∼ B) ∨ ∼ C Assumption
2 (D ∨ G) ∨ C Assumption

3 ∼ (∼ A & B) ∨ ∼ C 1 DeM MISTAKE!
4 (∼ A & B) ⊃ ∼ C 3 Impl
5 C ∨ (G ∨ D) 2 Com MISTAKE!
6 ∼ C ⊃ (G ∨ D) 5 Impl MISTAKE!
7 (∼ A & B) ⊃ (G ∨ D) 4, 6 HS
8 ∼ A ⊃ [B ⊃ (G ∨ D)] 7 Exp

Derive: ∼ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ∼ B) ∨ ∼ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (∼ ∼ A ∨ ∼ B) ∨ ∼ C 1 DN
4 ∼ (∼ A & B) ∨ ∼ C 3 DeM

5 (∼ A & B) ⊃ ∼ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com

De Morgan does not license entering the sentence on line 3. What De
Morgan does allow is the replacement of a sentential component of the form
∼ P ∨ ∼ Q with a sentential component of the form ∼ (P & Q), but the sen-
tential component ‘A ∨ ∼ B’ does not have the form ∼ P ∨ ∼ Q. However, by
applying Double Negation to the first assumption, we can obtain ‘(∼ ∼ A ∨ ∼ B)
∨ ∼ C’. And this latter sentence does have a sentential component of the form
∼ P ∨ ∼ Q, namely, ‘∼ ∼ A ∨ ∼ B’. Here P is ‘∼ A’, and Q is ‘B’. Hence the der-
ivation should begin this way:

The second mistake in our example, in line 5, is that Commutation
is applied twice within the same line. Each application of a rule, even if it
is the same rule, requires a separate line. Correctly done, the derivation
proceeds:

The third mistake, in line 6 of the example, also stems from our try-
ing to apply a rule of replacement to a sentential component that does not
have the form required by the rule. Implication permits the replacement of
a sentential component of the form ∼ P ∨ Q with a sentential component
of the form P ⊃ Q, but ‘C ∨ (G ∨ D)’ does not have the form ∼ P ∨ Q. How-
ever, applying Double Negation to ‘C’, a sentential component of ‘C ∨ (G ∨
D)’, generates ‘∼ ∼ C ∨ (G ∨ D)’. This latter sentence does have the form
∼ P ∨ Q, where P is ‘∼ C’ and Q is ‘G ∨ D’. Here is the entire derivation
done correctly:

5.4 THE DERIVATION SYSTEM SD 235

The definitions of the basic concepts of SD parallel the definitions
for the basic concepts of SD, except that ‘SD’ is replaced with ‘SD ’. For exam-
ple, the concept of derivability is defined as follows:

A sentence P of SL is derivable in SD from a set of sentence of SL if and
only if there is a derivation in SD in which all the primary assumptions are
members of and P occurs within the scope of only those assumptions.

Consequently tests for the various syntactic properties in SD are analo-
gous to those of SD. To show that an argument is valid in SD , we construct a der-
ivation in SD showing that the conclusion of the argument is derivable in SD

from the set all of whose members are premises of the argument. To show that a
sentence P of SL is a theorem in SD , we show that P is derivable in SD from
the empty set. And so on. Remember that, although SD and SD are different syn-
tactic systems, whatever can be derived in one can be derived in the other.

Derive: ∼ A ⊃ [B ⊃ (G ∨ D)]

1 (A ∨ ∼ B) ∨ ∼ C Assumption
2 (D ∨ G) ∨ C Assumption

3 (∼ ∼ A ∨ ∼ B) ∨ ∼ C 1 DN
4 ∼ (∼ A & B) ∨ ∼ C 3 DeM
5 (∼ A & B) ⊃ ∼ C 4 Impl
6 C ∨ (D ∨ G) 2 Com
7 C ∨ (G ∨ D) 6 Com
8 ∼ ∼ C ∨ (G ∨ D) 7 DN
9 ∼ C ⊃ (G ∨ D) 8 Impl

10 (∼ A & B) ⊃ (G ∨ D) 5, 9 HS
11 ∼ A ⊃ [B ⊃ (G ∨ D)] 10 Exp

Modus Tollens (MT)

P ⊃ Q

∼ Q

 ∼ P

Hypothetical Syllogism (HS)

P ⊃ Q

Q ⊃ R

 P ⊃ R

Disjunctive Syllogism (DS)

P ∨ Q P ∨ Q

∼ P or ∼ Q

 Q P

The Derivation Rules of SD

All the Derivation Rules of SD and Rules of Inference

236 SENTENTIAL LOGIC: DERIVATIONS

Rules of Replacement

Commutation (Com)

P & Q Q & P

P ∨ Q Q ∨ P

Implication (Impl)

P ⊃ Q ∼ P ∨ Q

De Morgan (DeM)

∼ (P & Q) ∼ P ∨ ∼ Q

∼ (P ∨ Q) ∼ P & ∼ Q

Transposition (Trans)

P ⊃ Q ∼ Q ⊃ ∼ P

Association (Assoc)

P & (Q & R) (P & Q) & R

P ∨ (Q ∨ R) (P ∨ Q) ∨ R

Double Negation (DN)

P ∼ ∼ P

Idempotence (Idem)

P P & P

P P ∨ P

Exportation (Exp)

P ⊃ (Q ⊃ R) (P & Q) ⊃ R

Distribution (Dist)

P & (Q ∨ R) (P & Q) ∨ (P & R)

P ∨ (Q & R) (P ∨ Q) & (P ∨ R)

Equivalence (Equiv)

P Q (P ⊃ Q) & (Q ⊃ P)

P Q (P & Q) ∨ (∼ P & ∼ Q)

5.4E EXERCISES

1. Show that the following derivability claims hold in SD .

a. {D ⊃ E, E ⊃ (Z & W), ∼ Z ∨ ∼ W} ∼ D

*b. {(H & G) ⊃ (L ∨ K), G & H} K ∨ L

c. {(W ⊃ S) & ∼ M, (∼ W ⊃ H) ∨ M, (∼ S ⊃ H) ⊃ K} K

*d. {[(K & J) ∨ I] ∨ ∼ Y, Y & [(I ∨ K) ⊃ F]} F ∨ N

e. {(M ∨ B) ∨ (C ∨ G), ∼ B & (∼ G & ∼ M)} C

*f. {∼ L ∨ (∼ Z ∨ ∼ U), (U & G) ∨ H, Z} L ⊃ H

2. Show that each of the following is valid in SD .

a. ∼ Y ⊃ ∼ Z

∼ Z ⊃ ∼ X

∼ X ⊃ ∼ Y

Y Z

*b. (∼ A & ∼ B) ∨ (∼ A & ∼ C)

(E & D) ⊃ A

∼ E ∨ ∼ D

c. (F & G) ∨ (H & ∼ I)

I ⊃ ∼ (F & D)

I ⊃ ∼ D

*d. F ⊃ (∼ G ∨ H)

F ⊃ G

∼ (H ∨ I)

F ⊃ J

5.4 THE DERIVATION SYSTEM SD 237

e. F ⊃ (G ⊃ H)

∼ I ⊃ (F ∨ H)

F ⊃ G

I ∨ H

*f. G ⊃ (H & ∼ K)

H (L & I)

∼ I ∨ K

∼ G

g. [(X & Z) & Y] ∨ (∼ X ⊃ ∼ Y)

X ⊃ Z

Z ⊃ Y

X Y

3. Show that each of the following is a theorem in SD .

a. A ∨ ∼ A

*b. ∼ ∼ ∼ ∼ ∼ (A & ∼ A)

c. A ∨ [(∼ A ∨ B) & (∼ A ∨ C)]

*d. [(A & B) ⊃ (B & A)] & [∼ (A & B) ⊃ ∼ (B & A)]

e. [A ⊃ (B & C)] [(∼ B ∨ ∼ C) ⊃ ∼ A]

*f. [A ∨ (B ∨ C)] [C ∨ (B ∨ A)]

g. [A ⊃ (B C)] (A ⊃ [(∼ B ∨ C) & (∼ C ∨ B)])

*h. (A ∨ [B ⊃ (A ⊃ B)]) (A ∨ [(∼ A ∨ ∼ B) ∨ B])

i. [∼ A ⊃ (∼ B ⊃ C)] ⊃ [(A ∨ B) ∨ (∼ ∼ B ∨ C)]

*j. (∼ A ∼ A) [∼ (∼ A ⊃ A) (A ⊃ ∼ A)]

4. Show that the members of each of the following pairs of sentences are equivalent

in SD .

a. A ∨ B

∼ (∼ A & ∼ B)

*b. A & (B ∨ C)

(B & A) ∨ (C & A)

c. (A & B) ⊃ C

∼ (A ⊃ C) ⊃ ∼ B

*d. (A ∨ B) ∨ C

∼ A ⊃ (∼ B ⊃ C)

e. A ∨ (B C)

A ∨ (∼ B ∼ C)

*f. (A & B) ∨ [(C & D) ∨ A]

([(C ∨ A) & (C ∨ B)] & [(D ∨ A) & (D ∨ B)]) ∨ A

5. Show that the following sets of sentences are inconsistent in SD .

a. {[(E & F) ∨ ∼ ∼ G] ⊃ M, ∼ [[(G ∨ E) & (F ∨ G)] ⊃ (M & M)]}

*b. {∼ [(∼ C ∨ ∼ ∼ C) ∨ ∼ ∼ C]}

c. {M & L, [L & (M & ∼ S)] ⊃ K, ∼ K ∨ ∼ S, ∼ (K ∼ S)}

*d. {B & (H ∨ Z), ∼ Z ⊃ K, (B Z) ⊃ ∼ Z, ∼ K}

e. {∼ [W & (Z ∨ Y)], (Z ⊃ Y) ⊃ Z, (Y ⊃ Z) ⊃ W}

*f. {[(F ⊃ G) ∨ (∼ F ⊃ G)] ⊃ H, (A & H) ⊃ ∼ A, A ∨ ∼ H}

6. Symbolize the following arguments in SL, and show that they are valid in SD .

a. If the phone rings Ed is calling, or if the beeper beeps Ed is calling. If not both

Ed and Agnes are at home today, then it’s not the case that if the phone rings,

Ed is calling. Ed isn’t home today, and he isn’t calling. So the beeper won’t beep.

238 SENTENTIAL LOGIC: DERIVATIONS

*b. If Monday is a bad day, then I’ll lose my job provided the boss doesn’t call in

sick. The boss won’t call in sick. So I’ll lose my job—since either Monday will

be a bad day, or the boss won’t call in sick only if I lose my job.

c. Army coats are warm only if they’re either made of wool or not made of cotton

or rayon. If army coats are not made of rayon, then they’re made of cotton.

Hence, if they’re not made of wool, army coats aren’t warm.

*d. If either the greenhouse is dry or the greenhouse is sunny if and only if it’s not

raining, the violets will wither. But if the violets wither the greenhouse is sunny,

or if the violets wither the greenhouse isn’t dry. It’s raining, and the greenhouse

isn’t sunny. So the greenhouse is dry only if the violets won’t wither.

e. It’s not the case that John is rich and Hugo isn’t. In fact, Hugo isn’t rich, unless

Moe is. And if Moe just emptied his bank account, then he isn’t rich. Thus, if

John is rich, then it’s not the case that either Moe emptied his bank account

or Moe isn’t rich,

*f. Neither aspirin nor gin will ease my headache, unless it’s psychosomatic. If it’s

psychosomatic and I’m really not ill, then I’ll go out to a party and drink some

martinis. So, if I’m not ill and don’t drink any martinis, then aspirin won’t ease

my headache.

g. If I stay on this highway and don’t slow down, I’ll arrive in Montreal by 5:00. If I

don’t put my foot on the brake, I won’t slow down. Either I won’t slow down or

I’ll stop for a cup of coffee at the next exit. I’ll stop for a cup of coffee at the

next exit only if I’m falling asleep. So, if I don’t arrive in Montreal by 5:00, then

I’ll stay on this highway only if I’m falling asleep and I put my foot on the brake.

*h. The weather is fine if and only if it’s not snowing, and it’s not snowing if and

only if the sky is clear. So, either the weather is fine, the sky is clear, and it’s

not snowing; or it’s snowing, the sky isn’t clear, and the weather is lousy.

7. Symbolize the following passages in SL, and show that the resulting sets of sen-

tences of SL are inconsistent in SD .

a. Unless Stowe believes that all liberals are atheists, his claims about current

politics are unintelligible. But if liberals are atheists only if they’re not church-

goers, then Stowe’s claims about current politics are nevertheless intelligible.

Liberals are, in fact, churchgoers if and only if Stowe doesn’t believe that

they’re all atheists, and if liberals aren’t atheists, then Stowe doesn’t believe

that they are atheists. Liberals aren’t atheists.

*b. Either Congress won’t cut taxes or the elderly and the poor will riot, if but

only if big business prospers. If the elderly don’t riot, then Congress won’t cut

taxes. It won’t happen that both the poor will riot and big business will prosper,

and it won’t happen that the poor don’t riot and big business doesn’t prosper.

But if big business prospers, then Congress will cut taxes.

8. Answer the following.

a. Suppose we can derive Q from P by using only the rules of replacement. Why

can we be sure that we can derive P from Q?

*b. Why must all arguments that are valid in SD be valid in SD as well?

c. Suppose we develop a new natural deduction system SD*. Let SD* contain all

the derivation rules of SD and in addition the derivation rule Absorption.

Absorption

P ⊃ Q
 P ⊃ (P & Q)

5.4 THE DERIVATION SYSTEM SD 239

Using only the derivation rules of SD, develop a routine showing that any sen-
tence derived by using Absorption could be derived in SD without using it.

GLOSSARY5

DERIVABILITY IN SD: A sentence P of SL is derivable in SD from a set of sentences

of SL if and only if there is a derivation in SD in which all the primary assump-

tions are members of and P occurs in the scope of only those assumptions.

VALIDITY IN SD: An argument of SL is valid in SD if and only if the conclusion of

the argument is derivable in SD from the set consisting of the premises. An argu-

ment of SL is invalid in SD if and only if it is not valid in SD.

THEOREM IN SD: A sentence P of SL is a theorem in SD if and only if P is derivable

in SD from the empty set.

EQUIVALENCE IN SD: Sentences P and Q of SL are equivalent in SD if and only if

Q is derivable in SD from {P} and P is derivable in SD from {Q}.

INCONSISTENCY IN SD: A set of sentences of SL is inconsistent in SD if and only if

both a sentence P of SL and its negation ~ P are derivable in SD from . A set

of sentences of SL is consistent in SD if and only if it is not inconsistent in SD.

5Similar definitions hold for the derivation system SD .

240 SENTENTIAL LOGIC: METATHEORY

Chapter 6
SENTENTIAL LOGIC:

METATHEORY

6.1 MATHEMATICAL INDUCTION

In the three previous chapters we concentrated on developing and using tech-
niques of sentential logic, both semantic and syntactic. In this chapter we step
back to prove some claims about the semantics and syntax of sentential logic.
Such results constitute the metatheory of sentential logic.

For the language SL the semantic accounts of such logical properties
of sentences and sets of sentences of SL as validity, consistency, and equivalence
given in Chapter 3 are fundamental in the sense that they are the standards by
which other accounts of these properties are judged. For instance, although
the techniques of Chapter 5 are purely syntactical—all the derivation rules
appeal to the structures or forms of sentences, not to their truth-conditions—
those techniques are intended to yield results paralleling those yielded by the
semantic techniques of Chapter 3. One of the important metatheoretic results
that we shall prove in this chapter is that this parallel does hold. We shall prove
this by proving that the natural deduction system SD allows us to construct all
and only the derivations we want to be able to construct, given the semantics
of Chapter 3. Specifically we shall prove that, given any set of sentences and
any sentence P of SL, P is derivable from in SD if and only if P is truth-
functionally entailed by . The results mentioned at the end of Section 5.3 fol-
low from this. For example, all and only the truth-functionally valid arguments
of SL are valid in SD, and all and only the truth-functionally true sentences of
SL are theorems in SD.

6.1 MATHEMATICAL INDUCTION 241

Before establishing the foregoing results, we introduce the method of
proof known as mathematical induction and use that method to establish some
other interesting results in the metatheory of sentential logic. We use mathe-
matical induction in later sections to prove the claims made in the previous
paragraph. Mathematical induction is an extremely powerful method in that it
allows us to establish results holding for an infinite number of items.

We introduce mathematical induction with an example. It seems obvi-
ous that in each sentence of SL the number of left parentheses equals the num-
ber of right parentheses. How might we prove that this claim is true for every
sentence of SL? We cannot show that it is true by considering the sentences of
SL one at a time; there are infinitely many sentences of SL, and so we would
never get through all of them. Rather, we shall reason more generally about
the sentences of SL, using the recursive definition of those sentences that was
presented in Chapter 2:

1. Every sentence letter is a sentence.

2. If P is a sentence, then ∼ P is a sentence.

3. If P and Q are sentences, then (P & Q) is a sentence.

4. If P and Q are sentences, then (P ∨ Q) is a sentence.

5. If P and Q are sentences, then (P ⊃ Q) is a sentence.

6. If P and Q are sentences, then (P Q) is a sentence.

7. Nothing is a sentence unless it can be formed by repeated
application of clauses 1–6.

It is trivial to show that every atomic sentence—that is, every sentence
formed in accordance with clause 1—has an equal number of left and right
parentheses (namely, zero), because atomic sentences contain no parentheses.
All other sentences of SL are formed in accordance with clauses 2–6. We note
that in each of these cases an equal number of outermost left and right paren-
theses are added to those already occurring in the sentence’s immediate com-
ponents to form the new sentence (zero of each in clause 2, one of each in
clauses 3–6). Therefore, if we can be sure that the immediate components P

and Q of sentences formed in accordance with clauses 2–6 themselves contain
an equal number of parentheses, then we may conclude that the application
of one of these clauses will result in a new sentence that also contains an equal
number of left and right parentheses.

How can we be sure, though, that each of the immediate components
of a molecular sentence does contain an equal number of left and right paren-
theses? Start with molecular sentences that contain one occurrence of a con-
nective—sentences like ‘∼ A’, ‘(A ⊃ B)’, and ‘(A & B)’. Every sentence that
contains one occurrence of a connective has one of the forms ∼ P, (P & Q),
(P ∨ Q), (P ⊃ Q), or (P Q), in accordance with clauses 2–6. Moreover in
each case the immediate components P and Q are atomic. We have already
noted that every atomic sentence contains an equal number of left and right
parentheses (namely, zero), and so, because clauses 2–6 each add an equal

242 SENTENTIAL LOGIC: METATHEORY

number of left and right parentheses to the ones already occurring in its imme-

diate components, every molecular sentence with one occurrence of a con-

nective must also have an equal number of left and right parentheses.

Now consider molecular sentences that contain two occurrences of

connectives—sentences like ‘∼ ∼ A’, ‘∼ (A ∨ B)’, ‘(A ∨ ∼ B)’, ‘((A B) ⊃ C)’,

and ‘(A ∨ (B & C))’. We may reason as we did in the previous paragraph. That

is, every sentence that contains two occurrences of connectives has one of the

forms ∼ P, (P & Q), (P ∨ Q), (P ⊃ Q), or (P Q), in accordance with clauses

2–6. And in each case the immediate components P and Q each contain fewer

than two occurrences of connectives. We have already found that, in all sen-

tences containing fewer than two occurrences of connectives (atomic sentences

or sentences containing one occurrence of a connective), the number of left

parentheses equals the number of right parentheses. Therefore, because

clauses 2–6 each add an equal number of left and right parentheses to those

already occurring in its immediate components, we may conclude that every

molecular sentence with two occurrences of connectives also has an equal num-

ber of left and right parentheses.

And in sentences containing three occurrences of connectives—sentences

like ‘∼ ∼ ∼ A’, ‘∼ (∼ A ∨ B)’, ‘((A ⊃ B) & (A ∨ C))’, and ‘(∼ (A B) C)’

—the same pattern of reasoning emerges. In every sentence that contains

three occurrences of connectives, the immediate components each contain

fewer than three occurrences of connectives—either zero, one, or two occur-

rences. We have already shown that, in any sentence of SL that contains either

zero, one, or two occurrences of connectives, the number of left parenthe-

ses equals the number of right parentheses. Therefore, because clauses 2–6

each add an equal number of left and right parentheses, we may conclude

that the number of left parentheses in a sentence that contains three occur-

rences of connectives is equal to the number of right parentheses. Having

established that the claim holds true for every sentence with three or fewer

occurrences of connectives, we may show that it also holds for every sentence

with four occurrences, then for every sentence with five, and so on—in each

case using the same reasoning that we used for earlier cases. Generally, as

soon as we have established that the claim holds for every sentence with k or

fewer occurrences of connectives, the same pattern of reasoning shows that

the claim also holds for every sentence that contains k 1 occurrences of

connectives.

We shall now present an argument by mathematical induction estab-

lishing that our claim is true of every sentence of SL:

Every sentence of SL containing zero occurrences of connectives—

that is, every atomic sentence of SL—is such that the number of

left parentheses in that sentence equals the number of right

parentheses.

If every sentence of SL with k or fewer occurrences of connectives is

such that the number of left parentheses in that sentence equals the

number of right parentheses, then every sentence of SL with k 1

6.1 MATHEMATICAL INDUCTION 243

occurrences of connectives is also such that the number of left

parentheses in that sentence equals the number of right parentheses.

Therefore every sentence of SL is such that the number of left

parentheses in that sentence equals the number of right parentheses.

(Here we use ‘k’ as a variable ranging over the nonnegative integers, that is,

the positive integers plus zero.) This argument is deductively valid—if the prem-

ises are true, then the conclusion is true as well. The first premise is our claim

about parentheses for sentences with no connectives, and the second premise

says that it follows that the claim also holds for sentences containing one occur-

rence of a connective. Having concluded that the claim holds for all sentences

containing zero or one occurrences of connectives, we are assured by the sec-

ond premise that the claim must also hold for sentences containing two occur-

rences of connectives. Having concluded that the claim holds for all sentences

containing zero, one, or two occurrences of connectives, we are assured by the

second premise that the claim also holds for sentences containing three occur-

rences of connectives, and so on for any number of occurrences of connectives

that a sentence may contain. Because the argument is deductively valid, we can

establish that its conclusion is true by showing that both premises are true.

We have already shown that the first premise is true. Sentences that

contain zero occurrences of connectives are atomic sentences, and atomic sen-

tences are simply sentence letters. The first premise is called the basis clause of

the argument.

The second premise of the argument is called the inductive step. We shall

prove that the inductive step is true by generalizing on the reasoning that we have

already used. The antecedent of the inductive step is called the inductive hypothesis.

We shall assume that the inductive hypothesis is true—that is, that every sentence

of SL containing k or fewer occurrences of connectives contains an equal number

of left and right parentheses—and we must show that on this assumption it fol-

lows that any sentence P that has k 1 occurrences of connectives also contains

an equal number of left and right parentheses. Since k is nonnegative, k 1

is positive, and hence such a sentence P contains at least one occurrence of a

connective. So P will be a molecular sentence, having one of the forms ∼ Q,

(Q & R), (Q ∨ R), (Q ⊃ R), or (Q R). We divide these forms into two cases.

Case 1: P has the form ∼ Q. If ∼ Q contains k 1 occurrences

of connectives, then Q contains k occurrences of connectives. By the

inductive hypothesis (that every sentence containing k or fewer con-

nectives has an equal number of left and right parentheses), the num-

ber of left parentheses in Q equals the number of right parentheses in

Q. But ∼ Q contains all the parentheses occurring in Q and no others.

So ∼ Q contains an equal number of left and right parentheses as well.

Case 2: P has one of the forms (Q & R), (Q ∨ R), (Q ⊃ R),

or (Q R). In each instance, if P contains k 1 occurrences of con-

nectives, then each of its immediate components, Q and R, must

244 SENTENTIAL LOGIC: METATHEORY

contain k or fewer occurrences of connectives. By the inductive hypoth-

esis, then, we have the following:

a. The number of left parentheses in Q equals the number of right

parentheses in Q.

b. The number of left parentheses in R equals the number of right

parentheses in R.

We also have this:

c. The number of left parentheses in P is the number of left

parentheses in Q plus the number of left parentheses in R plus

1—the one for the outermost left parenthesis in P.

d. The number of right parentheses in P is the number of right

parentheses in Q plus the number of right parentheses in R plus 1.

By simple arithmetic, using (a) and (b), it follows that (c) equals (d)—

P therefore has an equal number of left and right parentheses as well.

This completes our proof that the second premise, the inductive step, is true.

Having established that both premises are true, we may conclude that the con-

clusion is true as well. Every sentence of SL contains an equal number of left

and right parentheses.

We may now generally characterize arguments by mathematical induc-

tion. In such an argument, we arrange the items about which we wish to prove

some thesis in a series of groups. In our example, we arranged the sentences

of SL into the series: all sentences containing zero occurrences of connectives,

all sentences containing one occurrence of connectives, all sentences contain-

ing two occurrences of connectives, and so on. Every sentence of SL appears

in some group in this series—any sentence with k occurrences of connectives

is part of group k 1 in the series. Having arranged the items in such a series,

an argument by mathematical induction then takes the following form.1

The thesis holds for every member of the first group in the series.

For each group in the series, if the thesis holds of every member of

every prior group then the thesis holds for every member of that

group as well.

The thesis holds for every member of every group of the series.

All arguments of this form are valid. Of course, only those with true premises

are sound. Hence, to establish that the thesis holds for every member of every

1Strictly speaking, this is the form for arguments by strong mathematical induction. There is another type of math-
ematical induction, known as weak induction. We shall use only the strong variety of mathematical induction in
this text. There is no loss here, for every claim that can be proved by weak mathematical induction can also be
proved by strong mathematical induction.

6.1 MATHEMATICAL INDUCTION 245

group in the series, we must show first that the thesis does hold for every mem-

ber of the first group and then that, no matter what group in the series we

consider, the thesis holds for every member of that group if it holds for every

member of every prior group. The first premise of such arguments is called

the basis clause, and the second premise is called the inductive step. The

antecedent of the second premise is called the inductive hypothesis.

We further illustrate mathematical induction with another example.

Let P be a sentence that contains only ‘∼ ’, ‘∨’, and ‘&’ as connectives, and let

P be the sentence that results from doing this:

a. Replacing each occurrence of ‘∨’ in P with ‘&’

b. Replacing each occurrence of ‘&’ in P with ‘∨’

c. Adding a ‘∼ ’ in front of each atomic component of P

We shall call a sentence that contains only ‘∼ ’, ‘∨’, and ‘&’ as connectives a

TWA sentence (short for ‘t ilde, wedge, and ampersand’), and we shall call the

sentence P that results from P by (a), (b), and (c) the dual of P. Here are

some examples of duals for TWA sentences:

P Dual of P

A ∼ A

((A ∨ F) & G) ((∼ A & ∼ F) ∨ ∼ G)

(((B & C) & C) ∨ D) (((∼ B ∨ ∼ C) ∨ ∼ C) & ∼ D)

∼ ((A ∨ ∼ B) ∨ (∼ A & ∼ B)) ∼ ((∼ A & ∼ ∼ B) & (∼ ∼ A ∨ ∼ ∼ B))

We shall use mathematical induction to establish the following thesis:

Every TWA sentence P is such that P and its dual P have opposite

truth-values on each truth-value assignment (that is, if P is true then

P is false, and if P is false then P is true).

As in the previous example, our series will classify sentences by the number of

occurrences of connectives that they contain:

Basis clause: Every TWA sentence P of SL that contains zero occur-

rences of connectives is such that P and its dual P have opposite truth-

values on each truth-value assignment.

Inductive step: If every TWA sentence P of SL with k or fewer occur-

rences of connectives is such that P and its dual P have opposite truth-

values on each truth-value assignment, then every TWA sentence P of

SL with k 1 occurrences of connectives is such that P and its dual

P have opposite truth-values on each truth-value assignment.

Conclusion: Every TWA sentence P of SL is such that P and its dual P

have opposite truth-values on each truth-value assignment.

246 SENTENTIAL LOGIC: METATHEORY

To show that the conclusion of this argument is true, we must show that the

first premise, the basis clause, is true and also that the second premise, the

inductive step, is true.

Proof of basis clause: A TWA sentence P that contains zero occur-

rences of connectives must be an atomic sentence, and its dual is ∼ P—

because there are no connectives to replace, we simply place a tilde in

front of the atomic sentence. If P is true on a truth-value assignment,

then according to the characteristic truth-table for the tilde, ∼ P must

be false. And if P is false on a truth-value assignment, then ∼ P is true.

We conclude that P and its dual have opposite truth-values on each

truth-value assignment.

Proof of inductive step: We assume that the inductive hypothesis is

true for all sentences that contain fewer than k 1 connectives—that

is, that every TWA sentence that contains fewer than k 1 occurrences

of connectives is such that it and its dual have opposite truth-values on

each truth-value assignment. We must show that it follows from this

assumption that the claim is also true of all TWA sentences that con-

tain k 1 occurrences of connectives. A TWA sentence P that contains

k 1 occurrences of connectives must be molecular, and because it is

TWA, it has one of the three forms ∼ Q, (Q ∨ R), or (Q & R). We will

consider each form.

Case 1: P has the form ∼ Q. If P contains k 1 occurrences

of connectives, then Q contains k occurrences of connectives, and Q

is a TWA sentence (if it were not—if it contained a horseshoe or triple

bar—then P would not be a TWA sentence either). Let Q be the dual

of Q. Then the dual of P is ∼ Q , the sentence that results from ∼ Q

by making the changes (a), (b), and (c) of our definition of dual sen-

tences within Q and leaving the initial tilde of ∼ Q intact.

If P, that is, ∼ Q, is true on a truth-value assignment, then Q

is false. Because Q is a TWA sentence with fewer than k 1 occur-

rences of connectives, it follows from the inductive hypothesis that Q

is true. Therefore ∼ Q —the dual of P—is false. So, if P is true then

its dual is false, and if P is false on a truth-value assignment then Q

is true. It follows from the inductive hypothesis that Q is false, and

therefore ∼ Q is true. So, if P is false then its dual is true. We con-

clude that P and its dual have opposite truth-values on each truth-

value assignment.

Case 2: P has the form (Q ∨ R). If P contains k 1 occur-

rences of connectives, then Q and R each contain k or fewer occur-

rences of connectives. Q and R are also TWA sentences. Let Q be the

dual of Q and R be the dual of R. Then the dual of P is (Q & R)—

the changes specified by (a), (b), and (c) must be made within Q, yield-

ing its dual, and within R, yielding its dual, and the main connective

‘∨’ of P must be replaced with ‘&’.

6.1 MATHEMATICAL INDUCTION 247

If P is true on a truth-value assignment, then by the charac-

teristic truth-table for the wedge, either Q is true or R is true. Because

Q and R each contain k or fewer occurrences of connectives, it follows

from the inductive hypothesis that either Q is false or R is false. Either

way, (Q & R), the dual of P, must be false as well. But if P is false on

a truth-value assignment, then both Q and R must be false. By the

inductive hypothesis both Q and R are true. So (Q & R) is true as

well. We conclude that P and its dual have opposite truth-values on

each truth-value assignment.

Case 3: P has the form (Q & R). If P contains k 1 occur-

rences of connectives, then Q and R each contain k or fewer occurrences

of connectives. And they are also TWA sentences. Let Q be the dual of

Q and R be the dual of R. Then the dual of P is (Q ∨ R); changes

(a), (b), and (c) have to be made within each of Q and R, producing

their duals, and the main connective ‘&’ has to be replaced with ‘∨’.

If P is true on a truth-value assignment, then, by the charac-

teristic truth-table for the ampersand, both Q and R are true. Because

Q and R each contain k or fewer occurrences of connectives, it follows

from the inductive hypothesis that Q and R are both false, and there-

fore that the dual of P, (Q ∨ R), is false. If P is false on a truth-value

assignment, then either Q is false or R is false. If Q is false, then it

follows by the inductive hypothesis that Q is true. If R is false, then it

follows by the inductive hypothesis that R is true. So at least one of

Q and R is true, and (Q ∨ R), the dual of P, must be true as well.

We conclude that P and its dual have opposite truth-values on each

truth-value assignment.

These three cases establish the inductive step of the argument by math-

ematical induction, and we may now conclude that its conclusion is true as well.

Our argument shows that the thesis about duals is true of every TWA sentence

of SL. The basis clause shows that the thesis is true of every TWA sentence with

zero occurrences of connectives. It follows, from the inductive step, that the

thesis is also true of every TWA sentence with one connective. Because the the-

sis holds for all TWA sentences with zero or one occurrences of connectives, it

follows from the inductive step that the thesis is also true of every TWA sen-

tence with two occurrences of connectives. And so on, for any number of occur-

rences of connectives that a TWA sentence may have. Together the basis clause

and the inductive step take every TWA sentence into account.

6.1E EXERCISES

1. Prove the following theses by mathematical induction.

a. No sentence of SL that contains only binary connectives, if any, is truth-

functionally false (that is, every truth-functionally false sentence of SL contains

at least one ‘∼ ’).

248 SENTENTIAL LOGIC: METATHEORY

b. Every sentence of SL that contains no binary connectives is truth-functionally

indeterminate.

c. If two truth-value assignments A and A assign the same truth-values to the

atomic components of a sentence P, then P has the same truth-value on A

and A .

d. An iterated conjunction (. . . (P1 & P2) & . . . & Pn) of sentences of SL is

true on a truth-value assignment if and only if P1, P2 . . . , Pn are all true on

that assignment.

e. Where P is a sentence of SL and Q is a sentential component of P, let

[P] (Q1//Q) be a sentence that is the result of replacing at least one occur-

rence of Q in P with the sentence Q1. If Q and Q1 are truth-functionally

equivalent, then P and [P] (Q1//Q) are truth-functionally equivalent.

2. Consider this thesis:

No sentence of SL that contains only binary connectives is truth-functionally

true.

Show that this thesis is false by producing a sentence that contains only binary

connectives and that is truth-functionally true. Explain where an attempt to

prove the thesis by mathematical induction (in the manner of the answer to

Exercise 1.a) would fail.

6.2 TRUTH-FUNCTIONAL COMPLETENESS

In Chapter 2 we defined the truth-functional use of sentential connectives as

follows:

A sentential connective is used truth-functionally if and only if it is used

to generate a compound sentence from one or more sentences in such

a way that the truth-value of the generated compound is wholly deter-

mined by the truth-values of those one or more sentences from which

the compound is generated, no matter what those truth-values may be.

The connectives of SL are used only truth-functionally since their intended

interpretations are given wholly by their characteristic truth-tables. In Chapter

2 we constructed truth-functional paraphrases of many English sentences and

showed how to symbolize these paraphrases in SL. Although SL contains only

five sentential connectives, we found that a great variety of English compounds

can nevertheless be adequately symbolized by using various combinations of

these connectives. For instance, an English sentence of the form

Neither p nor q

can be appropriately symbolized either by a sentence of the form

∼ (P ∨ Q)

6.2 TRUTH-FUNCTIONAL COMPLETENESS 249

or by a sentence of the form

∼ P & ∼ Q

An interesting question now arises: Is SL capable of representing all
the ways in which sentences can be built up from other sentences by truth-
functional means? We want the answer to this question to be ‘yes’ because we
want SL to be an adequate vehicle for all of truth-functional logic. If there is
some way of truth-functionally compounding sentences that cannot be repre-
sented in SL, then there may be some truth-functionally valid arguments that
do not have valid symbolizations in SL simply because they cannot be ade-
quately symbolized in SL. Similarly there may be sets of sentences that are
truth-functionally inconsistent but that cannot be shown to be inconsistent by
the truth-table method, again because these sentences cannot be adequately
symbolized in SL. And so on.

To settle this question, we might try to produce complicated examples of
truth-functionally compound sentences of English and then show that each can
be adequately symbolized in SL. But obviously we cannot in this way prove that
every truth-functionally compound sentence can be adequately symbolized in
SL. Rather, we must show that all the possible ways of truth-functionally com-
pounding sentences—of building up sentences from sentences by truth-functional
connectives—yield sentences that can be adequately symbolized in SL.

We must first formulate our question somewhat more precisely: Can
every truth-function be expressed by a sentence of SL? A truth-function is a map-
ping, for some positive integer n, of each combination of truth-values that n
sentences of SL may have to a truth-value. Functions are most familiar in math-
ematics. Addition and multiplication are, for example, both functions that map
each pair of numbers to a unique number. Addition maps each pair of num-
bers to the sum of those numbers. Multiplication maps each pair of numbers
to the product of those numbers. The members of the pairs of numbers that
are mapped are the arguments of the function, and the number to which a pair
is mapped is the value of the function for that pair of arguments. (Arguments
in the sense of arguments of functions are not to be confused with arguments
consisting of premises and conclusions.) Thus the addition function maps the
pair of arguments 3 and 4 to the value 7, and the multiplication function maps
that pair of arguments to the value 12.

Instead of mapping combinations of numbers to numbers, a truth-
function maps each combination of truth-values that n atomic sentences of SL

may have to a truth-value. The characteristic truth-table for ‘⊃’ defines the
material conditional truth-function:

P Q P ⊃ Q

T T T

T F F

F T T

F F T

250 SENTENTIAL LOGIC: METATHEORY

This truth-function is a truth-function of two arguments. There are four distinct

combinations of truth-values that two sentences may have, and the table defining

the truth-function accordingly contains four rows. Each distinct combination of

arguments is listed to the left of the vertical line, and the truth-value to which

that combination of arguments is mapped is listed to the right of the vertical line.

The characteristic truth-table for ‘∼ ’ defines the negation truth-function:

P ∼ P

T F

F T

The negation truth-function is a truth-function of one argument since it maps

each combination of truth-values that one sentence of SL may have to a truth-

value. There are only two such combinations; each consists of a single truth-

value. The truth-value to which each combination is mapped is listed in the

same row to the right of the vertical line.

A truth-function is said to be expressed in SL by any sentence whose

truth-table contains (in the column under its main connective) exactly the col-

umn of Ts and Fs that occurs on the right-hand side of the characteristic truth-

table for the truth-function in question. For example, each sentence of the

form ∼ P, where P is an atomic sentence of SL, expresses the negation truth-

function—for every such sentence has a two-row truth-table in which the col-

umn under the main connective contains an F in the first row and a T in the

second row. This truth-function is also expressed by other sentences of SL—for

example, by all sentences of the form ∼ P & ∼ P, where P is an atomic sen-

tence. Every such sentence has a two-row truth-table in which the column

under the main connective is

F

T

The important question for us is not how many sentences of SL express

the same truth-function but rather whether for each truth-function there is at

least one sentence of SL that expresses that truth-function. There are an infinite

number of truth-functions. This is most easily seen by considering that for every

positive integer n there are truth-functions of n arguments (truth-functions that

map each combination of truth-values that n sentences of SL may have to a

truth-value), and there are infinitely many positive integers. In Chapter 2 we

defined one truth-function of one argument and four truth-functions of two

arguments via the five characteristic truth-tables for the connectives of SL.

There are three other truth-functions of one argument:

P P P

T T T T T F

F F F T F F

6.2 TRUTH-FUNCTIONAL COMPLETENESS 251

And there are twelve other truth-functions of two arguments (because there
are sixteen different ways of arranging Ts and Fs in a column of a four-row
truth-table). Generally, where n is any positive integer, there are 2(2n) truth-
functions of n arguments. So there are 256 truth-functions of three arguments,
65,536 truth-functions of four arguments, and so on. What we want to show is
that, given any truth-function of any finite number of arguments, there is at
least one sentence of SL that expresses that truth-function. In fact, we shall
prove something even stronger:

Metatheorem 6.2.1:2 Every truth-function can be expressed by a sentence of
SL that contains no sentential connectives other than ‘∼ ’, ‘∨’, and ‘&’.

The connectives of a language in which every truth-function can be expressed
form a truth-functionally complete set of connectives. In proving Metatheorem
6.2.1 we shall be proving that the set that contains the connectives ‘∼ ’, ‘&’,
and ‘∨’, defined as they are defined in SL, is truth-functionally complete.

Characteristic truth-tables define truth-functions by giving an exhaustive
list of the combinations of arguments that each truth-function takes and display-
ing the value to which each such combination is mapped. That is, it is the rows
of Ts and Fs that serve to define truth-functions in characteristic truth-tables. It
should now be clear that the following schema also specifies a truth-function:

T T F

T F F

F T F

F F T

To the left of the vertical line, the four distinct combinations of truth-values that
two sentences of SL may have are displayed. The specified truth-function is thus
a function of two arguments. The value of the function for each combination of
arguments is displayed to the right of the vertical line. Since every truth-function
maps only a finite number of combinations of arguments, every truth-function
can be specified in a table like the previous one. We call such a table a truth-

function schema. A truth-function schema is simply a truncated truth-table.
We shall now show that the set of connectives {‘∼ ’, ‘&’, ‘∨’} is truth-

functionally complete by producing an algorithm for constructing, given any
possible truth-function schema, a sentence of SL that contains no connectives
other than ‘∼ ’, ‘&’, and ‘∨’ and that expresses the truth-function specified by
the schema. An algorithm is an effective procedure for producing a desired
result—that is, a mechanical procedure that, when correctly followed, yields
the desired result in a finite number of steps. Given a truth-function schema,
our algorithm will produce a sentence whose truth-table contains, under its

2We number our metatheoretic results in a way that makes clear where to find them in the text. The first two
digits, ‘6.2’, refer to the chapter and section. The third digit, ‘1’, means that this is the first numbered metathe-
oretic result in this section.

main connective, exactly the same column of Ts and Fs as occurs to the right

of the vertical line in the truth-function schema. Once we produce the algo-

rithm, Metatheorem 6.2.1 will be proved; the construction of such an algorithm

will show that every truth-function can be expressed by a sentence of SL con-

taining no connectives other than ‘∼ ’, ‘&’, and ‘∨’.

To begin, we need a stock of atomic sentences. If the truth-function is

a function of n arguments, we use the alphabetically first n atomic sentences

of SL. So for the truth-function schema

T T F

T F F

F T F

F F T

we start with the atomic sentences ‘A’ and ‘B’. Next we form, for each row of

the truth-table, a sentence that is true if and only if its atomic components have

the truth-values indicated in that row. This sentence is called the characteristic

sentence for the row in question. The characteristic sentence for row i is the iter-

ated conjunction

(. . . (P1 & P2) & . . . & Pn)

where Pj is the jth atomic sentence if the jth value in row i (to the left of the

vertical bar) is T, and Pj is the negation of the jth atomic sentence if the jth

value in row i is F. Thus the characteristic sentences for the four rows in our sam-

ple truth-function schema are ‘A & B’, ‘A & ∼ B’, ‘∼ A & B’, and ‘∼ A & ∼ B’,

respectively. The first sentence is true if and only if both ‘A’ and ‘B’ are true;

the second sentence is true if and only if ‘A’ is true and ‘B’ is false; the third sen-

tence is true if and only if ‘A’ is false and ‘B’ is true; and the fourth sentence is

true if and only if both ‘A’ and ‘B’ are false. We leave it as an exercise to prove

that the characteristic sentence for each row of a truth-function schema is true

if and only if its atomic components have the truth-values presented in that row.

Finally we identify the rows in the truth-function schema that have a T

to the right of the vertical bar. If there is only one such row, then the character-

istic sentence for that row is a sentence that expresses the truth-function specified

in the schema. In our example the fourth row is the only row that has a T to the

right of the vertical bar, and the characteristic sentence for that row is ‘∼ A & ∼ B’.

This sentence is true if and only if both ‘A’ and ‘B’ are false, and therefore this

sentence expresses the truth-function specified by the truth-function schema:

A B ∼ A & ∼ B

T T F T F F T

T F F T F T F

F T T F F F T

F F T F T T F

252 SENTENTIAL LOGIC: METATHEORY

6.2 TRUTH-FUNCTIONAL COMPLETENESS 253

If the truth-function schema has more than one T to the right of the

vertical bar, as does the following,

T T F

T F T

F T F

F F T

then we form an iterated disjunction of the characteristic sentences for the rows

that have a T to the right of the vertical bar. In the present case the disjunc-

tion is ‘(A & ∼ B) ∨ (∼ A & ∼ B)’—the disjunction of the characteristic sen-

tences for the second and fourth rows. This sentence is true if and only if either

‘A’ is true and ‘B’ is false or both ‘A’ and ‘B’ are false, and it therefore expresses

the truth-function specified in this schema:

A B (A & ∼ B) ∨ (∼ A & ∼ B)

T T T F F T F F T F F T

T F T T T F T F T F T F

F T F F F T F T F F F T

F F F F T F T T F T T F

And if the schema is

T T F

T F T

F T T

F F T

then the disjunction of the characteristic sentences for the last three rows,

‘((A & ∼ B) ∨ (∼ A & B)) ∨ (∼ A & ∼ B)’, expresses the truth-function in the

schema.

In general, in the case where there is more than one T to the right of

the vertical bar in a truth-function schema, the iterated disjunction that we

form from the characteristic sentences for those rows will be true if and only

if at least one of its disjuncts is true, and each disjunct is true only in the row

for which it is a characteristic sentence. Therefore the iterated disjunction is

true if and only if its atomic components have the truth-values specified by one

of the rows that have a T to the right of the vertical bar, and so the disjunc-

tion expresses the truth-function specified by that schema.

If there are no Ts in the column to the right of the vertical bar, then

we conjoin the characteristic sentence for the first row of the truth-function

schema with its negation. (Any other row’s characteristic sentence would have

done as well.) The result will be a sentence of the form P & ∼ P, which is

false on every truth-value assignment and hence expresses a truth-function

that maps every combination of n truth-values into F. For example, if our
schema is

T T F

T F F

F T F

F F F

then the sentence ‘(A & B) & ∼ (A & B)’ expresses the truth-function speci-
fied in the schema.

In sum, we have three cases. If a truth-function schema has exactly one
row with a T to the right of the vertical bar, then the characteristic sentence
for that row expresses the truth-function specified in the schema. If a truth-
function schema has more than one row with a T to the right of the vertical
bar, then an iterated disjunction of the characteristic sentences for all such rows
will express the truth-function specified in the schema. If a truth-function
schema has no Ts to the right of the vertical bar, then the conjunction of the
characteristic sentence for the first row and its negation will express the truth-
function specified by the schema.

The algorithm tells us how to construct a sentence that expresses the
truth-function indicated in a given truth-function schema, and we may use it
for any truth-function schema. As a final example consider the schema

T T T F

T T F F

T F T T

T F F T

F T T F

F T F F

F F T T

F F F F

This falls under our second case; there is more than one T to the right of
the vertical line. We shall use the first three sentence letters of SL, because the
truth-function is a truth-function of three arguments. We form the character-
istic sentences for rows 3, 4, and 7 and then disjoin those characteristic sen-
tences to produce

(((A & ∼ B) & C) ∨ ((A & ∼ B) & ∼ C)) ∨ ((∼ A & ∼ B) & C)

This sentence is true if and only if ‘A’, ‘B’, and ‘C’ have one of the combinations
of truth-values represented in the third, fourth, and seventh rows of the schema.

Our algorithm shows how to construct, for any truth-function, a sen-
tence of SL that expresses that truth-function. It therefore shows that for each
truth-function there is at least one sentence of SL that expresses that truth-
function. Moreover, because we have used only the three connectives ‘∼ ’, ‘&’,
and ‘∨’, we have shown that the set of connectives {‘∼ ’, ‘&’, ‘∨’} is truth-
functionally complete. This completes the proof of Metatheorem 6.2.1.

254 SENTENTIAL LOGIC: METATHEORY

6.2 TRUTH-FUNCTIONAL COMPLETENESS 255

There is a consequence of the theorem that follows almost immedi-
ately: The smaller set {‘∼ ’, ‘∨’} is also truth-functionally complete. Every con-
junction P & Q is truth-functionally equivalent to ∼ (∼ P ∨ ∼ Q), and so we
may rewrite each sentence produced by the algorithm using only ‘∼ ’ and ‘∨’.
For example, the sentence

(∼ (∼ A ∨ ∼ ∼ B) ∨ ∼ (∼ ∼ A ∨ ∼ ∼ B))

expresses the same truth-function as

((A & ∼ B) ∨ (∼ A & ∼ B))

Therefore every truth-function can be expressed by a sentence that contains
only ‘∼ ’ and ‘∨’ as connectives. It is also a consequence of Metatheorem 6.2.1
that the sets of connectives {‘∼ ’, ‘&’} and {‘∼ ’, ‘⊃’} are truth-functionally com-
plete; we leave the proofs as an exercise.

On the other hand, the set of connectives {‘∨’, ‘&’} is not truth-
functionally complete. To prove this, we must show that there is at least one
truth-function that cannot be expressed by any sentence that contains at most
the connectives ‘∨’ and ‘&’. We call such a sentence a W-A sentence (short for
‘wedge and ampersand’). A little reflection suggests that, no matter how many
times we conjoin and disjoin, if we do not have the tilde available we can never
produce a false sentence from atomic components that are all true. That is,
every W-A sentence is true whenever its atomic components are all true. And
if this is the case, then there are many truth-functions that cannot be expressed
by any W-A sentence. Take the negation truth-function as an example. This
truth-function maps the argument T into the value F. If our reflection is cor-
rect, there is no false W-A sentence with a single atomic component when that
atomic component is true.

We shall therefore show that the set of connectives {‘∨’, ‘&’} is not truth-
functionally complete by proving the following thesis:

Every W-A sentence has the truth-value T on every truth-value assign-
ment on which its atomic components all have the truth-value T.

This is a general claim about all W-A sentences, and so it cannot be proved by
examining W-A sentences one by one (there are infinitely many). Instead, we
shall prove the thesis by mathematical induction.

The shortest W-A sentences—that is, those with zero occurrences of
connectives, are simply the atomic sentences of SL.

Basis clause: Every atomic sentence of SL has the truth-value T on every
truth-value assignment on which its atomic components all have the
truth-value T.

Proof of basis clause: The basis clause is obviously true, since an
atomic sentence is itself its only component.

256 SENTENTIAL LOGIC: METATHEORY

Inductive step: If every W-A sentence of SL with k or fewer occurrences

of connectives is such that it has the truth-value T on every truth-value

assignment on which its atomic components all have the truth-value T,

then every W-A sentence with k 1 occurrences of connectives has the

truth-value T on every truth-value assignment on which its atomic com-

ponents all have the truth-value T.

Proof of inductive step: We now assume that the inductive hypothesis

is true for an arbitrary nonnegative integer k; that is, we assume that

every W-A sentence with k or fewer occurrences of connectives is true

whenever all its atomic components are true. We must show that it fol-

lows that the thesis also holds for any W-A sentence P with k 1 occur-

rences of connectives. Since these sentences contain only ‘∨’ and ‘&’

as connectives, there are two cases.

Case 1: P has the form Q ∨ R. Then Q and R each contain

fewer than k 1 occurrences of connectives. They are also W-A sen-

tences. So, by the inductive hypothesis, each disjunct is true on every

truth-value assignment on which each of its atomic components is true.

So, if all the atomic components of Q ∨ R are true, then both Q and

R are true, and hence Q ∨ R is itself true.

Case 2: P has the form Q & R. Then each of Q and R is a

W-A sentence with k or fewer occurrences of connectives. Hence the

inductive hypothesis holds for both Q and R. Each conjunct is true on

every truth-value assignment on which all its atomic components are

true. So, if all the atomic components of Q & R are true, then both

Q and R are true, and hence Q & R itself is true.

This proves the inductive step, and we can conclude that the thesis

holds for every W-A sentence:

Conclusion: Every W-A sentence has the truth-value T on every truth-value

assignment on which its atomic components all have the truth-value T.

It follows that no W-A sentence can express the negation truth-function as

defined in the characteristic truth-table for the tilde since no W-A sentence can

express a truth-function that maps the truth-value T to the truth-value F.

(Whenever all the atomic components of a W-A sentence are true, the W-A sen-

tence itself is true.)

6.2E EXERCISES

1. Show that a sentence constructed in accordance with our characteristic sen-

tence algorithm is indeed a characteristic sentence for the row of the truth-

function schema in question.

2. Using the algorithm in the proof of Metatheorem 6.2.1, construct a sentence

containing at most ‘∼ ’, ‘&’, and ‘∨’ that expresses the truth-function defined

in each of the following truth-function schemata.

6.2 TRUTH-FUNCTIONAL COMPLETENESS 257

a. T T F
T F T
F T F
F F T

b. T F
F F

*c. T T F
T F T
F T T
F F F

d. T T T T
T T F T
T F T F
T F F F
F T T F
F T F F
F F T T
F F F F

3. Give an algorithm analogous to that in Metatheorem 6.2.1 for constructing

a characteristic sentence containing only ‘∼ ’ and ‘∨’ for each row of a truth-

function schema.

4. Using Metatheorem 6.2.1, prove that the sets {‘∼ ’, ‘&’} and {‘∼ ’, ‘⊃’} are truth-

functionally complete.

5. Prove that the set consisting of the dagger ‘↓’ is truth-functionally complete,

where the dagger has the following characteristic truth-table:

P Q P ↓ Q

T T F
T F F
F T F
F F T

*6. Prove that the set consisting of the stroke ‘⏐’ is truth-functionally complete,

where the stroke has the following characteristic truth-table:

P Q P ⏐ Q

T T F
T F T
F T T
F F T

7. Using the results of Exercises 1.a and 1.b in Section 6.1E, prove that the fol-

lowing sets of connectives are not truth-functionally complete: {‘∼ ’}, {‘&’, ‘∨’,

‘⊃’, ‘ ’}.

258 SENTENTIAL LOGIC: METATHEORY

8. Prove that the set {‘∼ ’, ‘ ’} is not truth-functionally complete. Hint: Show that
the truth-table for any sentence P that contains only these two connectives and
just two atomic components will have, in the column under the main connec-
tive, an even number of Ts and an even number of Fs.

9. Prove that if a truth-functionally complete set of connectives consists of exactly
one binary connective, then that connective has either the characteristic truth-
table for ‘↓’ or the characteristic truth-table for ‘⏐’. (That is, show that the con-
nective must be either ‘↓’ or ‘⏐’, though possibly under a different name.)
(Hint: In the proofs for Exercises 7 and 8 above, it became apparent that char-
acteristic truth-tables for truth-functionally complete sets of connectives must
have certain properties. Show that only two characteristic truth-tables with just
four rows have these properties.)

6.3 THE SOUNDNESS OF SD AND SD

We now turn to the results announced at the beginning of this chapter. In this
section we shall prove that, if a sentence P is derivable in SD from a set of sen-
tences , then truth-functionally entails P. A natural deduction system for
which this result holds is said to be sound for sentential logic. In the next sec-
tion we shall prove the converse—that if a set of sentences truth-functionally
entails a sentence P, then P is derivable in SD from . A natural deduction sys-
tem for which this second result holds is said to be complete for sentential logic.
Soundness and completeness are important properties for natural deduction
systems. A natural deduction system that is not sound will sometimes lead us
from true sentences to false ones, and a natural deduction system that is not
complete will not allow us to construct all the derivations that we want to con-
struct. In either case the natural deduction system would not be adequate for
the purposes of sentential logic.

Metatheorem 6.3.1 is the Soundness Metatheorem for SD. That is, for any
set of sentences of SL and any sentence P of SL, we have this:

Metatheorem 6.3.1: If P in SD, then P.3

Recall that P if and only if there is no truth-value assignment on which all
the members of are true and P is false. Metatheorem 6.3.1 therefore says that
the derivation rules of SD are truth-preserving ; that is, when correctly applied,
they will never take us from true sentences to a false sentence. When we con-
structed SD, our intent was to pick out truth-preserving derivation rules, and
we shall now prove that we were successful.

Our proof will use mathematical induction to establish that each sen-
tence in a derivation is true if all the open assumptions in whose scope the
sentence lies are true. The basis clause will show that this claim is true of the

|=

|=

3In what follows we shall abbreviate ‘ P in SD’ as ‘ P’.

6.3 THE SOUNDNESS OF SD AND SD 259

first sentence in a derivation. And the inductive step will show that, if the claim
is true for the first k sentences in a derivation, then the claim is also true for
the (k 1)th sentence—that is, each time we apply another derivation rule in
the derivation, that application is truth-preserving. We will then be able to con-
clude that the last sentence in any derivation, no matter how long the deriva-
tion is, is true if all the open assumptions in whose scope the sentence lies are
true. And this conclusion is just what Metatheorem 6.3.1 says.

In the course of the proof, we shall use some set-theoretic terminology,
which we here explain: Let and be sets. If every member of is also a
member of , then is said to be a subset of . Note that every set is a sub-
set of itself, and the empty set is trivially a subset of every set (because the
empty set has no members, it has no members that are not members of every
set). As an example, the set of sentences

{A, B, C}

has eight subsets: {A, B, C}, {A, B}, {B, C}, {A, C}, {A}, {B}, {C}, and ∅. If a set
is a subset of a set , then is said to be a superset of . Thus {A, B, C} is a
superset of each of its eight subsets.

We will also make use of several semantic results, which we gather
together here. First, if P is truth-functionally entailed by a set of sentences ,
then P is truth-functionally entailed by every superset of :

6.3.2: If P, then for every superset of , P.

Proof: Assume that P and let be any superset of . If every
member of is true, then every member of its subset is true, and
so, because P, P is also true. Therefore P.

Second, we have two results that were proved in the exercises for Chapter 3:

6.3.3: If ∪ {Q} R, then Q ⊃ R (see Exercise 2.b in Section
3.6E).

6.3.4: If Q and ∼ Q for some sentence Q, then is truth-
functionally inconsistent (see Exercise 3.b in Section 3.6E).

Finally, if a set of sentences is truth-functionally inconsistent, then, for any sen-
tence Q in the set, the set consisting of all the other sentences in the set truth-
functionally entails ∼ Q:

6.3.5: If ∪ {Q} is truth-functionally inconsistent, then ∼ Q.

Proof: Assume that ∪ {Q} is truth-functionally inconsistent. Then
there is no truth-value assignment on which every member of ∪ {Q}
is true. Therefore, if every member of is true on some truth-value
assignment, Q must be false on that assignment, and ∼ Q will be true.
So ∼ Q.|=

|=

|=|=

|=|=

|=|=

|=

|=|=

260 SENTENTIAL LOGIC: METATHEORY

We are now prepared to prove that each sentence in a derivation is
truth-functionally entailed by the set of the open assumptions in whose scope
the sentence lies. We introduce the following notation: For any derivation, let
Pk be the kth sentence in the derivation, and let k be the set of open assump-
tions in whose scope Pk lies. Here is our argument by mathematical induction
on the position k in a derivation:

Basis clause: 1 P1.

Inductive step: If i Pi for every positive integer i k, then
 k 1 Pk 1.

Conclusion: For every positive integer k, k Pk.

Once we have established that the premises of this argument are true, and
hence that the conclusion is true as well, we may then conclude that in every
derivation the last sentence—which is Pk for some positive integer k—is truth-
functionally entailed by the primary assumptions of the derivation; these are
the open assumptions in whose scope the last sentence lies.

Proof of basis clause: P1 is the first sentence in a derivation. Moreover,
because every derivation in SD begins with one or more assumptions,
P1 is an open assumption that lies in its own scope. (We remind the
reader that, by definition, every assumption of a derivation lies within
its own scope.) That is, 1, the set of open assumptions in whose
scope P1 lies, is {P1}. Because {P1} P1, we conclude that the basis
clause is true.

Proof of inductive step: Let k be an arbitrary positive integer and
assume the inductive hypothesis: for every positive integer i k, i Pi.
We must show that on this assumption it follows that k 1 Pk 1.
We shall consider each way in which Pk 1 might be justified and show
that our thesis holds whichever justification is used. We now turn to
cases.

Case 1: Pk 1 is an Assumption. Then Pk 1 is a member of
 k 1, the set of open assumptions in whose scope Pk 1 lies. Therefore,
if every member of k 1 is true, Pk 1, being a member of the set, is
true as well. So k 1 Pk 1.

Case 2: Pk 1 is justified by Reiteration. Then Pk 1 occurs ear-
lier in the derivation as sentence Pi at some position i. Moreover every
assumption that is open at position i must remain open at position k

1—for if even one assumption in whose scope Pi lies were closed before
position k 1, then Pi would not be accessible at position k 1. There-
fore i is a subset of k 1; every member of i is still an open assump-
tion at position k 1. By our inductive hypothesis i Pi. Because i is
a subset of k 1, it follows, by 6.3.2, that k 1 Pi. And because Pk 1 is
the same sentence as Pi, k 1 Pk 1.|=

|=
|=

|=

|=
|=

|=

|=

|=
|=

|=

6.3 THE SOUNDNESS OF SD AND SD 261

Case 3: Pk 1 is justified by Conjunction Introduction. The con-

juncts of Pk 1 occur earlier in the derivation, say at positions h and j:

h Q

j R

k 1 Q & R (Pk 1) h, j &I

(There may be open assumptions between positions h and j and

between positions j and k 1. Moreover it may be that R occurs ear-

lier in the derivation than Q does—the order is immaterial.) By the

inductive hypothesis, h Q and j R. Moreover every member of

 h is a member of k 1 and every member of j is a member of k 1—

for if this were not the case, then either Q or R would not be accessi-

ble at position k 1. h and j are therefore subsets of k 1 and so,

by 6.3.2, k 1 Q and k 1 R. But whenever both Q and R are true,

Pk 1, which is Q & R, is also true. So k 1 Pk 1 as well.

Case 4: Pk 1 is justified by Conjunction Elimination:

h Q & Pk 1 h Pk 1 & Q

k 1 Pk 1 h &E

or

k 1 Pk 1 h &E

By the inductive hypothesis, h truth-functionally entails the conjunc-

tion at position h. And whenever the conjunction is true, both

conjuncts must be true. So h Pk 1. h is a subset of k 1—all

assumptions that have not been closed by position h must remain open

at position k 1. It follows, by 6.3.2, that k 1 Pk 1.

Case 5: Pk 1 is justified by Disjunction Introduction:

h Q h R

k 1 Q ∨ R (Pk 1) h ∨I

or

k 1 Q ∨ R (Pk 1) h ∨I

By the inductive hypothesis, h truth-functionally entails the sentence

at position h. That sentence is one of the disjuncts of Q ∨ R, so when-

ever it is true, so is Q ∨ R. Thus h Pk 1. h must be a subset of k 1

if the sentence at position h is accessible at position k 1, and so, by

6.3.2, k 1 Pk 1.

Case 6: Pk 1 is justified by Conditional Elimination:

h Q

j Q ⊃ Pk 1

k 1 Pk 1 h, j ⊃E

|=

|=

|=

|=

|=
|=|=

|=|=

262 SENTENTIAL LOGIC: METATHEORY

By the inductive hypothesis, h Q and j Q ⊃ Pk 1. Both h and
 j must be subsets of k 1 if the sentences at positions h and j are
accessible at position k 1. By 6.3.2, then, k 1 Q and k 1 Q ⊃

Pk 1. Because Pk 1 must be true whenever both Q and Q ⊃ Pk 1 are
true, k 1 Pk 1 as well.

Case 7: Pk 1 is justified by Biconditional Elimination:

h Q h Q
j Q Pk 1 or j Pk 1 Q

k 1 Pk 1 h, j E k 1 Pk 1 h, j E

By the inductive hypothesis, h Q and j truth-functionally entails
the biconditional at position j. h and j must be subsets of k 1 if the
sentences at positions h and j are accessible at position k 1. By 6.3.2,
then, k 1 truth-functionally entails both Q and the biconditional at
position j. Because the sentence Pk 1 must be true whenever both Q
and the biconditional at position j are true, k 1 Pk 1 as well.

Case 8: Pk 1 is justified by Conditional Introduction:

h Q

j R

k 1 Q ⊃ R (Pk 1) h–j ⊃I

By the inductive hypothesis, j R. Because the subderivation in
which R is derived from Q is accessible at position k 1, every
assumption that is open at position j is open at position k 1, except
for the assumption Q that begins the subderivation. So the set of
open assumptions j is a subset of k 1 ∪ {Q}. Because j R, it fol-
lows, by 6.3.2, that k 1 ∪ {Q} R. And from this it follows, by 6.3.3,
that k 1 Q ⊃ R.

Case 9: Pk 1 is justified by Negation Introduction:

h Q

j R
m ∼ R

k 1 ∼ Q (Pk 1) h–m ∼ I

By the inductive hypothesis, j R and m ∼ R. Because the sub-
derivation that derives R from Q is accessible at position k 1, every

|=|=

|=
|=

|=

|=

|=

|=

|=

|=|=

|=|=

6.3 THE SOUNDNESS OF SD AND SD 263

assumption that is open at position j is open at position k 1 except
for the assumption Q that begins the subderivation. That is, the set
of open assumptions j is a subset of k 1 ∪ {Q}. By similar
reasoning m must be a subset of k 1 ∪ {Q}. Therefore, by 6.3.2,
 k 1 ∪ {Q} R and k 1 ∪ {Q} ∼ R. From this it follows, by 6.3.4,
that k 1 ∪ {Q} is truth-functionally inconsistent and then, by 6.3.5,
that k 1 ∼ Q.

Case 10: Pk 1 is justified by Negation Elimination. See Exercise 3.

Case 11: Pk 1 is justified by Disjunction Elimination:

h Q ∨ R

j Q

m Pk 1

n R

p Pk 1

k 1 Pk 1 h, j–m, n–p ∨E

By the inductive hypothesis, h Q ∨ R, m Pk 1, and p Pk 1.
Because the two subderivations are accessible at position k 1, the
open assumptions m form a subset of k 1 ∪ {Q} and the open
assumptions p form a subset of k 1 ∪ {R}. By 6.3.2, then, k 1 ∪ {Q}

Pk 1 and k 1 ∪ {R} Pk 1. Moreover, because Q ∨ R at position
h is accessible at position k 1, h is a subset of k 1. So, because
 h Q ∨ R, it follows, by 6.3.2, that k 1 Q ∨ R. Now consider any
truth-value assignment on which every member of k 1 is true. Because
 k 1 Q ∨ R, Q ∨ R is also true on this assignment. So either Q or
R is true. If Q is true, then every member of k 1 ∪ {Q} is true and
hence Pk 1 is true as well because k 1 ∪ {Q} Pk 1. Similarly, if R is
true, then every member of k 1 ∪ {R} is true, and hence Pk 1 is true
as well because k 1 ∪ {R} Pk 1. Either way, it follows that Pk 1 must
be true on any truth-value assignment on which every member of k 1

is true. So k 1 Pk 1.

Case 12: Pk 1 is justified by Biconditional Introduction:

h Q

j R

m R

n Q

k 1 Q R (Pk 1) h–j, m–n I

|=

|=

|=

|=

|=|=

|=|=

|=|=|=

|=

|=|=

264 SENTENTIAL LOGIC: METATHEORY

By the inductive hypothesis j R and n Q. Because the two sub-
derivations are accessible at position k 1, j is a subset of k 1 ∪ {Q}
and n is a subset of k 1 ∪ {R}. By 6.3.2, then, k 1 ∪ {Q} R and
 k 1 ∪ {R} Q. Now consider any truth-value assignment on which
every member of k 1 is true. If R is also true on that assignment, then
so is Q because k 1 ∪ {R} Q. If R is false on that assignment, then
Q must also be false—if Q were true, then R would have to be true as
well because k 1 ∪ {Q} R. Either way, Q and R have the same truth-
value, and so Q R is true on every truth-value assignment on which
every member of k 1 is true. So k 1 Pk 1.

This completes the proof of the inductive step; we have considered
every way in which the sentence at position k 1 of a derivation might be
justified and have shown that in each case k 1 Pk 1 if the same is true of
all earlier positions in the derivation. We have therefore established that the
conclusion of the argument by mathematical induction is also true: For any
position in a derivation, the sentence at that position is truth-functionally
entailed by the set of open assumptions in whose scope it lies. In particu-
lar, this thesis is true of the last position in any derivation—the sentence
that has been derived is truth-functionally entailed by the open assump-
tions in whose scope it lies, and these are the primary assumptions of the
derivation. So the soundness metatheorem for SD has been established: If
 P in SD, then P. It follows from Metatheorem 6.3.1 that every sen-
tence of SL that is a theorem in SD is truth-functionally true and that every
argument that is valid in SD is truth-functionally valid (see Exercise 20 in
Section 5.4E).

6.3E EXERCISES

1. List all the subsets of each of the following sets:

a. {A ⊃ B, C ⊃ D}

b. {C ∨ ∼ D, ∼ D ∨ C, C ∨ C}

c. {(B & A) K}

d. ∅

2. Of which of the following sets is {A ⊃ B, C & D, D ⊃ A} a superset?

a. {A ⊃ B}

b. {D ⊃ A, A ⊃ B}

c. {A ⊃ D, C & D}

d. ∅

e. {C & D, D ⊃ A, A ⊃ B}

*3. Prove Case 10 of the inductive step in the proof of Metatheorem 6.3.1.

|=

|=

|=

|=

|=

|=
|=

|=|=

6.3 THE SOUNDNESS OF SD AND SD 265

4.

a. Suppose that system SD* is just like SD except that it also contains a new rule

of inference:

Negated Biconditional Introduction (∼ I)

P

∼ Q

∼ (P Q)

Prove that system SD* is a sound system for sentential logic; that is, prove that

if P in SD* then P. (You may use Metatheorem 6.3.1.)

b. Suppose that system SD is just like SD except that it also contains a new rule

of inference:

Backward Conditional Introduction (B⊃I)

∼ Q

∼ P

P ⊃ Q

Prove that system SD* is sound for sentential logic.

c. Suppose that system SD* is just like SD except that it also contains a new rule

of inference:

Crazy Disjunction Elimination (C∨E)

P ∨ Q

P

Q

Prove that SD* is not a sound system for sentential logic.

d. Suppose that system SD is just like SD except that it also contains a new rule

of inference:

Crazy Conditional Introduction (C⊃I)

∼ P

Q

P ⊃ Q

Prove that SD* is not a sound system for sentential logic.

e. Suppose that the rules of a system SD* form a subset of the rules of SD. Is SD*

a sound system for sentential logic? Explain.

|=

266 SENTENTIAL LOGIC: METATHEORY

4The method that we use to prove completeness is due to Leon Henkin, “The Completeness of the First-Order
Functional Calculus,” Journal of Symbolic Logic, 14 (1949), 159–166.

5. Suppose that in our semantics for SL the characteristic truth-table for ‘&’ is

P Q P & Q

T T T

T F T

F T F

F F F

while the characteristic truth-tables for the other sentential connectives remain

the same. Would SD still be a sound system for sentential logic? Explain.

6. Using Metatheorem 6.3.1 and Exercise 1.e in Section 6.1E, prove that SD is

sound for sentential logic.

6.4 THE COMPLETENESS OF SD AND SD

We proved in the last section that derivations in SD never lead from true premises
to a false conclusion, and so every derivation in SD is semantically acceptable.
This fact alone does not establish that SD is an adequate natural deduction sys-
tem for sentential logic. In addition, it is to be hoped that if an argument is truth-
functionally valid then we can derive its conclusion from its premises in SD and
that every sentence that is truth-functionally true can be derived in SD from the
empty set—in short, that everything that we want to derive in SD can be derived
in SD. If there is even one argument that is truth-functionally valid but for which
no derivation can be constructed in SD, then SD is not adequate to sentential
logic. Our final metatheorem assures us that we can derive all that we want to
derive in SD; it is called the Completeness Metatheorem:

Metatheorem 6.4.1: If P, then P in SD.

That is, if a set truth-functionally entails a sentence P, then P may be derived
from in SD. It follows from this metatheorem that every argument of SL that
is truth-functionally valid is valid in SD and that every sentence of SL that is truth-
functionally true is a theorem in SD (see Exercise 20 in Section 5.4E). A system
for which Metatheorem 6.4.1 holds is said to be complete for sentential logic.

There are several well-known ways to establish a completeness meta-
theorem. Some of these are said to be constructive—they show, for any set and
sentence P such that P, how to construct a derivation of P from . We shall
present a nonconstructive proof of completeness.4 The proof will establish that,
for every truth-functional entailment, there is at least one corresponding der-
ivation in SD. It will not, however, show how to construct such a derivation.

|=

 |=

6.4 THE COMPLETENESS OF SD AND SD 267

Before diving into the details of the proof, we shall give an overview of
the proof’s structure. The proof of Metatheorem 6.4.1 relies on several results
that we present here; we defer the lengthy proof of 6.4.3 to the following pages.

6.4.2: For any set of sentences and any sentence P, P if and
only if ∪ {∼ P} is truth-functionally inconsistent. (This follows from
result 6.3.5 and Exercise 1.c in Section 3.6E.)

6.4.3: (The Inconsistency Lemma): If a set of sentences of SL is
truth-functionally inconsistent, then is also inconsistent in SD.

6.4.4: For any set of sentences and any sentence P, P in SD if
and only if ∪ {∼P} is inconsistent in SD (see Exercise 1).

Here is how the Completeness Theorem follows from these results. If the
antecedent of Metatheorem 6.4.1, P, is true, it follows from 6.4.2 that
 ∪ {∼P} is truth-functionally inconsistent, from the Inconsistency Lemma
(6.4.3) that ∪ {∼P} is inconsistent in SD, and from 6.4.4 that P in SD.

We shall prove 6.4.3, the Inconsistency Lemma, by proving the follow-
ing equivalent claim:

If a set of sentences of SL is consistent in SD, then is also truth-
functionally consistent.

(The claim is equivalent because any sentence of the form ∼ P ⊃ ∼ Q is equiv-
alent to the corresponding sentence of the form Q ⊃ P.) Our strategy will be
to show, for any set that is consistent in SD, how to construct a truth-value
assignment on which every member of is true. We shall construct the truth-
value assignment in two steps. First, we shall form a superset of (a set that
includes all the members of and possibly other sentences) that is maximally

consistent in SD. A maximally consistent set is, intuitively, a consistent set that
contains as many sentences as it can without being inconsistent in SD:

A set of sentences of SL is maximally consistent in SD if and only if
 is consistent in SD and, for every sentence P of SL that is not a mem-
ber of , ∪ {P} is inconsistent in SD.

If a set is maximally consistent in SD, then if we add to the set any sentence
that is not already a member, it will be possible to derive some sentence and
its negation from the augmented set.

Having constructed a maximally consistent superset of , we shall next
construct a model for that maximally consistent superset, that is, a truth-value
assignment on which every member of the maximally consistent superset is
true. We use a superset of that is maximally consistent in SD, rather than sim-
ply using the original set , because there is a straightforward way to construct
a model for a maximally consistent set. Of course, because every member of
will be in the maximally consistent superset, it follows that every member of

|=

|=

268 SENTENTIAL LOGIC: METATHEORY

will be true on the model that we have constructed and therefore that is
truth-functionally consistent.

So, to begin with, we need to establish that we can form a maximally
consistent superset of any set of sentences that is consistent in SD; that is, we
need to prove this:

6.4.5 (The Maximal Consistency Lemma): If is a set of sentences of
SL that is consistent in SD, then is a subset of at least one set of
sentences that is maximally consistent in SD.

This lemma is important, for we are then going to show how to construct the
desired truth-value assignment for a maximally consistent set. If there were
any sets of sentences that were consistent in SD but that were not subsets of
any set that is maximally consistent in SD, our construction would fail to show
that the Inconsistency Lemma (6.4.3) is true of these sets. At most, we would
be able to conclude that some sets of sentences that are consistent in SD—
those that can be expanded to maximally consistent supersets—are also truth-
functionally consistent.

In proving the Maximal Consistency Lemma (6.4.5), we shall make use of
the fact that the sentences of SL can be enumerated, that is, placed in a definite
order in one-to-one correspondence with the positive integers so that there is a
sentence for each positive integer. Here is one method of enumerating the sen-
tences of SL. First, we associate with each symbol of SL the two-digit numeral oc-
curring to its right:

Symbol Numeral Symbol Numeral

∼ 10 A 30
∨ 11 B 31
& 12 C 32
⊃ 13 D 33
 14 E 34
(15 F 35
) 16 G 36
0 20 H 37
1 21 I 38
o o o o

9 29 Z 55

(The ellipses mean that the next two-digit numeral is assigned to the next digit
or letter of the alphabet.) Next we associate with each sentence of SL, atomic
or molecular, the number designated by the numeral that consists of the
numerals associated with the symbols in the sentence, in the order in which
those symbols occur. For example, the numbers associated with the sentences

(A ∨ C2) ∼ ∼ (A ⊃ (B & ∼ C))

6.4 THE COMPLETENESS OF SD AND SD 269

are, respectively,

153011322216 101015301315311210321616

It is obvious that each sentence of SL will thus have a distinct number associ-
ated with it. Finally we enumerate all the sentences of SL by taking them in
the order of their associated numbers: The first sentence in the enumeration
is the sentence with the smallest associated number, the second sentence is
the one with the next smallest associated number, and so on. In effect, we
have imposed an alphabetical order on the sentences of SL so that we may
freely talk of the first sentence of SL (which turns out to be ‘A’—because only
atomic sentences will have two-digit associated numbers, and the number for
‘A’ is the smallest of these), the second sentence of SL (which turns out to be
‘B’), and so on.

We shall start with a set of sentences that is consistent in SD (as pro-
vided for in the antecedent of the Maximal Consistency Lemma) and use our
enumeration to construct a superset of that is maximally consistent in SD.

The construction considers in turn each sentence in the enumeration we have
just described and adds it to the set if and only if the resulting set is consis-
tent in SD. In the end the construction will have added as many sentences as
can be added to the original set without producing a set that is inconsistent
in SD. As the construction goes through the sentences of SL, deciding whether
to add each sentence, it produces an infinite sequence 1, 2, 3, . . . of sets
of sentences of SL:

1. 1 is , the original set.

2. If Pi is the ith sentence in the enumeration, then i 1 is i ∪ {Pi}
if i ∪ {Pi} is consistent in SD; otherwise i 1 is i.

As an example, if i is {∼ B, ∼ C ∨ ∼ B} and Pi is ‘A’, then i ∪ {Pi}, which is
{∼ B, ∼ C ∨ ∼ B, A}, is consistent in SD. In this case i 1 will be the expanded
set i ∪ {Pi}. If i is {A, ∼ B, ∼ C ∨ ∼ B} and Pi is ‘B’, then i ∪ {Pi}, which is
{A, ∼ B, ∼ C ∨ ∼ B, B}, is inconsistent in SD (this is readily verified). In this case
Pi is not added to the set— i 1 is merely the set {A, ∼ B, ∼ C ∨ ∼ B}.

Because we have an infinite sequence of sets, we cannot take the last
member of the series as the maximally consistent set desired—there is no last
member. Instead, we form a set * that is the union of all the sets in the series:
 * is defined to contain every sentence that is a member of at least one set in
the series and no other sentences. * is a superset of because it follows from
the definition of * that every sentence in 1 (as well as 2, 3, . . .) is a mem-
ber of *, and 1 is the original set .

Having formed the set *, it remains to be proved that * is consistent
in SD and that it is maximally consistent in SD. To prove the first claim, we note
that every set in the sequence 1, 2, 3, . . . is consistent in SD. This is easily

270 SENTENTIAL LOGIC: METATHEORY

established by mathematical induction:

Basis clause: The first member of the sequence, 1, is consistent in SD.

Proof: 1 is defined to be the original set , which is consistent in SD.

Inductive step: If every set in the sequence prior to k 1 is consistent in
SD, then k 1 is consistent in SD.

Proof: k 1 was defined to be k ∪ {Pk} if the latter set is consistent in
SD and to be k otherwise. In the first case k 1 is obviously consistent
in SD. In the second case k 1 is consistent because, by the inductive
hypothesis, k is consistent in SD.

Conclusion: Every member of the series 1, 2, 3, . . . is consistent in SD.

Now suppose, contrary to what we wish to prove, that * is inconsistent in SD.

6.4.6: If is inconsistent in SD, then some finite subset of is
inconsistent in SD (see Exercise 2).

It follows that there is a finite subset of * that is inconsistent in SD. must
be nonempty, for the empty set is consistent in SD (see Exercise 3). Moreover,
because is finite, there is a sentence in that comes after all the other
members of in our enumeration—call this sentence Pj. (That is, any other
member of is Ph for some h j.) Then every member of is a member
of j 1, by the way we constructed the series 1, 2, 3, . . . (This is because
we have constructed the sets in such a way that if a sentence that is the ith sen-
tence in our enumeration is a member of any set in the sequence—and hence
of *—it must be in the set i 1 and every set thereafter. After the construc-
tion of i 1, the only sentences that are added are sentences at position i 1
in the enumeration or later.) But if is inconsistent in SD, and every mem-
ber of is a member of j 1, then j 1 is inconsistent in SD as well, by 6.4.7:

6.4.7: If is inconsistent in SD, then every superset of is
inconsistent in SD.

Proof: Assume that is inconsistent in SD. Then for some sentence P
there is a derivation of P in which all the primary assumptions are
members of , and also a derivation of ∼ P in which all the primary
assumptions are members of . The primary assumptions of both der-
ivations are members of every superset of , so P and ∼ P are both
derivable from every superset of . Therefore every superset of is
inconsistent in SD.

But we have already proved by mathematical induction that every set in the
infinite sequence is consistent in SD. So j 1 cannot be inconsistent in SD, and
our supposition that led to this conclusion is wrong—we may conclude that *
is consistent in SD.

6.4 THE COMPLETENESS OF SD AND SD 271

It remains to be proved not only that * is consistent in SD but that it
is, in addition, maximally consistent. Suppose that * is not maximally consistent
in SD. Then there is at least one sentence Pk of SL that is not a member of *
and is such that * ∪ {Pk} is consistent in SD. We showed, in 6.4.7, that every
superset of a set that is inconsistent in SD is itself inconsistent, so every subset
of a set that is consistent in SD must itself be consistent in SD. In particular, the
subset k ∪ {Pk} of * ∪ {Pk} must be consistent in SD. But then, by step 2 of
the construction of the sequence of sets, k 1 is defined to be k ∪ {Pk}—Pk

is a member of k 1. Pk is therefore a member of *, contradicting our sup-
position that it is not a member of *. Therefore * must be maximally con-
sistent in SD—every sentence that can be consistently added to * is already a
member of *. This and the result of the previous paragraph establish the Max-
imal Consistency Lemma (6.4.5); we have shown that, given any set of sentences
that is consistent in SD, we can construct a superset that is maximally consistent
in SD.

Finally, we will show that we can construct a model for every set that
is maximally consistent in SD. From this we will have the following:

6.4.8 (the Consistency Lemma): Every set of sentences of SL that is
maximally consistent in SD is truth-functionally consistent.

In establishing the Consistency Lemma, we shall appeal to the following impor-
tant facts about sets that are maximally consistent in SD:

6.4.9: If Γ P and Γ* is a maximally consistent superset of Γ, then P
is a member of Γ*.

Proof: Assume that Γ P and let Γ* be a maximally consistent super-
set of Γ. By the definition of derivability in SD, Γ* P as well. Now
suppose, contrary to what we wish to prove, that P is not a member of
Γ*. Then, by the definition of maximal consistency, Γ* ∪ {P} is incon-
sistent in SD. Therefore by

6.4.10: If Γ ∪ {P} is inconsistent in SD, then Γ ∼ P (see Exercise 1)

it follows that Γ* ∼ P. But then, because both P and ∼ P are deriv-
able in SD from Γ*, it follows that Γ* is inconsistent in SD. But this is
impossible if Γ is maximally consistent in SD. We conclude that our
supposition about P, that it is not a member of Γ*, is wrong—P is a
member of Γ*.

In what follows, we will use the standard notation

P ∈ Γ

to mean

P is a member of Γ

and the standard notation

P ∉ Γ

to mean

P is not a member of Γ.

The next result concerns the composition of the membership of any set that
is maximally consistent in SD:

6.4.11: If Γ* is maximally consistent in SD and P and Q are sentences
of SL, then:

a. ∼ P ∈ Γ* if and only if P ∉ Γ*.

b. P & Q ∈ Γ* if and only if both P ∈ Γ* and Q ∈ Γ*.

c. P ∨ Q ∈ Γ* if and only if either P ∈ Γ* or Q ∈ Γ*.

d. P ⊃ Q ∈ Γ* if and only if either P ∉ Γ* or Q ∈ Γ*.

e. P Q ∈ Γ* if and only if either P ∈ Γ* and Q ∈ Γ*, or P ∉ Γ*
and Q ∉ Γ*.

Proof of (a): Assume that ∼ P ∈ Γ*. Then P ∉ Γ* for, if it were a mem-
ber, then Γ* would have a finite subset that is inconsistent in SD,
namely, {P, ∼ P}, and according to 6.4.7 this is impossible if Γ* is
consistent in SD. Now assume that P ∉ Γ*. Then, by the definition of
maximal consistency in SD, Γ* ∪ {P} is inconsistent in SD. So, by rea-
soning similar to that used in proving 6.4.9, some finite subset Γ of Γ*
is such that Γ ∪ {P} is inconsistent in SD, and therefore such that
Γ ∪ {∼ ∼ P} is inconsistent in SD and hence that Γ ∼ P, by 6.4.4. It
follows, by 6.4.9, that ∼ P ∈ Γ*.

Proof of (b): Assume that P & Q ∈ Γ*. Then {P & Q} is a subset of
Γ*. Because {P & Q} P and {P & Q} Q (both by Conjunction Elim-
ination), it follows, by 6.4.9, that P ∈ Γ* and Q ∈ Γ*. Now suppose
that P ∈ Γ* and Q ∈ Γ*. Then {P, Q} is a subset of Γ* and, because
{P, Q} P & Q (by Conjunction Introduction), it follows, by 6.4.9, that
P & Q ∈ Γ*.

Proof of (c): See Exercise 5.

Proof of (d): Assume that P ⊃ Q ∈ Γ*. If P ∉ Γ*, then it follows trivially
that either P ∉ Γ* or Q ∈ Γ*. If P ∈ Γ*, then {P, P ⊃ Q} is a subset of
Γ*. Because {P, P ⊃ Q} Q (by Conditional Elimination), it follows,

272 SENTENTIAL LOGIC: METATHEORY

6.4 THE COMPLETENESS OF SD AND SD 273

by 6.4.9, that Q ∈ Γ*. So, if P ⊃ Q ∈ Γ*, then either P ∉ Γ* or
Q ∈ Γ*. Now assume that either P ∉ Γ* or Q ∈ Γ*. In the former case,
by (a), ∼ P ∈ Γ*. So either {∼ P} is a subset of Γ* or {Q} is a subset of
Γ*. P ⊃ Q is derivable from either subset:

1 ∼ P Assumption

2 P A / ∼ Ε

3 ∼ Q A / ∼ Ε

4 P 2 R
5 ∼ P 1 R
6 Q 3–5 ∼ E
7 P ⊃ Q 2–6 ⊃I

Either way, there is a finite subset of Γ* from which P ⊃ Q is derivable;
so, by 6.4.9, it follows that P ⊃ Q ∈ Γ*.
Proof of (e): See Exercise 5.

Turning now to the Consistency Lemma (6.4.8), let Γ be a set of
sentences that is maximally consistent in SD. We said earlier that it is easy to
construct a model for a maximally consistent set, and it is; we need only con-
sider the atomic sentences in the set. Let A* be the truth-value assignment that
assigns the truth-value T to every atomic sentence of SL that is a member of
Γ* and assigns the truth-value F to every other atomic sentence of SL. We shall
prove by mathematical induction that each sentence of SL is true on the truth-
value assignment A* if and only if it is a member of Γ*—from which it follows
that every member of Γ* is true on A*, thus establishing truth-functional
consistency. The induction will be based on the number of occurrences of
connectives in the sentences of SL:

Basis clause: Each atomic sentence of SL is true on A* if and only if it
is a member of Γ*.

Inductive step: If every sentence of SL with k or fewer occurrences of
connectives is such that it is true on A* if and only if it is a member
of Γ*, then every sentence of SL with k 1 occurrences of connec-
tives is such that it is true on A* if and only if it is a member of Γ*.

Conclusion: Every sentence of SL is such that it is true on A* if and only
if it is a member of Γ*.

The basis clause is obviously true; we defined A* to be an assignment
that assigns T to all and only the atomic sentences of SL that are members of
Γ*. To prove the inductive step, we will assume that the inductive hypothesis
holds for an arbitrary integer k: That each sentence containing k or fewer
occurrences of connectives is true on A* if and only if it is a member of Γ*.

1 Q Assumption

2 P A / ⊃Ι

3 Q 1 R
4 P ⊃ Q 2–3 ⊃I

274 SENTENTIAL LOGIC: METATHEORY

We must now show that the same holds true for every sentence P containing
k 1 occurrences of connectives. We consider five cases, reflecting the five
forms that a molecular sentence of SL might have.

Case 1: P has the form ∼ Q. If ∼ Q is true on A*, then Q is false
on A*. Because Q contains fewer than k 1 occurrences of connectives,
it follows by the inductive hypothesis that Q ∉ Γ*. Therefore, by 6.4.11(a),
∼ Q ∈ Γ*. If ∼ Q is false on A*, then Q is true on A*. It follows by the
inductive hypothesis that Q ∈ Γ*. Therefore, by 6.4.11(a), ∼ Q ∉ Γ*.

Case 2: P has the form Q & R. If Q & R is true on A*, then
both Q and R are true on A*. Because Q and R each contain fewer than
k 1 occurrences of connectives, it follows by the inductive hypothesis
that Q ∈ Γ* and R ∈ Γ*. Therefore, by 6.4.11(b), Q & R ∈ Γ*. If Q & R
is false on A*, then either Q is false on A* or R is false on A*. There-
fore, by the inductive hypothesis, either Q ∉ Γ* or R ∉ Γ* and so, by
6.4.11(b), Q & R ∉ Γ*.

Case 3: P has the form Q ∨ R. See Exercise 6.

Case 4: P has the form Q ⊃ R. If Q ⊃ R is true on A*, then
either Q is false on A* or R is true on A*. Because Q and R each con-
tain fewer than k 1 occurrences of connectives, it follows from the
inductive hypothesis that either Q ∉ Γ* or R ∈ Γ*. By 6.4.11(d), then,
Q ⊃ R ∈ Γ*. If Q ⊃ R is false on A*, then Q is true on A* and R is
false on A*. By the inductive hypothesis, then, Q ∈ Γ* and R ∉ Γ*.
And by 6.4.11(d), it follows that Q ⊃ R ∉ Γ*.

Case 5: See Exercise 6.

This completes the proof of the inductive step. Hence we may con-
clude that each sentence of SL is such that it is a member of Γ* if and only if
it is true on A*. So every member of a set Γ* that is maximally consistent in
SD is true on A*, and the set Γ* is therefore truth-functionally consistent. This
establishes the Consistency Lemma (6.4.8).

We now know that the Inconsistency Lemma (6.4.3) is true. Because
every set of sentences Γ that is consistent in SD is a subset of a set of sentences
that is maximally consistent in SD (the Maximal Consistency Lemma (6.4.5)),
and because every set of sentences that is maximally consistent in SD is truth-
functionally consistent (the Consistency Lemma (6.4.8)), it follows that every
set of sentences that is consistent in SD is a subset of a truth-functionally con-
sistent set and is therefore itself truth-functionally consistent. So, if a set is truth-
functionally inconsistent, it must be inconsistent in SD.

It now follows that Metatheorem 6.4.1:

If Γ P, then Γ P

is true. For if Γ P, then, by 6.4.2, Γ ∪ {∼ P} is truth-functionally inconsistent.
Then, by the Inconsistency Lemma (6.4.3), Γ ∪ {∼ P} is inconsistent in SD. And

|=

 |=

6.4 THE COMPLETENESS OF SD AND SD 275

if Γ ∪ {∼ P} is inconsistent in SD, then, by 6.4.4, Γ P in SD. So SD is com-
plete for sentential logic—for every truth-functional entailment there is at least
one corresponding derivation that can be constructed in SD. This, together
with the proof of the Soundness Metatheorem in Section 6.3, shows that SD is
an adequate system for sentential logic.

We conclude by noting that another important result, the Compactness
Theorem for sentential logic, follows from the Inconsistency Lemma (6.4.3)
and Metatheorem 6.3.1:

Metatheorem 6.4.12: A set Γ of sentences of SL is truth-functionally consis-
tent if and only if every finite subset of Γ is truth-functionally consistent.

And, as a consequence, a set of sentences of SL is truth-functionally inconsis-
tent if and only if at least one finite subset of Γ is inconsistent.

6.4E EXERCISES

1. Prove 6.4.4 and 6.4.10.

2. Prove 6.4.6.

*3. Prove that the empty set is consistent in SD.

4. Using Metatheorem 6.4.1, prove that SD is complete for sentential logic.

*5. Prove that every set that is maximally consistent in SD has the following prop-

erties:

c. P ∨ Q ∈ Γ* if and only if either P ∈ Γ* or Q ∈ Γ*.

e. P Q ∈ Γ* if and only if either P ∈ Γ* and Q ∈ Γ*, or P ∉ Γ* and Q ∉ Γ*.

*6. Establish Cases 3 and 5 of the inductive step in the proof of the Consistency

Lemma 6.4.8.

7.a. Suppose that SD* is like SD except that it lacks Reiteration. Show that SD* is

complete for sentential logic.

b. Suppose that SD is like SD except that it lacks Negation Introduction. Show

that SD* is complete for sentential logic.

8. Suppose that SD* is like SD except that it lacks Conjunction Elimination. Show

where our completeness proof for SD will fail as a completeness proof for SD*.

9. Using the Inconsistency Lemma 6.4.3 and Metatheorem 6.3.1, prove Meta-

theorem 6.4.12.

276 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Chapter 7
PREDICATE LOGIC:

SYMBOLIZATION AND SYNTAX

7.1 THE LIMITATIONS OF SL

In Chapter 2 we introduced the language SL and techniques for symbolizing
sentences of English in SL. In subsequent chapters we presented various seman-
tic and syntactic methods for testing sentences and sets of sentences of SL for
the logical properties defined for that language, including both semantic and
syntactic versions of deductive validity, logical consistency, and logical truth (the
former defined in terms of truth-value assignments, the latter in terms of deriv-
ability). SL has a number of virtues. For example, any English language argu-
ment that has an acceptable symbolization in SL that is truth-functionally valid
is itself deductively valid. So, too, a sentence of English that can be fairly sym-
bolized as a truth-functionally true (or truth-functionally false) sentence of SL

is itself logically true (or logically false); similarly for equivalence and entail-
ment. And if a set of English sentences can be fairly symbolized as a set of
sentences of SL that is truth-functionally inconsistent, then that set of English
sentences is itself logically inconsistent.

A further advantage is that two of the test procedures we developed in
conjunction with the language SL—that based on truth-tables and that based
on truth-trees—can readily be made into mechanical procedures. (A procedure
is “mechanical” in this sense if each step is dictated by some rule, given prior

7.1 THE LIMITATIONS OF SL 277

steps. Thus a procedure for which a computer program can be written is a
mechanical procedure.) Some mechanical procedures have no stopping point;
that is, once started, they run on indefinitely. For example, if someone is hired
to scrape and paint a bridge, told to start at the west end of the bridge and,
upon reaching the east bank, to go back and start over on the west bank, we
have a procedure that will go on indefinitely. The continuous scraping and
painting will stop when the painter quits or retires, the bridge is removed or
abandoned, the supply of paint runs out, or whatever. But the parameters estab-
lished by the instructions do not determine or even envision a stopping point.
The mechanical procedures based on truth-tables and truth-trees for SL are not
of this sort—they always come to a stop after a finite number of steps. More-
over, when they stop, they always provide either a “yes” or a “no” answer to the
question being asked (for instance, ‘Is this argument truth-functionally valid?’
or ‘Is this sentence truth-functionally true?’). The semantic properties of
consistency, truth-functional truth, truth-functional falsity, truth-functional
indeterminacy, truth-functional equivalence, truth-functional validity, and
truth-functional entailment are termed decidable properties precisely because
there are mechanical test procedures for these properties, procedures that
always terminate after a finite number of steps and always yield either a “yes”
or “no” answer to the question being asked (‘Does this semantic property hold
of this sentence, or argument, or pair of sentences, or set of sentences?’).

One of the goals of formal logic is to develop tools that allow us to under-
stand (and test for the holding of) various logical properties of sentences and sets
of sentences of natural languages. Until well into the twentieth century many, if not
most, logicians assumed that the way to meet this goal was to develop formal lan-
guages in which all natural language discourse, or at least all “important” discourse
(for example, mathematics and physics), could be represented and then to develop
test procedures for these formal languages. It was expected that the test procedures
would be such that each of the logical properties defined for a formal system would
be decidable in the above sense.

So SL has at least these two advantages: There are decidable test pro-
cedures associated with it, and at least some of the results of these tests can
be carried over to English. (For example, again, if a fair symbolization of an
English language argument is found to be truth-functionally valid, we may
conclude that the English language argument is deductively valid.) But not all
test results obtained for arguments, sentences, and sets of sentences of SL

can be carried back to the English arguments, sentences, and sets of sentences
from which they were derived. Specifically it does not follow from the fact that
the most appropriate symbolization of an English language argument is truth-
functionally invalid that the original English argument is invalid. If a sentence
of SL is not truth-functionally true, it does not follow that the English sentence
it symbolizes is not logically true. If a sentence of SL is not truth-functionally
false, it does not follow that the English sentence it symbolizes is not logically
false; so, too, for equivalence and entailment. And if a set of sentences of SL

is truth-functionally consistent, it does not follow that the set of English sentences
we are trying to evaluate is logically consistent.

278 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

The problem is not that we have no test for determining when a
sentence of SL constitutes a “fair” or “most appropriate” symbolization of a
sentence of English, although it is true that we do not have such a test. The
problem is rather that the language SL is itself not sophisticated enough to allow
adequate symbolization of a great deal of natural language discourse. Put
another way, even the most appropriate symbolization of an English sentence
by a sentence of SL frequently fails to capture much of the content of the
English sentence. This is so because the syntactic structure of English, and of
every natural language, is much more complex than the structure of purely
truth-functional languages such as SL. No truth-functional language can mirror
all or even all the important semantic relationships that hold among sentences
and parts of sentences of natural languages. For example, while the sentence

Each citizen will either vote or pay a fine

might form part of a recommendation for rather dramatic reforms in our polit-
ical system, the sentence

Each citizen either will vote or will not vote

is not similarly controversial. Rather, it smacks of being a logical truth. Each
citizen—for example, Cynthia—obviously either will vote or will not vote.
Indeed, the claim about Cynthia, or any other specified citizen, can be sym-
bolized as a truth-functional truth of SL. Where ‘C’ abbreviates ‘Cynthia will
vote’, ‘C ∨ ∼ C’ says of Cynthia what the general claim says of each citizen. But
there is, barring heroic measures, no symbolization of the general claim in SL
that is truth-functionally true.1

Similarly the following argument should strike the reader as being deduc-
tively valid, although it has no symbolization in SL that is truth-functionally valid:

None of David’s friends supports Republicans. Sarah supports Breitlow,
and Breitlow is a Republican. So Sarah is no friend of David’s.

One attempt at a symbolization of this argument in SL is

N

S & B

∼ F

Here ‘S’ abbreviates ‘Sarah supports Breitlow’, ‘B’ abbreviates ‘Breitlow is a
Republican’, and ‘F’ abbreviates ‘Sarah is a friend of David’s’. ‘None of David’s
friends supports Republicans’ is treated as an atomic sentence and symbolized

1Since there are presumably only finitely many citizens, we could construct a very extended conjunction with as
many conjuncts of the sort ‘C ∨ ∼ C’ as there are citizens. But even such heroic measures fail when the items
about which we wish to talk (for example, the positive integers) constitute an infinite, and not just an exceed-
ingly large, set. See Section 7.4.

7.2 PREDICATES, INDIVIDUAL CONSTANTS, AND QUANTITY TERMS OF ENGLISH 279

as ‘N’. This argument of SL is truth-functionally invalid. We could have treated
‘None of David’s friends supports Republicans’ as the negation of ‘Some of
David’s friends support Republicans’ and symbolized it as ‘∼ D’, but the result
would still be truth-functionally invalid.

The problem is that we cannot show, via the syntax of SL, that there is
a relation between supporting Breitlow, Breitlow’s being a Republican, and
supporting Republicans. This is because SL, in taking sentences to be the small-
est linguistic units (other than sentential connectives), makes all subsentential

relationships invisible.
In this chapter we shall develop a new language, PL (for predicate

logic) that will allow us to express many subsentential relationships.2 It will turn
out that the preceding argument has a valid symbolization in PL and that ‘Each
citizen will either vote or not vote’ has a symbolization in PL that is logically
true. However, it will also turn out that PL and its associated test procedures
do not constitute a decidable system. That is, there is no mechanical test proce-
dure that always yields, in a finite number of steps, a “yes” or a “no” answer to
such a question as ‘Is this argument of PL valid?’ In fact, we now know that
there can be no formal system that is both decidable and powerful enough to
allow the expression of even moderately complex natural language discourse,
including the claims of mathematics and physics.3 So, while in moving from SL
to PL we gain expressive power and are able, for example, to demonstrate the
validity of a wider range of English arguments, we lose decidability.

7.2 PREDICATES, INDIVIDUAL CONSTANTS, AND QUANTITY TERMS
OF ENGLISH

A distinction between singular terms and predicates is central to understand-
ing the subsentential structure of English discourse. A singular term is any word
or phrase that designates or purports to designate (or denote or refer to) some
one thing. Singular terms are of two sorts: proper names and definite descrip-
tions. Examples of proper names include ‘George Washington’, ‘Marie Curie’,
‘Sherlock Holmes’, ‘Rhoda’, and ‘Henry’. Generally speaking, proper
names are attached to the things they name by simple convention. Definite
descriptions—for example, ‘the discoverer of radium’, ‘the person Henry is
talking to’, ‘Mary’s best friend’, and ‘James’ only brother’—on the other hand,
pick out or purport to pick out a thing by providing a unique description of
that thing. A definite description is a description that, by its grammatical struc-
ture, purports to describe exactly one thing. Thus ‘James’ only brother’ is a
definite description whereas ‘James’ brother’ is not—the latter could accurately
describe many persons whereas the former can describe at most one.

2There are, as one might expect, arguments that are deductively valid but whose symbolizations in PL are not
valid, sentences that are logically true but whose symbolizations in PL do not reflect this, and so on. To deal with
natural language discourse that cannot be represented in PL, even more powerful formal systems are available—
for example, tense logic and modal logic. A discussion of these systems is beyond the scope of this text.
3See Section 8.2 for further discussion of this point.

280 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

In English not every singular term designates. For example, in its nor-

mal use ‘Sherlock Holmes’ fails to designate because there is no such person

as Sherlock Holmes. Similarly a definite description fails to designate if noth-

ing satisfies—that is, if nothing is uniquely described by—that description. Both

‘the largest prime number’ and ‘the present prime minister of the United

States’ are definite descriptions that for this reason fail to designate.

What thing, if any, a name or definite description designates clearly

depends upon the context of use. In its most familiar use ‘George Washington’

designates the first president of the United States. But a historian may have

named her dog after the first president, and if so there will be contexts in which

she and her friends use the term ‘George Washington’ to designate a dog, not

a figure from American history. In the same way ‘the person Henry is talking

to’ may designate one person on one occasion, another on another occasion,

and (Henry being a taciturn fellow) very often no one at all. Hereafter, when

we use a sentence of English as an example or in an exercise set, we shall, unless

otherwise noted, be assuming that a context is available for that sentence such

that in that context all the singular terms in the sentence do designate. More-

over, when we are working with a group of sentences, the context that is assumed

must be the same for all the sentences in the group. That is, we assume that a

singular term that occurs several times in the piece of English discourse under

discussion designates the same thing in each of its occurrences.

In English pronouns are often used in place of proper names and def-

inite descriptions. When they are so used, their references are determined by

the proper names or definite descriptions for which they substitute. For exam-

ple, in the most straightforward reading of the conditional

If Sue has read Darwin, then she’s no creationist

the reference of ‘she’ is established by the use of ‘Sue’ in the antecedent of

that conditional. So it is clearly appropriate to paraphrase this sentence as

If Sue has read Darwin, then Sue’s no creationist.

But not every pronoun can be replaced by a singular term. Replacing ‘her or

his’ in

This test is so easy that if anyone fails the test, then it’s her or his own

fault

with a singular term, any singular term, creates a nonequivalent sentence, as in

this example:

This test is so easy that if anyone fails the test, then it’s Cynthia’s own fault.

The former claim places responsibility for failure on the test taker, the latter

places it, no matter who the test taker is, on Cynthia (suggesting, perhaps, that

7.2 PREDICATES, INDIVIDUAL CONSTANTS, AND QUANTITY TERMS OF ENGLISH 281

Cynthia is the instructor). (We shall return to uses of pronouns that cannot be
replaced with singular terms shortly.)

Obviously a sentence can contain more than one singular term. For
example,

New York is between Philadelphia and Boston

contains three singular terms: ‘New York’, ‘Philadelphia’, and ‘Boston’.4 Pred-

icates of English are parts of English sentences that can be obtained by deleting
one or more singular terms from an English sentence. Alternatively a predicate
is a string of words with one or more holes or blanks in it such that when the
holes are filled with singular terms, a sentence of English results. From the pre-
ceding example all the following predicates can be obtained:

___ is between Philadelphia and Boston.
New York is between ___ and Boston.
New York is between Philadelphia and ___.
___ is between ___ and Boston.
___ is between Philadelphia and ___.
New York is between ___ and ___.
___ is between ___ and ___.

A predicate with just one blank is a one-place predicate. A predicate with more
than one blank is a many-place predicate. (A predicate with exactly two blanks
is a two-place predicate, a predicate with exactly three blanks is a three-place
predicate, and so on. Generally, where n is a positive integer, a predicate with
n blanks is an n-place predicate.)

One way of generating a sentence from a predicate is to fill the blanks
in the predicate with singular terms. Any singular term can be put in any blank,
and the same singular term can be put in more than one blank. So, from the
two-place predicate ‘___ works for ___’ and the singular terms ‘Pat’, ‘Tom’, ‘3M’,
‘IBM’, and ‘the smallest prime number’, we can generate the following sentences:

Tom works for 3M.
Pat works for 3M.
Tom works for Pat.
Pat works for Tom.
Pat works for Pat.
3M works for Tom.
IBM works for 3M.
The smallest prime number works for IBM.

4We are here concerned only with isolating singular terms that do not occur as constituents of other singular
terms. That is, we here take

The Roman general who defeated Pompey invaded both Gaul and Germany

to contain just three singular terms: ‘The Roman general who defeated Pompey’, ‘Gaul’, and ‘Germany’. In Sec-
tion 7.9 we shall introduce techniques that allow us to recognize and symbolize singular terms that are themselves
constituents of singular terms—for example, ‘Pompey’ as it occurs in ‘The Roman general who defeated Pompey’.

282 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

And so on. Note that all of these are sentences of English by the standard gram-

matical rules of English. When a sentence that consists of an n-place predicate

with the blanks filled with n singular terms is true, we say that that predicate

is true of the n things designated by those n singular terms. As it happens, ‘___

works for ___’ is true of the pair consisting of Tom and 3M but false of the pair

consisting of 3M and Tom (pairs, and triples, and so on, have an order built

in). That is, the Tom we have in mind does work for 3M, but 3M does not work

for Tom.

It may be objected that not all the preceding sentences “make sense”—

what would it mean for the smallest prime number—2—to work for anything

or anyone? One approach here would be to declare such sentences as the last

listed to be semantically deviant and therefore not candidates for truth, that is,

neither true nor false. We, however, take the simpler approach of counting such

sentences as meaningful but false. After all, on any normal understanding, the

smallest prime number is not the sort of thing that works for anyone or any-

thing, so the claim that it works for IBM is false. (The predicate ‘___ works for
___’ is not true of the pair consisting of the smallest prime number and IBM.)

By this move we will gain an overall simplicity and generality when we come to

develop the formal syntax and semantics for PL.

So far, in displaying predicates, we have been marking the blanks into

which singular terms can be placed with underscores. It is time to adopt a more

standard notation. Hereafter, in displaying predicates, we shall use the lower-

case letters ‘w’, ‘x’, ‘y’, and ‘z’ (with numerical subscripts where necessary) to

mark the blanks in those predicates. (These are, as we shall see, the variables

of PL.) Using this convention, the three-place predicate of English discussed

earlier can be displayed as

x is between y and z

(or as ‘w is between x and y’, or ‘z is between x and y’, and so on). We must

use distinct variables to replace the different occurrences of singular terms, but

which variables are used is immaterial.

Given a stock of predicates, singular terms, and the sentential connec-

tives ‘and’, ‘or’, ‘if . . . then . . .’, ‘if and only if’, and ‘not’, we can generate

a wide variety of sentences of English. For example, from the just enumerated

sentential connectives, the singular terms ‘Henry’, ‘Sue’, ‘Rita’, and ‘Michael’

and the predicates ‘x is easygoing’, ‘x likes y’, and ‘x is taller than y,’ we can

generate

Michael is easygoing.

Sue is easygoing.

Michael is taller than Sue and Sue is taller than Henry.

Sue likes Henry and Michael likes Rita.

If Rita likes Henry, then Rita is taller than Henry.

If Michael is easygoing, then Rita isn’t easygoing.

7.2 PREDICATES, INDIVIDUAL CONSTANTS, AND QUANTITY TERMS OF ENGLISH 283

But we cannot, with these limited resources, generate such simple but power-
ful claims as

Everyone is easygoing.
No one is easygoing.
Someone is easygoing.
Someone is not easygoing.
Michael likes everyone.
Michael does not like anyone.
Michael doesn’t like everyone.
Someone likes Sue.
No one is taller than her or himself.

What is missing is an account of such “quantity” terms as ‘every’, ‘all’, ‘each’,
‘some’, and ‘none’.

The first thing to note is that quantity terms are not singular terms.
‘Everyone’ is neither a proper name nor a definite description—there is no
thing that is either named or described by the term ‘everyone’. So, too, for
‘everything’, ‘no one’, ‘nothing’, ‘anyone’, ‘anything’, ‘someone’, and ‘some-
thing’. These and other quantity terms serve to indicate how many of the per-
sons or things under discussion are thus-and-so, not to name or refer to some
single entity.

Consider the simple claim ‘Someone is easygoing’. We can see this sen-
tence as being composed of the one-place predicate ‘x is easygoing’ and the
expression ‘someone’. If this claim is true, then there is some person who is easy-
going, that is, someone of whom the predicate ‘x is easygoing’ is true. But his or
her name is not ‘someone’, nor is ‘someone’ a description of that person.

Similarly,

Everyone is easygoing

is true if and only if ‘x is easygoing’ is true of each and every person,

No one is easygoing

is true if and only if there is no person of whom the predicate ‘x is easygoing’
is true, and

Someone is not easygoing

is true if and only if there is at least one person of whom ‘x is easygoing’ is not
true.5

5Instead of talking of a predicate’s being true or false of a thing or an ordered collection of things, we shall
hereafter frequently talk instead of a thing or ordered collection of things satisfying or failing to satisfy a predi-
cate. Thus all and only red things satisfy the predicate ‘x is red’. This notion of satisfaction will be used in the
semantics for PL.

284 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

7.2E EXERCISES

1. Identify the singular terms in the following sentences, and then specify all the
one or more place predicates that can be obtained from each sentence by
deleting one or more singular terms.

a. The president is a Democrat.
*b. The speaker of the house is a Republican.

c. Sarah attends Smith College.
*d. Bob flunked out of U Mass.

e. Charles and Rita are brother and sister.
*f. Oregon is south of Washington and north of California.
g. 2 times 4 is 8.

*h. 3 times 4 equals 2 times 6.
i. 0 plus 0 equals 0.

2. List all the distinct sentences of English that can be generated using the fol-
lowing predicates and singular terms.

Singular terms:
Herman
Juan
Antonio

Predicates:
x is larger than y
x is to the right of y
x is larger than y but smaller than z

7.3 INTRODUCTION TO PL

It is time to introduce the basic elements of the formal language PL. We will
need the sentential connectives of SL and analogs to the singular terms, pred-
icates, and quantity terms of English. The sentential connectives are, to review,
the five truth-functional connectives ‘&’, ‘∨’, ‘⊃’, ‘ ’, and ‘∼’. As analogs to
denoting singular terms of English—that is, singular terms that actually do, on
the occasion of use in question, denote—PL contains individual constants. These
are the lowercase Roman letters ‘a’ through ‘v’, with or without numerical sub-
scripts. The predicates of PL are the uppercase Roman letters ‘A’ through ‘Z’,
with or without numerical subscripts, followed by one or more primes. Predi-
cates of PL, like predicates of English, come with holes or blanks, with the num-
ber of holes indicated by the number of primes. A predicate with one hole is
called a ‘one-place predicate’, a predicate with two holes a ‘two-place predi-
cate’, and so on. Hence

F

G

H

7.3 INTRODUCTION TO PL 285

are all one-place predicates and

F

G

H

are all two-place predicates of PL. In specifying predicates, we shall, in prac-
tice, generally omit the primes and indicate that the predicate in question is
an n-place predicate by writing n of the letters ‘w’, ‘x’, ‘y’, and ‘z’ (with sub-
scripts if necessary) after the predicate letter. (For example, the predicate in
‘Fx’ is a one-place predicate and the predicate in ‘Fxy’ is a two-place predi-
cate.) The letters ‘w’ through ‘z’, with and without subscripts, are called the
variables of PL and have more than a hole-marking use.

In SL a single sentence letter can be used to symbolize or abbreviate
different English sentences on different occasions. Analogously in PL we can
use the two-place predicate ‘Lxy’ to symbolize, on different occasions, a variety
of two-place predicates of English, including ‘x likes y’, ‘x loves y’, ‘x loathes
y’, and ‘x is less than y’. Of course, we could use ‘Txy’ to symbolize ‘x likes y’,
but that would be harder to remember. Similarly on one occasion we might use
the individual constant ‘a’ to designate Adriana, on another Alfred, and on
another the number 1.

It will be useful to have a way of specifying how predicates and con-
stants of PL are being used on a particular occasion, as well as what things are
being talked about on that occasion. We call the set of things being talked
about on a given occasion the universe of discourse for that occasion and use
the abbreviation ‘UD’ in specifying a universe of discourse.6 For this purpose we
introduce the notion of a symbolization key. The following is an example of a
symbolization key. We shall use it in symbolizing the English sentences dis-
cussed previously concerning Henry, Michael, Rita, and Sue.

UD: People in Michael’s office
Lxy: x likes y
Ex: x is easygoing

Txy: x is taller than y
h: Henry

m: Michael
r: Rita
s: Sue

Note that, whereas in English proper names are capitalized and predicates
written with lowercase letters, in PL lowercase letters are used to symbolize
singular terms of English, including proper names, and uppercase letters are

6By stipulation, in PL universes of discourse must be nonempty; that is, discourse must always be about at least
one thing. This is not a very restrictive stipulation because if the universe of discourse is the empty set, then there
is nothing in that universe to say anything about.

286 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

used to symbolize predicates. In English sentences can be generated from pred-

icates by filling the holes with singular terms. Similarly in PL sentences can be

generated from predicates by filling the holes (replacing the variables that

mark the holes) with individual constants. For example, ‘Lsh’ symbolizes, given

the preceding symbolization key, ‘Sue likes Henry’. ‘Henry likes Sue’ is sym-

bolized as ‘Lhs’. And ‘Michael is easygoing’ is symbolized as ‘Em’. Still using

the above symbolization key, the sentences

Sue is easygoing.

Michael is taller than Sue and Sue is taller than Henry.

Sue likes Henry and Michael likes Rita.

If Rita likes Henry, then Rita is taller than Henry.

If Michael is easygoing, then Rita is not easygoing.

can be symbolized as follows in PL:

Es

Tms & Tsh

Lsh & Lmr

Lrh ⊃ Trh

Em ⊃ ∼ Er

In PL, as in SL, when a binary connective is used to join sentences, the result

must be enclosed within parentheses. So, for example, the official versions of

‘Lsh & Lmr’ and ‘Em ⊃ ∼ Er’ are ‘(Lsh & Lmr)’ and ‘(Em ⊃ ∼ Er)’. But with

PL, as with SL, we shall informally omit the outermost parentheses of a sen-

tence whose main logical operator (what in SL is termed the ‘main connec-

tive’) is a binary connective. (Also, as in SL, we shall informally allow the use

of square brackets in place of parentheses.)

We can use our present symbolization key to give English readings for

the following sentences of PL:

Lhr & ∼ Lrh

Lrh ⊃ Lrm

Trh & ∼ Trs

Tsh ⊃ Lhs

(Lmh ∨ Lms) ⊃ (Lmh & Lms)

In English these become, respectively,

Henry likes Rita and Rita does not like Henry.

If Rita likes Henry, then Rita likes Michael.

Rita is taller than Henry and Rita is not taller than Sue.

7.3 INTRODUCTION TO PL 287

If Sue is taller than Henry, then Henry likes Sue.
If Michael likes Henry or Michael likes Sue, then Michael likes
Henry and Michael likes Sue.

We can, of course, improve on the English. For example, the last sentence can
be more colloquially paraphrased as

If Michael likes either Henry or Sue he likes both of them.

We can symbolize some English sentences involving quantity terms
using only the resources of PL so far available to us. If we are talking just about
the people in Michael’s office, that is, just about Michael, Sue, Rita, and Henry,
then one way to symbolize ‘Everyone is easygoing’ in PL is

(Es & Eh) & (Er & Em)

Note that we are here taking the scope or range of application of ‘Everyone’
in ‘Everyone is easygoing’ to be all and only the people in Michael’s office. We
could use the same strategy to symbolize ‘Michael likes someone’ as

(Lms ∨ Lmh) ∨ (Lmr ∨ Lmm)

and ‘Michael likes everyone’ as

(Lms & Lmh) & (Lmr & Lmm)

Note that, since we are talking about everyone in Michael’s office, and Michael
is one of those persons, we have to include ‘Lmm’ in our symbolization; that is,
we take ‘Michael likes everyone’ to mean, in part, that Michael likes himself.

7.3E EXERCISES

1. Use the following symbolization key to symbolize the English sentences given
as answers to Exercise 2 in Section 7.2E.

UD: Herman, Juan, and Antonio
Sxyz: x is larger than y but smaller than z
Lxy: x is larger than y
Rxy: x is to the right of y

a: Antonio
h: Herman

m: Juan

288 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

2. Symbolize the following sentences in PL using the given symbolization key.

UD: Alfy, Barbara, Clarence, Dawn, Ellis, and the cities Houston, Indianap-

olis, Kalamazoo, Newark, Philadelphia, San Francisco, and Tulsa

Bxy: x was born in y

Lxy: x lives in y

Axy: x is larger than y

Txy: x is taller than y

a: Alfy

b: Barbara

c: Clarence

d: Dawn

e: Ellis

h: Houston

i: Indianapolis

k: Kalamazoo

n: Newark

p: Philadelphia

s: San Francisco

t: Tulsa

a. Alfy was born in Indianapolis.

*b. Clarence was born in Tulsa.

c. Barbara was born in Newark.

*d. Dawn was born in San Francisco.

e. Ellis was born in Houston.

*f. No one was born in Kalamazoo.

g. Philadelphia is larger than Houston, Houston is larger than Newark, and

Newark is larger than Kalamazoo.

*h. Tulsa isn’t larger than either Philadelphia or Houston.

i. Indianapolis is larger than Houston if and only if it is larger than Philadelphia.

*j. Barbara lives in Philadelphia only if Dawn does.

k. Everyone lives in Philadelphia, but no one was born there.

*l. Barbara is taller than Clarence and Clarence is taller than Alfy, but neither Bar-

bara nor Clarence is taller than Ellis.

m. Dawn is the tallest person in the office.

*n. Alfy isn’t taller than everyone else in the office.

o. Alfy isn’t taller than anyone in the office, but he is larger than everyone else

in the office.

*p. If Clarence is taller than Barbara, he’s also larger than Alfy.

3. Symbolize the following sentences in PL using the given symbolization key.

UD: Andrea, Bentley, Charles, and Deirdre

Bx: x is beautiful

Ix: x is intelligent

Rx: x is rich

Axy: x is attracted to y

Dxy: x despises y

Lxy: x loves y

Sxy: x is shorter than y

7.3 INTRODUCTION TO PL 289

a: Andrea
b: Bentley
c: Charles
d: Deirdre

a. Andrea is both intelligent and beautiful, but she is not rich.
*b. Charles is rich and beautiful but not intelligent.

c. Deirdre is beautiful, rich, and intelligent.
*d. Bentley is neither rich, nor beautiful, nor intelligent.

e. If Bentley is intelligent, so are both Deirdre and Andrea.
*f. Andrea is beautiful and intelligent, Bentley is intelligent but not beautiful, and

neither is rich.
g. Andrea loves Bentley but despises Charles.

*h. Andrea loves both herself and Charles and despises both Bentley and Deirdre.
i. Charles neither loves nor despises Andrea but both loves and despises Deirdre.

*j. Neither Deirdre nor Bentley is attracted to Charles, but Charles is attracted to
both of them.

k. Charles is attracted to Bentley if and only if Bentley both is shorter than
Charles and is rich.

*l. Andrea is attracted to both Bentley and Deirdre but doesn’t love either of
them.

m. If Deirdre is shorter than Charles and Charles is shorter than Andrea, then
Deirdre is shorter than Andrea.

*n. If Bentley is attracted to Deirdre and she is attracted to him, then they love
each other.

o. If Charles loves Bentley and Bentley loves Andrea, then Charles both despises
and is shorter than Andrea.

*p. If Charles is neither rich nor beautiful nor intelligent, then no one loves him.
q. Only Deirdre is rich.

*r. Only Deirdre is both rich and intelligent.

4. For each of the following passages, provide a symbolization key and then use
it to symbolize the passage in PL.

a. Margaret and Todd both like skateboarding, but neither is good at it. Charles
is good at skateboarding but doesn’t like it. Sarah is both good at skateboard-
ing and likes it. All of them wear headgear, but Charles and Sarah are the only
ones who wear knee pads. Sarah is more reckless than the rest, and Charles is
more skillful than the rest.

*b. Charles is a sailor but not a tennis player, while Linda is both. Linda is a
yuppie, and while Charles wants to be one, he isn’t. Everyone likes Charles,
but everyone also likes someone else more. Stan is a yuppie, and although
Linda likes Charles, she likes Stan more. Stan is a sailor, a tennis player, and
a squash player, and he likes himself more than he likes either of the other
two. (Hint: Take the universe of discourse to consist of just Charles, Linda,
and Stan.)

c. Andrew and Christopher are both hikers, but neither is a mountain climber.
Amanda is a hiker and a mountain climber and also a kayaker. One, but not
both, of Andrew and Christopher is also a kayaker. None of them is a swim-
mer. Andrew, Christopher, and Amanda all like each other, and Amanda is nuts
about Andrew, and vice versa.

290 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

*d. Joan, Mark, Alice, and Randy are all in law school. Joan and Randy are study-
ing tax law; Mark and Alice medical malpractice law. Alice gets better grades
than Randy, and Mark gets better grades than Joan. They will all finish in three
years, and everyone but Mark will pass the bar exam. At least two of the three
who pass the bar exam will get jobs as attorneys.

7.4 QUANTIFIERS INTRODUCED

In the preceding section we saw how quantity claims can sometimes be sym-
bolized using conjunctions and/or disjunctions of sentences. For example, we
symbolize ‘Michael likes someone in his office’ as ‘(Lms ∨ Lmh) ∨ (Lmr ∨
Lmm)’. But this is a bit awkward. This strategy will not, in practice, work if we
want to symbolize claims such as ‘Michael likes everyone’ where the number
of people encompassed by ‘everyone’ is even modestly large—for example, the
several hundred people Michael has met in the last five years. Worse still, sup-
pose Michael is a mathematician and likes the positive integers, all infinitely
many of them. On the present strategy we would need an infinitely long sen-
tence, and we require the sentences of both SL and PL to be finitely long.7 We
need, within PL, analogs to the quantity terms of English; that is, we need the
quantifier symbols and variables of PL. There are two quantifier symbols: ‘∀’
and ‘∃’. The variables of PL are the letters ‘w’ through ‘z’, with or without sub-
scripts. A quantifier of PL consists of a quantifier symbol followed by a variable,
both enclosed in parentheses. Thus ‘(∀x)’ and ‘(∃y)’ are both quantifiers.

Recalling that our universe of discourse consists of the people in
Michael’s office, we can now abandon the use of iterated conjunctions and dis-
junctions. For example, we can symbolize ‘Michael likes everyone’ as

(∀x)Lmx

Here we have a predicate with one hole filled by an individual constant and
one filled by a variable. The predicate is prefaced with a quantifier built from
the same variable that fills the second hole. Quantifiers formed from ‘∀’ are
called universal quantifiers and are used to claim that each of the things being
talked about is of the sort specified by the expression following the quantifier.
The things being talked about, the members of the current universe of dis-
course, are called the values of the variables—because they are the things the
variables are used to talk about. Here the claim being made is that each thing
being talked about, that is, each person in Michael’s office (each value of the
variable ‘x’), is of the sort Lmx, that is, is such that Michael likes it.

To symbolize ‘Michael likes someone’, still talking exclusively about the
people in Michael’s office, we can use an existential quantifier, that is, a quanti-
fier built from ‘∃’.

(∃x)Lmx

7The problem is even more serious than suggested here, for Michael might like all real numbers, and there are
more real numbers than there are individual constants of PL.

7.4 QUANTIFIERS INTRODUCED 291

says there is at least one x (at least one value of the variable ‘x’) such that
Michael likes that x. Since we are talking exclusively of the people in Michael’s
office, this amounts to

There is at least one person Michael likes

or

Michael likes someone.

Note that we interpret ‘some’ to mean ‘at least one’.8

Variables of PL serve some of the functions of English pronouns and
of such place-holder terms as ‘thing’, ‘body’, and ‘one’—as in, for example,
‘something’, ‘somebody’, and ‘someone’. ‘Something is out of place’ means
that at least one of the things, whatever they may be, we are currently discussing
is out of place. ‘Everything is out of place’ means that each of the things we
are currently discussing is out of place. It is more stilted, but still acceptable
English, to paraphrase these claims as, respectively,

At least one of the things under discussion is such that it is out of place

and

Each of the things under discussion is such that it is out of place.9

These paraphrases have a syntax that closely mirrors that of PL. Using ‘Ox’ to
express ‘x is out of place’, we can symbolize the foregoing sentences in PL as

(∃x)Ox

and

(∀x)Ox

Note that in each the variable ‘x’ occurs twice; the first occurrence corresponds
to ‘thing’ in the stilted English version, the second to ‘it’. We can paraphrase
these sentences of PL in quasi-English as ‘At least one x is such that x is out of
place’ and ‘Each x is such that x is out of place’, respectively.

8This is certainly appropriate for such English locutions as ‘Someone is in the house’ and John knows someone
in the bursar’s office’. But ‘There are some cookies in the cookie jar’ suggests to many that there are at least two

cookies in that vessel. Nonetheless, we will always take the existential quantifier to mean ‘at least one’. We will
later introduce a way of saying ‘at least two’ when it is important to distinguish between ‘at least one’ and ‘at
least two’.
9In this chapter we frequently underline quantity expressions and truth-functional expressions in our paraphrases
of sentences.

292 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

We now return to our example of Michael and his co-workers. This

time we provide symbolizations that make use of quantifiers:

UD: People in Michael’s office

Lxy: x likes y

Ex: x is easygoing

Txy: x is taller than y

h: Henry

m: Michael

r: Rita

s: Sue

The sentences to be symbolized are

Everyone is easygoing.

No one likes Michael.

Michael likes everyone.

Michael doesn’t like anyone.

Michael doesn’t like everyone.

Someone likes Sue.

No one is taller than herself or himself.

These can be symbolized in PL as, respectively,

(∀x)Ex

∼ (∃x)Lxm

(∀x)Lmx

∼ (∃x)Lmx

∼ (∀x)Lmx

(∃x)Lxs

∼ (∃x)Txx

Points to Note

1. There is nothing sacrosanct about our choice of variables. In each of the pre-

ceding cases, every occurrence of ‘x’ can be replaced with any other variable.

‘(∃y)Lys’ says ‘Someone likes Sue’ just as well as ‘(∃x)Lxs’ does.

2. There is nothing sacrosanct about the variables used in specifying predicates

in symbolization keys. Our symbolization key includes

Ex: x is easygoing

Any other variable would have done as well in specifying how the one-place

predicate in question is to be interpreted. (For example, we could have used

‘Ez: z is easygoing’.)

3. The variables used in specifying predicates in symbolization keys need not be used

in constructing symbolizations based on those keys. Given the previous symbol-

ization key, we are perfectly free to symbolize ‘Everyone is easygoing’ as ‘(∀y)Ey’.

7.4 QUANTIFIERS INTRODUCED 293

We are treating claims such as ‘Everyone is easygoing’ and ‘Michael likes
everyone’ as ways of saying, in shorthand fashion, of each thing under discussion,
in the first instance that it is easygoing and, in the second instance that Michael
likes it. That is, we are not treating ‘Everyone is easygoing’ as being a sentence that
has a subject term, ‘Everyone’, that denotes something (the collection of people
being talked about) of which a property, easygoingness, is being predicated.

Note also that ‘every’ and ‘all’ function somewhat differently gram-
matically. Grammatically ‘All people are mortal’ has a plural subject term and
thus requires a plural verb, ‘are’. ‘Everyone is mortal’ has a singular term in
subject position and thus requires a singular verb, ‘is’.

Some uses of ‘all’ and ‘every’ can be confusing. Consider ‘All the bricks
are too heavy’ uttered in response to the question ‘Can you take all the bricks
in one load?’ Here ‘All the bricks are too heavy’ probably means, not that each
brick, by itself, is too heavy to take in one load, but rather that the bricks taken
collectively, all at once, are too heavy. Note that this ambiguity is absent from
‘Every brick is too heavy’. Here there is no chance we mean anything other than
that each brick, by itself, is too heavy. At any rate, in this text, we treat ‘All such-
and-such are thus-and-so’, ‘Every such-and-such is thus-and-so’, and ‘Each such-
and-such is thus-and-so’, as various ways of saying of each thing that is such-and-
such that it is thus-and-so—that is, as claims about individual things, not as
claims about collections of things (all the bricks taken together).

There is a very important difference between ‘Michael doesn’t like every-
one’ and ‘Michael doesn’t like anyone’. If Michael is like most of us, he likes some
people and not others, and so it is true that he doesn’t like everyone (he doesn’t,
for example, like Rita at all) but false that he doesn’t like anyone (he likes Sue very
much). The difference between ‘doesn’t like every’ and ‘doesn’t like any’ is very
clearly marked by the syntax of PL: The first can be expressed by a ‘∼’ followed by
a universal quantifier, and the second by a ‘∼’ followed by an existential quantifier.

So far the sentences of PL we have dealt with have contained only a sin-
gle quantifier, one predicate, and in some cases a tilde. It is an easy next step to
form truth-functional compounds of such sentences. Here are some examples:

1. Either everyone is easygoing or no one is.

2. If Rita is easygoing, everyone is.

3. Rita likes Sue if and only if everyone does.

4. Henry likes everyone but Sue doesn’t.

5. Henry likes everyone and Sue doesn’t like anyone.

6. Not everyone is easygoing, but everyone is ambitious.

7. If anyone is ambitious, Michael is.

8. Everyone is ambitious if and only if no one is easygoing.

We can symbolize these English sentences in PL using the symbolization key
introduced previously, with the addition of

Ax: x is ambitious

294 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

The first sentence is a disjunction. We can symbolize the left disjunct, ‘Every-
one is easygoing’ as ‘(∀y)Ey’ (remember, the fact that we specified the predi-
cate for ‘is easygoing’ as ‘Ex’ in the symbolization key does not mean we can
only use the variable ‘x’ when working with that predicate). We must be care-
ful in symbolizing the second half of our disjunction—‘no one is easygoing’
is not the negation of ‘Everyone is easygoing’. That is, the symbolization
‘∼ (∀y)Ey’ says not that no one is easygoing’, but rather that not everyone is easy-
going. For the second disjunct of the sentence of PL we are constructing, we
can use either ‘∼ (∃w)Ew’ or ‘(∀w) ∼ Ew’. The first says it is not the case that
there is even one person who is easygoing (hence no one is), and the second
that each person is not easygoing (again, hence that no one is). So for a com-
plete symbolization of our first example we might pick

(∀y)Ey ∨ ∼ (∃w)Ew

Note that in the left disjunct we used the variable ‘y’, and in the right disjunct
the variable ‘w’. This was an arbitrary selection; we could have used the same
variable in both. But we cannot use two different variables within either dis-
junct. That is, ‘(∀y)Ex’ is not allowed since the purpose of the quantifier is to
indicate how many things are of the sort specified by the predicate that follows
it, and to do this the variable used in forming the quantifier must match the
variable used with the predicate following it.

Sentence 2, ‘If Rita is easygoing, everyone is’, is a conditional whose
antecedent is ‘Rita is easygoing’, or ‘Er’ in PL, and whose consequent is short
for ‘everyone is easygoing’. The latter can be symbolized as ‘(∀w)Ew’, and the
whole sentence as

Er ⊃ (∀w)Ew

The third sentence, ‘Rita likes Sue if and only if everyone does’, can be sym-
bolized as a material biconditional

Lrs (∀z)Lzs

Note that, while ‘Lrs (∀z)Lsz’ looks a lot like the above sentence of PL, it
says something very different, namely, that Rita likes Sue if and only if Sue likes
everyone.

Sentence 5, ‘Henry likes everyone but Sue doesn’t’, becomes a con-
junction of PL. ‘(∀y)Lhy’ is an appropriate left conjunct, and ‘∼ (∀x)Lsx’ an
appropriate right conjunct, yielding the conjunction in PL:

(∀y)Lhy & ∼ (∀x)Lsx

7.4 QUANTIFIERS INTRODUCED 295

The second conjunct says of Sue that she doesn’t like everyone, not that she
doesn’t like anyone, which is what the next example says of Sue. To symbolize
the fifth example, we can replace the right conjunct of the preceding sentence
of PL with either ‘(∀x) ∼ Lsx’ or ‘∼ (∃x)Lsx’. The first of the foregoing can be
paraphrased as ‘each person is such that it is not the case that Sue likes that
person’, and the second as ‘it is not the case that there is at least one person
that Sue likes’. These amount to the same thing—that Sue doesn’t like anyone.
So we might pick for our symbolization of the fifth example

(∀y)Lhy & ∼ (∃x)Lsx

‘Not everyone is easygoing, but everyone is ambitious’, our sixth exam-
ple, can be symbolized as the conjunction of ‘∼ (∀z)Ez’ and ‘(∀y)Ay’, or as

∼ (∀z)Ez & (∀y)Ay

Sentence 7, ‘If anyone is ambitious, Michael is’, is a conditional. Here the ‘any-
one’ of the antecedent means ‘at least one’, for the claim is that if anyone,
anyone at all—that is, at least one person—is ambitious, Michael is. So an
appropriate symbolization is

(∃w)Aw ⊃ Am

The last of our examples can be symbolized as a material biconditional linking
‘Everyone is ambitious’, or ‘(∀w)Aw’, and ‘no one is easygoing’, or ‘∼ (∃w)Ew’.
So an appropriate symbolization in PL is

(∀w)Aw ∼ (∃w)Ew

For ‘no one is easygoing’ we could also have used ‘(∀w) ∼ Ew’; that is, each
person is not easygoing.

Finally we do not really need both existential and universal quantifiers.
Instead of saying ‘Everything is thus-and-so’ (‘Everyone likes Michael’, or
‘(∀x)Lxm’), we can say ‘It is not the case that something is not thus-and-so’
(‘It is not the case that someone does not like Michael’, or ‘∼ (∃x) ∼ Lxm’).
And instead of saying ‘Something is thus-and-so’ (‘Someone likes Michael’, or
‘(∃x)Lxm’), we can say ‘It is not the case that everything is not thus-and-so’ (‘It
is not the case that everyone does not like Michael’, or ‘∼ (∀x) ∼ Lxm’).
However, having both quantifiers available does make symbolization somewhat
easier and more natural.

296 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

7.4E EXERCISES

1. Symbolize the following sentences in PL using the given symbolization key.

UD: The jellybeans in the jar on the coffee table
Bx: x is black
Rx: x is red

a. All the jellybeans are black.
*b. Some of the jellybeans are black.

c. None of the jellybeans is black.
*d. Some of the jellybeans are not black.

e. Some of the jellybeans are black and some are red.
*f. If all the jellybeans are black then none is red.
g. If some are red some are black.

*h. If none is black all are red.
i. All are black if and only if none is red.

*j. Either all are black or all are red.

2. Symbolize the following sentences in PL. (Note: Not all of these sentences are
true.)

UD: The integers 1–100
Ex: x is even
Ox: x is odd
Lxy: x is less than y
Px: x is prime
Gx: x is greater than 0

a: 1
b: 2
c: 4
d: 100

a. Some integers are odd and some are even.
*b. Some integers are both odd and even.

c. No integer is less than 1.
*d. No integer is greater than 100.

e. Every integer is greater than 0.
*f. 100 is greater than every odd integer.
g. There is a prime that is even.

*h. Some primes are not even.
i. All prime integers greater than 2 are odd.

*j. 1 is not prime and is not greater than any integer.
k. There is an integer that is greater than 2 and less than 4.

3. Symbolize the following sentences in PL using the given symbolization key.

UD: The students in a logic class
Px: x will pass
Sx: x will study

j: Jamie
r: Rhoda

7.5 THE FORMAL SYNTAX OF PL 297

a. If Jamie will pass everyone will pass.
*b. Either no one will pass or Jamie will pass.

c. If anyone passes both Jamie and Rhoda will.
*d. Not everyone will pass, but Rhoda will.

e. If Rhoda doesn’t pass no one will.
*f. Some, but not all, of the students will pass.
g. Rhoda will pass if Jamie does, and if Rhoda passes everyone will pass.

*h. No one will pass if Jamie doesn’t pass, and if she does everyone will.
i. Everyone will study but not everyone will pass.

*j. If everyone studies everyone will pass.
k. If everyone studies some will pass.

7.5 THE FORMAL SYNTAX OF PL

Before attempting more complex symbolizations, it will be useful to acquire a
fuller understanding of the syntax of PL. To this end we now pause to present
the formal syntax for the language of PL and to introduce some important
syntactical concepts. While this material may at first seem difficult, it can be
readily mastered, and doing so will make mastering the rest of this chapter
much easier.

The vocabulary of PL consists of the following:

Sentence letters of PL: The capital Roman A, B, C, . . . , Z,
letters ‘A’ through ‘Z’, with or without A1, B1, C1, . . . , Z1, . . .
positive-integer subscripts (These
are just the sentence letters of SL.)

Predicates of PL: The capital Roman A , B , C . . . , Z ,
letters ‘A’ through ‘Z’, with or without A1 , B1 , C1 , . . . , Z1 ,
positive-integer subscripts, followed . . .
by one or more primes (An n-place
predicate is indicated by the
presence of exactly n primes.)

Individual terms of PL:

Individual constants of PL: The a, b, c, . . . , v,
lowercase Roman letters ‘a’ through a1, b1, c1, . . . , v1, . . .
‘v’, with or without positive-integer
subscripts
Individual variables of PL: The lowercase w, x, y, z, w1, x1, y1, z1, . . .
Roman letters ‘w’ through ‘z’, with or
without positive-integer subscripts.

Truth-functional connectives: ∼ & ∨ ⊃

Quantifier symbols: ∀ ∃

Punctuation marks: ()

298 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

By informal convention we will continue to omit the primes from predicates of
PL where no confusion results from doing so. By including the sentence letters
of SL as sentence letters of PL, we make every sentence of SL a sentence of PL.
Thus every English sentence that can be symbolized in SL can also be
symbolized in PL. However, the content of English sentences is generally better
captured by using predicates rather than sentence letters. Hence we shall rarely,
if ever, have use for sentence letters in the rest of this text.10

We define an expression of PL to be a sequence of not necessarily
distinct elements of the vocabulary of PL. The following are expressions of PL:

(((()(((a ⊃ bba)
(A ⊃ Bab))
(∀x)(∃x)Fxx

but

(({ABA)
(A ⊃ 3)
A # Bab
(∀ @)(Cab)

are not since ‘{’, ‘3’, ‘#’, and ‘@’ are not elements of the vocabulary of PL .
In what follows we will use the bold letters

P Q R

as metavariables ranging over expressions of PL. We will use a bold ‘a’ as a
metavariable ranging over individual constants of PL and a bold ‘x’ as a
metavariable ranging over individual variables of PL.

Quantifier of PL: An expression of PL of the form (∀x) or (∃x). An
expression of the first form is a universal quantifier, and one of the
second form is an existential quantifier.

We will say that a quantifier contains a variable. Thus ‘(∀y)’ and ‘(∃y)’ both con-
tain the variable ‘y’ (and are ‘y-quantifiers’); ‘(∀z)’ and ‘(∃z)’ both contain the
variable ‘z’ (and are ‘z-quantifiers’).

Atomic formulas of PL: Every expression of PL that is either a sentence
letter of PL or an n-place predicate of PL followed by n individual
terms of PL.

1 0We could include among the predicates of PL zero-place predicates. Doing so would make the sentence let-
ters of SL zero-place predicates and would obviate the need for the separate category ‘Sentence letters of PL’.

7.5 THE FORMAL SYNTAX OF PL 299

We are now ready to give a recursive definition of ‘formula of PL’:

1. Every atomic formula of PL is a formula of PL.

2. If P is a formula of PL, so is ∼ P.

3. If P and Q are formulas of PL, so are (P & Q), (P ∨ Q), (P ⊃ Q),
and (P Q).

4. If P is a formula of PL that contains at least one occurrence of x
and no x-quantifier, then (∀x)P and (∃x)P are both formulas of PL.

5. Nothing is a formula of PL unless it can be formed by repeated
applications of clauses 1–4.

Last, we specify the logical operators of PL:

Logical operator of PL: An expression of PL that is either a quantifier
or a truth-functional connective

Consider the following expressions of PL:

Rabz

∼ (Rabz & Hxy)

(∼ Rabz & Hxy)

(Hab ⊃ (∀z)(Fz ⊃ Gza))

(Haz ⊃ ∼ (∀z)(Fz ⊃ Gza))

(∀z)(Haz ⊃ (∀z)(Fz ⊃ Gza))

(∀x)(Haz ⊃ (∀z)(Fz ⊃ Gza))

(∀y)(Hay ⊃ (Fy ⊃ Gya))

The first expression consists of a three-place predicate followed by three
individual terms, the first two being individual constants and the third an indi-
vidual variable. Hence it is an atomic formula of PL and, by clause 1 of the
recursive definition of ‘formula of PL’, a formula of PL.

The second expression consists of a tilde, ‘∼’, followed by ‘(Rabz &
Hxy)’, and so it is a formula of PL by clause 2 if ‘(Rabz & Hxy)’ is a formula
of PL. And since ‘Rabz’ and ‘Hxy’ are both atomic formulas of PL, and hence
formulas of PL, ‘(Rabz & Hxy)’ is a formula of PL by clause 3 of the recursive
definition. The third expression, ‘(∼ Rabz & Hxy)’, is a formula of PL by
clause 3 if ‘∼ Rabz’ and ‘Hxy’ are both formulas of PL. They are: ‘Hxy’ is an
atomic formula and hence a formula, and ‘Rabz’ is an atomic formula and
hence a formula; and so ‘∼ Rabz’ is a formula by clause 2.

The fourth expression, ‘(Hab ⊃ (∀z)(Fz ⊃ Gza))’, is a formula of PL

by clause 3 if ‘Hab’ and ‘(∀z)(Fz ⊃ Gza)’ are both formulas of PL. The first is
an atomic formula, a two-place predicate followed by two individual terms (both
constants), and hence a formula of PL by clause 1. The second is a formula of

300 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

PL by clause 4 if ‘(Fz ⊃ Gza)’ is a formula containing at least one occurrence
of ‘z’ and no z-quantifier. It clearly satisfies the last two conditions, and since
‘Fz’ and ‘Gza’ are both atomic formulas of PL and hence formulas of PL, ‘(Fz ⊃
Gza)’ is a formula of PL by clause 3 of the recursive definition. So the whole
expression is a formula of PL. For reasons parallel to those outlined previously,
the fifth expression, ‘(Haz ⊃ ∼ (∀z)(Fz ⊃ Gza))’, is also a formula of PL. The
differences are that the antecedent of the conditional, ‘Haz’, is an atomic for-
mula containing one constant and one variable instead of two constants, and
the consequent is a negation, ‘∼ (∀z)(Fz ⊃ Gza)’. Since ‘(∀z)(Fz ⊃ Gza)’ is a
formula, so is ‘∼ (∀z)(Fz ⊃ Gza)’ by clause 2 of the recursive definition.

The sixth expression, ‘(∀z)(Haz ⊃ (∀z)(Fz ⊃ Gza))’, is not a formula
of PL. It would be a formula, by clause 4, if ‘(Haz ⊃ (∀z)(Fz ⊃ Gza))’ were a
formula containing at least one occurrence of ‘z’ and no z-quantifier. The first
two conditions are satisfied, but the third is not. ‘(Haz ⊃ (∀z)(Fz ⊃ Gza))’ does
contain a z-quantifier in ‘(∀z)(Fz ⊃ Gza)’. The seventh expression, ‘(∀x)(Haz
⊃ (∀z)(Fz ⊃ Gza))’, is also not a formula. As we saw, ‘(Haz ⊃ (∀z)(Fz ⊃ Gza))’
is a formula. But since it contains no occurrence of the variable ‘x’, prefixing
it with an x-quantifier does not produce a formula of PL.

The last expression, ‘(∀y)(Hay ⊃ (Fy ⊃ Gya))’, is a formula. While it
looks rather similar to the two expressions just considered, it is built up in
rather different ways. Note first that ‘Fy’ and ‘Gya’ are formulas of PL, so ‘(Fy ⊃
Gya)’ is also a formula of PL. And since ‘Hay’ is an atomic formula, and
therefore a formula, of PL, ‘(Hay ⊃ (Fy ⊃ Gya))’ is also a formula of PL.
Since this formula contains at least one occurrence of the variable ‘y’ and no
y-quantifier, prefixing it with a y-quantifier, here ‘(∀y)’, produces a formula
of PL—that is, ‘(∀y)(Hay ⊃ (Fy ⊃ Gya))’.

Not all formulas of PL qualify as sentences of PL. But before we can
explicitly state the relationship between formulas and sentences, we need to intro-
duce the concepts of subformula and main logical operator. We do so by cases:

1. If P is an atomic formula of PL, then P contains no logical
operator, and hence no main logical operator, and P is the only
subformula of P.

2. If P is a formula of PL of the form ∼ Q, then the tilde (‘∼’) that
precedes Q is the main logical operator of P, and Q is the
immediate subformula of P.

3. If P is a formula of PL of the form (Q & R), (Q ∨ R), (Q ⊃ R),
or (Q R), then the binary connective between Q and R is the
main logical operator of P, and Q and R are the immediate
subformulas of P.

4. If P is a formula of PL of the form (∀x)Q or of the form (∃x)Q,
then the quantifier that occurs before Q is the main logical
operator of P, and Q is the immediate subformula of P.

5. If P is a formula of PL, then every subformula (immediate or not) of
a subformula of P is a subformula of P, and P is a subformula of itself.

7.5 THE FORMAL SYNTAX OF PL 301

We can classify formulas of PL (and later sentences) by their main
logical operator. Atomic formulas have no main logical operator. Quantified
formulas have a quantifier as their main logical operator. Truth-functional
compounds have a truth-functional connective as their main logical operator.
Consider again the eight expressions of PL displayed previously. The sixth and
seventh are not formulas of PL, and hence the notions of main logical opera-
tor and subformula do not apply to them. For each of the rest we display its
subformulas, identify the main logical operator (if any), and classify its
subformula as either atomic, quantified, or a truth-functional compound.

Main Logical
Formula Subformula Operator Type

Rabz Rabz None Atomic

∼ (Rabz & Hxy) ∼ (Rabz & Hxy) ∼ Truth-functional
(Rabz & Hxy) & Truth-functional
Rabz None Atomic
Hxy None Atomic

(∼ Rabz & Hxy) (∼ Rabz & Hxy) & Truth-functional
∼ Rabz ∼ Truth-functional
Hxy None Atomic
Rabz None Atomic

(Hab ⊃ (∀z)(Fz ⊃ Gza)) (Hab ⊃ (∀z)(Fz ⊃ Gza) ⊃ Truth-functional
Hab None Atomic
(∀z)(Fz ⊃ Gza) (∀z) Quantified
(Fz ⊃ Gza) ⊃ Truth-functional
Fz None Atomic
Gza None Atomic

(Haz ⊃ ∼ (∀z)(Fz ⊃ Gza)) (Haz ⊃ ∼ (∀z)(Fz ⊃ Gza)) ⊃ Truth-functional
Haz None Atomic
∼ (∀z)(Fz ⊃ Gza) ∼ Truth-functional
(∀z)(Fz ⊃ Gza) (∀z) Quantified
(Fz ⊃ Gza) ⊃ Truth-functional
Fz None Atomic
Gza None Atomic

(∀y)(Hay ⊃ (Fy ⊃ Gya)) (∀y)(Hay ⊃ (Fy ⊃ Gya)) (∀y) Quantified
(Hay ⊃ (Fy ⊃ (Gya)) ⊃ Truth-functional
Hay None Atomic
(Fy ⊃ Gya) ⊃ Truth-functional
Fy None Atomic
Gya None Atomic

Earlier we talked informally of quantifiers serving to interpret variables. We can
now make that notion explicit. The interpretive range of a quantifier is its scope.

Scope of a quantifier: The scope of a quantifier in a formula P of PL is
the subformula Q of P of which that quantifier is the main logical
operator.

302 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Recall, from the recursive definition of ‘formula of PL’, that the only way quan-

tifiers get into formulas is by clause 4, which specifies the conditions under

which a quantifier may be attached to a formula. So attaching a quantifier to

a formula produces a new formula, of which the quantifier is the main logical

operator. The scope of that quantifier is all of the new formula; that is, it is the

quantifier itself and the formula to which it is being attached. For example,

‘(∀x)Fxy’ is a quantified formula of which ‘(∀x)’ is the main logical operator.

The scope of that quantifier is all of ‘(∀x)Fxy’; that is, the scope includes the

quantifier ‘(∀x)’ and the formula immediately following the quantifier, namely,

‘Fxy’.

Consider the formula ‘(Hx ⊃ (∀y)Fxy)’. This expression is a formula

(by clause 3 of the recursive definition of ‘formula of PL’) inasmuch as ‘Hx’ is

a formula (an atomic formula) and ‘(∀y)Fxy’ is a formula by clause 4 (‘Fxy’ is

a formula of PL in which x occurs and in which no x-quantifier occurs). The

formula contains two distinct variables, ‘x’ and ‘y’, and a total of four occur-

rences of variables (‘x’ and ‘y’ each occur twice). The scope of ‘(∀y)’ includes

the occurrence of ‘y’ from which it is formed and the occurrences of ‘x’ and

‘y’ in ‘Fxy’, for the subformula of which ‘(∀y)’ is the main logical operator is

‘(∀y)Fxy’. But the first occurrence of ‘x’, that in ‘Hx’, does not fall within the

scope of ‘(∀y)’, for it is not in the subformula ‘(∀y)Fxy’. In ‘((∀z)Gz ⊃ ∼ Hz)’

the scope of the quantifier ‘(∀z)’ is ‘(∀z)Gz; hence the first two occurrences

of ‘z’ in this formula fall within its scope, but the last occurrence, that in

‘∼ Hz’, does not. We can now introduce the notions of free and bound vari-

ables of PL.

Bound variable: An occurrence of a variable x in a formula P of PL

that is within the scope of an x-quantifier

Free variable: An occurrence of a variable x in a formula P of PL that

is not bound

At long last we are ready to formally introduce the notion of a sentence of PL:

Sentence of PL: A formula P of PL is a sentence of PL if and only if

no occurrence of a variable in P is free.

We shall speak of a formula of PL that is not a sentence of PL as an open sentence

of PL.

We can now see that ‘(Hx ⊃ (∀y)Fxy)’ is not a sentence of PL for two

reasons: The first occurrence of ‘x’ does not fall within the scope of any quan-

tifier and is therefore free, and the second occurrence of ‘x’, while falling

within the scope of a quantifier, does not fall within the scope of an x-

quantifier. And ‘((∀z)Gz ⊃ ∼ Hz)’ is not a sentence because the third occur-

rence of ‘z’ does not fall within the scope of a z-quantifier. The scope of ‘(∀z)’

is limited to the subformula of which it is the main logical operator—that is,

to ‘(∀z)Gz’.

7.5 THE FORMAL SYNTAX OF PL 303

Earlier we considered the following eight expressions of PL:

Rabz

∼ (Rabz & Hxy)

(∼ Rabz & Hxy)

(Hab ⊃ (∀z)(Fz ⊃ Gza))

(Haz ⊃ ∼ (∀z)(Fz ⊃ Gza))

(∀z)(Haz ⊃ (∀z)(Fz ⊃ Gza))

(∀x)(Haz ⊃ (∀z)(Fz ⊃ Gza))

(∀y)(Hay ⊃ (Fy ⊃ Gya))

The first is not a sentence because it contains a free occurrence of ‘z’. However,
this formula can be made into a sentence by prefacing it with a z-quantifier;
that is, both ‘(∀z)Rabz’ and ‘(∃z)Rabz’ are sentences of PL. Note that formulas
that contain no variables—for example, ‘Rabc’, ‘Hab’, and ‘(Gd & Fab)’—are
sentences of PL; they contain no occurrences of variables and hence no free
occurrences of variables. It is individual variables, not individual constants, that
need to be interpreted by quantifiers.

The second formula contains three free occurrences of variables—one
each of ‘z’, ‘x’, and ‘y’—and so is not a sentence of PL. We would have to
add three quantifiers to this formula to make it a sentence: a z-quantifier, an
x-quantifier, and a y-quantifier, in any order. So, too, for the third formula. The
fourth formula is a sentence since the only variable it contains is ‘z’, and all
occurrences of ‘z’ fall within the scope of ‘(∀z)’. (The scope of that quantifier
is ‘(∀z)(Fz ⊃ Gza)’.)

The fifth formula is not a sentence of PL since it does contain a free
variable, the first occurrence of ‘z’ (in ‘Haz’). The sixth expression, ‘(∀z)
(Haz ⊃ (∀z)(Fz ⊃ Gza))’, is, as noted earlier, not a formula of PL because the
initial z-quantifier is attached to an expression that is a formula that already
contains a z-quantifier. Since it is not a formula of PL, it is not a sentence of
PL. We can now see why the fourth clause of the recursive definition of
‘formula of PL’,

4. If P is a formula of PL that contains at least one occurrence of x
and no x-quantifier, then (∀x)P and (∃x)P are both formulas of PL

is as complicated as it is. If we dropped the restriction ‘and no x-quantifier’
from clause 4, the expression ‘(∀z)(Haz ⊃ (∀z)(Fz ⊃ Gza))’ would be a for-
mula with two z-quantifiers with overlapping scopes. We would then need
some further rule to determine which quantifier interprets the last two occur-
rences of ‘z’ for those occurrences of ‘z’ that fall within the scope of both

quantifiers.
The seventh expression, ‘(∀x)(Haz ⊃ (∀z)(Fz ⊃ Gza))’, is also not a

formula, and hence not a sentence. It would be a formula if clause 4 of the

304 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

recursive definition did not include the requirement that the formula to which

a quantifier is added—here ‘(Haz ⊃ (∀z)(Fz ⊃ Gza))’—contain at least one

occurrence of the variable from which the added quantifier—here ‘(∀x)’—is

formed. Clause 4 is intentionally written so as to disallow the use of quantifiers

that do no work, that is, quantifiers that bind no variables in the formula to

which they are attached.

Since sentences of PL are formulas of PL, we can speak of sentences as

being either quantified (sentences whose main logical operator is a quantifier),

truth-functional (sentences whose main logical operator is a truth-functional

connective), or atomic (sentences that have no main logical operator).

We have been omitting the primes that, by the formal requirements of

PL, are parts of the predicates of PL, and we will continue to do so. We will

also frequently omit the outermost parentheses of a formula of PL. In our usage

outermost parentheses are a pair of left and right parentheses that are added,

as a pair, when a binary connective is inserted between two formulas of PL.

Thus we may write ‘Fa & ∼ (∀x)Fx’ instead of ‘(Fa & ∼ (∀x)Fx)’. Note that,

while ‘∼ (Fa & (∃x) ∼ Fx)’ is a truth-functionally compound formula (and sen-

tence), it has no outermost parentheses. So, too, ‘(∀x)(Fx ⊃ Gx)’ has as its

first symbol a left parentheses and as its last a right parentheses, but these are

not ‘outermost parentheses’, for the first and last symbols of this sentence were

not added as a pair when formulas were joined by a binary connective.

The omission of outermost parentheses should cause no confusion.

Note, however, that when outer parentheses are customarily dropped, it is not

safe to assume that every sentence that begins with a quantifier is a quantified

sentence. Consider

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

Both begin with quantifiers, but only the first is a quantified sentence. The

scope of the x-quantifier in this sentence is the whole formula. The second sen-

tence is a truth-functional compound; the scope of the x-quantifier is just

‘(∀x)Fx’. It turns out that the two sentences are not only syntactically distinct

but also that they say very different things.

To make complicated formulas of PL easier to read, we also allow the

use of square brackets, ‘[’ and ‘]’, in place of the parentheses required by

clause 3 of the recursive definition of ‘formula of PL’, that is, by the use of

truth-functional connectives. But we will not allow square brackets in place of

parentheses in quantifiers. So, instead of

∼(∀y)((∃z)Fzy ⊃ (∃x)Gxy)

7.5 THE FORMAL SYNTAX OF PL 305

we can write

∼(∀y)[(∃z)Fzy ⊃ (∃x)Gxy]

In later chapters we shall require one further syntactic concept, that of
a substitution instance of a quantified sentence. We use the notation

P(a/x)

to specify the formula of PL that is like P except that it contains the individ-
ual constant a wherever P contains the individual variable x. Thus if P is

(Fza ∨ ∼ Gz)

P(c/z) is

(Fca ∨ ∼ Gc)

Substitution instance of P: If P is a sentence of PL of the form
(∀x)Q or (∃x)Q, and a is an individual constant, then Q(a/x) is a
substitution instance of P. The constant a is the instantiating constant.

For example, ‘Fab’, ‘Fbb’, and ‘Fcb’ are all substitution instances of
‘(∀z)Fzb’. In the first case ‘a’ has been substituted for ‘z’ in ‘Fzb’; in the
second case ‘b’ has been substituted for ‘z’; and in the third case ‘c’ has been
substituted for ‘z’.

In forming a substitution instance of a quantified sentence, we drop
the initial quantifier and replace all remaining occurrences of the variable that
that quantifier contains with some one constant. Thus ‘(∃y)Hay’ and ‘(∃y)Hgy’
are both substitution instances of ‘(∀x)(∃y)Hxy’, but ‘Hab’ is not. (In forming
substitution instances only the initial quantifier is dropped, and every occur-
rence of the variable that becomes free when that quantifier is dropped is
replaced by the same constant.) All the following are substitution instances of
‘(∃w)[Fw ⊃ (∀y)(∼ Dwy Ry)]’:

Fd ⊃ (∀y)(∼ Ddy Ry)

Fa ⊃ (∀y)(∼ Day Ry)

Fn ⊃ (∀y)(∼ Dny Ry)

but

Fd ⊃ (∀y)(∼ Dny Ry)

is not—for here we have used one constant to replace the first occurrence of
‘w’ and a different constant to replace the second occurrence of ‘w’. Again, in

306 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

generating substitution instances, each occurrence of the variable being
replaced must be replaced by the same individual constant.

Only quantified sentences have substitution instances, and those
instances are formed by dropping the initial quantifier. Thus ‘∼ Fa’ is not a
substitution instance of ‘∼ (∀x)Fx’. ‘∼ (∀x)Fx’ is a truth-functional compound,
not a quantified sentence, and hence has no substitution instances. And
‘(∀x)Fxb’ is not a substitution instance of ‘(∀x)(∀y)Fxy’ because, while the
latter is a quantified sentence, only the initial quantifier can be dropped in form-
ing substitution instances, and here the initial quantifier is ‘(∀x)’, not ‘(∀y)’.

7.5E EXERCISES

1. Which of the following are formulas of PL? (Here we allow the deletion of
outer parentheses and the use of square brackets in place of parentheses.) For
those that are not, explain why they are not. For those that are, state whether
they are sentences or open sentences.

a. Ba & Zz
*b. (x)Px ∨ Py

c. (∃y) ∼ Hyy & Ga
*d. (∀z)(Ex)(Fzx & Fxz)

e. (∀z)((∃x)Fzx & Fxz)
*f. (∀x)Faa
g. (∃z)(Fz & Bgz) (∃z)Gzb

*h. (∃x)[Fx & (∀x)(Px ⊃ Gx)]
i. (∼ ∃x)(Fx ∨ Gx)

*j. ∼ (∀x)(Gx (∃z)Fzx)
k. (∃x)(∃y)Lxx

*l. (∀x)[(∃y)Fyx ⊃ (∃y)Fxy]
m. (Bu & ∼ Faa) ⊃ (∀w) ∼ Fww
*n. (∃a)Fa

o. Fw ⊃ (∃w)Gww
*p. (∀z)(Hza ⊃ (∃z)Gaz)

2. For each of the following formulas, indicate whether it is a sentence of PL. If
it is not a sentence, explain why it is not. Also list all its subformulas, identifying
the main logical operator of each.

a. (∃x)(∀y)Byx
*b. (∃x) ∼ (∀y)Byx

c. (∀x)(∼ Fx & Gx) (Bg ⊃ Fx)
*d. (∀y)[(∀z) ∼ Byz ∨ Byy]

e. ∼ (∃x)Px & Rab
*f. Rax ⊃ ∼ (∀y)Ryx
g. ∼ [∼ (∀x)Fx (∃w) ∼ Gw] ⊃ Maa

*h. (∀x)(∀y)(∀z)Mxyz & (∀z)(∀x)(∀y)Myzx
i. ∼ ∼ ∼ (∃x)(∀z)(Gxaz ∨ ∼ Hazb)

*j. (∀z)[Fz ⊃ (∃w)(∼ Fw & Gwaz)]
k. (∃x)[Fx ⊃ (∀w)(∼ Gx ⊃ ∼ Hwx)]

*l. ∼ [(∀x)Fx ∨ (∀x) ∼ Fx]

7.5 THE FORMAL SYNTAX OF PL 307

m. (Hb ∨ Fa) (∃z)(∼ Fz & Gza)
*n. (∃w)(Fw & ∼ Fw) (He & ∼ He)

3. Indicate, for each of the following sentences, whether it is an atomic sentence,
a truth-functional compound, or a quantified sentence.

a. (∀x)(Fx ⊃ Ga)
*b. (∀x) ∼ (Fx ⊃ Ga)

c. ∼ (∀x)(Fx ⊃ Ga)
*d. (∃w)Raw ∨ (∃w)Rwa

e. ∼ (∃x)Hx
*f. Habc
g. (∀x)(Fx (∃w)Gw)

*h. (∀x)Fx (∃w)Gw
i. (∃w)(Pw ⊃ (∀y)(Hy ∼ Kyw))

*j. ∼ (∃w)(Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)
k. ∼ [(∃w)(Jw ∨ Nw) ∨ (∃w)(Mw ∨ Lw)]

*l. Da
m. (∀z)Gza ⊃ (∃z)Fz
*n. ∼ (∃x)(Fx & ∼ Gxa)

o. (∃z) ∼ Hza
*p. (∀w)(∼ Hw ⊃ (∃y)Gwy)
q. (∀x) ∼ Fx (∀z) ∼ Hza

4. For each of the following sentences, give the substitution instance in which ‘a’
is the instantiating term.

a. (∀w)(Mww & Fw)
*b. (∃y)(Mby ⊃ Mya)

c. (∃z) ∼ (Cz ∼ Cz)
*d. (∀x)[(Laa & Lab) ⊃ Lax]

e. (∃z)[Fz & ∼ Gb) ⊃ (Bzb ∨ Bbz)]
*f. (∃w)[Fw & (∀y)(Cyw ⊃ Cwa)]
g. (∀y)[∼ (∃z)Nyz (∀w)(Mww & Nyw)]

*h. (∀y)[(Fy & Hy) ⊃ [(∃z)(Fz & Gz) ⊃ Gy]]
i. (∃x)(Fxb Gbx)

*j. (∀x)(∀y)[(∃z)Hzx ⊃ (∃z)Hzy]
k. (∀x) ∼ (∃y)(Hxy & Hyx)

*l. (∀z)[Fz ⊃ (∃w)(∼ Fw & Gwaz)]
m. (∀w)(∀y)[(Hwy & Hyw) ⊃ (∃z)Gzw]
*n. (∃z)(∃w)(∃y)[(Fzwy Fwzy) Fyzw]

5. Which of the following examples are substitution instances of the sentence
‘(∃w)(∀y)(Rwy ⊃ Byy)’?

a. (∀y)Ray ⊃ Byy
*b. (∀y)(Ray ⊃ Byy)

c. (∀y)(Rwy ⊃ Byy)
*d. (∀y)(Rcy ⊃ Byy)

e. (∀y)(Ryy ⊃ Byy)
*f. (∃y)(Ray ⊃ Byy)
g. (Ray ⊃ Byy)

*h. (∀y)(Ray ⊃ Baa)
i. Rab ⊃ Bbb

308 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

6. Which of the following examples are substitution instances of the sentence
‘(∀x)[(∀y) ∼ Rxy Pxa]’?

a. (∀y) ∼ Ray Paa
*b. (∀y) ∼ Raa Paa

c. (∀y) ∼ Ray Pba
*d. (∀y) ∼ Rpy Ppa

e. (∀y)(∼ Ryy Paa)
*f. (∀y) ∼ Ray Pya
g. (∀y) ∼ Raw Paa

*h. (∀y) ∼ Rcy Pca

7.6 A-, E-, I-, AND O-SENTENCES

In Section 7.4 we symbolized fairly simple sentences of English in PL. The
quantified sentences of PL that we used each had as its immediate subformula
either an atomic formula or the negation of an atomic formula. That is, we
produced such sentences as ‘(∀x)Lmx’, ‘(∃x)Txx’, and ‘(∀y)Lhy & ∼ (∃x)Lsx’,
but not such sentences as ‘(∀z)(Fz ⊃ Gzz)’ or ‘(∀x)(∀y)[Fxy (∃z)Gzx]’. In
Section 7.5 we presented the syntax of PL and became familiar with the syn-
tactic properties of complex sentences of PL, including sentences containing
multiple quantifiers. Some of these contained quantifiers with overlapping scope;

that is, some had a quantifier falling within the scope of another quantifier—
for example, ‘(∀y)’ within the scope of ‘(∀x)’ in ‘(∀x)(Fx ⊃ (∀y)Gxy)’. In
this and the following sections we shall learn to use the resources of PL

to express a rich variety of English claims. In this section and the next we
limit ourselves to sentences of PL without quantifiers with overlapping scope,
though we will work with sentences having multiple quantifiers and many-place
predicates.

Sentences of PL such as those we produced in Section 7.4 express
English claims to the effect that it is, or is not, the case that everything, or
something, is, or is not, of the sort such-and-such, where we capture the ‘such-
and-such’ with a single predicate. We also produced truth-functional com-
pounds of such sentences and of atomic sentences of PL. Such sentences allow
us to express a substantial variety of English claims within PL. We can, for
example, say that all bears are dangerous—by making our universe of discourse
(UD) bears and using ‘Dx’ for ‘x is dangerous’, ‘(∀w)Dw’ will do the job. But
with the resources so far used and a UD of all bears, we cannot say that griz-
zly bears are dangerous and black bears are not. The limitation is substantial,
for our UD is frequently diverse and it is rare that we want to say that every-
thing, or nothing, in such a UD is of the sort specified by an atomic formula.
What is needed is a way of saying, not that everything, or something, or nothing

is of the sort specified by a given atomic formula, but rather that everything, or
something, or nothing of the sort specified by a given formula is (or is not) of

7.6 A-, E-, I-, AND O-SENTENCES 309

the sort specified by a second formula. We want, for example, to be able to
symbolize sentences such as the following in PL:

All dolphins are mammals.
All reptiles are cold-blooded.
Every cheese is a dairy product.
Every logic text bores Michael.

We also want to be able to symbolize such claims as these:

No fatty foods are conducive to good health.
No government is unbureaucratic.
No zebra is unicolored.
Some automobiles are Fords.
Some apples are Granny Smiths.
Some instructors are without a sense of humor.
Some horses are not racehorses.
Some lawyers are not rich.

The mechanism for symbolizing claims such as these is to let a quanti-
fier’s scope or interpretive range extend not just into an atomic formula or the
negation of an atomic formula but also to more complex formulas. Consider
the first of the examples, ‘All dolphins are mammals’. Suppose our UD is all liv-
ing things, ‘Dy’ symbolizes ‘y is a dolphin’, and ‘My’ symbolizes ‘y is a mammal’.
Here is an unsuccessful attempt at symbolizing ‘All dolphins are mammals’:

(∀y)Dy & (∀y)My

This sentence, a conjunction, asserts both that all things are dolphins and that
all things are mammals. This is patently false where the UD is all living things.

What we want is a way of saying, not that each thing is both a dolphin
and a mammal, but rather that each thing that is a dolphin is also a mammal.
The universal quantifier is, however, used to make a claim about each thing in
the UD. So the trick is to figure out what claim we can make about each thing
that will amount to our attributing being a mammal to each dolphin but not
to everything. The puzzle is solved when we recall that the material conditional,
a sentence of the form P ⊃ Q, asserts neither P nor Q but rather asserts Q on
the condition that P. What we can say of each thing, dolphins and nondolphins
alike, is that if the thing in question is a dolphin then it is a mammal. This
claim is as true of rattlesnakes, bumblebees, and bacteria as it is of dolphins.
So an appropriate sentence of PL is

(∀z)(Dz ⊃ Mz)

Here we are saying, again, neither that each living thing is a dolphin nor that
each living thing is a mammal, but rather that each living thing is such that if it
is a dolphin then it is a mammal. So this claim applied to rattlesnakes comes to
naught, but when applied to dolphins, it commits us to dolphins being mammals.

310 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

It is also important to note that ‘(∀y)(Dy & My)’ is not an appropriate

symbolization of ‘All dolphins are mammals’. Given our UD and specification

of predicates, this sentence of PL says that each living thing is of the sort speci-

fied by the conjunction ‘Dy & My’—that is, that each living things is both a

dolphin and a mammal. And this is equivalent to ‘(∀y)Dy & (∀y)My’, which is,

as we pointed out, an incorrect symbolization of our English sentence.

With this model in hand, it is easy to symbolize the next three of our

examples. Again taking our UD to be all living things and using ‘Rx’ for ‘x is

a reptile’ and ‘Cx’ for ‘x is cold-blooded’, we can symbolize ‘All reptiles are

cold-blooded’ as

(∀w)(Rw ⊃ Cw)

The foregoing is as true of dolphins as it is of rattlesnakes, for what it says of

a given dolphin is that if that thing is a reptile (which it is not) then it is cold-

blooded. Changing our UD to foods and using ‘Cy’ for ‘y is a cheese’ and ‘Dz’

for ‘z is a dairy product’, we can symbolize ‘Every cheese is a dairy product’ as

(∀x)(Cx ⊃ Dx)

And if we take our UD to be books and people, ‘Lz’ to represent ‘z is a logic

text’, ‘Bzw’ to represent ‘z bores w’, and ‘m’ to stand for Michael, we can

symbolize ‘Every logic text bores Michael’ as

(∀y)(Ly ⊃ Bym)

In sentences of PL such as those we have just presented, it is essential

that the quantifier’s scope extend over the entire sentence. For example, remov-

ing the parentheses around ‘(Ly ⊃ Bym)’ produces ‘(∀y)Ly ⊃ Bym’, which is a

formula but not a sentence of PL. In the present examples it is also important

that we use one and the same variable in the quantifier and in the atomic for-

mulas it interprets. Doing otherwise also produces a nonsentence—for exam-

ple, ‘(∀y)(Lx ⊃ Bym)’. In the foregoing discussion we purposely used different

variables in the specification of predicates of PL and in the symbolizations we

gave using those predicates. We did so to illustrate that the variables used in

specifying predicates, whether informally as above or in symbolization keys, are

only place-holders, marking holes in predicates. In actual symbolizations using

those predicates, other variables and/or individual constants may be used.

The claim, ‘No fatty foods are conducive to good health’, asserts that

anything that is a fatty food is not conducive to good health. Taking foods as

our UD and using ‘Fz’ for ‘z is fatty’ and ‘Cw’ as ‘w is conducive to good health’,

we can symbolize this claim in PL as

(∀x)(Fx ⊃ ∼ Cx)

Alternatively, but equivalently, we can see ‘No fatty foods are conducive to good

health’ as denying that there is a fatty food that is conducive to good health.

7.6 A-, E-, I-, AND O-SENTENCES 311

This suggests the symbolization

∼ (∃x)(Fx & Cx)

These two sentences of PL, as one would expect, turn out to be equivalent. The
latter claim of PL is very different from ‘∼ (∃x)Fx & ∼ (∃x)Cx’, which asserts
both that nothing is fatty and that nothing is conducive to good health.

Next we can symbolize ‘No government is unbureaucratic’ by taking
our UD to be organizations, ‘Gx’ to represent ‘x is a government’, and ‘Bx’ ‘x
is bureaucratic’. Since to say no government is unbureaucratic is just to say that
every government is bureaucratic, an appropriate symbolization in PL is

(∀y)(Gy ⊃ By)

An equally appropriate symbolization is

∼ (∃y)(Gy & ∼ By)

Returning to a UD of living things and taking ‘Zy’ to represent ‘y is a
zebra’ and ‘Uw’ to represent ‘w is unicolored’, we can symbolize the claim ‘No
zebra is unicolored’ either as

(∀z)(Zz ⊃ ∼ Uz)

or as

∼ (∃w)(Zw & Uw)

The first says of each thing in the UD that if it is a zebra then it is not uni-
colored; the second says that it is not the case that there is something in the
UD that is a zebra and unicolored. These are equivalent.

Now take our UD to be vehicles (including automobiles, bicycles, boats,
airplanes, and so on). The claim ‘Some automobiles are Fords’ can be con-
strued, not as making a conditional claim about each thing in the UD, but
rather as saying that in the UD there is at least one thing that both is a car and
is a Ford (remember, we take ‘some’ to mean ‘at least one’). Where ‘Ax’ stands
for ‘x is an automobile’ and ‘Fx’ for ‘x is a Ford’, an appropriate symboliza-
tion is

(∃y)(Ay & Fy)

Similarly, if we take our UD to be all fruits and vegetables, ‘Ay’ to represent ‘y
is an apple’, and ‘Gy’ to represent ‘y is a Granny Smith’, we can symbolize the
claim ‘Some apples are Granny Smiths’ as

(∃z)(Az & Gz)

312 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Taking our UD to be people, ‘Ix’ to represent ‘x is an instructor’, and ‘Hx’ to

represent ‘x has a sense of humor’, ‘Some instructors are without a sense of

humor’ can be symbolized as

(∃y)(Iy & ∼ Hy)

And the claim ‘Some horses are not racehorses’ can be symbolized as

(∃w)(Hw & ∼ Rw)

if we take our UD to be living things, ‘Hx’ to represent ‘x is a horse’, and ‘Rx’

to represent ‘x is a racehorse’. Finally ‘Some lawyers are not rich’ can be

symbolized as

(∃y)(Ly & ∼ Ry)

with a UD of living things and ‘Lw’ and ‘Rw’ representing, respectively, ‘w is a

lawyer’ and ‘w is rich’.

We noted in Chapter 1 that Aristotelian logic holds that syllogistic

arguments are composed of sentences of the following sorts:

All As are Bs.

No As are Bs.

Some As are Bs.

Some As are not Bs.

where ‘A’ and ‘B’ are used as variables for general terms. Sentences of these

types are traditionally classified as A-, E-, I-, and O-sentences, respectively. Using

‘P’ and ‘Q’ as variables for formulas containing the variable x, we can employ

the following schema to present this traditional classification as it applies to

sentences of PL:

A: (∀x)(P ⊃ Q)

E: (∀x)(P ⊃ ∼ Q)

I: (∃x)(P & Q)

O: (∃x)(P & ∼ Q)

The sentences of PL we have so far considered in this section can, in fact, each

be seen as being of one of these four sorts, as can a very large number of other

sentences. For example, we have symbolized ‘All dolphins are mammals’ as

‘(∀z)(Dz ⊃ Mz)’, an A-sentence; ‘No fatty foods are conducive to good health’

as ‘(∀x)(Fx ⊃ ∼ Cx)’, an E-sentence; ‘Some automobiles are Fords’ as ‘(∃y)(Ay

& Fy)’, an I-sentence; and ‘Some horses are not racehorses’ as ‘(∃w)(Hw &

∼ Rw)’, an O-sentence.

7.6 A-, E-, I-, AND O-SENTENCES 313

Aristotle believed that there are important logical relations among
A-, E-, I-, and O-sentences. These are usually presented using a “square of
opposition”:

A-sentence

(∀x)(P ⊃ Q)

E-sentence

(∀x)(P ⊃ ∼ Q)

I-sentence

(∃x)(P & Q)

O-sentence

(∃x)(P & ∼ Q)

C
o

n
t r a

d
i c

t o
r i e

s
 C

o n t r a d
c t o r i e

s

The following relationships hold: If an A-sentence is true, then the correspond-
ing O-sentence is false, and vice versa; and if an E-sentence is true, the cor-
responding I-sentence is false, and vice versa. This is sometimes expressed by
saying that the sentences connected by diagonal lines are contradictories—if
either is true the other is false. It follows that each sentence on the square of
opposition is equivalent to the negation of the sentence at the other end of
the diagonal. Thus A-sentences are equivalent to the negation of O-sentences,
and vice versa; and E-sentences are equivalent to the negation of I-sentences,
and vice versa. This gives us four pairs of equivalences:

(∀x)(P ⊃ Q) and ∼ (∃x)(P & ∼ Q)
(∀x)(P ⊃ ∼ Q) and ∼ (∃x)(P & Q)
(∃x)(P & Q) and ∼ (∀x)(P ⊃ ∼ Q)
(∃x)(P & ∼ Q) and ∼ (∀x)(P ⊃ Q)

An example will help here. We will use the following symbolization key:

UD: The jawbreakers (hard, round candies) in a large glass jar
Yz: z is yellow
Sz: z is sweet

314 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

The following are examples of A-, E-, I-, and O-sentences of English and their

symbolizations in PL:

All yellow jawbreakers are sweet. (∀w)(Yw ⊃ Sw)

No yellow jawbreakers are sweet. (∀w)(Yw ⊃ ∼ Sw)

Some yellow jawbreakers are sweet. (∃w)(Yw & Sw)

Some yellow jawbreakers are not sweet. (∃w)(Yw & ∼ Sw)

The A-sentence ‘All yellow jawbreakers are sweet’ is the contradictory of the O-

sentence ‘Some yellow jawbreakers are not sweet’. If it is true that all yellow jaw-

breakers are sweet, then it is clearly false that some yellow jawbreakers are not

sweet, and vice versa. So ‘(∀w)(Yw ⊃ Sw)’ is equivalent to the negation of the

corresponding O-sentence, that is, equivalent to ‘∼ (∃w)(Yw & ∼ Sw)’. And the

O-sentence ‘(∃w)(Yw & ∼ Sw)’ is equivalent to the negation of the correspond-

ing A-sentence, that is, to ‘∼ (∀w)(Yw ⊃ Sw)’. So, too, if the E-sentence ‘No

yellow jawbreakers are sweet’ is true, then its contradictory, the I-sentence ‘Some

yellow jawbreakers are sweet’, is false, and vice versa. So the E-sentence ‘(∀w)

(Yw ⊃ ∼ Sw)’ is equivalent to ‘∼ (∃)(Yw & Sw)’. And the I-sentence ‘(∃w)(Yw & Sw)’

is equivalent to the negation of the corresponding E-sentence, that is, to

‘∼ (∀w)(Yw ⊃ ∼ Sw)’. These relationships explain why, in symbolizing the exam-

ples at the beginning of this section, we often came up with two alternative,

equivalent symbolizations.

In some systems of logic, if an A-sentence is true then so is the corre-

sponding I-sentence, and if an E-sentence is true then so is the corresponding

O-sentence. These relationships do not hold in PL. This may seem counterin-

tuitive, for it is very tempting to believe that if ‘All rabbits are mammals’ is true,

then so must be ‘Some rabbits are mammals’, and that if ‘No rabbits are cold-

blooded’ is true, then so must be ‘Some rabbits are not cold-blooded’. The

reason these relationships do not hold for A- and I- and for E- and O-sentences

is that in PL we allow predicates that are not satisfied by any member of the

universe of discourse.

Given that we treat universal claims as saying of each thing that if it is

of this sort it is also of that sort, this is obviously a sensible policy. For exam-

ple, when working with a culture of unknown bacteria, we might reasonably

say, after having placed the culture in a hermetically sealed container for an

appropriate length of time,

All the aerobic (air-dependent) bacteria in the culture are dead.

Our claim will be true even if there are no such bacteria in the culture, for we

will paraphrase it as saying of each bacterium, of whatever sort, that if it is aer-

obic then it is dead. Since there may be no aerobic bacteria in the culture, dead

or alive, we clearly do not want the corresponding I-sentence

Some aerobic bacteria in the culture are dead

7.6 A-, E-, I-, AND O-SENTENCES 315

to follow, for it says that there are bacteria in the culture that are both aero-
bic and dead. Again, in the system we are developing, A-sentences do not entail
I-sentences and E-sentences do not entail O-sentences.

Aristotle also believed that A- and E-sentences are contraries and that
I- and O-sentences are subcontraries. That is, an A- and the corresponding E-
sentence cannot both be true, and an I- and the corresponding O-sentence
cannot both be false. Neither of these relationships holds in PL, again because
we allow predicates that are not satisfied by any member of the universe of
discourse. Hence, if there are no things in the universe of discourse that are
of the sort specified by the one-place predicate ‘F’, then both the A-sentence
‘(∀x)(Fx ⊃ Gx)’ and the corresponding E-sentence ‘(∀x)(Fx ⊃ ∼ Gx)’ will
be true, and both the I-sentence ‘(∃x)(Fx & Gx)’ and the corresponding
O-sentence ‘(∃x)(Fx & ∼ Gx)’ will be false.

Neither every sentence of English nor every sentence of PL can
reasonably be construed as being of one of the four sorts of sentences we have
been discussing. However, many can, and it is frequently helpful in symbolizing
sentences of English to keep these four types of sentences in mind.

Not every sentence of English that can be symbolized as an A-sentence
uses the quantity term ‘all’. For example, in an introductory biology class an
instructor might assert any one of the following sentences:

All mammals are warm-blooded.
Every mammal is warm-blooded.
Each mammal is warm-blooded.
Mammals are warm-blooded.
A mammal is warm-blooded.

In the envisioned context these sentences are interchangeable. They can all
be symbolized as the A-sentence ‘(∀y)(My ⊃ Wy)’ given a UD of living things
and using ‘Mz’ for ‘z is a mammal’ and ‘Wz’ for ‘z is warm-blooded’. This is
true of the fourth example, ‘Mammals are warm-blooded’, even though this
sentence contains no quantity term. The context makes it clear that it is all,
not just some, mammals that are under discussion. The fifth sentence, ‘A mam-
mal is warm-blooded’, is about all mammals even though it uses the singular
article ‘a’. This is not uncommon. Consider ‘A mind is a terrible thing to
waste’, ‘An accident incurred while at work is covered by the employee insur-
ance plan’, or ‘An unexcused absence on an examination day will result in a
failure’. The claims just mentioned concern, respectively, all minds, all acci-
dents incurred while at work, and all unexcused absences on examination
days.

‘Any’ can also be used to make a claim about all things of the speci-
fied sort. The cynic’s crack about the findings of modern medicine, “Anything
that tastes good is bad,” is equivalent to ‘All things that taste good are bad’.
Both can be symbolized as ‘(∀x)(Tx ⊃ Bx)’ given a UD of all foods and drinks
and taking ‘Tx’ to represent ‘x tastes good’ and ‘Bx’ to represent ‘x is bad’.

316 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

It is important to remember that claims of the sort we have been dis-

cussing, claims to the effect that all things of this sort (for example, mam-

mals) are also of that sort (for example, warm-blooded), do not pick out or

refer to a group of things and then predicate something of that group. It is

not the group or set of mammals that is warm-blooded but each individual

mammal. (‘Supertankers are very large ships’ means that each supertanker is

a very large ship, not that the set of supertankers is very large, that is, not

that there are a very large number of supertankers.) The claims we have been

discussing are better analyzed as universal claims deriving from conditionals

that apply to each thing in the given universe of discourse. They say of each

thing under discussion that if it is of such-and-such a sort then it is also thus-

and-so. Each living thing is such that if it is a mammal then it is warm-

blooded. This is, again, true as much of a given reptile as it is of a given koala

bear.11

E-sentences, which can be symbolized as sentences of PL of the form

(∀x)(P ⊃ ∼ Q), are also universal claims. They say of each thing under

discussion that if it is of the sort P then it is not of the sort Q. Again assum-

ing the context of an introductory biology class, all of the following can be

used to make the point that reptiles are not warm-blooded:

No reptile is warm-blooded.

Reptiles are not warm-blooded.

A reptile is not warm-blooded.

Taking our universe of discourse to be living things and using ‘Rw’ to repre-

sent ‘w is a reptile’ and ‘Ww’ to represent ‘w is warm-blooded’, we can symbolize

all these claims as

(∀y)(Ry ⊃ ∼ Wy)

We claimed earlier that ‘Mammals are warm-blooded’ and ‘All mammals are

warm-blooded’ make the same claim. So, too, one would expect ‘Reptiles are

not warm-blooded’ and ‘All reptiles are not warm-blooded’ to make the same

claim. And, literally speaking, they do. ‘All reptiles are not warm-blooded’ says,

literally, that each thing that is a reptile is not a thing that is warm-blooded,

and thus can be symbolized as above.

But there is a complication here. Imagine a conversation about future

careers. Someone says, “I want to become a lawyer because lawyers are all rich”;

someone more thoughtful replies, “While the stereotype of lawyers may be that

they are rich, the fact is that all lawyers are not rich”. The claims we want to

contrast are ‘All lawyers are rich’ and ‘All lawyers are not rich’. The first clearly

1 1But consider ‘Insects are more numerous than mammals’. This is not a disguised conditional claim about each
living thing—its force is not ‘Each living thing is such that if it is an insect it is more numerous than . . .’ The
correct analysis here is rather something like ‘The set consisting of all insects is larger than the set consisting of
all mammals’—that is, a claim about a relation between two things, the set of insects and the set of mammals.

7.6 A-, E-, I-, AND O-SENTENCES 317

means that each lawyer is rich and can be symbolized, given a UD of people
and using ‘Ly’ as ‘y is a lawyer’ and ‘Ry’ as ‘y is rich’, as

(∀z)(Lz ⊃ Rz)

The second claim, ‘All lawyers are not rich’, literally means that each lawyer is
not rich, a claim that can be symbolized as an E-sentence:

(∀z)(Lz ⊃ ∼ Rz)

But in the envisioned conversation ‘All lawyers are not rich’ is clearly intended,
not as the claim that there are no rich lawyers, but rather merely as a denial
of ‘All lawyers are rich’, that is, as equivalent to ‘It is not the case that all lawyers
are rich’. Thus it can reasonably be symbolized as

∼ (∀z)(Lz ⊃ Rz)

And this sentence of PL, the denial of an A-sentence, is equivalent to the O-
sentence ‘(∃z)(Lz & ∼ Rz)’, which says ‘There is something that is a lawyer and
is not rich’.

In practice we must rely on the context to determine whether what is
literally an E-sentence—our example was ‘All lawyers are not rich’, and another
is ‘Every politician is not a scoundrel’—is being used as an E-sentence or as
the negation of an A-sentence. In this text, whenever we do use a sentence of
the sort ‘All Ps are not Qs’ or ‘Each P is not Q’, and no context is provided,
we mean the sentence to be interpreted literally as saying each and every P
thing is not a Q thing.

I- and O-sentences of PL are existential claims. They do not make a
claim about each thing in the universe of discourse; rather, they say that
included within that universe is at least one thing of a specified sort, either the
sort P & Q (an I-sentence) or the sort (P & ∼ Q)(an O-sentence). Both

Some mammals are carnivorous

and

There are carnivorous mammals

can be symbolized as the O-sentence ‘(∃y)(My & Cy)’, where our UD is living
things, ‘Mx’ represents ‘x is a mammal’, and ‘Cx’ represents ‘x is carnivorous’.
Similarly ‘Some mammals are not carnivorous’ and ‘There are mammals that
are not carnivorous’ can both be symbolized as

(∃z)(Mz & ∼ Cz)

Note that ‘Some mammals are carnivorous’ does not identify a particu-
lar mammal and say of it that it is carnivorous. It says that there are carnivorous

318 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

mammals but not which ones they are. Note also that the following are not sym-
bolizations of ‘Some mammals are carnivorous’:

(∃x)Mx & (∃x)Cx
(∃x)(Mx ⊃ Cx)

The first is a truth-functional compound. It says that there is something that is
a mammal and there is something (not necessarily the same thing) that is car-
nivorous. The second says that there is some living thing such that if it is a
mammal then it is carnivorous. While this is true, it is a much weaker claim
than is intended. It would, for example, be true even if the UD were limited
to reptiles. For each reptile (and hence at least one) is such that if it is a
mammal (which it is not) then it is carnivorous. Remember that material

conditionals with false antecedents are true.
Note that neither ‘(∀x)(Mx ⊃ Wx)’ nor ‘(∃x)(Mx & Cx)’ contains outer-

most parentheses. The formulas to which the quantifiers attach, ‘(Mx ⊃ Wx)’
and ‘(Mx & Cx)’, respectively, do contain outer parentheses, but these are not
“outer” once the quantifiers are attached. ‘(∀x)Mx ⊃ Wx’ is therefore not an
informal version of ‘(∀x)(Mx ⊃ Wx)’, and ‘(∃x)Mx & Cx’ is not an informal
version of ‘(∃x)(Mx & Cx)’. Rather, both are formulas that are not sentences
of PL. The main logical operator of the first is ‘⊃’, not ‘(∀x)’, and so the occur-
rence of ‘x’ in ‘Wx’ is not bound; and the main logical operator of the second
is ‘&’, not ‘(∃x)’, and so the occurrence of ‘x’ in ‘Cx’ is not bound.

We next symbolize a further group of sentences about the people in
Michael’s office:

1. Everyone whom Michael likes is easygoing.

2. Everyone who is taller than Rita is taller than Henry.

3. No one who likes Michael likes Henry.

4. Some of those whom Michael likes like Rita.

5. Some of those whom Michael likes don’t like Rita.

We will use the symbolization key given in Section 7.3:

UD: People in Michael’s office
Lxy: x likes y
Ex: x is easygoing

Txy: x is taller than y
h: Henry
m: Michael
r: Rita
s: Sue

The first of these claims is a straightforward A-sentence and can be symbolized as

(∀x)(Lmx ⊃ Ex)

7.6 A-, E-, I-, AND O-SENTENCES 319

The only interesting difference between this and the A-sentences we symbol-
ized earlier (for example, ‘All mammals are warm-blooded’) is that here the
antecedent of the immediate subformula, ‘Lmx’, of ‘(Lmx ⊃ Ex)’ is an atomic
formula formed from a two-place rather than a one-place predicate. The
second sentence is also an A-sentence, and here both the antecedent and the
consequent of the immediate subformula are formed from two-place
predicates:

(∀z)(Tzr ⊃ Tzh)

The third English sentence—‘No one who likes Michael likes Henry’—can be
parsed as ‘Each thing is such that if it likes Michael then it is not the case that
it likes Henry’, an E-sentence, and symbolized as

(∀x)(Lxm ⊃ ∼ Lxh)

This English sentence can also be symbolized as the negation of an I-sentence:

∼ (∃x)(Lxm & Lxh)

which can be read as ‘It is not the case that there is something that likes
Michael and likes Henry’. The fourth and fifth sentences can be treated as I-
and O-sentences, respectively. Appropriate symbolizations are

(∃w)(Lmw & Lwr)

(∃w)(Lmw & ∼ Lwr)

Next we work through a series of symbolizations concerning the mar-
bles being used in a marble game. We will symbolize these sentences:

1. All the marbles are blue.

2. None of the marbles is blue.

3. Some of the marbles are blue.

4. Some of the marbles are not blue.

5. Some but not all of the marbles are blue.

6. All the marbles are blue or all the marbles are green.

7. Some of the marbles are blue and some are green, but none is red.

8. If any marble is blue they all are.

9. If any marble is blue it’s a cat’s-eye.

10. All the shooters are red.

To illustrate how the choice of a UD affects the symbolizations required, we give
two symbolizations for each of the above sentences, the first using the

320 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

symbolization key:

UD: The marbles being used by Ashley, Clarence, Rhoda, and Terry
Bx: x is blue
Gx: x is green
Rx: x is red
Sx: x is a shooter
Cx: x is a cat’s-eye

The second symbolization key we will use is like the above but with a UD of
the marbles being used and the players, and the additional predicate ‘Mx’ for
‘x is a marble’. Thus we have

UD: Marbles UD: Marbles and marble players

1 . (∀y)By 1 . (∀y)(My ⊃ By)

2 . ∼ (∃y)By 2 . ∼ (∃y)(My & By)

3 . (∃y)By 3 . (∃y)(My & By)

4 . (∃y) ∼ By 4 . (∃y)(My & ∼ By)

5 . (∃y)By & ∼ (∀y)By 5 . (∃y)(My & By) &
∼ (∀y)(My ⊃ By)

6 . (∀z)Bz ∨ (∀y)Gy 6 . (∀z)(Mz ⊃ Bz) ∨
(∀y)(My ⊃ Gy)

7 . [(∃x)Bx & (∃x)Gx] 7 . [(∃x)(Mx & Bx) & (∃x)(Mx & Gx)]
& ∼ (∃x)Rx & ∼ (∃x)(Mx & Rx)

8 . (∃w)Bw ⊃ (∀x)Bx 8 . (∃w)(Mw & Bw) ⊃ (∀x)
(Mx ⊃ Bx)

9 . (∀x)(Bx ⊃ Cx) 9 . (∀x)[(Mx & Bx) ⊃ Cx]

10 . (∀y)(Sy ⊃ Ry) 10 . (∀y)[(My & Sy) ⊃ Ry]

If the universe of discourse is just marbles, then 1 , ‘(∀y)By’, is an appropriate
symbolization of ‘All the marbles are blue’. But 1 will not suffice if the UD is
marbles and marble players, for we want to say that the marbles are blue but
not that the players are. So 1 is called for, ‘(∀y)(My ⊃ By)’. Generally, where
the universe of discourse is severely restricted and we do want to attribute some
property to, or deny a property of, every or at least one member of that uni-
verse, A-, E-, I-, and O-sentences can be specified as follows, where P may be
an atomic formula:

A: (∀x)P
E: (∀x) ∼ P

I: (∃x)P
O: (∃x) ∼ P

7.6 A-, E-, I-, AND O-SENTENCES 321

Our 1 and 1 are thus both A-sentences, and 6 and 6 are both disjunctions
of A-sentences; 2 and 2 are both O-sentences; 3 and 3 are both I-sentences,
and 7 and 7 are both conjunctions of the conjunction of two I-sentences and
an E-sentence; 4 and 4 are both E-sentences; 5 and 5 are both conjunctions
of an I-sentence and the negation of an A-sentence; 6 and 6 are both dis-
junctions of A-sentences; and 8 and 8 are both material conditionals whose
antecedents are I-sentences and whose consequents are A-sentences. The ‘any’
of sentence 9 has the force of ‘every’, for ‘If any marble is blue it’s a cat’s-eye’
says the same thing as ‘Every blue marble is a cat’s-eye’. Hence 9 is an A-
sentence, as is 10 . In addition, 9 and 10 are A-sentences of the form (∀x)(P ⊃

Q), where P is itself a conjunction. (We shall discuss this sort of complexity
further in Section 7.7.)

While 2 and 2 are negations of I-sentences, we could also have used
E-sentences, ‘(∀y) ∼ By’ and ‘(∀y)(My ⊃ ∼ By)’, respectively. For 3 and 3 we
could have used the negation of E-sentences instead of I-sentences, and so on.
The notion of there being a single correct, or even “most intuitive”, symbol-
ization for each English sentence is even more inappropriate here than it was
in SL.

7.6E EXERCISES

1. Identify each of the following sentences as either an A-, E-, I-, or O-sentence
and symbolize each in PL using the given symbolization key.

UD: A pile of coins consisting of quarters, dimes, nickels, and pennies
Qz: z is a quarter
Dz: z is a dime
Nz: z is a nickel
Cz: z contains copper
Pz: z is a penny
Sz: z contains silver
Kz: z contains nickel
Zz: z contains zinc
Bz: z is a buffalo head coin
Iz: z is an Indian head coin

Mz: z was minted before 1965

a. All the pennies contain copper.
*b. Some of the dimes contain silver.

c. Some of the dimes do not contain silver.
*d. None of the quarters contains silver.

e. Some of the nickels are buffalo heads.
*f. All the nickels contain nickel.
g. No penny contains silver.

*h. Some of the nickels are not buffalo heads.
i. Every penny was minted before 1965.

*j. Some quarters were not minted before 1965.

322 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

k. Every coin containing silver contains copper.
*l. No penny contains nickel.
m. No coin that contains nickel contains silver.
*n. Every coin minted during or after 1965 contains zinc.

o. None of the quarters contains zinc.
*p. Some of the pennies are not Indian heads.

2. Symbolize the following sentences in PL using the given symbolization key.

UD: The jellybeans in a larger glass jar
By: y is black
Ry: y is red
Gy: y is green
Ly: y is licorice-flavored
Cy: y is cherry-flavored
Sy: y is sweet

Oy: y is sour

a. All the black jellybeans are licorice-flavored.
*b. All the red jellybeans are sweet.

c. None of the red jellybeans is licorice-flavored.
*d. Some red jellybeans are cherry-flavored.

e. Some jellybeans are black and some are red.
*f. Some jellybeans are sour and some are not.
g. Some jellybeans are black and some are red, but none is both.

*h. The red jellybeans are sweet, and the green jellybeans are sour.
i. Some jellybeans are black, some are sweet, and some are licorice-flavored.

*j. No jellybeans are red and licorice-flavored.
k. All the cherry-flavored jellybeans are red, but not all the red jellybeans are

cherry-flavored.
*l. Every jellybean is red, and some are cherry-flavored and some are not cherry-

flavored.
m. Every jellybean is red or every jellybean is black or every jellybean is green.
*n. Not all the jellybeans are licorice-flavored, but all those that are, are black.

o. Some red jellybeans are sweet and some are not.
*p. Some jellybeans are sweet and some are sour, but none is sweet and sour.
q. Some of the jellybeans are sour, but none of the licorice ones is.

3. With respect to the square of opposition, answer the following:
a. Can an I-sentence of PL and the corresponding O-sentence both be true? Can

two such sentences both be false? Explain.
*b. Can an A-sentence of PL and the corresponding E-sentence both be false? Can

two such sentences both be true? Explain.

7.7 SYMBOLIZATION TECHNIQUES

So far most of the A- and E-sentences we have considered have had as
immediate subformulas atomic formulas, negations of atomic formulas, or
material conditionals (whose immediate subformulas have themselves been

7.7 SYMBOLIZATION TECHNIQUES 323

either atomic formulas or the negations of atomic formulas). Similarly most of
the I- and O-sentences we have considered have had as immediate subformulas
atomic formulas, the negations of atomic formulas, or conjunctions (whose
immediate subformulas have been either atomic formulas or the negations of
atomic formulas). But we need not restrict ourselves to these simple combina-
tions. The P and Q of sentences of the forms

(∀x)(P ⊃ Q)
(∀x)(P ⊃ ∼ Q)
(∃x)(P & Q)
(∃x)(P & ∼ Q)

can themselves be any formulas of PL, including negations, conjunctions,
disjunctions, material conditionals, and material biconditionals. Consider

Everyone that Michael likes likes either Henry or Sue.

Here, and in other, more complicated examples to come, it may help to first
paraphrase the English sentence into a more explicit quasi-English sentence:

Each thing is such that if Michael likes it, then either it likes Henry or
it likes Sue.

This sort of paraphrase uses ‘it’ where the symbolization in PL uses a vari-
able. The paraphrase makes it clear that this sentence can be symbolized as
a universally quantified sentence, the immediate subformula of which will be
a material conditional, with the consequent of that conditional being a
disjunction. Using a universe of discourse of people in Michael’s office and
the rest of the familiar symbolization key already specified, an appropriate
symbolization is

(∀y)[Lmy ⊃ (Lyh ∨ Lys)]

This is an A-sentence, where P is ‘Lmy’ and Q is the disjunction ‘(Lyh ∨ Lys)’.
Here are some further sentences about Michael and his co-workers:

Michael likes everyone that both Sue and Rita like.
Michael likes everyone that either Sue or Rita likes.
Rita doesn’t like Michael but she likes everyone that Michael likes.

The first can be paraphrased as

Each thing is such that if both Sue likes it and Rita likes it, then
Michael likes it.

324 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

The paraphrase makes it clear that the PL symbolization of this sentence will
be a universally quantified sentence whose immediate subformula is a material
conditional, the antecedent of which will be a conjunction:

(∀z)[(Lsz & Lrz) ⊃ Lmz]

This is also an A-sentence, where P is ‘(Lsz & Lrz)’ and Q is ‘Lmz’.
The second sentence can be paraphrased as

Each thing is such that if either Sue likes it or Rita likes it, then Michael
likes it.

An appropriate symbolization is

(∀w)[(Lsw ∨ Lrw) ⊃ Lmw]

This is an A-sentence, where P is ‘(Lsw ∨ Lrw)’, a disjunction, and Q is ‘Lmw’.
The last of the sentences we are considering can be paraphrased as

Both it is not the case that Rita likes Michael and each thing is such
that if Michael likes it then Rita likes it.

An appropriate symbolization here is

∼ Lrm & (∀x)(Lmx ⊃ Lrx)

This sentence of PL is a conjunction of the negation of an atomic sentence and
an A-sentence. We note that, if the foregoing sentence is true, if follows that
Michael does not like himself, for if he did, Rita, who likes everyone Michael
likes, would also like Michael, but she doesn’t like Michael, so Michael must
not like himself.

Lest we neglect bears, who figured briefly in the beginning of Section
7.6, we now consider

Grizzly bears are dangerous but black bears are not.

The grammatical structure of English sentences is often a good guide to what
the structure of symbolizations in PL should be, and this is so in the present
case. The foregoing sentence can be paraphrased as ‘Both grizzly bears are dan-
gerous and it is not the case that black bears are dangerous’ and symbolized,
as one would expect, as the conjunction of an A- and an E-sentence. When we
take our UD to be living things, ‘Gw’ to represent ‘w is a grizzly bear’, ‘Bw’ to
represent ‘w is a black bear’, and ‘Dw’ to represent ‘w is dangerous’, an appro-
priate symbolization is

(∀y)(Gy ⊃ Dy) & (∀z)(Bz ⊃ ∼ Dz)

7.7 SYMBOLIZATION TECHNIQUES 325

But consider next

Grizzly bears and polar bears are dangerous, but black bears are not.

The ‘black bears are not’ clearly becomes, as above, ‘(∀z)(Bz ⊃ ∼ Dz)’. But
what of ‘Grizzly bears and polar bears are dangerous’? If we add ‘Pw’ for ‘w is
a polar bear’ to our symbolization key, we might, as a first attempt, try

(∀x)[(Gx & Px) ⊃ Dx]

But we can see that this first attempt misses the mark as soon as we read it back
into quasi-English, for it says ‘Each thing is such that if it both is a grizzly bear
and is a polar bear, then it is dangerous’. But there are no things that are both
grizzly bears and polar bears, and our intent was not to make a vacuous claim.

In a second attempt we might realize that the original sentence is a
shortened form of the fuller claim

Grizzly bears are dangerous and polar bears are dangerous, but black
bears are not

and then realize that an adequate symbolization is

[(∀w)(Gw ⊃ Dw) & (∀w)(Pw ⊃ Dw)] & (∀w)(Bw ⊃ ∼ Dw)

We have here the conjunction of a conjunction of A-sentences and an E-sentence.
But there is also a shorter symbolization:

(∀w)[(Gw ∨ Pw) ⊃ Dw] & (∀w)(Bw ⊃ ∼ Dw)

This sentence of PL is the conjunction of an A-sentence and an E-sentence. To
say that grizzly bears and polar bears are dangerous is to say that everything in
the group consisting of all grizzly bears and all polar bears is dangerous. And
to be a member of that group, a creature need only be one or the other, a
grizzly or a polar bear, not both.

Consider now ‘Every self-respecting polar bear is a good swimmer’. Still
taking our universe of discourse to be bears and adding as predicates ‘Rxy’ for
‘x respects y’ and ‘Sx’ for ‘x is a good swimmer’, we can symbolize this sen-
tence as

(∀z)[(Pz & Rzz) ⊃ Sz]

We here illustrate that a thing can bear a relation to itself. (To be self-respecting
is just to respect oneself.)

Here are two examples concerning the positive integers:

Every integer is either odd or even

326 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

and

Every integer is odd or every integer is even.

In the second sentence there are two quantity terms. Each falls within a dis-
junct of the overall sentence, which is clearly a disjunction. But in the first sen-
tence the disjunction-indicating terms ‘either’ and ‘or’ both fall within the
scope of the quantity term ‘every’. This suggests, correctly, that the first
sentence can be symbolized as a quantified sentence, and the second as a truth-
functional compound of quantified sentences. If we restrict our universe of
discourse to integers, appropriate paraphrases are

Each integer y is such that either y is odd or y is even

and

Either each integer y is such that y is odd or each integer y is such that
y is even.

Using obvious predicates, we can now produce PL symbolizations:

(∀y)(Oy ∨ Ey)

(∀y)Oy ∨ (∀y)Ey

There is a world of difference here. The first sentence of PL is clearly true:
Each integer is either odd or even—one is odd, two is even, three is odd, four
is even, and so on. The second sentence is just as clearly false: It is not the case
that all integers are odd, and it is not the case that all integers are even. The
great importance of the placement of quantifiers in relation to truth-functional
connectives is here illustrated. (The first of the two sentences of PL is an A-
sentence—it says each thing is of the sort specified by ‘(Oy ∨ Ey)’; the second
is a disjunction of A-sentences.)

Care must be taken when symbolizing English sentences using the
quantity term ‘any’. Consider these examples:

1. Anyone who likes Sue likes Rita.

2. Everyone who likes Sue likes Rita.

3. If anyone likes Sue, Michael does.

4. If everyone likes Sue, Michael does.

5. If anyone likes Sue, he or she likes Rita.

Assuming we restrict our UD to people, it is probably apparent that the first
two of these sentences can each appropriately be symbolized as the A-sentence
‘(∀x)(Lxs ⊃ Lxr)’. So in the first sentence the ‘any’ of ‘anyone’ has the force
of ‘every’. But in the third sentence ‘anyone’ does not have the force of

7.7 SYMBOLIZATION TECHNIQUES 327

‘everyone’, for the third and fourth sentences clearly make different claims.
(Sentence 3 may be very informative—we might suspect that someone likes Sue
but have no idea that Michael does. But sentence 4 is not at all informative.
Of course, Michael likes Sue if everyone does, for Michael is one of everyone.)
Appropriate symbolizations for sentences 3 and 4 are, respectively,

(∃x)Lxs ⊃ Lms

and

(∀x)Lxs ⊃ Lms

Both of these sentences of PL are truth-functional compounds (mate-
rial conditionals). It might be tempting to conclude that ‘any’ means ‘every’
except when it is used in the antecedent of an explicit conditional, in which
case it means ‘at least one’. But this rule is too simplistic, as sentence 5 makes
clear. In ‘If anyone likes Sue, he or she likes Rita’, ‘any’ appears in the
antecedent of an explicit English conditional. But here the force of ‘any’
cannot be captured by an existential quantifier, nor can the English sentence
be symbolized as a conditional sentence of PL. Attempting to do so is likely to
generate

(∃x)Lxs ⊃ Lxr

which is a formula but not a sentence of PL (the third occurrence of ‘x’ is
free). Changing the scope of the existential quantifier will not help either, for
while

(∃x)(Lxs ⊃ Lxr)

is a sentence of PL (albeit not a conditional), it says that there is someone such
that if that person likes Sue then that person likes Rita. It is sufficient for the
truth of this claim that there be someone who does not like Sue, for if a per-
son does not like Sue, then ‘(Lxs ⊃ Lxr)’ is true of that person—remember
the weakness of the material conditional. To say what we want to say, we need
a universally quantified sentence, that is, we need the symbolization we used
for sentences 1 and 2:

(∀x)(Lxs ⊃ Lxr)

This sentence of PL will be true if and only if each person who likes Sue also
likes Rita. That we end up with this symbolization should not be surprising,
for the force of sentence 5 (‘If anyone likes Sue, he or she likes Rita’) is,
upon reflection, clearly the same as that of sentence 1 (‘Anyone who likes
Sue likes Rita’).

328 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

A better rule can be formulated by appealing to the notion of pronom-

inal cross-reference. In ‘Sarah will deliver the lumber if she gets her truck fixed’,
the reference of ‘she’ is established by the earlier use of the noun ‘Sarah’—
there is pronominal cross-reference from the pronoun ‘she’ (as well as from
‘her’) back to the noun ‘Sarah’. Pronominal cross-reference can be both to
quantity terms and to nouns. In sentence 5, ‘If anyone likes Sue, he or she likes
Rita’, the reference of ‘he or she’ is fixed by ‘anyone who likes Sue’.

In sentence 3, ‘If anyone likes Sue, Michael does’, there is no pronom-
inal cross-reference from the consequent of the English conditional back to the
‘any’ term in the antecedent. ‘Michael does’ in the consequent can be
expanded to ‘Michael likes Sue’, a complete sentence that does not need fur-
ther interpretation. But in ‘If anyone likes Sue, he or she likes Rita’, the con-
sequent, ‘he or she likes Rita’, cannot be understood in isolation. This allows
us to state the following rule:

Where a quantity term is used in the antecedent of an English condi-
tional and there is, in the consequent of that conditional, pronominal
cross-reference to that quantity term, a universal quantifier is called for.

We can, with a little stretching, use this rule in dealing with such
sentences as

Anyone who fails the final examination flunks the course.

This sentence is not, on grammatical grounds, a conditional, and there is no
obvious pronominal cross-reference. But since the person who flunks the
course is the one who fails the final examination, we can paraphrase this sen-
tence as a conditional in which there is pronominal cross-reference:

If a person fails the final examination, then he or she flunks the course.

This is a sentence to which our new rule applies. Taking our universe of dis-
course to be students in the class and using ‘Fx’ for ‘x fails the final examina-
tion’ and ‘Cx’ for ‘x flunks the course’, we can, following this rule, offer

(∀x)(Fx ⊃ Cx)

as an appropriate symbolization.
‘Any’ also functions differently from ‘all’, ‘every’, and ‘each’ when com-

bined with a negation. For example, as noted in Section 7.4,

Michael doesn’t like everyone

and

Michael doesn’t like anyone

7.7 SYMBOLIZATION TECHNIQUES 329

are very different claims. In general, ‘not any’ can be symbolized as the nega-
tion of an existential quantification (‘not at least one’), whereas ‘not every’,
‘not all’, and ‘not each’ call for the negation of a universal quantification. In
the present case, taking the people in Michael’s office as our UD, ‘m’ as
designating Michael, and ‘Lxy’ as ‘x likes y’, we can use ‘∼ (∀x)Lmx’ as a
symbolization of the first sentence and ‘∼ (∃x)Lmx’ as a symbolization of the
second.

Quantity constructions built from ‘some’ usually call for an existential
quantifier. But some uses of ‘some’ constructions call for universal quantifiers,
and the rule just developed helps in identifying them. Consider these two
sentences:

If someone likes Sue, then he or she likes Rita.
If someone likes Sue, then someone likes Rita.

The first of these is a conditional with a quantity construction in the antecedent
to which the ‘he or she’ in the consequent bears pronominal cross-reference.
So a universal quantifier is called for, even though ‘someone’ usually signals an
existential quantifier. A correct symbolization is ‘(∀x)(Lxs ⊃ Lxr)’. That this
symbolization is correct becomes apparent when we reflect that the force of
‘someone’ in the first sentence is clearly that of ‘anyone’. There is, in the sec-
ond sentence, no pronominal cross-reference from the consequent back to the
antecedent. The claim is not that if someone likes Sue then that very person
likes Rita, but rather that if someone likes Sue then someone, quite possibly
someone different, likes Rita. Here two existential quantifiers are called for:

(∃x)Lxs ⊃ (∃x)Lxr

Consider now some examples concerning runners:

UD: Runners
Bxy: x can beat y
Ay: y is on the American team
Sy: y is on the South African team

My: y is a marathon runner
Py: y is a sprinter
Dy: y has determination
Ey: y has endurance
Oy: y is over 50
Uy: y is under 20

j: Jim
k: Kerry
n: Noah
s: Seth
h: Shelly

330 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Consider

Marathon runners have both endurance and determination.
Marathon runners are both over 50 and under 20.

The first example clearly attributes to marathon runners, and presumably to
all marathon runners, two properties: endurance and determination. So an
appropriate symbolization is

(∀w)[Mw ⊃ (Ew & Dw)]

Our symbolization is an A-sentence; it says that all things of this sort (marathon
runners) are also of that sort (having endurance and determination). The sec-
ond example should not be similarly taken to attribute two properties—being
over 50 and being under 20—to all or even some marathon runners. Rather,
this example has the force of ‘Among marathon runners there are runners over
50 and runners under 20’ and can be paraphrased as

There are marathon runners that are over 50 and there are marathon
runners that are under 20.

One appropriate symbolization is thus a conjunction of two existentially quan-
tified sentences (each of which is an I-sentence):

(∃x)(Mx & Ox) & (∃x)(Mx & Ux)

For our next two examples we consider

There are no American sprinters over 50, but there are American
marathon runners over 50.

There are sprinters under 20 on both the American team and the
South African team.

Our symbolization of the first of these examples is a conjunction:

∼ (∃y)[(Py & Oy) & Ay] & (∃y)[(My & Oy) & Ay]

Note that the first conjunct of this sentence of PL is the negation of an I-
sentence, and the second is an I-sentence. I-sentences say there are members
of the UD that are such-and-such, and sometimes it takes several predicates to
capture the content of ‘such-and-such’. The intent of the second example is
clearly not that there are sprinters under 20 who are on both the American
and the South African teams, but rather that on each team there are sprinters
under 20. So an appropriate symbolization is

(∃z)[(Pz & Uz) & Az] & (∃w)[(Pw & Uw) & Sw]

7.7 SYMBOLIZATION TECHNIQUES 331

Consider next

Kerry and Shelly are both South African sprinters, and Shelly can beat
every American sprinter Kerry can beat.

This example can be paraphrased, somewhat laboriously, as

Kerry is a sprinter and Kerry is on the South African team, and Shelly
is a sprinter and Shelly is on the South African Team; and every run-
ner is such that, if she or he is a sprinter and is on the American team
and Kerry can beat her or him, then Shelly can beat her or him.

An appropriate symbolization is

[(Pk & Sk) & (Ph & Sh)] & (∀z)([(Pz & Az) & Bkz] ⊃ Bhz)

Next we consider

If there is any marathon runner over 50 who can beat Seth, Jim can.
Every South African sprinter can beat Jim, but they cannot all beat
Seth. Noah is an American sprinter and marathon runner, and he can
beat every sprinter, but not every marathon runner, on the South
African team.

The first of these three sentences is fairly straightforward and can be symbol-
ized either as

(∃w)[(Mw & Ow) & Bws] ⊃ Bjs

or as

(∀w)([(Mw & Ow) & Bws] ⊃ Bjs)

The second example cannot be symbolized as

(∀x)[(Px & Sx) ⊃ (Bxj & ∼ Bxs)]

for this sentence of PL says that all the South African sprinters are able to
beat Jim and that they are all unable to beat Seth, whereas the original said
merely that not all of them can beat Seth. The original contained two quan-
tity expressions—‘every’ and ‘all’—and we need a sentence of PL with two
quantifiers:

(∀x)[(Px & Sx) ⊃ Bxj] & ∼ (∀x)[(Px & Sx) ⊃ Bxs]

332 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

This says that all the South African sprinters can beat Jim and that not all the
South African sprinters can beat Seth (allowing that some may be able to do
so), which is what was intended. The third example is a conjunction and can
be paraphrased as

Noah is on the American team and is a sprinter and a marathon run-
ner, and Noah can beat every runner who is a sprinter and on the
South African team, and Noah cannot beat every runner who is a
marathon runner and on the South African team.

This can be symbolized as a conjunction, with the left conjunct being ‘[An &
(Pn & Mn)]’ and the right conjunct itself being a conjunction of an A-sentence
and the negation of an A-sentence:

[An & (Pn & Mn)] & ((∀y)[(Py & Sy) ⊃ Bny] &
∼ (∀y)[(My & Sy) ⊃ Bny])

For our next set of examples, we expand the symbolization key used at
the end of Section 7.6 as follows. The UD includes marbles and people. Also,
we encounter a three-place predicate for the first time.

UD: Ashley, Clarence, Rhoda, Terry, and their marbles
a: Ashley
c: Clarence
r: Rhoda
t: Terry

Bx: x is blue
Gx: x is green
Rx: x is red
Sx: x is a shooter
Cx: x is a cat’s-eye
Tx: x is a steely
Mx: x is a marble
Bxy: x belongs to y
Wxy: x wins y

Gxyz: x gives y to z

Here are our examples concerning an old-fashioned marble game:

1. All the cat’s-eyes belong to Rhoda.

2. All the marbles but the shooters are cat’s-eyes.

3. Some, but not all, of the cat’s-eyes are green.

4. None of the steelies is red, green, or blue.

5. All of the shooters that are steelies belong to Terry.

7.7 SYMBOLIZATION TECHNIQUES 333

6. Some green marbles and some blue marbles but no red ones
belong to Clarence.

7. Ashley wins all Clarence’s marbles.

8. Rhoda wins all Terry’s cat’s-eyes and shooters.

9. Terry doesn’t have any marbles.

10. Rhoda gives all the red marbles she wins to Clarence.

11. Clarence gives all his green marbles to Ashley and all his blue
marbles to Terry.

We now give one correct symbolization of each of these sentences. Then we
shall discuss some of the noteworthy aspects of these examples.

1 . (∀y)(Cy ⊃ Byr)

2 . (∀x)[(Mx & ∼ Sx) ⊃ Cx]

3 . (∃x)(Cx & Gx) & ∼ (∀x)(Cx ⊃ Gx)

4 . (∀w)[Tw ⊃ ∼ (Rw ∨ (Gw ∨ Bw))]

5 . (∀z)[(Sz & Tz) ⊃ Bzt]

6 . [(∃y)((My & Gy) & Byc) & (∃y)((My & By) & Byc)] & ∼ (∃y)
((My & Ry) & Byc)

7 . (∀x)[(Mx & Bxc) ⊃ Wax]

8 . (∀x)([(Cx ∨ Sx) & Bxt] ⊃ Wrx)

9 . ∼ (∃z)(Mz & Bzt)

10 . (∀x)[((Mx & Rx) & Wrx) ⊃ Grxc]

11 . (∀z)[(Mz & Bzc) ⊃ ((Gz ⊃ Gcza) & (Bz ⊃ Gczt))]

Sentence 1 is unproblematic, and 1 an obvious symbolization. Sen-
tence 2 is not quite so straightforward. It does not claim that all the marbles
are cat’s-eyes—that can be symbolized as ‘(∀x)(Mx ⊃ Cx)’—but that all the
marbles but the shooters are cat’s-eyes. Up to this point we have most commonly
seen ‘but’ in contexts where it functions as a surrogate for ‘and’. This is not
the case here, where ‘but’ signals that the shooters are being exempted from
the claim being made. Note that literally speaking no claim is being made about
the shooters—either that they are or that they are not cat’s-eyes. What is being
said is merely that when the shooters are excluded the rest are cat’s-eyes. (The
context, for example, may be that someone asks whether all the marbles are
cat’s-eyes, and someone else replies as in example 2 and adds, when asked
about the shooters, that she has examined all the marbles that are not shoot-
ers and found them all to be cat’s-eyes but has not yet examined the shooters
and hence has excluded them from consideration.) Analogously ‘Everyone
except Tom passed the test’ does not mean—though it may suggest—that Tom
did not pass. Tom’s test may not yet be graded, or the speaker may not know
how Tom fared or may simply not want to reveal whether Tom passed. In

334 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

general ‘All but such-and-such’ and ‘All except such-and-such’ do not mean ‘All
and not such-and-such’. Rather, they mean ‘All excluding such-and-such’, to be
followed or not by a separate comment about such-and-such.

Example 3 is also straightforward. An alternative and perhaps more
intuitive, although longer, symbolization for example 4 is ‘(∀x)(Tx ⊃ ∼ Rx) &
[(∀x)(Tx ⊃ ∼ Gx) & (∀x)(Tx ⊃ ∼ Bx)]’. But note that we really do not need
three quantifiers. We can, as in 4 , single out the members of the UD we are
concerned with (steelies) just once and then in one swoop deny that any such
member is either red, or green, or yellow. Example 5 asserts, not that all the
shooters belong to Terry, but that all those that are steelies do. So the group
we need to single out consists of those things that are both shooters and
steelies, and this is what we do in the antecedent of the conditional in 5.

We needed only one quantifier to symbolize example 4, but this is not
so with example 6. Here even two quantifiers are not enough. For example,
the force of

(∃x)[(Mx & Gx) & (Bx & Bxc)] & ∼ (∃x)[(Mx & Rx) & Bxc]

is that Clarence possesses at least one marble that is both green and blue and
that he possesses no red marbles, and this is not what example 6 claims.

Example 7 is easy enough once we realize that Clarence’s marbles are
just the marbles that belong to Clarence. What is of interest in example 8 is
that it can be symbolized using only one quantifier, although Terry’s cat’s-eyes
and her shooters may constitute mutually exclusive groups. For while we could
use a conjunction, for example,

(∀x)[(Cx & Bxt) ⊃ Wrx] & (∀x)[(Sx & Bxt) ⊃ Wrx]

doing so is being more verbose than we need to be. ‘Cx & Bxt’ applies to things
that are cat’s-eyes and belong to Terry. ‘(Cx ∨ Sx) & Bxt’ picks out those things
that are either cat’s-eyes or shooters and that belong to Terry; that is, it picks
out all the cat’s-eyes and all the shooters that belong to Terry.

Examples 9 and 10 are straightforward. Example 11 is interesting in
that it, like example 4, can be symbolized using just one quantifier. We could
also have used two quantifiers:

(∀x)[((Mx & Gx) & Bxc) ⊃ Gcxa] & (∀x)[((Mx & Bx) & Bxc) ⊃ Gcxt]

But if we first single out those things that are marbles and belong to Clarence,
as we do in 11 , and then say that if such a thing is green, then Clarence gives
it to Ashley, and that if it is blue, then Clarence gives it to Terry, we can get
by with one quantifier.

Before ending this section we issue some cautionary notes about
symbolizing sentences in PL. The first concerns the selection of predicates of
PL for use in symbolizing English sentences. Frequently, but not always, En-
glish descriptions that consist of “stacked-up” adjectives, as in ‘A second-hand,

7.7 SYMBOLIZATION TECHNIQUES 335

broken-down, uncomfortable, tan recliner is in the corner’, can be captured by
conjoining appropriate predicates of PL. Taking the furniture in the room to
constitute the universe of discourse and using obvious predicates, we can sym-
bolize the foregoing as

(∃z)([(Sz & Bz) & (Uz & Tz)] & (Rz & Cz))

This symbolization is appropriate because the recliner in question is second-
hand, is broken-down, is uncomfortable, is tan, is a recliner, and is in the
corner. In contrast, a bloody fool is presumably a very foolish person but not
necessarily a person covered with blood. So, too, a counterfeit dollar is not
something that both is counterfeit and is a dollar (because it is not a dollar).
Similarly, while the animal in the corner may be a large mouse, it is not clear
that there is something in the corner that is large, is an animal, and is a
mouse—even large mice are not large as animals go. And a second-rate math-
ematician who is also a first-rate drama critic is not a second-rate person and
a first-rate person. Rather, ‘second-rate mathematician’ and ‘first-rate drama
critic’ should each normally be symbolized by a single predicate of PL, as
should ‘bloody fool’, ‘counterfeit dollar’, and ‘large mouse’.

This practice will cause problems in some contexts. For example, from
‘Sue is a first-rate drama critic’ we will not be able to infer ‘Sue is a drama
critic’. We can save such inferences by the admittedly ad hoc device of using
one predicate for ‘first-rate drama critic’ and another for ‘drama critic’. That
is, using the symbolization key

UD: People
Fx: x is a first-rate drama critic
Dx: x is a drama critic

s: Sue

we can symbolize ‘Sue is a first-rate drama critic’ as

Fs & Ds

and ‘Sue is a drama critic’ as

Ds

And we can show that the second of these PL sentences follows from the
first.

As this discussion illustrates, the appropriate selection of predicates
commonly depends upon the context. For example, given just that the UD is
animals and the sentence

Rabid bats are dangerous

336 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

and no context, we might decide to treat being a rabid bat as having a single

property, use ‘Rx’ for ‘x is a rabid bat’, use ‘Dx’ for ‘x is dangerous’, and

symbolize the example as

(∀y)(Ry ⊃ Dy)

Alternatively we could treat being a rabid bat as having two properties: that of

being a bat and that of being rabid (rabid bats are things that are both rabid

and bats). Now, using ‘Rx’ for ‘x is rabid’ and ‘Bx’ for ‘x is a bat’, we could

symbolize the given sentence as

(∀y)[(Ry & By) ⊃ Dy]

Taken in isolation, neither symbolization is preferable to the other. But sup-

pose that, instead of the foregoing single sentence, we are given a complete

argument:

Some bats are rabid. Rabid animals are dangerous. Therefore some

bats are dangerous.

Here we want our symbolization to reveal as much as possible of what is com-

mon to the premises and the conclusion. To do this we clearly need to use sep-

arate predicates of PL for ‘x is a bat’ and ‘x is rabid’. Where animals constitute

the universe of discourse, an appropriate symbolization is

(∃y)(Ry & By)

(∀z)(Rz ⊃ Dz)

(∃y)(By & Dy)

We can show that this is a valid argument of PL. But had we chosen to use a

single predicate, say, ‘Rx’, to symbolize being a rabid bat, we would have had

to use a different predicate to symbolize being a rabid animal, say, ‘Ax’:

(∃x)Rx

(∀y)(Ay ⊃ Dy)

(∃y)(By & Dy)

In this second symbolization we have made opaque the obvious fact that rabid

bats are rabid animals and the obvious fact that rabid bats are bats. As a result,

although the English language argument is valid, as is our first symbolization

of it, the second symbolization is not valid.

7.7 SYMBOLIZATION TECHNIQUES 337

There is a further complication in the selection of predicates. Suppose
that the Spanish explorer Ponce de Leon did, as legend has it, spend a lot of
time searching for the fountain of youth. How would we symbolize the
following?

Ponce de Leon is searching for the fountain of youth.

We cannot use

Spf

where ‘Sxy’ is interpreted as ‘x is searching for y’, ‘p’ designates Ponce de Leon,
and ‘f ’ the fountain of youth, for while Ponce de Leon might believe there is
a fountain of youth, there is, in fact, no such thing. We can interpret ‘Yx’ as ‘x
is searching for the fountain of youth’ and symbolize the sentence as

Yp

Although things that do not exist cannot be found, it is unfortunately all too
easy to search for them. For this reason

Ponce de Leon is searching for mermaids

also cannot be symbolized using the two-place ‘Sxy’ for ‘x is searching for
y’. We might indeed be tempted, using ‘Mx’ for ‘x is a mermaid’, to offer
the following as possible symbolizations of ‘Ponce de Leon is searching for
mermaids’:

(∃y)(My & Spy)

(∀y)(My ⊃ Spy)

But neither of these is adequate to the task. The problem is not with using
‘Mx’ for ‘x is a mermaid’ when there are no mermaids. As noted earlier, we
do not presuppose that every predicate of PL we use is true of at least one
member of the selected universe of discourse. Rather, one problem with the
previous existentially quantified sentence is that it commits us, by its use of
the existential quantifier, to there being at least one mermaid, whereas the sen-
tence being symbolized does not. (One can search for what does not exist.)
The universally quantified sentence of PL given earlier says not that there are
mermaids—so here we escape a commitment to the existence of mermaids—
but rather that anything that is a mermaid is such that Ponce de Leon is search-
ing for it. This is too weak for, given the nonexistence of mermaids, it is true
no matter what Ponce de Leon is doing, for it says only that if a thing is a
mermaid (and nothing is) then Ponce de Leon is searching for it.

338 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

The way out of the present difficulty is to use a one-place predicate—for

example, to interpret ‘Mx’ as ‘x is searching for mermaids’—and to symbolize

Ponce de Leon is searching for mermaids

as

Mp

Difficulties arise in symbolizing sentences concerned with such activities

as searching for, hunting, looking for, and . . . , even when what is being sought,

hunted, desired, . . . , does exist. Suppose the sentence we want to symbolize is

Ponce de Leon is searching for a good harbor.

It might be thought that, if we interpret ‘Sxy’ as ‘x is searching for y’ and ‘Gx’

as ‘x is a good harbor’, a proper symbolization of this sentence would be

(∃x)(Gx & Spx)

This symbolization might be acceptable if Ponce de Leon is looking for a par-

ticular harbor, say, the harbor at Vera Cruz. But, if he is prowling the Florida

coast and merely wants a haven from an impending storm, any good harbor, it

is false to say that there is a good harbor such that he is looking for that har-

bor. Nor is ‘(∀x)(Gx ⊃ Spx)’ a proper symbolization. Imagine that there are

three good harbors in his vicinity. Ponce de Leon will be glad to reach any one

of them, and he is not interested in reaching all of them. So neither ‘(∃x)(Gx

& Spx)’ nor ‘(∀x)(Gx ⊃ Spx)’ is an acceptable symbolization—the first because

it would be false to say of a good harbor our hero finds that he was searching

for that harbor all along, and the second because he wants only one harbor and

not all good harbors. So here, too, we should use a one-place predicate. If we

interpret ‘Hx’ as ‘x is searching for a good harbor’, the proper symbolization is

Hp

On the other hand, if Ponce de Leon’s ship got separated from an accompa-

nying ship during the night, and Ponce de Leon is searching for that ship, a

proper symbolization, using ‘Sx’ for ‘x is a ship’, would be

(∃x)(Sx & Spx)

Generally, unless what is being sought, hunted, searched for, hoped for,

or desired is a particular thing, rather than a kind of thing, a one-place rather

than a two-place predicate of PL should be used.12

1 2There are logics known as intensional logics in which problematic sentences of the sort just discussed can be
further analyzed.

7.7 SYMBOLIZATION TECHNIQUES 339

7.7E EXERCISES

1. Symbolize the following sentences in PL using the given symbolization key.

UD: Persons
Dx: x is at the door
Hx: x is honest
Ix: x is an influence peddler

Lx: x is likeable
Px: x is a politician
Rx: x is a registered lobbyist

h: Harrington

a. All politicians are honest.
*b. No politicians are honest.

c. Some politicians are honest.
*d. Some politicians are not honest.

e. An honest politician is not an influence peddler.
*f. An honest politician is at the door.
g. Politicians and influence peddlers are not all honest.

*h. Honest influence peddlers are nonexistent.
i. An influence peddler is honest only if he or she is a registered lobbyist.

*j. Some but not all registered lobbyists are honest.
k. If anyone is an influence peddler Harrington is.

*l. If anyone is an influence peddler, he or she is either a politician or a registered
lobbyist.

m. If anyone is an influence peddler every registered lobbyist is.
*n. Harrington is no influence peddler but he is an honest politician.

o. No one is honest, a politician, and an influence peddler.
*p. Everyone is a politician but not everyone is honest.
q. If every politician is an influence peddler, then no politician is honest.

*r. Some politicians who are influence peddlers are honest, but none is likeable.
s. Registered lobbyists are likeable influence peddlers, but they are not honest.

2. Symbolize the following sentences in PL using the given symbolization key.

UD: Mammals
Cxy: x is chasing y
Lx: x is a lion
Ax: x is a formidable animal
Fx: is ferocious
Tx: x is a tiger
Bx: x is best avoided

b: Bruce Willis
d: Danny DeVito

a. A lion is a formidable animal.
*b. Lions are ferocious.

c. Lions are ferocious, but tigers are not.
*d. A lion is chasing Danny DeVito.

e. Danny DeVito is chasing a ferocious lion.

340 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

*f. Ferocious lions are best avoided.

g. Lions and tigers are ferocious.

*h. Lions and tigers are chasing Danny DeVito.

i. Some, but not all, tigers are ferocious.

*j. Ferocious lions and tigers are best avoided.

k. Any lion Bruce Willis is chasing is a formidable animal but is not ferocious.

*l. Danny DeVito and ferocious lions and tigers are all best avoided.

m. If any lion is ferocious, all tigers are.

*n. A lion is ferocious if and only if Danny DeVito is chasing it.

o. Bruce Willis is not ferocious, but he is best avoided.

*p. If Danny DeVito is ferocious, all lions are tigers.

3. Symbolize the following sentences in PL using the given symbolization key.

UD: Persons

Ex: x is a real estate agent

Lx: x is a lawyer

Px: x is a professor

Nx: x lives next door

Ix: x is rich

Sx: x can sell to yuppies

Yx: x is a yuppie

Rxy: x respects y

f: Fred

a. All real estate agents are yuppies.

*b. No real estate agents are yuppies.

c. Some but not all real estate agents are yuppies.

*d. Some real estate agents are yuppies and some are not.

e. If any real estate agent is a yuppie, all lawyers are.

*f. Any real estate agent who isn’t a yuppie isn’t rich.

g. If any real estate agent can sell to yuppies, he or she is a yuppie.

*h. If any real estate agent can sell to yuppies, Fred can.

i. Anyone who is a lawyer and a real estate agent is a yuppie and rich.

*j. Yuppies who aren’t rich don’t exist.

k. Real estate agents and lawyers are rich if they are yuppies.

*l. If Fred is a yuppie he’s not a professor, and if he’s a professor he’s not rich.

m. No professor who isn’t rich is a yuppie.

*n. No professor who is self-respecting is a yuppie.

o. Every self-respecting real estate agent is a yuppie.

*p. Real estate agents and lawyers who are rich are self-respecting.

q. Real estate agents and lawyers who are either rich or yuppies are self-respecting.

*r. A yuppie who is either a real estate agent or a lawyer is self-respecting.

s. A yuppie who is both a lawyer and a real estate agent is self-respecting.

*t. A yuppie who is both a lawyer and a real estate agent lives next door.

4. Symbolize the following sentences in PL using the given symbolization key.

UD: Persons

Ax: x is an administrator

Px: x is a professor

7.7 SYMBOLIZATION TECHNIQUES 341

Ux: x is underpaid
Ox: x is overworked
Sx: x is a secretary

a. Professors are underpaid and overworked.
*b. Overworked professors are underpaid.

c. Administrators are neither overworked nor underpaid.
*d. Administrators are neither overworked nor underpaid, but professors are both.

e. A person is overworked if and only if he or she is underpaid.
*f. If any administrator is underpaid, all professors are; and if any professor is

underpaid, all secretaries are.
g. Some professors are underpaid, but those who are administrators are not.

*h. Administrators are overworked but not underpaid; secretaries are underpaid
but not overworked; and professors are both overworked and underpaid.

i. Some professors are overworked and underpaid, and all secretaries are.
*j. Some underpaid professors are also secretaries, and some overworked admin-

istrators are also professors, but no administrator is a secretary.
k. Some secretaries and some professors are underpaid, but no administrator is.

5. Use the following symbolization key to translate these sentences into fluent
English. (Note: Not all of the following claims are true.)

UD: Positive integers
Lxy: x is larger than y
Dxy: x is evenly divisible by y

Ex: x is even
Ox: x is odd
Px: x is prime

a: 1
b: 2
c: 3
d: 4

a. Pb & Pc
*b. ∼ (Pa ∨ Pd)

c. (∃x)Ex & (∃x)Ox
*d. ∼ (∃y)(Ey & Oy)

e. (∀y)(Ey ∨ Oy)
*f. ∼ (∃y)Lay
g. (∃x) ∼ Lxa

*h. (∀z)(Pz ⊃ Lza)
i. (∀x)(Ex ⊃ Dxb)

*j. ∼ (∃y)(Oy & Dyb)
k. (∀y)Dya

*l. ∼ (∀x)Dxb
m. (∀y)(Dyb Ey)
*n. (∀x)(Dxb ⊃ ∼ Dxc)

o. (∃y)Lay ⊃ (∀y)Lay
*p. (∃x)(Px & Dxb)
q. ∼ (∃y)(Py & Dyd)

*r. (∀x)(Px ⊃ Lxa)

342 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE

In symbolizing sentences of English as sentences of PL, we have frequently
encountered sentences of PL that contain more than one quantifier. But these
have all been truth-functional compounds. In none of these sentences has one
quantifier fallen within the scope of another quantifier. It is time to consider
sentences of English whose PL symbolizations contain multiple quantifiers with
overlapping scope.

Consider again the people in Michael’s office. We symbolized ‘Michael
likes everyone’ as ‘(∀x)Lmx’, but we did not attempt a symbolization of

Everyone likes everyone.

To symbolize ‘Everyone likes everyone’, we need to say of each person what
‘(∀x)Lmx’ says of Michael. To accomplish this we replace the constant ‘m’ with
a second variable and add a second universal quantifier:

(∀y)(∀x)Lyx

In quasi-English this says ‘Each person y is such that for each person x, y likes
x’ or ‘Each person y is such that y likes everyone’ or ‘Everyone likes everyone’.

Similarly, just as ‘(∃x)Lmx’ symbolizes ‘Michael likes someone’,

(∃y)(∃x)Lyx

symbolizes ‘Someone likes someone’. In each of these sentences of PL, the
scope of the second quantifier falls within that of the first quantifier. It is also
possible to mix universal and existential quantifiers. Consider

(∀x)(∃y)Lxy

and

(∃y)(∀x)Lxy

The first of the example sentences can be paraphrased as ‘Each person x is
such that x likes at least one person y’ or ‘Everyone likes someone’. For this
claim to be true, it is sufficient that each person like at least one person. Per-
haps Michael likes Rita, Rita likes Henry, Henry likes Sue, and Sue likes
Michael. The second of the sentences looks very much like the first—only the
order of the quantifiers is different. The second sentence says, however, not
that everyone likes someone, but that someone is liked by everyone. If we limit
our universe of discourse to the people in Michael’s office or to any other rea-
sonably small group, there may be such a lucky person. But if the UD is all
people, there is no such person, for there is no person who is even known to

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 343

everyone, let alone liked by everyone. The moral here is that we need to pay
attention to the order of quantifiers in mixed quantification.

Generally, when we have two universal quantifiers, the order in which they
occur does not matter. Similarly, when we have two existential quantifiers, the
order in which they occur does not matter. More generally, when we have a series
of quantifiers, all existential or all universal, the order in which they occur does
not matter. But this is, again, not in general true where we have mixed quantifi-
cation—that is, at least one universal and at least one existential quantifier.

There are four combinations in which pairs of quantifiers can occur.
We display them here along with useful quasi-English paraphrases:

(∃x)(∃y) There is an x and there is a y such that . . . [or]
There is a pair x and y such that . . .

(∀x)(∀y) For each x and for each y . . . [or] For each pair x
and y . . .

(∀x)(∃y) For each x there is a y such that . . .

(∃x)(∀y) There is an x such that for each y . . .

So far we have been assuming that our universe of discourse is limited
to persons, either just the persons in Michael’s office or all persons. Suppose we
now allow our UD to be more heterogeneous, including, say, all living things. To
be able to say that, for example, everyone (as opposed to everything) likes some-
one (as opposed to something) we need a predicate that singles out persons. We
will use ‘Px’, here interpreted as ‘x is a person’. Appropriate symbolizations of

1. Everyone likes everyone

2. Someone likes someone

3. Everyone likes someone

4. Someone likes everyone

5. Everyone is liked by someone

6. Someone is liked by everyone

are, respectively,

1 . (∀x)(∀y)[(Px & Py) ⊃ Lxy]

2 . (∃x)(∃y)[(Px & Py) & Lxy]

3 . (∀x)[Px ⊃ (∃y)(Py & Lxy)]

4 . (∃x)[Px & (∀y)(Py ⊃ Lxy)]

5 . (∀x)[Px ⊃ (∃y)(Py & Lyx)]

6 . (∃x)[Px & (∀y)(Py ⊃ Lyx)]

Note that in 1 and 2 both quantifiers occur at the beginning of the sentence,
whereas in 3 –6 the second quantifier occurs later in the sentence. We can

344 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

move the y-quantifier closer to the first predicate containing ‘y’ in symbolizing
sentences 1 and 2. That is, ‘(∀x)[Px ⊃ (∀y)(Py ⊃ Lxy)]’ is also an appropriate
symbolization of 1, as is ‘(∃x)[Px & (∃y)(Py & Lxy)]’ of 2. Where quantifiers
are placed, and when a quantifier can and cannot be moved, is a complicated
issue, and we return to it later.

In symbolizing sentences of English that call for sentences of PL with
multiple quantifiers with overlapping scope, it is especially important to learn
to “read” the sentences of PL into quasi-English in order to check one’s
symbolization. In doing so, it is crucial that the role of each logical operator be
identified—that is, that one identify the formula of which each logical operator
is the main logical operator. In 1 ‘(∀x)’ is the main logical operator and ‘(∀y)’
is the main logical operator of that sentence’s immediate subformula, ‘(∀y)[(Px
& Py) ⊃ Lxy]’. So we read ‘(∀x)’ first and ‘(∀y)’ second. The reading begins
either ‘Every x is such that every y is such that’ or, perhaps more insightfully,
‘Every pair x and y is such that’. The horseshoe is the main logical operator of
‘(Px & Py) ⊃ Lxy’, so we read it next, then the antecedent of the conditional,
and finally the consequent. The full quasi-English reading is

Every pair x and y is such that if x is a person and y is a person then
x likes y.

The main logical operator of 4 is an existential quantifier, ‘(∃x)’, and the
immediate subformula of 4 is a conjunction whose right conjunct is a univer-
sally quantified formula. So we read the existential quantifier first, and then
the conjunction. The quasi-English reading is

There is at least one thing x such that both x is a person and each
thing y is such that if y is a person then x likes y.

In 5 the main logical operator is again a universal quantifier, ‘(∀x)’. Here the
main logical operator of the immediate subformula, ‘Px ⊃ (∃y)(Py & Lyx)’,
is the horseshoe, so we read the universal quantifier first, and then the
conditional, the consequent of which is itself an existentially quantified for-
mula. The quasi-English reading is

Each thing x is such that if x is a person then there is a y such that
both y is a person and y likes x.

We next symbolize a series of claims concerning the positive integers,
which we met briefly in Exercise Set 7.7. We pick positive integers as our UD
because the relations among positive integers are very clear and easily stated
and because a familiarity with positive integers and claims regarding them will
be useful in Chapter 8. The positive integers are the numbers 1, 2, 3, 4, . . .
(note that 0 is not a positive integer).

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 345

For our symbolization key we use

UD: Positive integers
Ex: x is even
Dx: x is odd
Px: x is prime

Lxy: x is larger than y
Exy: x times y is even
Oxy: x times y is odd
Pxy: x times y is prime

a: 1
b: 2

The claim ‘Every positive integer is either odd or even and no positive integer
is both’ can be symbolized without using quantifiers with overlapping scope:

(∀y)(Dy ∨ Ey) & ∼ (∃y)(Dy & Ey)

But the claim ‘There is no largest positive integer’ does require use of quanti-
fiers with overlapping scope. It says that each positive integer is such that there
is a larger positive integer. A start at an appropriate symbolization is

(∀x)(there is an integer larger than x)

and a full symbolization is

(∀x)(∃y)Lyx

The sentence ‘∼ (∃y)Lay’ says that it is not the case that there is a positive inte-
ger such that 1 is larger than it. From here it is a short step to ‘(∃x) ∼ (∃y)Lxy’,
which says that there is a positive integer x such that there is no positive integer
y that x is larger than—that is, that there is a positive integer that is not larger
than any positive integer or that there is a lower bound to the positive inte-
gers. This is true.

The sentence ‘2 is prime and there is no smaller prime’ is equivalent
to ‘2 is prime and 2 is not larger than any prime’, which can be symbolized as

Pb & ∼ (∃y)(Py & Lby)

‘An odd number times an odd number is odd’ is clearly a claim about all pos-
itive integers—no matter what positive integers we select, if both are odd their
product is odd. An appropriate paraphrase is

Each x and each y are such that if x is odd and y is odd then x times
y is odd

346 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

or, alternatively,

Each pair of integers, x and y, is such that if x is odd and y is odd, then

x times y is odd.

An appropriate PL symbolization is

(∀w)(∀x)[(Dw & Dx) ⊃ Owx]

Similarly ‘An even number times an even number is even’ becomes ‘(∀x)(∀y)

[(Ex & Ey) ⊃ Exy]’. And ‘An even number times an odd number is even’

becomes ‘(∀z)(∀y)[(Ez & Dy) ⊃ Ezy]’.

‘No product of prime numbers is prime’ means that there is no pair

of positive integers, each of which is prime, whose product is also prime. An

appropriate paraphrase is

There is no w and z such that w is prime, z is prime, and w times z is

prime.

In PL we have

∼ (∃w)(∃z)[(Pw & Pz) & Pwz]

Now consider

(∀x)(∀y)[Exy ⊃ (Ex ∨ Ey)]

This sentence of PL says that for any pair of positive integers, if the first times

the second is even, then at least one of the integers is even. This is true, for if

neither integer were even, their product would be odd. Similarly

(∀x)(∀y)[Oxy ⊃ (Dx & Dy)]

says that for any pair of positive integers, if the first times the second is odd,

then both of those integers are odd. The sentence

∼ (∃z)Ozb

says, truly, that there is no positive integer such that it times 2 is odd. And

(∀x)(∀y)(∀z)[(Lxy & Lyz) ⊃ Lxz]

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 347

says that for any triplet of positive integers, if the first is larger than the second
and the second is larger than the third, then the first is larger than the third.
This claim is true (see Section 7.9). The sentence

(∀x)(Dx (∃y)Oyx) & (∀x)(Ex ∼ (∃y)Oyx)

says that a positive integer is odd if and only if there is some positive integer
such that it times the first integer is odd and that a positive integer is even
if and only if there is no positive integer such that it times that integer is odd.

In Section 7.1 we presented a valid English language argument that
cannot be shown to be valid by the techniques associated with SL:

None of David’s friends supports Republicans. Sarah supports Breitlow,
and Breitlow is a Republican. So Sarah is no friend of David’s.

We can now symbolize this argument in PL. An appropriate symbolization key is

UD: People
Fxy: x is a friend of y
Sxy: x supports y
Rx: x is a Republican

d: David
b: Breitlow
s: Sarah

The second premise, a conjunction, is readily symbolized as ‘Ssb & Rb’.
The conclusion is also easy to symbolize once we see that it simply amounts to
the claim that Sarah is not a friend of David’s: ‘∼ Fsd’. It is only the first premise
that seems to pose difficulties. That premise is of the general form

No thing of such-and-such a sort is a thing of such-and-such a sort.

That is, it is an E-sentence. In Section 7.6 we saw that such sentences can be
symbolized either as universally quantified sentences or as negations of exis-
tentially quantified sentences. If we opt for the former, an appropriate first step
toward a symbolization is

Each x is such that if x is a friend of David’s then x does not support
Republicans.

This quasi-English locution readily becomes

(∀x)(Fxd ⊃ it is not the case that x supports Republicans)

What remains is to find a symbolization for ‘It is not the case that x supports
Republicans’. A quasi-English first step is

It is not the case that there is a y such that y is a Republican and x
supports y.

348 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

This can be symbolized as ‘∼ (∃y)(Ry & Sxy)’. The full symbolization of the

first premise is thus

(∀x)(Fxd ⊃ ∼ (∃y)(Ry & Sxy))

The resulting argument of PL is

(∀x)[Fxd ⊃ ∼ (∃y)(Ry & Sxy)]

Ssb & Rb

∼ Fsd

This argument is, as we shall see in later chapters, valid.

Note that, while we chose to treat the embedded clause ‘It is not the

case that x supports Republicans’ as the negation of an I-claim, we could equally

well have treated it as an E-claim, symbolizing it as ‘(∀y)(Ry ⊃ ∼ Sxy)’. Doing

so would yield the following alternative symbolization of the first premise:

(∀x)[Fxd ⊃ (∀y)(Ry ⊃ ∼ Sxy)]

Both of these symbolizations of the first premise, and many others we have

not given, are equally acceptable. In constructing symbolizations it is often

useful to start, as we did here, by determining whether the sentence to be

symbolized fits one of the four patterns provided by the A-, E-, I-, O-sentence

classification. If it does, the next step is to pick the overall structure to be

used (for example, universal quantification of a conditional formula). Finally

we fill in the missing pieces—successively replacing bits of English with

formulas of PL.

Here is a somewhat more interesting argument:

Anyone who is proud of anyone is proud of Samantha. Rhoda isn’t

proud of anyone who’s proud of himself or herself, but she is proud

of everyone who has mastered calculus. Therefore if Art has mastered

calculus Samantha isn’t proud of herself.

We will use the following symbolization key:

UD: People in Samantha’s class

Pxy: x is proud of y

Mx: x has mastered calculus

a: Art

r: Rhoda

s: Samantha

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 349

The first occurrence of ‘anyone’ in the first premise clearly goes over to a universal
quantifier in PL, as becomes apparent when we try to paraphrase the sentence

(y is proud of anyone ⊃ y is proud of Samantha)

Here there is clear pronominal cross-reference—the y that is proud of Samantha
is the y that is proud of anyone. So as a next step we have

(∀y)(y is proud of anyone ⊃ Pys)

an A-sentence. What remains is to determine whether the second ‘anyone’
should go over to a universal or an existential quantifier in PL. Note that there
is no pronominal cross-reference from the consequent of ‘y is proud of anyone
⊃ Pys’ back to ‘anyone’. So we can use an existential quantifier. That a uni-
versal quantifier is not called for is also apparent when we consider that

(∀y)(y is proud of everyone ⊃ Pys)

is clearly an inappropriate paraphrase of the first premise, while

(∀y)(y is proud of someone ⊃ Pys)

is an appropriate paraphrase. To be proud of someone is for there to be some-
one of whom one is proud. So the missing formula is ‘(∃x)Pyx’. The complete
symbolization of the first premise is thus

(∀y)[(∃x)Pyx ⊃ Pys]

The second premise is a conjunction and should be symbolized as a conjunc-
tion of PL. The left conjunct will be a symbolization of ‘Rhoda isn’t proud of
anyone who is proud of himself or herself ’, which can be treated as an E-
sentence (as ‘No person who is proud of himself or herself is a person of whom
Rhoda is proud’). So an appropriate left conjunct for our PL symbolization is
‘(∀z)(Pzz ⊃ ∼ Prz)’. The right conjunct of the second premise can be treated
as an A-sentence (as ‘Everyone who has mastered calculus is a person of whom
Rhoda is proud’) and symbolized as ‘(∀z)(Mz ⊃ Prz)’. The second premise of
our symbolized argument is thus

(∀z)(Pzz ⊃ ∼ Prz) & (∀z)(Mz ⊃ Prz)

The conclusion of our English language argument is a conditional and can be
symbolized as ‘Ma ⊃ ∼ Pss’. The complete argument of PL is

(∀y)[(∃x)Pyx ⊃ Pys]

(∀z)(Pzz ⊃ ∼ Prz) & (∀z)(Mz ⊃ Prz)

Ma ⊃ ∼ Pss

350 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

This is also a valid argument of PL.

We just symbolized ‘Anyone who is proud of anyone is proud of

Samantha’ as ‘(∀y)[(∃x)Pyx ⊃ Pys]’. An alternative symbolization is

(∀y)(∀x)(Pyx ⊃ Pys)

A quasi-English reading of this second symbolization is

Each y and each x is such that if y is proud of x then y is proud of

Samantha.

The obvious difference between these two sentences of PL is that in the second

the x-quantifier is a universal quantifier whose scope extends to the end of the

sentence. A simpler example may be helpful here. Consider these sentences:

If any student passes, Donna will pass.

Each student is such that if that student passes Donna will pass.

If we restrict our UD to students in the class in question, interpret ‘Px’ as ‘x

will pass’, and let ‘d’ designate Donna, these sentences can be symbolized as

(∃x)Px ⊃ Pd

and

(∀x)(Px ⊃ Pd)

respectively. The first of these sentences of PL can be read

If there is at least one student x such that x passes, then Donna passes.

Now suppose that some student, say, Art, does pass. Then, according to the first

of the above sentences of PL, Donna also passes. The second sentence of PL

can be read

Each student x is such that if x passes then Donna passes.

Now, if each student is of this sort, then Art is of this sort. Therefore, if ‘(∀x)

(Px ⊃ Pd)’ holds and Art passes, Donna passes. So ‘(∃x)Px ⊃ Pd’ and ‘(∀x)

(Px ⊃ Pd)’ both commit us to Donna’s passing if at least one student passes. These

sentences are also false under just the same circumstances. The first will be false

only if some student passes and Donna does not. Suppose, for example, that Bud

passes but that Donna does not. Then ‘(∃x)Px ⊃ Pd’ is false and so is ‘(∀x)

(Px ⊃ Pd)’, for the latter says that each student, including Bud, is such that if he

or she passes Donna passes. And this is false if Bud passes but Donna does not.

The general rule is this: When an existential quantifier has only the

antecedent of a material conditional within its scope and its scope is broadened

to include the consequent of that conditional, the existential quantifier must

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 351

be replaced with a universal quantifier. That is, where P is a formula in which
x does not occur and Ax is a formula containing x,

(∃x)Ax ⊃ P

and

(∀x)(Ax ⊃ P)

are equivalent sentence forms.
An analogous though less common case occurs when a universal quan-

tifier has only the antecedent of a material conditional within its scope and its
scope is broadened to include the entire conditional. When this happens, the
universal quantifier must be replaced with an existential quantifier. That is,
where x does not occur in P the following sentence forms are equivalent:

(∀x)Ax ⊃ P

and

(∃x)(Ax ⊃ P)

The cases to watch out for, then, are cases where the consequent of a
material conditional does not lie within the scope of a quantifier and is then
brought within that scope, or vice versa. In these cases the quantifier in ques-
tion must be replaced with a universal quantifier if it was an existential and
with an existential quantifier if it was a universal.

Fortunately there are many cases in which quantifiers do not have to
be changed when scopes are broadened or narrowed. If the scope of a quan-
tifier extends over only one disjunct of a disjunction or over only one conjunct
of a conjunction and that scope is broadened to include the entire disjunction
or conjunction, the quantifier does not change. Similarly, when a quantifier has
scope over only the consequent of a material conditional and its scope is broad-
ened by relocating the quantifier so as to have scope over the entire condi-
tional, the quantifier does not change. So where x does not occur in P the
following are all pairs of equivalent sentence forms:

(∃x)Ax ⊃ P (∀x)(Ax ⊃ P)
(∀x)Ax ⊃ P (∃x)(Ax ⊃ P)
P ⊃ (∃x)Ax (∃x)(P ⊃ Ax)
P ⊃ (∀x)Ax (∀x)(P ⊃ Ax)
(∃x)Ax ∨ P (∃x)(Ax ∨ P)
(∀x)Ax ∨ P (∀x)(Ax ∨ P)
P ∨ (∃x)Ax (∃x)(P ∨ Ax)
P ∨ (∀x)Ax (∀x)(P ∨ Ax)
(∃x)Ax & P (∃x)(Ax & P)
(∀x)Ax & P (∀x)(Ax & P)
P & (∃x)Ax (∃x)(P & Ax)
P & (∀x)Ax (∀x)(P & Ax)

352 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Material biconditionals are a special case. (∀x)Ax P is equivalent neither to

(∀x)(Ax P) nor to (∃x)(Ax P). That is, the scope of a quantifier that does

not extend over both sides of a material biconditional cannot be broadened to

cover both sides, nor can the scope of a quantifier that does cover both sides

of a material biconditional be narrowed to cover only one side.

We conclude this section by symbolizing a series of increasingly com-

plex sentences in PL. The first three are as follows:

1. Everyone who understands either Bertrand Russell’s Principia

Mathematica or Lewis Carroll’s Alice in Wonderland understands this

text.

2. No one understands everything.

3. No one understands anything.

For these and subsequent sentences we will use the following symbolization key:

UD: Everything

Exy: x envies y

Uxy: x understands y

Px: x is a person

a: Lewis Carroll’s Alice in Wonderland

p: Bertrand Russell’s Principia Mathematica

t: this text

In symbolizing these sentences we shall again use the procedure of moving

gradually from English to symbols.

Sentence 1 is an A-sentence, so it will be symbolized as a universally

quantified sentence. We can start with

Each x is such that, if x is a person and x understands either Bertrand

Russell’s Principia Mathematica or x understands Lewis Carroll’s Alice in

Wonderland, then x understands this text

and move to

(∀x)(if Px and x understands either Bertrand Russell’s Principia Math-

ematica or Lewis Carroll’s Alice in Wonderland, then x understands this

text)

We can now see that we can complete our symbolization without using any

more quantifiers:

(∀x)([Px & (Uxp ∨ Uxa)] ⊃ Uxt)

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 353

Sentence 2 is an E-sentence. So we symbolize it as a universal quan-
tification that says of each thing that if it is a person then it doesn’t understand
everything. That is,

Each y is such that if y is a person then y does not understand every-
thing.

Next we move to

(∀y)(Py ⊃ it is not the case that y understands everything)

The remaining bit of English obviously goes over to ‘∼ (∀z)Uyz’, and so the
entire sentence of PL is

(∀y)(Py ⊃ ∼ (∀z)Uyz)

Sentence 2, ‘No one understands everything’, and sentence 3, ‘No one
understands anything’, are very different claims. The former is certainly true
and the latter certainly false. Sentence 3 can, however, also be paraphrased and
symbolized as an E-sentence:

Each x is such that if x is a person, then it is not the case that x under-
stands anything.

This gives way to

(∀x)(Px ⊃ it is not the case that there is something x understands)

for to not understand anything is for there not to be something one under-
stands. So a full symbolization is

(∀x)(Px ⊃ ∼ (∃y)Uxy)

An alternative symbolization is ‘(∀x)(Px ⊃ (∀y) ∼ Uxy)’, for to not understand
anything is for each thing to be such that one does not understand it.

Now consider this sentence:

4. If someone understands Bertrand Russell’s Principia Mathematica,

then that person understands Lewis Carroll’s Alice in Wonderland.

We here have one of the rare uses of ‘someone’ that goes over to a universal
quantifier. This becomes apparent when we realize that there is pronominal cross-
reference from the consequent of this English conditional (from the phrase ‘that

354 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

person’) back to the quantity term in the antecedent (‘someone’). Seeing this,
it becomes clear that an appropriate paraphrase and symbolization are

Each x is such that if x is a person and x understands Bertrand Russell’s
Principia Mathematica, then x understands Lewis Carroll’s Alice in

Wonderland

and

(∀x)[(Px & Uxp) ⊃ Uxa]

Sentence 5 is somewhat more complex:

5. Only people who understand either Bertrand Russell’s Principia

Mathematica or Lewis Carroll’s Alice in Wonderland understand this
text.

We have here a quantificational analog of an ‘only if’ claim of sentential logic.
That is, we are told, not that all those persons who understand either of the
works in question understand this text, but rather that those who do under-
stand this text also understand one of the other cited works. An appropriate
paraphrase is thus

Each y is such that if y is a person and y understand this text then y
understands either Bertrand Russell’s Principia Mathematica or Lewis
Carroll’s Alice in Wonderland.

And a correct symbolization is

(∀y)([(Py & Uyt) ⊃ (Uyp ∨ Uya)]

In subsequent chapters we shall establish that this is equivalent to

(∀y)[Py & ∼ (Uyp ∨ Uya)] ⊃ ∼ Uyt)

but not to

(∀y)([Py & (Uyp ∨ Uya)] ⊃ Uyt)

Symbolizing our sixth example requires the use of three quantifiers:

6. Anyone who understands anything is envied by someone.

The first occurrence of ‘anyone’ yields a universal quantifier because ‘is envied
by someone’ refers back to it; that is, the person who is envied by someone is
the person who understands anything. So a paraphrase is

Each x is such that if x is a person and x understands anything then x
is envied by someone.

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 355

In this context to understand anything is to understand at least one thing, so
a fuller paraphrase is

Each x is such that if x is a person and there is at least one y such that
x understands y then there is some z such that z is a person and z
envies x.

An appropriate symbolization is

(∀x)[(Px & (∃y)Uxy) ⊃ (∃z)(Pz & Ezx)]

Consider, finally,

7. Anyone who understands everything is envied by everyone.

We will use three universal quantifiers in symbolizing this sentence. An appro-
priate paraphrase is

Each x is such that if x is a person and every y is such that x under-
stands y then every z is such that if z is a person, then z envies x.

This yields the following sentence of PL:

(∀x)[(Px & (∀y)Uxy) ⊃ (∀z)(Pz ⊃ Ezx)]

7.8E EXERCISES

1. Symbolize the following sentences in PL using the given symbolization key.

UD: People
Sx: x is a sailor
Lx: x is lucky
Cx: x is careless
Yx: x dies young

Sxy: x is a son of y
Dxy: x is a daughter of y
Wx: x is Wilcox

d: Daniel Wilcox
j: Jacob Wilcox
r: Rebecca Wilcox

a. Some sailors are both careless and lucky.
*b. Some careless sailors aren’t lucky.

c. Not all lucky sailors are careless.
*d. All careless sailors, except the lucky ones, die young.

356 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

e. Not all sons of sailors are sailors.

*f. Not all daughters of sailors are sailors.

g. Not all sons and daughters of sailors are sailors.

*h. Sailors who aren’t lucky and are careless have neither daughters nor sons.

i. Sailors who have either sons or daughters are lucky.

*j. Sailors who have both daughters and sons are lucky.

k. Rebecca Wilcox is either a sailor or the daughter of a sailor.

*l. Every Wilcox is either a sailor or the offspring of a sailor.

m. Either Rebecca Wilcox and all her children are sailors or Jacob Wilcox and all

his children are sailors.

2. Symbolize the following sentences in PL using the given symbolization key.

UD: The employees of this college

Exy: x earns more than y

Dxy: x distrusts y

Fx: x is a faculty member

Ax: x is an administrator

Cx: x is a coach

Ux: x is a union member

Rx: x should be fired

Mx: x is an MD

Px: x is paranoid

Ox: x is a union officer

p: the president

j: Jones

a. Every administrator earns more than some faculty member, and every faculty

member earns more than some administrator.

*b. If any administrator earns more than every faculty member, Jones does.

c. No faculty member earns more than the president.

*d. Any administrator who earns more than every faculty member should be fired.

e. No faculty member earns more than the president, but some coaches do.

*f. Not all faculty members are union members, but all union members are fac-

ulty members.

g. No administrator is a union member, but some are faculty members.

*h. Every faculty member who is an administrator earns more than some faculty

members who are not administrators.

i. At least one administrator who is not a faculty member earns more than every

faculty member who is an administrator.

*j. Every faculty member who is an MD earns more than every faculty member

who is not an MD.

k. Some faculty members distrust every administrator, and some administrators

distrust every faculty member.

*l. There is an administrator who is a faculty member and distrusts all adminis-

trators who are not faculty members.

m. Anyone who distrusts everyone is either paranoid or an administrator or a

union officer.

*n. Everyone distrusts someone, but only administrators who are not faculty mem-

bers distrust everyone.

7.8 MULTIPLE QUANTIFIERS WITH OVERLAPPING SCOPE 357

3. Symbolize the following sentences in PL using the given symbolization key.

UD: Everything
Axyz: x understands y as well as does z
Bxy: x bores y
Gxy: x gives a low grade to y
Lxy: x listens to y
Sxy: x is a student of y
Nxy: x understands y
Dx: x deserves to be fired
Px: x is a professor
Ux: x is unpopular
Wx: x is wasting x’s time

t: this text

a. All professors bore some of their students.
*b. All professors who bore all their students deserve to be fired.

c. Any professor who is bored by everything bores all his or her students.
*d. Professors bore all and only those of their students they are bored by.

e. If all professors bore all their students, then all professors are wasting their time.
*f. If a professor bores a student, then both are wasting their time.
g. Professors don’t understand the students they bore, and students don’t listen

to the professors they are bored by.
*h. No professor understands everything.

i. Some professors bore all professors.
*j. An unpopular professor either bores or gives a low grade to each of his or her

students.
k. Unpopular professors either bore all of their students or give all of their

students low grades.
*l. If a professor doesn’t listen to a student, then that student is wasting his or her

time.
m. If a student and his or her professor bore each other, then both are wasting

their time.
*n. Some professors don’t understand this text.

o. Some professors don’t understand this text as well as some of their students
do.

*p. No professor who understands this text bores any of his or her students.
q. Any student who doesn’t listen to his or her professor doesn’t understand that

professor and bores that professor.

4. Construct fluent English readings for the following sentences of PL using the
given symbolization key.

UD: Everything (including times)
Lxyz: x loves y at z

Px: x is a person
Tx: x is a time

h: Hildegard
m: Manfred
s: Siegfried

358 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

a. (∃x)(Tx & Lhmx)

*b. (∀y)[(Ty & Lmhy) ⊃ Lhmy]

c. (∃w)(Tw & Lmhw) & (∀z)(Tz ⊃ Lmsz)

*d. (∀x)(Tx ⊃ Lshx)

e. (∃x)(Tx & Lmmx) ⊃ (∀x)[(Tx & Lhmx) ⊃ Lmmx]

*f. (∀x)[Px ⊃ (∃y)(Ty & ∼ (∃z)(Pz & Lzxy))]

g. (∃x)[Px & ∼ (∃y)(∃z)(Ty & (Pz & Lzxy))]

*h. (∀x)[Tx ⊃ (∃y)(Py & ∼ (∃z)(Pz & Lzyx))]

i. (∃x)[Tx & (∃y)(Py & (∀z)(Pz ⊃ Lyzx))]

*j. (∀x)[Tx ⊃ (∃y)(∃z)((Py & Pz) & Lyzx)]

k. (∀x)[Tx ⊃ (∃y)(Py & (∀z)(Pz ⊃ Lyzx))]

*l. (∀x)[Px ⊃ (∃y)(∃z)((Py & Tz) & Lxyz)]

m. ∼ (∃x)(∃y)[(Px & Py) & (∀z)(Tz ⊃ Lxyz)]

*n. (∃x)[Px & (∀y)(∀z)((Ty & Pz) ⊃ Lxzy)]

o. (∀x)[Px ⊃ (∃y)(Ty & Lxxy)]

5. Use the following symbolization key to translate sentences a–r into fluent En-

glish. (Note: All of the following claims are true.)

UD: Positive integers

Dxy: the sum of x and y is odd

Exy: x times y is even

Lxy: x is larger than y

Oxy: x times y is odd

Sxy: x plus y is even

Ex: x is even

Ox: x is odd

Px: x is prime

Pxy: x times y is prime

a: 1

b: 2

c: 3

a. (∀x)[Ex ⊃ (∀y)Exy]

*b. (∀x)(∀y)[(Ox & Oy) ⊃ Oxy]

c. (∀x)(∀y)[Sxy ⊃ [(Ex & Ey) ∨ (Ox & Oy)]]

*d. (∀x)[(Px & (∃y)(Py & Lxy)) ⊃ Ox]

e. ∼ (∃y)[Py & (∀x)(Px ⊃ Lyx)]

*f. (∀y)(∀z)([(Py & Pz) & (Lyb & Lzb)] ⊃ Oyz)

g. ∼ (∃x)(∃y)[(Px & Py) & Pxy]

*h. (∃x)(Px & Ex)

i. (∃x)[Px & (∀y)Eyx]

*j. ∼ (∀x)(∃y)Lxy & (∀x)(∃y)Lyx

k. (∀x)(∀y)[Oxy (Ox & Oy)]

*l. (∀x)(∀y)[Exy (Ex ∨ Ey)]

m. (∀x)(∀y)[(Ox & Oy) ⊃ (Oxy & Sxy)]

*n. (∀x)(∀y)(Lxy ⊃ ∼ Lyx)

o. (∀x)(∀y)[(Ox & Ey) ⊃ (Dxy & Exy)]

*p. (∀x)(∀y)[[(Px & Py) & Lcx] ⊃ Exy]

q. (∃y)[(Lya & Lcy) & (Py & Ey)]

*r. (∃x)[(Px & Ex) & (∀y)((Py & Lyx) ⊃ Oy)]

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 359

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS,
AND FUNCTIONS

Our standard reading of ‘some’ is ‘at least one’. Some may object that this is
not an accurate reading, that ‘some’ sometimes means something like ‘at least
two’. It is alleged, for example, that to say

There are still some apples in the basket

when there is only one apple in the basket is at best misleading and at worst
false. In any event we clearly do want a means of symbolizing such claims as

There are at least two apples in the basket.

We can do this by interpreting one of the two-place predicates of PL as
expressing the identity relation. For example, we could interpret ‘Ixy’ as ‘x is
identical with y’. Given the symbolization key

UD: Everything
Nxy: x is in y
Ixy: x is identical with y
Ax: x is an apple

b: the basket

both

(∃x)(Ax & Nxb)

and

(∃x)[(Ax & Nxb) & (∃y)(Ay & Nyb)]

say ‘There is at least one apple in the basket’. The latter merely says it twice,
so to speak. But

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ Ixy)

does say ‘There are at least two apples in the basket’. This sentence of PL says,
in quasi-English, ‘There is an x and there is a y such that both x and y are
apples, both x and y are in the basket, and x and y are not identical’. This last
clause is not redundant because using different variables does not commit us
to there being more than one thing of the specified sort.

360 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

THE IDENTITY PREDICATE

An alternative to interpreting one of the two-place predicates of PL as express-

ing identity is to introduce a special two-place predicate and specify that it

always be interpreted as expressing the identity relation. This is the course we

shall follow. In adding this predicate to PL, we generate a new language, PLE.

As an extension of PL, it includes all the vocabulary of PL and an additional

two-place predicate. PLE also includes, as we detail later in this section, func-

tors (used to express functions). The formulas and sentences of PL are also

formulas and sentences of PLE.

The new two-place predicate that is distinctive of PLE is the identity

predicate,

When using this predicate we shall, as we have been doing with other predi-

cates, omit the two primes as the number of individual terms used (two) will

show that this is a two-place predicate. This predicate is always interpreted as

the identity predicate. For example, ‘ ab’ says that a is identical to b. How-

ever, it is customary to write, informally, ‘a b’, rather than ‘ ab’—that is to

place one individual term before the predicate and one after it—and we shall

follow this custom.

So, instead of ‘ ab’, ‘ xy’, and ‘ aa’, we write ‘a b’, ‘x y’,

and ‘a a’. And in place of, for example, ‘∼ ab’, we write ‘∼ a b’. Since

the interpretation of ‘ ’ is fixed, we never have to include an interpretation

of this predicate in a symbolization key.

We can now symbolize ‘There are at least two apples in the basket’ in

PLE, using the preceding symbolization key (but dispensing with the now super-

fluous ‘Ixy’), as

(∃x)(∃y)([(Ax & Ay) & (Nxb & Nyb)] & ∼ x y)

In PLE we can also say that there are just so many apples in the bas-

ket and no more—for example, that there is exactly one apple in the basket.

An appropriate paraphrase is

There is a y such that y is an apple and y is in the basket, and each

thing z is such that if z is an apple and is in the basket then z is identical

with y.

A full symbolization is

(∃y)[(Ay & Nyb) & (∀z)[(Az & Nzb) ⊃ z y]]

What we are saying is that there is at least one apple in the basket and that

anything that is an apple and is in the basket is that very apple.

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 361

Consider next

Henry hasn’t read Alice in Wonderland but everyone else in the class has.

If we limit our universe of discourse to the students in the class in question,
let ‘h’ designate Henry, and interpret ‘Ax’ as ‘x has read Alice in Wonderland’,
we can symbolize this claim as

∼ Ah & (∀y)[∼ y h ⊃ Ay]

And, using ‘b’ to designate Bob, we can symbolize ‘Only Henry and Bob have
not read Alice in Wonderland’, as

∼ (Ah ∨ Ab) & (∀x)[∼ (x h ∨ x b) ⊃ Ax]

This says that neither Henry nor Bob has read Alice in Wonderland and that
everyone else—that is, each person in the class who is neither identical to
Henry nor identical to Bob—has read it.

We can also use the identity predicate to symbolize the following
sentences of PLE:

1. There are apples and pears in the basket.

2. The only pear in the basket is rotten.

3. There are at least two apples in the basket.

4. There are two (and only two) apples in the basket.

5. There are no more than two pears in the basket.

6. There are at least three apples in the basket.

UD: Everything
Ax: x is an apple

Nxy: x is in y
Px: x is a pear
Rx: x is rotten

b: the basket

If we paraphrase sentence 1 as ‘There is at least one apple and at least one
pear in the basket’, we can symbolize it without using the identity predicate:

(∃x)(∃y)[(Ax & Py) & (Nxb & Nyb)]

However, if we take sentence 1 to assert that there are at least two apples and
at least two pears in the basket, we do need the identity predicate:

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x y] &
(∃x)(∃y)[((Px & Py) & (Nxb & Nyb)) & ∼ x y]

362 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Sentence 2 says that there is one and only one pear in the basket and that that
one pear is rotten:

(∃x)[((Px & Nxb) & Rx) & (∀y)[(Py & Nyb) ⊃ y x]]

Sentence 3 says only that there are at least two apples in the basket, not that
there are exactly two. Hence

(∃x)(∃y)[((Ax & Ay) & (Nxb & Nyb)) & ∼ x y]

To symbolize sentence 4 we start with the symbolization for sentence 3 and add
a clause saying there are no additional apples in the basket:

(∃x)(∃y)([((Ax & Ay) & (Nxb & Nyb)) & ∼ x y] &
(∀z)[(Az & Nzb) ⊃ (z x ∨ z y)])

The added clause says, in effect, ‘and anything that is an apple and is in the
basket is either x or y’. Sentence 5 does not say that there are two pears in the
basket; rather, it says that there are at most two pears in the basket. We can
express this in PLE by saying that of any pears, x, y, and z that are in the basket
these are really at most two; that is, either x is identical to y, or x is identical
to z, or y is identical to z. In other words

(∀x)(∀y)(∀z)[([(Px & Py) & Pz] & [(Nxb & Nyb) & Nzb]) ⊃
((x y ∨ x z) ∨ y z)]

A shorter version is

(∀x)(∀y)(∀z)[([(Px & Py) & Pz] & [(Nxb & Nyb) & Nzb]) ⊃
(z x ∨ z y)]

This says, in effect, that any alleged third pear, z, is not a third pear but is the
very same pear as either x or y. Finally sentence 6 can be symbolized by build-
ing on the symbolization for sentence 3:

(∃x)(∃y)(∃z)(([(Ax & Ay) & Az] & [(Nxb & Nyb) & Nzb]) &
[(∼ x y & ∼ y z) & ∼ x z)

We now return to our discussion of positive integers. This time we will
use this symbolization key for the sentences that follow.

UD: Positive integers
Bxyz: x is between y and z
Lxy: x is larger than y
Sxy: x is a successor of y
Ex: x is even

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 363

Px: x is prime
a: 1
b: 2
c: 10
d: 14

1. There is no largest positive integer.

2. There is a unique smallest positive integer.

3. 2 is the only even prime.

4. There are exactly two primes between 10 and 14.

5. Every positive integer has exactly one successor.

6. 2 is the only prime whose successor is prime.

As we saw in our earlier discussion, we can symbolize sentence 1 without using
the identity predicate, for to say that there is no largest positive integer it
suffices to say that for every integer there is a larger integer (no matter what
integer one might pick, there is an integer larger than it):

(∀x)(∃y)Lyx

It is also tempting to symbolize sentence 2 without using the identity predicate,
for to say that there is a smallest positive integer seems to be to say that there
is an integer that is not larger than any integer:

(∃x) ∼ (∃y)Lxy

But while the foregoing does say that there is a smallest positive integer, it does
not say that there is a unique such integer. So a better symbolization is

(∃x)(∀y)(∼ y x ⊃ Lyx)

This sentence of PL says that there is an integer such that every integer not
identical to it is larger than it. This does imply uniqueness.

Sentence 3, ‘2 is the only even prime’, says that 2 is prime and is even
and that all other primes are not even:

2 is prime and 2 is even, and each z is such that if z is prime and z is
not identical with 2 then z is not even.

In PLE

(Pb & Eb) & (∀z)[(Pz & ∼ z b) ⊃ ∼ Ez]

This is equivalent to

(Pb & Eb) & (∀z)[(Pz & Ez) ⊃ z b]

364 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Notice that we could equally well have paraphrased and symbolized sentence 3 as

2 is prime and 2 is even, and it is not the case that there is a z such

that z is prime and z is even, and z is not identical with 2

and symbolized this claim as

(Pb & Eb) & ∼ (∃z)[(Pz & Ez) & ∼ z b]

Notice, too, that all three symbolic versions of sentence 3 are truth-functional

compounds, not quantified sentences.

To symbolize sentence 4, ‘There are exactly two primes between 10 and

14’, we must say that there are at least two such primes and that there are no

additional ones. So our paraphrase starts

There is an x and there is a y such that x is prime and y is prime, x is

between 10 and 14 and y is between 10 and 14, and x is not identical

with y, . . .

This much can be symbolized as

(∃x)(∃y)((Px & Py) & [(Bxcd & Bycd) & ∼ x y])

What we now need to add is that any prime that is between 10 and 14 is one

of these two primes:

Each z is such that if z is prime and z is between 10 and 14 then z is

either x or y.

That is,

(∀z)[(Pz & Bzcd) ⊃ (z x ∨ z y)]

In joining the two fragments of our symbolization, we must be sure to extend

the scope of our two existential quantifiers over the entire sentence, for we

want to bind the occurrences of ‘x’ and ‘y’ in the last half of the sentence:

(∃x)(∃y)[((Px & Py) & [(Bxcd & Bycd) & ∼ x y]) &

(∀z)[(Pz & Bzcd) ⊃ (z x ∨ z y)]]

It is perhaps worth noting here that we could have symbolized sentence 4

without using the three-place predicate ‘Bxyz’. To see this, note that to say a

positive integer x is between 10 and 14 is just to say that x is larger than 10

and that 14 is larger than x. An appropriate symbolization is

(∃x)(∃y)[((Px & Py) & [((Lxc & Ldx) & (Lyc & Ldy)) & ∼ x y]) &

(∀z)([Pz & (Lzc & Ldz)] ⊃ (z x ∨ z y))]

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 365

A successor of an integer is the sum of that integer and 1. Sentence 5, ‘Every
positive integer has exactly one successor’, can be symbolized as

(∀x)(∃y)[Syx & (∀z)(Szx ⊃ z y)]

This says that each positive integer x has a successor y and that any integer that
is a successor of x is identical to y—that is, that each positive integer has exactly
one successor.

Sentence 6, ‘2 is the only prime whose (only) successor is prime’, can
be paraphrased as a conjunction:

2 is prime and its only successor is prime, and any successor of any
prime other than 2 is not prime.

The first conjunct can be symbolized as

Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y x)) & Px]

The second conjunct can be symbolized as

(∀x)(∀y)[(Sxy & (Py & ∼ y b)) ⊃ ∼ Px]

Putting these together we obtain

(Pb & (∃x)[(Sxb & (∀y)(Syb ⊃ y x)) & Px]) & (∀x)(∀y)[(Sxy & (Py
& ∼ y b)) ⊃ ∼ Px]

DEFINITE DESCRIPTIONS

In Section 7.1 we noted that there are two kinds of singular terms in English:
proper names and definite descriptions. We subsequently noted that individual
constants of PL can be used to symbolize both kinds of singular terms of English.
But following this practice means that the internal structure of definite descrip-
tions is not represented in PL. Consider, by way of illustration, this argument:

The Roman general who defeated Pompey invaded both Gaul and
Germany. Therefore Pompey was defeated by someone who invaded
both Gaul and Germany.

This is fairly obviously a valid argument. But its symbolization in PL is not valid:

UD: Persons and countries
Ixy: x invaded y

Dxy: x defeated y
r: The Roman general who defeated Pompey
p: Pompey
g: Gaul
e: Germany

366 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

Treating ‘The Roman general who defeated Pompey’ as an unanalyzable unit, to

be symbolized by ‘r’, and paraphrasing the conclusion as ‘There is an x such that

x defeated Pompey and invaded Gaul and invaded Germany’ yields this argument:

Irg & Ire

(∃x)[Dxp & (Ixg & Ixe)]

The techniques we develop for testing arguments of PL will show that this argu-

ment of PL is invalid. This should not be surprising, for the premise tells us only

that the thing designated by ‘r’ invaded both Gaul and Germany; it does not

tell us that that thing is a thing that defeated Pompey, as the conclusion claims.

By using the identity predicate we can capture the structure of definite

descriptions within PLE. Suppose we paraphrase the first premise of the

preceding argument as

There is exactly one thing that is a Roman general and defeated Pom-

pey, and that thing invaded both Gaul and Germany.

Definite descriptions are, after all, descriptions that purport to specify condi-

tions that are satisfied by exactly one thing. Using the symbolization key, plus

‘Rx’ for ‘x is a Roman general’, we can symbolize the first premise as

(∃x)[[(Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y x]] & (Ixg & Ixe)]

We shall later show that in PLE the conclusion ‘(∃x)[Dxp & (Ixg & Ixe)]’ does

follow from this premise.

By transforming definite descriptions into unique existence claims, that

is, claims that there is exactly one object of such-and-such a sort, we gain the

further benefit of being able to symbolize English language definite descrip-

tions that may, in fact, not designate anything. For example, taking the UD to

be persons and using ‘Dxy’ for ‘x is a daughter of y’, ‘Bx’ for ‘x is a biochemist’,

and ‘j’ to designate John, we might symbolize ‘John’s only daughter is a

biochemist’ as

(∃x)[(Dxj & (∀y)(Dyj ⊃ y x)) & Bx]

If it turns out that John has no, or more than one, daughter, or that his only

daughter is not a biochemist, the above sentence of PLE will be false, not mean-

ingless or truth-valueless. This is an acceptable result.

PROPERTIES OF RELATIONS

Identity is a relation with three rather special properties. First, identity is a

transitive relation. That is, if an object x is identical with an object y, and y is

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 367

identical with an object z, then x is identical with z. The following sentence of
PLE says, in effect, that identity is transitive:

(∀x)(∀y)(∀z)[(x y & y z) ⊃ x z]

Many relations other than identity are also transitive relations. The predicates

x is larger than y
x is taller than y
x is an ancestor of y
x is heavier than y
x occurs before y

all express transitive relations. But, ‘x is a friend of y’ does not represent a tran-
sitive relation. That is, ‘Any friend of a friend of mine is a friend of mine’ is a
substantive claim, and one that is generally false. Where x, y, and z are all vari-
ables of PL or PLE and A is a two-place predicate of PL or PLE, the following
says that A expresses a transitive relation:

(∀x)(∀y)(∀z)[(Axy & Ayz) ⊃ Axz]

Identity is also a symmetric relation; that is, if an object x is identical
with an object y, then y is identical with x. The following says that identity is a
symmetric relation:

(∀x)(∀y)(Axy ⊃ Ayx)

The following predicates also express symmetric relations:

x is a sibling of y
x is a classmate of y
x is a relative of y
x has the same father as does y

Note that neither ‘x is a sister of y’ nor ‘x loves y’ expresses a symmetric rela-
tion. Jane Fonda is a sister of Peter Fonda, but Peter Fonda is not a sister of
Jane Fonda. And, alas, it may be that Manfred loves Hildegard even though
Hildegard does not love Manfred.

A relation is reflexive if and only if each object stands in that relation
to itself. In PL and PLE the following says that A expresses a reflexive relation:

(∀x)Axx

Identity is a reflexive relation. In an unrestricted UD it is rather hard to find
other reflexive relations. For example, a little thought should show that none

368 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

of the following expresses a reflexive relation in an unrestricted universe of
discourse:

x is the same age as y
x is the same height as y
x is in the same place as y

Since the number 48 is not of any age, it is not the same age as itself nor the
same height as itself. Numbers have neither age nor height, though inscrip-
tions of numerals usually have both. So, too, neither the number 93 nor the
set of human beings is in any place. Numbers and sets do not have spatial posi-
tions; hence neither is in the same place as itself. However, the relations just
discussed are reflexive relations in suitably restricted universes of discourse. For
example, if the universe of discourse consists exclusively of people, then

x is the same age as y

expresses a reflexive relation (it is also transitive and symmetric). Every person
is the same age as him- or herself. In this restricted universe ‘x is the same
height as y’ and ‘x is in the same place as y’ also represent reflexive relations.
Each person is the same height as him- or herself and is in the same place as
him- or herself. And, if the universe of discourse is restricted to the positive
integers, then

x is evenly divisible by y

expresses a reflexive relation, for every positive integer is evenly divisible by
itself. This relation is not symmetric (not every positive integer evenly divides
all the positive integers it is evenly divisible by). However, ‘x is evenly divisible
by y’ does express a transitive relation.

FUNCTIONS

A function is an operation that takes one or more element of a set as arguments
and returns a single value. Addition, subtraction, multiplication, square, and suc-

cessor are all common functions of arithmetic. Each returns, for each number
or pair of numbers, a single value. Addition takes a pair of numbers as argu-
ments and returns their sum; multiplication takes a pair of numbers and returns
the product of those numbers; subtraction returns, for each pair of numbers,
the first number minus the second. The square function returns, for each num-
ber, the result of multiplying that number by itself; the successor function returns,
for any positive integer n, the integer n 1.

Not all functions are arithmetic functions. We have already encoun-
tered truth-functions—functions that map values from the set consisting of
the truth-values (the set {T, F}) to truth-values. Negation is a function of one

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 369

argument that returns F when given T as an argument and returns T when
given F as an argument. Conjunction, disjunction, the material conditional, and the
material biconditional are all functions that take two arguments (two truth-values)
and return a single truth-value. Characteristic truth-tables display the value of
each of these functions for each pair of truth-values.

Functions are also found outside of formal logic and mathematics. Con-
sider a set of monogamously married individuals.13 Here spouse is a function
that takes a single member of the set as an argument and returns that person’s
spouse as its value. For the set of all twins, the function twin returns, for each
member of the set, that member’s twin. In PLE we shall use lowercase italicized
Roman letters a–z, with or without a positive-integer subscript, followed by one
or more prime marks to symbolize functions. We call these symbols functors.

Where n is the number of prime marks after the functor, the function assigned
to the functor takes n arguments. For example, in talking about the set of
positive integers, we might assign the successor function to the functor f.14 We
specify this assignment in a symbolization key much the way we have been
assigning interpretations to predicates. The following symbolization key assigns
the successor function to f :

UD: Positive integers
f (x): the successor of x

Ex: x is even
Ox: x is odd

a: 2
b: 3

The variable x in parentheses indicates that we are assigning to f a function
that takes a single argument. The expression to the right of the colon assigns
the successor function to f . Given the above symbolization key,

Ob

says 3 is odd. The sentence

Of (a)

says the successor of 2, which is 3, is odd. Both claims are, of course, true. And

f (a) b

says the successor of 2 is 3, which it is. Similarly,

(∃x)Of (x) & (∃x)Ef (x)

1 3The example is from Geoffrey Hunter, Metalogic: An Introduction to the Metatheory of Standard First Order Logic
(Berkeley: University of California Press, 1973).
1 4It is customary to use, where only a few functors are needed, the letters ‘f ’, ‘g ’, ‘h’, . . . We will follow this custom.

370 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

says there is a positive integer whose successor is odd and there is a positive inte-

ger whose successor is even. We can also use the symbolization key to symbol-

ize ‘The successor of an even number is odd’. A first step is the quasi-English

(∀x)(Ex ⊃ the successor of x is odd)

The successor of x is f (x), so the full symbolization is

(∀x)(Ex ⊃ Of (x))

We can add the following to our symbolization key

h (x,y): the sum of x and y

and symbolize ‘The sum of an even number and an odd number is odd’ as

(∀x)(∀y)[(Ex & Oy) ⊃ Oh (x,y)]

Since the number of distinct individual terms occurring within the parentheses

after a functor indicates how many arguments the function assigned to that

functor takes, we can informally omit the primes that officially follow functors,

just as we do for predicate letters. Hereafter we will do so.

Returning to our example of the set of twins, we can use the following

symbolization key

UD: Set of twins

f(x): the twin of x

c: Cathy

h: Henry

j: Jose

s: Simone

to symbolize

Simone is Henry’s twin

as

s f(h)

and

Jose is Cathy’s twin

as

j f(c)

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 371

Using ‘Bx’ for ‘x is bald’, we can symbolize ‘A twin is bald if and only if her or
his twin is bald’ as

(∀x)[Bx Bf(x)]

and ‘Some bald twins have twins that are not bald’ as

(∃x)Bx & ∼ Bf(x)

The symbolization

(∀x)(∀y)[(∃z)(z f(x) & z f(y)) ⊃ x y]

says, in quasi-English, ‘Any members of the UD x and y who are such that there
is a z who is both a twin of x and a twin of y are in fact the same member of
the UD’, or ‘No one is a twin of two different twins’.

We require that the functions we symbolize with functors have the fol-
lowing characteristics:

1. An n-place function must yield one and only one value for each
n-tuple of arguments.15

2. The value of a function for an n-tuple of members of a UD must
be a member of that UD.

If the UD is the set of integers, the square root operation does not
meet condition 1 because it can yield more than one value for its arguments
(there are two square roots of 4—2 and 2). (It also fails to meet condition
2 because not all square roots of integers are integers.) If the UD is the set of
positive integers, the subtraction function does not meet condition 2, because
when y is greater than x, x minus y yields a value that is not a positive integer
(3 minus 9 is 6, and 6 is not a positive integer). Subtraction does meet con-
dition 2 when the UD is the set of all integers—positive, zero, and negative. If
the UD is the set of positive integers, division also fails to meet condition 2 (3
divided by 9 yields , which is not a positive integer). Division does meet con-
dition 2 when the UD is the set of positive rational numbers (positive integers
plus numbers expressible as the ratio between positive integers). Finally divi-
sion does not meet condition 1 when the UD is the set of all integers because
it is undefined when the divisor is zero.

As we have just seen, functors can be used to generate a new kind of
individual term (in addition to the individual constants and variables of PL).
We call these new terms complex terms. Complex terms are of the form

f(t1, t2, . . . tn)

1
3

1 5An n-tuple is an ordered set containing n members.

372 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

where f is an n-place functor and t1, t2, . . . tn are individual terms. Further

examples of complex terms include

f(a,b)

h(a,b,c)

g(a)

f(b,b)

f(x,y)

f(a,y)

f(y,a)

g(x)

f(g(a),b)

f(a,g(x))

Complex terms are complex in that they are always formed from a functor and

at least one individual term. Some complex terms contain variables, and some

do not. We call individual terms that do not contain variables closed terms, and

those that do open terms. This makes both individual constants and complex

terms that contain no variables closed terms. Complex terms that do contain

at least one variable, as well as variables themselves, are open terms. Individual

terms that are not complex terms (the individual constants and individual vari-

ables) are simple individual terms. In the above list, the first four complex terms

are closed, the next four open, the ninth closed, and the last open. Note the

last two examples. In each, one of the individual terms from which the exam-

ple is built is itself a complex term. This is wholly in order, as complex terms

are individual terms and can occur anywhere a constant can occur. The kinds

of individual terms included in PLE are summarized in the following table:

All of the following are formulas of PLE:

Faf(x)

Ff(x)a

Ff(a)b

(∀x)Faf(x)

(∀x)(∃y)Fxf(y)

INDIVIDUAL TERMS OF PLE

Open Closed

Simple Individual variables Individual constants

Complex Individual term formed from Individual term formed from a
a functor and at least one functor and containing no

individual variable—for example, f(x), individual variable—for example, f(a),
f(a,x), g(f(a),y), g(h(x,y),a) g(a,b), f(g(a, f(a,c)))

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 373

In each of these examples ‘F’ is a two-place predicate. The first and second are
formulas of PLE but are not sentences (because the x in ‘f(x)’ is not bound).
The third, fourth, and fifth examples are all both formulas and sentences of
PLE. The third says that f(a) bears the relation F to b. The fourth says that each
thing x in the UD is such that a bears the relation F to f(x), that is, to the value
of the function f as applied to x. The fifth says that each thing x in the UD is
such that there is a thing y such that x bears the relation F to f(y). Every exam-
ple contains a complex individual term, and all but the third an open complex
individual term.

Consider this symbolization key:

UD: Positive integers
Ox: x is odd
Ex: x is even
Px: x is prime

Gxy: x is greater than y
h(x,y): the sum of x and y
f(x): the successor of x

a: 1
b: 2

The sentence

(∀x)[Ex ⊃ Of(x)]

says, truly, that each positive integer is such that if it is even then its successor
is odd. And

(∀x)[Ex ⊃ Ef(f(x))]

says, truly, that each positive integer is such that if it is even then the successor
of its successor is also even. The sentence

(∀x)(∀y)[(Ex & Ey) ⊃ Eh(x,y)]

can be read in quasi-English as ‘For each x and each y, if both x and y are even,
then the sum of x and y is even’. This is, of course, true.

Here are further sentences of PLE that can be read in English using
the above symbolization key. The sentence

(∀x)(∀y)[Gh(x,y)x & Gh(x,y)y]

says that for any positive integers x and y the sum of x and y is greater than x,
and the sum of x and y is greater than y. This is true. The sentence

(∃x)Gxh(a,b)

374 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

says that there is a positive integer, x, that is greater than the sum of 1 and 2—
that is, there is a positive integer that is greater than 3. This is also true. The
sentence

(∀x)(∀y)[(Ex & Oy) ⊃ Oh(x,y)]

says that, for any pair of positive integers x and y, if the first is even and the
second is odd, then their sum is odd. This is true as well. Finally the sentence

(∀x)(∀y)[Ph(x,y) ⊃ ∼ (Px & Py)]

says that, for any pair of positive integers, if their sum is prime then it is not
the case that they are both prime, or, in other words, that there are no prime
numbers x and y such that their sum is also prime. This sentence is false; 2
and 3 are both prime, and so is their sum, 5.

THE SYNTAX OF PLE

The language of PLE is an expansion of PL and as such includes all the vocab-
ulary of PL. Every formula of PL is a formula of PLE, and every sentence of
PL is a sentence of PLE. The vocabulary of PLE also includes

 : The two-place identity predicate (fixed interpretation)

Functors of PLE: Lowercase italicized Roman letters a, b, c, . . . , with
or without a numeric subscript, followed by n primes.

Individual terms of PLE:

Individual constants are individual terms of PLE

Individual variables are individual terms of PLE

Expressions of the form f(t1, t2, . . . tn), where f is an n-place
functor and t1, t2, . . . , tn) are individual terms of PLE, are
individual terms of PLE

We can classify the individual terms of PLE as follows:

Simple terms of PLE: The individual constants and individual variables
of PLE

Complex terms of PLE: Individual terms of the form f(t1, t2, . . . , tn),
where f is an n-place functor

Closed individual term: An individual term in which no variable occurs

Open individual term: An individual term in which at least one
variable occurs

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 375

Individual variables and functors that contain at least one individual variable
are thus open terms. Individual constants and functors that contain no vari-
ables are thus closed terms.

In PLE a substitution instance is defined as follows:

Substitution instance of P: If P is a sentence of PLE of the form
(∀x)Q or (∃x)Q and t is a closed individual term, then Q(t/x) is a
substitution instance of P. The individual term t is the instantiating

individual term.

Note that every substitution instance of a sentence of PL is also a substitution
instance of that same sentence in PLE.

7.9E EXERCISES

1. Symbolize the following sentences in PLE using the symbolization key given in
Exercise 1 in Section 7.8E.

a. Every Wilcox except Daniel is a sailor.
*b. Every Wilcox except Daniel is the offspring of a sailor.

c. Every Wilcox except Daniel is either a sailor or the offspring of sailor.
*d. Daniel is the only son of Jacob.

e. Daniel is the only child of Jacob.
*f. All the Wilcoxes except Daniel are sailors.
g. Rebecca’s only son is Jacob’s only son.

*h. Rebecca Wilcox has only one son who is a sailor.
i. Rebecca Wilcox has at least two daughters who are sailors.

*j. There are two and only two sailors in the Wilcox family.
k. Jacob Wilcox has one son and two daughters, and they are all sailors.

2. Give fluent English readings for the following sentences of PLE using the given
symbolization key.

UD: Positive integers
Lxy: x is less than y
Gxy: x is greater than y

Ex: x is even
Ox: x is odd
Px: x is prime

f(x,y): the product of x and y
t: 2
f: 5

n: 9

a. (∀x)(∃y)Lxy
*b. (∃x)(∀y)(∼ x y ⊃ Lxy)

c. (∃x)(∀y) ∼ Lyx
*d. ∼ (∃x)(Ex & Lxt)

376 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX

e. (Pt & Et) & (∀x)[(Px & Ex) ⊃ x t]

*f. ∼ (∃x)(∃y)[(Px & Py) & Pf(x,y)]

g. (∀y)(∀z)[(Oy & Oz) ⊃ Of(y,z)]

*h. (∀y)(∀z)[(Ey & Ez) ⊃ Ef(z,y)]

i. (∀y)(∀z)[(Ey ∨ Ez) ⊃ Ef(y,z)]

*j. (∀x)[Ex ⊃ (∃y)(Oy & Gxy)] & ∼ (∀x)[Ox ⊃ (∃y)(Ey & Gxy)]

k. (∃x)[[Px & (Gxf & Lxn)] & (∀y)([Py & (Gyf & Lyn)] ⊃ y x)]

3. For a–p, decide whether the specified relation is reflexive, whether it is sym-

metric, and whether it is transitive (in suitably restricted universes of discourse).

In each case give the sentences of PL that assert the appropriate properties of

the relation in question. If the relation is reflexive, symmetric, or transitive in

a restricted universe of discourse, specify such a universe of discourse.

a. Nxy: x is a neighbor of y

*b. Mxy: x is married to y

c. Axy: x admires y

*d. Nxy: x is north of y

e. Rxy: x is a relative of y

*f. Sxy: x is the same size as y

g. Txy: x is at least as tall as y

*h. Cxy: x coauthors a book with y

i. Exy: x enrolls in the same course as y

*j. Fxy: x fights y

k. Wxy: x weighs the same as y

*l. Cxy: x contracts with y

m. Axy: x is an ancestor of y

*n. Cxy: x is a cousin of y

o. Lxy: x and y have the same taste in food

*p. Rxy: x respects y

4. Symbolize the following sentences in PLE using the given symbolization key.

UD: People in Doreen’s hometown

Dxy: x is a daughter of y

Sxy: x is a son of y

Bxy: x is a brother of y

Oxy: x is older than y

Mxy: x is married to y

Txy: x is taller than y

Px: x is a physician

Bx: x is a baseball player

Mx: x is a marine biologist

d: Doreen

c: Cory

j: Jeremy

h: Hal

a. Jeremy is Cory’s son.

*b. Jeremy is Cory’s only son.

c. Jeremy is Cory’s oldest son.

*d. Doreen’s only daughter is a physician.

7.9 IDENTITY, DEFINITE DESCRIPTIONS, PROPERTIES OF RELATIONS, AND FUNCTIONS 377

e. Doreen’s eldest daughter is a physician.
*f. Doreen is a physician and so is her eldest daughter.
g. Cory is Doreen’s eldest daughter.

*h. Cory is married to Hal’s only son.
i. Cory is married to Hal’s tallest son.

*j. Doreen’s eldest daughter is married to Hal’s only son.
k. The only baseball player in town is the only marine biologist in town.

*l. The only baseball player in town is married to one of Jeremy’s daughters.
m. Cory’s husband is Jeremy’s only brother.

5. Symbolize the following sentences in PLE using the given symbolization key.

UD: Positive integers
Ox: x is odd
Ex: x is even
Px: x is prime

a: 1
b: 2

f(x): the successor of x
q(x): x squared

t(x,y): the product of x and y
s(x,y): the sum of x and y

a. One is not the successor of any integer.
*b. One is not prime but its successor is.

c. There is a prime that is even.
*d. There is one and only one even prime.

e. Every integer has a successor.
*f. The square of a prime is not prime.
g. The successor of an odd integer is even.

*h. The successor of an even integer is odd.
i. If the product of a pair of positive integers is odd, then the product of the suc-

cessors of those integers is even.
*j. If the product of a pair of positive integers is even, then one of those integers

is even.
k. If the sum of a pair of positive integers is odd, then one member of the pair

is odd and the other member is even.
*l. If the sum of a pair of positive integers is even, then either both members of

the pair are even or both members are odd.
m. The product of a pair of prime integers is not prime.
*n. There are no primes such that their product is prime.

o. The square of an even number is even and the square of an odd number is odd.
*p. The successor of the square of an even number is odd.
q. The successor of the square of an odd number is even.

*r. 2 is the only even prime.
s. The sum of 2 and a prime other than 2 is odd.

*t. There is exactly one integer that is prime and is the successor of a prime.
u. There is a pair of primes such that their product is the successor of their sum.

378 PREDICATE LOGIC: SEMANTICS

Chapter 8
PREDICATE LOGIC:

SEMANTICS

8.1 INFORMAL SEMANTICS FOR PL

The basic semantic concept for the language of sentential logic, SL, is that of
a truth-value assignment. The semantics for PL is more complex than truth-
functional semantics. One source of the added complexity is this: Whereas the
atomic sentences of SL are not analyzable in terms of more basic linguistic units
of SL, the same does not hold for all atomic sentences of PL. Some atomic sen-
tences of PL, such as ‘Fa’, are themselves complex expressions composed of
predicates and individual constants. Consequently we do not directly assign
truth-values to all the atomic sentences of PL; only the sentence letters are
directly assigned truth-values. The truth-values of complex atomic sentences
like ‘Fa’ depend on the interpretations of the predicates and individual con-
stants that constitute such sentences. The basic semantic concept of PL, in
terms of which other semantic concepts are defined, is that of an interpretation.
Just as truth-value assignments for SL assign truth-values to every sentence of
SL, an interpretation interprets every individual constant, predicate, and sen-
tence letter of PL. Usually, however, we shall be interested only in that part of
an interpretation that affects the truth-value of a particular sentence or set of
sentences that we are looking at.

8.1 INFORMAL SEMANTICS FOR PL 379

We can view the symbolization keys for sentences presented in Chap-
ter 7 as embodying interpretations for those sentences. That is, the truth-
conditions of sentences of PL are dependent upon the choice of universe of
discourse and upon how each of the predicates and individual constants in the
sentences is interpreted. In this section we shall discuss in an informal manner
how interpretations determine the truth-conditions of sentences, appealing to
the readings of sentences of PL that were used in Chapter 7.

Let us start with an example of an atomic sentence of PL: ‘Fa’. Whether
this sentence is true depends on how we interpret the predicate ‘F’ and the
individual constant ‘a’. If we interpret them as follows:

Fx: x is human
a: Socrates

then ‘Fa’ is true, for Socrates was human. But if we interpret them as

Fx: x is a potato
a: Socrates

then ‘Fa’ is false, for Socrates was not a potato. Similarly the truth-value of the
sentence ‘Bdc’ depends upon the interpretation of the expressions that con-
stitute the sentence. If we interpret them as

Bxy: x is bigger than y
c: the Statue of Liberty
d: the Empire State Building

then ‘Bdc’, which may be read as ‘The Empire State Building is bigger than
the Statue of Liberty’, is true. But with the following interpretations:

Bxy: x is bigger than y
c: the moon
d: the Empire State Building

‘Bdc’ is false. The Empire State Building is not bigger than the moon.
Predicates are interpreted relative to a universe of discourse. Recall that a

universe of discourse (UD) is simply a nonempty set. We may choose the set of
natural numbers, the set of all people, the set of words in this chapter, the set
of all the objects in the world, the set containing only Mark Twain, or any other
nonempty set as the UD when we specify an interpretation. The UD that we
choose includes all and only those things that we want to interpret sentences of
PL as being about. Once we specify the UD, our interpretations of predicates
are interpretations relative to that UD. For example, if an interpretation includes

UD: Set of living creatures
Fx: x is human

380 PREDICATE LOGIC: SEMANTICS

then ‘F’ picks out all the living creatures in the UD that are human. We call
the set of those things that the predicate picks out the extension of the predi-
cate for the interpretation. If an interpretation includes

UD: Set of living creatures in San Francisco
Fx: x is human

then the predicate ‘F’ picks out all those living creatures in San Francisco that
are human. The set of such creatures is the extension of the predicate ‘F’. And
if an interpretation includes

UD: Set of living creatures
Fx: x is an automobile

then the predicate ‘F’ picks out nothing—no member of the UD is an auto-
mobile. In this case the extension of the predicate ‘F’ is the empty set.

Now let us consider two-place predicates. Suppose that an interpreta-
tion includes the following:

UD: Set of positive integers
Gxy: x is greater than y

In this case we cannot simply say that the predicate ‘G’ picks out members of
the UD. We are interpreting ‘G’ as a relational predicate, so here the extension
of the predicate is a set of pairs of objects rather than simply a set of objects.
One of the pairs of positive integers that is in the extension of the predicate
is the pair consisting of the number 5 and the number 2, in that order, since
5 is greater than 2. We must think of these pairs as ordered because, although
the predicate picks out the pair whose first member is 5 and whose second
member is 2, it does not pick out the pair whose first member is 2 and whose
second member is 5—2 is not greater than 5. The extension of ‘G’ includes all
and only those pairs of objects in the UD (pairs of positive integers) of which
the first member is greater than the second.

On some interpretations the extension of a two-place predicate includes
pairs in which the first and second members are the same. For example, on an
interpretation that includes

UD: Set of positive integers
Lxy: x is less than or equal to y

the extension of ‘L’ includes the pair consisting of 1 and 1, the pair consisting of
2 and 2, the pair consisting of 3 and 3, and so on—because each positive integer
is less than or equal to itself. (The extension includes other pairs as well—any pair
of positive integers in which the first member is less than or equal to the second.)

Three-place predicates, four-place predicates, and all other many-place
predicates are interpreted similarly. A three-place predicate has as its extension

8.1 INFORMAL SEMANTICS FOR PL 381

a set of ordered triples of objects in the UD; a four-place predicate has as its
extension a set of ordered quadruples of members of the UD; and so on.

An individual constant is interpreted by assigning to the constant some
member of the selected UD. So, if we choose as our UD the set of living crea-
tures, then we may assign to ‘a’, as its interpretation, some specific living
creature. Here are two examples of interpretations for the sentence ‘Fa’:

1. UD: Set of positive integers
Fx: x is a prime number

a: 4

2. UD: Set of animals in the Bronx Zoo
Fx: x is a giraffe

a: the oldest giraffe in the Bronx Zoo

Once we have given interpretations of the expressions in the sentence ‘Fa’, we
may determine the truth-value of ‘Fa’ on that interpretation. The sentence
‘Fa’ is true on an interpretation just in case the object that the constant ‘a’ des-
ignates is a member of the set that is the extension of the predicate ‘F’
for that interpretation. The sentence ‘Fa’ is false on interpretation 1 and
true on interpretation 2. (Actually neither 1 nor 2 is a full interpretation; a full
interpretation interprets every constant, predicate, and sentence letter of PL.
For example, 1 represents infinitely many interpretations. It represents all inter-
pretations that have the specified UD, that interpret ‘F’ and ‘a’ as indicated,
and that interpret all other predicates, constants, and sentence letters as they
please. However, we shall continue to talk informally of our partial interpreta-
tions simply as interpretations.)

Here is an interpretation for ‘Gab’:

3. UD: Set of positive integers
Gxy: x is greater than y

a: 2
b: 16

The sentence ‘Gab’ is false on interpretation 3, for on this interpretation ‘Gab’
says that 2 is greater than 16, which is not the case. But ‘Gba’, which may be
read as ‘The number 16 is greater than the number 2’, is true on this inter-
pretation because the pair of numbers whose first member is 16 and whose sec-
ond member is 2 is in the extension of the predicate ‘G’.

An interpretation may assign the same member of the UD to more than
one constant. The following is a legitimate interpretation for ‘Jln’:

4. UD: Set of planets in the solar system
Jxy: x is closer to the sun than is y

l: Jupiter
n: Jupiter

382 PREDICATE LOGIC: SEMANTICS

Here both ‘l’ and ‘n’ have been interpreted as designating Jupiter. The sen-
tence is false on this interpretation since Jupiter is not closer to the sun than
itself. Usually, when we symbolize English sentences in PL, we use different
constants to designate different individuals. But, if we want to use different con-
stants to designate the same individual, we may do so. This is similar to the
case in which an object is referred to by more than one expression in the En-
glish language. For instance, ‘the first U.S. president’ and ‘George Washington’
designate the same person. But note that, whereas in English one name may
stand for more than one object (in which case it is ambiguous), we do not allow
this in PL. Two names may designate the same object, but no one name may des-

ignate more than one object.
The truth-conditions for compound sentences of PL that do not con-

tain quantifiers are determined in accordance with the truth-functional reading
of the connectives, so we use the information in the characteristic truth-tables
for the truth-functional connectives to determine the truth-values of such sen-
tences. Consider the sentence ‘(Bs ∨ ∼ Fh) & Gsh’. Here is an interpretation
for the sentence:

5. UD: Set of all things
Bx: x is an author
Fx: x is an animal

Gxy: x owns y
h: The Liberty Bell
s: Stephen King

The sentence ‘Bs’ is true on this interpretation since Stephen King is an author.
The sentence ‘Fh’ is false on this interpretation since the Liberty Bell is not
an animal, so ‘∼ Fh’ is true. Since ‘Bs’ and ‘∼ Fh’ are both true, the sentence
‘Bs ∨ ∼ Fh’ is true. Stephen King does not own the Liberty Bell, so ‘Gsh’ is
false on this interpretation. Consequently ‘(Bs ∨ ∼ Fh) & Gsh’ has one false
conjunct and is false on interpretation 5. Another interpretation may make the
same sentence true:

6. UD: Set of people
Bx: x is male
Fx: x is a negative integer

Gxy: x is the mother of y
h: Jay Doe
s: Jane Doe (who is the mother of Jay Doe)

On this interpretation ‘Fh’ is false. As we have interpreted the predicate ‘F’, its
extension is the empty set. The predicate picks out nothing in the UD since
no person is a negative integer, so ‘∼ Fh’ is true. ‘Bs’ is false since Jane Doe is
not male, but ‘Bs ∨ ∼ Fh’ is true—a disjunction with one true disjunct is itself

8.1 INFORMAL SEMANTICS FOR PL 383

true. Since Jane Doe is Jay Doe’s mother, ‘Gsh’ is true. Thus the sentence
‘(Bs ∨ ∼ Fh) & Gsh’ has two true conjuncts and is true on interpretation 6.

We have yet to consider interpretations for the quantified sentences of
PL. Quantified sentences are not atomic, and they are not truth-functions of
smaller sentences of PL either. The quantified sentence

(∀x)(Fx ⊃ Gx)

is not truth-functionally compound; indeed, it contains no proper subformula
that is itself a sentence. To give an interpretation for this sentence, we must
specify a UD and interpret the predicate letters ‘F’ and ‘G’. We do not interpret

individual variables. As noted in Chapter 7, individual variables function in PL

much as pronouns do in English. They are not names, so interpretations do
not assign to them members of the UD.

We may read ‘(∀x)(Fx ⊃ Gx)’ as ‘Each x is such that if x is F then x
is G’ or ‘Everything that is F is G’. When we specify a UD for interpreting the
sentence, we thereby specify what ‘everything’ is, namely, everything in the UD.
Here is an interpretation for ‘(∀x)(Fx ⊃ Gx)’:

7. UD: Set of people
Fx: x is a politician
Gx: x is honest

With this interpretation we may read the sentence as ‘Every person who is
a politician is honest’. Unfortunately some politicians are not honest; the
sentence is therefore false on interpretation 7. The part of the sentence that
follows the universal quantifier, the open sentence ‘Fx ⊃ Gx’, specifies a con-
dition that may or may not hold for the individual members of the UD; the
function of the universal quantifier is to state that this condition holds for each

member of the UD. Consequently the sentence is true if and only if every mem-
ber of the UD meets that condition.

Consider the following interpretation for the sentence

(∀x)(Ax ∼ Bx)

8. UD: Set of positive integers
Ax: x is evenly divisible by 2
Bx: x is an odd number

The universal quantifier states that the condition specified by ‘Ax ∼ Bx’ holds
for every member of the UD. The sentence, which we may read as ‘Each pos-
itive integer is evenly divisible by 2 if and only if it is not an odd number’, is
true on this interpretation. But the interpretation

9. UD: Set of positive integers
Ax: x is evenly divisible by 4
Bx: x is an odd number

384 PREDICATE LOGIC: SEMANTICS

makes the same sentence false. A universally quantified sentence is false if there
is at least one member of the UD for which the condition specified after the
quantifier does not hold. The number 6 is one member for which the condition
specified by ‘Ax ∼ Bx’ does not hold. The number 6 is not evenly divisible
by 4 and is not an odd number—so 6 does not meet the condition that it is

evenly divisible by 4 if and only if it is not an odd number.
In determining the truth-conditions for universally quantified sen-

tences, then, we should keep two points in mind. First, individual variables are
not interpreted. The function of these variables is to range over the members
of the UD; consequently it is the specification of the UD for an interpretation
that is relevant in determining the contribution that individual variables and
quantifiers make to the truth-conditions of sentences of PL. Second, the role
of the universal quantifier in a sentence of PL is to indicate that every mem-
ber of the UD satisfies a certain condition. The condition is specified by that
part of the sentence that lies within the scope of the quantifier.

Existential quantifiers function in sentences of PL to indicate that at
least one member of the UD satisfies a certain condition. Here is an interpre-
tation for the existentially quantified sentence

(∃y)(Cy & By)

10. UD: Set of all things
Cx: x is a car
Bx: x is brown

The sentence is true on this interpretation. It may be read as ‘At least one object
(in the universe) is a brown car’. Because it is existentially quantified, the sen-
tence is true just in case at least one object in the universe is a car and is brown,
that is, just in case at least one object in the universe satisfies the condition
specified by ‘Cy & By’. Since there is at least one such object, ‘(∃y)(Cy & By)’
is true on this interpretation. However, the same sentence is false on the fol-
lowing interpretation:

11. UD: Set of all things
Cx: x is a car
Bx: x has a brain

Marvelous as technology is, it has not yet produced cars with brains. Hence no
object satisfies the condition specified by ‘Cy & By’, and so ‘(∃y)(Cy & By)’ is
false on the present interpretation.

The different sentence

(∃y)Cy & (∃y)By

is true on interpretation 11. This is because both ‘(∃y)Cy’ and ‘(∃y)By’ are
true—there is an object that is a car and there is an object that has a brain. It

8.1 INFORMAL SEMANTICS FOR PL 385

is not one and the same object that has both these properties, however. That
is why the sentence ‘(∃y)(Cy & By)’ is false on this interpretation. Although ‘y’
occurs in both ‘Cy’ and ‘By’ of ‘(∃y)Cy & (∃y)By’, these two occurrences of the
variable are not in the scope of a single occurrence of the quantifier ‘(∃y)’. So
the predicates ‘is a car’ and ‘has a brain’ do not have to hold for the same
object for the sentence ‘(∃y)Cy & (∃y)By’ to be true. In ‘(∃y)(Cy & By)’, how-
ever, all occurrences of ‘y’ are within the scope of one occurrence of ‘(∃y)’; so,
for ‘(∃y)(Cy & By)’ to be true on interpretation 11, a single member of the
UD must both be a car and have a brain.

Now we shall consider an interpretation for a sentence containing a
two-place predicate and two quantifiers:

(∃x)(∀y)Fxy

12. UD: Set of people
Fxy: x is acquainted with y

Since the whole sentence is existentially quantified, it is true on interpretation
12 if at least one person satisfies the condition specified by the rest of the sen-
tence, that is, if at least one person is acquainted with every member of the
UD. Obviously there is no such person, so ‘(∃x)(∀y)Fxy’ is false on interpre-
tation 12. Using the same interpretation, let us look at the sentence that is
formed by reversing the order of the quantifiers:

(∀y)(∃x)Fxy

Prefixed with the universal quantifier, the sentence says that each member of
the UD satisfies a certain condition. For this sentence to be true, each person
y must be such that at least one person is acquainted with y. This is true (since
every person is at least self-acquainted), so ‘(∀y)(∃x)Fxy’ is true on interpre-
tation 12. Note that the difference that accounts for the diverging truth-values
of ‘(∃x)(∀y)Fxy’ and ‘(∀y)(∃x)Fxy’ is that in the first case it is one and the
same person who must be acquainted with everyone. Another sentence that we
may interpret using interpretation 12 is

(∃x)(∃y)Fxy

This sentence is true on interpretation 12 since there is at least one person
who is acquainted with at least one person.

The following is an interpretation for the sentence

(∀x)(Fx ⊃ (∃y) ∼ Gyy)

13. UD: Set of houses in the world
Fx: x is made of brick

Gxy: x is larger than y

386 PREDICATE LOGIC: SEMANTICS

Given this interpretation, the sentence may be read as ‘For any brick house,
there is at least one house that is not larger than itself ’. This sentence is
universally quantified and hence is true just in case every house x in the world
satisfies the condition that if x is made of brick then at least one house is not
larger than itself. Any house that is not made of brick trivially satisfies the con-
dition since it does not fulfill the condition of being made of brick. That is, a
house x that is not made of brick is such that if x is made of brick (which it is
not) then some house is not larger than itself. Brick houses also satisfy the con-
dition specified in the sentence. For since it is true that at least one house is
not larger than itself, it is true of any brick house x that if x is made of brick
(which it is) then some house is not larger than itself (which is true).

The sentence

(∀y)(∀x)(Fyx ⊃ Fxy)

is false on the following interpretation:

14. UD: Set of integers
Fxy: x is smaller than y

No integer y satisfies the condition specified by ‘(∀x)(Fyx ⊃ Fxy)’, which is that
every integer that y is smaller than is, in turn, smaller than y. For any integer
y there are (infinitely many) integers x that y is smaller than, but not even one
of these integers is, in turn, smaller than y. But the sentence

(∀y)(∀x)(Fyy ⊃ Fxy)

is true on interpretation 14. Every integer y trivially satisfies the condition spec-
ified by ‘(∀x)(Fyy ⊃ Fxy)’, which is that every integer x is such that if y is
smaller than itself (it is not) then x is also smaller than y.

Now we shall consider sentences that contain individual constants and
sentence letters, as well as quantifiers. Consider

(∃x)(Fx & (∀y)Gxy) ⊃ ∼ Gsl

and this interpretation:

15. UD: Set of people
Fx: x is female

Gxy: x is the sister of y
l: Michael Jackson
s: Janet Jackson

On this interpretation the sentence may be read as ‘If some person is a female
and is everybody’s sister (including her own) then Janet Jackson is not Michael
Jackson’s sister’. The consequent of this sentence, ‘∼ Gsl’, is false because Janet

8.1 INFORMAL SEMANTICS FOR PL 387

is Michael’s sister. But the antecedent is also false; there is no female person
who is everybody’s sister. So the sentence ‘(∃x)(Fx & (∀y)Gxy) ⊃ ∼ Gsl’ is true
on this interpretation.

Here are two interpretations for the sentence

∼ Dm ∨ (∀x)(∃y)(Bx ⊃ Cyx)

16. UD: Set of people
Dx: x is a golf pro
Bx: x is bald

Cxy: x has seen y on television
m: Tiger Woods

17. UD: Set of people
Dx: x is a politician
Bx: x is a banana

Cxy: x votes for y
m: Madonna

The sentence is false on interpretation 16 since both disjuncts are false on that
interpretation. The disjunct ‘∼ Dm’ is false since ‘Dm’ is true—Tiger Woods
is a golf pro. ‘(∀x)(∃y)(Bx ⊃ Cyx)’, which may be read as ‘Every bald person
has been seen on television by someone’, is false. At least one bald person has
not been seen on television by anyone. Interpretation 17 makes the sentence
true because both disjuncts are true. Since ‘Dm’ is false—Madonna is not a
politician—‘∼ Dm’ is true. And since no person is a banana, it follows trivially
that each person x satisfies the condition that if x is a banana (which x is not)
then someone votes for x. On interpretation 17 the sentence ‘∼ Dm ∨
(∀x)(∃y)(Bx ⊃ Cyx)’ may be read as ‘Either Madonna is a politician or every-
body who is a banana receives a vote from someone’.

As a final example here is an interpretation for the four sentences

(∃x)(Nx ⊃ (∃y)Lyx)
(∀x)(Nx ⊃ (∃y)Lyx)
(∃x)Nx ⊃ (∃y)Lya
(∀x)Nx ⊃ (∃y)Lya

18. UD: Set of positive integers
Nx: x is odd

Lxy: x is smaller than y
a: 1

The first sentence, ‘(∃x)(Nx ⊃ (∃y)Lyx)’, is true on this interpretation. It is
existentially quantified, and there is at least one positive integer x such that
if it is odd then some positive integer is smaller than x. Every even positive
integer trivially satisfies this condition (because every even positive integer
fails to satisfy the antecedent), and every odd positive integer except 1 satis-

388 PREDICATE LOGIC: SEMANTICS

fies it. Because the number 1 does not satisfy the condition specified by
‘Nx ⊃ (∃y)Lyx’, the second sentence is false. The positive integer 1 is odd, but
there is no positive integer that is smaller than 1. So it is not true of every pos-
itive integer x that if x is odd then there is a positive integer that is smaller
than x.

The third sentence, ‘(∃x)Nx ⊃ (∃y)Lya’, is false on interpreta-
tion 18 because its antecedent, ‘(∃x)Nx’, is true, whereas the consequent,
‘(∃y)Lya’, is false. There is at least one odd positive integer, but there is no pos-
itive integer that is smaller than the integer 1. In contrast, ‘(∀x)Nx ⊃ (∃y)Lya’
is true because its antecedent is false—some positive integers are not odd.

In summary, the truth-conditions for sentences of PL are determined
by interpretations. Officially an interpretation consists of the specification of a
UD and the interpretation of each sentence letter, predicate, and individual
constant in the language PL. (This parallels the definition of truth-value assign-
ments for SL, where a truth-value assignment assigns a truth-value to every

atomic sentence of SL.) But for most purposes we can ignore most of the inter-
preting that each interpretation does. In SL we were able to determine the
truth-value of a sentence on a truth-value assignment by considering only the
relevant part of that assignment, that is, the truth-values assigned to the atomic
components of the sentence in question. Similarly, in order to determine the
truth-value of a sentence of PL on an interpretation, we need only consider the
UD and the interpretation of those sentence letters, predicates, and constants
that occur in the sentence in question. In what follows, we shall continue the
practice of displaying only the relevant parts of interpretations and of infor-
mally referring to such partial interpretations simply as interpretations.

8.1E EXERCISES

1. Determine the truth-value of the following sentences on this interpretation:

UD: Set of integers
Ax: x is a positive number
Cx: x is a negative number

Bxy: x is a square root of y
a: 0
b: 39
c: 4

a. Cc & (Ac ∨ Bca)
*b. Ab ⊃ Ab

c. ∼ Bcb ⊃ (Bba ∨ ∼ Ac)
*d. Cb (∼ Ab Ac)

e. (Cb & Cc) & ∼ Baa
*f. ∼ (∼ Ab ∨ Cb) ⊃ Baa
g. Baa [Bca ⊃ (Cb ∨ ∼ Ab)]

*h. ∼ (Ab ∨ Bcc) & (Cc ⊃ ∼ Ac)

8.1 INFORMAL SEMANTICS FOR PL 389

2. Determine the truth-value of the following sentences on this interpretation:

UD: Set of countries, cities, and people
Bxyz: x is between y and z
Dxy: x lives in y

Fx: x is a large city
a: West Germany
b: the United States
c: Italy
d: the U.S. president
e: Tokyo
f: Rome

a. Fa ⊃ Dda
*b. Ff ⊃ Ddb

c. (∼ Babc ∨ ∼ Bbac) ∨ ∼ Bcab
*d. (Fa Fe) ⊃ Dde

e. (∼ Fe ∨ Ddf) & (Fe ∨ Fb)
*f. Baaa ⊃ Bfff
g. (Dda ∨ Ddc) ∨ (Dde ∨ Ddf)

*h. (Fa Dda) & ∼ (Ddb ⊃ Bccc)

3. For each of the following sentences, construct an interpretation on which the
sentence is true.

a. Nad ⊃ ∼ Nda
*b. Da ∼ (Fb ∨ Gc)

c. (Lm & ∼ Lm) ∨ Chm
*d. ∼ (Wab ⊃ (Wbb & Eb))

e. (Ma ∨ Na) ∨ (Mb ∨ Nb)
*f. ∼ Fc & [(Fa ⊃ Na) & (Fb ⊃ Nb)]

4. For each of the following sentences, construct an interpretation on which the
sentence is false.

a. (Crs ∨ Csr) ∨ (Css ∨ Crr)
*b. (Ka ∼ Ma) Gh

c. (Li ∨ Lj) ∨ Lm
*d. Iap ⊃ (Ipa ⊃ Iaa)

e. (∼ Ja Jb) & (∼ Jc ∼ Jd)
*f. (Ha ∨ ∼ Ha) ⊃ (Fbb ⊃ Fba)

5. For each pair construct an interpretation on which one sentence is true and
the other false.

a. Fab ⊃ Fba, Fba ⊃ Fab
*b. (Caa & Cab) ∨ Da, ∼ Da ∼ (Caa & Cab)

c. ∼ Ma ∨ Cpqr, Capq ∨ ∼ Mr
*d. Kac ∨ Kad, Kac & Kad

e. ∼ Ljk (Mjk ∨ Mkj), (Mjk & Mkj) & Ljk
*f. Fab ⊃ (Fbc ⊃ Fac), Fac ⊃ (Fcb ⊃ Fab)

6.a. Explain why there is no interpretation on which ‘Ba ∨ ∼ Ba’ is false.
*b. Can the sentence ‘Eab & ∼ Eba’ be true on an interpretation for which the

UD contains exactly one member? Explain.

390 PREDICATE LOGIC: SEMANTICS

7. Determine the truth-value of the following sentences on this interpretation:

UD: Set of people
Bx: x is a child
Cx: x is over 40 years old

Dxy: x and y are sisters
Fxy: x and y are brothers

a. (∀w)(Cw ⊃ (∃x)Dxx)
*b. (∃x)(∃y)(Fxy & Cx)

c. (∃x)(∀y)(By ∨ Fxy)
*d. (∀x)(∀y)(Dxy Fxy)

e. (∃x)Cx ⊃ ((∃x)(∃y)Fxy ⊃ (∃y)By)
*f. ∼ (∀w)(Cw ∨ Bw)
g. (∀x)Bx ⊃ (∀x)Cx

*h. (∀x)[(∃y)(Dxy ∨ Fxy) ⊃ Bx]
i. (∃x)[Cx ∨ (∃y)(Dxy & Cy)]

*j. (∀w)((Cw ∨ Bw) ⊃ (∃y)Fwy)

8. Determine the truth-value of each of the following sentences on this
interpretation:

UD: Set of U.S. presidents
Ax: x was the first U.S. president
Bx: x is a female
Ux: x is a U.S. citizen

Dxy: x held office after y’s first term of office
g: George Washington

a. (∀w)Dwg
*b. (∀x)(∀y)((Bx & Ay) ⊃ Dyx)

c. (∃x)(Ax & (∃y)Dyx)
*d. ((∃x)Ax & ∼ (∃z)Bz) & (Ag ⊃ (∀y)Uy)

e. (∀y)(Uy ⊃ (∃x)(Dyx ∨ Dxy))
*f. (∀w)(Bw ∼ Uw)
g. (∀x)(Dxg ⊃ (∃y)(∼ Uy & Dxy))

*h. (∃x)(Ax & Bx) (∀y)(Ay ⊃ Uy)
i. ∼ (Bg ∨ (∃x)(∀y)Dxy)

*j. (∀y)((By & Ay) ⊃ Dgy)

9. Determine the truth-value of each of the following sentences on this interpre-
tation:

UD: Set of positive integers
Bx: x is an even number

Gxy: x is greater than y
Exy: x equals y

Mxyz: x minus y equals z
a: 1
b: 2
c: 3

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 391

a. Bb & (∀w)(Gwb ⊃ ∼ Ewb)
*b. (∀x)(∀z)(∼ Exz Gxz)

c. (∀x)(∀z)(Gxz ⊃ ∼ Exz)
*d. (∀x)(∃w)(Gwx & (∃z)Mzxw)

e. ∼ (∀w)(∀y)Gwy ⊃ Mcba
*f. (∀y)(Eya ∨ Gya)
g. (∀z)(Bz ⊃ ∼ (∃y)(By & Mzay))

*h. (∀y)[(Bb & (∃x)Exb) ⊃ Mcby]
i. (∀x)(Exx ∼ (∃y)(∃z)Myzx)

*j. (∃x)((Bx & Gxc) & ∼ (∃z)Mxcz)

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY

Using the concept of an interpretation, we may now specify the quantificational
counterparts of various truth-functional concepts. Here are the relevant prop-
erties that individual sentences of PL may have:

A sentence P of PL is quantificationally true if and only if P is true on every
interpretation.

A sentence P of PL is quantificationally false if and only if P is false on every
interpretation.

A sentence P of PL is quantificationally indeterminate if and only if P is neither
quantificationally true nor quantificationally false.

These are the quantificational analogs of truth-functional truth, falsehood, and
indeterminacy. The definitions here, however, are stated in terms of interpre-
tations rather than truth-value assignments.

A sentence P is quantificationally true if and only if it is true on every
interpretation. The sentence ‘(∃x)(Gx ∨ ∼ Gx)’ is quantificationally true. We
cannot hope to show this by going through each of the interpretations of the
sentence since there are infinitely many. (To see this, it suffices to note that
there are infinitely many possible universes of discourse for the sentence. We
can, for instance, choose as our UD a set containing exactly one positive inte-
ger. Because there are an infinite number of positive integers, there are an infi-
nite number of such universes of discourse.)

However, we may reason about the sentence as follows: Because the
sentence is existentially quantified, it is true on an interpretation just in case
at least one member of the UD satisfies the condition specified by ‘Gx ∨ ∼ Gx’
—that is, just in case at least one member of the UD either is G or is not G.
Without knowing what the interpretation of ‘G’ is, we know that every mem-
ber of a UD satisfies this condition, for every member is either in or not in the
extension of ‘G’. And since by definition every interpretation has a nonempty

392 PREDICATE LOGIC: SEMANTICS

set as its UD, we know that the UD for any interpretation has at least one mem-
ber and hence at least one member that satisfies the condition specified by
the open sentence ‘Gx ∨ ∼ Gx’. Therefore ‘(∃x)(Gx ∨ ∼ Gx)’ is true on every
interpretation.

In general, to show that a sentence of PL is quantificationally true, we
must use reasoning showing that, no matter what the UD is and no matter how
the sentence letters, predicates, and individual constants are interpreted, the
sentence always turns out to be true. Here is another example. The sentence

(∃x)(∃y)(Gxy ⊃ (∀z)(∀w)Gzw)

is quantificationally true. That is, given any UD and any interpretation of ‘G’,
there are always members x and y of the UD that satisfy the condition speci-
fied by ‘(Gxy ⊃ (∀z)(∀w)Gzw)’. The sentence claims that there is a pair of
members of the UD such that if they stand in the relation G then all members
of the UD stand in the relation G. We will consider two possibilities for the
interpretation of the predicate: Either every pair of members of the UD is in
its extension or not every pair is in its extension.

If every pair is in the extension of ‘G’, then every pair x and y (hence
at least one pair) satisfies the condition specified by ‘(Gxy ⊃ (∀z)(∀w)Gzw)’
because the consequent is true in this case. Now consider the other possibility—
that some (at least one) pair is not in the extension of ‘G’. In this case that
pair satisfies the condition specified by ‘(Gxy ⊃ (∀z)(∀w)Gzw)’ because that
pair fails to satisfy the antecedent ‘Gxy’. Because either the interpretation of
‘G’ includes every pair of members of the UD in its extension or it does not
(there are no other possibilities), we have just shown that whatever the inter-
pretation of ‘G’ may be there will always be at least one pair of members of
the UD that satisfies ‘(Gxy ⊃ (∀z)(∀w)Gzw)’. This being so, the sentence
‘(∃x)(∃y)(Gxy ⊃ (∀z)(∀w)Gzw)’ is true on every interpretation. The sentence
is therefore quantificationally true.

The sentence

(∀y)By & (∃z) ∼ Bz

is quantificationally false. If an interpretation makes the first conjunct true,
then every member of the UD will be in the extension of ‘B’. But if this is
so, then no member of the UD satisfies the condition specified by ‘∼ Bz’, and so
the existentially quantified second conjunct is false. So on any interpretation
on which the first conjunct is true, the entire sentence is false. The sentence
is also false on any interpretation on which the first conjunct is false, just
because that conjunct is false. Since any interpretation either makes the first
conjunct true or makes the first conjunct false, it follows that on every inter-
pretation the sentence ‘(∀y)By & (∃z) ∼ Bz’ is false.

The sentence

(∀x)(∃y)(Fx ⊃ Gy) ((∃x)Fx & (∀y) ∼ Gy)

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 393

is also quantificationally false. Because the sentence is a biconditional, it is false
on any interpretation on which its immediate components have different truth-
values, and we can show that this is the case for every interpretation. Consider
first an interpretation on which the immediate component, ‘(∀x)(∃y)(Fx ⊃ Gy)’,
is true. For this to be true, every member x of the UD must satisfy the condi-
tion specified by ‘(∃y)(Fx ⊃ Gy)’. That is, every member x must be such that
if it is in the extension of ‘F’ then there is some member y of the UD that is
in the extension of ‘G’. It follows that the second immediate component of the
biconditional, ‘((∃x)Fx & (∀y) ∼ Gy)’, cannot be true. If it were true, then some
member of the UD would be in the extension of ‘F’ (to satisfy the first con-
junct), and no member of the UD would be in the extension of ‘G’. But the
truth of ‘(∀x)(∃y)(Fx ⊃ Gy)’, as we have seen, requires that if any object is in
the extension of ‘F’ then at least one object must be in the extension of ‘G’.
It follows that if ‘(∀x)(∃y)(Fx ⊃ Gy)’ is true on an interpretation then ‘((∃x)Fx
& (∀y) ∼ Gy)’ is false on that interpretation.

Now let us consider an interpretation on which ‘(∀x)(∃y)(Fx ⊃ Gy)’ is
false. In this case some member x of the UD must fail to satisfy the condition
specified by ‘(∃y)(Fx ⊃ Gy)’—x must be in the extension of ‘F’ (to satisfy the
antecedent of the conditional), and the extension of ‘G’ must be empty (so
the consequent is not satisfied). But in this case ‘((∃x)Fx & (∀y) ∼ Gy)’ must
be true because both conjuncts are true. ‘(∃x)Fx’ is true because some mem-
ber of the UD is in the extension of ‘F’, and ‘(∀y) ∼ Gy’ is true because the
extension of ‘G’ is empty. So any interpretation that makes ‘(∀x)(∃y)(Fx ⊃ Gy)’
false makes ‘((∃x)Fx & (∀y) ∼ Gy)’ true. Combined with the results of the
previous paragraph, this establishes that on any interpretation the immediate
components of ‘(∀x)(∃y)(Fx ⊃ Gy) ((∃x)Fx & (∀y) ∼ Gy)’ have different
truth-values. So the biconditional must be false on every interpretation and
therefore is quantificationally false.

Unfortunately it is not always so easy to show that a sentence is
quantificationally true or that it is quantificationally false. However, because
a quantificationally true sentence must be true on every interpretation, we can
show that a sentence is not quantificationally true by showing that it is false on
at least one interpretation. Take as an example the sentence

(Ga & (∃z)Bz) ⊃ (∀x)Bx

This sentence is not quantificationally true. To show this, we shall construct
an interpretation on which the sentence is false. The sentence is a material
conditional, and so our interpretation must make its antecedent true and its
consequent false. For the antecedent to be true, ‘Ga’ must be true and at least
one member of the UD must be in the extension of ‘B’. For the consequent
to be false, at least one member of the UD must fail to be in the extension of
‘B’. Using the set of positive integers as our UD, we shall interpret ‘G’ and ‘a’
so that ‘Ga’ comes out true, and we shall interpret ‘B’ so that at least one
member of the UD, but not all, falls into the extension of ‘B’. The following

394 PREDICATE LOGIC: SEMANTICS

interpretation will do the trick:

19. UD: Set of positive integers
Gx: x is odd
Bx: x is prime

a: 1

The antecedent ‘(Ga & (∃z)Bz)’ is true because the number 1 is odd and at
least one positive integer is prime, but ‘(∀x)Bx’ is false because not all positive
integers are prime.

As a second example ‘(∀x)[(Fx ∨ Gx) ∨ (∃y)Hxy]’ is not quantification-
ally true. We shall show this by constructing an interpretation on which the sen-
tence is false. Because the sentence is universally quantified, the UD must have at
least one member that fails to satisfy the condition specified by ‘(Fx ∨ Gx) ∨
(∃y)Hxy’. We choose the set of positive integers as our UD and choose 2 as the
member of the UD that does not satisfy the condition. (There is no particular
reason for using 2, but choosing a number helps us develop the rest of the inter-
pretation.) We interpret ‘F’ and ‘G’ so that the number 2 has neither property
(otherwise it would satisfy either ‘Fx’ or ‘Gx’). We must also interpret ‘H’ so that
the number 2 does not stand in the relation H to any positive integer:

20. UD: Set of positive integers
Fx: x is odd
Gx: x is greater than 4

Hxy: x is equal to y squared

Because 2 is neither odd nor greater than 4, and it is not the square of any
positive integer, it fails to satisfy the condition specified by ‘(Fx ∨ Gx) ∨
(∃y)Hxy’. Therefore the universally quantified sentence is false on interpreta-
tion 20. Having shown that there is at least one interpretation on which the
sentence is false, we may conclude that it is not quantificationally true.

We may show that a sentence is not quantificationally false by con-
structing an interpretation on which it is true. The sentence

∼ (∼ Ga & (∃y)Gy)

is not quantificationally false. To construct an interpretation on which it is true,
we must make ‘∼ Ga & (∃y)Gy’ false. To do so, we must make one or both con-
juncts false. We choose the first and interpret ‘G’ and ‘a’ so that ‘∼ Ga’ is false:

21. UD: Set of positive integers
Gx: x is even

a: 2

Because the number 2 is even, ‘Ga’ is true. Hence ‘∼ Ga’ is false and so is
‘∼ Ga & (∃y)Gy’. (The fact that the second conjunct turns out to be true on our
interpretation is irrelevant—the conjunction as a whole is still false.) Therefore

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 395

the negation of the conjunction is true on interpretation 21, and we may con-
clude that the sentence is not quantificationally false.

Note that we cannot show that a sentence is quantificationally true or
that it is quantificationally false by constructing a single interpretation. To show
that a sentence is quantificationally true, we must demonstrate that it is true
on every interpretation, and to show that a sentence is quantificationally false,
we must show that it is false on every interpretation.

A quantificationally indeterminate sentence is one that is neither quan-
tificationally true nor quantificationally false. We may show that a sentence is quan-
tificationally indeterminate by constructing two interpretations: one on which it
is true (to show that the sentence is not quantificationally false) and one on which
it is false (to show that the sentence is not quantificationally true). The sentence

∼ (∼ Ga & (∃y)Gy)

is quantificationally indeterminate. We have already constructed an interpretation
(interpretation 21) on which it is true; all that is left is to construct an interpre-
tation on which it is false. For the sentence to be false, ‘∼ Ga & (∃y)Gy’ must be
true. To make ‘∼ Ga’ true, our UD must contain at least one member that is not
in the extension of ‘G’, and ‘a’ will designate this member. But the UD must also
contain another member that is in the extension of ‘G’, to make ‘(∃y)Gy’ true:

22. UD: Set of positive integers
Gx: x is odd

a: 2

The number 2 is not odd, but at least one positive integer is, and so ‘∼ Ga &
(∃y)Gy’ is true and ‘∼ (∼ Ga & (∃y)Gy)’ is false on interpretation 22. The sen-
tence is therefore not quantificationally true. Having shown that the sentence
is neither quantificationally true nor quantificationally false, we may conclude
that it is quantificationally indeterminate.

Sometimes it takes ingenuity to find either an interpretation on which
a sentence is true or an interpretation on which a sentence is false. Examine
the sentence itself for guidelines, as we have just done. If it is a truth-functional
compound, then use your knowledge of the truth-conditions for that type of
compound. If the sentence is universally quantified, then the sentence will be
true if and only if the condition specified after the quantifier is satisfied by all
members of the UD you choose. If the sentence is existentially quantified, then
it will be true if and only if the condition specified after the quantifier is sat-
isfied by at least one member of the UD. As you examine the components of
the sentence, you may reason in the same way—are they truth-functional com-
pounds or quantified? Sometimes the desired interpretation cannot be
obtained. For example, a quantificationally true sentence is not false on any
interpretation; therefore any attempt to construct an interpretation that makes
the sentence false fails.

396 PREDICATE LOGIC: SEMANTICS

Two theoretical points are of interest here. The first is that, if a sen-
tence of predicate logic without identity is true on at least one interpretation,
then it is true on some interpretation that has the set of positive integers as its
UD. This result is known as the Löwenheim Theorem (it will be proved in the
exercises in Chapter 11). It follows from this result that, if a sentence of PL is
true on some interpretation with a finite UD, then it is true on some inter-
pretation that has the set of positive integers as its UD. And if a sentence of
PL is true on some interpretation for which the UD is larger than the set of
positive integers (for example, the set of real numbers), then it is true on at
least one interpretation that has the set of positive integers as its UD.

Note that this result means that the set of positive integers is always
a good choice for your UD as you construct interpretations. In fact, there are
sentences of PL that are not quantificationally true but that are nevertheless
true on every interpretation with a finite UD, and there are sentences of PL

that are not quantificationally false but are false on every interpretation with
a finite UD. For instance, the following sentence is not quantificationally false:

(∀x)(∀y)(∀z)[(Bxy & Byz) ⊃ Bxz] & [(∀x)(∃y)Bxy & (∀z) ∼ Bzz]

But it is false on every interpretation with a finite UD. To show that it is not
quantificationally false, then, you must choose a UD that has infinitely many
members—and the set of positive integers is a good choice.

In fact, in this section all our interpretations have used the set of pos-
itive integers as the UD. Although this was not necessary—we could have con-
structed interpretations using the set of all people, the set of all countries in
the world, the set consisting of the three authors of this book, or whatever—
we now see why it is a good choice. We shall therefore continue to use this
particular UD for our examples in the remainder of this chapter. In addition,
we shall make repeated use of very simple interpretations of predicates for
this UD—for example, the properties of being even and of being prime, the
relation of being greater than, and so on. Again this is not necessary—other
properties and relations could be used—but it is convenient to reuse the same
interpretations for predicates.

The second point is that there is no decision procedure for deciding, for
each sentence of PL, whether that sentence is quantificationally true, quantifica-
tionally false, or quantificationally indeterminate. (We shall not prove the result
here.) This is a very important way in which the semantics for PL differs from
the semantics for SL. For SL the construction of truth-tables gives a decision
procedure for whether a sentence is truth-functionally true, false, or indeter-
minate. That is, in a finite number of mechanical steps, we can always correctly
answer the questions ‘Is this sentence truth-functionally true?’, ‘Is this sentence
truth-functionally false?’, and ‘Is this sentence truth-functionally indetermi-
nate?’ The previous result mentioned in this paragraph, due to Church, is
that there is no analogous method for predicate logic—we have no such
general method now, and no such general method will ever be found. This
result does not mean that we cannot ever show that some sentences of PL are

8.2 QUANTIFICATIONAL TRUTH, FALSEHOOD, AND INDETERMINACY 397

quantificationally true, false, or indeterminate; rather, it shows that there is no
decision procedure (mechanical, certain, and requiring only a finite number
of steps) for determining the quantificational status of every sentence of PL.
However, it is interesting to note that there is such a procedure for determin-
ing the quantificational status of sentences of PL that contain no many-place
predicates, that is, in which the predicates are all one-place predicates. This
follows from a result by the logicians Bernays and Schönfinkel.1

8.2.E EXERCISES

1. Show that each of the following sentences is not quantificationally true by con-
structing an interpretation on which it is false.

a. (∀x)(Fx ⊃ Gx) ⊃ (∀x)Gx
*b. (∃x)(Fx ∨ Gx) ⊃ ((∃x)Fx ⊃ (∃x) ∼ Gx)

c. (∀x)(∃y)Bxy ⊃ (∃y)(∀x)Bxy
*d. (∀x)(Fxb ∨ Gx) ⊃ [(∀x)Fxb ∨ (∀x)Gx]

e. [(∀x)Fx ⊃ (∀w)Gw] ⊃ (∀z)(Fz ⊃ Gz)
*f. (∀x)(Ax ⊃ (∀y)By) ⊃ (∀y)(By ⊃ (∀x)Ax)
g. ∼ (∃x)Gx ⊃ (∀y)(Fyy ⊃ Gy)

*h. (∀x)(Bx Hx) ⊃ (∃x)(Bx & Hx)

2. Show that each of the following sentences is not quantificationally false by con-
structing an interpretation on which it is true.

a. ∼ (∀w)(∀y)Bwy (∀z)Bzz
*b. (∃x)Fx & (∃x) ∼ Fx

c. ((∃x)Fx & (∃x)Gx) & ∼ (∃x)(Fx & Gx)
*d. (∃x)((∃y)Fy ⊃ ∼ Fx)

e. (∀x)(Fx ⊃ Gx) & (∀x)(Gx ⊃ ∼ Fx)
*f. (∃x)(∀y)(Dyx ⊃ ∼ Dxy)
g. (∀x)(Bx Hx) ⊃ (∃x)(Bx & Hx)

*h. (∃x)(∀y)Dxy ∨ ∼ (∀y)(∃x)Dxy
i. (∀x)(∀y)(∀z) [(Bxy & Byz) ⊃ Bxz] & [(∀x)(∃y)Bxy & (∀z) ∼ Bzz]

3. Show that each of the following sentences is quantificationally indeterminate
by constructing an interpretation on which it is true and an interpretation on
which it is false.

a. (∃x)(Fx & Gx) ⊃ (∃x) ∼ (Fx ∨ Gx)
*b. (∃x)Fx ⊃ (∀w)(Cw ⊃ Fw)

c. (∀x)Bnx ⊃ (∀x) ∼ Bnx
*d. (∃x)(Fx ⊃ Gx) ⊃ (∃x)(Fx & Gx)

e. (∀x)(∀w)[(Nwx ∨ Nxw) ⊃ Nww]
*f. (Ma & Mb) & (∃x) ∼ Mx
g. (∀x)(Cx ∨ Dx) (∃y)(Cy & Dy)

*h. [∼ (∃x)Hx ∨ ∼ (∃x)Gx] ∨ (∀x)(Hx & Gx)

1“Zum Entscheidungsproblem der mathematischen Logik,” Mathematische Annalen, 99 (1928), 342–372. The result
mentioned in the previous paragraph is from Alonzo Church, “A Note on the Entscheidungsproblem,” Journal
of Symbolic Logic, 1 (1936), 40–41, 101–102.

398 PREDICATE LOGIC: SEMANTICS

4. Each of the following sentences is quantificationally true. Explain why.
a. (∃x)(∀y)Bxy ⊃ (∀y)(∃x)Bxy

*b. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
c. Fa ∨ [(∀x)Fx ⊃ Ga]

*d. (∀x)(∃y)Mxy ⊃ (∃x)(∃y)Mxy
e. (∃x)Hx ∨ (∀x)(Hx ⊃ Jx)

5. Each of the following sentences is quantificationally false. Explain why.
a. (∃w)(Bw ∼ Bw)

*b. (∀w)(Fw ⊃ Gw) & [(∀w)(Fw ⊃ ∼ Gw) & (∃w)Fw]
c. [(∀x)Fx ⊃ (∃y)Gy] & [∼ (∃x)Gx & ∼ (∃x) ∼ Fx]

*d. (∃x)(Fx & ∼ Gx) & (∀x)(Fx ⊃ Gx)
e. ((∀w)(Aw ⊃ Bw) & (∀w)(Bw ⊃ (Cw)) & (∃y)(Ay & ∼ Cy)

6. For each of the following sentences, decide whether it is quantificationally true,
quantificationally false, or quantificationally indeterminate. If the sentence is
quantificationally true or quantificationally false, explain why. If it is quantifi-
cationally indeterminate, construct interpretations that establish this.

a. ((∃x)Gx & (∃y)Hy) & (∃z) ∼ (Gz & Hz)
*b. ((∃x)Gx & (∃y)Hy) & ∼ (∃z)(Gz & Hz)

c. (∀x)(Fx ⊃ Gx) ⊃ (∀x)(∼ Gx ⊃ ∼ Fx)
*d. (∀x)Fx ⊃ ∼ (∃x) ∼ (Fx ∨ Gx)

e. (∀x)(Dx ⊃ (∃z)Hxz) ⊃ (∃z)(∀x)(Dx ⊃ Hxz)
*f. (∃z)(∀x)(Dx ⊃ Hxz) ⊃ (∀x)(Dx ⊃ (∃z)Hxz)

8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY

The next concept to be introduced is that of quantificational equivalence.

Sentences P and Q of PL are quantificationally equivalent if and only if there
is no interpretation on which P and Q have different truth-values.

The sentences

(∃x)Fx ⊃ Ga

and

(∀x)(Fx ⊃ Ga)

are quantificationally equivalent. We may reason as follows: First suppose that
‘(∃x)Fx ⊃ Ga’ is true on some interpretation. Then ‘(∃x)Fx’ is either true or false
on this interpretation. If it is true, then so is ‘Ga’ (by our assumption that ‘(∃x)Fx
⊃ Ga’ is true). But then, since ‘Ga’ is true, every object x in the UD is such that
if x is F then a is G. So ‘(∀x)(Fx ⊃ Ga)’ is true. If ‘(∃x)Fx’ is false, however, then

8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY 399

every object x in the UD is such that if x is F (which, on our assumption, it is
not) then a is G. Again ‘(∀x)(Fx ⊃ Ga)’ is true. Hence, if ‘(∃x)Fx ⊃ Ga’ is true
on an interpretation, ‘(∀x)(Fx ⊃ Ga)’ is also true on that interpretation.

Now suppose that ‘(∃x)Fx ⊃ Ga’ is false on some interpretation. Since
the sentence is a conditional, it follows that ‘(∃x)Fx’ is true and ‘Ga’ is false.
But if ‘(∃x)Fx’ is true, then some object x in the UD is in the extension of ‘F’.
This object then does not satisfy the condition that if it is F (which it is) then
a is G (which is false on our present assumption). So ‘(∀x)(Fx ⊃ Ga)’ is false
if ‘(∃x)Fx ⊃ Ga’ is. Taken together with our previous result, this demonstrates
that the two sentences are quantificationally equivalent.

The sentences

∼ (∃x)(∀y)(Gxy ∨ Gyx)

and

(∀x)(∃y)(∼ Gxy & ∼ Gyx)

are also quantificationally equivalent. As in the previous example, we will show
that if the first sentence is true on an interpretation then so is the second sen-
tence, and that if the first sentence is false on an interpretation then so is the sec-
ond sentence. First consider an interpretation on which ‘∼ (∃x)(∀y)(Gxy ∨ Gyx)’
is true. ‘(∃x)(∀y)(Gxy ∨ Gyx)’ must be false on this interpretation, so no
member x of the UD satisfies the condition specified by ‘(∀y)(Gxy ∨ Gyx)’.
That is, no member x of the UD is such that for every object y either the pair
x and y or the pair y and x is in the extension of ‘G’. Put another way, for each
member x of the UD, there is at least one object y such that both ‘∼ Gxy’ and
‘∼ Gyx’ hold. And that is exactly what the second sentence says, so it is true
as well.

Now consider an interpretation on which the first sentence is false;
‘(∃x)(∀y)(Gxy ∨ Gyx)’ is true on such an interpretation. So there is at least
one member x of the UD such that for every object y, either ‘Gxy’ or ‘Gyx’
holds. Such a member x therefore does not satisfy the condition specified by
‘(∃y)(∼ Gxy & ∼ Gyx)’ (there is no y such that neither ‘Gxy’ nor ‘Gyx’ holds).
And so the universally quantified sentence ‘(∀x)(∃y)(∼ Gxy & ∼ Gyx)’ is also
false. From this and the result of the preceding paragraph, we conclude that
the two sentences are quantificationally equivalent.

If we want to establish that two sentences are not quantificationally
equivalent, we can construct an interpretation to show this. The interpretation
must make one of the two sentences true and the other sentence false. For
example, the sentences

(∀x)(Fx ⊃ Ga)

and

(∀x)Fx ⊃ Ga

400 PREDICATE LOGIC: SEMANTICS

are not quantificationally equivalent. We shall construct an interpretation on
which the first sentence is false and the second sentence is true. To make the
first sentence false, ‘Ga’ has to be false, and there must be at least one object
in the extension of ‘F’—for then this object will fail to satisfy ‘(Fx ⊃ Ga)’. But
we can still make ‘(∀x)Fx ⊃ Ga’ true on our interpretation if the extension of
‘F’ does not include the entire UD—because then the antecedent ‘(∀x)Fx’ will
be false. Here is our interpretation:

23. UD: Set of positive integers
Fx: x is prime
Gx: x is even

a: 1

The number 3 (as one example) does not satisfy the condition that if it is prime
(which it is) then the number 1 is even (which is false). So ‘(∀x)(Fx ⊃ Ga)’ is
false on the interpretation. But ‘(∀x)Fx ⊃ Ga’ is true because its antecedent,
‘(∀x)Fx’, is false—not every positive integer is prime. Once again we see that
the scope of quantifiers is very important in determining the truth-conditions
of sentences of PL.

The sentences

(∀x)(∃y)(Hy ⊃ Lx)

and

(∀x)[(∃y)Hy ⊃ Lx]

are also not quantificationally equivalent. We shall show this by constructing an
interpretation on which the first sentence is true and the second sentence is
false. To make ‘(∀x)[(∃y)Hy ⊃ Lx]’ false, some member of the UD must fail
to satisfy ‘(∃y)Hy ⊃ Lx’. Therefore the UD must contain at least one object in
the extension of ‘H’ (so that ‘(∃y)Hy’ is satisfied) and at least one object x that
is not in the extension of ‘L’ (so that this object does not satisfy ‘Lx’). To make
‘(∀x)(∃y)(Hy ⊃ Lx)’ true, every member of the UD must satisfy ‘(∃y)(Hy ⊃ Lx)’
—for every member x of the UD, there must be an object y such that if y is H
then x is L. We have already decided that at least one object x will not be in
the extension of ‘L’. So, if x (along with all other members of the UD) is to
satisfy ‘(∃y)(Hy ⊃ Lx)’, then at least one member of y of the UD must not be
in the extension of ‘H’—for then y will be such that if it is H (it is not) then
x is L.

To sum up, we need at least one object that is in the extension of ‘L’ and
at least one object that is not in the extension of ‘H’. Here is our interpretation:

24. UD: Set of positive integers
Hx: x is odd
Lx: x is prime

8.3 QUANTIFICATIONAL EQUIVALENCE AND CONSISTENCY 401

The sentence ‘(∀x)[(∃y)Hy ⊃ Lx]’ is false—every positive integer x that is not
prime fails to satisfy the condition that if some positive integer is odd (which at
least one positive integer is) then x is prime. The sentence ‘(∀x)(∃y)(Hy ⊃ Lx)’
is true because at least one positive integer is not odd. For any positive integer
x there is at least one positive integer y that is not odd, and hence at least one
positive integer y such that if y is odd (which y is not) then x is prime.

While we may construct single interpretations to show that two sen-
tences are not quantificationally equivalent, we may not use the same method
to show that sentences are quantificationally equivalent. In the latter case we
must reason about every interpretation as we did in the examples at the begin-
ning of this section.

Quantificational consistency is our next concept.

A set of sentences of PL is quantificationally consistent if and only if there is
at least one interpretation on which all the members of the set are true. A
set of sentences of PL is quantificationally inconsistent if and only if the set is
not quantificationally consistent.

The set of sentences

{(∀x)Gax, ∼ Gba ∨ (∃x) ∼ Gax}

is quantificationally consistent. The following interpretation shows this:

25. UD: Set of positive integers
Gxy: x is less than or equal to y

a: 1
b: 2

On this interpretation ‘(∀x)Gax’ is true since 1 is less than or equal to every
positive integer. ‘∼ Gba’ is true since 2 is neither less than nor equal to 1; so
‘∼ Gba ∨ (∃x) ∼ Gax’ is true. Since both members of the set are true on this
interpretation, the set is quantificationally consistent.

The set

{(∀w)(Fw ⊃ Gw), (∀w)(Fw ⊃ ∼ Gw)}

is also quantificationally consistent. This may seem surprising since the first sen-
tence says that everything that is F is G and the second sentence says that every-
thing that is F is not G. But the set is consistent because, if no object in the
UD of an interpretation is in the extension of ‘F’, then every object w in the
UD will be such that if w is F (which w is not) then w is both G and not G.
The following interpretation illustrates this.

402 PREDICATE LOGIC: SEMANTICS

26. UD: Set of positive integers
Fx: x is negative
Gx: x is even

No positive integer is negative, so each positive integer w is such that if w is
negative (which w is not) then w is even, and each positive integer w is such
that if w is negative (which w is not) then w is not even. Both ‘(∀w)(Fw ⊃ Gw)’
and ‘(∀w)(Fw ⊃ ∼ Gw)’ are true on this interpretation.

Note that, while a single interpretation may be produced to show that
a set of sentences is quantificationally consistent, a single interpretation cannot

be used to show that a set of sentences is quantificationally inconsistent. To
show that a set is quantificationally inconsistent, we must show that on every
interpretation at least one sentence in the set is false. In some cases simple rea-
soning shows that a set of sentences is quantificationally inconsistent. The set

{(∃y)(Fy & ∼ Ny), (∀y)(Fy ⊃ Ny)}

is quantificationally inconsistent. For if ‘(∃y)(Fy & ∼ Ny)’ is true on some inter-
pretation then some member y of the UD is F and is not N. But then that mem-
ber is not such that if it is F (which it is) then it is N (which it is not). Hence
the universally quantified sentence ‘(∀y)(Fy ⊃ Ny)’ is false on such an inter-
pretation. So there is no interpretation on which both set members are true;
the set is quantificationally inconsistent.

8.3E EXERCISES

1. Show that the sentences in each of the following pairs are not quantification-
ally equivalent by constructing an interpretation on which one of the sentences
is true and the other is false.

a. (∃x)Fx ⊃ Ga, (∃x)(Fx ⊃ Ga)
*b. (∃x)Fx & (∃x)Gx, (∃x)(Fx & Gx)

c. (∀x)Fx ∨ (∀x)Gx, (∀x)(Fx ∨ Gx)
*d. (∃x)(Fx ∨ Ga), (∃x)(Fx ∨ Gb)

e. (∀x)(Fx Gx), (∃x)Fx (∃x)Gx
*f. (∀x)(Fx ⊃ Gx), (∀y)((∀x)Fx ⊃ Gy)
g. (∃x)(Bx & (∀y)Dyx), (∀x)(Bx ⊃ (∀y)Dyx)

*h. (∃y)(My Ny), (∃y)My (∃y)Ny
i. (∀x)(∃y)(Fx ⊃ Kyx), (∃x)(∃y)(Fx ⊃ Kyx)

2. In each of the following pairs the sentences are quantificationally equivalent.
Explain why.

a. (∀x)Fx ⊃ Ga, (∃x)(Fx ⊃ Ga)
*b. (∀x)(Fx ⊃ Gx), ∼ (∃x)(Fx & ∼ Gx)

c. (∃x)(Fx ∨ Gx), ∼ (∀y)(∼ Fy & ∼ Gy)
*d. (∀x)(∀y)(Mxy & Myx), ∼ (∃x)(∃y)(∼ Mxy ∨ ∼ Myx)

e. (∀x)(∀y)Gxy, (∀y)(∀x)Gxy
*f. (∀x)(∀y)(Fxy ⊃ Hyx), ∼ (∃x)(∃y)(Fxy & ∼ Hyx)

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 403

3. Decide, for each of the following pairs of sentences, whether the sentences are
quantificationally equivalent. If they are quantificationally equivalent, explain
why. If they are not quantificationally equivalent, construct an interpretation
that shows this.

a. (∃x)(Fx ∨ Gx), (∀x) ∼ (Fx & Gx)
*b. (∃x)(Fx & Gx), ∼ (∀x) ∼ (Fx ∨ Gx)

c. (∀w)(∀y)(Gyw ∨ Gwy), (∀w)(∀y)(Gww ∨ Gwy)
*d. (∀y)((∃z)Hzy ⊃ Hyy), (∀y)((∃z)(Hzz ⊃ Hzy)

4. Show that each of the following sets of sentences is quantificationally consistent
by constructing an interpretation on which every member of the set is true.

a. {(∃x)Bx, (∃x)Cx, ∼ (∀x)(Bx ∨ Cx)}
*b. {(∃x)Fx ∨ (∃x)Gx, (∃x) ∼ Fx, (∃x) ∼ Gx}

c. {(∀x)(Fx ⊃ Gx), (∀x)(Nx ⊃ Mx), (∀x)(Gx ⊃ ∼ Mx)}
*d. {(∀x)(Dax Bax), ∼ Dab, ∼ Bba}

e. {(∀w)(Nw ⊃ (∃z)(Mz & Cwz), (∀z)(∀w)(Mz ⊃ ∼ Cwz)}
*f. {(∃w)Fw, (∀w)(Fw ⊃ (∃x)Bxw), (∀x) ∼ Bxx}
g. {∼ (∀y)(Ny ⊃ My), ∼ (∀y) ∼ (Ny ⊃ My)}

*h. {(∀x)(Bx (∀y)Cxy), (∃x) ∼ Bx, (∃x)(∃y)Cxy}
i. {(∃y)Fay, (∃y) ∼ Gay, (∀y)(Fay ∨ Gay)}

5. Each of the following sets of sentences is quantificationally inconsistent.
Explain why.

a. {(∃x)(Bx & Cx), (∀x) ∼ (Bx ∨ Cx)}
*b. {(∃x)(∃y)(Bxy ∨ Byx), ∼ (∃x)(∃y)Bxy}

c. {(∀x)(∀y)(Byx ∨ Bxy), (∃y) ∼ Byy}
*d. {Ba, (∃y)Day, (∀x)(Bx ⊃ (∀y) ∼ Dxy)}

e. {(∃x)(∀y)Gxy, (∀x)(∀y) ∼ Gxy}
*f. {(∀x)Fx ∨ (∀x) ∼ Fx, (∃x)Fx (∃x) ∼ Fx}

6. Decide, for each of the following sets of sentences, whether the set is quantifi-
cationally consistent. If the set is quantificationally consistent, construct an inter-
pretation that shows this. If it is quantificationally inconsistent, explain why.

a. {(∃x)Fx ⊃ (∀x)Fx, (∃x) ∼ Fx, (∃x) Fx}
*b. {(∃x)(∃y)Gxy, (∀y) ∼ Gyy}

c. {(∀x) ∼ (∀y)Gxy, (∀x)Gxx}
*d. {(∃x)Px, (∀y)(Py ⊃ Hya), ∼ (∀x) ∼ Hxa}

7. Explain why sentences P and Q of PL are quantificationally equivalent if and
only if P Q is quantificationally true.

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY

Our last two semantic concepts for the language PL are the concepts of quan-
tificational entailment and quantificational validity.

A set of sentences of PL quantificationally entails a sentence P of PL if and only
if there is no interpretation on which every member of is true and P is false.

404 PREDICATE LOGIC: SEMANTICS

An argument of PL is quantificationally valid if and only if there is no
interpretation on which every premise is true and the conclusion is false. An
argument of PL is quantificationally invalid if and only if the argument is not
quantificationally valid.

The set

{(∀x)(Bx ⊃ Ga), (∃x)Bx}

quantificationally entails the sentence ‘Ga’. As in SL we may use the double
turnstile and write this as

{(∀x)(Bx ⊃ Ga), (∃x)Bx} Ga

Suppose that ‘(∀x)(Bx ⊃ Ga)’ and ‘(∃x)Bx’ are both true on some interpre-
tation. Since ‘(∀x)(Bx ⊃ Ga)’ is true, we know that every object x in the UD
is such that if x is B then a is G. Since ‘(∃x)Bx’ is true, we know that at least
one object x in the UD of the interpretation is in the extension of ‘B’. Since
it is true that, if that object is B (which it is) then a is G, ‘Ga’ must therefore
be true. So, on any interpretation on which ‘(∀x)(Bx ⊃ Ga)’ and ‘(∃x)Bx’ are
both true, ‘Ga’ is also true. So the entailment does hold.

The set

{(∀y)(∼ Jy ∨ (∃z)Kz), (∃y)Jy}

quantificationally entails the sentence

(∃z)Kz

We shall show that any interpretation that makes the two sentences in the set
true also makes ‘(∃z)Kz’ true. If an interpretation makes the first sentence in
the set true, then every member y of the UD satisfies the condition specified
by ‘(∼ Jy ∨ (∃z)Kz)’. Every member is such that either it is not J or some mem-
ber of the UD is K. If the second sentence is also true on the interpretation,
then some member of the UD is J. Because this member must satisfy the dis-
junction ‘∼ Jy ∨ (∃z)Kz’ and, being J, it does not satisfy the disjunct ‘∼ Jy’, the
second disjunct must be true. And the second disjunct is ‘(∃z)Kz’, so it is true
whenever the two set members are true.

The argument

(∃x)(Fx ∨ Gx)

(∀x) ∼ Fx

(∃x)Gx

|=

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 405

is quantificationally valid. Suppose that on some interpretation both premises
are true. If the first premise is true, then some member x of the UD is either
F or G. If the premise ‘(∀x) ∼ Fx’ is true, then no member of the UD is F.
Therefore, because the member that is either F or G is not F, it must be G.
Thus ‘(∃x)Gx’ will also be true on such an interpretation.

We can show that a set of sentences does not quantificationally entail a
sentence by constructing an interpretation. For example, the set

{∼(∀x)(Gx Fx), ∼ Fb}

does not quantificationally entail the sentence

(∀x) ∼ Gx

We will construct an interpretation on which the members of the set are true
and ‘(∀x) ∼ Gx’ is false. For the sentence ‘∼ (∀x)(Gx Fx)’ to be true, the
UD must contain at least one member that fails to satisfy ‘Gx Fx’—the mem-
ber must be in the extension of one of the two predicates but not in the exten-
sion of the other. For ‘∼ Fb’ to be true, ‘b’ must designate an object that is not
in the extension of ‘F’. And ‘(∀x) ∼ Gx’, which claims that everything is not
G, will be false if at least one object in the UD is in the extension of ‘G’. Here
is an interpretation that satisfies these conditions:

27. UD: Set of positive integers
Fx: x is greater than 5
Gx: x is prime

b: 3

Not all positive integers are prime if and only if they are greater than 5—take
2 as an example—and 3 is not greater than 5. Therefore the set members are
both true on this interpretation. On the other hand, ‘(∀x) ∼ Gx’ is false,
because some positive integers are prime.

To show that an argument is quantificationally invalid, we can construct
an interpretation on which its premises are true and its conclusion is false. The
argument

(∃x)[(∃y)Fy ⊃ Fx]

(∃y) ∼ Fy

∼ (∃x)Fx

is quantificationally invalid. We can make the first premise true by interpreting
‘F’ so that at least one member of the UD is in its extension—for then that
object will satisfy the condition specified by ‘(∃y)Fy ⊃ Fx’ because it will satisfy
its consequent. The second premise will be true if at least one member of the

406 PREDICATE LOGIC: SEMANTICS

UD is not in the extension of ‘F’. So ‘F’ will have some, but not all, of the mem-
bers of the UD in its extension. Because some members will be in the exten-
sion, the conclusion will turn out to be false. Here is an interpretation:

28. UD: Set of positive integers
Fx: x is prime

Some positive integer x is such that if there exists a prime positive integer then
x is prime—for example, the integer 5 satisfies this condition—and some pos-
itive integer is not prime, but it is false that no positive integer is prime.

Note that we cannot prove that a quantificational entailment does hold
or that an argument is quantificationally valid by constructing a single inter-
pretation. Proving either of these involves proving something about the truth-
value of sentences on every interpretation, not just a select few.

And, once again, there are limitations on deciding questions of
quantificational equivalence, consistency, entailment, and validity. Owing to
Church’s result, mentioned at the end of Section 8.2, we know that there is no
procedure for deciding these questions for every group of sentences of PL.2

However, our method of producing interpretations to establish quantificational
consistency, nonequivalence, nonentailment, and invalidity, although not a
decision procedure, often produces the desired result. We have, for instance,
just used this method to show that an argument is quantificationally invalid.
Ingenuity in choosing an appropriate interpretation for sentences containing
quantifiers is once again generally required.

8.4E EXERCISES

1. Establish each of the following by constructing an appropriate interpretation.
a. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ Gx)} (∃x)(Hx & Fx)

*b. {(∀y)(Fy Fa), Fa} ∼ Fb
c. {(∃x)Fx} Fa

*d. {(∀x)(Bx ⊃ Cx), (∃x)Bx} (∀x)Cx
e. {(∃x)(Bx ⊃ Cx), (∃x)Cx} (∃x)Bx

*f. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ ∼ Fx)} (∀x)(Hx ⊃ Gx)
g. {(∀x)(∃y) ∼ Lxy} (∀x) ∼ Lxx

*h. {(∃x)(∀y)(Hxy ∨ Jxy), (∃x)(∀y) ∼ Hxy} (∃x)(∀y)Jxy

2. Show that each of the following arguments is quantificationally invalid by con-
structing an appropriate interpretation.

|=/
|=/

|=/
|=/
|=/

|=/
|=/

|=/

2Moreover some arguments can be proved quantificationally invalid and some sets quantificationally consistent
only by means of interpretations with universes of discourse containing an infinite number of members. How-
ever, there is a result for sets of sentences analogous to the Löwenheim Theorem (mentioned in Section 8.2),
which says that if a set of sentences is quantificationally consistent—or an argument quantificationally invalid—
then this can be shown by means of interpretations with the set of positive integers as the UD. It is not necessary
in any case to check interpretations with larger universes of discourse. This result is known as the Löwenheim-
Skolem Theorem and is assigned as an exercise in Chapter 11.

8.4 QUANTIFICATIONAL ENTAILMENT AND VALIDITY 407

a. (∀x)(Fx ⊃ Gx) ⊃ (∃x)Nx

(∀x)(Nx ⊃ Gx)

(∀x)(∼ Fx ∨ Gx)

*b. (∼ (∃y)Fy ⊃ (∃y)Fy) ∨ ∼ Fa

(∃z)Fz

c. (∃x)(Fx & Gx)

(∃x)(Fx & Hx)

(∃x)(Gx & Hx)

*d. (∀x)(Fx ⊃ Gx)

Ga

Fa

e. (∀x)(Fx ⊃ Gx)

∼ (∃x)Fx

∼ (∃x)Gx

*f. (∀x)(∀y)(Mxy ⊃ Nxy)

(∀x)(∀y)(Mxy ⊃ (Nxy & Nyx))

g. (∃x)Gx

(∀x)(Gx ⊃ Dxx)

(∃x)(∀y)(Gx & Dxy)

*h. Fa ∨ (∃y)Gya

Fb ∨ (∃y) ∼ Gyb

(∃y)Gya

i. (∀x)(Fx ⊃ Gx)

(∀x)(Hx ⊃ Gx)

(∀x)(Fx ∨ Hx)

3. Using the given symbolization keys, symbolize the following arguments in PL.
Then show that the first symbolized argument in each pair is quantification-
ally valid while the second is not.

a. UD: Set consisting of all things
Bx: x is beautiful
Px: x is a person

Everything is beautiful. Therefore something is beautiful.

Everyone is beautiful. Therefore someone is beautiful.

408 PREDICATE LOGIC: SEMANTICS

*b. UD: Set of people
Rx: x roller skates
Dx: x can dance

Not everyone can dance. Therefore someone can’t dance.

No one who roller skates can dance. Therefore some roller skater can’t dance.

c. UD: Set of people
Lxy: x loves y

There is a person who loves everyone. Therefore everyone is loved by
someone.

Everyone is loved by someone. Therefore there is a person who loves everyone.

*d. UD: Set of numbers
Ex: x is even
Dx: x is divisible by 2

Some numbers are even and some numbers are divisible by 2. Therefore
some numbers are even if and only if some numbers are divisible by 2.

A number is even if and only if it is divisible by 2. Therefore some number
is even.

e. UD: Set of people
Tx: x is a student
Sx: x is smart

Hx: x is happy

Some students are smart and some students are not happy. Therefore there
is a student who is smart or not happy.

All students are smart, and no student is happy. Therefore there is a student
who is smart or not happy.

*f. UD: Set of people
Sx: x is a senator
Rx: x is a Republican
Dx: x is a Democrat

Any senator who is not a Republican is a Democrat. There is a senator who
is not a Republican. Therefore some senator is a Democrat.

There is a senator who is not a Republican. Therefore some senator is a
Democrat.

g. UD: Set of people
Ax: x likes asparagus
Sx: x likes spinach
Cx: x is crazy

Anyone who likes asparagus is crazy, and anyone who is crazy likes spinach.
Therefore anyone who likes asparagus also likes spinach.

Anyone who likes spinach is crazy, and anyone who is crazy likes asparagus.
Therefore anyone who likes asparagus also likes spinach.

8.5 TRUTH-FUNCTIONAL EXPANSIONS 409

4. Decide, for each of the following arguments, whether it is quantificationally
valid. If the argument is quantificationally valid, explain why. If the argument
is not quantificationally valid, construct an interpretation that shows this.

a. (∀x)((Lx & Dx) ⊃ Fx)

(∃x)(Dx & ∼ Fx)

∼(∃x)Lx

*b. (∀x)(Sx ⊃ (Gx ∨ Bx))

(∃x)(Sx & ∼ Bx)

(∃x)Gx

c. (∃x)(Hx (Rx ∨ Sx))

(∃x)((Hx & Rx) ∨ (Hx & Sx))

*d. (∃x)(∃y)((Rx & Sy) & Pxy)

(∀x)(Rx ⊃ Tx)

(∃x)(∃y)(Tx & Pxy)

8.5 TRUTH-FUNCTIONAL EXPANSIONS

In the preceding sections we constructed interpretations for sentences of PL to
establish various semantic results: A sentence is not quantificationally true, a
set of sentences is quantificationally consistent, and so on. When we give an
interpretation for a sentence or a set of sentences of PL, the UD we select may
be very large or even infinite. However, when we ask whether certain sentences
have various semantic properties, we can often find the answer by considering
only interpretations with a relatively small UD. Truth-functional expansions
enable us to reason about the truth-values of sentences for interpretations with
small UDs.

We shall introduce truth-functional expansions with an example. Con-
sider the sentence

(∀x)(Wx ⊃ (∃y)Cxy)

and the interpretation

29. UD: The set {1, 2}
Wx: x is even
Cxy: x is greater than y

410 PREDICATE LOGIC: SEMANTICS

The sentence is true on this interpretation; every even member of the UD (in
this case the number 2) is greater than some member of the UD. If we desig-
nate each member of the UD with a constant, for example,

a: 1
b: 2

then we can use these constants to produce a sentence without quantifiers that
says the same thing about our UD as the sentence above. We can eliminate the
universal quantifier and use a conjunction instead to say that each member of
the UD is such that if it is even then it is greater than some member of the UD:

(Wa ⊃ (∃y)Cay) & (Wb ⊃ (∃y)Cby)

We can now eliminate the existential quantifier in ‘(∃y)Cay’ and use a dis-
junction instead to say that 1 is greater than some member of the UD:

(Wa ⊃ (Caa ∨ Cab)) & (Wb ⊃ (∃y)Cby)

Because ‘a’ and ‘b’ designate the two objects in the UD, ‘(Caa ∨ Cab)’ makes
the same claim about the UD as ‘(∃y)Cay’ does—the claim that 1 is greater
than at least one member of the UD. We can eliminate the remaining exis-
tential quantifier in a similar way:

(Wa ⊃ (Caa ∨ Cab)) & (Wb ⊃ (Cba ∨ Cbb))

The sentence that we have just produced says the same thing about our UD as
the original sentence. It is called a truth-functional expansion of the original sen-
tence for the set of constants {‘a’, ‘b’}.

Although we introduced interpretation 29 for illustration, we may
generalize what we have just said about the quantified sentence and its truth-
functional expansion. On any interpretation in which each member of the UD
is designated by one of the constants ‘a’ and ‘b’, the quantified sentence has
the same truth-value as its truth-functional expansion using those constants.

The principles behind truth-functional expansions are simple. A uni-
versally quantified sentence says something about each member of the UD. If
we have a finite UD and a set of constants such that each member of the UD
is designated by at least one of these constants, then we can reexpress a uni-
versally quantified sentence as a conjunction of its substitution instances
formed from the constants. As long as every member of the UD is designated
by at least one of the constants, the conjunction ends up saying the same thing
as the universally quantified sentence—that every member of the UD satisfies
some condition. An existentially quantified sentence says that there is at least
one member of the UD of which such-and-such is true and can be reexpressed
as a disjunction of its substitution instances: The sentence says that such-and-
such is true of this object or of that object or . . . As long as every member of

8.5 TRUTH-FUNCTIONAL EXPANSIONS 411

the UD is designated by at least one of the constants, the disjunction of sub-
stitution instances makes the same claim about the UD as did the existentially
quantified sentence.

In constructing a truth-functional expansion, we first choose a set
of individual constants. If the sentence contains any constants, they must
be among the constants chosen. To expand a universally quantified sentence
(∀x)P, we remove the initial quantifier from the sentence and replace the
resulting open sentence with the iterated conjunction

(. . . (P(a1 x) & P(a2 x)) & . . . & P(an x))

where a1, . . . , an are the chosen constants and P(ai x) is a substitution instance
of (∀x)P. Each of the conjuncts is a substitution instance of (∀x)P, differing
from one another only in that each is formed from a different constant, and
there is one substitution instance for each of the individual constants.

We shall expand the sentence ‘(∀x)Nx’ for the set of constants {‘a’,
‘b’}. Removing the quantifier gives us the open sentence ‘Nx’, and we replace
‘Nx’ with the conjunction ‘Na & Nb’. We can expand ‘(∀y)(My ⊃ Jyy)’ for the
same set of constants by first dropping the quantifier and then replacing
‘My ⊃ Jyy’ with an iterated conjunction. In the first conjunct ‘a’ replaces the
free variable ‘y’, and in the second conjunct ‘b’ replaces that variable. The
truth-functional expansion

(Ma ⊃ Jaa) & (Mb ⊃ Jbb)

has the same truth-value as the unexpanded sentence on every interpretation
in which each member of the UD is named by at least one of the two constants.
If we have an interpretation with a two-member UD, for example, in which
‘a’ designates one member and ‘b’ designates the other, then ‘(Ma ⊃ Jaa) &
(Mb ⊃ Jbb)’ makes the same claim about the UD as ‘(∀y)(My ⊃ Jyy)’—namely,
that each of the two members is such that if it is M then it stands in the rela-
tion J to itself.

We have claimed that a truth-functional expansion has the same truth-
value as the unexpanded sentence on any interpretation on which each mem-
ber of the UD is named by at least one of the constants used in the expansion.
We note two points about this claim, using the previous example to illustrate.
The first is that the interpretations in question may assign the same object to
several of the constants as long as each object in the UD is named by at least
one of them. So, if we have an interpretation with a one-member UD, both ‘a’
and ‘b’ must refer to that one member. In this case every object in the UD is
named by at least one of the two constants. Our expanded sentence says twice
that the one member of the UD is such that if it is M then it stands in the rela-
tion J to itself, and this is equivalent to the universal claim that every member
of the UD satisfies that condition.

The second point is that, if a UD for an interpretation has even
one member that is not designated by one of the two constants, then the two

412 PREDICATE LOGIC: SEMANTICS

sentences may fail to have the same truth-value. The following interpretation
shows this:

30. UD: The set {1, 2}
Mx: x is positive
Jxy: x equals y squared

a: 1
b: 1

The expanded sentence ‘(Ma ⊃ Jaa) & (Mb ⊃ Jbb)’, which says twice that if 1 is
positive then it equals itself squared, is true on this interpretation. But the uni-
versally quantified sentence ‘(∀y)(My ⊃ Jyy)’ is false on this interpretation
because 2, which was not mentioned in the expansion, does not satisfy the con-
dition specified after the quantifier. If, however, interpretation 30 had interpreted
‘b’ to designate 2 (leaving ‘a’ to designate 1), our requirement that each mem-
ber of the UD be designated by at least one of the constants would have been
met. In this case the two sentences would have had the same truth-value (false).

Now we shall expand the sentence

(∀x)(Gac ∨ Fx)

We have stipulated that the set of constants we use for an expansion must
include all the individual constants that occur in the sentence being expanded.
So any set of constants for which we expand the sentence must include ‘a’ and
‘c’. We can expand the sentence for the set containing just those constants, in
which case removing the initial quantifier and replacing ‘x’ with each constant
in turn results in the expansion

(Gac ∨ Fa) & (Gac ∨ Fc)

If we expand the sentence for the larger set {‘a’, ‘c’, ‘e’} we obtain

((Gac ∨ Fa) & (Gac ∨ Fc)) & (Gac ∨ Fe)

If the sentence we want to expand contains more than one universal
quantifier, we can start with the leftmost one and remove each in turn. To expand

(∀y)(Ly & (∀z)Bzy)

for the set of constants {‘a’, ‘b’}, we first eliminate the quantifier ‘(∀y)’ and
expand the resulting open sentence, ‘(Ly & (∀z)Bzy)’, to obtain

[La & (∀z)Bza] & [Lb & (∀z)Bzb]

The expanded sentence now contains two occurrences of the quantifier ‘(∀z)’;
this is because ‘(∀z)Bzy’ was part of the open sentence obtained by removing

8.5 TRUTH-FUNCTIONAL EXPANSIONS 413

the quantifier ‘(∀y)’ and hence became part of each conjunct. We now expand
each of the universally quantified sentences that are components of ‘[La &
(∀z)Bza] & [Lb & (∀z)Bzb]’ by eliminating each occurrence of ‘(∀z)’ and
expanding the resulting open sentences, to obtain first

[La & (Baa & Bba)] & [Lb & (∀z)Bzb]

and then

[La & (Baa & Bba)] & [Lb & (Bab & Bbb)]

Here we replaced ‘(∀z)Bza’ with ‘(Baa & Bba)’ and ‘(∀z)Bzb’ with ‘(Bab &
Bbb)’. Note that when we expand a quantified sentence that is a component
of another sentence—as with ‘(∀z)Bza’ and ‘(∀z)Bzb’—we replace that com-
ponent exactly where it occurred in the sentence being expanded.

We may expand existentially quantified sentences just as we expand
universally quantified sentences, except in this case we construct an iterated
disjunction rather than an iterated conjunction. A sentence of the form (∃x)P
expands to the disjunction

(. . . (P(a1 x) ∨ P(a2 x)) ∨ . . . ∨ P(an x))

where a1, . . . , an are the constants in the chosen set and P(ai x) is a substi-
tution instance of (∀x)P. We construct an iterated disjunction because an exis-
tential quantification indicates that at least one member of the UD satisfies the
specified condition: This member satisfies the condition, or that member satis-
fies the condition, and so on.

We can expand the sentence

(∃x)(Fx ⊃ Gx)

for the set of constants {‘a’, ‘b’, ‘c’} as

[(Fa ⊃ Ga) ∨ (Fb ⊃ Gb)] ∨ (Fc ⊃ Gc)

On any interpretation on which all the members of the UD are named by at
least one of ‘a’, ‘b’, and ‘c’, the expanded sentence has the same truth-value
as the existentially quantified sentence. If the existentially quantified sentence
is true, for example, then some member of the UD is such that if it is F then
it is G. As long as at least one of ‘a’, ‘b’, or ‘c’ designates this object, the dis-
junct that contains that constant is true as well. If the existentially quantified
sentence is false, then no object in the UD satisfies the condition, and hence
none of the disjuncts is true.

As with universally quantified sentences, our claims require that each

member of the UD be designated by at least one of the constants. For example,

414 PREDICATE LOGIC: SEMANTICS

‘(∃x)(Fx ⊃ Gx)’ is true but its expansion, ‘[(Fa ⊃ Ga) ∨ (Fb ⊃ Gb)] ∨ (Fc ⊃ Gc)’,
is false on interpretation 31:

31. UD: The set {1, 2}
Fx: x is prime
Gx: x is odd

a: 2
b: 2
c: 2

The number 1 satisfies the condition that if it is prime then it is odd, so the
existentially quantified sentence is true. However, the expansion mentions
the number 2 only on interpretation 31; it is false because 2 does not satisfy
the condition that if it is prime (it is) then it is odd. The existentially quantified
sentence and its expansion will have the same truth-value on an interpretation
only if every member of the UD is named by at least one of the constants used
in the expansion.

We expand the sentence

(∃x)(∃w)Zwx

for the set of constants {‘a’, ‘b’} as follows: First, we eliminate ‘(∃x)’ and replace
‘(∃w)Zwx’ with an iterated disjunction:

(∃w)Zwa ∨ (∃w)Zwb

Then we eliminate ‘(∃w)’ in each of its occurrences, first to obtain

(Zaa ∨ Zba) ∨ (∃w)Zwb

and then to obtain

(Zaa ∨ Zba) ∨ (Zab ∨ Zbb)

To expand the sentence

(∃w)[Gw ⊃ ∼ (Fw ∨ (∃z)Bz)]

for the set of constants {‘a’, ‘b’}, we first eliminate ‘(∃w)’ to obtain

[Ga ⊃ ∼ (Fa ∨ (∃z)Bz)] ∨ [Gb ⊃ ∼ (Fb ∨ (∃z)Bz)]

and then eliminate both occurrences of ‘(∃z)’ to obtain

[Ga ⊃ ∼ (Fa ∨ (Ba ∨ Bb))] ∨ [Gb ⊃ ∼ (Fb ∨ (Ba ∨ Bb))]

8.5 TRUTH-FUNCTIONAL EXPANSIONS 415

The sentence

(∀x)(Fx ∨ (∃z)[Fz & ∼ Izx])

can also be expanded by systematic elimination of its quantifiers. We shall
expand it for the set of constants {‘b’, ‘f ’}. First, the universal quantifier is elim-
inated to obtain the conjunction

[Fb ∨ (∃z)[Fz & ∼ Izb]] & (Ff ∨ (∃z)[Fz & ∼ Izf])

Next we eliminate the first occurrence of ‘(∃z)’ to obtain

(Fb ∨ [(Fb & ∼ Ibb) ∨ (Ff & ∼ Ifb)] & (Ff ∨ (∃z)[Fz & ∼ Izf])

Now we eliminate the second occurrence of ‘(∃z)’, again using a disjunction
since we are eliminating an existential quantifier:

(Fb ∨ [(Fb & ∼ Ibb) ∨ (Ff & ∼ Ifb)]) &
(Ff ∨ [(Fb & ∼ Ibf) ∨ (Ff & ∼ Iff)])

When we expand a sentence, we may choose a set containing only one
constant for the expansion. In this case we simply remove the quantifier and
replace the free variable in the resulting open sentence with that constant.
‘(∀x)Fx’ is expanded for the set of constants {‘a’} as ‘Fa’, and ‘(∃x)Fx’ is also
expanded as ‘Fa’. With the same set of constants, ‘(∃y)Gyy’ is expanded as ‘Gaa’
and ‘(∀x)(Fx ∨ (∃y)Gyy)’ is expanded first to obtain ‘(Fa ∨ (∃y)Gyy)’ and then
to obtain ‘(Fa ∨ Gaa)’.

As a final example we expand the sentence

Dg ∨ (∀y)(∃x)Cyx

for the set of constants {‘a’, ‘g’} (we must include ‘g’ in the set because it occurs
in the sentence to be expanded). We first replace ‘(∀y)(∃x)Cyx’ with its expan-
sion to obtain

Dg ∨ [(∃x)Cax & (∃x)Cgx]

Then we replace ‘(∃x)Cax’ with its expansion to obtain

Dg ∨ [(Caa ∨ Cag) & (∃x)Cgx]

Finally we replace ‘(∃x)Cgx’ with its expansion to obtain

Dg ∨ [(Caa ∨ Cag) & (Cga ∨ Cgg)]

416 PREDICATE LOGIC: SEMANTICS

When we have expanded a sentence of PL to eliminate every quantifier,
the truth-functional expansion that results is always an atomic sentence or a truth-
functional compound of atomic sentences of PL. Because of this, we can con-
struct truth-tables for truth-functional expansions. And the truth-tables, in turn,
tell us something about the truth-conditions of the sentences that have been
expanded. For example, the truth-functional expansion of the sentence ‘(∀x)(Fx
& ∼ Bx)’ for the set of constants {‘a’, ‘b’} is ‘(Fa & ∼ Ba) & (Fb & ∼ Bb)’. Here
is a truth-table for the expansion:

↓
Ba Bb Fa Fb (Fa & ∼ Ba) & (Fb & ∼ Bb)

T T T T T F F T F T F F T
T T T F T F F T F F F F T
T T F T F F F T F T F F T
T T F F F F F T F F F F T
T F T T T F F T F T T T F
T F T F T F F T F F F T F
T F F T F F F T F T T T F
T F F F F F F T F F F T F
F T T T T T T F F T F F T
F T T F T T T F F F F F T
F T F T F F T F F T F F T
F T F F F F T F F F F F T
F F T T T T T F T T T T F
F F T F T T T F F F F T F
F F F T F F T F F T T T F
F F F F F F T F F F F T F

This truth-table tells us that the quantified sentence is true on some interpre-
tations with one- or two-member UDs and false on some interpretations with
one- or two-member UDs. We shall now explain why.

If each object in a UD is designated by either ‘a’ or ‘b’, then each of
the combinations of truth-values to the left of the vertical line represents an
interpretation of ‘B’ and ‘F’. (This assumption means that we are restricting
our attention to UDs with at most two members because the number of con-
stants is not enough for naming more than two members.) For example, the
first row represents interpretations with one- or two-member UDs in which all
objects are in the extension of ‘B’ and also are in the extension of ‘F’. If all
objects are named by either ‘a’ or ‘b’, then the assignment of T to both ‘Ba’
and ‘Bb’ means that all objects are in the extension of ‘B’, and the assignment
of T to both ‘Fa’ and ‘Fb’ means that all objects are in the extension of ‘F’.
The second row represents interpretations with two-member UDs in which both
objects are in the extension of ‘B’ (because both ‘Ba’ and ‘Bb’ are true), one
object is in the extension of ‘F’ (because ‘Fa’ is true), and one object is not in
the extension of ‘F’ (because ‘Fb’ is false). Note that, because one object is in
the extension of ‘F’ and one is not, the UD for any interpretation represented

8.5 TRUTH-FUNCTIONAL EXPANSIONS 417

by this row cannot have just one member—the single object in a one-member
UD cannot both be in the extension of ‘F’ and not be in the extension of ‘F’.

In fact, the sixteen rows between them represent all the combinations
of extensions that the two predicates may have for a one- or two-member UD.
For example, we have the following possibilities for a one-member UD: The
one object is in the extension of both ‘B’ and ‘F’ (row 1), the one object is in
the extension of ‘B’ but not of ‘F’ (row 4), the one object is in the extension
of ‘F’ but not of ‘B’ (row 13), or the one object is not in the extension of either
predicate (row 16). For a two-member UD we have the following possibilities:
Both members are in the extensions of both ‘B’ and ‘F’ (row 1), both mem-
bers are in the extension of ‘B’ but only one is in the extension of ‘F’ (rows 2
and 3), both members are in the extension of ‘B’ but neither is in the exten-
sion of ‘F’ (row 4), and so on.

The truth-value assigned to the truth-functional expansion in each row
is the truth-value that ‘(∀x)(Fx & ∼ Bx)’ receives for the interpretations of ‘B’
and ‘F’ represented by that row. The expansion has the truth-value F in the
first row, from which we may conclude that, on every interpretation with a one-
or two-member UD in which every member is in the extension of ‘B’ and also
in the extension of ‘F’, ‘(∀x)(Fx & ∼ Bx)’ is false. The expansion also has the
truth-value F in the second row, from which we may conclude that, on every
interpretation with a two-member UD (recall that this row cannot represent
interpretations with one-member UDs) in which both members are in the
extension of ‘B’ but only one member is in the extension of ‘F’, the sentence
‘(∀x)(Fx & ∼ Bx)’ is false.

The thirteenth row is the only one on which the expansion is true. From
this we may conclude that every interpretation with a one- or two-member UD
in which every member is in the extension of ‘B’ and no member is in the exten-
sion of ‘F’ makes ‘(∀x)(Fx & ∼ Bx)’ true, and that every other interpretation
with a one- or two-member UD makes the sentence false.

We can use the information in the thirteenth row to construct an inter-
pretation on which the unexpanded quantified sentence is true. Because nei-
ther ‘a’ nor ‘b’ appears in the quantified sentence, we need only specify a UD
(we will choose one with two members rather than one), an interpretation of
‘B’ that holds for neither member of the UD (because ‘Ba’ and ‘Bb’ are both
false), and an interpretation of ‘F’ that holds for both members of the UD
(because ‘Fa’ and ‘Fb’ are both true). Here is a candidate:

32. UD: The set {3, 5}
Bx: x is an even integer
Fx: x is a positive integer

Both objects in the UD satisfy the condition of being positive and not even, so
‘(∀x)(Fx & ∼ Bx)’ is true on this interpretation.

We can use the information in the first row to construct an interpre-
tation on which the sentence is false. For convenience we will choose the same
UD. We shall interpret ‘B’ and ‘F’ so that both the number 3 and the number 5

418 PREDICATE LOGIC: SEMANTICS

are in the extension of both predicates—because the four atomic sentences in
the first row are all true:

33. UD: The set {3, 5}
Bx: x is an odd integer
Fx: x is a positive integer

Any row in the truth-table in which ‘Ba’ has the same truth-value as
‘Bb’ and ‘Fa’ has the same truth-value as ‘Fb’ can be used to construct an inter-
pretation with a one-member UD. For example, using the first row, we can con-
struct an interpretation on which our quantified sentence is false by making
sure that the one object in the UD is in the extension of both ‘B’ and ‘F’:

34. UD: The set {3}
Bx: x is an odd integer
Fx: x is a positive integer

A truth-functional expansion of the sentence ‘(∃x)(∀y)Nyx’ for the set
of constants {‘a’, ‘b’} is ‘(Naa & Nba) ∨ (Nab & Nbb)’. We may show that the
sentence ‘(∃x)(∀y)Nyx’ is true on at least one interpretation with a two-member
UD by producing a shortened truth-table in which the expansion is true:

↓
Naa Nab Nba Nbb (Naa & Nba) ∨ (Nab & Nbb)

T T F T T F F T T T T

(The table in this case gives us information only about two-member UDs,
because if there were only one member in the UD then it would be named by
both ‘a’ and ‘b’, and hence the four atomic sentences would have to have the
same truth-value since each would in that case make the same claim—that the
one object stands in the relation N to itself.) We do not have to give an actual
interpretation on which the sentence is true; the shortened truth-table suffices
to show that there is such an interpretation. It shows that the quantified sen-
tence is true on any interpretation with a two-member UD in which both mem-
bers stand in the relation N to themselves and one stands in the relation N to
the other, but not vice versa. And the following shortened truth-table shows
that the quantified sentence is false on at least one interpretation with a one-
or two-member UD:

↓
Naa Nab Nba Nbb (Naa & Nba) ∨ (Nab & Nbb)

F F F F F F F F F F F

(Because the four atomic sentences have the same truth-value in this table, the
row of assignments may represent an interpretation with a one-member UD.)

8.5 TRUTH-FUNCTIONAL EXPANSIONS 419

From these two shortened truth-tables we may conclude that ‘(∃x)(∀y)Nyx’ is
quantificationally indeterminate. The tables show that the sentence is true on
at least one interpretation and false on at least one interpretation.

We may use truth-functional expansions and truth-tables to demonstrate
that sentences of PL have, or fail to have, some other semantic properties as
well. For example, to show that a sentence is not quantificationally true, we must
show that the sentence is false on at least one interpretation. And we can show
this by producing a shortened truth-table in which a truth-functional expansion
of the sentence is false. We will have to choose a set of constants first—ideally
a small set, to save us work. An expansion of the sentence ‘(Ga & (∃z)Bz) ⊃
(∀x)Bx’ for the set of constants {‘a’, ‘b’} is ‘(Ga & (Ba ∨ Bb) ⊃ (Ba & Bb)’, and
the expansion is false in the following shortened truth-table:

↓
Ba Bb Ga (Ga & (Ba ∨ Bb)) ⊃ (Ba & Bb)

T F T T T T T F F T F F

The table shows that there is at least one interpretation on which the sentence
‘(Ga & (∃z)Bz) ⊃ (∀x)Bx’ is false. This sentence is therefore not quantifica-
tionally true.

Note that we cannot in general use truth-functional expansions to show
that a sentence is quantificationally true. Even if we construct a full truth-table
for a truth-functional expansion and find that the expansion is true in every
row of the truth-table, all that we may generally conclude is that the sentence
is true on every interpretation with a UD that is the same size as or smaller
than the number of constants in the set that was used for the expansion. (An
exception will be noted at the end of this section.)

The sentence ‘∼ (∼ Ga & (∃y)Gy)’ is not quantificationally false. The
truth-functional expansion of this sentence for the set of constants {‘a’}(‘a’ must
be in this set because it occurs in the sentence) is ‘∼ (∼ Ga & Ga)’, and this
expansion is true in the following shortened truth-table:

↓
Ga ∼ (∼ Ga & Ga)

T T F T F T

This shows that the sentence ‘∼ (∼ Ga & (∃y)Gy)’ is true on at least one inter-
pretation and hence that the sentence is not quantificationally false. As with
quantificational truth we cannot in general use truth-functional expansions to
show that a sentence is quantificationally false, for that would involve showing
that the sentence is false on every interpretation, not just those with a particular
size UD.

The sentences

(∀x)(Fx ⊃ Ga)

420 PREDICATE LOGIC: SEMANTICS

and

(∀x)Fx ⊃ Ga

are not quantificationally equivalent. To show this, we shall expand both sen-
tences for the same set of constants (which must include ‘a’) and produce a
shortened truth-table in which the expansions have different truth-values.
Expanding the sentences for the set {‘a’, ‘b’}, we obtain

(Fa ⊃ Ga) & (Fb ⊃ Ga)

and

(Fa & Fb) ⊃ Ga

The first sentence is false and the second is true in the following shortened
truth-table:

↓ ↓
Fa Fb Ga (Fa ⊃ Ga) & (Fb ⊃ Ga) (Fa & Fb) ⊃ Ga

T F F T F F F F T F T F F T F

This shows that there is at least one interpretation on which ‘(∀x)(Fx ⊃ Ga)’
is false and ‘(∀x)Fx ⊃ Ga’ is true.

The set of sentences

{(∀x)Gax, ∼ Gba ∨ (∃x) ∼ Gax}

is quantificationally consistent. The truth-functional expansions of these sen-
tences for the set {‘a’, ‘b’} are ‘Gaa & Gab’ and ‘∼ Gba ∨ (∼ Gaa ∨ ∼ Gab)’.
Both expansions are true in the following shortened truth-table, and so we may
conclude that there is at least one interpretation on which both members of
the set are true:

↓ ↓
Gaa Gab Gba Gaa & Gab ∼ Gba ∨ (∼ Gaa ∨ ∼ Gab)

T T F T T T TF T FT F FT

The set of sentences

{∼ (∀x)(Ga Fx), ∼ Fb}

does not quantificationally entail the sentence

(∀x) ∼ Gx

8.5 TRUTH-FUNCTIONAL EXPANSIONS 421

We shall expand the sentences for the set of constants {‘a’, ‘b’} to obtain

∼ [(Ga Fa) & (Gb Fb)]

and

∼ Fb

for the set members (‘∼ Fb’ expands to itself because it contains no quantifiers),
and

∼ Ga & ∼ Gb

for the sentence ‘(∀x) ∼ Gx’. Here is a shortened truth-table in which the
expanded set members are true and the expansion of ‘(∀x) ∼ Gx’ is false:

↓ ↓ ↓
Fa Fb Ga Gb ∼ [(Ga Fa) & (Gb Fb)] ∼ Fb ∼ Ga & ∼ Gb

F F F T T F T F F T F F TF TF F FT

We thus know that there is at least one interpretation on which the set members
are both true and ‘(∀x) ∼ Gx’ is false, so ‘(∀x) ∼ Gx’ is not quantificationally
entailed by the set.

Finally we may use truth-functional expansions to show that some
arguments are not quantificationally valid. The expansions of the premises and
conclusion of the argument

(∃x)[(∃y)Fy ⊃ Fx]

(∃y) ∼ Fy

∼ (∃x)Fx

for the set of constants {‘a’, ‘b’} are

[(Fa ∨ Fb) ⊃ Fa] ∨ [(Fa ∨ Fb) ⊃ Fb]

∼ Fa ∨ ∼ Fb

∼ (Fa ∨ Fb)

The premises of this expanded argument are true and the conclusion false in
the following shortened truth-table:

↓ ↓ ↓
Fa Fb [(Fa ∨ Fb) ⊃ Fa] ∨ [(Fa ∨ Fb) ⊃ Fb] ∼ Fa ∨ ∼ Fb ∼ (Fa ∨ Fb)

T F T T F T T T T T F F F FT T TF F T T F

422 PREDICATE LOGIC: SEMANTICS

There is thus an interpretation on which the premises of the original argument
are true and the conclusion is false.

Note once again that truth-functional expansions cannot generally be
used to show that a set of sentences of PL is quantificationally inconsistent, that
a set of sentences does quantificationally entail some sentence, or that an argu-
ment of PL is quantificationally valid. In each of these cases we must prove
something about every interpretation, not just those represented in the truth-
table for a particular set of expansions.

However, there is an exception to our claims about the limitations of
using truth-functional expansions to test for semantic properties. We noted
at the end of Section 8.2 that there is a decision procedure (based on a result
by Bernays and Schönfinkel) for determining the quantificational status of
sentences of PL that contain no many-place predicates, that is, in which the
predicates are all one-place predicates. A decision procedure allows us to
answer correctly in a finite number of mechanical steps the question ‘Is this
sentence quantificationally true?’ and hence also questions like ‘Is this sen-
tence quantificationally false?’ (it is if its negation is quantificationally true)
and ‘Is this finite set of sentences quantificationally consistent?’ (it is if the
conjunction of the sentences in the set is not quantificationally false). It allows
us to answer these questions correctly for sentences that do not contain many-
place predicates.

Bernays and Schönfinkel’s result is that a sentence that contains no
many-place predicates and that contains k distinct one-place predicates is quan-
tificationally true if and only if the sentence is true on every interpretation
with a UD containing exactly 2k members. This being the case, we can truth-
functionally expand the sentence for a set of at least 2k constants, produce a
truth-table for the expanded sentence, and determine whether it is quantifica-
tionally true by examining the truth-table. If the expanded sentence is true in
every row of the truth-table, we may conclude that the sentence is true on every
interpretation with a UD that is the same size as the set of constants or smaller.
In particular, we may conclude that the sentence is true on every interpretation
with a UD that contains exactly 2k members. And, by Bernays and Schönfinkel’s
result, we may finally conclude that the sentence is quantificationally true.

8.5E EXERCISES

1. Give a truth-functional expansion of each of the sentences in Exercise 7 in
Section 8.1E for a set containing one constant.

2. Give a truth-functional expansion of each of the sentences in Exercise 8 in
Section 8.1E for a set containing two constants.

3. Give a truth-functional expansion of each of the sentences in Exercise 9 in
Section 8.1E for a set containing two constants.

8.5 TRUTH-FUNCTIONAL EXPANSIONS 423

4. Give a truth-functional expansion of each of the following sentences for the
set {‘a’, ‘b’, ‘c’}.

a. (∀w)(Gw ⊃ Nww)
*b. (Na ∨ (∃z)Bz)

c. (∃z)(Na Bz)
*d. (∀w)Bw ∨ ∼ (∃w)Bw

5. Construct truth-functional expansions of the sentence

‘((∃x)Fx & (∃y) ∼ Fy) ⊃ (∀x) ∼ Fx’

for the sets {‘a’} and {‘a’, ‘b’}. Construct a truth-table for each expansion. What
information does the first truth-table give you about this sentence? What infor-
mation does the second truth-table give you?

6. For each of the following sentences, construct a truth-functional expansion for
the set of constants (‘a’, ‘n’). Show that the expansion is true on at least one
truth-value assignment. Then use the information in the truth-table to con-
struct an interpretation on which the original sentence is true.

a. (∀x)(Nxx ∨ (∃y)Nxy)
*b. (∃x)Fx (∀x)Fx

c. (∀y)Syyn

7. Show that each of the sentences in Exercise 1 in Section 8.2E is not quantifi-
cationally true by producing a shortened truth-table in which a truth-functional
expansion of the sentence is false.

8. Show that each of the sentences in Exercise 2 in Section 8.2E is not quantifi-
cationally false by producing a shortened truth-table in which a truth-
functional expansion of the sentence is true.

9. Show that each of the sentences in Exercise 3 in Section 8.2E is quantifica-
tionally indeterminate by producing a shortened truth-table in which a truth-
functional expansion of the sentence is true and a shortened truth-table in
which a truth-functional expansion of the sentence is false.

*10. In this section it was claimed that in general a sentence of PL that contains
quantifiers cannot be shown to be quantificationally true by producing truth-
tables for truth-functional expansions. Does the claim hold for sentences of PL

that do not contain quantifiers, such as ‘Fa ⊃ (Gb ⊃ Fa)’? Explain.

11. The truth-functional expansion of the sentence ‘(∃y)Gy & (∃y) ∼ Gy’ for the
set {‘a’} is ‘Ga & ∼ Ga’. The expanded sentence is quantificationally false.
Explain this and then explain why this does not show that the original sentence
‘(∃y)Gy & (∃y) ∼ Gy’ is quantificationally false.

12. Show that the sentences in each pair in Exercise 1 in Section 8.3E are not
quantificationally equivalent by producing a shortened truth-table in which a
truth-functional expansion of one sentence of the pair is true and a truth-
functional expansion of the other sentence (for the same set of constants) is
false.

424 PREDICATE LOGIC: SEMANTICS

13. Show that each set of sentences in Exercise 4 in Section 8.3E is quantifica-
tionally consistent by producing a shortened truth-table in which a truth-
functional expansion of each sentence in the set (for the same set of constants)
is true.

*14. a. Is the set {Ba, Bb, Bc, Bd, Be, Bf, Bg, ∼ (∀x)Bx} quantificationally consis-
tent? Explain.

b. For the set in Exercise 14.a, what is the minimum size set of constants for
which the sentences in the set must be expanded in order to show that the
set is quantificationally consistent? Explain.

c. Can all the sentences in the set in Exercise 14.a be true on an interpreta-
tion with a UD smaller than the set of constants indicated in the answer to
Exercise 14.b? Explain.

15. Show that each argument in Exercise 2 in Section 8.4E is quantificationally
invalid by producing a shortened truth-table in which truth-functional expan-
sions of the premises are true and a truth-functional expansion of the con-
clusion for the same set of constants is false.

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS

In PL E interpretations for sentences containing the identity predicate but no
functors are the same as interpretations for PL, because the identity predicate,
‘ ’, is not explicitly given an interpretation. This is because we always want its
extension to be the set of ordered pairs of members of the UD in which the
first member is identical to the second, no matter what the UD is. The exten-
sion of the identity predicate is determined once the UD has been determined.
If the UD is the set of positive integers, for example, then the extension of the
identity predicate will include the pair whose first and second members are 1,
the pair whose first and second members are 2, and so on for each positive
integer—and no other pairs.

Every atomic sentence of the form a a, where a is an arbitrary indi-
vidual constant, is true on every interpretation. This is because a designates
exactly one member of the UD on a given interpretation, and the identity pred-
icate must include the pair consisting of that object and itself in its extension.
On the other hand, the truth-value of an atomic sentence of the form a b,
where a and b are different individual constants, depends on the interpreta-
tions of a and b. Interpretation 35 makes the sentence ‘g k’ true, while inter-
pretation 36 makes the sentence false:

35. UD: Set of positive integers
g: 1
k: 1

36. UD: Set of positive integers
g: 1
k: 2

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 425

The sentence ‘(∀x)(∀y)(∼ x y ⊃ Gxy)’ is true on interpretation 37
and false on interpretation 38:

37. UD: Set of positive integers
Gxy: the sum of x and y is positive

38. UD: Set of positive integers
Gxy: x is greater than y

On interpretation 37 the sentence may be read as ‘The sum of any pair of non-
identical positive integers is a positive integer’—which is true. On interpreta-
tion 38 the sentence claims that for any pair of nonidentical positive integers
the first is greater than the second. This is false—1 and 2 are nonidentical pos-
itive integers, for example, but 1 is not greater than 2.

We can show that various sentences and sets of sentences that contain
the identity predicate have, or fail to have, semantic properties much as we did
for PL. We shall give a few examples for the semantic properties of quantifica-
tional truth and quantificational validity. We can show that the sentence

(∀x)(∀y)(∼ x y ∨ (Fx ⊃ Fy))

is quantificationally true by reasoning generally about interpretations, showing
that on every interpretation the sentence turns out to be true. The sentence
is universally quantified and is true on an interpretation when, for every pair
x and y of members of the UD, either they satisfy the condition specified by
‘∼ x y’ or they satisfy the condition specified by ‘Fx ⊃ Fy’. So let us consider
two members x and y of an arbitrary UD. If x and y are not the same mem-
ber, then the first disjunct ‘∼ x y’ is satisfied because the extension of the
identity predicate includes only pairs in which the first and second members
are the same. If, however, x and y are the same member of the UD (and hence
do not satisfy the first disjunct), they satisfy the second disjunct. If x is in the
extension of ‘F’, then so is y—because y is identical to x, and so x and y satisfy
the condition ‘Fx ⊃ Fy’. Because x and y either are or are not the same mem-
ber of the UD, we have shown that each pair of members of any UD satisfy the
condition ‘∼ x y ∨ (Fx ⊃ Fy)’ no matter what the interpretation of ‘F’ may
be. Therefore the sentence ‘(∀x)(∀y)(∼ x y ∨ (Fx ⊃ Fy))’ must be true on
any interpretation; it is quantificationally true.

On the other hand, the sentence

(∀x)(∀y)(x y ∨ (Fx ⊃ Fy))

is not quantificationally true. To show this, we construct an interpretation on
which the sentence is false. The sentence claims that every pair of members of
the UD x and y satisfies ‘x y ∨ (Fx ⊃ Fy)’—that is, that either x and y are
the same member or if x is F then so is y. If we choose a two-member UD, then

426 PREDICATE LOGIC: SEMANTICS

a pair consisting of the two members will not satisfy the condition ‘x y’. If
the first member is F but the other is not, then this pair also will not satisfy
‘Fx ⊃ Fy’. Here is our interpretation:

39. UD: The set {1, 2}
Fx: x is odd

The pair consisting of the numbers 1 and 2 does not satisfy ‘x y ∨ (Fx ⊃ Fy)’.
The two numbers are not identical, and it is not true that if the number 1 is
odd (which it is) then the number 2 is odd (it is not).

The argument

(∀x)(Fx Gx)

(∀x)(∀y)x y

Ga

(∀x)Fx

is quantificationally valid. We shall show that any interpretation that makes the
three premises true also makes ‘(∀x)Fx’ true. If ‘(∀x)(Fx Gx)’ is true, then
every member of the UD that is F is also G, and every member of the UD that
is G is also F. If ‘(∀x)(∀y)x y’ is also true, then there is exactly one object
in the UD. The sentence says that, for any object x and any object y, x and y
are identical—and this cannot be the case if there is more than one member
of the UD. If ‘Ga’ is also true, then because there is exactly one object in the
UD this object must be designated by ‘a’ and must therefore be in the exten-
sion of ‘G’. It follows, from the truth of the first sentence, that this object is
also in the extension of ‘F’. Therefore it follows that ‘(∀x)Fx’ is true—every
object in our single-member UD is F.

On the other hand, the argument

(∀x)(∃y)x y

a b

is not quantificationally valid. The premise, it turns out, is quantificationally
true—every member of any UD is identical to something (namely, itself). But
the conclusion is false on any interpretation on which ‘a’ and ‘b’ designate dif-
ferent objects, such as the following:

40. UD: Set of positive integers
a: 6
b: 7

It is true that every positive integer is identical to some positive integer, but it
is false that 6 is identical to 7.

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 427

Readers who have worked through the section on truth-functional
expansions may wonder whether sentences containing the identity predicate may
be expanded and truth-tables used to check for various semantic properties. The
answer is yes, although we shall see that there is a complication. Sentences that
contain the identity predicate are expanded in the same way as sentences without
the identity predicate: Quantifiers are eliminated in favor of iterated conjunctions
or disjunctions. The sentence ‘(∀x)(∃y)x y’ can be expanded for the set of
constants {‘a’, ‘b’} first to obtain

(∃y)a y & (∃y)b y

and then to obtain

(a a ∨ a b) & (b a ∨ b b)

But if we freely assign truth-values to the atomic components of this sentence,
we end up with this truth-table:

↓
a a a b b a b b (a a ∨ a b) & (b a ∨ b b)

T T T T T T T T T T T
T T T F T T T T T T F
T T F T T T T T F T T
T T F F T T T F F F F
T F T T T T F T T T T
T F T F T T F T T T F
T F F T T T F T F T T
T F F F T T F F F F F
F T T T F T T T T T T
F T T F F T T T T T F
F T F T F T T T F T T
F T F F F T T F F F F
F F T T F F F F T T T
F F T F F F F F T T F
F F F T F F F F F T T
F F F F F F F F F F F

MISTAKE!

There is something wrong with this truth-table! The sentence ‘(∀x)(∃y)x y’
is quantificationally true, and yet we have assigned its expansion the truth-value
F in seven rows. Let us look at the first row where this happened: row 4. In this
row we have assigned T to ‘a b’ and F to ‘b a’, and that is the problem.
If an interpretation makes ‘a b’ true then it must make ‘b a’ true as well;
a and b are the same object. So row 4 does not correspond to any interpreta-
tion at all. By the same reasoning we find that none of rows 3–6 or 11–14 cor-
respond to interpretations, for each of these rows assigns different truth-values
to ‘a b’ and ‘b a’. However, this still leaves us with problematic rows 8, 15,

428 PREDICATE LOGIC: SEMANTICS

and 16—all of which make the expanded sentence false. The problem with
each of these rows is that the truth-value F has been assigned to one or both
of ‘a a’ and ‘b b’—thus claiming that some object is not the same as itself.
Because every interpretation makes every sentence of the form a a true, rows
8, 15, and 16, as well as all other rows that make one or both of ‘a a’ and
‘b b’ false, do not correspond to interpretations. In fact, we have just ruled
out all rows in the truth-table except rows 1 and 7. These are the only rows in
which ‘a a’ and ‘b b’ are both true and in which ‘a b’ and ‘b a’ have
the same truth-value—and, as we should have expected for a quantificationally
true sentence, the expanded sentence is true in both rows.

The rows of a truth-table that do not correspond to any interpretation
cannot be used to establish semantic properties of the sentence that has been
expanded. We therefore require that each row in the truth-table we construct
for an expansion of a sentence containing the identity predicate must meet two
conditions:

1. Every sentence of the form a a has the truth-value T.

2. If a sentence of the form a b has the truth-value T, then for
each atomic sentence P that contains a, every atomic sentence
P(b//a) that results from replacing one or more occurrences of a
in P with b must have the same truth-value as P.

If conditions 1 and 2 are met, then if a sentence containing a b has the
truth-value T in a row, b a will also have the truth-value T. Condition 1
requires that a a have the truth-value T, and because b a can be obtained
from a a by replacing the first occurrence of a with b, condition 2 requires
that b a is true since a b and a a are. Condition 2 also rules out rows
like the one in the following shortened truth-table for the expansion

[(a a ⊃ (Fa ⊃ Fa)) & (a b ⊃ (Fa ⊃ Fb))] & [(b a ⊃ (Fb ⊃ Fa))
& (b b ⊃ (Fb ⊃ Fb))]

of the sentence

(∀x)(∀y)(x y ⊃ (Fx ⊃ Fy))

for the set of constants {‘a’, ‘b’}:

a a a b b a b b Fa Fb [(a a ⊃ (Fa ⊃ Fa)) & (a b ⊃ (Fa ⊃ Fb))]

T T T T T F T T T T T F T F T F F

↓
& [(b a ⊃ (Fb ⊃ Fa)) & (b b ⊃ (Fb ⊃ Fb))]

F T T F T T T T T F T F

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 429

Once again we have expanded a quantificationally true sentence and produced
a row of a truth-table in which the truth-functional expansion is false. We have
ensured that both sentences ‘a a’ and ‘b b’ are true and that ‘a b’ and
‘b a’ have the same truth-value. The problem is that we have assigned ‘Fa’
and ‘Fb’ different truth-values, although ‘a b’ is true. Condition 2 rules out
this combination: ‘Fb’ results from replacing ‘a’ in ‘Fa’ with ‘b,’ and so, because
‘a b’ is true, ‘Fb’ must have the same truth-value as ‘Fa’. Our second con-
dition reflects the fact that when the identity predicate occurs in a truth-func-
tional expansion the atomic sentences that are components of the expansion
may not be truth-functionally independent. Once a sentence of the form a b,
where a and b are different constants, has been made true, certain other atomic
sentences must agree in truth-value.

The following truth-table shows the only combinations of truth-values
for the atomic components of our sentence that correspond to interpretations
with one- or two-member UDs:

a a a b b a b b Fa Fb [(a a ⊃ (Fa ⊃ Fa)) & (a b ⊃ (Fa ⊃ Fb))]

T T T T T T T T T T T T T T T T T
T T T T F F T T F T F T T T F T F
T F F T T T T T T T T T F T T T T
T F F T T F T F T T T T F T T F F
T F F T F T T T F T F T F T F T T
T F F T F F T T F T F T F T F T F

↓
& [(b a ⊃ (Fb ⊃ Fa)) & (b b ⊃ (Fb ⊃ Fb))]

T T T T T T T T T T T T
T T T F T F T T T F T F
T F T T T T T T T T T T
T F T F T T T T T F T F
T F T T F F T T T T T T
T F T F T F T T T F T F

All other rows are excluded by one or both of our conditions. And again we
find that the expanded sentence is true in all six rows—we have shown that
there are no interpretations with one- or two-member UDs on which the sen-
tence is false.

Adhering to our two conditions, we now produce a shortened truth-
table that shows that the sentence

(∀z)((Fz & (∃y)z y) ⊃ (∀x)Fx)

is not quantificationally true. The sentence claims that, for each member of
the UD, if it is F and is identical to something then everything is F. Certainly
the sentence will be true if the UD contains exactly one object—but for larger

430 PREDICATE LOGIC: SEMANTICS

UDs it will be true only if either no member is F or all members are. We shall
expand the sentence for the set of constants {‘a’, ‘b’} and produce a shortened
truth-table in which the expansion is false:

a a a b b a b b Fa Fb [(Fa & (a a ∨ a b)) ⊃ (Fa & Fb)]

T F F T T F T T T T F F T F F

↓
& [(Fb & (b a ∨ b b)) ⊃ (Fa & Fb)]

F F F F T T T T F F

Condition 1 has been met—both ‘a a’ and ‘b b’ are true. Condition 2 has
also been met, trivially. The two identity statements that are true are ‘a a’
and ‘b b’, and the result of substituting ‘a’ for ‘a’ in any sentence is just that
sentence itself and the same holds for ‘b’. Here is an interpretation that has
been constructed using the truth-values in the truth-table as a guide:

41. UD: The set {2, 3}
Fx: x is even

We have chosen a UD with two members because the identity statements ‘a b’
and ‘b a’ are false in the shortened table, and so ‘a’ and ‘b’ must designate
different objects. We have interpreted ‘F’ so that one member of the UD, but
not the other, is in its extension.

We now turn to the semantics for functors in PLE. A one-place func-
tor is interpreted as a function that maps each ordered set of one member of
the UD to a single member of the UD, namely, the member that is the value
of the function for that ordered set. A two-place functor is interpreted as a
function that maps each ordered pair of members of the UD to a single mem-
ber of the UD, a three-place functor is interpreted as a function that maps each
ordered triple of members of the UD to a single member of the UD, and so
on. Here is an interpretation for the sentence ‘(∀x)(Px ⊃ Hf(x))’:

42. UD: Set of positive integers
Px: x is even
Hx: x is odd

f(x): the successor of x (the number that results from adding
1 to x)

On this interpretation the sentence may be read as ‘The successor of any even
positive integer is an odd positive integer’, which is true. The sentence is false
on the following interpretation:

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 431

43. UD: Set of positive integers
Px: x is even
Hx: x is odd

f(x): the square of x

On this interpretation the sentence may be read as ‘The square of any even
positive integer is an odd positive integer’.

Here is an interpretation for the sentence ‘(∀x)(∃y)y g(x) ⊃
(∀x)(∃y)Pf(x,y)’:

44. UD: Set of positive integers
Px: x is odd

g(x): the successor of x
f(x,y): the sum of x and y

On this interpretation the sentence may be read as ‘If every positive integer
has a successor, then for every positive integer x there is a positive integer y
such that the sum of x and y is odd’. On this interpretation the sentence is
true since both the antecedent and the consequent are true. The following
interpretation makes the same sentence false:

45. UD: Set of positive integers
Px: x is prime

g(x): the successor of x
f(x,y): x raised to the power y

On this interpretation the sentence may be read as ‘If every positive integer
has a successor, then for every positive integer there is some positive power
such that the integer raised to that power is prime’. While the antecedent
remains true, the consequent in this case is false.

Here is an interpretation for the sentence ‘(∀x)(∀y)f(x,y) f(y,x)’:

46. UD: Set of positive integers:
f(x,y): the sum of x and y

On this interpretation the sentence may be read as ‘The sum of any two posi-
tive integers x and y is equal to the sum of y and x’, which is true. The same
sentence is false on the following interpretation:

47. UD: Set of positive integers
f(x,y): x raised to the power y

It is not true that, for any two positive integers x and y, x raised to the power
y equals y raised to the power x. For example, 2 cubed equals 8, but 3 squared
equals 9.

432 PREDICATE LOGIC: SEMANTICS

The sentence ‘(∀x)Dh(x,f(x))’ is true on interpretation 48 and false
on interpretation 49:

48. UD: Set of positive integers
Dx: x is even

f(x): x cubed
h(x,y): the sum of x and y

49. UD: Set of positive integers
Dx: x is even

f(x): x doubled
h(x,y): the sum of x and y

It is true that the sum of any positive integer and that same integer cubed is
even, for the cube of an even integer is even and the cube of an odd integer
is odd. But it is false that the sum of any positive integer and that same inte-
ger doubled is even, for the result of doubling an odd integer is even, and so
the sum of an odd integer and its double is odd.

When we produce an interpretation for sentences containing functors,
it is important that we really have interpreted the functors as functions. For
example, it may be tempting to come up with an interpretation with the set of
positive integers as the UD on which ‘f(x)’ means ‘the integer greater than x’.
But this is not a function, for there are (infinitely!) many integers greater than
any positive integer. A one-place function cannot map a member of the UD to
more than one value. Similarly we cannot interpret ‘h(x,y)’ (with the same UD)
as ‘the integer that is a factor of both x and y’, because two positive integers
can have more than one factor in common.

It is also important, when we produce an interpretation for sentences
containing functors, that the interpretation assigns a function that meets the
following two conditions. First, a one-place function that is used to interpret a
one-place functor must be defined for every member of the UD, and an n-place
function that is used to interpret an n-place functor must be defined for every
ordered set of members of the UD. For example, with the set of positive inte-
gers as the UD, we cannot interpret ‘f(x)’ to mean ‘the integer that is the
square root of x’, since not every positive integer has an integral square root.
Similarly we cannot interpret ‘h(x,y)’ to mean ‘the integer that is the result of
dividing x by y’, since, for example, no integer is the result of dividing 5 by 3.

Second, even when the function is defined for every member or
ordered set of members of the UD, we also require that the value of the func-
tion in each case be a member of the UD. So, if our UD is the set of positive
integers, we also cannot interpret ‘h(x,y)’ to mean ‘the number that is the result
of dividing x by y’. Thus, although the division function is defined for every
pair of positive integers, the resulting value is not in every case a positive
integer. For example, the result of dividing 5 by 3, namely, , is not a positive
integer. Nor can we interpret ‘h(x,y)’ to mean ‘x minus y’ if our UD is the set
of positive integers, because, for example, 2 minus 3 is not a positive integer.

5
3

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 433

Similarly, with the UD of positive integers, we cannot interpret ‘f(x)’ to mean
‘the predecessor of x’. Not every positive integer has a positive integer as its
predecessor, for the predecessor of the positive integer 1 is 0.

We may show semantic results for sentences containing functors either
by producing interpretations that are sufficient to prove the result or by argu-
ing generally that the sentences will have certain truth-values on every inter-
pretation. For example, interpretations 45 and 46, respectively, established that
the sentence ‘(∀x)(∀y)f(x,y) f(y,x)’ is quantificationally indeterminate. On
the other hand, the sentence ‘(∀x)(∃y)y f(x)’ is quantificationally true. The
sentence is universally quantified and is true on an interpretation if for each x
there is at least one y such that the pair x and y satisfies ‘y f(x)’. This must
be the case for any interpretation, since ‘f ’ must be interpreted as a function
that maps each member x of the UD to a member y of the UD.

The argument

(∀x) Pf(x)

Pf(f(a))

is quantificationally valid. We must show that any interpretation that makes the
premise true also makes the conclusion true. If ‘(∀x) Pf(x)’ is true, then every
member x of the UD is such that f(x) has the property P. Now, f(a) is a mem-
ber of the UD by our requirements for functor interpretations, so it follows
from the universally quantified sentence that f(f(a)) must also have the prop-
erty P, making the conclusion true as well.

The similar argument

(∀x) Pf(f(x))

Pf(a)

is quantificationally invalid. Here is an interpretation on which the premise is
true and the conclusion false:

50. UD: Set of positive integers
Px: x is greater than or equal to 3

f(x): the successor of x
a: 1

For any positive integer x the successor of the successor of x is greater than or
equal to 3, but the successor of 1 is 2, which is not greater than or equal to 3.

We may also expand sentences containing functors in order to use
truth-tables to check for various properties, although again there will be a com-
plication. We first note that the rules for expanding sentences containing
complex terms are the same as the rules for expanding sentences without
complex terms. For example, the sentence ‘(∀x)(Px ⊃ Hf(x))’ is expanded for

434 PREDICATE LOGIC: SEMANTICS

the set of constants {‘a’} by eliminating the universal quantifier and substitut-
ing ‘a’ for ‘x’ to obtain

Pa ⊃ Hf(a)

and expanding the same sentence for the set of constants {‘a’, ‘b’} results in
the conjunction

(Pa ⊃ Hf(a)) & (Pb ⊃ Hf(b))

The expansion of the sentence

(∀x)(∃y)y g(x) ⊃ (∀x)(∃y)Pf(x,y)

for the set of constants {‘a’} results in

a g(a) ⊃ Pf(a,a)

To expand the same sentence for the set of constants {‘a’, ‘b’}, we expand the
antecedent first to obtain

(∃y)y g(a) & (∃y)y g(b)

and then to obtain

(a g(a) ∨ b g(a)) & (a g(b) ∨ b g(b))

we expand the consequent first to obtain

(∃y)Pf(a,y)) & (∃y)Pf(b,y)

and then to obtain

(Pf(a,a) ∨ Pf(a,b)) & (Pf(b,a) ∨ Pf(b,b))

resulting in the expansion

((a g(a) ∨ b g(a)) & (a g(b) ∨ b g(b))) ⊃
((Pf(a,a) ∨ Pf(a,b)) & (Pf(b,a) ∨ Pf(b,b)))

for the entire sentence.
Suppose now that we want to develop a truth-table for the expansion

‘Pa ⊃ Pf(a)’ of the sentence ‘(∀x)(Px ⊃ Pf(x))’ for the set of constants {‘a’}

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 435

and that, since ‘Pa’ and ‘Pf(a)’ are distinct sentences involving the distinct indi-
vidual terms ‘a’ and ‘f(a)’, we decide that we can assign T to the antecedent
and F to the consequent:

↓
Pa Pf(a) Pa ⊃ Pf(a)

T F T F F MISTAKE!

Something is wrong here—because the sentence ‘(∀x)(Px ⊃ Pf(x))’ cannot be
false on any interpretation with a one-member UD. If there is only one mem-
ber of the UD, then the only candidate for the value of function f applied to
that one member is that one member—since we require that the value of a
function applied to any member of a UD must be a member of the UD.

Our method of using truth-functional expansions to determine possi-
ble truth-values assumes that every member of the UD is named by one of the
constants used in the expansion. For this reason we cannot assume that terms
containing functors might refer to individuals other than those referred to by
the constants used in the expansion. To the contrary, we must assume that each
term containing a functor refers to the same individual as at least one constant.
Thus in the above example we must assume that ‘a’ refers to the same indi-
vidual as ‘f(a)’, if the expansion is to tell us something about one-member UDs.
We will make this explicit in our truth-table: The truth-value assignment must
make the sentence ‘a f(a)’ true.

↓ ↓
Pa Pf(a) Pa ⊃ Pf(a) a f(a)

T

And now our conditions 1 and 2 for truth-tables containing expansions of sen-
tences with the identity predicate must apply. In particular, condition 2 requires
that, since ‘a f(a)’ is true, the sentences ‘Pa’ and ‘Pf(a)’ must have the same
truth-value. So the only shortened truth-tables we can obtain are

↓ ↓
a f(a) Pa Pf(a) Pa ⊃ Pf(a) a f(a)

T T T T T T T

and

↓ ↓
a f(a) Pa Pf(a) Pa ⊃ Pf(a) a f(a)

T F F F T F T

436 PREDICATE LOGIC: SEMANTICS

The shortened truth-tables show that the sentence ‘(∀x)(Px ⊃ Pf(x))’ must be
true on any interpretation with a one-member UD.

Generalizing, when we construct a truth-table for the truth-functional
expansion of a sentence or set of sentences containing functors, the following
condition must be met in addition to those for sentences containing the iden-
tity predicate:

3. For each n-place functor f occurring in one or more of the
sentences being expanded and each sequence of n constants
a1, . . . , an from the set of constants {b1, . . . , bm} for which
the sentence(s) is (are) being expanded, the sentence
(. . . (f(a1, . . . , an) b1 ∨ f(a1, . . . , an) b2) ∨ . . . ∨
f(a1, . . . , an) bm) must be true.

That is, the value that the function produces when applied to a1, . . . , an must
be named by one of the constants in the set of constants for which we are pro-
ducing an expansion.

Let us now construct a truth-table for the truth-functional expansion
of ‘(∀x)(Px ⊃ Pf(x))’ for the set of constants {‘a’, ‘b’}. We begin by adding two
sentences to the right of the vertical line in order to satisfy condition 3, and
we add the atomic components of those sentences to the left of the vertical
line:

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T T

Let us now assign truth-values to the four identity sentences:

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

T F F T

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T T F F T T

By condition 2 for truth-tables for the expansions of sentences containing the
identity predicate, ‘Pa’ and ‘Pf(a)’ must have the same truth-value, because
we have made ‘f(a) a’ true. And since we have made ‘f(b) b’ true, both
‘Pb’ and ‘Pf(b)’ must have the same truth-value. Here, then, is one way of

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 437

completing the assignment of values:

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

T F F T T F T F

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T T T T F T F T T F F T T

And here is another (there are two additional ways, which we won’t display):

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

T F F T F F F F

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

F T F T F T F T T F F T T

Note that the expansion ‘(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b))’ had to come out true
in both cases, since we have decided that a and f(a) are the same member of
the UD and that b and f(b) are the same member of the UD.

Other ways of assigning truth-values to the identity sentences will make
the expansion false—for example,

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

F T T F T F F T

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T F F F F T T F T T T T F

We may also choose to make ‘f(a) a’, ‘f(a) b’, ‘f(b) a’, and ‘f(b) b’
all true. In this case we are required also to make the sentence ‘a b’ true, because
of the former two identities and condition 2; to make ‘f(a) f(b)’ true, because
of the latter two identities; and to make ‘f(b) a’ true, by virtue of the truth of
‘f(b) b’ and ‘a b’. As a consequence, ‘Pa’, ‘Pb’, ‘Pf(a)’, and ‘Pf(b)’ must all
have the same truth-table, so in this case there are only two distinct shortened
truth-tables:

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

T T T T T T T T

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T T T T T T T T T T T T T

438 PREDICATE LOGIC: SEMANTICS

and

f(a) a f(a) b f(b) a f(b) b Pa Pb Pf(a) Pf(b)

T T T T F F F F

↓ ↓ ↓
(Pa ⊃ Pf(a)) & (Pb ⊃ Pf(b)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

F T F T F T F T T T T T T

The expanded sentence is true in both cases because the truth of ‘a b’ means
that our UD contains only one member, given the requirement that every
member of the UD be named by one of the constants.

As a second and final example, we expand the sentence ‘(∀x)(∀y)
(Dg(f(x), h(y)) ⊃ Dx)’ for the set of constants {‘a’, ‘b’} to obtain

((Dg(f(a), h(a)) ⊃ Da) & (Dg(f(a), h(b)) ⊃ Da)) &
((Dg(f(b), h(a)) ⊃ Db) & (Dg(f(b), h(b)) ⊃ Db))

Condition 3 requires us to make all of the following sentences true:

f(a) a ∨ f(a) b
f(b) a ∨ f(b) b
h(a) a ∨ h(a) b
h(b) a ∨ h(b) b
g(a,a) a ∨ g(a,a) b
g(a,b) a ∨ g(a,b) b
g(b,a) a ∨ g(b,a) b
g(b,b) a ∨ g(b,b) b

Let us suppose that we make all of these true by making the following identity
sentences true:

1. f(a) a

2. f(b) b

3. h(a) b

4. h(b) b

5. g(a,a) a

6. g(b,a) a

7. g(a,b) b

8. g(b,b) b

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 439

and the rest of the atomic identity statements false. By conditions 1 and 2 we
will then have the following true identities as well:

9. g(f(a), h(a)) g(a,b) from g(a,b) g(a,b) and 1 and 3

10. g(f(a), h(b)) g(a,b) from g(a,b) g(a,b) and 1 and 4

11. g(f(b), h(a)) g(b,b) from g(b,b) g(b,b) and 2 and 3

12. g(f(b), h(b)) g(b,b) from g(b,b) g(b,b) and 2 and 4

13. g(f(a), h(a)) g(f(a), h(b)) from 9 and 10

14. g(f(b), h(a)) g(f(b), h(b)) from 11 and 12

So ‘Dg(f(a), h(a))’ and ‘Dg(f(a), h(b))’ must have the same truth-value, and
‘Dg(f(b), h(a))’ and ‘Dg(f(b), h(b))’ must have the same truth-value. Here,
then, is one shortened truth-table for the truth-functional expansion reflecting
our choice of identities 1–8 and the consequences that follow by condition 2:

f(a) a f(a) b f(b) a f(b) b h(a) a h(a) b h(b) a h(b) b

T F F T F T F T

g(a,a) a g(a,a) b g(a,b) a g(a,b) b g(b,a) a g(b,a) b g(b,b) a

T F F T T F F

g(b,b) b Da Db Dg(f(a), h(a)) Dg(f(a), h(b)) Dg(f(b), h(a)) Dg(f(b), h(b))

T T F F F T T

↓
((Dg(f(a), h(a)) ⊃ Da) & (Dg(f(a), h(b)) ⊃ Da)) & ((Dg(f(b), h(a)) ⊃ Db) &

F T T T F T T F T F F F

↓ ↓
(Dg(f(b), h(b)) ⊃ Db)) f(a) a ∨ f(a) b f(b) a ∨ f(b) b

T F F T T F F T T

↓ ↓ ↓
h(a) a ∨ h(a) b h(b) a ∨ h(b) b g(a,a) a ∨ g(a,a) b

F T T F T T T T F

↓ ↓ ↓
g(a,b) a ∨ g(a,b) b g(b,a) a ∨ g(b,a) b g(b,b) a ∨ g(b,b) b

F T T T T F F T T

440 PREDICATE LOGIC: SEMANTICS

This shortened truth-table, albeit not very short, shows that the sentence
‘(∀x)(∀y)(Dg(f(x), h(y)) ⊃ Dx)’ is false on at least one interpretation with a
one- or two-member UD. There are other shortened truth-tables showing that
the sentence is true on at least one interpretation with a one- or two-member
UD; and producing one of those will suffice to establish that the sentence is
truth-functionally indeterminate.

8.6E EXERCISES

1. Determine the truth-values of the following sentences on this interpretation:

UD: Set of positive integers
Ex: x is even

Gxy: x is greater than y
Ox: x is odd

Pxyz: x plus y equals z

a. (∃x)(∀y)(x y ⊃ Gxy)
*b. (∀x)(∀y) ∼ x y

c. (∀x)(∃y)(Oy ⊃ Gyx)
*d. (∀x)(∀y)(∀z)[(Gxy & Gyz) ⊃ ∼ x z]

e. (∃w)[Ew & (∀y)(Oy ⊃ ∼ w y)]
*f. (∀y)(∀z)[(Oy & y z) ⊃ ∼ Ez]
g. (∃z)(∃w)(z w & Gzw)

*h. (∀x)(∀y)(∃z)[(Pxyz & ∼ x z) & ∼ y z]
i. (∀x)(∀y)(Pxyy ∨ ∼ x y)

2. Show that each of the following sentences is not quantificationally true by pro-
ducing an interpretation on which it is false.

a. (∃x)(∀y)x y
*b. (∀w)(w b ⊃ Fw)

c. (∀x)(∀y)(∀z)[(x y ∨ y z) ∨ x z]
*d. (∃w)[Gw & (∀z)(∼ Hzw ⊃ z w)]

e. (∃x)(∃y)(∼ x y ∨ Gxy)
*f. (∀x)(∀y)(∃z)(x y ⊃ ∼ x z)

3. Each of the following sentences is quantificationally true. Explain why.
a. (∀x)(∀y)(∀z)[(x y & y z) ⊃ x z]

*b. (∀x)(∀y)(∃z)(x z ∨ y z)
c. (∀x)(∀y)[x y ⊃ (Gxy Gyx)]

4. Show that the sentences in each of the following pairs are not quantification-
ally equivalent by constructing an interpretation on which one sentence is true
and the other is false.

a. (∀x)(∃y) x y, (∀x)(∀y)x y
*b. (∀x)(∀y)[x y ⊃ (Fx Fy)], (∀x)(∀y)[(Fx Fy) ⊃ x y]

c. (a b ∨ a c) ⊃ a d, a c ⊃ (a b ∨ a d)
*d. (∃x)(∀y)(∼ x y ⊃ Gy), (∃x)(∀y)(Gy ⊃ ∼ x y)

5. Show that each of the following sets of sentences is quantificationally consistent
by constructing an interpretation on which each sentence in the set is true.

8.6 SEMANTICS FOR PREDICATE LOGIC WITH IDENTITY AND FUNCTORS 441

a. {a b, a c, ∼ a d}
*b. {(∀x)(∀y)x y, (∃x)Fx, (∀y)Gy}

c. {(∃x)(∃z) ∼ x z, (∀x)(∃z)(∃w)(x z ∨ x w)}
*d. {(∀x)(Gx ⊃ (∀y)(∼ y x ⊃ Gy)), (∀x)(Hx ⊃ Gx), (∃z)Hz}

6. Establish each of the following by producing an interpretation on which the set
members are true and the sentence after the double turnstile is false.

a. {(∀x)(∀y)(∀z)[(x y ∨ x z) ∨ y z]} (∀x)(∀y)(x y)
*b. {(∃w)(∃z) ∼ w z, (∃w)Hw} (∃w) ∼ Hw

c. {(∃w)(∀y)Gwy, (∃w)(∀y)(∼ w y ⊃ ∼ Gwy)} (∃z) ∼ Gzz
*d. {(∀x)(∀y)[(Fx Fy) x y], (∃z)Fz} (∃x)(∃y)[∼ x y & (Fx & ∼ Fy)]

7. Using the given symbolization key, symbolize each of the following arguments
in PLE. Then, for each symbolized argument, decide whether it is quantifica-
tionally valid and defend your answer.

UD: Set of all people
Fx: x is female

Mx: x is male
Lxy: x loves y
Pxy: x is a parent of y

a. Every male loves someone other than himself, and every male loves his chil-
dren. Therefore no male is his own parent.

*b. Everyone loves her or his parents, and everyone has two parents. Therefore
everyone loves at least two people.

c. A female who loves her children loves herself as well. Therefore every female
loves at least two people.

*d. Everybody has exactly two parents. Therefore everybody has exactly four grand-
parents.

e. Nobody has three parents. Everybody has more than one parent. Therefore
everybody has two parents.

8. Use truth-functional expansions to establish each of the following claims. Be
sure that the truth-value assignments you produce meet the first two conditions
discussed in this section.

a. The sentence ‘(∃x)(∃y) ∼ x y’ is quantificationally indeterminate.
*b. The sentence ‘(∀w)(Fw ⊃ (∃y) ∼ y w) & (∃w)Fw’ is quantificationally inde-

terminate.
c. The sentences ‘(∀y)(∀z)[(Gyz ∨ Gzy) ∨ y z]’ and ‘(∀y)(∃z)Gyz’ are not

quantificationally equivalent.
*d. The set of sentences {(∀x)(∀y)(∀z)[(Gxy ∨ Gyz) ∨ x z], (∀y)(∃z)Gyz} is

quantificationally consistent.
e. The set of sentences {(∀y)y y, (∃z)(∃w) ∼ w z} does not quantificationally

entail the sentence ‘(∃z)(∀w) ∼ z w’.
*f. The argument

(∀y)(∀z)(Gyz ⊃ y z)

(∀y)(∀z)(y z ⊃ Gyz)

is quantificationally invalid.

|=/
|=/

|=/
|=/

442 PREDICATE LOGIC: SEMANTICS

9. Determine the truth-values of the following sentences on this interpretation:

UD: Set of positive integers
Ex: x is even

Gxy: x is greater than y
f(x): the successor of x
g(x): x squared

h(x,y): the sum of x and y

a. (∀x)Gf(x)x
*b. (∀x)Eg(x)

c. (∀x)(∃y)y h(x,x)
*d. (∀x)(∀y)(y h(x,x) ⊃ Ey)

e. (∃x)(∃y)((Ex & ∼Ey) & Eh(x,y))
*f. (∀x)(∀y)(∀z)(Eh(h(x,y), z) ⊃ ((Ex ∨ Ey) ∨ Ez))
g. (∀x)(∃z)(Eh(g(x), z) ∨ Eh(x,g(z)))

*h. (∀x)(∀y)Gh(f(x), f(y)), h(x,y)

10. Show that each of the following sentences is not quantificationally true by pro-
ducing an interpretation on which it is false.

a. (∀x)(Pf(x) ⊃ Px)
*b. (∀x)(∀y)(x g(y) ∨ y g(x))

c. (∃x)(∀y)x g(y)
*d. (∀x)(∀y)(∀z)((x f(y) & y f(z)) ⊃ x f(z))

e. (∀x) ∼ x f(x)
*f. (∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))

11. Each of the following sentences is quantificationally true. Explain why.
a. (∀x)(∃y)y f(f(x))

*b. (∀x)(∀y)(∀z)((y f(x) & z f(x)) ⊃ y z)
c. ((∀x) Hxf(x) & (∀x)(∀y)(∀z)((Hxy & Hyz) ⊃ Hxz)) ⊃ (∀x)Hxf(f(x))

12. Show that the sentences in each of the following pairs are not quantification-
ally equivalent by constructing an interpretation on which one sentence is true
and the other false.

a. Labf(b), Laf(b)b
*b. (∀x)B(h(x), x), (∀x)B(x,h(x))

c. (∀x)(∃y)y f(h(x)), (∃z)z f(h(z))
*d. (∃x)(∃y)(∃z)(x f(y) & y f(z)), (∀x)(∃y)(∃z)(x f(y) & y f(z))

13. Show that each of the following sets of sentences is quantificationally consis-
tent by constructing an interpretation on which each sentence in the set is
true.

a. {a f(b), b f(c), c f(a)}
*b. {(∀x)Lxf(x), (∃y) ∼ Lf(y)y}

c. {(∃x)(∀y)x f(y), (∃x)(∀y) ∼ x f(y)}
*d. {(∀x)(Gx ⊃ ∼ Gh(x), (∃x)(∼ Gx & ∼ Gh(x)}

14. For each of the following arguments, decide whether it is quantificationally valid.
If it is quantificationally valid, explain why. If it is not quantificationally valid, con-
struct an interpretation on which the premises are true and the conclusion false.

8.7 FORMAL SEMANTICS OF PL AND PLE 443

a. (∀x)(Fx ∨ Fg(x))

(∀x)(Fx ∨ Fg(g(x)))

*b. (∀x)(Fx ∨ Fg(x))

(∀x)(Fg(x) ∨ Fg(g(x)))

c. (∀x)(∃y)(∃z)Lf(x)yz

(∃x)(∀y)(∀z)Lxf(y)f(z)

*d. (∀x)(Lxf(x) & ∼ Lf(x)x)

(∀x)(∀y)(y f(x) ⊃ (Lxy ∨ Lyx))

e. (∀x)(Bg(x) ⊃ (∀y) ∼ Hyg(x))

(a g(b) & Hca) ⊃ ∼ Ba

15. Use truth-functional expansions to establish each of the following. Be sure that
the truth-value assignments you produce meet all three conditions discussed
in this section.

a. The sentence ‘(∀x)(Fx ∨ Fg(x))’ is quantificationally indeterminate.
*b. The sentences ‘(∃x)(∃y)Hg(x,y)x’ and ‘(∃x)(∃y)Hg(y,x)x’ are not quantifica-

tionally equivalent.
c. The set of sentences {(∀x) ∼ x f(x), (∃x)x f(f(x))} is quantificationally

consistent.
*d. The argument

a f(b) & b f(a)

(∃x)(∃y) ∼ x y

is quantificationally invalid.

8.7 FORMAL SEMANTICS OF PL AND PLE

The semantics for PL and PLE used so far in this chapter have been informal
in the sense that strict definitions of truth on an interpretation and falsehood
on an interpretation have not been specified. For example, we explained the
truth-conditions for quantified sentences by saying that all or some of the mem-
bers of the UD in question must satisfy the condition specified by that part of
the sentence following the quantifier. But we have not as yet given a formal-
ized account of how we determine what that condition is or how we determine
whether it is satisfied as required. In this section we specify the formal seman-
tics first for PL and then for PLE.

To do so, we first need to regiment the definition of an interpreta-
tion. Every interpretation must have a nonempty set as its UD. Interpreting

444 PREDICATE LOGIC: SEMANTICS

an individual constant consists in the assignment of a member of the UD to
that constant, and interpreting a sentence letter consists in the assignment of
a truth-value to that sentence letter.

In the first section of this chapter, we pointed out that, when we give
an English reading for an n-place predicate of PL, that reading determines
the extension of the predicate. The extension of an n-place predicate is a set of
n-tuples of members of the UD that are picked out by the predicate. An n-tuple
is an ordered set containing n members—it is ordered in the sense that one
member is designated as the first, one as the second, and so on. A 2-tuple is
an ordered pair, a 3-tuple is an ordered triple, a 4-tuple is an ordered quadru-
ple, and so on.

For instance, if we take the set of positive integers as our UD and inter-
pret ‘Gxy’ as ‘x is greater than y’, then the extension of ‘G’ is the set of ordered
pairs (2-tuples) of positive integers such that the first member of each pair is
greater than the second. A sentence containing the predicate ‘G’—say, the sen-
tence ‘Gab’—is then true if and only if the ordered pair of positive integers
whose first member is designated by ‘a’ and whose second member is desig-
nated by ‘b’ is a member of the extension of ‘G’. It is possible to give ‘G’ a
different English reading that determines the same extension; for example,
we might interpret ‘Gxy’ to mean ‘x plus 1 is greater than y plus 1’. Since, for
any numbers x and y, x plus 1 is greater than y plus 1 if and only if x is greater
than y, it follows that the extension of ‘G’ for these two English readings of
the predicate is the same. And, since the extension is the same in each case,
the truth-conditions of ‘Gab’ on the latter interpretation of ‘G’ coincide with
the truth-conditions of ‘Gab’ on the former interpretation. It is thus the exten-

sion of the predicate, not the particular English reading we use to specify the
extension, that is important in determining the truth-conditions of any sen-
tence in which the predicate occurs. So, in our formal account, we take the
interpretation of a predicate of PL to be the set that is the extension of that
predicate.3

An interpretation of an n-place predicate in a UD thus consists in the
assignment of a set of n-tuples (ordered sets containing n members) of mem-
bers of the UD to that predicate. For example, in the UD that consists of all
people, years, and cities, we may wish to interpret the four-place predicate ‘D’
so that ‘Dwxyz’ reads ‘w marries x in the year y in the city z’. We would then
have the interpretation assign to ‘D’ the set of 4-tuples of members of the UD
such that the first two members are people who marry each other, the third
member is the year in which they marry, and the fourth member is the city in
which they marry. Thus, if John Doe and Jane Doe marry in 1975 in Kansas
City, then one of the 4-tuples that the interpretation assigns to ‘D’ is

〈 John Doe, Jane Doe, 1975, Kansas City〉

3And when we assign an extension, which is simply a set, to a predicate, we need not have any natural English read-
ing in mind. It is important to realize this, for when we say, for example, that a quantificationally true sentence is
true on every interpretation, we include those interpretations that have no obvious English language renderings.

8.7 FORMAL SEMANTICS OF PL AND PLE 445

(the n-tuple whose first, second, third, and fourth members, respectively, are
John Doe, Jane Doe, 1975, Kansas City).

Note that we designate an n-tuple by listing names of the members of
the n-tuple, in the order in which the members occur in the n-tuple, between
the angle brackets ‘〈’ and ‘〉’. Thus we may designate the 3-tuple whose first
member is the number 1, whose second member is Arthur Conan Doyle, and
whose third member is Yankee Stadium as

〈1, Arthur Conan Doyle, Yankee Stadium〉

and the 5-tuple all of whose members are the fraction as

〈 〉

A special case of the interpretation of predicates deserves attention here.
The interpretation of a one-place predicate assigns to that predicate a set of 1-
tuples of members of the UD. A 1-tuple is an ordered set containing exactly one
member. It might seem more natural simply to assign to a one-place predicate a
set of members of the UD—namely, those members we want the predicate to
pick out. But, for the sake of generality in our definition of truth on an inter-
pretation, it is convenient to assign to a one-place predicate a set of 1-tuples of
members of the UD. We may designate the 1-tuple of John Doe by

〈 John Doe〉

We may now formally define the concept of an interpretation:

An interpretation for PL consists in the specification of a UD and the
assignment of a truth-value to each sentence letter of PL, a member of
the UD to each individual constant of PL, and a set of n-tuples of mem-
bers of the UD to each n-place predicate of PL.

The next concept we need is that of a variable assignment. This con-
cept plays an important role in the specification of truth-conditions for the sen-
tences of PL, and the idea is this: We are going to explain the truth-conditions
of sentences like ‘(∀x)(Fx ∨ Gx)’ in terms of the semantics of their subfor-
mulas. But ‘Fx ∨ Gx’ is an open sentence, and for us open sentences are neither
true nor false—because free variables are not names. We have noted several
times that variables function as pronouns do. Here we exploit that feature of
variables in order to determine the truth-conditions of quantified sentences.
That is, we determine the truth-conditions of quantified sentences by explor-
ing whether the things to which a variable in its role as pronoun can refer sat-
isfy the condition specified by the formula in which the variable occurs. Our
concept of variable assignments will be used to regiment the informal notion
of satisfaction that we have used throughout this chapter.

1
2,

1
2,

1
2,

1
2,

1
2

1
2

446 PREDICATE LOGIC: SEMANTICS

A variable assignment for an interpretation I assigns to each individual vari-
able of PL a member of the UD. Intuitively a variable assignment captures one
way in which the variables of PL, in their role as pronouns, can refer to objects
in the UD. If an interpretation has a one-member UD, there is exactly one
variable assignment for that interpretation, the variable assignment that assigns
the one member of the UD to each individual variable of PL. If an interpre-
tation has more than one member in its UD, there will be infinitely many dif-
ferent variable assignments. For a two-member UD consisting of the integers
1 and 2, for example, there is a variable assignment that assigns the integer 1
to every individual variable, and a variable assignment that assigns the integer
2 to every individual variable, and there are infinitely many variable assign-
ments that assign the integer 1 to only some of the individual variables and
the integer 2 to the remaining variables (there are infinitely many ways of
choosing which of the infinite number of variables of PL designate 1 and
which designate 2). Note that it is not required that distinct variables be
assigned different members of the UD; some variable assignments assign the
same member to two or more variables—in fact, every variable assignment for
an interpretation with a finite UD must do so. Nor is it required that every
member of the UD be assigned to a variable; some variable assignments leave
some members unnamed.

We will use the letter ‘d’ to range over variable assignments (think of
‘d’ as shorthand for ‘designates’). If d is a variable assignment and x is an indi-
vidual variable of PL, then d(x) designates the member of the UD that d assigns
to x. So d(x) is 2 if and only if d assigns 2 to x. We need some additional nota-
tion that will be used in regimenting our informal notion of satisfaction. If d
is a variable assignment for an interpretation, u is a member of the interpre-
tation’s UD, and x is an individual variable of PL, then d[u/x] is a variable
assignment that assigns the same value to each variable as d does except that it
assigns u to x. d[u/x] is called a variant of the assignment d. More generally,
if d is a variable assignment for an interpretation, u1, u2, . . . , un are (not nec-
essarily distinct) members of the interpretation’s UD, and x1, x2, . . . , xn are
(not necessarily distinct) individual variables of PL, then d[u1/x1, u2/x2, . . . ,
un/xn] is shorthand for the variable assignment d[u1/x1] [u2/x2] . . . [un/xn]—
the variable assignment that starts out like d and results from successive stipu-
lations that u1 will be assigned to x1, u2 to x2, . . . , and un to xn.

As an example let us assume that an interpretation has the set of pos-
itive integers as its UD and that the variable assignment d assigns 1 to every
individual variable of PL. Then d[5/‘x’, 8/‘z’] is the variable assignment that
assigns 5 to ‘x’ and 8 to ‘z’ and assigns 1 to all other individual variables of PL.
It assigns 1 to all other individual variables because, aside from the assignments
it makes to ‘x’ and ‘z’, our definition requires that d[5/‘x’, 8/‘z’] assign the
same values to variables as d does. Note that d[1/‘x’, 1/‘y’] is the same vari-
able assignment as d because the values that we specified for the variables ‘x’
and ‘y’ are the same values that d assigns to them. Also note that if a variable
occurs more than once between the square brackets, the value it receives on

8.7 FORMAL SEMANTICS OF PL AND PLE 447

d[u1/x1, u2/x2, . . . , un/xn] is the last value that appears for the variable in
that list. For example, where d is as above, d[1/‘x’, 2/‘y’, 3/‘x’] assigns 3, not
1, to ‘x’. For notational convenience we shall drop the single quotes around
names of individual variables when they appear between the square brackets;
thus d[5/‘x’, 8/‘z’] may be written as d[5/x, 8/z].

Relative to an interpretation and variable assignment, we define the
denotation of a term with respect to an interpretation I and variable assignment d, sym-
bolically denI,d(t):

1. If t is a variable, then denI,d(t) d(t).

2. If t is an individual constant, then denI,d(t) I(t).

The denotation of a term is the member of the UD that the variable assign-
ment or interpretation says it designates.

Truth and falsehood of sentences on an interpretation are not defined
directly; rather, they are defined in terms of satisfaction by variable assignments.
We shall first recursively define the concept of satisfaction, then define truth
and falsehood, and afterward illustrate through examples the role of the inter-
mediate step. Here, as in Chapter 7, we use ‘P’, ‘Q’ and ‘R’ as metavariables
ranging over formulas of PL, ‘A’ as a metavariable ranging over predicates of
PL, ‘t’ with or without subscripts as a metavariable ranging over individual terms
(individual constants and individual variables of PL) and ‘x’ as a metavariable
ranging over individual variables of PL. We shall use I(X) to mean the value
that the interpretation I assigns to the symbol X.

Let I be an interpretation, d a variable assignment for I, and P a for-
mula of PL. Then

1. If P is a sentence letter, then d satisfies P on interpretation I if
and only if I(P) T.

Note that the values that d assigns to variables play no role in this case.

2. If P is an atomic formula of the form At1 . . . tn (where A is an
n-place predicate), then d satisfies P on interpretation I if and only
if denI,d(t1), denI,d(t2), . . . , denI,d(tn) is a member of I(A).

So d satisfies ‘Gxa’, for example, if 〈d(‘x’), I(‘a’)〉—the 2-tuple whose first
member is the object that d assigns to the variable ‘x’ and whose second mem-
ber is the object that I assigns to the constant ‘a’—is a member of the exten-
sion that I assigns to ‘G’.

3. If P is of the form ∼ Q, then d satisfies P on interpretation I if
and only if d does not satisfy Q on interpretation I.

448 PREDICATE LOGIC: SEMANTICS

4. If P is of the form Q & R, then d satisfies P on interpretation I if
and only if d satisfies Q on interpretation I and d satisfies R on
interpretation I.

5. If P is of the form Q ∨ R, then d satisfies P on interpretation I if
and only if either d satisfies Q on interpretation I or d satisfies R
on interpretation I.

6. If P is of the form Q ⊃ R, then d satisfies P on interpretation I if
and only if either d does not satisfy Q on interpretation I or d
satisfies R on interpretation I.

7. If P is of the form Q R, then d satisfies P on interpretation I if
and only if either d satisfies Q on interpretation I and d satisfies
R on interpretation I, or d does not satisfy Q on interpretation I
and d does not satisfy R on interpretation I.

8. If P is of the form (∀x)Q, then d satisfies P on interpretation I if
and only if for every member u of the UD, d[u/x] satisfies Q on
interpretation I.

9. If P is of the form (∃x)Q, then d satisfies P on interpretation I if
and only if there is at least one member u of the UD such that
d[u/x] satisfies Q on interpretation I.

Finally, the definitions of truth and falsehood are

A sentence P of PL is true on an interpretation I if and only if every variable
assignment d (for I) satisfies P on I. A sentence P of PL is false on an inter-

pretation I if and only if no variable assignment d (for I) satisfies P on I.

In Chapter 11 we shall prove that for each sentence P and interpretation I
either all variable assignments for I satisfy P or none do. (This is not generally
true for open formulas.) This being the case, each sentence is true or false on
any interpretation according to our definitions.

Our definitions have been long, so we shall look at some examples.
Consider the sentence

(∀y)(By ⊃ ∼ (∃z)Dyz)

and an interpretation that makes the following assignments:

51. UD: Set of positive integers
B: { u : u is prime}
D: { u1, u2 : u1 is greater than u2}

Note that we no longer write variables after predicates when indicating their
interpretations. This is because an interpretation makes an assignment to the

8.7 FORMAL SEMANTICS OF PL AND PLE 449

predicate alone. Note also that we explicitly display the sets that are the inter-
pretations of predicates. The notation used in displaying the interpretation of
‘B’ means: the set of 1-tuples of prime numbers. Because it would be cumber-
some, we do not explicitly indicate that the prime numbers must be members
of the UD—that is, the prime numbers in this set are all positive integers. The
notation used in displaying the interpretation of ‘D’ means: the set of 2-tuples
in which the first member is greater than the second. Again it is implicit that
these 2-tuples contain only positive integers.

The interpretation must assign values to all other predicates, individual
constants, and sentence letters of PL as well, but as we shall see, only the values
assigned to ‘B’ and ‘D’ are used in determining the truth-value of the sentence.
As we apply our definitions, it may be helpful to keep in mind the reading of
the sentence on this interpretation: ‘Every positive integer y is such that if it is
prime then there is no positive integer than which it is greater’. The sentence
is obviously false on this interpretation; what we shall now show is that we come
to exactly this conclusion by using our definitions.

To show that the sentence is false, we must show that no variable assign-
ment d (for I) satisfies the sentence. Let d be any variable assignment for I.
According to clause 8 of the definition of satisfaction,

a. d satisfies ‘(∀y)(By ⊃ ∼ (∃z)Dyz)’ if and only if for every member
u of the UD, d[u/y] satisfies ‘(By ⊃ ∼ (∃z)Dyz)’.

So d[1/y] must satisfy the open sentence, d[2/y] must satisfy the open sen-
tence, d[3/y] must satisfy the open sentence, and so on for every positive inte-
ger. Intuitively this means that no matter what we may take y to be, y must sat-
isfy the condition specified by that open sentence. We must consider all possible
values that might be assigned to ‘y’ rather than just the value that d itself assigns
to ‘y’—that is, all values that variants of d might assign to ‘y’—because the vari-
able ‘y’ is universally quantified.

But not every member u of the UD is such that d[u/y] satisfies ‘(By ⊃
∼ (∃z)Dyz)’—for example, 2 is not such that if it is prime then there is no pos-
itive integer than which it is greater. We shall show formally that d[2/y] does
not satisfy ‘(By ⊃ ∼ (∃z)Dyz)’. According to clause 6,

b. d[2/y] satisfies ‘(By ⊃ ∼ (∃z)Dyz)’ if and only if either d[2/y]
does not satisfy ‘By’ or d[2/y] does satisfy ‘∼ (∃z)Dyz’.

According to clause 2,

c. d[2/y] satisfies ‘By’ if and only if 〈d[2/y](y)〉 is a member of I(B).

The 1-tuple 〈d[2/y](y)〉 is 〈2〉—the set consisting of the integer that the variant
assignment d[2/y] assigns to ‘y’, and I(B) is the set of 1-tuples of positive integers

450 PREDICATE LOGIC: SEMANTICS

that are prime. Because 〈2〉 is a member of this set, d[2/y] does satisfy ‘By’. We
now turn to ‘∼ (∃z)Dyz’. According to clause 3,

d. d[2/y] satisfies ‘∼ (∃z)Dyz’ if and only if it does not satisfy
‘(∃z)Dyz’.

And clause 9 tells us that

e. d[2/y] satisfies ‘(∃z)Dyz’ if and only if there is at least one
member u of the UD such that d[2/y, u/z], the variable
assignment that is just like d[2/y] except that it assigns u to ‘z’,
satisfies ‘Dyz’

that is, if and only if there is a member u of the UD that is smaller than 2.
There is such a member—the integer 1. Let us consider the variable assign-
ment d[2/y, 1/z]. By clause 2,

f. d[2/y, 1/z] satisfies ‘Dyz’ if and only if the 2-tuple 〈2, 1〉 (this is
the pair 〈d[2/y, 1/z](y), d[2/y, 1/z](z)〉) is a member of I(D).

I(D) is the set of 2-tuples of positive integers in which the first member is
greater than the second—and 〈2, 1〉 is indeed a member of this set. Thus d[2/y,
1/z] satisfies ‘Dyz’. Returning to step e, this shows that d[2/y] satisfies
‘(∃z)Dyz’, and so, by step d, d[2/y] does not satisfy ‘∼ (∃z)Dyz’. We now have
a variable assignment, d[2/y], that satisfies ‘By’ but does not satisfy ‘∼ (∃z)Dyz’.
Therefore, by step b, d[2/y] does not satisfy ‘(By ⊃ ∼ (∃z)Dyz)’. The number
2 is not such that if it is prime then it is not larger than any positive integer.
We may conclude from step a that d does not satisfy ‘(∀y)(By ⊃ ∼ (∃z)Dyz)’,
because we have found a variant of d that does not satisfy the open sentence
following the universal quantifier.

We may also conclude that the sentence is false on interpretation 51
because we have just shown that every variable assignment for I fails to satisfy
‘(∀y)(By ⊃ ∼ (∃z)Dyz)’. The value that the original assignment d assigned to
‘y’ did not come into play in our proof, for when we removed the universal
quantifier in step a we considered all values that might be assigned to ‘y’ by
variants of d. The universally quantified sentence is satisfied by a variable
assignment d if and only if the open sentence following the quantifier is satis-
fied no matter what value is assigned to ‘y’. Similarly, when we removed the
existential quantifier in step e, we considered all values that might be assigned
to ‘z’—not just the value assigned by d or its variant d[2/y]. The values that d
itself assigned to the variables ‘y’ and ‘z’ therefore played no role in showing
that d did not satisfy the sentence. Moreover, because no other individual vari-
ables appear in the sentence, the values that d assigned to the other individ-
ual variables of PL also played no role. In sum, it does not matter which variable
assignment we started with because, when we removed the quantifiers, we had
to consider variants that explicitly assigned values to the variables thus freed.

8.7 FORMAL SEMANTICS OF PL AND PLE 451

We conclude that, no matter which variable assignment d we choose, d will fail
to satisfy the sentence.

The sentence ‘(∀y)(By ⊃ ∼ (∃z)Dyz)’ is true, however, on interpreta-
tion 52:

52. UD: The set {2, 4}
B: { u : u is prime}
D: { u1, u2 : u1 is greater than u2}

Consider any variable assignment d for this interpretation. By clause 8, d satis-
fies the sentence if and only if, for every member u of the UD, d[u/y] satisfies
‘(By ⊃ ∼ (∃z)Dyz)’—that is, if and only if both d[2/y] and d[4/y] satisfy the
open sentence, because 2 and 4 are the only members of the UD. We shall
examine each variant. d[2/y] satisfies the consequent of the open sentence (in
addition to its antecedent) because it fails to satisfy ‘(∃z)Dyz’. There is no mem-
ber u of the set {2, 4} such that d[2/y, u/z] satisfies ‘Dyz’. d[2/y, 2/z] does not
satisfy ‘Dyz’ because 〈d[2/y, 2/z](y), d[2/y, 2/z](z)〉, which is 〈2, 2〉, is not in
the extension of ‘D’. d[2/y, 4/z] does not satisfy ‘Dyz’ because 〈2, 4〉 is not in
the extension of ‘D’. We have exhausted the possible values for ‘z’, so there is
no member u of the UD such that d[2/y, u/z] satisfies ‘Dyz’. Hence ‘(∃z)Dyz’
is not satisfied by d[2/y], and its negation is satisfied. This established that
d[2/y] satisfies ‘(By ⊃ ∼ (∃z)Dyz)’. The variant d[4/y] also satisfies ‘(By ⊃
∼ (∃z)Dyz)’ because it fails to satisfy the antecedent (it also fails to satisfy the
consequent). The 1-tuple 〈d[4/y](y)〉 is just 〈4〉, and this 1-tuple is not a mem-
ber of I(B), which is the set of 1-tuples of prime positive integers. So d[4/y]
fails to satisfy ‘By’ and therefore does satisfy ‘(By ⊃ ∼ (∃z)Dyz)’. Having shown
that both d[2/y] and d[4/y] satisfy ‘(By ⊃ ∼ (∃z)Dyz)’, we have established
that, for every member u of the UD, d[u/y] satisfies the conditional open sen-
tence, and we may conclude that d satisfies ‘(∀y)(By ⊃ ∼ (∃z)Dyz)’. Once again,
because we used no specific values assigned to variables by our original vari-
able assignment d, we have shown that every variable assignment for I satisfies
the sentence. It is therefore true on interpretation 52.

As another example, we may use our definitions to prove that the sen-
tence ‘(∀x)(Bx ∼ Bx)’ is quantificationally false. We will begin by assuming
that there is an interpretation on which the sentence is true and then show
that this is impossible. Suppose that I is an interpretation on which ‘(∀x)(Bx
∼ Bx)’ is true. By definition every variable assignment d for I must therefore
satisfy ‘(∀x)(Bx ∼ Bx)’. And because the sentence is universally quantified,
for every member u of I’s UD, the variant d[u/x] for each variable assignment
d must satisfy ‘(Bx ∼ Bx)’ (by clause 8). We shall show that not even one
variant of one variable assignment can do so. Suppose that u is a member of
the UD such that 〈u〉 is in the extension of ‘B’. Then, no matter which variable
assignment d we started with, d[u/x] satisfies ‘Bx’ according to clause 2,
because 〈d[u/x](x)〉 is a member of I(B). But then, by clause 3, d[u/x] does
not satisfy ‘∼ Bx’, and hence, by clause 7, it does not satisfy ‘(Bx ∼ Bx)’. Sup-
pose, on the other hand, that u is a member of the UD such that 〈u〉 is not in

452 PREDICATE LOGIC: SEMANTICS

the extension of ‘B’. In this case d[u/x] does not satisfy ‘Bx’ because
〈d[u/x](x)〉 is not a member of I(B) and therefore does satisfy ‘∼ Bx’. So, once
again, ‘(Bx ∼ Bx)’ is not satisfied. Because each member of the UD either
is or is not in the extension of ‘B’, we conclude that there is no member u
such that d[u/x] satisfies ‘(Bx ∼ Bx)’. This being the case, no variable assign-
ment for any interpretation I satisfies ‘(∀x)(Bx ∼ Bx)’. The sentence is false
on every interpretation and is therefore quantificationally false.

It should now be clear why the definition of truth was given in terms
of the concept of satisfaction rather than directly in terms of interpretations.
For the language of SL we were able to define the truth-conditions of a sen-
tence directly in terms of the truth-conditions of its atomic components, for
the atomic components were themselves sentences and so had truth-values on
truth-value assignments. But consider the sentence of PL ‘(∀y)(By ⊃
∼ (∃z)Dyz)’, which we used as an example in this section. There is no proper
subformula of this sentence that is itself a sentence. The largest proper sub-
formula is ‘(By ⊃ ∼ (∃z)Dyz)’, which is an open sentence. We do not consider
open sentences to be true or false on interpretations because their free vari-
ables are not given values on interpretations. So we cannot define the truth-
conditions of ‘(∀y)(By ⊃ ∼ (∃z)Dyz)’ in terms of the truth or falsehood of its
subformula ‘(By ⊃ ∼ (∃z)Dyz)’. But variable assignments, which do assign val-
ues to variables, can satisfy or fail to satisfy open formulas for interpretations,
and so we have defined the truth-conditions of sentences in terms of the sat-
isfaction conditions of their subformulas.4

To accommodate sentences of PLE containing the identity predicate,
we need to add the following clause to our definition of satisfaction:

10. If P is an atomic formula of the form t1 t2, then d satisfies P
on interpretation I if and only if denI,d(t1) denI,d(t2).

This clause implicitly defines an extension for the identity predicate: The exten-
sion includes 〈u, u〉 for each member u of the UD, and that is all that it
includes. We can use clause 10, along with others, to show that the sentence

(∃x)(Fx & (∀y)(Fy ⊃ y x))

is false on interpretation 53:

53. UD: Set of positive integers
F: { u : u is odd}

4Some authors allow all open sentences to be true or false on interpretations, so the concept of satisfaction is
not needed in their truth-definitions. Other authors use a type of semantics for quantificational languages known
as substitution semantics; in this type of semantics the concept of satisfaction is also unnecessary. For obvious rea-
sons the semantics we have presented is known as satisfaction semantics (or sometimes as referential or objectual
semantics). Satisfaction semantics was first presented by Alfred Tarski in “Der Wahrheitsbegriff in den formal-
isierten Sprachen,” Studia Philosophica, 1 (1936), 261–405.

8.7 FORMAL SEMANTICS OF PL AND PLE 453

On this interpretation, the sentence may be read as ‘Exactly one positive inte-
ger is odd’. To show that the sentence is false, we must show that no variable
assignment for I satisfies it. Let d be a variable assignment. Then, by clause 9,
d satisfies the sentence if and only if there is some member u of the UD such
that d[u/x] satisfies ‘(Fx & (∀y)(Fy ⊃ y x))’. Because at least one positive
integer is odd, there is at least one member u such that d[u/x] does satisfy the
first conjunct ‘Fx’—for example, 〈d[3/x](x)〉, which is 〈3〉, is a member of
I(F). However, no matter which odd integer u may be, d[u/x] cannot satisfy
‘(∀y)(Fy ⊃ y x)’. If d[u/x] did satisfy this formula, then, according to clause
8, it would do so because, for every positive integer u1, d[u/x, u1/y] satisfies
‘(Fy ⊃ y x)’. But for any odd positive integer u, there is at least one positive
integer u1 such that d[u/x, u1/y] does not satisfy ‘(Fy ⊃ y x)’—let u1 be any
odd integer other than u. Here d[u/x, u1/y] satisfies ‘Fy’ because 〈u1〉 is in the
extension of ‘F’, but according to clause 10 it does not satisfy ‘y x’ because
d[u/x, u1/y](x)—which is u—and d[u/x, u1/y](y)—which is u1—are different
integers. It follows that no positive integer u is such that d[u/x] satisfies
‘(∀y)(Fy ⊃ y x)’, and so d does not satisfy the existentially quantified
sentence ‘(∃x)(∀y)(Fy ⊃ y x)’. The sentence is therefore false on interpre-
tation 53.

Finally we shall complete our semantics for sentences of PLE that con-
tain functors by amending our definition of an interpretation and of the deno-
tation of a term with respect to an interpretation I and variable assignment d.
We first define precisely the concept of an n-place function on a UD: An n-place
function on a UD maps each n-tuple of members of the UD to a single mem-
ber of the UD (not necessarily the same one in each case). So, if the UD con-
sists of the integers 1 and 2, for example, there are four distinct 1-place func-
tions: the function that maps each of 1 and 2 to itself, the function that maps
both 1 and 2 to 1, the function that maps both 1 and 2 to 2, and the function
that maps 1 to 2 and 2 to 1. We can represent each of these functions as a set
of ordered pairs, where for each member u of the UD there is exactly one
ordered pair with u as its first member, and the second member of that ordered
pair is the value of the function for u. Here are the four sets of ordered pairs:

{ 1, 1 , 2, 2 } (the function that maps each of 1 and 2 to itself)
{ 1, 1 , 2, 1 } (the function that maps both 1 and 2 to 1)
{ 1, 2 , 2, 2 } (the function that maps both 1 and 2 to 2)
{ 1, 2 , 2, 1 } (the function that maps 1 to 2 and 2 to 1)

Similarly a 2-place function can be represented as a set of ordered triples, where
for each pair of members u1 and u2 of the UD there is one ordered triple with
u1 and u2 as the first two members, and the third member of that ordered triple
is the value of the function for u1 and u2. So the multiplication function for
the set of integers {0, 1} can be represented as the set { 0,0,0 , 0,1,0 ,
 1,0,0 , 1,1,1 }. (Note that multiplication is not a function on the set {1, 2}
because we require that the value of the function for each pair of members of

454 PREDICATE LOGIC: SEMANTICS

the UD itself be a member of the UD, but 2 2 is not a member of {1, 2}. On
the other hand, multiplication is a function on the set of positive integers.)

We may now amend our definition of an interpretation:

An interpretation for PLE consists in the specification of a UD and the
assignment of a truth-value to each sentence letter of PLE, a member
of the UD to each individual constant of PLE, an n-place function on
the UD to each n-place functor of PLE, and a set of n-tuples of mem-
bers of the UD to each n-place predicate of PLE.

We extend the definition of the denotation of a term with respect to an interpreta-

tion I and variable assignment d as follows, to accommodate terms containing
functors:

1. If t is a variable, then denI,d(t) d(t).

2. If t is an individual constant, then denI,d(t) I(t).

3. If t is a term f(t1, . . . , tn) where f is an n-place functor and
t1, . . . , tn are terms, then if denI,d(t1), . . . , denI,d(tn), u
is a member of I(f), denI,d(t) u.

Recall that for any members u1, . . . , un of the UD, there will be a unique
n-tuple u1, . . . , un, u that is a member of the function I(f), so clause
3 identifies exactly one member of the UD as denI,d(t).

Using our new definitions, we can show that the sentence

(∀x)(Gxa ⊃ Gf(x)a)

is true on interpretation 54:

54. UD: Set of positive integers
Gxy: x is greater than y
f(x): the successor of x

a: 5

On this interpretation the sentence may be read as ‘The successor of any pos-
itive integer that is greater than 5 is itself greater than 5’. To show that the sen-
tence is true, we must show that it is satisfied by every variable assignment. Let
d be a variable assignment. Then, by clause 8, d satisfies the sentence if and
only if every member u of the UD is such that d[u/x] satisfies ‘Gxa ⊃ Gf(x)a’,
and according to clause 6 this is the case if, whenever d[u/x] satisfies ‘Gxa’,
d[u/x] also satisfies ‘Gf(x)a’. So assume that u is such that d[u/x] satisfies
‘Gxa’. It follows from clause 2 that d[u/x](x), I(a) , which is u, 5 , is a
member of I(G)—that is, u is greater than 5. But then denI,d(f(x)), which is
the successor of u, is also greater than 5, so denI,d(f(x)), 5 , which is

8.7 FORMAL SEMANTICS OF PL AND PLE 455

 denI,d(f(x)), I(a) , is also a member of I(G). It follows from clause 2, then,
that d[u/x] also satisfies ‘Gf(x)a’. Therefore every variable assignment d[u/x]
that satisfies the antecedent of ‘Gxa ⊃ Gf(x)a’ also satisfies the consequent; so
every variable assignment d[u/x] satisfies the conditional, and hence every vari-
able assignment d satisfies the universally quantified ‘(∀x)(Gxa ⊃ Gf(x)a)’. This
establishes that the sentence is therefore true on interpretation 54.

8.7E EXERCISES

1. Using the definitions in this section, determine the truth-value of each of the
following sentences on an interpretation that makes these assignments:

UD: Set of positive integers
K: { u : u is negative}
E: { u : u is even}
L: { u1, u2 : u1 is less than u2}
o: 1

a. ∼ (∀x)Ex ⊃ (∃y)Lyo
*b. ∼ Loo & ∼ (∀y) ∼ Loy

c. (∃x)(Ko ∨ Ex)
*d. (∀x)(Lox ⊃ (∀y)Lxy)

e. (Ko (∀x)Ex) ⊃ (∃y)(∃z)Lyz
*f. (∀x)[Ex ⊃ (∃y)(Lyx ∨ Lyo)]

2. Using the definitions in this section, determine the truth-value of each of the
following sentences on an interpretation that makes these assignments:

UD: Set of positive integers
E: { u : u is even}
G: { u1, u2 : u1 is greater than u2}
T: { u : u is less than 2}
t: 3

a. (∃x)(Ex ⊃ (∀y)Ey)
*b. (∀x)(∀y)(Gxy ∨ Gyx)

c. (∀x)(Tx ⊃ (∃y)Gyx)
*d. (∀x)(Et ⊃ Ex)

e. (∀x)[(∀y)Gxy ∨ (∃y)Gxy]
*f. (∀y)[Ty ∨ (∀x)(Ex ⊃ Gxy)]

3. Using the definitions in this section, determine the truth-value of each of the
following sentences on an interpretation that makes these assignments:

UD: Set of positive integers
M: { u1, u2, u3 : u1 minus u2 equals u3}
P: { u1, u2, u3 : u1 plus u2 equals u3}
o: 1

456 PREDICATE LOGIC: SEMANTICS

a. Mooo Pooo
*b. (∀x)(∀y)(Mxyo Pyox)

c. (∀x)(∀y)(∀z)(Mxyz Pxyz)
*d. (∃x)(∀y)(∀z)(Mxyz ∨ Pzyx)

e. (∀y)(∃z)(Pyoz ⊃ Pooo)

*4. Using the definitions in this section, explain why the following two sentences
are quantificationally equivalent:

(∀x)Fx
∼ (∃x) ∼ Fx

5. Using the definitions in this section, explain why the following sentence is
quantificationally true:

(∀x)((∀y)Fy ⊃ Fx)

*6. Using the definitions in this section, explain why {(∀x)Fx} quantificationally
entails every substitution instance of ‘(∀x)Fx’.

7. Using the definitions in this section, explain why ‘Fa’ quantificationally entails
‘(∃x)Fx’.

*8. Using the definitions in this section, explain why ‘(∃x)Fx & (∀x) ∼ Fx’ is quan-
tificationally false.

9. Using the definitions in this section, determine the truth-value of each of the
following sentences on an interpretation that makes these assignments:

UD: Set of positive integers
Ex: x is even

Gxy: x is greater than y

a. (∀x)(∀y)[∼ x y ⊃ (Ex ⊃ Gxy)]
*b. (∀x)(∀y)(x y ∨ ∼ Ey)

c. (∀x)[Ex ⊃ (∃y)(∼ x y & ∼ Gxy)]

10.a. Using the definitions in this section, explain why every sentence of the form
(∀x)x x is quantificationally true.

*b. Using the definitions in this section, explain why ‘(∀x)(∀y)(x y ⊃ Fxy) ⊃
(∀x)Fxx’ is quantificationally true.

11. Using the definitions in this section, determine the truth-value of each of the
following sentences on an interpretation that makes the following assignments:

UD: Set of positive integers
Ox: x is odd

h(x): x squared
g(x,y): the sum of x and y

a. (∀x)(Oh(x) ⊃ Og(x,x))
*b. (∀x)(∀y)(Og(x,y) ⊃ (Ox ∨ Oy))

c. (∃x)(∃y)(Ox & x h(y))

GLOSSARY 457

12.a. Using the definitions in this section, explain why every sentence of the form
(∀x)(∃y)y f(x) is quantificationally true.

*b. Using the definitions in this section, explain why ‘(∀x)Pf(x) ⊃ (∀x)Pf(f(x))’
is quantificationally true.

GLOSSARY

QUANTIFICATIONAL TRUTH: A sentence P of PL/PLE is quantificationally true if
and only if P is true on every interpretation.

QUANTIFICATIONAL FALSITY: A sentence P of PL/PLE is quantificationally false if
and only if P is false on every interpretation.

QUANTIFICATIONAL INDETERMINACY: A sentence P of PL/PLE is quantificationally

indeterminate if and only if P is neither quantificationally true nor quantificationally
false.

QUANTIFICATIONAL EQUIVALENCE: Sentences P and Q of PL/PLE are quantifica-

tionally equivalent if and only if there is no interpretation on which P and Q have
different truth-values.

QUANTIFICATIONAL CONSISTENCY: A set of sentences of PL/PLE is quantificationally

consistent if and only if there is at least one interpretation on which all the members
of the set are true. A set of sentences of PL/PLE is quantificationally inconsistent if and
only if the set is not quantificationally consistent.

QUANTIFICATIONAL ENTAILMENT: A set of sentences of PL/PLE quantificationally

entails a sentence P of PL/PLE if and only if there is no interpretation on which
every member of is true and P is false.

QUANTIFICATIONAL VALIDITY: An argument of PL/PLE is quantificationally valid if
and only if there is no interpretation on which all the premises are true and the
conclusion is false. An argument of PL/PLE is quantificationally invalid if and only
if the argument is not quantificationally valid.

458 PREDICATE LOGIC: TRUTH-TREES

Chapter 9
PREDICATE LOGIC:
TRUTH-TREES

9.1 EXPANDING THE RULES FOR TRUTH-TREES FOR PL

Truth-trees, as developed in Chapter 4, provide the basis for an effective
method of testing finite sets of sentences of SL for truth-functional consistency
and thus for all the properties of sentences and finite groups of sentences that
can be explicated in terms of truth-functional consistency (for example, truth-
functional validity, truth-functional truth, and truth-functional equivalence). In
this chapter we shall augment the truth-tree method to make it applicable to
sets of sentences of PL and of PLE. The result will be a method of testing finite
sets of sentences of PL and of PLE for quantificational consistency and thus for
those properties of sentences and finite groups of sentences that can be expli-
cated in terms of quantificational consistency.

Some sets of sentences of PL consist exclusively of sentences whose only
logical operators are truth-functional connectives. We can test these sets for
consistency by using the truth-tree rules already given in Chapter 4. For the set

{Fab, Gac & Rab, Fab ⊃ (~ Gac ∨ ~ Rab)}

9.1 EXPANDING THE RULES FOR TRUTH-TREES FOR PL 459

The various branches represent failed attempts to find a way in which all the
members of the set being tested might be true. If a set contains sentences of
PL whose only logical operators are truth-functional connectives, then there
will be an interpretation on which all the members of the set are true if and
only if a tree for the set has at least one completed open branch. The above
tree contains only closed branches; that is, each branch of this tree contains
an atomic sentence and the negation of that sentence. We know that there
is no interpretation on which both a sentence and its negation are true, so
there is no interpretation on which the sentences in the set {Fab, Gac & Rab,
Fab ⊃ (~ Gac ∨ ~ Rab)} are all true. We may conclude that this set is, on truth-
functional grounds alone, quantificationally inconsistent.

However, many finite sets that are quantificationally inconsistent are
not inconsistent on truth-functional grounds. The rules we presently have for
constructing truth-trees do not allow us to construct closed trees for such sets.
For example, using the decomposition rules we presently have, we can obtain
only the following tree for the set {(∀x)(Fxc ⊃ Gxb), Fac & ~ Gab}:

we can construct the following tree:

1.
2.
3.
4.
5.

6.

7.

Fab
Gac & Rab⻬

Fab ⊃ (∼ Gac ∨ ∼ Rab)⻬

Gac
Rab

SM
SM
SM
2 &D
2 &D

3 ⊃D

6 ∨D

∼ Fab

∼ Gac ∨ ∼ Rab⻬

∼ Gac

∼ Rab

1. (∀x)(Fxc ⊃ Gxb) SM
2. Fac & ∼ Gab SM
3. Fac 2 &D
4. ∼ Gab 2 &D

(∀x)P
(∃x)P
∼ (∀x)P
∼ (∃x)P

We need a rule for decomposing the quantified sentence ‘(∀x)(Fxc ⊃ Gxb)’
on line 1. More generally, we need rules for decomposing sentences of PL hav-
ing any of the following four forms:

460 PREDICATE LOGIC: TRUTH-TREES

In this section we introduce one new tree rule for each of these kinds of sen-
tences. We begin with the rules for negations of quantified sentences. Both are
nonbranching rules:

Negated Existential Negated Universal

Decomposition (∼ ∃D) Decomposition (∼ ∀D)

∼ (∃x)P ∼ (∀x)P

(∀x) ∼ P (∃x) ∼ P

In each case the sentence entered is equivalent to the sentence being decom-
posed. ‘It is not the case that something is such-and-such’ is equivalent to ‘Each
thing is such that it is not such-and-such’, and ‘It is not the case that each thing
is such-and-such’ is equivalent to ‘Something is not such-and-such’.

If a universally quantified sentence (∀x)P is true, then so is each sub-
stitution instance P(a/x) of that sentence. We want a rule that allows us to
“decompose” a universally quantified sentence to its substitution instances. So
we add the following to our set of tree rules:

Universal Decomposition (∀D)

(∀x)P

P(a/x)

where a is any individual constant

At any point in the construction of a tree, a universally quantified sentence
(∀x)P may be decomposed by entering any substitution instance P(a/x) of that
sentence on one or more open branches passing through (∀x)P. Because a uni-
versally quantified sentence has an infinite number of substitution instances,
we can never “finish” decomposing such a sentence. Consequently universally
quantified sentences are never checked off.

Universal Decomposition does not require that a selected substitution
instance be entered on every open branch passing through the universally quan-
tified sentence being decomposed. A substitution instance is often of use on
one open branch passing through the sentence being decomposed but not on
another. And, because universally quantified sentences are never checked off,
we can always later add more substitution instances of a universally quantified
sentence to any open branch passing through that sentence.

The tree we started for the set {(∀x)(Fxc ⊃ Gxb), Fac & ~ Gab)} can
now be completed:

9.1 EXPANDING THE RULES FOR TRUTH-TREES FOR PL 461

At line 5 we entered ‘Fac ⊃ Gab’ by Universal Decomposition. We could have
entered any substitution instance of ‘(∀x)(Fxc ⊃ Gxb)’, but only the one we
did enter is of use in producing a closed tree. Recall that we do not check off
the universally quantified sentence that is being decomposed.

The last tree rule to be added is for decomposing existentially quanti-
fied sentences:

1.
2.
3.
4.
5.

6.

 (∀x)(Fxc ⊃ Gxb)

 Fac & ∼ Ga⻬
 Fac
 ∼ Gab
 Fac ⊃ Gab⻬

SM
SM
2 &D
2 &D
1 ∀D

5 ⊃D∼ Fac

Gab

Existential Decomposition (∃D)

(∃x)P

P(a/x)

where a is a constant foreign to the branch

A constant is foreign to a branch of a tree if and only if it does not occur in any
sentence on that branch. Existentially quantified sentences, unlike universally
quantified sentences, are checked off when they are decomposed. This is because
we know that if an existentially quantified sentence (∃x)P is true then there is at
least one thing that is of the sort specified by P, but there need not be more than
one such thing. When we choose an individual constant for the substitution
instance P(a/x), the constant a that we choose must be foreign to the branch
because otherwise it would already have a role on that branch, and quite possi-
bly a conflicting role. For example, the sentences ‘Some cars are yellow’ and
‘Some cars are not yellow’ are both true. Hence the set {(∃x)(Cx & Yx),
(∃x) (Cx & ~ Yx)} consisting of symbolizations of these sentences should be quan-
tificationally consistent and have only open truth-trees. However, if we were to drop
the Existential Decomposition restriction that a be foreign to the branch on which
the substitution instance is entered, we could produce a closed tree for this set:

1. (∃x)(Cx & Yx) SM
2. (∃x)(Cx & ∼ Yx) SM
3. Ca & Ya 1 ∃D
4. Ca 3 &D
5. Ya 3 &D
6. Ca & ∼ Ya 2 ∃D MISTAKE!
7. Ca 6 &D
8. ∼ Ya 6 &D

462 PREDICATE LOGIC: TRUTH-TREES

Line 6 is a mistake because the individual constant ‘a’ used in Existential
Decomposition at line 6 was not foreign to the single branch of the tree prior
to line 6. A correct tree uses an instantiating constant on line 6 that is differ-
ent from that used on line 3:

1.

2.

3.

4.

5.

6.

7.

(∀x)Fx ⊃ (∃x) ∼ Gx)⻬

 (∃x) ∼ Fx⻬

 ∼ Fa

SM

SM

2 ∃D

1 ⊃D

4 ∼ ∀D

5 ∃D

4 ∃D

∼ (∀x)Fx⻬

(∃x) ∼ Fx⻬

∼ Fb

o

(∃x) ∼ Gx⻬

∼ Gb

o

At line 3 Existential Decomposition is used for the first time. Since no constant
occurs on the single branch that constitutes the tree at that point, ‘a’ is used
as the instantiating constant. The next use of Existential Decomposition is at
line 6 on the left-hand branch. At that point ‘a’ already occurs on the branch
(at line 3—remember that the sentences on lines 1–3 occur on both branches
of this tree). So a new instantiating constant, ‘b’, is used. The final use of Exis-
tential Decomposition is at line 7 on the right-hand branch. The constant ‘a’
cannot be used because it occurs on line 3. But ‘b’ can be used, for although
it already occurs on the left-hand branch, it does not occur before line 7 on
the right-hand branch.

The preceding tree has two open branches, each of which contains
only literals and decomposed nonliterals. The complexities of predicate logic
will force us to complicate the account of ‘completed open branch’ given in
Chapter 4. However, an open branch that contains only literals and decom-
posed nonliterals that have been checked off will, as in Chapter 4, count as a
completed open branch. So both branches of the tree are completed open
branches.

1. (∃x)(Cx & Yx) SM
2. (∃x)(Cx & ~ Yx) SM
3. Ca & Ya 1 ∃D
4. Ca 3 &D
5. Ya 3 &D
6. Cb & ~ Yb 2 ∃D
7. Cb 6 &D
8. ~ Yb 6 &D

o

The single branch is completed and this shows that the set is indeed quan-
tificationally consistent.

The following tree contains three uses of Existential Decomposition:

9.1 EXPANDING THE RULES FOR TRUTH-TREES FOR PL 463

Moreover, a completed open branch guarantees that we can construct
an interpretation on which every member of the set being tested is true, that
is, a model for that set, so this tree demonstrates that the set {(∀x)Fx ⊃ (∃x) ~
Gx, (∃x) ~ Fx} is quantificationally consistent. We’ll show how interpretations
can be constructed from each of the two completed open branches of the tree.1

An interpretation that makes all of the literals on a completed open branch
true will make all of the other sentences on that branch, including the mem-
bers of the set being tested, true. Starting with the left branch, we see that the
branch contains two literals, ‘~ Fa’ and ‘~ Fb’. To make both of these true we
will construct an interpretation with a two-member UD, letting the constant ‘a’
denote one member and ‘b’ the other, and we will interpret the predicate ‘F’
so that neither of these members is in its extension (recall that the extension
of a predicate is the set of things to which it applies):

UD: The set {1, 3}
a: 1
b: 3

Fx: x is even

Both ‘~ Fa’ and ~ Fb’ are true on any interpretation with this UD that makes
these assignments (there are infinitely many such interpretations, because an
interpretation must interpret every constant and predicate of PL). The sen-
tence ‘(∀x)Fx ⊃ (∃x) ~ Gx’ is true on any interpretation that includes these
assignments because the antecedent is false (so it doesn’t matter how the
predicate ‘G’ is interpreted). The sentence ‘(∃x) ~ Fx’ is true because at least
one member of the UD is excluded (in fact, both are) from the extension of
the predicate ‘F’.

Note that the truth-values of the sentences ‘(∀x)Fx ⊃ (∃x) ~ Gx’ and
‘(∃x) ~ Fx’ don’t depend on the assignments made to ‘a’ and ‘b’, since those
constants don’t appear in these sentences. So more generally we can say that
the set members will be true on any interpretation that includes the following
assignments:

UD: The set {1, 3}
Fx: x is even

Interestingly, in this case we do not need a two-member UD either. This is
because the literals on the complete open branch, ‘~ Fa’ and ‘~ Fb’, agree in
what they say about the individual denoted by ‘a’ and the individual denoted
by ‘b’—so the UD for an interpretation that makes the literals on the open
branch true need not contain more than one individual. But our purpose in
this chapter is to show how completed open branches can be used as the basis

1In Chapter 11 we will prove that such an interpretation can always be found corresponding to a completed open
branch of a tree for sentences of PL.

464 PREDICATE LOGIC: TRUTH-TREES

for constructing models, rather than to explore the finer points thereof, so
while working with the language PL (rather than PLE) our practice will be to
present a UD with exactly as many members as there are constants on the open
branch, to assign distinct members of the UD to those constants, and to inter-
pret predicates so as to make the literals occurring on the branch true.

The right-hand open branch of the previous tree contains two con-
stants as well, and the literals ‘~ Fa’ and ‘~ Gb’, so the members of the set
{(∀x)Fx ⊃ (∃x) ~ Gx, (∃x) ~ Fx} will both be true on any interpretation with
a two-member UD such that ‘a’ and ‘b’ denote distinct individuals and the two
literals are true. Any interpretation that includes the following assignments will
satisfy these criteria:

UD: {1, 3}
a: 1
b: 3

Fx: x is even
Gx: x is greater than 4

The sentence ‘(∀x)Fx ⊃ (∃x) ~ Gx’ will be true because the antecedent is false
and the consequent is true, while ‘(∃x) ~ Fx’ will be true because at least one
member of the UD (in fact, both) is excluded from the extension of the pred-
icate ‘F’.

Except for Universal Decomposition, the truth-tree rules introduced in
this section are like the tree rules of Chapter 4 in that the results of applying
one of them must be entered on every open branch running through the sen-
tence being decomposed. Also as in Chapter 4, it is generally wise to apply
decomposition rules that do not produce new branches before applying those
that do. In using Universal Decomposition it is a good idea to select substitu-
tion instances in which the instantiating constant already occurs on the open
branch in question. It is also wise to try to use Existential Decomposition before
using Universal Decomposition, for the former rule but not the latter places a
restriction on the individual constant that can be used in the substitution
instance that is added to the tree. We illustrate these last two points by con-
structing a tree for {(∀x)(∀y) ~ Mxy, (∃x)Mxb}:

1. (∀x)(∀y) ~ Mxy SM

2. (∃x)Mxb SM

3. Mab 2 ∃D

4. (∀y) ~ May 1 ∀D

5. ~ Mab 4 ∀D

Note that we used Existential Decomposition before Universal Decomposition.
At line 4 we entered ‘(∀y) ~ May’ rather than, say, ‘(∀y) ~ Mgy’, because ‘a’
occurs earlier on the tree on line 3. And although ‘b’ also occurs on line 3 we

9.1 EXPANDING THE RULES FOR TRUTH-TREES FOR PL 465

entered ‘(∀y) ~ May’ rather than ‘(∀y) ~ Mby’ because the former but not the
latter will, when appropriately decomposed, produce the negation of the sen-
tence on line 3.

Using Universal Decomposition before Existential Decomposition—
that is, decomposing the sentence on line 1 before the sentence on line 2—
will also produce a closed tree, but a tree that is more complex:

Strategies for Constructing Truth-Trees

1. Give priority to decomposing sentences whose decomposition does not require
branching.

2. Give priority to decomposing sentences whose decomposition results in the
closing of one or more branches.

3. Give priority to decomposing existentially quantified sentences over universally
quantified sentences.

4. When using Universal Decomposition, try to use a substitution instance in
which the instantiating constant already occurs on the branch in question.

5. Stop when a tree yields an answer to the question being asked.

6. Where strategies 1-5 are not applicable, decompose the more complex sentences
first.

Strategy 1 should be used with care when dealing with universally quan-
tified sentences. Consider the following tree in which Universal Decomposition
is used before Conditional Decomposition:

1. (∀x)(∀y) ~ Mxy SM
2. (∃x)Mxb SM
3. (∀y) ~ Mby 1 ∀D
4. ~ Mbb 3 ∀D
5. Mab 2 ∃D
6. (∀y) ~ May 1 ∀D
7. ~ Mab 6 ∀D

In this tree we had to enter ‘Mab’, rather than ‘Mbb’, at line 5 because Exis-
tential Decomposition requires that the instantiating constant be foreign to the
branch. At line 5, the constant ‘b’ was not foreign to the branch. But now, hav-
ing entered ‘Mab’ at line 5, we were able to close the tree only by reapplying
Universal Decomposition to the sentence on line 1. Lines 3 and 4 of the tree
are thus superfluous.

In Chapter 4 we developed four strategies for keeping truth-trees for
sets of sentences of SL as concise as possible. Those strategies are also appli-
cable here. We repeat them, along with the two new strategies just discussed
(suitably rearranged):

466 PREDICATE LOGIC: TRUTH-TREES

At line 7 we used Universal Decomposition and continued using it until each
universally quantified sentence (there are two) was decomposed to every sub-
stitution instance that could be formed from a constant already on the branch.
The idea is that these are the substitution instances that may be useful later on.
As it turns out, lines 7 and 9 are unnecessary, but this was not completely obvi-
ous at the point where we had a choice between applying Universal Decompo-
sition and Conditional Decomposition. An alternative strategy would be to use
Universal Decomposition only when no other rule can be applied. But this strat-
egy produces the following, considerably more complex, tree:

1. (∀x)(Fxa ⊃ Fax) SM
2. (∀y)(Hy ⊃ Fya) SM
3. (∃x)(Hx & ∼ Fax) SM
4. Hb & ∼ Fab 3 ∃D
5. Hb 4 &D
6. ∼ Fab 4 &D
7. Faa ⊃ Faa 1 ∀D
8. Fba ⊃ Fab 1 ∀D
9. Ha ⊃ Faa 2 ∀D

10. Hb ⊃ Fba 2 ∀D

11. ∼ Hb Fba 10 ⊃D

12. ∼ Fba Fab 8 ⊃D

1.
2.
3.
4.
5.
6.
7.

(∀x)(Fxa ⊃ Fax)
(∀y)(Hy ⊃ Fya)

(∃x)(Hx & ∼ Fax)⻬
Hb & ∼ Fab⻬

Hb
∼ Fab

Faa ⊃ Faa⻬

SM
SM
SM
3 ∃D
4 &D
4 &D
1 ∀D

 ∼ Faa
Ha ⊃ Faa⻬

∼ Ha
Fba ⊃ Fab⻬

∼ Hb

 ∼ Fba
Hb ⊃ Fba⻬

 Faa
Fba ⊃ Fab⻬

Faa
Ha ⊃ Faa⻬

Faa

Fab

Fba

Fab

 ∼ Ha
Fba ⊃ Fab⻬

 ∼ Fba
Hb ⊃ Fba⻬

∼ Hb

Fba

∼ Hb

Fba

7 ⊃D
2 ∀D

9 ⊃D
1 ∀D

11 ⊃D
2 ∀D

13 ⊃D

8.
9.

10.
11.

12.
13.

14.

 ∼ Fba
Hb ⊃ Fba⻬

Fab

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 467

The best policy appears to be to stick with strategy 1, but with the caveat that,
when a shorter route to a closed tree is apparent, it should be pursued.2

9.IE EXERCISES

Construct truth-trees for the following sets of sentences. For each, note whether
the tree you construct has a completed open branch or is closed (by the
accounts of ‘completed open branch’ and ‘closed tree’ given in Chapter 4).

a. {(∃x)Fx, (∃x) ∼ Fx}
*b. {(∃x)Fx, (∀x) ∼ Fx}

c. {(∃x)(Fx & ∼ Gx), (∀x)(Fx ⊃ Gx)}
*d. {(∃x)(Fx & ∼ Gx), (∀x)Fx ⊃ (∀x)Gx}

e. {∼ (∀x)(Fx ⊃ Gx), ∼ (∃x)Fx, ∼ (∃x)Gx}
*f. {∼ (∀x)(Fx & Gx), (∃y)(Fy & Gy)}
g. {(∃x)Fx, (∃y)Gy, (∃z)(Fz & Gz)}

*h. {(∀x)(Fx ⊃ Gx), (∀x)(Gx ⊃ Hx), (∃x)(Fx & ∼ Hx)}
i. {(∀x)(∀y)(Fxy ⊃ Fyx), (∃x)(∃y)(Fxy & ∼ Fyx)}

*j. {(∀x)(∃y)Lxy, Lta & ∼ Lat, ∼ (∃y)Lay}
k. {(∃x)Fx ⊃ (∀x)Fx, ∼ (∀x)[Fx ⊃ (∀y)Fy]}
*l. {(∀x)(Fx ⊃ Gx), ∼ (∀x) ∼ Fx, (∀x) ∼ Gx}
m. {(∀x)[Fx ⊃ (∃y)Gyx, ∼ (∀x) ∼ Fx, (∀x)(∀y) ∼ Gxy}
*n. {(∃x)Gx ⊃ (∀x)Gx, (∃z)Gz & (∃y) ∼ Gy}

o. {(∃x)Lxx, ∼ (∃x)(∃y)(Lxy & Lyx)}
*p. {(∃y)(Fy ∨ Gy), ∼ (∀y)Fy & ∼ (∀y)Gy, ∼ (∀x)(Fx & Gx)}
q. {(∃x)(Fx ∨ Gx), (∀x)(Fx ⊃ ∼ Gx), (∀x)(Gx ⊃ ∼ Fx), ∼ (∃x)(∼ Fx ∨ ∼ Gx)}

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY

In Chapter 4 we defined a completed open branch to be an open branch on which
every sentence either is a literal or has been decomposed, so that no new
sentence can be added to the branch. We will have to revise this definition for
trees for sets of sentences of PL. Consider the following tree for the set
{(∃y)Gy ⊃ (∀x)Fxb, (∃z) ~ Fzb}:

2A further caveat will be required when we introduce systematic trees in Section 9.4, for the routine for con-
structing such trees requires abandoning strategy 1 altogether as it applies to universally quantified sentences.

1. (∃y)Gy ⊃ (∀x)Fxb) SM
2. (∃z) ∼ Fzb SM
3. ∼ Fab 2 ∃D

4. ∼ (∃y)Gy (∀x)Fxb 1 ∀D
5. Fab 4 ∀D

6. (∀y) ∼ Gy 4 ∼ ∃D
7. ∼ Ga 6 ∀D
8. ∼ Gb 6 ∀D

o

468 PREDICATE LOGIC: TRUTH-TREES

This tree has one closed branch and one open branch. Further sentences could
be added to the open branch, for one of the sentences on that branch, ‘(∀y) ~
Gy’, is a universally quantified sentence, and there is no limit to the number
of times a universally quantified sentence can be decomposed (such sentences
are never checked off). In the present example we added substitution instances
of ‘(∀y) ~ Gy’ on lines 7 and 8. While further substitution instances can be
added, it is clear that, no matter what further substitution instances may be
added, the branch will remain open. We have already added all the instances
that can be formed from individual constants appearing earlier on the open
branch. Substitution instances formed from individual constants not already on
the open branch will be such that their truth or falsity does not bear on the
truth of literals already on the branch, so there is no point in entering ‘~ Gh’,
for example. The leftmost branch is at this point sufficient for concluding
that the set being tested is quantificationally consistent—we can use the literals
‘~ Fab’, ‘~ Ga’, and ‘~ Gb’ that occur on this branch to construct an interpreta-
tion on which all of the set members are true. They’ll be true on any inter-
pretation that includes the following assignments:

UD: The set {1, 3}
a: 1
b: 3

Fxy: x is greater than y
Gx: x is even

‘(∃y)Gy ⊃ (∀x)Fxb’ will be true because the antecedent is false—no member
of the UD is even—while ‘(∃z) ~ Fzb’ will be true because at least one mem-
ber of the UD fails to be greater than 3.

We want open branches such as the left branch on the preceding tree—
open branches that are such that no additional useful sentences can be added
to them—to count as completed open branches. To accomplish this we mod-
ify our definition of a completed open branch as follows:

A branch of a truth-tree for a set of sentences of PL is a completed

open branch if and only if it is a finite open branch (that is, an open
branch with a finite number of sentences) and each sentence occur-
ring on the branch is one of the following:

1. A literal (an atomic sentence or the negation of an atomic
sentence)

2. A compound sentence that is not a universally quantified sentence
and is decomposed

3. A universally quantified sentence (∀x)P such that P(a/x)
occurs on the branch for each constant a occurring on the
branch and at least one substitution instance P(a/x) occurs on
the branch

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 469

By this revised account the leftmost branch of the preceding tree is a com-
pleted open branch.

Here is another example, a tree for the set {(∀x)(Gx ⊃ Hxx),
~ (∀y)Hyy, (∃z)Gz} that contains a completed open branch:

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.

(∀x)(Gx ⊃ Hxx)
∼ (∀y)Hyy⻬

(∃z)Gz⻬
(∃y) ∼ Hyy⻬

∼ Haa
 Gb

Ga ⊃ Haa⻬
Gb ⊃ Hbb⻬

SM
SM
SM
2 ∼ ∀D
4 ∃D
3 ∃D
1 ∀D
1 ∀D

8 ⊃D

7 ⊃D

∼ Gb
×

Hbb

∼ Ga
o

Haa
×

The open branch is completed because each compound sentence that is not a
universal quantification has been checked off, and the single universally quan-
tified sentence has been decomposed using each of the two constants on the
branch, at lines 7 and 8. The branch contains sufficient information for con-
structing a model of the set being tested. To make the literals on the completed
open branch true, we can use the set {1, 2} as our UD and assign 1 to ‘a’ and
2 to ‘b’. We need to interpret the predicates ‘G’ and ‘H’ in such a way that
‘Gb’ and ‘Hbb’ are true (since ‘Gb’ and ‘Hbb’ occur on the open branch) and
‘Ga’ and ‘Haa’ are false (since ‘~ Ga’ and ‘~ Haa’ occur on the open branch).
The following assignments will do the trick:

UD: {1, 2}
a: 1
b: 2

Gx: x is even
Hxy: x squared is greater than y

Any interpretation that includes these assignments will make the three sen-
tences in the set {(∀x)(Gx ⊃ Hxx), ~ (∀y)Hyy, (∃z)Gz} true, and this establishes
that the set is quantificationally consistent. Since an interpretation on which all
the members of the set being tested are true can always be constructed from a
completed open branch, we shall take the presence of a completed open
branch as a guarantee that the set being tested is quantificationally
consistent.

470 PREDICATE LOGIC: TRUTH-TREES

To see why we require that a completed open branch on which a universally
quantified sentence occurs contain at least one substitution instance of that
sentence, consider the unit set {~ (∃x)(Fx ∨ ~ Fx)}. The sole member of this
set says that it is not the case that there is an x such that either x is F or x
is not F. But each thing x either is F or is not F. So this sentence is false—
and indeed is quantificationally false (since every UD is nonempty). We
therefore want every tree for the unit set of this sentence to close. One tree
is as follows:

1. ~ (∃x)(Fx ∨ ~ Fx) SM
2. (∀x) ~ (Fx ∨ ~ Fx) 1 ~ ∃D
3. ~ (Fa ∨ ~ Fa) 2 ∀D
4. ~ Fa 3 ~ ∨D
5. ~ ~ Fa 3 ~ ∨D
6. Fa 5 ~ ~ D

On line 2 we entered a universally quantified sentence by applying Negated
Existential Decomposition to the sentence on line 1. If we did not require that
a completed open branch contain at least one substitution instance of every
universally quantified sentence occurring on that branch, we would have a com-
pleted open branch at line 2. A completed open branch is supposed to signal
a consistent set, but the set we are testing is not consistent. Given the require-
ment that a completed open branch must have at least one substitution
instance of each universally quantified sentence occurring on that branch, we
entered such an instance on line 3 and doing so eventually yielded a closed
tree. Note that the tree would close no matter what substitution instance of
‘(∀x) ~ (Fx ∨ ~ Fx)’ is entered at line 3.

We summarize here the important properties of truth-trees for sets of
sentences of PL. With the exception of the notion of a completed open branch,
these definitions strictly parallel those given in Chapter 4:

Closed branch: A branch containing both an atomic
sentence and the negation of that
sentence

Closed truth-tree: A truth-tree each of whose branches is
closed

Open branch: A branch that is not closed

Completed open branch: A finite open branch on which each
sentence is one of the following:

1. A literal (an atomic sentence or the negation of an atomic
sentence)

2. A compound sentence that is not a universally quantified sentence
and is decomposed

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 471

3. A universally quantified sentence (∀x)P such that P(a/x)
occurs on the branch for each constant a that occurs on the
branch and at least one substitution instance P(a/x) occurs on
the branch

Completed truth-tree: A truth-tree each of whose branches
either is closed or is a completed open
branch

Open truth-tree: A truth-tree that is not closed

Note that a tree that has a completed open branch is an open tree, as is a tree
that is still under construction—one that is not a completed truth-tree. So,
while some open trees may become closed trees, those with a completed open
branch will always be open trees.

As noted, we will prove the following claims in Chapter 11:

A finite set of sentences of PL is quantificationally inconsistent if and only if
 has a closed truth-tree.

A finite set of sentences of PL is quantificationally consistent if and only if
 is not quantificationally inconsistent, that is, if and only if does not have
a closed truth-tree.

If we can construct a closed tree for a finite set of sentences—that is, a closed
tree that starts with the sentences in the set—then we can conclude that that
finite set is quantificationally inconsistent. If we can construct a tree with a
completed open branch for a finite set of sentences of PL (again, a tree that
starts with the sentences in the set), we may conclude that the set is quantifi-
cationally consistent.3 However, in PL, unlike SL, not all consistent finite sets
have trees with completed open branches: some such sets have trees all of
whose open branches are infinite (we require a completed open branch to be
finite).4 That is why our second box, characterizing consistency, does so in neg-
ative terms: a finite set is quantificationally consistent if and only if it does not
have a closed truth-tree (rather than if and only if it has a tree with a com-
pleted open branch).

There is another importance difference between quantificational and
sentential truth-trees. In the sentential case, we can say that the truth of all of

3As we noted in Chapter 4, truth-trees can only be used to test finite sets of sentences. In Chapter 11 we shall
prove that an infinite set of sentences of PL is quantificationally consistent if and only if every finite subset of
that set is quantificationally consistent. Therefore, we can also say that an infinite set of sentences of PL is
quantificationally inconsistent if and only if at least one finite subset of has a closed truth-tree and that an
infinite set of sentences of PL is quantificationally consistent if and only if no finite subset of has a closed
truth-tree.
4We discuss such trees in detail in Section 9.5.

1. A ⊃ B SM
2. B ⊃ A SM
3. ∼ A SM

4. ∼ B A 2 ⊃D

5. ∼ A B 1 ⊃D
o

472 PREDICATE LOGIC: TRUTH-TREES

the members of the set being tested requires the truth of all of the sentences
on at least one completed open branch. So, for example, the following tree for
the set {A ⊃ B, B ⊃ A, ~ A} has exactly one completed open branch:

If all of the sentences in the set are true on some truth-value assignment, then
the final two sentences, ‘~ B’ and ‘~ A’, must also be true on that assignment.
(Obviously ‘~ A’ will be true because it is a member of the original set; ‘~ B’
must also be true given the truth of ‘~ A’ and ‘B ⊃ A’.) A similar claim (talk-
ing of interpretations rather than truth-value assignments) does not hold for
quantificational trees. Consider the following simple tree for the set {(∃x)Fx}:

1. (∃x)Fx SM
2. Fa 1 ∃D

o

The tree for this unit set has only one completed open branch, and from this
open branch we can conclude that there is a model for the set, for example,
any interpretation that includes the following assignments:

UD: {1}
a: 1

Fx: x is odd

for such an interpretation will make the single literal on the branch true. But
unlike the situation for SL, it is not the case that the truth of ‘(∃x)Fx’ requires
the truth of ‘Fa’. For example, ‘(∃x)Fx’ is also true on any interpretation that
includes the following assignments:

UD: {1, 2}
a: 2

Fx: x is odd

While ‘Fa’ is false on this interpretation ‘(∃x)Fx’ is true because there is a mem-
ber of the UD, namely 1, that is odd. The completed open branch shows that
the set {(∃x)Fx} is consistent not because the truth of ‘(∃x)Fx’ requires the
truth of ‘Fa’ but rather because the truth of ‘Fa’ is sufficient to guarantee the
truth of ‘(∃x)Fx’—as illustrated by the first of these interpretations. If ‘Fa’ is
true then it follows that ‘(∃x)Fx’ is true as well.

9.2 TRUTH-TREES AND QUANTIFICATIONAL CONSISTENCY 473

Although the truth of ‘(∃x)Fx’ does not require the truth of ‘Fa’, it is
the case that if ‘(∃x)Fx’ is true on some interpretation, then there must be an
intrepretation on which ‘Fa’ is true. If there is an interpretion on which some-
thing is F then we can construct an interpretation in which ‘a’ designates that
thing (leaving the interpretation of ‘F’ unchanged) so that ‘Fa’ will be true. It
is for this reason that the following tree establishes the quantificational incon-
sistency of {(∃x)(Fx & ~ Fx), even though the truth of an existentially quanti-
fied formula does not require the truth of any particular one of its substitution
instances:

1. (∃x)(Fx & ~ Fx) SM
2. Fa & ~ Fa 1 ∃D
3. Fa 2 &D
4. ~ Fa 2 &D

If there is indeed something that both is and is not F, then there is an inter-
pretation that assigns that thing to ‘a’ and ‘Fa & ~ Fa’ will be true on that
interpretation. But our tree shows that, if ‘Fa & ~ Fa’ is true on an interpre-
tation, so are both ‘Fa’ and ‘~ Fa’. But we know that there is no interpreta-
tion on which an atomic sentence and its negation are both true, so we may
conclude that there is no interpretation on which ‘Fa & ~ Fa’ is true and also
that there is no interpretation on which ‘(∃x)(Fx & ~ Fx)’ is true.

9.2E EXERCISES

Use the truth-tree method to test the following sets of sentences for quantifi-
cational consistency. State your result, and specify what it is about the tree that
establishes this result. In addition, if your tree establishes consistency, show the
relevant part of an interpretation that will make all of the literals on one com-
pleted branch, and therefore all of the members of the set being tested, true.
(Be sure to list the literals that you are using in this case.)

a. {(∀x)Fx ∨ (∃y)Gy, (∃x)(Fx & Gb)}
*b. {(∀x)Fx ∨ (∃y)Gy, (∃x)(∼ Fx & Gx)}

c. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀y) ∼ Gya}
*d. {(∀x)(Fx ⊃ Gxa), (∃x)Fx}

e. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀y)Gya}
*f. {(∀x)(Fx ⊃ Gxa), (∃x)Fx, (∀x)(∀y)Gxy}
g. {(∀x)(Fx ∨ Gx), ∼ (∃y)(Fy ∨ Gy)}

*h. {(∀x)(Fx ∨ Gx), ∼ (∃y)(Fy ∨ Gy), Fa & ∼ Gb}
i. {(∀z)Hz, (∃x)Hx ⊃ (∀y)Fy}

*j. {(∀z) ∼ Hzb, (∃y)Fy ⊃ (∃x)Hxc}
k. {(∀x)(∀y)Lxy, (∃z) ∼ Lza ⊃ (∀z) ∼ Lza}

*l. {(∀x)(∀y)Lxy, (∃z) ∼ Lza ⊃ (∀z) ∼ Lzb}
m. {(∀x)(Rx ∼ Hxa), ∼ (∀y) ∼ Hby, Ra}
*n. {(∀x)Fxa ∼ (∀x)Gxb, (∃x)(Fxa & ∼ Gxb)}

474 PREDICATE LOGIC: TRUTH-TREES

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES

To facilitate the use of truth-trees to test sentences and sets of sentences for
properties other than consistency, it will be useful to specify those other prop-
erties in terms of open and closed truth-trees. We begin with quantificational
truth, quantificational falsity, and quantificational indeterminacy:

A sentence P of PL is quantificationally true if and only if the set {∼ P} has a
closed truth-tree.

A sentence P of PL is quantificationally false if and only if the set {P} has a
closed truth-tree.

A sentence P of PL is quantificationally indeterminate if and only if neither the
set {P} nor the set {∼ P} has a closed truth-tree.

Quantificational equivalence, quantificational entailment, and quantificational
validity are specified analogously:

Sentences P and Q of PL are quantificationally equivalent if and only if
the set {∼ (P Q)} has a closed truth-tree.

A finite set of sentences of PL quantificationally entails a sentence P of PL
if and only if ∪ {∼ P} has a closed truth-tree.

An argument of PL with a finite set of premises is quantificationally valid if and
only if the set consisting of the premises and the negation of the conclusion
has a closed truth-tree.

We shall illustrate how truth-trees can be used to test for each of these
semantic properties. We begin with quantificational truth, quantificational fal-
sity, and quantificational indeterminacy. Consider the sentence ‘(∀x)(Fx &
(∃y) ~ Fy)’. It says, ‘Each thing is F and at least one thing is not F’, a claim
for which we should not hold out much hope. To verify that this sentence is
quantificationally false, we construct a tree for the unit set of this sentence,
expecting the tree to close, which it does:

1. (∀x)(Fx & (∃y) ∼ Fy) SM
2. Fa & (∃y) ∼ Fy 1 ∀D
3. Fa 2 &D
4. (∃y) ∼ Fy 2 &D
5. ∼ Fb 4 ∃D
6. Fb & (∃y) ∼ Fy 1 ∀D
7. Fb 6 &D
8. (∃y) ∼ Fy 6 &D

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 475

Since the tree closes, the set being tested is quantificationally inconsistent.
Therefore there is no interpretation on which every member of the set is true.
Since there is only one sentence in the set, there is no interpretation on which
that sentence, ‘(∀x)(Fx & (∃y) ~ Fy)’, is true. Hence the sentence is indeed
quantificationally false. Note that we used Universal Decomposition on the sen-
tence on line 1 twice—once to obtain the sentence on line 2 and once to obtain
the sentence on line 6. This was necessary because, by the time we reached
line 5, we had introduced a new constant with which the universally quantified
sentence on line 1 had not yet been decomposed.

Now consider the sentence ‘(∃x) ~ Fx ⊃ ~ (∀x)Fx’, which says ‘If there
is something that is not F, then not everything is F’ and is fairly obviously quan-
tificationally true. To verify that this sentence is quantificationally true, we con-
struct a tree for the unit set of its negation, that is, for {~ [(∃x) ~ Fx ⊃ ~ (∀x)Fx]}
(note that in forming the negation of this truth-functionally compound sentence
we were careful to reinstate the outer brackets that had been omitted):

1. (∃x)(Fx ⊃ (∀y)Fy) SM

2. Fa ⊃ (∀y)Fy 1 ∃D

3. ∼ Fa (∀y)Fy 2 ⊃D

4. o Fa 3 ∀D

o

1. ∼ [(∃x) ∼ Fx ⊃ ∼ (∀x)Fx] SM

2. (∃x) ∼ Fx 1 ∼ ⊃D

3. ∼ ∼ (∀x)Fx 1 ∼ ⊃D

4. (∀x)Fx 3 ∼ ∼ D

5. ∼ Fa 2 ∃D

6. Fa 4 ∀D

As expected, the tree is open (it has two completed open branches), so the
sentence is not quantificationally false. We next construct a tree for the unit
set of the negation of the sentence:

This tree is closed, so the set being tested is quantificationally inconsistent;
there is no interpretation on which the one member of that set, ‘~ [(∃x) ~
Fx ⊃ ~ (∀x)Fx]’, is true. Hence there is no interpretation on which the sen-
tence of which it is the negation, ‘(∃x) ~ Fx ⊃ ~ (∀x)Fx’, is false—and thus
the latter sentence is quantificationally true.

One does not always have a clear intuition about a sentence’s status, that
is, about whether it is quantificationally true, quantificationally false, or quan-
tificationally indeterminate. Consider, for example, the sentence ‘(∃x)(Fx ⊃

(∀y)Fy)’, which may appear on first encounter to be quantificationally indeter-
minate. It is if and only if both the tree for ‘(∃x)(Fx ⊃ (∀y)Fy)’ and the tree for
its negation have at least one completed open branch. We begin with a tree for
the unit set of the sentence:

476 PREDICATE LOGIC: TRUTH-TREES

Perhaps surprisingly, this tree is closed. So the negation being tested is quan-
tificationally false, and the sentence of which it is a negation, ‘(∃x)
(Fx ⊃ (∀y)Fy)’, is in fact quantificationally true.

Insufficient attention to the importance of the scope of quantifiers
might lead one to think that the sentences ‘(∃x)(Fx & Gx)’ and ‘(∃x)Fx &
(∃x)Gx’ are quantificationally equivalent and hence that

1.

2.
3.
4.
5.
6.

7.
8.
9.

10.
11.
12.
13.
14.
15.
16.

17.

 18.

SM

1 ∼ D
1 ∼ D
2 ∃D
4 &D
4 &D

3 ∼ &D
7 ∼ ∃D
8 ∀D
3 &D
3 &D
2 ∼ ∃D
10 ∃D
11 ∃D
12 ∀D
12 ∀D

15 ∼ &D

16 ∼ &D

∼ ((∃x)(Fx & Gx) ((∃x)Fx & (∃x)Gx))⻬

(∃x)(Fx & Gx)⻬
∼ ((∃x)Fx & (∃x)Gx)⻬

Fa & Ga⻬
Fa
Ga

∼ (∃x)Fx⻬
(∀x) ∼ Fx

∼ Fa

∼ (∃x)Gx⻬
(∀x) ∼ Gx

∼ Ga
 (∃x)Fx⻬

(∃x)Gx⻬
(∀x) ∼ (Fx & Gx)

Fa
Gb

∼ (Fa & Ga)⻬
∼ (Fb & Gb)⻬

∼ (∃x)(Fx & Gx)⻬
(∃x)Fx & (∃x)Gx⻬

∼ Fa

∼ Fb
o

∼ Gb

∼ Ga

1. ∼ (∃x)(Fx ⊃ (∀y)Fy) SM
2. (∀x) ∼ (Fx ⊃ (∀y)Fy) 1 ∼ ∃D
3. ∼ (Fa ⊃ (∀y)Fy) 2 ∀D
4. Fa 3 ∼ ⊃D
5. ∼ (∀y)Fy 3 ∼ ⊃D
6. (∃y) ∼ Fy 5 ∼ ∀D
7. ∼ Fb 6 ∃D
8. ∼ (Fb ⊃ (∀y)Fy) 2 ∀D
9. Fb 8 ∼ ⊃D

10. ∼ (∀y)Fy 8 ∼ ⊃D

(∃x)(Fx & Gx) ((∃x)Fx & (∃x)Gx)

is quantificationally true. To test this supposition, we construct a tree for the
negation of the biconditional, for the tree for the negation of the biconditional
will close if and only if the conditional itself is quantificationally true:

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 477

The tree has a completed open branch, so the negated biconditional we are

testing is not quantificationally false. The biconditional itself is therefore not

quantificationally true, and the immediate components ‘(∃x)(Fx & Gx)’ and

‘(∃x)Fx & (∃x)Gx’ of the biconditional are not quantificationally equivalent. If

we are interested in establishing, by the tree method, that the biconditional is

quantificationally indeterminate (and not quantificationally false), we must

construct a tree for the biconditional itself:

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

SM

1 ⬅D

1 ⬅D

2 ∼ ∃D

4 ∀D

3 ∼ &D

6 ∼ ∃D

7 ∀D

5 ∼ &D

3 &D

3 &D

2 ∃D

12 &D

12 &D

10 ∃D

11 ∃D

(∃x)(Fx & Gx) ⬅ ((∃x)Fx & (∃x)Gx)⻬

(∃x)(Fx & Gx)⻬

(∃x)Fx & (∃x)Gx⻬

(∃x)Fx⻬

(∃x)Gx⻬

Fa & Ga⻬

Fa

Ga

Fb

Gc

o

∼ (∃x)(Fx & Gx)⻬

∼ ((∃x)Fx & (∃x)Gx)⻬

(∀x) ∼ (Fx & Gx)

∼ (Fa & Ga)⻬

∼ (∃x)Fx⻬

(∀x) ∼ Fx

∼ Fa

∼ Fa

o

∼ Ga

o

∼ (∃x)Gx⻬

(∀x) ∼ Gx

∼ Ga

∼ Fa

o

∼ Ga

o

It is surely not surprising that this tree has at least one completed open

branch, establishing that the biconditional being tested is not quantifica-

tionally false and is therefore, given the previous tree, which also had a com-

pleted open branch, quantificationally indeterminate.

The sentences ‘(∀x)(Fx ⊃ (∃y)Gya)’ and ‘(∃x)Fx ⊃ (∃y)Gya’ are quan-

tificationally equivalent, as the following closed tree for the negation of their

478 PREDICATE LOGIC: TRUTH-TREES

To use the tree method to test for quantificational validity, we construct a tree
for the premises and the negation of the conclusion of the argument in ques-
tion. A tree for the argument

(∀w) ∼ Gww

∼ (∀x)Hx ⊃ (∃y)Gya

(∃z)(Hz & ∼ Gzz)

corresponding material biconditional establishes:

1.

2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.
14.
15.
16.

17.
18.
19.
20.
21.

SM

1 ∼ D
1 ∼ D
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∃D
4 ∃D
2 ∀D

8 ⊃D
9 ∃D
6 ∀D
2 ∼ ∀D
12 ∃D
13 ∼ ⊃D
13 ∼ ⊃D
15 ∼ ∃D

3 ⊃D
17 ∼ ∃D
18 ∀D
17 ∃D
16 ∀D

∼ [(∀x)(Fx ⊃ (∃y)Gya) ((∃x)Fx ⊃ (∃y)Gya)]⻬

(∀x)(Fx ⊃ (∃y)Gya)
∼ ((∃x)Fx ⊃ (∃y)Gya)⻬

(∃x)Fx⻬
∼ (∃y)Gya⻬
(∀y) ∼ Gya

Fb
Fb ⊃ (∃y)Gya⻬

∼ Fb

(∃x) ∼ (Fx ⊃ (∃y)Gya)⻬
∼ (Fb ⊃ (∃y)Gya)⻬

Fb
∼ (∃y)Gya⻬
(∀y) ∼ Gya

∼ (∀x)(Fx ⊃ (∃y)Gya)⻬
(∃x)Fx ⊃ (∃y)Gya⻬

(∃y)Gya⻬
Gca

∼ Gca

∼ (∃x)Fx⻬
(∀x) ∼ Fx

∼ Fb

(∃y)Gya⻬

Gca
∼ Gca

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 479

follows:

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.
16.

(∀w) ∼ Gww
∼ (∀x)Hx ⊃ (∃y)Gya⻬
∼ (∃z)(Hz & ∼ Gzz)⻬
(∀z) ∼ (Hz & ∼ Gzz)

SM
SM
SM
3 ∼ ∃D

2 ⊃D
5 ∃D
5 ∼ ∼ D
1 ∀D
4 ∀D

9 ∼ &D
7 ∀D
10 ∼ ∼ D
1 ∀D
4 ∀D

14 ∼ &D
15 ∼ ∼ D

 ∼ ∼ (∀x)Hx⻬ (∃y)Gya⻬
Gba

∼ Ha
Ha

(∀x)Hx
∼ Gaa

∼ (Ha & ∼ Gaa)⻬
∼ Gaa

∼ (Ha & ∼ Gaa)⻬

∼ ∼ Gaa⻬

∼ ∼ Gbb
 Gbb

Gaa

Gaa

∼ Ha

∼ Hb
o

∼ ∼ Gaa

∼ Gbb
∼ (Hb & ∼ Gbb)⻬

The tree has a completed open branch, so the argument is quantificationally
invalid. (There is an interpretation on which the premises and the negation of
the conclusion are all true, that is, an interpretation on which the premises are
true and the conclusion is false.)

As with truth-trees for sentential logic, the procedure for testing alleged
entailments parallels that for testing for validity. Consider the following entail-
ment claim:

{(∀x)(Hx ∼ Ix), ∼ (∃x) ∼ Ix} (∀x) ∼ Hx|=

If this claim is true, there is no interpretation on which the members of the
above set are both true and the allegedly entailed sentence false; that is, there
is no interpretation on which all the members of

{(∀x)(Hx ∼ Ix), ∼ (∃x) ∼ Ix, ∼ (∀x) ∼ Hx}

480 PREDICATE LOGIC: TRUTH-TREES

are true. So we shall test the latter set for quantificational consistency:

1.
2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.

SM
SM
SM
2 ∼ ∃D
3 ∼ ∀D
5 ∃D
6 ∼ ∼ D
1 ∀D

8 D
8 D
4 ∀D
11 ∼ ∼ D

 (∀x)(Hx ∼ Ix)
∼ (∃x) ∼ Ix⻬

∼ (∀x) ∼ Hx⻬
 (∀x) ∼ ∼ Ix

(∃x) ∼ ∼ Hx⻬
∼ ∼ Ha⻬

Ha
Ha ∼ Ia⻬

 Ha
 ∼ Ia
∼ ∼ Ia⻬
 Ia

 ∼ Ha
∼ ∼ Ia

The tree is closed, so the set consisting of the members of the original set
and the negation of the allegedly entailed sentence is quantificationally incon-
sistent. Therefore there is no interpretation on which all the members of that
original set are true and the allegedly entailed sentence false, and so the
entailment does hold.

9.3E EXERCISES

Construct truth-trees as necessary to provide the requested information. In
each case state your result, and specify what it is about your tree that estab-
lishes this result.

1. Which of the following sentences are quantificationally true?
a. (∃x)Fx ∨ ∼ (∃x)Fx

*b. (∃x)Fx ∨ (∃x) ∼ Fx
c. (∀x)Fx ∨ (∀x) ∼ Fx

*d. (∀x)Fx ∨ ∼ (∀x)Fx
e. (∀x)Fx ∨ (∃x) ∼ Fx

*f. (∀x)(Fx ∨ Gx) ⊃ [(∃x)Fx ∨ (∃x)Gx]
g. (∀x)(Fx ∨ Gx) ⊃ [(∃x) ∼ Fx ⊃ (∃x)Gx]

*h. (∀x)(Fx ∨ Gx) ⊃ [(∃x)Fx ∨ (∀x)Gx]
i. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)

*j. (∀x)(Fx ∨ Gx) ⊃ [(∀x)Fx ∨ (∀x)Gx]
k. (∃x)(Fx & Gx) ⊃ [(∃x)Fx & (∃x)Gx]
*l. [(∃x)Fx & (∃x)Gx] ⊃ (∃x)(Fx & Gx)
m. ∼ (∃x)Fx ∨ (∀x) ∼ Fx
*n. (∀x)[Fx ⊃ (Gx & Hx)] ⊃ (∀x)[(Fx & Gx) ⊃ Hx]

o. (∀x)[(Fx & Gx) ⊃ Hx] ⊃ (∀x)[Fx ⊃ (Gx & Hx)]
*p. (∀x)(Fx & ∼ Gx) ∨ (∃x)(∼ Fx ∨ Gx)

9.3 TRUTH-TREES AND OTHER SEMANTIC PROPERTIES 481

q. (∀x)(Fx ⊃ Gx) ⊃ (∀x)(Fx ⊃ (∀y)Gy)
*r. (∀x)(∀y)Gxy ⊃ (∀x)Gxx
s. (∀x)Gxx ⊃ (∀x)(∀y)Gxy

*t. (∀x)Fxx ⊃ (∀x)(∃y)Fxy
u. (∃x)(∀y)Gxy ⊃ (∀x)(∃y)Gyx

*v. (∃x)(∃y)(Lxy Lyx)
w. ((∃x)Lxx ⊃ (∀y)Lyy) ⊃ (Laa ⊃ Lgg)

2. Which of the following sentences are quantificationally false?
a. (∀x)Fx & (∃x) ∼ Fx

*b. (∀x)Fx & ∼ (∃x)Fx
c. (∃x)Fx & (∃x) ∼ Fx

*d. (∃x)Fx & ∼ (∀x)Fx
e. (∀x)(Fx ⊃ (∀y) ∼ Fy)

*f. (∀x)(Fx ⊃ ∼ Fx)
g. (∀x)(Fx ∼ Fx)

*h. (∃x)Fx ⊃ (∀x) ∼ Fx
i. (∃x)(∃y)(Fxy & ∼ Fyx)

*j. (∃x)Fx & ∼ (∃y)Fy
k. (∀x)(∀y)(Fxy ⊃ ∼ Fyx)

*l. (∀x)(Gx ∼ Fx) & ∼ (∀x) ∼ (Gx Fx)
m. (∃x)(∀y)Gxy & ∼ (∀y)(∃x)Gxy

3. What is the quantificational status (quantificationally true, quantificationally
false, or quantificationally indeterminate) of each of the following sentences?

a. (∃x)Fxx ⊃ (∃x)(∃y)Fxy
*b. (∃x)(∃y)Fxy ⊃ (∃x)Fxx

c. (∃x)(∀y)Lxy ⊃ (∃x)Lxx
*d. (∀x)(Fx ⊃ (∃y)Gyx) ⊃ ((∃x)Fx ⊃ (∃x)(∃y)Gxy)

e. (∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)
*f. ((∃x)Lxx ⊃ (∀y)Lyy) ⊃ (Laa ⊃ Lgg)
g. (∀x)(Fx ⊃ (∀y)Gxy) ⊃ (∃x)(Fx ⊃ ∼ (∀y)Gxy)

4. Which of the following pairs of sentences are quantificationally equivalent?
a. (∀x)Mxx ∼ (∃x) ∼ Mxx

*b. (∃x)(Fx ⊃ Ga) (∃x)Fx ⊃ Ga
c. (∀x)(Fa ⊃ Gx) Fa ⊃ (∀x)Gx

*d. Ls (∀x)Lx (∃x)Lx
e. (∃x)Fx ⊃ Ga (∃x)(Fx ⊃ Ga)

*f. (∀x)(Fx ∨ Gx) (∀x)Fx ∨ (∀x)Gx
g. (∀x)Fx ⊃ Ga (∃x)(Fx ⊃ Ga)

*h. (∃x)(Ax & Bx) (∃x)Ax & (∃x)Bx
i. (∀x)(∀y)(Fx ⊃ Gy) (∀x)(Fx ⊃ (∀y)Gy)

*j. (∀x)(Fx ∼ Gx) (∀x) ∼ (Fx Gx)
k. (∀x)(Fx Gx) Fa (∀x)Gx
*l. (∀x)(Fx ∨ (∃y)Gy) (∀x)(∃y)(Fx ∨ Gy)
m. (∀x)(Fx ⊃ (∀y)Gy) (∀x)(∀y)(Fx ⊃ Gy)

482 PREDICATE LOGIC: TRUTH-TREES

5. Which of the following arguments are quantificationally valid?

a. (∀x)(Fx ⊃ Gx)

Ga

Fa

*b. (∀x)(Tx ⊃ Lx)

∼ Lb

∼ Tb

c. (∀x)(Kx ⊃ Lx)

(∀x)(Lx ⊃ Mx)

(∀x)(Kx ⊃ Mx)

*d. (∀x)(Fx ⊃ Gx)

(∀x)(Hx ⊃ Gx)

(∀x)((Fx ∨ Hx) ⊃ Gx)

e. (∀x)(Fx ⊃ Gx) ⊃ (∃x)Nx

(∀x)(Nx ⊃ Gx)

(∀x)(∼ Fx ∨ Gx)

*f. (∼ (∃y)Fy ⊃ (∃y)Fy) ∨ ∼ Fa

(∃z)Fz

g. (∀x)(∼ Ax ⊃ Kx)

(∃y) ∼ Ky

(∃w)(Aw ∨ ∼ Lwf)

*h. (∀y)(Hy & (Jyy & My))

(∃x)Jxb & (∀x)Mx

i. (∀x)(∀y)Cxy

(Caa & Cab) & (Cba & Cbb)

*j. (∃x)(Fx & Gx)

(∃x)(Fx & Hx)

(∃x)(Gx & Hx)

k. (∀x)(Fx ⊃ Gx)

∼ (∃x)Fx

∼ (∃x)Gx

*l. (∃z)Bzz

(∀x)(Sx ⊃ Bxx)

∼ Sg

m. (∃x)Cx ⊃ Ch

(∃x)Cx Ch

*n. Fa ∨ (∃y)Gya

Fb ∨ (∃y) ∼ Gyb

(∃y)Gya

6. Which of the following alleged entailments hold?
a. {(∀x) ∼ Jx, (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx} (∀y) ∼ (Hby ∨ Ryy)

*b. {(∀x)(∀y)(Mxy ⊃ Nxy)} (∀x)(∀y)(Mxy ⊃ (Nxy & Nyx))
c. {(∀y)((Hy & Fy) ⊃ Gy), (∀z)Fz & ∼ (∀x)Kxb} (∀x)(Hx ⊃ Gx)

*d. {(∀x)(Fx ⊃ Gx), (∀x)(Hx ⊃ Gx)} (∀x)(Fx ∨ Hx)
e. {(∀z)(Lz Hz), (∀x) ∼ (Hx ∨ ∼ Bx)} ∼ Lb

9.4 FINE-TUNING THE TREE METHOD FOR PL

In Chapter 8 we noted that there does not exist a decision procedure for decid-
ing, for each sentence of PL, whether that sentence is quantificationally true,
quantificationally false, or quantificationally indeterminate. That is, there is no
mechanical test procedure that always yields, in a finite number of steps, a “yes”

|=
|=

|=
|=

|=

9.4 FINE-TUNING THE TREE METHOD FOR PL 483

or “no” answer to the question ‘Is this sentence of PL quantificationally true,
and if not is it quantificationally false, and if not is it quantificationally inde-
terminate?’ Nor is there such a decision procedure for equivalence, consistency,
validity, or entailment: the system PL is undecidable. In the current context this
means that we cannot produce a mechanical method for constructing trees that
will always give correct “yes” or “no” answers in a finite number of steps. The
problem here is that not every finite set of sentences of PL has a finite truth-
tree, where we define a finite truth-tree be a truth-tree that either is closed or
has a completed open branch. It is an unavoidable result that not every finite
set of sentences of PL/PLE has a finite tree. There are, however, two ways in
which the tree method we have developed can be significantly improved, and
our task in this section is to do so.

First, we would like our set of rules to be capable of producing a finite
tree for any finite set that has a finite model, that is, any set for which there is an
interpretation with a finite UD on which all of the members of the set are true.
Our present tree rules do not ensure that there is finite tree for every finite set
that has a finite model. Consider, for example, the start of a tree for {(∀y)(∃z)Fyz}:

1. (∀y)(∃z)Fyz SM
2. (∃z)Faz 1 ∀D
3. Fab 2 ∃D
4. (∃z)Fbz 1 ∀D
5. Fbc 4 ∃D
6. (∃z)Fcz 1 ∀D
7. Fcd 6 ∃D

•

•

•

The dots here indicate that the tree will continue indefinitely. There is no hope
of closing the one open branch on this tree. At every other step after the first,
a new atomic sentence is added to the open branch, using Existential Decom-
position, and since every atomic sentence is quantificationally consistent with
every other atomic sentence, continuing to add more atomic sentences will never
close the tree. But this branch also can never become a completed open branch.
Every time Universal Decomposition is applied to the sentence on line 1, a new
existentially quantified sentence is added to the branch. And decomposing that
sentence adds a new individual constant to the branch, necessitating a further
application of Universal Decomposition to ‘(∀y)(∃z)Fyz’, resuming the cycle. We
call an open branch that cannot be completed—one that never closes and will
never, in a finite number of steps, become a completed open branch—a
nonterminating branch.

Assuming we retain the requirement that every universally quantified
sentence on a completed open branch must be decomposed using every con-
stant on that branch, the only way to avoid the inevitability of a nonterminat-
ing branch in the preceding tree is to revise our Existential Decomposition rule.
That rule currently stipulates that a sentence (∃x)P must be decomposed to a

484 PREDICATE LOGIC: TRUTH-TREES

substitution instance P(a/x) in which a is foreign to the branch in question. Let
us recall the reason for this restriction: it is that using a constant that already
occurs on the branch would be to make the unwarranted assumption that the
thing that is of the sort P is also of the sort specified by the formulas in which
it occurs elsewhere on the branch. The following tree illustrates this:

5This Existential Decomposition rule is due to George Boolos, “Trees and Finite Satisfiability: Proof of a Con-
jecture of Burgess,” Notre Dame Journal of Formal Logic, 25(3)(1984), 193–197.

P(a1 x) P(am x) P(am 1 x)

(∃x)P⻬

. . .

where a1, . . . , am are the constants that already occur on the branch
on which Existential Decomposition-2 is being applied to decompose
(∃x)P and am 1 is a constant that is foreign to that branch.5

Existential Decomposition-2 (∃D2)

1. (∃x)Fx SM
2. (∃x) ~ Fx SM
3. Fa 1 ∃D
4. ~ Fa 2 ∃D MISTAKE!

There is no interpretation on which something is of the sort F and that very
same thing is of the sort not-F, but in using ‘b’ at line 4 as well as line 3 we are,
in effect, looking for such an interpretation. It is no surprise that the search fails.
Yet the set {(∃x)Fx, (∃x) ~ Fx} is consistent, as the following correct tree verifies:

1. (∃x)Fx SM
2. (∃x) ~ Fx SM
3. Fa 1 ∃D
4. ~ Fb 2 ∃D

o

However, as the example in the previous paragraph shows, the requirement
that a new constant be used to instantiate an existentially quantified sentence
sometimes leads to nonterminating branches.

Fortunately, there is another way to think about decomposing an exis-
tentially quantified sentence (∃x)P. Rather than avoid altogether the use of
constants that already occur on the branch that contains (∃x)P, we shall intro-
duce a second, branching, Existential Decomposition rule. The branching will
allow us to consider substitution instances formed from constants already on
the branch as well as a substitution instance formed from a new constant. We
will call the new rule Existential Decomposition-2:

9.4 FINE-TUNING THE TREE METHOD FOR PL 485

This rule requires that when we decompose an existentially quantified sentence
(∃x)P we must branch out to the relevant substitution instances. If a1 through
am are the constants that occur on the branch that contains the sentence (∃x)P
that is being decomposed, then substitution instances formed from those con-
stants are to be entered, each on a distinct branch, and P(am 1/x) is to be
entered on a further branch where am 1 is any constant foreign to the branch
in question. Thus Existential Decomposition-2 produces a varying number of
new branches, depending on how many constants already occur on the branch
to which it is applied.

Here is a tree for the set {(∃x)Fx, (∃x) ~ Fx} in which Existential
Decomposition-2 is used:

1. (∃x)Fx SM

2. (∃x) ∼ Fx SM

3. Fa 1 ∃D2

4. ∼ Fa ∼ Fb 2 ∃D2

When we first used Existential Decomposition-2, on line 3, there were no con-
stants already occurring on the open branch containing ‘(∃x)Fx’. In this case the
rule requires adding only one substitution instance, formed from any constant.
Note that in this case, where no constants yet occur on the branch, Existential
Decomposition and Existential Decomposition-2 produce the same result. The sec-
ond use of Existential Decompostion-2 required branching to two substitution
instances of ‘(∃x) ~ Fx’. On the left branch we formed a substitution instance
using the constant ‘a’ that already occured on the single branch in progress prior
to line 4, as required by Existential Decomposition-2, and on the right branch we
formed a substitution instance using a new constant, ‘b’—again, as required by
Existential Decomposition-2. The idea behind branching to these two possibilities
is that the individual by virtue of which ‘(∃x) ~ Fx’ is true might be the individ-
ual that we have already chosen to designate with the constant ‘a’, or it might be
another individual. To allow for the latter possibility we form a substitution
instance with a new constant. The left-hand branch closes because the individual
by virtue of which ‘(∃x) ~ Fx’ is true cannot be the individual denoted by ‘a’
in the sentence ‘Fa’ at line 3: There is no interpretation on which ‘Fa’ and
‘~ Fa’ are both true. But the open right-hand branch is complete. This branch
contains the literals ‘Fa’ and ‘Fb’ and shows that there is an interpretation on
which ‘Fa’ and ‘~ Fb’, and consequently both ‘(∃x)Fx’ and ‘(∃x) ~ Fx’, are true.
Any interpretation that includes the following assignments will do:

UD: the set {1, 2}
Fx: x is odd

a: 1

b: 2

486 PREDICATE LOGIC: TRUTH-TREES

So far it may look like Existential Decomposition-2 makes for more
work than is necessary, since using the earlier rule Existential Decomposition
resulted in a completed open four-line tree for the set {(∃x)Fx, (∃x) ~ Fx} with-
out any branching. But now consider again the set {(∀y)(∃z)Fyz}. We saw that
with the rule Existential Decomposition we could only produce a tree with a
nonterminating branch for this set, even though the set is quantificationally
consistent and has a finite model. Using Existential Decomposition-2 we can
produce a truth-tree with a completed open branch for this set:

At line 3 we branched to two substitution instances of the existentially quanti-
fied sentence on line 2. The instantiating constant in the substitution instance
on the left-hand branch is ‘a’, which occurred earlier on that branch. The
instantiating constant in the substitution instance on the right-hand branch,
‘b’, was chosen as it is foreign to the branch so far. The sentence at line 2 says
that the individual designated by ‘a’ bears the relation F to something. The
branching indicates that something might be the very same individual (this is
the left-hand branch) or it might be something else (this is the right-hand
branch) If both branches close, we will know there is neither sort of interpre-
tation. But if either becomes a completed open branch, we will know that there
is a model—indeed, a finite model—for the set being tested. Here the left-hand
branch is completed and contains the single literal ‘Faa’. So there is a finite
model for the set being tested. Any interpretation that includes the following
assignments will be such a model:

UD: {1}
Fxy: x y

The right-hand branch is open but is not a completed open branch because
the universally quantified sentence on line 1 has not been decomposed to a
substitution instance formed from ‘b’.

Note that if we were to continue the right-hand branch by instantiat-
ing the universal quantification on line 1 with ‘b’ we would need to branch to
three substitution instances when decomposing the existentially quantified sen-
tence ‘(∃z)Fbz’, namely the substitution instances ‘Fba’ and ‘Fbb’ (because ‘a’
and ‘b’ already occur on that branch), and a substitution instance with a new
constant such as ‘Fbc’. The first two of these branches will also be completed

1. (∀y)(∃z)Fyz SM
2. (∃z)Faz 1 ∀D

3. Faa Fab 2 ∃D2
o

9.4 FINE-TUNING THE TREE METHOD FOR PL 487

open branches, while the third will require us to once again decompose the
universal quantification on line 1 using the new constant ‘c’. It should be clear
that we will never be able to complete the tree. But we don’t need to, because
the new rule Existential-Decomposition-2 produced a completed open branch
at line 3, showing that the set is quantificationally consistent. Using Existential
Decomposition-2 rather than Existential Decomposition ensures that the inter-
play between universal and existential quantifiers will not produce trees with
only nonterminating open branches for sets that do have finite models. In fact,
we shall prove in Chapter 11 that using the rule $∃D2 in place of $∃D, every finite
set of sentences of PL with a finite model will have a finite tree with a completed open
branch. This is clearly desirable.

Here is a tree using Existential Decomposition-2 for the set {(∀x)(Fx ⊃
(∃y)Gyx), (∀x)Fx}:

1. (∀x)(Fx ⊃ (∃y)Gyx) SM
2. (∀x)Fx SM
3. Fa 2 ∀D
4. Fa ⊃ (∃y)Gya 1 ∀D

5. ∼ Fa (∃y)Gya 4 ⊃D

6. Gaa Gba 5 ∃D2
o

This tree has one completed open branch, the middle branch. The two uni-
versally quantified sentences on the branch have been decomposed to the sin-
gle constant on the branch, ‘a’. Every other sentence on the branch is either
a literal or has been decomposed. So the set is quantificationally consistent.
Had we used Existential Decomposition at line 6, the tree would have had only
two branches at that point:

1. (∀x)(Fx ⊃ (∃y)Gyx) SM
2. (∀x)Fx SM
3. Fa 2 ∀D
4. Fa ⊃ (∃y)Gya 1 ∀D

5. ∼ Fa (∃y)Gya 4 ⊃D

6. Gba 5 ∃D

Of course, the left branch still closes, but repeated uses of ∃D on the right
branch will only go on to produce more closed branches and a single nonter-
minating branch.

488 PREDICATE LOGIC: TRUTH-TREES

The following tree shows that the set {~ [(∀x)(∃y)Fxy ≡ (∀x)Fxa]} is
quantificationally consistent:

1.

2.
3.
4.
5.

6.
7.
8.
9.

10.
11.

12.

13.
14.

15.

SM

1 ∼ ⬅D
1 ∼ ⬅D
2 ∼ ∀D
3 ∀D

4 ∃D2
6 ∼ ∃D
7 ∀D
3 ∀D
3 ∼ ∀D
2 ∀D

10 ∃D2

11 ∃D2
2 ∀D

14 ∃D2

∼ [(∀x)(∃y)Fxy ⬅ (∀x)Fxa]⻬

(∀x)(∃y)Fxy
∼ (∀x)Fxa⻬

∼ (∀x)(∃y)Fxy⻬
(∀x)Fxa

(∃x) ∼ (∃y)Fxy⻬
 Faa

∼ (∃y)Fay⻬
(∀y) ∼ Fay

∼ Faa
⫻

∼ (∃y)Fby⻬
(∀y) ∼ Fby

∼ Fba
 Fba
 ⫻(∃x) ∼ Fxa⻬

(∃y)Fay⻬

∼ Faa

Faa
⫻

Faa
(∃y)Fby

Fab
(∃y)Fby⻬

Fbb
o

FbcFba
o

Fab
(∃y)Fby

Fac
(∃y)Fby

∼ Fba

Note that using Existential Decomposition-2 at line 13 resulted in adding two
new branches to the existing leftmost branch (one with the constant ‘a’ that
already occured on the leftmost branch and one with the constant ‘b’ that was
foreign to that branch), and adding three new branches to the other existing
open branch ending at line 12 (two with the constants ‘a’ and ‘b’ that already
occurred on that branch and one with the constant ‘c’ that was foreign to that
branch). At line 15, Existential Decomposition-2 produces three branches from

9.4 FINE-TUNING THE TREE METHOD FOR PL 489

the leftmost open branch of line 14: two substitution instances use the con-
stants ‘a’ and ‘b’ that already occur there, and a third uses the constant ‘c’
that was foreign to that branch. Although the tree is not now complete, it has
two completed open branches, the one ending in ‘Fba’ and the one ending
in ‘Fbb’. The branch ending in ‘Fbc’ is not complete, as ‘(∀x)(∃y)Fxy’ has not
been decomposed using the constant ‘c’. The branches to line 13 ending in
undecomposed existentially quantified sentences are also, for that reason, not
complete.

We turn now to the second improvement in our tree method for PL. We
would like to be assured that when a set does have a finite tree we will eventually
find it. The tree rules we have presented do not themselves guarantee this. For
example, they allow the construction of trees such as the following one for the
set {∀x)Fx, (∀x) ~ Fx}:

1. (∀x)Fx SM
2. (∀x) ∼ Fx SM
3. Fa 1 ∀D
4. Fb 1 ∀D
5. Fc 1 ∀D
6. Fd 1 ∀D

•
•
•

Continuing in this way—adding substitution instances that result from apply-
ing ∀D to the sentence on line 1—does not involve misusing any tree rule but
will never produce either a closed tree or a completed open branch. Yet a
closed tree for the set can be produced in just four lines:

1. (∀x)Fx SM
2. (∀x) ∼ Fx SM
3. Fa 1 ∀D
4. ∼ Fa 2 ∀D

What we need is a procedure for applying the decomposition rules that is guar-
anteed to yield a finite tree where one exists, not only in this case but also in
much more complicated ones. For example, above we produced a tree with a
completed open branch for the set {~ [(∀x)(∃y)Fxy (∀x)Fxa]}, showing that

490 PREDICATE LOGIC: TRUTH-TREES

it is quantificationally consistent. But we could just as well have begun the tree
for this set as follows:

1.

2.
3.
4.
5.

6.
7.
8.
9.

10.
11.

12.

13.
14.

15.
16.

17.
18.

SM

1 ∼ D
1 ∼ D
2 ∼ ∀D
3 ∀D

4 ∃D2
6 ∼ ∃D
7 ∀D
3 ∀D

3 ∼ ∀D
2 ∀D

10 ∃D2

11 ∃D2
2 ∀D

14 ∃D2
2 ∀D

16 ∃D2
2 ∀D

∼ [(∀x)(∃y)Fxy (∀x)Fxa]⻬

(∀x)(∃y)Fxy
∼ (∀x)Fxa⻬

∼ (∀x)(∃y)Fxy⻬
(∀x)Fxa

(∃x) ∼ (∃y)Fxy⻬
 Faa

∼ (∃y)Fay⻬
(∀y) ∼ Fay

∼ Faa

∼ (∃y)Fby⻬
(∀y) ∼ Fby

∼ Fba
 Fba

(∃x) ∼ Fxa⻬
(∃y)Fay⻬

∼ Faa

Faa

FaaFab Fab Fac
(∃y)Fcy⻬

∼ Fba

Fca FccFcb Fcd
(∃y)Fdy⻬

Fda Fdc FddFdb Fde
(∃y)Fey

In this case, after line 13 we have repeatedly added a substitution instance of
the universal quantification on line 2 to the rightmost open branch, using the
new constant just introduced by ∃D2, then applied ∃D2 again, generating a new
instantiating constant on the rightmost branch, and so on. Clearly we can con-
tinue this process forever. So unless care is taken we can work continuously on
a branch that won’t terminate while ignoring a branch that, if continued, will
become a completed open branch.

To guarantee that a finite branch will be found if it exists, we intro-
duce a procedure for constructing trees for PL that pursues all possibilities
in a systematic fashion, such that a completed open branch will be found if
one exists and also such that a tree that can be closed will in fact close. The
System is

9.4 FINE-TUNING THE TREE METHOD FOR PL 491

We call trees that have been constructed in accordance with the Sys-
tem systematic trees. In all systematic trees Existential Decomposition-2 is
used rather than Existential Decomposition. To construct a systematic tree,
proceed through the tree construction stages in the order specified. That is,
first the members of the set being tested are listed. Next all truth-functionally
compound and all existentially quantified sentences are decomposed. When
decomposing these sentences it is wise to apply nonbranching rules before
applying branching rules. When and only when the tree contains no unde-
composed truth-functional compounds and no undecomposed existentially
quantified sentences do we proceed to Stage 2. At Stage 2 each universally
quantified sentence on the tree is decomposed as specified. It is important
to note that work at Stage 2 is not complete until every universally quanti-
fied sentence on the tree has been decomposed in the required manner,
including both those that were on the tree when we passed from Stage 1 to
Stage 2 and those that are entered as a result of work at Stage 2. The first
tree that we began to construct for the set {(∀x)Fx, (∀x) ~ Fx} was not a
systematic tree because it violated Stage 2. In that tree the universally quan-
tified sentence on line 1 was decomposed at line 4 with the new constant
‘b’, violating the requirement that all universally quantified sentences must
be decomposed using constants already on the tree, and only those (except

The System for PL

List the members of the set to be tested.

Exit Conditions: Stop if

a. The tree closes.

b. An open branch becomes a completed open branch.

Construction Procedures:

Stage 1: Decompose all truth-functionally compound and existentially quantified
sentences and each resulting sentence that is itself either a truth-
functional compound or an existentially quantified sentence.

Stage 2: For each universally quantified sentence (∀x)P on the tree, enter P(a x)
on every open branch passing through (∀x)P for every constant a on
the branch. On each open branch passing through (∀x)P on which no
constant occurs, enter P(a x).

Repeat this process until every universally quantified sentence on
the tree, including those added as a result of this process, has been so
decomposed.

Return to Stage 1.

492 PREDICATE LOGIC: TRUTH-TREES

when there is no constant). Following The System produces a closed tree for
this set:

1.

2.
3.
4.
5.

6.
7.
8.
9.

10.
11.
12.

13.

14.

SM

1 ∼ D
1 ∼ D
2 ∼ ∀D
3 ∼ ∀D

5 ∃D2

4 ∃D2
6 ∼ ∃D
2 ∀D
2 ∀D
8 ∀D
3 ∀D

9 ∃D2

10 ∃D2

∼ [(∀x)(∃y)Fxy (∀x)Fxa]⻬

(∀x)(∃y)Fxy
∼ (∀x)Fxa⻬

(∃x) ∼ Fxa⻬

∼ Faa

FaaFaa

Fab

Fba

Fbb
o

Fbc Fba

Fbb Fbc

Fab Fac

(∃y)Fay⻬ (∃y)Fay⻬
(∃y)Fby⻬

∼ Fba

∼ (∀x)(∃y)Fxy⻬
(∀x)Fxa

(∃x) ∼ (∃y)Fxy⻬

∼ (∃y)Fay⻬
(∀y) ∼ Fay

∼ Faa

∼ (∃y)Fby⻬
(∀y) ∼ Fby

∼ Fba
 Fba

Fba

Fbc FbdFbb

13

1. (∀x)Fx SM
2. (∀x) ∼ Fx SM
3. Fa 1 ∀D
4. ∼ Fa 2 ∀D

(Note that this is the four-line tree that we earlier displayed for this set.) Here
at line 4 we decomposed the universally quantified sentence from line 2 with
the constant ‘a’ that already occurred on the branch. Doing so not only com-
pletes Stage 2 but also terminates construction because an Exit Condition has
been met: the tree has closed.

Although our first tree for the set {~ [(∀x)(∃y)Fxy (∀x)Fxa]} included
a completed open branch, that tree is not a systematic tree. It first violates the
method set out in The System at line 5, where it decomposes a universally quan-
tified sentence before all of the truth-functionally compound and existentially
quantified sentences have been decomposed. These latter include the negated
universally quantified sentence on line 3 and the existentially quantified sen-
tence on line 4. Here is a systematic tree for the same set:

At line 8 all of the truth-functionally compound and existentially quantified
sentences occurring on lines 1–7 have been decomposed, so Stage 1 has been
completed and Stage 2 commences. Stage 2 continues through line 12, at which
point all universally quantified sentences have been decomposed using all of

9.4 FINE-TUNING THE TREE METHOD FOR PL 493

Obviously, we could have produced a closed tree in four lines, by entering ‘Fa’
(obtained by decomposing the sentence on line 1) at line 4. But the result
would not be a systematic tree. The System requires us first to decompose the
sentence on line 3, then those on line 4, and then those on line 5, before
decomposing the universally quantified sentence from line 1. So we do not
claim that The System always produces the smallest trees possible, and wher-
ever we see a more economical way to produce either a closed tree or a com-
pleted open branch we should do so. What The System does guarantee is that
if there is a tree with a completed open branch, The System will generate such
a tree, and if there is a closed tree, The System will generate a closed tree.
Because The System is reliable in this sense, it should be used when one does

the relevant constants, so we return to Stage 1 to continue at line 13. Stage 1
produces a completed open branch on line 14, so the procedure terminates.
Interestingly, this tree is one line shorter than our earlier tree with a completed
open branch for the same set. Unfortunately, as we shall shortly see, systematic
trees are not always so economical.

Systematic trees differ from nonsystematic trees in three important
respects. First, in systematic trees Existential Decomposition-2 is always used to
decompose existentially quantified sentences. In nonsystematic trees either
Existential Decomposition, or Existential Decomposition-2 (or both) may be
used. Second, The System does not allow work on one branch to be continued
to the point of excluding all work on another open branch. Third, it does not
allow us to ignore constants already occurring on a tree when we are using Uni-
versal Decomposition in Stage 2, so that if a substitution instance using such a
constant can close a branch, we will be sure that the branch does close.

The advantage of constructing systematic trees is that doing so will
always lead, in a finite number of steps, to a completed open branch when one
exists, and, also in a finite number of steps, to a closed tree when one exists.
The disadvantage is that systematic trees can frequently be much larger than
are nonsystematic trees. For example, here is a systematic tree for the set
{(∀x)Fx, ~ Fa, (∃x)(∃y)(∃z)Hxyz}:

1.
2.
3.

(∀x)Fx
∼Fa

(∃x)(∃y)(∃z)Hxyz⻬

SM
SM
SM

(∃y)(∃z)Hayz⻬

(∃z)Haaz⻬

Haab
Fa

Haba
Fa

Habb
Fa

Habc
Fa

Hbaa
Fa

Haaa
Fa

Hbac
Fa

Hbba
Fa

Hbbb
Fa

Hbbc
Fa

Hbca
Fa

Hbcb
Fa

Hbcc
Fa

Hbcd
Fa

Hbab
Fa

(∃z)Habz⻬ (∃z)Hbaz⻬

(∃y)(∃z)Hbyz⻬ 3 ∃D2

4 ∃D2

5 ∃D2
1 ∀D

(∃z)Hbbz⻬ (∃z)Hbcz⻬

4.

5.

6.
7.

494 PREDICATE LOGIC: TRUTH-TREES

not see how to close a branch or produce a completed open branch without
using The System.

This is not to say that the method of The System will always result either
in a closed tree or in a tree with a completed open branch. Consider, for exam-
ple, the set {(∀x)(∃y)Fxy, ~ (∃x)Fxx, (∀x)(∀y)(∀z)[(Fxy & Fyz ⊃ Fxz]}. This set
is consistent, but every model for the set (every interpretation on which all of
the set members are true) has an infinite UD. The System will always produce
a completed open branch for a finite set that has a finite model, but it will not
do so in the case of consistent sets that have only infinite models—for the very
good reason that there are no trees with completed open branches for such
sets. Here is the start of a systematic tree for this set:

1. (∀x)(∃y)Fxy SM

2. ∼ (∃x)Fxx SM

3. (∀x)(∀y)(∀z)[(Fxy & Fyz) ⊃ Fxz] SM

4. (∀x) ∼ Fxx 2 ∼ ∃D

5. (∃y)Fay 1 ∀D

6. (∀y)(∀z)[(Fay & Fyz) ⊃ Faz] 3 ∀D

7. ∼ Faa 4 ∀D

8. (∀z)[(Faa & Faz) ⊃ Faz] 6 ∀D

9. (Faa & Faa) ⊃ Faa 8 ∀D

10. ∼ (Faa & Faa) Faa 9 ⊃D

11. Faa Fab 5 ∃D2

12. ∼ Faa ∼ Faa 10 ∼ &D

13. (∃y)Fby (∃y)Fby 1 ∀D

14. (∀y)(∀z)[(Fby & Fyz) ⊃ Fbz] (∀y)(∀z)[(Fby & Fyz) ⊃ Fbz] 3 ∀D

15. ∼ Fbb ∼ Fbb 4 ∀D

16. (∀z)[(Fab & Fbz) ⊃ Faz] (∀z)[(Fab & Fbz) ⊃ Faz] 6 ∀D

17. [(Faa & Fab) ⊃ Fab] [(Faa & Fab) ⊃ Fab] 8 ∀D

18. (∀z)[(Fba & Faz) ⊃ Fbz] (∀z)[(Fba & Faz) ⊃ Fbz] 14 ∀D

19. (∀z)[(Fbb & Fbz) ⊃ Fbz] (∀z)[(Fbb & Fbz) ⊃ Fbz] 14 ∀D

20. [(Fab & Fba) ⊃ Faa] [(Fab & Fba) ⊃ Faa] 16 ∀D

21. [(Fab & Fbb) ⊃ Fab] [(Fab & Fbb) ⊃ Fab] 16 ∀D

22. [(Fba & Faa) ⊃ Fba] [(Fba & Faa) ⊃ Fba] 18 ∀D

23. [(Fba & Fab) ⊃ Fbb] [(Fba & Fab) ⊃ Fbb] 18 ∀D

24. [(Fbb & Fba) ⊃ Fba] [(Fbb & Fba) ⊃ Fba] 19 ∀D

25. [(Fbb & Fbb) ⊃ Fbb] [(Fbb & Fbb) ⊃ Fbb] 19 ∀D

26. Fba Fbb Fbc Fba Fbb Fbc 13 ∃D2

27. ∼ (Fab & Fba) Faa ∼ (Fab & Fba) Faa ∼ (Fab & Fba) Faa ∼ (Fab & Fba) Faa 20 ⊃D

28. ∼ Fab ∼ Fba ∼ Fab ∼ Fba ∼ Fab ∼ Fba ∼ Fab ∼ Fba 27 ∼ &D

9.4 FINE-TUNING THE TREE METHOD FOR PL 495

After listing the set members, we move to Stage 1. Once ‘~ (∃x)Fxx’ has been
decomposed to ‘(∀x) ~ Fxx’, every truth-functional compound (the sentence
on line 2) and every existentially quantified sentence on the tree (there are
none) has been decomposed. Proceeding to Stage 2 we decompose each uni-
versally quantified sentence on the tree to a substitution instance formed from
‘a’ (since there are at this point no constants occurring in the tree), taking us
through line 9. Returning to Stage 1, there are two sentences to be decom-
posed: the existentially quantified sentence on line 5 and the truth-functional
compound on line 9. We choose to decompose the latter first, as it yields one
closed branch (the right branch), at line 10. Next we decompose the existen-
tially quantified sentence from line 5. This yields one closed branch (the left
branch) and one open branch.

At this point we still have one undecomposed truth-functional com-
pound, on line 10. Decomposing this sentence yields two open branches. As it
happens these are identical—exactly the same sentences occur on each
branch—but The System requires us to pursue both branches. Here we proceed
to Stage 2, adding lines 13–25: although all the universally quantified sentences
on the tree have already been decomposed to substitution instances formed
from ‘a’ they must now also all be decomposed to substitution instances formed
from ‘b’ since ‘Fab’, which contains this constant, occurs on both branches.
Back to Stage 1 at line 26, we decompose the existentially quantified sentences
from line 13 first, splitting each of the existing two branches into three
branches. Two of these branches close. At line 27 we branch again when we
decompose the material conditional occurring on line 20. Four of the eight
resulting branches close. Decomposing ‘~ (Fab & Fba)’, which occurs four
times on line 27, results in eight branches, six of which close.

Were we to continue, we would next decompose the remaining truth-
functional compounds. Some, but not all branches, would close. Eventually we
would return to Stage 1 and decompose all universally quantified sentences to
substitution instances formed from ‘c’, since that now appears on the open
branches (at line 26). This would produce a new existentially quantified sen-
tence that would eventually be decomposed to substitution instances formed
from ‘a’, ‘b’, ‘c’, and ‘d’, respectively. Branches containing the first three sub-
stitution instances would eventually close, but not all the branches containing
the latter substitution instance would do so.

We have not proved that this tree will never close and will never have a
completed open branch, but this is the case (the only way to demonstrate this
is to show, independently of the tree method, that our set is quantificationally
consistent, that it has only infinite models, and that no set with only infinite
models has a finite tree). Here the point is that the tree method cannot be
used to show that sets such as this one are quantificationally consistent. We
abandon the tree; we do not complete it. However, having used The System,
we can be sure that we have not, as far as we have gone, missed a completed
open branch or a chance to close the tree.

While instructions for identifying (without fail) a systematic tree that
is caught in an endless cycle of decompositions and is such that it has only

496 PREDICATE LOGIC: TRUTH-TREES

nonterminating branches would be desirable, there can be no such instructions
because there is no decision procedure for quantificational consistency. We can
only say that, if one has cycled through the stages of The System several times
and there are still open branches, one should consider the possibility that the
set has only infinite models and consider abandoning the tree. Abandoning a
tree constitutes a failure to find an answer to the question being asked. Hav-
ing abandoned a tree, one can try directly to establish the consistency of the
set in question by trying to find an interpretation on which all the members
of the set are true.

9.4E EXERCISES

1. Construct systematic trees to determine, for each of the following sets, whether
that set is quantificationally consistent. State your result. If you abandon a tree,
explain why.

a. {(∀x)Jx, (∀x)(Jx (∃y)(Gyx ∨ Ky))}
*b. {(∀x)(Fx ⊃ Cx), ∼ (∀x)(Fx & Cx)}

c. {(∃x)Fx, (∃x) ∼ Fx}
*d. {∼ (∀x) ∼ Hx, (∀x)(Hx ⊃ Kx), ∼ (∃x)(Kx & Hx)}

e. {(∃x)Fx & (∃x) ∼ Fx, (∃x)Fx ⊃ (∀x) ∼ Fx}
*f. {(∃x)Fx & (∃x) ∼ Fx, (∀x)Fx ⊃ (∀x) ∼ Fx}
g. {(∀x)(∃y)Fxy, (∃y)(∀x) ∼ Fyx}

*h. {(∀x)(∼ Gx ⊃ Fx), (∃x)(Fx & ∼ Gx), Fa ⊃ ∼ Ga}
i. {(∃x)Hx, ∼ (∀x)Hx, (∀x)(Hx ⊃ Kx), (∃x)(Kx & Hx)}

*j. {(∃x)(∀y)Lxy, (∃x)(∀y) ∼ Lxy}
k. {(∀x)(∃y)Lxy, (∀x)(∃y) ∼ Lxy}

*l. {(∀x) ∼ (∃y)Lxy, (∀w)(∀y)(Swy ∨ ∼ Lwy), ∼ (∃x) ∼ (∃z)Sxz}
m. {(∀x)(∃y)Fxy, (∃x)(∃y) ∼ Fxy}
*n. {(∀x)(∀y)(∀z)((Hxy & Hyz) ⊃ Hxz), (∀x)(∀y)(Hxy ⊃ Hyx), (∃x) ∼ Hxx}

o. {∼ (∀x)(Kx ⊃ (∀y)(Ky ∨ Lxy)), (∀y)(Ky ⊃ (∀x)(Rx ⊃ Lyx)), (∀x)Rx}

2. Construct systematic trees to determine, for each of the following sentences,
whether that sentence is quantificationally true, quantificationally false, or
quantificationally indeterminate. In each case state your result. If you abandon
a tree, explain why.

a. (∀x)(Fax ⊃ (∃y)Fya)
*b. (∃x) ∼ Fx ⊃ (Fa ⊃ ∼ Fb)

c. (∀x)[Fx ⊃ (∀y)(Hy ⊃ Fy)]
*d. (∃y)(∀x)Fxy ⊃ (∀x)(∃y)Fxy

e. (∃x)(Fx ∨ ∼ Fx) ((∃x)Fx ∨ (∃x) ∼ Fx)
*f. (∀x)(Fx [(∃y)Gyx ⊃ H]) ⊃ (∀x)[Fx ⊃ (∃y)(Gyx ⊃ H)]
g. (∀x)(Fx ⊃ [(∃y)Gyx ⊃ H]) ⊃ (∀x)[Fx ⊃ (∃y)(Gyx ⊃ H)]

3. Construct systematic trees to determine which of the following arguments are
quantificationally valid. In each case state your result. If you abandon a tree,
explain why.

9.4 FINE-TUNING THE TREE METHOD FOR PL 497

a. Fa

(∀x)(Fx ⊃ Cx)

(∀x)(Fx & Cx)

*b. (∀x)(Jx ∨ Ixb) ∨ (∀x)(∃y)(Hxy ⊃ Mx)

Iab

c. Fa

(∀x)(Fx ⊃ Cx)

(∃x)(Fx & Cx)

*d. ∼ (∀y)Kyy ∨ (∀x)Hxx

(∃x)(∼ Hxx ⊃ ∼ Kxx)

e. (∀x)(∀y)(∀z)[(Lxy & Lyz) ⊃ Lxz]

(∀x)(∀y)(Lxy ⊃ Lyx)

(∀x)Lxx

*f. (∀x)(∀y)(Fx ∨ Gxy)

(∃x)Fx

(∃x)(∃y)Gxy

g. (∃x)[(Lx ∨ Sx) ∨ Kx]

(∀y) ∼ (Ly ∨ Ky)

(∃x)Sx

*h. (∃x)((Lx ∨ Sx) ∨ Kx)

(∀y) ∼ (Ly ∨ Ky)

(∀x)Sx

i. (∀x)(Hx ⊃ Kcx)

(∀x)(Lx ⊃ ∼ Kcx)

Ld

(∃y) ∼ Hy

4. Construct systematic trees to determine which of the following pairs of sen-
tences are quantificationally equivalent. In each case state your result. If you
abandon a tree, explain why.

a. (∀x)(∀y) ∼ Sxy ∼ (∃x)(∃y)Sxy
*b. (∀x)(∃y)Lxy (∃y)(∀x)Lyx

c. (∃x)(Ax ⊃ B) (∀x)Ax ⊃ B
*d. (∀x)(Ax ⊃ B) (∀x)Ax ⊃ B

e. (∀x)(Ax ⊃ B) (∃x)Ax ⊃ B
*f. (∃x)(Ax ⊃ B) (∃x)Ax ⊃ B
g. (∃x)(∃y)Hxy (∃y)(∃x)Hxy

5. Construct systematic trees to determine which of the following alleged entail-
ments hold. In each case state your result. If you abandon a tree, explain why.

a. {(∀x)(Fax ⊃ Fxa)} Fab ∨ Fba
*b. {(∀x)(∀y)(Fx ∨ Gxy), (∃x)Fx} (∃x)(∃y)Gxy

c. {∼ Fa, (∀x)(Fa ⊃ (∃y)Gxy)} ∼ (∃y)Gay
*d. {(∃x)(∀y)Gxy} (∀y)(∃x)Gxy

e. {(∃x)Gx, (∀x)(Gx ⊃ Dxx)) (∃x)(Gx & (∀y)Dxy)
*f. {(∀y)(∃x)Gxy (∃x)(∀y)Gxy

*6. Show that if the members of a set of sentences of PL contain only ‘~’ and
universal and existential quantifiers as logical operators, then has no tree
with more than one branch if the rule ∃D is used but may have a tree with
more than one branch if ∃D2 is used.

|=
|=

|=
|=

|=
|=

498 PREDICATE LOGIC: TRUTH-TREES

7. Show that no closed truth-tree can have an infinite branch.

*8. Could we replace Universal Decomposition and Existential Decomposition with
the following two rules? Explain.

(∀x)P (∃x)P
∼ (∃x) ∼ P ∼ (∀x) ∼ P

9. Let P(a/x) be a substitution instance of some sentence (∃x)P such that
{P(a/x)} has a closed tree. Does it follow that {(∃x)P} has a closed tree?
Explain.

*10. Let (∀x)P be a sentence such that, for every substitution instance P(a/x),
{P(a/x)} has a closed tree. Does it follow that a systematic tree for {(∀x)P} will
close? Explain.

11. What would have to be done to make The System a mechanical procedure?

*12. Suppose a tree for a set of sentences of PL is abandoned without either clos-
ing or having a completed open branch. Suppose also that we find a model
on which all the members of are true. Suppose the model is an infinite
model. Does it follow that all the open branches on the abandoned tree are
nonterminating branches? Suppose the model is finite. Does anything follow
regarding the abandoned tree?

9.5 TREES FOR PLE

To apply the tree method to sentences of the language PLE, we will modify the
tree system developed in Sections 9.1–9.3 to accommodate the additional fea-
tures of PLE: the identity predicate and complex terms. We shall introduce one
new decomposition rule (Identity Decomposition), modify the definitions of a
closed branch and of a completed open branch, and revise the Universal
Decomposition rule to accommodate complex terms.6

We begin with the modification to Universal Decomposition, which is
straightforward. The set {(∀x) ~ Bx, Bf(c)}, which contains a closed complex
term, ‘f(c)’, is clearly quantificationally inconsistent and so we want it to have
a closed truth-tree. To this end, we need to allow Universal Decomposition
to yield substitution instances formed from any closed term, not just con-
stants. For example, we want Universal Decomposition to license step 3 in the
following tree:

6It is also possible to use the rule Existential Decomposition-2, developed in Section 9.4, for trees for PLE. We
shall in fact do so in Section 9.6. But because Existential Decomposition is simpler in many cases (and because
some readers may have chosen to skip 9.4), we revert to this rule for the purposes of this section.

1. (∀x) ∼ Bx SM
2. Bf(c) SM
3. ∼ Bf(c) 1 ∀D

9.5 TREES FOR PLE 499

We therefore revise Universal Decomposition as follows:

Universal Decomposition (∀D)

(∀x)P

P(t/x)

where t is a closed term

This change allows the use of Universal Decomposition at line 3 of the previ-
ous tree. And because the single branch of this tree contains the atomic sen-
tence ‘Bf(c)’ and its negation ‘~ Bf(c)’, the tree is closed and we may conclude
that the set being tested is quantificationally inconsistent. We must also amend
our definition of a completed open branch so as to require every universally
quantified sentence to be decomposed to every substitution instance that can
be formed from a closed individual term (individual constant or closed complex
term) occurring on the branch in question. Previously we required only that
universally quantified sentences be decomposed to every individual constant

occurring on the branch in question.
We hasten to add that the rule Existential Decomposition remains the

same for PLE; when we decompose an existentially quantified sentence (∃x)P

we will always use an individual constant a that is foreign to the branch on which
the substitution instance P(a/x) will be entered, just as we did for PL. We will
not use complex terms in these instantiations, because a complex term such as
‘h(a)’ carries information about the individual it denotes, namely, that the indi-
vidual is related to some individual (that denoted by ‘a’) by the function h.

Here is the decomposition rule for identity sentences:

Identity Decomposition (D)

t1 t2

P

P(t1//t2)

where t1 and t2 are closed individual terms and P is a literal
containing t2

This rule is to be understood as follows: If a branch contains both a
sentence of the form t1 t2 (where t1 and t2 are closed individual terms) and a
literal P containing the term t2, P(t1//t2) may be entered on that branch where
P(t1//t2) is like P except that it contains t1 in at least one place where P con-
tains t2. The rationale behind this rule is that if t1 and t2 designate one and
the same thing then whatever is true of the individual designated by t1 must

500 PREDICATE LOGIC: TRUTH-TREES

thereby be true of the individual designated by t2. Note that the identity sen-
tence t1 t2 is not checked off because it can be decomposed again and again.

Identity Decomposition is used at line 7 in the following tree:

1. (∀x)(Fx ⊃ Gx) SM
2. Fc SM
3. ∼ Gd SM
4. c d SM
5. Fc ⊃ Gc 1 ∀D

6. ∼ Fc Gc 5 ⊃D
7. ∼ Gc 3, 4 D

Here t1 t2 is ‘c d’, P is ‘~ Gd’, and P(t1//t2) is ‘~ Gc’, the sentence entered
on line 7, which is the result of substituting ‘c’ for ‘d’ in ‘~ Gd’. Note that the
justification column for line 7 contains two line numbers. This is because Iden-
tity Decomposition licenses the entry of a sentence on a branch based on the
presence of two other sentences. In this respect it is unlike the other decom-
position rules.

Now that we have added a rule for Identity Decomposition we will need
to modify the definition of a closed branch for PLE. To see why, consider the
sentence ‘(∃y) ~ y y’. This sentence says ‘There is something that is not iden-
tical with itself’ and is clearly quantificationally false. So we want the tree for
the unit set of this sentence to close:

1. (∃y) ∼ y y SM
2. ∼ a a 1 ∃D

The one branch on this tree does not contain an atomic sentence and its nega-
tion. So it is not, by our present account, a closed branch. What is perhaps
worse, the branch is, by the account given in Section 9.2, a completed open
branch—the sentence on line 1 has been decomposed, the sentence on line 2
is a literal, and the branch is not closed. Recall that our reason for declaring
a branch on which an atomic sentence and its negation both occur to be a
closed branch was that there is no interpretation on which an atomic sentence
and its negation are both true. But almost as obviously, there is no interpreta-
tion on which a sentence of the form ~ t t is true; this is a consequence of
the fixed interpretation of the identity predicate. So we modify our definition
of a closed branch for PLE as follows:

Closed branch: A branch on which some atomic sentence and its
negation both occur or on which a sentence of the form ~ t t
occurs

By this revised account the single branch of the above tree is closed, so the tree
itself is closed and we may conclude that the sentence ‘(∃y) ~ y y’ is indeed
quantificationally false.

9.5 TREES FOR PLE 501

We noted earlier that we must amend our definition of a completed
open branch so as to require every universally quantified sentence to be
decomposed to every substitution instance that can be formed from a closed
individual term (individual constant or closed complex term) occurring on
the branch in question. But we also need to modify our definition of complete
open branches in another way. To see why, consider the following tree for the
set {Fa ∨ Ga, a b, ~ Fb}, which is quantificationally consistent.

1.

2.

3.

4.

SM

SM

SM

1 ∨D

Fa ∨ Ga⻬

a b

∼ Fb

Fa Ga

If we simply adopt the definition of completed open branches that we gave
for trees for sentences of PL, both of the open branches on this tree will count
as complete: on each branch every sentence is either a literal, or a sentence
that is not universally quantified but is decomposed. (Here we ignore the
requirement for universally quantified sentences since none appear in this
tree.) But this result is not welcome, even though the set we are testing is
quantificationally consistent, because Identity Decomposition does allow fur-
ther lines to be added to the tree and doing so will produce one closed
branch, for the three literals ‘a b’, ‘~ Fb’, and ‘Fa’ on the left branch can-
not all be true on a single interpretation. If we apply Identity Decomposition
to the sentences on lines 3 and 4 we will add ‘~ Fa’ to both branches, caus-
ing the left branch to close. So we want to be certain that Identity Decompo-
sition is applied exhaustively. We therefore modify our account of completed
open branches for trees for PLE by qualifying the first and third clauses and
adding a fourth:

A branch of a truth-tree for a set of sentences of PLE is a completed

open branch if and only if it is a finite open branch (that is, an open
branch with a finite number of sentences) and each sentence occurring
on that branch is either

1. A literal that is not an identity sentence

2. A compound sentence that is not a universally quantified sentence
and is decomposed

3. A universally quantified sentence (∀x)P such that P(t/x) also
occurs on that branch for each closed individual term t occurring on
the branch and at least one substitution instance P(t/x) occurs on
the branch

4. A sentence of the form t1 t2, where t1 and t2 are closed terms
such that the branch also contains, for every literal P on that
branch containing t2, every sentence P(t1//t2) that can be
obtained from P by Identity Decomposition

502 PREDICATE LOGIC: TRUTH-TREES

Clause 4 requires that we continue work on our last tree, using Identity Decom-

position to add ‘~ Fa’ to both branches:

Adding a sentence of the form t t will never, of course, bring about the clo-

sure of a branch, for if the negation of that sentence, ~ t t were already on

a branch, or were later added to a branch, the presence of that sentence by

itself would close all the branches on which it occurs. For this reason we shall

informally allow the omission of applications of Identity Decomposition that

result in adding sentences of the form t t to a branch. However, we will have

to drop this informal practice when we develop systematic trees for PLE in Sec-

tion 9.6, for the metatheory of Chapter 11 assumes that Identity Decomposi-

tion is rigorously applied in all such trees.

As we did for PL, we can once again use the literals on a completed

open branch as a guide for constructing an interpretation on which all of the

members of the set for which the tree was constructed are true. The open

branch on the preceding tree has five literals: ‘a b’, ‘~ Fb’, ‘Ga’, ‘~ Fa’, and

‘a a’. The last will be true on any interpretation, so it will not play a role in

constructing a model for the set members. On the other hand, the identity

‘a b’ tells us that ‘a’ and ‘b’ must designate the same individual. That suggests

we try using a single-member UD, letting the constants ‘a’ and ‘b’ both desig-

nate that single member. To make the other tree literals true we need to intepret

the predicate ‘G’ so that the single member is in its extension, and ‘F’ so that

its extension excludes that single member. Any interpretation that includes the

following assignments will therefore be a model for the set members:

1.

2.

3.

4.

5.

SM

SM

SM

1 ∨D

2, 3 D

Fa ∨ Ga⻬

a b

∼ Fb

Fa

∼ Fa

Ga

∼ Fa

Here the left-hand branch has closed. The right-hand branch may appear to be

a completed open branch, but it is not. This is because we must, by clause 4,

replace ‘b’ with ‘a’ in every literal that occurs on the right branch, and ‘a b’

is itself such a literal. Replacing ‘b’ with ‘a’ in this literal produces

‘a a’. This final application of Identity Decomposition yields the following

completed tree, a tree with one closed branch and one completed open branch:

1.

2.

3.

4.

5.

SM

SM

SM

1 ∨D

2, 3 D

2, 2 D

Fa ∨ Ga⻬

a b

∼ Fb

Fa

∼ Fa

Ga

∼ Fa

a a

o

What is interesting here is the use of Identity Decomposition at line 6. We gen-
erated ‘Fab’ from ‘a b’ and ‘Fbb’ by replacing only the first occurrence of
‘b’ in the latter with ‘a’. (Recall that when generating P(t1//t2) from P, given
t1 t2, it is not required that every occurrence of t2 in P be replaced with t1

but only that at least one occurrence be so replaced.) We could also have closed
the tree by using Identity Decomposition to enter ‘Faa’ at line 6 (replacing
both occurrences of ‘b’ in ‘Fbb’ with ‘a’) and then ‘~ Faa’ at line 7 (replacing
‘b’ in ‘~ Fab’ with ‘a’).

Consider now the quantificationally consistent set {c b, (∀x)(Fxc ⊃

~ Gxb), (∀x)Gxc}. Here is a tree for this set:

9.5 TREES FOR PLE 503

All of the set {Fa ∨ Ga, a b, ~ Fb} is true on any such interpretation. Because
PLE includes identity sentences such as ‘a b’, when we construct interpretations
of sets of sentences of PLE (rather than of PL) from completed open branches
we must sometimes assign the same member of the UD to distinct constants.

Given our expanded set of rules and revised definitions of closed and
completed open branches, the explications developed in Sections 9.2 and 9.3
of semantic properties in terms of open and closed trees also hold for PLE. We
therefore adopt them for PLE without repeating them here.

The set {a b, (∀x)(Fbx & ~ Fxa)} is quantificationally inconsistent:

1. a b SM
2. (∀x)(Fbx & ∼ Fax) SM
3. Fbb & ∼ Fab 2 ∀D
4. Fbb 3 &D
5. ∼ Fab 3 &D
6. Fab 1, 4 D

1.
2.
3.
4.
5.
6.
7.

8.
9.

10.
11.

c b
(∀x)(Fxc ⊃ ∼ Gxb)

(∀x)Gxc
Gcc
Gbc

Fcc ⊃ ∼ Gcb⻬
Fbc ⊃ ∼ Gbb⻬

SM
SM
SM
3 ∀D
3 ∀D
2 ∀D
2 ∀D

6 ⊃D
1, 8 D

7 ⊃D
1, 10 D

∼ Fcc

∼ Fbc
ο

∼ Gcb
∼ Gcc

∼ Gbb
∼ Gbc

UD: {1}
a: 1
b: 1

Fx: x is even
Gx: x is odd

504 PREDICATE LOGIC: TRUTH-TREES

The left-hand branch of this tree is a completed open branch and hence estab-
lishes that the set is quantificationally consistent. The left-hand branch contains
every required sentence that can be generated from the identity on line 1 and
a literal containing ‘b’ (excepting the sentence ‘c c’). We could generate
‘Gcc’ by applying Identity Decomposition to the sentences at lines 1 and 5, but
it already occurs on line 4 so there is need to do so. Similarly we could gen-
erate ‘~ Fcc’ from lines 1 and 10, but it already occurs at line 8. Given the lit-
erals ‘c b’, ‘Gcc’, ‘Gbc’, ‘~ Fcc’, and ‘~ Fbc’, we know that any interpreta-
tion that includes the following assignments will be a model for the set {c b,
(∀x)(Fxc ⊃ ~ Gxb), (∀x)Gxc}:

The truth-tree method produces closed trees for the negations of these sen-
tences. Here is the relevant tree for the claim that identity is reflexive:

Note that while Identity Decomposition allows, given an identity sentence
t1 t2, the generation of literals in which one or more occurrences of t2 in
an existing literal have been replaced with t1, it does not license the gener-
ation of literals in which one or more occurrences of t1 have been replaced
with t2. We could rewrite Identity Decomposition so as to allow this, but it is
not necessary to do so. That is, if a set is inconsistent it will have a closed
tree given the rules as presently written. Rewriting Identity Decomposition
in the suggested way would allow adding more literals to many trees, but for
no useful purpose.

As explained in Chapter 7, identity is a reflexive, symmetric, and tran-
sitive relation. Accordingly, we expect the following sentences of PLE, which
assert, respectively, the reflexivity, symmetry, and transitivity of identity to be
quantificationally true:

UD: {1}
b: 1
c: 1

Fxy: x is the successor of y
Gxy: x squared equals y

(∀x)x x
(∀x)(∀y)(x y ⊃ y x)
(∀x)(∀y)(∀z)[(x y & y z) ⊃ x z]

1. ∼ (∀x)x x SM
2. (∃x) ∼ x x 1 ∼ ∀D
3. ∼ a a 2 ∃D

The tree is closed, so the truth-tree method yields the desired result that the
sentence ‘~ (∀x)x x’ is quantificationally false and ‘(∀x)x x’ is quantifica-
tionally true. It should be noted that, when we earlier modified the definition

The tree is closed, establishing that ‘~ (∀x)(∀y)(x y ⊃ y x)’ is quantifi-
cationally false and ‘(∀x)(∀y)(x y ⊃ y x)’ is quantificationally true.

Finally we consider transitivity. The relevant tree is

9.5 TREES FOR PLE 505

of a closed branch so as to count every branch containing a sentence of the
form ‘~ t1 t1’ as a closed branch, we were, in effect, presupposing the reflex-
ivity of identity. The present result is therefore neither a surprising one nor an
independent proof of the reflexivity of identity. The relevant tree for the claim
that identity is symmeric is

1. ∼ (∀x)(∀y)(x y ⊃ y x) SM
2. (∃x) ∼ (∀y)(x y ⊃ y x) 1 ∼ ∀D
3. ∼ (∀y)(a y ⊃ y a) 2 ∃D
4. (∃y) ∼ (a y ⊃ y a) 3 ∼ ∀D
5. ∼ (a b ⊃ b a) 4 ∃D
6. a b 5 ∼ ⊃D
7. ∼ b a 5 ∼ ⊃D
8. ∼ a a 6, 7 D

1. ∼ (∀x)(∀y)(∀z)[(x y & y z) ⊃ x z] SM
2. (∃x) ∼ (∀y)(∀z)[(x y & y z) ⊃ x z] 1 ∼ ∀D
3. ∼ (∀y)(∀z)[(a y & y z) ⊃ a z] 2 ∃D
4. (∃y) ∼ (∀z)[(a y & y z) ⊃ a z] 3 ∼ ∀D
5. ∼ (∀z)[(a b & b z) ⊃ a z] 4 ∃D
6. (∃z) ∼ [(a b & b z) ⊃ a z] 5 ∼ ∀D
7. ∼ [(a b & b c) ⊃ a c] 6 ∃D
8. (a b & b c) 7 ∼ ⊃D
9. ∼ a c 7 ∼ ⊃D

10. a b 8 &D
11. b c 8 &D
12. a c 10, 11 D

As expected, this tree is closed, reflecting the fact that the sentence on line 1
is quantificationally false and ‘(∀x)(∀y)(∀z)[(x y & y z) ⊃ x z]’ is quan-
tificationally true; that is, that identity is transitive. Here we closed the tree by
applying Identity Decomposition to lines 10 and 11, taking ‘a b’ as t1 t2

and ‘b c’ as P, producing ‘a c’ as P(t1//t2). At this point the one branch
of the tree contains an atomic sentence, ‘a c’, and its negation, ‘~ a c’,
and is therefore closed.

Consider now the sentence ‘(∀x)(∀y)[(Fxx & ~ Fyy) ⊃ ~ x y]’. We
expect this sentence to be quantificationally true (if x but not y bears a

506 PREDICATE LOGIC: TRUTH-TREES

relation F to itself, then x and y are not identical). The following truth-tree
confirms this expectation:

1. ∼ (∀x)(∀y)[(Fxx & ∼ Fyy) ⊃ ∼ x y] SM
2. (∃x) ∼ (∀y)[(Fxx & ∼ Fyy) ⊃ ∼ x y] 1 ∼ ∀D
3. ∼ (∀y)[(Faa & ∼ Fyy) ⊃ ∼ a y] 2 ∃D
4. (∃y) ∼ [(Faa & ∼ Fyy) ⊃ ∼ a y] 3 ∼ ∀D
5. ∼ [(Faa & ∼ Fbb) ⊃ ∼ a b] 4 ∃D
6. Faa & ∼ Fbb 5 ∼ ⊃D
7. ∼ ∼ a b 5 ∼ ⊃D
8. a b 7 ∼ ∼ D
9. Faa 6 &D

10. ∼ Fbb 6 &D
11. ∼ Faa 8, 10 D

At line 11 we replaced both occurrences of ‘b’ in ‘~ Fbb’ with ‘a’ to generate
‘~ Faa’. Replacing just one occurrence, while allowed, would not have produced
a closed tree.

We now test the argument

(∃x)Gxa & ∼ (∃x)Gax

(∀x)(Gxb ⊃ x b)

∼ a b

for quantificational validity by constructing a tree for the premises and the
negation of the conclusion:

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

15.
16.
17.
18.

SM
SM
SM
3 ∼ ∼ D
1 &D
1 &D
6 ∼ ∃D
5 ∃D
2 ∀D
2 ∀D
2 ∀D
7 ∀D
7 ∀D
7 ∀D

11 ⊃D
4, 15 D
4, 15 D
8, 17 D

(∃x)Gxa & ∼ (∃x)Gax⻬
(∀x)(Gxb ⊃ x b)

∼ ∼ a b⻬
a b

(∃x)Gxa⻬
∼ (∃x)Gax⻬
(∀x) ∼ Gax

Gca
Gab ⊃ a b
Gbb ⊃ b b

Gcb ⊃ c b⻬
∼ Gaa
∼ Gab
∼ Gac

∼ Gcb
∼ Gca

c b

a c
Gaa

As of line 3 this tree has one open branch. It might seem that this branch is a
completed open branch, and hence that our intuitions about the sentence we
are testing must have been misguided. The sentence on line 1 is checked off,
the sentence on line 3 is a literal that is not an identity sentence (it is the nega-
tion of an identity sentence), and the sentence on line 2 is a universally quan-
tified sentence that has been decomposed to a substitution instance formed
from the constant ‘a’. But the branch is not completed, for there is another
closed individual term on the branch, ‘g(a)’, and the sentence on line 2 has
not been decomposed to a substitution instance formed from this latter term.
Doing this decomposition results in the following closed tree:

9.5 TREES FOR PLE 507

This tree is closed. Therefore the argument we are testing is quantificationally
valid. The secret to keeping this tree reasonably concise—for it could have
grown quite large—came from carefully studying the sentences on lines 9–11
to determine which should be decomposed first. Line 11 yields ‘~ Gcb’ on the
left branch when decomposed, and replacing ‘b’ with ‘a’ in ‘~ Gcb’ by virtue
of the identity on line 4 then yields ‘~ Gca’ at line 16, closing the left branch.
At line 15 the right branch is still open and contains the identity ‘c b’ in
addition to ‘a b’. From these identities and the other literals on the branch
(‘Gca’, ‘~ Gaa’, ‘~ Gab’, and ‘~ Gac’) a host of sentences can be obtained by
using Identity Decomposition, replacing ‘b’ with either ‘a’ or ‘c’. Careful study
reveals that any of ‘Gac’, ‘Gab’, ‘Gaa’, or ‘~ Gca’ would close the branch. But
none of these can be directly obtained from the existing literals by Identity
Decomposition using the two identities ‘a b’ and ‘c b’. However, we were
able to obtain the additional identity ‘a c’ on line 17 by applying Identity
Decomposition to the two identities themselves, replacing ‘b’ with ‘c’ in ‘a b’
(as licensed by ‘c b’). This identity allowed us to obtain ‘Gaa’ on line 18,
which closed the branch and the tree.

In the remainder of this section, we shall work through a number of exam-
ples involving functors and identity. Consider first the sentence ‘~ (∃x)x g(a)’.
This sentence is fairly obviously quantificationally false, for it says that there is
nothing that is identical to g(a); but, of course, we know that something is
identical to g(a), namely, g(a) itself. Here is the start of a tree:

1. ∼ (∃x)x g(a) SM
2. (∀x) ∼ x g(a) 1 ∼ ∃D
3. ∼ a g(a) 2 ∀D

1. ∼ (∃x)x g(a) SM
2. (∀x) ∼ x g(a) 1 ∼ ∃D
3. ∼ a g(a) 2 ∀D
4. ∼ g(a) g(a) 2 ∀D

It is now apparent that line 3 was unnecessary—the branch would close with-
out that step. This example shows that it is important to remember that before
a branch qualifies as a completed open branch all universally quantified sen-
tences on that branch must be decomposed to every substitution instance that

508 PREDICATE LOGIC: TRUTH-TREES

can be formed from a closed individual term on that branch, and these terms
consist of all the constants and all the closed complex terms on the branch.

Consider next the sentence ‘(∀x)f(x) x’. This sentence is clearly not
quantificationally true—because a one-place function does not always return its
argument as its value. For example, successor returns x 1 for any value x, not
x itself. The following tree establishes that this sentence is not quantification-
ally true:

The one branch on this tree is a completed open branch. The sentences on
lines 1 and 2 have been checked off, and the sentence on line 3 is a literal that
is not an identity sentence. The sentence on line 1 is therefore not quantifi-
cationally false, and the sentence of which it is a negation, ‘(∀x)f(x) x’, is
not quantificationally true.7 Moreover, we can use the literals on the branch as
a guide to constructing a model for ‘~ (∀x)f(x) x’ (which will be an inter-
pretation on which the unnegated sentence is true). There is one literal on the
single open branch: ‘~ f(a) a’. Because ‘f(a)’ and ‘a’ must denote distinct
individuals for this literal to be true, we choose a two-member UD, let ‘a’
designate one member, and interpret ‘f’ so that ‘f(a)’ designates the other.
Any interpretation that includes the following assignments will be a model
for ‘~ (∀x)f(x) x’:

The sentence ‘(∀x)(∀y)f(x,y) f(y,x)’ is also not quantificationally
true, as the following tree shows:

1. ∼ (∀x)f(x) x SM
2. (∃x) ∼ f(x) x 1 ∼ ∀D
3. ∼ f(a) a 2 ∃D

o

7We shall produce a tree in Section 9.6 that shows that this sentence is not quantificationally false.

UD: {1, 2}
a: 2

f(x): 3 x

1. ∼ (∀x)(∀y)f(x,y) f(y,x) SM
2. (∃x) ∼ (∀y)f(x,y) f(y,x) 1 ∼ ∀D
3. ∼ (∀y)f(a,y) f(y,a) 2 ∃D
4. (∃y) ∼ f(a,y) f(y,a) 3 ∼ ∃D
5. ∼ f(a,b) f(b,a) 4 ∃D

o

The one branch on this tree is a completed open branch. The first four sen-
tences are checked off, and the last one is a literal that is not an identity sen-
tence. So ‘~ (∀x)(∀y)f(x,y) f(y,x)’ is not quantificationally false, and
‘(∀x)(∀y)f(x,y) f(y,x)’ is not quantificationally true. The one branch con-
tains the literal ‘~ f(a,b) f(b,a)’, so any interpretation that makes this literal
true will also make the sentence ‘~ (∀x)(∀y)f(x,y) f(y,x)’ true. To find such

Next consider the sentence ‘(∀x)[Ex ⊃ (∃y)(Oy & y f(x))]’. We can
use the truth-tree method to show that this sentence is not quantificationally
true:

This tree has two completed open branches. The tree contains no (non-
negated) identity sentences, and every sentence on each of these branches
either is a literal, or has been checked off, or is a universally quantified sen-
tence. There is only one of the latter, at line 6, and it has been decomposed
to every closed term on the relevant branch (each branch contains only the
closed terms ‘a’ and ‘f(a)’). Because this tree has at least one completed open
branch, the sentence ‘~ (∀x)[Ex ⊃ (∃y)(Oy & y f(x))]’ is not quantifica-
tionally false and therefore ‘(∀x)[Ex ⊃ (∃y)(Oy & y f(x))]’ is not quantifi-
cationally true. From the three literals ‘Ea’, ‘~ Of(a)’, and ‘~ Oa’ on the left
open branch we know that ‘~ (∀x)[Ex ⊃ (∃y)(Oy & y f(x))]’ will be true on
any interpretation that includes the following assignments:

9.5 TREES FOR PLE 509

an interpretation we’ll choose a two-member UD—letting ‘a’ and ‘b’ denote
the distinct members and making sure that ‘f(a,b)’ and ‘f(b,a)’ do not denote
the same member. Any interpretation that includes the following assignments
will be a model for the sentence ‘~ (∀x)(∀y)f(x,y) f(y,x)’ and hence an inter-
pretation on which the unnegated sentence ‘(∀x)(∀y)f(x,y) f(y,x)’ is false:

UD: {1,2}
a: 1
b: 2

f(x,y): x raised to the power y

1.
2.
3.
4.
5.
6.
7.
8.

9.

10.

SM
1 ∼ ∀D
2 ∃D
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∃D
6 ∀D
6 ∀D

8 ∼ &D

7 ∼ &D

∼ (∀x)[Ex ⊃ (∃y)(Oy & y f(x))]⻬
(∃x) ∼ [Ex ⊃ (∃y)(Oy & y f(x))]⻬

∼ [Ea ⊃ (∃y)(Oy & y f(a))]⻬
Ea

∼ (∃y)(Oy & y f(a))⻬
(∀y) ∼ (Oy & y f(a))

∼ (Oa & a f(a))⻬
∼ (Of(a) & f(a) f(a))⻬

∼ Of(a) ∼ f (a) f(a)

∼ Oa
O

∼ a f(a)
O

UD: The set {1}
a: 1

f(x): x2

Ex: x is odd
Ox: x is even

510 PREDICATE LOGIC: TRUTH-TREES

From the three literals ‘Ea’, ‘Of(a)’, and ~ a f(a)’ on the right open branch
we also know that ‘~ (∀x)[Ex ⊃ (∃y)(Oy & y f(x))]’ will be true on any inter-
pretation that includes the following assignments:

By definition a one-place function returns exactly one value for each
argument. So the following sentence is quantificationally true:

UD: {1, 2}
a: 2

f(x): 3 x
Ex: x is even
Ox: x is odd

1.
2.
3.
4.
5.

6.
7.
8.
9.

10.

SM
1 ∼ ∀D
2 ∃D
3 ∼ ∃D
4 ∀D

5 ∼ &D
6 ∼ ∀D
7 ∃D
8 ∼ ⊃D
8 ∼ ⊃D

 ∼ (∀x)(∃y)[y f(x) & (∀z)(z f(x) ⊃ z y)]⻬
(∃x) ∼ (∃y)[y f(x) & (∀z)(z f(x) ⊃ z y)]⻬

∼ (∃y)[y f(a) & (∀z)(z f(a) ⊃ z y)]⻬
 (∀y) ∼ [y = f(a) & (∀z)(z f(a) ⊃ z y)]

∼ [f(a) f(a) & (∀z)(z f(a) ⊃ z f(a))]⻬

∼ f(a) f(a)

∼ (∀z)(z f(a) ⊃ z f(a))⻬
(∃z) ∼ (z f(a) ⊃ z f(a))⻬

∼ (b f(a) ⊃ b f(a))⻬
b f(a)

∼ b f(a)

(∀x)(∃y)[y f(x) & (∀z)(z f(x) ⊃ z y)]

Here is a tree that establishes this:

Note that at line 5 we chose to replace ‘y’ with ‘f(a)’ rather than with ‘a’. Both
are individual terms already occurring on the branch, but using the former
generates a closed branch on the left at line 6 and, a few steps later, a closed
branch on the right.

Next consider the argument

(∀x)[Px ⊃ (Ex ∨ x f(a)]

Pc & ∼ c f(a)

Ec

The following tree demonstrates that this argument is quantificationally
valid:

9.5 TREES FOR PLE 511

On the other hand, the following argument is quantificationally invalid:

1.
2.
3.
4.
5.
6.

7.

8.

SM
SM
SM
2 &D
2 &D
1 ∀D

6 ⊃D

7 ∨D

(∀x)[Px ⊃ (Ex ∨ x f(a)]
Pc & ∼ c f(a)⻬

∼ Ec
Pc

∼ c f(a)
Pc ⊃ (Ec ∨ c f(a))⻬

∼ Pc

Ec

Ec ∨ c f(a)⻬

c f(a)

(∀y)y f(y) ⊃ (∀x)(∃y)y f(x)

(∀y)y f(y)

At line 7 the left branch becomes a completed open branch, establishing that
the argument is quantificationally invalid. Note that every sentence on that
branch either is checked off (lines 1, 2, 3, 5, and 6), or is a negated identity
sentence (thus a literal that is not itself an identity sentence). It is worth noting
that the right branch of this tree is the beginning of an infinite branch because
of the interplay of the existential quantifier within the scope of the universal
quantifier of the sentence on line 5 of that branch. From the completed open
branch, however, which contains the literals ‘~ a f(a)’ and ‘~ b f(b)’, we
know that any interpretation that includes the following assignments is a model
for the set {(∀y) y f(y) ⊃ (∀x)(∃y) y f(x), ~ (∀y) y f(y)}:

1.
2.
3.
4.

5.
6.
7.

SM
SM
2 ∼ ∀D
3 ∃D

1 ⊃D
5 ∼ ∀D
6 ∃D

 (∀y)y f(y) ⊃ (∀x)(∃y)y f(x)⻬
∼ (∀y)y f(y)⻬
(∃y) ∼ y f(y)⻬

 ∼ a f(a)

∼ (∀y)y f(y)⻬
(∃y) ∼ y f(y)⻬

∼ b f(b)
O

(∀x)(∃y)y f(x)

UD: The set {1, 2}
a: 1
b: 2

f(b): 3 x

512 PREDICATE LOGIC: TRUTH-TREES

9.5E EXERCISES

Construct truth-trees as necessary to provide the requested information. In
each case state your result, and specify what it is about your tree that estab-
lishes this result.

1. Determine, for each of the following sets, whether the set is quantificationally
consistent. In addition, if your tree establishes consistency, show the relevant
part of an interpretation that will make all of the literals on one completed
branch, and therefore all of the members of the set being tested, true. (Be
sure to list the literals that you are using in this case.)

a. {(∀x)Fxx, (∃x)(∃y) ∼ Fxy, (∀x)x a}
*b. {(∀x)(Fxc ⊃ x a), ∼ c a, (∃x)Fxc}

c. {(∀x)(x a ⊃ Gxb), ∼ (∃x)Gxx, a b}
*d. {(∃x)(∃y) ∼ x y, (∀x)(Gxx ⊃ x b), Gaa}

e. {(∀x)((Fx & ∼ Gx) ⊃ ∼ x a), Fa & ∼ Ga}
*f. {(∃y)(∀x)Fxy, ∼ (∀x)(∀y)x y, Fab & ∼ Fba}
g. {(∀x)(x a ⊃ Gxf(b)), ∼ (∃x)Gxf(x), f(a) f(b)}

*h. {(∀x)(Gxx ⊃ x f(x,b)), Gaa, (∀x) ∼ f(a,x) a}
i. {(∃x) ∼ x g(x), (∀x)(∀y)x g(y)}

*j. {(∃x)(∃y)f(x,y) f(y,x), (∀x) [f(x,a) f(a,x) ⊃ ∼ a x]}
k. {(∀x)[Hx ⊃ (∀y)Txy], (∃x)Hf(x), ∼ (∃x)Txx}
*l. {Hf(a,b), (∀x)(Hx ⊃ ∼ Gx), (∃y)Gy}
m. {(∃x)Fx ⊃ (∃x)(∃y)f(y) x, (∃x)Fx}
*n. {(∃x)[x f(s) & (∀y)(y f(s) ⊃ y x)]}

2. Determine, for each of the following sentences, whether it is quantificationally
true, quantificationally false, or quantificationally indeterminate.

a. a b b a
*b. (∼ a b & ∼ b c) ⊃ ∼ a c

c. (Gab & ∼ Gba) ⊃ ∼ a b
*d. (∀x)(∃y)x y

e. Fa (∃x)(Fx & x a)
*f. ∼ (∃x)x a
g. (∀x)x a ⊃ [(∃x)Fx ⊃ (∀x)Fx]

*h. (∀x)(∀y)x y
i. (∀x)(∀y) ∼ x y

*j. (∃x)(∃y)x y
k. (∃x)(∃y) ∼ x y

*l. (∀x)(∀y)[x y ⊃ (Fx Fy)]
m. (∀x)(∀y)[(Fx Fy) ⊃ x y]
*n. (∀x)(∀y)[x y ⊃ (∀z)(Fxz Fyz)]

o. [(∃x)Gax & ∼ (∃x)Gxa] ⊃ (∀x)(Gxa ⊃ ∼ x a)

3. Determine which of the following sentences are quantificationally true.
a. (∃x)x f(a)

*b. (∀x)(∃y)y f(x)
c. (∃x)(∃y)x y

*d. (∃x)(∃y)x f(y)
e. (∀x)[Gx ⊃ (∃y)f(x) y]

9.5 TREES FOR PLE 513

*f. (∀x)(∀y)[x y ⊃ f(x) f(y)]
g. (∀y) ~ [(∀x)x y ∨ (∀x)f(x) y]

*h. (∀x)(∃y)[y f(x) & (∀z)(z f(x) ⊃ z y)]

4. Determine which of the following pairs of sentences are quantificationally
equivalent.

a. ∼ a b ∼ b a
*b. (∃x) ∼ x a (∃x) ∼ x b

c. (∀x)x a (∀x)x b
*d. a b & b c a c & b c

e. (∀x)(∀y)x y (∀x)x a
*f. (∀x)(∃y)x y (∀y)(∃x)x y
g. (∀x)(Fx ⊃ x a) (∀x)(Fa ⊃ x a)

*h. (∀x)(x a ∨ x b) (∀x)x a ∨ (∀x)x b
i. (∀x)Fx ∨ (∀x) ∼ Fx (∀y)(Fy ⊃ y b)

*j. a b (∀y)(y a ⊃ y b)
k. (∃x)(x a & x b) a b

5. Determine which of the following arguments are quantificationally valid.

a. a b & ∼ Bab

∼ (∀x)Bxx

*b. Ge ⊃ d e

Ge ⊃ He

Ge ⊃ Hd

c. (∀z)(Gz ⊃ (∀y)(Ky ⊃ Hzy))

(Ki & Gj) & i j

Hii

*d. (∃x)(Hx & Mx)

Ms & ∼ Hs

(∃x)((Hx & Mx) & ∼ x s)

e. a b

Ka ∨ ∼ Kb

*f. (∃x) ∼ Pxx ⊃ ∼ a a

a c

Pac

g. (∀x)(x a ∨ x b)

(∃x)(Fxa & Fbx)

(∃x)Fxx

*h. (∃x)Fxa

(∀y)(y a ⊃ y b)

(∃y)Fyy

i. (∀x)(∀y)(Fxy ∨ Fyx)

a b

(∀x)(Fxa ∨ Fbx)

*j. (∃x)Fxa & (∃x)Fxb

∼ a b

(∀x)(∀y)((Fxa & Fyb) ⊃ ∼ x y)

k. (∀x)(Fx K ∼ Gx)

Fa

Gb

∼ a b

*l. ∼ (∃x)Fxx

(∀x)(∀y)(Fxy ⊃ ∼ x y)

514 PREDICATE LOGIC: TRUTH-TREES

m. (∀x)(∀y)x y

∼ (∃x)(∃y)(Fx & ∼ Fy)

*n. (∀x)(∼ x a (∃y)Gyx)

Gbc

∼ c a

o. (∀x)(Hx ⊃ Hf(x))

(∃z) ∼ Hf(z)

∼ (∀x)Hx

*p. (∀y)(Hy ⊃ g(y) y)

(∃x) ∼ g(x) x

(∃x) ∼ Hx

q. (∀x)(∀y)(Hxy ∼ Hyx)

(∃x)[Hxf(x) & ∼ Hf(x)x]

∼ (∀x)f(x) x

*r. (∃x)h(x) x

(∀x)(Fx ⊃ ∼ Fh(x))

(∃x) ∼ Fx

s. (∀x)[Px ⊃ (Ox ∨ ∼ x f(b))]

(∃x)[(Px & ∼ Ox) & x f(b)]

Ob

*t. (∀x)(∀y)(Hxy ⊃ f(x) y)

(∃x)Hxx

(∃x)f(x) x

6. Determine which of the following claims are true.
a. {(∀x)(Fx ⊃ (∃y)(Gyx & ∼ y x)), (∃x)Fx)} (∃x)(∃y) ∼ x y

*b. {∼ (∃x)(Fxa ∨ Fxb), (∀x)(∀y)(Fxy ⊃ ∼ x y)} ∼ a b
c. {(∀x)(Fx ⊃ ∼ x a), (∃x)Fx} (∃x)(∃y) ∼ x y

*d. {(∀x)(∃y)(Fxy & ∼ x y), a b, Fab} (∃y)(Fay & y b)
e. {(∃w)(∃z) ∼ w z, (∃w)Hw} (∃w) ∼ Hw

*f. {(∃w)(∀y)Gwy, (∃w)(∀y)(∼ w y ⊃ ∼ Gwy)} (∃z) ∼ Gzz
g. {(∀x)(∀y)((Fx Fy) x y), (∃z)Fz} (∃x)(∃y)(∼ x y & (Fx & ∼ Fy))

*h. {(∀x)(∃y)y f(x)} (∃z)z f(a)
i. {(∀x)(∀y)[∼ x g(y) ⊃ Gxy], ∼ (∃x)Gax} (∃x)a g(x)

9.6 FINE-TUNING THE TREE METHOD FOR PLE

The last tree that we presented in Section 9.5 contained an unending branch
in the making, due to a sentence that contained an existential quantifier
within the scope of a universal quantifier. We introduced a new rule in Sec-
tion 9.4, Existential Decomposition-2, as well as a systematic method of con-
structing trees for PL, to ensure that such branches would neither prevent dis-
covering completed open branches (where they exist) nor prevent closing
trees for inconsistent sets. Because the tree method for PLE includes all of the
rules for PL, we will clearly need to address infinite branches arising from the
interplay between existential and universal quantifiers here as well. But the
inclusion of functors in PLE creates an additional source of nonterminating
branches in trees for finite sets of sentences. Consider a tree for the set
{(∀x)Hf(x)}:

|=
|=

|=
|=

|=
|=

|=
|=

|=

9.6 FINE-TUNING THE TREE METHOD FOR PLE 515

To qualify as a completed open branch, every universally quantified sentence on
that branch must be decomposed at least once and must be decomposed to every
closed term occurring on the branch. To satisfy the first requirement, we first
decompose the universally quantified sentence occurring on line 1 using the con-
stant ‘a’. This introduces two new closed terms to the one branch of the tree: ‘a’
and ‘f(a)’ (both occurring within the formula ‘Hf(a)’). The universal quantifi-
cation has just been decomposed using ‘a’, but now we must also decompose it
using the closed term ‘f(a)’. This produces line 3, and a new closed term,
‘f(f(a))’, which triggers another decomposition of the universally quantified sen-
tence, producing a new closed term, ‘f(f(f(a)))’, at line 4, and so on. Clearly this
branch will never close and will never become a completed open branch.

As for PL, we would like to have a tree system for PLE such that every
finite inconsistent set has a closed tree and every finite set with a finite model
has a finite tree with a completed open branch. We just saw that we cannot
produce a finite tree for the set {(∀x)Hf(x)}, given the methods presented for
PLE in Section 9.5. Yet this set has a finite model, for example, any interpre-
tation that includes the following assignments:

1. (∀x)Hf(x) SM
2. Hf(a) 1 ∀D
3. Hf(f(a)) 1 ∀D
4. Hf(f(f(a))) 1 ∀D

•
•
•

UD: The set {2}
Hx: x is even

f(x): x

Here f(x) is just x, and the only value of x in this UD is 2, and 2 is even. So
the single member of {(∀x)Hf(x)} is true on any interpretation that includes
these assignments. In this section we will modify our definition of completed
open branches, add a new decomposition rule for construcing PLE trees, and
then present a systematic method for constructing trees such that our desider-
ata are satisfied.

We will modify the definition of completed open branches in several
ways. The first of these will be to drop the requirement that universally quan-
tified sentences be decomposed using every closed term occurring on a branch,
and adopt the weaker requirement that universally quantified sentences must
be decomposed using every constant occurring on a branch (and that at least
one constant must be so used). This will cut short the infinite branch that we
just saw in progress for the set {(∀x)Hf(x)}, but without other changes it will
also count the single branch of the following tree as a completed open branch:

1. (∀x)Bx SM
2. ~ Bg(a) SM
3. Ba 1 ∀D

516 PREDICATE LOGIC: TRUTH-TREES

We clearly don’t want to count this as a completed open branch, for the set
{(∀x)Bx, ~ Bg(a)} is quantificationally inconsistent. Because we are required to
decompose universally quantified sentences only with constants, we will add a new
rule that identifies the individuals denoted by closed complex terms with indi-
viduals identified by contants, a rule that will lead to a closed tree for this set once
we make a final modification of the definition of open branches. More generally,
we will then have the results we desire for all cases: closed trees for inconsistent
sets and completed open branches for finite consistent sets with finite models.

The new rule is called Complex Term Decomposition:8

8This is a slight variation of the rule introduced in Merrie Bergmann, “Finite Tree Property for First-Order Logic
with Identity and Functions,” Notre Dame Journal of Formal Logic, 46 (2005), pp. 173–180.

. . . f(a1, . . . , an) . . .

b1 f(a1, . . . , an) bm f(a1, . . . , an) bm 1 f(a1, . . . , an). . .

Complex Term Decomposition (CTD)

where f(a1, . . . , an) is a closed complex term occurring within a literal
on some branch, whose arguments a1, . . . , an are individual constants;
b1, . . . , bm are the constants that already occur on that branch, and
bm 1 is a constant that is foreign to that branch.

The expression ‘. . . f(a1, . . . , an) . . .’ stands for any literal that contains the com-
plex term ‘f(a1, . . . , an)’. This rule bears an obvious affinity to Existential Decom-
position-2: it branches out based on the constants that occur on the branch con-
taining the complex term being decomposed, and generates one additional
branch with a constant that was foreign to that branch. At the end of each of the
new branches is an identity sentence, with one of the constants on the left-hand
side and the complex term being decomposed on the right-hand side.

The following tree for the set {Gf(a), ~ Ga} illustrates the use of Com-
plex Term Decomposition:

1.

2.

3.

4.

SM

SM

1 CTD

1, 3 D

Gf(a)

∼ Ga

a f(a)

Ga

b f(a)

Gb

o

The tree begins with the set members on the first two lines. The sentence on
line 1 is a literal containing the closed complex term ‘f(a)’, so Complex Term
Decomposition must be applied to this term. Prior to applying the rule there is
one constant, ‘a’, that occurs on the single branch. So one of the new branches
must end with the identity sentence ‘a f(a)’, while the other ends with an

9.6 FINE-TUNING THE TREE METHOD FOR PLE 517

identity sentence that has a new constant on the left-hand side. (Note that we do
not check off the sentence containing the closed term that is being decomposed.
Checks will continue to indicate completed sentence decomposition only.) The
tree is then extended to line 4, because the identity sentences on line 3 must be
decomposed by substituting the constants for ‘f(a)’ in the literal ‘Gf(a)’. The left
branch closes, as it should, because if ‘a’ and ‘f(a)’ denote the same individual,
then the set members state that this individual both does and does not have the
property G. The right branch is a completed open branch, confirming that the
set {Gf(a), ~ Ga} is quantificationally consistent. (Strictly speaking, the formula
‘b b’ should also appear on the right branch by virtue of applying Identity
Decomposition to the single formula on line 3 of that branch. But here, as in
Section 9.5, we omit identity formulas in which the same term appears on both
sides of the identity predicate because such formulas will never cause a branch
to close.) Because the open branch contains two individual constants, it indicates
that we can construct a model for the set using a UD with at least two members,
for example, any interpretation that includes the following assignments:

UD: {1, 2}
Gx: x is even

a: 1
b: 2

f(x): 3 x

(In addition, the fact that the left branch, the only branch that contains exactly
one individual constant, closes tells us that any model for this set must have at
least two members in its UD.)

Using Complex Term Decomposition we can produce a closed tree for
the quantificationally inconsistent set {(∀x)Bx, ~ Bg(a)}:

1.
2.

3.
4.
5.

SM
SM

2 CTD
2, 3 D
1 ∀D

(∀x)Bx
∼ Bg(a)

a g(a)
∼ Ba
Ba

b g(a)
∼ Bb
Bb

Although we dropped the requirement that universally quantified sentences
must be decomposed using closed complex terms as well as constants, this tree
nevertheless closes because of the identity sentences that were generated on
line 3 by Complex Term Decomposition. Branching to those sentences says that
either the constant ‘a’ or the constant ‘b’ denotes the individual that the com-
plex term ‘g(a)’ denotes. Further, the identity sentences must themselves be
decomposed with Identity Decomposition, and respectively substituting the
constants ‘a’ and ‘b’ for ‘g(a)’ in the sentence ‘~ Bg(a)’ produces ‘~ Ba’ on the
left branch and ‘~ Bb’ on the right branch. Finally, because universally quan-
tified sentences must be decomposed using all the constants occurring on a

518 PREDICATE LOGIC: TRUTH-TREES

branch, we add the substitution instances on line 5 that respectively contradict
the sentences on line 4 of the two branches. So the tree closes.

On the other hand, Complex Term Decomposition and our modified
requirement for decomposing universally quantified sentences produce a com-
pleted open branch on a tree for the set {(∀x)Hf(x)}:

1.
2.

3.
4.
5.

SM
1 ∀D

2 CTD
2, 3 D
1 ∀D

(∀x)Hf(x)
Hf(a)

a f(a)
Ha
o

b f(a)
Ηb

Hf(b)

After adding the sentences on line 3 with Complex Term Decomposition, we
substitute the constants for the complex term ‘f(a)’ in the literal on line 2 to
generate the literals on line 4. The left branch is now completed: We have
decomposed the universal quantification on line 1 with the only constant on
the branch (this occurs at line 2), we have decomposed the complex term on
line 2 (although we haven’t stated so, there will be a requirement that all
complex terms must be decomposed), and the identity on line 3 has also
been decomposed as many times as it can be (it produces only the sentence
on line 4). It is also open, indicating that the set being tested is quantifica-
tionally consistent. The right branch is also open, but it is not completed. On
line 5 we have added another substitution instance of the universal quantifica-
tion, because the right branch now contains the constant ‘b’ along with the
constant ‘a’. This generates a new closed complex term, to which Complex
Term Decomposition must be applied. An infinite branch is in the making
here, for Complex Term Decomposition will produce a new branch with the
constant ‘c’, which must be used to form a substitution instance of the uni-
versal quantification on line 1, and so on. The important point is, however, that
we have managed to produce a completed open branch. That branch contains
exactly one constant, confirming (as we already saw) that there is a model for
the set {(∀x)Hf(x)} in which the UD has exactly one member.

Having seen Complex Term Decomposition in action, we will now
examine a tree that illustrates some of the finer points of this rule:

1.
2.

3.
4.

5.
6.

SM
1 ∃D2

2 CTD
2, 3 D

4 CTD
4, 5 D

(∃x)Hg(x,f(x))⻬
Hg(a,f(a))

a f(a)
Hg(a,a)

b f(a)
Hg(a,b)

a g(a,a)
Ha
o

b g(a,a)
Hb
o

a g(a,b)
Ha
o

c g(a,b)
Hc
o

b g(a,b)
Hb
o

9.6 FINE-TUNING THE TREE METHOD FOR PLE 519

(In this section, as in Section 9.4, we will always use Existential Decomposition-2
to decompose existentially quantified sentences.) The sentence on line 1 con-
tains the complex term ‘g(x,f(x))’ but that term is not decomposed because it
is not a closed term. The sentence on line 2 contains two complex terms: ‘f(a)’
and ‘g(a,f(a))’. Both are closed, but only ‘f(a)’ gets decomposed (on line 3).
The term ‘g(a,f(a))’ does not get decomposed because Complex Term Decom-
position only applies if all of the arguments to the main functor are constants,
but the argument ‘f(a)’ is not a constant. After Identity Decomposition adds
identity sentences at line 4, the tree contains two new complex terms: ‘g(a,a)’
and ‘g(a,b)’. These terms are closed, and the arguments in both are exclusively
constants, so they must be decomposed—this is done on line 5. Identity Decom-
position then produces the sentences on line 6, and all five branches become
completed open branches.

Now we will use Complex Term Decomposition to produce trees that
show that the sentence ‘(∀x)[Hg(x,f(b)) ⊃ ~ Hg(f(b),x)]’ is quantification-
ally indeterminate. The first tree shows that this sentence is not quantifica-
tionally false:

1.
2.

3.

4.
5.

6.

7.

SM
1 ∀D

2 ⊃D

3 CTD
3, 4 D

5 CTD
5, 6 D

(∀x)[Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]
Hg(b,f(b)) ⊃ ∼ Hg(f(b),b)⻬

∼ Hg(b,f(b)) ∼ Hg(f(b),b)

b f(b)
∼ Hg(b,b)

c f(b)
∼ Hg(b,c)

b g(b,b)
∼ Hb

o

c g(b,b)
∼ Hc

b f(b)
∼ Hg(b,b)

c f(b)
∼ Hg(b,c)

The leftmost branch is a completed open branch. The remaining branches
are incomplete, but since the tree does have at least one completed open
branch there is no need to complete them. In constructing the tree we
reached the sentences ‘~ Hb’ and ‘~ Hc’ through repeated applications of
Complex Term Decomposition and Identity Decomposition, applying CTD
first to line 3 to produce the identities on line 4, then to ‘g(b,b)’ as that
closed term occurs in a literal on line 5. The following tree establishes that
‘(∀x)[Hg(x,f(b)) ⊃ ~ Hg(f(b),x)]’ also is not quantificationally true, and

520 PREDICATE LOGIC: TRUTH-TREES

hence that it is quantificationally indeterminate:

1.
2.

3.
4.
5.
6.

7.
8.
9.

10.
11.

∼ (∀x)[Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]⻬
(∃x) ∼ [Hg(x,f(b)) ⊃ ∼ Hg(f(b),x)]⻬

SM
1 ∼ ∀D

2 ∃D2
3 ∼ ⊃D
3 ∼ ⊃D
5 ∼ ∼ D

6 CTD
4, 7 D
6, 7 D

8 CTD
8, 10 D

∼ [Hg(b,f(b)) ⊃ ∼ Hg(f(b),b)]⻬
Hg(b,f(b))

∼ ∼ Hg(f(b),b)⻬
Hg(f(b),b)

∼ [Hg(c,f(b)) ⊃ ∼ Hg(f(b),c)]⻬
Hg(c,f(b))

∼ ∼ Hg(f(b),c)⻬
Hg(f(b),c)

b g(b,b)
Hb
o

c g(b,b)
Hc
o

b f(b)
Hg(b,b)

c f(b)
Hg(b,c)
Hg(c,b)

b f(b)
Hg(c,b)
Hg(b,c)

d f(b)
Hg(c,d)
Hg(d,c)

c f(b)
Hg(c,c)

The left two branches of this tree are completed open branches, so there is no
point in continuing to work on the other branches. Note that the closed term
‘f(b)’ occurs in literals on lines 4 and 6. Nonetheless we applied CTD to this
closed term only once—at line 7, citing line 6. We could equally well have cited
line 4. (There is no point to applying CTD twice to the same closed term, as
the results will always be the same.) Also note that we applied Identity Decom-
position at line 8 to lines 4 and 7 on all five branches. At line 9 we applied it
only to the branches where a new literal is yielded.

Before we give our official definition of open branches for trees of PLE,
we pause to consider the restriction, in the statement of Complex Term Decom-
position, that the complex term being decomposed must be a closed term whose
arguments are individual constants. In each of the preceding three trees there are
closed complex terms whose arguments include complex terms. Why are we
not required to decompose these complex terms? Keep in mind that the point
of Complex Term Decomposition was to ensure that for every closed complex
term occurring on a branch, there is a constant on that branch that denotes
the same individual (so that when decomposing universally quantified sen-
tences, we only need to generate substitution instances that are formed from
individual constants that occur on the branch). It turns out that this require-
ment, that for every closed complex term occurring on a branch there be a
constant that denotes the same individual, is met as long as we are careful to
apply CTD to all complex terms in which the arguments are all constants, and
to decompose identity sentences wherever they occur. To see this, take as an
example the term ‘g(b,f(b))’ that occurs at line 4 in the literal on the left
branch of the preceding tree. The required decompositions on the two com-
pleted open branches below line 4 guarantee that on each of these branches
there is an individual constant that denotes the same member of the UD as

9.6 FINE-TUNING THE TREE METHOD FOR PLE 521

‘g(b,f(b))’. More specifically, consider the completed open branch on the left.
The identity sentence on line 7 states that ‘b’ and ‘f(b)’ denote the same indi-
vidual, and from this it follows that ‘g(b,b)’ must denote the same individual
as the more complex term ‘g(b,f(b))’. Moreover, the identity sentence on
line 10 states that ‘b’ and ‘g(b,b)’ denote the same individual—from which it
follows that on any interpretation represented by this branch, ‘b’ denotes the
same individual as the complex term ‘g(b,f(b))’. Similarly, it follows from the
identity sentences on the right completed open branch that on any interpre-
tation represented by that branch, ‘c’ denotes the same individual as ‘g(b,f(b))’.

The availability of CTD justifies our relaxing the requirement in clause
3 of our definition of a completed open branch so as not to require that uni-
versally quantified sentences be decomposed to substitution instances formed
from closed complex terms. Such decompositions are still allowed and will some-
times produce closed trees sooner than will using CTD, but they are not
required for a branch to be a completed open branch. It turns out that we can
similarly loosen the requirement concerning the use of Identity Decomposition.
So our revised definition of a completed open branch for trees for PLE is:

A completed open branch is a finite open branch on which each sentence
is one of the following:

1. A literal that is not an identity sentence

2. A compound sentence that is not a universally quantified sentence
and is decomposed

3. A universally quantified sentence (∀x)P such that P(a/x) also
occurs on that branch for each constant a occurring on the branch
and P(a/x) occurs on the branch for at least one constant a

4. A sentence of the form a t, where a is an individual constant
and t is a closed term such that the branch also contains, for
every literal P on that branch containing t, every sentence
P(a//t) that can be obtained from P by Identity Decomposition

and on which Complex Term Decomposition has been applied to every
closed complex term occurring in a literal on the branch whose argu-
ments are all individual constants.

All branches that we have marked as completed open branches on trees in this
section meet this definition (except that we do not bother to show the required
identity sentences in which the same term occurs on both sides of the identity
predicate since these will never lead to closed branches). Note that Identity
Decomposition can still be used on sentences of the form t1 t2 when t1 is a
complex term, but not using it is not necessary for producing closed branches.
So, where t1 t2 occurs on a branch and t1 is a complex term, Identity Decom-
position should be used if we suspect that doing so will quickly produce a closed
branch, but not otherwise.

522 PREDICATE LOGIC: TRUTH-TREES

Before turning to the second task of this section, that of developing a
tree construction procedure that yields a finite tree wherever one exists, we
shall construct several more trees using Complex Term Decomposition. First
we shall use the tree method to determine the quantificational status of the
sentence ‘(∀x)(∃y)Pf(x,y)’. Here is a tree for the negation of the sentence:

1.
2.
3.
4.
5.

6.
7.

SM
1 ∼ ∀D
2 ∃D2
3 ∼ ∃D
4 ∀D

5 CTD
5, 6 D

 ∼ (∀x)(∃y)Pf(x,y)⻬
(∃x) ∼ (∃y)Pf(x,y)⻬

∼ (∃y)Pf(a,y)⻬
 (∀y) ∼ Pf(a,y)

∼ Pf(a,a)

a f(a,a)
∼ Pa

o

b f(a,a)
∼ Pb

The left-hand branch is a completed open branch. The sentences on lines 1–3
have been checked off. The sentences on lines 5 and 7 are literals that are not
identity sentences. The universally quantified sentence on line 3 has been
decomposed to a substitution instance containing ‘a’, the only constant on the
left-hand branch. Complex Term Decomposition has been applied to the one
relevant closed term, ‘f(a,a)’, and Identity Decomposition has been applied as
required to the identity sentence on line 6 and the literal on line 5 containing
the constant ‘a’. So ‘(∀x)(∃y)Pf(x,y)’ is not quantificationally false. (Note that
the right-hand branch of the preceding tree is not a completed open branch.
It contains a constant, ‘b’, for which the universally quantified sentence on line
4 has not been decomposed.)

We now construct a tree for the sentence itself, to determine whether
it is quantificationally false or quantificationally indeterminate:

1.
2.

3.

4.
5.

SM
1 ∀D

2 ∃D2

3 CTD
3, 4 D

(∀x)(∃y)Pf(x,y)
(∃y)Pf(a,y)⻬

Pf(a,a) Pf(a,b)

a f(a,a)
Pa
o

b f(a,a)
Pb

At this point the tree has one completed open branch, the leftmost branch.
The other branches are not completed open branches because each contains
the constant ‘b’, for which the universally quantified sentence on line 1 has not
been decomposed. Because the tree has at least one completed open branch,
the sentence we are testing is true on at least one interpretation and is there-
fore not quantificationally false. This, together with the tree we constructed for

9.6 FINE-TUNING THE TREE METHOD FOR PLE 523

the negation of the sentence, establishes that the sentence ‘(∀x)(∃y)Pf(x,y)’ is
quantificationally indeterminate.

We shall next show that ‘(∀x)(∀y)f(x,y) f(y,x)’ is quantificationally
indeterminate. We start by constructing a tree for the unit set of the sentence:

1.
2.
3.

4.
5.

(∀x)(∀y)f(x,y) f(y,x)
(∀y)f(a,y) f(y,a)

f(a,a) f(a,a)

SM
1 ∀D
2 ∀D

3 CTD
3, 4 D

 a f(a,a)
f(a,a) a

O

 b f(a,a)
f(a,a) b

The left-hand branch is, as of line 5, a completed open branch. So the sen-
tence is true on at least one interpretation and is therefore not quantifica-
tionally false. The right-hand branch is not completed, as it does not contain
substitution instances of the sentences on lines 1 and 2 that can be formed
using the constant ‘b’ that occurs on that branch. Here is a tree for the unit
set of the negation of our sentence:

1. ∼ (∀x)(∀y)f(x,y) f(y,x) SM

2. (∃x) ∼ (∀y)f(x,y) f(y,x) 1 ∼ ∀D

3. ∼ (∀y)f(a,y) f(y,a) 2 ∃D2

4. (∃y) ∼ f(a,y) f(y,a) 3 ∼ ∀D

5. ∼ f(a,a) f(a,a) ∼ f(a,b) f(b,a) 4 ∃D2

6. a f(a,b) b f(a,b) c f(a,b) 5 CTD

7. ∼ a f(b,a) ∼ b f(b,a) ∼ c f(b,a) 5, 6 D

8. a f(b,a) b f(b,a) c f(b,a) a f(b,a) b f(b,a) c f(b,a) a f(b,a) b f(b,a) c f(b,a) d f(b,a) 5 CTD

9. ∼ a b ∼ a c ∼ b a ∼ b c ∼ c a ∼ c b ∼ c d 7, 8 D

10. ∼ f(a,b) b ∼ f(a,b) c ∼ f(a,b) a ∼ f(a,b) c ∼ f(a,b) a ∼ f(a,b) b ∼ f(a,b) d 5, 8 D

o o o o o o o

This tree has seven completed open branches, so the sentence at line 1 is not
quantificationally false, and the sentence ‘(∀x)(∀y)f(x,y) f(y,x)’ is not quan-
tificationally true. This establishes that ‘(∀x)(∀y)f(x,y) f(y,x)’ is quantifica-
tionally indeterminate.

As we did for PL, we will present a procedure for constructing trees
for PLE in a systematic fashion that will always, in a finite number of steps, find
a completed open branch if one exists or close the tree if it can be closed. The
System for PLE is somewhat more complicated than that for PL, owing to the

524 PREDICATE LOGIC: TRUTH-TREES

presence of identity sentences and complex terms:

The System for PLE

List the members of the set to be tested.

Exit Conditions: Stop if

a. The tree closes.

b. An open branch becomes a completed open branch.

Construction Procedures:

Stage 1: Decompose all truth-functionally compound and existentially quantified
sentences and each resulting sentence that is itself either a truth-
functional compound or an existentially quantified sentence.

Stage 2: For each universally quantified sentence (∀x)P on the tree:

i) Enter P(a x) on each open branch passing through (∀x)P for each
individual constant a already occurring on that branch.

ii) On each open branch passing through (∀x)P on which no constant
occurs, enter P(a x).

iii) Enter P(t/x) on an open branch passing through (∀x)P for a closed
complex term t if and only if doing so closes the branch.

Repeat this process until every universally quantified sentence on
the tree, including those added as a result of this process, has been so
decomposed.

Stage 3: Apply Complex Term Decomposition to every complex term on an open
branch whose arguments are all constants and to which Complex Term
Decomposition has not already been applied.

Stage 4: For every sentence of the form t1 t2 occurring on an open branch,
apply Identity Decomposition as follows:

i) Where t1 is an individual constant, apply Identity Decomposition until
every open branch passing through t1 t2 also contains, for every
literal P containing t2 on that branch, every sentence P(t1//t2) that
can be obtained from P by Identity Decomposition.

ii) Where t1 is a closed complex term, apply Identity Decomposition to
t1 t2 and a literal P containing t2 that occurs on a branch passing
through t1 t2 if and only if only doing so closes the branch.

Return to Stage 1.

Note that Stage 3 does not require us to apply Complex Term
Decomposition to the same complex term on a branch more than once,
even though the term may occur in more than one literal on that branch.

9.6 FINE-TUNING THE TREE METHOD FOR PLE 525

Stage 4 ensures that after passing through that stage every sentence of the form
a t on every open branch meets the requirements of clause 4 of the defini-
tion of a completed open branch. That is, if the branch is not completed at
this point, it will not be because we have failed to apply Identity Decomposition
the required number of times.9 Stages 2 and 4 each contain instructions to
apply a decomposition rule in certain cases only if doing so closes a branch.
The decompositions in question do not need to be done to meet the require-
ments for having a completed open branch, and doing such decompositions
when the result is not a closed branch can produce infinite branches in cases
where completed open branches are possible.

Nor do such decompositions need to be done to produce closed
branches—the branches in question will eventually close even without these
decompositions—but they can result in less complex trees than would other-
wise be produced by The System. To illustrate this consider the following tree
that we constructed in Section 9.5 for the set {(∀x) ~ Bx, Bf(c)}:

9In Chapter 11, various results about the tree system for PLE presuppose that Identity Composition is thoroughly
applied as required by clause 4 of the definition of a completed open branch of a PLE tree. This is why we have
previously allowed informally, but not formally, omitting applications of Identity Decomposition that yield sen-
tences of the form t t. Our examples of systematic trees for PLE will include all such identity sentences on
completed open branches.

1. (∀x) ∼ Bx SM

2. Bf(c) SM

3. ∼ Bf(c) 1 ∀D

This tree, which serves to establish the inconsistency of the set being tested, is
a systematic tree and it illustrates the reason for decomposing universally quan-
tified sentences with complex terms when the result is a closed branch. If we
never used complex terms to decompose universally quantified sentences, The
System would still produce a closed tree but it would be more complex:

1.

2.

3.

4.

5.

6.

7.

(∀x) ∼ Bx

Bf(c)

∼ Bc

SM

SM

1 ∀D

2 CTD

4, 2 D

4, 2 D

1 ∀D

c f(c)

Bc

d f(c)

Bd

∼ Bd

Here we only used constants when decomposing the universally quantified sen-
tence, but the use of Complex Term Decomposition ensured that we never-
theless ended up with a closed tree.

We conclude with some examples that use The System for PLE. The
sentence ‘(∀x)(∃y)y f(f(x))’ is quantificationally true. So the truth-tree for
the negation of that sentence should close, and it does:

1. ∼ (∀x)(∃y)y f(f(x)) SM

2. (∃x) ∼ (∃y)y f(f(x)) 1 ∼ ∀D

3. ∼ (∃y)y f(f(a)) 2 ∃D2

4. (∀y) ∼ y f(f(a)) 3 ∼ ∃D

5. ∼ a f(f(a)) 4 ∀D

6. ∼ f(f(a)) f(f(a)) 4 ∀D

We closed this systematic tree by taking advantage of the instruction that a uni-
versally quantified sentence be decomposed to a substitution instance formed
from a complex term if and only if doing so closes the branch.

On the other hand, the sentence ‘(∀x)(∀y)y f(f(x))’ is quantifica-
tionally indeterminate. The following trees show that the sentence is not quan-
tificationally true:

1.
2.
3.
4.

5.

6.
7.
8.
9.

SM
1 ∼ ∀D
2 ∃D2
3 ∼ ∀D

4 ∃D2

3 CTD
5, 6 D
6, 6 D
6, 7 D

∼ (∀x)(∀y)y f(f(x))⻬
(∃x) ∼ (∀y)y f(f(x))⻬

∼ (∀y)y f(f(a))⻬
(∃y) ∼ y f(f(a))⻬

∼ a f(f(a)) ∼ b f(f(a))

a f(a)
∼ a f(a)

a a
∼ a a

b f(a)
∼ a f(b)

b b

a f(a)
∼ b f(a)

a a
∼ b a

O

c f(a)
∼ b f(c)

c c

b f(a)
∼ b f(b)

b b

Recall that the identity sentences on line 8 are required on completed open
branches. At line 9 the leftmost branch closes owing to the sentence just
entered on that branch, while the third branch becomes a completed open
branch. The following tree shows that the sentence ‘(∀x)(∀y)y f(f(x))’ is
also not quantificationally false:

1.
2.
3.

4.
5.
6.

(∀x)(∀y)y f(f(x))
(∀y)y f(f(a))

a f(f(a))

SM
1 ∀D
2 ∀D

3 CTD
3, 4 D
4, 4 D

 a f(a)

a a
O

 b f(a)
a f(b)

b b

Here, when we applied Identity Decomposition at line 5 using the sentences
from lines 3 and 4 we did not add ‘a f(a)’ to the left branch since it already
occurred on that branch. The left branch (but not the right one) became a
completed open branch after adding the final sentence at line 6.

As a final example we shall construct a substantially more complicated
systematic tree. This tree establishes that the sentence ‘(∃x)(∃y)Hg(x,y)
(∃x)(∃y)Hg(y,x)’ is quantificationally true:

∼
[(

∃
x
)(

∃
y)

H
g
(x

,y
)

 (

∃
x
)(

∃
y)

H
g
(y

,x
)]

(∃
x
)(

∃
y)

H
g
(x

,y
)

∼
 (

∃
x
)(

∃
y)

H
g
(y

,x
)

(∃
y)

H
g
(a

,y
)

∼
 (

∃
x

)(
∃

y)
H
g
(x

,y
)

 (
∃

x
)(

∃
y)

H
g
(y

,x
)

(∀
x
)

∼
 (

∃
y)

H
g
(x

,y
)

H
g
(a

,a
)

H
g
(a

,b
)

H
g
(a

,a
)

H
g
(b

,a
)

a

 g

(a
,a

)
a

 g

(a
,b

)

a

 g

(a
,a

)
b

 g

(a
,a

)
a

 g

(a
,b

)
b

 g

(a
,b

)
c

 g

(a
,b

)

b

 g

(a
,b

)
c

 g

(a
,b

)
b

 g

(a
,a

)

(∀
x
)

∼
 (

∃
y)

H
g
(y

,x
)

a

 a

(∀
x
)

∼
 H

g
(y

,a
)

∼
 H

g
(a

,a
)

∼

 H
g
(a

,b
)

∼
 H

g
(a

,a
)

(∀
y)

 ∼
 H

g
(y

,a
)

(∀
y)

 ∼
 H

g
(y

,a
)

(∀
y)

 ∼
 H

g
(y

,b
)

(∀
y)

 ∼
 H

g
(y

,a
)

(∀
y)

 ∼
 H

g
(y

,b
)

∼
 H

g
(a

,a
)

∼
 H

g
(a

,a
)

∼

 H
g
(b

,a
)

∼
 H

g
(b

,a
)

∼
 H

g
(b

,a
)

b

 b
a

 a
b

 b

c

 c

(∃
y)

H
g
(y

,a
)

∼
 (

∃
y)

H
g
(y

,a
)

∼
 (

∃
y)

H
g
(y

,a
)

∼
 (

∃
y)

H
g
(y

,b
)

∼
 (

∃
y)

H
g
(a

,y
)

∼
 (

∃
y)

H
g
(a

,y
)

∼
 (

∃
y)

H
g
(b

,y
)

H
a

H
a

H
b

H
b

H
c

H
a

H
a

H
b

H
b

H
c

a

 a
b

 b

a

 a
b

 b

c

 c

1
.

2
.

3
.

4
.

5
.

6
.

7
.

8
.

9
.

1
0
.

1
1
.

1
2
.

1
3
.

1
4
.

1
5
.

1
6
.

1
7
.

1
8
.

1
9
.

2
0
.

2
1
.

2
2
.

2
3
.

2
4
.

2
5
.

2
6
.

2
7
.

S
M

1

D

2
 ∃

D
2

4
 ∃

D
2

5
 ∃

D
2

6
 ∀

D

6
 ∀

D

7
 ∀

D

7
 ∀

D

8
 C

T
D

9
 C

T
D

8
,

1
4

D

9
,

1
5

D

1
4
,

1
4

D

1
5
,

1
5

D

1
0
 ∼

 ∃
D

1
1
 ∼

 ∃
D

1
2
 ∼

 ∃
D

1
3
 ∼

 ∃
D

2
0

 ∀
D

2
1

 ∀
D

2
2

 ∀
D

2
3

 ∀
D

3
 ∃

D
2

3
 ∼

 ∃
D

2
 ∼

 ∃
D

1

D

∼
 H

g
(a

,b
)

(∀
y)

 ∼
 H

g
(y

,a
)

(∀
y)

 ∼
 H

g
(y

,b
)

(∀
y)

 ∼
 H

g
(a

,y
)

(∀
y)

 ∼
 H

g
(b

,y
)

(∀
y)

 ∼
 H

g
(a

,y
)

(∀
y)

 ∼
 H

g
(b

,y
)

(∀
y)

 ∼
 H

g
(a

,y
)

(∀
y)

 ∼
 H

g
(b

,y
)

(∀
y)

 ∼
 H

g
(a

,y
)

(∀
y)

 ∼
 H

g
(a

,y
)

∼
 H

g
(a

,b
)

527

528 PREDICATE LOGIC: TRUTH-TREES

We begin work on the tree by decomposing all the truth-functionally com-
pound sentences and existentially quantified sentences on the tree, and all
those that are added by doing those decompositions. This Stage 1 work takes
us through line 9 of the tree. At that point we move to Stage 2 of The Sys-
tem and, on each branch, decompose all universally quantified sentences on
that branch using constants already on the branch. This takes us through line
13. We next move to Stage 3 and apply Complex Term Decomposition on
each branch to every complex term occurring in a literal on that branch. We
complete this stage at line 15. We move to Stage 4 and apply Identity Decom-
position as directed at lines 16 through 19. At this point we have moved
through The System once, but the tree has not closed and does not have a
completed open branch. So we return, as instructed, to Stage 1. We apply
Negated Existential Decomposition yielding lines 20–23. We then move to
Stage 2 and apply Universal Decomposition, yielding lines 24–27. After these
four applications of Universal Decomposition, every branch is closed and we
have a closed tree.

Note that The System specifies, at Stage 3, that we apply Complex Term
Decomposition. We did so in this tree, even though the results (the introduc-
tion of the literals ‘Ha’, ‘Hb’, and ‘Hc’ on appropriate branches) play no role
in closing any branch. It is common, with systematic trees, for a tree to con-
tain entries that are not germane to the final result. This is the price we pay
for being sure we explore all possibilities.

9.6E EXERCISES

1. Construct systematic trees to determine, for each of the following sets, whether
that set is quantificationally consistent. State your result. If you abandon a tree,
explain why.

a. {(∀x)(∀y)[~ x g(y) ⊃ Gxy], ~ (∃x)Gax}
*b. {(∀x)(Gx ⊃ Gh(x)), (∃x)(Gx & ~ Gh(x)}

c. {(∃x)(∃y)Hf(x,y), ~ (∃x)Hx}
*d. {(∃x)(∀y) x f(y), (∃x)(∀y) ~ x f(y)}

e. (∀x) Lxf(x), (∃y) ~ Lf(y)y}
*f. {(∀x) ~ x f(x), (∃x) x f(f(x))}
g. {(∀x)(Gx ⊃ ~ Gh(x), (∃x)(~ Gx & ~ Gh(x)}

*h. {(∀x) x f(x), (∃x) ~ x f(f(x))}

2. Show that the following sentences are not quantificationally true by con-
structing an appropriate systematic truth-tree.

a. (∀x)(Pf(x) ⊃ Px)
*b. (∀x)(∀y)(x g(y) ∨ y g(x))

c. (∃x)(∀y)x g(y)
*d. (∀x) ∼ x f(x)

e. (∀x)(∀y)(Dh(x,y) ⊃ Dh(y,x))
*f. (∃x)(∃y) ~ (x f(y) ∨ y f(x))

SUMMARY 529

3. Show that the following sentences are quantificationally true by constructing
an appropriate systematic tree.

a. (∀x)(∃y)y f(f(x))
*b. (∀x)(∀y)(∀z)((y f(x) & z f(x)) ⊃ y z)

c. (∀x)Lf(x) ⊃ (∀x)Lf(f(x))
*d. (∃y)y g(f(a))

4. Construct systematic trees to determine, for each of the following sentences,
whether that sentence is quantificationally true, quantificationally false, or
quantificationally indeterminate. In each case state your result. If you abandon
a tree, explain why.

a. (∃x)f(x) x
*b. (∀x)Gf(x)x

c. (∀x)(∃y)y f(f(x))
*d. (∀x)(Fx ∨ ~ Fg(x))

5. Construct systematic trees to determine which of the following arguments are
quantificationally valid. In each case state your result. If you abandon a tree,
explain why.

a. (∃x)(Fg(x) & ∼ Hg(x))

(∀x)(Fx ⊃ Hx)

∼ Ra

*b. (∀x) Pf(f(x))

Pf(a)

c. a f(b) & b f(a)

(∃x)(∼ x a & ∼ x b)

*d. (∀x)(Fx ∨ Fg(x))

(∀x)(Fx ∨ Fg(g(x)))

6. Construct systematic trees to determine which of the following pairs of sen-
tences are quantificationally equivalent. In each case state your result. If you
abandon a tree, explain why.

a. (∀x)(∃y)y f(x) (∀x)(∃y)x f(y)
*b. Labf(b) Laf(b)b

c. (∃x)x x (∃x)x f(x)
*d. (∀x)Bh(x)x (∀x)Bxh(x)

7. Construct systematic trees to determine which of the following alleged entail-
ments hold. In each case state your result. If you abandon a tree, explain why.

a. {(∀x)(∀y)x g(x,y)} (∀x)x g(x,x)
*b. {(∃x)(∀y) x g(y)} h(a) g(a)

c. {(∀x)x f(f(x))} (∀x)x f(x)
*d. {(∀x)x f(x)} (∀x)x f(f(x))

SUMMARY

Key Semantic Properties

QUANTIFICATIONAL INCONSISTENCY: A finite set of sentences of PL/PLE is
quantificationally inconsistent if and only if has a closed truth-tree.

|=
|=

|=
|=

530 PREDICATE LOGIC: TRUTH-TREES

QUANTIFICATIONAL CONSISTENCY: A finite set of sentences of PL/PLE is quan-

tificationally consistent if and only if is not quantificationally inconsistent, that is, if

and only if does not have a closed truth-tree.

QUANTIFICATIONAL TRUTH: A sentence P of PL/PLE is quantificationally true if and

only if the set {~ P} has a closed truth-tree.

QUANTIFICATIONAL FALSITY: A sentence P of PL/PLE is quantificationally false if

and only if the set {P} has a closed truth-tree.

QUANTIFICATIONAL INDETERMINACY: A sentence P of PL/PLE is quantification-

ally indeterminate if and only if neither the set {P} nor the set {~ P} has a closed

truth-tree.

QUANTIFICATIONAL EQUIVALENCE: Sentences P and Q of PL/PLE are quantifica-

tionally equivalent if and only if the set {~ (P Q)} has a closed truth-tree.

QUANTIFICATIONAL ENTAILMENT: A finite set of sentences of PL/PLE quanti-

ficationally entails a sentence P of PL/PLE if and only if ∪ {~ P} has a closed

truth-tree.

QUANTIFICATIONAL VALIDITY: An argument of PL/PLE with a finite number of

premises is quantificationally valid if and only if the set consisting of the premises

and the negation of the conclusion has a closed truth-tree.

Key Truth-Tree Concepts

CLOSED BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF PL: A

branch containing both an atomic sentence and the negation of that sentence.

CLOSED BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF PLE: A

branch containing both an atomic sentence and the negation of that sentence or a

sentence of the form ~ t t.

CLOSED TRUTH-TREE: A truth-tree each of whose branches is closed.

OPEN BRANCH: A branch that is not closed.

COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR A SET OF SENTENCES OF

PL: A finite open branch on which each sentence is one of the following:

1. A literal (an atomic sentence or the negation of an atomic sentence)

2. A compound sentence that is not a universally quantified sentence and is

decomposed

3. A universally quantified sentence ((∀x)x)P such that P(a/x) also occurs

on that branch for each constant a occurring on the branch and at least

one substitution instance P(a/x) occurs on the branch

(SECTION 9.5 ACCOUNT) COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR

A SET OF SENTENCES OF PLE: A finite open branch on which each sentence is

one of the following:

1. A literal that is not an identity sentence

2. A compound sentence that is not a universally quantified sentence and is

decomposed

3. A universally quantified sentence (∀x)P such that P(t/x) also occurs on

that branch for each closed individual term t occurring on the branch and at

least one substitution instance P(t/x) occurs on the branch

4. A sentence of the form t1 t2, where t1 and t2 are closed terms such

that the branch also contains, for every literal P on that branch contain-

ing t2, every sentence P(t1//t2) that can be obtained from P by Identity

Decomposition

SUMMARY 531

(SECTION 9.6 ACCOUNT) COMPLETED OPEN BRANCH OF A TRUTH-TREE FOR
A SET OF SENTENCES OF PLE: A finite open branch on which each sentence is
one of the following:

1. A literal that is not an identity sentence
2. A comound sentence that is not a universally quantified sentence and is

decomposed
3. A universally quantified sentence (∀x)P such that P(a/x) also occurs on

that branch for each constant a occurring on the branch and P(a/x) occurs
on the branch for at least one constant a

4. A sentence of the form a t, where a is an individual constant and t is a
closed term such that the branch also contains, for every literal P on that
branch containing t, every sentence P(a//t) that can be obtained from P
by Identity Decomposition

and on which Complex Term Decomposition has been applied to every closed
complex term occurring in a literal on the branch whose arguments are all
individual constants.

NONTERMINATING BRANCH: An open branch that never closes and will never, in a
finite number of steps, become a completed open branch.

COMPLETED TRUTH-TREE: A truth-tree each of whose branches is either closed or
is a completed open branch.

OPEN TRUTH-TREE: A truth-tree that is not closed.

532 PREDICATE LOGIC: DERIVATIONS

Chapter 10
PREDICATE LOGIC:

DERIVATIONS

10.1 THE DERIVATION SYSTEM PD

In this chapter we develop natural deduction systems for predicate logic. The
first system, PD (for predicate derivations), contains exactly two rules for each
logical operator, just as SD contains exactly two rules for each sentential con-
nective. It provides syntactic methods for evaluating sentences and sets of
sentences of PL, just as the natural deduction system SD provides methods for
evaluating sentences and sets of sentences of SL. PD is both complete and
sound: for any set of sentences of PL and any sentence P of PL

 P if and only if P in PD.

That is, a sentence P of PL is quantificationally entailed by a set of sentences
of PL if and only if P is derivable from in PD. We prove this in Chapter 11.

The derivation rules of PD include all the derivation rules of SD, with
the understanding that they apply to sentences of PL. So the following is a
derivation in PD:

 |=

Derive: ∼ (∀x)Hx

1 (∀x)Hx ⊃ ∼ (∃y)Py Assumption
2 (∃y)Py Assumption

3 (∀x)Hx A / ∼ I

4 ∼ (∃y)Py 1, 3 ⊃E
5 (∃y)Py 2 R
6 ∼ (∀x)Hx 3–5 ∼ I

10.1 THE DERIVATION SYSTEM PD 533

The strategies we used with SD are also useful when working in PD. Those
strategies are based on careful analyses of the goal or goals of a derivation—the
structure of the sentence or sentences to be derived—and the structure of acces-
sible sentences. They can be summarized thus:

• If the sentence that is the current goal can be derived by applying
an elimination rule or some sequence of elimination rules to
accessible sentences, then that is the strategy to follow.

• If the current goal can be obtained by an introduction rule, that
is the strategy to follow.

• In most cases the successful strategy will make use of several of
these approaches, working from the “bottom up” and from the
“top down” as the occasion indicates.

• When using a negation rule try to use a negation that is readily
available as the ~ Q that the rule requires within the negation
subderivation.

• If a sentence is derivable from a set of sentences, then it is deriv-
able using a negation rule as the primary strategy. So if no other
strategy suggests itself it is useful to consider a negation strategy.
But like all strategies, just because a negation strategy is available
doesn’t mean it is always the best choice.

• There will often be more than one plausible strategy, and often
more than one will lead to success.

The new rules of PD call for some new strategies. We will introduce
these as we introduce the new derivation rules of PD. PD contains four new
rules, Universal Elimination, Universal Introduction, Existential Elimination,
and Existential Introduction. Each of the new rules involves a quantified sen-
tence and a substitution instance of that sentence. The elimination rule for the
universal quantifier is Universal Elimination:

Universal Elimination (∀E)

(∀x)P

 P(a/x)

Here we use the expression ‘P(a/x)’ to stand for a substitution instance of the
quantified sentence (∀x)P. P(a/x) is obtained from the quantified sentence by
dropping the initial quantifier and replacing every occurrence of x with a. We
will refer to the constant a that is substituted for the variable x as the instanti-
ating constant for the rule ∀E (and similarly for the other rules introduced on
the following pages).

The rule Universal Elimination allows us to infer, from a universally
quantified sentence, any substitution instance of that sentence. To understand
the rule consider the simple argument

534 PREDICATE LOGIC: DERIVATIONS

All philosophers are somewhat strange.

Socrates is a philosopher.

Socrates is somewhat strange.

The first premise makes a universal claim: it says that each thing is such that if
it is a philosopher then it is somewhat strange. We can symbolize this claim as
‘(∀y)(Py ⊃ Sy)’. The second premise can be symbolized as ‘Ps’ and the con-
clusion as ‘Ss’. Here is a derivation of the conclusion from the premises.

Derive: Ss

1 (∀y)(Py ⊃ Sy) Assumption
2 Ps Assumption

3 Ps ⊃ Ss 1 ∀E
4 Ss 2, 3 ⊃E

The sentence on line 3 is a substitution instance of the quantified sentence on
line 1. When we remove the initial (and only) quantifier from ‘(∀y)(Py ⊃ Sy)’ we
get the open sentence ‘Py ⊃ Sy’, which contains two free occurrences of ‘y’. Replac-
ing both occurrences with the constant ‘s’ yields the substitution instance ‘Ps ⊃ Ss’
on line 3, justified by ∀E. We then use Conditional Elimination to obtain ‘Ss’.

This simple derivation illustrates the first new strategy for constructing
derivations in PD:

• When using Universal Elimination use goal sentences as guides to
which constant to use in forming the substitution instance of the
universally quantified sentence.

At line 3 in the above derivation we could have entered ‘Pa ⊃ Sa’, or any other
substitution instance of ‘(∀y)(Py ⊃ Sy)’. But obviously only the substitution
instance using ‘s’ is of any use in completing the derivation.

That Universal Elimination is truth-preserving should be apparent.
‘Ps ⊃ Ss’ says of one thing (whatever thing ‘s’ designates) exactly what
‘(∀y)(Py ⊃ Sy)’ says of each thing in the UD. If ‘All philosophers are some-
what strange’ is true, then it is true of David Hume that if he is a philoso-
pher he is somewhat strange, and true of Isaac Newton that if he is a philosopher
he is somewhat strange, and true of Marie Curie that if she is a philoso-
pher she is somewhat strange, and true of the Milky Way that if it is a philoso-
pher then it is somewhat strange.

The instantiating constant employed in Universal Elimination may or
may not already occur in the quantified sentence. The following is a correct
use of Universal Elimination:

1 (∀x)Lxa Assumption

2 Lta 1 ∀E

10.1 THE DERIVATION SYSTEM PD 535

If we take our one assumption to symbolize ‘Everyone loves Alice’, with ‘a’ des-
ignating Alice, then clearly it follows that Tom, or whomever t designates, loves
Alice. The following is also a correct use of Universal Elimination:

1 (∀x)Lxa Assumption

2 Laa 1 ∀E

1 Fa Assumption

2 (∃y)Fy 1 ∃I

1 Faa Assumption

2 (∃y)Fya 1 ∃I
3 (∃y)Fyy 1 ∃I
4 (∃y)Fay 1 ∃I

Existential Introduction (∃I)

P(a/x)

 (∃x)P

If everyone loves Alice, then it follows that Alice loves Alice, that is, that Alice
loves herself.

The introduction rule for existential quantifiers is Existential
Introduction:

This rule allows us to infer an existentially quantified sentence from any one
of its substitution instances. Here is an example:

That Existential Introduction is truth-preserving should also be obvious. If
the thing designated by the constant ‘a’ is F, then at least one thing is F. For
example, if Alfred is a father, then it follows that someone is a father.

The following derivation uses Existential Introduction three times:

These uses are all correct because the sentence on line 1 is a substitution
instance of the sentence on line 2, and of the sentence on line 3, and of the
sentence on line 4. If Alice is fond of herself, then it follows that someone is
fond of Alice, that someone is fond of her/himself, and that Alice is fond of
someone.

The strategy for using Existential Introduction is straightforward:

• When the goal to be derived is an existentially quantified sentence
establish a substitution instance of that sentence as a subgoal, with
the intent of applying Existential Introduction to that subgoal to
obtain the goal.

Universal Introduction and Existential Elimination are somewhat more
complicated than the two rules just considered. We begin with Universal
Introduction:

536 PREDICATE LOGIC: DERIVATIONS

Universal Introduction (∀I)

P(a/x)

 (∀x)P

provided that

(i) a does not occur in an open assumption.
(ii) a does not occur in (∀x)P.

Here, again, we will call the constant a in P(a/x) the instantiating constant. This
rule specifies that under certain conditions we can infer a universally quanti-
fied sentence from one of its substitution instances. At first glance this might
seem implausible, for how can we infer, from a claim that a particular thing is
of a certain sort, that everything is of that sort? The answer, of course, lies in
the restrictions specified in the “provided that” clause.

Here is a very simple example. The sentences ‘(∀x)Fx’ and ‘(∀y)Fy’
are what we might call notational variants of each other. They both say that
everything is F. So we should be able to derive each from the other. Below we
derive the second from the first:

Derive: (∀y)Fy

1 (∀x)Fx Assumption

2 Fb 1 ∀E
3 (∀y)Fy 2 ∀I

As required by the first restriction on Universal Introduction, ‘b’ does not occur
in any open assumption, so the rule is correctly applied at line 3. This deriva-
tion contains only one assumption, at line 1, and ‘b’ does not occur in that
assumption. This means that we have not assumed any particular information
about whatever the constant ‘b’ might designate. No matter how ‘b’ is inter-
preted, the sentence on line 2 must be true if the assumption on line 1 is true.
But if ‘Fb’ is true no matter how ‘b’ is interpreted, then the universally quan-
tified sentence on line 3 clearly will be true as well.

The kind of reasoning that Universal Introduction is based on is com-
mon in mathematics. Suppose we want to establish that no even positive inte-
ger greater than 2 is prime. [A prime is a positive integer that is evenly divisi-
ble only by itself and 1, and is not 1.] We might reason thus:

Consider any even positive integer i greater than 2. Because i is even, i
must be evenly divisible by 2. But since i is not 2 (it is greater than 2), it
follows that i is evenly divisible by at least three positive integers: 1, 2, and

10.1 THE DERIVATION SYSTEM PD 537

i itself. So it is not the case that i is evenly divisible only by itself and 1,
and i cannot be prime. Therefore no even positive integer greater than
2 is prime.

It would exhibit a misunderstanding of this reasoning to reply “but the posi-
tive integer i you considered might have been 4, and while the reasoning does
hold of 4—it is not prime—that fact alone doesn’t show that the reasoning
holds of every even positive integer greater than 2. You haven’t considered 6
and 8 and 10 and. . . .” It would be a misunderstanding because in saying “Con-
sider any even positive integer i greater than 2” we don’t mean “Pick one”. We
say “Consider any even positive integer i . . .” because it is easier to construct
the argument when we are speaking, grammatically, in the singular (“i is . . .”,
“i is not . . .”). But what we are really saying is “Consider what we know about
all positive integers that are even and greater than two . . .” So the proof is a
proof about all such integers. Similarly, in derivations we often use an individual
constant to reason about all cases of a certain sort.

Suppose we want to establish that ‘(∀x)[Fx ⊃ (Fx ∨ Gx)]’ can be
derived from no assumptions. (This will, of course, establish that this sentence
of PL is a theorem in PD.) Here is one such derivation:

Derive: (∀y)Fy

1 Fb & ~ Fc Assumption

2 Fb l &E
3 (∀y)Fy 2 ∀I MISTAKE!

Derive: (∀x)[Fx ⊃ (Fx ∨ Gx)]

1 Fc A / ⊃I

2 Fc ∨ Gc 1 ∨I
3 Fc ⊃ (Fc ∨ Gc) 1–2 ⊃I
4 (∀x)[Fx ⊃ (Fx ∨ Gx)] 3 ∀I

The sentence on line 3 follows from the subderivation on lines 1–2, no matter
what the constant ‘c’ designates. The subderivation establishes that no matter
what c is, if it is F then it is F or G. Hence we are justified in deriving the uni-
versal quantification on line 4. Note that although ‘c’ occurs in the assumption
on line 1, that assumption is not open at line 4, so we have not run afoul of
the first restriction on the rule Universal Introduction.

On the other hand, Universal Introduction is misused in the following
attempted derivation:

‘Fb’ does follow from line 1. But from the truth of ‘Fb & ~ Fc’, where ‘b’ des-
ignates some one member of the UD, it does not follow that ‘Fb’ is true no
matter what member of the UD we might take ‘b’ to designate. It only follows
that ‘Fb’ is true as long as ‘b’ in ‘Fb’ designates the same thing as it does in
‘Fb & ~ Fc’. So it is incorrect to infer that everything is F, and we want to block
the move to line 3. (From the fact that Beth is a faculty member and Carl is

538 PREDICATE LOGIC: DERIVATIONS

not it does not follow that everyone is a faculty member.) The rule Universal
Introduction prevents us from citing line 2 as a justification for line 3 by stip-
ulating that the instantiating constant (the a of the substitution instance P(a/x)
of (∀x)P) not occur in an open assumption. In our current example ‘b’ occurs
in the open assumption on line 1.

The rule Universal Introduction contains a second restriction, namely
that the instantiating constant not occur in the derived universally quantified
sentence. The following attempt at a derivation illustrates why this restriction
is needed:

Derive: (∀x)Lxh

1 (∀x)Lxx Assumption

2 Lhh 1 ∀E
3 (∀x)Lxh 2 ∀I MISTAKE!

Suppose we interpret ‘Lhh’ as ‘Henry loves Henry’. While line 2 does follow
from line 1, it does not follow from line 1 that everyone loves Henry. The
second restriction on Universal Introduction has been violated: the instantiat-
ing constant ‘h’ in the substitution instance on line 2 occurs in the sentence
we tried to derive by Universal Introduction on line 3.

The strategy associated with Universal Introduction is

• When the current goal is a universally quantified sentence make a
substitution instance of that quantified sentence a subgoal, with
the intent of applying Universal Introduction to derive the goal
from the subgoal. Make sure that the two restrictions on Universal
Introduction will be met: use an instantiating constant in the sub-
stitution instance that does not occur in the universally quantified
goal sentence and that does not occur in any assumption that is
open at the line where the substitution instance is entered.

Here is the elimination rule for existential quantifiers:

Existential Elimination (∃E)

(∃x)P

P(a/x)

Q

 Q

provided that

(i) a does not occur in an open assumption.
(ii) a does not occur in (∃x)P.

(iii) a does not occur in Q.

10.1 THE DERIVATION SYSTEM PD 539

The idea behind this rule is that if we have an existentially quantified sentence
(∃x)P then we know that something is of the sort specified by P, though not
which thing. If, by assuming an arbitrary substitution instance P(a/x) of (∃x)P,
we can derive a sentence Q that makes no mention of the instantiating constant
a in P(a/x), then we can discharge the assumed substitution instance and sim-
ply infer Q.

We illustrate a simple use of Existential Elimination by deriving
‘(∃x)(Gx ∨ Fx)’ from {(∃z)Fz & (∀y)Hy}.

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3 Fb A / ∃E

4 Gb ∨ Fb 3 ∨I
5 (∃x)(Gx ∨ Fx) 4 ∃I
6 (∃x)(Gx ∨ Fx) 2, 3–5 ∃E

‘Existential Elimination’ may seem like an odd name for the rule we used at
line 6 of the above derivation, because the sentence entered at line 6 is itself
an existentially quantified sentence. But remember that what is common to all
elimination rules is that they are rules that start with a sentence with a speci-
fied main logical operator and produce a sentence that may or may not have
that operator as a main logical operator. Here Existential Elimination cites the
existentially quantified sentence at line 2, along with the subderivation begin-
ning with a substitution instance of that sentence. Note that we have met all
the restrictions on Existential Elimination. The instantiating constant ‘b’ does
not occur in an assumption that is open as of line 6. Nor does ‘b’ occur in
‘(∃z)Fz’. Finally, ‘b’ does not occur in the sentence that is derived, at line 6,
by Existential Elimination. All three of these restrictions are necessary, as we
will illustrate next.

Two specific strategies are associated with the rule Existential Elimina-
tion. The first is this:

• When one or more of the currently accessible sentences in a deriva-
tion is an existentially quantified sentence, consider using Existen-
tial Elimination to obtain the current goal. Assume a substitution
instance that contains a constant that does not occur in the existen-
tial quantification, in an open assumption, or in the current goal.
Work within the Existential Elimination subderivation to derive the
current goal.

In other words, whenever an existentially quantified sentence is acces-
sible consider making Existential Elimination the primary strategy for obtaining

540 PREDICATE LOGIC: DERIVATIONS

the current goal, doing the work required to obtain the current goal within the
scope of the Existential Elimination subderivation. This is often necessary to
avoid violating the restrictions on Existential Elimination. For example, in the
previous derivation we had to use Existential Introduction within the scope of
the assumption on line 3—because trying to derive ‘Gb ∨ Fb’ by Existential Elim-
ination at line 5, prior to applying Existential Generalization, would violate the
third restriction on Existential Elimination:

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3 Fb A / ∃E

4 Gb ∨ Fb 3 ∨I
5 Gb ∨ Fb 2, 3–4 ∃E MISTAKE!
6 (∃x)(Gx ∨ Fx) 5 ∃I

Line 5 is a mistake because the instantiating constant ‘b’ occurs in the sentence
we are trying to obtain by Existential Elimination, in violation of the third
restriction on Existential Elimination. From the truth of ‘(∃z)Fz’ it does not
follow that the individual designated by ‘b’ is either G or F—although it does
follow, as in the previous derivation, that something is either G or F. This is why,
in the correctly done derivation, we used Existential Introduction inside of the
Existential Elimination subderivation. Doing so results in a sentence that does
not contain the instantiating constant ‘b’ and that therefore can correctly be
moved out of the subderivation by Existential Elimination.

Here is another example in which the third restriction on Existential
Elimination is violated:

Derive: (∃z)Fbz

1 (∃z)Fzz Assumption

2 Fbb A / ∃E

3 (∃z)Fbz 3 ∃I
4 (∃z)Fbz 1, 2–3 ∃E MISTAKE!

The instantiating constant ‘b’ occurs in the sentence on line 4, in violation of
restriction (iii) on Existential Elimination. It is clear that we don’t want the
above to count as a derivation. Given the assumption on line 1 we know that
something bears F to itself. At line 2 we assume that thing is b (knowing that
this may not be the case). Line 3 certainly follows from line 2. If b bears F to
itself then b does bear F to something. But line 4, where we have given up the
assumption that it is b that bears F to itself, does not follow from the sentence
at line 1, which is the single open assumption as of line 4. From the fact that

10.1 THE DERIVATION SYSTEM PD 541

something bears F to itself it does not follow that it is b that does so. Contrast
the preceding derivation with the following:

Derive: (∃y)Fyy

1 (∃z)Fzz Assumption

2 Fbb A / ∃E

3 (∃y)Fyy 2 ∃I
4 (∃y)Fyy 1, 2–3 ∃E

Derive: (∀x)Fx

1 Gb ⊃ (∀x)Fx Assumption
2 (∃z)Gz Assumption

3 Gb A / ∃E

4 (∀x)Fx 1, 3 ⊃E
5 (∀x)Fx 2, 3–4 ∃E MISTAKE!

Here ‘b’ does not occur in the sentence at line 4, so the third restriction on
Existential Elimination is not violated. We have used Existential Elimination to
show that ‘(∃y)Fyy’ follows from ‘(∃z)Fzz’, which should be no surprise since
these sentences are clearly equivalent.

We will now examine some misuses of Existential Elimination that illus-
trate why the two other restrictions on Existential Elimination are also necessary.

From line 1 we know that if a particular thing, namely b, is G, then every-
thing is F. And from line 2 we know that something is G. But we do not know
that it is b that is G. So we should not be able to infer, as we have here tried
to do at line 5, that everything is F. Line 5 is a mistaken application of
Existential Elimination because restriction (i) has not been met. The assump-
tion at line 1, which contains the instantiating constant ‘b’, is still open as of
line 5. The rationale for restriction (i) should now be clear. Existential Elim-
ination uses a substitution instance of an existentially quantified claim to show
what follows from the existentially quantified claim. But the constant used in
the substitution instance, the instantiating constant, should be arbitrary, in
the sense that no assumptions have been made concerning the thing desig-
nated by that constant. If the instantiating constant occurs in an open
assumption then it is not arbitrary, because the open assumption gives us spe-
cific information about whatever the constant designates. If it is true that if
Bob graduates then everyone is happy and it is true that someone graduates,
it doesn’t follow that everyone is happy—because even if someone graduates
Bob might not.

542 PREDICATE LOGIC: DERIVATIONS

Suppose we take positive integers as our UD and interpret ‘Lxy’ as ‘x
is greater than y’ On this interpretation the sentence on line 1 says that every
positive integer is such that there is a positive integer greater than it, which is
of course true. But the sentence on line 5 says there is a positive integer that
is greater than itself, which is obviously false. The problem is that the instanti-
ating constant ‘a’ used at line 3 to form a substitution instance of the sentence
‘(∃z)Lza’ occurs in ‘(∃x)Lza’, violating the second restriction. If we only know
that something stands in the relation L to a, we should not assume that that
something is in fact a itself.

Universal Elimination produces a substitution of the universally quanti-
fied sentence to which it is applied. Existential Instantiation does not, in general,
produce a substitution instance of the existentially quantified sentence to which
it is applied. Indeed the sentence it produces may bear no resemblance, by any
normal standard of resemblance, to the existentially quantified sentence to which
it is applied. Here is a case in point:

Derive: (∃w)Lww

1 (∀y)(∃z)Lzy Assumption

2 (∃z)Lza 1 ∀E
3 Laa A / ∃E

4 (∃w)Lww 3 ∃I
5 (∃w)Lww 2, 3–4 ∃E MISTAKE!

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3 Gb A / ∃E

4 Gb ⊃ Hc 2 ∀E
5 Hc 3, 4 ⊃E
6 Hc 1, 3–5 ∃E
7 (∃x)Hx 6 ∃I

Here the sentence derived at line 6 bears no resemblance to the existentially
quantified sentence at line 1. The existential quantified sentence tells us that
something is G. At line 3 we assume that that thing is b. The constant ‘b’ is not
used earlier in the derivation, so we are committed to nothing about b other
than its being G. At line 4 we use Universal Elimination to obtain ‘Gb ⊃ Hc’,
and then we use Conditional Elimination at line 5 to obtain ‘Hc’. At the point
we apply Existential Elimination (line 6) there is here no open assumption that
contains ‘b’—the only open assumptions are those on line 1 and line 2—so the
first restriction on Existential Elimination is met. The second and third restric-
tions are also met since ‘b’ occurs in neither ‘(∃z)Gz’ nor ‘Hc’. So it is correct
to derive ‘Hc’ by Existential Elimination at line 6, although, as noted, it bears
no resemblance to the existentially quantified sentence at line 1.

We now turn to the rationale for the second restriction. Consider the
following mistaken derivation:

10.1 THE DERIVATION SYSTEM PD 543

Note that in this case we were able to move ‘Hc’ out of the Existential
Elimination subderivation prior to using Existential Introduction. We could do
this because ‘c’ was not the instantiating constant for our use of Existential
Elimination. However, we could also have applied Existential Introduction
within the subderivation;

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3 Gb A / ∃E

4 Gb ⊃ Hc 2 ∀E
5 Hc 3, 4 ⊃E
6 (∃x)Hx 5 ∃I
7 (∃x)Hx 1, 3–6 ∃E

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 Fa 2 ∀E

4 ~ Fa 1 ∃E MISTAKE!

Existential Elimination is an elimination rule not in the sense that it
produces a substitution instance of an existentially quantified sentence—in gen-
eral it does not—but rather that it provides a strategy for working from a sub-
stitution instance of an existentially quantified sentence to some desired sen-
tence that does not contain the instantiating constant and hence that does not
assume that it is the thing designated by that particular constant that accounts
for the truth of the existentially quantified sentence.

There is a second important strategy associated with Existential Elimi-
nation. We will use it to show that the set {(∃x) ~ Fx, (∀x)Fx} is inconsistent in
PD. The foregoing set obviously is inconsistent, but demonstrating this is not
as easy as it might seem. We might start as follows:

Line 4 is an obvious misuse of Existential Elimination. A more promising
approach might be as follows:

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 ~ Fa A / ∃E

4 Fa 2 ∀E
5 ~ Fa 3 R

We have derived our goal sentences, but only within the scope of our Existen-
tial Elimination subderivation. And since ‘a’ is the instantiating constant of the
assumption at line 3, we cannot hope to move either ‘Fa’ or ‘~ Fa’ out from the
scope of the assumption at line 3 by Existential Elimination. The situation we

544 PREDICATE LOGIC: DERIVATIONS

are in is not an uncommon one. We need to use Existential Elimination, and
we can derive a contradiction within the Existential Elimination subderivation,
but the contradictory sentences we derive cannot be moved outside that sub-
derivation because they contain the instantiating constant of the assumption.

The strategy we will use in situations such as this makes use of the fact
that we can derive contradictory sentences within the Existential Elimination sub-
derivation. Since we can do this, we can also derive any sentence we want by use
of the appropriate negation rule. In our present case we want to derive a sen-
tence and its negation, to show that the set we are working from is inconsistent
in PD. There are no negations among our primary assumptions. We know taking
‘Fa’ and ‘~ Fa’ as our ultimate goals will not work (so long as ‘~ Fa’ remains as
our Existential Elimination assumption at line 3). So we will take a sentence that
is accessable, ‘(∀x)Fx’, and its negation as our ultimate goals, and we will derive
‘~ (∀x)Fx’ by Negation Introduction within our Existential Elimination sub-
derivation, and then move it out of that subderivation by Existential Elimination:

Derive: (∀x)Fx, ~ (∀x)Fx

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3 ~ Fa A / ∃E

4 (∀x)Fx A / ~ I

5 Fa 4 ∀E
6 ~ Fa 3 R
7 ~ (∀x)Fx 4–6 ~ I
8 ~ (∀x)Fx 1, 3–7 ∃E
9 (∀x)Fx 2 R

What may strike one as odd about this derivation is that we are assuming, at
line 4, a sentence that is already accessible (as the assumption on line 2). But
the point of making this assumption of a sentence we already have is to derive
its negation, which we do at line 7. Negation Introduction requires us to assume
this sentence, even though it also occurs at line 2, before we can apply that
rule. At line 4 we could, of course, have equally well assumed ‘(∃x) ~ Fx’, in
which case our ultimate goals would have been ‘(∃x) ~ Fx’ and ‘~ (∃x) ~ Fx’.

The strategy we are illustrating can be put thus:

• When contradictory sentences are available within an Existential
Elimination subderivation but cannot be moved out of that sub-
derivation without violating the restrictions on Existential Elimi-
nation, derive another sentence—one that is contradictory to a
sentence accessible outside the Existential Elimination subderiva-
tion and one that can be moved out. That sentence will be
derivable by the appropriate negation strategy (because contra-
dictory sentences are available within the Existential Elimination
subderivation).

10.1 THE DERIVATION SYSTEM PD 545

We are trying to derive a negation, ‘~ (∃x)Fx’, and so assume ‘(∃x)Fx’ at line 2.
Clearly an Existential Elimination strategy is now called for, and accordingly we
assume ‘Fa’ at line 3. It is now easy to derive the contradictory sentences ‘Fa’
and ‘~ Fa’, and we do so at lines 4 and 5. But line 6 is a mistake. Our primary
strategy is Negation Introduction and we have derived a sentence and its nega-
tion; but we have done so only within the scope of an additional assumption,
the one at line 3 that begins our Existential Elimination strategy. Line 6 is a
mistake because ‘Fa’ and ‘~ Fa’ have been derived, not from just the assump-
tions on lines 1 and 2, but also using the assumption on line 3. We need to
complete our Existential Elimination strategy before using Negation Introduc-
tion. And what we want our Existential Elimination strategy to yield is a sen-
tence that can serve as one of the contradictory sentences we need to com-
plete the Negation Introduction subderivation we began at line 2.

Two sentences are accessible outside our Existential Elimination
subderivation—those on lines 1 and 2 (‘(∀x) ~ Fx’ and ‘(∃x)Fx’) and obtain-
ing the negation of either one of these by Existental Elimination will allow us
to complete the derivation. Here is a successful derivation in which we derive
‘~ (∀x) ~ Fx’ by Existential Elimination.

Using this strategy will frequently involve assuming, as the assumption of a
negation strategy, a sentence that is already accessible outside the Existential
Elimination subderivation.

Here is another derivation problem in which this strategy is useful:

Derive: ~ (∃x)Fx

1 (∀x) ~ Fx Assumption

2 (∃x)Fx A / ~ I

3 Fa A / ∃E

4 ~ Fa 1 ∀E
5 Fa 3 R
6 ~ (∃x)Fx 3–5 ~ I MISTAKE!
7 ~ (∃x)Fx 2, 3–6 ∃E MISTAKE!

Derive: ~ (∃x)Fx

1 (∀x) ~ Fx Assumption

2 (∃x)Fx A / ~ I

3 Fa A / ∃E

4 (∀x) ~ Fx A / ~ I

5 ~ Fa 1 ∀E
6 Fa 3 R
7 ~ (∀x) ~ Fx 4–6 ~ I
8 ~ (∀x) ~ Fx 2, 3–7 ∃E
9 (∀x) ~ Fx 1 R

10 ~ (∃x)Fx 2–9 ~ I

546 PREDICATE LOGIC: DERIVATIONS

After making the assumption at line 3 we realize we can derive the contradic-
tory sentences ‘Fa’ and ‘~ Fa’. Because we want to obtain ‘~ (∀x) ~ Fx’ by Exis-
tential Elimination, we assume ‘(∀x) ~ Fx’ at line 4 and derive ‘~ Fa’ and ‘Fa’
within the scope of that assumption, allowing us to then derive ‘~ (∀x) ~ Fx’
by Negation Introduction.

Alternatively, we could have used ‘(∃x)Fx’ as an assumption at line 4,
derived ‘Fa’ and ‘~ Fa’, obtained ‘~ (∃x)Fx’ by Negation Elimination, moved
that sentence out of the scope of the assumption made at line 3 by Existential
Elimination, and then reiterated ‘(∃x)Fx’ within the scope of the assumption
‘(∃x)Fx’ so as to have the contradictory sentences we need to finish the deri-
vation with Negation Introduction. Note also that the assumption at line 4 is
necessary to obtain its negation even though the sentence we assume is already
available as an earlier assumption (on line 1). This process of making an
assumption of a sentence that is already available outside the scope of an Exis-
tential Elimination strategy within that strategy in order to obtain its negation is
extremely useful and frequently called for, as we will see in examples and exer-
cises later in this chapter.

Here is a further example illustrating this new strategy:

Derive: ~ (∃x)(Fx & ~ Gx)

1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

~ (∃x)(Fx & ~ Gx)

Since our primary goal is a negation we plan to use Negation Introduction,
and since the assumption of that strategy will be an existentially quantified sen-
tence, we will use Existential Elimination within the Negation Introduction
subderivation:

Derive: ~ (∃x)(Fx & ~ Gx)

1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

2 (∃x)(Fx & ~ Gx) A / ~ I

3 Fa & ~ Ga A / ∃E

G
~ (∃x)(Fx & ~ Gx)

10.1 THE DERIVATION SYSTEM PD 547

Following our new strategy we will begin a Negation Introduction subderivation
inside of the Existential Elimination subderivation, assuming one of the sen-
tences that is accessible from outside of that subderivation. In this example
there are again two such sentences, ‘(∀x)(~ Gx ⊃ ~ Fx)’ and ‘(∃x)(Fx & ~ Gx)’.
We arbitrarily select the latter as the assumption of the inner Negation Intro-
duction subderivation and complete the derivation as follows:

Derive: ~ (∃x)(Fx & ~ Gx)

1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

2 (∃x)(Fx & ~ Gx) A / ~ I

3 Fa & ~ Ga A / ∃E

4 (∃x)(Fx & ~ Gx) A / ~ I

5 ~ Ga ⊃ ~ Fa 1 ∀E
6 ~ Ga 3 &E
7 ~ Fa 5, 6 ⊃E
8 Fa 3 &E
9 ~ (∃x)(Fx & ~ Gx) 4–8 ~ I

10 ~ (∃x)(Fx & ~ Gx) 2, 3–9 ∃E
11 (∃x)(Fx & ~ Gx) 2 R
12 ~ (∃x)(Fx & ~ Gx) 2–11 ~ I

Although the assumption at line 4 is an existentially quantified sentence, there
is no need to use Existential Elimination. We can derive the contradictory pair
of sentences ‘Fa’ and ‘~ Fa’ without making any additional assumptions.

We have specified strategies for using each of the four new quantifier
rules. Now that we have introduced all the rules of PD a note about applying
those rules is in order. The quantifier introduction and elimination rules, like
all the rules of PD, are rules of inference. That is, they apply only to whole sen-
tences, not to subsentential components of sentences that may or may not
themselves be sentences. The only sentences that quantifier elimination rules
can be applied to are sentences whose main logical operators are quantifiers.
Moreover, the quantifier introduction rules generate only sentences whose
main logical operators are quantifiers. The following examples illustrate some
common types of mistakes that ignore these points about the quantifier rules
of PD.

Derive: Fa ⊃ Ha

1 (∀x)Fx ⊃ Ha Assumption

2 Fa ⊃ Ha 1 ∀E MISTAKE!

The sentence on line 1 is not a universally quantified sentence. Rather, it is a
material conditional, so Universal Elimination cannot be applied to it. Obvi-
ously, the sentence on line 2 does not follow from the sentence on line 1. From
that fact that if everything is F then a is H it does not follow that if a (which
is only one thing) is F then a is H. If it is the case that if everyone is funny

548 PREDICATE LOGIC: DERIVATIONS

then Albert is happy, it does not follow that if Albert (and perhaps no one else)
is funny then Albert is happy.

Here is another example illustrating a similar mistake:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 (∀x)(Fx ⊃ Ga) 2 ∀E MISTAKE!
4 Fa ⊃ Ga 3 ∀E
5 Ga 1, 4 ⊃E

Line 3 is a mistake even though the sentence it cites, ‘(∀x)(Fx ⊃ (∀y)Gy)’, is
a universally quantified sentence. It is a mistake because it attempts to apply
Universal Elimination to ‘(∀y)Gy’, which occurs only as a component of the
sentence on line 2. Rules of inference can only be applied to sentences that
are not components of larger sentences. Universal Elimination can only
produce a substitution instance, for example ‘Fa ⊃ (∀y)Gy’, of the entire
sentence on line 2.

We hasten to add that it is possible to derive ‘Ga’ from the sentences
on lines 1 and 2 but a different strategy is required:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 Fa ⊃ (∀y)Gy 2 ∀E
4 (∀y)Gy 1, 3 ⊃E
5 Ga 4 ∀E

Derive: (∃z)Fz ⊃ Gb

1 Fa ⊃ Gb Assumption

2 (∃z)Fz ⊃ Gb 1 ∃I MISTAKE!

Here Universal Elimination has only been applied to entire sentences occur-
ring on earlier lines.

The following also illustrates a misuse of a quantifier rule:

Existential Introduction produces existentially quantified sentences, and the
sentence on line 2 is a material conditional, not an existentially quantified sen-
tence. Nor do we want to be able to derive the sentence on line 2. If it is true
that if Alice flirts then Bob grins it does not follow that if anyone flirts, Bob
grins. A correct use of the rule would be

Derive: (∃z)(Fz ⊃ Gb)

1 Fa ⊃ Gb Assumption

2 (∃z)(Fz ⊃ Gb) 1 ∃I

10.1 THE DERIVATION SYSTEM PD 549

If it is true that if Alice flirts then Bob grins, it is true that there is someone
(Alice) such that if that person flirts, Bob grins.

In the following attempted derivation, the use of Universal Elimination
is incorrect because the sentence on line 1 is not a universally quantified sen-
tence. Rather, it is the negation of a universally quantified sentence:

Derive: ~ Fb

1 ~ (∀y)Fy Assumption

2 ~ Fb 1 ∀E MISTAKE!

From the fact that not everyone flirts it does not follow that Bob doesn’t.
Having introduced all the rules of PD we can now define the basic

syntactic concepts of PD, which parallel those of SD:

Derivability in PD: A sentence P of PL is derivable in PD from a set of sen-
tences of PL if and only if there is a derivation in PD in which all the pri-
mary assumptions are members of and P occurs within the scope of only
the primary assumptions.

Validity in PD: An argument of PL is valid in PD if and only if the conclu-
sion of the argument is derivable in PD from the set consisting of the prem-
ises. An argument of PL is invalid in PD if and only if it is not valid in PD.

Theorem in PD: A sentence P of PL is a theorem in PD if and only if P is
derivable in PD from the empty set.

Equivalence in PD: Sentences P and Q of PL are equivalent in PD if and
only if Q is derivable in PD from {P} and P is derivable in PD from {Q}.

Inconsistency in PD: A set of sentences of PL is inconsistent in PD if and only
if there is a sentence P such that both P and ~ P are derivable in PD from
Γ. A set Γ is consistent in PD if and only if it is not inconsistent in PD.

10.1E EXERCISES

1. Construct derivations that establish the following claims:
a. {(∀x)Fx} (∀y)Fy

*b. {Fb, Gb} (∃x)(Fx & Gx)
c. {(∀x)(∀y)Hxy} (∃x)(∃y)Hxy

*d. {(∃x)(Fx & Gx) (∃y)Fy & (∃w)Gw
e. {(∀x)(∀y)Hxy, Hab ⊃ Kg} Kg

*f. {(∀x)(Fx Gx), (∀y)(Gy Hy} (∀x)(Fx Hx)
g. {(∀x)Sx, (∃y)Sy ⊃ (∀w)Ww} (∃y)Wy

*h. {(∀y)Hyy, (∃z)Bz} (∃x)(Bx & Hxx)
i. {(∀x)(∀y)Lxy, (∃w)Hww} (∃x)(Lxx & Hxx)

*j. {(∀x)(Fx ⊃ Lx), (∃y)Fy} (∃x)Lx

550 PREDICATE LOGIC: DERIVATIONS

2. Identify the mistake in each of the following attempted derivations, and explain
why it is a mistake.

a. Derive: Na

1 (∀x)Hx ⊃ ~ (∃y)Ky Assumption
2 Ha ⊃ Na Assumption

3 Ha 1 ∀E
4 Na 2, 3 ⊃E

*b. Derive: (∀x)(Bx & Mx)

1 Bk Assumption
2 (∀x)Mx Assumption

3 Mk 2 ∀E
4 Bk & Mk 1, 3 &I
5 (∀x)(Bx & Mx) 4 ∀I

c. Derive: (∃x)Cx

1 (∃y)Fy Assumption
2 (∀w)(Fw Cw) Assumption

3 Fa 1 ∃E
4 Fa Ca 2 ∀∃E
5 Ca 3, 4 E
6 (∃x)Cx 5 ∃I

*d Derive: (∃z)Gz

1 (∀x)(Fx ⊃ Gx) Assumption
2 (∃y)Fy Assumption

3 Fa A / ∃E

4 Fa ⊃ Ga 1 ∀E
5 Ga 3, 4 ⊃E
6 Ga 2, 3–5 ∃E
7 (∃z)Gz 6 ∃I

e. Derive: (∃y)(∀x)Ayx

1 (∀x)(∃y)Ayx Assumption

2 (∀x)Aax 1 ∀E
3 (∃y)(∀x)Ayx 2 ∃I

*f. Derive: ~ Rba

1 (∃x)Rxx Assumption
2 (∀x)(∀y)(Rxy ⊃ ~ Ryx) Assumption

3 Raa A / ∃E

4 (∀y)(Ray ⊃ ~ Rya) 2 ∀E
5 Raa ⊃ ~ Raa 2 ∀E
6 ~ Raa 3, 5 ⊃E
7 (∀x) ~ Rxx 6 ∀I
8 (∀x) ~ Rxx 1, 3–7 ∃E

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 551

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD

In this section we will work through a series of derivations, illustrating both
strategies that are useful in constructing derivations in PD and how derivations
are used to establish that various syntactic properties of PD hold of sentences
and sets of sentences of PL.

We begin by repeating the strategies we have enumerated as useful in
constructing derivations:

• If the sentence that is the current goal can be derived by applying
an elimination rule or some sequence of elimination rules to
accessible sentences, then that is the strategy to follow.

• If the current goal can be obtained by an introduction rule, that
is the strategy to follow.

• In most cases the successful strategy will make use of several of
these approaches, working from the “bottom up” and from the
“top down” as the occasion indicates.

• When using a negation rule try to use a negation that is readily
available as the ~ Q that the rule requires within the negation
subderivation.

• If a sentence is derivable from a set of sentences, then it is deriv-
able using a negation rule as the primary strategy. So if no other
strategy suggests itself it is useful to consider a negation strategy.
But like all strategies, just because a negation strategy is available
doesn’t mean it is always the best choice.

• When using Universal Elimination use goal sentences as guides
when choosing the instantiating constant.

• When the goal to be derived is an existentially quantified sentence
make a substitution instance of that sentence a subgoal, with the
intent of applying Existential Introduction to that subgoal to
obtain the goal.

• When the current goal is a universally quantified sentence make a
substitution instance of that quantified sentence a subgoal, with
the intent of applying Universal Introduction to that subgoal.
Make sure the two restrictions on the instantiating constant for
the use of Universal Introduction are met. Be sure to choose an
instantiating constant that does not occur in the universally quan-
tified sentence that is the goal and that does not occur in any
assumption that will be open when Universal Introduction is
applied to derive that goal.

• When one of the accessible assumptions is an existentially quanti-
fied sentence, consider using Existential Elimination to obtain the
current goal. Set up an Existential Elimination subderivation, and

552 PREDICATE LOGIC: DERIVATIONS

continue working within that subderivation until a sentence that
does not contain the constant used to form the substitution
instance that is the assumption of that subderivation is derived.

• When contradictory sentences are available within an Existential
Elimination subderivation but cannot be moved out of that sub-
derivation without violating the restrictions on Existential Elimina-
tion, derive another sentence—one that is contradictory to a sen-
tence accessible outside the Existential Elimination subderivation
and that does not contain the instantiating constant for this use of
Existential Elimination. That sentence will be derivable by the
appropriate negation strategy (using the contradictory sentences
that are available within the Existential Elimination subderivation).

• There will often be more than one plausible strategy, and often
more than one will lead to success. Rather than trying to figure
out which of these is the most promising it is often wise to just
pick one and pursue it.

ARGUMENTS

An argument of PL is valid in PD if and only if the conclusion can be derived
from the set consisting of the argument’s premises. The following argument is
valid in PD, as we will now show.

Derive: (∃y)Fy & (∃z)Gz

1 (∃x)(Fx & Gx) Assumption

2 Fb & Gb A / ∃E

G (∃y)Fy & (∃z)Gz —, — &I
G (∃y)Fy & (∃z)Gz 1, 2–— ∃E

(∃x)(Fx & Gx)

(∃y)Fy & (∃z)Gz

The single premise is an existentially quantified sentence—which suggests we
will need to use Existential Elimination. The conclusion is a conjunction, sug-
gesting Conjunction Introduction as a strategy. We will have to use both strate-
gies, and since it is in general wise to do as much work as possible within an
Existential Elimination strategy (so as to avoid violating the third restriction on
Existential Elimination), we will make that strategy our primary strategy. We
begin as follows:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 553

We will try to derive the conclusion of the argument within the scope of the
Existential Elimination subderivation because doing so will avoid violating the
third restriction on Existential Elimination, that the instantiating constant not
occur in the derived sentence. In our derivation ‘b’ is the instantiating con-
stant and it does not occur in the conclusion of the argument.

Our current goal is a conjunction and can be obtained by Conjunction
Introduction. The completed derivation is

Derive: (∃y)Fy & (∃z)Gz

1 (∃x)(Fx & Gx) Assumption

2 Fa & Ga A / ∃E

3 Fa 2 &E
4 (∃y)Fy 3 ∃I
5 Ga 2 &E
6 (∃z)Gz 5 ∃I
7 (∃y)Fy & (∃z)Gz 4, 6 &I
8 (∃y)Fy & (∃z)Gz 1, 2–7 ∃E

The following argument is also valid in PD:

(∀x)(Nx ⊃ Ox)
~ (∃y)Oy

~ (∃x)Nx

If each thing is such that if it is N then it is also O, and nothing is O, then
clearly nothing is N. Since the conclusion of this argument is a negation we
will use Negation Introduction as our primary strategy:

Derive: ~ (∃x)Nx

1 (∀x)(Nx ⊃ Ox) Assumption
2 ~ (∃y)Oy Assumption

3 (∃x)Nx A / ~ E

G ~ (∃x)Nx 3–— ~ I

554 PREDICATE LOGIC: DERIVATIONS

Only one negation, ‘~ (∃y)Oy’ is readily available, so we will use it as ~ Q and
try to also derive ‘(∃y)Oy’.

Derive: ~ (∃x)Nx

1 (∀x)(Nx ⊃ Ox) Assumption
2 ~ (∃y)Oy Assumption

3 (∃x)Nx A / ~ E

G (∃y)Oy
~ (∃y)Oy 2 R

G ~ (∃x)Nx 3–— ~ I

Derive: ~ (∃x)Nx

1 (∀x)(Nx ⊃ Ox) Assumption
2 ~ (∃y)Oy Assumption

3 (∃x)Nx A / ~ E

4 Na A / ∃E

G (∃y)Oy
G (∃y)Oy 3, 4–— ∃E
G ~ (∃y)Oy 2 R
G ~ (∃x)Nx 3–— ~ I

Since one of the accessible sentences, ‘(∃x)Nx’ is an existentially quantified
sentence, we will try to obtain our current goal, ‘(∃y)Oy’, by Existential
Elimination:

Looking at the sentences on lines 1 and 4, we see that we will be able to
derive ‘Oa’ by Conditional Elimination after applying Universal Elimination
to the sentence on line 1, with ‘a’ as the instantiating constant. And from

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 555

We will next consider two arguments, both of which involve relational
predicates and quantifiers with overlapping scope. The first is

Derive: ~ (∃x)Nx

1 (∀x)(Nx ⊃ Ox) Assumption
2 ~ (∃y)Oy Assumption

3 (∃x)Nx A / ~ E

4 Na A / ∃E

5 Na ⊃ Oa 1 ∀E
6 Oa 4, 5 ⊃E
7 (∃y)Oy 6 ∃I
8 (∃y)Oy 3, 4–7 ∃E
9 ~ (∃y)Oy 2 R

10 ~ (∃x)Nx 3–9 ~ I

‘Oa’ we can obtain ‘(∃y)Oy’ by Existential Introduction. So the completed
derivation is

(∀x)(∀y)(Hxy ⊃ ~ Hyx)

(∀x)(∃y)Hxy

(∀x)(∃y) ~ Hxy

We set up our derivation as follows:

Derive: (∀x)(∃y) ~ Hxy

1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
2 (∀x)(∃y)Hxy Assumption

G (∀x)(∃y) ~ Hyx

Here our assumptions and our goal sentence are all universally quantified
sentences. So we will clearly be using Universal Elimination and Universal Intro-
duction. We should also note that the sentence on line 2 will yield an existen-
tially quantified sentence when we apply Universal Elimination to it. This makes

556 PREDICATE LOGIC: DERIVATIONS

it likely we will be using an Existential Elimination strategy. These considerations
suggest the following structure:

Derive: (∀x)(∃y) ~ Hxy

1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
2 (∀x)(∃y)Hxy Assumption

3 (∃y)Hay 2 ∀E
4 Hab A / ∃E

G (∀x)(∃y) ~ Hyx 3, 4–— ∃E

Derive: (∀x)(∃y) ~ Hxy

1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
2 (∀x)(∃y)Hxy Assumption

3 (∃y)Hay 2 ∀E
4 Hab A / ∃E

G (∃y) ~ Hya
G (∃y) ~ Hya 3, 4–— ∃E
G (∀x)(∃y) ~ Hyx — ∀I

On line 4 we chose an instantiating constant that does not appear earlier in
the derivation, so that the restrictions on the instantiating constant can be met.
Clearly at some point we will obtain ‘(∀x)(∃y) ~ Hyx’ by Universal Introduc-
tion. The question is whether we will use Universal Introduction before or after
ending our Existential Elimination subderivation. We have stressed in earlier
examples that it is generally wise to do as much work as possible within Exis-
tential Elimination subderivations. This might suggest that we try to obtain
‘(∀x)(∃y) ~ Hyx’ within our Existential Elimination subderivation. But this is
in fact a bad idea for this derivation. The substitution instance of ‘(∀x)(∃y)
~ Hyx’ we will be able to obtain is ‘(∃y) ~ Hya’, in which ‘a’ is the instantiat-
ing constant. The first restriction on Universal Introduction requires that the
instantiating constant not occur in any open assumption. But ‘a’ does occur in
‘Hab’, the assumption on line 4. So we cannot apply Universal Introduction
within the scope of that assumption.

A strategy that will work is to obtain ‘(∃y) ~ Hya’ by Existential Elimi-
nation and then, after the assumption ‘Hab’ is discharged, to apply Universal
Introduction. Note that our advice—to do as much work within Existential
Elimination subderivations as possible, still holds. The current case is simply a
reminder that doing as much work as possible within an Existential Elimina-
tion subderivation means, in part, doing as much work as can be done without
violating the restrictions on the rules we use.

We have now settled on the following strategy:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 557

Our current goal is ‘(∃y) ~ Hya’. We would like to use Existential Introduction
to derive this sentence, which means we first have to derive a substitution
instance of this sentence. Looking at our first assumption, ‘(∀x)(∀y)(Hxy ⊃

~ Hyx)’, we see that with two applications of Universal Elimination we can
obtain ‘Hab ⊃ ~ Hba’, then we can use Conditional Elimination to derive
‘~ Hba’, a substitution instance of our goal, ‘(∃y) ~ Hya’, and from ‘Hab ⊃

~ Hba’ and the assumption ‘Hab’ on line 4. Our completed derivation is

Derive: (∀x)(∃y) ~ Hyx

1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
2 (∀x)(∃y)Hxy Assumption

3 (∃y)Hay 2 ∀E
4 Hab A / ∃E

5 (∀y)(Hay ⊃ ~ Hya) 1 ∀E
6 Hab ⊃ ~ Hba 5 ∀E
7 ~ Hba 4, 6 ⊃E
8 (∃y) ~ Hya 7 ∃I
9 (∃y) ~ Hya 3, 4–9 ∃E

10 (∀x)(∃y) ~ Hyx 9 ∀I

(∀x)[(∃z)Fxz ⊃ (∀y)Fxy]

(∃x)(∃y)Fxy

(∃x)(∀w)Fxw

We have met all the restrictions for using each of the two rules Existential
Elimination and Universal Introduction. The constant we had to worry about
in using Existential Elimination is ‘b’, for it is the instantiating constant used
to form a substitution instance of ‘(∃y)Hay’ at line 4. By choosing ‘b’ as the
instantiating constant we were able to meet all the restrictions on Existential
Elimination: ‘b’ does not occur in any assumption that is open at line 9, does
not occur in the existentially quantified sentence ‘(∃y)Hay’ at line 3, and
does not occur in the sentence ‘(∃y) ~ Hya’ derived by Existential Elimination
at line 9.

Our next argument is somewhat more complex, having one premise
that contains three quantifiers:

The first premise says that each thing x is such that if x bears F to something,
then x bears F to everything. The second premise says that there is a thing x
that does bear F to something. And the conclusion says there is something x
that bears F to everything. The argument is valid in PD, and the derivation is
not as difficult as may be feared. We will take our first clue from the second

558 PREDICATE LOGIC: DERIVATIONS

assumption, which begins with two existential quantifiers. This suggests we will
be using Existential Elimination twice, as follows:

Derive: (∃x)(∀y)Fxy

1 (∀x)[(∃z)Fxz ⊃ (Ay)Fxy] Assumption
2 (∃x)(∃y)Fxy Assumption

3 (∃y)Fay A / ∃E

4 Fab A / ∃E

G (∃x)(∀w)Fxw ∃I
G (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E

We will now use Universal Elimination to produce a conditional to which we
can apply Conditional Elimination after applying Existential Introduction to
the assumption on line 4, being careful to choose an instantiating constant that
will produce a match between the conditional and the existentially quantified
sentence we generate. Here the instantiating constant ‘a’ does the trick:

Derive: (∃x)(∀y)Fxy

1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
2 (∃x)(∃y)Fxy Assumption

3 (∃y)Fay A / ∃E

4 Fab A / ∃E

5 (∃z)Faz ⊃ (∀y)Fay 1 ∀E
6 (∃z)Faz 4 ∃I
7 (∀y)Fay 5, 6 ⊃E

G (∃x)(∀w)Fxw ∃I
G (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E

Our current goal is ‘(∃x)(∀w)Fxw’. To obtain it, by Existential Introduction,
we need to first derive a substitution instance of that sentence, say ‘(∀w)Faw’.
We have already derived ‘(∀y)Fay’. This is not the sentence we need, because
it contains the variable ‘y’ where we want ‘w’. But we can easily obtain the
substitution instance we want by using Universal Elimination (with a new

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 559

instantiating constant) followed by Universal Introduction using the variable
‘y’ instead of the variable ‘w’. We do this at lines 8 and 9, completing the
derivation:

Derive: (∃x)(∀y)Fxy

1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
2 (∃x)(∃y)Fxy Assumption

3 (∃y)Fay A / ∃E

4 Fab A / ∃E

5 (∃z)Faz ⊃ (∀y)Fay 1 ∀E
6 (∃z)Faz 4 ∃I
7 (∀y)Fay 5, 6 ⊃E
8 Fac 7 ∀E
9 (∀w)Faw 8 ∀I

10 (∃x)(∀w)Fxw 9 ∃I
11 (∃x)(∀w)Fxw 3, 4–10 ∃E
12 (∃x)(∀w)Fxw 2, 3–11 ∃E

As a final example of contructing a derivation to establish the validity
of an argument in PD we will tackle a considerably harder problem. In Chap-
ter 1 we considered the following argument:

Everyone loves a lover.

Tom loves Alice.

Everyone loves everyone.

There we argued that despite its initial implausibility, this argument is valid
if the predicate ‘loves’ is being used unambiguously. Our reasoning went like
this: Because Tom loves Alice, Tom is a lover. And since everyone loves a lover,
everyone loves Tom. But then everyone is a lover, and since everyone loves
a lover, everyone loves everyone. Here is a symbolization of the argument
in PL:

(∀x)[(∃y)Lxy ⊃ (∀z)Lzx]

Lta

(∀x)(∀y)Lxy

If we take the UD to be the set of all people, interpreting ‘lxy’ as ‘x loves y’
and assigning Tom to ‘t’ and Alice to ‘a’ then line 1 is a correct symbol-
ization of the first premise of our argument, which can be parsed as ‘Each
person x is such that if there is someone that x loves (if x is a lover), then

560 PREDICATE LOGIC: DERIVATIONS

everyone loves x’. To show that this argument is valid in PD, we begin a
derivation as follows:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

G (∀x)(∀y)Lxy

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

As in the last example, it appears that our ultimate goal will be obtained by
Universal Introduction, and indeed that our penultimate goal will also be
obtained by this rule. Our work would be over if we could proceed as follows:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∀y)Lty 2 ∀I MISTAKE!
4 (∀x)(∀y)Lxy 3 ∀I MISTAKE!

But of course we cannot do this. Both line 3 and line 4 are in violation of the
restrictions on Universal Introduction. In each case the constant we are replac-
ing, first ‘a’ and then ‘t’, occurs in an open assumption (at line 2). To use Uni-
versal Introduction we need to obtain a sentence like ‘Lta’ but formed from
other constants, any other constants. We select ‘c’ and ‘d’:

How might we obtain our current goal, ‘Lcd’? Recall the reasoning we did
in English: from Lta we can infer that Tom is a lover—and we mirror this
inference in PD by obtaining ‘(∃y)Lty’ by Existential Introduction. In English
we reasoned that if Tom is a lover, then everyone loves Tom. We can mirror
this in PD by applying Universal Elimination to line 1. And since we have

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 561

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∃y)Lty 2 ∃I
4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
5 (∀z)Lzt 3, 4 ⊃E

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

It is because neither ‘c’ nor ‘d’ occur in an open assumption that we will be
able to derive our final goal by two uses of Universal Introduction. In other
words, ‘Lcd’ says that whoever ‘c’ might be, and whoever ‘d’ might be, c loves
d, which is tantamount to everyone loves everyone. But how do we get, in PD,

from line 5 to ‘Lcd’? From line 5 we can bet ‘Ldt’ by Universal Elimination.
But how does this help us get ‘Lcd’? One difference between these two sen-
tences is that ‘d’ occurs in the first position after ‘L’ in the first, and in the sec-
ond position in the second. We also note that line 1, which is our symboliza-
tion of ‘Everyone loves a lover’ contains two occurrences of the two-place
predicate ‘L’, with ‘x’ occurring in the first position after L in the first occur-
rence, and in the second position in the second occurrence. So perhaps we
can use this sentence to move ‘d’ from the first position after L to the second
position. (Remember that ‘Everyone loves a lover’ does say that if someone
loves then that person gets loved.) Following this clue we proceed as follows:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∃y)Lty 2 ∃I
4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
5 (∀z)Lzt 3, 4 ⊃E
6 Ldt 5 ∀E
7 (∃y)Ldy 6 ∃I
8 (∃y)Ldy ⊃ (∀z)Lzd 1 ∀E
9 (∀z)Lzd 7, 8 ⊃E

10 Lcd 9 ∀E
11 (∀y)Lcy 10 ∀I
12 (∀x)(∀y)Lxy 11 ∀I

Our derivation is now complete. The corresponding English reasoning, from
line 5 on, goes thus. Line 5 tells us everyone loves Tom. That means d, who-
ever that might be, loves Tom. And that makes d a lover, that is, there is some-
one d loves—as line 7 asserts. And because everyone loves a lover, if d loves
someone then everyone loves d. And since d does love someone, everyone loves

established that Tom is a lover, we can infer that everyone loves him. So we
have:

562 PREDICATE LOGIC: DERIVATIONS

d. And if everyone loves d, then c loves d. Since c and d may designate any
members of the UD, this amounts to everyone loves everyone.

There are opportunities to take wrong turns in this derivation. For
example, if we had made our goal, at line 6, ‘Lct’ (because it “resembles” ‘Lcd’
more than does ‘Ldt’) while continuing to have ‘Lcd’ a goal at line 10, we
would have ended up, at line 9, with ‘(∀z)Lzc’ from which ‘Lcd’ cannot be
obtained. Of course, the easy solution to this misstep would have been to
change our goal at line 10 to ‘Ldc’.

THEOREMS

‘(∀z)[Fz ⊃ (Fz ∨ Gz)]’ is a theorem in PD. To prove that it is such we need to
derive it from the empty set, which means we will need a derivation that has
no primary assumptions. The most plausible strategy for obtaining this sentence
is Universal Introduction.

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

G Fb ⊃ (Fb ∨ Gb)
G (∀z)[Fz ⊃ (Fz ∨ Gz)] — ∀I

Our current goal is a material conditional and can be obtained by Conditional
Introduction, using Disjunction Introduction to derive ‘Fb ∨ Gb’ within the Con-
ditional Introduction subderivation.:

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

1 Fb A / ⊃I

2 Fb ∨ Gb 2 ∨I
3 Fb ⊃ (Fb ∨ Gb) 1–2 ⊃I
4 (∀z)[Fz ⊃ (Fz ∨ Gz)] 4 ∀I

We have met both of the restrictions on Universal Introduction. The instanti-
ating constant ‘b’ does not occur in any assumption that is open at line 4 and
does not occur in the sentence derived on line 4 by Universal Introduction.

To prove the theorem ‘(∃x)Fx ⊃ (∃x)(Fx ∨ Gx)’ we will use Condi-
tional Introduction, Existential Elimination, and Existential Introduction as
well as Disjunction Introduction. The proof is straightforward:

Derive: (∃x)Fx ⊃ (∃x)(Fx ∨ Gx)

1 (∃x)Fx A / ⊃I

2 Fa A / ∃E

3 Fa ∨ Ga 2 ∨I
4 (∃x)(Fx ∨ Gx) 3 ∃I
5 (∃x)(Fx ∨ Gx) 1, 2–4 ∃E
6 (∃x)Fx ⊃ (∃x)(Fx ∨ Gx) 1–5 ⊃I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 563

We used Conditional Introduction as our primary strategy because our ultimate
goal is a material conditional. We used Existential Elimination within that
strategy because the assumption that begins the Conditional Introduction
subderivation is an existentially quantified sentence. And we used Existential
Introduction at line 4, within our Existential Elimination subderivation, to
generate the consequent of the goal conditional. The consequent does not
contain the instantiating constant ‘a’ and can therefore be pulled out of the
Existential Elimination subderivation.

The third theorem we will prove is ‘(∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy’. This
is also a material conditional, and our primary strategy will again be Condi-
tional Introduction:

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

1 (∃x)(∀y)Fxy Assumption

G (∃x)(∃y)Fxy
G (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–— ⊃I

Our current goal is an existentially quantified sentence, ‘(∃x)(∃y)Fxy’. The
most obvious way to obtain it is by two uses of Existential Introduction. We
know that when we assume a substitution instance of ‘(∃x)(∀y)Fxy’—with the
intention of eventually using Existential Elimination—we will have to continue
working within that subderivation until we obtain a sentence that does not con-
tain the instantiating constant. This suggests that the goal ‘(∃x)(∀y)Fxy’, which
contains no constants, should also be the goal of the Existential Elimination
subderivation:

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

1 (∃x)(∀y)Fxy Assumption

2 (∀y)Fay A / ∃E

G (∃x)(∃y)Fxy
G (∃x)(∃y)Fxy 1, 2–— ∃E
G (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–— ⊃I

564 PREDICATE LOGIC: DERIVATIONS

Completing this derivation is now straightforward. We apply Universal Elimi-
nation to the sentence on line 2 to produce ‘Fab’ and then use Existential
Introduction twice to derive ‘(∃x)(∃y)Fxy’.

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

1 (∃x)(∀y)Fxy Assumption

2 (∀y)Fay A / ∃E

3 Fab 2 ∀E
4 (∃y)Fay 3 ∃I
5 (∃x)(∃y)Fxy 4 ∃I
6 (∃x)(∃y)Fxy 1, 2–5 ∃E
7 (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–6 ⊃I

We have met all the restrictions on Existential Elimination. The instantiating
constant ‘a’ does not occur in any assumption that is open as of line 6. The
constant ‘a’ also does not occur in the existentially quantified sentence to which
we are applying Existential Elimination, and it does not occur in the sentence
derived at line 6 by Existential Elimination.

It is worth noting that since there are no restrictions on Existential
Introduction, we could have entered ‘Faa’ rather than ‘Fab’ at line 3 (there are
also no restrictions on Universal Elimination), and then applied Existential
Introduction twice.

The last theorem we will consider is the quantified sentence ‘(∃x)(Fx ⊃
(∀y)Fy)’. At first glance it appears that we should use Existential Introduction to
derive this sentence from some substitution instance, for example, ‘Fa ⊃ (∀y)Fy’
and so the latter sentence should be a subgoal. However, this will not work!
‘Fa ⊃ (∀y)Fy’ is not quantificationally true and therefore cannot be derived
in PD from no assumptions. So we must choose another strategy. Our primary
strategy will be Negation Elimination and the proof will be quite complicated:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 ~ (∃x)(Fx ⊃(∀y)Fy) A / ~ E

G (∃x)(Fx ⊃ (∀y)Fy)
~ (∃x)(Fx ⊃ (∀y)Fy) 1 R

G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We have selected Negation Elimination as our primary strategy because there
is no plausible alternative to that strategy. We have selected ‘(∃x)(Fx ⊃ (∀y)Fy)’

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 565

and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’ as the contradictory sentences we will derive within
that strategy because the latter sentence is our assumption on line 1 and there-
fore available for use. The question now is how to derive ‘(∃x)(Fx ⊃ (∀y)Fy)’.
Since this is an existentially quantified sentence we will attempt to derive it by
Existential Introduction: first deriving the substitution instance ‘Fa ⊃ (∀y)Fy’
of that sentence (any other instantiating constant could be used). The substi-
tution instance should be derivable using Conditional Introduction:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

G (∀y)Fy
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I

~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

Our new goal is ‘(∀y)Fy’, a universally quantified sentence. We cannot obtain
it by applying Universal Introduction to the sentence on line 2, because ‘a’ here
occurs in an open assumption. So we will try to obtain a different substitution
instance of ‘(∀y)Fy’, ‘Fb’, and we will try to derive this substitution instance
using Negation Elimination:

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

3 ~ Fb A / ~ E

G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)
G ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R

(∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We now have to decide on the sentence and its negation to be derived within
the Negation Elimination subderivation. Two negations are accessible at this
point: ‘~ Fb’ and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’. We will make the latter sentence
and ‘(∃x)(Fx ⊃ (∀y)Fy)’ our goals as picking ‘Fb’ and ‘~ Fb’ as goals appears
to be unpromising (there is no obvious way to derive ‘Fb’ from the assumptions

566 PREDICATE LOGIC: DERIVATIONS

on lines 1–3). We plan to derive ‘(∃x)(Fx ⊃ (∀y)Fy)’ using Existential
Introduction:

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

3 ~ Fb A / ~ E

G Fb ⊃ (∀y)Fy
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I

~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)
G ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R

(∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

3 ~ Fb A / ~ E

4 Fb A / ⊃I

G (∀y)Fy
G Fb ⊃ (∀y)Fy
G (∃x)(Fx ⊃ (∀y)Fy) — ∃I

~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G Fb
G (∀y)Fy — ∀I
G Fa ⊃ (∀y)Fy 2–— ⊃I
G (∃x)(Fx ⊃ (∀y)Fy)

~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We have selected ‘b’ as the instantiating constant in our new goal because we
anticipate using Conditional Introduction to derive ‘Fb ⊃ (∀y)Fy’, and this use
of ‘b’ will give us ‘Fb’ as an assumption, something that is likely to be useful
as we already have ‘~ Fb’ at line 3.

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 567

Our new goal is ‘(∀y)Fy’ and since ‘Fb’ and ‘~ Fb’ are both accessible, we can
easily derive it using Negation Elimination, completing the derivation:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

3 ~ Fb A / ~ I

4 Fb A / ⊃I

5 ~ (∀y)Fy A / ~ E

6 Fb 4 R
7 ~ Fb 3 R
8 (∀y)Fy 5–7 ~ E
9 Fb ⊃ (∀y)Fy 4–8 ⊃I

10 (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11 ~ (∃x)(Fx ⊃ (∀y)Fy) l R
12 Fb 3–11 ~ E
13 (∀y)Fy 12 ∀I
14 Fa ⊃ (∀y)Fy 2–13 ⊃I
15 (∃x)(Fx ⊃ (∀y)Fy) 14 ∃1
16 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

This is a complex derivation, as we warned it would be. In the end we used the
same pair of contradictory sentences in two Negation Elimination subderiva-
tions. This sometimes happens.

EQUIVALENCE

To show that sentences P and Q of PL are equivalent in PD we must derive
each from the unit set of the other. As our first example we take the sentences
‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’. We begin by deriving the second of these
sentences from the first, and since our goal sentence in this derivation is a
material conditional, we will use Conditional Introduction:

Derive: Fa ⊃ (∀x)Fx

1 (∀x)(Fa ⊃ Fx) Assumption

2 Fa A / ⊃I

G (∀x)Fx
G Fa ⊃ (∀x)Fx 2–— ⊃I

568 PREDICATE LOGIC: DERIVATIONS

We cannot derive our present goal, ‘(∀x)Fx’, by simply applying Universal
Introduction to ‘Fa’ at line 2, for the sentence on line 2 is an open assump-
tion and ‘a’ occurs in that sentence. We can rather try to derive a different sub-
stitution instance of ‘(∀x)Fx’, say ‘Fb’, and then apply Universal Introduction.
And this is easy to do by applying Universal Elimination to the sentence on line
1 (being careful to use an instantiating constant other than ‘a’), and then using
Conditional Introduction:

Derive: Fa ⊃ (∀x)Fx

1 (∀x)(Fa ⊃ Fx) Assumption

2 Fa A / ⊃I

3 Fa ⊃ Fb 1 ∀E
4 Fb 2, 3 ⊃E
5 (∀x)Fx 4 ∀I
6 Fa ⊃ (∀x)Fx 2–5 ⊃I

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2 Fa A / ⊃I

G Fb
G Fa ⊃ Fb 2–— ⊃I
G (∀x)(Fa ⊃ Fx) — ∀I

We have met both restrictions on Universal Introduction at line 5: the instan-
tiating constant ‘b’ does not occur in any open assumption; nor does it occur
in the derived sentence ‘(∀x)Fx’.

We must now derive ‘(∀x)(Fa ⊃ Fx)’ from ‘Fa ⊃ (∀x)Fx’. A plausible
start is

We plan to derive the last sentence by Universal Introduction, and the substitu-
tion instance on the prior line by Conditional Introduction. And we can now see
how to complete the derivation. We can apply Conditional Elimination to the sen-
tences on lines 1 and 2 to derive ‘(∀x)Fx’, from which we can then derive ‘Fb’:

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2 Fa A / ⊃I

3 (∀x)Fx 1, 2 ⊃E
4 Fb 3 ∀E
5 Fa ⊃ Fb 2–4 ⊃I
6 (∀x)(Fa ⊃ Fx) 5 ∀I

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 569

Having derived each member of our pair of sentences from the other, we have
demonstrated that the sentences ‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’ are equiv-
alent in PD.

We will next show that ‘(∀x)Fx ⊃ Ga’ and ‘(∃x)(Fx ⊃ Ga)’ are equiv-
alent in PD. It is reasonably straightforward to derive ‘(∀x)Fx ⊃ Ga’ from
‘(∃x)(Fx ⊃ Ga)’. We begin with

Derive: (∀x)Fx ⊃ Ga

1 (∃x)(Fx ⊃ Ga) Assumption

2 (∀x)Fx A / ⊃I

G Ga
G (∀x)Fx ⊃ Ga 2–— ⊃I

We will complete the derivation by using Existential Elimination—being care-
ful to use an instantiating constant other than ‘a’ (because ‘a’ occurs in ‘Ga’,
the sentence we plan to derive with Existential Elimination):

Derive: (∀x)Fx ⊃ Ga

1 (∃x)(Fx ⊃ Ga) Assumption

2 (∀x)Fx A / ⊃I

3 Fb ⊃ Ga A / ∃E

4 Fb 2 ∀E
5 Ga 3–4 ⊃E
6 Ga 1, 3–5 ∃E
7 (∀x)Fx ⊃ Ga 2–6 ⊃I

Our use of Existential Elimination at line 6 meets all three restrictions on that
rule: the instantiating constant ‘b’ does not occur in ‘(∃x)(Fx ⊃ Ga)’, does not
occur in any assumption that is open at line 6, and does not occur in the sen-
tence ‘Ga’ that we derived with Existential Elimination.

Deriving ‘(∃x)(Fx ⊃ Ga)’ from ‘(∀x)Fx ⊃ Ga’ is a somewhat more chal-
lenging exercise. Since our primary goal is an existentially quantified sentence,
both Existential Introduction and Negation Elimination suggest themselves as
primary strategies. We have opted to use Negation Elimination, and since the
assumption that begins that strategy is a negation, we will make it and the

570 PREDICATE LOGIC: DERIVATIONS

sentence of which it is a negation our goals within the Negation Elimination
subderivation:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

G (∃x)(Fx ⊃ Ga)
~ (∃x)(Fx ⊃ Ga) 2 R

G (∃x)(Fx ⊃ Ga) 1–— ~ E

When two primary strategies suggest themselves, it is frequently useful to use
one as a secondary strategy within the other, primary, strategy. Here we will
use Existential Introduction as a secondary strategy: We will try to obtain the
goal ‘(∃x)(Fx ⊃ Ga)’ by Existential Introduction, first using Conditional
Introduction to derive an appropriate substitution instance of the goal
sentence:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

3 Fa A / ⊃I

G Ga
G Fa ⊃ Ga 3–— ⊃I
G (∃x)(Fx ⊃ Ga) — ∃I

~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

The current goal, ‘Ga’, can be derived by Conditional Elimination using the
sentence on line 1 if we can first derive the antecedent ‘(∀x)Fx’ of that sen-
tence. It is not easy to see how the antecedent might be derived, but one strat-
egy is to try to first derive a substitution instance in which the instantiating con-
stant does not occur in an open assumption. This rules out ‘Fa’. So we will try

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 571

to derive ‘Fb’, and since no more direct strategy suggests itself at this point,
we’ll try to derive ‘Fb’ by Negation Elimination:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

3 Fa A / ⊃I

4 ~ Fb A / ~ E

G Fb 4–— ~ E
G (∀x)Fx — ∀I
G Ga 1, — ⊃E
G Fa ⊃ Ga 3–— ⊃I
G (∃x)(Fx ⊃ Ga)

~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

Given ‘~ Fb’ at line 4 we can obtain ‘Fb ⊃ Ga’. We know we can do this because
we know that given the negation of the antecedent of any conditional we can
derive the conditional—as the following schema demonstrates:

n ~ P

n 1 P A / ⊃I

n 2 ~ Q A / ~ E

n 3 P n 1 R
n 4 ~ P n R
n 5 Q n 2 n 4 ~ E
n 6 P ⊃ Q n 1 n 5 ⊃I

Once we derive ‘Fb ⊃ Ga’ we can obtain ‘(∃x)(Fx ⊃ Ga)’ by Existential Intro-
duction. Because we already have the negation of that sentence at line 3 we
can see our way clear to deriving a sentence and its negation as follows:

572 PREDICATE LOGIC: DERIVATIONS

We will conclude our discussion of Equivalence in PD by deriving each
of the following sentences from the unit set of the other:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

3 Fa A / ⊃I

4 ~ Fb A / ~ E

5 Fb A / ⊃I

6 ~ Ga A / ~ E

7 Fb 5 R
8 ~ Fb 4 R
9 Ga 6–8 ~ E

10 Fb ⊃ Ga 5–9 ⊃I
11 (∃x)(Fx ⊃ Ga) 10 ∃I
12 ~ (∃x)(Fx ⊃ Ga) 2 R
13 Fb 4–12 ~ E
14 (∀x)Fx 13 ∀I
15 Ga 1, 14 ⊃E
16 Fa ⊃ Ga 3–15 ⊃I
17 (∃x)(Fx ⊃ Ga) 16 ∃I
18 ~ (∃x)(Fx ⊃ Ga) 1 R
19 (∃x)(Fx ⊃ Ga) 1–18 ~ E

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 Fa ⊃ (∃y)Gay 1 ∀E

G (∃y)(Fa ⊃ Gay)
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

(∀x)[Fx ⊃ (∃y)Gxy] (∀x)(∃y)(Fx ⊃ Gxy)

Establishing that these sentences are equivalent in PD is substantially more dif-
ficult than was establishing equivalence in our last example, in large part
because in these sentences the existentially quantified formulas occur within the

scope of universal quantifiers. We begin by deriving ‘(∀x)(∃y)(Fx ⊃ Gxy)’ from
{(∀x)[Fx ⊃ (∃y)Gxy]}. Since our one primary assumption will be a universally
quantified sentence, as will our goal, it is plausible to expect that we will use
both Universal Elimination and Universal Introduction:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 573

It is now tempting to make ‘Fa ⊃ Gab’ our next subgoal, to be derived using
Conditional Introduction, from which ‘(∃y)(Fa ⊃ Gay)’ can be derived by
Existential Introduction:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 Fa ⊃ (∃y)Gay 1 ∀E
3 Fa A / ⊃I

G Gab
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

‘(∃y)Gay’ can be derived from lines 2 and 3 by Conditional Elimination. We
might then plan to use Existential Elimination to get from ‘(∃y)Gay’ to the cur-
rent goal sentence ‘Gab’. But we have to be careful here. If we want to derive
‘Gab’ by Existential Elimination then the instantiating constant for Existential
Elimination has to be a constant other than ‘b’.

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 Fa ⊃ (∃y)Gay 1 ∀E
3 Fa A / ⊃I

4 (∃y)Gay 2, 3 ⊃E
5 Gac A / ∃E

G Gab
G Gab 4, 5–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

But how do we get from ‘Gac’ to ‘Gab’? A negation strategy might work, but
it would be complicated as there are no negations among the accessible
sentences.

574 PREDICATE LOGIC: DERIVATIONS

It is time to consider an alternative strategy. We will try to obtain our
penultimate goal, ‘(∃y)(Fa ⊃ Gay)’, by Negation Elimination rather than by
Existential Introduction:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

G (∃y)(Fa ⊃ Gay) 15 ∃I
G ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–17 ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

It may appear that because ‘(∃y)(Fa ⊃ Gay)’ is still our goal we are making no
progress. But this is not so, for we now have an additional assumption to work
from. We will now proceed much as we did previously in our first attempt at
this derivation:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

3 Fa A / ⊃I

4 Fa ⊃ (∃y)Gay 1 ∀E

5 (∃y)Gay 3, 4 ⊃E
6 Gac A / ∃E

G Gab
G Gab 5, 6–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) 15 ∃I
G ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–17 ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

Once again we want to get from ‘Gac’ to ‘Gab’. But this time we do have an
accessible negation, ‘~ (∃y)(Fa ⊃ Gay)’. So we will use a negation strategy, assum-
ing ‘~ Gab’ and seeking to derive ‘(∃y)(Fa ⊃ Gay)’ along with reiterating its
negation:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 575

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

3 Fa A ⊃I

4 Fa ⊃ (∃y)Gay 1 ∀E
5 (∃y)Gay 3, 4 ⊃E
6 Gac A / ∃E

7 ~ Gab A ~ E

G (∃y)(Fa ⊃ Gay)
~ (∃y)(Fa ⊃ Gay) 2 R

G Gab 7–— ~ E
G Gab 5, 6–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay — ∃I

~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–— ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

2 ~ (∃y)(Fa ⊃ Gay) A / ~ E

3 Fa A ⊃I

4 Fa ⊃ (∃y)Gay 1 ∀E
5 (∃y)Gay 3, 4 ⊃E
6 Gac A / ∃E

7 ~ Gab A ~ E

8 Fa A / ⊃I

9 Gac 6 R
10 Fa ⊃ Gac 8–9 ⊃I
11 (∃y)(Fa ⊃ Gay) 10 ∃I
12 ~ (∃y)(Fa ⊃ Gay) 2 R
13 Gab 7–12 ~ E
14 Gab 5, 6–13 ∃E
15 Fa ⊃ Gab 3–14 ⊃I
16 (∃y)(Fa ⊃ Gay) 15 ∃I
17 ~ (∃y)(Fa ⊃ Gay) 2 R
18 (∃y)(Fa ⊃ Gay) 2–17 ~ E
19 (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

What remains is to derive ‘(∃y)(Fa ⊃ Gay)’. This is easily done. We assume ‘Fa’,
derive ‘Gac’ by Reiteration, derive ‘Fa ⊃ Gac’ by Conditional Introduction, and
then ‘(∃y)(Fa ⊃ Gay)’ by Existential Introduction. The derivation is then complete:

We must now derive ‘(∀x)[Fx ⊃ (∃y)Gxy]’ from ‘(∀x)(∃y)(Fx ⊃ Gxy)’.
This will be an easier task since we can derive ‘(∃y)(Fa ⊃ Gay)’ by Universal
Elimination and then do the bulk of the derivation within an Existential Elim-
ination subderivation:

576 PREDICATE LOGIC: DERIVATIONS

Derive: (∀x)[Fx ⊃ (∃y)Gxy]

1 (∀x)(∃y)(Fx ⊃ Gxy) Assumption

2 (∃y)(Fa ⊃ Gay) 1 ∀E

3 Fa ⊃ Gab A / ∃E

4 Fa A ⊃I

5 Gab 3, 4 ⊃E
6 (∃y)Gay 5 ∃I
7 Fa ⊃ (∃y)Gay 4–6 ⊃I
8 Fa ⊃ (∃y)Gay 3, 4–7 ∃E
9 (∀x)[Fx ⊃ (∃y)Gxy] 8 ∀I

The instantiating constant ‘b’ for our use of Existential Elimination does not
occur in the existentially quantified sentence ‘(∃y)(Fa ⊃ Gay)’ in any
assumption that is open at line 8, or in the sentence ‘Fa ⊃ (∃y)Gay’ obtained
by Existential Elimination. (In this case we could also have applied Univer-
sal Introduction within the Existential Elimination subderivation and then
moved ‘(∀x)[Fx ⊃ (∃y)Gxy]’ out of that subderivation.) This completes our
demonstration that ‘(∀x)[Fx ⊃ (∃y)Gxy]’ and ‘(∀x)(∃y)(Fx ⊃ Gxy)’ are
equivalent in PD.

INCONSISTENCY

We next turn our attention to demonstrating that sets of sentences of PL are
inconsistent in PD. Recall that a set of sentences is inconsistent in PD if we can
derive both a sentence Q and its negation ~ Q from the set. As our first exam-
ple we will show that the set {(∀x)(Fx Gx), (∃y)(Fy & ~ Gy)} is inconsistent
in PD. It is quite apparent that this set is inconsistent. If each thing is F if and
only if it is G then contrary to what the second sentence says there cannot be
something that is F and is not G. Because this set does not contain a negation,
it is not obvious what our Q and ~ Q should be. We will use the set member
‘(∀x)(Fx Gx)’ as Q, making ~ Q ‘~ (∀x)(Fx Gx)’:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 577

The second assumption suggests using Existential Elimination, and we know it
is wise to do as much of the work of the derivation as possible within the Exis-
tential Elimination subderivation:

Derive: (∀x)(Fx Gx), ~ (∀x)(Fx Gx)

1 (∀x)(Fx Gx) Assumption

2 (∃y)(Fy & ~ Gy) Assumption

G ~ (∀x)(Fx Gx)
(∀x)(Fx Gx) 1 R

Derive: (∀x)(Fx Gx), ~ (∀x)(Fx Gx)

1 (∀x)(Fx Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3 Fa & ~ Ga A / ∃E

G ~ (∀x)(Fx Gx)
G ~ (∀x)(Fx Gx) 2, 3–— ∃E

(∀x)(Fx Gx) 1 R

Derive: (∀x)(Fx Gx), ~ (∀x)(Fx Gx)

1 (∀x)(Fx Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3 Fa & ~ Ga A / ∃E

4 (∀x)(Fx Gx) A / ~ I

G ~ (∀x)(Fx Gx) 4–— ~ I
G ~ (∀x)(Fx Gx) 2, 3–— ∃E
G (∀x)(Fx Gx) 1 R

Our current goal is a negation, which we will try to derive using Negation Intro-
duction. We assume ‘(∀x)(Fx Gx)’ even though that sentence is one of our primary

assumptions and hence already accessible. We assume it because Negation Introduc-
tion requires that we assume the sentence whose negation we wish to derive:

578 PREDICATE LOGIC: DERIVATIONS

We are now finally in a position where we can work profitably from the “top
down”. From line 4 we can derive ‘Fa Ga’ by Biconditional Elimination;
from line 3 we can derive ‘Fa’; and then it is easy to derive both ‘Ga’ and
‘~ Ga’:

Derive: (∀x)(Fx Gx), ~ (∀x)(Fx Gx)

1 (∀x)(Fx Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3 Fa & ~ Ga A / ∃E

4 (∀x)(Fx Gx) A / ~ I

5 Fa Ga 4 ∀E
6 Fa 3 E
7 Ga 5, 6 E
8 ~ Ga 3 &E
9 ~ (∀x)(Fx Gx) 4–8 ~ I

10 ~ (∀x)(Fx Gx) 2, 3–9 ∃E
11 (∀x)(Fx Gx) 1 R

Had we taken ‘(∃y)(Fy & ~ Gy)’ and ‘~ (∃y)(Fy & ~ Gy)’ as our Q and ~ Q we
would have produced the following very similar derivation:

Derive: (∃y)(Fy & ~ Gy), ~ (∃y)(Fy & ~ Gy)

1 (∀x)(Fx Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3 Fa & ~ Ga A / ∃E

4 (∃y)(Fy & ~ Gy) A / ~ I

5 Fa Ga 1 ∀E
6 Fa 3 &E
7 Ga 5, 6 E
8 ~ Ga 3 &E
9 ~ (∃y)(Fy & ~ Gy) 4–8 ~ I

10 ~ (∃y)(Fy & ~ Gy) 2, 3–9 ∃E
11 (∃y)(Fy & ~ Gy) 2 R

We will next demonstrate that {(∀z)(Hz ⊃ (∃y)Gzy), (∃w)Hw, (∀x)
~ (∃y)Gxy} is inconsistent in PD. Though the set includes no negations, we
can immediately derive one, say ‘~ (∃y)Gay’, by applying Universal Elimina-
tion to ‘(∀x) ~ (∃y)Gxy’. So we will take ‘(∃y)Gay’ and ‘~ (∃y)Gay’ as our
goals:

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 579

Our assumptions include the existentially quantified sentence ‘(∃w)Hw’, so we
will try to derive ‘(∃y)Gay’ by Existential Elimination—which means we will
have to be careful to pick a constant other than ‘a’ as the instantiating constant
in our Existential Elimination assumption:

Derive: (∃y)Gay, ~ (∃y)Gay

1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
2 (∃w)Hw Assumption
3 (∀x) ~ (∃y)Gxy Assumption

G (∃y)Gay
~ (∃y)Gay 3 ∀E

Derive: (∃y)Gay, ~ (∃y)Gay

1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
2 (∃w)Hw Assumption
3 (∀x) ~ (∃y)Gxy Assumption

4 Hb A / ∃E

G (∃y)Gay
G (∃y)Gay 2, 4–— ∃E

~ (∃y)Gay 3 ∀E

There is a problem in the offing here. We used ‘b’ as the instantiating constant
at line 4 because ‘a’ occurs in the sentence we hope to obtain by Existential Elim-
ination, ‘(∃y)Gay’. This means that we will be able to obtain ‘(∃y)Gby’, but not
‘(∃y)Gay’ by applying Universal Elimination to line 1 (obtaining ‘Hb ⊃ (∃y)Gby’
and then doing Conditional Elimination. So we need an alternative strategy for
obtaining our current goal, ‘(∃y)Gay’. We will use Negation Elimination:

Derive: (∃y)Gay, ~ (∃y)Gay

1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
2 (∃w)Hw Assumption
3 (∀x) ~ (∃y)Gxy Assumption

4 Hb A / ∃E

5 ~ (∃y)Gay A / ~ E

G (∃y)Gay 5–— ~ E
G (∃y)Gay 2, 4–6 ∃E

~ (∃y)Gay 3 ∀E

580 PREDICATE LOGIC: DERIVATIONS

We can now complete the derivation by deriving both ‘(∃y)Gby’ and ‘~ (∃y)Gby’
within the scope of the assumption on line 5, the first by the steps mentioned
previously, the second by applying Universal Elimination to the sentence on line 3.

Derive: (∃y)Gay, ~ (∃y)Gay

1 (∀z) (Hz ⊃ (∃y)Gzy) Assumption
2 (∃w)Hw Assumption
3 (∀x) ~ (∃y)Gxy Assumption

4 Hb A / ∃E

5 ~ (∃y)Gay A / ~ E

6 Hb ⊃ (∃y)Gby 1 ∀E
7 (∃y)Gby 4, 6 ⊃E
8 ~ (∃y)Gby 3 ∀E
9 (∃y)Gay 5–8 ~ E

10 (∃y)Gay 2, 4–9 ∃E
11 ~ (∃y)Gay 3 ∀E

The technique of using a negation strategy within an Existential Elim-
ination subderivation, as we have just done, is useful as a way of generating a
sentence that does not violate any of the restrictions on Existential Elimination.
It is useful whenever we can see that some sentence and its negation are deriv-
able within the Existential Elimination subderivation, but those sentences con-
tain a constant that keeps us from moving either out from the Existential Elim-
ination subderivation by Existential Elimination. In such a case we can always
derive a sentence that does not contain the Existential Elimination subderiva-
tion’s instantiating constant. We can do this by assuming the negation of the
desired sentence and deriving the contradictory sentences within the negation
elimination subderivation.

10.2E EXERCISES

Note: Here, as always, the Student Solutions Manual contains answers to all
unstarred exercises. In addition, when an exercise is preceded by a number
sign (#) the Solutions Manual contains a detailed account of how the deriva-
tion given in the Solutions Manual is constructed.

1. Construct derivations that establish the validity of the following arguments:

a. (∀y)[Fy ⊃ (Gy & Hy)]

(∀x)(Fx ⊃ Hx)

*b. (∀x)(Fx Gx)

(∃x)Fx

(∃x)(Fx & Gx)

#c. (∀y)[Gy ⊃ (Hy & Fy)]

(∃x)Gx

(∃z)Fz

*d. (∀x)[Fx ⊃ (Gx & Hx)]

(∃y)(Fy & Dy)

(∃z)Gz

10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD 581

e. (∃x)Fx ⊃ (∀x)Gx

Fa

(∀x)(Gx ⊃ Hx)

(∀x)Hx

*f. (∀y)[(Hy & Fy) ⊃ Gy]

(∀z)Fz

(∀x)(Hx ⊃ Gx)

g. (∀x)Fx ∨ (∀x)Gx

(∀x)(Fx ∨ Gx)

*h. (∀x)(Dx ~ Gx)

(∀y)(Gy ⊃ Hy)

(∃z) ~ Hz

(∃z)Dz

#i. (∀x)(Fx ⊃ Hx)

(∀y)(Gy ⊃ Hy)

(∀y)[(Fy ∨ Gy) ⊃ Hy]

*j. (∃y)(Fy ∨ Gy)

(∀x)(Fx ⊃ Hx)

(∀x)(Gx ⊃ Hx)

(∃z)Hz

k. (∃x)Hx

(∀x)(Hx ⊃ Rx)

(∃x)Rx ⊃ (∀x)Gx

(∀x)(Fx ⊃ Gx)

*l. ~ (∃x)Fx (∀y)Gy

(∀y) ~ Fy

(∃y)Gy

m. (∀x)Fx ∨ (∀y) ~ Gy

Fa ⊃ Hb

~ Gb ⊃ Jb

(∃y)(Hy ∨ Jy)

*n. Fa ∨ (∀x) ~ Fx

(∃y)Fy

Fa

2. Prove that the following sentences of PL are theorems of PD:

a. Fa ⊃ (∃y)Fy
*b. (∀x)Fx ⊃ (∃y)Fy

c. (∀x)[Fx ⊃ (Gx ⊃ Fx)]
*d. ~ Fa ⊃ ~ (∀x)Fx

e. ~ (∃x)Fx ⊃ (∀x) ~ Fx
*f. (∃x)(∃y)Fxy ⊃ (∃y)(∃x)Fyx
g. Fa ∨ (∃y) ~ Fy

*h. (∀x)(Hx ⊃ Ix) ⊃ [(∃x)Hx ⊃ (∃x)Ix]
#i. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
*j. [(∀x)Fx & (∃y)Gy] ⊃ (∃x)(Fx & Gx)
k. (∃x)(Fx & Gx) ⊃ [(∃x)Fx & (∃x)Gx]

*l. [(∃x)Fx ∨ (∃x)Gx] ⊃ (∃x)(Fx ∨ Gx)
m. (∀x)Hx ~ (∃x) ~ Hx

3. Construct derivations that establish that the following pairs of sentences are
equivalent in PD:

a. (∀x)(Fx & Gx) (∀x)Fx & (∀x)Gx
*b. (∀x)(Fx ⊃ Ga) (∃x)Fx ⊃ Ga

c. (∀x)Fx ~ (∃x) ~ Fx
*d. (∃y)(Fy & (∀x)Gx) (∃y)(∀x)(Fy & Gx)
#e. (∃x)Fx ~ (∀x) ~ Fx
*f. (∃x)(Fx & ~ Gx) ~ (∀x)(Fx ⊃ Gx)

582 PREDICATE LOGIC: DERIVATIONS

g. (∀z)(Hz ⊃ ~ Iz) ~ (∃y)(Hy & Iy)
*h. (∃x)(Fa ⊃ Gx) Fa ⊃ (∃x)Gx

i. (∀x)(∃y)(Fx ⊃ Gy) (∀x)(Fx ⊃ (∃y)Gy)

4. Construct derivations that establish that the following sets are inconsistent in PD:

a. {(∀x)(Fx ~ Fx)}
*b. {(∀x)Hx, (∀y) ~ (Hy ∨ Gyy)}
#c. {~ (∀x)Fx, ~ (∃x) ~ Fx}
*d. {~ (∀x) ~ Fx, ~ (∃x)Fx}

e. {(∀x)(Fx ⊃ Gx), (∃x)Fx, ~ (∃x)Gx}
*f. {(∀z) ~ Fz, (∃z)Fz}
g. {(∀x)Fx, (∃y) ~ Fy}

*h. {(∃y)(Hy & Jy), (∀x) ~ Jx}
i. {(∀x)(Hx ~ Gx), (∃x)Hx, (∀x)Gx}

*j. {(∀z)(Hz ⊃ Iz), (∃y)(Hy & ~ Iy)}
k. {(∀z)[Rz ⊃ (Tz & ~ Mz)], (∃y)(Ry & My)}

*l. {(∀x)(Fx ⊃ Gx), (∀x)(Fx ⊃ ~ Gx), (∃x)Fx}

5. Construct derivations that establish the following:
a. {(∃y)(∀x)Fxy} (∀x)(∃y)Fxy

*b. {(∀z)(Gz ⊃ (∃x)Fxz), (∀x)Gx} (∀z)(∃x)Fxz
c. {(∃x)Fxxx} (∃x)(∃y)(∃z)Fxyz

*d. {(∀x)(∀y)(Bx ⊃ Txy} (∀x)(∀y)[(Bx & Ny) ⊃ Txy]
e. {(∀x)(Fx ⊃ (∃y)Gxy), (∃x)Fx} (∃x)(∃y)Gyx

*f. {(∀x)(∃y)Gxy, (∀x)(∀y)(Hxy ⊃ ~ Gxy)} (∀x)(∃z) ~ Hxz
g. {(∀x)(∀y)(Hxy ⊃ ~ Hyx), (∃x)(∃y)Hxy} (∃x)(∃y) ~ Hyx

*h. {(∀x)(∀y)Fxy ∨ (∀x)(∀y)Gxy} (∀x)(∀y)(Fxy ∨ Gxy)
i. {~ (∃x)(∃y)Rxy, (∀x)(∀y)(~ Hxy Rxy)} (∀x)(∀y)Hxy

*j. {(∀x)(∀y)(Fxy ~ Gyx), (∃z)(∃w)Gzw} (∃x)(∃y) ~ Fxy

6. Construct derivations that establish the validity of the following arguments:

a. (∀x)(Fx ⊃ Gba)

(∃x)Fx

(∃y)Gya

*b. (∀x)(Hx ⊃ (∀y)Rxyb)

(∀x)(∀z)(Razx ⊃ Sxzz)

Ha ⊃ (∃x)Sxcc

c. (∃x)(∃y)(Fxy ∨ Fyx)

(∃x)(∃y)Fxy

*d. (∀x)(Fxa ⊃ Fax)

(∃x)(Hx & ~ Fax)

~ (∀y)(Hy ⊃ Fya)

e. (∀x)(∀y)[(∃z)(Fyz & ~ Fzx) ⊃ Gxy]

~ (∃x)Gxx

(∀zx)(Faz ⊃ Fza)

*f. (∀x)(∀y)(Dxy ⊃ Cxy)

(∀x)(∃y)Dxy

(∀x)(∀y)(Cxy ⊃ Cyx)

(∃x)(∃y)(Cxy & Cyx)

g. (∀x)(Fx ⊃ (∃y)Gxy

(∀x)(∀y) ~ Gxy

(∀x) ~ Fx

*h. (∀x)(Fx ⊃ (∃y)Gxy)

(∀x)(∀y)(Gxy ⊃ Hxy)

~ (∃x)(∃y)Hxy

~ (∃x)Fx

10.3 THE DERIVATION SYSTEM PD 583

7. Prove that the following sentences of PL are theorems of PD:

a. (∀x)(∃z)(Fxz ⊃ Fzx)
*b. (∀x)Fxx ⊃ (∀x)(∃y)Fxy

c. (∀x)(∀y)Gxy ⊃ (∀z)Gzz
*d. (∃x)Fxx ⊃ (∃x)(∃y)Fxy

e. (∀x)Lxx ⊃ (∃x)(∃y)(Lxy & Lyx)
*f. (∃x)(∀y)Lxy ⊃ (∃x)Lxx
#g. (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy
*h. (∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)

i. (∃x)(∃y)(Lxy Lyx)
*j. (∃x)(∀y)Hxy ⊃ (∀y)(∃x)Hxy
k. (∀x)(∀y)(∀z)Gxyz ⊃ (∀x)(∀y)(∀z)(Gxyz ⊃ Gzyx)

*l. (∀x)(Fx ⊃ (∃y)Gyx) ⊃ ((∃x)Fx ⊃ (∃x)(∃y)Gxy)
m. (∀x)(∀y)(Fxy Fyx) ⊃ ~ (∃x)(∃y)(Fxy & ~ Fyx)
*n. (∃x)(Fx ⊃ (∀y)Fy)

8. Construct derivations that establish that the following pairs of sentences are
equivalent in PD:

a. (∀x)(Fx ⊃ (∃y)Gya) (∃x)Fx ⊃ (∃y)Gya
*b. (∀x)(Fx ⊃ (∀y)Gy) (∀x)(∀y)(Fx ⊃ Gy)
#c. (∃x)[Fx ⊃ (∀y)Hxy] (∃x)(∀y)(Fx ⊃ Hxy)
*d. (∀x)(∀y)(Fxy ⊃ Gy) (∀y)[(∃x)Fxy ⊃ Gy]

e. (∀x)(∀y)(Fxy ~ Gyx) (∀x)(∀y) ~ (Fxy Gyx)

9. Construct derivations that establish that the following sets are inconsistent
in PD:

a. {(∀x)(∀y)[(Ex & Ey) ⊃ Txy], (Ea & Eb) & ~ Tab}
*b. {(∀x)(∃y)Lyx, ~ (∃x)Lxb}

c. {~ (∃x)Fxx, (∃x)(∀y)Fxy}
*d. {(∀x)(∀y)(Fxy ⊃ Fyx), Fab, ~ (∃z)Fza}

e. {(∀x)(∃y)Lxy, (∀y) ~ Lay}
*f. {(∃x)(∀y)Gxy, ~ (∀y)(∃x)Gxy}
g. {(∀x)[Hx ⊃ (∃y)Lyx], (∃x) ~ (∃y)Lyx, (∀x)Hx}

*h. {~ (∃x)Fxx, (∀x)[(∃y)Fxy ⊃ Fxx], (∃x)(∃y)Fxy}
#i. {(∀x)(∃y)Fxy, (∃z) ~ (∃w)Fzw}
*j. {(∀x)(∀y)(Gxy Gyx), (∃x)(∃y)(Gxy & ~ Gyx)}
k. {(∀x)(∀y)(Fxy ∨ Gxy), (∃x)(∃y)(~ Fxy & ~ Gxy)}

*l. {(∀x)(Fx ⊃ [(∃y)Gy ⊃ (∀y)Gy]), (∃x)(Fx & Gx), (∃y) ~ Gy}

10.3 THE DERIVATION SYSTEM PD

PD is a derivation system that includes all the rules of PD, the rules of replace-
ment that distinguish SD from SD, and one additional rule of replacement
that are unique to PD . PD is no stronger than PD; however, derivations in
PD are often shorter than the corresponding derivations in PD. The rules of
replacement in PD apply to subformulas of sentences as well as to complete

584 PREDICATE LOGIC: DERIVATIONS

Here Implication was applied to the subformula ‘(Fx & Hx) ⊃ (∃y)Nxy’ of the
sentence on line 1 to produce the subformula ‘~ (Fx & Hx) ∨ (∃y)Nxy’ of the
sentence on line 2. Double Negation was applied to the subformula ‘(∃y)Nxy’
of the sentence on line 2, to produce the subformula ‘~ ~ (∃y)Nxy’ of the
sentence on line 3. De Morgan was applied to the subformula ‘~ (Fx & Hx) ∨ ~
~ (∃y)Nxy’ of the sentence on line 3 to produce the subformula ‘~ [(Fx & Hx)
& ~ (∃y)Nxy]’ of the sentence on line 4. Finally, Commutation was applied to
the subformula ‘Fx & Hx’ of the sentence on line 4 to produce the ‘Hx & Fx’
of the sentence on line 5.

In applying rules of replacement in PD it is important to correctly
identify subformulas of sentences. Consider the following:

1 (∀x)[(Fx & Hx) ⊃ (∃y)Nxy] Assumption

2 (∀x)[~ (Fx & Hx) ∨ (∃y)Nxy] 1 Impl

3 (∀x)[~ (Fx & Hx) ∨ ~ ~ (∃y)Nxy] 2 DN

4 (∀x) ~ [(Fx & Hx) & ~ (∃y)Nxy] 3 DeM

5 (∀x) ~ [(Hx & Fx) & ~ (∃y)Nxy] 4 Com

1 ~ (∃y) ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) Assumption

2 (∀y) ~ ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) 1 QN

3 (∀y) ~ (∃x) ~ (Fx ⊃ (∃z) ~ Gxy) 2 QN

4 (∀y) ~ (∃x) ~ (Fx ⊃ ~ (∀z)Gxy) 3 QN

1 (∀x)[Lx ∨ (∃y)(Bxy ∨ Jxy)] Assumption

2 (∀x)[(Lx ∨ (∃y)Bxy) ∨ Jxy] 1 Assoc MISTAKE!

Line 2 is a mistake because the immediate subformula of the sentence on line
1 is not of the form P ∨ (Q ∨ R). Rather, it is of the form P ∨ (∃x)(Q ∨ R).

In addition to the rules of replacement of SD , PD contains
Quantifier Negation. Where P is an open sentence of PL in which x occurs
free, the rule is

Quantifier Negation (QN)

~(∀x)P (∃x) ~ P

~(∃x)P (∀x) ~ P

As with all rules of replacement, Quantifier Negation can be applied to sub-
formulas within a sentence, as well as to an entire sentence. All these are proper
uses of Quantifier Negation:

The definitions of the basic concepts of PD strictly parallel the def-
initions of the basic concepts of PD, in all cases replacing ‘PD’ with ‘PD ’.
Consequently the tests for the various syntactic properties are carried out in

sentences. In the following example each of the replacement rules has been
applied to a subformula of the sentence on the previous line:

10.3 THE DERIVATION SYSTEM PD 585

the same way. The important difference between PD and PD is that PD, with
fewer rules, provides theoretical elegance and PD , with more rules, provides
practical ease.

In Section 10.2 we proved that ‘(∃x)(Fx ⊃ (∀y)Fy)’ is a theorem in PD.

Our derivation was 17 lines long. We repeat it here.

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 Fa A / ⊃I

3 ~ Fb A / ~ I

4 Fb A / ⊃I

5 ~ (∀y)Fy A / ~ E

6 Fb 4 R
7 ~ Fb 3 R
8 (∀y)Fy 5–7 ~ E
9 Fb ⊃ (∀y)Fy 4–8 ⊃I

10 (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
12 Fb 3–11 ~ E
13 (∀y)Fy 12 ∀I
14 Fa ⊃ (∀y)Fy 2–13 ⊃I
15 (∃x)(Fx ⊃ (∀y)Fy) 14 ∃I
16 ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

We can show that this sentence is a theorem in PD in just 10 lines:

In Section 10.2 it took us 19 lines to derive ‘(∃x)(Fx ⊃ Ga)’ from
{(∀x)Fx ⊃ Ga}. We repeat our derivation here:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

2 (∀x) ~ (Fx ⊃ (∀y)Fy) 1 QN
3 ~ (Fa ⊃ (∀y)Fy) 2 ∀E
4 ~ (~ Fa ∨ (∀y)Fy) 3 Impl
5 ~ ~ Fa & ~ (∀y)Fy 4 DeM
6 ~ ~ Fa 5 &E
7 Fa 6 DN
8 ~ (∀y)Fy 5 &E
9 (∀y)Fy 7 ∀I

10 (∃x)(Fx ⊃ (∀y)Fy) 1–9 ~ E

586 PREDICATE LOGIC: DERIVATIONS

We can derive ‘(∃x)(Fx ⊃ Ga)’ from {(∀x)Fx ⊃ Ga} in just 12 lines in
PD :

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

3 Fa A / ⊃I

4 ~ Fb A / ~ E

5 Fb A / ⊃I

6 ~ Ga A / ~ E

7 Fb 5 R
8 ~ Fb 4 R
9 Ga 6–8 ~ E

10 Fb ⊃ Ga 5–9 ⊃I
11 (∃x)(Fx ⊃ Ga) 10 ∃I
12 ~ (∃x)(Fx ⊃ Ga) 2 R
13 Fb 4–12 ~ E
14 (∀x)Fx 13 ∀I
15 Ga 1, 14 ⊃E
16 Fa ⊃ Ga 3–15 ⊃I
17 (∃x)(Fx ⊃ Ga) 16 ∃I
18 ~ (∃x)(Fx ⊃ Ga) 1 R
19 (∃x)(Fx ⊃ Ga) 1–18 ~ E

Derive: (∃x)(Fx ⊃ (∀y)Fy)

1 (∀x)Fx ⊃ Ga Assumption

2 ~ (∃x)(Fx ⊃ Ga) A / ~ E

3 (∀x) ~ (Fx ⊃ Ga) 2 QN
4 ~ (Fb ⊃ Ga) 3 ∀E
5 ~ (~ Fb ∨ Ga) 4 Impl
6 ~ ~ Fb & ~ Ga 5 DeM
7 ~ ~ Fb 6 &E
8 Fb 7 DN
9 (∀x)Fx 8 ∀I

10 Ga 1, 9 ⊃E
11 ~ Ga 6 &E
12 (∃x)(Fx ⊃ Ga) 2–11 ~ E

10.3E EXERCISES

1. Show that each of the following derivability claims holds in PD .

a. {~ (∀y)(Fy & Gy)} (∃y)(~ Fy ∨ ~ Gy)
*b. {(∀w)(Lw ⊃ Mw), (∀y)(My ⊃ Ny)} (∀w)(Lw ⊃ Nw)

c. {(∃z)(Gz & Az), (∀y)(Cy ⊃ ~ Gy)} (∃z)(Az & ~ Cz)

10.3 THE DERIVATION SYSTEM PD 587

*d. {~ (∃x)(~ Rx & Sxx), Sjj} Rj
e. {(∀x)[(~ Cxb ∨ Hx) ⊃ Lxx], (∃y) ~ Lyy} (∃x)Cxb

*f. {(∀x)Fx, (∀z)Hz} ~ (∃y)(~ Fy ∨ ~ Hy)

2. Show that each of the following arguments is valid in PD .

a. (∀x) ∼ Jx

(∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx

(∀y) ∼ (Hby ∨ Ryy)

*b. ∼ (∃x)(∀y)(Pxy & ∼ Qxy)

(∀x)(∃y)(Pxy ⊃ Qxy)

c. (∀x) ∼ ((∀y)Hyx ∨ Tx)

∼ (∃y)(Ty ∨ (∃x) ∼ Hxy)

(∀x)(∀y)Hxy & (∀x) ∼ Tx

*d. (∀z)(Lz Hz)

(∀x) ∼ (Hx ∨ ∼ Bx)

∼ Lb

e. (∀z)[Kzz ⊃ (Mz & Nz)]

(∃z) ∼ Nz

(∃x) ∼ Kxx

*f. (∃x)[∼ Bxm & (∀y)(Cy ⊃ ∼ Gxy)]

(∀z)[∼ (∀y)(Wy ⊃ Gzy) ⊃ Bzm]

(∀x)(Cx ⊃ ∼ Wx)

g. (∃z)Qz ⊃ (∀w)(Lww ⊃ ∼ Hw)

(∃x)Bx ⊃ (∀y)(Ay ⊃ Hy)

(∃w)(Qw & Bw) ⊃ (∀y)(Lyy ⊃ ∼ Ay)

*h. (∀y)(Kby ⊃ ∼ Hy)

(∀x)[(∃y)(Kby & Qxy) ⊃ (∃z)(∼ Hz & Qxz)]

i. ∼ (∀x)(∼ Px ∨ ∼ Hx) ⊃ (∀x)[Cx & (∀y)(Ly ⊃ Axy)]

(∃x)[Hx & (∀y)(Ly ⊃ Axy)] ⊃ (∀x)(Rx & (∀y)Bxy)

∼ (∀x)(∀y)Bxy ⊃ (∀x)(∼ Px ∨ ∼ Hx)

3. Show that each of the following sentences is a theorem in PD .

a. (∀x)(Ax ⊃ Bx) ⊃ (∀x)(Bx ∨ ∼ Ax)
*b. (∀x)(Ax ⊃ (Ax ⊃ Bx)) ⊃ (∀x)(Ax ⊃ Bx)

c. ∼ (∃x)(Ax ∨ Bx) ⊃ (∀x) ∼ Ax

588 PREDICATE LOGIC: DERIVATIONS

*d. (∀x)(Ax ⊃ Bx) ∨ (∃x)Ax

e. ((∃x)Ax ⊃ (∃x)Bx) ⊃ (∃x)(Ax ⊃ Bx)

*f. (∀x)(∃y)(Ax ∨ By) (∃y)(∀x)(Ax ∨ By)

4. Show that the members of each of the following pairs of sentences are equiv-

alent in PD .

a. ∼ (∀x)(Ax ⊃ Bx) (∃x)(Ax & ∼ Bx)

*b. (∃x)(∃y)Axy ⊃ Aab (∃x)(∃y)(Axy Aab)

c. ∼ (∀x) ∼ [(Ax & Bx) ⊃ Cx] (∃x)[∼ Ax ∨ (~ Cx ⊃ ∼ Bx)]

*d. ∼ (∀x)(∃y)[(Ax & Bx) ∨ Cy] (∃x)(∀y)[~ (Cy ∨ Ax) ∨ ∼ (Cy ∨ Bx)]

e. (∀x)(Ax Bx) ∼ (∃x)[(~ Ax ∨ ∼ Bx) & (Ax ∨ Bx)]

*f. (∀x)(Ax & (∃y) ∼ Bxy) ∼ (∃x)[~ Ax ∨ (∀y)(Bxy & Bxy)]

5. Show that each of the following sets of sentences is inconsistent in PD .

a. {[(∀x)(Mx Jx) & ∼ Mc] & (∀x)Jx}

*b. {∼ Fa, ∼ (∃x)(~ Fx ∨ ∼ Fx)}

c. {(∀x)(∀y)Lxy ⊃ ∼ (∃x)Tz, (∀x)(∀y)Lxy ⊃ ((∃w)Cww ∨ (∃z)Tz),

(∼ (∀x)(∀y)Lxy ∨ (∀z)Bzzk) & (∼ (∀z)Bzzk ∨ ∼ (∃w)Cww), (∀x)(∀y)Lxy}

*d. {(∃x)(∀y)(Hxy ⊃ (∀w)Jww), (∃x) ∼ Jxx & ∼ (∃x) ∼ Hxm}

e. {(∀x)(∀y)(Gxy ⊃ Hc), (∃x)Gix & (∀x)(∀y)(∀z)Lxyz, ∼ Lcib ∨ ∼ (Hc ∨ Hc)}

*f. {(∀x)[(Sx & Bxx) ⊃ Kax], (∀x)(Hx ⊃ Bxx), (∃x)(Sx & Hx),

(∀x) ∼ (Kax & Hx)}

6. a. Show that Universal Introduction and Universal Elimination are eliminable in

PD by developing routines that can be used in place of these rules to obtain

the same results. (Hint: Consider using Quantifier Negation, Existential Intro-

duction, and Existential Elimination.)

*b. Show that Existential Introduction and Existential Elimination are eliminable

in PD by developing routines that can be used in place of these rules to obtain

the same results. (Hint: Consider using Quantifier Negation, Universal Intro-

duction, and Universal Elimination.)

10.4 THE DERIVATION SYSTEM PDE

The symbolic language PLE extends PL to include sentences that contain func-
tors and the identity predicate. Accordingly we need to extend the derivation
system PD developed earlier in this chapter to allow for derivations that include
these new sentences of PLE. We shall do so by adding an introduction rule and
an elimination rule for the identity predicate, and then modifying the quanti-
fier rules so as to allow for sentences containing functors. The resulting extended

predicate derivation system is called PDE.

The introduction rule for ‘ ’ is

Identity Introduction (I)

 (∀x)x x

Identity Introduction is unlike other introduction rules in that it appeals to
no previous line or lines of the derivation. Rather, it allows sentences of the
specified form to be entered on any line of any derivation, no matter what

10.4 THE DERIVATION SYSTEM PDE 589

sentences, if any, occur earlier in the derivation.1 Identity Introduction is
truth-preserving because every sentence that can be introduced by it, that is
every sentence of the form (∀x)x x, is quantificationally true. These sen-
tences simply say of each thing that it is identical to itself. Here is a very sim-
ple derivation of a theorem using the rule Identity Introduction:

1Metaformulas (such as ‘(∀x)x x’) that specify sentences that can be introduced without reference to previous
sentences occurring in a derivation are usually called axiom schemas. An axiom schema is a metaformula such
that every formula having its form may be entered in a derivation. Some derivation systems rely primarily on
axiom schemas; these are called axiomatic systems.

Derive: a a

1 (∀y)y y I
2 a a 1 ∀E

Notice that the sentence on line 1 is not an assumption.

The elimination rule for “ ” is

Identity Elimination (E)

t1 t2 t1 t2

P or P
 P(t1//t2) P(t2//t1)

The notation

Derive: Hda

1 c d Assumption
2 Hca Assumption

3 Hda 1, 2 E

The following three derivations are very similar but not identical:

Derive: (∀x)(Fxh ⊃ Ghx)

1 h e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I

P(t1//t2)

is read ‘P with one or more occurrences of t2 replaced by t1’. Similarly P(t2//t1)
is read ‘P with one or more occurrences of t1 replaced by t2’. Recall that the
closed terms of PLE are the individual constants together with complex terms
such as ‘f(a,b)’ and ‘f(g(a,b),c)’ that contain no variables. Identity Elimination
is a truth-preserving rule because it permits the replacement of one closed term
with another in a sentence only if those closed terms designate the same thing
(t1 t2 says that t1 and t2 do designate the same thing). The following simple
examples illustrate the use of this rule:

where t1 and t2 are closed terms.

590 PREDICATE LOGIC: DERIVATIONS

In the first derivation we replaced, at line 3, both occurrences of ‘e’ in line 2
with ‘h’. In the second derivation we replaced, at line 3, only the second occur-
rence of ‘e’ in line 2 with ‘h’. And in the third derivation we replaced, at line 3,
only the first occurrence of ‘e’ in line 2 with ‘h’. All of these are appropriate
uses of Identity Decomposition.

Derive: (∀x)(Fxe ⊃ Ghx)

1 h e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fye ⊃ Ghy) 1, 2 E
4 Fae ⊃ Gha 3 ∀E
5 (∀x)(Fxe ⊃ Ghx) 4 ∀I

Derive: (∀x)(Fxh ⊃ Gex)

1 h e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Gey) 1, 2 E
4 Fah ⊃ Gea 3 ∀E
5 (∀x)(Fxh ⊃ Gex) 4 ∀I

Derive: Hc

1 (∀y)Hf(a,x) Assumption
2 c f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 E

Note that from lines 1 through 3 we can obtain, by Identity Elimination, not
just ‘Hab ⊃ Wab’ but a host of additional sentences, including those on lines
5 through 8 below:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a b Assumption

4 Hab ⊃ Wab 1, 3 E
5 Wab 2, 4 E

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a b Assumption

4 Hab ⊃ Wab 1, 3 E
5 Hbb ⊃ Wbb 1, 3 E
6 Haa Wbb 1, 3 E
7 Hbb ⊃ Waa 1, 3 E
8 Hba ⊃ Wba 1, 3 E

10.4 THE DERIVATION SYSTEM PDE 591

But these additional sentences do not advance us toward our goal of ‘Wab’.
There are alternative ways of deriving ‘Wab’. Here is one:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a b Assumption

4 Haa 2, 3 E
5 Waa 1, 4 ⊃E
6 Wab 3, 5 E

Consider next these derivations:

Derive: Had

1 c d Assumption
2 Hac Assumption

3 Had 1, 2 E

Derive: (∀y)(Fyh ⊃ Ghy)

1 h e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I

Derive: Hc

1 (∀y)Hf(a,x) Assumption
2 c f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 E

The sentence ‘(a b & b c) ⊃ a c’ says that if a is identical to
b, and b is identical to c, then a is identical to c. As expected, it is a theorem
of PDE. Here is a proof:

Derive: (a b & b c) ⊃ a c

1 a b & b c A / ⊃I

2 a b 1 &E
3 b c 1 &E
4 a c 2, 3 E
5 (a b & b c) ⊃ a c 1–4 ⊃I

In considering this example one might well ask whether the justification for line
4 indicates that we have replaced ‘b’ in line 3 with ‘a’, based on the identity at

592 PREDICATE LOGIC: DERIVATIONS

line 2, or that we replaced ‘b’ in line 2 with ‘c’ based on the identity at line 3.
Fortunately, both replacements are allowed so the justification can be understood
either way.

As we have already seen, sentences of the form t1 t1 are normally
obtained by Identity Introduction, as in

1 b b ⊃ Fb Assumption

2 (∀x)x x I
3 b b 2 ∀E
4 Fb 1, 3 ⊃E

1 b b ⊃ Fb Assumption
2 a b Assumption

3 b b 2, 2 IE
4 Fb 1, 3 ⊃E

In special circumstances we can obtain a sentence of the form a a by Identity
Elimination. This happens when the a of a a already occurs in an accessible
identity sentence. Here is an example:

Identity Elimination allows us, given a sentence of the form t1 t2, to replace
any occurrence of t1 with t2 in any sentence that contains t1, and vice versa.
In our example we have the identity sentence ‘a b’ and that very sentence
contains ‘a’, so we can replace the ‘a’ in ‘a b’ with ‘b’, and we do so at
line 3.

As we saw in Chapter 7, the identity predicate is useful in symbolizing
sentences containing definite descriptions. Consider the argument:

The Roman general who defeated Pompey conquered Gaul.

Julius Caesar is a Roman general, and he defeated Pompey.

Julius Caesar conquered Gaul.

This argument can be symbolized in PLE as:

(∃x)[((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y x]) & Cxg]

Rj & Djp

Cjg

This argument is valid, for if there is one and only one thing that is a Roman
general and defeated Pompey, and if Julius Caesar is a Roman general who
defeated Pompey, then Caesar is the Roman general who defeated Pompey, and

10.4 THE DERIVATION SYSTEM PDE 593

Derive: Cjg
1 (∃x) [((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y x]) & Cxg] Assumption
2 Rj & Djp Assumption

3 ((Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y a]) & Cag A / ∃E

4 (Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y a] 3 &E
5 (∀y)[(Ry & Dyp) ⊃ y a] 4 &E
6 (Rj & Djp) ⊃ j a 5 ∀E
7 j a 2, 6 ⊃E
8 Cag 3 &E
9 Cjg 7, 8 E

10 Cjg 1, 3–9 ∃E

Here is another argument that involves a definite description.

The primary author of the Declaration of Independence was a slave owner.

Thomas Jefferson was the primary author of the Declaration of Independence.

Thomas Jefferson was a slave owner.

The conclusion of this argument can be symbolized as ‘Ot’ where ‘Ox’ is
interpreted as ‘x owns at least one slave’ and ‘t’ designates Thomas Jefferson.
To symbolize the premises we need a way of saying there was one and only
one primary author of the Declaration of Independence. We can do so as
follows:

(∃x)[Px & (∀z)(Pz ⊃ z x)]

We are here using ‘Px’ for ‘x is a primary author of the Declaration of Inde-
pendence’. This sentence of PL can be read as ‘There is at least one thing x
that is a primary author of the Declaration of Independence and each thing z
that is a primary author of the Declaration of Independence is identical to x.’
The full argument can now be symbolized as:

(∃x)([Px & (∀z)(Pz ⊃ z x)] & Ox)

Pt & (∀z)(Pz ⊃ z t)

Ot

We can construct a derivation that establishes that the above argument is valid
in PDE. Here is a start:

is therefore someone who conquered Gaul. We can show this argument is valid
in PDE:

594 PREDICATE LOGIC: DERIVATIONS

Our intent is to derive the final goal using Existential Elimination. If we can
derive ‘Ot’ within the Existential Elimination subderivation we will be able to
move it out of that subderivation because ‘t’ is not the instantiating constant
in our assumption at line 3 (it is for this reason that we picked a constant other
than ‘t’ as our instantiating constant at line 3). ‘Oa’ can be derived immedi-
ately from line 3 by Conjunction Elimination. What remains is to get to a point
where we can use Identity Elimination to infer ‘Ot’ from ‘Oa’ and an appro-
priate identity sentence, either ‘a t’ or ‘t a’.

Derive: Ot

1 (∃x)([Px & (∀z)(Pz ⊃ z x)] & Ox) Assumption
2 Pt & (∀z)(Pz ⊃ z t) Assumption

3 [Pa & (∀z)(Pz ⊃ z a)] & Oa A / ∃E

G Ot
G Ot 1, 2–— ∃E

Derive: Ot

1 (∃x)([Px & (∀z)(Pz ⊃ z x)] & Ox Assumption
2 Pt & (∀z)(Pz ⊃ z t) Assumption

3 [Pa & (∀z)(Pz ⊃ z a)] & Oa A / ∃E

4 Oa 3 &E

G a t
G Ot 4, — E
G Ot 1, 2–— ∃E

Identity sentences are obtainable both from line 2 and from line 3. This sug-
gests two strategies, and both will work. First we will try to obtain ‘a t’. We
start by obtaining ‘(∀z)(Pz ⊃ z t)’ from line 2 by Conjuction Elimination
and then ‘Pa ⊃ a t’ by Universal Elimination. And ‘Pa’ is available from line 3

10.4 THE DERIVATION SYSTEM PDE 595

by two uses of Conjunction Elimination. This will allow us to complete the
derivation:

Derive: Ot

1 (∃x)([Px & (∀z)(Pz ⊃ z x) & Ox) Assumption
2 Pt & (∀z)(Pz ⊃ z t) Assumption

3 [Pa & (∀z)(Pz ⊃ z a)] & Oa A / ∃E

4 Oa 3 &E
5 (∀z)(Pz ⊃ z t) 2 &E
6 Pa ⊃ a t 5 ∀E
7 Pa & (∀z)(Pz ⊃ z a) 3 &E
8 Pa 7 &E
9 a t 6, 8 ⊃E

10 Ot 4, 9 E
11 Ot 1, 2–10 ∃E

We could also have completed our derivation by deriving the identity sentence
‘t a’ as follows:

Derive: Ot

1 (∃x)([Px & (∀z)(Pz ⊃ z x)] & Ox Assumption
2 Pt & (∀z)(Pz ⊃ z t) Assumption

3 [Pa & (∀z)(Pz ⊃ z a)] & Oa A / ∃E

4 Oa 3 &E
5 Pa & (∀z)(Pz ⊃ z a) 3 &E
6 (∀z)(Pz ⊃ z a) 5 &E
7 Pt ⊃ t a 6 ∀E
8 Pt 2 &E
9 t a 7, 8 ⊃E

10 Ot 4, 9 E
11 Ot 1, 2–10 ∃E

When we formulated Identity Elimination we did so in a way that allows
for the presence of complex terms in PLE. Two of our quantifier rules, Exis-
tential Introduction and Universal Elimination, need to be modified so that
they too allow for the presence of complex terms. The other rules of PD func-
tion without modification as part of PDE. We recast Existential Introduction
and Universal Elimination as follows:

Existential Introduction (∃I)

P(t/x)

 (∃x)P

where t is any closed term

596 PREDICATE LOGIC: DERIVATIONS

Consider the following simple derivations:

Universal Elimination (∀E)

(∀x)P

 P(t/x)

where t is any closed term

Derive: (∃z)Fz

1 (∀y)Fy Assumption
2 Fa 1 ∀E

3 (∃z)Fz 2 ∃I

Derive: (∃z)Fg(z)

1 (∀y)Fy Assumption
2 Fg(a) 1 ∀E

3 (∃z)Fg(z) 2 ∃I

In the first derivation ‘Fa’ is the substitution instance associated with both the
use of Universal Elimination and the use of Existential Introduction. In the ter-
minology of previous sections, ‘a’ is the instantiating constant for these uses of
the two rules. In the second derivation ‘Fg(a)’ is the substitution instance asso-
ciated with both the use of Universal Elimination and the use of Existential
Introduction. However, the instantiating term in the use of Universal Elimina-
tion is ‘g(a)’ (we have replaced ‘y’ with ‘g(a)’) whereas the instantiating term in
the use of Existential Introduction is ‘a’, not ‘g(a)’ (we replaced the constant ‘a’
with the variable ‘z’). Since the individual term used to form substitution
instances associated with the quantifier rules is sometimes an individual constant
and sometimes a closed complex term, we will hereafter speak, with reference
to substitution instances and uses of Existential Introduction and Universal Elim-
ination, of the instantiating term rather than the instantiating constant.

But we will not modify Existential Elimination and Universal Intro-
duction so as to allow substitution instances used in these rules to be formed
from complex terms and so we will continue to talk, with reference to these
latter rules, only of the instantiating constant. To understand why we will not
modify Universal Introduction to allow for complex instantiating terms, con-
sider the following attempt at a derivation:

Derive: (∀x)Ex

1 (∀x)Ed(x) Assumption
2 Ed(a) 1 ∀E

3 (∀x)Ex 2 ∀I MISTAKE!

10.4 THE DERIVATION SYSTEM PDE 597

If this were a legitimate derivation in PDE then the following argument would
be valid in PDE:

(∀x)Ed(x)

(∀x)Ex

We do not want this argument to be valid in PDE. If our UD is the set of positive
integers and we interpret ‘Ex’ as ‘x is even’ and ‘d(x)’ as ‘x times 2’, the prem-
ise says that each positive integer is such that 2 times that integer is even, which
is true. The conclusion says that each positive integer is even, which is false.
The problem is in the attempted inference of line 3 from line 2. The expres-
sion ‘d(a)’ cannot designate an arbitrarily selected member of the UD; rather
it can refer only to a member of the UD that is the value of the function d

for some member a of the UD. On the interpretation given previously, for
example, ‘d(a)’ can only refer to even numbers.

For similar reasons, we continue to require that in using Existential
Elimination the instantiating term must be an individual constant, not a closed
complex term. Here is a failed derivation that would be allowed if we dropped
this requirement:

Derive: (∃x)Od(x)

1 (∃x)Ox Assumption

2 Od(a) A / ∃E

3 (∃x)Od(x) 2 ∃I
4 (∃x)Od(x) 1, 2–3 ∃E MISTAKE!

To see why we do not want this derivation to go through suppose we again
use the set of positive integers as our UD and interpret ‘Ox’ as ‘x is odd’
and ‘d(x)’ as ‘x times 2’. Then the primary assumption says that there is a
positive integer that is odd, which is true. The sentence on line 4 says there
is an integer that is 2 times some positive integer and that is odd, and this
is false. The problem is that the assumption on line 2 contains information
about the individual that is assumed to have property O—namely that it is
the value of the function d for some member of the UD, while the existen-
tially quantified sentence on line 1 does not contain this information. The
requirement that the assumption for an Existential Elimination subderiva-
tion be a substitution instance formed from a constant guarantees that the
assumption does not contain information that is absent from the existentially
quantified sentence. Hence we continue to require that in using Existential
Elimination the assumed substitution instance must be formed using an
individual constant.

Having said that, it is important to note that while for Universal Intro-
duction and Existential Elimination the instantiating term must be a constant,

598 PREDICATE LOGIC: DERIVATIONS

the substitution instances associated with these rules may contain complex
terms. For example, the following is a correctly done derivation:

Derive: (∀y)Ed(y)

1 (∀x)Ex Assumption

2 Ed(a) 1 ∀∃

3 (∀y)Ed(y) 2 ∀I

Here ‘a’ is the instantiating constant for the use of Universal Introduction: In
moving from line 2 to line 3 we replaced ‘a’ with ‘y’. But ‘d(a)’ is the instan-
tiating term associated with Universal Elimination. In moving from line 1 to
line 2 we replace ‘x’ with ‘d(a)’. So ‘Ed(a)’ is a substitution instance of ‘(∀x)Ex’
because it is the result of replacing every occurrence of ‘x’ in ‘Ex’ with ‘d(a)’
and ‘Ed(a)’ is a substitution instance of ‘(∀y)Ed(y)’ because it is the result of
replacing every occurrence of ‘y’ in ‘Ed(y)’ with ‘a’.

And the following is an allowed use of Existential Elimination:

Derive:

1 (∃x)Fg(x) Assumption

2 Fg(b) A / ∃E

3 (∃z)Fz 2 ∃I
4 (∃z)Fz 1, 2–3 ∃E

Here ‘Fg(b)’ is a substitution instance of ‘(∃x)Fg(x)’ and also a substi-
tution instance of ‘(∃z)Fz’. In its role as a substitution instance of ‘(∃x)Fg(x)’,
the instantiating term is ‘b’; in its role as a substitution instance of ‘(∃z)Fz’,
‘g(b)’ is the instantiating term.

Here are the quantifier rules, modified as appropriate for the system PDE.

Universal Elimination (∀E)

(∀x)P

 P(t/x)

Existential Introduction (∃I)

P(t/x)

 (∃x)P

where t is a closed term

Universal Introduction (∀I)

P(a/x)

 (∀x)P

provided that:
(i) a does not occur in an open

assumption.
(ii) a does not occur in (∀x)P.

Existential Elimination (∃E)

(∃x)P
P(a/x)

Q
 Q

provided that:
(i) a does not occur in an open

assumption.
(ii) a does not occur in (∃x)P.

(iii) a does not occur in Q.

where a is an individual constant.

10.4 THE DERIVATION SYSTEM PDE 599

The definitions of the syntactic properties of sentences and sets of
sentences in PDE (equivalence, validity, etc.) are all carried over from PD,

substituting ‘PDE’ for ‘PD’ in each of the definitions.
In the rest of this section we will illustrate the use of the quantifier

rules, as modified for PDE, by doing a series of derivations that establish various
syntactic properties of sentences and sets of sentences of PLE.

ARGUMENTS

We begin by showing that the following argument is valid in PDE.

(∀x)(∀y)(Fx ⊃ Gxy)

(∃x)Ff(x)

(∃x)(∃y)Gxy

Since the second premise is an existentially quantified sentence we will use Exis-
tential Elimination as our primary strategy:

Derive: (∃x)(∃y)Gxy

1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
2 (∃x)Ff(x) Assumption

3 Ff(a) A / ∃E

G (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— ∃E

Derive: (∃x)(∃y)Gxy

1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
2 (∃x)Ff(x) Assumption

3 Ff(a) A / ∃E

4 (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
5 Ff(a) ⊃ Gf(a)b 4 ∀E

G (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— 3E

Two applications of Universal Elimination produce a material conditional that
has ‘Ff(a)’ as its antecedent:

600 PREDICATE LOGIC: DERIVATIONS

We can derive ‘Gf(a)b’ from lines 3 and 5 by Conditional Elimination, and
then we can derive our current goal with two applications of Existential
Introduction:

Derive: (∃x)(∃y)Gxy

1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
2 (∃x)Ff(x) Assumption

3 Ff(a) A / ∃E

4 (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
5 Ff(a) ⊃ Gf(a)b 4 ∀E
6 Gf(a)b 3, 6 ⊃E
7 (∃y)Gf(a)y 6 ∃I
8 (∃x)(∃y)Gxy 7 ∃I
9 (∃x)(∃y)Gxy 2, 3–8 ∃E

Both Universal Elimination and Existential Introduction allow the associated
substitution instance to be formed from a closed complex term, as we have
done here (the substitution instance on line 4 of the universally quantified sen-
tence on line 1 is formed using the complex term ‘f(a)’, as is the substitution
instance on line 7 of the existentially quantified sentence on line 8).

We next show that the following argument is valid in PDE:

a g(b)
(∀x)(Fxa ⊃ (∀y)Gyx)
(∃y)Fyg(b)

(∃x)(∀y)Gyx

We will proceed much as in the previous example, using Existential Elimina-
tion as our primary strategy. But this example also requires the use of Identity
Elimination:

Derive: (∃x)(∀y)Gyx

1 a g(b) Assumption
2 (∀x)(Fxa ⊃ (∀y)Gyx) Assumption
3 (∃y)Fyg(b) Assumption

4 Fcg(b) A / ∃E

5 Fca ⊃ (∀y)Gyc 2 ∀E
6 Fca 1, 4 E
7 (∀y)Gya 5, 6 ⊃E
8 (∃x)(∀y)Gyx 7 ∃I
9 (∃x)(∀y)Gyx 3, 4–8 ∃E

At line 6 we replaced ‘g(b)’ in ‘Fcg(b)’ with ‘a’.

10.4 THE DERIVATION SYSTEM PDE 601

THEOREMS

The sentence ‘(∀z)(∀y)(z y ⊃ y z)’ says of each pair of things that if the
first is identical to the second, then the second is identical to the first. Our der-
ivation will end with two uses of Universal Introduction:

Derive: (∀z)(∀y)(z y ⊃ y z)

G b c ⊃ c b
G (∀y)(b y ⊃ y b) — ∀I
G (∀z)(∀y)(z y ⊃ y z) — ∀I

It is important that we use two different constants to form the goal at the third
line from the bottom. If we had picked ‘b b ⊃ b b’ as our goal we would
not be able to derive ‘(∀y)(b y ⊃ y b)’ by Universal Introduction, as the
second restriction on that rule prohibits the instantiating term from occurring
in the sentence that is derived by the rule. We will use Conditional Introduc-
tion to derive the goal ‘b c ⊃ c b’:

Derive: (∀z)(∀y)(z y ⊃ y z)

1 b c A / ⊃I

G c b
G b c ⊃ c b 1–— ⊃I
G (∀y)(b y ⊃ y b) — ∀I
G (∀z)(∀y)(z y ⊃ y z) — ∀I

We can finish the derivation by using Identity Introduction to derive ‘(∀y)y y’
(or any other sentence of this form), then deriving either ‘b b’ or ‘c ‘c’—
it doesn’t matter which—by Universal Elimination and then using Identity
Elimination to derive ‘c b’:

Derive: (∀z)(∀y)(z y ⊃ y z)

1 b c A / ⊃I

2 (∀x)x x I
3 c c 2 ∀E
4 c b 1, 3 E
5 b c ⊃ c b 1–4 ⊃I
6 (∀y)(b y ⊃ y b) 5 ∀I
7 (∀z)(∀y)(z y ⊃ y z) 6 ∀I

Once we have ‘c c’ at line 3 we can use Identity Elimination, replacing the
second occurrence of ‘c’ in ‘c c’ with ‘b’, based on the identity at line 1.

602 PREDICATE LOGIC: DERIVATIONS

The sentence ‘(∀x)(∀y)(∀z)[(x f(z) & y f(z)) ⊃ x y]’ is also a
theorem of PDE. We will work from the bottom up, anticipating three applica-
tions of Universal Introduction:

Derive: (∀x)(∀y)(∀z)[(x f(z) & y f(z)) ⊃ x y]

1

G [(a f(c) & b f(c)) ⊃ a b]
G (∀z)[(a f(z) & b f(z)) ⊃ a b] — ∀I
G (∀y)(∀z)[(a f(z) & y f(z)) ⊃ a y] — ∀I
G (∀x)(∀y)(∀z)[(x f(z) & y f(z)) ⊃ x y] — ∀I

Our current goal is a material conditional, so we will try to obtain it by Condi-
tional Introduction, assuming ‘(a f(c) & b f(c))’ and deriving ‘a b’. The
latter can be derived using Conjunction Elimination and Identity Elimination:

1 (a f(c) & b f(c)) A/ ⊃ I

2 a f(c) 1 &E
3 b f(c) 1 &E
4 a b 2, 3 E
5 [(a f(c) & b f(c)) ⊃ a b] 1–4 ⊃E
6 (∀z)[(a f(z) & b f(z)) ⊃ a b] 5 ∀I
7 (∀y)(∀z)[(a f(z) & y f(z)) ⊃ a y] 6 ∀I
8 (∀x)(∀y)(∀z)[(x f(z) & y f(z)) ⊃ x y] 7 ∀I

INCONSISTENCY

The set {(∀x)(Fx ∨ (∃y)Gxy), ~ Fg(a,b), g(a,b) c, ~ (∃y)Gcy} is inconsistent
in PDE. To show this we need to derive a sentence Q and its negation ~ Q. We
will use ‘~ Fg(a,b)’ as ~ Q and we will use Disjunction Elimination as our pri-
mary strategy:

Derive: Fg(a,b), ~ Fg(a,b)

1 (∀x)(Fx ∨ (∃y)Gxy) Assumption
2 ~ Fg(a,b) Assumption
3 g(a,b) c Assumption
4 ~ (∃y)Gcy Assumption

5 Fc ∨ (∃y)Gcy 1 ∀E
6 Fc A / ∨E

7 Fg(a,b) 3, 6 E

8 (∃y)Gcy A / ∨E

G Fg(a,b)
G Fg(a,b) 5, 6–7, 8–— ∨E

~ Fg(a,b) 2 R

10.4 THE DERIVATION SYSTEM PDE 603

Our remaining task is to derive ‘Fg(a,b)’. Doing so is not difficult because both
‘~ (∃y)Gcy’ and ‘(∃y)Gcy’ are available to us, at lines 4 and 8, respectively. So
we will use Negation Elimination to complete the derivation:

Derive: Fg(a,b), ~ Fg(a,b)

1 (∀y)(Fx ∨ (∃y)Gxy) Assumption
2 ~ Fg(a,b) Assumption
3 g(a,b) c Assumption
4 ~ (∃y)Gcy Assumption

5 Fc ∨ (∃y)Gcy 1 ∀E
6 Fc A / ∨E

7 Fg(a,b) 3, 6 E

8 (∃y)Gcy A / ∨E

9 ~ Fg(a,b) A / ~ E

10 (∃y)Gcy 8 R
11 ~ (∃y)Gcy 4 R
12 Fg(a,b) 9–11 ~ E
13 Fg(a,b) 5, 6–7, 8–12 ∨E
14 ~ Fg(a,b) 2 R

There is an important difference between PD and our latest system,
PDE. Although both are extensions of PD in the sense that each adds new rules
to PD, PD is not stronger than PD. Everything derivable in PD is derivable
in PD. However, PDE, with two new identity rules and modifications of two of
PD’s quantifier rules, allows us to derive results in PDE that are not derivable
in PD. The previous examples in this section involving the identity predicate
and complex terms illustrate this.

However, it should be clear that we can augment the rules of PDE with
the additional rules of PD to form a derivation system PDE that is equiva-
lent to PDE. Here is a short derivation in PDE :

Derive: ~ (∃x)f(x) x

1 (∀x)(∀y)(f(x) y ⊃ ~ f(y) x) Assumption

2 f(a) a A / ~ I

3 (∀y)(f(a) y ⊃ ~ f(y) a) 1 ∀E
4 f(a) a ⊃ ~ f(a) a) 3 ∀E
5 ~ f(a) a 2, 4 ⊃E
6 f(a) a 2 R
7 ~ f(a) a 2–6 ~ I
8 (∀x) ~ f(x) x 7 ∀I
9 ~ (∃x)f(x) x 8 QN

604 PREDICATE LOGIC: DERIVATIONS

10.4E EXERCISES

1. Show that each of the following is a theorem in PLE.

a. a b ⊃ b a
*b. (a b & b c) ⊃ a c

c. (~ a b & b c) ⊃ ~ a c
*d. ~ a b ~ b a

e. ~ a c ⊃ (~ a b ∨ ~ b c)

2. Show that each of the following is valid in PDE.

a. a b & ∼ Bab

∼ (∀x)Bxx

*b. Ge ⊃ d e

Ge ⊃ He

Ge ⊃ Hd

c. (∀z)[Gz ⊃ (∀y)(Ky ⊃ Hzy)]

(Ki & Gj) & i j

Hii

*d. (∃x)(Hx & Mx)

Ms & ∼ Hs

(∃x)[(Hx & Mx) & ∼ x s]

e. a b

Ka ∨ ∼ Kb

3. Show that each of the following is a theorem in PDE.

a. (∀x)(x x ∨ ∼ x x)
*b. (∀x)(∀y)(x x & y y)

c. (∀x)(∀y)(x y y x)
*d. (∀x)(∀y)(∀z)[(x y & y z) ⊃ x z]

e. ∼ (∃x) ∼ x x

4. Symbolize each of the following arguments in PLE and show that each argu-
ment is valid in PDE.

a. The number 2 is not identical to 4. The numbers 2 and 4 are both even num-
bers. Therefore there are at least two different even numbers.

*b. Hyde killed some innocent person. But Jekyll is Hyde. Jekyll is a doctor. Hence
some doctor killed some innocent person.

c. Shakespeare didn’t admire himself, but the queen admired Bacon. Thus
Shakespeare isn’t Bacon since Bacon admired everybody who was admired by
somebody.

*d. Rebecca loves those and only those who love her. The brother of Charlie loves
Rebecca. Sam is Charlie’s brother. So Sam and Rebecca love each other.

10.4 THE DERIVATION SYSTEM PDE 605

e. Somebody robbed Peter and paid Paul. Peter didn’t rob himself. Paul didn’t
pay himself. Therefore the person who robbed Peter and paid Paul was nei-
ther Peter nor Paul.

5. Which of the following illustrate mistakes in PDE? Explain what each mistake
is.

a. 1 (∃x)Sx Assumption

2 Sg(f) Assumption

3 (∃x)Sg(x) 2 ∃I
4 (∃x)Sg(x) 1, 2–3 ∃E

*b. 1 (∃x)Sg(x,x) Assumption

2 Sg(i,i) Assumption

3 (∃x)Sg(i,x) 2 ∃I
4 (∃x)Sg(i,x) 1, 2–3 ∃E

c. 1 (∃x)Hxg(x) Assumption

2 Heg(e) A / ∃E

3 (∃y)Hyg(y) 2 ∃I
4 (∃y)Hyg(y) 1, 2–3 ∃E

*d. 1 (∀x)Rf(x) Assumption

2 Rf(a) 1 ∀E
3 (∀z)Rf(z) 2 ∀I

e. 1 (∀x)Lxxx Assumption

2 Lf(a,a)a 1 ∀E
3 (∀x)Lf(x,x)x 2 ∀I

*f. 1 (∀x)Mx Assumption

2 Mf(f(a)) 1 ∀E
3 (∃x)Mf(x) 2 ∃I

g. 1 (∀x)Rf(x,x) Assumption

2 Rf(c,c) 1 ∀E
3 (∀y)Ry 2 ∀I

*h. 1 (∀x)Jx Assumption

2 Jf(f(a)) 1 ∀E
3 (∃y)Jf(f(y)) 2 ∃I

606 PREDICATE LOGIC: DERIVATIONS

6. Show that each of the following is a theorem in PDE.

a. (∀x)(∃y)f (x) y
*b. (∀x)(∀y)(∀z)[(f(x) g(x,y) & g(x,y) h(x,y,z)) ⊃ f(x) h(x,y,z)]

c. (∀x)Ff(x) ⊃ (∀x)Ff(g(x))
*d. (∀x)[∼ f(x) x ⊃ (∀y)(f(x) y ⊃ ∼ x y)]

e. (∀x)(f(f(x)) x ⊃ f(f(f(f(x)))) x)
*f. (∀x)(∀y)(∀z)[(f(g(x)) y & f(y) z) ⊃ f(f(g(x))) z]
g. (∀x)(∀y)[(f(x) y & f(y) x) ⊃ x f(f(x))]

7. Show that each of the following is valid in PDE.

a. (∀x)(Bx ⊃ Gxf(x))

(∀x)Bf(x)

(∀x)Gf(x)f(f(x))

*b. (∀x)(Kx ∨ Hg(x))

(∀x)(Kg(x) ∨ Hg(g(x)))

c. (∀x)(∀y)(f(x) y ⊃ Myxc)

∼ Mbac & ∼ Mabc

∼ f (a) b

*d. ∼ (∃x)Rx

(∀x) ∼ Rf(x,g(x))

e. (∃x)(∀y)(∀z)Lxyz

(∃x)Lxf(x)g(x)

*f. (∀x)[∼ Lxf(x) ∨ (∃y)Ng(y)]

(∃x)Lf(x)f(f(x)) ⊃ (∃x)Ng(y)

g. (∀x)[Zx ⊃ (∀y)(∼ Dxy Hf(f(y)))]

(∀x)(Zx & ∼ Hx)

(∀x)Df(x)f(x)

i. 1 (∀x)Jx Assumption

2 Jf(g(a,b)) 1 ∀E
3 (∃x)Jf(g(x,b)) 2 ∃I

*j. 1 (∀x)Lx Assumption

2 Lf(a,a) 1 ∀E
3 (∀x)Lf(a,x) 2 ∀I

10.4 THE DERIVATION SYSTEM PDE 607

*h. (∀x)(∀y)(∃z)Sf(x)yz

(∀x)(∀y)(∀z)(Sxyz ⊃ ∼ (Cxyz ∨ Mzyx))

(∃x)(∃y) ∼ (∀z)Mzg(y)f(g(x))

GLOSSARY 2

DERIVABILITY IN PD: A sentence P of PL is derivable in PD from a set of sentences
of PL if and only if there is a derivation in PD in which all the primary assumptions
are members of and P occurs within the scope of only the primary assumptions.

VALIDITY IN PD: An argument of PL is valid in PD if and only if the conclusion of
the argument is derivable in PD from the set consisting of the premises. An argu-
ment of PL is invalid in PD if and only if it is not valid in PD.

THEOREM IN PD: A sentence P of PL is a theorem in PD if and only if P is derivable
in PD from the empty set.

EQUIVALENCE IN PD: Sentences P and Q of PL are equivalent in PD if and only if Q
is derivable in PD from {P} and P is derivable in PD from {Q}.

INCONSISTENCY IN PD: A set of sentences of PL is inconsistent in PD if and only if
there is a sentence P of PL such that both P and ~ P are derivable in PD from . A
set of sentences of PL is consistent in PD if and only if it is not inconsistent in PD.

2Similar definitions hold for the derivation systems PD , PDE, and PDE .

608 PREDICATE LOGIC: METATHEORY

Chapter 11
PREDICATE LOGIC:

METATHEORY

11.1 SEMANTIC PRELIMINARIES FOR PL

We have been tacitly assuming that our semantic and syntactic concepts of pred-
icate logic coincide. For example, we have assumed that a sentence P of PL is
quantificationally true if and only if P is a theorem in PD, and also that P is
quantificationally true if and only if {∼ P} has a closed truth-tree. In this chap-
ter we shall show that our semantic and syntactic concepts do coincide. We shall
establish four major results: the soundness and completeness of the natural
deduction systems PD, PD , and PDE, and the soundness and completeness of
the truth-tree method developed in Chapter 9. The results we establish are part
of the metatheory of predicate logic.

In our proofs of the adequacy of the natural deduction systems and
the tree method, we shall use some fundamental semantic results that may seem
obvious but that nevertheless must be proved. The purpose of this section is to
establish these results. One may skim over this section on the first reading
without working through all the proofs but should keep in mind that later
metatheoretic proofs depend on the results presented here.

Given any formula P, variable x, and constant a, let P(a x) be the for-
mula that results from replacing every free occurrence of x in P with a. Our
first result establishes that any variable assignment d will treat P(a x) exactly

11.1 SEMANTIC PRELIMINARIES FOR PL 609

as d[I(a) x] treats P. If d satisfies P(a x), then the variable assignment that is
just like d except that it assigns the denotation of a to x will satisfy P, and vice
versa. This should not be surprising, for if x is used to refer to exactly the same
thing as a, we would expect P and P(a x) to behave the same way.

11.1.1: Let P be a formula of PL, let P(a x) be the formula that
results from replacing every free occurrence of x in P with an
individual constant a, let I be an interpretation, and let d be a
variable assignment for I. Then d satisfies P(a x) on I if and only if
d[I(a) x] satisfies P on I.

To prove the result, we shall use mathematical induction on the number of
occurrences of logical operators—truth-functional connectives and quanti-
fiers—that occur in P.

Basis clause: If P is a formula that contains zero occurrences of logical
operators, then d satisfies P(a x) if and only if d[I(a) x] satisfies P.

Proof of basis clause: If P contains zero occurrences of logical
operators, then P is either a sentence letter or a formula of the form
At1 . . . tn, where A is a predicate and t1, . . . , tn are individual con-
stants or variables. If P is a sentence letter, then P(a x) is simply P—
a sentence letter alone does not contain any variables to be replaced.
d satisfies P(a x), then, if and only if I(P) T. And d[I(a)/x] satisfies
P if and only if I(P) T. So d satisfies P(a x) if and only if d[I(a) x]
satisfies P.

If P has the form At1 . . . tn, then P(a x) is At1 . . . tn , where
t i is a if t i is x and t i is just t i otherwise. By the definition of satisfaction,

a. d satisfies At1 . . . tn if and only if denI,d(t1), denI,d(t2),
. . . , denI,d(tn) is a member of I(A).

b. d[I(a) x] satisfies At1 . . . tn if and only if denI,d[I(a) x] (t1),
denI,d[I(a) x](t2), . . . , denI,d[I(a) x](tn) is a member of
I(A).

But now we note that

c. denI,d(t1), denI,d(t2), . . . , denI,d(tn)
 denI,d[I(a) x] (t1), denI,d[I(a) x](t2), . . . , denI,d[I(a)/x](tn) .

Consider: If t i is a constant, then t i is t i and so denI,d(t i) I(t i) and
denI,d[I(a) x](t i) I(t i). If t i is any variable other than x, then t i is t i

and so denI,d(t i) d(t i) d[I(a) x](t i) denI,d[I(a) x](t i)—the assign-
ment of I(a) to x in the variable assignment does not affect the value
assigned to t i in this case. If t i is the variable x, then t i is a and denI,d (a)
 I(a) d[I(a) x](x) denI,d[I(a) x](x). (The variant ensures that
the denotations of x and of a coincide.)

Because the n-tuples are the same n-tuple, we conclude from (a) and
(b) that d satisfies At1 . . . tn if and only if d[I(a) x] satisfies At1 . . . tn.

The basis clause—in particular, the case where an atomic formula has
the form At1 . . . tn—is the crux of our proof. Having shown that at the atomic
level the thesis we are proving holds, it is straightforward to show that the addi-
tion of connectives and quantifiers to build larger formulas does not change
matters. The inductive step in the proof of 11.1.1 is

Inductive step: If every formula P that contains k or fewer occurrences
of logical operators is such that d satisfies P(a x) if and only if
d[I(a) x] satisfies P, then every formula P that contains k 1 occur-
rences of logical operators is such that d satisfies P(a x) if and only if
d[I(a) x] satisfies P.

Proof of inductive step: Letting k be an arbitrary positive integer, we
assume that the inductive hypothesis holds—that our claim is true of
every formula with k or fewer occurrences of logical operators. We
must show that it follows that the claim is also true of every formula P
with k 1 occurrences of logical operators. We consider each form
that P may have.

Case 1: P has the form ∼ Q. Then P(a x) is ∼ Q(a x), the
negation of Q(a x) (that is, any replacements of x that were made had
to be made within Q). By the definition of satisfaction,

a. d satisfies ∼ Q(a x) if and only if it does not satisfy Q(a x).

Because Q(a x) contains fewer than k 1 occurrences of logical oper-
ators, it follows from the inductive hypothesis that

b. d does not satisfy Q(a x) if and only if d[I(a) x] does not
satisfy Q.

And, by the definition of satisfaction,

c. d[I(a) x] does not satisfy Q if and only if d[I(a) x] does
satisfy ∼ Q.

So, by (a)–(c), d satisfies ∼ Q(a x) if and only if d[I(a) x] satisfies ∼ Q.

Case 2: P has the form Q & R. Then P(a x) is

Q(a x) & R(a x)

—all replacements of x occurred within Q and R. By the definition of
satisfaction,

a. d satisfies Q(a x) & R(a x) if and only if d satisfies
Q(a x) and d satisfies R(a x).

610 PREDICATE LOGIC: METATHEORY

11.1 SEMANTIC PRELIMINARIES FOR PL 611

Both conjuncts contain fewer than k 1 occurrences of logical oper-
ators so, by the inductive hypothesis,

b. d satisfies Q(a x) if and only if d[I(a) x] satisfies Q.

c. d satisfies R(a x) if and only if d[I(a) x] satisfies R.

By the definition of satisfaction,

d. d[I(a) x] satisfies both Q and R if and only if d[I(a) x]
satisfies Q & R.

By (a)–(d), then, d satisfies Q(a x) & R(a/x) if and only if
d[I(a) x] satisfies Q & R.

Cases 3–5: The proofs for the case in which P has one of the
forms Q ∨ R, Q ⊃ R, and Q R are similar to that of Case 2 and are
left as exercises.

Case 6: P has the form (∀y)Q. We must consider two possi-
bilities. If y is not the variable x that a is replacing in (∀y)Q, then
P(a x) is (∀y)Q(a x)—all replacements of x are made within Q. By
the definition of satisfaction,

a. d satisfies (∀y)Q(a x) if and only if, for every member u
of the UD, d[u y] satisfies Q(a x).

Because Q contains fewer than k 1 occurrences of logical operators,
it follows from the inductive hypothesis that for every member u of
the UD,

b. d[u y] satisfies Q(a x) if and only if d[u y, I(a) x]
satisfies Q.

Each variant d[u y, I(a) x] is identical to d[I(a) x, u y] because x and
y are not the same variable, and hence neither of the assignments
within the brackets can override the other. So every member u of the
UD is such that

c. d[u y, I(a) x] satisfies Q if and only if d[I(a) x, u/y]
satisfies Q.

And, by the definition of satisfaction again,

d. Every member u of the UD is such that d[I(a) x, u y]
satisfies Q if and only if d[I(a) x] satisfies (∀y)Q.

So, by (a)–(d), in the case where y is not the variable x that a is replac-
ing, d satisfies (∀y)Q(a x) if and only if d[I(a) x] satisfies (∀y)Q.

612 PREDICATE LOGIC: METATHEORY

If P is (∀x)Q, where x is the variable that a is replacing, then
P(a x) is also (∀x)Q. Because a replaces only free occurrences of x in
P and x does not occur free in P, no replacements are made within Q.
By the definition of satisfaction,

a. d satisfies (∀x)Q (which is our P(a x)) if and only if, for
every member u of the UD, d[u x] satisfies Q.

b. d[I(a) x] satisfies (∀x)Q (which is our P) if and only if,
for every member u of the UD, d[I(a) x, u x] satisfies Q.

What is d[I(a) x, u x]? This variable assignment is just d[u x]—the
first assignment made to x within the brackets is overridden by the
second. So

c. Every member u of the UD is such that d[I(a) x, u x]
satisfies Q if and only if every member u of the UD is
such that d[u x] satisfies Q.

Therefore, by (a)–(c), d[I(a) x] satisfies (∀x)Q if and only if d satisfies
(∀x)Q.

Case 7: P has the form (∃y)Q. Again we consider two possi-
bilities. If y is not the variable x that a is replacing, then P(a x) is
(∃y)Q(a x). By the definition of satisfaction,

a. d satisfies (∃y)Q(a x) if and only if, for some member u
of the UD, d[u/y] satisfies Q(a x).

By the inductive hypothesis, because Q(a x) contains fewer than k 1
occurrences of logical operators,

b. d[u y] satisfies Q(a x) if and only if d[u y, I(a) x]
satisfies Q.

Because y and x are different variables, d[u y, I(a) x] is the same vari-
able assignment as d[I(a) x, u y]. So

c. d[u y, I(a) x] satisfies Q(a x) if and only if
d[I(a) x, u y] satisfies Q,

and by the definition of satisfaction,

d. d[I(a) x, u y] satisfies Q if and only if d[I(a) x] satisfies
(∃y)Q.

It follows from (a)–(d) that in the case where y and x are different
variables, d satisfies (∃y)Q(a x) if and only if d[I(a) x] satisfies (∃y)Q.

11.1 SEMANTIC PRELIMINARIES FOR PL 613

If P is (∃x)Q, where x is the variable that a is replacing, then
P(a x) is (∃x)Q—no replacements are made within Q because x is not
free in (∃x)Q. So we must show that d[I(a) x] satisfies (∃x)Q if and
only if d satisfies (∃x)Q. By the definition of satisfaction,

a. d[I(a) x] satisfies (∃x)Q if and only if, for some member
u of the UD, d[I(a) x, u x] satisfies Q.

d[I(a) x, u x] is just d[u x]—the second assignment to x overrides
the first—and so

b. d[I(a) x, u x] satisfies Q if and only if d[u x] satisfies Q.

By the definition of satisfaction,

c. d[u x] satisfies Q if and only if d satisfies (∃x)Q.

Therefore, by (a)–(c), d[I(a) x] satisfies (∃x)Q if and only if d satis-
fies (∃x)Q.

With the basis clause and the inductive step established, the conclusion of the
argument is also established—every formula P is such that d satisfies P(a x) on
I if and only if d[I(a)/x] satisfies P on I. And that completes the proof of result
11.1.1.

The second result will enable us to prove a claim that was made in
Chapter 8: that for any interpretation and any sentence of PL, either all vari-
able assignments satisfy the sentence or none do. We used this claim in defin-
ing truth and falsehood for sentences: A sentence is true on an interpretation
if it is satisfied by all variable assignments and false if it is satisfied by none.
The reason this claim turns out to be true is that there are no free variables
in sentences. Result 11.1.2 assures us that only the values that a variable
assignment assigns to the variables that are free in a formula play a role in
determining whether the formula is satisfied:

11.1.2: Let I be an interpretation, d a variable assignment for I, and
P a formula of PL. Then d satisfies P on I if and only if P is satisfied
on I by every variable assignment that assigns the same values to the
free variables in P as does d.

Proof: Let I be an interpretation, d a variable assignment for I, and P
a formula of PL. We shall prove 11.1.2 by mathematical induction on
the number of occurrences of logical operators in P.

Basis clause: If P is a formula that contains zero occurrences of logical
operators, then d satisfies P if and only if P is satisfied by every variable
assignment that assigns the same values to the free variables in P as
does d.

614 PREDICATE LOGIC: METATHEORY

Proof of basis clause: If P contains zero occurrences of logical
operators, then P is either a sentence letter or a formula of the form
At1 . . . tn. If P is a sentence letter, then any variable assignment sat-
isfies P on I if and only if I(P) T. Therefore d satisfies P if and only
if every variable assignment that assigns the same values to the free vari-
ables in P as d satisfies P.

If P has the form At1 . . . tn, then by the definition of
satisfaction,

a. d satisfies P if and only if denI,d(t1), denI,d(t2), . . . ,
denI,d(tn) is a member of I(A).

And where d is a variable assignment that assigns the same values to
the free variables in P as does d,

b. d satisfies P if and only if denI,d (t1), denI,d (t2), . . . ,
denI,d (tn) is a member of I(A).

But now we note that

c. denI,d(t1), denI,d(t2), . . . , denI,d(tn)
 denI,d (t1), denI,d (t2), . . . , denI,d (tn) .

For if t i is a constant, then denI,d(t i) I(t i) and denI,d (t i) I(t i). If
t i is a variable, then t i is free in At1 . . . tn and is therefore by stipulation
assigned the same value by d as it is assigned by d. So denI,d(t i) d(t i)
 d (t i) denI,d (t i). Hence, by (a)–(c), we conclude that d satisfies
At1 . . . tn if and only if every variable assignment d that assigns the
same values to the free variables in At1 . . . tn as d satisfies At1 . . . tn.

Inductive step: If every sentence P that contains k or fewer occurrences
of logical operators is such that d satisfies P on I if and only if P is sat-
isfied by every variable assignment that assigns the same values to the
free variables in P as d, then every sentence P that contains k 1
occurrences of logical operators is such that d satisfies P on I if and
only if P is satisfied by every variable assignment that assigns the same
values to the free variables in P as d.

Proof of inductive step: Assume that, for an arbitrary positive integer
k, the inductive hypothesis is true. We shall show that on this assump-
tion our claim must also be true of every sentence P that contains k 1
occurrences of logical operators. Let I be an interpretation and d a
variable assignment for I. We consider each form that P may have.

Case 1: P has the form ∼ Q. By the definition of satisfaction,

a. d satisfies ∼ Q if and only if d does not satisfy Q.

11.1 SEMANTIC PRELIMINARIES FOR PL 615

Because Q contains fewer than k 1 occurrences of logical operators,
it follows from the inductive hypothesis that

b. d does not satisfy Q if and only if every variable
assignment that assigns to the free variables in Q the same
values as d assigns to those variables does not satisfy Q.

And, by the definition of satisfaction,

c. Every variable assignment that assigns to the free variables
in Q the same values as d assigns to those variables fails
to satisfy Q if and only if every such assignment does
satisfy ∼ Q.

The variable assignments that assign the same values to the free vari-
ables of Q as does d are the variable assignments that assign the same
values to the free variables of ∼ Q as does d because Q and ∼ Q con-
tain the same free variables. So, by (a)–(c), d satisfies ∼ Q if and only
if every variable assignment that assigns the same values to the free
variables in ∼ Q as does d satisfies ∼ Q.

Case 2: P has the form Q ∨ R. By the definition of satisfaction,

a. d satisfies Q ∨ R if and only if either d satisfies Q or d
satisfies R.

Because Q and R each contain fewer than k 1 occurrences of logi-
cal operators, it follows by the inductive hypothesis that

b. d satisfies Q if and only if every variable assignment that
assigns to the free variables in Q the same values as d
satisfies Q.

c. d satisfies R if and only if every variable assignment that
assigns to the free variables in R the same values as d
satisfies R.

By (a)–(c),

d. d satisfies Q ∨ R if and only if either every variable
assignment that assigns to the free variables in Q the
same values as d satisfies Q or every variable assignment
that assigns to the free variables in R the same values as
d satisfies R.

616 PREDICATE LOGIC: METATHEORY

Because every variable that is free in Q is also free in Q ∨ R,

e. Every variable assignment that assigns the same values as
d to the free variables in Q ∨ R is a variable assignment
that assigns the same values as d to the free variables in Q.

(The converse does not hold.) And, for a similar reason,

f. Every variable assignment that assigns the same values as d
to the free variables in Q ∨ R is a variable assignment that
assigns the same values as d to the free variables in R.

Assume now that d satisfies Q ∨ R. By (d), either (i) every vari-
able assignment that assigns to the free variables in Q the same values
as d satisfies Q or (ii) every variable assignment that assigns to the free
variables in R the same values as d satisfies R. If (i) is the case, then,
by (e), we may conclude that every variable assignment that assigns the
same values as d to the free variables in Q ∨ R satisfies Q and hence
Q ∨ R. If (ii) is the case, then, by (f), we may conclude that every vari-
able assignment that assigns the same values as d to the free variables
in Q ∨ R satisfies R and hence Q ∨ R. Either way, then, we conclude
that if d satisfies Q ∨ R, then every variable assignment that assigns the
same values to the free variables in Q ∨ R as d satisfies Q ∨ R.

Conversely, if every variable assignment that assigns the same
values to the free variables in Q ∨ R as does d satisfies Q ∨ R, then,
trivially, d satisfies Q ∨ R.

Cases 3–5: P has one of the forms Q & R, Q ⊃ R, or Q R.
These cases are left as an exercise.

Case 6: P has the form (∀x)Q. By the definition of satisfaction,

a. d satisfies (∀x)Q if and only if every member u of the UD
is such that d[u x] satisfies Q.

Because Q contains fewer than k 1 occurrences of connectives, it
follows from the inductive hypothesis that

b. Each member u of the UD is such that d[u x] satisfies Q
if and only if every variable assignment that assigns the
same values to the free variables in Q as d[u x] satisfies Q.

It follows from (a) and (b) that

c. d satisfies (∀x)Q if and only if for each member u of the
UD every variable assignment that assigns the same values
to the free variables in Q as d[u x] satisfies Q.

Because the variables other than x that are free in Q are also free in
(∀x)Q, every variable assignment that assigns the same values to the

11.1 SEMANTIC PRELIMINARIES FOR PL 617

free variables in Q as d[u x] is a variant d [u x] of a variable assign-
ment d that assigns the same values to the free variables in (∀x)Q as
d, and vice versa. So (c) is equivalent to

d. d satisfies (∀x)Q if and only if for each member u of the
UD every variable assignment d that assigns the same
values to the free variables in (∀x)Q as d is such that
d [u x] satisfies Q.

If follows by the definition of satisfaction that

e. d satisfies (∀x)Q if and only if every variable assignment
that assigns the same values to the free variables in (∀x)Q
as d satisfies (∀x)Q.

Case 7: P has the form (∃x)Q. This case is left as an exercise.

It follows immediately from 11.1.2 that

11.1.3: For any interpretation I and sentence P of PL, either every
variable assignment for I satisfies P or no variable assignment for I
satisfies P.

Proof: Let d be any variable assignment. Because P is a sentence and
hence contains no free variables, every variable assignment for I
assigns the same values to the free variables in P as does d. By result
11.1.2, then, d satisfies P if and only if every variable assignment sat-
isfies P. Therefore either every variable assignment satisfies P or
none does.

Each of the following results, which can be established using results
11.1.1–11.1.3, states something that we would hope to be true of quantified
sentences of PL.

11.1.4: For any universally quantified sentence (∀x)P of PL, {(∀x)P}
quantificationally entails every substitution instance of (∀x)P.

Proof: Let (∀x)P be any universally quantified sentence, let P(a x) be
a substitution instance of (∀x)P, and let I be an interpretation on
which (∀x)P is true. Then, by 11.1.3, every variable assignment satis-
fies (∀x)P, and so, for every variable assignment d and every member
u of the UD, d[u x] satisfies P. In particular, for every variable assign-
ment d the variant d[I(a) x] must satisfy P. By 11.1.1, then, every
variable assignment d satisfies P(a x), so P(a x) is also true on I.

11.1.5: Every substitution instance P(a x) of an existentially
quantified sentence (∃x)P is such that {P(a x)} (∃x)P.|=

618 PREDICATE LOGIC: METATHEORY

Proof: See Exercise 3.

11.1.4 and 11.1.5 are results that were used to motivate informally two
of the quantifier rules in Chapter 10, Universal Elimination and Existential
Introduction, and they will play a role in our proof of the soundness of PD. We
also want to ensure that the motivations for Universal Introduction and
Existential Elimination were correct. Prior to showing this, we establish two
further results that we shall need:

11.1.6: Let I and I be interpretations that have the same UD and
that agree on the assignments made to each individual constant,
predicate, and sentence letter in a formula P (that is, I and I assign
the same values to those symbols). Then each variable assignment d
satisfies P on interpretation I if and only if d satisfies P on
interpretation I .

In stating result 11.1.6, we have made use of the fact that if two interpretations
have the same UD then every variable assignment for one interpretation is a
variable assignment for the other—because the collection of objects that can
be assigned to the variables of PL is the same. The result should sound obvi-
ous: If two interpretations with identical universes of discourse treat the non-
logical symbols of P in the same way, and if the free variables are interpreted
the same way on the two interpretations, then P says the same thing on both
interpretations. The values that I and I assign to other symbols of PL have no
bearing on what P says; P must either be satisfied by the variable assignment
on both interpretations or be satisfied on neither.

Proof of 11.1.6: Let P be a formula of PL and let I and I be inter-
pretations that have the same UD and that agree on the values assigned
to each nonlogical symbol in P. We shall now prove, by mathematical
induction on the number of occurrences of logical operators in P, that
a variable assignment satisfies P on interpretation I if and only if it
satisfies P on interpretation I .

Basis clause: If P contains zero occurrences of logical operators,
then a variable assignment satisfies P on I if and only if it satisfies P
on I .

Proof of basis clause: Let d be a variable assignment. If P is a sentence
letter, then d satisfies P on I if and only if I(P) T, and d satisfies P
on I if and only if I (P) T. I(P) I (P) because we have stipulated
that I and I assign the same values to the nonlogical symbols in P. So
d satisfies P on I if and only if d satisfies P on I .

If P is an atomic formula At1 . . . tn then by the definition of
satisfaction,

a. d satisfies P on I if and only if denI,d(t1), denI,d(t2), . . . ,
denI,d(tn) is a member of I(A).

11.1 SEMANTIC PRELIMINARIES FOR PL 619

b. d satisfies P on I if and only if denI ,d(t1), denI ,d(t2),
. . . , denI ,d(tn) is a member of I (A).

We note that

c. denI,d(t1), denI,d(t2), . . . , denI,d(tn)
 denI ,d(t1), denI ,d(t2), . . . , denI ,d(tn) .

If t i is a constant, then denI,d(t i) I(t i), denI ,d(t i) I (t i), and I (t i)
I(t i) since I and I assign the same values to the nonlogical symbols in P;
and if ti is a variable, then denI,d(t i) d(t i) denI ,d(t i). Moreover,

d. I(A) I (A), by our assumption about I and I .

So, by (c) and (d),

e. denI,d(t1), denI,d(t2), . . . , denI,d(tn) is a member
of I(A) if and only if denI ,d(t1), denI ,d(t2), . . . ,
denI ,d(tn) is a member of I (A).

And, by (a), (b), and (e), it follows that d satisfies At1 . . . tn on I if
and only if it does so on I .

Inductive step: If every formula P that contains k or fewer occurrences
of logical operators is such that a variable assignment satisfies P on I
if and only if it satisfies P on I , then every formula P that contains
k 1 occurrences of logical operators is such that a variable assign-
ment satisfies P on I if and only if it satisfies P on I .

Proof of inductive step: We shall consider the forms that P may have.

Case 1: P has the form ∼ Q. By the definition of satisfaction,

a. A variable assignment d satisfies ∼ Q on I if and only if it
does not satisfy Q on I.

Because Q contains fewer than k 1 occurrences of logical operators,
it follows from the inductive hypothesis that

b. A variable assignment fails to satisfy Q on I if and only if
it fails to satisfy Q on I .

By the definition of satisfaction again,

c. A variable assignment fails to satisfy Q on I if and only if
it does satisfy ∼ Q on I .

So, by (a)–(c), a variable assignment satisfies ∼ Q on I if and only if it
satisfies ∼ Q on I .

620 PREDICATE LOGIC: METATHEORY

Case 2: P has the form Q & R. By the definition of satisfaction,

a. A variable assignment satisfies Q & R on I if and only if it
satisfies both Q and R on I.

Q and R each contain k or fewer occurrences of logical operators, and
so by the inductive hypothesis,

b. A variable assignment satisfies both Q and R on I if and
only if it satisfies both Q and R on I .

By the definition of satisfaction again,

c. A variable assignment satisfies both Q and R on I if and
only if it satisfies Q & R on I .

By (a)–(c), a variable assignment satisfies Q & R on I if and only if it
satisfies Q & R on I .

Cases 3–5: P has the form Q ∨ R, Q ⊃ R, or Q R. We omit
proofs for these cases as they are strictly analogous to Case 2.

Case 6: P has the form (∀x)Q. By the definition of satisfaction,

a. A variable assignment d satisfies (∀x)Q on I if and only if
for every member u of I’s UD, d[u x] satisfies Q on I.

b. d satisfies (∀x)Q on I if and only if, for every member u
of I ’s UD (which is the same as I’s UD), d[u x] satisfies
Q on I .

Because Q contains fewer than k 1 occurrences of logical operators,
it follows from the inductive hypothesis that

c. For each member u of the common UD, d[u x] satisfies
Q on I if and only if d[u x] satisfies Q on I .

By (a)–(c), it follows that a variable assignment satisfies (∀x)Q on I if
and only if it satisfies (∀x)Q on I .

Case 7: P has the form (∃x)Q. This case is similar to Case 6.

That completes the proof of the inductive step, and we may now conclude that
11.1.6 is true of every formula P and pair of interpretations that agree on their
assignments to nonlogical symbols in P.

Result 11.1.7 follows as an immediate consequence of 11.1.6.

11.1.7: Let I and I be interpretations that have the same UD and
that agree on the assignments made to each individual constant,
predicate, and sentence letter in a sentence P. Then P is true on I if
and only if P is true on I .

11.1 SEMANTIC PRELIMINARIES FOR PL 621

Proof: Let I and I be as specified for a sentence P. If P is true on I,
then, by 11.1.2, P is satisfied by every variable assignment on I. By
11.1.6, this is the case if and only if P is satisfied by every variable
assignment on I , that is, if and only if P is true on I .

With results 11.1.6 and 11.1.7 at hand, we may now show that our
motivations for the rules Universal Introduction and Existential Elimination are
correct.

11.1.8: Let a be a constant that does not occur in (∀x)P or in any
member of the set . Then if P(a x), (∀x)P.

11.1.9: Let a be a constant that does not occur in the sentences
(∃x)P and Q and that does not occur in any member of the set .
Then if (∃x)P and ∪ {P(a x)} Q, Q as well.

Result 11.1.8 says, in effect, that if a sentence containing an individual constant
is quantificationally entailed by a set of sentences, and if no sentence in the set
contains that constant (no specific assumptions were made about the individ-
ual designated by that constant), then what P says with that constant may be
said about everything. And result 11.1.9 says that if a set of sentences quantifi-
cationally entails an existentially quantified sentence, and if we can take a sub-
stitution instance of that sentence involving a new constant, add it to the set,
and find that a sentence making no mention of the individual designated by
the constant is quantificationally entailed, then Q must have been entailed by
the set without the substitution instance thrown in. Intuitively this is so because
Q does not draw any conclusion about the individual designated by the con-
stant in the substitution instance, and so all that was really needed to entail Q
was the existential claim that the set entails, and not a specific claim about the
individual in question. We shall prove 11.1.8 here; 11.1.9 is left as an exercise.

Proof of 11.1.8: Assume that P(a x), where a does not occur in
(∀x)P or in any member of . We shall assume, contrary to what we
want to show, that does not quantificationally entail (∀x)P—that
there is at least one interpretation, call it I, on which every member of
 is true and (∀x)P is false. We shall use I as the basis for construct-
ing an interpretation I on which every member of is true and the
substitution instance P(a x) is false, contradicting our original assump-
tion. Having done so, we may conclude that if does quantification-
ally entail P(a x) it must also quantificationally entail (∀x)P.

So assume that I is an interpretation on which every member
of is true and on which (∀x)P is false. Because (∀x)P is false, there
is no variable assignment for I that satisfies (∀x)P. That is, for every
variable assignment d, there is at least one member u of the UD such
that d[u x] does not satisfy P. Choose one of these members, calling
it u, and let I be the interpretation that is just like I except that it
assigns u to a (all other assignments made by I remain the same). It is

|=

|=|=|=

|=|=

622 PREDICATE LOGIC: METATHEORY

now straightforward to show that every member of is true on I and
P(a x) is false. That every member of is true on I follows from 11.1.7
because I and I assign the same values to all the nonlogical symbols
of PL other than a, and, by stipulation, a does not occur in any mem-
ber of . I and I therefore agree on the values assigned to the non-
logical symbols of each sentence in , and each of these sentences must
be true on I because it is true on I.

On our assumption that d[u x] does not satisfy P on I it fol-
lows from 11.1.6 that d[u x] does not satisfy P on I (again I and I
assign the same values to all the nonlogical constants in P; a does not
occur in P). By the way we have constructed I , u is I (a) and so d[u x]
is d[I (a) x]. Result 11.1.1 tells us that d[I (a) x] satisfies P on I if
and only if d satisfies P(a x) on I . So, because d[I (a) x] does not
satisfy P on I , d does not satisfy P(a x) on I . By 11.1.3, then, no
variable assignment satisfies P(a x) on I , and it is therefore false
on this interpretation. But this contradicts our first assumption, that
 P(a x), and so we conclude that if P(a x), then (∀x)P as well.

As a consequence of 11.1.8, we know that the rule Universal Introduction is
indeed truth-preserving.

We shall state four more semantic results that will be needed in the
sections that follow and that the reader should now be able to prove. The
proofs are left as exercises. The first result relies on 11.1.6 and 11.1.7, much
as the proofs of 11.1.8 and 11.1.9 do.

11.1.10: If a does not occur in any member of the set ∪ {(∃x)P}
and if the set is quantificationally consistent, then the set
 ∪ {(∃x)P, P(a x)} is also quantificationally consistent.

Results 11.1.11 and 11.1.12 concern interpretations of a special sort: interpre-
tations on which every member of the UD has a name.

11.1.11: Let I be an interpretation on which each member of the
UD is assigned to at least one individual constant. Then, if every
substitution instance of (∀x)P is true on I, so is (∀x)P.

11.1.12: Let I be an interpretation on which each member of the
UD is assigned to at least one individual constant. Then, if every
substitution instance of (∃x)P is false on I, so is (∃x)P.

Result 11.1.13 says that, if we rename the individual designated by some
individual constant in a sentence P with a constant that does not already occur
in P, then, for any interpretation on which P is true, there is a closely related
interpretation (one that reflects the renaming) on which the new sentence is true.

11.1.13: Let P be a sentence of PL, let b be an individual constant
that does not occur in P, and let P(b a) be the sentence that results

|=|=|=

11.2 SEMANTIC PRELIMINARIES FOR PLE 623

from replacing every occurrence of the individual constant a in P
with b. Then if P is true on an interpretation I, P(b a) is true on
the interpretation I that is just like I except that it assigns I(a) to b
(I (b) I(a)).

11.1E EXERCISES

*1. Prove Cases 3–5 in the proof of result 11.1.1.

*2. Prove Cases 3–5 and 7 in the proof of result 11.1.2.

*3. Prove result 11.1.5.

*4. Prove result 11.1.9.

5. Prove result 11.1.10.

6. Prove result 11.1.11.

*7. Prove result 11.1.12.

*8. Prove result 11.1.13.

11.2 SEMANTIC PRELIMINARIES FOR PLE

When we turn to the metatheory for PLE, we shall need versions of Section
11.1’s semantic results that apply to sentences containing the identity operator
and complex terms. In this section we discuss the changes that must be made
in the statement of the semantic results and in their proofs.

Starting with 11.1.1, we note that we must generalize the result to read:

Let P be a formula of PLE, let P(t x) be the formula that results
from replacing every free occurrence of x in P with a closed term t,
let I be an interpretation, let d be a variable assignment for I, and
let d d[denI,d(t) x] (that is, d is just like d except that it assigns
to x whatever d and I assign to t). Then d satisfies P(t x) on I if and
only if d satisfies P on I.

To modify the proof of 11.1.1, we first establish a result concerning complex
terms:

11.2.1: Let t be a complex term of PLE, let t(tc x) be the term
that results from replacing every occurrence of the variable x in t
with a closed term tc, let I be an interpretation, let d be a variable
assignment for I, and let d d[denI,d(tc) x]. Then denI,d (t)
denI,d(t(tc x)).

624 PREDICATE LOGIC: METATHEORY

The result states that, if the sole difference between two complex terms t1 and

t2 is that one contains the closed term tc where the other contains the variable

x, then if x and tc denote the same individual so do the complex terms t1 and

t2. We shall prove 11.2.1 by mathematical induction on the number of occur-

rences of functors in the term.

Basis clause: If a complex term t contains one functor, then denI,d (t)

denI,d(t(tc x)).

Proof of basis clause: If a complex term t contains one functor, then

t is f(t1, . . . , tn) where f is a functor, each t i is either a variable or a

constant, and t(tc x) is f(t1 , . . . , tn) where t i is t i if t i is not x, and

t i is tc if t i is x.

As in the proof of the basis clause of 11.1.1, we note that if t i

is a constant or variable other than x then denI,d (t i) denI,d(t i)—

since d does not differ from d in a way that affects the denotation of

these terms. If t i is x, then t i is t c, and by the definition of how d was

constructed, denI,d (x) denI,d(t c). So we know that denI,d (t1),

denI,d (t2), . . . , denI,d (tn) denI,d(t1), denI,d(t2), . . . ,

denI,d(tn) . Therefore the n 1-tuple denI,d (t1), denI,d (t2), . . . ,

denI,d (tn), u is a member of I(f) if and only if denI,d(t1),

denI,d(t2), . . . , denI,d(tn), u is a member of I(f) since these are

the same n-tuple, so denI,d (f (t1, . . . , tn)) denI,d(f (t1, . . . , tn)).

Inductive step: If every complex term t that contains k or fewer func-

tors is such that denI,d(t) denI,d (t(tc x)), then every complex term

that contains k 1 functors is such that denI,d(t) denI,d (t(tc x)).

Proof of inductive step: Letting k be an arbitrary positive integer, we

assume that the inductive hypothesis holds—that our claim is true of

every complex term that contains k or fewer functors. We must show

that the claim is also true of every complex term that contains k 1

functors. If t contains k 1 functors, then t is f(t1, . . . , tn), where each

t i has k or fewer functors, and t(tc x) is f(t1 , . . . , tn), where each t i is

t i(t c x). So each t i falls under the inductive hypothesis; that is,

denI,d (t i) denI,d(t i(t c x)), and so denI,d (t1), denI,d (t2), . . . ,

denI,d (tn) denI,d(t1), denI,d(t2), . . . , denI,d(tn) . Therefore

the n 1-tuple denI,d (t1), denI,d (t2), . . . , denI,d (tn), u is a mem-

ber of I(f) if and only if denI,d(t1), denI,d(t2), . . . , denI,d(tn), u

is a member of I(f), so denI,d (f (t1, . . . , tn)) denI,d(f (t1 , . . . , tn)).

With result 11.2.1 in hand, we can modify the basis clause of result

11.1.1 as follows:

Basis clause: If P is a formula that contains zero occurrences of logical

operators, then d satisfies P(t x) if and only if d satisfies P.

Proof of basis clause: If P is a formula that contains zero occurrences

of logical operators, then P is either a sentence letter or a formula of

11.2 SEMANTIC PRELIMINARIES FOR PLE 625

the form At1 . . . tn, where A is a predicate and t1, . . . , tn are terms.
If P is a sentence letter, then P(t x) is simply P—a sentence letter alone
does not contain any variables to be replaced. d satisfies P(t x), then,
if and only if I(P) T. And d satisfies P if and only if I(P) T. So
d satisfies P(t x) if and only if d satisfies P.

If P has the form At1 . . . tn, then P(t x) is At1 . . . tn , where
t i is t if t i is x and t i is just t i otherwise. By the definition of satisfaction,

a. d satisfies At1 . . . tn if and only if denI,d(t1), denI,d(t2),
. . . , denI,d(tn) is a member of I(A).

b. d satisfies At1 . . . tn if and only if denI,d (t1),
denI,d (t2), . . . , denI,d (tn) is a member of I(A).

But now we note that

c. denI,d(t1), denI,d(t2), . . . , denI,d(tn)
 denI,d (t1), denI,d (t2), . . . , denI,d (tn) .

Consider: If ti is a constant, then t i is t i and so denI,d(t i) I(t i) and
denI,d (t i) I(t i). If t i is a variable other than x, then t i is t i and so
denI,d(t i) d(t i) d (t i) denI,d (t i)—the variation in the variable
assignment does not affect the value assigned to t i in this case. If t i is
the variable x, then t i is t and denI,d(t) denI,d (x). (The variant d
was defined in a way that ensures that the denotations of x and of t
coincide.) And if t i is a complex term, it follows from 11.2.1 that
denI,d(t i) denI,d (t i).

Because the n-tuples are the same n-tuple, we conclude from (a)
and (b) that d satisfies At1 . . . tn if and only if d satisfies At1 . . . tn.

We must also add a new case to the proof of the basis clause, to cover formu-
las of the form t1 t2. We leave this as an exercise. The rest of the proof of
11.1.1 remains the same, except that we replace d[I(a) x] with d (which is
shorthand for d[denI,d(tc) x]) throughout.

The proof of 11.1.2 is modified in a similar way. First, we need to prove

11.2.2: Let I be an interpretation, d a variable assignment for I,
and t a complex term of PLE. Then, for any variable assignment
d that assigns the same values to the variables in t as does d,
denI,d (t) denI,d(t).

Proof: See Exercise 2.

With this result the basis clause in the proof of 11.1.2 must be modified to
include atomic formulas containing complex terms along the same lines that
we modified the basis clause in the proof of 11.1.1, and also to include formulas
of the form t1 t2. Both modifications are left as exercises.

626 PREDICATE LOGIC: METATHEORY

The proof of result 11.1.6 can be similarly modified, once we have
established

11.2.3: Let t be a complex term of PLE and let I and I be
interpretations that have the same UD and that agree on the values
assigned to each individual constant and functor in t. Then, for any
variable assignment d, denI,d(t) denI ,d(t).

Proof: See Exercise 3.

Result 11.1.6 must itself be changed to say:

Let I and I be interpretations that have the same UD and that agree
on the assignments made to each individual constant, functor,
predicate, and sentence letter in a formula P. Then each variable
assignment d satisfies P on interpretation I if and only if d satisfies P
on interpretation I .

The basis clause must be modified to cover formulas containing complex terms,
as well as formulas of the form t1 t2. This is left as an exercise.

The proofs of results 11.1.3–11.1.5 and 11.1.7–11.1.13 for PLE are the
same as for PL, except for the following changes:

1. The proofs must use the modified versions of 11.1.1, 11.1.2, and
11.1.6 in order to apply to PLE.

2. Where ‘a’ and ‘P(a x)’ are used in results 11.1.4 and 11.1.5
to refer to substitution instances of P, we need to use ‘t’ and
‘P(t x)’ instead to allow for instantiation with arbitrary terms.

3. In 11.1.7, I and I must also agree on the assignments made to
each functor.

4. Results 1.1.11 and 1.1.12 are true for PLE in two senses: We can
change ‘every substitution instance’ to ‘every substitution instance
in which the instantiating individual term is a constant’, or we can
leave the phrase as it is, to include substitution instances with
instantiation by all closed terms, complex ones as well as
constants.

Finally we shall need two additional semantic results for PLE :

11.2.4: For any closed terms t1 and t2, if P is a sentence that
contains t1, then {t1 t2, P} P(t2//t1), and if P is a sentence
that contains t2, then {t1 t2, P} P(t1//t2).

Proof: See Exercise 4.

|=
|=

11.3 THE SOUNDNESS OF PD, PD , AND PDE 627

11.2.5: If a quantificationally consistent set contains a sentence
with a complex term f(a1, . . . , an), where a1, . . . , an are
constants, and the constant b does not occur in , then the set
 ∪ {b f(a1, . . . , an)} is also quantificationally consistent.

Proof: See Exercise 5.

11.2E EXERCISES

*1. Show the changes that must be made in the basis clauses of the proofs of the
following results so that they cover formulas containing complex terms and
formulas of the form t1 t2:

a. Result 11.1.1
b. Result 11.1.2
c. Result 11.1.6

*2. Prove result 11.2.2.

*3. Prove result 11.2.3.

4. Prove result 11.2.4.

*5. Prove result 11.2.5.

11.3 THE SOUNDNESS OF PD, PD , AND PDE

We shall now establish the soundness of our natural deduction systems. A
natural deduction system is said to be sound for predicate logic if every rule in
that system is truth-preserving—that is, if no derivation that uses the rules of
that system can lead from true assumptions to a false conclusion. The Soundness

Metatheorem for PD is

Metatheorem 11.3.1: If P in PD, then P.

(If P is derivable from in PD, then P is quantificationally entailed by .)
To establish Metatheorem 11.3.1, we shall prove that each sentence in a der-
ivation is quantificationally entailed by the set of open assumptions within
whose scope the sentence lies. It will then follow that the last sentence of
any derivation is quantificationally entailed by the set of open assumptions
of that derivation—and hence that P if P. (As in Chapter 6, we drop
‘in PD’ when we use the single turnstile here, and we use the double turn-
stile to signify quantificational entailment.) The proof is by mathematical

 |=

|=

628 PREDICATE LOGIC: METATHEORY

induction and is, in outline, like the proof that we presented in Chapter 6
establishing the soundness of SD for sentential logic. In fact, we shall see that
much of the proof in Chapter 6 can be used here—for in Chapter 6 we
showed that the rules for the truth-functional connectives are all sound for
sentential logic, and with a change from talk of truth-value assignments to
talk of interpretations, those rules are established to be sound for predicate
logic in the same way. The bulk of the proof will therefore concentrate on
the rules for quantifier introduction and elimination.

In our proof we shall use several semantic results that were presented
in Section 11.1 along with the following result:

11.3.2: If P and * is a superset of , then * P.

Proof: If every member of * is true on an interpretation I, then every
member of its subset is true on I. And if P, then P is also true
on I. Hence * P.

Letting Pi be the sentence at position i in a derivation and letting i be the
set of assumptions that are open at position i (and hence within whose scope
Pi lies), the proof of Metatheorem 11.3.1 by mathematical induction is

Basis clause: 1 P1.

Inductive step: If i Pi for every position i in a derivation such that
i k, then k 1 Pk 1.

Conclusion: Every sentence in a derivation is quantificationally entailed
by the set of open assumptions in whose scope it lies (for every posi-
tion k in a derivation, k Pk).

Proof of basis clause: The first sentence in any derivation in PD is an
assumption, and it lies in its own scope. 1 is just {P1}, and it is trivial
that {P1} P1.

Proof of inductive step: We choose an arbitrary position k and assume
the inductive hypothesis: For every position i such that i k, i Pi.
We must now show that the same holds for position k 1. We shall
show this by considering the justifications that might be used for the
sentence at position k 1, establishing that the entailment claim holds
no matter which justification is used.

Cases 1–12: Pk 1 is justified by one of the rules of SD. For each
of these cases, use the corresponding case from the proof of the sound-
ness of SD in Section 6.3, changing talk of truth-value assignments to
talk of interpretations, and talk of truth-functional concepts (inconsis-
tency and so on) to talk of quantificational concepts.

|=

|=

|=

|=
|=

|=

|=
|=

|=|=

11.3 THE SOUNDNESS OF PD, PD , AND PDE 629

Case 13: Pk 1 is justified by Universal Elimination. Then Pk 1

is a sentence Q(a x) derived as follows:

h (∀x)Q

k 1 Q(a x) h ∀E

where every assumption that is open at position h is also open at
position k 1 (because (∀x)Q at position h is accessible at position
k 1)—so h is a subset of k 1. By the inductive hypothesis, h

(∀x)Q. It follows, by 11.3.2, that the superset k 1 (∀x)Q. By
11.1.4, which says that a universally quantified sentence quantifica-
tionally entails every one of its substitution instances, Q(a x) is true
on every interpretation on which (∀x)Q is true. So k 1 Q(a x)
as well.

Case 14: Pk 1 is justified by Existential Introduction. Then
Pk 1 is a sentence (∃x)Q derived as follows:

|=

|=
|=

h Q(a x)

k 1 (∃x)Q h ∃I

where every assumption that is open at position h is also open at
position k 1. So h is a subset of k 1. By the inductive hypothesis,
 h Q(a x) and so, by 11.3.2, k 1 Q(a x). By 11.1.5, we know
that (∃x)Q is true on every interpretation on which Q(a x) is true,
so k 1 (∃x)Q as well.

Case 15: Pk 1 is justified by Universal Introduction. Then Pk 1

is a sentence (∀x)Q derived as follows:

|=

|=|=

h Q(a x)

k 1 (∀x)Q h ∀I

where every assumption that is open at position h is also open at
position k 1—so h is a subset of k 1—and in addition a does
not occur in (∀x)Q or in any member of k 1 because the rule ∀I
stipulates this. By the inductive hypothesis, h Q(a x). Because h

is a subset of k 1, it follows from 11.3.2 that k 1 Q(a x). And
because a does not occur in (∀x)Q or in any member of k 1, it
follows from 11.1.8, which we repeat here, that k 1 (∀x)Q as well.

11.1.8: Let a be a constant that does not occur in (∀x)P or in any
member of the set . Then if P(a x), (∀x)P.|=|=

|=

|=
|=

630 PREDICATE LOGIC: METATHEORY

Case 16: Pk 1 is justified by Existential Elimination. Then Pk 1

is derived as follows:

h (∃x)Q

j Q(a x)

m Pk 1

k 1 Pk 1 h, j–m ∃E

where every member of h is a member of k 1 and every member of
 m except Q(a x) is a member of k 1 (if any other assumptions in m

were closed prior to position k 1, then the subderivation j–m would
not be accessible at position k 1). Because every member of m except
Q(a x) is a member of k 1, m is a subset of k 1 ∪ {Q(a x)}. More-
over a does not occur in (∃x)Q, Pk 1, or any member of k 1 because
the rule ∃E stipulates this. By the inductive hypothesis,
 h (∃x)Q, and so because h is a subset of k 1, it follows from 11.3.2
that k 1 (∃x)Q. Also by the inductive hypothesis, m Pk 1, and
so, because m is a subset of k 1 ∪ {Q(a x)}, it follows from 11.3.2
that k 1 ∪ {Q(a/x)} Pk 1. Because a does not occur in (∃x)Q, Pk 1,
or any member of k 1, it follows from the last two entailments noted
that k 1 Pk 1, by 11.1.9, which we repeat here.

11.1.9: Let a be a constant that does not occur in the sentences
(∃x)P and Q and that does not occur in any member of the set .
Then, if (∃x)P and ∪ {P(a x)} Q, Q as well.

This completes the proof of the inductive step; all of the derivation
rules of PD are truth-preserving. Note that, in establishing that the two quan-
tifier rules ∀I and ∃E are truth-preserving, we made essential use of the
restrictions that those rules place on the instantiating constant a—the restric-
tions were included in those rules to ensure that they would be truth-
preserving. Having established that the inductive step is true, we may
conclude that every sentence in a derivation of PD is quantificationally
entailed by the set of open assumptions in whose scope it lies. Therefore, if
 P in PD, then P. This establishes Metatheorem 11.3.1, the Soundness
Metatheorem for PD.

The proof that PD is sound for predicate logic involves the additional
steps of showing that the rules of replacement of SD , the three derived rules
of SD , and the rule Quantifier Negation are all truth-preserving. The steps
in the soundness proof for SD , which show that its rules are truth-preserving
for sentential logic, can with appropriate adjustments to quantificational talk
be converted into steps showing that the rules are truth-preserving for quan-
tificational logic. We leave the proof that the additional rule of replacement in
PD , Quantifier Negation, is truth-preserving as an exercise.

|=

|=|=|=

|=

|=

|=|=
|=

11.3 THE SOUNDNESS OF PD, PD , AND PDE 631

Finally we can prove that PDE is sound for predicate logic with iden-
tity and functions by extending the inductive step of the proof for PD to cover
the two identity rules, Identity Introduction and Identity Elimination, and by
making one change in the basis clause of the soundness proof. We note that,
since we have shown in Section 11.2 that all of the semantic results in Section
11.1 can be extended to predicate logic with identity and functions, a sound-
ness proof for PDE can refer to all of those results. In particular, even though
the rules ∀E and ∃I have been changed for PDE, the proof for Cases 13 and
14 in the inductive step of the soundness proof for PD will remain the same
except that in place of the substitution instance Q(a x) we now have a substi-
tution instance Q(t x), where t is any closed term.

We first discuss the change in the basis clause of the soundness proof.
In the basis clause for PD, we said that the first sentence in a derivation is an
assumption. This is not always the case in PDE; the first sentence can be an
assumption, but it can also be a sentence of the form (∀x)x x, introduced
by Identity Introduction. So the proof of the basis clause will look like this:

The first sentence in a derivation in PDE is either an assumption or a
sentence introduced by Identity Introduction. If the first sentence is an
assumption, then it lies in its own scope. In this case 1 is just {P1}, and
it is trivial that {P1} P1.

If the first sentence is introduced by Identity Introduction, then 1

is empty—there are no assumptions, and hence no open assumptions,
at that point. So it remains to be shown that ∅ truth-functionally entails
every sentence of the form (∀x)x x—that is, that every such sen-
tence is quantificationally true. This was proved in Exercise 8.7.10a.

We add the following two cases to the proof of the inductive step for PD:

Case 17: Pk 1 is introduced by Identity Introduction. Then
Pk 1 is a sentence of the form (∀x)x x derived as follows:

|=

k 1 (∀x)x x I

We have already noted that the empty set quantificationally entails
every sentence of the form (∀x)x x. And the empty set is a subset
of k 1, so, by 11.3.2, k 1 (∀x)x x.

Case 18: Pk 1 is introduced by Identity Elimination. Then
Pk 1 is derived as follows:

|=

h t1 t2 h t1 t2

j P j P
k 1 P(t1//t2) h, j E

or
k 1 P(t2//t1) h, j E

632 PREDICATE LOGIC: METATHEORY

where both h and j are subsets of k 1 (because the sentences at
positions h and j are accessible at position k 1). By the inductive
hypothesis, h t1 t2 and j P. Because these are both subsets of
 k 1, it follows, by 11.3.2, that k 1 t1 t2 and k 1 P.

Let I be any interpretation on which all the members of k 1

are true. Then t1 t2 and P are both true because they are quantifi-
cationally entailed by k 1. It follows from 11.2.4, which we repeat
here:

11.2.4: For any closed terms t1 and t2, if P is a sentence that contains
t1, then {t1 t2, P} P(t2//t1), and if P is a sentence that contains
t2, then {t1 t2, P} P(t1//t2).

that the sentence at position k 1 is true as well. So k 1 Pk 1.

These changes establish that PDE is sound for predicate logic with iden-
tity and functions; like PD and PD , PDE never leads from true premises to a
false conclusion.

11.3E EXERCISES

1. Using Metatheorem 11.3.1, prove the following:
a. Every argument of PL that is valid in PD is quantificationally valid.
b. Every sentence of PL that is a theorem in PD is quantificationally true.

*c. Every pair of sentences P and Q of PD that are equivalent in PD are quantifi-
cationally equivalent.

2. Prove the following (to be used in Exercise 3) by mathematical induction:

11.3.4. Let P be a formula of PL and Q a subformula of P. Let [P](Q1//Q)
be a sentence that is the result of replacing one or more occurrences of Q in
P with a formula Q1. If Q and Q1 contain the same nonlogical symbols and
variables, and if on any interpretation Q and Q1 are satisfied by exactly the
same variable assignments, then on any interpretation P and [P](Q1//Q) are
satisfied by exactly the same variable assignments.

3. Using 11.3.4, show how we can establish, as a step in an inductive proof of the
soundness of PD , that Quantifier Negation is truth-preserving for predicate
logic.

*4.a. Suppose that the rule ∀I did not have the restriction that the instantiating con-
stant a in the sentence P(a x) to which ∀I applies must not occur in any
open assumption. Explain why PD would not be sound for predicate logic in
this case.

b. Suppose that the rule ∃E did not have the restriction that the instantiating
constant a in the assumption P(a x) must not occur in the sentence Q
that is derived. Explain why PD would not be sound for predicate logic in
this case.

|=

|=
|=

|=|=
|=|=

11.4 THE COMPLETENESS OF PD, PD , AND PDE 633

11.4 THE COMPLETENESS OF PD, PD , AND PDE

In this section we shall prove that our natural deduction systems are complete
for predicate logic. A natural deduction system is complete for predicate logic
if, whenever a sentence is quantificationally entailed by a set of sentences, there
is at least one derivation of the sentence from members of that set in the
natural deduction system. Metatheorem 11.4.1 is the Completeness Metatheorem

for PD:

Metatheorem 11.4.1: If P, then P in PD.

We shall prove the Completeness Metatheorem for PD in a manner analogous
to that in which the completeness of SD for sentential logic was shown in
Chapter 6. We note that the Completeness Metatheorem follows almost imme-
diately from the Inconsistency Lemma for predicate logic:

11.4.2 (the Inconsistency Lemma): If a set of sentences of PL is
quantificationally inconsistent, then is also inconsistent in PD.

To see how Metatheorem 11.4.1 follows, assume that, for some set and sen-
tence P, P (this is the antecedent of the metatheorem). Then the set
 ∪ {∼ P} is quantificationally inconsistent (see Exercise 1). It follows, from
Lemma 11.4.2, that ∪ {∼ P} is also inconsistent in PD. And from this it follows
that P in PD (see Exercise 2).

So the bulk of this section is devoted to proving Lemma 11.4.2. We
shall do so by proving its contrapositive:

If a set Γ of sentences of PL is consistent in PD, then is quantifica-
tionally consistent.

If the contrapositive is true, then we may conclude of any set that is quantifi-
cationally inconsistent that it is also inconsistent in PD. The proof of the
contrapositive is in four steps:

Step 1 in proof of Lemma 11.4.2: We shall prove in result 11.4.3 that,
for any set that is consistent in PD, if we double the subscript of
every individual constant in (so that every resulting subscript will
be even), then the resulting set e is also consistent in PD. We call
such a set an evenly subscripted set.

Step 2 in proof of Lemma 11.4.2: We shall then show that, because
there are infinitely many individual constants (namely, all the oddly
subscripted constants) that do not occur in the sentences of any
evenly subscripted set, every evenly subscripted set that is

|=

 |=

634 PREDICATE LOGIC: METATHEORY

consistent in PD is a subset of a set that is maximally consistent in

PD and that is ∃-complete. This will be established as result 11.4.4,
the Maximal Consistency Lemma for predicate logic. Maximal
consistency is defined as it was for SD:

A set of sentences of PL is maximally consistent in PD if and
only if is consistent in PD, and for every sentence P of PD

that is not a member of , ∪ {P} is inconsistent in PD.

If a set is maximally consistent in PD, then adding even one new
sentence to the set makes it inconsistent in PD. ∃-completeness
(read aloud as existential completeness) is a new concept, but a
simple one:

A set of sentences of PL is ∃-complete if and only if, for each
sentence in that has the form (∃x)P, at least one substitu-
tion instance of (∃x)P is also a member of .

If, for example, ‘(∃x)Gx’ is a member of a set that is ∃-complete,
then at least one of ‘Ga’, ‘Gb’, ‘Gc’, . . . is also a member of
the set.

Step 3 in proof of Lemma 11.4.2: We shall next show that there is a
straightforward way to construct a model for every set that is
maximally consistent in PD and that is ∃-complete, from which it
follows that any such set is quantificationally consistent and hence
that all of its subsets are also quantificationally consistent. This will
be established as result 11.4.8, the Consistency Lemma for predicate
logic. It follows from the Consistency Lemma that the evenly
subscripted set from which we built the maximally consistent set in
Step 2 must be quantificationally consistent.

Step 4 in proof of Lemma 11.4.2: Finally we shall show, in result 11.4.9,
that the set that we began with, whose subscripts were doubled in
Step 1, must be quantificationally consistent as well.

It follows from Steps 1–4 that every set of sentences that is consistent in PD is
also quantificationally consistent and therefore that the contrapositive of this
statement, the Consistency Lemma 11.4.2, is true.

So let us turn to result 11.4.3, which will establish Step 1:

11.4.3: Let be a set of sentences of PL and let e be the set that
results from doubling the subscript of every individual constant that
occurs in any member of . Then if is consistent in PD, e is also
consistent in PD.

11.4 THE COMPLETENESS OF PD, PD , AND PDE 635

Proof: Assume that is consistent in PD and that, contrary to what
we wish to prove, e is inconsistent in PD. Then there is a derivation
of the sort

1 P1

2 P2

. .
n Pn

. .
k Q
. .
p ∼ Q

where P1, P2, . . . , Pn are members of e. We shall convert this deri-
vation into a derivation that shows that is inconsistent in PD, con-
tradicting our first assumption. Our strategy, not surprisingly, will be to
halve the subscript of every evenly subscripted individual constant
occurring in the derivation, thus converting each of P1, P2, . . . , Pn

back to a member of the original . There is a complication, though—
in so doing we may end up with a sequence in which either an ∃E
restriction or an ∀I restriction is violated. If, for example, P1 in the
derivation above is ‘Ba2’, and later in the derivation the sentence
‘(∀x)Lx’ is legally derived from the sentence ‘La1’ by ∀I (note that an
odd subscript may occur in the above derivation after the primary
assumptions), then in changing P1 to ‘Ba1’ we shall have introduced
an individual constant into a primary assumption that prevents the later
use of ∀I. Our first step is thus to ensure that this will not happen.

When the rule ∃E is used to justify a sentence, let the constant
a that is the instantiating constant in the substitution instance P(a x)
that begins the cited subderivation be called the instantiating constant

for that use of ∃E. Similarly the instantiating constant for a use of ∀I is the
instantiating constant a in the sentence P(a x) cited. Let a1, . . . , am

be the distinct constants that are instantiating constants for uses of ∃E
and ∀I in the above derivation. Let b1, . . . , bm be distinct constants
that have odd subscripts that are larger than the subscript of any con-
stant occurring in the derivation. (Because every derivation is a finite
sequence, we know that of the constants occurring in our derivation
there is one that has the largest subscript—and, whatever this largest
subscript may be, there are infinitely many odd numbers that are
larger.) We replace each sentence R in the original derivation with a
sentence R* that is the result of first replacing each occurrence of ai

in R, 1 i m, with bi, and then halving every even subscript in a
constant in the resulting sentence.

We claim that the resulting sequence is a derivation in PD of
Q* and ∼ Q* from members of the set . First note that, for every new
primary assumption Pi*, Pi* is a member of . This is because none of

636 PREDICATE LOGIC: METATHEORY

a1, . . . , am can occur in a primary assumption of the original deriva-
tion (lest an instantiating constant restriction be violated—for these are
the instantiating constants for uses of ∃E and ∀I in that derivation). So
P* is just Pi with all its individual constant subscripts halved—that is, a
member of the set from which e was constructed by doubling sub-
scripts. It remains to be shown that the resulting sequence counts as a
derivation in PD—that every sentence in that sequence can be justi-
fied. This is left as an exercise.

Step 2 in our proof of Lemma 11.4.2 is contained in the Maximal
Consistency Lemma for predicate logic:

11.4.4 (the Maximal Consistency Lemma): If is an evenly subscripted
set of sentences that is consistent in PD, then is a subset of at least
one set of sentences that is both maximally consistent in PD and
∃-complete.

We shall establish this lemma by showing how, beginning with , to construct
a superset that has the two properties. We assume that the sentences of PL have
been enumerated, that is, that they have been placed in a one-to-one corre-
spondence with the positive integers so that there is a first sentence, a second
sentence, a third sentence, and so on. The enumeration can be done analo-
gously to the enumeration of the sentences of SL in Section 6.4; we leave proof
of this as an exercise (Exercise 4). We shall now build a sequence of sets 1,
 2, 3, . . . starting with an evenly subscripted set that is consistent in PD

and considering each sentence in the enumeration, adding the sentence if it
can consistently be added, and, if the added sentence is existentially quanti-
fied, adding one of its substitution instances as well. The sequence is
constructed as follows:

1. 1 is .

2. i 1 is

(i) i ∪ {Pi}, if i ∪ (Pi) is consistent in PD and Pi does not have
the form (∃x)P, or

(ii) i ∪ {Pi, Pi*}, if ∪ {Pi} is consistent in PD and Pi has the
form (∃x)Q, where Pi* is a substitution instance Q(a x) of
(∃x)Q and a is the alphabetically earliest constant that does
not occur in Pi or in any sentence in i, or

(iii) i, if i ∪ {Pi} is inconsistent in PD.

As an example of (ii), if i is the set {(∀x)(Fxa ⊃ Gx), ∼ Hc ∨ (∃y)Jyy] and Pi

is ‘(∃z)(Kz & (∀y)Fzy)’, then i ∪ {Pi} is quantificationally consistent, and so
Pi will be added to the set—but we must add a substitution instance of Pi as
well. The alphabetically earliest constant that does not occur in Pi or in any
member of i is ‘b’, and so this will be the instantiating constant. i 1 is

11.4 THE COMPLETENESS OF PD, PD , AND PDE 637

therefore

{(∀x)(Fxa ⊃ Gx), ∼ Hc ∨ (∃y)Jyy, (∃z)(Kz & (∀y)Fzy), Kb & (∀y)Fby}

The reason for using an instantiating constant that does not already occur in i

will become clear shortly when we prove that each set in the sequence is consis-
tent in PD. Here it is important to note that, for any set in the sequence, there
is always at least one individual constant that does not already occur in that set.
This is because the set that we started with is evenly subscripted, and so we know
that infinitely many oddly subscripted individual constants do not occur in ; and
each subsequent set adds at most one new individual constant, still leaving infi-
nitely many individual constants yet to be used. Thus the requirement in condi-
tion (ii)—that a be a new constant—is a requirement that can always be satisfied.

Because the sequence 1, 2, 3, . . . is infinitely long, there is no last
member in the set. We want a set that contains all the sentences in these sets,
so we let * be the set that contains every sentence that occurs in some set in
the infinite sequence 1, 2, 3, . . . We shall show that * is both maximally
consistent in PD and ∃-complete. To show that * is maximally consistent in
PD, we first prove that each set i in the sequence is consistent in PD, using
mathematical induction.

Basis clause: 1 is consistent in PD.

Proof of basis clause: By definition, 1 is , a set that is consistent in PD.

Inductive step: If for every i k, i is consistent in PD, then k 1 is con-
sistent in PD.

Proof of inductive step: If k 1 is formed in accordance with condi-
tion (i), then k 1 is obviously consistent in PD. If k 1 is formed in
accordance with condition (ii), then i ∪ {Pi} is consistent—as stipu-
lated by condition (ii). We need to show that it follows that i ∪ {Pi, Pi*},
which is what k 1 was defined to be in this case, is also consistent in
PD. Because the instantiating constant in Pi* does not occur in any
member of i ∪ {Pi}, the consistency of k 1 follows immediately from
result 11.4.5, the proof of which is left as an exercise.

11.4.5. If a does not occur in any member of the set ∪ {(∃x)P},
and if the set is consistent in PD, then the set ∪ {(∃x)P, P(a x)}
is also consistent in PD.

(This is why condition (ii) stipulated that a be a new constant—the
fact that a does not occur in the set ∪ {(∃x)P} is crucial to the proof
of the inductive step.) Finally, if k 1 is formed in accordance with
condition (iii), then k 1 is k, and k is, by the inductive hypothesis,
consistent in PD. So, no matter which condition was applied in its con-
struction, k 1 is consistent in PD.

Having established both premises, we conclude that every set in the sequence
 1, 2, 3, . . . is consistent in PD.

638 PREDICATE LOGIC: METATHEORY

We now need to show that the set *, which contains all the sentences
that occur in any set in the sequence, is itself consistent in PD. We shall show
this by assuming that it is not consistent in PD and deriving a contradiction. So
assume that * is not consistent in PD. Then there is a finite nonempty subset
 of * that is inconsistent in PD (the proof is analogous to that in the proof
of 6.4.6). Because is finite, some sentence in , say, Pj, occurs later in our
enumeration of the sentences of PL than any other sentence in . Every mem-
ber of is thus a member of j 1, by the way we constructed the sets in the
sequence. (If the ith sentence is added to one of the sets, it is added by the
time that i 1 is constructed.) It follows that j 1 is also inconsistent in PD (the
proof is analogous to the proof of 6.4.7). But we have just proved that every
set in the sequence is consistent in PD, so we conclude that, contrary to our
assumption, * is also consistent in PD.

That * is maximally consistent in PD is proved in exactly the manner
that the parallel result in Section 6.4 was proved—for any sentence Pk, if * ∪ {Pk}
is consistent in PD, then the subset k of * is such that k ∪ {Pk} is consistent
in PD, and so by the construction of the sequence of sets, Pk is a member of k 1

and hence of *.
Finally the proof that * is ∃-complete is left as an exercise. This com-

pletes the proof of the Maximal Consistency Lemma 11.4.4—because every
member of the original set is also a member of *, it follows that every evenly
subscripted set of sentences of PL that is consistent in PD is a subset of at least
one set of sentences that is both maximally consistent in PD and ∃-complete.

We now turn to Step 3 in our proof of the Inconsistency Lemma
11.4.2. We must prove that every set that is both maximally consistent in
PD and ∃-complete is consistent in PD. To do this we need the following pre-
liminary results:

11.4.6: If P and is a subset of a set * that is maximally
consistent in PD, then P ∈ *.

Proof: See Exercise 9.

11.4.7: Every set * of sentences that is both maximally consistent in
PD and ∃-complete has the following properties:

a. P ∈ * if and only if ∼ P ∉ *.

b. P & Q ∈ * if and only if P ∈ * and Q ∈ *.

c. P ∨ Q ∈ * if and only if either P ∈ * or Q ∈ *.

d. P ⊃ Q ∈ * if and only if either P ∉ * or Q ∈ *.

e. P Q ∈ * if and only if either P ∈ * and Q ∈ * or
P ∉ * and Q ∉ *.

f. (∀x)P ∈ * if and only if, for every individual constant a,
P(a x) ∈ *.

g. (∃x)P ∈ * if and only if, for at least one individual
constant a, P(a x) ∈ *.

1 ∼ (∀x)P Assumption

2 ∼ (∃x) ∼ P A /∼ E

3 ∼ P(a x) A /∼ E

4 (∃x) ∼ P 3 ∃I
5 ∼ (∃x) ∼ P 2 R

6 P(a x) 3–5 ∼ E
7 (∀x)P 6 ∀I
8 ∼ (∀x)P 1 R

9 (∃x) ∼ P 2–8 ∼ E

11.4 THE COMPLETENESS OF PD, PD , AND PDE 639

Proof: The proofs that (a)–(e) hold for sets of sentences that are max-
imally consistent in PD and ∃-complete parallel exactly the correspond-
ing proofs in Section 6.4, using result 11.4.6 instead of 6.4.5. (In those
proofs we did not appeal to a property like ∃-completeness, and we do
not need to appeal to it here in establishing (a)–(e).)

Proof of (f): Assume that (∀x)P ∈ *. For any substitution instance
P(a x) of (∀x)P, {(∀x)P} P(a x)(by ∀E); so, by 11.4.6, every substi-
tution instance is a member of * as well. Now assume that (∀x)P ∉ *.
Then ∼ (∀x)P ∈ *, by (a). The following derivation shows that
{∼ (∀x)P} (∃x) ∼ P:

(We assume that the constant a does not occur in P.) Therefore, by 11.4.6,
(∃x) ∼ P is also a member of *. Because * is ∃-complete, some substi-
tution instance ∼ P(a x) of (∃x) ∼ P is a member of * as well, and it
therefore follows from (a) that P(a x) ∉ *. So, if (∀x)P ∉ *, then there
is at least one substitution instance of (∀x)P that is not a member of *.

Proof of (g): Assume that (∃x)P ∈ *. Then, because * is ∃-complete,
at least one substitution instance of (∃x)P is also a member of *. Now
assume that (∃x)P ∉ *. If some substitution instance P(a x) of (∃x)P
is a member of *, then because {P(a x)} (∃x)P (by ∃I), it follows
from 11.4.6 that, contrary to our assumption, (∃x)P is also a member
of *. So, if (∃x)P ∉ *, then none of its substitution instances is a
member of *.

We can now complete the proof of Step 3 by establishing the Consis-
tency Lemma for predicate logic:

11.4.8 (the Consistency Lemma): Every set of sentences of PL that is
both maximally consistent in PD and ∃-complete is quantificationally
consistent.

We shall prove the Consistency Lemma by showing how to construct a model
for any set * that is both maximally consistent in PD and ∃-complete, that is,
an interpretation I* on which every member of * is true. We begin by asso-
ciating with each individual constant a distinct positive integer—the positive

640 PREDICATE LOGIC: METATHEORY

integer i will be associated with the alphabetically ith constant. The number 1
will be associated with ‘a’, 2 with ‘b’, . . . , 22 with ‘v’, 23 with ‘a1’, and so on.
I* is then defined as follows:

1. The UD is the set of positive integers.

2. For each sentence letter P, I*(P) T if and only if P ∈ *.

3. For each individual constant a, I*(a) is the positive integer
associated with a.

4. For each n-place predicate A, I*(A) includes all and only those
n-tuples 〈I*(a1), . . . , I*(an)〉 such that Aa1 . . . an ∈ *.

The major feature of this interpretation is that, for each atomic sentence P of
PL, P will be true on I* if and only if P ∈ *. That is why we defined condition
4 (as well as condition 2) as we did. And to be sure that condition 4 can be
met, we must have condition 3, which ensures that each individual constant
designates a different member of the UD. This is necessary because, for exam-
ple, if ‘Fa’ is a member of Γ* and ‘Fb’ is not a member, then if ‘a’ and ‘b’ des-
ignated the same integer—say, 1—condition 4 would require that the 1-tuple
〈1〉 both be and not be in the extension of ‘F’. (In addition, condition 3 ensures
that every member of the UD is named by a constant, which we shall shortly
see is also important when we look at the truth-values that quantified sentences
receive on I*.) With all the atomic sentences in * true and all other atomic
sentences false, it follows that truth-functionally compound and quantified sen-
tences are true on I* if and only if they are members of *.

We complete the proof of the Consistency Lemma by establishing, by
mathematical induction on the number of occurrences of logical operators in
sentences of PL, that each sentence P of PL is true on I* if and only if P ∈ *.

Basis clause: Each sentence P that contains zero occurrences of logical
operators is true on I* if and only if P ∈ *.

Proof of basis clause: Either P is a sentence letter or P has the form
Aa1 . . . an. If P is a sentence letter, then, by part 2 of the definition
of I*, it follows that P is true on I* if and only if P ∈ *.

If P has the form Aa1 . . . an, then P is true on I* if and only
if 〈I*(a1), . . . , I*(an)〉 ∈ I*(A). Part 4 of the definition of I* stipu-
lates that 〈I*(a1), . . . , I*(an)〉 ∈ I*(A) if and only if Aa1 . . . an ∈ *.
So in this case as well, P is true on I* if and only if P ∈ *.

Inductive step: If each sentence P that contains k or fewer occurrences
of logical operators is such that P is true on I* if and only if P ∈ *,
then each sentence P that contains k 1 occurrences of logical oper-
ators is such that P is true on I* if and only if P ∈ *.

Proof of inductive step: We assume that, for an arbitrary positive inte-
ger k, the inductive hypothesis is true. We must show that on this
assumption it follows that any sentence P that contains k 1 occurrences

11.4 THE COMPLETENESS OF PD, PD , AND PDE 641

of logical operators is such that P is true on I* if and only if P ∈ *.
We consider the forms that the sentence P may have.

Cases 1–5: P has one of the forms ∼ Q, Q & R, Q ∨ R, Q ⊃ R,
or Q R. The proofs for these five cases are analogous to the proofs
for the parallel cases for SL in Section 6.4, so we omit them here.

Case 6: P has the form (∀x)Q. Assume that (∀x)Q is true on
I*. Then every substitution instance Q(a x) of (∀x)Q is true on I*
because, by 11.1.4, {(∀x)Q} quantificationally entails every one of its
substitution instances. Each substitution instance contains fewer than
k 1 occurrences of connectives, and so, by the inductive hypothesis,
each substitution instance is a member of * since it is true on I*. It
follows from part (f) of 11.4.7 that (∀x)Q is also a member of *.

Now assume that (∀x)Q is false on I*. In this case we shall
make use of result 11.1.11, which we repeat here:

11.1.11: Let I be an interpretation on which each member of the
UD is assigned to at least one individual constant. Then, if every
substitution instance of (∀x)P is true on I, so is (∀x)P.

I* is an interpretation of the type specified in 11.1.11: Every positive
integer in the UD is designated by the individual constant with which
we have associated that integer. It follows, then, that if every substitu-
tion instance of (∀x)Q is true on I*, then so is (∀x)Q. Therefore, if
(∀x)Q is false on I*, at least one of its substitution instances Q(a x)
must also be false on I*. Because Q(a x) contains fewer than k 1
occurrences of logical operators, it follows from the inductive hypoth-
esis that Q(a x) ∉ *. And so, by part (f) of 11.4.7, (∀x)Q ∉ *.

Case 7: P has the form (∃x)Q. Assume that (∃x)Q is true on
I*. Then it follows from 11.1.12, which we repeat here, that at least one
substitution instance Q(a x) of (∃x)Q is true on I*, for every member
of the UD is designated by an individual constant.

11.1.12: Let I be an interpretation on which each member of the
UD is assigned to at least one individual constant. Then, if every
substitution instance of (∃x)P is false on I, so is (∃x)P.

Because the substitution instance Q(a x) contains fewer than k 1
occurrences of logical operators, it follows from the inductive hypoth-
esis that Q(a x) ∈ *. So, by part (g) of 11.4.7, (∃x)Q is also a member
of *.

Now assume that (∃x)Q is false on I*. Because each substitution
instance Q(a x) is such that {Q(a x)} (∃x)Q (this is result 11.1.5), it
follows that every substitution instance Q(a x) is also false on I*. Each
of these substitution instances contains fewer than k 1 occurrences
of logical operators, and so it follows from the inductive hypothesis that

|=

642 PREDICATE LOGIC: METATHEORY

no substitution instance of (∃x)Q is a member of *. Finally, by part
(g) of 11.4.7, it follows that (∃x)Q is not a member of * either.

That completes the proof of the inductive step, and we may now conclude
that every sentence P of PL is such that it is true on I* if and only if it is a
member of *. So I* is a model of *, and we conclude that * is quan-
tificationally consistent. Lemma 11.4.8 is therefore true: Every set that is
both maximally consistent in PD and ∃-complete is quantificationally consis-
tent. Lemmas 11.4.4 and 11.4.8 together establish that every evenly sub-
scripted set of sentences of PL that is consistent in PD is also quantifica-
tionally consistent.

Step 4 of the proof of the Inconsistency Lemma 11.4.2 is contained in
result 11.4.9:

11.4.9: Let be a set of sentences of PL and let e be the set that
results from doubling the subscript of every individual constant
that occurs in any member of . Then, if e is quantificationally
consistent, is quantificationally consistent as well.

Proof: See Exercise 8.

We have now completed the four steps in the proof of the Inconsis-
tency Lemma 11.4.2, so we may conclude that, if a set of sentences of PL is
quantificationally inconsistent, then is also inconsistent in PD. And this estab-
lishes the completeness of PD for predicate logic. If P, then ∪ {∼ P} is
quantificationally inconsistent. By the Inconsistency Lemma, ∪ {∼ P} is also
inconsistent in PD, and hence P in PD. And that is what Metatheorem
11.4.1, the Completeness Theorem for PD, states.

Because PD is complete for predicate logic, so is PD . Every rule of
PD is a rule of PD , and so every derivation in PD is a derivation in PD . So,
if P, then P in PD because we know, by Metatheorem 11.4.1, that
 P in PD.

We also want to be sure that PDE is complete for predicate logic with
identity and functions. The completeness proof for PDE is similar to the com-
pleteness proof for PD, but there are some important changes. Results 11.4.3
and 11.4.9 must now take into account sentences containing the identity pred-
icate and complex terms; the necessary changes are left as an exercise. Maxi-
mal consistency is defined for PDE as it was for PD, while the definition of
∃-completeness must be modified slightly:

A set of sentences of PLE is ∃-complete if and only if, for each sen-
tence in that has the form (∃x)P, at least one substitution instance
of (∃x)P in which the instantiating individual term is a constant is also
a member of .

The proof of the Maximal Consistency Lemma 11.4.4 for PDE—that every
evenly subscripted set of sentences that is consistent in PDE is a subset of a set

 |=

|=

11.4 THE COMPLETENESS OF PD, PD , AND PDE 643

of sentences that is both maximally consistent in PDE and ∃-complete—is just
like the proof for PD except that PLE and PDE, rather than PL and PD, are spo-
ken of. However, the proof of the Consistency Lemma 11.4.8 is different
because the model I* that is constructed for a maximally consistent and
∃-complete set of sentences must be defined differently.

The interpretation I* of the maximally consistent and ∃-complete set Γ*
that we constructed in the proof of the Consistency Lemma 11.4.8 stipulated that
a distinct positive integer be associated with each individual constant and that

3. For each individual constant a, I*(a) is the positive integer
associated with a.

This will not do in the case of PDE, for suppose that , and consequently its
superset *, contains a sentence a b, where a and b are different constants.
If we interpret the constants of PLE in accordance with condition 3, a and b
will denote different members of the UD, and hence a b will be false. But the
interpretation is supposed to make all members of *, including a b, true.
So we shall have to change condition 3 to take care of the case where a sen-
tence like a b is a member of the set *. We shall also have to interpret the
functors in the language, and to do so in a way that makes sentences containing
complex terms true if and only if those sentences are members of .

Before turning to the construction of an interpretation for *, how-
ever, we first establish some facts about sets of sentences that are maximally
consistent in PDE and ∃-complete. As the reader may easily verify, the proper-
ties listed in result 11.4.7 remain true for maximally consistent, ∃-complete sets
of sentences of PDE. We add three additional properties to the list in result
11.4.7:

h. For every closed term t, t t ∈ *.

Proof: Let t be any closed term. ∅ t t, by I and ∀E. Because
the empty set is a subset of *, it follows from 11.4.6 that t t ∈ *.

i. If a sentence t1 t2, where t1 and t2 are closed terms, is a
member of *, then

a. If Q is a sentence in which t1 occurs, Q ∈ * if and only if
every sentence Q(t2//t1)(every sentence obtained by replacing
one or more occurrences of t1 in Q with t2) is a member of *.

b. If Q is a sentence in which t2 occurs, Q ∈ * if and only if
every sentence Q(t1//t2) is a member of *.

Proof: Let t1 t2 be a sentence that is a member of * and let Q be
a sentence in which t1 occurs. Assume that Q ∈ *. Every sentence
Q(t2//t1) is derivable from the set {t1 t2, Q} by E. Therefore, by
11.4.6, every sentence Q(t2//t1) is a member of *. Now assume that
Q ∉ *. Every sentence Q(t2//t1) is such that {t1 t2, Q(t2//t1)} Q,

644 PREDICATE LOGIC: METATHEORY

by E—use t1 to replace every occurrence of t2 that replaced
t1 in Q(t2//t1), and the result is Q once again. So, if any sentence
Q(t2//t1) is in *, then, by 11.4.6, Q must be as well. Therefore, if
Q ∉ *, then no sentence Q(t2//t1) is a member of *.

Similar reasoning shows that, if t1 t2 ∈ * and Q is a sen-
tence in which t2 occurs, then Q ∈ * if and only if every sentence
Q(t1//t2) is a member of *.

j. For each n-place functor f and n terms t1, . . . , tn, there is at least
one constant b such that the formula f(t1, . . . , tn) b is a
member of *.

Proof: By property (h), f(t1, . . . , tn) f(t1, . . . , tn) ∈ *. Since
f(t1, . . . , tn) f(t1, . . . , tn) (∃x)f(t1, . . . , tn) x, the sentence
(∃x)f(t1, . . . , tn) x must also be a member of *, by 11.4.6. And
because * is ∃-complete, it follows (from our revised definition of
∃-completeness) that there is at least one constant b such that the for-
mula f(t1, . . . , tn) b is also a member of *.

We now turn to the proof of the Consistency Lemma 11.4.8 for PDE—
that every set of sentences of PLE that is both maximally consistent in PDE and
∃-complete is also quantificationally consistent. Let * be a set of sentences that
is both maximally consistent in PLE and ∃-complete. We associate positive inte-
gers with the individual constants of PLE as follows:

First associate the positive integer i with the alphabetically ith individ-
ual constant of PLE. Let p designate this association and let p(a) stand
for the integer that has been associated with the constant a. Thus p(‘a’)
is 1, p(‘b’) is 2, and so on.

Now we define a second association, which we shall designate with
q. For each constant a, q(a) p(a), where a is the alphabetically ear-
liest constant such that a a is a member of *.

Note that for each constant a property (h) of maximally consistent, ∃-complete
sets assures us that a a ∈ *, and so we can be certain that q assigns a value
to a because there is always at least one a such that a a ∈ *. According
to the definition, q(‘a’) is always 1 since property (h) assures us that ‘a a’ is
a member of *, and because ‘a’ is the alphabetically earliest constant of PLE,
there can be no earlier constant that stands to the right of the identity predi-
cate in a sentence containing ‘a’ to the left. But for any other constant, the
value that it receives from q depends on the identity sentences that the par-
ticular set * contains. Suppose that ‘b a’, ‘b b’, ‘b e’, and ‘b m22’
are the only identity sentences in * that contain ‘b’ to the left of the identity
predicate. In this case there is an alphabetically earlier constant to the right,
namely, ‘a’, and this is the alphabetically earliest constant so occurring.
So q(‘b’) p(‘a’) 1. If ‘c c’, ‘c f’, and ‘c g3’ are the only identity

11.4 THE COMPLETENESS OF PD, PD , AND PDE 645

sentences in * that contain ‘c’ to the left of the identity predicate, then ‘c’ is the
alphabetically earliest constant occurring to the right, and so q(‘c’) p(‘c’) 3.
The definition of q plays a role in ensuring that identity sentences come out true
on the interpretation that we shall construct if and only if they are members of
 *, as a consequence of

11.4.10: For any constants a and b, q(a) q(b) if and only if
a b ∈ *.

Proof: Let a be the alphabetically earliest constant such that
a a ∈ *. (Remember that property (h) guarantees that there is at
least one such constant.) Then

a. q(a) p(a).

Let b be the alphabetically earliest constant such that b b ∈ *. Then

b. q(b) q(b).

It follows from (a) and (b) that

c. q(a) q(b) if and only if q(a) p(b).

And because p associates different values with different constants,

d. p(a) p(b) if and only if a and b are the same constant.

From (c) and (d) we conclude that

e. q(a) q(b) if and only if a and b are the same constant.

Assume that q(a) q(b). It follows from (e) that a and b are
the same constant. Therefore, because b b ∈ *, it follows trivially that
b a , which is the same sentence, is a member of *. And because
a a ∈ *, it follows from property (i) of maximally consistent, ∃-com-
plete sets that a b ∈ * (a b is a sentence a a (b//a)).

Now assume that a b ∈ *. Then, because a a ∈ *, it
follows from property (i) that b a ∈ *, and because b b ∈ *
as well, it also follows from property (i) that a b ∈ *. a was defined
to be the alphabetically earliest constant that appears to the right of the
identity predicate in an identity statement containing a, and so from
the fact that a b ∈ * we conclude that b is not alphabetically ear-
lier than a . b was defined to be the alphabetically earliest constant that
appears to the right of the identity predicate in an identity statement
containing b, and so from the fact that b a ∈ * we conclude that
a is not alphabetically earlier than b . These two observations establish

646 PREDICATE LOGIC: METATHEORY

that a and b must be the same constant. So, from (e), we may con-
clude that q(a) q(b).

Result 11.4.10 guarantees that if there is an identity statement in * that con-
tains the individual constants a and b then q(a) q(b), and if there is no iden-
tity statement in * that contains a and b then q(a) q(b). And this fact will
be crucial in our construction of an interpretation on which every member of
a set that is both maximally consistent in PDE and ∃-complete is true. We turn
now to the construction.

Let * be a set that is both maximally consistent in PDE and ∃-complete,
and define the interpretation I* as follows:

1. The UD is the set of positive integers that q associates with at least
one individual constant of PLE.

2. For each sentence letter P, I*(P) T if and only if P ∈ *.

3. For each individual constant a, I*(a) q(a).

4. For each n-place functor f, I*(f) is the set that includes all and only
those n 1-tuples I*(a1), . . . , I*(an), I*(b) , where a1, . . . , an

and b are individual constants such that f(a1, . . . , an) b ∈ *.

5. For each n-place predicate A other than the identity predicate, I*(A)
is the set that includes all and only those n-tuples 〈I*(a1), . . . , I*(an)〉

such that Aa1 . . . an ∈ *.

We must ensure that conditions 4 and 5 can be met.
For condition 4 we must ensure that the interpretation of f is indeed a

function on the UD: that for each n members u1, . . . , un of the UD there is
exactly one member un 1 of the UD such that u1, . . . , un, un 1 is a mem-
ber of I*(f). That there is at least one such member of the UD follows from the
fact that every member of the UD is denoted by at least one individual constant
(this is guaranteed by condition 1 of our definition of I*), and property (j) of
sets that are maximally consistent in PDE and ∃-complete, which we repeat here:

j. For each n-place functor f and n constants a1, . . . , an, there is at
least one constant b such that the formula f(a1, . . . , an) b is a
member of *.

Given these two facts, condition 4 ensures that for each n members u1, . . . , un

of the UD there is at least one member un 1 of the UD such that u1, . . . ,
un, un 1 is a member of I*(f), for any functor f. To show that there is at most
one such member un 1, let us assume, to the contrary, that there is also a mem-
ber of the UD u n 1, where u n 1 un 1, such that u1, . . . , un, u n 1 is a
member of I*(f). This means that, in addition to the sentence f(a1, . . . , an) b,
 includes a sentence f(a1, . . . , an) c, such that I*(c) u n 1 I*(b).
Then q(a) q(b) by virtue of clause 3 of the definition of I*. But this is impos-
sible, since { f(a1, . . . , an) b, f(a1, . . . , an) c} b c by E, so b c ∈

 , by 11.4.6, and therefore q(c) q(b), by 11.4.10. It follows that I(c) I*(b),

11.4 THE COMPLETENESS OF PD, PD , AND PDE 647

and so there is at most one member un 1 of the UD such that u1, . . . , un,
un 1 is a member of I*(f).

We must also ensure that condition 5 can be met, that is, that there are
not two atomic sentences Aa1 . . . an and Aa1 . . . an such that one is in *
and the other is not in *, yet 〈I*(a1), . . . , I*(an)〉 〈I*(a 1), . . . , I*(an)〉.
In the case of PD, it was simple to show this, for distinct constants were inter-
preted to designate distinct individuals. However, q may assign the same posi-
tive integer to more than one constant, and as a consequence condition 3 may
interpret several constants to designate the same value. Here our previous results
will be useful. Suppose that the constants a1, . . . , an and a 1, . . . , an are such
that 〈I*(a1), . . . , I*(an)〉 〈I*(a 1), . . . , I*(an)〉. Then, by clause 3 of the def-
inition of I*, we know that for each i, q(ai) q(a i). It follows from 11.4.10 that
for each i, ai a i ∈ *. Because a1 a 1 is a member of *, property (i) assures
us that Aa1 . . . an is a member of * if and only if Aa 1a2 . . . an is a member
of *. And because a2 a 2 is also a member of *, property (i) assures us that
Aa 1a2 . . . an is a member of * if and only if Aa 1a 2 . . . an is a member of
 *, and so on until we note that because an an is in *, Aa 1a 2 . . . an is a
member of * if and only if Aa 1a 2 . . . an is a member of *. We conclude that,
if 〈I*(a1), . . . , I*(an)〉 〈I*(a 1), . . . , I*(an)〉, then Aa1 . . . an ∈ * if and
only if Aa 1 . . . an ∈ *. So condition 5 can indeed be met.

To establish Lemma 11.4.8 for PDE—that every set * that is both max-
imally consistent in PDE and ∃-complete is also quantificationally consistent—
we can prove by mathematical induction that a sentence P of PDE is true on
I* if and only if P ∈ *. The proof is similar to that for PD, except that we
must change the basis clause to consider closed complex terms as well as con-
stants, and also to consider formulas containing the identity operator. We shall
find the following result useful here:

11.4.11: For any closed complex term t and variable assignment d,
denI*,d(t) I*(a), where a is the alphabetically earliest individual
constant such that t a is a member of *. (Property (j) of sets that
are maximally consistent in PDE and ∃-complete guarantees that
there is such a constant a.)

Proof: See Exercise 16.

Here is the revised proof.

Proof of basis clause: Either P is a sentence letter or P has the form
At1. . . tn or t1 t2. If P is a sentence letter, then, by clause 2 of the
definition of I*, it follows that P is true on I* if and only if P ∈ *.

If P has the form At1 . . . tn then P is true on I* if and only if,
for every d, denI*,d(t1), . . . , denI*,d(tn) is a member of I*(A). Now
property (j) guarantees, for each complex term ti, that there is an
alphabetically earliest constant ai such that t i ai is a member of *.
Moreover, by virtue of the rule D, the set consisting of P and each of
these identity sentences quantificationally entails At 1 . . . tn , where

648 PREDICATE LOGIC: METATHEORY

t i is t i if t i is a constant and t i is ai otherwise. So, by 11.4.6, P ∈ * if and
only if the sentence At 1 . . . tn is also a member of *. In addition,
denI*,d(t i) I*(t i), trivially if t i is a constant and by 11.4.11 if t i is a com-
plex term. So denI*,d(t1), . . . , denI*,d(tn) is a member of I*(A) if
and only if I*(t 1), . . . , I*(tn) is a member of I*(A); and clause 5
in the definition of I* guarantees that At 1 . . . tn is a member of * if
and only if I*(t 1), . . . , I*(tn) is a member of I*(A). We conclude
that At1 . . . tn ∈ * if and only if At1 . . . tn is true on I*.

If P has the form t1 t2, then P is true on I* if and only if,
for each variable assignment d, denI*,d(t1) denI*,d(t2). Again, for
each complex term t i, property (j) guarantees that there is an alpha-
betically earliest constant ai such that t i ai is a member of * and
so, by virtue of D and result 11.4.6, t1 t2 ∈ * if and only if the sen-
tence t 1 t 2 is also a member of *, where t i is t i if t i is a constant
and t i is ai otherwise. Moreover denI*,d(t i) I*(t i), trivially if t i is a
constant and by result 11.4.11 if t i is a complex term. So denI*,d(t1)
denI*,d(t2) if and only if I*(t 1) I*(t 2). By the way in which I* was
constructed, I*(t 1) I*(t 2) if and only if q(t 1) q(t 2). By result
11.4.10, q(t 1) q(t 2) if and only if t 1 t 2 ∈ *. We may conclude that
t1 t2 ∈ * if and only if t1 t2 is true on I*.

Because every member of * is true on I*, * is quantificationally consistent.
And, with Lemmas 11.4.4 and 11.4.8 established for PDE, along with the nec-
essary modifications of 11.4.9 (see Exercise 11.4.15), we know that the Incon-
sistency Lemma 11.4.2 is also true for PDE. It follows that PDE is complete for
predicate logic with identity and functions.

11.4E EXERCISES

*1. Prove that if P then ∪ {∼ P} is quantificationally inconsistent.

2. Prove that if ∪ {∼ P} is inconsistent in PD then P.

3. Using Metatheorem 11.4.1, prove the following:
a. Every argument of PL that is quantificationally valid is valid in PD.
b. Every sentence of PL that is quantificationally true is a theorem in PD.

*c. Every pair of sentences P and Q of PL that are quantificationally equivalent
are equivalent in PD.

4. Prove that the sentences of PL can be enumerated. (Hint: See Section 6.4.)

5. Prove the following:

If P and is a subset of , then P.

6.a. Prove 11.4.5.
b. Prove that any set * constructed as in our proof of Lemma 11.4.4 is ∃-complete.

|=

11.4 THE COMPLETENESS OF PD, PD , AND PDE 649

7. Prove that the sequence of sentences constructed in the proof of 11.4.3 is a
derivation in PD by showing (by mathematical induction) that each sentence
in the new sequence can be justified with the same rule as the corresponding
sentence in the original derivation.

*8. Prove 11.4.9, using result 11.1.13.

*9. Prove 11.4.6.

10. Explain why, in Lemmas 11.4.4 and 11.4.8, we constructed a set that was both
∃-complete and maximally consistent in PD, rather than a set that was just max-
imally consistent in PD.

11. Let system PD* be just like PD except that the rule ∀E is replaced by the fol-
lowing rule:

Universal Elimination* (∀E*)

(∀x)P

∼ (∃x) ∼ P

Prove that the system PD* is complete for predicate logic.

12. Let system PD be just like PD except that the rules ∃E and ∃I are replaced by
the following two rules:

Existential Elimination* (∃E*)

(∃x)P

∼ (∀x) ∼ P

Existential Introduction* (∃I*)

∼ (∀x) ∼ P

(∃x)P

Prove that system PD* is complete for predicate logic.

13. Using the results in the proof of Metatheorem 11.4.1, prove the following
theorem (known as the Löwenheim Theorem):

If a sentence P of PL is not quantificationally false, then there is an interpre-
tation with the set of positive integers as the UD on which P is true.

*14. Prove the following metatheorem (known as the Löwenheim-Skolem Theorem):

If a set of sentences of PL is quantificationally consistent, then there is an
interpretation with the set of positive integers as the UD on which every mem-
ber of is true.

650 PREDICATE LOGIC: METATHEORY

*15. Show the changes that must be made in the proofs of 11.4.3 and 11.4.9 so that
these results will hold for PLE and PDE. (Hint: Exercise 8 suggested that you
use result 11.1.13 in proving 11.4.9; so you must check whether 11.1.13 needs
to be changed.)

16. Prove result 11.4.11.

17. Show that the Löwenheim Theorem (and consequently the more general
Löwenheim-Skolem Theorem) does not hold for PLE.

11.5 THE SOUNDNESS OF THE TREE METHOD

We have presented the tree method as a means of testing for semantic prop-
erties of sentences and sets of sentences in both sentential logic and predi-
cate logic. In this section and the next we shall prove that the tree method
in Chapter 9 fulfills a claim we have made: A finite set of sentences of PL is
quantificationally inconsistent if and only if every systematic tree for that set
closes. In this section we shall prove that the tree method is sound for pred-
icate logic—that if a systematic tree for a set of sentences of PL closes, then
the set is quantificationally inconsistent. We shall prove the same for predi-
cate logic with identity and functions. In both cases we can then be assured
that, if we pronounce a set of sentences inconsistent because a tree for that
set closes, our pronouncement is correct. In the next section we shall prove
that the tree method is complete for predicate logic—that if a finite set of
sentences is quantificationally inconsistent, then every systematic tree for that
set is bound to close. Knowing that the method is complete, we shall also
know that open systematic trees do establish quantificational consistency.
(With a simple adaptation of parts of our proofs, the soundness and com-
pleteness of the tree method for sentential logic can also be established. This
will be addressed in the exercises.)

Our Soundness Metatheorem for the tree method is this:

Metatheorem 11.5.1: If a systematic tree for a set of sentences of PL closes,
then is quantificationally inconsistent.

(As we shall see in the exercises for this section, soundness also holds for
nonsystematic trees.) Our proof of Metatheorem 11.5.1 will rely heavily on
the following observation about the decomposition rules used in construct-
ing trees: Each rule is consistency-preserving in the sense that, if we have a
consistent set of sentences and apply a decomposition rule to one of the sen-
tences in that set, at least one of the sentences that results (there will be
only one in the case of a nonbranching rule) can consistently be added to
the set. As we build a tree for a set of sentences, we are, in effect, building
supersets of the one we started with—the set of sentences occurring on a

11.5 THE SOUNDNESS OF THE TREE METHOD 651

branch is a superset of the original set. Given the sense in which the decom-
position rules are consistency-preserving, at least one of the supersets formed
on a branch by repeated application of decomposition rules will be quan-
tificationally consistent. This will be important in establishing Metatheorem
11.5.1, for the supersets that comprise the branches of a closed tree are all
quantificationally inconsistent, each such branch containing some literal and
its negation. Because the decomposition rules are consistency-preserving in
the sense described, it follows that the only way we can end up with every
superset being quantificationally inconsistent (with a closed tree) is by start-
ing with a set that is quantificationally inconsistent. And that is what Metathe-
orem 11.5.1 says.

Our observation that the decomposition rules are consistency-
preserving must be proved. To facilitate our proof, we introduce the concept
of a level of a tree. The first (occurrence of a) sentence on any tree is at level
1. For any other sentence P, P is at level i 1, where i is the level of the sen-
tence occurring immediately before P on the same branch of the tree. The
line numbers used to annotate trees in Chapters 4 and 9 do not always cor-
respond to levels because we adopted the convention in those chapters that
only one decomposition rule can be cited on each line. Consider, for exam-
ple, the tree on page 477. Lines 1–3 do correspond directly to levels 1–3 of
that tree. Line 4, however, displays only one of the sentences occurring at
level 4. The sentence in line 10 on the left-hand branch is also at level 4, for
the sentence that occurs immediately before it on the same branch is at
level 3. Similar observations hold for sentences further down the branches of
the tree.

We shall establish that our decomposition rules are consistency-
preserving by showing that each level i of a systematic tree for a quantifica-
tionally consistent set of sentences is such that either there is at least one
branch that was completed prior to that level on which the sentences form a
quantificationally consistent set (a quantificationally consistent superset has
resulted from applying as many rules as could be applied) or there is at least
one branch that extends at least as far as level i such that the sentences on that
branch up to and including level i form a quantificationally consistent set (the
rules thus far have preserved consistency).

As an example of what we want to prove, here is a completed open
tree for the set {(∀x)Fx ∨ Ga, (∃y) ∼ Fy}:

1. (∀x)Fx ∨ Ga SM
2. (∃y) ∼ Fy SM

3. ∼ Fa ∼ Fb 2 ∃D2

4. (∀x)Fx Ga (∀x)Fx Ga 1 ∨D
5. Fa Fb 4 ∀D

652 PREDICATE LOGIC: METATHEORY

1. (∀x)Fx ∨ Fa SM
2. ∼ Fa SM

3. (∀x)Fx Fa 1 ∨D
4. Fa 3 ∀D

No branch that closes before the last level contains a quantificationally consis-
tent set of sentences (each such branch containing a literal and its negation),
and the branch that closes at the last level does not contain a quantificationally
consistent set. So, at the last level of a closed tree, our claim about the levels
of a tree for a quantificationally consistent set is not true; and we may conclude
that the set for which the tree was constructed is therefore quantificationally
inconsistent.

To prove our claim about the levels of any systematic tree for a quan-
tificationally consistent set of sentences, we also introduce the concept of a
path to a level of a tree. For any branch that extends to level i or further, we
call that part of the branch that extends to level i a path to level i, and we say
that the path contains the set of sentences that occur on it. In the last tree dis-
played, there is exactly one path to level 1, and it contains the set of sentences
{(∀x)Fx ∨ Fa}. There is exactly one path to level 2, and it contains the set of
sentences {(∀x)Fx ∨ Fa, ∼ Fa}. There are two paths to level 3; one contains
the set of sentences {(∀x)Fx ∨ Fa, ∼ Fa, (∀x)Fx}, and the other contains the
set {(∀x)Fx ∨ Fa, ∼ Fa, Fa}. There is one path to level 4, and it contains the

Each of the levels 1–5 is such that our claim holds. At level 1 there is at least
one branch such that the set of sentences occurring on that branch through
and including level 1 form a quantificationally consistent set: {(∀x)Fx ∨ Ga}.
At level 2 there is at least one branch such that the set of sentences occurring
on that branch form a quantificationally consistent set: {(∀x)Fx ∨ Ga, (∃y) ∼ Fy}.
At level 3 there are two (and so at least one) such branches: {(∀x)Fx ∨ Ga,
(∃y) ∼ Fy, ∼ Fa} and {(∀x)Fx ∨ Ga, (∃y) ∼ Fy, ∼ Fb}. At level 4 there are also
two such branches: {(∀x)Fx ∨ Ga, (∃y) ∼ Fy, ∼ Fa, Ga} and {(∀x)Fx ∨ Ga,
(∃y) ∼ Fy, ∼ Fb, Ga}. The branches that include ‘(∀x)Fx’ are not candidates, but
we have not claimed that quantificationally consistent sets will be found on all

branches. At level 5 there is no branch that extends to that level that contains
a quantificationally consistent set of sentences, but there is at least one branch
that was completed at an earlier level, level 4, on which the sentences form a
quantificationally consistent set. So the claim is true of all levels of this tree.

The fact that the claim holds for every level of a systematic tree for a
quantificationally consistent set allows us to conclude that if a tree for a set of
sentences closes then the set must be quantificationally inconsistent. Consider:
If a tree closes, then the tree has only a finite number of levels, and the longest
branch ends at a finite level. In the following closed tree the longest branch
ends at level 4:

11.5 THE SOUNDNESS OF THE TREE METHOD 653

set {(∀x)Fx ∨ Fa, ∼ Fa, (∀x)Fx, Fa}. Finally a completed path to level i of a tree
is a completed branch of that tree that ends at level i. We state our claim about
the levels of a systematic tree for a quantificationally consistent set in terms of
paths in the Consistent Branch Lemma:

11.5.2 (the Consistent Branch Lemma): Each level i of a tree for a
quantificationally consistent set of sentences of PL is such that either
(a) there is at least one completed path to a level earlier than i that
contains a quantificationally consistent set of sentences or (b) there
is at least one path to level i that contains a quantificationally
consistent set of sentences.

We shall prove 11.5.2 by establishing a more specific claim (which will later be
useful in proving that systematic trees for sets of sentences with finite models
always have a completed open branch). Let be a finite set of sentences of PL

that is quantificationally consistent, and let I be an interpretation. We call inter-
pretation I a path-variant of I for path p of a tree for the set of sentences if
I is just like I except that, for each constant a that occurs in some sentence
on the path but not in any member of , there is a member u of the UD such
that I (a) u and such that, for every other constant b occurring on the path
but not in , I (b) u. We shall show that

11.5.3: If a finite set of sentences of PL is true on an interpretation
I, then each level i of a systematic tree for is such that either
(a) there is at least one completed path p to a level earlier than i that
contains a set of sentences all of which are true on a path-variant of I
for p or (b) there is at least one path p to level i that contains a set
of sentences all of which are true on a path-variant of I for p.

We establish result 11.5.3 by mathematical induction on the levels of a system-
atic tree for a quantificationally consistent set of sentences of PL. Letting be
a finite set of sentences of PL and I an interpretation on which every member
of is true,

Basis clause: Level 1 of a systematic tree for is such that either (a) or
(b) holds.

Inductive step: If every level less than or equal to level k of a systematic
tree for is such that either (a) or (b) holds, then level k 1 of a
systematic tree for is also such that either (a) or (b) holds.

Conclusion: Every level of a systematic tree for is such that either
(a) or (b) holds.

Proof of basis clause: There is exactly one path to level 1 of any tree,
and that path contains the unit set {P}, where P is a member of the set
 for which the tree is being constructed. P is true on I since every

654 PREDICATE LOGIC: METATHEORY

member of is, and I is in this case a path-variant of itself (since the
path contains no constants that do not occur in). So there is a path
to level 1 that contains a set of sentences all of which are true on a
path-variant of I, and (b) holds for level 1.

Proof of inductive step: We assume the inductive hypothesis for an arbi-
trary positive integer k: For each level i less than k 1 of a tree for ,
either (a) or (b) holds. We must show that on this assumption either
(a) or (b) holds for level k 1 of a tree for as well. We first note
that if (a) holds for an earlier level i, then (a) holds for level k 1 as
well. That is, if there is at least one completed path to a level earlier
than i that contains a set of sentences all of which are true on a path-
variant of I for that path, then that path is also a completed path to a
level earlier than k 1.

Now we must consider the case where (a) does not hold for
any level prior to k 1. In this case it follows from the inductive
hypothesis that (b) holds for every level prior to k 1 and, in partic-
ular, that (b) is true of level k. If, in addition, there is a completed path
to level k that contains a set of sentences all of which are true on a
path-variant of I for that path, then (a) is true of level k 1. If there
is not such a path to level k, we still know, because (b) is true of level
k, that at least one (noncompleted) path to level k contains a set of
sentences all of which are true on a path-variant of I for that path. Call
this path k and the variant I k

. Because the path is not complete at
level k, it is extended to level k 1 by application of some tree rule.
We shall now consider the rules that might be used to extend the path
to level k 1 and show that in each case application of the rule results
in at least one path to level k 1 that contains a set of sentences all
of which are true on a path-variant of I for that path—thereby estab-
lishing that (b) holds for level k 1 as well.

We divide the rules into six cases.

Case 1: The path k is extended to level k 1 by adding a set
member at that level. Because decomposition rules apply after all
set members have been entered, the only sentences on the path k are
members of , and the sentence entered at level k 1 is also a mem-
ber of . So there is a path to level k 1 that contains a subset of ,
all members of which are true in I, which in this case is a path-variant
of itself.

Case 2: The path k is extended to level k 1 as a result of
applying one of the nonbranching rules ∼ ∼ D, &D, ∼ ∨D, ∼ ⊃D, ∼ ∀D,
or ∼ ∃D to a sentence P on k. In each case {P} quantificationally entails
the sentence Q entered on level k 1 (see Exercise 11.5.3). Therefore
all the sentences on k and the sentence Q are true on I k

, which is a
path-variant of I for the extended path that we are considering (because
none of the rules in this case add a new individual constant to the tree

11.5 THE SOUNDNESS OF THE TREE METHOD 655

and I k
itself was a path-variant of I for k). Thus there is a path to level

k 1—the path that extends k to include Q—that contains a set of
sentences all of which are true on a path-variant of I for this path.

Case 3: The path is extended to form two paths to level k 1
as a result of applying one of the branching rules ∼ &D, ∨D, or ⊃D to
a sentence P on k. Letting Q be one of the sentences that was entered
on level k 1 and R the other, it can be shown that on any interpre-
tation on which P is true either Q is true or R is true (see Exercise 4).
Therefore either all the sentences on k plus Q are true on I k

, which
is a path-variant of I for the new path containing Q, or all the sen-
tences on k plus R are true on I k

, which is a path-variant of I for the
new path containing R. Thus there is a path to level k 1—either the
path that extends k to include Q or the path that extends k to
include R—that contains a set of sentences all of which are true on a
path-variant of I for that path.

Case 4: The path is extended to level k 1 as a result of apply-
ing either D or ∼ D (see Exercise 5).

Case 5: The path is extended to level k 1 as a result of apply-
ing ∀D. Then k contains a sentence (∀x)P such that P(a x) is entered
at level k 1, where a is either ‘a’ if no constants occur on k or the
alphabetically earliest constant that does occur. Because (∀x)Px P(a x)
(result 11.1.4), P(a x) is true on I k

. If no constant occurred on k,
then I k

is also a path-variant of I for the new path to level k 1
because I k

(a) I k
(b) for any other constant b occurring on k but

not in —there are no other constants b occurring on k. If, on the
other hand, a is a constant that already occurs on k, then we have
added no new constant to the path, and so I k

is in this case also a
path-variant of I for the new path to level k 1. Either way, there is a
path to level k 1 that contains a set of sentences all of which are
true on a path-variant of I for that path.

Case 6: The path is extended to level k 1 as a result of
applying ∃D2. Then k contains a sentence (∃x)P such that P(a1 x),
. . . , P(am x), P(am 1 x) are entered on distinct paths to level k 1,
where a1, . . . , am are all the individual constants that occur in sen-
tences on k and am 1 is the alphabetically earliest constant that does
not occur on k. We consider two possibilities:

a. If any one (or more) of P(a1 x), . . . , P(am x) is true
on I k

, then the path to level k 1 on which that
substitution instance was entered is a path that contains
a set of sentences all of which are true on a path-variant
of I for that path (I k

is a path-variant of the newly
formed path because the substitution instance does not
introduce a new constant).

|=

656 PREDICATE LOGIC: METATHEORY

b. Now consider the case where none of P(a1 x), . . . ,
P(am 1 x) is true on I k

. Because (∃x)P is true on I k
and

because am 1 does not occur in any sentence on Γk, our
proof of result 11.1.10 (Exercise 11.1.5) shows that
P(am 1 x) is true on an interpretation I Γk

that is just like
IΓk

except that I Γk
(am 1) u, where u is a member of the

UD such that d[u x] satisfies P on IΓk
. This member u is

not assigned to any other individual constant bi occurring
on Γk but not in Γ (for, if it were, it would follow from
result 11.1.13 that P(bi x) is true on IΓk

, which contradicts
our assumption here). Thus I Γk

is a path-variant of I for the
path extended to level k 1 by the addition of P(am 1 x),
and one on which every sentence in the new path is true.

Either way, then, there is a path to level k 1 that contains a set of
sentences all of which are true on a path-variant of I for that path.

We have considered each rule that might be used to extend
the path Γk to level k 1 and have shown that in each case there
is at least one path to level k 1 that contains a set of sentences all
of which are true on a path-variant of I for that path. That completes
the proof of the inductive step.

Therefore, result 11.5.3 holds for every level of a tree for a set of sentences all
of which are true on interpretation I.

The Consistent Branch Lemma 11.5.2 follows immediately from result
11.5.3, for in establishing the existence of paths containing sentences all of
which are true on some path variant of I, we have established that the set of
sentences on each such path has a model and therefore forms a quantifica-
tionally consistent set.

Metatheorem 11.5.1 follows from the Consistent Branch Lemma and
from the fact that the null tree, which is the single tree for the empty set of sen-
tences of PL, is not closed (the null branch does not contain any sentences and
therefore does not contain some atomic sentence and its negation). If a tree for
a set Γ of sentences is closed, then every branch on that tree is closed and hence
contains a literal and its negation. Any path to the last level of the tree is a closed
branch, and hence the set of sentences on that branch is quantificationally incon-
sistent (because it contains some literal and its negation). So (b) does not hold
for the last level of such a tree. Nor does (a); all completed paths to earlier levels
are closed branches, and therefore the sets of sentences on those branches are
also quantificationally inconsistent. Because the last level of any closed tree is
such that neither (a) nor (b) holds, it follows, by the Consistent Branch Lemma,
that the set for which the tree was constructed is quantificationally inconsistent.
We conclude that the tree method is sound for predicate logic.

To establish that the tree method for predicate logic with identity and
functions is also sound, we first note that the cases in the inductive proof of
result 11.5.3 carry over to predicate logic with identity and functions. We must

11.5 THE SOUNDNESS OF THE TREE METHOD 657

also add two more cases to the inductive step, one to cover paths that are
extended by an application of D and one to cover paths that are extended
by an application of CTD.

Case 7: The path Γk is extended to level k 1 as a result of
applying D. Then Γk contains sentences t1 t2 and P such that a
sentence P(t1 t2) was entered at level k 1. It follows from 11.2.4,
which we repeat here, that P(t1 t2) is true on I k

.

11.2.4: For any closed terms t1 and t2, if P is a sentence that
contains t1, then {t1 t2, P} P(t2 t1), and if P is a sentence that
contains t2, then {t1 t2, P} P(t1 t2).

In addition, I k
is a path-variant for the new path to level k 1 because

 D does not introduce new constants. Therefore there is a path to
level k 1 that contains a set of sentences all of which are true on
some path-variant of I for that path.

Case 8: The path Γk is extended to level k 1 as a result of
applying CTD. Then Γk contains a literal sentence with a closed complex
term f(a1, . . . , an), where a1, . . . , an are all constants, such that b1

f(a1, . . . , an), . . . , bm f(a1, . . . , an) bm 1 f(a1, . . . , an) are entered
on distinct paths to level k 1, where b1, . . . , bm are all the individual
constants that occur in sentences on Γk and bm 1 is the alphabetically
earliest constant that does not occur on Γk. We consider two possibilities:

a. If any one (or more) of b1 f(a1, . . . , an), . . . ,
bm f(a1, . . . , an) is true on IΓk

, then the path to level
k 1 on which that identity sentence was entered is a
path that contains a set of sentences all of which are true
on a path-variant of I for that path. (IΓk

is a path-variant of
the newly formed path because the identity sentence does
not introduce a new constant.)

b. Now consider the case where none of b1 f(a1, . . . , an),
. . . , bm f(a1, . . . , an) is true on IΓk

. Because bm 1 does
not occur in any sentence on Γk, our proof of result 11.2.5
(Exercise 11.2.7) shows that Γ ∪ {bm 1 f(a1, . . . , an)} is
true on an interpretation I Γk

that is just like IΓk
except that

I Γk
(bm 1) u, where u is the member of the UD such

that < IΓk
(a1), . . . , IΓk

(an), u> is a member of IΓk
(f).

This member u is not assigned to any other individual
constant bi occurring on Γk but not in Γ (for, if it were,
it would follow that bi f(a1, . . . , an) is true on IΓk

,
which contradicts our assumption here). Thus I Γk

is a
path-variant of IΓk

for the path extended to level k 1 by
the addition of bm 1 f(a1, . . . , an), and one on which
every sentence in the new path is true.

|=
|=

658 PREDICATE LOGIC: METATHEORY

Finally we must note that a branch of a tree for predicate logic with
identity closes in one of two cases: Either the branch contains some literal and
its negation or the branch contains a sentence of the form ∼ t t. In showing
that Metatheorem 11.5.1 for predicate logic followed from the Consistent
Branch Lemma 11.5.2, we made use of the fact that each closed branch con-
tained a literal and its negation—arguing that the set of the sentences on that
branch was therefore quantificationally inconsistent. In the present case we
must also be sure that the set of sentences on a branch that closes because it
contains a sentence ∼ t t is quantificationally inconsistent. This is not hard
to show: t t is quantificationally true, so ∼ t t is quantificationally false,
and therefore any set that contains ∼ t t is quantificationally inconsistent.
This and the addition of Cases 7 and 8 in the proof of result 11.5.3 suffice to show
that the tree method is sound for predicate logic with identity and functions.

Result 11.5.3 also allows us to prove another claim made in Chapter 9,
that trees constructed in accordance with The System have the finite model
property:

Metatheorem 11.5.4: If a finite set Γ of sentences of PL has a finite model,
that is, an interpretation with a finite UD on which every member of Γ is
true, then every systematic tree for Γ will contain a completed open branch.1

In such a case, we shall be able to conclude in a finite number of steps that the
set is quantificationally consistent.

Proof of Metatheorem 11.5.4: Let Γ be a finite set of sentences such
that there is an interpretation I with a finite UD on which every mem-
ber of Γ is true. By result 11.5.3, every level i of a systematic tree for
Γ is such that either (a) there is at least one completed path to a level
earlier than i that contains a set of sentences all of which are true on
a path-variant of I for that path or (b) there is at least one path to
level i that contains a set of sentences all of which are true on a path-
variant of I for that path.

Consider, for any level i, a path that satisfies either (a) or (b).
There is a limit to the number of distinct individual constants not
already occurring in Γ that can occur on this path (constants that were
introduced by an application of ∀D or ∃D), namely, the size n of the
finite UD for I. For if a path contains more than n new individual con-
stants, it cannot meet the condition in the definition of path-variants
that each of these constants be assigned a member of the UD that is
different from the members assigned to other new constants; there
would not be enough members of the UD to go around. In addition,
because Γ contains only a finite number of constants, a path that sat-
isfies either (a) or (b) can contain only a finite number of constants.

1This metatheorem, along with result 11.5.3, is due to George Boolos, “Trees and Finite Satisfiability: Proof of a
Conjecture of Burgess,” Notre Dame Journal of Formal Logic, 25(3) (1984), 193–197.

11.5 THE SOUNDNESS OF THE TREE METHOD 659

We now show that a path of a systematic tree that contains only
a finite number of individual constants must be finitely long. Each of
the decomposition rules &D, ∼ &D, ∨D, ∼ ∨D, ∼ ⊃D, ∼ D, ∼ ∼ D, ∀D,
and ∃D2 produces sentences with fewer occurrences of logical opera-
tors than the sentence being decomposed. The rules ⊃D, D, ∼ ∃D,
and ∼ ∀D produce one or two sentences with the same number of
occurrences of logical operators as the sentence being decomposed,
but the sentences so produced have one of the forms ∼ P (in the case
of ⊃D and D), (∃x) ∼ P (in the case of ∼ ∀D), or (∀x) ∼ P (in the
case of ∼ ∃D). Each of the latter sentences, if not a literal, will be
decomposed by a rule that produces only sentences with fewer occur-
rences of logical operators. Because subsequent applications of decom-
position rules produce sentences with fewer and fewer occurrences of
logical operators, literals are eventually reached. The only way in which
a branch of a systematic tree can continue indefinitely is through
repeated instantiation of one or more universally quantified sentences
by ∀D, each instantiation containing a different instantiating constant.
But this cannot be the case with a branch that contains a finite num-
ber of individual constants. Therefore the paths that we are guaran-
teed by result 11.5.3 can be only finitely long.

In addition, The System was designed to guarantee that if a
path can be completed (or closed) after a finite number of applications
of rules, it will be completed. Stages 1 and 2 (and stage 3, in the case
of PLE) each require that we decompose all sentences on the tree of
the specified sort before going to the next stage, and at each stage there
are only finitely many sentences. The System does not allow one branch
to be developed indefinitely while others are ignored, and so a branch
that can be completed after a finite number of steps will be completed.

We conclude that at some finite level i of a systematic tree for
Γ, there is a path that meets condition (a) of result 11.5.3. In addition,
because this path meets (a), it is a completed open path. This estab-
lishes Metatheorem 11.5.4.

Metatheorem 11.5.4 is also true of PLE; this proof is left as an exercise.

11.5E EXERCISES

*1. Show that Metatheorem 11.5.1 holds for nonsystematic trees as well as for sys-
tematic ones. (Result 11.5.3 is not generally true of nonsystematic trees, so you
should prove Lemma 11.5.2 directly by mathematical induction.)

2. Using Metatheorem 11.5.1, prove the following:
a. If a sentence P of SL is such that {P} has a closed truth-tree, then P is quan-

tificationally false.
b. If a sentence P of SL is such that {∼ P} has a closed truth-tree, then P is quan-

tificationally true.

660 PREDICATE LOGIC: METATHEORY

*c. If a set {∼ (P Q)} has a closed truth-tree, then P and Q are quantificationally

equivalent.

d. If a set Γ ∪ {∼ P} has a closed truth-tree, then Γ P.

*e. If the set consisting of the premises and the negation of the conclusion of an

argument has a closed truth-tree, then that argument is quantificationally valid.

3. Prove that, if a sentence Q is obtained from a sentence P by application of one

of the following tree rules, then {P} Q.

a. ∼ ∼ D e. ∀D

*b. &D *f. ∼ ∀D

*c. ∼ ∨D *g. ∼ ∃D

d. ∼ ⊃D

4. Prove that, if sentences Q and R are obtained from a sentence P by applica-

tion of one of the following tree rules, then on any interpretation on which P
is true, either Q is true or R is true.

a. ∼ &D

*b. ∨D

*c. ⊃D

5. Prove Case 4 in the inductive step of the proof of Lemma 11.5.2.

6. If we were to drop the rule ∀D from the tree method, would the method still

be sound for predicate logic? Explain.

7. Explain how we can adapt the proof of Metatheorem 11.5.1 to establish that

the tree method for SL is sound for sentential logic.

*8. Prove that Metatheorem 11.5.4 is true of PLE.

11.6 THE COMPLETENESS OF THE TREE METHOD

In the last section we established that the tree method is sound for predicate
logic—if a tree for a set of sentences of PL closes, then that set is quantifica-
tionally inconsistent. In this section we shall prove that the tree method is also
complete for sentential logic. The Completeness Metatheorem for the tree method is
as follows:

Metatheorem 11.6.1: If a finite set Γ sentences of PL is quantificationally
inconsistent, then every systematic tree for Γ closes.

Whereas soundness ensures that we are correct in pronouncing a set inconsis-
tent if we can construct a closed tree for that set, completeness ensures that
we are correct in pronouncing a set consistent if a systematic tree for that set
does not close. The requirement that the tree be systematic is important, as we
shall see; and the reader should remember that a tree that is constructed in
accordance with The System but is abandoned before every branch closes and

|=

|=

11.6 THE COMPLETENESS OF THE TREE METHOD 661

before at least one branch becomes a completed open branch does not count
as a systematic tree.

We shall prove that the tree method is complete by establishing that
the contrapositive of Metatheorem 11.6.1 is true—that if a systematic tree for
a set of sentences of PL does not close, then the set is quantificationally con-
sistent. There are three parts to the proof. First, we shall prove that, if a sys-
tematic tree fails to close and does not contain a completed open branch after
a finite number of steps in its construction, then it has at least one branch with
infinitely many sentences. Second, we shall prove that for any completed open
branch or infinite branch of a systematic truth-tree, the set of sentences occur-
ring on that branch is a special sort of set known as a Hintikka set.2 Finally we
shall present a method of constructing a model for any Hintikka set. This will
establish that every Hintikka set is quantificationally consistent and conse-
quently that the set of sentences occurring on either a completed open
branch or an infinite branch of a systematic truth-tree is quantificationally
consistent. Because each sentence in the set Γ for which a tree is constructed
occurs on every branch of that tree, it follows that, if a systematic tree for Γ

fails to close, Γ is a subset of a Hintikka set and is therefore also quantifica-
tionally consistent. Therefore, if a finite set Γ is quantificationally inconsistent,
then every systematic tree for Γ will close—and that is what Metatheorem
11.6.1 says.

Consider a systematic tree such that at no level i does the tree contain
a completed open branch and at no level i is the tree closed. Our first task is to
show that such a tree must contain an infinite branch. Because the tree fails to
close or to contain a completed open branch at any level i, the tree must contain
infinitely many sentences (strictly speaking, infinitely many occurrences of sen-
tences—the sentences need not be distinct). The tree contains infinitely many
sentences because it takes infinitely many steps to construct a systematic tree that
neither is closed nor contains a completed open branch at any level, and each
step in the construction involves adding at least one new sentence. It remains to
be shown that a systematic truth-tree containing infinitely many sentences has at
least one branch that is infinitely long—at least one branch that contains an infi-
nite number of sentences. The reason that this needs to be proved is that a tree
could contain infinitely many sentences and yet be such that each of its branches
was only finitely long, if it contained infinitely many branches. So we need to
establish the following lemma, the Infinite Branch Lemma:

11.6.2 (the Infinite Branch Lemma): Every systematic tree that contains
an infinite number of occurrences of sentences has at least one
branch that is infinitely long.3

2These sets were first studied by J. Hintikka, in “Form and Content in Quantification Theory,” Acta Philosophica
Fennica, 8 (1955), 7–55; and “Notes on Quantification Theory,” Societas Scientiarum Fennica, Commentationes Physico-
Mathematicae, 17(12) (1955).
3This follows as a special case of a famous lemma known as König’s Lemma (D. König, Theorie der endlichen und
unendlichen Graphen, Leipzig, 1936).

662 PREDICATE LOGIC: METATHEORY

Proof of Lemma 11.6.2: Some definitions will be useful for the proof.
We shall say that a sentence P (throughout, read occurrence of a sentence

whenever we speak of a sentence) in a tree is above sentence Q when
P and Q lie on the same branch of the tree and P is at an earlier level
of the tree. Q is an immediate successor of P if P and Q lie on the same
branch and P is one level earlier than Q. Every sentence in a tree,
except those that occur at the ends of branches, has a finite number
of immediate successors—one if a nonbranching rule is applied, two if
a branching rule other than ∃D2 is applied, and m 1, where m is
the number of individual constants already occurring on the sentence’s
branch, if ∃D2 is applied.

We shall now show that if a systematic tree contains infinitely
many sentences then there is at least one infinite branch in the tree, by
starting at level 1 and working down through the levels of the tree. The
sentence at level 1 of such a tree—call it P1—is above every other sen-
tence in the tree. Therefore this sentence is above infinitely many sen-
tences (subtracting 1 from an infinite number leaves an infinite num-
ber). P1 has a finite number of successors at level 2. At least one of these
immediate successors is above infinitely many sentences. Consider the
possibility that each of the immediate successors—call them Q1, . . . ,
Qn—is above only a finite number of sentences. Then P itself would be
above only finitely many sentences: Q1, . . . , Qn, Q1’s successors, . . . ,
and Qn’s successors together would constitute only a finite number of
sentences. P1 must therefore have at least one immediate successor P2

that is above an infinite number of sentences. The reasoning that we
have just used can be generalized: If a sentence at any level is above
infinitely many sentences, then at least one immediate successor of that
sentence is above infinitely many sentences. So P2, being above infinitely
many sentences, has an immediate successor P3 that is above infinitely
many sentences, and P3 has an immediate successor P4 that is above
infinitely many sentences, and so on, for each positive integer. The sen-
tences P1, P2, P3, P4, . . . constitute a branch with an infinite number
of sentences. Therefore, if a systematic tree contains infinitely many sen-
tences, then it has at least one branch that is infinitely long.

We may now conclude that a systematic tree that fails to close either has a com-
pleted open branch after a finite number of steps or has at least one infinite
branch. This will be important in what follows.

Turning to the second step of the proof of Metatheorem 11.6.1, we define
a Hintikka set to be a set Γ of sentences of PL that has the following properties:

a. There is no atomic sentence P such that both P and ∼ P are
members of Γ.

b. If ∼ ∼ P ∈ Γ, then P ∈ Γ.

c. If P & Q ∈ Γ, then P ∈ Γ and Q ∈ Γ.

d. If ∼ (P & Q) ∈ Γ, then either ∼ P ∈ Γ or ∼ Q ∈ Γ.

11.6 THE COMPLETENESS OF THE TREE METHOD 663

e. If P ∨ Q ∈ Γ, then either P ∈ Γ or Q ∈ Γ.

f. If ∼ (P ∨ Q) ∈ Γ, then ∼ P ∈ Γ and ∼ Q ∈ Γ.

g. If P ⊃ Q ∈ Γ, then either ∼ P ∈ Γ or Q ∈ Γ.

h. If ∼ (P ⊃ Q) ∈ Γ, then P ∈ Γ and ∼ Q ∈ Γ.

i. If P Q ∈ Γ, then either P ∈ Γ and Q ∈ Γ or ∼ P ∈ Γ and
∼ Q ∈ Γ.

j. If ∼ (P Q) ∈ Γ, then either P ∈ Γ and ∼ Q ∈ Γ or ∼ P ∈ Γ

and Q ∈ Γ.

k. If (∀x)P ∈ Γ, then at least one substitution instance of (∀x)P is
a member of Γ, and for every constant a that occurs in some
sentence of Γ, P(a x) ∈ Γ.

l. If ∼ (∀x)P ∈ Γ, then (∃x) ∼ P ∈ Γ.

m. If (∃x)P ∈ Γ, then for at least one constant a, P(a x) ∈ Γ.

n. If ∼ (∃x)P ∈ Γ, then (∀x) ∼ P ∈ Γ.

We call a branch of a tree a Hintikka branch if and only if the sentences on that
branch constitute a Hintikka set. We now prove that every completed open
branch and every infinite branch of a systematic tree is a Hintikka branch,
which will establish the Hintikka Branch Lemma:

11.6.3 (the Hintikka Branch Lemma): Every systematic tree that is not
closed has at least one Hintikka branch.

Afterward we shall show that every Hintikka set is quantificationally consistent.

Proof of Lemma 11.6.3: If a systematic tree fails to close, then either
the tree has a completed open branch or, by Lemma 11.6.2, the tree
has an infinite branch. We shall show that each of these two types of
branches is a Hintikka branch—that is, that the set of sentences occur-
ring on such a branch has properties (a)–(n).

First consider completed open branches. By definition a com-
pleted open branch is a finite branch that is open—there is no pair of
literals P and ∼ P such that both P and ∼ P occur on the branch—and
each sentence on that branch is one of the following:

1. A literal (an atomic sentence or the negation of an atomic
sentence)

2. A sentence that is not universally quantified and that has
been decomposed

3. A universally quantified sentence (∀x)P such that at least
one substitution instance of (∀x)P occurs on the branch
and, for each constant a occurring on the branch, P(a x)
occurs on the branch

664 PREDICATE LOGIC: METATHEORY

The set of sentences on a completed open branch has property (a)
because there is no pair of literals P and ∼ P occurring on the branch.
Every sentence that has one of the forms described in properties
(b)–(j) and (l)–(n) has been decomposed (part 2 of the definition of
a completed open branch), and so it is easily verified that the set of
sentences on a completed open branch has those properties. (For
example, if a sentence ∼ ∼ P occurs on a completed open branch and
has been decomposed by an application of ∼ ∼ D, then P also occurs
on that branch—which establishes property (b).) Finally the set of sen-
tences on a completed open branch also has property (k), for part 3 of
the definition of completed open branches stipulates that property (k)
is satisfied. We conclude that the set of sentences occurring on a com-
pleted open branch has properties (a)–(n) and that the branch is
therefore a Hintikka branch.

Now we turn to infinite branches. The System for tree con-
struction was designed to guarantee that every infinite (nonterminat-
ing) branch is a Hintikka branch; we shall explain how it does so. First,
a nonterminating branch is not closed (a branch that closes contains
only finitely many sentences); so the set of sentences on such a branch
must have property (a) of Hintikka sets. Second, the alternation of
stages 1 and 2 of The System ensures that each nonliteral sentence that
does not have the form (∀x)P is decomposed a finite number of lev-
els after the level on which it occurs, that for each universally quanti-
fied sentence (∀x)P and constant a on a branch of the tree P(a x) is
entered within a finite number of levels, and that at least one substi-
tution instance P(a x) is entered. Each such addition yields only a
finite number of levels, so every sentence on a branch must be decom-
posed if the branch is infinite. Therefore the set of sentences on a non-
terminating branch satisfies properties (b)–(n) of Hintikka sets, as well
as property (a). Every infinite branch of a systematic tree is therefore
a Hintikka branch.

Finally we shall prove the Hintikka Set Lemma:

11.6.4 (the Hintikka Set Lemma): Every Hintikka set is quantificationally
consistent.

From this it follows that if a systematic tree for a set Γ of sentences does not
close then Γ is quantificationally consistent—for one of the branches that con-
tains the sentences in Γ is a Hintikka branch.

Proof of Lemma 11.6.4: Let Γ be a Hintikka set of sentences of PL.
We first associate with each individual constant of PL a distinct positive
integer—i is associated with the alphabetically ith constant. We shall

11.6 THE COMPLETENESS OF THE TREE METHOD 665

prove that every sentence of Γ is true on the interpretation I defined
as follows:

1. The UD is the set consisting of the positive integers that
are associated with the individual constants occurring in
members of Γ. If no member of Γ contains an individual
constant, let the UD be the set {1}.

2. For each sentence letter P, I(P) T if and only if P ∈ Γ.

3. For each individual constant a that occurs in some
sentence in Γ, I(a) is the positive integer associated
with a. For each constant a that does not occur in any
sentence of Γ, I(a) is the smallest positive integer in the
UD (which, by specification 1, is nonempty).

4. For each n-place predicate A, I(A) includes all and only
those n-tuples 〈u1, . . . , un 〉 such that for some constants
a1, . . . , an, Aa1 . . . an ∈ Γ and 〈I(a1), . . . , I(an)〉

〈u1, . . . , un〉.

We shall use mathematical induction to prove that every mem-
ber of Γ is true on I. Our induction will not be on the number of occur-
rences of logical operators in a sentence since some of the clauses of
the proof would not work in that case (see Exercise 11.6.5). Instead,
we shall appeal to the length of a sentence. Where P is a formula of PL,
let the length of P be the number of occurrences of sentence letters,
predicates, and logical operators in P. No sentence of PL has length 0
since every sentence contains at least one sentence letter or predicate.
So the basis clause begins with length 1.

Basis clause: Every sentence P of length 1 is such that if P ∈ Γ then
I(P) T.

Inductive step: If every sentence P of length less than or equal to k
is such that if P ∈ Γ then I(P) T, then every sentence P of length
k 1 is such that if P ∈ Γ then I(P) T.

Conclusion: Every sentence P is such that if P ∈ Γ, then I(P) T.

Proof of basis clause: A sentence of length 1 is an atomic sentence.
(If a sentence contains any logical operators, then because it also must
contain at least one sentence letter or predicate it has a length that is
greater than 1.) If P is a sentence letter, then by part 2 of the defini-
tion of I, I(P) T if P ∈ Γ. If P is an atomic sentence of the form
Aa1 . . . an, then, by part 4 of the definition of I, if Aa1 . . . an ∈ Γ

then 〈I(a1), . . . , I(an)〉 ∈ I(A), and so I(P) T.

Proof of inductive step: We assume that the inductive hypothesis holds
for some arbitrary positive integer k—that every sentence of length k
or smaller that is a member of Γ is true on I. We must show that any

666 PREDICATE LOGIC: METATHEORY

sentence P of length k 1 is also such that if it is a member of Γ then
it is true on I. It is easy to verify that P, being nonatomic, must have
one of the forms specified in properties (a)–(n) of Hintikka sets; and
we shall consider each of these forms that P may have.

Case 1: P has the form ∼ Q, where Q is an atomic sentence.
If ∼ Q ∈ Γ then, by property (a) of Hintikka sets, Q ∉ Γ. If Q is a
sentence letter then, by part 2 of the definition of I, I(Q) F and so
I(∼ Q) T.4 If Q has the form Aa1 . . . an then, by part 4 of the definition
of I, 〈I(a1), . . . , I(an)〉 ∉ I(A). This is because each constant that occurs
in some member of Γ designates a positive integer different from that
designated by any other constant occurring in Γ (by part 3), and so there
is no other set of constants occurring in Γ that also designate the mem-
bers of the n-tuple 〈I(a1), . . . , I(an)〉, and consequently there can be no
sentence Aa1 . . . an in Γ such that 〈I(a1), . . . , I(an)〉 〈I(a1) . . . I(an)〉.
We may therefore conclude, from the fact that Aa1 . . . an ∉ Γ, that the
n-tuple 〈I(a1), . . . , I(an)〉 is not in the extension of A. So I(Aa1 . . . an) F
and I(∼ Aa1 . . . an) T.

Case 2: P has the form ∼ ∼ Q. If ∼ ∼ Q ∈ Γ then, by property
(b) of Hintikka sets, Q ∈ Γ. The length of Q is less than k 1, so, by
the inductive hypothesis, I(Q) T. Therefore I(∼ ∼ Q) T as well.

Case 3: P has the form Q & R. If Q & R ∈ Γ then, by property
(c) of Hintikka sets, Q ∈ Γ and R ∈ Γ. By the inductive hypothesis (Q
and R both having lengths less than k 1), I(Q) T and I(R) T.
So I(Q & R) T.

Case 4: P has the form ∼ (Q & R). If ∼ (Q & R) ∈ Γ then,
by property (d) of Hintikka sets, either ∼ Q ∈ Γ or ∼ R ∈ Γ. The
lengths of ∼ Q and of ∼ R are less than the length of ∼ (Q & R),
so, by the inductive hypothesis, either I(∼ Q) T or I(∼ R) T. If
I(∼ Q) T, then I(Q) F, I(Q & R) F, and I(∼ (Q & R)) T.
If I(∼ R) T, then I(∼ (Q & R)) T as well. Either way, then,
I(∼ (Q & R)) T.

Cases 5–10: P has one of the forms Q ∨ R, ∼ (Q ∨ R), Q ⊃ R,
∼ (Q ⊃ R), Q R, or ∼ (Q R) (see Exercise 3).

Case 11: P has the form (∀x)Q. If P ∈ Γ then, by property (k)
of Hintikka sets, for every constant a that occurs in Γ, Q(a x) ∈ Γ (and
there is at least one such constant). Each substitution instance has a
length smaller than k 1, so it follows from the inductive hypothesis
that, for each of these sentences, I(Q(a x)) T. Moreover each mem-
ber of the UD is designated by some constant occurring in Γ (by part 1
of the definition of the interpretation I—because at least one constant

4Note that we have here bypassed the intermediate step of observing that a sentence is true on an interpretation
if and only if it is satisfied by every variable assignment for that interpretation. We shall continue this practice
until we reach Cases 11–14; the reader who so desires may fill in the intermediate steps for Cases 1–10 without
much trouble.

11.6 THE COMPLETENESS OF THE TREE METHOD 667

occurs in Γ), so for each member of the UD there is a constant a such
that Q(a x) ∈ Γ and hence is true on I. It therefore follows from 11.6.5
that I((∀x)Q) T.

11.6.5: Let I be an interpretation on which for each member u of
the UD there is at least one constant a such that I(a) u and
I(P(a x)) T. Then I((∀x)P) T.

Proof: See Exercise 4.

Case 12: P has the form ∼ (∀x)Q. If ∼ (∀x)Q ∈ Γ, then, by
property (1) of Hintikka sets, (∃x) ∼ Q ∈ Γ, and by property (m)
∼ Q(a x) ∈ Γ for some constant a. ∼ Q(a x) has a length less than
k 1, so, by the inductive hypothesis, I(∼ Q(a x)) T and therefore
I(Q(a x)) F. Because {(∀x)Q} Q(a x) (result 11.1.4), it follows that
I((∀x)Q) F and so I(∼ (∀x)Q) T.

Cases 13 and 14: P has one of the forms (∃x)Q or ∼ (∃x)Q
(see Exercise 3).

That completes the proof of the inductive step. Therefore every sentence that
is a member of the Hintikka set Γ is true on I, and this shows that Γ is quan-
tificationally consistent.

The Hintikka Branch Lemma 11.6.3 and the Hintikka Set Lemma
11.6.4 can now be used to establish Metatheorem 11.6.1. If a systematic tree
for a set Γ of sentences does not close, then the tree has at least one Hintikka
branch (Lemma 11.6.3). The set of sentences on that Hintikka branch is quan-
tificationally consistent (Lemma 11.6.4). Therefore, because every member of
Γ lies on that branch (as well as on every other branch), Γ is quantification-
ally consistent. So if Γ is quantificationally inconsistent, then every systematic
tree for Γ closes.

We note that the proof that we have just given is a constructive com-
pleteness proof. We have shown how, given a Hintikka branch of a systematic
tree for a set of sentences Γ, to construct a model for Γ. This establishes a
claim made in Chapter 9: An interpretation showing the quantificational con-
sistency of Γ can always be constructed from a completed open branch of a
tree for Γ.

Finally the tree method for predicate logic with identity and functions
is also complete, and this can be shown by making appropriate changes in the
proofs of Lemmas 11.6.3 and 11.6.4. We define a Hintikka set for PLE to be a
set Γ that has the properties (a)–(n) of our earlier definition and that also has
these properties:

o. No sentence of the form ∼ t t is a member of Γ.

p. If a t, where a is a constant, is a member of Γ, and a literal
sentence P ∈ Γ contains t, then every sentence P(a//t) is also a
member of Γ.

|=

668 PREDICATE LOGIC: METATHEORY

q. If a complex term f(a1, . . . , an) in which a1, . . . , an are
individual constants occurs in any literal sentence in Γ, then,
for at least one constant b, b f(a1, . . . , an) ∈ Γ.

The proof of Lemma 11.6.3—that every systematic tree that does not
close has a Hintikka branch—runs as before, except that we replace talk of the
constant a occurring on a branch with talk of the closed term t occurring on
a branch. We must also add the following:

The set of sentences on a completed open branch of a systematic tree
must have property (o), because by definition a branch that does not
close does not contain a sentence of the form ∼ t t. Property (p)
must hold by virtue of the requirement in clause 4 of the definition of
a completed open branch. Property (q) must hold by virtue of the final
component of the definition of a completed open branch.

Similar remarks establish that infinite branches are also Hin-
tikka branches: The cycle of stages 1–4 in The System, and the fact that
each stage adds only a finite number of sentences, guarantees that
every sentence on a branch will be decomposed if the branch is infi-
nite. Note that the requirement in stage 2 of The System, that P(t x)
be entered for a complex term t only if doing so will close the branch
on which it is entered, plays a crucial role here. If The System allowed
such substitutions for complex terms that did not close the branch, we
could have a branch containing a sequence such as ‘(∀x)G f (x)’,
‘G f (a)’, ‘a f(a)’, ‘G f (f (a))’, ‘Gf(f (f (a)))’, ‘Gf(f (f (f (a))))’, . . . in
which ‘f(a)’ has been continuously substituted for ‘a’ at the expense of
decomposing other sentences on the branch. Similarly the restriction
(ii) in stage 4 guarantees that we will not have an branch containing
a sequence such as ‘a f(a)’, ‘a f(f (a))’, ‘a f(f (f (a)))’, . . . or
‘a f(a)’, ‘Ga’, ‘G f (a)’, ‘Gf(f (a))’, Gf(f (f (a))), . . . in which ‘f(a)’
has been continuously substituted for ‘a’ at the expense of decompos-
ing other sentences on the branch.

To show that Lemma 11.6.4 holds for predicate logic with identity and
functions, we must define the UD for the interpretation for a PLE Hintikka set
Γ differently than it was defined for PL, as follows:

Associate the positive integer i with the alphabetically ith individual
constant of PLE. Let p designate this association and let p(a) stand for
the integer that has been associated with the constant a. Next we
define a second association, which we shall designate with q, as fol-
lows: q(a) p(a) if a is the alphabetically earliest constant such that
a a is a member of Γ, and q(a) p(a) otherwise.

1. The UD is the set consisting of the positive integers that q assigns
to the individual constants occurring in members of Γ. If no

11.6 THE COMPLETENESS OF THE TREE METHOD 669

member of Γ contains an individual constant, let the UD be the
set {1}.

We change clause 3 in the interpretation constructed in Lemma 11.6.4 to this:

3. For each individual constant a that occurs in some sentence in Γ,
I(a) q(a). For each constant a that does not occur in any
sentence of Γ, I(a) is the smallest positive integer in the UD.

We must also add a fifth clause to complete the definition of the interpretation:

5. For each n-place functor f, I(f) consists of all n 1-tuples d1,
. . . , dn, dn 1 of members of the UD such that either (i) there
exist constants a1, . . . , an, an 1 such that an 1 f(a1, . . . , an)
is a member of Γ and di I(ai), 1 i n 1, or (ii) there are
no such constants, and dn 1 is the smallest member of the UD.

We must ensure that clause 5 correctly defines the interpretation of an
n-place functor as a function that assigns exactly one member of the UD to
each n-tuple of members of the UD. It is clear that it assigns at least one
member of the UD to each n-tuple, because if case (i) doesn’t apply then
case (ii) will. Moreover, if case (i) doesn’t apply then case (ii) will assign at
most one member. It remains to show that if case (i) applies it will also assign
at most one member.

Now, if (i) assigned more than one member of the UD to some n-tuple
of members of the UD, that would be because there existed constants a1, . . . ,
an, an 1 such that an 1 f(a1, . . . , an) is a member of Γ and constants b1, . . . ,
bn, bn 1 such that bn 1 f(b1 , . . . , bn) is a member of Γ, where I(ai) I(bi)
for 1 i n and I(an 1) I(bn 1). But note that if I(ai) I(bi) then, by
the way we defined I via the association q, either (a) ai bi is a member of
Γ, or (b) bi ai is a member of Γ, or (c) there is a constant ci such that both
ci ai and ci bi are members of Γ. We now perform the following substi-
tutions in the sentences an 1 f(a1, . . . , an) and bn 1 f(b1 , . . . , bn). For
each ai and bi occurring on the right-hand side of these identities:

If (a) holds then replace bi with ai in bn 1 f(b1, . . . , bn).
Otherwise, if (b) holds then replace ai with bi in an 1

f(a1 , . . . , an).
Otherwise, if (c) holds then replace ai with ci in an 1

f(a1, . . . , an) and replace bi with ci in bn 1 f(b1, . . . , bn).

Note that each replacement generates a sentence that is also a member of Γ

by property (p) of Hintikka sets, and at the end of the replacements, the right-
hand sides of the final identity statements will be identical. That is, we have
shown that there are constants d1, . . . , dn such that both an 1 f(d1, . . . , dn)
and bn 1 f(d1, . . . , dn) are also members of the Hintikka set. By virtue of
property (o), it follows that an 1 bn 1, which is an 1 f(d1, . . . , dn)

670 PREDICATE LOGIC: METATHEORY

(bn 1//f(d1, . . . , dn)), is also in the Hintikka set, and so are bn 1 an 1,
bn 1 bn 1, and an 1 an 1, all by property (p). But then I(an 1) I(bn 1),
contrary to our previous assumption. For it follows from the construction of I
that, if no identity sentence with a constant that is alphabetically earlier than
an 1 or bn 1 occurring on the left-hand side is a member of Γ, then both con-
stants will denote either p(an 1) or p(bn 1), depending on which is alphabet-
ically earlier. Or, if there is a constant c that is alphabetically earlier than both
an 1 and bn 1 such that either c an 1 or c bn 1 is a member of Γ, then,
because the identity sentences an 1 bn 1 and bn 1 an 1 are both mem-
bers of Γ, it follows that both c an 1 and c bn 1 must be members of Γ

as well, and hence both I(an 1) and I(bn 1) are defined to be p(c) for the
alphabetically earliest such constant c. We conclude that case (i) will not assign
more than one member of the UD to any given n-tuple of members of the UD.

We shall use the following result in the proof that every member of a
Hintikka set is true on the interpretation I we have just defined:

11.6.6: If a Hintikka set Γ contains a literal sentence P with a closed
complex term t, it also contains each sentence P(a//t) for some
constant a such that denI(a) denI(t),5 where I is the interpretation
that has just been defined for the Hintikka set.

Proof: We shall prove this using mathematical induction on the com-

plexity of t, which is defined recursively as follows:

If t is f(a1, . . . , an), where each ai is a constant, the complexity
of t is 1.

If t is f(t1, . . . , tn), where some t i is not a constant, the
complexity of t is 1 greater than the maximum complexity
of the terms t1, . . . , tn.

So ‘f(a, b)’ has complexity 1, ‘f(g(a), g(b))’ has complexity 2, and
‘f(g(h(a)), g(b))’ has complexity 3.

Basis clause: 11.6.6 holds for every closed complex term t of complexity 1.

Proof of basis clause: In this case the Hintikka set contains an identity
sentence a t, where a is a constant, by property (q) of Hintikka sets,
and so, by property (p), it follows that each sentence P(a//t) is also a
member of Γ. In addition, denI(t) denI(a) by the way that I(f) is
defined in clause 5, since the Hintikka set contains the identity sen-
tence a t.

Inductive step: If 11.6.6 holds for every closed complex term t of com-
plexity k or less, then 11.6.6 holds for every closed complex term t of
complexity k 1.

5Because all of the terms mentioned in this proof are closed terms, we omit reference to a variable assignment
d when referring to the denotation of a term. We do so because the denotation is independent of any particu-
lar variable assignment.

11.6 THE COMPLETENESS OF THE TREE METHOD 671

Proof of inductive step: We assume that the inductive hypothesis
holds—that is, that 11.6.6 is true of every closed complex term of com-
plexity k or less. We must show that it follows that 11.6.6 also holds of
every closed complex term of complexity k 1. Let t be a closed com-
plex term of complexity k 1. Then t is f(t1, . . . , tn), where each t i is
of complexity k or less. It follows, by the inductive hypothesis, that for
some constants a1, . . . , an such that denI(ai) denI(t i), each formula
that results from replacing one or more occurrences of f(t1, . . . , tn)
in P with f(a1, . . . , an) is a member of Γ. By property (q) of Hintikka
sets, there is some constant a such that a f(a1, . . . , an) is a member
of Γ, and so, by property (p), each sentence P(a//t) is also a member
of Γ. Moreover, because the identity sentence a f(a1, . . . , an) is a
member of Γ, it follows from the definition of I(f) in clause 5 that
denI(a) denI(f (a1, . . . , an)), and because denI(ai) denI(t i) for each
ai and ti, it follows that denI(f (a1, . . . , an)) denI(f (t1, . . . , tn));
so denI(a) denI(f (t1, . . . , tn)).

The proof of the basis clause of the inductive proof in 11.6.4 that every
member of a Hintikka set Γ is true on the interpretation I that we have just
defined is changed as follows:

Proof of basis clause: A sentence of length 1 is an atomic sentence. If
P is a sentence letter, then by part 2 of the definition of I, I(P) T if
P ∈ Γ.

If P is an atomic sentence of the form At1 . . . tn, where A is not
the identity predicate, then it follows from 11.6.6 that Γ also contains a
sentence Aa1 . . . an such that each ai is a constant and denI(ti)
denI(ai). By part 4 of the definition of I, if Aa1 . . . an ∈ Γ, then
 I(a1), . . . , I(an) ∈ I(A), and so I(Aa1 . . . an) I(At1 . . . tn) T.

If P is a sentence of the form t1 t2, then it follows from 11.6.6
that Γ also contains a sentence a1 a2 such that a1 and a2 are con-
stants and denI(a1) q(a1) denI(t1) and denI(a2) q(a1)
denI(t2). Since a1 a2 is a member of Γ, it follows, by property (p) of
PLE’s Hintikka sets, that a1 a1 is also a member of Γ. Now, let q(a1)
be p(b). Because a1 a1 is a member of Γ, it follows by the way that
q was defined that b a1 is a member of Γ and that b must be
alphabetically earlier than or identical to a1. It also follows by property
(p) that b a2 is a member of Γ. Let q(a2) be p(c). Since a1 a2 is
a member of Γ, it follows that c is the alphabetically earliest constant
such that c a2 is a member of Γ. Now, b cannot be alphabetically
earlier than c, since b a2 is a member of Γ. Further, by property (p),
c b is also a member of Γ. Therefore c a1 is also a member of Γ,
and so c cannot be alphabetically earlier than b since q(a1) is p(b). We
conclude that b and c are the same constant, so q(a1) q(a2). Con-
sequently denI(t1) denI(a1) q(a1) q(a2) denI(a2) denI(t2),
so I(t1 t2) T.

672 PREDICATE LOGIC: METATHEORY

We must also change the proof of Case 1 in the inductive step:

Case 1: P has the form ∼ Q, where Q is an atomic sentence.
If Q is a sentence letter, then if ∼ Q ∈ Γ it follows from part

2 of the definition of I that I(Q) F since by property (a) of Hintikka
sets Q ∉ Γ. Therefore I(∼ Q) T.

If Q has the form At1 . . . t n, where A is not the identity pred-
icate and ∼ Q ∈ Γ, then, by 11.6.6, there is a formula ∼ Aa1 . . . a n

in Γ in which every complex term ti occurring in ∼ Q has been
replaced by a constant ai such that denI(ti) denI(ai). By property
(a) of Hintikka sets, Aa1 . . . a n ∉ Γ. It follows from part 4 of the
definition of I that I(a1), . . . , I(a n) ∉ I(A). For if it were, this
would be because, for some a1 , . . . , an , Aa1 . . . an ∈ Γ and I(ai)
I(a i) for each ai. Because each of these constants occurs in a mem-
ber of Γ, we would have I(a i) q(ai) and I(a i) q(a i) and so q(ai)
 q(a i). From the last equation and the way that q was defined, it
would follow for each i that either (a) ai a i is a member of Γ, or
(b) a i ai is a member of Γ, or (c) there is a constant ci such that
both ci ai and ci a i are members of Γ. We now perform the fol-
lowing substitutions in the sentences ∼ Aa1 . . . an and Aa1 . . . an . For
each ai and a i :

If (a) holds then replace ai with ai in Aa1 . . . an .
Otherwise, if (b) holds then replace ai with ai in ∼ Aa1 . . . an.
Otherwise, if (c) holds then replace ai with ci in ∼ Aa1 . . . an

and replace ai with ci in Aa1 . . . an .

Note that each replacement generates a sentence that is also a member
of Γ by property (p) of Hintikka sets, and at the end of the replacements,
we shall have two literal sentences, one of which is the negation of the
other and both of which are members of Γ. But this is impossible because
of property (a) of Hintikka sets. So, since we have now established
that I(a1), . . . , I(an) ∉ I(A), it follows that I(∼ Aa1 . . . an) T.
Consequently, because denI(ti) denI(ai) for each I, it also follows that
I(∼ At1 . . . tn)(that is, I(∼ Q)) T.

If Q has the form t1 t2 and ∼ Q ∈ Γ then, by 11.6.6, there
is a formula ∼ a1 a2 in Γ such that denI(ti) denI(ai). By prop-
erty (a) of Hintikka sets, a1 a2 ∉ Γ. It follows from the definition
of I that q(a1) q(a2). For if q(a1) q(a2), then either (a) a1 a2

is a member of Γ, or (b) a2 a1 is a member of Γ, or (c) there is
a constant b such that b a1 and b a2 are both members of Γ. We
have already shown that (a) does not hold. Case (b) does not hold,
because if it did then, by property (p) of Hintikka sets, ∼ a2 a2

would be a member of Γ since ∼ a1 a2 is, but that is impossible by

11.6 THE COMPLETENESS OF THE TREE METHOD 673

property (o) of Hintikka sets. Case (c) does not hold, because if did
then, by property (p) of Hintikka sets, ∼ b b would be a member
of Γ since ∼ a1 a2 is, but that is impossible by property (o) of Hin-
tikka sets. Since q(a1) q(a2), I(a1 a2) F and I(∼ a1 a2) T,
so, since denI(ti) denI(ai) it follows that I(∼ t1 t2) T.

11.6E EXERCISES

1. Using Metatheorem 11.6.1, prove the following:
a. If P is quantificationally false, then every systematic tree for {P} closes.
b. If P is quantificationally true, then every systematic tree for {∼ P} closes.

*c. If P and Q are quantificationally equivalent, then every systematic tree for
{∼ (P Q)} closes.

d. If Γ P, where Γ is finite, then every systematic tree for Γ ∪ {∼ P} closes.
*e. If an argument of PL is quantificationally valid, then every systematic tree for

the set consisting of the premises and the negation of the conclusion of that
argument closes.

2.a. What is the length of each of the following sentences?

(∀y)Wy ⊃ ∼ (∀y)Bya
(∃x)Sxbc
(∀x)(Mx ∼ (∃y)My)

b. Show that the length of a sentence ∼ (Q & R) is greater than the length of
∼ Q and greater than the length of ∼ R.

*c. Show that the length of a sentence Q R is greater than the length of ∼ Q
and greater than the length of ∼ R.

d. Show that the length of a sentence ∼ (∀x)Q is greater than the length of
∼ Q(a x).

3. Complete the following clauses in the inductive proof of the completeness of
the tree method.

a. 5 *e. 9
*b. 6 f. 10

c. 7 g. 13
*d. 8 *h. 14

*4. Prove result 11.6.5.

5. Which clauses in the inductive proof of the completeness of the tree method
would have broken down if our induction had been on the number of occur-
rences of logical operators in the sentences of PL?

6. If the rule ∃D were not included in our tree rules, where would the proof of
Metatheorem 11.6.1 break down?

|=

674 PREDICATE LOGIC: METATHEORY

7. Suppose that our rule ∼ ∀D were replaced by the following rule:

Negated Universal Decomposition* (∼ ∀D*)

~ (∀x)P

∼ P(a x)

where a is a constant foreign to all preceding lines of the tree.

Would the resulting system be complete for predicate logic? Explain.

8. Explain how we can adapt the proof of Metatheorem 11.6.1 to establish that
the tree method for SL is complete for sentential logic.

9. Prove that every set of PL that is both maximally consistent and ∃-complete
(as defined in Section 11.4) is a Hintikka set. Prove that every Hintikka set
is ∃-complete. Prove that some Hintikka sets are not maximally consistent
in PD.

SELECTED BIBLIOGRAPHY B-1

SELECTED BIBLIOGRAPHY

The following books are suggested for further reading.

INFORMAL LOGIC

Fogelin, Robert J., and Walter Sinnott-Armstrong. Understanding Arguments, 6th
ed. Belmont, Calif.: Wadsworth/Thomson Learning, 2000.

ELEMENTARY LOGIC

Fraassen, Bas C. van, and Karel Lambert. Derivation and Counterexample. Encino,
Calif.: Dickenson, 1972.

Jeffrey, Richard C. Formal Logic: Its Scope and Limits, 3rd ed. New York: McGraw-
Hill, 1991.

Leblanc, Hugues, and William Wisdom. Deductive Logic, 3rd ed. Englewood
Cliffs, N.J.: Prentice-Hall, 1993.

Quine, W. V. O. Methods of Logic, 4th ed. Cambridge, Mass.: Harvard University
Press, 1989.

INDUCTIVE LOGIC

Skyrms, Brian. Choice and Chance, 4th ed. Belmont, Calif.: Wadsworth/Thomson
Learning, 1999.

B-2 SELECTED BIBLIOGRAPHY

ADVANCED LOGIC

Hunter, Geoffrey. Metalogic: An Introduction to the Metatheory of First-Order Logic.
Berkeley: University of California Press, 1971.

Kleene, Stephen Cole. Introduction to Metamathematics. New York: American
Elsevier, 1971.

Mendelson, Elliot. Introduction to Mathematical Logic, 4th ed. Stamford, Conn.:
International Thomson Publishing, 1997.

Quine, W. V. O. Mathematical Logic, rev. ed. Cambridge, Mass.: Harvard University
Press, 1981.

Smullyan, Raymond M. First-Order Logic. New York: Dover, 1995.
Smullyan, Raymond M. Gödel’s Incompleteness Theorems. New York: Oxford University

Press, 1992.

ALTERNATIVE LOGICS

Chellas, B. Modal Logic: An Introduction. New York: Cambridge University Press,
1980.

Gottwald, Siegfried. A Treatise on Many-Valued Logics. Baldock, Hertfordshire,
England: Research Studies Press, 2001.

Hughes, G. E., and M. J. Cresswell. A New Introduction to Modal Logic. London:
Routledge, Chapman & Hall, 1996.

Rescher, N. Many-Valued Logic. Brookfield, Vt.: Ashgate, 1993.

HISTORY OF LOGIC

Bochenski, I. M. A History of Formal Logic. Translated and edited by Ivo Thomas.
New York: Chelsea, 1970.

Kneale, William, and Martha Kneale. The Development of Logic. Oxford: Clarendon,
1985.

PHILOSOPHY OF LOGIC

Gabbay, D., and Guenthner, F., eds. Handbook of Philosophical Logic, 2nd ed.
Dordrecht, Holland: Kluwer Academic, 2002.

Haack, Susan. Philosophy of Logics. New York: Cambridge University Press, 1978.
Quine, W. V. O. The Philosophy of Logic. Cambridge, Mass.: Harvard University

Press, 1986.

INDEX I-1

INDEX

absurdity, 174

accessibility, 167, 183

addition, 368

algorithm, 251, 254

all, 56, 283, 293, 331

ambiguities, 51

ampersand, 163, 247, 255

and, 333

antecedent, 42, 54, 107, 351, 387, 431, 455, 571

anti-theorem of SD, 191

any, 293, 321, 326, 327

anyone, 329, 354

argument, 7, 9, 10, 17, 26, 57, 103, 106n5, 197, 244, 249,

405, 511, 552, 559, 592–593

Aristotelian logic, 4

Aristotle, 2

arrows, 80

A-sentence, 320, 348, 349, 352

assumption, 204

auxiliary, 166, 173, 183, 202

closed, 167, 184

conclusion and, 161

discharged, 167, 184

inconsistency of, 222

open, 167

primary, 164, 166, 177, 209

at least one, 359

atomic

components, 72, 77, 100, 253, 427

formulas, 298, 301, 319, 322, 610, 625

sentences, 30, 71, 82, 126, 250, 304, 308, 416, 640, 647,

666, 672

axiom schemas, 589n1

axiomatic systems, 2, 589n1

basis clause, 243, 245, 270, 273, 609, 613

because, 48

before, 64

Bergmann, Merrie, 516n8

Bernays and Schönfinkel, 397n1, 422

Biconditional Decomposition, 131

Biconditional Elimination, 179, 181, 220, 262, 578

Biconditional Introduction, 178, 181, 203, 209, 210, 263

binary connective, 36, 70

both . . . and . . . , 31–32, 66

both . . . not . . . , 55

bound variables, 302

branch

closed, 119–120, 500, 510

completed open, 119–120, 467–469, 472, 479, 486, 489,

494, 500–501, 508, 515, 518, 521, 523, 658, 662–663

decomposition and, 125

infinite, 514, 515, 518, 664

nonterminating, 483, 487, 514

open, 119–120, 127, 142, 463, 464, 468, 520

truth-functional consistency and, 135

of truth-trees, 118, 459

truth-value assignments and, 141

but, 333

California, 22

causal claim, 43

causal relation, 43

characteristic sentence, 252–253

characteristic truth-table, 31

check mark, 117

Church, Alonzo, 396, 397n1, 406

closed assumption, 167, 184

closed branch, 119–120, 500, 510

closed complex term, 597, 657, 670

closed individual terms, 374, 499, 501

closed terms, 372, 519, 643, 657

closed truth-tree, 128–129, 146, 504, 506–507, 517

combinations, 38

I-2 INDEX

Commutation, 232, 234

Compactness Theorem, 275

completed open branch, 119–120, 467–469, 472, 479,

486, 489, 494, 500–501, 508, 515, 518, 521, 523, 658,

662–663

completed truth-tree, 471

completeness, 258

of deduction systems for predicate logic, 633

for PD, 642

of PDE for predicate logic, 648

predicate logic, 633

of SD/SD , 266

soundness and, 660

truth-functional, 248, 251, 254, 255

Completeness Metatheorem for tree method, 660

complex term, 371, 374, 498, 519, 623, 625, 626

Complex Term Decomposition (CTD), 516–522, 524–525

compound sentences, 29, 51, 382, 521

conclusion, 3

conclusion indicator words, 7–8

conditional claim, 311

Conditional Decomposition, 130, 466

Conditional Elimination, 163, 172, 180, 200, 206–208,

211, 214, 261, 272, 542, 554, 558, 570, 573, 579

Conditional Introduction, 165, 180, 206, 215–218,

221–222, 562–563, 566–568, 570, 573, 575, 601

conditional paraphrases, 45

conjunction, 105, 132, 349, 368

Conjunction Decomposition, 121, 124

Conjunction Elimination, 180, 198, 594, 595

Conjunction Introduction, 180, 261, 272, 552–553

connective, 242, 244, 247

before as, 64

binary, 36, 70

combinations of sentential, 38

inductive hypothesis and, 616

main, 72, 94

non-truth-functional, 60–65

sentences generated by, 32, 88

sentential, 29, 60, 248

summary of common, 47

truth-functional, 28–29, 326, 628

as truth-functionally complete, 254–255

unary, 36, 65, 70

consequent, 42, 54, 90, 431, 434, 455

consistency

logical, 19

maximal, 267–269, 271–272, 634, 637–638, 645–646

quantificational, 398, 457, 469, 471, 648

truth-functional, 98, 110, 119, 190

universe of discourse and, 401

Consistency Lemma, 271, 273–274, 634, 639–640, 643–644

Consistent Branch Lemma, 653, 656

constructive proof, 266

containment, 652

contradictories, 313

contraries, 315

conventions, 196

corresponding material biconditional, 111

corresponding material conditional, 105

critical thinking, 6

De Morgan, 232, 584

decidability, 279

decidable properties, 277

decision procedure, 396–397, 422, 482, 496

decomposed nonliterals, 462

decomposition, 12, 123, 124, 125, 130–131, 133, 134, 137,

467, 484–485, 487, 491, 493, 495, 507, 515, 516, 517,

528, 651. See also specific types

deduction systems, 532, 627, 633

truth-tree method and, 608

deductive invalidity, 14–16

deductive logic, 18

deductive reasoning, 2

deductive soundness, 14

deductive symbolic logic, 3

deductive validity, 12–15, 25n7, 26, 243, 276, 278

definite descriptions, 279, 359, 365, 366

denotation of a term, 447

derivability, 164, 181, 185, 189, 196, 235, 537, 590–591,

593, 603, 635, 639

in PD, 549, 607

in SD, 239

derivation, 184, 193–200, 211, 220. See also subderivation

derivation rules, 233, 235

derivation system, 533

completeness of, 182

for PD, 532

for PD , 583

for PDE, 588

SD , 228

SD as, 160

soundness of, 182

designation, 280, 382, 445, 446

discharged assumption, 167, 184

disjunct, 34, 96, 387

disjunction, 33, 48, 88–89, 96, 124, 132, 294, 414

Disjunction Decomposition, 121, 124, 130

Disjunction Elimination, 176, 181, 186, 200, 204–205,

215, 217, 263, 602

Disjunction Introduction, 176, 181, 203, 211, 213, 214

Disjunctive Syllogism, 230, 235

Distribution, 232

Double Negation, 231–232, 234, 584

double turnstile, 101

each, 283

E-claim, 348

either . . . or . . . , 28–29, 52

entailment

interpretation and, 480

quantificational, 403–406, 420, 422, 457, 474, 621

substitution instances and, 629

truth-functional, 101–102, 112–113, 153, 154, 156, 190,

261–262, 264

enumeration, 268

equivalence, 62, 232, 311. See also quantificational

equivalency

logical, 21–22

in PD, 549, 567, 572, 607

in SD, 189, 208–209, 239

truth-functional, 93–96, 111, 150–152, 190

INDEX I-3

E-sentence, 314, 316, 320, 322, 325, 347–348, 353

Euclid, 2

Euclidean plane geometry, 2

even numbers, 346

every, 283, 293, 321, 327, 331

everyday discourse, 160

exclusive ‘or,’ 41

existential claims, 317

existential completeness, 634

Existential Decomposition, 461–462, 464–465, 486, 499

Existential Decomposition-2, 484–488, 491, 493, 516

Existential Elimination, 538–543, 552–554, 556–557,

563–564, 569, 573, 576–577, 580, 594, 597–600,

618, 621, 630

Existential Generalization, 540

Existential Introduction, 535, 543, 548, 558, 560,

563–566, 570–571, 574–575, 595, 598, 600, 629

existential quantifier, 290, 291n8, 295, 327, 329–330,

330, 343, 350–351, 364, 384–385, 410, 413,

415, 450

existentially quantified claim, 541

existentially quantified sentences, 535, 546

Exit Condition, 492

expansion, 409, 414–415

consequents and, 434

of quantificationally true sentence, 429

of sentences, 438

Exportation, 232

expression, 298, 303, 331

extension, 380, 444

false antecedent, 90, 318

falsity, 21, 448, 613

quantificational, 391–392, 395, 419, 451, 457, 474

truth-functional, 84–85, 95, 144–145

finite model, 483, 494

finite model property, 658

finite set, 494

finite truth-tree, 483, 489

formal semantics, 443

formal syntax, 297

formula, 299, 589n1

atomic, 298, 301, 319, 322, 610, 625

main logical operator and, 344

of PL, 300

of PLE, 373

subformulas and, 300–301

variables and, 303

free variables, 302

function, 359, 368, 369, 371, 432

functors, 369–371, 374, 424, 430, 432–433, 436,

453, 507

goal analysis, 194

goal sentence, 196, 199, 215, 218, 534, 543

grammatical structure, 32, 70, 324

Hintikka Branch Lemma, 663, 667

Hintikka, J., 661n2

Hintikka set, 662, 666, 668–672

Hintikka Set Lemma, 664, 667

horseshoes, 41, 79, 163

Hunter, Geoffrey, 369n13

Hypothetical Syllogism, 230, 235

Idempotence, 232

Identity Composition, 525n9

Identity Decomposition, 499–500, 502–504, 524, 526, 590

Identity Elimination, 589–590, 592, 594, 600–601

Identity Introduction, 588–589, 592

identity operator, 623

identity predicate, 360–361, 363, 366, 424–425, 427–428,

436, 452, 498, 645

identity sentence, 437, 438, 508–509, 517, 526, 657

identity statement, 645

if and only if, 46

if . . . then, 41, 53, 61

immediate sentential components, 72, 393

Implication, 232

inconsistency

of assumptions, 222

demonstrations of, 217–222

logical, 19

in PD, 549, 576, 578, 607

in PDE, 602

quantificational, 471, 656

in SD, 190, 239, 270

truth-functional, 112, 113, 138, 259, 274, 275

Inconsistency Lemma, 267–268, 274–275, 633, 638,

642, 648

Inconsistency Metatheorem, 275

indeterminacy

quantificational, 391, 395, 433, 457, 474, 519, 522

truth-functional, 86, 95, 111, 144, 146, 391, 440

truth-value, 83

individual constant, 284, 381

individual term, 370, 374

inductive hypothesis, 243, 245, 261, 263, 264, 611, 612,

629, 666

inductive step, 243–246, 260, 270, 273, 610, 613–614,

619, 624

inductive strength, 18

inference, 182, 229

Infinite Branch Lemma, 661

infinite branches, 514, 515, 518, 664

infinite models, 496

instantiating constant, 462, 533–534, 536, 540, 564, 596,

637, 659

instantiating individual terms, 375

instantiating term, 596

integers, 243, 371, 386

intensional logics, 338n12

interpretation, 378, 386, 387, 399, 625

Introduction, 162–163

introduction rules, 194, 221

invalidity, 58

deductive, 14–16

quantificational, 405, 479, 511

I-sentence, 320, 348

it is not the case that , 35, 47

it is well known that . . . , 65

iterated conjunction, 105

iterated disjunction, 414

I-4 INDEX

justification columns, 139

justifications, 121

König’s Lemma, 661n2

level, 651

line numbers, 121

linking terms, 28

literal, 117, 122, 142, 468, 663, 670

logical consistency, 19

logical equivalence, 21–22

logical falseness, 21

logical indetermination, 21

logical operator, 609, 611, 659, 665

logical structure, 32

logical truth, 20

logicians, 277

Löwenheim Skolem Theorem, 406n2

Löwenheim Theorem, 396

main connective, 72, 94

main logical operator, 300, 301, 344

many-place predicate, 281

mapping, 430, 432

material biconditional, 46, 79, 179, 295, 352

material conditional, 42, 48, 165, 309, 602

mathematical induction, 240–241, 244–245, 247, 264, 273,

609, 637, 647, 665

maximal consistency, 267–269, 271–272, 272, 634,

637–638, 645–646

Maximal Consistency Lemma, 268–269, 274,

636, 638, 647

mechanical procedures, 193, 251, 276–277

mention versus use, 68

metaformulas, 589n1

metalanguage, 67

Metalogic: An Introduction to the Metatheory of Standard First

Order Logic (Hunter), 369n13

metatheorem, 251

metatheory, 1, 240, 608

metavariables, 69, 298

Modus Tollens, 229, 235

molecular sentence, 242

natural languages, 277

necessarily, 65

Negated Biconditional, 477

Negated Biconditional Decomposition, 131

Negated Conditional Decomposition, 130, 145

Negated Conjunction Decomposition, 124, 126

Negated Disjunction Decomposition, 124

Negated Existential Decomposition, 460

Negated Negation Decomposition, 124

Negated Universal Decomposition, 460

negation, 35, 37, 69, 132, 220, 322, 574

Negation Elimination, 170–172, 174, 181, 201, 207–208,

219, 221, 223, 263, 567, 569, 571, 579

Negation Introduction, 171–172, 174, 181, 203–204, 213,

262, 544, 546–547, 552–553, 577

neither . . . nor, 40, 54

nonconstructive proofs, 266

nonempty sets, 98

nonequivalent sentence, 280

nonterminating branch, 483, 487, 514

non-truth-functional connectives, 60–65

not both, 55

not both . . . and, 40

Notre Dame Journal of Formal Logic, 516n8

NP-complete problems, 91n4

n-place function, 453, 669

n-place predicate, 281

n-tuple, 445, 669

null tree, 656

object language, 67

objectual semantics, 452n4

one-place function, 510

one-place predicate, 281

only if, 44, 53, 63, 354

open assumption, 167

open branch, 119–120, 127, 142, 463, 464, 468, 520

open individual terms, 374

open sentences, 302, 450

open terms, 372

open truth-tree, 471

O-sentence, 314, 317, 320, 348

outermost parentheses, 72

overlapping scope, 342

paraphrasing, 33, 37, 45, 355, 361

path, 652

path-variant, 653, 654–655

PD, 583, 585, 627, 630, 642. See also derivation system

PD , 583, 585, 603

PDE, 593, 603, 631, 632, 644, 648

PDE , 603

PDI , 585

Peano, Giuseppe, 2

Pierce’s Law, 206

PL, 279, 282, 285, 291, 323, 324, 400, 490, 491, 559

PLE, 360–361

positive integers, 325, 344, 363, 365, 381, 387, 405, 406,

426, 536, 537, 636

predicate logic, 1, 279

completeness of, 633, 648

deduction systems for, 532, 627

metatheory of, 608

semantics for, 424

soundness of PDE for, 631, 632

predicates, 281–282, 284

premise, 3

premise indicator words, 8

primary assumption, 164, 166, 177, 209

prime numbers, 282, 345, 346

probably, 66

pronominal cross-reference, 328, 349, 353

proper names, 279

properties of relations, 359

quantificational consistency, 398, 457, 469, 471, 648

quantificational entailment, 403–406, 420, 422, 457, 474, 621

quantificational equivalency, 398–400, 457, 474, 476

INDEX I-5

quantificational falsity, 391–392, 395, 419, 451, 457, 474

quantificational inconsistency, 471, 656

quantificational indeterminacy, 391, 395, 433, 457, 474,

519, 522

quantificational invalidity, 405, 479, 511

quantificational status, 397

quantificational truth, 391, 395, 426, 457, 474, 526

quantificational validity, 404, 426, 433, 457, 506

quantifier, 290, 334, 555

quantifier introduction rules, 547

Quantifier Negation, 584

quantifier symbols, 290

quantity expressions, 331

quantity terms, 283, 287, 315, 328

reasoning, 160

reasoning patterns, 229

recovering a truth-value assignment, 122

recursive definition, 71

reductio ad absurdum, 170

Reed, Walter, 18

referential semantics, 452n4

reflexive relations, 367

reflexivity, 505

Reiteration, 162, 171, 180, 207, 214, 216, 218, 219, 260, 575

relation, 5

properties of, 366–368

reflexive, 367

symmetric, 367

transitive, 367

relational predicates, 555

replacement rules, 232, 234

rules of inference, 233, 547

rules of replacement, 230–236

satisfaction, 447, 452, 611–612, 616–617, 620

satisfaction semantics, 452n4

schema, 251

scope

of existential quantifiers, 364

of quantifiers, 342, 345, 351, 400

scope lines, 166

SD, 164, 181, 189, 190, 191, 192, 197, 258, 264, 269,

270, 271

SD , 228, 229, 235, 266

searching, 338

semantics, 72, 115, 159, 240, 259, 276, 378, 409, 430, 433,

622, 623, 627. See also formal semantics

sentence

A/E/O/I, 315

atomic, 30, 71, 82, 126, 250, 304, 308, 416, 640, 647,

666, 672

complex, 140

compound, 29, 51

conditional, 399

connectives generating, 32, 88

elimination rules and, 195

entailed, 480

equivalence of, 62

existentially quantified, 414, 484, 495, 535

expansion of, 438

grammar of, 70

identity, 437, 438, 508–509, 517, 526, 657

identity predicate contained in, 428, 452

length of, 665

letters of, in PL, 297

literal, 117, 672

logically false, 21

logically indeterminate, 21

logically true, 20

molecular, 30, 242

negated identity, 511

nonequivalent, 280

open, 302, 445

PL, 292, 302, 308, 310, 312, 334, 363

PLE, 362, 373, 453

proof about, 241

quantificationally true, 429

quantified, 304, 305, 327, 337, 347, 399, 402, 410, 412

sentential components and, 231

sets of, 98, 643

simple, 29

SL, 28, 160, 252

square of opposition and, 313

strength of, 62

truth-functionality in, 84, 304

truth-tables for, 75

truth-tree rules for, 116

truth-trees and, 147

universally quantified, 347, 433, 469, 470, 617

weakness of, 62

sentential component, 72

sentential connectives, 29, 60, 248

sentential logic, 1, 5, 354, 479, 628

set, 9, 19, 98, 110, 414–415, 434, 643

set members, 121, 139

set-theoretic terminology, 259

simple sentences, 29

simple term, 372, 374

singular term, 279–280, 281n4, 282, 286, 365

SL, 28, 68, 69, 103, 249, 250, 276, 278, 396

SM, 121, 139

some, 283, 329, 359

someone, 329, 353

soundness, 12

completeness and, 660

for PD, 627, 630

of PDE for predicate logic, 631–632, 632

Soundness Metatheorem for tree method, 650

square, 368

square of opposition, 313

strategies

for decomposition, 125, 133

for subderivation, 212

for tree construction, 140, 149

on truth-trees, 135

value of, in tree construction, 139

Studia Philosophica (Tarski), 452n4

subcontraries, 315

subderivation, 165, 168, 173, 176, 212, 216, 577

subformula, 300–301

subgoals, 198

I-6 INDEX

subjunctive conditional, 61, 63–64

subsentential relationships, 279

substitution instance, 305, 460–461, 470, 495,

639, 655

substitution semantics, 452n4

subtraction, 368

successor, 368, 370, 508, 662

superset, 259, 267, 269, 271, 628, 636

syllogistic form, 3

syllogistic logic, 2

symbolic logic, 6

symbolization key, 285, 313, 318, 335, 345, 347, 362, 366,

370, 373

symmetric relations, 367

symmetry, 505

syntactic parallels, 190

syntactic rules, 162

syntactic structure, 278

syntactic techniques, 160

syntactical concepts, 297

syntactical study, 72

syntatic methods, 276

syntax, 240

of PLE, 374

of SL, 67–68

System

for PL, 491

for PLE, 523, 524, 528, 659

systematic trees, 492, 651, 653, 658

Tarski, Alfred, 452n4

Theorem in PD, 549, 562, 607

Theorem in SD, 189, 239

Theorem of PDE, 591

tilde, 35–36

transitive relations, 367

transitivity, 505

Transposition, 232

triple bar, 46

truth

completed open branch and, 472

definition of, 448

falsehood and, 613

truth-function, 249–250, 251

truth-function schema, 251, 252, 253, 254

truth-functional completeness, 248, 251, 254, 255

truth-functional compounds, 293, 306, 318

truth-functional connectives, 28–29, 326, 628

truth-functional consistency, 98, 110, 119, 190

truth-functional entailment, 101–102, 112–113, 153, 154,

156, 190, 261–262, 264

truth-functional equivalency, 93–96, 111,

150–152, 190

truth-functional expansion, 409

truth-functional falsehood, 391

truth-functional falsity, 84–85, 95, 144–145

truth-functional inconsistency, 112, 113, 138, 259,

274, 275

truth-functional indeterminacy, 86, 95, 111, 144, 146,

391, 440

truth-functional logic, 115

truth-functional paraphrasing, 33, 43

truth-functional properties, 110

truth-functional truth, 95, 111, 144, 146, 147, 148,

190, 391

truth-functional validity, 103, 104, 106, 107, 113, 153,

155, 156, 190

truth-functionally true sentence, 84

truth-preserving, 12, 25, 258, 622, 630

truth-tree, 118, 459, 471, 608

concepts, 159

method, 115

for PLE, 498

rules, 132, 464, 489

semantic properties, 474

sentences and, 116, 147

for sentential logic, 479

strategies on, 135

The System and, 493

truth-tables and, 116

truth-value, 7

truth-value assignment, 75, 102, 212, 378

truth-value falsity, 83

truth-value indeterminacy, 83

truth-value truth, 83

two-place predicate, 360

UD. See universe of discourse

unary connective, 36, 65, 70

unit set, 110

universal claims, 316

Universal Decomposition, 460, 464, 499

Universal Elimination, 533–534, 542, 554–555,

557–558, 560–561, 568, 572, 578–579, 580,

595–596, 598–599, 601

Universal Introduction, 536, 538, 556, 559–562, 565,

568, 572, 598, 618, 621–622, 629

universal quantifier, 290, 295, 343, 350, 355, 402, 412

universe of discourse (UD), 285, 310–311, 316

unless, 44–45

Valid in SD, 189

validity, 24–25

deductive, 12–15, 25n7, 26, 243, 276, 278

quantificational, 404, 426, 433, 457, 506

truth-functional, 103, 104, 106, 107, 113, 153,

155, 156, 190

Validity in PD, 549, 607

Validity in PDE, 597, 599

Validity in SD, 239

values, 69, 249

variable, 282, 285, 291, 302, 303

variable assignment, 450, 454–455, 612, 615–617

variant, 446, 451

wedge, 34, 247, 255

INDEX OF SYMBOLS I-7

INDEX OF SYMBOLS

∼ 35 tilde
& 30 ampersand
∨ 34 wedge
⊃ 41 horseshoe
 46 triple bar
⏐ 257 stroke
↓ 257 dagger
∀ 290 universal quantifier symbol
∃ 290 existential quantifier symbol
 360 identity sign
{ } 98 braces
∅ 98 empty set
 98 gamma
∪ 112 set union
∈ 271 set membership
∉ 272 set membership denial
〈 〉 445 angle brackets

190 single turnstile
190 single turnstile with slash
101 double turnstile
101 double turnstile with slash

 162 pointer
 233 double pointer

|=/
|=
 /

	Title
	Contents
	CHAPTER 1 BASIC NOTIONS OF LOGIC
	1.1 Background
	1.2 Why Study Logic?
	1.3 Sentences, Truth-Values, and Arguments
	1.4 Deductive Validity and Soundness
	1.5 Inductive Arguments
	1.6 Logical Consistency, Truth, Falsity, and Equivalence
	1.7 Special Cases of Validity

	CHAPTER 2 SENTENTIAL LOGIC: SYMBOLIZATION AND SYNTAX
	2.1 Symbolization and Truth-Functional Connectives
	2.2 Complex Symbolizations
	2.3 Non-Truth-Functional Connectives
	2.4 The Syntax of SL

	CHAPTER 3 SENTENTIAL LOGIC: SEMANTICS
	3.1 Truth-Value Assignments and Truth-Tables for Sentences
	3.2 Truth-Functional Truth, Falsity, and Indeterminacy
	3.3 Truth-Functional Equivalence
	3.4 Truth-Functional Consistency
	3.5 Truth-Functional Entailment and Truth-Functional Validity
	3.6 Truth-Functional Properties and Truth-Functional Consistency

	CHAPTER 4 SENTENTIAL LOGIC: TRUTH-TREES
	4.1 The Truth-Tree Method
	4.2 Truth-Tree Rules for Sentences Containing ‘∼’, ‘∨’, and ‘&’
	4.3 Rules for Sentences Containing ‘⊃’ and ‘ ’
	4.4 More Complex Truth-Trees
	4.5 Using Truth-Trees to Test for Truth-Functional Truth, Falsity, and Indeterminacy
	4.6 Truth-Functional Equivalence
	4.7 Truth-Functional Entailment and Truth-Functional Validity

	CHAPTER 5 SENTENTIAL LOGIC: DERIVATIONS
	5.1 The Derivation System SD
	5.2 Basic Concepts of SD
	5.3 Strategies for Constructing Derivations in SD
	5.4 The Derivation System SD�

	CHAPTER 6 SENTENTIAL LOGIC: METATHEORY
	6.1 Mathematical Induction
	6.2 Truth-Functional Completeness
	6.3 The Soundness of SD and SD�
	6.4 The Completeness of SD and SD�

	CHAPTER 7 PREDICATE LOGIC: SYMBOLIZATION AND SYNTAX
	7.1 The Limitations of SL
	7.2 Predicates, Individual Constants, and Quantity Terms of English
	7.3 Introduction to PL
	7.4 Quantifiers Introduced
	7.5 The Formal Syntax of PL
	7.6 A-, E-, I-, and O-Sentences
	7.7 Symbolization Techniques
	7.8 Multiple Quantifiers with Overlapping Scope
	7.9 Identity, Definite Descriptions, Properties of Relations, and Functions

	CHAPTER 8 PREDICATE LOGIC: SEMANTICS
	8.1 Informal Semantics for PL
	8.2 Quantificational Truth, Falsehood, and Indeterminacy
	8.3 Quantificational Equivalence and Consistency
	8.4 Quantificational Entailment and Validity
	8.5 Truth-Functional Expansions
	8.6 Semantics for Predicate Logic with Identity and Functors
	8.7 Formal Semantics of PL and PLE

	CHAPTER 9 PREDICATE LOGIC: TRUTH-TREES
	9.1 Expanding the Rules for Truth-Trees
	9.2 Truth-Trees and Quantificational Consistency
	9.3 Truth-Trees and Other Semantic Properties
	9.4 Fine-Tuning the Tree Method
	9.5 Trees for PLE
	9.6 Fine-Tuning the Tree Method for PLE

	CHAPTER 10 PREDICATE LOGIC: DERIVATIONS
	10.1 The Derivation System PD
	10.2 Using Derivations to Establish Syntactic Properties of PD
	10.3 The Derivation System PD�
	10.4 The Derivation System PDE

	CHAPTER 11 PREDICATE LOGIC: METATHEORY
	11.1 Semantic Preliminaries for PL
	11.2 Semantic Preliminaries for PLE
	11.3 The Soundness of PD, PD�, and PDE
	11.4 The Completeness of PD, PD�, and PDE
	11.5 The Soundness of the Tree Method
	11.6 The Completeness of the Tree Method

	Selected Bibliography
	Index
	Index of Symbols

