
Mastering C++

Mastering C++

K R VENUGOPAL
University Visvesvaraya College of Engineering

Bangalore University, Bangalore

India

RAJKUMAR BUYYA
The University of Melbourne and Manjrasoft Pvt. Ltd.,

Melbourne, Australia

New Delhi

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices

New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110016

Mastering C++, 2e

Copyright © 2013, 1999, by McGraw Hill Education (India) Private Limited.

No part of this publication can be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written

permission of the publishers. The program listings (if any) may be entered, stored and executed in a computer

system, but they may not be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited

ISBN (13) : 978-1-25902994-3

ISBN (10) : 1-25-902994-8

Vice President and Managing Director: Ajay Shukla

Head—Higher Education (Publishing and Marketing): Vibha Mahajan

Publishing Manager (SEM & Tech. Ed.): Shalini Jha

Assistant Sponsoring Editor: Smruti Snigdha

Editorial Researcher: Amiya Mahapatra

Manager—Production Systems: Satinder S Baveja

Assistant Manager—Editorial Services: Sohini Mukherjee

Production Executive: Anuj K Shriwastava

Assistant General Manager (Marketing)—Higher Education: Vijay Sarathi

Senior Product Specialist: Tina Jajoriya

Senior Graphic Designer—Cover: Meenu Raghav

General Manager—Production: Rajender P Ghansela

Manager—Production: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources
believed to be reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy
or completeness of any information published herein, and neither McGraw Hill Education (India) nor its
authors shall be responsible for any errors, omissions, or damages arising out of use of this information. This
work is published with the understanding that McGraw Hill Education (India) and its authors are supplying
information but are not attempting to render engineering or other professional services. If such services are
required, the assistance of an appropriate professional should be sought.

Typeset at Print-O-World, 2579, Mandir Lane, Shadipur, New Delhi 110 008, and printed at

Cover Printer :

Dedicated

to

Tejaswi Venugopal

Contents

Foreword xvii

Preface xix

Acknowledgements xxiii

1. Object-Oriented Paradigm 1

 1.1 Why New Programming Paradigms ? 1

 1.2 OOPs ! a New Paradigm 2

 1.3 Evolution of Programming Paradigms 5

 1.4 Structured Versus Object-Oriented Development 8

 1.5 Elements of Object-Oriented Programming 10

 1.6 Objects 11

 1.7 Classes 12

 1.8 Multiple Views of the Same Object 13

 1.9 Encapsulation and Data Abstraction 15

 1.10 Inheritance 15

 1.11 Delegation—Object Composition 17

 1.12 Polymorphism 17

 1.13 Message Communication 18

 1.14 Popular OOP Languages 19

 1.15 Merits and Demerits of OO Methodology 23

 1.16 OO Learning Curve 24

 1.17 Software Reuse 25

 1.18 Objects Hold the Key 28

 Review Questions 29

2. Moving from C to C++ 31

 2.1 Introduction 31

 2.2 Hello World 31

 2.3 Streams Based I/O 35

 2.4 Single-Line Comment 39

 2.5 Literals—Constant Qualifiers 42

 2.6 Scope-Resolution Operator:: 44

 2.7 Variable Definition at the Point of Use 46

 2.8 Variable Aliases—Reference Variables 47

 2.9 Strict Type Checking 49

 2.10 Parameters Passing by Reference 51

viii

 2.11 Inline Functions 54

 2.12 Function Overloading 55

 2.13 Default Arguments 58

 2.14 Keyword typedef 60

 2.15 Functions as a Part of a struct 61

 2.16 Type Conversion 64

 2.17 Function Templates 65

 2.18 Runtime Memory Management 69

 Solved Problem 73

 Review Questions 74

3. C++ at a Glance 76

 3.1 Introduction 76

 3.2 Data Encapsulation and Abstraction—Classes 77

 3.3 Inheritance–Derived Classes 81

 3.4 Polymorphism—Operator Overloading 85

 3.5 friend Functions 88

 3.6 Polymorphism—Virtual Functions 91

 3.7 Generic Classes—Class Templates 94

 3.8 Exception Handling 96

 3.9 Streams Computation 99

 Solved Problem 103

 Review Questions 104

4. Data Types, Operators and Expressions 105

 4.1 Introduction 105

 4.2 Character Set 105

 4.3 Tokens, Identifiers, and Keywords 105

 4.4 Variables 107

 4.5 Data Types and Sizes 108

 4.6 Variable Definition 109

 4.7 Variable Initialization 110

 4.8 Characters and Character Strings 112

 4.9 Operators and Expressions 113

 4.10 Qualifiers 115

 4.11 Arithmetic Operators 118

 4.12 Relational Operators 121

 4.13 Logical Operators 124

 4.14 Bitwise Operators 126

 4.15 Compound Assignment Operators 130

 4.16 Increment and Decrement Operators 131

Contents

 ix

 4.17 Conditional Operator (Ternary Operator) 132

 4.18 Special Operators 134

 4.19 typedef Statement 134

 4.20 Promotion and Type Conversion 135

 4.21 Constants 137

 4.22 Declaring Symbolic Constants—Literals 140

 4.23 Enumerated Data Types 142

 4.24 Macro Functions 145

 4.25 Operator Precedence and Associativity 147

 Solved Problem 150

 Review Questions 150

5. Control Flow 152

 5.1 Introduction 152

 5.2 Statements and Block 153

 5.3 if Statement 153

 5.4 if-else Statement 155

 5.5 Nested if-else Statements 157

 5.6 for Loop 159

 5.7 while Loop 163

 5.8 do..while Loop 166

 5.9 break Statement 168

 5.10 switch Statement 170

 5.11 continue Statement 173

 5.12 goto Statement 175

 5.13 Wild Statements 176

 Solved Problem 178

 Review Questions 179

6. Arrays and Strings 181

 6.1 Introduction 181

 6.2 Operations on Arrays 181

 6.3 Array Illustrations 187

 6.4 Multidimensional Arrays 192

 6.5 Strings 195

 6.6 String Manipulations 197

 6.7 Arrays of Strings 200

 6.8 Evaluation Order/Undefined Behaviors 203

 Solved Problem 204

 Review Questions 205

Contents

x

7. Modular Programming with Functions 207

 7.1 Introduction 207

 7.2 Function Components 210

 7.3 Passing Data to Functions 214

 7.4 Function Return Data Type 218

 7.5 Library Functions 219

 7.6 Parameter Passing 221

 7.7 Return by Reference 226

 7.8 Default Arguments 227

 7.9 Inline Functions 230

 7.10 Function Overloading 231

 7.11 Function Templates 236

 7.12 Arrays and Functions 237

 7.13 C++ Stack 239

 7.14 Scope and Extent of Variables 240

 7.15 Storage Classes 243

 7.16 Functions with Variable Number of Arguments 246

 7.17 Recursive Functions 249

 7.18 Complete Syntax of main() 252

 Solved Problem 254

 Review Questions 255

8. Structures and Unions 257

 8.1 Introduction 257

 8.2 Structure Declaration 257

 8.3 Structure Definition 258

 8.4 Accessing Structure Members 260

 8.5 Structure Initialization 261

 8.6 Nesting of Structures 262

 8.7 Array of Structures 265

 8.8 Structures and Functions 270

 8.9 Data-Type Enhancement Using typedef 275

 8.10 Structures and Encapsulation 277

 8.11 Unions 281

 8.12 Differences between Structures and Unions 284

 8.13 Bit Fields in Structures 287

 Review Questions 290

9. Pointers and Runtime Binding 291

 9.1 Introduction 291

 9.2 Pointers and their Binding 292

Contents

 xi

 9.3 Address Operator & 293

 9.4 Pointer Variables 294

 9.5 Void Pointers 300

 9.6 Pointer Arithmetic 301

 9.7 Runtime Memory Management 304

 9.8 Pointers to Pointers 306

 9.9 Array of Pointers 308

 9.10 Dynamic Multi-Dimensional Arrays 312

 9.11 Pointer Constants 317

 9.12 Pointers and String Functions 318

 9.13 Environment Specific Issues 319

 9.14 Pointers to Functions 321

 9.15 Pointers to Constant Objects 325

 9.16 Constant Pointers 326

 9.17 Pointer to Structures 326

 9.18 Wild Pointers 331

 Solved Problems 335

 Review Questions 336

10. Classes and Objects 339

 10.1 Introduction 339

 10.2 Class Specification 340

 10.3 Class Objects 342

 10.4 Accessing Class Members 343

 10.5 Defining Member Functions 348

 10.6 Outside Member Functions as inline 351

 10.7 Accessing Member Functions within the Class 354

 10.8 Data Hiding 355

 10.9 Access Boundary of Objects Revisited 359

 10.10 Empty Classes 360

 10.11 Pointers within a Class 361

 10.12 Passing Objects as Arguments 362

 10.13 Returning Objects from Functions 367

 10.14 Friend Functions and Friend Classes 368

 10.15 Constant Parameters and Member Functions 376

 10.16 Structures and Classes 380

 10.17 Static Data and Member Functions 381

 10.18 Class, Objects, and Memory Resources 386

 10.19 Class-Design Steps 388

 Solved Problem 389

 Review Questions 390

Contents

xii

11. Object Initialization and Clean-up 392

 11.1 Class Revisited 392

 11.2 Constructors 394

 11.3 Parameterized Constructors 397

 11.4 Destructor 400

 11.5 Constructor Overloading 402

 11.6 Order of Construction and Destruction 405

 11.7 Constructors with Default Arguments 407

 11.8 Nameless Objects

 11.9 Dynamic Initialization through Constructors 411

 11.10 Constructors with Dynamic Operations 413

 11.11 Copy Constructor 414

 11.12 Constructors for Two-dimensional Arrays 417

 11.13 Constant Objects and Constructor 422

 11.14 Static Data Members with Constructors and Destructors 425

 11.15 Nested Classes 427

 Solved Problems 428

 Review Questions 431

12. Dynamic Objects 433

 12.1 Introduction 433

 12.2 Pointers to Objects 434

 12.3 Live Objects 441

 12.4 Array of Objects 444

 12.5 Array of Pointers to Objects 447

 12.6 Pointers to Object Members 449

 12.7 Function set_new_handler() 455

 12.8 this Pointer 456

 12.9 Self-Referential Classes 458

 12.10 Guidelines for Passing Object Parameters 465

 Solved Problems 466

 Review Questions 467

13. Operator Overloading 468

 13.1 Introduction 468

 13.2 Overloadable Operators 469

 13.3 Unary Operator Overloading 470

 13.4 operator Keyword 472

 13.5 Operator Return Values 474

 13.6 Nameless Temporary Objects 476

 13.7 Limitations of Increment/Decrement Operators 477

Contents

 xiii

 13.8 Binary Operator Overloading 482

 13.9 Arithmetic Operators 483

 13.10 Concatenation of Strings 489

 13.11 Comparison Operators 491

 13.12 Arithmetic Assignment Operators 495

 13.13 Overloading of new and delete Operators 499

 13.14 Data Conversion 502

 13.15 Conversion between Basic Data Types 502

 13.16 Conversion between Objects and Basic Types 503

 13.17 Conversion between Objects of Different Classes 508

 13.18 Subscript Operator Overloading 516

 13.19 Overloading with Friend Functions 518

 13.20 Assignment Operator Overloading 527

 13.21 Tracing Memory Leaks 530

 13.22 Niceties of Operator Overloading and Conversions 533

 Solved Problems 537

 Review Questions 539

14. Inheritance 541

 14.1 Introduction 541

 14.2 Class Revisited 542

 14.3 Derived Class Declaration 546

 14.4 Forms of Inheritance 552

 14.5 Inheritance and Member Accessibility 553

 14.6 Constructors in Derived Classes 558

 14.7 Destructors in Derived Classes 566

 14.8 Constructor Invocation and Data-Member Initialization 567

 14.9 Overloaded Member Functions 570

 14.10 Abstract Classes 575

 14.11 Multilevel Inheritance 576

 14.12 Multiple Inheritance 579

 14.13 Hierarchical Inheritance 590

 14.14 Multipath Inheritance and Virtual Base Classes 594

 14.15 Hybrid Inheritance 600

 14.16 Object Composition—Delegation 604

 14.17 When to Use Inheritance? 609

 14.18 Benefits of Inheritance 610

 14.19 Cost of Inheritance 610

 Solved Problems 611

 Review Questions 614

Contents

xiv

15. Virtual Functions 617

 15.1 Introduction 617

 15.2 Need for Virtual Functions 618

 15.3 Pointer to Derived Class Objects 621

 15.4 Definition of Virtual Functions 625

 15.5 Array of Pointers to Base-Class Objects 628

 15.6 Pure Virtual Functions 631

 15.7 Abstract Classes 634

 15.8 Virtual Destructors 637

 15.9 How is Dynamic Binding Achieved ? 640

 15.10 Rules for Virtual Functions 643

 Solved Problems 643

 Review Questions 644

16. Generic Programming with Templates 647

 16.1 Introduction 647

 16.2 Function Templates 647

 16.3 Overloaded Function Templates 656

 16.4 Nesting of Function Calls 658

 16.5 Multiple Arguments Function Template 659

 16.6 User-Defined Template Arguments 661

 16.7 Class Templates 662

 16.8 Inheritance of Class Template 668

 16.9 Class Template Containership 673

 16.10 Class Template with Overloaded Operators 678

 Solved Problems 680

 Review Questions 682

17. Streams Computation with Console 684

 17.1 What are Streams ? 684

 17.2 Predefined Console Streams 686

 17.3 Hierarchy of Console Stream Classes 689

 17.4 Unformatted I/O Operations 691

 17.5 Formatted Console I/O Operations 696

 17.6 Manipulators 705

 17.7 Custom/User-Defined Manipulators 712

 17.8 Stream Operators with User-Defined Classes 717

 Solved Problems 719

 Review Questions 720

18. Streams Computation with Files 722

 18.1 Introduction 722

Contents

 xv

 18.2 Hierarchy of File Stream Classes 723

 18.3 Opening and Closing of Files 725

 18.4 Testing for Errors 731

 18.5 File Modes 736

 18.6 File Pointers and their Manipulations 737

 18.7 Sequential Access to a File 741

 18.8 ASCII and Binary Files 742

 18.9 Saving and Retrieving of Objects 744

 18.10 File Input/Output with fstream Class 747

 18.11 Random Access to a File 750

 18.12 In-Memory Buffers and Data Formatting 755

 18.13 Error Handling During File Manipulations 756

 18.14 Filter Utilities 759

 Solved Problem 762

 Review Questions 763

19. Exception Handling 765

 19.1 Introduction 765

 19.2 Error Handling 766

 19.3 Exception-Handling Model 766

 19.4 Exception-Handling Constructs 767

 19.5 Handler Throwing the Same Exception Again 773

 19.6 List of Exceptions 775

 19.7 Catch All Exceptions 779

 19.8 Exceptions in Constructors and Destructors 781

 19.9 Handling Uncaught Exceptions 784

 19.10 Exceptions in Operator Overloaded Functions 789

 19.11 Exceptions in Inheritance Tree 792

 19.12 Exceptions in Class Templates 794

 19.13 Fault-Tolerant Design Techniques 799

 19.14 Case-Study on Software Fault Tolerance 800

 19.15 Memory Allocation Failure Exception 804

 19.16 Ten Rules for Handling Exceptions Successfully 806

 Solved Problems 812

 Review Questions 814

20. OO Analysis, Design and Development 815

 20.1 Software Life Cycle: Waterfall Model 816

 20.2 Cost of Error Correction 818

 20.3 Change Management 819

 20.4 Reusable Components 820

 20.5 Software Life Cycle: Fountain-Flow Model 822

Contents

xvi

 20.6 Object-Oriented Notations 823

 20.7 Object-Oriented Methodologies 823

 20.8 Coad and Yourdon Object-Oriented Analysis 826

 20.9 Booch’s Object-Oriented Design 827

 20.10 Class Design 827

 20.11 How to Build Reliable Code? 830

 20.12 OO Software Performance Tuning 832

 20.13 Software Project Management 833

 20.14 Plan for OO Battle 834

 20.15 A Final Word 835

 Review Questions 836

Appendix A: C++ Keywords and Operators 837

Appendix B: New Features of ANSIC++ Standard 857

Appendix C: C++ Library Function 862

Appendix D: Glossary 866

Appendix E: ASCII Character Set 871

Appendix F: Bibliography 876

Index 878

Contents

Foreword

Object-oriented programming languages are playing an increasingly important role in computing sci-

ence and its applications. With the declining hardware costs, the cost of computing systems is now being

largely dominated by software. As new methodologies are being developed, some old ones are slowly

turning obsolete by the end of the day. Sometimes this results in considerable increase in development

cost plus time overrun and affects the quality of products. Object-oriented analysis and design is an

upcoming technology that software professionals have employed successfully in the development of

large software projects.

Programming, as every practitioner knows, is a delicate art, where the main problem is not only to

obtain a working program (which is mandatory of course), but to have a program designed in such a

way that it is not fragile, i.e., it can be modified/updated/debugged easily. In order to attain these goals,

programmers need tools.

Among the tools that allow a programmer to express ideas are, of course, the programming lan-

guages. One such programming language used popularly these days is the C++ language. This book by

K R Venugopal and Rajkumar Buyya is a timely and relevant publication.

This book is unique in many ways. The concepts such as programming paradigms, the need for

OOP technology, extending C, C++ at a glance, fundamental constructs of the C++ language, classes

and objects, inheritance, polymorphism, generic programming, stream computations, fault-tolerant

programming with exceptions are covered prominently. Every aspect is prominently illustrated with

figures and examples that are well tested, illustrative and have impressively designed solutions. The

authors, with their rich industrial and academic experience in Computer Science, have made their best

effort to bring out this book for the benefit of students, teachers, and software profes sionals.

This book, besides being illustrative, includes a wide array of typical programs, which help OOP

aspirants to grasp the fundamentals of the subject without external assistance. I am confident that this

book will serve the needs of all those who are serious about object-oriented technology.

In this book, the approach followed by the authors make the exploration of the OOP territory as easy

and interesting as possible, starting slowly and working up gradually to more challenging concepts. I

am positive that the reader will find the book an appealing vehicle for embarking into the challenging

world of Mastering C++. Good luck!

S Sasi Kumar

Director

Centre for Development of Advanced Computing

(A Scientific Society of Government of India)

Brunton Road, Bangalore 560 025

Karnataka, India

Preface

In the real world, everything (including you and me!) exist in the form of objects. These objects are

identified by the system analyst upon request of a customer (who actually uses services of objects)

and handed over to the designer. The designer in turn creates classes. which group all those objects

exhibiting similar characteristics and behaviors into a single unit. These units are then passed to

programmers, who implement the object’s framework given by the designer. Thus, objects move from

the customer to the programmer.

Programmers create objects using its framework. These objects work in a collaborative and cooperative

manner to produce the required output. These software objects now start moving from programmers

to test engineers, and finally to the customer, who is the actual user of these objects, to solve real-

world problems. To realize this effective migration of objects from one person to another, there must

be an effective means of communication among all those involved in the development of a software

project. They need to communicate their ideas in terms of objects. That is, the system analyst delivers

requirement specification in terms of objects, and the software designer delivers design specification

in terms of classes (object groups). And even programmers need to express their ideas or write code in

terms of objects. Hence, the demand for an object-oriented requirement specification (OORS), object-

oriented analysis (OOA), object-oriented design (OOD), and object-oriented programming (OOP) has

grown tremendously.

Currently, there is no standard method of OORS, OOA, and OOD available. But, there are many

standard programming languages available that support OOP, and one of the most popular OOP

languages is C++.

C++ is an object-oriented language that a C programmer can appreciate, especially who is an early-

age assembly-language programmer. C++ was first oriented towards execution performance and then

towards flexibility. Most of the features which C++ adds to C involve no runtime overhead; few that do

can be avoided by efficiency-conscious programmers.

Yet, C being a structured programming language, offered the ease of software development but

failed to support maintenance of large code. This has motivated the search for a new language as

efficient as C but simplifying the maintenance of large code. It is not enough to offer a language that

is just as good as C. If people are to switch, the replacement language must not only equal C in terms

of efficiency and code reuse, but it must also be a lot better in terms of productivity, maintenance, and

power. C++ meets these criteria, making it the first serious contender to challenge Fortran’s supremacy.

The last couple of years have seen a growing wave of enthusiasm for object-oriented approaches

to requirements analysis, application design, and programming. The same period has been marked by

the increasing popularity of the C++ language and its acceptance as a logical successor to C. Since

C++ is designed to support object-oriented development, it seems only natural to see a strong link

between C++ and OOP. Programmers who move to C++ will apparently adopt an object-oriented style

of programming.

With C++, it is much easier to build and maintain really big code. This is made possible with C++’s

enhancements to C and more importantly, its object-oriented support. Some of the most prominent

concepts of object-oriented programming are encapsulation, data abstraction, inheritance, delegation,

polymorphism, and streams. All these features are covered in this book with illustrative programs.

xx

A few other reasons for the success of C++(unlike other OOP languages) are A strong backing from world-class software organizations (such as AT&T, Borland, Microsoft,

Sun Microsystems Inc, etc.) Maturity of language Availability of programming environment (language-sensitive editors, compilers, tools, profilers,

code analyzers, etc.) Availability on machines—from microcomputers to supercomputers

Salient Features

 Explanation of Object Oriented Concepts with the help of well-designed programming

examples

 In-depth coverage of topics like Data Type, Operators and Expressions, Classes and Objects,

Object Initialization and Cleanup, Operator Overloading, Inheritance, Generic Programming

with Templates, and Exception Handling

 Clear explanation of the language constructs using syntax, illustrations, code segments and

simple examples

 Dedicated chapter on Object Oriented Analysis, and Design and Development

 Newly introduced Case Studies

Organization of the Book

This book discusses the C++ language and object-oriented concepts over twenty chapters. Each

chapter explains C++ constructs needed for object-oriented programming with numerous pro gramming

solutions. The book is organized as follows:

Chapter 1 (Object-Oriented Paradigm) discusses the need for new programming paradigms and

various aspects of object-oriented programming. It covers the evolution of programming paradigms,

elements of OOP, popular OOP languages, OO learning curve, software reuse, and demonstrates how

objects hold the key in driving future technologies.

Chapter 2 (Moving from C to C++) starts with the Hello World program demonstrating various

elements of a C++ program. It also presents new features added to C++ (apart from OOP) such as

streams-based I/O, scope-resolution operator, inline functions, function overloading, enhancements to

C structures, function templates, and new and delete operators for runtime memory management.

Chapter 3 (C+ + at a Glance) illustrates the various features supported by C++ for object-oriented

programming. Both chapters include illustrative examples of complete programs, rather than isolated

fragments. It discusses classes, objects, derived classes, operator overloading, virtual functions, class

templates, exceptions handling, and streams.

Chapters 4 through 9 discuss various fundamental elements of C and C++. These chapters are

devised keeping in mind the readers who are not familiar to the C language. The readers with C back-

ground will also benefit from these chapters, since emphasis is placed on their (data types, functions,

pointers, etc.) availability in C++ in a powerful form. Chapter 4 deals with basic data types, operators,

and expressions. Chapter 5 explains control flow: if, if-else, switch, for, while,

break, etc. Chapter 6 covers Arrays and Strings. Chapter 7 describes modular programming with

functions. It presents techniques of managing large software system development by breaking it into

multiple functions and modules. Chapter 8 emphasizes on structures and unions. Chapter 9 deals

with runtime memory man agement using pointers, emphasizing new features of C++ for dynamic

memory management.

Preface

 xxi

Chapter 10 (Classes and Objects) describes how data and functions can be combined into a single

unit. Such a unit (class) can be instantiated to create objects, and they can be manipulated. This chapter

covers class declaration, object creation, accessing class members, passing objects as arguments,

difference between structures and classes, and memory resource requirement for classes and objects.

Chapter 11 (Object Initialization and Clean-up) mainly focuses on two special functions called

constructors and destructors. These are invoked automatically during the creation of objects and

destruction of objects respectively. Chapter 12 (Dynamic Objects) covers the creation and manipulation

of objects at runtime.

Chapter 13 (Operators Overloading) illustrates overloading of C++ operators to operate on user-

defined data types. It includes overloading of both unary and binary operators such as +,-,*,. [],

etc. It also covers overloading of the new and delete operators for tracing memory leaks.

Chapter 14 (Inheritance) illustrates the creation of a new class called derived class from existing

classes. It covers various forms of inheritance with complete example programs. It also describes object

composition for delegation.

Chapter 15 (Virtual Functions) illustrates the dynamic binding of functions to realize runtime poly-

morphism. Chapter 16 (Generic Programming with Templates) discusses the creation of function and

class templates for those functions and classes having the same body but operating on different data

types.

Chapter 17 (Streams Computation with Console) discusses the unformatted and formatted I/O

operations with keyboard and screen using streams. Chapter 18 (Streams Computation with Files)

deals with I/O operations on files used for storing data on secondary storage devices using file streams.

Chapter 19 (Exception Handling) covers the error-handling model of C++ and concludes with

guidelines on better handling of exceptions.

Chapter 20 (OO Analysis, Design, and Development) covers software life cycle, object-oriented

analysis, object-oriented design, and class design. It also provides some guidelines on how to build

a reliable code, OO software performance tuning, software project management, and a plan for OO

battle.

The topics of Appendices include C++ Keywords and Operators, New Features of ANSI C++

Standard, Standard Template Library, C++ Library Functions, Glossary, ASCII Character Set,

Bibliography, and Index.

Road Map for Readers

This book is designed keeping in mind the following three categories of users:

 1. Well-versed in C and wants to learn C++ thoroughly

 2. Well-versed with C and wants to learn C++ quickly

 3. Not familiar with C and has good knowledge of programming

The first category of users can read the first three chapters: Object-Oriented Paradigm, Moving

from C to C++, and C++ at a Glance. The remaining seven chapters can be skipped without the loss

of continuity. However, it is advisable to study these chapters so that strong foundation on C++’s

new features can be built. The second category of users can read the first three chapters to learn C++

quickly. The third category of users are advised to study the entire book. They can skip the second

and third chapters in the first reading and read them later after gaining some foundations of C++

programming.

Preface

xxii

Online Learning Center

This book is accompanied by an exhaustive OLC accessible at http://www.mhhe.com/venugopal/

mcpp2 which contains a project (on Bank Automation System) and additional solved problems.

Feedback
Suggestions for further improvement of this book can be forwarded to K R Venugopal at venugopalkr@

gmail.com or Rajkumar Buyya at rbuyya@unimelb.edu.au

K R Venugopal

Rajkumar Buyya

Publisher’s Note

Do you have any further request or a suggestion? We are always open to new ideas (the best ones come

from you!). You may send your comments to tmh.csefeedback@gmail.com

Piracy-related issues may also be reported!

Preface

Acknowledgements

We owe a debt of gratitude to professors K Venkatagiri Gowda, P Sreenivasa Kumar, S Lakshmana

Reddy, N R Shetty, P Narayana Reddy, N S Somasekhar, K MallikarjunaChetty, H N Shivashankar, C

Sivarama Murthy, A R Virupaksha, T Basavaraju, M Chenna Reddy, B Narayanappa, N Srinivasan, K

N Krishnamurthy, F A Mecci, G R Venkateshaiah, and V Sathyanagakumar for their encouragement.

Our sincere thanks to Sri K P Jayarama Reddy, T G Girikumar, P Palani, M G Muniyappa, and C

Keshavamurthy for their support.

We are grateful to Mr S Sasi Kumar, Director, Centre for Development of Advanced Computing,

Bangalore, for his foreword to this book and Prof. M Venkatachalappa, Department of Mathematics,

Bangalore University, Bangalore, for providing us the necessary infrastructure in the preparation of

this book.

We appreciate the constant support of Ms Mangala, Ms Savithri S, Ms Deepa, Mr Ravi Kiran N, and

Mr Bijo Thomas during the preparation of this book.

Dr Bjarne Stroustrup, the designer of the C++ language, was kind enough to answer many of our

queries by electronic mail and allowed us to use his comments on the C++ competency gap directly in

this book without any mutation. We are indebted to him for his support to our work.

We thank professors G Krishna, M A L Thathachar, N Viswanadham, V V S Sharma,

D K Subramanian, U R Prasad, C E Veni Madhavan, Y N Srikanth, Y Narahari, T Jacob Matthew,

K Gopinath, R C Hansdah, all from HSC, Bangalore, for their suggestions. We also thank professors

C R Muthukrishnan, Deputy Director, Chairman, Department of Computer Science, Kamala Krithivasan,

T A Gonsalves, C Pandu Rangan, D Janaki Ram, all from IIT Madras, for their encouragement.

We sincerely appreciate the efforts of Anand K N, A Prashanth Kumar, Sudeep R Prasad, Maya C M,

Bala Kishore B, Krishna Mohan, and Sasikiran N for proofreading, and also Mohan Ram, Mallikarjuna

Gnmma and Gopi Chand T for their comments.

Tejaswi, Prakash, and Prasad deserve a special mention for their help.

Our are obliged to Sri Eshwarappa Buyya, Smt. Parvathi Eshwarappa, Smt. Smrithi Rajkumar, Ashok

Kumar, Chinnama, Dullappa, Kalpana, Shivakumar, Sri Vishwanath Dharni, Shankerayya Swarny,

Rajkumar Shelke, and Sangashetty Gadge our well wishers for their moral support and inspiration.

We express our gratitude to Sri M C Jayadeva, Sri V Nagaraj, Sri V Manjunath, Sri K Thyagaraj,

Sri T S Ravichander, Sri M Thammaiah, Smt. Chandramma T, Smt. Savithri Venkatagiri Gowda,

Smt. P SaiPrabha, Smt. Karthyayini Venugopal, and Smt. Rukmini Thyagaraj, our well-wishers for

inspiring us.

We would also like to thank all those reviewers who took out time to review the book and gave

useful comments. Their names are given below:

Pragya Jain Indian Institute of Technology (IIT) Delhi, New Delhi

N K Kamila C V Raman College of Engineering, Bhubaneswar, Odisha

S Kannimuthu Sri Krishna College of Engineering and Technology, Coimbatore, Tamil

Nadu

S Shankar Sri Krishna College of Engineering and Technology, Coimbatore, Tamil

Nadu

xxiv

T V Gopal Anna University, Chennai

A Sharada G Narayanamma Institute of Technology and Science, Hyderabad,

Andhra Pradesh

Annappa National Institute of Technology (NIT), Surathkal, Karnataka

Ch V K N S N Moorthy DRK Institute of Science and Technology, Hyderabad, Andhra Pradesh

We thank Ms. Vibha Mahajan, Ms Shalini Jha, Ms Smruti Snigdha, Mr Amiya Mahapatra, Mr

Satinder Singh Baveja, Ms Sohini Mukherjee, and Mr Anuj Shriwastava of McGraw Hill Education

(India) for bringing out this book in record time.

K R Venugopal

Rajkumar

Acknowledgements

Object-Oriented

Paradigm

Object-Oriented Programming, popularly called OOPs, is one of the

buzzwords in the software industry. On one hand, OOP is a programming

paradigm in its own right and on the other, it is a set of software engineering

tools which can be used to build more reliable and reusable systems. Another

kind of programming methodology which has already revealed its power in

the software field is structured programming. At present, Object-Oriented

programming is emerging from research laboratories and invading the field

of industrial applications. The software industry has always been in pursuit

of a methodology or philosophy, which would eliminate the problems endemic to software in one shot.

The latest candidate for this role is Object-Oriented methodology.

Structured Programming and Object-Oriented Programming are equally popular today although

structured programming has a longer history. The current popularity of OOP and its connection to

structured programming was pointed out by Tim Rentsch—What is object-oriented programming? My

guess is that object-oriented programming will be in the 1980’s what structured programming was in

the 1970’s. Everyone will be in favor of it. Every manufacturer will promote his products as supporting

it. Every manager will pay lip service to it. Every programmer will practice it (differently). And no one

will know just what it is. Rentsch’s predictions still hold true in the 90’s.

Structured Programming and Object-Oriented Programming fundamentally differ in the following

way: Structured programming views the two core elements of any program—data and functions as two

separate entities, whereas OOP views them as a single entity. The benefits of uniting both data and

functions into a single unit will be discussed in later sections.

Object-Oriented programming as a paradigm is playing an increasingly significant role in the analysis,

design, and implementation of software systems. Object-Oriented analysis, design, and programming

appear to be the structured programming of the 1990’s. Proponents assert that OOP is the solution to

the software problem. Software developed using Object-Oriented techniques are proclaimed as more

reliable, easier to maintain, easier to reuse and enhance, and so on. The Object-Oriented Paradigm is

effective in solving many outstanding problems in software engineering.

1.1 WHY NEW PROGRAMMING PARADIGMS ?

With the continuous decline of hardware cost, high-speed computing systems are becoming economically

feasible. Innovations in the field of computer architecture supporting complex instructions is in turn

leading to the development of better programming environments, which suit the hardware architecture.

1

Mastering C++2

More powerful tools, operating systems, and programming languages are evolving to keep up with

the pace of hardware development. Software for different applications need to be developed under

these environments, which is a complex process. As a result, the relative cost of software is increasing

substantially when compared to the cost of the hardware of a computing system. Rate of increase in

the cost of software development and maintenance and declining hardware cost over several years is

depicted in Figure 1.1. Software maintenance is the process of modifying or extending the capabilities

of the existing software. It requires mastery in understanding and modifying the existing software, and

finally revalidating the modified software.

Fig. 1.1 System-development cost

The cost-effectiveness of hardware has been growing by about three orders of magnitude every

decade and simultaneously the market for computers is also expanding. This multiplies the number

of applications of computers and in turn places greater demands on software. While demand for

software has been growing rapidly to keep pace with the growth of hardware, the actual software

development has been progressing slowly. Unfortunately, even with all the innovations in the area

of languages, programming environments, software engineering concepts, etc., there has been no

significant improvement in the productivity of software development, leading to software crises. The

term “software crises” refers to the overrun of the cost of software development in terms of both budget

and time-target.

The software crisis, right from the beginning, is providing an impetus for the development of

software-engineering principles, tools, and better programming paradigms to build more reliable and

reusable systems. The state-of-the-art solution to overcome software crisis is the Object-Oriented

Paradigm.

1.2 OOPS ! A NEW PARADIGM

Object-Oriented Programming is a new way of solving problems with computers; instead of trying to

mould the problem into something familiar to the computer, the computer is adapted to the problem.

Object-Oriented Programming is designed around the data being operated upon as opposed to the

Object-Oriented Paradigm 3

operations themselves. Instead of making certain types of data fit to specific and rigid computer

operations, these operations are designed to fit to the data. This is as it should be, because the sole

purpose of a computer program is to manipulate data.

OOP languages provide the programmer the ability to create class hierarchies, instantiate co-

operative objects collectively working on a problem to produce the solution and send messages between

objects to process themselves. The power of Object-Oriented languages is that the programmer can

create modular, reusable code and as a result, formulate a program by composition and modification

of the existing modules. Flexibility is gained by being able to change or replace modules without

disturbing other parts of the code. Software development speed is gained, on one hand, by reusing

and enhancing the existing code and, on the other hand, by having programming objects that are close

in representation to the real-world objects, thus reducing the translation burden (from a real-world

representation to the computer-world representation) for the programmer.

The fundamental features of OOPs are the following:

 Encapsulation

 Data abstraction

 Inheritance

 Polymorphism

 Message passing

 Extensibility

 Persistence

 Delegation

 Genericity

 Multiple inheritance

The important features supported by the Object-Oriented paradigm are depicted in Figure 1.2. It

also shows various features offered by C++ as a language for OOP paradigm. OOP not only benefits

Fig. 1.2 Features of object-oriented paradigm

Mastering C++4

programmers, but also the end-users by providing an Object-Oriented user interface. It provides a

consistent means of communication between analysts, designers, programmers, and end users. The

following terms are most often used in the discussion of OOPs.

Encapsulation

It is a mechanism that associates the code and the data it manipulates into a single unit and keeps them

safe from external interference and misuse. In C++, this is supported by a construct called class. An

instance of a class is known as an object, which represents a real-world entity.

Data Abstraction

The technique of creating new data types that are well suited to an application to be programmed is

known as data abstraction. It provides the ability to create user-defined data types, for modeling a real

world object, having the properties of built-in data types and a set of permitted operators. The class

is a construct in C++ for creating user-defined data types called abstract data types (ADTs).

Inheritance

It allows the extension and reuse of existing code without having to rewrite the code from scratch.

Inheritance involves the creation of new classes (derived classes) from the existing ones (base classes),

thus enabling the creation of a hierarchy of classes that simulate the class and subclass concept of the

real world. The new derived class inherits the members of the base class and also adds its own. Two

popular forms of inheritance are single and multiple inheritance. Single inheritance refers to deriving a

class from a single base class—supported by C++.

Multiple Inheritance

The mechanism by which a class is derived from more than one base class is known as multiple

inheritance. Instances of classes with multiple inheritance have instance variables for each of the

inherited base classes. C++ supports multiple inheritance.

Polymorphism

It allows a single name/operator to be associated with different operations depending on the type of

data passed to it. In C++, it is achieved by function overloading, operator overloading, and dynamic

binding (virtual functions).

Message Passing

It is the process of invoking an operation on an object. In response to a message, the corresponding

method (function) is executed in the object. It is supported in C++.

Extensibility

It is a feature, which allows the extension of the functionality of the existing software components. In

C++, this is achieved through abstract classes and inheritance.

Persistence

The phenomenon where the object (data) outlives the program execution time and exists between

executions of a program is known as persistence. All database systems support persistence. In C++,

this is not supported. However, the user can build it explicitly using file streams in a program.

Object-Oriented Paradigm 5

Delegation

It is an alternative to class inheritance. Delegation is a way of making object composition as powerful as

inheritance. In delegation, two objects are involved in handling a request: a receiving object delegates

operations to its delegate. This is analogous to the child classes sending requests to the parent classes.

In C++, delegation is realized by using object composition. Here, new functionality is obtained by

assembling or composing objects. This approach takes a view that an object can be a collection of many

objects and the relationship is called the has-a relationship or containership.

Genericity

It is a technique for defining software components that have more than one interpretation depending on

the data type of parameters. Thus, it allows the declaration of data items without specifying their exact

data type. Such unknown data types (generic data type) are resolved at the time of their usage (function

call) based on the data type of parameters. For example, a sort function can be parameterized by

the type of elements it sorts. To invoke the parameterized sort(), just supply the required data type

parameters to it and the compiler will take care of issues such as creation of actual function and invoking

that transparently. In C++, genericity is realized through function templates and class templates.

1.3 EVOLUTION OF PROGRAMMING PARADIGMS

As many software experts point out, the complexity of software is an essential property, not an accidental

one. This inherent complexity is derived from the following four elements:

 The complexity of the problem domain

 The difficulty of managing the development process

 The flexibility possible through software

 The problems of characterizing the behavior of discrete systems

The sweeping trend in the evolution of high-level programming languages and the shift of focus

from programming-in-the-small to programming-in-the-large has simplified the task of the software

development team. It also enables them to engineer the illusion of simplicity. This shift in programming

paradigm is categorized into the following:

 Monolithic programming

 Procedural programming

 Structured programming

 Object-Oriented Programming

Like the computer hardware, programming languages have been passing through evolutionary

phases or generations. It is generally observed that most programmers work in one language and

use only one programming style. They program in a paradigm enforced by the language they use.

Frequently they may not have been exposed to alternate ways of solving the problem and hence, they

will have difficulties in exploiting the advantages of choosing a style more appropriate to the problem

at hand. Programming style is defined as a way of organizing the ideas on the basis of some conceptual

model of programming and using an appropriate language to write efficient programs. Five main kinds

of programming styles are listed in Table 1.1 with the different types of abstraction they employ.

Mastering C++6

There is no single programming style that is best suited for all kinds of applications. For example,

procedure-oriented programming would be best suited for the design of computation-intensive

problems; rule-oriented programming would be best suited for the design of a knowledge base; and

logic-oriented programming would be best suited for a hypothesis derivation. The Object-Oriented

style is best suited for a wide range of applications; indeed, this programming paradigm often serves

as the architectural framework in which other paradigms are employed. Each one of these styles of

programming require a different mindset and a different way of thinking about the problem, based on

their own conceptual framework.

1.3.1 Monolithic Programming

The programs written in these languages exhibit relatively

flat physical structure as shown in Figure 1.3. They

consist of only global data and sequential code. Program

flow control is achieved through the use of jumps and the

program code is duplicated each time it is to be used, since

there is no support of the subroutine concept and hence, it

is suitable for developing small and simple applications.

Practically, there is no support for data abstraction and it is

difficult to maintain or enhance the program code.

Examples: Assembly language and BASIC

1.3.2 Procedural Programming

Programs were considered as important intermediate points

between the problem and the computer in the mid-1960s.

Initially, software abstraction achieved through procedural

abstraction grew directly out of this pragmatic view of

software. Subprograms were originally seen as labor-

saving devices but very quickly appreciated as a way to

abstract program functions as shown in Figure 1.4.

The following are the important features of procedural programming:

 Programs are organized in the form of subroutines and all data items are global.

 Program controls are through jumps (gotos) and calls to subroutines.

Table 1.1 Types of programming paradigms

Programming Style Abstraction Employed

Procedure-oriented Algorithms

Object-oriented Classes and objects

Logic-oriented Goals, often expressed in predicate calculus

Rule-oriented if-then-else rules

Constraint-oriented Invariant relationship

Fig. 1.4 Procedural programming

Fig. 1.3 Monolithic programming

Global Data

1:
2:

goto 100

goto 55

goto 3

goto 75

goto 6
100:

Object-Oriented Paradigm 7

 Subroutines are abstracted to avoid repetitions.

 It is suitable for medium-sized software applications.

 It is difficult to maintain and enhance the program code.

Examples: FORTRAN and COBOL

1.3.3 Structured Programming

Structured programming has evolved as a

mechanism to address the growing issues of

programming-in-the-large. Larger programming

projects consist of large development teams,

developing different parts of the same project

independently. The usage of separately compiled

modules (algorithmic decomposition) was the

answer for managing large development teams

(see Figure 1.5). Programs consist of multiple

modules and in turn, each module has a set of functions of related types.

The following are the important features of structured programming:

 Emphasis on algorithm rather than data

 Programs are divided into individual procedures that perform discrete tasks

 Procedures are independent of each other as far as possible

 Procedures have their own local data and processing logic

 Parameter-passing facility between the procedures for information communication

 Controlled scope of data

 Introduction of the concepts of user-defined data types

 Support for modular programming

 Projects can be broken up into modules and programmed independently

 Scope of data items is further controlled across modules

 A rich set of control structures are available to further abstract the procedures

 Co-ordination among multiple programmers is required for handling the changes made to

mutually shared data items

 Maintenance of a large software system is tedious and costly

Examples: Pascal and C

1.3.4 Object-Oriented Programming

The easy way to master the management of complexity in the development of a software system is

through the use of data abstraction. Procedure abstraction is suitable for the description of abstract

operations, but it is not suitable for the description of abstract objects. This is a serious drawback in

many applications since the complexity of the data objects to be manipulated contribute substantially

to the overall complexity of the problem.

The emergence of data-driven methods provides a disciplined approach to the problems of data

abstractions in algorithmic-oriented languages. It has resulted in the development of object-based

Fig. 1.5 Structured programming

Mastering C++8

language supporting only data abstraction. Object-based languages do not support features such

as inheritance and polymorphism which will be discussed later. Depending on the object features

supported, the languages are classified into two categories:

 1. Object-based programming languages

 2. Object-Oriented programming languages

Object-based programming languages support encapsulation and object identity without supporting

important features of OOP languages such as polymorphism, inheritance, and message-based

communication. Ada is one of the typical object-based programming languages.

Object-based language = Encapsulation + Object identity

Object-Oriented languages incorporate all the features of object-based programming languages

along with inheritance and polymorphism. Therefore, an Object-Oriented programming language is

defined by the following statement:

Object-oriented language = Object-based features + Inheritance + Polymorphism

The topology of Object-Oriented programming languages

is shown in Figure 1.6 for small, moderate, and large projects.

The modules represent the physical building blocks of these

languages; a module is a logical collection of classes and

objects, instead of subprograms as in the earlier languages.

Thus, making classes and objects as the fundamental building

blocks of OOP.

Object-Oriented programming is a methodology that

allows the association of data structures with operations

similar to the way it is perceived in the human mind. They

associate a specific set of actions with a given type of object

and actions are based on these associations.

The following are the important features of Object-Oriented programming:

 There is improvement over the structured programming paradigm.

 There is emphasis on data rather than algorithm.

 Data abstraction is introduced in addition to procedural abstraction.

 Data and associated operations are unified into a single unit; thus the objects are grouped with

common attributes, operations and semantics.

 Programs are designed around the data being operated, rather than operations themselves (data

decomposition-rather than algorithmic decomposition).

 Relationships can be created between similar, yet distinct data types.

Examples: C++, Smalltalk, Eiffel, Java, etc.

1.4 STRUCTURED VERSUS OBJECT-ORIENTED DEVELOPMENT

Program and data are two basic elements of any computation. Among these, data plays an important

role and it can exist without a program, but a program has no relevance without data. The conventional

high-level languages stress on the algorithms used to solve a problem. Complex procedures have

been simplified by structured programming which is well established to date. Software designers and

Fig. 1.6 Object-oriented programming

Object-Oriented Paradigm 9

programmers have faced difficulty in the design,

maintenance, and enhancement of software

developed using traditional languages, and their

search for a better methodology has resulted

in the development of the Object-Oriented

approach. In the conventional method, the data

is defined as global and accessible to all the

functions of a program without any restriction.

It has reduced data security and integrity, since

the entire data is available to all the functions

and any function can change any data without impunity. (See Figure 1.7.)

Unlike the traditional methodology (Function-Oriented Programming—FOP), Object-Oriented

Programming emphasizes on the data rather than the algorithm. In OOP, data is compartmentalized

or encapsulated with the associated functions (that operate on it) and this compartment or capsule is

called an object. In the OO approach, the problem is divided into objects, whereas in FOP the problem

is divided into functions. Although both approaches adopt the same philosophy of divide and conquer,

OOP conquers a bigger region, while FOP is content with conquering a smaller region. OOP contains

FOP and so OOP can be referred to as the superset of FOP (like C++, which is a superset of C) and

hence, it can be concluded that OOP has an edge over FOP.

Unlike traditional languages, OO languages allow localization of data and code and restrict other

objects from referring to its local region. OOP is centered around the concepts of objects, encapsulations,

abstract data types, inheritance, polymorphism, message-based communication, etc. An OO language

views the data and its associated set of functions as an object and treats this combination as a single

entity. Thus, an object is visualized as a combination of data and functions which manipulate them.

During the execution of a program, the objects interact with each other by sending messages and

receiving responses. For instance, in a program to perform withdrawals from an account, a customer

object can send a withdrawal message to a bank account object. An object communicating with other

objects need not be aware of the internal

working of the objects with which it

interacts. This situation is analogous to

operating a television receiver, a computer,

or an automobile, where one need not know

the internal operations since these machines

provide the user with some system controls

that hide the complexity of internal structure

and working. Likewise, an object can be

manipulated through an interface that

responds to a few messages. The object’s

internal structure is totally hidden from

the user and this property is called data/

information hiding or data encapsulation.

The external interfaces are implemented

by providing a set of methods (functions),

each of which accepts and responds to a

particular kind of message (see Figure 1.8).

Fig. 1.7 Function-oriented paradigm

Fig. 1.8 Object-oriented paradigm

Mastering C++10

The methods defined in an object’s class are the same for all objects belonging to that class but, the data

is unique for each object.

1.5 ELEMENTS OF OBJECT-ORIENTED PROGRAMMING

Object-Oriented programming is centered around new concepts such as objects, classes, polymorphism,

inheritance, etc. It is a well-suited paradigm for the following:

 Modeling the real-world problem as close as possible to the user’s perspective

 Interacting easily with computational environment using familiar metaphors

 Constructing reusable software components and easily extendable libraries

 Easily modifying and extending implementations of components without having to recode

everything from scratch

A language’s quality (and its elements) is judged by twelve important criteria. They are a well-

defined syntactic and semantic structure, reliability, fast translation, efficient object code, orthogonality

(language should have only a few basic features, each of which is separately understandable), machine

independence, provability, generality, consistency with commonly used notations, subsets, uniformity,

and extensibility. The various constructs of OOP languages (such as C++) are designed to achieve these

with ease.

1.5.1 Definition of OOP

In the 70s, the concept of the object became popular among researchers of programming languages. An

object is a combination or collection of data and code designed to emulate a physical or abstract entity.

Each object has its own identity and is distinguishable from other objects. Programming with objects is as

efficient as programming with basic data items such as integers, floats, or arrays. Thus, it provides a direct

abstraction of commonly used items and hides most of the complexity of implementation from the users.

Object-Oriented programming is a programming methodology that associates data structures with

a set of operators which act upon it. In OOP terminology, an instance of such an entity is known as an

object. It gives importance to relationships between objects rather than implementation details. Hiding

the implementation details within an object results in the user being more concerned with an object’s

relationship to the rest of the system, than the implementation of the object’s behavior. This distinction

is a fundamental departure from earlier imperative languages (such as Pascal and C), in which functions

and function calls are the centre of activity.

1.5.2 C++ Style of OOP Definition

Grady Booch, a renowned contributor to the development of Object-Oriented technology, defines

OOPs as follows: OOP is a method of implementation in which programs are organized as co-operative

collections of objects, each of which represents an instance of some class and whose classes are all

members of a hierarchy of classes united through the property called inheritance.

Three important concepts to be noted in the above definition are objects, classes, and inheritance.

OOP uses objects and not algorithms as its fundamental building blocks. Each object is an instance of

some class. Classes allow the mechanism of data abstraction for creating new data types. Inheritance

allows building of new classes from the existing classes. Hence, if any of these elements are missing in

Object-Oriented Paradigm 11

a program then it is not object-oriented. In particular, a program without inheritance is definitely not an

Object-Oriented one; it resembles the program with abstract data types.

1.6 OBJECTS

Initially, different parts (entities) of a problem

are examined independently. These entities

are chosen because they have some physical

or conceptual boundaries that separate them

from the rest of the problem. The entities are

then represented as objects in the program. The

goal is to have a clear correspondence between

physical entities in the problem domain and

objects in the program. A well designed Object-

Oriented program is organized according to the

objects being manipulated.

Figure 1.9 shows few entities and each of

them can be treated as an object. In other words, an object can be a person, a place, or a thing with

which the computer must deal. Some objects may correspond to real-world entities such as students,

employees, bank accounts, inventory items, etc., whereas, others may correspond to computer hardware

and software components. Hardware components include a keyboard, port, video display, mouse, etc.,

and software components include stacks, queues, trees, etc. In an application simulating a parking lot,

car, parking spaces, traffic signals, or even the persons manning the parking lot can be conceptualized

as objects. Objects can be concrete such as a file system, or conceptual such as a scheduling policy in a

multiprocessor operating system. Objects mainly serve the following purposes:

 Understanding of the real world and a practical base for designers

 Decomposition of a problem into objects depends on judgement and nature of the problem

Every object will have data structures called attributes and behavior called operations. The different

notations of an object uniting both the data and operations are shown in Figure 1.10.

Fig.1.10 Different styles of representing an object

Attribute 1

Attribute N

O
peration 2

O
pe

ra
tio

n
1

O
peration

N

Object Name

Attribute 1
Attribute 2

Attribute N

. .

. .

Operation N

Operation 2

Operation 1

Object Name

Attribute 1
Attribute 2

Attribute N

. .

. .

Operation 1
Operation 2

Operation N

. .

. .

(a) (b) (c)

. .

. .

Fig. 1.9 Examples of objects

Mastering C++12

Consider the object account having the attributes AccountNumber, AccountType, Name, and Balance,

and operations. Deposit, Withdraw, and Enquire. Its pictorial notation is shown in Figure 1.11. Each

object will have its own identity though their attributes and operations may be same; the objects will

never become equal. In case of the person, object for instance, two persons have the same attributes

like name, age, and sex, but they are not equal (technically). Objects are the basic run-time entities in

an Object-Oriented system.

1.7 CLASSES

The objects with the same data structure (attributes) and behavior (operations) are grouped into a class.

All those objects possessing similar properties are grouped into the same unit. The concept of classing

the real world objects is demonstrated in Figure 1.12. It consists of the Person class, Vehicle class, and

Polygon class. In the case of the Person class, all objects have similar attributes like Name, Age, Sex,

Fig.1.11 Different styles of representing the ‘account’ object

Fig. 1.12 Objects and classes

Abstract

Person Objects

Vehicle Objects

Polygon Objects

Into

Person Class
Attributes:

Operations:

Name, Age, Sex

Speak(), Listen(), Walk ()

Abstract
Into

Vehicle Class
Attributes:

Operations:

Name, Model, Color

Start(), Stop(),

Accelerate()

Abstract
Into

Polygon Class
Attributes:

Operations:

Vertices, Border,

Color, FillColor

Draw(), Erase(), Move()

Object-Oriented Paradigm 13

and similar operations like Speak, Listen, Walk. So boy and girl objects are grouped into the Person

class. Similarly, other related objects such as triangle, hexagon, and so on, are grouped into the Polygon

class.

Every object is associated with data and functions which define meaningful operations on that

object. For instance, in C++, related objects exhibiting the same behavior are grouped and represented

by a class in the following way:

class account

{

 private:

 char Name[20];

// data members

 int AccountType;

 int AccountNumber;

 float Balance

 public:

 Deposit (); // member, functions

 Withdraw();

 Enquire ();

};

This declaration is similar to the structure declaration in C. It enables the creation of the class

variables called objects. For example, the following statements,

account savings_account;

account current_account;

account FD_account;

create instances of the class account. They define savings_account, current_account, and

FD_account as the objects of the class account. From this, it can be inferred that the account

class groups objects such as savings account, current account, etc. Thus, objects having the same

structural and behavioral properties are grouped together to form a class.

Each class describes a possibly infinite set of individual objects; each object is said to be an instance

of its class and each instance of the class has its own value for each attribute but shares the attribute

name and operations with other instances of the class. The following points on classes can be noted:

 A class is a template that unites data and operations.

 A class is an abstraction of the real world entities with similar properties.

 A class identifies a set of similar objects.

 Ideally, the class is an implementation of abstract data type.

1.8 MULTIPLE VIEWS OF THE SAME OBJECT

A commonly accepted notion about objects is illustrated through the definition of a tree. In this

classical model, a tree is defined as a class, in terms of internal state information and methods that can

be applied. The designer of such an Object-Oriented tree, ideally works with the intrinsic properties

and behavior of the tree. In the real world, properties of a tree like its height, cell count, density, leaf-

mass, etc., are intrinsic properties. Intrinsic behavior includes growth, photosynthesis, etc., that affect

Mastering C++14

the intrinsic properties. This idea of a classical model is inadequate to deal with the construction of

large and growing suites of applications that manipulate the objects. Every observer (for instance, a

tax- assessor, a woodcutter and a bird) of the tree, with different backgrounds, has his/her own view on

the ideal model of a tree as shown in Figure 1.13.

A tax-assessor has his own view of the features and behavior associated with a tree. The characteristics

include its contribution to the assessed value of the property on which it grows. The behavior includes

the methods by which this contribution is derived. These methods vary from tree-type to tree-type. In

fact, such methods may form a part of a tax assessor’s view of all objects, tree and non-tree alike. These

characteristics and behaviors are extrinsic to the tree. They form the part of a tax assessor’s subjective

view of the Object-Oriented tree.

Figure 1.13 reminds that the tax-assessor is merely one of a suite (type) of applications, each having

its own subjective view, its own extrinsic state and behavior for the tree. The views of a woodcutter

and a bird on the same object are also different compared to the tax assessor’s view. A woodcutters

view of the tree, is in terms of sales price and time required to cut the tree with capital profit as a

method. A bird’s view of the same tree is different, and its view characteristics include FoodValue

and ComputeFlight. Thus, a woodcutter views the tree in terms of the amount of time required to

cut the tree and the price it would fetch. The bird views it in terms of the food value and the amount of

energy required to carry the food from the tree to its nest.

Fig. 1.13 Multiple views of an object-oriented tree

Class: Tree

Attribute:
Food Value

Operations:
Compute Flight

Class: Tree

Attributes:
Sales Price
Time to Cut

Operations:
Compute Profit

Class: Tree

Attributes:
Assessed Value

Operations:
Estimated Value
Compute Tax

Class: Tree

Bird

Tax Assessor
Woodcutter

Attributes:
Height
Weight
Cell Count
Leaf Mass

Operations:
Growth
Photsynthesise

Object-Oriented Paradigm 15

1.9 ENCAPSULATION AND DATA ABSTRACTION

Encapsulation is a mechanism that associates the code and the data it manipulates and keeps them safe

from external interference and misuse. Creating new data types using encapsulated items that are well

suited to an application to be programmed is known as data abstraction. The data types created by the

data-abstraction process are known as Abstract Data Types (ADTs).

Data abstraction is a powerful technique, and its proper usage will

result in optimal, more readable, and flexible programs.

Data abstraction is supported by several other modern

programming languages such as Smalltalk, Ada, etc. In these

languages, and in C++ as well, a programmer can define a new

abstract data type by specifying a data structure, together with the

operations permissible on that data structure as shown in Figure

1.14. The important feature of C++, the class declaration, allows

encapsulation and creation of abstract data types.

The use of encapsulation in protecting the members (data and

code) of a class from unauthorized access is a good programming practice; it enforces the separation

between the specification and implementation of abstract data types, and it enables the debugging of

programs easily.

1.10 INHERITANCE

Inheritance is the process by which one object can acquire the properties of another. It allows the

declaration and implementation of one class to be based on an existing class. Inheritance is the most

promising concept of OOP, which helps realize the goal of constructing software systems from reusable

parts, rather than hand-coding every system from scratch. Inheritance not only supports reuse across

systems, but also directly facilitates extensibility within a given system. Inheritance, coupled with

polymorphism and dynamic binding, minimizes the amount of existing code to be modified while

enhancing a system.

To understand inheritance, consider the simple example shown in Figure 1.15. When the class

Child, inherits the class Parent, the class Child is referred to

as derived class (subclass), and the class Parent as a base class

(superclass). In this case, the class Child has two parts: a derived

part and an incremental part. The derived part is inherited

from the class Parent. The incremental part is the new code

written specifically for the class Child. In general, a feature of

Parent may be renamed, re-implemented, duplicated, voided

(nullified), have its visibility status changed, or subjected to

almost any other kind of transformation when it is mapped from

Parent to Child. The inheritance relation is often called the is-a

relation. This is because when the class Child inherits the base

class Parent, it acquires all the properties of the Parent class. It

can also have its own properties in addition to those acquired

Fig. 1.14 An abstract data type

Fig. 1.15 Single inheritance

Mastering C++16

from its Parent. This is an example of single inheritance; the child class has inherited properties from

only one base class.

The inheritance relation is often used to reflect the elements present in an application domain.

For example, consider a rectangle which is a special kind of polygon as shown in Figure 1.16. This

relationship is easily captured by the inheritance relation. When the rectangle is inherited from the

polygon, it gets all the features of the, polygon. Further, the polygon is a closed figure and so, the

rectangle inherits all the features of the closed figure.

Fig. 1.16 Inheritance graph (class hierarchy)

1.10.1 Multiple Inheritance

In the case of multiple inheritance, the derived class

inherits the features of more than one base class. Consider

Figure 1.17, in which the class Child is inherited from

the base classes Parent1 and Parent2. Here, the

class Child possesses all the properties of parents’

classes in addition to its own.

1.10.2 Benefits of Inheritance

There are numerous benefits that can be derived from the

proper use of inheritance, which include the following:

 The inherited code that provides the required functionalities does not have to be rewritten.

Benefits of such reusable code include increased reliability and decreased maintenance cost

because of sharing by all the users.

 Code sharing can occur at several levels. For example, at a higher level, individual or group users

can use the same classes. These are referred to as software components. At a lower level, code

can be shared by two or more classes within a project.

 Inheritance will permit the construction of reusable software components. Already, several such

libraries are commercially available and many more are expected to come.

Fig. 1.17 Multiple inheritance

Object-Oriented Paradigm 17

 When a software system can be constructed largely out of reusable components, development

time can be concentrated for understanding that portion of the system which is new and unusual.

Thus, software systems can be generated more quickly, and easily, by rapid prototyping.

All the above benefits of inheritance emphasize code reuse, ease of code maintenance, extension,

and reduction in development time.

1.11 DELEGATION—OBJECT COMPOSITION

Most people can understand concepts such as objects, interfaces, classes, and inheritance. The challenge

lies in applying them to build flexible and reusable software. The two most common techniques for

reusing functionality in Object-Oriented systems are class inheritance and object composition. As

explained, inheritance is a mechanism of building a new class by deriving certain properties from other

classes. In inheritance, if the class D is derived from the class B, it is said that is a kind of B. The new

approach to object composition takes a view that an object can be a collection of many other objects,

and the relationship is called a has-a (D has-a B) relationship or containership.

Delegation is a way of making object composition as powerful as inheritance for reuse. In delegation,

two objects are involved in handling a request: a receiving object delegates operations to its delegate.

This is analogous to subclasses sending requests to parent classes. In certain situations, inheritance

and containership relationships can serve the same purpose. For example, instead of creating a class

Window as a derived class of Rectangle (because the window happens to be rectangular), the

class Window can reuse the behavior of Rectangle by having a Rectangle instance variable and

delegating the Rectangle specific behavior to it. In other words, instead of the class Window being

a Rectangle, it would have a Rectangle composed

into it. Window must now forward all requests to its

Rectangle instance explicitly. In inheritance, it

would have inherited the same operation from the class

Rectangle. The Window class delegating its Area

operation to a Rectangle instance is depicted in

Figure 1.18.

Delegation makes it easy to compose behavior at

runtime and to change it manners—they are composed.

The window can become circular at runtime, simply

by replacing its Rectangle instance with a Circle

instance, assuming Rectangle and Circle have the same type. Thus, delegation shows that

inheritance can be replaced with object composition as a mechanism for code reuse.

1.12 POLYMORPHISM

In the real world, the meaning of an operation varies with context and the same operation may behave

differently in different situations. The move operation, for example, behaves differently on the class

person, and on the class polygon on the screen. A specific implementation of an operation by a

certain class is called a method. An Object-Oriented operation, being polymorphic, may have more

than one method of implementing it. The word polymorphism is derived from the Greek meaning many

Fig. 1.18 Delegation—object composition

Window

Area()
delegating

Rectangle

Area()

width
height

return width*height;return rectangle>Area();

Mastering C++18

forms. It allows a single name to be used for more than one related purpose, which are technically

different. The following are the different ways of achieving polymorphism in a C++ program:

 Function-name overloading

 Operator overloading

 Dynamic binding

Polymorphism permits the programmer to generate high-level reusable components that can be

tailored to fit different applications, by changing their low-level parts.

1.12.1 Dynamic Binding

Binding refers to the tie-up of a procedure call to the address code to be executed in response to the call.

Dynamic binding (also called late binding) means that the code associated with a given procedure call

is not known until its call at runtime. For example, consider a graphics application (see Figure 1.17),

in which the class Figure contains a procedure draw(). By inheritance, every graphics primitive in

this diagram has a procedure draw(). The draw() algorithm is, however, unique to each graphical

shape, and so the draw() procedure will be redefined in each class that defines a graphic primitive. To

redraw the entire graphics window, the following code will suffice:

for i = 1 to number_of_shaped do

 ptr_to_figure [i]->draw();

At each pass through the loop, the code matching the dynamic type of ptr_to_figure[i] will be

called. Even if additional kinds of shapes are added to the system, this code segment will still remain

unchanged. This is, in contrast to the traditional case/switch statement design of a program.

Another example could be that of an operation print in a class File. Different methods could be

implemented to print ASCII files, binary files, digitized picture files, etc. All these methods logically

perform the same task—printing a file; thus the corresponding generic operation is print. However,

the individual methods may each be implemented by a different code.

1.13 MESSAGE COMMUNICATION

In conventional programming languages, a function is invoked on a piece of data (function-driven

communication), whereas in an Object-Oriented language, a message is sent to an object (message-

driven communication). Hence, conventional programming is based on functional abstraction, whereas

Object-Oriented programming is based on data abstraction. This is illustrated by a simple example

of evaluating the square root of a number. In conventional functional programming, the function

sqrt(x) for different data types (x’s type), will be defined with different names, which takes a

number as an input and returns its square root. For each data type of x, there will be a different version

of the function sqrt(). In contrast, in an OOPL (Object-Oriented Programming Language), the

expression for evaluating the square root of x takes the form x.sqrt(), implying that the object

x has sent a message to perform the square root operation on itself. Different data types of x invoke

a different function code for sqrt(), but the expression (code) for evaluating the square root will

remain the same. By its very nature, OO (Object-Oriented) computation resembles the client-server

computing model.

Object-Oriented Paradigm 19

In Object-Oriented programming, the process of programming involves the following steps:

 Create classes for defining objects and their behaviors.

 Define the required objects.

 Establish communication among objects through message passing.

Communication among the objects occur in the same

way as people exchange messages among themselves.

The concept of programming, with the message passing

model, is an easy way of modeling real-world problems

on computers. A message for an object is interpreted as a

request for the execution of a function. A suitable function

is invoked soon after receiving the message and the

desired results are generated within an object. A message

comprises the name of the object, name of the function and the information to be sent to the object as

shown in Figure 1.19.

Like in the real world, objects also have a life cycle! They can be created and destroyed automatically,

whenever necessary. Communication between the objects can take place as long as they are alive! In

Figure 1.19, student is treated as an object sending the message Marks to find the marks secured by

the student with the specified RollNo. In this case, a function call Marks() is treated as a message

and a parameter RollNo is treated as information passed to the object.

In OOP, the correct method to execute an operation based on the name of the operation and the

class of the object being operated is automatically selected depending on the type of message received.

The user of an operation need not be aware of the alternative methods available to implement a given

polymorphic operation. New classes can be added without changing the existing code, but methods

have to be provided for each applicable operation on the new class.

1.14 POPULAR OOP LANGUAGES

Every programming methodology emphasizes on some new concepts in programming. In OO

programming, the attention is focused on objects. In this, data do not flow around a system; it is the

messages that move around the system. By sending messages, the clients (user/application program)

request objects to perform operations. The kinds of services the objects can provide are known to the

clients. This, basically, represents the client-server model, where the client calls on a server, which

performs some service and sends the result back to the client. The client must know the interface of

the server, but the server need not know the interfaces of the clients, because all the interactions are

initiated by clients using the server’s interface.

Every OO language implements the basic OO concepts in a different way. They vary in their support

of some of the advanced OO concepts such as multiple inheritance, class library, memory management,

templates, exceptions, etc. Some of the popular OO languages, namely, C++, Smalltalk, Eiffel, and

CLOS are discussed. The genealogy of different languages is shown in Table 1.2 indicating various

features supported by them.

One great divide in programming exists between exploratory programming languages that aim at

dynamism and runtime flexibility, and software engineering languages which have static typing and

other features that aid verifiability and/or efficiency. While both languages have their applications, the

Fig. 1.19 Object-oriented message

communication

Object Message Information

Student.Marks(RollNo)

Mastering C++20

latter group to which C++ belongs, is of interest for further discussion, Smalltalk is the best-known

representative of the former group.

1.14.1 C++

Bjarne Stroustrup developed C++ at AT & T Bell laboratories as an extension of C in the year 1980

(in fact, C was also invented at the same place by Dennis Ritchie in the early 1970’s). C++ was first

installed outside the designer’s research group in July, 1983; however, quite a few current C++ features

had not been invented. Suggested advantages of C++ are the “...previous C users can quite well upgrade

gradually to programming in C++, in the first step just feeding their existing C code through the C++

translator and checking if some small modifications would be necessary”. However, some consider this

as a disadvantage. They claim that an abrupt change of paradigm is necessary to make programmers

think in an Object-Oriented fashion.

C++ is evolved from a dialect of C known as C with Classes as a language for writing effective event-

driven simulations. Several key ideas were borrowed from the Simula67 and ALGOL68 programming

languages. The heritage of C++ is shown in Figure 1.20. Earlier version of the language, collectivity

known as “C with Classes” has been in use since 1980. It lacked operator overloading, references,

virtual functions, and all these are overcome in C++. The name C++ (pronounced as C plus plus)

was coined by Rick Mascitti in the summer of 1983. The name signifies the evolutionary nature of

the changes from C.“++” is the C increment operator. The slightly short name C+ is a syntax error; it

Table 1.2 Comparing object-oriented-language features

Feature C++

*

Smalltalk

80

*

Objective

C

*

Simula

**

Ada Charm++

*

Eiffel

Java

Encapsulation

(Data hiding)

3 Poor 3 3 3 3 3 3

Single inheritance 3 3 3 3 7 3 3 3

Multiple inheritance 3 7 3 7 7 3 3 7

Polymorphism 3 3 3 3 3 3 3 3

Binding

(early or late)

Both Late Both Both Early Both Early Late

Concurrency Poor Poor Poor 3 Difficult 3 Promised 3

Garbage collection 7 3 3 3 7 7 3 3

Persistent object 7 Promised 7 7 Like 3GL 7 Limited 7

Genericity 3 7 7 7 3 3 3 7

Class libraries 3 3 3 3 Limited 3 3 3

*Pure object-oriented languages

**Object-based languages

Others are extended conventional languages.

Object-Oriented Paradigm 21

has also been used as the name of an unrelated language.

Connoisseurs of C semantics find C++ inferior to ++C.

The language is not called D, because it is an extension

of C, and does not attempt to remedy the problems by

removing features.

The C++ language corrects most of the deficiencies of

C by offering improved compile-time type checking and

support for modular and Object-Oriented programming.

Some of the most prominent features of C++ are

classes, operator and function overloading, free store

management, constant types, references, inline functions,

inheritance, virtual functions, streams for console and file manipulation, templates, and exception

handling.

In C++, both attributes (data) and methods (functions) are members of a class. The members must

be declared either as private or public. Public members can be accessed by any function; private

members can only be accessed by methods of the same class. C++ has a special constructor function

to initialize new instances and a destructor function to perform necessary clean-up when an object

is to be destroyed. C++ provides three kinds of memory allocation for objects: static (preallocated

by the compiler in fixed global memory); automatic (allocated on the stack) and dynamic (allocated

from a heap). Static storage is obtained by defining a variable outside any function using the static

keyword. Local variables within functions normally use automatic storage. Dynamic storage is

allocated from a heap on an explicit request from the programmer and it must be explicitly released

since, standard implementations of C++ do not have a garbage collector.

The superclass of a class is specified as a part of class declarations, A superclass is known as base

class and a subclass is known as derived class. Attributes once declared in the superclass, which are

inherited by its subclasses, need not be repeated. They can be accessed from any subclass unless they

are declared private. Only the methods of a class can access its private attributes: Attributes declared

protected are accessible to subclasses, but not to a direct client object like private members. Methods

declared in a superclass are also inherited. If a method can be overridden by the subclass then it must

be declared virtual in its first appearance in a superclass. Thus, the need to override the method must be

anticipated and written into the base class itself. C++ does not support the concept of dynamic binding

in a thorough sense and hence, it is (sometimes) considered a poor OOP language.

1.14.2 Smalltalk

Smalltalk is the first popular OO language developed at Xerox’s Palo Alto Research Center (PARC).

Apart from being a language, it has a development environment. Smalltalk programs are normally

entered using the Smalltalk browser. Objects are called instance variables. All Smalltalk objects are

dynamic, and are allocated from a heap. Smalltalk offers fully automatic garbage collection and

deallocation is performed by a built-in garbage collector. All variables are untyped and can hold objects

of any class. New objects are created using the same message-passing mechanism used for operations

on objects. All attributes are private to the class. There is no way to restrict the operations of a class.

All operations are public.

Inheritance is achieved by supplying the name of the superclass. All attributes of the superclass

are available to all its descendants. All methods can be overridden. The standard implementation of

Fig. 1.20 Heritage of C++

Mastering C++22

Smalltalk does not support multiple inheritance. Smalltalk is weakly typed, so errors are more likely

to appear at runtime. It provides a highly interactive environment, which permits rapid development of

programs. It has a rich class library designed to be extended and adapted by adding subclasses to meet

the needs of a specific application.

1.14.3 Charm ++

Charm++ is a portable, concurrent, Object-Oriented system based on C++. It is an extension of C++

and provides a clear separation between sequential and parallel objects. The execution model of

Charm++ is message driven, which helps the programmer write programs that are latency tolerant.

The language supports multiple inheritance, dynamic binding, overloading, strong typing, and reuse of

parallel objects. Charm++ provides specific modes for sharing information between parallel objects. It

is based on the Charm parallel processing system and its runtime system implementation reuses most

of the runtime system of Charm. Extensive dynamic load-balancing strategies are provided. Charm++

has been implemented to run on different parallel systems, including shared memory machines

(e.g., Sequent Symmetry), nonshared machines (e.g., nCUBE/2), uniprocessor, and network of

workstations.

1.14.4 Java

The Java programming language is the result of several years of research and development at SUN

(Stanford University Net) Microsystems, Inc., USA. SUN defines Java as follows: Java is a new, simple,

object-oriented, distributed, portable, architecture neutral, robust, secure, multi-threaded, interpreted,

and high-performance programming language. Java is mainly intended for the development of Object-

Oriented network-based software for Internet applications. Its syntax is similar to C and C++, but it

omits semantic features that make C and C++ complex, confusing, and insecure. It does not support

some of the more difficult-to-use features of C++ such as pointers. It also features built-in safety

mechanisms (like absence of pointers) which provide some level of security on network. Hence, Java

as a logical successor to C++ can also be called C++ -- ++ (C-plus-plus-minus-minus-plus-plus, i.e.,

remove some difficult to use features of C++ and add some good features).

Java is the first language to provide a comprehensive, robust, platform-independent solution to the

challenges of programming for the Internet and other complex networks. Java features portability,

security, and advanced networking without compromising on performance. Sun Microsystems’

traditional family of SPARC processors, as well as processors of other architectures; will run Java

software. By optimizing the new Java processor family for Java-only applications, an unprecedented

level of price versus performance will be reached. Java was initially designed to address the problems

of building software for small distributed systems to embed in consumer devices. As such, it is

designed for heterogeneous networks, multiple host architectures, and secure delivery. To meet these

requirements, compiled Java code had to survive transport across networks, operate on any client, and

assure the client that it is safe to run.

Java’s future is promising. It is robust, object-oriented, and portable (source- and byte-code

executable), i.e., Java’s application byte code runs on any platform without any modification or re-

compilation; Java byte codes are interpreted by Java Virtual Machine (JVM) running on a local machine.

Java integrates the flexibility of interpreted languages and power of compiler languages. Java comes

bundled with a suite of classes for GUI (Graphical User Interface), multithreading, networking, file I/O,

Object-Oriented Paradigm 23

and the like. To add to this, APIs (Application Program Interface) for database access (Java Database

Connectivity), more robust multimedia processing, and remote object access are in the development.

1.15 MERITS AND DEMERITS OF OO METHODOLOGY

OOP systems are sold on the promise of improved productivity through object reuse and high level

of code modularity. These aspects precisely lead to their greatest benefit, namely, improved software

quality, considering the objective of OO design is to mirror the real-world objects in software systems.

OO languages have many advantages over traditional procedure-oriented languages.

1.15.1 Advantages

We perceive the world around us as being made up of objects and the brain arranges this information

into chunks (groups). OO design uses objects in a programming language, which aids in trapping an

existing pattern of human thought into programming.

Since the objects are autonomous entities and share their responsibilities only by executing

methods relevant to the received messages, each object lends itself to greater modularity. Cooperation

among different objects to achieve the system operation is done through exchange of messages. The

independence of each object eases development and maintenance of the program.

Information hiding and data abstraction increase reliability and help decouple the procedural and

representational specification from its implementation. Dynamic binding increases flexibility by

permitting the addition of a new class of objects without having to modify the existing code. Inheritance

coupled with dynamic binding enhances the reusability of a code, thus increasing the productivity of

a programmer.

Many OO languages provide a standard class library that can be extended by the users, thus saving

a lot of coding and debugging effort. Reducing the amount of code simplifies understanding and thus

allows to build reliable programs. Code reuse is possible in conventional languages as well, but OO

languages greatly enhance the possibility of reuse.

Object-Oriented design involves the identification and implementation of different classes of objects

and their behavior. The objects of the system closely correspond and relate in a one-to-one manner to

the objects in the real world. Thus, it is easier to design and implement the system consisting of objects

as observed and understood by the brain.

Object orientation provides many other advantages in the production and maintenance of software;

shorter development times, high degree of code sharing and malleability (can be moulded to any shape).

These advantages make OOP an important technology for building complex software systems.

1.15.2 Disadvantages

The runtime cost of dynamic binding mechanism is the major disadvantage of Object-Oriented

languages. The following were the demerits of adopting object-orientation in software developments in

the early days of computing (some remain forever):

 Compiler overhead

 Runtime overhead

Mastering C++24

 Re-orientation of software developer to Object-Oriented thinking

 Requires mastery over the following areas:

 Benefits only in the long run while managing large software projects, at least moderately large

ones

Object-Oriented concepts are becoming important in many areas of computer science, including

programming, graphics, CAD systems, databases, user interfaces, application-integration platforms,

distributed systems and network management architectures. OO technology is more than just a way of

programming. It is a way of thinking abstractly about a problem using real-world concepts rather than

computer concepts.

Although object orientation has been around for many years, it is only recently that it has received

major attention from vendors and methodologists. OO programming is gradually picking up as an

important technology for building complex software systems. For any programming language to

succeed, it must be easy to learn, i.e., programmers must be able to master language constructs easily;

they must be able to reuse code written by them earlier without much modifications in a new software

project; and above all, the programming language should be received well by application and system

software developers. The following sections (OO Learning Curve, Software Reuse, and Objects Hold

the Key) discuss these issues by taking Object-Oriented methodologies into consideration.

1.16 OO LEARNING CURVE

The transition from an early linear programming language, BASIC, to the latest structured programming

language, C, is easy as long as an if statement is an if statement, and a function is a function regardless

of the language. While using function-oriented methodology, the programmers need not think in terms

of a specific language, because the individual syntax and capabilities are generally equivalent.

Programming in an Object-Oriented paradigm is different from programming in function-

oriented paradigm. Object-Oriented programs should be structurally different from function-oriented

programs. Whereas a function-oriented program is organized around the actions being performed,

a well-designed Object-Oriented program is organized according to the objects being manipulated.

This shift in perspective causes trouble for function-oriented programmers stepping into an Object-

Oriented programming environment. Obviously, they have to unlearn known concepts while switching

to Object-Oriented programming. (The communication between subroutines takes place through an

explicit call to a required subroutine in the functional languages; whereas in OO languages, it takes

place through message communication.)

Object-Oriented techniques have promised to produce faster, smaller, and easier-to-maintain

programs. The difference between function-oriented and Object-Oriented programming is that the

programmer must switch from designing programs based on actions to designing programs around

data types and their interactions.

The designer of C++, Bjarne Stroustrup, recommends that the shift from C to C++ should be a gradual

one, with programmers learning the improvements a small step at a time. With C++, quite often, people,

as a first exercise, write a string class and as a second exercise, try to implement a graphics system. That

is very challenging and might be good for a professional programmer, but it’s not the best way of teaching

Object-Oriented Paradigm 25

an average student programmer. What we need is an environment that has a very good string class that

you can take apart and look at one which has a very nice graphics system, so that you never care about

MS-Windows or X-Windows again, unless you absolutely want to. So, the two components needed to

start OO programming are an environment and a library supporting resuability.

1.17 SOFTWARE REUSE

Programmers have to write code from scratch, when a new software is being developed, using

traditional languages, because there is hardly any reuse of the existing components. Software systems

have become so complex that even coding is considered as a liability today. Reusing existing software

components is treated as a key element in improving software-development productivity. It facilitates

the use of existing well-tested and proven software code as a base module and then develop on it,

instead of developing from scratch. The simplest approach in this direction involves the development

and use of libraries of software components.

Once a class has been developed, implemented, and tested, it can be distributed to other programmers

for use in their programs (called reusability). It is similar to the way library functions are used in

different programs. However, in OOP, the concept of inheritance provides an important extension to

the idea of reusability. A programmer can use an existing class without modifying it and add new

additional features and capabilities to build a new class. A newly created derived class has all the

inherited features of the old one with additional features of its own. The ease with which the existing

software can be reused is a major benefit of OOP.

Reuse is becoming one of the key areas in dealing with the cost and quality of the software systems.

The basis for reuse is the reliability of the components intended for reuse and gains achieved through

its application. The components developed for reuse must have a quality stamp, for example, concerned

with reliability and performance. Object-Oriented techniques make it possible to develop components

in general, and to develop reusable components in particular.

One of the important problems of software-component reuse consists of their localization and

retrieval from a large collection. In fact, reuse implies the following three actions: (i) Retrieve needed

component, (ii) Understand them, and (iii) Use them.

A method to reduce the effort of reusable components’ search, comprehension, and adaptation

consists of developing a reuse, strategy which defines a component classification, a component structure,

and search-and-use mechanism. The OO concepts such as classes and inheritance provide a better

mechanism for grouping related entities and simplifying the identification of reusable components.

1.17.1 Reuse through Inheritance and its Quantification

Inheritance is considered as an excellent way to organize abstraction, and as a tool to support reuse. The

use of inheritance does have some trade-offs (costs)–inheritance increases the complexity of the system

and the coupling between classes. Booch recommends that inheritance hierarchies be built as balanced

lattices and that the maximum number of levels and their width be limited to 7 ± 2 classes.

A study of inheritance was conducted on 19 C++ software systems ranging from language tools,

graphical user interfaces and toolkits, applications, thread packages from public domain to proprietary

systems implemented using C++. It revealed that only 37% of the systems have a median-class

inheritance depth greater than 1. However, an individual inheritance tree can be deep.

Mastering C++26

The inheritance depth varies from system to system depending on the application domain. Software

systems that have been designed as applications also differ notably from the reuse libraries. The

Graphical User Interface (GUI) applications tend to have greater reuse through inheritance. GUI

software are more suitable for design with inheritance. The reuse of classes in a reusable software

library is more than in an application system. Developers put more effort into the design of reusable

libraries than application software. Therefore, the reuse software library developer can take greater

advantage of inheritance. Experiments have revealed that, a lot of code and standard structures are

common in many applications and a great improvement in programmers’ productivity can be achieved

by code reusability. Before the use of software components become an established methodology (code

reuse), major efforts are needed in the area of reusable data, reusable architecture, and reusable design.

Reusable Data
The concept of reusable data implies a standard data-interchange format. However there is no universal

format to allow easy transport of data from one system to another.

Reusable Architecture
The architecture of reusable components should have the following attributes:

 All data descriptions should be external to the programs or modules intended for reuse.

 All literals and constants should be external to the programs or modules intended for reuse.

 All input/output controls should be external to the programs or modules intended for reuse.

 The programs or modules intended for reuse should consist primarily of application logic.

Reusable Design
A factor affecting the software reusability is the non-availability of good design principles for major

application types. OO software components can be designed in a consistent way and can become a

defect standard for further development.

1.17.2 Reuse and Porting
Software reuse refers to the usage of existing software knowledge or artifacts to build new software

artifacts. It is sometimes confused with porting. Reuse and porting are distinguished as follows: reuse

refers to using an asset in different systems; porting is moving a system across different environments

(moving software from DOS to UNIX operating system) or platforms (moving software from x86 to

SUN’s UltraSPARC processor). For example, in Figure 1.21, a component in System A is used again

Fig. 1.21 Reuse versus porting

Object-Oriented Paradigm 27

in System B, which is an example of reuse. System A, developed for Environment 1, is moved into

Environment 2, which is an example of porting.

1.17.3 Factors Influencing Reuse

An organization trying to improve systematic reuse should concentrate on educating developers about

reuse so as to improve their understanding of the economic feasibility of reuse, instituting a common

development process, and making high-quality assets available to developers (see Figure 1.22a). The

other factors (see Figure 1.22b) do not seem to be important, in spite of conventional wisdom. It should

be understood, however, that these conclusions are based on data gathered from the industries; the

salient factors of a particular organization may be different. The best course is to investigate the factors

affecting reuse in the target organization (through surveys, case studies, or other techniques), and take

action based on those results.

Fig. 1.22 Effects on systematic reuse of the factors

Mastering C++28

1.18 OBJECTS HOLD THE KEY

Popularity of OOPs in the development of most software systems with ease, has created a great deal

of excitement and interest among software communities. OOP finds its application from design of

database systems to the future generation operating systems, which have computing, communication,

and imaging capabilities built into it. Today, OOP is used extensively in the design of Graphics User

Interfaces on systems such as Windows. Some promising applications of OOP include the following:

 Object-Oriented database systems

 Object-Oriented operating systems

 Graphical user interfaces

 Window-based operating system design

 Simulation and modeling studies

 Multimedia applications

 Design support systems

 Office automation systems

 Real-time systems

 Computer Aided Design/Manufacturing (CAD/CAM) systems

 Computer-based training and educational systems

The Object-Oriented paradigm, which initially started with the introduction of OO programming

languages, has moved into design, and recently even into analysis. Thus, new object technologies such

as Object-Oriented analysis and Object-Oriented design have emerged and are getting mature. OO

technology not only increases the productivity of the developer, but also increases the quality of the

software systems. A software designer will think, analyze, design, implement, and even maintain future

software systems in terms of Object-Oriented technology.

OOP-based computing solutions are expected to hold the key in the development of application and

system software. Operating systems (OSs’) of the future will be OOP-based and compatibility and

interoperability will no longer be a critical issue. OOPs is to tomorrow’s OSs’ what C means to UNIX

in the form of portability. In fact, UNIX and C are a made-for-each-other couple. Sophisticated features

of today’s operating systems like networking, Internet connectivity, multimedia, database management,

etc., will all be represented as objects. Spreadsheets can look up data by automatically retrieving it

from a database. Object-based Internet connectivity feature can automatically locate information on the

World Wide Web (WWW) and load this data into the local database. It would lead to fewer bugs and

the burden on virtual memory would be reduced by a large degree, since the code would be smaller.

Instead of using swap files the way most applications do today, tomorrow’s programs will communicate

by passing messages through data structures in memory. A background program will monitor and

continually clear up the stack, heap, and other critical data structures, thus reducing chances of a

system crash and making them stable and reliable computing entities. Objects no longer in use will

be automatically cleaned up by making use of destructors and the RAM made available dynamically.

The features discussed above resembles Plug-and-Play, which allows a call to any object and get the

job done anywhere (local or remote computing); and there will be no linking of applications (applications

will be dynamically linked when they are called upon to perform a particular task). System downtime

due to reinstallation will just disappear. New objects will be automatically added and made available to

Object-Oriented Paradigm 29

any program that needs them, thereby eliminating the redundancy of code. OOP is an indispensable part

of the future, and it calls for an unconditional restructuring of today’s methodologies. These features

will automatically migrate to tomorrow’s operating systems.

The usage of OO concepts in the development of futuristic operating systems sounds impossible

yet fascinating. An OO-based operating system, Oberon, has already been implemented by Nicklaus

Wirth, the chief proponent of Pascal and Modula-2. Another implementation of Object-Oriented OS is

Cronus. Cronus is a distributed operating system developed at BBN Laboratories Inc., Massachusetts,

to interconnect a cluster of heterogeneous computers on high-speed LANs (Local Area Networks). It

supports three types of objects: primal objects (bound forever to the host that created them), migrating

objects (basis for system reconfiguration–load balancing to improve performance), and replicated

objects (to achieve survivability).

Object-Oriented programming has made long-lasting changes in programming methodology. The

old style of programming referred to as structured programming, is now dead. OOP has emerged as

the winner. All new operating systems and development tools will support OOP and make the life of

the programmer easier and the life of the program longer. Revolutionary features of modern operating

systems such as Object Linking and Embedding (OLE) in Microsoft Windows have given rise to the

Common Object Model (COM), which is expected to become a standard and leading Object-Oriented

operating system.

REVIEW QUESTIONS ++
 1.1 What is a software crisis? Justify the need for a new programming paradigm. Explain

how object-oriented paradigm overcomes this software crisis.

 1.2 What is object-oriented paradigm? Explain the various features of OO paradigm.

 1.3 Define the following terms related to OO paradigm:

 (a) Encapsulation (b) Data abstraction (c) Inheritance

 (d) Multiple Inheritance (e) Polymorphism (f) Message Passing

 (g) Extensibility (h) Persistence (i) Delegation

 (j) Containership (k) Genericity (l) Abstract Data Types

 (m) Objects (n) Classes

 1.4 What are the programming paradigms currently available? Explain their features with

programming languages supporting them.

 1.5 Compare structured and OO programming paradigms.

 1.6 What are the elements of object-oriented programming? Explain its key components

such as objects and classes with examples.

 1.7 Write an object representation (pictorial) of the student class.

 1.8 Explain multiple views of an object with a suitable example.

 1.9 What is the difference between inheritance and delegation? Illustrate with examples.

 1.10 List different methods of realizing polymorphism and explain them with examples.

 1.11 What are the steps involved in OO programming? Explain its message communication

model.

Mastering C++30

 1.12 List some popular OOP languages and compare their object-oriented features.

 1.13 Which is the first object-oriented language? Explain the heritage of C++.

 1.14 What is Java? Why is this language gaining popularity nowadays?

 1.15 Discuss the merits and demerits of object-oriented methodologies.

 1.16 What is software reuse? What is the difference between reuse and porting? What are the

factors influencing the software reuse?

 1.17 Identify reusable components in software and discuss how OOP helps in managing them.

 1.18 Justify “Objects hold the key.” List some promising areas of applications of OOP. Discuss

how object-oriented paradigm affects different elements of computing such as hardware

architectures, operating systems, programming environment, and applications?

Moving from C to

C++

 2.1 INTRODUCTION

C++ has borrowed many features from other programming languages. It

includes the commenting style from BCPL, the class concept with derived

classes and virtual functions from Simula 67. It owes the concept of operator

overloading and freedom to place definitions wherever necessary, to Algol

108, while the template facility and inline functions were borrowed from

Ada. The concept of parametrized modules is borrowed from the Clu programming language.

This chapter is a guideline for C programmers to transit from C to C++ programming without really

bothering about C++’s OOP features. Mastering non-class features of C++ will provide impetus to the

user to appreciate the influence of object-oriented concepts over the conventional style of programming.

Even if the programmers are not interested in OO programming, the other benefits, which are essential

for structured programming with C, can be found in a more powerful form in C++. For instance, features

such as strict prototyping as demanded by the compiler and others such as function overloading, single-

line comment, function templates, etc., greatly improve productivity of the programmer. The various

non-OOP features supported in C++ have a greater role to play while writing OOP-based programs.

2.2 HELLO WORLD

Similar to C, C++ programs must contain a function called main(), from which execution of the

program starts. The function main() is designated as the starting point of program execution and it is

defined by the user. It cannot be overloaded and its syntax type is implementation dependent. Therefore,

the number of arguments and their data type is dependent on the compiler. The most popularly used

format for defining the function main() is shown below:

 void main()

 {

 // Program Body

 }

2

Mastering C++32

The traditional beginner’s C program, usually called Hello World, is listed in hello.c. It has one of

the heavily used header files stdio.h, included for supporting standard I/O operations. The printf

statement outputs the string message Hello World on the console. The function body consists of

statements for creating data-storage variables called local variable and executable statements. Note

that although program execution starts from the main(), the data variables defined by it are not visible

to any other function. With all the pieces of the program in place, a driver is needed to initialize and

start things. The function main() serves as a driver function.

 /* hello.c: printing Hello World message */

 # include <stdio.h>

 void main()

 {

 printf(“Hello World”);

 }

Run:

Hello World

The standard C library function printf() sends characters to the standard output device. The

Hello World program will also work in C++, since it supports the ANSI-C function library.

However, the program could be rewritten using C++ streams. The C++ equivalent of the Hello

World program is listed in the program hello.cpp.

// hello.cpp: printing Hello World message

include <iostream.h>

void main()

{

 cout << “Hello World”;

}

Run:

Hello World

The header file iostream.h supports streams programming features by including predefined

stream objects. The C++’s stream insertion operator, << sends the message “Hello World” to the

predefined console object, cout, which in turn prints on the console. The Hello World program in

C++ is shown in Figure 2.1 for the purpose of comparative analysis.

Fig. 2.1 Hello World program in C++

1: message comment// hello. cpp: printing Hello World

2: preprocessor directive#include <istream. h>

3: function declaratorvoid main()

4: { function begin

5: body of the function maincout << “Hello World”;

6: } function end

Moving from C to C++ 33

The various components of the program hello.cpp, shown in Figure 2.1, are discussed in the

following section:

First Line—Comment Line
The statement which starts with symbols // (i.e., two slash characters one after another without a space)

is treated as comment. Hence, the compiler ignores the complete line starting from the // character pair.

Although comments do not contribute to the runtime of a program, when used properly, they are the

most valuable part of a piece of source code.

The word cpp, in the program he11o.cpp, is an acronym for CPlusPlus (C++). The compiler will

recognize the program as a C++ program only when it has an extension cpp. (However, the extension

is compiler dependent and most compilers assume cpp as the default extension. Some C++ compilers

such as GNU under UNIX system expect program files to have cc as an extension).

Second Line—Preprocessor Directive
The second line is a preprocessor directive. The preprocessor directive

include <iostream.h>

includes all the statements of the header file iostream.h. It contains instructions and predefined

constants that will be used in the program. It plays a role similar to that of the header file stdio.h of

C. The header file iostream.h contains declarations that are needed by the cout and cin stream

objects. There are a number of such preprocessor directives provided by the C++ library, and they have

to be included depending on the built-in functions used in the program. In addition, the users can also

write preprocessor directives and declare them in the beginning of the program (usually, but they can be

declared anywhere in the program). In effect, these directives are processed before any other executable

statements in the source file of the program by the compiler.

Third Line—Function Declarator
The third line in the program is

void main()

Similar to a C program, the C++ program also consists of a set of functions. Every C++ program must

have one function with the name main, from where the execution of the program begins. The name

main is a special word (not a reserved word) and must not be invoked anywhere by the user. The names

of the functions (except main) are coined by the programmer. The function name is followed by a pair

of parentheses which may or may not contain arguments. In this case, there are no arguments, but still

the parentheses pair is mandatory. Every function is supposed to return a value, but the function in this

example does not return any value. Such function names must be preceded by the reserved word void.

Fourth Line—Function Begin

The function body in a C/C++ program is enclosed between two flower brackets. The opening flower

bracket ({) marks the beginning of a function. All the statements in a function which are listed after this

brace can either be executable or non-executable statements.

Fifth Line—Function Body
The function body contains a statement to display the message Hello World. The output statement

cout is pronounced as C-out (meaning Console Output). It plays role similar to that of the printf()

Mastering C++34

in C. The first statement in the main() body (of course, it is the last statement in the main() body

in this case)

cout << “Hello World”;

prints the message “Hello World” on the standard console output device (VDU, video display unit

by default). It plays the role of the statement

printf(“Hello World”);

as in the hello.c program.

Sixth Line—Function End
The end of a function body in a C/C++ program is marked by the closing flower bracket (}). When the

compiler encounters this bracket, it is replaced by the statement,

return;

which transfers control to a caller. In this program, the last line actually marks the end of the program

and control is transferred to the operating system on termination of the program.

2.2.1 Compilation Process

The C++ program hello.cpp, can be entered into the system using any available text editor. Some

of the most commonly available editors are Norton editor (ne), edline, edit, and vi (most popular

editor in UNIX environment). The program coded by the programmer is called the source code. This

source code is supplied to the compiler for converting it into the machine code.

C++ programs make use of libraries. A library contains the object code of standard functions. The

object codes of all functions used in the program have to be combined with the program written by

the programmer. In addition, some start-up code is required to produce an executable version of the

program. This process of combining all the required object codes and the start-up code is called linking

and the final product is called the executable code.

Most of the modern compilers support sophisticated features such as multiple window editing,

mouse support, online help, project management support, etc. One such compiler is Borland C++. It

can be invoked through command-line or integrated development environment (refer to Borland C++

developers guide).

2.2.2 Command-Line Compilation

Most of the compilers support the command-line compilation of a program. All the required arguments

are passed to the compiler from the command line. For the purpose of discussion, consider the Borland

C++ compiler. (However, this process is implementation dependent. For more details, refer to the

manual supplied by the compiler vendor.)

The command-line compiler is invoked by issuing the command:

tcc filename.cpp (in the case of Turbo C++)

bcc filename.cpp (in the case of Borland C++)

Moving from C to C++ 35

at the DOS prompt. It creates an object file filename.obj, and an executable file filename.exe.

In the case of multiple file compilation, they must be compiled through -c option to create only the

object file as follows:

tcc/bcc -c filename.cpp

The linker is invoked to link multiple object files and to create an executable file through the explicit

issue of the linking command:

tlink filenamel.obj filename2.obj <library name>

The library file can also be passed as a parameter to the linker for binding functions defined in it. To

create the executable of hello.cpp, issue the command bcc hello.cpp at the MS-DOS prompt.

2.3 STREAMS BASED I/O

C++ supports a rich set of functions for performing input and output operations. The syntax of using

these I/O functions is totally consistent, irrespective of the device with which I/O operations are

performed. C++’s new features for handling I/O operations are called streams. Streams are abstractions

that refer to data flow. Streams in C++ are classified into

 Output streams

 Input streams

2.3.1 Output Streams

The output streams allow to perform write operations on output devices such as screen, disk, etc. Output

on the standard stream is performed using the cout object. C++ uses the bitwise left-shift operator for

performing console output operation. The syntax for the standard output stream operation is as follows:

cout << variable;

The word cout is followed by the symbol <<, called the insertion or put-to operator, and then with

the items (variables/constants/expressions) that are to be output. Variables can be of any basic data type.

The use of cout to perform an output operation is shown in Figure 2.2.

Fig. 2.2 Output with cout operator

Mastering C++36

The following are examples of stream output operations:

1. cout << “Hello World”;

2. int age;

 cout << age;

3. float weight;

 cout << weight;

4. double area;

 cout << area;.

5. char code;

 cout << code;

More than one item can be displayed using a single cout output stream object. Such output

operations in C++ are called cascaded output operations. For example, output of the age of a person

along with some message can be performed by cout as follows:

cout << “Age = ” << age;

The cout object will display all the items from left to right. Hence, in the above case, it prints the

message string “Age = ” first, and then prints the value of the variable age. C++ does not enforce

any restrictions on the maximum number of items to be output. The complete syntax of the standard

output streams operation is as follows:

cout << variable1 << variable2 << . . << variableN;

The object cout must be associated with at least one argument. Like printf(), a constant value can

also be sent as an argument to the cout object. Following are some valid output statements:

cout << ‘H’;

cout << “Hello”;

cout << 420;

cout << 90.25;

cout << 1234567;

cout << “ ”; // will display blank

cout << “\n”; // prints new line

cout << x << “ ” << y;

The last output statement prints the value of the variable x followed by a blank character, and then the

value of the variable y.

The program output.cpp demonstrates the various methods of using cout for performing an

output operation.

// output.cpp: display contents of variables of different data types

include <iostream.h>

void main ()

{

 char sex;

 char *msg = “C++ cout object”;

 int age;

 float number;

Moving from C to C++ 37

 sex = ‘M’;

 age = 24;

 number = 420.5;

 cout << sex;

 cout << “ ” << age << “ ” << number;

 cout << “\n” << msg << endl;

 cout << 1 << 2 << 3 << endl;

 cout << number+1;

 cout << “\n” << 99.99;

}

Run

M 24 420.5

C++ cout object

123

421.5

99.99

The item endl in the statement

cout << “\n” << msg << endl;

serves the same purpose as “\n” (linefeed and carriage return) and is known as a manipulator. It may

be noticed that there is no mention of the data types in the I/O statements as in C. Hence, I/O statements

of C++ are easier to code and use. C++, as a superset of C, supports all functions of C; however, they

are not used in the above C++ program.

2.3.2 Input Streams

The input streams allow to perform read operation with input devices such as keyboard, disk, etc. Input

from the standard stream is performed using the cin object. C++ uses the bitwise right-shift operator

for performing console input operation. The syntax for standard input streams operation is as follows:

cin >> variable;

The word cin is followed by the symbol >> (extraction operator) and then with the variable, into which

the input data is to be stored. The use of cin in performing an input operation is shown in Figure 2.3.

Fig. 2.3 Input with cin operator

Mastering C++38

The following are examples of stream input operations:

1. int age;

 cin >> age;

2. float weight;

 cin >> weight;

3. double area;

 cin >> area;

4. char code;

 cout >> code;

5. char name [20];

 cin >> name;

Input of more than one item can also be performed using the cin input stream object. Such input

operations in C++ are called cascaded input operations. For example, reading the name of a person

followed by the age, can be performed by cin as follows:

cin >> name >> age;

The cin object will read all the items from left to right. Hence, in the above case, it reads the name

of the person as a string (until first blank) first, and then the age of person into the variable age. C++

does not impose any restrictions on the number of items to be read. The complete syntax of the standard

input streams operation is as follows:

cin >> variablel >> variable2 >> .. >> variableN;

The object cin must be associated with at least one argument. Like scanf(), constant values cannot

be sent as an argument to the cin object. Following are some valid input statements:

cin >> i >> j >> k;

cin >> name >> age >> address;

The program read.cpp demonstrates the various methods of using cin for performing an input

operation.

// read.cpp: data input through cin object

#include <iostream.h>

void main()

{

 char name [25];

 int age;

 char address[25];

 // read data

 cout << “Enter Name: ”;

 cin >> name;

 cout << “Enter Age: ”;

 cin >> age;

 cout << “Enter Address: ”;

 cin >> address;

 // output data

 cout << “The data entered are:” << endl;

 cout << “Name = ” << name << endl;

Moving from C to C++ 39

 cout << “Age = ” << age << endl;

 cout << “Address = ” << address;

}

Run

Enter Name: Rajkumar

Enter Age: 24

Enter Address: C-DAC-Bangalore

The data entered are:

Name = Rajkumar

Age = 24

Address = C-DAC-Bangalore

Performing I/O operations through the cout and cin are analogous to the printf() and

scanf() of the C language, but with different syntax specifications. The following are two important

points to be noted about stream operations.

Streams do not require explicit data-type specification in I/O statements.

Streams do not require an explicit address operator prior to the variable in the input statement.

In scanf() and printf() functions, format strings are necessary; while in the cin stream

format, specification is not necessary; and in the cout stream format, specification is optional.

Format-free input and output are special features of C++, which make I/O operations comfortable for

beginners. The input stream cin accepts both numbers and characters, when the variables are given in

the normal form. The function scanf() requires ampersand (&) symbol to be prefixed to a numeric

or a character variable (whereas, the string variables can be given as they are). One must, therefore,

carefully follow the syntax requirements in coding the different statements.

Another point to be noticed is that the operator << is the same as the left-shift bitwise operator,

and the operator >> is the same as the right-shift bitwise operator used in C and also in C++. In C++,

operators can be overloaded, i.e., the same operator can perform different activities depending on the

context (types of data items with which they are associated). The cout is a predefined object in C++,

which corresponds to the output stream, and cin is an object in the input stream. Different objects are

instructed to do specified jobs.

2.4 SINGLE-LINE COMMENT

C++ has borrowed the new commenting style from Basic Computer Programming Language (BCPL),

the predecessor of the C language. In C, comment(s) is/are enclosed between /* and */ character

pairs. It can be either used for single-line comment or multiple line comment.

A single-line comment runs across only one line in a source program. The statement below is an

example of a single-line comment:

/* I am a single line comment */

Multiple-line comments run across two or more lines in a source program. The statement below is

an example of a multiple-line comment.

Mastering C++40

/* I am a multiple line comment.

 Hope you got it. */

Apart from the above style of commenting, C++ supports a new style of commenting. It starts with

two forward slashes, i.e., // (without separation by spaces) and ends with the end-of-line character. The

syntax for the new style of C++ comment is shown in Figure 2.4.

Fig. 2.4 Syntax of single-line comment

The following examples illustrate the syntax of C++ comments:

int ace; // Account Number

ace = ace + 1; // adding new account number for new customer

In C, the above two statements are written as

int ace; /* Account Number */

ace = ace + 1; /* adding new account number for new customer */

The above examples of comments indicate that C++ commenting style is easy and quicker for single-

line commenting. Although, C++ supports the C style of commenting, it is advisable to use the C style

for commenting multiple lines and the C++ style for commenting a single line.

Some typical examples of commenting are listed below:

1. // this is a new style of comment in C++

2. /* this is an old style of comment in C++ */

3. // style of comment runs to the end of a line

4. /* runs to any number of lines but hard to type and takes up more space

 and coding time also. */

5.(i) /* Here is a comment followed by an executable statement */ a = 100;

 (ii) // Here is a comment followed by a non-executable statement a = 100;

The statement (i) has a comment followed by an executable statement a = 100; but, the statement

(ii) is entirely treated as a commented line.

Large programs become hard to understand even by the original author (programmer), after

some time has passed. Even a few well-placed comments which explain why and what of a variable,

expression, statement, or block, help tremendously. Comments that simply restate the nature of a line

of code, obviously do not add much value, but comments which explain the algorithm are the mark of

a good programmer.

Comments are integral part of any program and they help in program coding and maintenance. The

compiler completely ignores comments; therefore, they do not slow down the execution speed, nor do

Moving from C to C++ 41

they increase the size of the executable program. Comments should be used liberally in a program and

they should be written during program development, but not as an afterthought activity.

Case Study
Consider a scenario where you are required to create a basic program for calculating simple interest.

The program should take principle amount, rate of interest and time period as input from the user and

compute the value of the simple interest.

The program simpint.cpp demonstrates how simple interest is computed. It also highlights how

comments are used in a program to improve readability of the code.

// simpint.cpp: Simple interest computation

#include <iostream.h>

void main ()

{

 // data structure definition

 int principle; // principle amount

 int time; // time in years

 int rate; // rate of interest

 int SimpInt; // Simple interest

 int total; // total amount to be paid back after ‘time’ years

 // read all the data required to compute simple interest

 cout << “Enter Principle Amount: ”;

 cin >> principle;

 cout << “Enter Time (in years): ”;

 cin >> time;

 cout << “Enter Rate of Interest: ”;

 cin >> rate;

 // compute simple interest and display the results

 SimpInt = (principle * time * rate) / 100;

 cout << “Simple Interest = ”;

 cout << Simplnt;

 // total amount = principle amount + simple interest

 total = principle + SimpInt;

 cout << “\nTotal Amount = ”;

 cout << total;

}

Run

Enter Principle Amount: 1000

Enter Time (in years): 2

Enter Rate of Interest: 5

Simple Interest = 100

Total Amount = 1100

Mastering C++42

2.5 LITERALS—CONSTANT QUALIFIERS

Literals are constants to which symbolic names are associated for the purpose of readability and ease

of handling standard constant values. C++ provides the following three ways of defining constants:

 # define preprocessor directive

 enumerated data types

 const keyword

A variable in C can be created and initialized with a constant value at the point of its definition. For

instance, the statement

float PI = 3.1452;

defines a variable named PI, and is assigned with the floating-point numeric constant value 3.1452. It

is known that the constant value does not change. In the above case, the variable PI is considered as a

constant, whose value does not change throughout the life of the program (complete execution time).

However, an accidental change of the value of the variable PI is not restricted by C. C++ overcomes

this by supporting a new constant qualifier for defining a variable, whose value cannot be changed once

it is assigned with a value at the time of variable definition. The qualifier used in C++ to define such

variables is the const qualifier. The syntax of defining variables with the constant qualifier is shown

in Figure 2.5. Note that if DataType is ommitted, it is considered as int by default.

Fig. 2.5 Syntax of constant variable definition

The following examples illustrate the declaration of the constant variables:

 const float PI = 3.1452;

 const int TRUE = 1;

 const int FALSE = 0;

 const char *book_name = “OOPs with C++”;

The program area.cpp, illustrates the declaration and use of constant variables.

// area.cpp: area of a circle

#include <iostream.h>

const float PI = 3.1452;

void main()

{

 float radius;

 float area;

 cout << “Enter Radius of Circle: ”;

 cin >> radius;

Moving from C to C++ 43

 area = PI * radius * radius;

 cout << “Area of Circle = ” << area;

}

Run

Enter Radius of Circle: 2

Area of Circle = 12.5808

In the above program, the use of the statement such as

PI = 2.3;

to modify a constant-type variable leads to the compilation error: Cannot modify a const object

Thus, the keyword const, can be used before a type to indicate that the variable declared is constant,

and may therefore not appear on the left side of the assignment (=) operator. In C++, the const

qualifier can be used to indicate the parameters that are to be treated as read-only in the function body.

Consider the C program disp.c, having the function to display any string passed to it.

/* disp.c: display message in C */

#include <stdio.h>

#include <string.h>

void display(char *msg)

{

 printf (“%s”, msg);

 /* modify the message */

 strcpy(msg, “Misuse”);

}

void main()

{

 char string[15];

 strcpy(string, “Hello World”);

 display(string);

 printf (“\n%s”, string);

}

Run

Hello World

Misuse

The function display(), is supposed to output the input string argument passed to it onto the

console. But accidental use of a statement such as

strcpy (msg, “Misuse”);

in display() modifies the input argument. This modification is also reflected in the calling function

(see the second message in the output); the string argument is a pointer type and any modification in

function will also be reflected in the calling function. Such accidental errors can be avoided by defining

the input parameter with the const qualifier. The C++ program disp.cpp illustrates the mechanism,

of overcoming the problem of modifying constant variables.

Mastering C++44

// disp.cpp: display message in C++

#include <stdio.h>

#include <string.h>

void display(const char *msg)

{

 cout << msg;

 /* modify the message */

 // strcpy(msg, “Misuse”); this produces a compilation error

}

void main()

{

 char string [15];

 strcpy(string, “Hello World”);

 display(string);

 cout << endl << string;

}

Run

Hello World

Hello World

The use of a statement such as,

strcpy(msg, “Misuse”);

in display() leads to a compilation error. Thus, reminding the programmer regarding the accidental

modification of read-only type variables will protect from common programming errors.

2.6 SCOPE-RESOLUTION OPERATOR::

C++ supports a mechanism to access a global variable from a function in which a local variable is

defined with the same name as a global variable. It is achieved using the scope-resolution operator.

The syntax for accessing a global variable using the scope-resolution operator is shown in Figure 2.6.

The global variable to be accessed must be preceded by the scope-resolution operator. It directs the

compiler to access a global variable, instead of one defined as a local variable. The program global.

cpp illustrates the access mechanism to the global variable num from the function main(), which has

a local variable by the same name. Thus, the scope-resolution operator permits a program to reference

an identifier in the global scope that has been hidden by another identifier with the same name in the

local scope.

Fig. 2.6 Syntax of global-variable access

Scope-resolution operator:
two colons without space C++ global variable

:: GlobalVariableName

Moving from C to C++ 45

// global.cpp: global variables access through scope resolution operator

#include <iostream.h>

int num = 20;

void main()

{

 int num = 10;

 cout << “Local = ” << num; // local variable

 cout << “\nGlobal = ” << ::num; // global variable

 cout << “\nGlobal+Local = ” << ::num+num; // both local & global use

}

Run

Local = 10

Global = 20

Global+Local = 30

The program loop.cpp illustrates the accessing of local and global variables within a for loop. It

also shows mixing of the single-line comment statement within a single executable statement.

// loop.cpp: local and global variables in a loop

#include <iostream.h>

int counter = 50; // global variable

int main ()

{

 register int counter; // local variable

 for(counter = 1; // this refers to the

 counter < 10; // local variable

 counter++)

 {

 cout << endl << // print new line followed by

 ::counter // global variable

 / // divided by

 counter; // local variable

 }

 return(0);

}

Run

50

25

16

12

10

8

7

6

5

Mastering C++46

2.7 VARIABLE DEFINITION AT THE POINT OF USE

In C, local variables can only be defined at the top-of a function, or at the beginning of a nested block.

In C++, local variables can be created at any position in the code, even between statements. Further

more, local variables can be defined in some statements, just prior to their usage. The program varl.

cpp defines the variable in the for statement and its scope continues even after the for statement.

// varl.cpp: defining variables at the point of use

#include <iostream.h>

int main ()

{

 // variable i cannot be referred before ‘for’ statement

 for (int i = 0; i < 5; i++) // variable i is defined and used here

 cout << i << endl;

 cout << i; // i visible after the ‘for’ statement also

 return (0);

}

Run

0

1

2

3

4

5

In main(), the statement

for (int i = 0; i < 5; i++)

creates the variable i inside the for statement. The variable does not exist prior to the statement, but

continues to be available as a local integer variable even after the block scope of the for statement.

The statement outside the for loop

cout << i;

refers to the variable created in the for loop.

The program def2.cpp illustrates the scope of variables and the usage of the scope-resolution

operator.

// def2.cpp: Variable scope demonstration

#include <iostream.h>

int a = 10; // global variable

void main()

{

 cout << a << “\n”; // uses global variable

 int a = 20;

 {

Moving from C to C++ 47

 int a = 30;

 cout << a << “\n”; // uses locally defined variable within a block

 cout << ::a << “\n”; // uses global variable

 } // variable a defined within a block goes out of scope here

 cout << a << “\n”; // uses local variable a defined near main()

 cout << ::a << “\n”; // uses global variable

}

Run

10

30

10

20

10

The definition of variables at any position in the code can reduce code readablity. Therefore, local

variables should be defined at the beginning of a function, following the first {, or they should be

created at intuitively right places.

2.8 VARIABLE ALIASES—REFERENCE VARIABLES

C++ supports one more type of variable, called reference variable, in addition to the value variable

and pointer variables of C. Value variables are used to hold some numeric values; pointer variables

are used to hold the address of (pointer to) some other value variables. A reference variable behaves

similar to both,—a value variable and a pointer variable. In the program code, it is used similar to

that of a value variable, but has an action of a pointer variable. In other words, a reference variable

acts as an alias (alternative name) for the other value variables. Thus, the reference variable enjoys

the simplicity of value variable and power of the pointer variable. It does not provide the flexibility

supported by the pointer variable. Unlike a pointer variable, when a reference is bound to a variable

then its binding cannot be changed. All the accesses made to the reference variable are same as the

access to the variable, to which it is bound. The general format of declaring the reference variable is

shown in Figure 2.7.

The reference variable must be initialized to some variable only at the point of its declaration.

Initialization of reference variable after its declaration causes compilation error. Hence, reference

variables allow to create alias (another name) of existing variables. The following examples illustrate

the concept of reference variables.

Fig. 2.7 Syntax of reference variable declaration

Mastering C++48

1. char & chl = ch; // chl is an alias of char ch

2. int & a = b; // a is an alias of int b

3. float & x = y;

4. double & height = length;

5. int &x = y[100]; // x is an alias of y[100] element

6. int n;

 int *p = &n;

 int &m = *p;

These declarations cause m to refer n, which is pointed to by the pointer variable p.

7. int &num = 100; // invalid

This statement causes compilation error; constants cannot be made to be pointed to by a reference

variable. Hence, the rule: no alias for constant value.

Reference variables are not bounded to a new memory location, but to the variables to which they are

aliases. For instance, the reference variable height is bound to the same memory location to which the

value variable length is bound. The program refvar.cpp illustrates the use of reference variables.

//refvar.cpp: reference variable for aliasing

#include <iostream.h>

void main()

{

 int a = l, b = 2, c = 3;

 int &z = a; // variable z becomes alias of a

 cout << “a=” << a << “ b=” << b << “ c=” << c << “ z=” << z << endl;

 z = b; // changes value of a to the value of b

 cout << “a=” << a << “ b=” << b << “ c=” << c << “ z=” << z << endl;

 z = c; // changes value of a to the value of c

 cout << “a=” << a << “ b=” << b << “ c=” << c << “ z=” << z << endl;

 cout<<“&a=” << &a << “ &b=” <<&b << “&c=” << &c<< “ &z=” << &z << endl;

}

Run

a=l b=2 c=3 z=l

a=2 b=2 c=3 z=2

a=3 b=2 c=3 z=3

&a=0xfff4 &b=0xfff2 &c=0xfff0 &z=0xfff4

In main(), the statements

z = b;

z = c;

assign the value of variables b and c to the variable a since the reference variable z is its alias variable.

It can be observed that, in the last line of the above program output, the memory addresses of the

variables a and z are same. The reference variables are bound to memory locations at compile time

only. Consider the following statements:

Moving from C to C++ 49

int n;

int *p = &n;

int &m = *p;

Here, m refers to n, which is pointed to by the variable p. The compiler actually binds the variable m to

n but not to the pointer. If the pointer p is bound to some other variable at runtime, it does not affect the

value referenced by m and n. It is illustrated in the program reftest.cpp.

// reftest.cpp: testing of reference binding

#include <iostream.h>

void main()

{

 int n = 100;

 int *p = &n;

 int &m = *p; // m is bound to n

 cout << “n = ” << n << “ m = ” << m << “ *p = ” << *p << endl;

 int k = 5;

 p = &k; // pointer value is changed

 k = 200:

 // is there change in m value?

 cout << “n = ” << n << “ m = ” << m << “ *p = ” << *p << endl;

}

Run

n = 100 m = 100 *p = 100

n = 100 m = 100 *p = 200

In main(), the statement

p = &k; // pointer value changed

changes the pointer value of p, but does not effect the reference variable m and the variable n.

2.9 STRICT TYPE CHECKING

C++ is a strongly typed language and it uses very strict type checking. A prototype must be known

for each function which is called, and the call must match the prototype. The prototype provides

information of the type and number of arguments passed and it also specifies the return type (if any)

of the function. In C++, function prototyping is compulsory if the definition is not placed before the

function call whereas, in C, it is optional. The program max.cpp for computing the maximum of two

numbers illustrates the need for the function prototype.

// max.cpp: maximum of two numbers

#include <iostream.h>

int main ()

{

 int x, y;

 cout << “Enter two integers: ”;

Mastering C++50

 cin >> x >> y;

 cout << “Maximum = ” << max (x, y); // Error max.cpp 11: ...

 return 0;

}

int max(int a, int b)

{

 if (a > b)

 return a;

 else

 return b;

}

Compilation of the above program produces the following errors:

Error max.cpp 11: Function ‘max’ should have a prototype in function main()

C++ checks all the parameters passed to a function against its prototype declaration during compilation.

It produces errors if there is a mismatch in argument types and this can be overcome by placing the

prototype of the function max() before it is invoked. The modified program of max.cpp is listed in

newmax.cpp, which is compiled without any errors.

// newmax.cpp: maximum of two numbers

#include <iostream.h>

int max(int a, int b); // prototype of max

void main ()

{

 int x, y;

 cout << “Enter two integers: ”;

 cin >> x >> y;

 cout << “Maximum = ” << max (x, y);

}

int max(int a, int b)

{

 if (a > b)

 return a;

 else

 return b;

}

Run

Enter two integers: 10 20

Maximum =20

The advantages of strict type checking is that the compiler warns the users if a function is called with

improper data types. It helps the user identify errors in a function call and increases the reliability of a

program. The program swap_err.cpp shows notification of the compiler, when improper data-type

parameters are passed to the function. The program swap_err.cpp illustrates the detection of the

statement calling the function with improper data items.

Moving from C to C++ 51

// swap_err.cpp: swap integer values by reference

#include <iostream.h>

void swap(int * x, int * y)

{

 int t; // temporarily used in swapping

 t = *x;

 *x = *y;

 *y = t;

}

void main()

{

 int a, b;

 swap(&a, &b); // OK

 float c, d;

 swap(&c, &d); // Errors

}

The compilation of the above program produces the following errors:

Error swap_err.cpp 20: Cannot convert ‘float*’ to ‘int*’ in function

main()

Error swap_err.cpp 20: Type mismatch in parameter ‘x’ in call to ‘swap(int

, int)’ in function main()

Error swap_err.cpp 20: Cannot convert ‘float*’ to ‘int*’ in function

main()

Error swap_err.cpp 20: Type mismatch in parameter ‘y’ in call to

‘swap(int*, int*)’ in function main()

The above errors are produced due to the following statement in main()

swap(&c, &d); // Compilation Errors

Here, the expressions &c and &d passed to swap() are not pointers to integer data types. When a call

to a function is made, the C++ compiler checks its parameters against the parameter types declared in

the function prototype. The compiler flags errors if improper arguments are passed.

2.10 PARAMETERS PASSING BY REFERENCE

A function in C++ can take arguments passed by value, by pointer, or by reference. The arguments

passed by reference is an enhancement over C. A copy of the actual parameters in the function call

is assigned to the formal parameters in the case of pass-by-value, whereas the address of the actual

parameters is passed in the case of pass-by-pointer. In the case of pass-by-reference, an alias (reference)

of the actual parameters is passed. The mechanism of parameter linkage is shown in Figure 2.8.

Consider an example of swapping two numbers to illustrate the mechanism of parameter passing by

reference. The function definition with pointer-type parameters is listed below:

Mastering C++52

void swap(int * p, int * q) // by pointers

{

 int t;

 t = *p;

 *p = *q;

 *q = t;

}

A call to the function swap()

swap(&x, &y)

has effect on the values of x and y, i.e, it exchanges the contents of variables x and y. The above

swap(..) function can be redefined by using a new parameter-passing scheme, call by reference, as

follows:

void swap(int & x, int & y) // by reference

{

 int t;

 t = x;

 x = y;

 y = t;

}

A call to the function swap()

swap(x, y);

with integer variables x and y, has effect on the values of x and y variables. It exchanges the contents

of the variables x and y. The body and the call to the function swap() appears same as that of call-by-

Fig. 2.8 Parameter-passing mechanism

Moving from C to C++ 53

value case, but has an effect of call-by-pointer. Thus, call-by-reference combines the flexibility (ease of

programming) of call-by-value and the power of call-by-pointer.

The complete program having swap(..) function with call-by-reference mechanism for parameter

passing is listed in swap.cpp.

// swap.cpp: swap integer values by reference

#include <iostream.h>

void swap(int & x, int & y) // by reference

{

 int t; // temporary variable used in swapping

 t = x;

 x = y;

 y = t;

}

void main()

{

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b);

 cout << “On swapping <a, b>: ” << a << “ ” << b;

}

Run

Enter two integers <a, b>: 2 3

On swapping <a, b>: 3 2

In main(), the statement

swap(a, b);

is translated into

swap(& a, & b);

internally during compilation; the prototype of the function

void swap(int & x, int & y) // by reference

indicates that the formal parameters are of reference type and hence, they must be bound to the memory

location of the actual parameter. Thus, any access made to reference formal parameters in swap()

refers to the actual parameters. The statements

t = x;

x = y;

y = t;

in the body of swap() function, internally (as treated by the compiler) have the following meaning,

t = *x; // store the value pointed by x into t

*x = *y; // store the value pointed by y into location pointed by x

*y = t; // store the value hold by ‘t’ into location pointed by y

Mastering C++54

because the formal parameters are of reference type and therefore, the compiler treats them similar to

pointers, but does not allow the modification of the address stored in them.

Void Argument List

A function prototype in C with an empty argument list, such as

extern void func ();

implies that the argument list of the declared function is not prototyped; the compiler will not be able

to warn against improper argument usage. To declare a function in C which has no arguments, the

keyword void is used, as indicated:

extern void func (void);

In C++, the above two declarations are equivalent. Because C++ maintains strict type checking, an

empty argument list is interpreted as the absence of any parameter.

2.11 INLINE FUNCTIONS

Function execution involves the overhead of

jumping to and from the calling statement.

Trading of this overhead in execution time

is considerably large whenever a function is

small, and hence in such cases, inline functions

can be used. A function in C++ can be treated

as a macro if the keyword inline precedes

its definition. The syntax of representing the

inline function is shown in Figure 2.9.

Example: An inline function to find square of a number is as follows:

inline float square(float x)

{

 x = x * x;

 return(x);

}

The significant feature of an inline function is that there is no explicit function call; the function

body is substituted at the point of inline function call. Thereby, the runtime overhead for function

linkage mechanism is reduced. The program square.cpp uses an inline function in the computation

of the square of a number.

// square.cpp: square of a number using inline function

#include <iostream.h>

inline float square(float x)

{

 x = x * x;

Fig. 2.9 Syntax of inline function

Moving from C to C++ 55

 return (x);

}

void main()

{

 float num;

 cout << “Enter a Number <float>: ”;

 cin >> num;

 cout << “Its Square = ” << square) num);

}

Run

Enter a Number <float>: 5.5

Its Square = 30.25

In main(), the statement

cout << “Its Square = ” << square(num);

invokes the inline function square(..). It will be suitably replaced by the instruction(s) of the

square(..) function body by the compiler. The execution time of the function square(..) is

less than the time required to establish a linkage between the function caller (calling function) and the

callee (called function). This process involves the operation of saving the actual parameters and function

return address onto the stack, followed by a call to the function. On return, the stack must be cleaned to

restore the old status. This process is costlier in comparison to having square computation instruction

within a program itself instead of a function. Thus, support of inline functions allow to enjoy the

flexibility and benefits of modular programming, while at the same time delivering computational

speed-up of macros. Functions having a small body do not increase the code size even though they are

physically substituted at the point of a call; there is no code for function-linkage mechanism. Hence, it

is advisable to define functions having small function bodies as inline functions.

2.12 FUNCTION OVERLOADING

A word is said to be overloaded when it has two or more distinct meanings. The intended meaning of

any particular use is determined by its context. In C++, two or more functions can be given the same

name provided each has a unique signature (in either the number or data type of their arguments).

In C++, it is possible to define several functions with the same name, but which perform different

actions. It helps in reducing the need for unusual function names, making code easier to read. The

functions must only differ in the argument list. For example,

swap(int, int); // prototype

swap (float, float); // prototype

From a user’s viewpoint, there is only one function performing swapping of numbers.

Consider the C program show.c having multiple show() functions for displaying input messages

to illustrate the importance of function overloading.

Mastering C++56

/*show.c: display different types of information with different functions */

#include <stdio.h>

void show_integer (int val)

{

 printf (“Integer: %d\n”, val);

}

void show_double(double val)

{

 printf (“Double: %lf\n”, val);

}

void show_string(char *val)

{

 printf (“String: %s\n”, val);

}

int main ()

{

 show_integer(420);

 show_double(3.1415);

 show_string(“Hello World\n!”);

 return(0);

}

Run

Integer: 420

Double: 3.141500

String: Hello World

!

The above program has the following three different functions

void show_integer(int val);

void show_double(double val);

void show_string(char *val);

performing the same operations, but on different data types. Logically, all the three functions display the

value of the input parameters. It has unusual names such as show_integer, show_double, etc.,

making the task of programming difficult and recalling function names although all of them perform the

same operation logically. In C++, this difficulty is circumvented by using the feature of the function-

name overloading. All the functions performing the same operation must differ in input-arguments data

type or in the number of arguments. The program show.cpp equivalent of C’s show.c is written

using function-overloading features.

// Show.cpp: display different types of information with same function

#include <iostream.h>

void show(int val)

{

 cout << “Integer: ” << val << endl;

}

 void show(double val)

Moving from C to C++ 57

{

 cout << “Double: ” << val << endl;

}

void show(char *val)

{

 cout << “String: ” << val << endl;

}

int main ()

{

 show(420); // calls show(int val);

 show(3.1415); // calls show(double val);

 show(“Hello World\n!”); // calls show(char *val);

 return(0)

Run

Integer: 420

Double: 3.1415

String: Hello World

!

In the above program, three functions named show() are defined, which only differ in their

argument lists: int, double, or char*. The functions have the same name. The definition of several

functions with the same name is called function overloading.

It is interesting to note the way in which the C++ compiler implements function overloading.

Although, the functions share the same name in the source text [as in the example above, show()],

the compiler (and hence the linker) uses different names. The conversion of a name in the source file

to an internally used name is called name mangling. For instance, the C++ compiler might convert

the name void show(int) to the internal name VshowI, while an analogous function with a

char* argument might be called VshowCP. The actual names which are used internally depend on the

compiler and are not relevant to the programmer, except where these names shown, as in the example,

a listing of the contents of a function library.

A few remarks concerning function overloading are the following:

 The usage of more than one function with the same name but quite different actions should be avoided.

In the above example, the functions show() are still somewhat related (they print information on

the screen). However, it is also quite possible to define two functions, say lookup(), one of

which would find a name in a list, while the other would determine the video mode. In this case, the

two functions have nothing in common except their name. It would, therefore, be more practical to

use names which suggest the action; say, findname() and getvidmode().

 C++ does not allow overloaded functions to only differ in their return value. The reason is that

processing (testing) of a function return value is always left to the programmer. For instance, the

fragment

 printf (“Hello World!\n”);

 holds no information concerning the return value of the function printf() (The return value

is, in this case, an integer value that states the number of printed characters. This return value is

practically never inspected.). Two functions printf() which differ in their return type could,

therefore, not be distinguished by the compiler.

Mastering C++58

 Function overloading can lead to surprises. For instance, imagine a usage of a statement such as

 show(0);

 in the program show.cpp; it is difficult to predict which one of the above three show()

functions is invoked. The zero could be interpreted here as a NULL pointer to a char, i.e., a

(char*) 0, or as an integer with the value zero. C++ will invoke the function expecting an

integer argument, which might not be what one expects.

2.13 DEFAULT ARGUMENTS

In a C++ function call, when one or more arguments are omitted, the function may be defined to take

default values for omitted arguments by providing the default values in the function prototype. These

arguments are supplied by the compiler when they are not specified by the programmer explicitly. The

program prnstr.cpp illustrates the passing of default arguments to function.

// prnstr.cpp: default arguments and message printing

#include <iostream.h>

void showstring(char *str = “Hello World!\n”)

{

 cout << str;

}

int main ()

{

 showstring(“Here is an explicit argument\n”);

 showstring(); // in fact this says: showstring (“Hello World!\n”);

 return 0;

}

Run

Here is an explicit argument

Hello World!

In main(), when the compiler encounters the statement

showstring();

it is replaced by the statement

showstring(“Hello World!\n”);

internally. When the function parameter is missing, the compiler substitutes the default parameter in

that place.

The possibility of omitting arguments in situations where default arguments are defined is elegant; the

compiler will supply the missing arguments when they are not specified. The code of the program by no

means becomes shorter or more efficient. Functions may be defined with more than one default argument.

Default arguments must be known to the compiler prior to the invocation of a function with default

arguments. It reduces the burden of passing arguments explicitly at the point of a function call. The

program defarg1.cpp illustrates the concept of default arguments.

Moving from C to C++ 59

// defargl.cpp: Default arguments to functions

#include <iostream.h>

void PrintLine(char = ‘-’, int = 70);

void main()

{

 PrintLine(); // uses both default arguments

 PrintLine (‘!’); // assumes 2nd argument as default

 PrintLine(‘*’, 40); // ignores default arguments

 PrintLine(‘R’, 55); // ignores default arguments

}

void PrintLine(char ch, int RepeatCount)

{

 int i;

 cout << endl;

 for (i = 0; i < RepeatCount; i++)

 cout << ch;

}

Run

--

!!

RRR

The feature of default arguments can be utilized to enhance the functionality of the program, without

the need for modifying the old code referencing to functions. For instance, the function in the above

program

void PrintLine(char = ‘-’, int = 70);

prints a line with the default character ‘-’ in case it is not passed explicitly. This function can be

enhanced to print multiple number of lines, whose new prototype is

void PrintLine(char = ‘-’, int = 70, int = 1);

It may be noted that in the new function, the last parameter specifies the number of lines to be printed

and by default, it is 1. Therefore, the old code referring to this function need not be modified and

new statements can be added without affecting the functionality. The program defarg2.cpp has

extended the capability of the defargl.cpp program.

/* defarg2.cpp: Default arguments to functions

 Extending the functionality of defargl.cpp module */

#include <iostream.h>

void PrintLine(char = ‘-’, int = 70, int = 1);

void main()

{

 PrintLine(); // uses both default arguments

 PrintLine(‘!’); // assumes 2nd argument as default

 PrintLine(‘*’, 40); // ignores default arguments

 PrintLine(‘R’, 55); // ignores default arguments

Mastering C++60

 // new code, Note: old code listed above is unaffected

 PrintLine(‘&’, 25, 2);

}

void PrintLine(char ch, int RepeatCount, int nLines)

{

 int i, j;

 for(j = 0; j < nLines; j++)

 {

 cout << endl;

 for (i = 0; i < RepeatCount; i++)

 cout << ch;

 }

}

Run

--

!!

RRR

&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&

The following statements in the above two programs

PrintLine(); // uses both default arguments

PrintLine(‘!’); // assumes 2nd argument as default

PrintLine(‘*’, 40); // ignores default arguments

PrintLine(‘R’, 55); // ignores default arguments

are the same. Although the functionality of the function PrintLine() is enhanced in the defarg2.

cpp program, the old code referring to it remains unaffected in terms of its functionality; the compiler

supplies the last argument as 1, thereby the new function does the same operation as that of the old

one. Thus, the default arguments feature can be potentially utilized in extending the function without

modifying the old code. Note that all arguments in a multiple argument function need not have default

values.

2.14 KEYWORD typedef

The keyword typedef is allowed in C++, but no longer necessary, when it is used as a prefix in enum,

struct, or union declarations. This is illustrated in the following example:

struct somestruct

{

 int a;

 double d;

 char string [80];

};

Moving from C to C++ 61

When a struct, enum, or any other compound type is defined, the tag of this type can be used as

type name (somestruct is the tag in the above example). For instance, the statement

somestruct what;

defines the structure variable what. In C, the same variable is defined as

struct somestruct what;

Thus, the use of the keyword struct in the structure variable is default. In C++, the members of

the structure variables are accessed similar to C. The statement

what.d = 3.1415;

assigns the numeric value 3.1415 to d, which is a member of the structure variable what. The structure

declaration and its use in the definition of variables is illustrated in the program datel.cpp.

// datel.cpp: displaying birth date of the authors

#include <iostream.h>

struct date

{ //specifies a structure

 int day;

 int month;

 int year;

};

void main()

{

 date dl = { 26, 3, 1958 };

 date d2 = { 14, 4, 1971 };

 date d3 = { 1, 9, 1973 };

 cout << “Birth Date of the First Author: ”;

 cout << dl.day << “-” << dl.month << “-” << dl.year << endl;

 cout << “Birth Date of the Second Author: ”;

 cout << d2.day << “-” << d2.month << “-” << d2.year << endl;

 cout << “Birth Date of the Third Author: ”;

 cout << d3.day << “-” << d3.month << “-” << d3.year << endl;

}

Run

Birth Date of the First Author: 26-3-1958

Birth Date of the Second Author: 14-4-1971

Birth Date of the Third Author: 1-9-1973

2.15 FUNCTIONS AS A PART OF A struct

Structures in C++ have undergone major revisions. Like C structures, C++ structures also provide a

mechanism to group together data of different types, into one unit belonging to the same family. In

addition to this, C++ allows to associate functions as a part of a structure. Thus, C++ structures provide

a true mechanism to handle data abstraction. This is the first concrete example of the definition of an

Mastering C++62

object, as described previously. An object is a structure containing all involved code and data. The

general syntax of the C++ structure is.

 struct StructureName

 {

 public:

 // data and functions

 private:

 // data and functions

 protected:

 // data and functions

 };

The structure has two types of members: data members and member functions. Functions defined

within a structure operate on any member of the structure. The keywords public, private, and

protected are called access specifiers. If none of these keywords appear in the structure declaration,

all the members of the structure have public access. The private and protected members of a structure

can be accessed only within the structure. Public members of a structure are accessible to both member

functions and it their instances (structure variables). Internal functions of a structure are privileged

code and they can see all the features of a structure, but external code can see only the public features.

A definition of the structure point is given in the code fragment below. In this structure, two int

data fields and one function draw() are declared.

struct point

{

 int x, y; // coordinates

 void draw (void); // drawing function

};

A similar structure could be a part of the painting program used to represent a pixel in the drawing.

The following are the points to be noted about structures:

 The function draw(), which occurs in the structure body is only a declaration. The actual

code of the function, or in other words, the actions to be performed by the function are located

elsewhere in a coded section of the program. Member functions can also be defined within the

body of a structure.

 The size of the structure point is just two integers. Though a function is declared in the

structure, its size remains unaffected. The compiler implements this behavior by allowing the

function draw() to be known only in the context of the point structure.

 The point structure could be used as follows:

point a, b; // two points on the screen

a.x = 0; // define first dot

a.y = 10; // and draw it

a.draw ();

b = a; // copy a to b

b.y = 20; // redefine y-coordinate

b.draw (); // and draw it

Moving from C to C++ 63

The function draw(), which is a part of the structure, is selected in a manner similar to the selection

of data fields; i.e., using the field selector operator (.) with value structures or -> with pointers to

structures.

The idea behind this syntactical construction is that several structures may contain functions with

the same name. For instance, a structure representing a circle might contain three integer values;

two values for the coordinates of the center of the

circle and one value for the radius. Analogous to the

point structure, a draw() could be declared in the

circle structure which would draw the circle.

The program date2.cpp is C++ equivalent

of the earlier program date1.cpp. It illustrates

the concept of associating functions operating

on structure members as shown in Figure 2.10.

The structure date has both the data members and

functions operating on them. The user accesses the

member functions additionally, when compared to

C’s structure using the dot operator.

// date2.cpp: displaying birth date of the authors

#include <iostream.h>

struct date

{ //specifies a structure

 int day;

 int month;

 int year;

 void show()

 {

 cout << day << “-” << month << “-” << year << endl;

 }

};

void main()

{

 date dl = { 26, 3, 1958 };

 date d2 = { 14, 4, 1971 };

 date d3 = { 1, 9, 1973 };

 cout << “Birth Date of the First Author: ”;

 dl.show();

 cout << “Birth Date of the Second Author: ”;

 d2.show();

 cout << “Birth Date of the Third Author: ”;

 d3.show();

}

Run

Birth Date of the First Author: 26-3-1958

Birth Date of the Second Author: 14-4-1971

Birth Date of the Third Author: 1-9-1973

Fig. 2.10 Date structure having function show()

Mastering C++64

In main(), the statements

dl.show();

d2.show();

d3.show();

invoke the function show() defined in the structure date.

2.16 TYPE CONVERSION

The basic data types can be used with great flexibility in assignments and expressions, due to the

implicit type conversion facility provided, whereas with the user-defined data types, the same can be

achieved through explicit type conversion (the typecast operator). The syntax of type conversion

specification in C and C++ is shown in Figure 2.11.

Fig. 2.11 Syntax of data typecasting in C and C++

Consider the following statements

float weight;

int age;

weight = age;

where weight is of type float and age is of type int. Here, the compiler calls a special routine to

convert the contents of age, which is represented in an integer format, to a floating-point format, so

that it can be assigned to weight. The compiler has built-in routines for conversion of basic data types

such as char to integer, float to double, etc. The feature of the compiler that performs data conversion

without user intervention is known as implicit type conversion.

The compiler can be instructed explicitly to perform type conversion using the type-conversion

operators known as typecast operator. For instance, to convert int to float, the statement is

weight = (float) age;

where the keyword float is enclosed between braces. Here, float enclosed between braces is the

typecasting operator. In C++, the above statement can also be expressed in a more readable form as

weight = float(age);

The explicit conversion of float to int uses the same built-in routine as implicit conversions. The

program cast.cpp illustrates the explicit typecasting in C++.

Moving from C to C++ 65

// cast.cpp: new style of typecasting in C++

#include <iostream.h>

void main()

{

 int a;

 float b = 420.5;

 cout << “int(10.4) = ” << int(10.4) << endl;

 cout << “int(10.99) = ” << int(10.99) << endl;

 cout << “b = ” << b << endl;

 a = int(b);

 cout << “a = int(b) = ” << a << endl;

 b = float(a) + 1.5;

 cout << “b = float(a)+1.5 = ” << b;

}

Run

int(10.4) = 10

int(10.99) = 10

b = 420.5

a = int(b) = 420

b = float(a)+1.5 = 421.5

2.17 FUNCTION TEMPLATES

Templates provide a mechanism for creating a single function possessing the capability of several

functions, which differ only in their parameters and local variables data type. Such a function is

called function template. It permits writing one source declaration that can produce multiple functions

differing only in their data types. The general format of a template function is depicted in Figure 2.12.

A function generated from a function template is known as template function, which is created by the

compiler internally and is transparent to the user.

The syntax of template function is similar to a normal function, except that it uses variables whose

data types are not known until they are invoked. Such unknown data types (generic data types) are

Fig. 2.12 Syntax of function template

Mastering C++66

resolved by the compiler and are expanded to the respective data types (depending on the data type

of actual parameters in a function call statement). A call to a template function is similar to that of a

normal function. It can be called with arguments of any data type. The complier will create functions

internally without user intervention, depending on the data types of the input parameters. The function

template for finding the maximum of two numbers is shown below:

template <class T>

T max(T a, T b)

{

 if(a > b)

 return a;

 else

 return b;

}

The program mswap.cpp illustrates the need for function templates. It defines multiple swap()

functions for swapping the values of different data types.

// mswap.cpp: Multiple swap functions

#include <iostream.h>

void swap(char & x, char & y) // pass by reference

{

 char t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void swap(int & x, int & y) // pass by reference

{

 int t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void swap(float & x, float & y) // pass by reference

{

 float t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void main()

{

 char chl, ch2;

 cout << “Enter two Characters <chl, ch2>: ”;

 cin >> chl >> ch2;

 swap(chl, ch2); // compiler calls swap(char &a, char &b);

 cout << “On swapping <chl, ch2>: ” << chl << “ ” << ch2 << endl;

Moving from C to C++ 67

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b); // compiler calls swap(int &a, int &b);

 cout << “On swapping <a, b>: “ << a << “ ” << b << endl;

 float c, d;

 cout << “Enter two floats <c, d>: ”;

 cin >> c >> d;

 swap(c, d); // compiler calls swap(float &a, float &b);

 cout << “On swapping <c, d>: ” << c << “ ” << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

The above program has three swap() functions

 void swap(char & x, char & y);

 void swap(int & x, int & y);

 void swap(float & x, float & y);

whose logic for swapping is same. Such functions can be defined as template functions without

redefining it for every data type. The program gswap.cpp makes all those functions as templates and

avoids the overhead of writing the same pattern of code again and again, operating on different data

types.

// gswap.cpp: generic function for swapping

#include <iostream.h>

template <class T>

void swap (T & x, T&y) // by reference

{

 T t; // temporary used in swapping, template variable

 t = x;

 x = y;

 Y = t;

}

void main()

{

 char chl, ch2;

 cout << “Enter two Characters <chl, ch2>: ”;

 cin >> chl >> ch2;

 swap(chl, ch2); //compiler creates and calls swap(char &a, char &b);

Mastering C++68

 cout << “On swapping <chl, ch2>: ” << chl << “ ” << ch2 << endl;

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b); // compiler creates and calls swap(int &x, int &y);

 cout << “On swapping <a, b>: ” << a << “ ” << b << endl;

 float c, d;

 cout << “Enter two floats <c, d>: ”;

 cin >> c >> d;

 swap(c, d); // compiler creates and calls swap(float &x, float &y);

 cout << “On swapping <c, d>: ” << c << “ ” << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

In main(), when the compiler encounters the statement

 swap(chl, Ch2);

calling the swap template function with char-type variables, it creates an internal function of type

 swap(char &a, char &b);

The compiler automatically identifies the data type of the arguments passed to the template function,

creates a new function, and makes an appropriate call. The process of compiling a template function is

totally invisible to the user. Similarly, the compiler translates the following calls

swap(a, b); // compiler creates swap(int &x, int &y);

swap(c, d); // compiler creates swap(float &x, float &y);

into appropriate functions (if necessary), and calls them based on their input-parameter data types.

Template Function Overloading
A template function can be overloaded in two ways: (i) by other functions of its name, or (ii) by other

template functions of the same name. Overloading resolution for functions and template functions can

be done in the following three steps:

 If an exact match for the function is found, call it.

 If a function can be generated from a function template matching exactly then call the generated

function.

 If a function can be found by trying ordinary overloading resolution techniques then call it.

 If no match is found, report an error.

Moving from C to C++ 69

2.18 RUNTIME MEMORY MANAGEMENT

Whenever an array is defined, a specified amount of memory is set aside at compile time, which may

not be utilized fully or may not be sufficient. If a situation arises in which the amount of memory

required is unknown at compile time, the memory allocation can be performed during execution. Such

a technique of allocating memory during runtime on demand is known as dynamic memory allocation.

C++ provides the following two special operators to perform memory management dynamically.

 new operator for dynamic memory allocation

 de1ete operator for dynamic memory deallocation

The memory management functions such as malloc(), calloc(), and free() in C, have

been improved and evolved in C++ as the new and delete operators to accomplish dynamic memory

allocation and deallocation respectively.

new Operator
The new operator offers dynamic storage allocation similar to the standard library function ma1loc().

It is particularly designed keeping OOP in mind and throws an exception if memory allocation fails.

The general format of the new operator is shown in Figure 2.13.

Fig. 2.13 Syntax of memory allocation in C and C++

number of items
to be allocated;
optional

return type pointer to data type

new operator

data type

DataType *new DataType [size in integer];

(a) Memory allocation in C++

(b) Memory allocation in C

void *malloc (sizeof (DataType) *Size in Integer);

The C++ statement

PtrVar = new DataType[IntegerSize];

is equivalent to C’s

PtrVar = (DataType *) malloc(sizeof(DataType) * IntegerSize };

The operator new allocates a specified amount of memory during runtime and returns a pointer to

that memory location. It computes the size of the memory to be allocated by

sizeof{ DataType) * IntegerSize

where DataType can be a standard data type or a user-defined data type. IntegerSize can be

an integer expression, which specifies the number of elements in the array. The new operator returns

NULL, if memory allocation is unsuccessful.

Mastering C++70

The following examples illustrate the allocation of memory to various data types.

1. int *a;

 a = new int[100];

is equivalent to C’s

 a = (int *) malloc(sizeof(int) * 100);

It creates a memory space for an array of 100 integers, a[0] will refer to the first element, a[1] to

the second element, and so on.

2. float *b;

 b = new float [size]; // size is integer variable

is equivalent to

 b = (float *) malloc(sizeof(float) * size);

3. double *d;

 d = new double[size]; // size is integer variable

is equivalent to

 d = (double *) malloc(sizeof(double) * size);

4. char *city;

 city = new char[city_name_size]; // city_name_size is int variable

is equivalent to

 city = (char *) malloc(sizeof(char) * city_name_size);

5. struct date

 { // specifies a structure

 int day;

 int month;

 int year;

 };

 date *date_ptr;

The statement

date_ptr = new date;

is equivalent to

date_ptr = (struct date *) malloc(sizeof(date));

The new operator allows the initialization of memory locations during allocation as follows:

PtrVar = new DataType(init_value);

where init_value specifies the value to be initialized to a dynamically created element. Note that

DataType is optional. It is illustrated by the following examples:

int *a = new(100);

float *rate = new(5.5);

The first statement creates a memory for an integer and initializes it with 100, and the second

statement creates a memory location for float and initializes it with 5.5.

Moving from C to C++ 71

delete Operator

The new operator’s counterpart, delete, ensures the

safe and efficient use of memory. This operator is used

to return the memory allocated by the new operator

back to the memory pool. Memory thus released, will

be reused by other parts of the program. Although

the memory allocated is returned automatically to the

system, when the program terminates, it is safer to

use this operator explicitly within the pointer. This is

absolutely necessary in situations where local variables

pointing to the memory get destroyed when the function

terminates, leaving memory inaccessible to the rest of the program. The syntax of the delete operator

is shown in Figure 2.14.

The C++ statement

delete PtrVar;

is equivalent to C’s

free(PtrVar);

where PtrVar holds the pointer returned by the memory allocation functions such as new operator

and malloc() function. The memory allocated using the new operator or malloc() function

should be released by the delete operator and free() function respectively.

It should be noted that by deallocating the memory, the pointer variable does not get deleted and

the address value stored in it does not change. However, this address becomes invalid, as the returned

memory will be used up for storing entirely different data.

The following examples illustrate the use of the delete operator in releasing memory allocated in

the earlier memory allocation examples.

1. delete a;

is equivalent to C’s

 free((int *) a);

2. delete b;

is equivalent to

 free((float *) b);

3. delete d;

is equivalent to

 free((double *) d);

4. delete city;

is equivalent to

 free((char *) city);

5. delete date_ptr;

is equivalent to

 free((struct date *) date_ptr);

Fig. 2.14 Syntax of memory deallocation

in C and C++

Mastering C++72

The program vector.cpp illustrates the concept of dynamic allocation and deallocation using

new and delete operators.

// vector.cpp: addition of two vectors

#include <iostream.h>

void AddVectors(int *a, int *b, int *c, int size)

{

 for(int i = 0; i < size; i++)

 c[i] = a[i] + b[i];

}

void ReadVector(int *vector, int size)

{

 for(int i = 0; i < size; i++)

 cin >> vector [i];

}

void ShowVector(int *vector, int size)

{

 for(int i = 0; i < size; i++)

 cout << vector[i] << “ ”;

}

void main()

{

 int vec_size;

 int *x, *y, *z;

 cout << “Enter Size of Vector: ”;

 cin >> vec_size;

 // allocate memory for all the three vectors

 x = new int[vec_size]; // x becomes array of size vec_size

 y = new int[vec_size]; // y becomes array of size vec_size

 z = new int[vec_size]; // z becomes array of size vec_size

 cout<< “Enter elements of vector x: ”;

 ReadVector(x, vec_size);

 cout << “Enter elements of vector y: ”;

 ReadVector(y, vec_size);

 AddVectors(x, y, z, vec_size); // z = x+y

 cout << “Summation Vector z = x + y: ”;

 ShowVector(z, vec_size);

 // free memory allocated to all the three vectors

 delete x; // memory allocated to x is released

 delete y; // memory allocated to y is released

 delete z; // memory allocated to z is released

}

Run

Enter Size of Vector: 5

Enter elements of vector x: 1 2 3 4 5

Enter elements of vector y: 2 3 1 0 4

Summation Vector z = x + y: 3 5 4 4 9

Moving from C to C++ 73

In main(), the following statements

x = new int [vec_size]; // x becomes array of size vec_size

y = new int [vec_size]; // y becomes array of size vec_size

z = new int [vec_size]; // z becomes array of size vec_size

allocate memory of size vec_size (integer value read previously) to the integer pointer variables x,

y, and z respectively. It is equivalent to defining an array of size vec_size statically but the size of

the array must be known at compile time. This inflexibility of array definition is circumvented by using

dynamic allocation known as programmer-controlled memory management. The following statements

delete x; // memory allocated to x is released

delete y; // memory allocated to y is released

delete z; // memory allocated to z is released

release the memory of size vec_size (integer value read previously) allocated to the integer pointer

variables x, y, and z respectively. An array defined statically is released automatically by the system

whenever the array goes out of scope. But dynamically allocated arrays must be explicitly released by

the delete operator.

Comments

Most concepts introduced in this chapter serve as a quick introduction to enhancements made to the

C++ language apart from another notable enhancement that is object-oriented programming support.

All the material covered in this chapter are discussed in detail in later relevant chapters. This chapter is

mainly aimed at those who are familiar with C and want a quick introduction to the C++ language. It

allows them to extrapolate from the material in this chapter and similarly from the next chapter (C++ at

a Glance) to their own programming needs. Beginners should supplement it by writing small, similar

programs of their own. Both groups can use this and the next chapter as a frame to hang on to the more

detailed descriptions that begin in Chapter 4.

SOLVED PROBLEM

Write a C++ program to find the area of a square, rectangle, and circle using function overloading.

#include<iostream.h>

int area (int);

int area (int, int);

float area (float);

void main()

{

 int s, l, b;

 float r;

 cout<<“Enter the side length of the square: ”;

 cin>>s;

 cout<<“Enter the length and breadth of the rectangle: ”;

 cin>>l>>b;

 cout<<“Enter the radius of the circle: ”;

 cin>>r;

+
+

Mastering C++74

 cout<<“Area of square = “<<area(s)<<“\n”;

 cout<<“Area of rectangle = “<<area(l,b)<<“\n”;

 cout<<“Area of circle = “<<area(r);

}

int area (int s1) // Area of square

{

 return(s1*s1);

}

int area (int l1, int l2) // Area of rectangle

{

 return(l1*l2);

}

float area (float r1) // Area of circle

{

 return(3.14*r1*r1);

}

Run

Enter the side length of the square: 2

Enter the length and breadth of the rectangle: 2 4

Enter the radius of the circle: 2.5

Area of square = 4

Area of rectangle = 8

Area of circle = 19.625

REVIEW QUESTIONS ++
 2.1 What are the enhancements added to C++ apart from the object-oriented features?

 2.2 Compare the traditional beginner’s Hello World program written in C and C++.

 2.3 List the compilers supporting C++. Explain their compilation features.

 2.4 In C/C++, why is the main() function popularly called the driver function?

 2.5 Enumerate the important features of stream-based I/O and provide a comparative

analysis with its C counterpart statements such as scanf() and printf().

 2.6 Write an interactive program for computing the roots of a quadratic equation by handling

all possible cases. Use streams to perform I/O operations.

 2.7 What are the benefits of commenting a program? Develop a program to illustrate how

commenting helps in writing a program, which can be understood by others easily?

 2.8 Why are variables defined with const called read-only variables? What are its benefits

when compared to macros?

 2.9 Justify the need of the scope-resolution operator for accessing global variables.

 2.10 What are the benefits of defining variables at the point of use? In the following statement:

 for(int i = 0; i < 10; i++)

 xxx;

 is the variable i visible after the termination of the loop?

Moving from C to C++ 75

 2.11 What are the differences between reference variables and normal variables? Why cannot

a constant value be initialized to variables of reference type?

 2.12 What are the benefits of strict type checking? Explain with suitable examples.

 2.13 What are the different types of parameter passing methods supported in C++? Provide a

comparative analysis between pass-by-pointer and pass-by-reference methods.

 2.14 What is the difference between inline functions and normal functions? Write an interactive

program with an inline function for finding the maximum value of two numbers.

 2.15 What is function overloading? Explain how it helps in writing well-thought-out programs.

 2.16 What is name mangling? Explain its need. Is this transparent to the user?

 2.17 Write an interactive program for swapping integer, real, and character-type variables

without using function overloading. Write the same program by using function-

overloading features and compare the same with its C counterpart.

 2.18 Explain the need of default arguments. Write an interactive program for drawing a chart

of marks scored by a student in different subjects. A default argument function has to

support statements such as

 DrawChart(50);

 DrawChart(60, ‘*’);

 DrawChart(34, ‘?’);

 By default, DrawChart() draw a chart by using star symbols.

 2.19 What are the improvements made to the struct construct in C++? What are the benefits

of having functions as a part of the structure declaration? Write an interactive program

for processing a student record using structures. All functions manipulating structure

variable members must be members of that structure.

 2.20 Explain the need for type conversion with suitable examples.

 2.21 What are function templates? What are the differences between function template and

template function? Write a program to sort numbers using function templates.

 2.22 Explain the constructs supported by C++ for runtime memory management. Write an

interactive program processing a student’s results using C++’s memory management

operators.

 2.23 Write a program for creating variables of the date structure dynamically. Can a pointer

variable be used to store data in a memory location pointed to by them, with the binding

pointer to a specific location?

 C++ at a Glance

 3.1 INTRODUCTION

The C++ language evolved as a result of extensions and enhancements to

C. It has efficient memory-management techniques, provisions for building

new concepts, and a new style of program analysis and design. The reason

for retaining C as a subset is its popularity among programmers, and

moreover, millions of lines of code already written in C can be directly

moved to C++ without rewriting. The other advantages are the syntax and structure of many statements

of C closely resemble the actual operation on the computer’s internal registers and allow to produce

fast executable code.

The most interesting features of C++ are those which support a new style of programming known

as object-oriented programming. It emphasizes on data decomposition rather than algorithm decom-

position. OOP is generally useful for any kind of application, but it is particularly suited for interactive

computer graphics, simulations, databases, artificial intelligence, high-performance computing, and

system-programming applications. This chapter presents the first impression of C++ with its features

of object-oriented programming.

C++ as an object-oriented programming language supports modular programming and enables easy

maintainability. The most prominent features of C++ that provide a foundation for data abstraction and

object-oriented programming are the following:

 Data Encapsulation and Abstraction: Classes

 Inheritance: Derived Class

 Polymorphism: Operator Overloading

 Friend Functions

 Polymorphism: Virtual Functions

 Generic Classes: Class Templates

 Exception Handling

 Streams Computation

3

C++ at a Glance 77

3.2 DATA ENCAPSULATION AND ABSTRACTION—CLASSES

Data abstraction is the ability to create user-defined data types for modeling real-world objects using

built-in data types and a set of permitted operators. Encapsulation is achieved by using the class

which combines data and functions that operate on the data. Data hiding is achieved by restricting the

members of classes as private or protected.

The object-oriented programming technique involves the representation of real-world problems in

terms of objects. C++ provides a new data structure called class whose instance is called object. A class

consists procedures or methods and data variables.

Class is the basic construct for creating user-defined data types called abstract data types; in a way it

supports encapsulation. Encapsulation allows to combine data and functions that operates on them into a

single unit. One or more classes grouped together constitute a program. The program counterl.cpp

illustrates various concepts such as classes and objects, encapsulation, and declaration of abstract data

types. The program creates a class with one data member and instantiates two objects to demonstrate

the features of classes. It simulates the behavior of an upward counter.

// counter1.cpp: counter class having upward counting capability

#include <iostream.h>

class counter

{

 private:

 int value; // counter value

 public:

 counter() // No argument constructor

 {

 value = 0; // initialize counter value to zero

 }

 counter(int val) // Constructor with one argument

 {

 value = val; // initialize counter value

 }

 ~counter() // destructor

 {

 cout << “object destroyed” << endl;

 }

 int GetCounter() // counter Access

 {

 return value;

 }

 void up() // increment counter

 {

 value = value + 1;

 }

};

void main()

{

Mastering C++78

 counter counterl; // calls no argument constructor

 counter counter2 (1); // calls one argument constructor

 cout << “counterl = ” << counterl.GetCounter() << endl;

 cout << “counter2 = ” << counter2.GetCounter() << endl;

 // update counters, increment

 counterl.up();

 counter2.up();

 cout << “counterl = ” << counterl.GetCounter() << endl;

 cout << “counter2 = ” << counter2.GetCounter() << endl;

}

Run

counterl = 0

counter2 = 1

counterl = 1

counter2 = 2

object destroyed

object destroyed

The following section describes the various parts of the program:

 Class encloses the data and functions into a single unit. The name of the class is counter. The

class counter can be used as the user-defined data type for defining its variables called objects.

 Data members describe the data in the abstract data types. The data member in the class

counter is value. A class can have any number of data members.

 Member functions define the permissible operations of the data type (member variables). The

class counter has the following member functions:

 1. counter() : constructor with no argument

 2. counter(int val) : constructor with one argument

 3. ~counter() : destructor

 4. GetCounter() : counter value access interface

 5. up() : increment counter

 Constructor is a member function having the same name as that of its class and is executed

automatically when the class is instantiated (object is created). It is used generally to initialize

object data members and allocate the necessary resources to them. The class counter has two

constructors to initialize the data members of the class.

 counter()

 counter(int)

 Similar to normal functions, member functions of a class including constructors (but not

destructor) differ in their specifications (data types of argument or number of arguments); this

feature is called function overloading. The compiler will identify a suitable constructor whose

formal parameters matches with those actual parameters passed to it at the time of creation of

objects.

 Destructor is a member function having the character ~ (tilde) followed by a function name,

which is same as the class name [i.e., -classname()] and is invoked automatically when

a class’s object goes out of scope (i.e., the object is no longer needed). It is generally used to

reclaim all the resources allocated to the object. The above program has the destructor named

C++ at a Glance 79

~counter() in the class counter. It is automatically invoked whenever objects go out of

scope (when program terminates in the above case). A class can have at the most one destructor.

 Access Specifiers control the visibility status of the members of a class. Access specifiers in the

above program are the keywords private and public. The members of the class counter

declared following the keyword private are accessible to only members of its own class.

Thus, hiding the data inside a class, so that it is not accessed mistakenly by any function outside

the class. Whereas the members of the class counter declared following the keyword public

are accessible from objects of the class in addition to their own class members.

 In the above program, the data member value is declared as private and member functions

are declared as public. By default, these are private. The explicit declaration ‘public’ means

that these functions can be accessed from outside the class.

 Object is an instance of a class. The objects created in the program are counterl and

counter2 which are the instances of the class counter. The first object’s data member

value is initialized using zero-argument constructor, whereas the second object is initialized

using one-argument constructor.

 The pictorial representation of the class counter and invocation of its members by various

statements in main() is shown in Figure 3.la.

Fig. 3.1 Counter class and objects

Instances of the class counter

Client program

(a) Counter object and member access

(b) Counter object status

counter counter1;

counter counter2(1);

counter1.up();

counter2.up();

count <<

counter1.GetCounter();

constructor
counter();

private member
variables

int value;

d
e
st
ru
ct
o
r

~
c
o
u
n
t
e
r
(
)

i
n
t
G
e
t
C
o
u
n
t
e
r
(
)
;

v
o
i
d
u
p
(
)
;

c
o
u
n
t
e
r
(
i
n
t
v
a
l
)
;

c
o
n
s
tr
u
c
to
r

counter counter1;

int value;

0

int value;

1

int value;

1

int value;

2

counter counter2;

counter2.up();counter1.up();

Mastering C++80

In main(), the statements

counter counter1; // calls no argument constructor

counter counter2 (1); // calls 1 argument constructor

create two objects called counterl and counter2 of the class counter. The first statement invokes

a no-argument constructor, counter(), automatically, which initializes its data member value to zero,

whereas the second statement invokes a single argument constructor, counter(int), automatically

and initializes its data member value to 1 (as mentioned in the statement). The statements

counterl.up();

counter2.up ();

invoke the member function up() defined in the class counter and increment the data member

value by one. Thus, the two objects counterl and counter2 of the class counter have different

data values as shown in Figure 3.1b. Each object of the counter class is stored in a separate area in

memory.

Classes are syntactically an extension of structures. The difference is that; all the members of

structures are public by default, whereas members of classes are private by default. Class follows the

principle that all the information about a module should be private to the module unless it is specifically

declared public.

3.2.1 Member Functions

The data members of a class must be declared within the body of a class, whereas the member functions

of a class can be defined in one of the following ways:

 Inside the class body

 Outside the class body

The syntax of a member function definition changes depending on whether it is defined inside or

outside the class specification. However, irrespective of the location of its definition (inside or outside

the class body), the member function must perform the same operation. Therefore, the code inside the

function body would be identical in both the cases. The compiler treats member functions defined inside

a class as inline functions, whereas those defined outside a class are not treated as inline functions. The

program stdclass.cpp illustrates the mechanism of defining member functions outside the body

of the class.

// Stdclass.cpp: member functions defined outside a body of the class

#include <iostream.h>

#include <string.h>

class student

{

 private:

 int roll_no; // roll number

 char name[20]; // name of a student

 public:

 void setdata(int roll_no_in, char *name_in);

 void outdata();

};

C++ at a Glance 81

// initializing data members

void student::setdata(int roll_no_in, char *name_in)

{

 roll_no = roll_no_in;

 strcpy(name, name_in);

}

// display data members on the console screen

void student::outdata()

{

 cout << “Roll No = ” << roll_no << endl;

 cout << “Name = ” << name << endl;

}

void main()

{

 student s1; // first object/variable of class student

 student s2; // second object/variable of class student

 sl.setdata(1, “Tejaswi”); // object s1 calls member function setdata

 s2.setdata(10, “Rajkumar”); // calls member function setdata

 cout << “Student details...” << endl;

 sl.outdata(); // object s1 calls member function outdata

 s2 .outdata(); // object s2 calls member function outdata

}

Run

Student details...

Roll No = 1

Name = Tejaswi

Roll No = 10

Name = Rajkumar

In the class student, the prototype of member functions setdata() and outdata() are

declared within the body of the class and they are defined outside the body of the class. In the declarator

void student::outdata()

student:: indicates that the function outdata(), belongs to the class student and it is a

member function of the class student.

3.3 INHERITANCE–DERIVED CLASSES

Inheritance is a technique of organizing information in the hierarchical form. It is similar to a child

inheriting the features such as features of the mother or intelligence of the father. It is an important

feature of object-oriented programming that allows to extend and reuse existing code without requiring

to rewrite it from scratch. Inheritance involves derivation of new classes from the existing ones, thus

enabling the creation of a hierarchy of classes, similar to the concepts of class and subclass in the real

world. A new class created using an existing class is called the derived class. This process is called

inheritance. The derived class inherits the members—both data and functions of the base class. It can

also modify or add to the members of a base class. Inheritance allows a hierarchy of classes to be derived.

Mastering C++82

Derived classes inherit data members and member functions from their base classes and can be

enhanced by adding other data members and member functions.

Recall that the program counterl.cpp discussed above, uses the class counter as a general–

purpose counter variable. A counter could be incremented or decremented. The counter class can be

extended to support downward counting. It can be achieved by either modifying the counter class or

by deriving a new class called NewCounter from the counter class. The program counter2.cpp

is an extended version of the previous program and has two classes—one, counter as a base class

and two, NewCounter as a derived class. The private members of a base class cannot be inherited.

C++ supports another access specifier called protected. Its access privileges are similar to private

except that they are accessible to its derived classes. Protected access privilege is used when members

in a base class’s section are to be treated as private and they must be inheritable by a derived class. The

public members of the base class are accessible to the derived class, but the private members of the base

class are not. However, the protected members of the base class are accessible to the derived class, but

they are private to all other classes.

// Counter2.cpp: new counter having upward and downward counting capability

#include <iostream.h>

class counter

{

 protected: // Note: it is private in COUNTER1.CPP

 int value; // counter value

 public:

 counter() // No argument constructor

 {

 value = 0; // initialize counter value to zero

 }

 counter(int val) // Constructor with one argument

 {

 value = val; // initialize counter value

 }

 int GetCounter() // counter Access

 {

 return value;

 }

 void up() // increment counter

 {

 value = value + 1;

 }

};

// NewCounter is derived from the old class counter publically

class NewCounter: public counter

{

 public:

 NewCounter(): counter()

 {}

 NewCounter(int val) : counter(val)

 {}

C++ at a Glance 83

 void down() // decrement counter

 {

 value = value - 1; // decrement counter

 }

};

void main()

{

 NewCounter counterl; // calls no argument constructor

 NewCounter counter2 (1); // calls 1 argument constructor

 cout << “counterl initially = “ << counterl.GetCounter() << endl;

 cout << “counter2 initially = “ << counter2.GetCounter() << endl;

 // increment counter

 counterl.up();

 counter2.up();

 cout << “counterl on increment = “ << counterl.GetCounter() << endl;

 cout << “counter2 on increment = “ << counter2.GetCounter() << endl;

 // decrement counter

 counterl.down();

 counter2.down();

 cout << “counterl on decrement = “ << counterl.GetCounter() << endl;

 cout << “counter2 on decrement = “ << counter2.GetCounter();

}

Run

counterl initially = 0

counter2 initially = 1

counterl on increment = 1

counter2 on increment = 2

counterl on decrement = 0

counter2 on decrement = 1

In the above program, the NewCounter class has its own features to perform counter decrement

by using the member functions of the counter. The statement

class NewCounter: public counter

derives a new class NewCounter known as derived class from the base class counter. The base

class counter is publicly inherited by the derived class NewCounter. Hence, the members of

counter class that are protected become protected and public become public in the derived

class NewCounter. The NewCounter class can treat all the members of the counter class, as

though they belong to it.

When an object of the derived class is created, one of the constructors of the base class must be

executed before a constructor of the derived class is executed. In the case of destructors, the body of

the derived class destructor is executed first followed by that of the base class. The specification of the

constructors in the following statements

NewCounter(): counter()

NewCounter(int val) : counter(val)

indicate as to which one of the constructors in the base class has to be selected while creating objects

of the derived class. If no explicit specification of the base class constructor is made in the derived

Mastering C++84

class constructor, the compiler will select the no-argument constructor of the base class by default

as indicated in Figure 3.2.

In main(), the statements

NewCounter counterl; // calls no argument constructor

NewCounter counter2(1); // calls 1 argument constructor

create two objects called counterl and counter2 of the NewCounter class. The first statement

invokes the no-argument (default) constructor NewCounter() automatically, which in turn calls the

base class constructor counter() to initialize the data member value to zero. Whereas, the second

statement invokes the one-argument constructor NewCounter(int) automatically, which in turn

calls the base class constructor counter(int) to initialize the data member value to 1 (as mentioned

in the statement). Derived class can also initialize its own data members or base-class data members

explicitly.

The statements

counterl.up();

counter2.up();

call member function up() of the base class to increment the counter value by one. Whereas the

statements

Fig. 3.2 NewCounter class and inheritance

Client program

Instances of the class NewCounter

constructor

counter();

private
members

int value;

~
c
o
u
n
t
e
r
(
)

int
GetCounter();

v
o
i
d
u
p
(
)
;

c
o
u
n
t
e
r

(
i
n
t
v
a
l
)
;

d
e
st
ru
ct
o
r

c
o
n
s
tr
u
c
to
r

constructor

NewCounter();

v
o
i
d
d
o
w
n
(
)
;

N
e
w
C
o
u
n
t
e
r
(
i
n
t
v
a
l
)
:

c
o
u
n
t
e
r
(
v
a
l
)

NewCounter counter1;

NewCounter counter2(1);

counter1.up();

counter2.up();

counter1.down();

counter2. ();down

count <<

counter1.GetCounter();

{

{

C++ at a Glance 85

counter1.down();

counter2.down();

call member function down() of the derived class to decrement the counter value by one. C++ supports

derivation of a class from more than one base class, which is called multiple inheritance. Some of the

other forms of inheritance supported by C++ are hierarchical, multilevel, hybrid, and multipath.

3.4 POLYMORPHISM—OPERATOR OVERLOADING

Polymorphism allows a single name/operator to be associated with different operations depending on

the type of data passed. In C++, it is realized by using function overloading, operator overloading, and

dynamic binding. The operators such as +,–,*,/ etc., dealing with basic data types can be extended to

work on user-defined data types by using the facility of operator overloading. Overloaded operators

work with user-defined or basic data types depending upon the type of operands. Operator overloading

allows the user to give additional meaning to most operators so that it can be used with the user’s own

data types, thereby making the data types easier to use.

Operator overloading, similar to function name overloading, helps to reduce the need for unusual

function names, making code easier to understand. It also supports programmer-controlled automatic

type conversion, which blend user defined data types, appear and work in the same way as fundamental

data types provided by the C++ language.

Operator overloading extends the semantics of an operator without changing their syntax. The

grammatical rules defined by C++ that govern its use such as the number of operands, precedence,

and associativity of the operator remains the same for overloaded operators. Therefore, it should

be remembered that overloading of an operator does not change its original meaning. C++ allows

overloading of both unary and binary operators.

In the program counterl.cpp and counter2.cpp, the functions up() and down() are

invoked explicitly to update the counters. Instead of using such functions, the operators like ++

(increment operator) can be used to perform the same job, while increasing the program readability

without the loss of functionality. The enhanced version of the class counter declared in the program

counter2.cpp is rewritten to use overloaded increment operator in the program counter3.cpp.

It overloads increment and decrement operators to operate on user-defined data items.

// counter3.cpp: increment and decrement operation by operator overloading

#include <iostream.h>

class counter

{

 private:

 int value; // counter value

 public:

 counter() // No argument constructor

 {

 value = 0; // initialize counter value to zero

 }

 counter(int val) // Constructor with one argument

 {

Mastering C++86

 value = val; // initialize counter value

 }

 int GetCounter() // counter Access

 {

 return value;

 }

 // overloading increment operator

 void operator++() // increment counter

 {

 value = value + 1;

 }

 void operator --() // decrement counter

 {

 value = value - 1; // decrement counter

 }

};

void main()

{

 counter counterl; // calls no argument constructor

 counter counter2(1); // calls 1 argument constructor

 cout << “counterl initially = ” << counterl.GetCounter() << endl;

 cout << “counter2 initially = ” << counters.GetCounter() << endl;

 // increment counter

 ++ counterl;

 counter2++;

 cout << “counterl on increment = ” << counterl.GetCounter() << endl;

 cout << “counter2 on increment = ” << counter2.GetCounter() << endl;

 // decrement counter

 --counterl;

 counter2--;

 cout << “counterl on decrement = ” << counterl.GetCounter() << endl;

 cout << “counter2 on decrement = ” << counters.GetCounter();

}

Run

counterl initially = 0

counter2 initially = 1

counterl on increment = 1

counter2 on increment = 2

counterl on decrement = 0

counter2 on decrement = 1

The word operator is a keyword. It is preceded by the return type void. The operator to be

overloaded is immediately written after the keyword operator, followed by the void function

symbol as operator ++(). This declarator syntax informs the compiler to call this member function

whenever the ++ operator is encountered, provided its operand is of type counter.

The statement in the class counter

void operator ++() // increment counter

C++ at a Glance 87

overloads the increment operator (++) to operate on the user-defined data type. When the compiler

encounters statements such as

++counterl;

counter2++;

it calls the overloaded operator function defined in the user-defined class (see Figure 3.3). The statement

in the class counter

void operator--() // decrement counter

overloads the decrement operator (––) to operate on objects of the user-defined data type. When the

compiler encounters statements such as

--counterl;

counter2--;

it calls the overloaded operator function defined in the user-defined class. It can be observed that the

function body of an overloaded and a non-overloaded operator function is same; the only change is in

the function prototype and method of calling. For instance, the statement in counter2.cpp

counter2.up();

can be replaced by a more readable equivalent statement:

counter2++;

in the above program.

The concept of unary operator overloading also applies equally to binary operators. Addition of two

counters without using operator overloading can be performed by a statement such as

counter3 = counter1.AddCounter(counter2);

Fig. 3.3 Unary operator overloading in counter class

Instances of the class counter

Client program

counter counter1;

counter counter2(1);

––counter1;

counter2––;

count <<

counter1.GetCounter();

constructor
counter();

private members

int value;

d
e
st
ru
ct
o
r

~
c
o
u
n
t
e
r
(
)

i
n
t

G
e
t
C
o
u
n
t
e
r
(
)
;

c
o
u
n
t
e
r
(
i
n
t
v
a
l
)
;

c
o
n
s
tr
u
c
to
r

++counter1;

counter2++;{

{
operator––();

o
p
e
r
a
t
o
r
+
+
(
)
;

Mastering C++88

It invokes the member function AddCounter() of counter1 object’s class. By overloading

the + operator, the above clumsy and dense-looking expression can be represented in a readable and

simplified form as

counter3 = counterl + counter2;

A detailed discussion on operator overloading can be found in the chapter on Operator Overloading.

3.5 friend FUNCTIONS

C++ provides the concept of a friend class whose member functions can access the private members of

another class. A friend function accesses the private data variables of another class. The major difference

between an ordinary class function and a friend function is that the ordinary function accesses the

object that involves the member function, while a friend function requires objects to be passed by

reference or value.

Friend functions play a very important role in operator overloading by providing the flexibility,

which is denied by the member functions of a class. It allows overloading of stream operators (<< or

>>) for stream computation on user-defined data types. The only difference between the friend function

and member function is that the friend function requires all formal arguments to be specified explicitly,

whereas the member function takes first formal argument implicitly and the remaining arguments (if

any) explicitly. Friend functions can either be used with a unary or binary operator.

Similar to the built-in variables, the user-defined objects can also be read or output using the stream

operators: insertion and extraction operators. In the case of the overloaded << operator, the ostream &

is taken as the first argument of a friend function of a class. The return value of this friend function is of

type ostream &. Similarly, for overloading the >> operator, the istream & is taken as the first argument

of a friend function of a class. The return value of this friend function is of type istream &. In both the

cases, a reference to an object of the current class is taken as a second argument and after storing the

result in its second object, its first argument, the istream object would be returned.

The program counter4.cpp illustrates the flexibility of overloading the output stream operators

and their usage with the user-defined objects.

// counter4.cpp: overloading stream operator cout << value

#include <iostream.h>

class counter

{

 private:

 int value; // counter value

 public:

 counter() // No argument constructor

 {

 value = 0; // initialize counter value to zero

 }

 counter(int val) // Constructor with one argument

 {

 value = val; // initialize counter value

 }

C++ at a Glance 89

 int GetCounter() // counter Access

 {

 return value;

 }

 // overloading increment operator

 void operator++() // increment counter

 {

 value = value + 1;

 }

 // overloading decrement operator

 void operator --() // decrement counter

 {

 value = value - 1; // decrement counter

 }

 // overloading binary operator

 counter operator + (counter counter2);

 friend ostream & operator << (ostream & Out, counter & counter);

};

//operator function defined outside the class body, hence use :: operator

counter counter::operator +(counter counter2)

{

 counter temp;

 // value belongs to counterl and counter2.value is of counter2

 temp.value = value + counter2.value;

 return temp;

}

// it is just a friend function, it is not a member of counter classes

ostream & operator << (ostream & Out, counter & counter)

{

 // display all internal data of counter class

 cout << counter.value;

 // return output stream Out for cascading purpose

 return Out;

}

void main()

{

 counter counterl; // calls no argument constructor

 counter counter2(1); // calls 1 argument constructor

 cout << “counterl initially = ” << counterl << endl;

 cout << “counter2 initially = ” << counter2 << endl;

 // increment counter

 ++counterl;

 counter2++;

 cout << “counterl on increment = ” << counterl << endl;

 cout << “counter2 on increment = ” << counter2 << endl;

 // decrement counter

 --counterl;

 counter2--;

 cout << “counterl on decrement = ” << counterl << endl;

Mastering C++90

 cout << “counter2 on decrement = ” << counter2 << endl;

 counter counter3; // calls no argument constructor

 counter3 = counterl + counter2; // calls operator+(counter)

 cout << “counter3 = counterl+counter2 = ” << counter3;

}

Run

counterl initially = 0

counter2 initially = 1

counterl on increment = 1

counter2 on increment = 2

counterl on decrement = 0

counter2 on decrement = 1

counter3 = counterl+counter2 = 1

The contents of the object counterl can be displayed by using the statement

cout << counterl;

instead of using the statement

cout << counter.GetCounter();

This is the same as the use of the stream operator to display the contents of variables of standard

data type. The operator member function

ostream & operator << (ostream & Out, counter & counter);

defined in the counter class displays the contents of the objects of the counter class (see Figure

3.4). The stream classes, istream and ostream, are declared in the iostream.h header file.

Fig. 3.4 Operator overloading and friend functions

Instances of the class counter

Client program

counter counter1;

counter counter2(1);

––counter1;

counter2––;

count << counter1;

count.<< Counter2;

constructor
counter();

private members

int value;

d
e
st
ru
ct
o
r

~
c
o
u
n
t
e
r
(
)

f
r
i
e
n
d
o
s
t
r
e
a
n
&

o
p
e
r
a
t
o
r
<
<
(
.
.
)

c
o
u
n
t
e
r
(
i
n
t
v
a
l
)
;

c
o
n
s
tr
u
c
to
r

++counter1;

counter2++;{

{
operator––();

o
p
e
r
a
t
o
r
+
+
(
)
;

{

C++ at a Glance 91

The input stream operator can also be overloaded to read objects of the counter class, whose

prototype can be

istream & operator >> (istream & In, counter & counter);

Note that C++ does not allow overloading of operators =, (), [], and - > as friend operator functions.

However, they can be overloaded as member operator functions.

3.6 POLYMORPHISM—VIRTUAL FUNCTIONS

In C++, runtime polymorphism is achieved using virtual functions. Virtual functions facilitate dynamic

binding of functions to the appropriate objects. They are the means by which functions of the base class

can be overridden by functions of the derived class.

Virtual functions allow derived class to redefine member functions inherited from a base class.

General programs can then be written that are obvious to the classes of the objects they manipulate,

through dynamic binding. The runtime system will choose the function appropriate to a particular class.

Virtual functions allow programmers to declare functions in a base class that can be redefined in

each derived class. When a pointer to the base class is used with a base- or derived-class object, the

object to which it points determines the activation of an appropriate member function call. That is,

when a base-class pointer points to the object of a derived class, the derived class’s member function is

selected and when it points to the object of the base class, the base class’s member function is selected

at runtime.

In C++, calls to virtual member functions are linked at runtime, as a result of which an object’s

behavior is determined only at runtime. This binding procedure is termed late binding. The keyword

virtual instructs the compiler that the calls to these member functions are to be linked only at

runtime. Thus, the choice of member function to be executed depends on the object of a class the pointer

is addressing at runtime. The program virtual.cpp illustrates the concept of virtual functions.

// virtual.cpp: Binding pointer to base class’s object to base or derived

// objects at runtime and invoking respective members if they are virtual

#include <iostream.h>

class Father

{

 protected:

 int f_age;

 public:

 Father(int n)

 {

 f_age = n;

 }

 virtual int GetAge(void)

 {

 return f_age;

 }

};

// Son inherits all the properties of father

class Son : public Father

Mastering C++92

{

 protected:

 int s_age;

 public:

 Son(int n, int m):Father(n)

 {

 s_age = m;

 }

 int GetAge(void)

 {

 return s_age;

 }

};

void main()

{

 Father *basep;

 basep = new Father(45); // pointer to father

 cout << “Father’s Age: ”;

 cout << basep->GetAge() << endl; // calls father::GetAge

 delete basep;

 basep = new Son(45, 20); // pointer to son

 cout << “Son’s Age: ”;

 cout << basep->GetAge() << endl; // calls son::GetAge()

 delete basep;

}

Run

Father’s Age: 45

Son’s Age: 20

In the base class Father, the statement

virtual int GetAge(void)

indicates that, an invocation of GetAge() through the pointer to an object must be resolved at runtime

based on which class’s object the pointer is pointing to. A pointer to the object of the base class can be

made to point to its derived class.

In main(), the statement

Father *basep;

creates a pointer variable to the object of the base class Father and the statement

basep = new Father(45); // pointer to Father

creates an object of the class Father dynamically and assigns its address to the pointer basep. The

statement

cout << basep->GetAge() << endl; // calls father::GetAge

invokes the member function GetAge() of the Father class.

C++ at a Glance 93

Similarly, the statement

basep = new 3on(45, 20); // pointer to son

creates an object of type class Son dynamically and assigns its address to the pointer basep. The

statement

cout << basep->GetAge() << endl; // calls Son::GetAge

invokes the member function GetAge() of the class Son (see Figure 3.5). If a call to a nonvirtual

function is made in this case, it will invoke the member function of the base class Father instead of the

derived class Son. Note that the same pointer is able to invoke base or derived class’s member function

depending on the class’s object to which it is bound (and this is true only with virtual functions).

It is important to note that virtual functions must be accessed through the pointer to a base

class. However, they can be accessed through objects instead of pointers, but note that the runtime

polymorphism is achieved only when a virtual function is accessed through the pointer to a base class.

Also another important aspect is that when a function is defined as virtual in the base class and if the

same function is redefined in the derived class, that function is also treated as a virtual function by

default. Only class member functions can be declared as virtual functions. Regular functions and friend

functions do not qualify as virtual functions.

Fig. 3.5 Virtual functions and dynamic binding (base pointer accessing derived objects)

constructor
Father(int n);

int f_age;

virtual
int GetAge();

Instances of the class Father

Client program

constructor
Son(int n,intm);

Father(n);

int f_age;

int GetAge();

Instances of the class Son

Father *basep;

basep = new Father(45);
basep->GetAge();

basep = new Son(45, 20);
basep->GetAge();

Mastering C++94

3.7 GENERIC CLASSES—CLASS TEMPLATES

The container class (i.e., a class that holds objects of some other type) is of considerable importance

when implementing data structures. The limitation of such classes to hold objects of any particular data

type can be overcome by declaring that class as a template class. It allows several classes which differ

only in the data type of their data members to be declared with a single declaration.

A class template arguments can be of type strings, function names, and constant expressions,

in addition to template-type arguments. Consider the following class template to illustrate how the

compiler handles creation of objects using the class templates:

template <class T, int size>

class myclass

{

 T arr[size];

};

When objects of template class are created using the statement such as,

myclass <float,10> newl;

the compiler creates the following class:

 class myclass

 {

 float arr[10];

 };

Again, if a statement such as,

myclass <int, 5> new2;

is encountered for creating the object new2, the compiler creates the following class:

class myclass

{

 int arr[5];

};

The template declaration of the vector class is illustrated in the program vector.cpp. It has a data

member which is a pointer to an array of generic type T. The type T can be changed to int, float, etc.,

depending on the type of object to be created.

// vector.cpp: parameterized vector class

#include <iostream.h>

template <class T>

class vector

{

 T * v; // changes to int *v, float *v, ..., etc.

C++ at a Glance 95

 int size; // size of vector v

 public:

 vector(int vector_size)

 {

 size = vector_size;

 v = new T[vector_size]; // e.g., v=new int[size],if T is int

 }

 ~vectort()

 {

 delete v;

 }

 T & elem(int i)

 {

 if(i >= size)

 cout << endl << “Error: Out of Range”;

 return v[i];

 }

 void show();

};

template <class T>

void vector<T>::show()

{

 for(int i = 0; i < size; i++)

 cout << elem(i)<<“, ”;

}

void main()

{

 int i;

 vector <int> int_vect(5);

 vector <float> float_vect(4);

 for(1 = 0; i < 5; i++)

 int_vect.elemt(i) = i + 1;

 for(i = 0; i < 4; i++)

 float_vect.elem(i) = float(i + 1.5);

 cout << “Integer Vector: ”;

 int_vect.show();

 cout << endl << “Floating Vector: ”;

 float_vect.show();

}

Run

Integer Vector: 1, 2, 3, 4, 5,

Floating Vector: 1.5, 2.5, 3.5, 4.5,

Note that the class template specification is similar to an ordinary class specification except for the

prefix template <class T> and the use of T in place of the data type. This prefix informs the compiler

that the class declaration following it is a template and uses T as a type name in the declaration. Thus,

the class vector becomes a parameterized class with the type T as its parameter. The type T may be

substituted by any data type including the user-defined types.

Mastering C++96

In main(), the statements

vector <int> int_vect(5);

vector <float> float_vect(4);

create the vector objects int_vect and float_vect to hold vectors of type integer and floating

point respectively. Once the objects of class template are created, their usage is same as the objects of

non-template classes.

3.8 EXCEPTION HANDLING

An exceptional condition is an error situation that occurs during the normal flow of events and prevents

the program from continuing correctly. C++ provides exception-handling mechanism for handling error

conditions that should not be ignored by a caller. Error condition such as division of a number by zero

is difficult to predict; however, that can be handled by using exceptions.

C++ offers the following three constructs for handling exceptions:

 try

 throw

 catch

A block of code in which an exception can occur must be prefixed by the keyword try. This

block of code is called try block. It indicates that the program is prepared for testing the existence of

exceptions. If an exception occurs, the program flow is interrupted; call to an exception handler is made

if one exists, otherwise, abort() is invoked.

The exception handler is indicated by the catch keyword and it must be specified immediately

after the try block. The keyword catch can occur immediately after another catch. Each handler

will only evaluate an exception that matches, or can be converted to the type specified in its argument

list. Every exception thrown by the program must be caught and processed by the exception handler.

If the program fails to provide an exception handler for a thrown exception, the program will call the

terminate function.

The mechanism suggests that error-handling code must perform the following tasks.

 Detect the problem causing exception (Hit the exception).

 Inform that an error has occured (Throw the exception).

 Receive the error information (Catch the exception).

 Take corrective actions (Handle the exceptions).

Case Study

Consider a scenario where you are required to use the mathematical division operation in a program.

Now, in mathematics, any attempt to divide a given number by zero results in infinity or an indeterminate

value. Create a program in C++ that implements the division operation while also addressing the divide-

by-zero situation.

The program number.cpp illustrates the use of exception handling mechanism to detect and

handle divide-by-zero errors. It uses the read() function to read a member variable and div()

function to perform the division operation. It raises an exception whenever an attempt is made to divide

a number by zero.

C++ at a Glance 97

// number.cpp: Divide Exceptions, divide by zero exceptions

#include <iostream.h>

class number

{

 private:

 int num;

 public:

 void read()

 {

 cin >> num;

 }

 class DIVIDE {}; // abstract class used in exceptions

 int div(number num2))

 {

 if(num2.num == 0) // check for zero divisor if yes

 throw DIVIDE(); // raise exception

 else

 return num / num2,num; // compute and return the result

 }

};

int main()

{

 number numl, num2;

 int result;

 cout << “Enter Number 1: ”;

 numl.read();

 cout << “Enter Number 2: ”;

 num2.read();

 // statements must be enclosed in try block if exception is to be raised

 try

 {

 cout << “trying division operation...”;

 result = numl.div(num2);

 cout << “succeeded” << endl;

 }

 catch(number::DIVIDE) // exception handler block

 {

 // actions taken in response to exception

 cout << “failed” << endl;

 cout << “Exception: Divide-By-Zero”;

 return 1;

 }

 // no exceptions, display result

 cout << “numl/num2 = ” << result;

 return 0;

}

Run1

Enter Number 1: 10

Mastering C++98

Enter Number 2: 2

trying division operation...succeeded

numl/num2 = 5

Run2

Enter Number 1: 10

Enter Number 2: 0

trying division operation...failed

Exception: Divide-By-Zero

In main(), the try block

 try

 {

 result = numl.div(num2);

 }

invokes the member function div() to perform the division operation using the function defined in

the number class. (See Figure 3.6.)

Fig. 3.6 Exception handling in number class

Instance of the class number

void read();

private;

int num;

int div(number num2)(

try {

if(num2.num==0)

throw DIVIDE;

Client program

number num1, num2;

num1, read();

num2. read();

try

{

resul=num1, div(num2);

}

catch(DIVIDE)

{

....

}

{

If any attempt is made to divide by zero, the following statement in the div() member function

if(num2.num == 0) // check for zero division if yes

 throw DIVIDE(); // raise exception

detects the same and raises the exception by passing a nameless object of the DIVIDE class. The

following block of code in main() immediately after the try block,

 catch(number::DIVIDE)

 {

 cout << “Exception: Divide-By-Zero”;

 return 1;

 }

C++ at a Glance 99

will catch the exception raised due to a malfunction (divide-by-zero) in the preceding try block and

executes its (catch block) body. When an exception is raised and if the exception matches with any of

the catch’s exception type, its catch block will be executed; otherwise, the program terminates. The

execution skips the catch block and proceeds with the normal operations when no exception is raised.

3.9 STREAMS COMPUTATION

Stream is a name given to the flow of data and it acts as an interface between the program and the

input/output devices. Streams provide a consistent interface irrespective of the device with which they

operate (see Figure 3.7). For instance, the output operation can be performed either on the console or

file; the interface for accessing these devices is the same as shown in the following statements:

cout << “Hello World”;

outfile << “Hello World”;

The first statement prints the message Hello World to a standard output device whereas the

second statement prints the same in a file to which the variable outfile is the file handler.

Fig. 3.7 Consistent stream computation

char

int

float

User
Object

<<

count

HelloMonitor

Printer

Disk

Input-output operations in C++ are interpreted as a flow of stream of bytes. The program extracts

bytes from the input stream when the read operation is initiated and inserts bytes to the output stream

when the output has to be performed.

C++ provides the following predefined stream objects (declared in iostream.h):

cin Standard input (usually keyboard) corresponding to stdin in C.

cout Standard output (usually screen) corresponding to stdout in C.

cerr Standard error output (usually screen) corresponding to stderr in C.

clog A fully buffered version of cerr (no C equivalent).

The statement

cin >> m;

reads data from the console (keyboard) and stores it into the variable m. The statement

cout << “Hello World” << m;

prints the string message followed by the value stored in the variable m onto the console (monitor). The

statement

Mastering C++100

cerr << “Error: Hello World”;

prints the string message onto the standard error device (usually monitor). The statement,

clog << “Log Errors”;

prints the message to standard error device and displays when the buffer is flushed or \n (new line)

character is encountered.

In C++, streams with operator overloading provide a mechanism for filtering. The standard stream

operators << and >> do not know anything about the user-defined data types. They can be overloaded to

operate on user-defined data items, which comprise operations on basic data items with standard stream

operators. For example, consider the statements:

cout << counterl;

cin >> counter2;

The data items counterl and counter2, are the objects of the counter class (see friend cpp

program discussed above). The operators >> or << do not know anything about the objects counterl

and counter2. These are overloaded in the counter class as member functions, which process

the attributes of counter objects as if they are basic data items. Collectively, it appears as if the stream

operators are operating on the objects of the class counter. This is possible due to overloading stream

operators to operate on the user-defined data types.

3.9.1 File Streams

A file is a unit of storage. The file-handling technique of C does not support object-oriented programming,

hence C++ has come out with a new set of classes to deal with files.

As discussed earlier, the standard objects cin and cout have been used to deal with the standard

input and the standard output. The objects cin and cout are declared in iostreamih header file.

There are no such predefined objects for handling disk files. C++ supports the following classes for

handling files:

 ifstream – for handling input files

 ofstream – for handling output files

 fstream – for handling files on which both input and output are done

These classes are designed to manage the disk files and are declared in the fstream.h header

file. To use file streams, include the following statement in the program:

#include <fstream.h>

The general pattern of accessing the data in a file is similar to the stdio.h functions. First, of

course, the file has to be opened. In all the three classes, a file can be opened by giving a filename as

the first parameter in the constructor itself. For example, the statement,

ifstream inflie(“test.txt”);

will open the file test.txt for input operation.

The classes ifstream, ofstream, and fstream are derived from the classes istream,

ostream, and iostream respectively to handle file streams and file input/output. The ifstream

is meant for input files and ofstream for output files; the fstream is meant for both the input and

output files.

C++ at a Glance 101

3.9.2 File Input with ifstream Class

The class ifstream supports input operations. It contains the function open() with the default input

mode. Inherits get(), getline(), read(), seekg(), and tellg() functions from istream.

The program inf ile.cpp illustrates the use of ifstream class in file manipulation. It reads the

contents of the file sample.in line by line and prints the same on the console.

// infile.cpp: reads all the names stored in file ‘sample.in’

#include <fstream.h>

#include <process.h>

#include <iostream.h>

void main()

{

 char buff[80];

 ifstream infile; // input file

 infile.open(“sample.in”); // open file

 if(infile.fail()) // open fail

 {

 cout << “Error: sample.in non-existent”;

 exit(1);

 }

 while(!infile.eof()) // until end-of-file do processing

 {

 infile.getline(buff, 80); // read complete line from file

 cout << buff << endl;

 }

 infile.close();

}

Run

Rajkumar, C-DAC, India

Bjarne Stroustrup, AT & T, USA

Smrithi, Hyderabad, India

Tejaswi, Bangalore, India

The input file sample.in contains the following information before the execution of the program:

Rajkumar, C-DAC, India

Bjarne Stroustrup, AT & T, USA

Smrithi, Hyderabad, India

Tejaswi, Bangalore, India

In main(), the statement

 ifstream infile; // input file

creates the object infile and the statement

 infile.open(“sample.in”); // open file

opens the file sample.in in the input mode. The statement

 if(infile.fail()) // open fail

Mastering C++102

checks for the status of file-open operation. If file open fails, it returns 1, otherwise 0. The statement

while(!infile.eof()) // until end-of-file, do processing

repeats the file-reading operation until the end-of-file. And the statement

infile.getline(buff, 80); // read complete line from file

reads a single line from the file or maximum of 80 characters from that line and proceeds to the next

line.The statement,

infile.close();

closes the, and thus preventing it from further manipulation.

3.9.3 File Output with ofstream Class

The class ofstream supports output operations. It contains the function open() with output mode

as default. It inherits put(), seekp(), tellp(), and write() functions from ostream. The

program outfile.cpp illustrates the use of the class of stream in the file manipulation. It reads

information entered through the keyboard and writes the same into the output file sample.out.

// Outfile.cpp: writes all the input into the file ‘sample.out’

#include <fstream.h>

#include <process.h>

#include <iostream.h>

#include <string.h>

void main()

{

 char buff[80];

 ofstream outfile; // output file

 outfile.open(“sample.out”); // open in output mode

 if(outfile.fail()) // open fail

 {

 cout << “Error: sample.out unable to open”;

 exit(1);

 }

 // loop until input = “end”

 while(l)

 {

 cin.getline(buff, 80);

// read a line from keyboard

 if(strcmp(buff, “end”) == 0)

 break;

 outfile << buff << endl; // write to output file

 }

 outfile.close();

}

Run

OOP is good

C++ is OOP

C++ is good

end

C++ at a Glance 103

Note: On execution, the file sample.out has the following:

OOP is good

C++ is OOP

C++ is good

In main(), the statement

ofstream outfile; // output file

creates the object outfile and the statement

outfile.open(“sample.out”); // open in output mode

opens the file sample.out in output mode. The statement

if(outfile.fail()) // open fail

checks for the status of file open. If file open fails, it returns 1, otherwise 0. The statement

outfile << buff << endl; // write to output file

writes the buff contents and new-line character to the output file. The syntax of writing to the disk file

resembles the writing to the console.

Guidelines
This chapter has given a glimpse on various prime features of C++. The fundamental construct of C++,

i.e., class, has been used to explain data encapsulation and abstraction features. More details on this can

be found in chapters 10 and onwards. Other features discussed are inheritance, polymorphism, friend

functions, virtual functions, class templates, exceptions handling, and streams computation.

SOLVED PROBLEM

Write a C++ program that reads the data from FILE1.txt and copy every alternate character to FILE2.txt.

#include <iostream.h>

#include <fstream.h>

void main()

{

 char ch;

 int count=0;

 fstream file1, file2;

 file1.open(“FILE1.txt”, ios::in);

 file2.open(“FILE2.txt”, ios::out);

 while(file1)

 {

 file1.get(ch);

 if(count%2==0)

 file2.put(ch);

 count++;

 }

 file1.close();

+
+

Mastering C++104

 file2.close();

 cout<<”Alternate characters from File1 have been successfully copied

into File2”;

}

Run

Alternate characters from File1 have been successfully copied into File2

REVIEW QUESTIONS ++
 3.1. State some reasons for C++ gaining popularity over other object-oriented programming

languages.

 3.2. Date consists of day, month, and year. Can this item be modeled as a class? What are the

permissible operations this class needs to support? Write a complete program having

class declaration and the main() function to create its objects and manipulate them.

 3.3. List the various object-oriented features supported by C++. Explain the constructs

supported by C++ to implement them.

 3.4. What is inheritance? What are base and derived classes? Give a suitable example for

inheritance.

 3.5. What are the different types of access specifiers supported by C++. Explain with a

suitable example.

 3.6. What is polymorphism? Write a program to overload the + operator for manipulating

objects of the Distance class.

 3.7. What are friend functions? Can they access members of a class directly? Enhance the

Date class such that it allows to read and display its objects using stream operators.

 3.8. What are the differences between static binding and late binding? Explain dynamic

binding with a suitable example.

 3.9. What are generic classes? Explain how they are useful. Write an interactive program

having template-based Distance class. Create two objects: one of type integer and

another of type floating point.

 3.10. What are exceptions? What are the constructs supported by C++ to handle exceptions?

 3.11. What are streams? Write an interactive program to copy a file to another file. Both source

and destination files have to be processed as the objects of file-stream classes.

Data Types,
Operators and
Expressions

 4.1 INTRODUCTION

Variables and constants are the fundamental elements of any programming

language. Variables allow to name memory locations and use that name to

access memory contents instead of accessing it through the physical address.

Constants are those entities whose values never change during the execution

of the program. Operators are used to specify the type of operation to be

carried out on the variables and constants. Expressions combine the variables and constants to produce

new values. The type of an object (variable/constant) determines the set of values it can represent and

various operations that can be performed on it. When an expression has variables of different types,

they need to be coerced (type converted) before their use. It can be either performed by the compiler

implicitly, or by the user explicitly. C++ qualifiers allow promotion of any fundamental data type. The

precedence and associativity of operators specify the order of evaluation of an expression to generate

a valid output.

4.2 CHARACTER SET

The C++ character set consists of the upper and lower case alphabets, digits, special characters and

white spaces. The alphabets and digits together constitute the alphanumeric set. The complete character

set is shown in Table 4.1. The compiler ignores white spaces unless they are part of a string constant.

White spaces are used to separate words (and sometimes to increase the readability of a program), but

cannot be embedded in the keywords and identifiers.

4.3 TOKENS, IDENTIFIERS, AND KEYWORDS

A C++ program consists of many elements, which are identified by the compiler as tokens. Tokens

supported in C++ can be categorized as keywords, variables, constants, special characters, and operators

as shown in Figure 4.1.

In a C++ program, every word can be either classified as an identifier or a keyword. As the name

suggests, identifiers are used to identify or name variables, symbolic constants, functions, and so on.

4

Mastering C++106

Keywords have predefined meanings and cannot be changed by the user. The following rules need to be

followed while naming identifiers:

 Identifier name is formed by using alphabets, digits, or underscore characters.

 Identifier names must begin with an alphabet or underscore character.

 The maximum number of characters used in forming an identifier must not exceed 31 characters.

Some compilers allow the identifier length to be more than 31 characters, however, only the first

31 characters are significant.

Table 4.1 C++ character set

Alphabets:

Uppercase: A B ... Z

Lowercase: a b ... z

Digits

0 1 2 3 4 5 6 7 8 9

Special Characters:

, comma < opening angle bracket > closing angle bracket

. period _ underscore (left parenthesis

; semicolon $ dollar sign) right parenthesis

: colon % percent sign [left bracket

number sign ? question mark] right bracket

’ apostrophe & ampersand { left brace

“ quotation mark ^ caret } right brace

! exclamation mark * asterisk / slash

| vertical bar – minus sign \ blackslash

~ tilde + plus sign

White space characters:

blank space newline carriage return

formfeed horizontal tab vertical tab

Fig. 4.1 C++ tokens

Tokens

int

switch

class

Special
characters

OperatorsConstantsVariablesKeywords

marks,

age

name

121

350.75

2e3

#

?

~

+

–

: ?

Data Types, Operators and Expressions 107

 C++ is case sensitive (since the upper and lower-case letters are treated differently). For instance,

names such as rate, Rate, and RATE are treated as different identifiers. It is a general practice

to use lower or mixed-case letters to name variables and functions, and upper case to name

symbolic constants.

 C++ has standard identifiers called keywords. Keywords are declared by the C++ language and

have a predefined meaning. Hence, they cannot be used for any other purpose other than that

specified by the C++ language. The keywords supported by C are shown in Table 4.2 and they

are also available in C++ (C++ is a superset of C).

Table 4.2 Keywords common to C and C++

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Specific Keywords

There are several keywords specific to C++ which are listed in Table 4.3. These keywords primarily

deal with classes, templates, and exception handling. For more details on keywords, refer to Appendix:

C++ Keywords and Operators.

Table 4.3 Keywords specific to C++

asm new template

catch operator this

class private throw

delete protected try

friend public virtual

inline

4.4 VARIABLES

A variable is an entity whose value can be changed during program execution and is known to the

program by a name. A variable definition associates a memory location to the variable name. A variable

can hold only one value at a time during the program execution. Its value can be changed during the

execution of the program. The various components associated with variables are the following:

 Data type—char, int, float, date (user-defined), etc.

 Variable name—User view

 Binding address—Machine view

 Value—Data stored in memory location

Mastering C++108

The relation among the above components is shown in Figure 4.2. In the statement

f = 1.8 * c + 32.

the symbols f and c are variables.

Variable Names
Variable names are identifiers used to name variables. They are the symbolic names assigned to the

memory locations. A variable name consists of a sequence of letters and digits, the first one being a

letter. The rules that apply to identifiers (given above) also apply to variable names. The following are

some valid variable names:

i sum MAX min
class_mark student_name emp_num fact_recur
classMark StudentName rankl_xl _num

The following are some invalid variable names (with reasons given along side):

a’s illegal character(‘)

fact recur blank not allowed

class-mark illegal character(-)

5root first character should be a letter

student,rec comma not allowed

4.5 DATA TYPES AND SIZES

C++ supports a wide variety of data types and the programmer can select the type appropriate to the

needs of the application. However, storage representation and machine instructions to manipulate each

data type differ from machine to machine, although C++ instructions are identical on all machines. C++

supports the following classes of data types:

 Primary (fundamental) data types

 Derived data types

 User-defined data types

The primary data types and their extensions is the subject of this chapter. Derived data types such

as arrays and pointers, and user-defined data types such as structures and classes are discussed in the

later chapters.

C++ language supports the following basic data types:

char A single byte that can hold one character

int An integer

float A single-precision floating-point number

double A double-precision floating-point number

Fig. 4.2 Components of variables

DataType variable name Value

Memory location

Data Types, Operators and Expressions 109

Further, applying qualifiers to the above basic types yields additional types. A qualifier alters the

characteristics such as the size or sign of the data types. The qualifiers that alter the size are short and

long. These qualifiers are applicable to integers, and yield two more types:

short int Integer represented by 16 bits, irrespective of machine type.

long int Integer represented by 32 bits, irrespective of machine type.

The exact sizes of these data types depend on the compiler as shown in Table 4.4.

Table 4.4 Data types and their sizes

Data Type Data Size (bytes) Minimum Value Maximum Value

char 1 – 128 127

short 2 – 327868 327867

int 2 (16 bit compiler)

4 (32 bit compiler)

– 327868

– 2147483648

327867

2147483647

long 4 – 2147483648 2147483647

float 4 – 3.4E-38 3.4E+38

double 8 – 1.7E-308 1.7E+308

long double 10 –3.4E-4932 1.1E+4932

The qualifier long can also be used along with the double-precision floating point type:

long double — an extended precision floating point number.

The sign qualifiers are signed and unsigned. The sign qualifiers are applicable to the integer data types

(int, short int, and long int) resulting in six additional data types given below:

signed short int
unsigned short int
signed int
unsigned int
signed long int
unsigned long int

Qualifiers are also applicable to the char data type as follows:

signed char
unsigned char

Size qualifiers (short and long) cannot be applied to the char and float data types and sign

qualifiers (signed and unsigned) cannot be applied to float, double, and long double.

4.6 VARIABLE DEFINITION

A variable must be defined before using it in a program. It reserves memory required for data storage

and associates it with a symbolic name. The syntax for defining variables is shown in Figure 4.3. The

variable name can be any valid C++ identifier except the reserved words. The data type can be any

primitive or user-defined data type such as int, float, double, and so on.

Mastering C++110

The following are some of the valid variable-definition statements:

int a; // a is an integer variable
int b, c, d; // b, c, and d are valid integer variables
float total, length; // total and length are valid real variables
double suml, product; // suml and product are valid double variables

Variables can be defined at the point of their usage as follows:

int c;
cout << “Hello World”;
int d = 10;
for(int i = 0; i < 10; i++)
 cout << i;

Note that the variables d and i are defined at the point of their usage.

4.7 VARIABLE INITIALIZATION

In C++, a variable can be assigned with a value during its definition, or during the execution of a

program. The assignment operator (=) is used in both the cases. A variable can be initialized during its

definition using any one of the following syntax:

data-type variable-name = constant-value;

data-type variable-name(constant-value);

This syntax is most commonly used since it avoids chances of using uninitialized variables leading

to runtime errors. The following statements initialize variables during their definition:

int a = 20; //or int a (20);
float c = 1920.9, d = 4.5; // or float c(1920.9), d(4.5);
double g = 123455.56;

The value to be initialized to a variable at the time of definition must be known while writing the

program, i.e., it must be a constant value or must have been assigned at runtime before its definition as

follows:

int i = 3;
int k = i + 3;

A variable which is initialized at its definition is called value-initialized variable. However, its

value can be modified during the program execution at a later point. When multiple variables are being

declared in a single statement, initialization is carried out in the following way:

int i = 10, j = 5;

Fig. 4.3 Syntax of variable definition

Data type:
char, int, float, etc. Variable name

Data Type VarName1,, ..., VarNameN;

Data Types, Operators and Expressions 111

The right side of the assignment operator can be any valid expression as given below:

int k = i / j;

It assigns the value 2 to k if i = 10 and j = 5.

The variables can be initialized by using any valid expression at runtime. The general format is as

follows:

variable-name = expression;

The expression can be a constant, variable name, or variables and/or constants connected by using

operators (mathematical expression). For example,

a = 10;
a = b;
a = c+d-5;

where the symbols + and – represent addition and subtraction operation respectively. The program

showl.cpp illustrates the initialization of variables in the definition or during its execution.

// showl.cpp: variable definition and assignment
#include <iostream.h>
void main()
{
 int a, b; // integer type variable definition
 int c = 100; // variable definition and initialization
 float distance; // floating-point type variable definition
 // initialization during execution time
 a = c;
 b = c + 100;
 distance = 55.9;
 // display contents of the variables
 cout << “a = ” << a << “\n”;
 cout << “b = ” << b << “\n”;
 cout << “c = ” << c << “\n”;
 cout << “distance = “ << distance;
}

Run

a = 100
b = 200
c = 100
distance = 55.9

In main(), the statement

int c = 100;

defines a variable called c and initializes it with the constant integer value 100. The statement

a = c;

reads the contents of the variable c and assigns it to the variable a. The statement

b = c + 100;

Mastering C++112

adds the contents of the variable c with the numeric constant 100, and assigns the result to the variable

b. The statement

distance = 55.9;

assigns the floating-point constant value 55.9 to the variable distance. The statement
cout << “a = ” << a << “\n”;

displays a message a = followed by the contents of the variable a and then a newline. Input and output

operations in C++ have already been discussed in Chapter 2. For more information refer to the chapter

Streams Computation with Console.

4.8 CHARACTERS AND CHARACTER STRINGS

A character variable can hold a single character. For instance, the statement

char code = ‘R’;

assigns the character constant R to the variable code. The value stored in the variable code is the

ASCII equivalent of the character R. Note that the character constant is enclosed in a pair of single

quotes and each character representation requires 8 bits (one byte).

A sequence of characters is called a string. String constants are enclosed in double quotes as follows:

“Hello World”

String constants are useful while conveying some messages to the user. For instance, the statement

cout << “I love C++ programming”;

displays the message indicated by the string constant as follows:

I love C++ programming

In C++, characters can be treated like integers. A character variable holds one character such as a letter,

a digit, or a punctuation mark. These characters are represented in memory by a number, called the

code for the character. For example, the code for the letter A may be 65, that for letter B may be 66,

and so on.

Actually, any number can represent the letter A, any other number can be used for B, and so on,

but these numbers should be fixed by a coding convention. For example, when the computer wants the

printer to print the letter A, it actually sends the number 65 to the printer. The important point here is

that the printer accepts the number 65 and prints the letter A. Hence, the printer must also use the same

code to represent the character as that used by the computer. This requirement led to the establishment

of a standard called ASCII (American Standard Code for Information Interchange). ASCII codes are

widely used all over the world to represent various symbols in a computer.

The program ascii.cpp reads the ASCII code of a character and prints out the symbol associated

with the code.

// ascii.cpp: ASCII code example
#include <iostream.h>
void main()
{
 int code;

Data Types, Operators and Expressions 113

 char symbol;
 cout << “Enter an ASCII code (0 to 127): ”;
 cin >> code; // reads integer value
 symbol = code; // store into character variable
 cout << “The symbol corresponding to “ << code << ” is “ << symbol;
}

Run1

Enter an ASCII code (0 to 127): 65
The symbol corresponding to 65 is A

Run2

Enter an ASCII code (0 to 127): 67
The symbol corresponding to 67 is C

In main(), the statement

symbol = code;

assigns the value of the integer variable code to the character variable symbol. In the output statement

cout << “The symbol corresponding to “ << code << ” is “ << symbol;

the character variable code forces cout to display the ASCII symbol corresponding to the value stored

in it.

A string in C++ is just a sequence of consecutive characters in memory, the last one being the null

character. A null character has an ASCII code 0 and is called the end-of-string marker in C++. For

instance, consider the following string constant:

“I love C++ programming”

In memory, it is stored as a sequence of bytes as shown in Figure 4.4. Each location holds the ASCII

equivalent of the respective character. The null character (a byte with value zero) is placed at the end of

the string. It serves to terminate the string, i.e., to mark the end of the string.

Fig. 4.4 String representation in memory

start of string end of string

I l o v e C + + p r o g r a m m i n g \0

4.9 OPERATORS AND EXPRESSIONS

C++ operators are special characters which instruct the compiler to perform operation on some operands.

Operation instructions are specified by operators, while operands can be variables, expressions, or

literal values. Some operators operate on a single operand and they are called unary operators. Some

operators are indicated before operands and they are called prefix operators. Others, indicated after the

operand, are called postfix operators. For instance, expressions ++i or i++ use unary prefix and postfix

operators respectively. Most operators are embedded between the two operands, and they are called

infix binary operators. An expression a+b uses the binary plus operator. C++ even has an operator that

Mastering C++114

takes three operands, called a ternary operator. Unification of the operands and the operators results in

the formation of expressions.

4.9.1 Types of Operators

In C++, operators can be classified into various categories based on their utility and action as follows:

 Arithmetic operators

 Relational operators

 Logical operators

 Assignment operators

 Increment and decrement operators

 Conditional operator

 Bitwise operators

 Special operators

An expression is a combination of variables, constants and operators written according to the syntax

of the language. In C++, every expression evaluates to a value, i.e., every expression results in some

value of a valid data type that can be assigned to a variable. The following are some of the valid

expressions:

a+b
a+200+40
c+b*z
z+20
total+20+c/3

Expressions having operands of different data types are called mixed-mode expressions. Consider the

following statements:

int a, c;
float d, e;

The expression

(a+d+e+c)

is called mixed-mode expression since it contains variables of types; integer and floating point.

Assignment Operator =

As in most other languages, the equal (=) sign is used for assigning a value to a variable. It has the

following syntax:

variable = expression;

The left-hand side has to be a variable (often called lvalue) and the right-hand side has to be a valid

expression (often called rvalue). The following are some valid assignment statements:

a = 32000; // rvalue is constant
b = z + 10 * a; // rvalue is expression
c = sqrt (20.2); // rvalue is function

Data Types, Operators and Expressions 115

The program temper.cpp illustrates the conversion of temperature value in fahrenheit to

centigrade and vice versa using the following relation:

fahrenheit = 1.8 * centigrade + 32

// temper.cpp: conversion of centigrade to fahrenheit and vice-versa
#include <iostream.h>
void main()
{
 float c, f;
 cout << “Enter temperature in Celsius: ”;
 cin >> c;
 f = 1.8 * c + 32;
 cout << “Equivalent fahrenheit = ” << f << endl;
 cout << “Enter temperature in fahrenheit: ”;
 cin >> f;
 c = (f - 32) / 1.8;
 cout << “Equivalent Celsius = ” << c;
}

Run

Enter temperature in Celsius: 5
Equivalent fahrenheit = 41
Enter temperature in fahrenheit: 40
Equivalent Celsius = 4.444445

4.10 QUALIFIERS

Qualifiers modify the behavior of the variable type, to which they are applied. Qualifiers can be

classified into two types:

 Size qualifiers

 Sign qualifiers

Consider the variable-definition statement:

int i;

It specifies that i is an integer, which takes both positive and negative values. That is, i is a signed

integer by default. The above definition could also be written as

signed int i;

Prefixing of the qualifier signed explicitly, is unnecessary, since int data-type definitions are signed

by default. If the variable i is used to hold only positive values (for example, if it is used to hold the

number of students in a class), it can be defined as follows:

unsigned int i;

Here, the qualifier unsigned is applied to the data type int. This qualifier modifies the behavior of

the integer so that a variable of this type always contains a positive value.

Mastering C++116

int with Size Qualifiers

Size qualifiers alter the size of the basic type. There are two size qualifiers that can be applied to integers

(i.e., to the basic type int): short and long. In any ANSI C++ compiler, the sizes of short int,

int and long int have the following specification:

 The size of a short int is 16 bits.

 The size of an int must be greater than or equal to that of a short int.

 The size of a long int must be greater than or equal to that of an int.

 The size of a long int is 32 bits.

In most compilers available on DOS, the size of a short int and an int are the same (16 bits).

A long int occupies 32 bits. But in 32-bit compilers such as GNU C/C++, an int and a long
int are of the same size (32 bits), while a short int is 16 bits. On the other hand, almost all UNIX

compilers have the size of int as 16 bits, int and long int being 32 bits.

sizeof Operator
The operator sizeof returns the number of bytes required to represent a data type or variable. It has the

following forms:

sizeof(data-type)

sizeof(variable)

The data type can be standard or user-defined data type. The following statements illustrate the usage

of sizeof operator:

int i, j;

float c;

sizeof(int) returns 2 or 4 depending on compiler implementation

sizeof(float) returns 4

sizeof(long) returns 4

sizeof(i) returns 2 or 4 depending on compiler implementation

sizeof(c) returns 4

The program size.cpp determines the size of an integer and its variants. It uses the function

sizeof(), which gives the size of any data type in bytes.

// size.cpp: size qualifiers and sizeof operator
#include <iostream.h>
void main()
{
 cout << “sizeof(char) = ” << sizeof(char) << endl;
 cout << “sizeof(short) = ” << sizeof (short) << endl;
 cout << “sizeof(short int) = ” << sizeof(short int) << endl;
 cout << “sizeof(int) = ” << sizeof(int) << endl;
 cout << “sizeof(long) = ” << sizeof(long) << endl;
 cout << “sizeof(long int) = ” << sizeof(long int) << endl;
 cout << “sizeof(float) = ” << sizeof(float) << endl;
 cout << “sizeof(double) = ” << sizeof(double) << endl;
 cout << “sizeof(long double) = ” << sizeof(long double) << endl;
}

Data Types, Operators and Expressions 117

Runl

sizeof(char) = 1
sizeof(short) = 2
sizeof(short int) = 2
sizeof(int) = 2
sizeof(long) = 4
sizeof(long int) = 4
sizeof(float) = 4
sizeof(double) = 8
sizeof(long double) = 10

Run2

sizeof(char) = 1
sizeof(short) = 2
sizeof(short int) = 2
sizeof(int) = 4
sizeof(long) = 4
sizeof(long int) = 4
sizeof(float) = 4
sizeof(double) = 8
sizeof(long double) = 10

Note: The output displayed in Run1 is generated by executing the program on the DOS system compiled

with Borland C++ compiler. Run2 is generated by executing the program on the UNIX system.

The name of the variable type is passed to the sizeof operator in parentheses. The number of bytes

occupied by a variable of that type is given by the sizeof operator. The sizeof operator is very

useful in developing portable programs. It is a bad practice to assume the size of a particular type, since

its size can vary from compiler to compiler.

The sizeof operator also takes variable names and returns the size of the variable given, in bytes.

For example, the statements

int i;
cout << “The size of i is ” << sizeof(i);

will output

The size of i is 2

The result of sizeof(int) or sizeof(i) will be the same, since i is an int. However, it is a

better practice to pass a variable name to the sizeof operator; if the data type of i has to be changed

later then the rest of the program need not be modified.

Size Qualifiers, as Applied to Double
The type qualifier long can also be applied on the data type double. A variable of type long
double has more precision when compared to a variable of type double. C++ provides three data

types for real numbers: float, double and long double. In any C++ compiler, the precision of a

double is greater than or equal to that of a float, and the precision of a long double is greater than or

equal to that of a double, i.e., precision-wise,

precision of long double >= precision of double >= precision of float

Mastering C++118

To find out the actual range that a compiler offers, a program(mer) can refer to the constants defined in

the header file float.h.

Sign Qualifiers
The keywords signed and unsigned are the two sign qualifiers which inform the compiler whether

a variable can hold both negative and positive numbers, or only positive numbers. These qualifiers can

be applied to the data types int and char only. For example, an unsigned integer can be declared as

unsigned int i;

As mentioned earlier, signed int is the same as int (i.e., int is signed by default). The char

data type can be treated as either signed char, or unsigned char, and the exact representation

is compiler dependent.

4.11 ARITHMETIC OPERATORS

The C++ language has both unary and binary arithmetic operators. Unary operators are those which

operate on a single operand, whereas binary operators operate on two operands. The arithmetic

operators can operate on any built-in data type. Arithmetic operators and their meaning are shown in

Table 4.5. Note that C++ has no operator for exponentiation. However, a function pow(x, y) exists

in math.h which returns xy.

Table 4.5 Arithmetic operators

Operator Meaning

+ Addition or unary plus

– Subtraction or unary minus

* Multiplication

/ Division

% Modulo division

Unary Minus Operator (Negation)
The unary minus operator can be used to negate the value of a variable. It is also used to specify a

negative number; here a minus (–) sign is prefixed to the number. Consider the following examples:

 1. int x = 5;
 Y = -x;

The value of x after negation is assigned to y, i.e., y becomes –5.

 2. int x = -5;
 sum = -x;

The value of the sum is +5. The unary minus operator has the effect of multiplying its operand by –1.

 3. The use of unary + operator does not serve any purpose. However, it can be used as follows:

 a = +100;

By default, numeric constants are assumed to be positive.

Data Types, Operators and Expressions 119

Binary Operators
Binary arithmetic operators such as +, –, *, etc., require two operands of standard data types. Depending

on the data types of the operands, these operators perform either integer or floating-point arithmetic

operation.

Integer Arithmetic
When the two operands, say x and y, are defined as integers, any arithmetic operation performed on

these operands is called integer arithmetic, which always yields an integer result.

Example: Let x and y be defined by the statement:

int x = 16, y = 5;

Then the integer arithmetic operations yield the following results:

x + y = 21

x - y = 11

x * y = 80

x / y = 3 The result is truncated, the decimal part is discarded.

x % y = 1 The result is the remainder of the integer division. The sign of the result is

always the sign of the first operand.

In integer division operation, the result is truncated towards the lower value if both the operands are of

the same sign, and is dependent on the machine if one of the operands is negative.

Example: 6/8 = 0

 -6/-8 = 0

 -6/8 = 0 or -1 The result is machine dependent.

Floating-point Arithmetic
Floating-point arithmetic involves operands of real type in decimal or exponential notation. The

floating-point results are rounded off to the number of significant digits specified, and hence the final

value is only an approximation of the correct result. The remainder operator % is not applicable to

floating-point operands.

Example: Let a and b be defined by the statement

float a = 14.0, b = 4.0;

and p, q and r be floating point variables; then the floating-point arithmetic operations will yield the

following results:

p = a / b = 3.500000
q = b / a = 0.285714
r = a + b = 18.00000

Mixed-mode Arithmetic
In mixed-mode arithmetic, if either one of the operands is real, the resultant value is always a real value.

For example, 35/5.0 = 7.0. Here, since 5.0 is a double constant, 35 is converted to a double and the

result is also a double.

The expression

Mastering C++120

x % y

produces the remainder when x is divided by y (it returns 0 when y divides x exactly). The program

modulus.cpp illustrates the use of the modulus operator.

// modules.cpp: computation of remainder of division operation
#include <iostream.h>
void main()
{
 int numerator, denominator;
 float result, remainder;
 cout << “Enter numerator: ”;
 cin >> numerator;
 cout << “Enter denominator: ”;
 cin >> denominator;
 result = numerator / denominator;
 remainder = numerator % denominator;
 cout << numerator << “/” << denominator << “ = ” << result << endl;
 cout << numerator << “%” << denominator << “ = ” << remainder;
}

Run

Enter numerator: 12
Enter denominator: 5
12/5 = 2
12%5 = 2

An arithmetic expression without parentheses will evaluate from left to right using the following

rules of precedence for operators:

High priority: */%

Low priority: + -

The basic evaluation process requires two passes. During the first pass, the highest priority operators are

applied as they are encountered and in the next pass, the low-priority operators are applied. Consider

the following statement:

 a = b + c * 5 + d / 2 – 3;

When b = 5, c = 2, d = 10, the statement becomes

 a = 5 + 2 * 5 + 10 / 2 - 3;

It is evaluated as follows:

First Pass
 step 1: a = 5 + 10 + 10 / 2 - 3;
 step 2: a = 5 + 10 + 5 - 3;

Second Pass
 step 3: a = 15 + 5 - 3;
 step 4: a = 20 - 3;
 step 5: a = 17;

Data Types, Operators and Expressions 121

These evaluation steps are shown in Figure 4.5, which illustrates the hierarchy of operators. When

parentheses are used, the expression within the innermost parentheses gains highest priority.

A program for swapping two integer numbers without using a temporary variable, is listed in

notemp.cpp. The steps involved are illustrated in Figure 4.6.

Fig. 4.5 Hierarchy of operations

a = b + c * 5 + d/2 – 3

= 5 + 2 * 5 + 10/2 – 3 Step1

Step2

Step3

Step4

Step5

P
a
s
s
1

P
a
s
s
2

a 17

20

15

10 5

Fig. 4.6 Swapping without using

temporary variable

a,b
a = a + b;

b = a – b;

a = a – b;

a = (a + b)

b = (a – b)

= (a + b) – b

(a) Steps for swapping two numbers

b,a

Step 1:

Step 2:

Step 3:

(a) Swapping steps derivations

= a

a = a – b

= (a + b) – a

= b

// notemp.cpp: swapping two numbers without using temporary variable
#include <iostream.h>
void main()
{
 int a, b;
 cout << “Enter two integers <a, b>: ”;
 cin >> a >> b;
 a = a + b;
 b = a - b;
 a = a - b;
 // logic for swapping a and b ends here
 cout << “Value of a and b on swapping in main(): “ << a << ” “ << b;
}

Run

Enter two integers <a, b>: 10 20
Value of a and b on swapping in main(): 20 10

4.12 RELATIONAL OPERATORS

A relational operator is used to make comparisons between two expressions. All these operators are

binary and require two operands. Logically similar quantities are often compared for taking decisions.

These comparisons can be done with the help of relational operators as shown in Table 4.6. Each one

Mastering C++122

of these operators compares its left-hand side operand with its right-hand side operand. The whole

expression involving the relational operator then evaluates to an integer. It evaluates to zero if the

condition is false, and nonzero value if it is true.

Table 4.6: Relational operators

Operator Meaning

< Less than

> Grater than

< = Less than or equal to

> = Greater than or equal to

= = Equal to

! = Not equal to

In order to understand the relational operators, it is necessary to know the basics of an if statement.

(The if statement is elaborately discussed in the next chapter.) If condition expression is true, it

executes the then-part only, otherwise, it evaluates the else-part, as shown below:

if(condition)
 statement1; // executed when condition is true
else
 statement2; // executed when condition is false

The program relation.cpp illustrates the use of the relational operators in taking decisions.

// relation.cpp: relational operator usage
#include <iostream.h>
void main()
{
 int my_age, your_age;
 cout << “Enter my age: ”;
 cin >> my_age;
 cout << “Enter your age: ”;
 cin >> your_age;
 if (my_age == your_age)
 cout << “We are born in the same year.”;
 else
 cout << “We are born in different years”;
}

Run1

Enter my age: 25
Enter your age: 25
We are born in the same year.

Run2

Enter my age: 25
Enter your age: 21
We are born in different years

Data Types, Operators and Expressions 123

In main(), the statement

if (my_age == your_age)

has the expression my_age == your_age as a conditional expression. It returns true if my_age

and your_age are equal, otherwise it returns false. Note that 0 is treated as false, whereas any nonzero

value is treated as true.

Note that in C++, the operator for testing equality is == (two = signs placed together). One of the

most common mistakes is to use a single = sign, to test for equality. For example, consider the statement

if (my_age = your_age)

The conditional expression evaluates to true even if my_age and your_age are unequal (except

when your_age is equal to zero). This happens because the result of an assignment operator is the

assigned value itself. (Consider my_age is 25 and your_age is 21.) Here, the value of your_age

(25) is assigned to my_age, and the assignment expression evaluates to 25, which is nonzero. Since

any nonzero value is considered to be true, the statements following the if (then-part) are executed.

While using the relational operators, the fact whether the numbers being compared are signed or

not becomes important. Neglecting this fact can lead to hard-to-find errors. The program charl.cpp

illustrates the use of char type variables as 8-bit integers.

// charl.cpp: Using char as an 8-bit integer
#include <iostream.h>
void main ()
{
 // Integer value being assigned to a char
 char c = 255;
 char d = -1;
 if(c < 0)
 cout << “c is less than 0\n”;
 else
 cout << “c is not less than 0\n”;
 if(d < 0)
 cout << “d is less than 0\n”;
 else
 cout << “d is not less than 0\n”;
 if(c == d)
 cout << “c and d are equal”;
 else
 cout << “c and d are not equal”;
}

Run

c is less than 0
d is less than 0
c and d are equal

In main(), the statement

if(c == d)

Mastering C++124

treats c and d as equal, although c is assigned with 255 and d is assigned with –1. It is because both of

them are treated as signed numbers by default. This can be overcome by explicitly defining variables

of type char as signed or unsigned while using them as 8-bit integers, as illustrated in the program

char2.cpp.

// char2.cpp: Using char as an 8-bit integer
#include <iostream.h>
void main()
{
 // Integer value being assigned to a char
 unsigned char c = 255;
 char d = -1;
 if(c < 0)
 cout << “c is less than 0\n”;
 else
 cout << “c is not less than 0\n”;
 if(d < 0)
 cout << “d is less than 0\n”;
 else
 cout << “d is not less than 0\n”;
 if(c == d)
 cout << “c and d are equal”;
 else
 cout << “c and d are not equal”;
}

Run

c is not less than 0
d is less than 0
c and d are not equal

4.13 LOGICAL OPERATORS

Any expression that evaluates to zero denotes a FALSE logical condition, and that evaluating to

nonzero value denotes a TRUE logical condition. Logical operators are useful in combining one or

more conditions. C++ has three logical operators shown in Table 4.7.

Table 4.7 Logical operators

Operator Meaning

&& Logical AND

|| Logical OR

! Logical NOT

The first two operators && and || are binary, whereas the exclamation (!) is a unary operator and is

used to negate a condition. The result of logical operations when applied to operands with all possible

values is shown in Table 4.8.

Data Types, Operators and Expressions 125

Logical AND
For example, consider the following expression

a > b && x == 10

The expression on the left is a > b and that on the right is x == 10. The whole expression

evaluates to true only if both expressions are true (if a is greater than b as well as x is equal to 10)

Table 4.8 Truth table for logical operator

T- True, F-False

Operand1

a
Operand2

b

~a ~b a&&b a||b

F F T T F F

F T T F F T

T F F T F T

T T F F T T

Logical OR
Consider the following example involving the | | operator.

a < m || a < n

The expression is true if one of them is true, or if both of them are true, i.e., if the value of a is less

than that of m, or if it is less than n. Needless to say, it evaluates to true when a is less than m and n.

Logical NOT
The !(NOT) operator takes a single expression and evaluates to true if the expression is false, and

evaluates to false if the expression is true. In other words, it just reverses the value of the expression.

For example, consider

!(x >= y)

It has the same meaning as

x < y

The ! operator can be conveniently used to replace a statement such as

if(a == 0)

by the statement

if(!a)

The expression !a evaluates to true if the variable a holds zero, false otherwise.

The unary negation operator (!) has a higher precedence amongst these, followed by the logical

AND (&&) operator and then the logical OR (| |) operator, and are evaluated from left to right.

The logical operator is used to connect various conditions to determine whether a given year is a

leap year or not. A year is a leap year if it is divisible by 4 but not by 100, or that is divisible by 400.

The program leap.cpp illustrates the use of the modulus operator.

Mastering C++126

// leap.cpp: detects whether year is leap or not

#include <iostream.h>

void main ()

{

 int year;

 cout << “Enter any year: ”;

 cin >> year;

 if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))

 cout << year << “ is a leap year”;

 else

 cout << year << “ is not a leap year”;

}

Run1

Enter any year: 1996

1996 is a leap year

Run2

Enter any year: 1997

1997 is not a leap year

In main(), the statement

if((year % 4 == 0 && year % 100 != 0) || (year % 400 == 0))

can be replaced by

if((!(year % 4) && year % 100 != 0) || !(year % 400))

4.14 BITWISE OPERATORS

The support of bitwise manipulation on integer operands is useful in various applications. Table 4.9

shows the bitwise operators supported by C++. To illustrate these operators with examples, assume that

a, b and c are defined as integer variables as follows:

int a = 13, b = 7, c;

Consider the variables a, b, and c as 16-bit integers and the values stored in a and b have the

following representation in the binary form:

The binary representation of a is 0000 0000 0000 1101

The binary representation of b is 0000 0000 0000 0111

(The spaces appearing after every 4 bits are only for clarity. Actually, the integers are merely 16

continuous bits.)

Data Types, Operators and Expressions 127

Table 4.9: Bitwise operators

Operator Meaning

& Bitwise AND

| Bitwise OR

^ Bitwise Ex-OR

~ Bitwise complement

<< Shift left

>> Shift right

4.14.1 Logical Bitwise Operators
Logical bitwise operators perform logical operations such as AND, OR, EX-OR, NOT between

corresponding bits of operands (if binary) and negation of bits (if unary).

Unary Operator: One’s Complement Operator (~)
The complement operator causes the bits of its operand to be inverted, i.e., 1 becomes 0 and 0 becomes 1.

For instance, the largest possible number, which can be stored in an unsigned integer can be found as

follows. When one’s complement operator is applied on this word holding zero, all the bits will be

inverted to ones and a new value becomes the largest possible number. The program large.cpp

illustrates this conversion process.

// large.cpp: detects largest possible unsigned integer
#include <iostream.h>
int main()
{
 unsigned u = 0;
 cout << “Value before conversion: “ << u << endl;
 u = ~u;
 cout << “Value after conversion : “ << u << endl;
 return 0;
}

Runl

Value before conversion: 0
Value after conversion : 65535

Run2

Value before conversion: 0
Value after conversion : 4294967295

Runl is executed on the MS-DOS based machine using a 16-bit compiler.

Run2 is executed on the UNIX based machine using a 32-bit compiler.

Binary Logical Bitwise Operators
There are three binary logical bitwise operators: & (and), | (or), and ^ (exclusive or). The operations

are carried out independently on each pair of the corresponding bits in the operands, i.e., the bit 1 of

Mastering C++128

operand 1 is logically operated with the bit 1 of operand 2. The operations using these operators are

discussed in the following sections.

Bitwise AND The statement

c = a & b;

makes use of the bitwise AND operator. After this statement is executed, each bit in c will be 1 only

if the corresponding bits in both a and b are 1. For example, the rightmost bit of both integers is 1,

and hence the rightmost bit in c is 1. The next bit is 0 in a and 1 in b. Hence, the second bit (from the

right) in c is 0. Applying the same reasoning for all the bits in each one of the integers, the value of c

after the above statement is executed will be 0000 0000 0000 0101 which, in decimal is 5 and

is illustrated below:

Bitwise AND operator: a & b

 a 0000 0000 0000 1101
 b 0000 0000 0000 0111
 a & b 0000 0000 0000 0101

Bitwise OR The statement

 c = a | b;

makes use of the bitwise OR operator. After this statement is executed, a bit in c will be 1 whenever at

least one of the corresponding bits in either a or b is 1. In the example given below, the value of c will

be 0000 0000 0000 1111, i.e., decimal 15 and is illustrated below:

Bitwise OR operator: a | b

 a 0000 0000 0000 1101
 b 0000 0000 0000 0111
 a | b 0000 0000 0000 1111

Bitwise XOR The statement

c = a ^ b;

makes use of the bitwise XOR operator. After this statement is executed, a bit in c will be 1 whenever

the corresponding bits in a and b differ. So in the example given below, the value of c will be 0000
0000 0000 1010 which, in decimal is 10 and is illustrated below:

Bitwise EX_OR operator: a ̂ b

 a 0000 0000 0000 1101
 b 0000 0000 0000 0111
 a^b 0000 0000 0000 1010

4.14.2 Shift Operators

There are two shift operators in C++: left shift (<<) and right shift (>>). These are binary operators and

have the following syntax:

operand << count for left shift

operand >> count for right shift

Data Types, Operators and Expressions 129

The first operand is the value which is to be shifted. The second is the number of bits by which it

is shifted. The left-shift operator moves the count number of bits to the left, whereas the right-shift

operator moves the count number of bits to the right. The leftmost or the rightmost bits are shifted out

and are lost.

Left-Shift Operator
Consider the statement

c = a << 3;

The value in the integer a is shifted left by three bit positions. The result is assigned to the integer c.

Since the value of a is 0000 0000 0000 1101, the value of c after the execution of the above

statement is 0000 0000 0110 1000 (104 in decimal), and is illustrated below:

Left-Shift <<

drop off insert 0's

after left-bit shift by 3 places, i.e., a << 3

0000 0000 0110 1000

0000 0000 0000 1101

The three leftmost bits drop off due to the left shift (i.e., they are not present in the result). Three

zeros are inserted in the right. The effect of shifting a variable to the left by one bit position is equivalent

to multiplying the value by 2. If the initial value of a is 13, shifting left by 3 bit positions yields 13*8
= 104.

While multiplying a number with a power of 2, considerable savings in execution time can be

achieved by using the left bit-shift operator instead of the multiplication operator, since a shift is faster

than multiplication.

Right-Shift Operator
Consider the statement

c = a >> 2;

The value of a is shifted right by 2 positions. Since the value of a is 0000 0000 0000 1101,

the value of c after the execution of the above statement is 0000 0000 0000 0011 (3 in decimal)

and is illustrated below:

Right-Shift >>

drop offinsert 0's

after right shift by 2 places, i.e., a >> 2

0000 0000 0000 0011

0000 0000 0000 1101

The two rightmost bits drop off (are not present in the result), and zeros are inserted in the left. The

effect of shifting a variable to the right by one bit position is equivalent to dividing the value by 2 (i.e.,

divide by 2 and truncate the result). As the initial value of a is 13, shifting it right by 2 bit positions

yields the value 3 (the result of dividing 13 by 4 and truncating the result). Note that if the negative

number is shifted right then 1 is inserted at the left for every bit shifted to the right.

Mastering C++130

The program extract.cpp illustrates the binary operators. It reads an integer and prints the value

of a specified bit in the integer. The position of bits are numbered starting with 0 from right to left. For

example, to find the value of the second bit of an integer i, it is necessary to shift i to the right by two

bits, and take the least significant digit.

// extract.cpp: Fishing the nth bit

#include <iostream.h>

void main()

{

 // a is the input integer and n, the bit position to extract

 int a, n, bit;

 cout << “Enter an integer: ”;

 cin >> a;

 cout << “Enter bit position to extract: ”;

 cin >> n;

 bit = (a >> n) & 1; // bit is the value of the bit extracted (0 or 1)

 cout << “The bit is ” << bit;

}

Run

Enter an integer: 10

Enter bit position to extract: 2
The bit is 1

In main(), the statement

bit = (a >> n) & 1;

first shifts a to the right by n bits and then masks (clears) all the bits of a except the least significant bit

(rightmost bit), retaining the bit which is required. Parentheses are not required in the above statement,

since the operator >> has more precedence than & (i.e., in an expression, if both >> and & are present,

the >> operator is executed first). Since this fact is not obvious, it is always better to use parentheses in

such situations, for the sake of readability.

4.15 COMPOUND ASSIGNMENT OPERATORS

As discussed earlier, the assignment operator = (equal sign) evaluates the expression on the right and

assigns the resulting value to the variable on the left. Other forms of assignment operators exist, which

are obtained by combining operators such as +, –, *, etc., with the = sign as follows:

variable operator = expression/constant/function;

For example, expressions such as

 i = i + 10;

in which the variable i on the left-hand side is repeated immediately after = sign, and can be rewritten

in the compact form as follows:

 i + = 10;

Data Types, Operators and Expressions 131

The operator += is known as compound assignment operator. Various possible compound assignment

operators are shown in Table 4.10. These operators evaluate the expression on their right, and use the

result to perform the corresponding operation on the variable on the left. Note that only the binary

operators can be combined with the assignment operator.

Table 4.10 Compound assignment operators

Operator Usage Effect

+= a += exp; a = a + (exp);

–= a –= exp; a = a – (exp);

*= a *= exp; a = a * (exp);

/= a /= exp; a = a / (exp);

%= a %= exp; a = a % (exp);

&= a &= exp; a = a & (exp);

|= a |= exp; a = a | (exp);

^= a ^= exp; a = a ^ (exp);

<<= a <<= exp; a = a << (exp);

>>= a >>= exp; a = a >> (exp);

The statement

variable operator = expression;

is equivalent to

variable = variable operator (expression);

Hence, a statement such as

x *= y + 2;

is equivalent to

x = x * (y + 2);

rather than

x = x * y + 2;

4.16 INCREMENT AND DECREMENT OPERATORS

The C++ language offers two unusual unary operators for incrementing and decrementing variables.

These are ++ and –– operators and are known as increment and decrement operators respectively. These

operators increase or decrease the value of a variable on which they operate by one. The specialty about

them is that they can be used as prefix or postfix and their meaning changes accordingly. When used

as a prefix, the value of the variable is incremented/decremented before being used in the expression.

But when used as a postfix, it’s value is first used in the expression and then the value is incremented/

decremented. The syntax of the operators is given below:

++VariableName

VariableName ++

– –VariableName

VariableName– –

Mastering C++132

The operator ++ adds 1 to the operand and –– subtracts 1 from the operand. The prefix and postfix for

increment expressions are shown below:

++m and m++

Consider the following statements:

++m;
m++;

In the above statements, it does not matter whether the

increment operator is prefixed or suffixed it will produce

the same result. However, in the following examples, it does

make a difference:

int a = 0, b = 10;

The statement

a = ++b;

is different from

a = b++;

In the first case, the value of a after the execution of this statement will be 11, since b is incremented

first and then assigned. In the second case, the value of a will be 10, since it is assigned first and then

incremented. (See Figure 4.7). The value of b in both the cases will be 11. These unary operators have

a higher precedence than the binary arithmetic operators. The increment and decrement operators can

only be applied to variables; an expression such as (i+j)++ is illegal.

4.17 CONDITIONAL OPERATOR (TERNARY OPERATOR)

An alternate method to using a simple if-else construct is the conditional expression operator ?:. It is

called the ternary operator, which operates on three operands. It has the following syntax:

expression1? expression2 : expression3

Here, the expression1 is evaluated first; if it is true then the value of expression2 is the result; otherwise,

expression3 is the result. The if-else construct

if(a > b)
 z = a;
else
 z = b;

which finds the maximum of a and b it can be alternatively

realized by using

z = (a > b)? a : b;

It is illustrated in Figure 4.8.

The program max.cpp reads two integers and displays

the value of the larger of the two numbers computed using

the ternary operator. If they are equal then naturally, either

of them can be printed.

Fig. 4.7 Prefix and postfix increment

a

b 10

0

a = ++b;
a = 0, b = 10

a = b++;

11

11a

b 11

10a

b

Fig. 4.8 Ternary operation evaluation

z = result

expr2 expr3

expr1
True False

z = (a>b) ? a b: ;

Data Types, Operators and Expressions 133

// max.cpp: finding the maximum using the conditional operator
#include <iostream.h>
void main()
{
 int a, b, larger;
 cout << “Enter two integers: ”;
 cin >> a >> b;
 larger = a > b? a : b;
 cout << “The larger of the two is ” << larger;
}

Run

Enter two integers: 10 20
The larger of the two is 20

In main(), the statement

larger = a > b ? a : b;

has three components. The conditional expression (a > b ? a : b) returns a if a > b, otherwise

it returns b. It can be equivalently coded using the if statement as follows:

if(a > b)
 larger = a;
else
 larger = b;

The expressions in the ternary operator can be any valid variable, constant, or an expression. The

program oddeven.cpp checks whether the number is odd or even using the ternary operator.

// oddeven.cpp: checks whether the number is odd or even
#include <iostream.h>
void main()
{
 int num;
 char *str;
 cout << “Enter the number: ”;
 cin >> num;
 cout << “The number ” << num << “ is ”;
 cout << ((num % 2)? “Odd” : “Even”);
 cout << endl << “Enter the number: ”;
 cin >> num;
 cout << “The number ” << num << “ is ”;
 (num % 2)? cout << “Odd” : cout << “Even”;
}

Run

Enter the number: 10
The number 10 is Even
Enter the number: 25
The number 25 is Odd

Mastering C++134

In main(), the statements

cout << ((num % 2)? “Odd” : “Even”);
(num % 2) ? cout << “Odd” : cout << “Even”;

produce the same result. In the first statement, when the input value is 10, it returns the string Even,

which is passed to cout for display. The second statement executes

cout << “Even”

when the input is an even number; otherwise, it executes the first expression

cout << “Odd”

4.18 SPECIAL OPERATORS

Some of the special operators supported by C++ include sizeof, indirection, comma, etc. The sizeof()

operator returns the size of the data type or the variable in terms of bytes occupied in memory, as

illustrated earlier. Another class of operators is the member-selection operators (. and ->) which are

used with structures and unions. The indirection and address operators,* and & respectively, are

explained in detail in later chapters.

Comma Operator
A set of expressions separated by commas is a valid construct in the C++ language. It links the related

expressions together. Expressions linked using the comma operator are evaluated from left to right and

the value of the rightmost expression is the result. For example, consider the following statement that

makes use of the comma operator.

i = (j = 3, j + 2);

The right-hand side consists of two expressions separated by commas. The first expression is j=3

and the second one is j+2. These expressions are evaluated from left to right, i.e., first the value 3

is assigned to j and then the expression j+2 is evaluated, giving 5. The value of the entire comma-

separated expression is the value of the rightmost expression. In the above example, the value assigned

to i would be 5.

Some other typical situations where the comma operator can be used are the following:

1. for(int i = 2, j = 10; ..; ..)

2. t = x, x = y, y=t; // exchanges x and y values

4.19 typedef STATEMENT

The typedef statement is used to give new names to existing data types. It allows the user to declare

an identifier to represent an existing data type (with enhancement) as shown in the following syntax:

typedef type identifier;

where type refers to an existing data type and identifier refers to the new name given to the data

type. For example, the statement,

typedef unsigned long ulong;

Data Types, Operators and Expressions 135

declares ulong to be a new type, equivalent to unsignedlong. It can be used just like any standard

data type in the program. For example, the statement

ulong u;

defines u to be of type ulong. Also sizeof(ulong) returns the size of the new variable type in

bytes.

4.20 PROMOTION AND TYPE CONVERSION

A mixed-mode expression is one in which the operands are not of the same type. In this case, the

operands are converted before evaluation to maintain compatibility between data types. It can be

carried out by the compiler automatically or by the programmer explicitly.

4.20.1 Implicit Type Conversion

The compiler performs type conversion of data items when an expression consists of data items of

different types. This is called implicit or automatic type conversion. The rules followed by the compiler

for implicit type conversion is shown in Table 4.11.

Table 4.11 Automatic type-conversion rule table

Operand1 Operand2 Result

char int int

int long long

int float float

int unsigned unsigned

long double double

double float double

Consider the following statements to illustrate automatic type conversion:

float f = 10.0;
int i = 0;
i = f / 3;

In this expression, the constant 3 will be converted to a float and then the floating-point division will

take place, resulting in 3.33333. This (integer to float) type of conversion, where the variable of a lower

data type (which can hold lower range of values or has lower precision) is converted to a higher type

(which can hold higher range of values or has higher precision) is called promotion. But the lvalue is

an integer variable, hence, the result of f/3 will be automatically truncated to 3 and the fractional part

will be lost. This (float to integer) type of conversion, where the variable of higher type is converted to

a lower type is called demotion.

The implicit conversions thus occurring are also called silent conversions since the programmer is

not aware of these conversions. The flexibility of the C++ language, to allow mixed type conversions

implicitly, saves a lot of effort on the part of the programmer, but at times, it can give rise to bugs in

the program.

Mastering C++136

The following statement illustrates the process of type

conversion:

int a, c;
long 1;
float f;
double d;
l = l/a + f * d - d;

The variables a and f are type converted to long and

double respectively. The process of type conversion

leading to data promotion or demotion while assigning the

computed result (if necessary), is shown in Figure 4.9.

4.20.2 Explicit Type Conversion

Implicit type conversions, as allowed by the C++ language,

can lead to errors creeping into the program if adequate care

is not taken. Therefore, the use of explicit type conversion is recommended in mixed-mode expressions.

It is achieved by typecasting a value of a particular type into the desired type as follows:

(type) expression

(type) variable_name

The expression/variable is converted to the given type. Consider the expression:

(float)i+f

It typecasts the variable i of type integer to float. Another syntax for type conversion, which is

specific to C++is as follows:

type(expression)

type(variable_name)

Typecasting can also be used to convert from a higher type to a lower type. For example, if f is a float
whose value is 2.7, the expression

int(f)

evaluates to 2. The program coerce.cpp illustrates the different ways of achieving type conversion.

// coerce.cpp: type conversion
#include <iostream.h>
void main()
{
 int i, j;
 float f;
 i = 12;
 j = 5;
 cout << “when i = ” << i << “ j = ” << j << endl;
 f = i/j;
 cout << “i/j = ” << f << endl;
 f = (float)i/j;

Fig. 4.9 Automatic type conversion

int a;

long 1;

float f;

double d;

1 = 1 / a + f * d – d

long

double

double

1 = double

Data Types, Operators and Expressions 137

 cout << “(float)i/j = ” << f << endl;
 f = float(i)/j;
 cout << “float(i)/j = ” << f << endl;
 f = i/float(j);
 cout << “i/float(j) = ” << f << endl;
}

Run

when i = 12 j = 5
i/j = 2
(float)i/j = 2.4
float(i)/j = 2.4
i/float(j) = 2.4

4.21 CONSTANTS

A constant does not change its value during the entire execution of the program. They can be classified

as integer, floating point, character, and enumeration constants.

4.21.1 Integer Constants

C++ allows to represent the integer constants in three forms. They are octal, decimal, and hexadecimal.

Octal System (Base 8)

Octal numbers are specified with a leading zero, rest of the digits being between 0 and 7. For instance,

0175 is an integer constant specified in octal whose base-10 (decimal) value is 125.

Decimal System (Base 10)

It is the most commonly used system. A number in this system is represented by using digits 0–10. For

instance, 175 is an integer constant with base 10.

Hexadecimal System (Base 16)

Hexadecimal numbers are specified with 0x or 0x in the beginning. The digits that follow 0x must be

numbers in the range 0–9 or one of the letters a-f or A-F. For example, 0xal is an integer constant

specified in hexadecimal whose base-10 or decimal value is 161. 0xal is the same as 0xal, or 0xAl,

i.e., either a lower-case or an upper-case x can be used.

A size or sign qualifier can be appended at the end of the constant. The suffix u is used for unsigned
int constants, 1 for long int constants and s for signed int constants. It can be represented

either in upper case or lower case.

Examples:

 1. Unsigned integer constants

 56789U
 56789u

Mastering C++138

 2. Long integer constants

 7689909L
 76899091
 0675434L (A long integer constant specified in octal).

 0x34ADL (A long integer constant specified in hexadecimal).

 0xf4A3L (A long integer constant in hexadecimal with upper and lower-case letters)

 3. The suffixes can be combined, as illustrated in the following unsigned long integer constants.

The suffixes can be specified in any order.

 6578890994U1
 6578890994ul

4.21.2 Floating-Point Constants

Floating-point constants have a decimal point, or an exponent sign, or both.

Decimal Notation

Here, the number is represented as a whole number, followed by a decimal point and a fractional part.

It is possible to omit digits before and after the decimal point.

Examples of valid floating-point constants:

125.45 241. .976 -.71 +.5

Exponential Notation

Exponential notation is useful in representing numbers whose magnitudes are very large or very

small. The exponential notation consist of a mantissa and an exponent. The exponent is positive unless

preceded by a minus sign. The number 231.78 can also be written as 0.23178e3, representing the

number 0.23178*103. The sequence of digits 23178 in this case after the decimal point is called

the mantissa, and 3 is called the exponent.

For example, the number 75000000000 can be written as 75e9 or 0.75ell. Similarly, the

number 0.00000000045 can be written as 0.45e-9.

 (i) The following examples are valid constants:

 2000.0434
 3.4e4
 3E8

 (ii) The following are some invalid constants:

 2,000.0434 - comma not allowed.

 3.4E.4 - exponent must be an integer.

 3e 8 - blank not allowed.

Normalized exponential representation is one in which the value of the mantissa is adjusted to a

value between 0.1 and 0.99, for example, the number 75000000000 is written as 0.75ell

The rules governing exponential representation of the real constants are given below:

 The mantissa is either a real number expressed in decimal notation or an integer.

 The mantissa can be preceded by a sign.

 The exponent is an integer preceded by an optional sign.

Data Types, Operators and Expressions 139

 The letter e can be written in lowercase or uppercase.

 Embedded white space is not allowed.

By default, real constants are assumed to be double. Suffixes f or F can be used to specify the float

values. For example, 0.257 is assumed to be a double constant, while 0.257f is a float constant.

The character 1 or L can be used to specify long double values. For example, 0 .257L is a long
double constant.

4.21.3 Character Constants

A character constant is enclosed in single quotes.

Examples: Valid character constants: ‘a’ ‘5’ ‘\n’.

 Invalid character constants: ‘ab’ ‘54’.

Note that multiple characters can also exist within single quotes. The compiler will not report any

error. The value of the constant, however, depends upon the compiler used. This notation of having

multiple characters in single quotes is practically never used.

Inside the single quotes, a backslash character starts an escape sequence. \xhh specifies a character

constant in hexadecimal, where h is any hexadecimal digit. The hexadecimal digits hh give the ASCII

value of the character. For example, the character constant \x07 represents the BELL character. The

complete list of escape sequences is shown in Table 4.12.

Table 4.12 Escape sequences

Operator Meaning

\a Beep

\b Backspace

\f Formfeed

\n Newline

\t Horizontal tab

\\ Backslash

\’ Single quote

\” Double quote

\v Vertical tab

\> Question mark

\0 Null

\0ooo Code specified in octual

\xhh Code specified in hexadecimal

The escape sequence \0XXX specifies a character constant in octal, where 0 denotes any octal digit.

As before, XXX is the ASCII value of the number specified in octal. For example, the ASCII code of K is

75. The character constant \0113 specifies this character in octal. The program beep.cpp generates

the beep sound using the escape sequence. The escape sequence \x07 (can be \7) in the cout can be

replaced by \a.

Mastering C++140

// beep.cpp: generating beep sound
#include <iostream.h>
void main()
{
 cout << ‘\x07’; // computer generates sound
}

Run

Note: You will hear a beep sound.

Examples:

 (i) cout << “\\ is a backslash.”; will print as follows:

 \ is a backslash.

 (ii) cout << “This \” is a double quote.”; will print

 This “ is a double quote.

4.21.4 String Literals

A string literal is a sequence of characters enclosed in double quotes. The characters may be letters,

numbers, escape sequences, or blank space. To make it easier, string constants are concatenated at

compile time. For example, the strings

“C++ is the best” and,

“C++ is ” “the best” are the same.

An Important Difference: 'A' and “A”
The notations ’A’ and “A” have an important difference. The first one (‘A’) is a character constant,

while the second (“A”) is a string constant. The notation ‘A’ is a constant occupying a single byte

containing the ASCII code of the character A. The notation “A”, on the other hand, is a constant that

occupies two bytes, one for the ASCII code of A and the other for the null character with value 0 that

terminates all strings. The statement

char ch = ‘R’;

assigns ASCII code of the character R to the variable ch, whereas the statement

char *str = “Hello OOPs!”;

assigns the starting address of the string Hello OOPs! to the variable str.

4.22 DECLARING SYMBOLIC CONSTANTS—LITERALS

Literals are constants to which symbolic names are associated for the purpose of readability and ease

of handling. C++ provides the following three ways of defining constants:

 # define preprocessor directive

 enumerated data types

 const keyword

Data Types, Operators and Expressions 141

The keyword const is already discussed in the Chapter 2. The following section discusses macros

and enumerated data types.

#define Preprocessor Directive
The preprocessor directive #define associates a constant value to a symbol and is visible throughout

the module in which it is defined. The symbols defined using #define are called macros. The syntax

of the #define directive is

#define SymbolName ConstantValue

Examples:
define MAX_VAR 100
define PI 3.1452
define NAME “Rajkumar”

The preprocessor will replace all the macro symbols used in the program by their values before

starting the compilation operation. For instance, the statement,

area = PI * radius * radius;

is translated as,

area = 3.1452 * radius * radius;

by the processor if there exist a preprocessor directive,

#define PI 3.1452

in the program and before the statement referencing to it. The definition of macros can be superseded

by a new definition. For instance, the symbol PI can be redeclared as,

#define PI (22/7)

The program city.cpp illustrates the superseding of the value of old macro symbol by a new

declaration.

// city.cpp: superseding of macros
#include <iostream.h>
#define CITY “Bidar”
void which_city();
void main()
{
 cout << “Earlier City: ”;
 cout << CITY << endl;
#define CITY “Bangalore”
 cout << “New City: ”;
 cout << CITY << endl;
 which_city();
}
void which_city()
{
 cout << “City in Function: ”;
 cout << CITY;
}

Mastering C++142

Run

Earlier City: Bidar
New City: Bangalore
City in Function: Bangalore

In the above program, initially the macro constant CITY is declared with the value “Bidar”. The

statement in the beginning of the main() function

cout << CITY << endl;

will print the message

Bidar

as seen in the output of the program. However, the same statement at the end of main() and in the

function which_city() prints the message

Bangalore

Thus, the most recent declaration of the macro constant will supersede the earlier one. Macro constants

behave similar to global variables except that they are visible from the point of their declaration. The.

important advantages of using macro symbols include the following:

 Program coding is easier

 Enhances program readability

 Program maintenance is easier

The disadvantage of macro constants is that they do not support the specification of the data type in

the declaration; any type of value can be assigned (either integer, float, or string).

4.23 ENUMERATED DATA TYPES

An enumerated data type is a user-defined type, with values ranging over a finite set of identifiers called

enumeration constants. For example,

enum color {red, blue, green);

This defines color to be of a new data type which can assume the values of red, blue or green.

Each of these is an enumeration constant. In the program, color can be used as a new type. A variable

of type color can have any one of the three values: red, blue, or green. For example, the statement

color c;

defines c to be of type color. Internally, the C++ compiler treats an enum type (such as color) as

an integer itself. The above identifiers red, blue, and green represent the integer values of 0, 1, and

2 respectively. So, the statements

c = blue;
cout << “As an int, c has the value ” << c;

will print

As an int, c has the value 1

Data Types, Operators and Expressions 143

Constant values can be explicitly specified for the identifiers. When the value for one identifier is

specified in this manner, the value of the next element is incremented by one (next higher integer). For

example, if the definition of color is

enum color {red = 10, blue, green = 34};

then the statement c = red will assign the value 10 to c. Thereafter, the statement

c = blue;

assigns the value 11 to c, and the statement

c = green;

assigns the value 34 to c. (If no value is specified for green in the declaration, it would assume the

value 12.)

Enumeration is a convenient way to associate constant integers with meaningful names. They have

the advantage of generating the values automatically. Use of enumeration constants, in general, makes

the program easier to read and change at a later date.

Names of different enumeration constants must be distinct. The following example is invalid.

enum emotion {happy, hot, cool};
enum weather {hot, cold, wet};

It is not difficult to see why the above declarations are invalid; the name hot has the value 1 in the enum

emotion and the value 0 in weather. In the program, if the name hot is used, there is ambiguity

as to which value to use. On the other hand, values need not be distinct in the same enumeration. For

example, the following declaration is perfectly valid:

enum weather {hot, warm = 0, cold, wet);

The names hot and warm can be interchangeably used since both represent the value 0.

Consider the following enumeration statement:

enum flag { false, true };

It declares the identifier flag as an enumerated data type. It can be further used in the definition of

enumerated variables as follows:

flag flagl; // holds either false or true

In this case, the variable flagl is defined as an enumerated variable of type flag and always holds

the value either true or false as follows:

flagl = true;

If an attempt is made to assign any value other than true or false, the compiler generates a warning.

flagl = 3; // warning: trying to assign integer to flagl

Use only enumerated constants with enumerated variables. The multimodule programs colorl.
cpp and color2.cpp illustrate some critical points on enumerated data types.

// colorl.cpp: main having enum typedef and calling function from color2.
cpp
#include <iostream.h>
typedef enum Color { red, green, blue }; // red = 0, green = 1, and blue = 2
void PrintColor(Color c);

Mastering C++144

void main()
{
 cout << “Your color choice in colorl.cpp module: green” << endl;
 PrintColor(green); // calls module in color2.cpp
}

// color2.cpp: prints color name based on color code
#include <iostream.h>
typedef enum Color { red, blue, green }; // red = 0, blue = 1, and green = 2
void PrintColor(Color c)
{
 char *color;
 switch(c)
 {
 case red: // case 0
 color = “red”;
 break;
 case blue: // case 1
 color = “blue”;
 break;
 case green: // case 2
 color = “green”;
 break;
 }
 cout << “Your color choice as per color2.cpp module: “ << color;
}

Run

Your color choice in colorl.cpp module: green
Your color choice as per color2.cpp module: blue

The modules colorl.cpp and color2.cpp must be compiled and linked together in order

to create an executable code. The command to create an executable version of these modules in the

Borland C++environment is

bcc colorl.cpp color2.cpp

It creates the executable file colorl.exe.

The enumeration declaration statement in colorl.cpp

typedef enum Color { red green, blue };

creates three constant symbols: red, green, blue with 0, 1, and 2 respectively. It can be written without

the use of the typedef keyword as follows:

enum Color { red, green, blue };

An enumerated variable can be defined using the statement

Color cl;

although the typedef keyword is missing. The enumeration declaration statement in color2.cpp

typedef enum Color { red, blue, green };

Data Types, Operators and Expressions 145

creates three constant symbols: red, green, blue with 0,1, and 2 respectively. Note that the enumerated

symbol green has the value 1 in the first module colorl.cpp whereas, it has the value 2 in the

module color2.cpp. The statement in colorl.cpp

PrintColorf green); // calls module in color2.cpp

invokes the PrintColor() defined in the color2.cpp module with the enumerated symbol green

(whose value is 1 in colorl.cpp) to print the message green. Instead it prints the message blue; the

enumeration declaration in color2.cpp declares the symbol green having the value 2 and blue as

1. The value of symbol green in colorl.cpp is the same as that of the symbol blue in color2.
cpp. This can be observed from the switch statement with the enumerated variable c in the color2.
cpp module. Such inconsistent enumeration declaration must be avoided, and they must have the same

declaration in all the modules constituting a program. Thus, enumeration variables can be defined in

any module, but it is defined according to the enumeration declaration in its own module. Enumerated

constants will have the same value as declared in the current module. In the above program, the module

colorl.cpp has enumeration declaration:

typedef enum Color { red, green, blue };

and the module color2.cpp has the enumeration declaration:

typedef enum Color { red, blue, green };

Note that in the above declarations, enumeration constants green and blue will have different values

in different modules. Such mismatch in declaration will generate wrong results. Therefore, the call

PrintColor(green);

in the module colorl.cpp prints blue instead of green.

4.24 MACRO FUNCTIONS

The preprocessor will replace all the macro functions used in the program by their function body

before the compilation. The distinguishing feature of macro functions are that there will be no explicit

function call/during execution, since the function body is substituted at the point of macro call during

compilation. Thereby the runtime overhead for function linking or context-switch time is reduced. The

directive #define indicates the start of a macro function as shown in Figure 4.10. The macro function

specification spans for a maximum of one line only. However, the macro function body can spread to

multiple lines if each new line is followed by the ‘\’ character.

Fig. 4.10 Syntax for declaring macro function

define

name of the macro function

MacroFuncName (Parameters) single line function body

C++ statements performing
Macro Function Operation

macro parameters

precompiler (preprocessor) directive

Start of preprocessor directive indicator

Mastering C++146

Examples:

#define inc(a) a+1
#define add(a, b) (a+b)

The program maxmacro.cpp illustrates the use of macro function in the computation of the

maximum of two numbers.

// maxmacro.cpp: maximum of two numbers using macros
#include <iostream.h>
#define max(a, b) (a > b ? a : b)
void main()
{
 cout << “max(2, 3) = ” << max(2, 3) << endl;
 cout << “max(10.2, 4.5) = “ << max(10.2, 4.5) << endl;
 int i = 5, j = 10;
 cout << ”i = ” << i << endl;
 cout << “j = ” << j << endl;
 cout << “On execution of k = max(++i, ++j);...” << endl;
 int k = max(++i, ++j);
 cout << “i = ” << i << endl;
 cout << “j = ” << j << endl;
 cout << “k = ” << k << endl;
}

Run

max(2, 3) = 3
max(10.2, 4.5) = 10.2
i = 5
j = 10
On execution of k = max(++i, ++j);...
i = 6
j = 12
k = 12

In main(), the expressions

max(2, 3)
max(10.2, 4.5)

invoke the macro function max(). Unlike normal functions, macro functions can take parameters of

any data type. If arguments are in the form of expressions, they are not evaluated at the point of call,

but at the time of their usage. Thus, the statement

int k = max(++i, ++j);

is processed by the preprocessor as follows:

int k = (++i > ++j ? ++i : ++j);

It can be observed that the variable with greater value will be incremented twice. The macro function

body can spread across multiple lines as follows:

Data Types, Operators and Expressions 147

#define print(n) \
 fort(int i = 0; i < n; i++) \
 cout << i;

4.25 OPERATOR PRECEDENCE AND ASSOCIATIVITY

Every operator in C++ has a precedence associated with it. Precedence rules help in removing the

ambiguity about the order of performing operations while evaluating an expression. The associativity of

the operators is also important. Associativity specifies the direction in which the expression is evaluated,

while using a particular operator. The precedence and associativity of all the operators including

those introduced by C++ are shown in Table 4.13. It is important to note the order of precedence and

evaluation (associativity) of operators. Consider the following two statements:

int a = 10, b = 15, c = 3, d;
d = a + b * c;

In the second statement, first b is multiplied by c, and then the result is added to a and the sum is

assigned to d. Multiplication is done before addition, since it has higher precedence than the addition

operator. In order to override the precedence, braces can be used. For example, the statement

d = (a + b) * c;

would add a to b first, multiply the result by c and assign the product to d. Associativity of an operator

can be from left-to-right or right-to-left. For example, in the expression

d = a - b - c;

the leftmost minus is evaluated first and then the second minus is evaluated, causing c to be subtracted,

from the result. Thus, in case where several operators of the same type appear in an expression without

braces, the operators are normally evaluated starting from the leftmost operator, proceeding rightward,

hence the minus operator associates from left to right. On the other hand, the assignment operator

associates from right to left. For example, in the statement

d = a = c;

the second (rightmost) assignment operator is evaluated first. The variable c is assigned to a and then

this value is assigned to d.

Case Study

Consider the following expression:

a + b / --c + a % b
where, a = 30, b = 20 and c = 11

Apply the operator precedence and associativity rules shown in Table 4.13 and deduce the resultant

value of the above expression.

The given expression can also be represented as below:

a + (b / (--c)) + (a % b)

Now let’s substitute the values of a, b and c and try to solve the expression using the operator

precedence and associativity rules.

Mastering C++148

30 + (20 / (--11)) + (30 % 20)
30 + (20 / 10) + (10)
30 + 2 + 10
42

Hence, the resultant value of the given expression is 42. The program exp.cpp solves the given

expression to obtain the resultant value.

// exp.cpp: Applies operator precedence to solve the given expression
#include<iostream.h>
void main()
{
 int a, b, c;
 float result;
 a=30;
 b=20;
 c=11;
 result = a+b/--c +a%b;
 cout<<“a+b/--c+a%b = ”<<result;
 }

Run

a+b/--c+a%b = 42

Like most programming languages, C++ does not specify the order in which the operands of an

operator are evaluated. Such operators are &&, ||,?:, and ‘,’.) For example, in the statement

such as

x = g () + h ();

g() may be evaluated before h() or vice versa; thus if g() or h() alters a variable (global) on which

the other depends, then the resultant value of x is dependent on the order of evaluation. Similarly, the

order in which function arguments are evaluated is not specified, so the statement

add(++n, pow(2, n));

can produce different results with different compilers. However, most C+ + compilers evaluate

function arguments from right to left. There are cases such as in function calls, nested assignments,

increment and decrement operators causing side effects—some variable is changed as a by-product of

the evaluation of the expression. The (C language and hence, C++) standard intentionally leaves such

matters unspecified. When side effects (variable modification) take place within an expression, it is left

to the discretion of the compiler, since the best order depends strongly on the machine architecture.

Table 4.13 Operator precedence and associativity

Category Operator Operation Precedence Associativity

Highest

precedence

()
[]
->
::
.

Function call

Array subscript

C++ indirect component selector

C++ scope access/resolution

C++ direct component selector

1 L"R

(left to right)

Data Types, Operators and Expressions 149

Unary !
~
+
–
++
––
&
*

Sizeof
New

delete

Logical negation (NOT)

Bitwise (1’s) component

Unary plus

Unary minus

Preincrement or postincrement

Predecrement or postdecrement

Address

Indirection

(returns size of operand, in bytes)

dynamically allocates C++ storage

dynamically deallocates C++ storage

2 R"L

(right to left)

Member

access

.*
->*

Dereference

dereference

3 L"R

Multiplication *
/
%

Multiply

Divide

Remainder (modulus)

4 L"R

Additive +
–

Binary plus

Binary minus

5 L"R

Shift <<
>>

Shift left

Shift right

6 L"R

Relational <
<=
>
>=

Less than

Less than or equal to

Greater than

Greater than or equal to

7 I"R

Equality ==
!=

Equal to

Not equal to

8 L"R

Bitwise AND & Bitwise AND 9 L"R

Bitwise XOR ^ Bitwise XOR 10 L"R

Bitwise OR | Bitwise OR 11 i"R

Logical AND && Logical AND 12 L"R

Logical OR || Logical OR 13 L"R

Conditional ?: (a?x:y means “if a then x, else y”) 14 I"R

Assignment =
*=
/=
%=
+=
–=
&=
^=
|=
<<=
>>=

Simple assignment

Assign product

Assign quotient

Assign remainder (modulus)

Assign sum

Assign difference

Assign bitwise AND

Assign bitwise XOR

Assign bitwise OR

Assign left shift

Assign right shift

15 R"L

Comma Evaluate 16 L"R

Mastering C++150

The moral is that developing a code that depends on the order of evaluation is not a good programming

practice in any language. Hence, it is necessary to know what to avoid, but if it is not known how they

are treated, the programmer should not be tempted to take advantage of a particular implementation.

SOLVED PROBLEM

Write a program to accept two numbers and perform basic mathematical operations on them.

#include<iostream.h>
void main()
{
 int num1, num2;
 cout<<”Enter the first number: “;
 cin>>num1;
 cout<<”Enter the second number: “;
 cin>>num2;
 cout<<num1<<” + “<<num2<<” = “<<num1+num2<<”\n”;
 cout<<num1<<” - “<<num2<<” = “<<num1-num2<<”\n”;
 cout<<num1<<” * “<<num2<<” = “<<num1*num2<<”\n”;
 cout<<num1<<” / “<<num2<<” = “<<num1/num2<<”\n”;
}

Run

Enter the first number: 20
Enter the second number: 10
20 + 10 = 30
20 - 10 = 10
20 * 10 = 200
20 / 10 = 2

REVIEW QUESTIONS ++
 4.1 What are variables? List C++ rules for variable naming.

 4.2 Why input and output are considered as different identifiers?

 4.3 What are keywords? List keywords specific to C++. Can these keywords be used as

variables?

 4.4 What is a data type? What are the different data types supported by C++?

 4.6 What is new about C++ in terms of the variable definition?

 4.7 What is the difference between a character and a character string representation?

 4.8 What is an expression? Is this different from a statement? Give reasons.

 4.9 List categories of operators supported by C++.

 4.10 What are qualifiers? Illustrate them with examples.

 4.11 Develop an interactive program to compute simple and compound interest.

+
+

Data Types, Operators and Expressions 151

 4.12 List evaluation steps for the expression (a+ (b*c)) *c+d/2.

 4.13 Write an interactive program to find the largest of two numbers.

 4.14 How does C++ represent true and false values? Do the expressions ! a and a==0 have the

same meaning? Give reasons.

 4.15 Write a program to determine the type of compiler (whether 16 or 32-bit) used to

 compile it.

 4.16 Write a program to multiply and divide a given number by 2 without using * and /

operators.

 4.17 Illustrate how compound assignment operators allow to write compact expressions?

 4.18 What is the effect of the following expressions if i=l and j=4?

 (a) i++ (b) j = j++; (c) j = ++j; (d) i+++j (e) i = 1+++++j;

 4.19 Write an interactive program to find the elder among you and me using the ternary

operator.

 4.20 What is the outcome of the statement: a=(a=10, a++, a--); if a holds the value 5

initially.

 4.21 What is type conversion? What are the differences between silent and explicit type

conversion? Write type conversion steps are required for evaluating the statement:

 z=i+b+j-k/4; (where i and j are ints, b is float, and k is double, and z is long type).

 4.22 What are escape sequences? Write a program to output messages in double quotes.

 4.23 What are macros? Write a program to find the minimum of two numbers using macros.

What is the output of the statement: a = min(++a, ++b); (if a=2 and b=4).

 4.24 What is operator precedence? Arrange the following operators in the order of their

precedence:

 –, *, +, (), ^, !, ++, --, |, ||, &, /, and &&

 4.25 What is the significance of the associativity of operators? What is the order of evaluation

of the operator ?: in the statement

 a = i > j ? i : j;

Control Flow

 5.1 INTRODUCTION

In the real world, several activities are initiated (sequenced), or repeated

based on some decisions. Such activities can be programmed by specifying

the order in which computations are carried out. Flow control is the way

a program causes the flow of execution to advance and branch based on

changes in the data state. Branching, iteration, dispatch, and function calls

are all different forms of flow control. Flow control in C++ is nearly identical to those in C. Many C

programs can be converted quite easily to C++ because of this similarity. The C++ language offers a

number of control flow statements: for, while, do-while, if-else, else-if, switch, and

goto. Although all of them can perform operations such as looping or branching, each one of them

is convenient for a particular requirement. The control flow statements can be broadly categorized as

branching and looping statements.

Branching Statements
Branching statements alter sequential execution of program statements. Following are the branching

statements supported by C++:

(a) if statement

(b) if-else statement

(c) switch statement

(d) goto statement

Among all the above statements, goto is the only unconditional branching statement.

Looping Statements
Loops cause a section of code to be executed repeatedly until a termination condition is met. The

following are the looping statements supported in C++:

(a) for statement

(b) while statement

(c) do-while statement

The goto statement can be used for looping, but its use is generally avoided as it leads to haphazard

code and also increases the chances of error.

5

Control Flow 153

5.2 STATEMENTS AND BLOCK

An expression such as a = 1000, x++, or cout << “Hi”, when followed by the semicolon,

becomes a statement. For example, the following

a = 1000;

x++;

cout << “Hi”;

are treated as C++ statements. In C++, the semicolon is a statement terminator, rather than a separator

as in Pascal.

C++ allows grouping of statements, which have to be treated as an entity and the resulting group is

called compound statement or block. It consists of declarations, definitions, and statements enclosed

within braces { and } as follows:

 {

 int a;

 int b = 10;

 a = b + 100;

 }

Note that there is no semicolon after the right brace that ends a block. A block is syntactically

equivalent to a single statement. Any variable defined within a block is local to the block and it is not

visible outside the block. Blocks are very useful when branching or looping action is to be applied on

a set of statements depending on a particular decision. Examples illustrating the use of a block will be

discussed later.

5.3 if STATEMENT

The if construct is a powerful decision-making statement which is used to control the sequence of the

execution of statements. It alters the sequential execution using the following syntax:

if(test expression)

 statement;

The test expression should always be enclosed in

parentheses. If test expression is true (nonzero) then the

statement immediately following it is executed. Otherwise, the

control passes to the next statement following the if construct.

The control flow in the if statement is shown in Figure 5.1.

Notice that there is no then keyword following the test

expression, as there is in BASIC and Pascal. The program agel.cpp illustrates the use of if

statement for making a decision.

// agel.cpp: use of if statement

#include <iostream.h>

void main()

Fig. 5.1 Control flow in if statement

false true
if (expression)

{

statement;

}

Mastering C++154

{

 int age;

 cout << “Enter your age: ”;

 cin >> age;

 if(age > 12 && age < 20)

 cout << “you are a teen-aged person. good!”;

}

Run1

Enter your age: 15

you are a teen-aged person. good!

Run2

Enter your age: 20

In main(), the statement

if(age > 12 && age < 20)

first evaluates the test expression and executes the if-part only when it is true. In Run1, the input data

entered is 15 which lies between 13 and 19 and hence, the statement

cout << “you are a teen-aged person. good!”;

gets executed. Whereas, in Run2, the input data is 20 which does not lie within this range and hence,

the control proceeds to the next statement.

5.3.1 Compound Statement with if

In the if construct, the if-part can be represented by a compound statement as follows:

if(test-expression)

{

 statement 1;

 statement 2;

}

In this case, when the test expression is true, the statements enclosed within the curly braces,

representing a compound statement, are executed. The program age2.cpp illustrates the use of the

compound if statement.

// age2.cpp: use of if statement and data validation

#include <iostream.h>

void main()

{

 int age;

 cout << “Enter your age: ”;

 cin >> age;

 if(age < 0)

 {

 cout << “I am sorry!” << endl;

 cout << “age can never be negative”;

Control Flow 155

 return; // terminate program

 }

 if(age > 12 && age < 20)

 cout << “you are a teen-aged person. good!”;

}

Run

Enter your age: -10

I am sorry!

age can never be negative

In main(), the statement

if(age < 0)

validates the input data and accordingly takes action. It terminates the program after issuing the warning

message, when the input data is negative.

The program large.cpp illustrates the use of multiple decision statements to compute the

maximum of three numbers.

// large.cpp: find the largest of three numbers

#include <iostream.h>

void main()

{

 float a, b, c, big;

 cout << “Enter three floating-point numbers: ”;

 cin >> a >> b >> c;

 // computing the largest of three numbers

 big = a;

 if(b > big)

 big = b;

 if (c > big)

 big = c;

 cout << “Largest of the three numbers = ” << big;

}

Run

Enter three floating-point numbers: 10.2 15.6 12.8

Largest of the three numbers = 15.6

5.4 if-else STATEMENT

The if-else statement will execute a single statement or a group of statements when the test

expression is true. It does nothing when the test expression fails. C++ provides the if-else construct

to perform some action even when the test expression fails. The control flow in the if-else statement

is shown in Figure 5.2.

Mastering C++156

When the test expression is true (nonzero), the if-part is executed and control passes to the next

statement following the if construct. Otherwise, the else-part is executed and control passes to

the next statement. The program age3.cpp illustrates the use of the if-else statement.

// age3.cpp: use of if..else statement

#include <iostream.h>

void main()

{

 int age;

 cout << “Enter your age: ”;

 cin >> age;

 if(age > 12 && age < 20)

 cout << “you are a teen-aged person. good!”;

 else

 cout << “you are not a teen-aged person.”;

}

Run1

Enter your age: 15

you are a teen-aged person. good!

Run2

Enter your age: 20

you are not a teen-aged person.

In main(), the statement

if(age > 12 && age < 20)

generates different types of output depending on the input values. If the test expression is true, the

statement

cout << “you are a teen-aged person. good!”;

is executed. Otherwise, the statement

cout << “you are not a teen-aged person.”;

in the else-part is executed.

Fig. 5.2 Control flow in if-else condition

falseentry

true

if (expression)

{

}

else

{

}

statement;

Control Flow 157

5.4.1 Compound Statement with if-else

In the if-e1se construct, the if-part, or else-part, or both can have a compound statement as follows:

if(test expression)

{

statement 1;

statement 2;

} else

{

statement 3;

statement 4;

}

The program lived.cpp illustrates the use of the compound if-else statements.

// lived.cpp: single if statement validates input data

#include <iostream.h>

void main ()

{

 float years, secs;

 cout << “Enter your age in years: ”;

 cin >> years;

 if(years < 0)

 cout << “I am sorry! age can never be negative” << endl;

 else

 {

 secs = years * 365 * 24 * 60 * 60;

 cout << “You have lived for “ << secs << ” seconds”;

 }

}

Run1

Enter your age in years: -1

I am sorry! age can never be negative

Run2

Enter your age in years: 25

You have lived for 7.884e+08 seconds

5.5 NESTED if-else STATEMENTS

Multiway decisions arise when there are multiple conditions and different actions to be taken under

each condition. A multiway decision can be written by using if-else constructs in the else-part as

follows:

 if(test-expression1)

 statement1;

Mastering C++158

else

 if(test-expression2)

 statement2;

else

 if(test-expression3)

 statements3;

Here, if test-expression1 is true, the whole chain is terminated. Only if test-expressionl

is found false, the chain of events continue. At any stage if an expression is true, the remaining chain

will be terminated. The program age4.cpp illustrates the use of nested if-else statements.

// age4.cpp: use of if..else..if statement

#include <iostream.h>

void main()

{

 int age;

 cout << “Enter your age: “;

 cin >> age;

 if(age > 12 && age < 20)

 cout << “you are a teen-aged person. good!”;

 else

 if(age < 13)

 cout << “you will surely reach teen-age.”;

 else

 cout << “you have crossed teen-age!”;

}

Runl

Enter your age: 16

you are a teen-aged person. good!

Run2

Enter your age: 25

you have crossed teen-age!

In the above program, the nested if-else statement takes decisions based on the input data and

displays appropriate messages for any given input. It proceeds to match the input data with various

conditions when the earlier condition fails to decide the fate of the input data. Note that in case of nested

if-else statements, the else statement is always associated with the corresponding innermost if

statement.

5.5.1 Indentation

In all the above examples, the statements inside the if construct are indented. The C++ language,

however, does not expect indentation of statements. It is done merely for improving program readability.

The importance of indenting becomes evident during the usage of nested if statements (if statements

within other if statements; any number of nested if statements are allowed). For example, consider

the following if statement:

Control Flow 159

if(a > b) if(a > c) big = a;

else big = c;

The above statement is perfectly valid as far as the compiler is concerned, but it is very difficult for the

programmer to decipher it. An indented version of this is listed below:

if(a > b)

 if(a > c)

 big = a;

 else

 big = c;

From the above code, it can be observed that indentation enhances the readability of the code and helps

in understanding the flow of control with ease.

Nested if-else statements can be conveniently replaced by a new construct called switch. It

allows to choose among several alternatives; it is dealt later in this chapter.

5.6 for LOOP

The for loop is useful while executing a statement a fixed number of times. Even here, more than one

statement can be enclosed in curly braces to form a compound statement. The control flow in the for

loop is shown in Figure 5.3.

Fig. 5.3 Control flow in for loop

entry

true false

for

{

(initialization ; condition ; updation)

}

statement;

The for statement is a compact way to express a loop. All the four parts of a loop are in close

proximity with the for statement. The initialization part is executed only once. Next, the test condition

is evaluated. If the test evaluates to false then the next statement after the for loop is executed. If the

test expression evaluates to true then after executing the body of the loop, the update part is executed.

The test is evaluated again and the whole process is repeated as long as the test expression evaluates to

true as illustrated in the program count1.cpp.

// count1.cpp: display numbers 1..N using for loop

#include <iostream.h>

void main()

{

 int n;

 cout << “How many integers to be displayed: ”;

 cin >> n;

Mastering C++160

 for (int i = 0; i < n; i++)

 cout << i << endl;

}

Run

How many integers to be displayed: 5

0

1

2

3

4

In main(), the statement

for(int i = 0; i < n; i++)

 cout << i << endl;

has four components. The first three components enclosed in round braces and separated by semicolons

are the following:

int i = 0

i < n

i++

The first component int i = 0 is called the initialization expression and is executed only once

prior to the statements within the for loop. The second component i < n is called the test expression

and is evaluated every time before execution of the loop body. If this expression is true, the statement in

the loop gets executed. In case it is false, the loop terminates and the control of execution is transferred

to the statement following the for loop. The third component i++, is called update expression, and

is executed after every execution of the statement in the loop. The fourth component is the loop body.

The program sumsql.cpp, finds the sum and the sum of squares of the first 15 positive even integers.

// sumsql.cpp: sum of first 15 even numbers and their squares’ sum

include<iostream.h>

void main()

{

 int i;

 int sum = 0, sum_of_squares = 0;

 for(i = 2; i <= 30; i += 2)

 {

 sum += i;

 sum_of_squares += i*i;

 }

 cout << “Sum of first 15 positive even numbers = ” << sum << endl;

 cout << “Sum of their squares = ” << sum_of_squares;

}

Run

Sum of first 15 positive even numbers = 240

Sum of their squares = 4960

Control Flow 161

In main(), the statement

for(i = 2; i <= 30; i += 2)

increments the loop variable i by 2 using the update expression

i += 2

The body of the loop consists of multiple statements, forming a compound statement. The for loop

counts from 2 to 30 in steps of two. It is just as easy for a loop to count down, from 30 to 2, as illustrated

in the program sumsq2.cpp.

// sumsq2.cpp: sum of first 15 even numbers and their squares’ sum

include<iostream.h>

void main()

{

 int i;

 int sum = 0, sum_of_squares = 0;

 for(i = 30; i >= 2; i -= 2)

 {

 sum += i;

 sum_of_squares += i*i;

 }

 cout << “Sum of first 15 positive even numbers = ” << sum << endl;

 cout << “Sum of their squares = ” << sum_of_squares;

}

Run

Sum of first 15 positive even numbers = 240

Sum of their squares = 4960

Notice the changes: the value of i is initialized to 30, the test expression involves the >= condition

instead of the <= as in the previous example, and the update expression i -= 2 decrements the value

of i. But the output in this case is identical to the first.

The comma operator is especially useful in for loops. The initialization, test, or update part having

multiple expressions can be separated by commas. For instance,

for(i = 0, j=-5; i < 25; i++, j--)

{

 cout << i << “ ” << j;

}

Another interesting feature of the for loop is that any of the three components (the initialization,

test and the update components) may be left out; however, the separating semicolons must be present.

The variants of the for loop are shown in Figure 5.4.

Mastering C++162

The program noinit.cpp prints the first 10 multiples of 5, in which the for loop has only the

test component.

// noinit.cpp: for loop without initialization and updation

#include <iostream.h>

void main()

{

 int i = 1;

 for(; i<=10;)

 {

 cout << i*5 << “ ”;

 ++i;

 }

}

Run

5 10 15 20 25 30 35 40 45 50

In main() the statement

int i = 1;

is introduced before the for loop. Also, instead of the update expression, i is incremented inside the

for loop body. Note again that the C++ language does not require the user to indent statements in a

for loop. The lines are indented merely for enhancing program appearance (readability).

Fig. 5.4 Variants of for loop

Keyword

Initialization expression

Test expression

Update expression

No semicolon here

Single-statement body

No-semicolon here

Compound statement body

Has the same effect as j = 25;

Multiple initialization and
multiple update using
comma operator

Initialization expression
not used

Initialization and test
expression not used

Initialization, test, update
expression not used

(i) for (j = 0 ; j < 25; j++)

statement;

(ii) for (j = 0; j < 25; j++)
{

statement ;

.....

statement ;
{

(iii) for(j = 0; j < 25; j++)

(iv) for(i = 0; j = 10 ; j < 25; j++, i--)

count << i << j;

(v) for(; j < 25; j++)

count << j;

(vi) for(; ; j++)

count << j;

(vii) for(; ;)

count << "I cannot stop";

Control Flow 163

The nested for loops are used extensively in developing programs for solving matrix multiplication,

numerical analysis, sorting, and searching problems. The program pyramid.cpp illustrates the use

of nested for loops in generating a pyramid of numbers.

// pyramid.cpp: constructs pyramid of digits

#include <iostream.h>

void main()

{

 int p, m, q, n;

 cout << “Enter the number of lines: ”;

 cin >> n;

 for(p = 1; p <= n; p++)

 {

 // To print spaces

 for(q = 1; q <= n-p; q++)

 cout << “ ”;

 // To print numbers

 m = P;

 for(q = 1; q <= p; q++)

 {

 cout.width(4)

 cout << m++;

 }

 m = m - 2;

 for(q = 1; q < p; q++)

 {

 cout.width (4);

 cout << m—;

 }

 cout << endl;

 }

}

Run

Enter the number of lines: 5

 1

 2 3 2

 3 4 5 4 3

 4 5 6 7 6 5 4

 5 6 7 8 9 8 7 6 5

5.7 while LOOP

The while loop is used when the number of iterations to be performed are not known in advance. The

control flow in the while loop is shown in Figure 5.5. The statements in the loop are executed if the test

condition is true and the execution continues as long as it remains true. The program count2.cpp

illustrates the use of the while loop to perform the same function as the for loop.

Mastering C++164

// count2.cpp: display numbers 1..N using while loop

#include <iostream.h>

void main()

{

 int n;

 cout << “How many integers to be displayed:

 cin >> n;

 int i = 0;

 while(i < n)

 {

 cout << i << endl;

 i++;

 }

}

Run

How many integers to be displayed: 5

0

1

2

3

4

The while loop is often used when the number of times the loop has to be executed is unknown in

advance. It is illustrated in the program averagel.cpp.

// averagel.cpp: find the average of the marks

#include <iostream.h>

void main()

{

 int i, sum = 0, count = 0, marks;

 cout << “Enter the marks, -1 at the end...\n”;

 cin >> marks;

 while(marks != -1)

 {

 sum += marks;

 count++;

 cin >> marks;

 }

Fig. 5.5 Control flow in while loop

entry
false

(expression)while

true

statement;

{

{

Control Flow 165

 float average = sum / count;

 cout << “The average is ” << average;

}

Run

Enter the marks, -1 at the end...

80

75

82

74

-1

The average is 77

The first cin the statement just before the while loop, reads the marks scored in the first subject and

stores in the variable marks, so that the statement inside the loop can have some valid data to operate.

The cin statement inside the loop reads the marks scored in the other subjects one by one. When –1

is entered, the condition

marks != -1

evaluates to false in the while loop. So, the while loop terminates and the program execution proceeds

with the statement immediately after the while loop, which in the above program is

average = sum / count;

Consider the case when the user inputs –1 as the first marks. The condition in the while statement

evaluates to false, and the statements inside the loop are not executed at all. In this case, the value of

count continues to be zero; so, while computing the average it leads to division by zero causing a

run time error. This can be prevented by using the if statement as follows:

if(count != 0)

 average = sum / count;

The above statement can also be written as

if(count)

 average = sum / count;

Any expression whose value is nonzero is treated as true. The program binary.cpp illustrates

such situations. It uses the while construct to convert a binary number to its decimal equivalent. The

shift-left operator << is used for shifting bits stored in a variable in this program.

// bin2deci.cpp: conversion of binary number to its decimal equivalent

#include <iostream.h>

void main()

{

 int binary, decimal = 0, digit, position = 0;

 cout << “Enter the binary number: ”;

 cin >> binary;

 // converting binary to decimal

 while(binary)

 {

Mastering C++166

 digit = binary % 10; // extract binary bit

 decimal += digit << position; // newvalue = oldvalue + 2^position

 binary /= 10; // advance to next bit

 position += 1; // advance to next bit position

 }

 cout << “Its decimal equivalent = ” << decimal;

}

Run

Enter the binary number: 111

Its decimal equivalent = 7

5.8 do..while LOOP

Sometimes, it is desirable to execute the body of a while

loop at least once, even if the test expression evaluates to

false during the first iteration. In effect, this requires testing

of termination expression at the end of the loop rather than

the beginning as in the while loop. So the do-while loop

is called a bottom-tested loop. The loop is executed as long as

the test condition remains true. The control flow in the do..

while loop is shown in Figure 5.6. Note the semicolon (;)

following the while statement at the bottom.

The program counts.cpp illustrates the use of the do..while loop.

// count3.cpp: display numbers 1..N using do..while loop

#include <iostream.h>

void main()

{

 int n;

 cout << “How many integers to be displayed: ”;

 cin >> n;

 int i = 0;

 do

 {

 cout << i << endl;

 i++;

 } while(i < n);

}

Run

How many integers to be displayed: 5

0

1

2

3

4

Fig. 5.6 Control flow in do..while loop

entry

do

{

}while(condition);

statement;

true

false

Control Flow 167

To realize the usefulness of the do..while construct, consider the following problem: The user

has to be prompted to press m or f. In reality, the user can press any key other than m or f. In such a

case, the message has to be shown again, and the users should be allowed to re-enter one of the two

options. An ideal construct to handle such a situation is the do..while loop as illustrated in the

program dowhile.cpp.

// dowhile.cpp: do..while loop for asking data until it is valid

#include <iostream.h>

void main()

{

 char inchar;

 do

 {

 cout << “Enter your sex (m/f): “;

 cin >> inchar;

 } while(inchar != ‘m’ && inchar != ‘f’);

 if(inchar == ‘m’)

 cout << “So you are male. good!”;

 else

 cout << “So you are female. good!”;

}

Run

Enter your sex (m/f) : d

Enter your sex (m/f) : b

Enter your sex (m/f) : m

So you are male. good!

In main(), the do..while loop keeps prompting for the user input until the character m for

male or f for female is entered. Such validation of data is very important while handling sensitive and

critical data.

The solution to certain problems inherently requires data validation only after some operation is

performed as illustrated in the program pal.cpp. It checks if the user entered number is a palindrome

using the do-while construct.

// pal.cpp: to check for a palindrome

#include <iostream.h>

void main()

{

 int n, num, digit, rev = 0;

 cout << “Enter the number: ”;

 cin >> num;

 n = num;

 do

 {

 digit = num % 10;

 rev = rev * 10 + digit;

 num /= 10;

Mastering C++168

 } while(num != 0);

 cout << “Reverse of the number = ” << rev << endl;

 if(n == rev)

 cout << “The number is a palindrome\n”;

 else

 cout << “The number is not a palindrome\n”;

}

Run1

Enter the number: 123

Reverse of the number = 321

The number is not a palindrome

Run2

Enter the number: 121

Reverse of the number = 121

The number is a palindrome

5.9 break STATEMENT

A break construct terminates the execution of loop and the control is transferred to the statement

immediately following the loop. The term break refers to the act of breaking out of a block of code.

The control flow in for, while, and do-while loop statements with break statement embedded

within their body is shown in Figure 5.7.

Fig. 5.7 break statements in loops

for(init;expr1;expr2)

true{

}
statement;

.....

.....
if(condtion)

break;

while(expr)

{ true

}
statement;

.....

.....
if(condtion)

break;

true

do

{
.....
if(condtion)

break;
.....

} while(condtion);

statement;

The program averagel.cpp discussed earlier has the following code:

cin >> marks;

while(marks != -1)

{

 sum += marks;

 count++;

 cin >> marks;

}

It computes the sum of marks entered by the user and maintains their count. This segment of code

can be replaced by the following piece of code using the break statement:

Control Flow 169

while(1)

{

 cin >> marks;

 if(marks == -1)

 break;

 sum += marks;

 count++;

}

Note that it avoids the use of two cin statements. Whenever –1 is input, the condition marks==-l

evaluates to true, and the break statement is executed, which leads to the termination of the loop.

Control passes to the statement following the while construct. Observe that the condition in the

while loop has been specified as 1 (one) which is nonzero and hence is always true. The condition

specifies an infinite loop, but the break prevents such a situation. The above segment of code can also

be replaced by the following for loop segment:

for(;;)

{

 cin >> marks;

 if(marks == -1)

 break;

 sum += marks;

 count++;

}

Note that when the test expression is not mentioned in the for loop, it is implicitly treated as true

causing an infinite loop condition. However, it does not lead to an infinite loop as the break statement

takes over the responsibility of loop termination. In general, the break statement causes control to pass

to the statement following the innermost enclosing for, while, do-while, or switch statement.

The same action can also be achieved by using do..while loop as follows:

do

{

 cin >> marks;

 if(marks == -1)

 break;

 sum += marks;

 count++;

} while(1);

The program average2.cpp illustrates the use of break in loop statements. It performs the same

operation as that of the program averagel.cpp.

// average2.cpp: find the average of the marks

#include <iostream.h>

void main()

{

 int i, sum = 0, count = 0, marks;

 cout << “Enter the marks, -1 at the end...\n”;

 while(1)

Mastering C++170

 {

 cin >> marks;

 if(marks == -1)

 break;

 sum += marks;

 count++;

 }

 float average = sum / count;

 cout << “The average is ” << average;

}

Run

Enter the marks, -1 at the end...

80

75

82

74

-1

The average is 77

5.10 switch STATEMENT

The switch statement provides a clean way to dispatch to different parts of a code based on the value

of a single variable or expression. It is a multiway decision-making construct that allows choosing

of a statement (or a group of statements) among several alternatives. The control flow in the switch

statement is shown in Figure 5.8. The switch statement is mainly used to replace multiple if-else

sequence which is hard to read and hard to maintain.

The expression following the switch keyword is an integer-valued expression. The value of this

expression decides the sequence of statements to be executed. Each sequence of statements begins

with the keyword case followed by a constant integer. (Note that constant characters may also be

specified.) Control is transferred to the statements following the case label whose constant is equal

to the value of the expression in the switch statement. The default part is optional in the switch

statement. The keyword break is used to delimit the scope of the statements under a particular case.

 switch(option)

 {

 case 1: cout << “Option # 1 entered”;

 break;

 case 2: cout << “Option # 2 entered”;

 break;

 default: cout << “Invalid option entered”;

 }

In the above segment, if option is 1 then the first cout will be executed and the control will pass

to the next statement after the switch. Otherwise, the rest of the case statement will be evaluated in

the same way. If none of them match then the last cout with the default will be executed.

Control Flow 171

The break statement is essential for the correct realization of the switch structure. It causes

exit from the switch structure after the case statements are executed. The break can be omitted

in which case the control falls through to the next case statements. For example, omitting the break

statement in the first case statement will cause both the case 1 and case 2’s body to be executed.

The break statements can be omitted when the same operation is to be performed for a number of

cases as illustrated below:

 switch(ch)

 {

 case ‘a’:

 case ‘e’:

 case ‘i’:

 case ‘o’:

 case ‘u’ ++ vowel;

 break

 case ‘ ’ ++ spaces;

 break;

 default ++ consonant;

 }

In the above segment, when the contents of ch is equal to a vowel character, the statement

++vowel;

is executed.

The different cases and the default keyword may appear in any order. The program sex2.cpp

illustrates the use of switch construct in replacing the nested if-else statements.

// sex2.cpp: use of switch statement

#include <iostream.h>

void main()

{

 char ch;

 cout << “Enter your sex (m/f): ”;

Fig. 5.8 Control flow in switch statement

statement;

break;

break;

break;

default:

case c2:

case c1:

switch (e)

(

if(e==c1)

if(e==c2)

if(except above cases)

}

Mastering C++172

 cin >> ch;

 switch(ch)

 {

 case ‘m’:

 cout << “So you are male. good!”;

 break;

 case ‘f’:

 cout << “So you are female. good!”;

 break;

 default: // if none of the above match any cases

 cout << “Error: Invalid sex code!”;

 }

}

Run1

Enter your sex (m/f) : m.

So you are male, good!

Run2

Enter your sex (m/f) : b

Error: Invalid sex code!

Case Study
Consider a scenario where you are required to create a C++ program for simulating a basic calculator.

The calculator must perform basic arithmetic operations like addition, subtraction, multiplication, and

division.

The program calc.cpp realizes a basic calculator using the switch statement.

//calc.cpp: basic calculator

#include <iostream.h>

void main()

{

 int ch;

 float num1, num2;

 clrscr();

 cout<<”--------------Basic Calculator------------”;

 cout<<”\nChoose an option:”;

 cout<<”\n\nAdd”;

 cout<<”\nSubtract”;

 cout<<”\nMultiply”;

 cout<<”\nDivide\n”;

 cin>>ch;//Reading operator choice

 cout<<”\nEnter the value of the operands: ”;

 cin>>num1>>num2;//Reading operand values

 switch (ch)

 {

 case 1:

 cout<<”\n”<<num1 + num2;

Control Flow 173

 break;

 case 2:

 cout<<”\n”<<num1 - num2;

 break;

 case 3:

 cout<<”\n”<<num1 * num2;

 break;

 case 4:

 cout<<”\n”<<num1 / num2;

 break;

 default:

 cout<<”\nIncorrect Choice.”;

 }

}

Run

--------------Basic Calculator------------”

Choose an option:

Add

Subtract

Multiply

Divide

1

Enter the value of the operands: 22 33

55

5.11 continue STATEMENT

The continue statement skips the remainder of the current iteration and initiates the execution of

the next iteration. When this statement is encountered in a loop, the rest of the statements in the loop

are skipped, and the control passes to the condition, which is evaluated, and if true, the loop is entered

again. The continue statement has the following syntax:

continue;

The control flow in for, while, and do..while loops with continue statement embedded

within their body is shown in Figure 5.9.

The program sumpos.cpp accepts an indefinite number of values from the keyboard and prints

the sum of only the positive numbers. It demonstrates the use of break and continue statements.

Fig. 5.9 Operational flow with continue statement

for (

{

; ;)

if (expre)

continue;
....

} }
....

{
if (expre)

continue;

while () do

{
if (expre)

continue;

} while()
....

Mastering C++174

// sumpos.cpp: sum of positive numbers

#include <iostream.h>

void main()

{

 int num, total = 0;

 do

 {

 cout << “Enter a number (0 to quit): ”;

 cin >> num;

 if(num == 0)

 {

 cout << “end of data entry.” << endl;

 break; // terminates loop

 }

 if(num < 0)

 {

 cout << “skipping this number.” << endl;

 continue; // skips next statements and transfers to start of loop

 }

 total += num;

 } while(1);

 cout << “Total of all +ve numbers is ” << total;

}

Run

Enter a number (0 to quit): 10

Enter a number (0 to quit): 20

Enter a number (0 to quit): -5

skipping this number.

Enter a number (0 to quit): 10

Enter a number (0 to quit): 0

end of data entry.

Total of all +ve numbers is 40

In do.. while loop of the above program, on encountering break, control is transferred outside

the loop. On encountering continue, control is transferred to the while condition which is always

true (nonzero). Figure 5.10 shows action differences between break and continue statements in

loops. The break and continue statements must be judiciously used and their indiscriminate use

can hamper the clarity of the logic.

Fig. 5.10 Control flow for continue and break

statement;

}

....

if(expression)

break;

....

for(

{

; ;)for(

{

; ;)

statement;

}

....

if(expression)

continue;

....

Control Flow 175

5.12 goto STATEMENT

The C++ language also provides the much abused goto statement for branching unconditionally to

any part of a program. A debate on whether the use of the goto construct in structured programming

is essential or not, is purely academic, but practically, the goto is never necessary and, therefore, is

not used by many programmers. However, there are certain places where the use of goto becomes

mandatory. For instance, to exit from some deeply nested loops, goto can be used. The general format

of a goto statement is:

goto label;

Here, label is an identifier used to label the target statement to which the control should be

transferred. Control may be transferred to any other statement within the current function. The target

statement must be labeled and the label must be followed by a colon. The target statement will

appear as

label: statement;

Note that the declaration of the label symbol is not required. The program jump.cpp is equivalent

to the program sumpos.cpp discussed above. It uses the goto statement instead of the break

statement.

// jump.cpp: sum of positive numbers using goto construct

#include <iostream.h>

void main()

{

 int num, total = 0;

 do

 {

 cout << “Enter a number (0 to quit): ”;

 cin >> num;

 if(num ==0)

 {

 cout << “end of data entry.” << endl;

 goto dataend; // transfer to dataend position

 }

 if(num < 0)

 {

 cout << “skipping this number.” << endl;

 continue; // skips next statements and transfers to start of loop

 }

 total += num;

 } while(1);

 dataend: cout << “Total of all +ve numbers is ” << total;

}

Run

Enter a number (0 to quit) : 10

Enter a number (0 to quit): 20

Mastering C++176

Enter a number (0 to quit) : -5

skipping this number.

Enter a number (0 to quit): 10

Enter a number (0 to quit): 0

end of data entry.

Total of all +ve numbers is 40

Any loop (for, while, or do..while) statement can be replaced by an if statement coupled

with a goto statement. But this, of course, makes the program unreadable. On the other hand, there

are situations wherein goto statement can make the flow of control more obvious. For example, the

following segment determines whether two arrays x and y have an element in common or not. The

element x has n elements and y has m elements.

 for(i = 0; i < n; i++)

 for(j = 0; j < m; j++)

 if(x[i] == y[j])

 goto found;

 // Element not found

 found:

 // Element found

Except in cases such as the one cited above, the use of the goto statement must be avoided.

It is possible to use the goto statement to jump from outside a loop to inside the loop body, but it

is logically incorrect. Hence, goto jumps shown in Figure 5.11 would cause problems and, therefore,

must be avoided.

Fig. 5.11 Invalid gotos

5.13 WILD STATEMENTS

It is very difficult to detect semantic errors in a program when semicolons are used improperly with

loops. One such case is illustrated in the program age5.cpp

// age5.cpp: if statement with wrong usage of syntax

#include <iostream.h>

void main()

Control Flow 177

{

 int age;

 cout << “Enter your age: ”;

 cin >> age;

 if(age > 12 && age < 20);

 cout << “you are a teen-aged person. good!”;

}

Runl

Enter your age: 14

you are a teen-aged person. good!

Run2

Enter your age: 50

you are a teen-aged person. good!

In main(), the statement

if(age > 12 && age < 20);

effectively does nothing; observe the semicolon after the condition statement. The program displays

the same message for any type of input data. Whether the input age lies in range of teenage or not, it

produces the message

you are a teen-aged person. good!

See Run2 output which shows even a 50 year old person as teen-aged!

Equality Test
The program agecmp.cpp is written for comparing the ages of two persons. It prints the illogical

message except for some typical value.

// agecmp.cpp: age comparison

#include <iostream.h>

void main()

{

 int myage = 25, yourage;

 cout << “Hi! my age is ” << myage << endl;

 cout << “What is your age? ”;

 cin >> yourage;

 if (myage = yourage)

 cout << “We are born on the same day. Are we twins!”;

}

Run1

Hi! my age is 25

What is your age? 25

We are born on the same day. Are we twins!

Run2

Hi! my age is 25

Mastering C++178

What is your age? 10

We are born on the same day. Are we twins!

Run3

Hi! my age is 25

What is your age? 0

The statement in main()

if(myage = yourage)

has the expression myage = yourage. It assigns the contents of the variable yourage to myage.

It is evaluated to true, for all nonzero values of yourage and hence, the program prints the same

message except for zero input value. The programmer must be careful while writing the statement,

which checks for the equality of data.

SOLVED PROBLEM

Write a program to print prime numbers between two limits.

#include<iostream.h>

void main()

{

 int num, i, j, l1, l2;

 cout<<”Enter the lower limit: ”;

 cin>>l1;

 cout<<”Enter the higher limit: ”;

 cin>>l2;

 cout<<”\nThe prime numbers between “<<l1<<” and “<<l2<<” are: ”;

 for(i=l1;i<=l2;i++)

 {

 if(i<=3)

 {

 cout<<i<<”\t”;

 }

 else

 {

 for (j=2;j<=i/2;j++)

 {

 if(i%j==0)

 goto label;

 }

 cout<<i<<”\t” ;

 label: ;

 }

 }

}

+
+

Control Flow 179

Run

Enter the lower limit: 1

Enter the higher limit: 100

The prime numbers between 1 and 100 are: 1 2 3 5 7

11 13 17 19 23 29 31 37 41 43

47 53 59 61 67 71 73 79 83 89

97

REVIEW QUESTIONS ++
 5.1 Discuss the need of control flow statements in C++.

 5.2 What are the differences between break and continue statements? Develop an

interactive program which illustrates the differences.

 5.3 Justify that “goto statement cannot be used to transfer control from outside to inside the

loop.”

 5.4 Write an interactive program to print a given integer in the reverse order. For instance,

1234 should be printed as 4321.

 5.5 Write an optimized algorithm (program) to print the first N prime numbers, where N is a

number accepted from the keyboard.

 5.6 Write a program to print the sum of all squares between 1 and N, where N is a number

accepted from the keyboard, i.e., 1 + 4 +.... + (N*N).

 5.7 Develop a program to find the roots of a quadratic equation. Use switch statements to

handle different values of the discriminant (b2 – 4*a*c).

 5.8 State which of the following statements are TRUE or FALSE. Give reasons.

 (a) Use of goto helps in developing structured programming.

 (b) In if statement, if the if condition fails, else-part is executed.

 (c) The value –1 is treated as false.

 (d) The switch statement can have more than one matching cases.

 (e) The break statement terminates the execution of the loop.

 (f) Explicit transfer of control from outside the loop to inside is logically correct.

 (g) The use of an expression such as a = b as a test expression is not encouraged.

 5.9 Write a program to compute the exponential value of a given number x using the series:

 e(x) = l + x + x2/2! + x3/3!+...

 5.10 Write an interactive program for computing the factorial of a number using the while loop.

 5.11 Write a program to generate reverse pyramid of digits.

 5.12 Write an interactive program to compute the cosine of a number using the series:

 cos(x) = l–x2/2! + x4/4!–x6/6!+...

 5.13 Write an interactive program to compute the area of a triangle for the following cases:

 (a) For three sides of a triangle (a, b, and c):

 p = a + b + c;

Mastering C++180

 s = (a + b + c)/2;

 area = sqrt((double)(s*(s–a)*(s–b)*(s–c)));

 (c) For a right-angled triangle:

 area = (base*height) /2;

 5.14 Write a program to print the multiplication table using do..while loop.

 5.15 Write an interactive program to draw a histogram of marks scored in different subjects as

follows:

 subjectl: ************************ (50%)

 subject2: *********************************** (72%)

 5.16 Write a program to print a conversion chart of various currencies as shown in the table

below:

 US $ Rs Dinar Yen Pound

Arrays and Strings

 6.1 INTRODUCTION

An array is a group of logically related data items of the same data type

addressed by a common name, and all the items are stored in contiguous

(physically adjacent) memory locations. For instance, the statement

int marks[10];

defines an array by the name marks that can hold a maximum of ten elements. The individual elements

of an array are accessed and manipulated using the array name followed by their index. The marks

scored in the first subject is accessed as marks[0] and the marks scored in the 10th subject as marks
[9]. In this case, a sequence of ten integers representing the marks are stored one after another in

memory. A sequence of characters is called a string. It can be used for storing and manipulating text

such as words, names, and sentences. The arrays can be used to represent a vector, matrix, etc., as

shown in Figure 6.1.

6

6.2 OPERATIONS ON ARRAYS

To see the usefulness of arrays, consider the problem of reading the ages of five persons and computing

the average age. Five variables need to be defined for storing the age of five persons and they have to be

read and processed using distinct statements as illustrated in the program agel.cpp.

Fig. 6.1 Single and multidimensional arrays

Vector

6

Matrix

3

3

3

3

2

Three-dimensional array

Mastering C++182

// agel.cpp: multiple variables to handle data which are logically same
#include <iostream.h>
void main()
{
 int agel, age2, age3, age4, age5;
 float sum a = 0;
 cout << “Enter person 1 age: ”;
 cin >> agel;
 sum += agel;
 cout << “Enter person 2 age: ”;
 cin >> age2;
 sum += age2;
 cout << “Enter person 3 age: ”;
 cin >> age3;
 sum += age3;
 cout << “Enter person 4 age: ”;
 cin >> age4;
 sum += age4;
 cout << “Enter person 5 age: ”;
 cin >> age5;
 sum +5 age5;
 cout << “Average age = ” << sum/5;
}

Run

Enter person 1 age: 23
Enter person 2 age: 40
Enter person 3 age: 30
Enter person 4 age: 27
Enter person 5 age: 25
Average age = 29

The above program uses distinct statements to read and add the age of each person. The resulting

value of summation is stored in the variable sum. Finally, the average age is computed by dividing the

sum by 5. A program written in this style is very clumsy, and difficult to enhance. If there are a large

number of individuals, the number of statements increase proportionately. A more elegant approach is

to use an array-type variable to store the age of persons, and process them using loops as illustrated in

the program age2.cpp.

// age2.cpp: arrays to handle data which are of the same type
#include <iostream.h>
void main()
{
 int age[5]; // array definition
 float sum = 0;
 for (int i = 0; i < 5; i++)
 {
 cout << “Enter person ” << i+1 << “ age: ”;
 cin >> age[i]; // reading array elements

Arrays and Strings 183

 }
 for(i = 0; i < 5; i++)
 sum += age[i]; // array manipulation
 cout << “Average age = ” << sum/5;
}

Run

Enter person 1 age: 23
Enter person 2 age: 40
Enter person 3 age: 30
Enter person 4 age: 27
Enter person 5 age: 25
Average age = 29

Handling arrays involve array definition, array initialization, and accessing elements of an array. In

main(), the statement

int age[5];

defines an array of five elements of integer type with the name age. It reserves 5*sizeof(int)

bytes of memory space for storing the five integer numbers. The statement

cin >> age[i];

reads each integer value and stores it in the array element indexed by the variable i. Here, the variable

i is known as the array index or subscript and hence, arrays are popularly called subscripted variables.

Note that an array of N elements has indexes in the range 0 to N – l. The statement

sum += age[i];

accesses the contents of the (i+l)th element of the array age and adds it to the variable sum.

6.2.1 Array Definition

Like other normal variables, the array variable must be defined before its use. The syntax for defining

an array is shown in Figure 6.2.

Fig. 6.2 Array definition

primitive or
user-defined Array variable

integer constant
or expression

DataType ArrayName[array_size],..;

In the definition, the array name must be a valid C++ variable, followed by an integer value enclosed

in square braces. The integer value indicates the maximum number of elements the array can hold. The

following are some valid array-definition statements:

int marks[100]; // integer array of size 100

float salary[25]; // floating-point array of size 25

char name[50]; // character array of size 50

int a[10], b[12], c[25]; // defines three arrays

double dl, num[l0]; // defines a variable and double array

Mastering C++184

The last statement indicates that a normal

variable and array can be defined in a single

statement. The representation of an array

defined using the statement

int age[5];

is shown in Figure 6.3 by assuming that

each element of the array (i.e., each integer)

occupies two bytes.

6.2.2 Accessing Array Elements

Once an array variable is defined, its elements can be accessed

by using an index. The syntax for accessing array elements is

shown in Figure 6.4.

To access a particular element in the array, specify the array

name followed by an integer constant or variable (array index)

enclosed within square braces. The array index indicates the element of the array, which has to be

accessed. For instance, the expression

age[4]

accesses the 5th element of the array age. Note that in an array of N elements, the first element is

indexed by zero and the last element of an array is indexed by N – 1. The loop used to read the elements

of the array is

for(int i = 0; i < 5; i++)
{
 cout << “Enter person ” << i+1 << “ age: ”;
 cin >> age[i];
}

The variable i varies from 0 to N – l (i.e., 0 to 4 in the above segment). Statements such as

age[i]++;

can be used to increment the value of the ith item in the array age and hence the following

age[i] = 11;
age[3] = 25;

are valid statements. Note that the expression age[i] can also be represented as i[age]; similarly,

the expression age[3] is equivalent to 3[age].

The program nodup.cpp illustrates the manipulation of a vector. It reads a vector and removes

all duplicate elements in that vector. The vector is adjusted after removing all the duplicate elements.

// nodup.c: Deleting duplicates in a vector
#include <iostream.h>
void main()
{
 int i, j, k, n, num, flag = 0;

Fig. 6.4 Accessing an array element

integer constant, variable,
or expression

ArrayName[index]

Fig. 6.3 Storage representation for an array

int age [5];

age[4]
age[3]

age[2]

age[1]

age[0]xx

xx

xx

xx

xx

age

for (i=0; i<5; ++)

cin >> age[i];

age[4]
age[3]

age[2]

age[1]

age[0]23

40

30

27

25

age

Arrays and Strings 185

 float a[50];
 cout << “Enter the size of a vector: ”;
 cin >> n;
 num = n;
 cout << “Enter vector elements ...” << endl;
 for(i = 0; i < n; i++)
 {
 cout << “a[” << i << “] = ? ”;
 cin >> a[i];
 }
 // removing duplicates
 for (i = 0; i < n - 1; i++)
 for (j = i + 1; j < n; j++)
 {
 if(a[i] == a[j]) // duplicate found
 {
 // remove duplicate and adjust vector and its size
 n = n - 1;
 for (k = j; k < n; k++)
 a[k] = a[k+l];
 flag = 1; // vector has duplicates
 j = j - l;
 }
 }
 if(flag)
 {
 cout << “vector has ” << num-n << ” duplicate element(s).\n”;
 cout << “Vector after removing duplicates ...\n”;
 for(i = 0; i < n; i++)
 cout << “a[” << i << “] = ” << a[i] << endl;
 }
 else
 cout << “vector has no duplicate elements”;
}

Run

Enter the size of a vector: 6
Enter vector elements ...
a[0] = ? 1
a[l] = ? 5
a[2] = ? 6
a[3] = ? 8
a[4] = ? 5
a[5] = ? 9
vector has 1 duplicate element(s).
Vector after removing duplicates ...
a[0] = 1
a[l] = 5
a[2] = 6
a[3] = 8
a[4] = 9

Mastering C++186

6.2.3 Initialization at Definition

Arrays can be initialized at the point of their definition as follows:

data-type array-name[size] = { list of values separated by comma };

For instance, the statement

int age[5] = { 19, 21, 16, 1, 50 };

defines an array of integers of size 5. In this case, the first element of the array age is initialized with

19, second with 21, and so on, as shown in Figure 6.5. A semicolon always follows the closing brace.

The array size may be omitted when the array is initialized during array definition as follows:

int age[] = { 19, 21, 16, 1, 50 };

In such cases, the compiler assumes the array size to be equal to the number of elements enclosed

within the curly braces. Hence, in the above statement, the size of the array is considered five.

Fig. 6.5 Array initialization at its definition

50

1

16

21

19

age[4]

age[3]

age[2]

age[1]

age[0]
int age [5] = {19,21,16,1,50};

or

int age [] = {19,21,16,1,50};

no array size

6.2.4 Caution! No Array Bound Validation

C++ does not support bound checking, i.e., it does not check for the validity of the array-index value

while accessing the array elements. If the program tries to store something beyond the size of an array,

neither the compiler nor runtime will indicate the error. Such a situation may cause overwriting of data

or code leading to fatal errors. Therefore, the programmer has to take extra care to use indexes within

the array limits. For example, consider the following program:

void main ()
{
 int age[40];
 age[50] = 11;
 age[50]++;
}

It defines age to be an array of 40 integers, and then modifies the 51st element! The compiler does

not consider such an access as illegal and produces the executable code. Execution of such programs

can behave in an unpredictable manner. Detecting such errors in a program is a difficult and time-

consuming task. Thus, it is the responsibility of the programmer to see that the value of an array index

is within the array bounds while accessing an array element.

Arrays and Strings 187

6.3 ARRAY ILLUSTRATIONS

The program elder.cpp finds the age of the eldest and youngest person in a family. It reads the ages

of all the members of a family, stores them in an array, and then scans the array to find out the required

information.

// elder.cpp: finding youngest and eldest person age

#include <iostream.h>

void main()

{

 int i, n;

 float age[25], younger, elder;

 cout << “How many persons are there in list <max-25>? ”;

 cin >> n;

 for(i = 0; i < n; i++)

 {

 cout << “Enter person” << i+1 << “ age: ”;

 cin >> age[i];

 }

 // finding youngest and eldest person age begins here

 younger = age[0];

 elder = age[0];

 for (i = 1; i < n; i++)

 {

 if(age[i] < younger)

 younger = age[i];

 else

 if(age[i] > elder)

 elder = age[i];

 }

 // finding younger and elder person ends here

 cout << “Age of eldest person is ” << elder << endl;

 cout << “Age of youngest person is ” << younger;

}

Run

How many persons are there in list <max-25>? 7

Enter personl age: 25

Enter person2 age: 4

Enter person3 age: 45

Enter person4 age: 18

Enter person5 age: 35

Enter person6 age: 23

Enter person7 age: 32

Age of eldest person is 45

Age of youngest person is 4

Mastering C++188

6.3.1 Bubble Sort

A classical bubble sort is the first standard sorting algorithm most programmers learn to code. It has

gained popularity because it is intuitive, easy to write and debug, and consumes little memory. In each

pass, the first two items in a list are compared and placed in the correct order. Items two and three are

then compared and reordered, followed by items three and four, then four and five, and so on. The sort

continues until a pass with no swap occurs. High-value items near the beginning of a list (as shown in

Figure 6.6) move to their correct position rapidly and are called turtles, because they move only

one position with each pass. The program bubble.cpp illustrates the implementation of the bubble

sort.

Fig. 6.6 Trace of bubble sort

i=0; j = 0 j = 1 j = 2 j = 3

i=1; j = 0 j = 1 j = 2

i=2; j = 0 j = 1

i=3; j = 0

6

10

2

8

3

6

10

2

8

3

6

2

10

8

3

6

2

8

10

3

6

2

8

3

10

6

2

8

3

10

2

6

8

3

10

2

6

8

3

10

2

6

3

8

10

2

6

3

8

10

2

6

3

8

10

2

3

6

8

10

2

3

6

8

10

2

3

6

8

10

Arrays and Strings 189

// bubble.cpp: sorting of numbers using bubble sorting

#include <iostream.h>

void main()

{

 int i, j, n, age[25], flag, temp;

 cout << “How many elements to sort <max-25>? ”;

 cin >> n;

 for(i = 0; i < n; i++)

 {

 cout << “Enter age[” << i << “]: ”;

 cin >> age[i];

 }

 // sorting starts here using bubble sort technique

 for(i = 0; i < n-1; i++) // for i = 0 to n-2

 {

 flag = 1;

 for(j = 0; j < (n-l-i); j++) // for j = 0 to (n-i-2)

 {

 if(age[j] > age[j+l])

 {

 flag = 0; // still not sorted and requires next iteration

 // exchange contents of age[j] and age[j+l]

 temp = age[j];

 age[j] = age[j+1];

 age[j+l] = temp;

 }

 }

 if(flag)

 break; // data are now in order; no need of next iteration

 }

 // sorting ends here

 cout << “Sorted list...” << endl;

 for(i = 0; i < n; i ++)

 cout << age[i] << “ ”;

}

Run

How many elements to sort <max-25>? 7

Enter age[0]: 3

Enter age[1]: 5

Enter age[2]: 9

Enter age[3]: 4

Enter age[4]: 2

Enter age[5]: 1

Enter age[6]: 6

Sorted list...

1 2 3 4 5 6 9

Mastering C++190

6.3.2 Comb Sort

Comb sort is a generalization of the bubble sort that permits comparison of non-adjacent items. It retains

the simplicity of a bubble sort, but with a dramatic increase in speed. Consider a sample list of 100

elements to be arranged in the ascending order. In this method, elements are compared to sort them and

the space between the elements to be compared is known as the gap. (For instance, the gap in bubble

sort is one.) A gap of 80 would compare elements 1 and 81, 2 and 82,..., and 20 and 100, and switch

pairs when appropriate. Such a pass would take 20 comparisons rather than the 99 of an equivalent

bubble sort. The benefit is that the swap could move the elements as much as 80 notches closer to their

final destination. It is found that the ideal way to select the next gap is to divide the previous gap by 1.3

(which is known as the shrinking factor). The shrinking factor 1.3 has been experimentally found out

to be the optimal value. The gap value remains constant once it reaches 1. A bubble sort is converted

into comb sort by the following process:

 Initialize the gap with 1 in the inner loop.

Initialize the gap size and the dimension of the list.

Recalculate the gap with the do loop by dividing the previous gap by 1.3, taking the integer part

and using the result or 1, whichever is greater.

Repeat the loop until the gap is 1 and the switch counter is 0, indicating that the sort operation is

completed.

The program comb.cpp illustrates the implementation of the comb sort. The only difference

between bubble sort and comb sort is that in bubble sort, the turtles (data) crawl whereas in comb sort

they jump. Successively shrinking the gap is analogous to combing long, tangled hair—stroking first

with fingers alone, then with a pick comb that has widely spaced teeth, followed by finer combs with

progressively closer teeth. Comb sort has a similar shrinking effect on the gap (hence, the name comb

sort). Each stroke presorts the list (i.e., it kills or winds up some turtles). Therefore, by the time the

gap declines to unity (a bubble sort), all the elements are so close to their final position that applying a

bubble sort at this stage is efficient.

// comb.cpp: sorting of numbers using comb sorting
#define SHRINKINGFACTOR 1.3
#include <iostream.h>
void main()
{
 int i, j, n, age[25], flag, temp;
 cout << “How many elements to sort <max-25>? ”;
 cin >> n;
 for(i = 0; i < n; i++)
 {
 cout << “Enter age[” << i << “]: ”;
 cin >> age[i];
 }
 // sorting starts here using comb sort technique
 int size = n;
 int gap = size; // gap is initialized to size i.e, length of a list do
 {
 gap = (int) (float(gap)/SHRINKINGFACTOR);
 switch(gap)

Arrays and Strings 191

 {
 case 0:
 gap = 1; // the smallest gap is 1 as in bubble sort
 break;
 case 9:
 case 10:
 gap = 11;
 break;
 }
 flag = 1;
 int top = size — gap;
 for(i = 0; i < top; i++)
 {
 j = i+gap;
 if(age[i] > age[j])
 {
 flag = 0; // still not sorted and requires next iteration
 // exchange contents of age[i] and age[j]
 temp = age[i];
 age[i] = age[j];
 age[j] = temp;
 }
 }
 } while(!flag || gap > 1);
 // sorting ends here
 cout << “Sorted list...” << endl;
 for (i = 0; i < n; i ++)
 cout << age[i] << “ ”;
}

Run

How many elements to sort <max-25>? 7
Enter age[0]: 3
Enter age[1]: 5
Enter age[2]: 9
Enter age[3]: 4
Enter age[4]: 2
Enter age[5]: 1
Enter age[6]: 6
Sorted list...
1 2 3 4 5 6 9

Although the algorithms for comb sort and shell sort appear very similar (both use a gap and a shrink

factor), they do in fact perform differently. The shell sort does a complete sort (until there are no more

swaps to be made) for each gap size, while the comb sort makes only a single pass for each gap size—it

can be thought of as a more optimistic version of the shell sort. There are other differences that result

from this optimism: The ideal shrink factor for shell sort is 1.7, compared with 1.3 of comb sort. The

complexity obtained by plotting sorting time against the list of size n, for shell sort, appears as a step

function of (n*log2n*log2n), whereas for comb sort it approximates to a flatter curve of (n* log2 n).

Mastering C++192

6.4 MULTIDIMENSIONAL ARRAYS

Most scientific data can be easily modeled using multidimensional arrays. Such representations allow

manipulation of data easily and even allow the programmer to write simple and efficient programs. A

matrix is a two-dimensional array and two subscripts are required to access each element.

Definition
A multidimensional array is defined as follows:

data-type array-name[s1][s2]... [sn];

For instance, the statement

int axis [3] [3] [2];

defines a three-dimensional array with the array name axis.

The general format for defining a two-dimensional array is

data-type array-name[row-size][column-size];

For instance, the statements

int marks[4][3];

float b[3][3];

Fig. 6.7 Two dimensional array to store marks

marks [3] [2]

marks [3] [1]

marks [3] [0]

marks [2] [2]

marks [2] [1]

marks [2] [0]

marks [1] [2]

marks [1] [1]

marks [1] [0]

marks [0] [2]

marks [0] [1]

marks [0] [0]

marks [0]

marks [1]

marks [2]

marks [3]

59

35

85

65

70

55

70

55

75

76

75

80

int marks [4] [3];

rollno.

subject code

0 1 2

0

1

2

3

80 75 76

75 70

55 70 65

85 35 59

Arrays and Strings 193

define arrays named marks and b respectively. The expression marks[0][0], accesses the first

element of the matrix marks and marks[3][2] accesses the last row and last column. The expression

b[2][1], accesses the third row and second column element of the b matrix. The representation of a

two-dimensional array in memory is shown in Figure 6.7.

6.4.1 Accessing Two-dimensional Array Elements

The elements of a two-dimensional array can be accessed by the following statement

marks[i][j]

where i refers to the row number and j refers to the column number. The subscripts must be

integer constants or variables or they can be expressions generating integer results. The program

matrix.cpp illustrates the use of two-dimensional arrays in matrix addition and subtraction.

// matrix.cpp: addition and subtraction of matrices
include <iostream.h>
void main()
{
 int a[5][5], b[5][5], c[5][5];
 int i, j, m, n, p, q;
 cout << “Enter row and column size of A matrix: ”;
 cin >> m >> n;
 cout << “Enter row and column size of B matrix: ”;
 cin >> p >> q;
 if((m == p) && (n == q)) // check if matrices can be added
 {
 cout << “Matrices can be added or subtracted...\n”;
 // Read matrix A
 cout << “Enter matrix A elements..\n”;
 for(i = 0; i < m; ++i)
 for(j = 0; j < n; ++j)
 cin >> a[i][j];
 // Read matrix B
 cout << “Enter matrix B elements...\n”;
 for(i = 0; i < p; i++)
 for(j = 0; j < q; j++)
 cin >> b[i][j];
 // Addition of two matrices: C <- A + B
 for(i = 0; i < m; i++)
 for(j = 0; j < n; j++)
 c[i][j] = a[i][j] + b[i][j];

 // printing summation
 cout << “Sum of A and B matrices...\n”;
 for(i = 0; i < m; ++i)
 {
 for(j = 0; j < n; ++j)
 cout << c[i][j] << “ ”;
 cout << endl;
 }

Mastering C++194

 // Subtraction of two matrices: C <- A – B
 for(i = 0; i < m; i++)
 for(j = 0; j < n; j++)
 c[i][j] = a[i][j] - b[i][j];
 // printing matrix subtraction result
 cout << ”Difference of A and B matrices...\n”;
 for = 0; i < m; ++i)
 {
 for(j = 0; j < n; + + j)
 {
 cout.width(2);
 cout << c[i][j] << “ ”;
 }
 cout << endl;
 }
 }
}

Run

Enter row and column size of A matrix: 3 3
Enter row and column size of B matrix: 3 3
Matrices can be added or subtracted...
Enter matrix A elements...
1 2 3
4 3 1
3 1 2
Enter matrix B elements...
3 2 1
3 3 2
1 2 1
Sum of A and B matrices...
4 4 4
7 6 3
4 3 3
Difference of A and B matrices...
-2 0 2
1 0 -1
2 -1 1

6.4.2 Initialization at Definition

A two-dimensional array can be initialized during its definition as follows:

data-type matrix-name[row-size}[col-size] = {

 { elements of first row },

 { elements of second row },

 { elements of n-1 row }

};

Arrays and Strings 195

For instance, the statement

int a[3][3] =
{
 { 1, 2, 3 },
 { 4, 3, 1 },
 { 3, 1, 2 }
};

defines a two-dimensional array of order 3 × 3 and initializes all its elements. The first subscript (size

of the row) can be omitted. Hence, the above definition can be replaced by

int a[][3] =
{
 { 1, 2, 3 },
 { 4, 3, 1 },
 { 3, 1, 2 }
};

The inner braces can be omitted, permitting the numbers to be written in one continuous sequence

as follows:

int a[][3] = { l, 2, 3, 4, 3, 1, 3, 1, 2 };

It has the same effect as the earlier definitions, but it suffers from readability.

6.5 STRINGS

Strings are used in programming languages for storing and

manipulating text, such as words, names, and sentences. A string

is represented as an array of characters and the end of the string

is marked by the NULL (‘\0’) character. String constants are

enclosed in double quotes. For instance,

“Hello World”

is a string. A string is stored in memory by using the ASCII codes of

the characters that form the string. The representation of the string

Hello World in memory is shown in Figure 6.8.

Definition
An array of characters representing a string is defined as follows:

char array-name[size];

As usual, the size of the array must be an integer value. For instance,

the statement

char name[50];

defines an array and reserves 50 bytes of memory for storing a set of characters. The length of this

string cannot exceed 49 since one storage location must be reserved for storing the end of the string

marker. The program name.cpp defines an array and uses it to store characters.

Fig. 6.8 String representation in

memory

H

character string
terminated by a
null character '\0'

e

l

l

o

w

o

r

l

d

\0

Mastering C++196

// name.cpp: read and display string
#include <iostream.h>
void main()
{
 char name[50]; // string definition
 cout << “Enter your name <49-max>: ”;
 cin >> name;
 cout << “Your name is ” << name;
}

Run

Enter your name <49-max>: Archana
Your name is Archana

In main(), the statement

cin >> name;

reads characters and stores them into the variable name. The statement

cout << “Your name is ” << name;

outputs the contents of the string variable name.

6.5.1 Initialization at the Point of Definition

The string variable can be initialized at the point of its definition as follows:

char array-name[size] = { list of values separated by comma };

For instance, the statement

char month[] = { ‘A’, ‘p’, ‘r’, ‘i’, ‘1’, 0 };

defines the string variable and assigns the character ‘A’ to month[0], ‘p’ to month[l],.., 0 to

month[5]. The end of the string in the above statement can also be represented as follows:

char month[] = { ‘A’, ‘p’,‘r’,‘!’,‘1’, ‘\0’ };

C++ offers another style for initializing an array of characters. For instance, the statement

char month[] = “April”;

has the same effect as the above statements. In this case, the characters of the string are enclosed in a

pair of double quotes. The compiler takes care of storing the ASCII codes of the characters of the string

in memory, and also stores the NULL terminator at the end.

Special characters can also be embedded within a string as illustrated in the program succ.cpp.

When manipulated using C++ I/O operators, they are interpreted as special characters and action is

taken according to their predefined meaning.

// succ.cpp: string with special characters
#include <iostream.h>
void main ()
{
 char msg[] = “C to C++\nC++ to Java\nJava to ...”;
 cout << “Please note the following message: ” << endl;

Arrays and Strings 197

 cout << msg;
}

Run

Please note the following message:
C to C++
C++ to Java
Java to ...

Note that the characters \ and n used in the string definition

char msg[] = “C to C++\nC++ to Java\nJava to ...”;

are treated as newline characters.

6.6 STRING MANIPULATIONS

C++ has several built-in functions such as strlen(), strcat(), strlwr(), etc., for string

manipulation. To use these functions, the header file string.h must be included in the program

using the statement

#include <string.h>

6.6.1 String Length

The string function strlen() returns the length of a given string. A string constant or an array of

characters can be passed as an argument. The length of the string excludes the end-of-string character

(NULL). The program strlen.cpp illustrates the use of strlen() and a user-defined function to

find the length of the string.

// strlen.cpp: computing length of string
#include <iostream.h>
#include <string.h>
void main()
{
 char s1[25];
 cout << “Enter your name: ”;
 cin >> s1;
 cout << “strlen(s1): ” << strlen(sl) << endl;
}

Run

Enter your name: Smrithi
strlen(s1) : 7

6.6.2 String Copy

The string function strcpy() copies the contents of one string to another. It takes two arguments,

the first argument is the destination-string array and the second argument is the source-string array. The

Mastering C++198

source string is copied into the destination string. The program strcpy.cpp illustrates the use of

strcpy() to copy a string.

// strcpy.cpp: copying string
#include <iostream.h>
#include <string.h>
void main()
{
 char s1[25], s2[25];
 cout << “Enter a string: ”;
 cin >> s1;
 strcpy(s2, s1);
 cout << “strcpyt s2, s1): ” << s2;
}

Run

Enter a string: Garbage
strcpy(s2, s1): Garbage

6.6.3 String Concatenation

The string function strcat() concatenates two strings resulting in a single string. It takes two

arguments which are the destination and source strings. The destination and source strings are

concatenated and the resultant string is stored in the destination (first) string. The program strcat.
cpp illustrates the use of strcat() to concatenate two strings.

// strcat.cpp: string concatenation
#include <iostream.h>
#include <string.h>
void main()
{
 char s1[40], s2[25];
 cout << “Enter string s1: ”;
 cin >> s1;
 cout << “Enter string s2: ”;
 cin >> s2;
 strcat(s1, s2);
 cout << “strcat(s1, s2): ” << s1;
}

Run

Enter string s1: C
Enter string s2: ++
strcat(si, s2) : C++

6.6.4 String Comparison

The string function strcmp() compares two strings, character by character. It accepts two strings as

parameters and returns an integer, whose value is

Arrays and Strings 199

 < 0 if the first string is less than the second

 = = 0 if both are identical

 > 0 if the first string is greater than the second

Whenever two corresponding characters in the string differ, the string which has the character with

the higher ASCII value is greater. For example, consider the strings hello and Hello! The first

character itself differs. The ASCII code for h is 104, while the ASCII code for H is 72. Since the ASCII

code of h is greater, the string hello is greater than the string Hello! Once a differing character is

found, there is no need to compare the remaining characters in the string. The program strcmp.cpp
illustrates the use of strcmp() to compare two strings.

// strcmp.cpp: string concatenation
#include <iostream.h>
#include <string.h>
void main()
{
 char s1[25], s2[25];
 cout << “Enter string s1: ”;
 cin >> s1;
 cout << “Enter string s2: ”;
 cin >> s2;
 int status = strcmp(s1, s2);
 cout << “strcmp(s1, s2): ”;
 if(status == 0)
 cout << s1 << “ is equal to ” << s2;
 else
 if(status > 0)
 cout << s1 << “ is greater than ” << s2;
 else
 cout << s1 << “ is less than ” << s2;
}

Run

Enter string s1: Computer
Enter string s2: Computing
strcmp(s1, s2): Computer is less than Computing

6.6.5 String to Upper/Lower Case

The functions strlwr() and strupr() convert a string to lower case and upper case respectively

and return the address of the converted string. The program uprlwr.cpp illustrates the conversion of

string to lower and upper cases.

// uprlwr.cpp: converting string to upper or lower case
#include <iostream.h>
#include <string.h>
void main()
{
 char s1[25], temp[25];

Mastering C++200

 cout << “Enter a string: ”;
 cin >> s1;
 strcpy(temp, s1);
 cout << “strupr(temp): ” << strupr(temp) << endl;
 cout << “strlwr(temp): ” << strlwr(temp) << endl;
}

Run

Enter a string: Smrithi
strupr(temp): SMRITHI
strlwr(temp): smrithi

6.7 ARRAYS OF STRINGS

An array of strings is a two-dimensional array of characters and is defined as follows:

char array-name[row_size] [column_size];

For instance, the statement

char person[10][15];

defines an array of string which can store the names of 10 persons and each name cannot exceed 14

characters; 1 character is used to represent the end of a string. The name of the first person is accessed

by the expression person[0], and the second person by person[l], and so on. The individual

characters of a string can also be accessed. For instance, the first character of the first person is accessed

by the expression person[0][0] and the fifth character in the third person’s name is accessed by

person[2][4]. The program names.cpp illustrates the manipulation of an array of strings.

// names.cpp: array of strings storing names of the persons
#include <iostream.h>
#include <string.h>
const int LEN = 15;
void main ()
{
 int i, n;
 char person[10][LEN];
 cout << ”How many persons ? ”;
 cin >> n;
 for(i = 0; i < n; i++)
 {
 cout << ”Enter person” << i+1 << ” name: ”;
 cin >> person[i];
 }
 cout <<”--\n”;
 cout << “P# Person Name Length In lower case In UPPER case\n”;
 cout <<”--\n”;
 for(i = 0; i < n; i++)
 {

Arrays and Strings 201

 cout.width(2);
 cout << i+1;
 cout.width(LEN);
 cout << person[i] << “ ”;
 cout.width(2);
 cout << strlen(person[i]) << “ ”;
 cout.width(LEN);
 cout << strlwr(person[i]);
 cout.width(LEN);
 cout << strupr(person[i]) << endl;
 }
 Cout <<“---\n”;
}

Run

How many persons ? 5
Enter personl name: Anand
Enter person2 name: Viswanath
Enter person3 name: Archana
Enter person4 name: Yadunandan
Enter person5 name: Mallikarnun
--
P# Person Name Length In lower case In UPPER case
--
1 Anand 5 anand ANAND
2 Viswanath 9 viswanath VISWANATH
3 Archana 7 archana ARCHANA
4 Yadunandan 10 yadunandan YADUNANDAN
5 Mallikarjun 11 mallikarjun MALLIKARJUN
--

An array of strings can be initialized at the point of its definition as follows:

char array-name[row_size] [column_size] = { “rowl string”, “row2-string”,...};

It can also be defined as

char array-name[row_size][column_size] =

 { { rowl string characters], { row2 string characters} .. };

For instance, the statement

char person!][12]={“Anand”, “Viswanath”, “Archana”, “Yadunandan”,
“Mallikarjun”};

defines an array of strings and initializes them at the point of definition (see Figure 6.9 for the memory

representation). The above statement is equivalent to

char person[5][12]={“Anand”,”Viswanath”,”Archana”,”Yadunandan”,
”Mallikarjun”};

The second dimension must be specified explicitly in the array definition; otherwise, the compiler

generates an error message. However, the first dimension can be skipped; the compiler computes this

value based on the number of values specified in the initialization list. This rule applies only when the

initialization appears at the point of definition.

Mastering C++202

Case Study
Consider a scenario where a set of strings is given as input. The strings are required to be rearranged in

lexicographical or alphabetical order. Write a program in C++ to achieve the same.

The program lex.cpp demonstrates how the strings stored in a multidimensional array are

rearranged in lexicographical order.

// lex.cpp: rearranging a set of strings in lexicographical order
#include <iostream.h>
#include<string.h>
void main()
{
 char str[5][20] = {“Anand”, “Viswanath”, “Archana”, “Yadunandan”,
 “Mallikarjun”};
 char str_temp[20];
 int i,j,k;
 clrscr();
 cout<<”The given strings are:\n”;
 for(i=0;i<5;i++)
 cout<<str[i]<<”\n”;
 k=1;
 while(k<5)
 {
 for(i=1;i<=5-k;i++)
 {
 if(strcmp(str[i-1],str[i])>0)
 {
 strcpy(str_temp,str[i-1]);
 strcpy(str[i-1],str[i]);
 strcpy(str[i],str_temp);
 }
 }
 k=k+1;
 }
 cout<<”\nStrings in lexicographical order are:\n”;
 for(i=0;i<5;i++)
 cout<<str[i]<<”\n”;
}

Fig. 6.9 Array of strings representated in memory

0 1 2 3 4 5 6 7 8 9 10 11

person[0]

person[1]

person[2]

person[3]

person[4]

0

1

2

3

4

A

V

A

Y

M a

a

r

i

n a

a

a

a

a

a

a

a

s

c

d

l

n

w

h

u

l

d

n

i

\0

n

n

k

n

t

\0

d

r

h

j

\0

n

u n

\0

\0

Arrays and Strings 203

Run

The given strings are:
Anand
Viswanath
Archana
Yadunandan
Mallikarjun

Strings in lexicographical order are:
Anand
Archana
Mallikarjun
Viswanath
Yadunandan

6.8 EVALUATION ORDER/UNDEFINED BEHAVIORS

The order of evaluation of sub-expressions within an expression is undefined. Consider the following

segment of code:

int i = 0;
v[i] = i++;

The second statement can be evaluated either as

v[0] = 0;

or
v[l] = 0;

The compiler can generate better code in the absence of restrictions on the expression evaluation order.

It can take advantage of underlying hardware architecture and generate the most optimal code. The

compiler can warn about such ambiguities. Unfortunately, most compilers do not report a warning

about such ambiguities.

The operators

&& ||

guarantee that their left-hand-side operand is evaluated first before their right-hand-side operand. For

instance, in the statement,

x = (y = 5, y+1);

the expression (y = 5, y+1), the comma operator first assigns 5 to y and then evaluates the right-

hand-side operand and the resulting value 6 is assigned to the x variable. Note that the sequencing

operator comma (,) is logically different from the comma used to separate arguments in a function call.

Consider the following statements:

fl(a[i], i + +); // two arguments

f2 ((a[i], i++)); // one argument

Mastering C++204

The call of f1() has two arguments, a[i] and i++, and the order of evaluation of the argument

is undefined. However, most compilers follow evaluation of arguments at a function call from right to

left. The function

fl(int a, int b)
{
 cout << a << “ ” << b;
}

when invoked as

fl(a[i], i++);

where a[] = { 1, 2, 3, 4, 5 } and i = 0. The output will be 2 and 0. The parameters

evaluated are passed in the following order:

 1. The contents of the variable i whose value is 0 is assigned to b, and then the expression i++ will

be evaluated, thereby i becomes 1.

 2. The value of a [i] (now i holds the value 1) is 2 and is assigned to the variable a.

SOLVED PROBLEM

Write a program in C++ to count the number of words in a line of text.

#include <iostream.h>

#include<string.h>

void main()

{

 char str[50] = “In pursuit of Mastering C++”;

 int count=0;

 int i=0;

 cout<<”The given string is:\n”<<str;

 while(str[i]!=’\0’)

 {

 if(str[i]==’ ‘ || str[i]==’\t’)

 count++;

 i=i+1;

 }

 cout<<”\nThe number of words in the given string is: “<<count;

}

Run

The given string is:

In pursuit of Mastering C++

The number of words in the given string is: 5

+
+

Arrays and Strings 205

REVIEW QUESTIONS ++
 6.1 What are arrays? Explain how they simplify programming with suitable examples.

 6.2 Explain how the comb-sort algorithm is superior over bubble sort. What are their time

complexities? Hint: Time complexity is measured in terms of number of elements

compared, since comparison operation is the active operation in any sorting algorithm.

 6.3 What are the side effects of the following statements:

 int a[100];
 a[0] = 20;
 a[100] = 200;
 cout << a[101];
 a[-l] = 5;
 cout << a[-1];

 Does the compiler report an error when illegal accesses are made to an array?

 6.4 What are multidimensional arrays? Explain their syntax and mechanism for accessing

their elements.

 6.5 Write an interactive program for calculating grades of N students from 3 tests and present

the result in the following format:

 Sl.NO. SCORES AVERAGE GRADE

 XX XX XX XX XX X

 6.6 Write a program for computing the norm of the matrix.

 6.7 Can arrays be initialized at the point of their definition? If yes, explain its syntax with

suitable examples.

 6.8 Write a program to find the symmetry of the matrix.

 6.9 What are strings? Are they standard or derived data type? Write an interactive program to

check whether a given string is a palindrome or not. What happens if the end-of-string

character is missing?

 6.10 Write a program to sort integer numbers using shell sort and compare its time complexity

with that of the comb sort.

 6.11 Write a program for computing mean(m), variance, and standard deviation(s) of a set of

numbers using the following formulae:

 mean = m =
n

1
x

i 1

n

=

 variance =
n

1
(x)mi

2

i 1

n

-
=

 s = variance

Mastering C++206

 6.12 Write a program to find the transpose of a matrix. (The transpose can be obtained by

interchanging the elements of rows and columns).

 6.13 Write a program to find the saddle points in a matrix. It is computed as follows: Find out

the smallest elernent in a row. The saddle point exists in a row if an element is the largest

element in that corresponding column. For instance, consider the following matrix:

 7 5 6

 10 2 3

 1 3 3

 The saddle-point results are as listed below:

 In row 1, saddle point exists at column 2.

 In row 2, saddle point does not exist.

 In row 3, saddle point does not exist.

 6.14 Write an interactive program to multiply two matrices and print the result in a matrix

form.

Modular
Programming with
Functions

 7.1 INTRODUCTION

It is difficult to implement a large program even if its algorithm is available.

To implement such a program with ease, it should be split into a number

of independent tasks, which can be easily designed, implemented, and

managed. This process of splitting a large program into small manageable

tasks and designing them independently is popularly called modular

programming or divide-and-conquer technique. Large programs are more prone to errors and it is

difficult to locate and isolate errors that creep into them. A repeated group of instructions in a program

can be organized as a function. It can be invoked instead of having the same pattern of code wherever

it is required as shown in Figure 7.1.

7

code duplication
if function not used

void main()

{

S
ta

n
d

-a
lo

n
e

 p
ro

g
ra

m
C

a
lle

r

void main()

{

Calculate Tax();

Calculate Tax();

}

}

Calculate Tax();
{

}

code
written
only once
if function is
used

Fig. 7.1 Functions for eliminating redundancy of code

Mastering C++208

A function is a set of program statements that can be processed independently. A function can be

invoked which behaves as though its code is inserted at the point of the function call. The communication

between a caller (calling function) and callee (called function) takes place through parameters. The

functions can be designed, developed, and implemented independently by different programmers. The

independent functions can be grouped to form a software library. Functions are independent because

variable names and labels defined within its body are local to it. The use of functions offer flexibility

in the design, development, and implementation of the program to solve complex problems. The

advantages of functions include the following: Modular programming Reduction in the amount of work and development time Program and function debugging is easier Division of work is simplified due to the use of divide-and-conquer principle Reduction in size of the program due to code reusability Functions can be accessed repeatedly without redevelopment, which in turn promotes reuse of

code Library of functions can be implemented by combining well-designed, tested, and proven

functions

The program tax1.cpp computes the tax amount of two persons based on their annual salaries

without the use of functions.

// tax1.cpp: tax calculation without using function

#include <iostream.h>

void main()

{

 char Name[25];

 double Salary, Tax;

 cout << “Enter name of the 1st person: ”;

 cin >> Name;

 cout << “Enter Salary: ”;

 cin >> Salary;

 if(Salary <= 90000)

 Tax = Salary * 12.5 / 100;

 else

 Tax = Salary * 18.0 / 100;

 cout << ”The tax amount for ” << Name << “ is: ” << Tax << endl;

 cout << “Enter name of the 2nd person: ”; cin >> Name;

 cout << “Enter Salary: ”; cin >> Salary;

 if(Salary <= 90000)

 Tax = Salary * 12.5 / 100;

 else

 Tax = Salary * 18.0 / 100;

 cout << “The tax amount for ” << Name << “ is: ” << Tax << endl;

}

Modular Programming with Functions 209

Run

Enter name of the 1st person: Rajkumar

Enter Salary: 130000

The tax amount for Rajkumar is: 23400

Enter name of the 2nd person: Savithri

Enter Salary: 90000

The tax amount for Savithri is: 11250

Multiple copies of the same pattern of code can be eliminated by grouping repeated statements

together to generate a function CalculateTax(), as illustrated in the program tax2.cpp.

// tax2.cpp: tax calculation using function

#include <iostream.h>

void CalculateTax()

{

 char Name[25];

 double Salary, Tax;

 cout << “Enter name of the person: ”;

 cin >> Name;

 cout << “Enter Salary: ”;

 cin >> Salary;

 if(Salary <= 90000)

 Tax = Salary * 12.5 / 100;

 else

 Tax = Salary * 18.0 / 100;

 cout << “The tax amount for ” << Name << “ is: ” << Tax << endl;

}

void main()

{

 CalculateTax();

 CalculateTax();

}

Run

Enter name of the person: Rajkumar

Enter Salary: 130000

The tax amount for Rajkumar is: 23400

Enter name of the person: Savithri

Enter Salary: 90000

The tax amount for Savithri is: 11250

In main(), the statement

 CalculateTax();

is invoked twice to calculate taxes for two persons. It computes the tax amount and displays it. The

same function can be invoked to calculate tax amounts for a large number of people using a loop

construct.

Mastering C++210

The program max1.cpp illustrates the various components of a function. It computes the maximum

of two integer numbers.

// maxl.cpp: maximum of two integer numbers

#include <iostream.h>

int max(int x, int y); // prototype

void main() // function caller

{

 int a, b, c;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 c = max(a, b); // function call

 cout << “max(a, b): ” << c << endl;

}

int max(int x, int y) // function definition

{

 // all the statements enclosed in braces forms body of the function

 if(x > y)

7.2 FUNCTION COMPONENTS

Every function has the following elements associated with it: Function declaration or prototype Function parameters(formal parameters) Combination of function declaration and its definition. Function definition(function declarator and a function body) return statement Function call

A function can be executed using a function call in the program. The various components associated

with functions are shown in Figure 7.2.

void func();

..........

..........

int a, int b

void func();

{

..........

..........

..........

}

..........

..........

func(x, y);

..........

..........

int a, int b

actual parameters

call

body

declarator

formal parameters

prototype

Fig. 7.2 Components of a function

Modular Programming with Functions 211

 return x; // function return

else

 return y; // function return

}

Run

Enter two integers <a, b>: 20 10

max(a, b): 20

As discussed earlier, main() is a function, so it is not surprising that max() which is also a

function, appears similar to main(). The only special feature about main() is that it is always

executed first. It does not matter whether main() is the first function in the program listing or is

placed elsewhere in the program; it will always be the first one to execute.

There are five elements involved in using a function: the function prototype, the function definition,

the function call, the function parameters, and the function return.

7.2.1 Function Prototype

The first function-related statement in max1.cpp is the function prototype. This is the line before the

beginning of main():

It provides the following information to the compiler: The name of the function The type of the value returned(optional; default is an integer) The number and the types of the arguments that must be supplied in a call to the function

Function prototyping is one of the key improvements added to the C++ functions. When a function

call is encountered, the compiler checks the function call with its prototype so that correct argument

types are used. The compiler informs the user about any violations in the actual parameters that are to

be passed to a function.

A function prototype is a declaration statement which has the following syntax:

The ret_val specifies the data type of the value in the return statement. The function can return

any data type; if there is no return value, a keyword void is placed before the function name. In a

function without any return value, a dummy return statement can be included before the closing brace.

A program can have more than one return statements. (Note: return is a keyword. The statement

return 0; is sufficient in place of return(0);). The number of arguments to a function can be

fixed or variable. The function declaration terminates with a semicolon.

Consider the prototype statement

 int max(int x, int y); // prototype

It informs the compiler that the function max() has two arguments of type integer (the list of data

types separated by commas form the argument list). The function max() returns an integer value; the

compiler knows how many bytes to retrieve and how to interpret the value returned by the function.

Mastering C++212

Function declarations are also called prototype, since they provide a model or blueprint for the function.

C++ makes prototyping mandatory if functions are defined after the function main. C++ assumes

void type in case no arguments are specified in the argument list; the default return type is an integer.

7.2.2 Function Definition

The function itself is referred to as function definition. The first line of the function definition is known

as function declarator and is followed by the function body. Figure 7.3 shows that the declarator and

the function body make up the function definition. The declarator and declaration must use the same

function name, the number of arguments, the argument type and the return type. No other function

definitions are allowed within a function definition.

The body of the function is enclosed in braces. C++ allows the definition to be placed anywhere in

the program. If the function is defined before its invocation then its prototypes declaration is optional.

Function name
defines function no semicolon

function declarator

function body

int max(int x, int y)

{

if (x > y)

return x;

else

return y;

}

Fig. 7.3 Function definition

7.2.3 Function Call

A function is a dormant entity, which gets life only when a call to the function is made. A function call

is specified by the function name followed by the arguments enclosed in parentheses and terminated

by a semicolon. The return type is not mentioned in the function call. For instance, in the function

main() of the program max1.cpp, the statement

 c = max(a, b); // function call

invokes the function max() with two integer parameters. Executing the call statement causes the

control to be transferred to the first statement in the function body, and after execution of the function

body, the control is returned to the statement following the function call. The max() returns the

maximum of the parameters a and b. The return value is assigned to the local variable c in main().

7.2.4 Function Parameters

The parameters specified in the function call are known as actual parameters and those specified in the

function declarator are known as formal parameters. For instance, in main(), the statement

 c = max(a, b); // function call

passes the parameters(actual parameters) a and b to max(). The parameters x and y are formal

parameters. When a function.call is made, a one-to-one correspondence is established between the

Modular Programming with Functions 213

actual and the formal parameters. In this case, the value of the variable a is assigned to the variable x

and that of b is assigned to y. The scope of formal parameters is limited to its function only.

7.2.5 Function Return

Functions can be grouped into two categories: functions that do not have a return value(void functions)

and functions that have a return value. The statements

 return x; // function return

and

 return y; // function return

in the function max() are called function return statements. The caller must be able to receive the

value returned by the function(but not mandatory). In the statement

 c = max(a, b); // function call

the value returned by the function max() is assigned to the local variable c in main(). Figure 7.4

shows the function max() returning a value to the caller.

c=max(a, b);

caller callee

void main()

{

}

int max(x, y)

{

else

return y;

}

The value of y is,
returned to main ()
and assigned to c.

Fig. 7.4 Function returning a value

The return statement in a function need not be at the end of the function. It can occur anywhere in the

function body and as soon as it is encountered, execution control will be returned to the caller.

A function that does not return anything is indicated by the keyword void. It has the following form:

 void FunctionName(ParameterList)

 {

 statement(s);

 return; // return is optional

 }

In void functions, the use of return statement is optional.

7.2.6 Elimination of the Function Prototype

The function declaration can be eliminated by defining the function before calling it. The program

max2.cpp illustrates this concept.

Mastering C++214

// max2.cpp: maximum of two integer numbers

#include <iostream.h>

int max(int x, int y) // function definition

{

 // all the statements enclosed in braces forms body of the function

 if(x > y)

 return x; // function return

 else

 return y; // function return

}

void main() // function caller

{

 int a, b, c;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 c = max(a, b); // function call

 cout << “max(a, b): ” << c << endl;

}

Run

Enter two integers <a, b>: 20 10

max(a, b) : 20

The definition of max() occurs before it is invoked in main() eliminating the need for a function

prototype. In the case of a program having a large number of functions, the programmer has to arrange

the functions such that they are defined before they are called by any other function.

7.3 PASSING DATA TO FUNCTIONS

The entity used to convey the message to a function is the function argument. It can be a numeric

constant, a variable, multiple variables, user-defined data types, etc.

7.3.1 Passing Constants as Arguments

The program chart1.cpp illustrates the passing of a numeric constant as an argument to a function.

This constant argument is assigned to the formal parameter which is processed in the function body.

// chartl.cpp: Percentage chart by passing numeric value

#include <iostream.h>

void Percentage Chart(int percentage);

void main()

{

 cout << “Sridevi : ”;

 PercentageChart(50);

 cout << “Rajkumar: ”;

 PercentageChart(84);

 cout << “Savithri: ”;

Modular Programming with Functions 215

 PercentageChart(79);

 cout << “Anand : ”;

 PercentageChart(74);

}

void PercentageChart(int percentage)

{

 for(int i = 0; i < percentage/2; i++)

 cout << ‘\xCD’; // double line character(see ASCII table)

 cout << endl;

}

Run

Sridevi : =========================

Rajkumar: ===

Savithri: ==

Anand : ======================================

In main(), the statement

 PercentageChart(84);

invokes the function PercentageChart() with the integer constant 84 to draw a chart. It draws a

horizontal line, made up of the double-line graphic character(‘\xCD’) on the screen.

In the function definition, the variable name percentage is placed between the parentheses

following the function name PercentageChart. The invocation of this function by the statement

ensures that the numeric constant 84 is assigned to the variable percentage as shown in Figure 7.5.

7.3.2 Passing Variables as Arguments

Similar to constants, variables can also be passed as arguments to a function. The program chart2.

cpp illustrates the mechanism of passing a variable as an argument to a function.

Fig. 7.5 Passing value to a function

Caller

PercentageChart(84);

}

void main (void)

{ int PercentageChart (int percentage)

{

}

Callee

m2

Mastering C++216

// chart2.cpp: Percentage chart by passing variables

#include <iostream.h>

void PercentageChart(int percentage);

void main()

{

 int ml, m2, m3, m4;

 cout << “Enter percentage score of Sri, Raj, Savi, An: ”;

 cin >> ml >> m2 >> m3 >> m4;

 cout << “Sridevi : ”;

 PercentageChart(ml) ;

 cout << “Rajkumar: ”;

 PercentageChart(m2) ;

 cout << “Savithri: ”;

 PercentageChart(m3) ;

 cout << “Anand : ”;

 PercentageChart(m4) ;

}

void PercentageChart(int percentage)

{

 for(int i = 0; i < percentage/2; i++)

 cout << ‘\xCD’; // double line character(see ASCII table)

 cout << endl;

}

Run

Enter percentage score of Sri, Raj, Savi, An: 55 92 83 67

Sridevi : ===========================

Rajkumar: ==

Savithri: ==

Anand : ===============================

In main(), the statement

 PercentageChart(m2);

invokes the function PercentageChart(). It draws a horizontal line, made up of the double-line

graphic character(‘ xCD’) on the screen. It ensures that the contents of the variable m2 is assigned to

the variable percentage as shown in Figure 7.6. Note that the names of the parameters in the calling

and called functions can be the same or different, since the compiler treats them as different variables.

Fig. 7.6 Variable used as argument

int PercentageChart (int percentage)

{

}

Callee

m2

Caller

PercentageChart(m2);

}

m2 = 92;

void main (void)

{

Modular Programming with Functions 217

7.3.3 Passing Multiple Arguments

C++ imposes no limitation on the number of arguments that can be passed to a function. The program

chart3.cpp passes two arguments to the function PercentageChart(), whose purpose is to

draw various style charts on the screen.

//chart3.cpp: Percentage chart by passing multiple variables

#include <iostream.h>

void PercentageChart(int percentage, char style);

void main()

{

 int ml, m2, m3, m4;

 cout << “Enter percentage score of Sri, Raj, Savi, An: ”;

 cin >> ml >> m2 >> m3 >> m4;

 cout << “Sridevi : ”;

 PercentageChart(ml, ‘*’);

 cout << “Rajkumar: ”;

 PercentageChart(m2, ‘\xCD’);

 cout << “Savithri: ”;

 PercentageChart(m3, ‘~’);

 cout << “Anand : ”;

 PercentageChart(m4, ‘!');

}

void PercentageChart(int percentage, char style)

{

 for(int i = 0; i < percentage/2; i++)

 cout << style;

 cout << endl;

}

Run

Enter percentage score of Sri, Raj, Savi, An: 55 92 83 67

Sridevi : ***************************

Rajkumar: ===

Savithri: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

!!!!!

The process of passing two parameters is similar to passing a single parameter. The value of

the first actual parameter in the caller (calling function) is assigned to the first formal parameter in

the callee (called function), and the value of the second actual parameter is assigned to the second

formal parameter, as shown in Figure 7.7. Of course, more than two parameters can be passed in the

same way.

Mastering C++218

7.4 FUNCTION RETURN DATA TYPE

The return value can be a constant, a variable, a user-defined data structure, a general expression(reducible

expressions), a pointer to a function or a function call(in which case the call must return a value). C++

does not place any restriction on the type of return value, except that it cannot be an array(a pointer to

an array can be returned. A function can return an array that is a part of a structure).

// ifact.cpp: factorial computation Returns a long integer value

#include <iostream.h>

long fact(int n)

{

 long result;

 if(n == 0)

 result = 1; // factorial of zero is one

 else

 {

 result = 1;

 for(int i = 2; i <= n; i++)

 result = result * i;

 }

 return result;

}

void main(void)

{

 int n;

 cout << “Enter the number whose factorial is to be found: ”;

 cin >> n;

 cout << “The factorial of ” << n << “ is ” << fact(n) << endl;

}

Run

Enter the number whose factorial is to be found: 5

The factorial of 5 is 120

Fig. 7.7 Multiple arguments passed to a function

Caller

Callee

m2
'\xCD'

int PercentageChart(int percentage,char style)

{

}

void main (void)

{

m2=92;

PercentageChart(m2, '\xCD');

}

Modular Programming with Functions 219

The definition before main() indicates that the function fact() takes an integer argument and

returns a long datatype. It ensures that the correct value is returned by defining the appropriate data

type(i.e., a long variable) and placing it in the return statement. Suppose that the variable result was

defined as an integer, the compiler performs the necessary type conversion(i.e., to type long) and

returns a value of type long, irrespective of the data variable to which the return value is assigned.

A function with a return value can be placed as an individual statement[i.e., the return value need not

be assigned to any variable(s)]. An example is given below.

 int SumTwo(int nl, int n2) // nl and n2 are the parameters

 {

 return nl + n2;

 }

When a function has nothing specific to return or take, it is indicated by void. Typically, such

functions are called void functions. The following is the prototype of a void function:

 void func(void);

However, the keyword void is optional. C++ maintains strict type checking and an empty argument

list is interpreted as the absence of any parameters.

Limitation of Return

A key limitation of the return statement is that it can be used to return only one item from a function.

An alternative method to overcome this limitation is to use parameters as a media of communication

between calling and called functions.

7.5 LIBRARY FUNCTIONS

Library functions are shipped along with the compilers. They are predefined and precompiled into

library files, and their prototypes can bz found in the files with .h (called header files) as their extension

in the include directory. The definitions are available in the form of object codes in the files with .lib

(called library files) as their extension in the lib directory. In order to make use of a library function,

include the corresponding header file. Once the header file is included, any function available in that

library can be invoked. The linker will add such functions to a calling program by extracting them from

an appropriate function library. Some of the library calls are sqrt(), pow()(declared in the header

file math.h), strlen(), strcat(), strcpy(), and strncpy()(declared in string.h).

In case of user-defined functions, the prototype and definitions of the functions must be a part of a

program module. The program name1en.cpp illustrates the use of library functions.

// namelen.cpp: use of string library functions

#include <iostream.h>

#include <string.h> //string function header file

void main()

{

 char name[20];

 cout << “Enter your name: ”;

 cin >> name;

Mastering C++220

 int len = strlen(name); // strlen returns the length of name

 cout << “Length of your name = ” << len;

}

Run

Enter your name: Rajkumar

Length of your name = 8

Note that, the statement

 #include <string.h>

informs the compiler to include the prototypes of the string-related functions. The statement

 int len = strlen(name);

invokes the library function strlen() and assigns the length of the string stored in the variable name

to the variable len.

The calls may be mathematical, such as sin(), cos(), log10() or may even include functions

to round a value or truncate a resultant value. The program maths.cpp accesses mathematical

functions.

// maths.cpp : Use of library function calls to round and truncate a result

#include <iostream.h>

#include <math.h>

void main(void)

{

 float num, numl, num2;

 cout << “Enter any fractional number: ”;

 cin >> num;

 numl = ceil(num); // rounds up

 num2 = floor(num); // rounds down

 cout << “ceil(” << num << “) = ” << numl << endl;

 cout << “floor(” << num << “) = ” << num2 << endl;

}

Run1

Enter any fractional number: 2.9

ceil(2.9) = 3

floor(2.9) = 2

Run2

Enter any fractional number: 2.1

ceil(2.1) = 3

floor(2.1) = 2

Library functions improve the program design, reduce debugging and testing time, thereby reducing

the amount of work needed for the development of the program. These functions are certainly better

programmed, tested, and well proved. Hence, the use of library functions increases program reliability

and reduces the complexity.

Modular Programming with Functions 221

7.6 PARAMETER PASSING

Parameter passing is a mechanism for communication of data and information between the calling

function(caller) and the called function(callee). It can be achieved either by passing the value or address

of the variable. C++ supports the following three types of parameter-passing schemes: Pass by Value Pass by Address Pass by Reference(only in C++)

The parameters used to transfer data to a function are known as input parameters and those used to

transfer the result to the caller are known as output parameters. The parameters used to transfer data in

both the directions are called input output parameters.

Parameters can be classified as formal parameters and actual parameters. The formal parameters

are those specified in the function declaration and function definition. The actual parameters are those

specified in the function call. The following conditions must be satisfied for a function call: The number of arguments in the function call and the function declarator must be the same. The data type of each of the arguments in the function call should be the same as the corresponding

parameter in the function declarator statement. However, the names of the arguments in the

function call and the parameters in the function definition can be different.

7.6.1 Pass by Value

The default mechanism of parameter passing is called pass by value. Pass-by-value mechanism does

not change the contents of the argument variable in the calling function(caller), even if they are changed

in the called function (callee); because the content of the actual parameter in a caller is copied to the

formal parameter in the callee. The formal parameter is stored in the local data area of the callee.

Changes to the parameter within the function will effect only the copy(formal parameters), and will

have no effect on the actual argument. It is illustrated in the program swapl.cpp. Most of the

functions discussed earlier fall under the category pass-by-value parameter passing.

// swapl.cpp: swap integer values by value

#include <iostream.h>

void swap(int x, int y)

{

 int t; // temporary used in swapping

 cout<<“Value of x and y in swap before exchange: “<< x <<” “<< y << endl;

 t = x;

 x = y;

 y = t;

 cout<<“Value of x and y in swap after exchange: “<< x <<” “<< y << endl;

}

void main()

{

 int a, b;

 cout << “Enter two integers <a, b>: ”;

Mastering C++222

 cin >> a >> b;

 swap(a, b);

 cout << “Value of a and b on swap(a, b) in main():” << a <<” ” << b;

}

Run

Enter two integers <a, b>: 10 20

Value of x and y in swap before exchange: 10 20

Value of x and y in swap after exchange: 20 10

Value of a and b on swap(a, b) in main(): 10 20

In main(), the statement

 swap(x, y)

invokes the function swap() and assigns the contents of the actual parameters a and b to the formal

parameters x and y respectively. In the swap() function, the input parameters are exchanged; however

it is not reflected in the caller; actual parameters a and b do not get modified (see Figure 7.8).

20

10 a

b

1552

1554
20

10 x

y

void main (void)

{

int a, b;

swap(a, b);

}

void swap (int x, int y)

{

int t;

t=x;

x=y;

y=t;

}

Fig. 7.8 Parameter passing by value

7.6.2 Pass by Address

C++ provides another means of passing values to a function known as pass-by-address. Instead of

passing the value, the address of the variable is passed. In the function, the address of the argument is

copied into a memory location instead of the value. The de-referencing operator is used to access the

variable in the called function.

// swap2.cpp: swap integer values by pointers

#include <iostream.h>

void swap(int * x, int * y)

{

 int t; // temporary used in swapping

Modular Programming with Functions 223

 t = *x;

 *x = *y;

 *y = t;

}

void main()

{

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(&a, &b);

 cout << “Value of a and b on swap(a, b) : ” << a << “ ” << b;

}

Run

Enter two integers <a, b>: 10 20

Value of a and b on swap(a, b): 20 10

In main(), the statement

 swap(&x, &y)

invokes the function swap() and assigns the address of the actual parameters a and b to the formal

parameters x and y respectively.

In swap(), the statement

assigns the contents of the memory location pointed to by the pointer(address) stored in the variable x.

It is effectively accessing the contents of the actual variable a in the caller. Similarly, the parametery

holds the address of the parameter b. Any modification to the memory contents using these addresses

will be reflected in the caller; the actual parameters a and b get modified (see Figure 7.9).

20

10 a

b

1552

1554 1554

1552 x

y

void main (void)

{

int a, b;

swap(&a, &b);

}

void swap (int *x, int *y)

{

int t;

t=*x;

*x=*y;

*y=t;

}

Fig. 7.9 Parameter passing by address

Mastering C++224

7.6.3 Pass by Reference

Passing parameters by reference has the functionality of pass-by-pointer and the syntax of call-by-

value. Any modifications made through the formal pointer parameter is also reflected in the actual

parameter. Therefore, the function body and the call to it is identical to that of call-by-value, but has

the effect of call-by-pointer.

To pass an argument by reference, the function call is similar to that of call by value. In the function

declarator, those parameters, which are to be received by reference must be preceded by the & operator.

The reference type formal parameters are accessed in the same way as normal value parameters.

However, any modification to them will also be reflected in the actual parameters. The program

swap3.cpp illustrates the mechanism of passing parameters by reference.

// swap3.cpp: swap integer values by reference

#include <iostream.h>

void swap(int & x, int & y)

{

 int t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void main()

{

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b);

 cout << “Value of a and b on swap(a, b) : ” << a << “ ” << b;

}

Run

Enter two integers <a, b>: 10 20

Value of a and b on swap(a, b): 20 10

In main(), the statement

 swap(a, b);

is translated into

 swap(& a, & b);

internally during compilation. The function declarator

 void swap(int & a, int & b)

indicates that the formal parameters are of reference type and hence, they must be bound to the memory

location of the actual parameter. Thus, any access made to the reference formal parameters in the

swap() function refers to the actual parameters. The following statements in the body of the swap()

function:

Modular Programming with Functions 225

(as treated by the compiler) have the following interpretation internally:

 t = *x; // store the value pointed by x into t

 *x = *y; // store the value pointed by y into location pointed by x

 *y = t; // store the value hold by ‘t’ into location pointed by y

This is because the formal parameters are of reference type and, therefore, the compiler treats them

similar to pointers but does not allow the modification of the pointer value(cannot be made to point to

some other variable). Changes made to the formal parameters x and y reflect on the actual parameters

a and b (see Figure 7.10).

20

10 a

b

1552

1554 1554

1552 x

y

void main (void)

{

int a, b;

swap(&a, &b);

}

void swap (int &x, int &y)

{

int t;

t=x;

x=y;

y=t;

}

20

10

Fig. 7.10 Parameter passing by reference

The following points can be noted about reference parameters: A reference can never be null, it must always refer to a legitimate object (variable). Once established, a reference can never be changed so as to make it point to a different object. A reference does not require any explicit mechanism to de-reference the memory address and

access the actual data value.

Note Procedures can be implemented using functions. A function with no return value can be

treated similar to a procedure of Pascal. The main difference between using functions and procedures

in C++(or C) is that function can be placed on the right side of the ‘=’(assignment) and on either side

of == (equal) operator. Procedures(functions with no return values) cannot be used with these operators.

The return value from the function can be directly passed to cout for display, whereas procedures

cannot be used in the cout statement.

7.6.4 Niceties of Parameter Passing

Pass by address/reference is also used when the size of the user-defined data structure is large, since a

large number of arguments cannot be accommodated in the limited stack space. Consider the following

declaration:

Mastering C++226

 struct LargeStruct

 {

 char Name[30];

 unsigned int Age, Sex;

 char Address[50];

 enum MartialStatus { Married, Unmarried } Ms;

 };

If a variable of the above structure type is passed by value, 85 bytes of data movement between the

caller space and a function stack space is required. If it is passed by address, it just requires four bytes

of movement and thus reduces the function-context switching overhead.

7.7 RETURN BY REFERENCE

A function that returns a reference variable is actually an alias for the referred variable. This method

of returning references is used in operator overloading to form a cascade of member-function calls

specified in a single statement. For example,

 cout << i << j << endl;

is a set of cascaded calls that returns a reference to the object cout. The program ref.cpp illustrates

the function return value by reference.

// ref.cpp: return variable by reference

#include <iostream.h>

int & max(int & x, int & y); // prototype

void main()

{

 int a, b, c;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 max(a, b) = 425;

 cout<<”The value of a and b on execution of max(a,b) = 425;...” << endl;

 cout << “a = ” << a << “ b = ” << b;

}

int & max(int & x, int & y) // function definition

{

 // all the statements enclosed in braces form body of the function

 if(x > y)

 return x; // function return

 else

 return y; // function return

}

Run1

Enter two integers <a, b>: 1 2

The value of a and b on execution of max(a, b) = 425;...

a = 1 b = 425

Modular Programming with Functions 227

Run2

Enter two integers <a, b>: 2 1

The value of a and b on execution of max(a, b) = 425;...

a = 425 b = 1

In main(), the statement

 max(a, b) = 425;

invokes the function max(). It returns the reference to the variable holding the maximum value and

assigns the value 425 to it (see Run2). Since the return type of max() is int &, it implies that the call

to max() can appear on the left-hand side of an assignment statement. Therefore, the above statement

is valid and assigns 425 to a if it is larger, otherwise, it is assigned to b.

7.8 DEFAULT ARGUMENTS

Normally, a function call should specify all the arguments used in the function definition. In a C++

function call, when one or more arguments are omitted, the function may be defined to take default

values for the omitted arguments by providing the default values in the function prototype.

Parameters without default arguments are placed first, and those with default values are placed later

(because of the C++ convention of storing the arguments on the stack from right to left). Hence, the

feature of default arguments allows the same function to be called with fewer arguments than defined

in the function prototype.

To establish a default value, the function prototype or the function definition (when functions are

defined before being called) must be used. The compiler checks the function prototype/declarator with

the arguments in the function call to provide default values (if available) to those arguments, which

are omitted. The arguments specified in the function call explicitly always override the default values

specified in the function prototype/declarator. In a function call, all the trailing missing arguments are

replaced by default arguments as shown in Figure 7.11.

void PrintLine (char='-', int=70);

void main()

{

PrintLine();

PrintLine('!');

PrintLine('*', 40);

PrintLine('R', 55);

}

void main()

{

> PrintLine('-', 70);

> PrintLine('!', 70);

> PrintLine('*', 45);

}

> PrintLine('R', 55);

Fig. 7.11 Preprocessor handling missing arguments at function call using default arguments

When a function is called by omitting some arguments, they are supplied by the compiler implicitly.

The code of the program by no means becomes shorter or more efficient, but it provides high flexibility

on programming. Functions may be defined with more than one default argument.

Default arguments must be known to the compiler prior to the invocation of a function. It reduces

Mastering C++228

the burden of passing arguments explicitly at the point of the function call. The program defargl.

cpp illustrates the concept of default arguments.

// defargl.cpp: Default arguments to functions

#include <iostream.h>

void PrintLine(char = ‘-’, int = 70);

void main()

{

 PrintLine(); // uses both default arguments

 PrintLine(‘!’); // assumes 2nd argument as default

 PrintLine(‘*’, 40); // ignores default arguments

 PrintLine(‘R’, 55); // ignores default arguments

}

void PrintLine(char ch, int RepeatCount)

{

 int i;

 cout << end1;

 for(i = 0; i < RepeatCount; i++)

 cout << ch;

}

Run

 --

!!

RR

In main(), when the compiler encounters the statement

 PrintLine();

it is replaced by the statement

 PrintLine(‘-’, 70);

internally by substituting the missing arguments. Similarly, the statement

 PrintLine(‘!’);

is replaced by

 PrintLine(‘!', 70);

Note that in the first statement, both the arguments are default arguments and in the second case only

the missing argument(second argument) is replaced by its default value.

The feature of default arguments can be utilized in enhancing the functionality of the program

without the need for modifying the old code referencing to functions. For instance, the function in the

above program

 void PrintLine(char = ‘-’, int = 70);

prints a line with default character ‘–’ in case it is not passed explicitly. This function can be enhanced

to print multiple lines using the new prototype:

Modular Programming with Functions 229

 void PrintLine(char = ‘-’, int = 70, int = 1);

In this new function, the last parameter specifies the number of lines to be printed and by default,

it is 1. Therefore, the old code referring to this function need not be modified and new statements can

be added without affecting the functionality. The program defarg2.cpp extends the capability of

defargl.cpp program.

// defarg2.cpp: extending the functionality without modifying old calls

#include <iostream.h>

void PrintLine(char = ‘-’, int = 70, int = 1);

void main()

{

 PrintLine(); // uses both default arguments

 PrintLine(‘!'); // assumes 2nd argument as default

 PrintLine(‘*', 40); // ignores default arguments

 PrintLine(‘R', 55); // ignores default arguments

 // new code, Note: old code listed above is unaffected

 PrintLine(‘&’, 25, 2);

}

void PrintLine(char ch, int RepeatCount, int nLines)

{

 int i, j;

 for(j = 0; j < nLines; j++)

 {

 cout << endl;

 for(i = 0; i < RepeatCount; i++)

 cout << ch;

 }

}

Run

 --

!!

RR

&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&&&&&&&&&&&&&&&&&&&&&

The following statements in the above two programs

 PrintLine(); // uses both default arguments

 PrintLine(‘!’); // assumes second argument as default

 PrintLine(‘*’, 40); // ignores default arguments

 PrintLine(‘R’, 55); // ignores default arguments

are the same. Though the functionality of PrintLine() is enhanced in the program defarg2.

cpp, the old code referring to it remains unaffected in terms of its functionality; the compiler supplies

the last argument as 1, and thereby the new function does the same operation as that of the old one.

Thus, the C++ feature of default arguments can be potentially utilized in extending a function without

modifying the old code.

Mastering C++230

A default argument can appear either in the function prototype or definition. Once it is defined, it

cannot be redefined. It is advisable to define default arguments in the function prototype so that it is

known to the compiler at the time of compilation. Variable names may be omitted while assigning

default values in the prototype.

7.9 INLINE FUNCTIONS

Function calls involve branching to a specified address, and returning to the instruction following the

function call. That is, when the program executes a function call instruction, the CPU stores the memory

address of the instruction following the function call, copies the arguments of the function call onto

the stack, and finally transfers control to the specified function. The CPU then executes the function

code, stores the function return value in a predefined memory location/register, and returns control to

the calling function. This constitutes an overhead in the execution time of the program. This overhead

is relatively large if the time required to execute a function is less than the context-switch time.

C++ provides an alternative to normal function calls in the form of inline functions. Inline functions

are those whose function body is inserted in place of the function-call statement during the compilation

process. With the inline code, the program

will not incur any context-switching

overhead. The concept of inline functions

is similar to macro functions of C. Hence,

inline functions enjoy both the flexibility

and power offered by normal functions and

macro functions respectively.

An inline function definition is similar to

an ordinary function except that the keyword

inline precedes the function definition.

The syntax for defining an inline function is

shown in Figure 7.12.

The significant feature of inline functions is that there is no explicit function call and body

is substituted at the point of inline function call, thereby, the runtime overhead for function linkage

mechanism is reduced. The program square.cpp uses an inline function to compute the square of

a number.

// square.cpp: square of a number using inline function

#include <iostream.h>

inline int sqr(int num)

{

 return num*num;

}

void main()

{

 float n;

 cout << “Enter a number: ”;

 cin >> n;

 cout << “Its Square = ” << sqr(n) << endl;

inline int sqr(int num)

{

return num*num;

}

void main()

{

a=sqr(5);

b=sqr(n);

}

void main()

{

a=5*5;

b=n*n;

}

preprocessor

Fig. 7.12 Inline function and its expansion

Modular Programming with Functions 231

 cout << “sqr(10) = ” << sqr(10);

}

Run

Enter a number: 5

Its Square = 25

sqr(10) = 100

In main(), the statement

 cout << “Its Square = ” << square(num);

invokes the inline function square(..). It will be suitably replaced by the instruction(s) of the

body of the function square(..) by the compiler. The execution time of the function square(..)

is less than the time required to establish a linkage between the caller(calling function) and callee(called

function). Execution of a normal function call involves the operation of saving actual parameter and

function return address onto the stack followed by a call to the function. On return, the stack must

be cleaned to restore the original status. This process is costly when compared to having square

computation instructions within a caller’s body. Thus, inline functions enjoy the flexibility and

modularity of functions and at the same time achieve computational speed-up. Functions having a

small body do not increase the code size, although they are physically substituted at the point of a call;

there is no code for function-linkage mechanism. Hence, it is advisable to declare the functions having

a small function body as inline functions.

The compiler has the option to treat the inline-function definition as normal functions(a warning

message is displayed). The compiler does not allow large segments of code to be grouped as inline

functions. The compiler does not treat functions with loops as inline. Programs with inline functions

execute faster than programs containing normal functions(non inline) at the cost of increase in the size

of the executable code.

7.10 FUNCTION OVERLOADING

Function polymorphism, or function overloading, is a concept that allows multiple functions to share the

same name with different argument types. Function polymorphism implies that the function definition

can have multiple forms. Assigning one or more function bodies to the same name is known as function

overloading or function-name overloading.

The program swap4.cpp illustrates the need for function overloading. It has multiple functions

for swapping numbers of different data types but with different names.

// swap4.cpp: multiple swap functions with different names

#include <iostream.h>

void swap_char(char & x, char & y)

{

 char t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

Mastering C++232

}

void swap_int(int & x, int & y)

{

 int t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void swap_float(float & x, float & y)

{

 float t; // temporary used in swapping

 t = x;

 x = y;

 Y = t;

}

void main()

{

 char chl, ch2;

 cout << “Enter two Characters <chl, ch2>: ”;

 cin >> chl >> ch2;

 swap_char(chl, ch2);

 cout << “On swapping <chl, ch2>: ” << chl << “ ” << ch2 << endl;

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap_int(a, b);

 cout << “On swapping <a, b>: ” << a << “ ” << b << endl;

 float c, d;

 cout << “Enter two floats <c, d>: ”;

 cin >> c >> d;

 swap_float(c, d);

 cout << “On swapping <c, d>: ” << c << “ ” << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

The above program has three different functions:

 void swap_char(char & x, char & y)

 void swap_int(int & x, int & y)

 void swap_float(float & x, float & y)

performing the same activity, but on different data types. Logically, all the three functions display the

value of the input parameters. It has names such as swap_char, swap_int, swap_float, etc.,

Modular Programming with Functions 233

making the task of programming difficult and creating the need to remember function names, which

perform the same operation. In C++, this difficulty is circumvented by using the feature of overloading

the function.

In C++, two or more functions can be given the same name provided the signature(parameters count

or their data types) of each of them is unique either in the number or data type of their arguments. It is

possible to define several functions having the same name, but performing different actions. It helps in

reducing the need for unusual function names, making the code easier to read. The functions must only

differ in the argument list. For example

 swap(int, int); // prototype

 swap(float, float); // prototype

From the user’s view point, there is only one operation which performs swapping numbers of

different data types.

All the functions performing the same operation must differ in terms of the input argument data types

or number of arguments. The program swap5.cpp illustrates the benefits of function overloading.

// swap5.cpp: multiple swap functions, function overloading

#include <iostream.h>

void swap(char & x, char & y)

{

 char t; // temporarily used in swapping

 t = x;

 x = y;

 y = t;

}

void swap(int & x, int & y)

{

 int t; // temporarily used in swapping

 t = x;

 x = y;

 y = t;

}

void swap(float & x, float & y)

{

 float t; // temporarily used in swapping

 t = x;

 x = y;

 y = t;

}

void main()

{

 char chl, ch2;

 cout << “Enter two Characters <chl, ch2>: ”;

 cin >> chl >> ch2;

 swap(chl, ch2); // compiler calls swap(char &a, char &b);

 cout << “On swapping <chl, ch2>: ” << chl << “ ” << ch2 << endl;

 int a, b;

Mastering C++234

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b); // compiler calls swap(int &a, int &b);

 cout << “On swapping <a, b>: ” << a << “ ” << b << endl;

 float c, d;

 cout << “Enter two floats <c, d>: ”;

 cin >> c >> d;

 swap(c, d); // compiler calls swap(float &a, float &b);

 cout << “On swapping <c, d>: ” << c << “ ” << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

In the above program, three functions named

swap() are defined, which only differ in their

argument data types: char, int, or float. In

main(), when the statement

 swap(chl, ch2);

is encountered, the compiler invokes the

swap() function which takes character-type

arguments. This decision is based on the data

type of the arguments (see Figure 7.13).

It is interesting to note the way in which

the C++ compiler implements function

overloading. Although the functions share the

same name in the source text(as in the example above, swap), the compiler(and hence the linker)

uses quite different names. The conversion of a name in the source file to an internally used name

is called name mangling. It can be performed as follows: the C++ compiler might convert the name

void swap(int &,int &) to the internal name say VshowI, while an analogous function with a

char* argument might be called VswapCP. The actual names, which are internally used, depend on the

compiler and are transparent to the programmer.

Another typical example program of function overloading is illustrated in show.cpp.

// show.cpp: display different types of information with same function

#include <iostream.h>

void show(int val)

{

 cout << “Integer: ” << val << endl;

}

void show(double val)

void swap(float &x, float &y);

void swap(int &x, int &y);

void swap(char &x, char &y);

void main()

{
char ch1, ch2;

int a, b;

float x, y;
swap(ch1, ch2);

swap(a, b);

swap(x, y);

}

Fig. 7.13 Function overloading

Modular Programming with Functions 235

{

 cout << “Double: ” << val << endl;

}

void show(char *val)

{

 cout << “String: ” << val << endl;

}

int main()

{

 show(420); // calls show(int val);

 show(3.1415); // calls show(double val);

 show(“Hello World!\n”); // calls show(char *val);

 return(0);

}

Run

Integer: 420

Double: 3.1415

String: Hello World

!

The following remarks can be made on function overloading: The use of more than one function with the same name, but having different actions should

be avoided. In the above example, the functions show() are somewhat related(they print

information on the screen). However, it is also possible to define two functions, say lookup();

one of which would find a name in a list, while the other would determine the video mode. In

this case, the two functions have nothing in common except their name. It would, therefore, be

more practical to use names such as findname() and getvidmode(), which suggest the action they

perform. C++ does not permit overloading of functions differing only in their return value. The reason is

that it is always the programmer’s choice to inspect or ignore the return value of a function. For

instance, the fragment

 printf(“Hello World!\n”);

 holds no information concerning the return value of the function printf(). (The return value

in this case is an integer, which states the number of printed characters. This return value is

practically never inspected.) Two functions printf() which would only differ in their return

types and hence they are not distinguished by the compiler. Function overloading can lead to surprises. For instance, imagine the usage of statements

 show(0);

 show(NULL);

 where there are multiple overloaded functions as in the program show.cpp. The zero could be

interpreted here as a NULL pointer to a char, i.e., a(char*) 0, or as an integer with the value

zero. C++ will invoke the function expecting an integer argument, which might not be what the

user expects.

Mastering C++236

7.11 FUNCTION TEMPLATES

C++ allows to create a single function possessing the capabilities of several functions, which differ only

in the data types. Such a function is known as function template or generic function. It permits writing

one source declaration that can produce multiple functions differing only in the data types. The syntax

of function template is shown in Figure 7.14.

The program swap5.cpp has functions with the same code pattern(same function body but

operating on different data types). The program swap6.cpp illustrates, declaring a single function

template from which all those functions having the same pattern of code, but operating on different

data types can be created.

// swap6.cpp: multiple swap functions, function overloading

#include <iostream.h>

template <class T>

void swap(T & x, T & y)

{

 T t; // temporarily used in swapping, template variable

 t = x;

 x = y;

 y = t;

}

void main()

{

 char chl, ch2;

 cout << “Enter two Characters <chl, ch2>: ”;

 cin >> chl >> ch2;

 swap(chl, ch2); // compiler creates and calls swap(char &x, chair &y);

 cout << “On swapping <chl, ch2>: ” << chl << “ ” << ch2 << endl;

 int a, b;

 cout << “Enter two integers <a, b>: ”;

 cin >> a >> b;

 swap(a, b); // compiler creates and calls swap(int &x, int &y);

 cout << “On swapping <a, b>: ” << a << “ ” << b << endl;

Keyword for declaring function template

Keyword class

name of the template data-type

Function parameters of
type template, primitive
or user-defined

template <class T1, class T2,..>

ReturnType FunctionName(Arguments of type T1 and T2, ...)

{

// local variables of type T1, T2, or any other

// function body, operating on variables of type T1, T2

// and other variables

}

Fig. 7.14 Syntax of function template

Modular Programming with Functions 237

 float c, d;

 cout << “Enter two floats <c, d>: ”;

 cin >> c >> d;

 swap(c, d); // compiler creates and calls swap(float &x, float &y);

 cout << “On swapping <c, d>: ” << c << “ ” << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

In main(), when the compiler encounters the statement

 swap(chl, ch2);

calling swap template function with char type variables, it internally creates a function of type

 swap(char &a, char &b);

The compiler automatically identifies the data type of the arguments passed to the template function,

creates a new function and makes an appropriate call. The process by which the compiler handles

function templates is totally invisible to the user. Similarly, the compiler converts the following calls

 swap(a, b); // compiler creates and calls swap(int &x, int &y);

 swap(c, d); // compiler creates and calls swap(float &x, float &y);

into equivalent functions and calls them based on their parameter data types.

For more details on function templates, refer to the chapter: Generic Programming with Templates.

7.12 ARRAYS AND FUNCTIONS

The arrays are passed by reference or by address. To pass an array to a function, it is sufficient to pass

the address of the first element of the array. The program sort.cpp illustrates the concept of passing

array-type parameters to a function.

// sort.cpp: function to sort elements of an array

#include <iostream.h>

enum boolean { false, true };

void swap(int & x, int & y)

{

 int t; // temporary used in swapping

 t = x;

 x = y;

 y = t;

}

void BubbleSort(int * a, int size)

{

 boolean swapped = true;

Mastering C++238

 for(int i = 0;(i < size - 1) && swapped; i++)

 {

 swapped = false;

 for(int j = 0; j <(size - 1) - i; j++)

 if(a[j] > a[j + 1])

 {

 swapped = true;

 swap(a[j], a[j + l]);

 }

 }

}

void main(void)

{

 int a[25];

 int i, size;

 cout << “Program to sort elements...” << endl;

 cout << “Enter the size of the integer vector <max-25>: ”;

 cin >> size;

 cout << “Enter the elements of the integer vector...” << endl;

 for(i = 0; i < size; i++)

 cin >> a[i];

 BubbleSort(a, size);

 cout << “Sorted Vector:” << endl;

 for(i = 0; i < size; i++)

 cout << a[i] << “ ”;

}

Run

Program to sort elements...

Enter the size of the integer vector <max-25>: 5

Enter the elements of the integer vector...

8

6

9

3

2

Sorted Vector:

2 3 6 8 9

In main(), the statement

 BubbleSort(a, size);

invokes the sorting function by passing the address of the array variable a and the value of the variable

size to it. Hence, any modification made to the elements of the array a will be reflected in the caller.

Case Study

Consider a scenario where an array containing 10 positive integers is given as input. You are required to

write a program that performs linear search on the array and returns the index location of the searched

element. An unsuccessful search should be indicated by a return value of –1.

The program linear.cpp demonstrates how the linear search is performed on an array of integers.

Modular Programming with Functions 239

// linear.cpp: function to perform linear search on an array

#include<iostream.h>

int linear(int *arr, int num);

void main()

{

 int element, result;

 int a[10]={10, 20, 5, 59, 63, 22, 18, 99, 11, 65};

 cout<<”Enter the element to be searched: “;

 cin>>element;

 result = linear(a, element);

 if(result==-1)

 cout<<element<<” is not present in the array”;

 else

 cout<<element<<” is present at “<<result<<” location in the array”;

}

int linear(int *arr, int num)

{

 int i;

 for(i=0;i<10;i++)

 if(arr[i]==num)

 return(i);

 return(-1);

}

Run

Enter the element to be searched: 22

22 is present at 5 location in the array

Enter the element to be searched: 88

88 is not present in the array

7.13 C++ STACK

The medium for communication between a caller and the callee is the stack, which is used to store

function parameters, return address, local variables, etc. When the function is invoked, the information

such as return address and parameters, are pushed onto the stack by the function linkage mechanism;

these values are pushed onto or popped from the stack using the C convention for parameter passing.

The argument values are pushed in order, from right to left. When they are popped out, the topmost

value stored in the stack will be passed to the first parameter in the function parameter list. The order

of storing the function parameters in the stack when the statement

 func(a, b, c, d);

is invoked is shown in Figure 7.15. Note that the Pascal convention of parameter passing is to push

parameters from left to right when a function is invoked. Knowledge of parameter-passing convention

is essential while doing mixed language programming.

The program funcstk.cpp demonstrates the concept of storing and retrieving the elements from

the stack.

Mastering C++240

// funcstk.cpp: C++ convention of using stack

#include <iostream.h>

void Func(j, k)

{

 cout << “In the function the argument values are ” << j << “.. ” << k

<< endl;

}

int main(void)

{

 int i = 99;

 Func(++i, i);

}

Run

In the function the argument values are 100.. 99

The output of the program is not 100.. 100 as expected, because of the C convention for passing

parameters. In the function call, first the value of rightmost parameter i, which is 99 will be pushed

onto the stack, and will be followed by ++i; i.e., 100. Hence, the stack will have 99 at the bottom and

100 at the top. Hence, the statement Func(++i, i); assigns the value 100 and 99 to the formal

parameters j and k respectively.

7.14 SCOPE AND EXTENT OF VARIABLES

Every variable in a program has some memory associated with it. Memory for variables are allocated

and released at different points in the program. For example, in case of normal local variables defined

in functions, memory is allocated when the function starts execution and released when the function

returns. A variable defined outside all function bodies is called a global variable. Its extent is the entire

Function call: func (a, b, c, d);

Parametres are pushed
from right to left

Parametres are pushed
from left to right

Pascal stackC++ stack

d

c

b

a

a

b

c

d

Fig. 7.15 Parameter passing and stack

Modular Programming with Functions 241

lifespan of the program. The period of time during which the memory is associated with a variable is

called the extent of the variable. Consider the following function:

 void func()

 {

 int i;

 i = 10;

 }

Allocation of memory to the integer variable i is the process of deciding the memory locations

to be occupied by i. The memory of such local variables is allocated in the program stack when the

function func() is invoked. Naturally, the memory that was allocated to i is released when the

function terminates, and that memory space is available for use. Identifiers defined in a function are

not accessible outside that function and, hence, their extent is limited to life of that function. However,

there are exceptions(static variables). For instance, consider the following segment of a program code:

 void func()

 {

 int i;

 i = 10;

 }

 void main()

 {

 i = 20;

 func();

 i = 30;

 }

When this program is compiled, the statements,

 i = 20;

 i = 30;

lead to compilation errors; the variable i is not visible inside the main(). So the definition of the

identifier i is valid only inside the func(). The region of source code over which the definition of an

identifier is visible is called the scope of the identifier. The scope of the variable i defined in func()

is limited to this function only. If the statement

 int i;

is defined in the beginning of main() then no errors occur, but nevertheless, the variable i in the

func() and that in function main() are different. Modifications to one variable do not affect the

other variables. Note that the scope of the variable defined in main() is limited to main() only,

whereas its extent is entire lifespan(execution time) of the program. The program variable.cpp

illustrates the scope and extent of local and global variables.

// variable.cpp: scope and extent of different variable

#include <iostream.h>

int g = 100; // global variable

void funcl()

{

 int g = 50; // local variable

 cout << “Local variable g in funcl() : ” << g << endl;

Mastering C++242

}

void func2()

{

 cout << “In func2() g is visible, since it is global.” << endl;

 cout << “Incrementing g in func...” << endl;

 g++; //accesses global variable

}

void main()

{

 cout << “In main g is visible here, since it is global.\n”;

 cout << “Assigning 20 to g in main...\n”;

 g = 20; // accesses global variable

 cout << “Calling funcl...\n”;

 funcl();

 cout << “func1 returned. g is ” << g << endl;

 cout << “Calling func2...\n”;

 func2();

 cout << “func2 returned. g is ” << g << endl;

}

Run

In main g is visible here, since it is global.

Assigning 20 to g in main...

Calling func1...

Local variable g in func1() : 50

funcl returned, g is 20

Calling func2...

In func2() g is visible, since it is global.

Incrementing g in func...

func2 returned, g is 21

The global variable g is visible to all functions(entire file) and its extent is the entire execution time

of the program. The scope and extent of local variable g of func1() is limited to its function body.

The scope of a variable can confirm to a block, a function, a file, or an entire program(in case of

multimodule file). The variables defined within a block can be accessed only within that block. The

program block1.cpp illustrates the block scope of variables.

// block.cpp: illustration of the variables scope in blocks

#include <iostream.h>

int main(void)

{

 int i = 144;

 cout << ”i = ” << i;

 {

 /* nested block*/

 int k = 12;

 cin >> k;

 i = i % k;

Modular Programming with Functions 243

 }

 if(i == 0)

 cout << “ i is a divisor of ” << k; // Error: k undefined in main()

 return 0;

}

Reference to variable k in the main block results in a compile-time error: Undefined symbol k in

the function main(); the variable k is declared inside the nested block within main(). The memory

space for the variable k is allocated when the execution of the block starts, and released when execution

reaches the end of the nested block. When a variable is accessed, the compiler first checks for its

existence in the current block, and then moves outwards if it does not exist in the current block; this

process continues until the global definition. The function can access the identifiers in the parameter

list, the local definitions and the global definitions(if any).

7.15 STORAGE CLASSES

The period of time during which memory is associated with a variable is called the extent of the

variable. It is characterized by storage classes. The storage class of a variable indicates the allocation

of storage space to the variable by the compiler. Storage classes define the extent of a variable. C++

supports the following four types of storage classes: auto register extern static

The syntax for defining variables with explicit storage

class is shown in Figure 7.16. The storage classes except

extern are used for defining variables; extern is

used for declaration of variables. The scope and extent

of auto and register storage class is the same. The

scope of static variables is limited to its block(maximum

to a file), but its extent is throughout the execution time

of the program(does not matter whether it is local or global type).

7.15.1 Declaration Versus Definition

A declaration informs the compiler about the existence of the data or a function some where in the

program. A definition allocates the storage location. In C++, a piece of data or function can be declared

in several different places, but there must only be one definition. Otherwise, the linker will complain

(generates multiple definition error) while uniting all the object modules, if it encounters more than one

definition for the same function or piece of data. Almost all C and C++ programs require declarations.

Therefore, it is essential for the programmer to understand the correct way to write a declaration. As far

as data is concerned, except extern storage class, all others define data, i.e., they not only direct the

compiler, but also allocate resource for a variable.

auto, register,
static, or extern

StorageClass DataType Variablel,...;

Fig. 7.16 Storage classes and variable

declaration

Mastering C++244

Auto Variables

By default, all the variables are defined as auto variables. They are created when the function/block

is entered and destroyed when the function/block is terminated. The memory space for local auto

variables is allocated on the stack. The global auto variables are visible to all the modules of a program,

and hence, they cannot be defined many times unlike the declarations.

Register Variables

The allocation of CPU(processor) registers to variables, speeds up the execution of a program;

memory is not referred when such variables are accessed. The number of variables, which can be

declared as register are limited(typically two or three), within any function or as global

variables(else they are treated as auto variables). A program that uses register variables executes

faster when compared to a similar program without register variables. It is possible to find out the

allocation of register variables only by executing and comparing the timing performance of the

program(perceptible in large programs). It is the responsibility of the compiler to allot register variables.

In case the compiler is unable to do so, these variables are treated as auto variables. It is advisable to

define frequently used variables, such as loop indices, as register variables. It is illustrated in the

program regvar.cpp.

// regvar.cpp: use of register variable as loop index

#include <iostream.h>

#include <string.h>

void main()

{

 char name[30];

 register int i; // register variable

 cout << “Enter a string: ”;

 cin >> name;

 cout << “The reverse of the string is: ”;

 for(i = strlen(name)-l; i >= 0; i--)

 cout << name[i];

}

Run1

Enter a string: mahatma

The reverse of the string is: amtaham

Run2

Enter a string: malayalam

The reverse of the string is: malayalam

Static Variables

The static storage class allows to define a variable whose scope is restricted to either a block, a function,

or a file(but not all files in multimodule program) and extent is the lifespan of a program. The memory

space for local static and global variables is allocated from the global heap. Static variables that are

defined within a function remember their values from the previous call(i.e., the values to which they

are initialized or changed before returning from the function). The static variables defined outside all

Modular Programming with Functions 245

functions in a file are called file static variables. They are accessible only in the file in which they are

defined. The program count.cpp illustrates the use of function static local variables.

// count.cpp: use of static variables defined inside functions

#include <iostream.h>

void PrintCount(void)

{

 static int Count = 1; // Count is initialized only on the first call

 cout << “Count = ” << Count << endl;

 Count = Count + 1; // The incremented value of Count is retained

}

void main(void)

{

 PrintCount();

 PrintCount();

 PrintCount();

}

Run

Count = 1

Count = 2

Count = 3

The output of the program is a sequence of numbers starting with 1, rather than a string of 1’s. The

initialization of static variable count is performed only in the first instance of the function call. In

successive calls to the function, the variable count has the same value as it had before the termination

of the most recent call. However, these static variables are not accessible from other parts of the program.

Extern global variables are global to the file in which they are defined. They are used when the same

global variable is referenced in each one of the files and these variables must be independent of each

other across files. The use of global variables is not recommended, since they do not allow to achieve

function independence which is one of the basic ideas of modular programming.

Extern Variables

When a program spans across different files, the files can share information using global variables.

Global variables must be defined only once in any of the program modules and they can be accessed by

all others. It is achieved by declaring such variables as extern variables. It informs the compiler that

such variables are defined in some other file. Consider a program having the following files:

// file1.cpp: module one defining global variable

int done; // global variable definition

void funcl()

{

}

void disp()

{

Mastering C++246

}

// file2.cpp: module two of the project

extern int done; // global variable declaration

void func3

{

}

In file1.cpp, the statement

 int done;

defines the variable done as a global variable. In file2.cpp, the statement

 extern int done;

declares the variable done and indicates that it is defined in some other file. Note that the definition

of the variable done must appear in any one of the modules, whereas extern declaration can appear in

any or all modules of a program. When the linker encounters such variables, it binds all references to

the same memory location. Thus, any modification to the variable done is visible to all the modules

accessing it.

If the global variable done is defined as static, it can be again defined in other modules since the

linker treats each as a different variable. Such global static variables have scope restricted to a file and

extent is equal to the entire lifespan of the program. The auto and static global variables are used mainly

in managing large multimodule software projects. Note that the memory space for a global variable is

allocated from the global heap memory.

7.16 FUNCTIONS WITH VARIABLE NUMBER OF ARGUMENTS

C++ functions such as vfprintf() and vprintf() accept variable argument lists in addition

to taking a number of fixed(known) parameters. The va_arg, va_end, and va_start macros

provide access to these argument lists in the standard form. They are used for stepping through a list

of arguments when the called function does not know the number and types of the arguments being

passed. The header file stdarg.h declares one type(va_list) and three macros(va_start, va_arg,

and va_end).

The syntax of macros handling variable number of arguments are the following:
 #include <stdarg.h>

 void va_start(va_list.ap, lastfix);

 type va_arg(va_list ap, type);

 void va_end(va_list ap);

va_list

This array holds information needed by va_arg and va_end. When a called function takes a variable

argument list, it declares a variable ap of type va_list.

Modular Programming with Functions 247

va_start

This routine(implemented as a macro) sets ap to point to the first of the variable arguments being passed

to the function. va_start must be used before the first call to va_arg or va_end. The macro va_

start takes two parameters: ap and lastfix. Here ap is a pointer to the variable argument list, and

lastfix is the name of the last fixed parameter passed to the caller.

va_arg

This routine(also implemented as a macro) expands to an expression that has the same type and value as

the next argument being passed(one of the variable arguments). The variable ap to va_arg should be

the same ap that va_start initialized. Note that because of default promotions, char, unsigned

char,or float types cannot be used with va_arg.

When va_arg is used for the first time, it returns the first argument in the list. Every successive

use of va_arg, returns the next argument in the list. It does this by first dereferencing ap, and then

incrementing ap to point to the following item. va_arg uses the type to perform both the dereferencing

and for locating the following item. Each time va_arg is invoked, it modifies ap to point to the next

argument in the list.

va_end

This macro helps the called function to perform a normal return. va_end might modify ap in such a

way that it cannot be used unless va_start is recalled. va_end should be called after va_arg has read

all the arguments; failure to do so might cause a program to behave erratically.

Return Value

va_start and va_end return no values; va_arg returns the current argument in the list(the one

that ap is pointing to).

The syntax of function receiving variable number of arguments is

ReturnType Func(argl, [arguments],...);

It is same as the normal function except for the last three dots, which indicates that the function is of

type variable arguments. The program add.cpp illustrates the use of variable number of arguments.

// add.cpp: variable number of arguments to a function

#include <iostream.h>

#include <stdarg.h>

int add(int argc,...)

{

 int num, result;

 va_list args;

 va_start(args, argc); // link to variable arguments

 result = 0;

 for(int i=0; i < argc; i++)

 {

 num = va_arg(args, int); // get argument value

 result += num;

 }

 va_end(args); // end of arguments

Mastering C++248

 return result;

}

void main()

{

 int suml, sum2, sum3;

 suml = add(3, 1, 2, 3);

 cout << “suml = ” << suml << endl;

 sum2 = add(1, 10);

 cout << “sum2 = ” << sum2 << endl;

 sum3 = add(0);

 cout << “sum3 = ” << sum3 << endl;

Run

suml = 6

sum2 = 10

sum3 = 0

The function declarator(prototype)

 int add(int argc,...)

indicates that it takes one known argument and the remaining are unknown number of arguments. The

three dots indicate that the function takes variable arguments, to which a chain has to be built. In the

add() function, the statement

 va_list args;

creates a pointer variable named args. The macro call statement

 va_start(args, argc); // link to variable arguments

links variable arguments to the variable args. The variable args is the last known argument and those

that follow are variable arguments. The statement

 num = va_arg(args, int); // get argument value

accesses the argument of type integer and assigns to the variable num. Later, args is updated to point

to the next argument. The statement

 va_end(args); // end of arguments

indicates the end of access to variable arguments using args. In main(), the statement

 suml = add(3, 1, 2, 3);

invokes the function add() and the first argument is a known argument indicating the number of

variable arguments.

The last argument in the list of variable number of arguments must be established by the user.

Another way of indicating the end of variable arguments is illustrated in the program sum.cpp.

// sum.cpp: variable arguments example

#include <iostream.h>

#include <stdarg.h>

// calculate sum of a 0 terminated list

void sum(char *msg,...)

Modular Programming with Functions 249

{

 int total = 0;

 va_list ap;

 int arg;

 va_start(ap, msg);

 while ((arg = va_arg(ap,int)) != 0) {

 total += arg;

 }

 cout << msg << total;

 va_end(ap);

}

int main(void)

{

 sum(“The total of 1+2+3+4 is ”, 1,2,3,4,0);

 return 0;

}

Run

The total of 1+2+3+4 is 10

In main(), the statement

 sum(“The total of 1+2+3+4 is “, 1,2,3,4,0);

invokes the variable argument function. The function sum() is designed such that when a zero-valued

argument is encountered, it is understood that no more arguments exist for further processing. Hence,

the last argument 0 (zero) in this case, is the end-of-argument indicator. The programmer has full

freedom for selecting suitable end-of-argument indicator.

7.17 RECURSIVE FUNCTIONS

Many scientific operations are expressed using recurrence relations. C++ allows the programmers to

express such a relation using functions. A function that contains a function call to itself, or a function

call to a second function which eventually calls the first function is known as a recursive function. The

recursive definition for computing the factorial of a number can be expressed as follows:

 1 if n = 0
 fact(n) =
 { n * fact (n-1), otherwise
Recursion, as the name suggests, revolves around a function recalling itself. Recursive functions

are those in which there is at least one function call to itself(there can be more than one call to itself

as in the Tower of Hanoi algorithm). The recursive approach of problem solving substitutes the given

problem with another problem of the same form in such a way that the new problem is simpler than

the original.

Two important conditions which must be satisfied by any recursive function are the following

 1. Each time a function calls itself, it must be nearer, in some sense, to a solution.

 2. There must be a decision criterion for stopping the process or computation.

Recursive functions involve the overhead of saving the return address, formal parameters, local

variables upon entry, and restore these parameters and variables on completion.

Mastering C++250

Factorial of a Number

The program rfact.cpp computes the factorial of a number. It has a recursive function fact()

which implements the above-stated definition of recursion.

// rfact.cpp: factorial of a number using recursion

#include <iostream.h>

void main(void)

{

 int n;

 long int fact(int); // prototype

 cout << “Enter the number whose factorial is to be found: ”;

 cin >> n;

 cout << “The factorial of ” << n << “ is ” << fact(n) << endl

}

long fact(int num)

{

 if(num == 0)

 return 1;

 else

 return num * fact(num - 1);

}

Run

Enter the number whose factorial is to be found: 5

The factorial of 5 is 120

Towers of Hanoi

Tower of Hanoi is a historical problem which can be easily expressed using recursion. There are N disks

of decreasing size stacked on one needle, and two other empty needles. It is required to stack all the

disks onto a second needle in the decreasing order of size. The third needle can be used as a temporary

storage. The movement of the disks must conform to the following rules:

 1. Only one disk may be moved at a time.

 2. A disk can be moved from any needle to any other.

 3. At no time, a larger disk rests upon a smaller one.

The program hanoi.cpp implements the Tower of Hanoi problem. The physical model of a Tower

of Hanoi problem is shown in Figure 7.17.

// hanoi.cpp: Tower of hanoi simulation using recursion

#include <iostream.h>

void main(void)

{

 unsigned int nvalue;

 char source = ‘L’, intermediate = ‘C’, destination = ‘R’;

 void hanoi(unsigned int, char, char, char);

 cout << “Enter number of disks: ”;

 cin >> nvalue;

 cout << “Tower of Hanoi problem with ” << nvalue << “ disks” << endl;

Modular Programming with Functions 251

 hanoi(nvalue, source, intermediate, destination);

}

void hanoi(unsigned n, char left, char mid, char right)

{

 if(n != 0)

 {

 // Move n-1 disks from starting needle to intermediate needle

 hanoi(n-1, left, right, mid);

 // Move disk n from start to destination

 cout<< “Move disk ” << n << “ from ” << left<< ” to ” << right “endl;

 // Move n-1 disks from intermediate needle to destination needle

 hanoi(n-1, mid, left, right);

 }

}

Run

Enter number of disks: 3

Tower of Hanoi problem with 3 disks

Move disk 1 from L to R

Move disk 2 from L to C

Move disk 1 from R to C

Move disk 3 from L to R

Move disk 1 from C to L

Move disk 2 from C to R

Move disk 1 from L to R

Initial Configuration Move 1

Move 2 Move 3

Move 4 Move 5

Move 6 Move 7

Fig. 7.17 Tower of Hanoi

Mastering C++252

7.18 COMPLETE SYNTAX OF main()

The function main() takes three input parameters called command-line arguments. These are passed

from the point of program execution(usually operating system shell or command interpreter). The

general format of the main() function is shown in Figure 7.18

The return type of the main function must be either int or void. It is normally used to indicate the

status of the program termination. The command-line arguments have the following meaning:

argc: argument count

Holds the value of the number of arguments passed to the main() function and its value is always

positive.

argv: argument vector

Holds pointers to the arguments passed from the command line. The meaning of various elements of

the argv vector is as follows:

argv[0] = pointer to the name of the executable program file(command)

argv[1] .. argv[argc - 1] = pointers to argument strings

envp: environment parameter

Holds pointers to environment variables set in the operating system during program execution. It

includes path and environment parameters. It is optional and not an ANSI specification.

When the command disp hello is issued at the system prompt, the arguments are set as follows:

 argc = 2

 argv[0] = “disp”

 argv[1] = “hello”

The program args.cpp prints the list of arguments passed to it. To execute this program, issue the

command args Hello World at the system prompt.

// args.cpp: printing command line arguments

#include <iostream.h>

void main(int argc, char *argv[])

{

 int i;

Fig. 7.18 Syntax of the main() function

Pointers to
environment variables

Array of pointers to command line
arguments

Arguments count

Function return type:
void or int

ReturnType main ([int argc, char *argv[]), [char **envp]])

{

// body of the main function

}

Modular Programming with Functions 253

 cout << “Argument Count = ” << argc;

 cout << “\nProgram Name = ” << argv[0];

 cout << “\nArgument Vectors Are:\n”;

 for(i = 0; i < argc; i++)

 cout << argv[i] << “\n”;

}

Run

Argument Count = 3

Program Name = D:\CPP_SRC\MC2CPP.C02\ARGS.EXE

Argument Vectors Are:

D:\CPP_SRC\MC2CPP.C02\ARGS.EXE

Hello

World

7.18.1 Program Execution Status

Normally, after the complete execution of the program, it exits from the main() function itself.

However, programs can be terminated from anywhere within the program. The return type of the main

function can be used by the system to decide whether the program terminates with successful execution

or not. The return statement in main()

 return 0; // program return type

or the exit() statement anywhere in the program

 exit(0)

terminates the program with the program execution status as zero. The general convention is that the

return value 0 is treated as a successful execution of the program and nonzero value is interpreted

as unsuccessful execution of the program. The method of identifying this return value from outside

the program(from where it is invoked), depends on the operating system environment in which the

program is executed. For instance, under MS-DOS operating system, the system sets the environment

variable error level to the value returned by the programmer. The user can inspect the value held by

the errorlevel variable to decide the status of program execution. The program fullmain.cpp

displays the command-line arguments and environment variables.

// fullmain.cpp: prints command line arguments and environment variables

#include <iostream.h>

int main(int argc, char **argv, char **envp)

{

 cout << “The number of command line arguments is: ” << argc << endl;

 cout << “The command line arguments are as follows” << endl;

 for(int i = 0; i < argc; i++)

 cout << “argv[” << i << “] : ” << argv[i] << endl;

 cout << “The environment variables are:” << endl;

 i = 0;

 while(*envp[i])

 cout << envp[i++] << endl;

 return 0;

}

Mastering C++254

Run

The number of command line arguments is: 3

The command line arguments are as follows

argv[0] : C:\CPP_SRC\FUNCTION.C07\FULLMAIN.EXE

argv [1] : Hello

argv [2] : World

The environment variables are:

COMSPEC=C:\COMMAND.COM

PROMPT=pg

PATH=C:\BC4\BIN;C:\EXCEEDW\PATHWAY;C:\BC4\BIN;C:\WINDOWS;C:\DOS;C:\

PATHWAY;

SOLVED PROBLEM

Write a function power() to raise a number x to a power y. The function takes a double value for x

and int value for y, and returns the result. Use default value 2 for y to make the function to calculate

squares when this argument is omitted. Write a main that gets the values of x and y from the user and

shows the result.

#include<iostream.h>

double power(double);

double power(double, int);

void main()

{

 double x;

 int y;

 cout<<»Enter the value of x: ”;

 cin>>x;

 cout<<»Enter the value of y: ”;

 cin>>y;

 cout<<”power(x, y) = ” <<power(x, y);

 cout<<“\npower(x) = ” <<power(x);

}

double power(double x1)

{

 return(x1*x1);

}

double power(double x1, int y1)

{

 int i;

 double result=1.0;

 for(i=1;i<=y1;i++)

 result=result*x1;

+
+

Modular Programming with Functions 255

 return(result);

}

Run

Enter the value of x: 9.5

Enter the value of y: 4

power(x, y) = 8145.0625

power(x) = 90.25

REVIEW QUESTIONS ++
 7.1 What is modular programming and what are its benefits? Explain the same with a C++

example.

 7.2 Explain different components of a C++ program with a suitable program.

 7.3 What are the differences between actual parameters and formal parameters?

 7.4 What are caller and callee? List the various components causing the overhead of function

invocation.

 7.5 What are library functions? Explain how they case program development. What are the

different categories of functions supported by the C++ library?

 7.6 What is parameter passing? Explain parameter passing schemes supported by C++.

 7.7 Develop a function to sort numbers using bubble-sort technique. Write a driver function

also.

 7.8 What are the differences between parameter passing by value and passing by address?

 7.9 What are the benefits of pass-by-reference method of parameter passing over pass-by-

pointer?

 7.10 What are default arguments? Write a program to compute tax. A tax compute function

takes two arguments: amount and tax percentage. The default tax percentage is 15% of

the income.

 7.11 State whether the following statements are valid or not. Give reasons.
 tax_amount(int amount, int percentage = 15); // prototype

 tax_amount(, 5);

 show(char ch = ‘A', int count = 3); // prototype

 show(, 2);

 show(,);

 show();

 7.12 What are inline functions? Write an inline function for finding the minimum of two

numbers.

 7.13 What is function overloading? Write overloaded functions for computing area of a triangle,

a circle, and a rectangle. Develop a driver function.

 7.14 What are function templates? Write a template-based program for sorting numbers.

 7.15 What is the difference between parameter passing in C++ and Pascal? What is the result of.
 sum = add(i++, a[i]); // if i=l and a[] = { 5, 10, 15, 20 }

Mastering C++256

 7.16 Define scope and extent. Explain different storage classes supported by C++. Also explain

their scope and extent.

 7.17 Write a program having a variable argument function to multiply input numbers.

 7.18 What are recursive functions? Write a program to find the gcd of two numbers using the

following Euclid’s recursive algorithm.

 gcd(n, m) if n > m

 gcd(m,n)= m if n = 0

 { gcd(n, m%n), otherwise
 7.19 Write a program for adding integer parameters passed as command-line arguments.

 7.20 Write a program to generate the Fibonacci series using the following recursive algorithm:

 0 if n = 0

 fib(n) = 1 if n = 1

 { fib(n-l)+fib(n-2), otherwise
 7.21 Implement a recursive binary search using divide-and-conquer technique.

Structures and
Unions

 8.1 INTRODUCTION

Structures combine logically related data items into a single unit. The data

items enclosed within a structure are known as members and they can be

of the same or different data types. Hence, a structure can be viewed as a

heterogeneous user-defined data type. It can be used to create variables,

which can be manipulated in the same way as variables of standard data

types. It encourages better organization and management of data in a program.

8.2 STRUCTURE DECLARATION

The declaration of a structure specifies the grouping of

various data items into a single unit without assigning

any resources to them. The syntax for declaring a

structure in C++ is shown in Figure 8.1.

The structure declaration starts with the structure

header, which consists of the keyword struct followed

by a tag. The tag serves as a structure name, which can

be used for creating structure variables. The individual

members of the structure are enclosed between the curly

braces and they can be of the same or different data types. The data type of each variable is specified in

the individual member declarations. Like all data structure declarations, the closing brace is terminated

with a semicolon.

Consider a student database consisting of student roll number, name, branch, and total marks scored.

A structure declaration to hold this information is shown below:

struct Student
{
 int roll_no;
 char name[25];
 char branch[15];
 int marks;
};

8

Fig. 8.1 Structure declaration

struct StructureName

{

DataType member1;

DataType member1;

.........

DataType memberN;

}

structure

members

Keyword structure name

Mastering C++258

The data items enclosed between flower brackets in the

above structure declaration are called structure elements or

structure members. Student is the name of the structure

and is called structure tag. Note that some members of the

student structure are integer type and some are character-

array type. The description of various components of the

structure Student is shown in Figure 8.2.

The individual members of a structure can be variables

of built-in data types, pointers, arrays, or even other

structures. All member names within a particular structure must be different. However, member names

may be the same as those of variables declared outside the structure. The individual members cannot be

initialized inside the structure declaration. For example, the following declaration is invalid:

struct Student
{
 int roll_no =0; // Error: initialization not allowed here
 char name[25];
 char branch[15];
 int marks;
};

8.3 STRUCTURE DEFINITION

The declaration of a structure will not serve any purpose without its definition. It only acts as a

blueprint for the creation of variables of type struct(structure). The structure definition creates

structure variables and allocates storage space for them. Structure variables can be created at the point

of structure declaration itself, or by using the structure tag explicitly as and when required. The most

commonly used syntax for structure definition is shown in Figure 8.3.

Fig. 8.2 Declaration of structure Student

struct Student
{

int roll_no;
char name[25];
char branch[15];
int marks;

};

member of the
structure

structure name

Fig. 8.3 Syntax of structure definition

keyword struct
is optional

[struct] StructureName var1, var2, ...;

structure variables

The use of the keyword struct in the structure-definition statement is optional. The following

statements create variables of the structure Student declared earlier:

 struct Student s1;

 or

 Student s1;

Figure 8.4 shows the storage of the members of the structure Student.

The structure variables can be created during the declaration of a structure as follows:

struct Student

{

Structures and Unions 259

 int roll_no;

 char name[25];

 char branch[15];

 int marks;

} s1;

In the above declaration, Student is the structure tag, while s1 is a variable of type student.

If variables of this structure type are not defined later in the program then the tag name student can

be omitted as shown below:

struct

{

 int roll_no;

 char name[25];

 char branch[15];

 int marks;

} s1;

It is not a good practice to have both declaration and definition

in the same statement.

Multiple variables of a structure can be created using a single

statement as follows;

struct Student s1, s3, s4;

or

Student s1, s3, s4;

All these instances are allocated separate memory locations

and hence, each one of these are independent variables of the

same structure type as shown in Figure 8.5.

Fig. 8.4 Storage organisation when structure variable is defined

struct Student
{

int roll_no;
char name[25];
char branch[15];
int marks;

};

2 bytes

25 bytes

15 bytes

2 bytes

s1;

Student s1;

Fig. 8.5 Variables of type Student

struct Student
{

int roll_no;
char name[25];
char branch[15];
int marks;

};

Student s1,s2,s3;

s1 s2 s3

Mastering C++260

8.4 ACCESSING STRUCTURE MEMBERS

C++ provides the period or dot(.) operator to access

the members of a structure independently. The dot

operator connects a structure variable and its member.

The syntax for accessing members of a structure

variable is shown in Figure 8.6.

Here, structvar is a structure variable and

membername is one of its members. Thus, the dot

operator must have a structure variable on its left and a legal member name on its right. Consider the

following statement:

Student s1;

Each member of the structure variable s1 can be accessed using the dot operator as follows:

 sl.roll_no. will access s1's roll_no

 s1.name will access s1's name

 s1.branch will access s1's branch

 s1.marks will access s1's marks

The following are valid operations on the structure variable s1:

 s1.roll_no = 5;

 cin >> s1.roll_no;

 strcpy(s1.name, “Mangala”);

 cout<< s1.name;

 strcpy(s1.branch, “Computer”);

Accessing members of a structure using the structure tag is not allowed. Hence, a statement such as

Student.roll_no = 5; // Error: Student is not a structure variable

is invalid; structure name student is a data type like int, and not a variable. Just as int = 10 is

invalid, Student.roll_no = 5 is invalid.

The program studentl.cpp illustrates the various concepts discussed in the earlier sections such

as structure declaration, definition, and accessing members of a structure.

// student1.cpp: processing of student data using structures
#include <iostream.h>
// structure declaration
struct Student
{
 int roll_no;
 char name[25];
 char branch[15];
 int marks;
};
void main()

Fig. 8.6 Accessing a structure member using

dot operator

structvar.membername

structure variable structure member

Structures and Unions 261

{
 Student s1; // structure definition
 cout << “Enter data for student...” << endl;
 cout << “Roll Number ? “;
 cin >> s1.roll_no; // accessing structure member
 cout << “Name ? “;
 cin >> s1.name;
 cout << “Branch ? “;
 cin >> s1.branch;
 cout << “Total Marks <max-325> ? “;
 cin >> s1.marks;
 cout << “Student Report” << endl;
 cout << ---------------- << endl;
 // process student data
 cout << “Roll Number: “ << s1.roll_no << endl;
 cout << “Name: “ << s1.name << endl;
 cout << “Branch: “ << s1.branch << endl;
 cout << “Percentage: “ << s1.marks*(100.0/325) << endl;
}

Run

Enter data for student...
Roll Number ? 5
Name ? Mangala
Branch? Computer
Total Marks <max-325> ? 290
Student Report

Roll Number: 5
Name: Mangala
Branch: Computer
Percentage: 89.230769

Precedence of the DOT Operator
The dot operator is a member of the highest precedence group, and its associativity is from left to

right. Hence, the expression such as ++stvar.membern is equivalent to ++(stvar.membern),

implying that the unary operator will act only on a particular member of the structure and not on the

entire structure.

8.5 STRUCTURE INITIALIZATION

Similar to the standard data types, structure variables can be initialized at the point of their definition.

Consider the following structure declaration:

struct Student

{

 int roll_no;

 char name[25];

Mastering C++262

 char branch[15];

 int marks;

};

A variable of the structure Student can be

initialized during its definition as follows:

Student s1 = { 5, “Mangala”,
“Computer”, 290 };

The initial values for the components of the

structure are placed in curly braces and separated

by commas. The members of the variable s1,

roll_no, name, branch, and marks are

initialized to 5, “Mangala”, “Computer”,

and 290 respectively (see Figure 8.7).

The program days.cpp illustrates the

initialization of the members of a structure at the

point of a structure-variable definition.

// days.cpp: structure members initialization at the point of definition
#include <iostream.h>
// structure declaration
struct date
{
 int day;
 int month;
 int year;
};
void main()
{
 date d1 = { 14, 4, 1971 };
 date d2 = { 3, 7, 1996 };
 cout << “Birth date: “;
 cout << dl.day <<“-”<< dl.month <<“-”<< dl.year;
 cout << endl << “Today date: “;
 cout << d2.day <<“-”<< d2.month <<“-”<< d2.year;
}

Run

Birth date: 14-4-1971
Today date: 3-7-1996

8.6 NESTING OF STRUCTURES

A member of a structure may itself be a structure. Such nesting enables building of very powerful data

structures. The Student structure can be enhanced to accommodate the date of birth of a student. The

new member birthday is a structure of type date by itself as shown below:

Fig. 8.7 Structure members’ initialization during

definition

roll_no

name

sl;

Student "Computer",290};s1 = {5, "Mangala",

branch

marks

Structures and Unions 263

struct date
{
 int day;
 int month;
 int year;
};
struct Student
{
 int roll_no;
 char name[25];
 struct date birthday;
 char branch[15];
 int marks;
};

The structure to be embedded must be declared before its use. Another way of declaring a nested

structure is to embed a member structure declaration within the declaration of a new structure as follows:

struct Student
{
 int roll_no;
 char name[25];
 struct date
 {
 int day;
 int month;
 int year;
 } birthday;
 char branch[15];
 int marks;
};

The embedded structure date is declared within the enclosing structure declaration. A variable of

type student can be defined as follows:

Student s1;

The year in which the student s1 was born can be accessed as follows:

s1.birthday.year

The following are some of valid operations on the variable s1:

s1.roll_no = 5;

cin >> s1.roll_no;

s1.birthday.day = 2;

s1.birthday.month = 2;

s1.birthday.year = 1972;

Mastering C++264

The dot operator accessing a member of the nested structure birthday using the statement

s1.birthday.year = 1972;

is shown in Figure 8.8. The program student2.cpp illustrates the declaration, definition, and

processing of nested structure members.

A statement such as

 s1.date.day = 2; // error

is invalid, because a member of the nested structure must be accessed using its variable name.

// student2.cpp: processing of student data using structures
#include <iostream.h>
//structure declaration
struct date
{
 int day;
 int month;
 int year;
};
struct Student
{
 int roll_no;
 char name[25];
 struct date birthday; // structure within a structure
 char branch[15];
 int marks;
};
void main()

Fig. 8.8 Accessing members of nested structures

s1.birthday.year = 1972;

birthdaystudent s1;

roll_no

name

day

month

year

branch

marks

Structures and Unions 265

{
 Student s1; // structure definition
 cout << “Enter data for student...” << endl;
 cout << “Roll Number ? “;
 cin >> s1.roll_no; // accessing structure member
 cout << “Name ? “;
 cin >> s1.name;
 cout << “Enter date of birth <day month year>: “;
 cin >> s1.birthday.day >> s1.birthday.month >> s1.birthday.year;
 cout << “Branch ? “;
 cin >> s1.branch;
 cout << “Total Marks <max-325> ? “;
 cin >> s1.marks;
 cout << “Student Report” << endl;
 cout << “-----------------” << endl;
 // process student data
 cout << “Roll Number: “ << s1.roll_no << endl;
 cout << “Name: “ << s1.name << endl;
 cout << “Birth day: “;
 cout << s1.birthday.day <<“-”<< s1.birthday.month <<“-”<< s1.birthday,
year;
 cout << endl << “Branch: “ << s1.branch << endl;
 cout << “Percentage: “ << s1.marks*(100.0/325) << endl;

Run

Enter data for student...
Roll Number ? 9
Name ? Savithri
Enter date of birth <day month year>: 2 2 1972
Branch ? Electrical
Total Marks <max-325>? 295
Student Report

Roll Number: 9
Name: Savithri
Birth day: 2-2-1972
Branch: Electrical
Percentage: 91.076923

8.7 ARRAY OF STRUCTURES

It is possible to define an array of structures; each array element is similar to a variable of that structure.

The syntax for defining an array of structures and accessing its members using an index is shown in

Figure 8.9.

The following examples illustrate the concepts of defining arrays of structures and manipulating

their members. Consider the structure declaration given below:

Mastering C++266

struct Student

{

 int roll_no;

 char name[25];

 struct date birthday;

 char branch[15];

 int marks;

};

An array of the above structure can be defined as follows:

Student s[10];

The variable s is a 10-element array of structures of the type Student. The 5th structure can be

accessed as follows:

s[4]; // arrays are numbered from 0 to n-1

The following statements access members of the structure array elements:

s[4].name; // access the name of 5th structure

s[0].marks[5]; // access 6th character of 1st structure

&s[2].name // address of 3rd s structure member name

Another method of defining an array of structures is as follows:

struct Student

{

 int roll_no;

 char name[25];

 struct date birthday;

 char branch[15];

 int marks;

} s[10];

More than one array of structure variables can be defined in a single statement as follows:

Student class1[10], class2[15];

Fig. 8.9 Array of structures and member access

StructureName ArrayName [size];

ArrayName [index]

ArrayName[index].MemberName

(c) Accessing a particular member

(b) Accessing a particular array element

(a) Array of structures definition

integer constant value

Structures and Unions 267

It defines two arrays of structure variables class1 and class2 of size 10 and 15 respectively.

Each element of class1 will be a structure of type student. The program student3.cpp

illustrates the method of processing of an array of structures.

// student3.cpp: processing of student data using structures
#include <iostream.h>
struct Student
{
 int roll_no;
 char name[25];
 char branch[15];
 int marks;
};
void main()
{
 // data definitions of 10 students
 Student s[10];
 int n;
 cout << “How many students to be processed <max-10>: “;
 cin >> n;
 // read student data
 for(int i = 0; i < n; i++)
 {
 cout << “Enter data for student “ << i + 1 << “...” << endl;
 cout << “Roll Number? “;
 cin >> s[i].roll_no;
 cout << “Name? “;
 cin >> s[i].name;
 cout << “Branch? “;
 cin >> s[i].branch;
 cout << “Total Marks <max-325>? “;
 cin >> s[i].marks;
 }
 cout << “Students Report” << endl;
 cout << “---------------” << endl;
 // process student data
 for(i = 0; i < n; i++)
 {
 cout << “Roll Number: “ << s[i].roll_no << endl;
 cout << “Name: “ << s[i].name << endl;
 cout << “Branch: “ << s[i].branch << endl;
 cout << “Percentage: “ << s[i].marks*(100.0/325) << endl;
 }
}

Run

How many students to be processed <max-10>: 2
Enter data for student 1...
Roll Number ? 5

Mastering C++268

Name ? Mangala
Branch ? Computer
Total Marks <max-325> ? 290
Enter data for student 2...
Roll Number ? 9
Name ? Shivakumar
Branch ? Electronics
Total Marks <max-325> ? 250
Students Report

Roll Number: 5
Name: Mangala
Branch: Computer
Percentage: 89.230769
Roll Number: 9
Name: Shivakumar
Branch: Electronics
Percentage: 76.923077

8.7.1 Initialization of Array of Structures

An array of structures can be initialized in the same way as a single structure and hence, the discussion

regarding the initialization of a single structure is still relevant. This is illustrated by the following

example:

Student s[5] = {

 2, “Tejaswi”, “CS”, 200,

 3, “Laxmi H”, “IT”, 215,

 5, “Bhavani”, “Electronics”, 250,

 7, “Anil”, “Civil”, 215,

 9, “Savithri”, “Electrical”, 290

The variable s is an array of five elements of type student. Thus, structure element s[0] will

he assigned the first set of values, s[1] the second set of values, etc. Note that there are five sets of

values in the initialization, which are placed in different rows for clarity. The values are separated by

commas and enclosed within braces, with the closing brace being followed by a semicolon. To improve

the readability of the program code, it is advisable to enclose the individual sets of values within braces

as shown below:

Student s[5] = {

 { 2, “Tejaswi”, “CS”, 200 },

 { 3, “Laxmi”, “IT”, 215 },

 { 5, “Bhavani”, “Electronics”, 250 },

 { 7, “Anil”, “Civil”, 215 },

 { 9, “Savithri”, “Electrical”, 290 };

The program student4.cpp illustrates the initialization of an array of structures at the point of

its definition.

Structures and Unions 269

// Student4.cpp: array of structures and their initialization

#include <iostream.h>

struct Student

{

 int roll_no;

 char name[25];

 char branch[15];

 int marks;

};

int const STUDENTS_COUNT = 5;

void main()

{

 // data definitions of 10 students

 Student s[STUDENTS_COUNT] = {

 { 2, “Tejaswi”, “CS”, 285 },

 { 3, “Laxmi”, “IT”, 215 },

 { 5, “Bhavani”, “Electronics”, 250 },

 { 7, “Anil”, “Civil”, 215 },

 { 9, “Savithri”, “Electrical”, 290 }

 };

 cout << “Students Report” << endl;

 cout << ----------------” << endl;

 // process student data

 for(int i = 0; i < STUDENTS_COUNT; i++)

 {

 cout << “Roll Number: “ << s[i].roll_no << endl;

 cout << “Name: “ << s[i].name << endl;

 cout << “Branch: “ << s[i].branch << endl;

 cout << “Percentage: “ << s[i].marks*(100.0/325) << endl;

 }

}

Run

Students Report

Roll Number: 2

Name: Tejaswi

Branch: CS

Percentage: 87.6923

Roll Number: 3,

Name: Laxmi

Branch: IT

Percentage: 66.1538

Roll Number: 5

Name: Bhavani

Branch: Electronics

Percentage: 76.9231

Mastering C++270

Roll Number: 7
Name: Anil
Branch: Civil
Percentage:- 66.1538
Roll Number: 9
Name: Savithri
Branch: Electrical
Percentage: 89.2308

8.7.2 Operations Involving the Assignment Operator

The individual structure members can be used in an assignment statement just like any other ordinary

variable. It is illustrated in the following statements:

 s[l].marks = 290; // marks set to 290

 s[l].marks +=5; // marks is incremented by 5

Notice that only the individual structure members are accessed and not the entire structure. If the

structure member is itself a structure then the embedded structure’s member is accessed as follows:

 s[1].birthday.day

It accesses the member day of the structure variable birthday embedded in the second element

of the array of structure variable s. The assignment operator can also be used to copy variables of the

same structure. For instance, the statement,

 Sl = S2;

copies contents of s2 to s1, which are variables of the student structure. It is performed by copying

each member transparently. An array of structure elements can also be copied as follows:

 s[2] = s[l];

 s[i] = s[j];

If a structure has members of type pointers then only the address stored in that pointer member is

copied and hence, such members still point to that pointed to by the source variable. In such a situation,

make sure that memory is allocated, and explicitly copy the elements pointed to by the pointers. If this

is not done, it might result in a dangling reference. It happens when the destination variable releases

memory and the source variable continues to exist. (Dangling reference: it refers to a situation when a

pointer to the memory item continues to exist, but memory allocated to that item is released. Garbage

memory indicates that the memory item continues to exist but the pointer to it is lost; it happens when

memory is not released explicitly)

8.8 STRUCTURES AND FUNCTIONS

Structure variables may be passed to functions just like any other variables. It is also possible for

functions to return structure variables through the use of the return statement. Note that any number

of structure variables can be passed to the function as arguments in the function call, but only one

structure variable can be returned from the function by the return statement. The program students.
cpp illustrates the passing of structure parameters and returning of a structure value.

Structures and Unions 271

// student5.cpp: structure data type parameter passing

#include <iostream.h>

struct Student

{

 int roll_no;

 char name[25];

 char branch[15];

 int marks;

};

// reads data of type Student and returns

Student read()

{

 Student dull;

 cout << “Roll Number ? ”;

 cin >> dull.roll_no;

 cout << “Name ? ”;

 cin >> dull.name;

 cout << “Branch ? ”;

 cin >> dull.branch;

 cout << “Total Marks <max-325> ? ”;

 cin >> dull.marks;

 return dull; // returning structure variables

}

// displays contents of the structure Student

void show(Student genius) // takes structure type parameter

{

 cout << “Roll Number: “ << genius.roll_no << endl;

 cout << “Name: “ << genius.name << endl;

 cout << “Branch: “<< genius.branch << endl;

 cout << “Percentage: “ << genius.marks*(100.0/325) << endl;

}

void main()

{

 // data definitions of 10 students

 Student s[10];

 int n;

 cout << “How many students to be processed <max-10>: “;

 cin >> n;

 //read student data

 for(int i = 0; i < n; i++)

 {

 cout << “Enter data for student “ << i+1 << “...” << endl;

 s [i] = read();

 }

 cout << “Students Report” << endl;

 cout << “---------------” << endl;

 // process student data

 for(i = 0; i < n; i++)

Mastering C++272

 show(s[i]);

}

Run

How many students to be processed <max-10>: 2

Enter data for student 1...

Roll Number ? 3

Name ? Smrithi

Branch ? Genetics

Total Marks <max-325> ? 295

Enter data for student 2...

Roll Number ? 10

Name ? Bindhu

Branch ? MCA

Total Marks <max-325> ? 300

Students Report

Roll Number: 3

Name: Smrithi

Branch: Genetics

Percentage: 90.7692

Roll Number: 10

Name: Bindhu

Branch: MCA

Percentage: 92.3077

8.8.1 Passing Structure to a Function

In main(), the statement
show(s[i]);

passes a parameter of type structure student to show() using the pass-by-value mechanism. All the

members of the structure s[i] are assigned to respective members of the formal structure parameter

genius in the function show(). Any modification to the members of the structure variable genius in

show() will not be reflected in the actual parameter s[i].

8.8.2 Returning Structure from Function

Similar to variables of the standard data types, a variable of a structure type can be assigned to another

variable of the same type. It is performed by using the assignment operator, which copies all the

members by a one-to-one correspondence.

In main(), the statement

 s[i] = read();

invokes read() and assigns all the members of a structure returned by read() to the structure

variable s[i]. Here, all the members are copied to the destination variable on a member-by-member

basis as shown in Figure 8.10.

Structures and Unions 273

8.8.3 Passing an Array of Structures to Functions

Passing an array of structures to functions involves the same syntax and properties like passing any

array to a function. Pass-by-reference method is employed and consequently, any changes made to

the structures by the function are visible throughout the program. The program student6.cpp

illustrates the passing an array of structures to a function.

// student6.cpp: passing array of structures

#include <iostream.h>

struct Student

{

 int roll_no;

 char name[25];.

 char branch[15];

 int marks;

};

// return index to a structures which holds student details who

// scores highest marks in the university examination

int HighestMarks(Student s[], int count)

}

 int index, big;

 big = s[0].marks;

 index = 0;

 for(int i = 1; i < count; i++)

 {

 if(s[i].marks > big)

 {

 big = s[i].marks;

 index = i;

 }

Fig. 8.10 Structure assignment — copied on a member-by-member basis

(a)s1 (b)Student s2; (c)s2 = s1;

s1s2

295

Genetics

Smrithi

3

XXX

XXX

295

Genetics

Smrithi

3

295

Genetics

Smrithi

3

XXX

XXX

Mastering C++274

 }

 return index;

}

// reads data of type Student and returns

Student read()

{

 Student dull;

 cout << “Roll Number ? “;

 cin >> dull.roll_no;

 cout << “Name ? “;

 cin >> dull.name;

 cout << “Branch ? “;

 cin >> dull.branch;

 cout << “Total Marks <max-325> ? “;

 cin >> dull.marks;

 return dull; // returning structure variables

}

// displays contents of the structure Student

void show(Student genius) // takes structure type parameter

{

 cout << “Roll Number: “ << genius.roll_no << endl;

 cout << “Name: “ << genius.name << endl;

 cout << “Branch: “ << genius.branch << endl;

 cout << “Percentage: “ << genius.marks*(100.0/325) << endl;

}

void main()

{

 // data definitions of 10 students

 Student s[10];

 int, n, id;

 cout << “How many students to be processed <max-10>: “;

 cin >> n;

 // read student data

 for(int i = 0; i < n; i++)

 {

 cout << “Enter data for student “ << i+1 << “...” << endl;

 s[i] = read();

 }

 id = HighestMarks(s, n);

 cout << “Details of student scoring highest marks...” << endl;

 show(s[id]);

}

Run

How many students to be processed <max-10>: 3

Enter data for student 1...

Roll Number? 3

Name ? Smrithi

Structures and Unions 275

Branch ? Genetics

Total Marks <max-325> ? 295

Enter data for student 2...

Roll Number ? 15

Name ? Rajkumar

Branch ? Computer

Total Marks <max-325> ? 315

Enter data for student 3...

Roll Number ? 7

Name ? Laxmi

Branch ? Electronics

Total Marks <max-325> ? 255

Details of student scoring highest marks...

Roll Number: 15

Name: Rajkumar

Branch: Computer

Percentage: 96.9231

In main(), the statement

 id = HighestMarks(s, n);

invokes the function HighestMarks() and finds the student with the highest marks. It accepts two

arguments, the first is an array of structures and the second argument is an integer which denotes the

number of students. The index of the student record with the highest marks is found by this function

and returned to its caller[in this case, main() is the caller].

8.9 DATA-TYPE ENHANCEMENT USING typedef

C++ provides a facility called type definition by which new type names can be created. This is

accomplished by using the typedef keyword as shown in Figure 8.11.

ExistingTypeName is the name of an existing data type, and NewTypeName is the new user-

defined data type. Notice that a new user-defined data type is created only from the existing data types

such as int, float, struct, etc. The following examples illustrate the concepts introduced.

 typedef int Length;

Length now becomes a synonym for int and variables can be defined using the new type name.

Length denotes a type name like int and is not a variable. Consider the following statement:

Fig. 8.11 Enhancing existing data types

standard or user
defined data type

for pointer/reference
type only

typedef ExistingTypeName [*/&] NewTypeName;

Mastering C++276

 Length lenl, len2;

The above statement defines two variables of type integer and is equivalent to

 int lenl, len2;

Note that the operations possible on the variables lenl and len2 are precisely the same as the

operations permitted on integer variables defined using the keyword int. Consider the following set

of statements.

 typedef int emprec[10];

 emprec personl, person2;

The type emprec is now a new data type which is a 10-element array of integer quantities,

personl and person2 are two variables of this new type and each variable is a 10-element array

of integer quantities. The following are valid expressions:

 person1[3] access the 4th element of person1

 person1 access the starting address of person1

 &person1[0] access the starting address of person1

The typedef statement for defining string data type is

 typedef char * String;

It can be used as follows:

 String name;

It is equivalent to

 char * name;

The typedef can be used to create reference type(alias) integer data type as follows:

 typedef int & INTREF;

Aliases for variables can be created using INTREF as follows:

 INTREF b = c;

It is effectively equivalent to

 int &b = c;

8.9.1 Benefits of the typedef Statement

There are several important uses of the typedef statement:

 It helps in effective documentation of a program, thus increasing its clarity. This, in turn, enhances

the ease of maintenance of the program, which is an important part of software management.

 The typedef statement is often used for declaring new data types involving structures. A new

data type representing the structure is declared using the typedef keyword. Since all structure

declarations in C++ are typedef by default, explicit use of the struct keyword during

structure-variable definition is optional. It is used explicitly when the structure’s pointer or alias

type is to be created. The usage of the typedef statement is illustrated below:

Structures and Unions 277

 typedef struct tag
 {
 type memberl;
 type member2;
 ...
 type membern;
 } [*/&] NewDataType;

 Consider the following declarations:

 struct date
 {
 int day;
 inc month;
 inc year;
 };
 typedef dace * DATEPTR;

 The type name DATEPTR can be used to define a pointer to the structure date as follows:

 DATEPTR dp;

 It is equivalent to

 date * dp;

 The third important use of the typedef statement is its usage in writing portable programs. The

sizes of different data types are dependent on the compiler. For instance, the size of an integer

is two bytes on a 16-bit compiler and four bytes on a 32-bit compiler. Portability is achieved by

type-declaring an integer as follows:

 typedef long int INT;

 In the program, use definitions such as

 INT a, b;

instead of the statement

 int a, b;

to increase the portability of a program.

8.10 STRUCTURES AND ENCAPSULATION

Structures in C++ have undergone a major revision.

Like C structures, C++ structures also provide a

mechanism to group together data of different types

into a single unit. In addition to this, C++ allows

to associate functions as part of a structure. Thus,

C++ structures provide a true mechanism to handle

data abstraction. Such structures have two types of

members: data members and member functions (see

Figure 8.12). Functions defined within a structure

can operate on any member of the structure. Fig. 8.12 Functions as a part of C++ structures

struct complex

int x;

int y;

void read()

void show()

member functions

data members

}
}

Mastering C++278

The program complex.cpp illustrates the concept of associating functions operating on the

structure members. The functions enclosed within a structure can access data or other member functions

directly. Similar to the data members, member functions can be accessed using the dot operator.

// complex.cpp: functions as a part of C++ structures
#include <iostream.h>
#include <math.h>
struct complex
{
 int x; // real part
 int y; // imaginary part
 void read()
 {
 cout << “Real part? “;
 cin >> x;
 cout << “Imaginary part?”;
 cin >> y;
 }
 void show(char *msg)
 {
 cout << msg << x;
 if(y < 0)
 cout << “-i”;
 else
 cout << “+i”;
 cout << fabs(y) << endl;
 }
 void add(complex c2)
 {
 x += c2.x;
 y += c2.y;
 }
};
void main()
{
 complex cl, c2, c3;
 cout << “Enter complex number c1..” << endl;
 c1.read();
 cout << “Enter complex number c2..” << endl;
 c2.read();
 c1.show(“cl = “);
 c2.show(“c2 = “);
 c3 = cl; // assignment
 c3.add(c2); // c3 = c3 + c2;
 c3.show(“c3 = cl + c2 = “);
}

Run

Enter complex number c1..

Structures and Unions 279

Real part ? 1
Imaginary part ? 2
Enter complex number c2..
Real part ? 3
Imaginary part ? 4
c1 = l+i2
c2 = 3+i4
c3 = c1 + c2 = 4+i6

In main(), the statement

 c1.read();

invokes the member function read(), defined in the structure complex. The data members of the

variable c1 are assigned with the input values. The statement,

 c1.show(“c1 = “);

displays data members with suitable messages. The statement

 c3 = c1; // assignment

assigns the contents of all the data members of the variable c1 to corresponding members of c2. The

statement,

 c3.add(c2); // c3 = c3 + c2;

adds the contents of the variable c2 to c3.

Case Study
Consider a scenario where it is required to store basic employee-related data such as Name, Employee

ID, Department and Salary. Using the concept of structures and encapsulation, write a C++ program

that reads and stores the employee records.

The program emp.cpp demonstrates how structures are used for storing employee record.

// emp.cpp: using structure data members and member functions for
storing employee data
#include<iostream.h>
struct employee
{
 char name[30];
 long ID;
 char dept[20];
 float salary;
 void read()
 {
 cout<<”Employee Name: “;
 cin>>name;
 cout<<”Employee ID: “;
 cin>>ID;
 cout<<”Department: “;

Mastering C++280

 cin>>dept;
 cout<<”Salary: “;
 cin>>salary;
 }
 void show()
 {
 cout<<”Employee Name: “<<name;
 cout<<”\nEmployee ID: “<<ID;
 cout<<”\nDepartment: “<<dept;
 cout<<”\nSalary: “<<salary;
 }
};
void main()
{
 employee emp;
 cout<<”Enter employee data:\n”;
 emp.read();
 cout<<”\n****Employee Record****\n”;
 emp.show();
}

Run

Enter employee data:
Employee Name: Vishwanathan
Employee ID: 953
Department: Finance
Salary: 18500

****Employee Record****
Employee Name: Vishwanathan
Employee ID: 953
Department: Finance
Salary: 18500

Case Study(Contd.)
Now, it is required to add a new data member DOB to the employee structure. DOB stores the date

of birth of the employee in DD, MMM, YYYY format. Modify the employee structure definition to

incorporate this change.

The revised employee structure definition is shown below. It nests the DOB structure with in the

employee structure.

struct employee
{
 char name[30];
 long ID;
 char dept[20];
 float salary;
 struct DOB

Structures and Unions 281

 {
 int DD;
 char MMM[3];
 int YYYY;
 }date;

 void read()
 {
 cout<<”Employee Name: ”;
 cin>>name;
 cout<<”Employee ID: ”;
 cin>>ID;
 cout<<”Department: ”;
 cin>>dept;
 cout<<”Salary: ”;
 cin>>salary;
 cout<<”Date of Birth(DD MMM YYYY): ”;
 cin>>date.DD>>date.MMM>>date.YYYY;
 }
 void show()
 {
 cout<<”Employee Name: ”<<name;
 cout<<”\nEmployee ID: ”<<ID;
 cout<<”\nDepartment: ”<<dept;
 cout<<”\nSalary: ”<<salary;
 cout<<”Date of Birth: “<<date.DD<<” “<<date.MMM<<” “<<date.YYYY;
 }
};

Note that structures and classes in C++ exhibit the same set of features except that structure members

are public by default, whereas class members are private by default. Most C++ programmers prefer

to use a class to group data and functions; a structure to group only data which are logically related.

Hence, throughout this book, a construct called class(instead of struct) is used as a means for

implementing OOP concepts. More details on classes can be found in the chapter Classes and Objects.

8.11 UNIONS

A union allows the overlay of more than one variable in the same memory area. Normally, each and

every variable is stored in a separate location and as a result, each one of these variables have their own

addresses. Often, it is found that the variables used in a program appear only in a small portion of the

source code. Consider the following situation to illustrate the benefits of union data type:

Suppose a string of 200 bytes is needed to store filename in the first 500 lines of the code only, and

another string of 400 bytes is needed to use as buffer in the rest of the code(that is from the 500th line

onwards) Note that no part of the code will access both the variables simultaneously. In such a situation,

it would be a waste of memory if two arrays of 200 bytes and 400 bytes are defined; it requires 600

bytes of memory. The union provides a means by which the memory space can be shared, and only 400

bytes of memory is needed.

Mastering C++282

8.11.1 Declaring a Union

In terms of declaration syntax, the union is similar to a

structure as shown in Figure 8.13. The method used to

declare a structure is adopted to declare a union. A union
data type is like a structure, except that it allows to define

variables, which share storage space. Note the only

change is the substitution of the keyword struct by the

keyword union. The rest of the discussion regarding the

declaration is the same as that given for the structure (i.e.,

even functions can be a part of union).

The compiler will allocate sufficient storage to accommodate the largest element in the union.

Unlike a structure, members of a union variable occupy the same locations in memory(starting at the

zero offsets). Thus, updating one member will overwrite the other. Elements of a union type variable

are accessed in the same manner as the elements of a structure.

The memory space required for defining a variable of the union is

 max(sizeof(memberl), sizeof(member2;,..., sizeof(memberN))

That is, the member of biggest size should fit in the common memory space.

8.11.2 Defining Variables

Union variables can be defined at the point of union declaration or can be defined separately as and

when required. Consider the following declaration:

 union X // union declaration
 {
 int a;
 char ch;
 double b;
 };

The variables of the above union X can be defined as follows:

 union X x1;

The storage space required to represent the variable xl is max(sizeof(int), sizeof(char),
sizeof(double)).

At any point of time, the union variable can hold data of any one of its members. It is the responsibility

of the programmer to decide to which of its members the data stored in the union variable is meaningful.

8.11.3 Member Access

Members of the union can be accessed using either the dot or the arrow(->) operator. It is similar to

accessing the structure variable. Consider the following declaration:

union person

{

 char name[25];

Fig. 8.13 Union declaration

union UnionName

{

DataType member1;

DataType member1;

......

DataType memberN;

};

union

members

keyword union name

}

Structures and Unions 283

 int idno;

 float salary;

};

The variables of the above union person can be defined as follows:

union person var1,*var2; // var1 is value variable, var2 is pointer

The statement to assign the address of a variable var1 to the pointer variable var2 is as follows:

var2 = &var1;

The individual members can be accessed as follows:

var1.name access the name

var1.idno access the idno

var2->salary access the salary

The members can be assigned in the same way as the members of a structure. For instance,

var1.idno = 20;

strcpy(var1.name, “Vijayashree”);

the content of the members of the union variable var1 can be displayed as follows:

cout << var1.name;

The program union.cpp illustrates the usage of union to share the storage space.

// union.cpp: union of two strings
#include <iostream.h>
#include <string.h>
union Strings
{
 char filename[200];
 char output[400];
};
void main()
{
 Strings s;
 //......
 strcpy(s.filename, “/cdacb/usrl/raj/oops/microkernel/pserver.cpp”);
 cout << “filename: “ << s.filename << endl;
 //.....
 //.....
 strcpy(s.output,”OOPs is a most complex entity ever created by
 humans”);
 cout << “output: “ << s.output << endl;
 cout << “Size of union Strings = “ << sizeof(Strings);
}

Run

filename: /cdacb/usrl/raj/oops/microkernel/pserver.cpp
output: OOPs is a most complex entity ever created by humans
Size of union Strings = 400

Mastering C++284

8.12 DIFFERENCES BETWEEN STRUCTURES AND UNIONS

Structures and unions have the same syntax in terms of their declaration and definition of their variables.

However, they differ in the amount of storage space required for their storage and the scope of the

members.

8.12.1 Memory Allocation

The amount of memory required to store a structure variable is the sum of the size of all the members.

On the other hand, in the case of unions, the amount of memory required is always equal to that

required by its largest member. The program sudiff.cpp illustrates the memory requirements for

variables of the structure and union types.

// sudiff.cpp: memory requirement for structures and unions

#include <iostream.h>

struct

{

 char name[25];

 int idno;

 float salary;

} emp;

union

{

 char name[25];

 int idno;

 float salary;

} desc;

void main()

{

 cout << “The size of the structure is “ << sizeof(emp) << endl;

 cout << “The size of the union is “ << sizeof(desc) << endl;

}

Run

The size of the structure is 31

The size of the union is 25

8.12.2 Operations on Members

Only one member of a union can be accessed at any given time. This is because, at any instant, only

one of the union variables can be active. The general rule for determining the active member is: only

that member which is updated can be read. At this point, the other variables will contain meaningless

values. It is the responsibility of the programmer to keep track of the active members. The program

uaccess.cpp illustrates accessing of a union variable and its members.

Structures and Unions 285

// uaccess.cpp: accessing of union members

#include <iostream.h>

#include <string.h>

union emp

{

 char name [25];

 int idno;

 float salary;

};

void show(union emp e)

{

 cout << “Employee Details...” << endl;

 cout << “The name is “ << e.name << endl;

 cout << “The idno is “ << e.idno << endl;

 cout << “The salary is “ << e.salary << endl;

}

void main()

{

 union emp e; //or emp e;

 strcpy(e.name, “Rajkumar”);

 show(e);

 e.idno =10;

 show(e);

 e.salary = 9000;

 show(e);

}

Run

Employee Details...

The name is Rajkumar

The idno is 24914

The salary is 2.83348e+26

Employee Details...

The name is

The idno is 10

The salary is 2.82889e+26

Employee Details...

The name is

The idno is -24576

The salary is 9000

The status of the variable e after execution of each one of the following:

 1. strcpy(e.name, “Rajkumar”);

 2. e.idno = 10; and

 3. e.salary = 9000;

is shown in Figure 8.14a, 8.14b, 8.14c respectively. Note that access of non-active members will lead

to meaningless values.

Mastering C++286

8.12.3 Operation on Unions

In addition to the features discussed above, the union has all the features provided by the structure

except for minor changes, which is a consequence of the memory-sharing capabilities of the union.

This is made evident by the following legal operations.

 A union variable can be assigned to another union variable, if their tags are same.

 A union variable can be passed to a function as a parameter.

 The address of the union variable can be extracted by using the address-of operator(&). This

union pointer can be passed to functions.

 A function can return a union or a pointer to the union.

Performing operations on the unions as a whole, for example, arithmetic or comparison operations

are illegal.

8.12.4 Scope of a Union

The members of a union have the same scope as the union itself. It is illustrated in the program

uscope.cpp. The union definition having no tag or instance variable is called anonymous union.

// uscope.cpp: scope of union declaration

#include <iostream.h>

void main()

{

 union // anonymous union definition

 {

 int i;

 char c;

 float f;

 };

 i = 10;

 c = 9;

Fig. 8.14 Union-variable initialization

union emp
{
charname[25]
intidno;
float salary;

};

xxx Rajkumar25 10 9000

(a)strcpy(e.name,"Rajkumar");

union emp e; (b)e.idno=10; (c)e.salary=9000;

Structures and Unions 287

 f = 4.5;

 cout << “The value of i is “ << i << endl;

 cout << “The value of c is “ << c << endl;

 cout << “The value of f is “ << f << endl;

}

Run

The value of i is 0

The value of c is

The value of f is 4.5

In the above program, the scope of the union definition is limited to main() and hence, the scope

of its members, i, c and f is limited to main(). In main(), they can be accessed like any other local

variables. The only difference is that the variables share the same memory.

8.13 BIT FIELDS IN STRUCTURES

C++ allows packing many data items into a single machine word for efficient and optimal usage of the

storage space. This facility is useful when a program needs flags to keep track of status information

related to various activities. Consider a program which stores information about a person including the

following:

Do you possess any formal degree?

Are you employed?

Single or married?

Male or Female?

Are you a teenager?

Are you Indian?

The simplest way of achieving the above task is to define six integer variables, each keeping the

status of one item. This method requires 6*sizeof(int) bytes of memory locations. Another

mechanism of achieving it is through the use of bit masks(macros) as follows:

#define DEGREE 01

#define EMPLOYED 02

#define MARRIED 04

#define MALE 08

#define TEENAGE 16

#define INDIAN 32

Note that the numbers must be powers of two, so that they can act as masks corresponding to the

relevant bit positions, thus accessing the bits by shifting, masking, and complementing. For instance,

the statement

 flags |= DEGREE;

Mastering C++288

sets the first bit to 1 and the statement

 flags &= ~MARRIED;

clears the second bit indicating that a person is unmarried. The conditional statement

 if(flags & MARRIED)
 cout << “Married person”;
 else
 cout << “Unmarried person”;

is valid. These idioms(mode of expressions) are easily prone to errors. As an alternative to this

mechanism, C++ offers the capability of defining and accessing fields within a word directly rather

than by bitwise logical operators. A bit field or field in short, is a set of adjacent bits within a single

implementation-defined storage unit called a word. The syntax of field definition and access is based

on structures. For instance, the above #define statements could be replaced by the definition of six

fields as follows:

 struct

 {

 unsigned int is_degree : 1;

 unsigned int is_employed : 1;

 unsigned int is_married : 1;

 unsigned int is_male : 1;

 unsigned int is_teenage : 1;

 unsigned int is_indian : 1;

 } flags;

It defines a variable called flags which contains six single-bit fields. The number following the

colon represents the field width. The fields declared are of type unsigned int(can be int) to

ensure that they are unsigned quantities.

The individual fields are referenced in the same way as other structure members. For instance,

 flags.is_married

expression accesses the contents of its corresponding bit. Fields act like integers and can be used

in arithmetic expressions just like other integers. Thus, the previous examples can be written more

naturally as follows:

 flags.is_degree = 1;

sets the first bit to 1 and the statement

 flags.is_married = 0;

clears the second bit, indicating that a person is unmarried. The conditional statement

 if(flags.is_married)

 cout << “Married person”;

 else

 cout << “Unmarried person”;

is valid.

Structures and Unions 289

Consider the following declaration which illustrates bit fields of larger width:

 struct with_bits

 {

 unsigned first : 5;

 unsigned second : 9;

 };

The identifier with_bits is a structure containing 2 members: first and second. The member

first is an integer with 5 bits, and second is an integer with 9 bits. Both the numbers can be stored in

a single 16-bit entity(even though they add up to 14 bits, a 14-bit entity cannot exist in memory), rather

than two separate integers. It is illustrated in the program share.cpp.

// share.cpp: union and structure combined
#include <iostream.h>
struct with_bits
{
 unsigned first : 5;
 unsigned second : 9;
};
void main()
{
 union
 {
 with_bits b;
 int i;
 };
 i = 0; // Both first and second are cleared to 0
 cout << “On i = 0: b.first = “ << b.first << “ b.second = “<< b.second;
 b.first =9; // first is set to 9; second remains 0
 cout << endl << “b. first =9: “;
 cout << “b.first = “ << b.first << “ b.second = “ << b.second;
}

Run

On i = 0: b.first = 0 b.second = 0
b. first = 9: b.first = 9 b.second = 0

In main(), the union defines two variables b and i, and they are stored in the same memory

location. In a way, they can act as aliases. The statement,

i = 0;

clears the complete word and in turn clears members of the structure with_bits. The statement

b. first = 9;

updates only the first 5 bits of the word.

Note: The maximum size of each bit field is sizeof(int).

Mastering C++290

REVIEW QUESTIONS ++
 8.1 What are structures? Justify their need with an illustrative example.

 8.2 Why are structures called heterogeneous data types?

 8.3 Explain storage organization of structure variables.

 8.4 Write an interactive program, which processes date of birth using structures. Enhance the

same supporting processing of multiple students date of birth.

 8.5 Write a short note on passing structure-type variables to a function, and suitability of

different parameter passing schemes in different situations.

 8.6 Develop a program for processing admission report. Use a structure which has elements

representing information such as roll number, name, date of birth(nested structure),

branch allotted. The functions processing members of a structure must be a part of a

structure. The format of report is as follows:

Roll.no. Name Date of Birth Branch Allotted

xx xxxxxxxxxxxxxxx dd/mm/yy xxxxxxxx

 8.7 What are unions? Write a program to illustrate the use of the union.

 8.8 What are the differences between structures and unions?

 8.9 Write an interactive program to process complex numbers. It has to perform addition,

subtraction, multiplication, and division of complex numbers. Print results in x+iy form.

 8.10 Write a union declaration for representing register model of x86 family of micro-

processors. Note that general-purpose registers such as AX are also accessed by lower

and higher word registers AH and AL respectively.

 8.11 Consider the following structure declaration:
 struct institution
 {
 struct teacher {
 int empl_no;
 char name[20];
 };
 struct student {
 int roll_no;
 char name[15];
 };
 };

 What is the sizeof(institution), sizeof(teacher), and sizeof(student)?

Pointers and
Runtime Binding

 9.1 INTRODUCTION

The use of pointers offers a high degree of flexibility in the management

of data. Knowledge of memory organization plays a very important role

for understanding the concept of pointers. As the name implies, pointer

refers to the address identifying a programming element (data or function).

Interestingly, the system main memory is organized into code and data areas

as shown in Figure 9.1. Although in many situations programming can be done without the use of

pointers, their usage enhances the capability of the language to manipulate data. Dynamic memory

allocation is a programming concept wherein the use of pointers becomes indispensable. For instance,

to read the marks of a set of students and store them for processing, an array can be defined as follows:

float marks[100];

9

Fig. 9.1 Primary memory organization

0

data

code

main memory

max addr.

p
ro

g
ra

m

data

code

local data

function stack

}

func2()

{

}

main()

{

}

funcl()

{

program memory

Mastering C++292

But this method limits the maximum number of students(to 100), which must be decided during

the development of the program. On the other hand, by using dynamic allocation, the program can

be designed so that the limit for the maximum number of students is restricted only by the amount of

memory available in the system. The real power of C++(of course, C) lies in the proper use of pointers.

Memory is organized in the form of a sequence of byte-sized(8 bits per byte) locations or storage

cells containing either program code or data. These bytes are numbered starting from zero onwards.

The number associated with each cell(byte location) is known as its address or memory location. A

pointer is an entity which contains a memory address. In effect, a pointer is a number which specifies

a location in memory. The key concepts and terminology associated with memory organization are the

following:

 Each byte in the memory is associated with a unique address.

 An address is a sequence of binary digits(0 or 1) of fixed length, used for labeling a byte in the

memory.

 Address is a positive integer ranging from 0 to maximum addressing capability of the

microprocessor(for instance, 8086 processor has 20 address lines and hence, it can address up to

220 locations: 1 MB).

 Every element(data or program code) that is loaded into memory is associated with a valid range

of addresses, i.e., each variable and function in the program starts at a particular location and

spans across consecutive addresses from that point onwards depending upon the size of the data

item.

 The number of bytes accessed by a pointer depends on the data type of an item to which it is a

pointer.

The address stored in a pointer variable can be relative or absolute. Most modern systems use the

relative addressing mode to access memory, by default. In relative addressing mode, an address consists

of two components: the base (or the segment) and the offset address. The base or segment address

designates a specific region of memory, and the offset specifies the distance of the desired memory

location from the beginning of the segment. The effective address is computed by combining both

the segment and offset values. In absolute mode, the address stored in a pointer is itself the effective

address, and hence, memory can be directly accessed using this address. Note that relative addressing

requires mapping of logical address(offset) to physical address.

It is not always necessary to be aware of the segments and offsets while programming in C++, unless

the pointer is used to hold the address of any device-specific information. For instance, in IBM-PC

and its compatibles, the display memory is located at the segment and offset value, Oxb800:0000.(The

display memory address changes from one video mode to another.)

9.2 POINTERS AND THEIR BINDING

A pointer is defined as a variable used to store memory addresses. It is similar to any other variable and

has to be defined before using it, to hold an address. Just like an integer variable can hold only integers,

each pointer variable can hold only pointer to a specific data type such as int, char, float, double,

etc., or any user-defined data type).

The allocation of memory space for data structure(storage) during the course of program execution

is called dynamic memory allocation. Dynamic variables so created can only be accessed with

Pointers and Runtime Binding 293

pointers. Thus, pointers offer tremendous flexibility in the creation of dynamic variables, accessing

and manipulating the contents of memory location and releasing the memory occupied by the dynamic

variables, which are no longer needed. (A more detailed account of dynamic memory allocation and

de-allocation is discussed in the later sections of this chapter.) The usage of the pointer is essential in

the following situations:

 Accessing array elements

 Passing arguments to functions by address when modification of formal arguments are to be

reflected on actual arguments

 Passing arrays and strings to functions

 Creating data structures such as linked lists, trees, graphs, etc.

 Obtaining memory from the system dynamically

9.3 ADDRESS OPERATOR &

All the variables defined in a program (including pointer variables) reside at specific addresses. It is

possible to obtain the address of a program variable by using the address operator &(ampersand). When

used as a prefix to the variable name, the & operator returns the address of that variable. The program

getaddr.cpp illustrates the use of the & operator.

// getaddr.cppc: use of ‘&’ operator to access address
#include <iostream.h>
void main()
{
 // define and initialize three integer variables
 int a = 100;
 int b = 200;
 int c = 300;
 // print the address and contents of the above variables
 cout << “Address “ << & a << “ contains value “ << a << endl;
 cout << “Address “ << & b << “ contains value “ << b << endl;
 cout << “Address “ << & c << “ contains value “ << c << endl;
}

Run

Address 0xfff4 contains value 100
Address 0xfff2 contains value 200
Address 0xfff0 contains value 300

In main(), the statement

cout << “Address “ << &a << “ contains value “ << a << endl;

displays the address and contents of the variable a. The expression &a returns the address of the

variable a. It should, however, be noted that the addresses printed by the above program, depends on

the current configuration of a system. This is because the memory occupied by the program’s variables

depend on several factors such as memory management scheme, memory model, and the current status

of the memory contents.

Mastering C++294

The output shows the addresses of the variables in hexadecimal notation, and they are in the

decreasing order. From this, it is evident that all automatic variables are created in the program’s stack

area and that the stack always grows from a higher to a lower memory address. Further, each of the

addresses differ from, others by exactly two bytes, since integer variables are allocated two bytes of

memory. The sizeof() operator can be used to determine the number of bytes allocated to each type

of variable. ‘The integer is the fundamental data type and hence, its size depends on the processor word

size, compiler, and operating-system memory manager. For instance, the size of an integer data type in

MS-DOS based machines is two bytes, whereas in UNIX based machines it is four bytes.

Sufficient care must be taken to avoid any kind of confusion between the following:

 unary address operator & which precedes a variable name.

 binary logical operator & which performs a bit-wise AND operation.

9.4 POINTER VARIABLES

Pointers are also variables and hence, they must be defined in a program like any other variable. Rules

for variable names and declaring pointers are the same as for any other data type. This naturally gives

rise to questions about the data type of a pointer, size of memory allocated to a pointer, and the format

for defining different types of pointers.

9.4.1 Pointer Definition

When a pointer variable is defined, the C++ compiler needs to know the type of variable the pointer

points to. The syntax of pointer-variable definition is shown in Figure 9.2.

Fig. 9.2 Syntax of pointer definition

standard or user defined data type;
char, short, int, float, etc.

asterisk followed by a
pointer variable name

DataType * PtrVar, ...;

DataType could be a primitive data type or user-defined structure(such as structures and classes).

The PtrVar could be any valid C++ variable name. The character star(*) following the DataType
informs the compiler that the variable PtrVar is a pointer variable. The pointer so created can hold the

address of any variable of the specified type. Some typical pointer definitions are

int *int_ptr; // int_ptr is a pointer to an integer

char *ch_ptr; // ch_ptr is a pointer to a character

Date *d_ptr; // d_ptr is a pointer to user defined data type

The pointer variable must be bound to a memory location. It can be achieved either by assigning the

address of a variable, or by assigning the address of the memory allocated dynamically. The address of

a variable can be assigned to a pointer variable as follows:

int_ptr = &marks;

Pointers and Runtime Binding 295

where the variable marks is of type integer.

Pointer to characters(a string) can be defined as follows:

char *msg;

It can be initialized at the point of definition as follows:

char *msg = “abcd..xyz”;

Or, it can also be initialized during execution as follows:

msg = “abcd..xyz”;

9.4.2 Dereferencing of Pointers

Dereferencing is the process of accessing and manipulating data stored in the memory location pointed

to by a pointer. The operator *(asterisk) is used to dereference pointers in addition to creating them.

A pointer variable is dereferenced when the unary operator*(in this case, it is called the indirection

operator) is prefixed to the pointer variable or pointer expression. Any operation that is performed on the

dereferenced pointer directly affects the value of the variable it points to. The syntax for dereferencing

pointers is shown in Figure 9.3.

Fig. 9.3 Pointer binding and dereferencing

1000

(a) int *int_ptr;

(b) int_ptr = &marks;

(c) *int_ptr = 10;

(d) *int_ptr;a =

int_ptr

int_ptr

int_ptr

int_ptr

1002
xxxx

95

84 a

marks

1000

1002

95

84 a

marks

1000

1002

10

84 a

marks

1000

1002

10

10 a

marks

1000

1000

1000

Mastering C++296

Consider the statement

int_ptr = &marks;

It stores the address of the variable marks in the pointer variable int_ptr. The contents of the

variable marks can be displayed using the following statement:

cout << *int_ptr;

Effectively, the above statement achieves the same result as the statement

cout << marks;

Thus, accessing information using pointers is called indirect addressing. It refers to accessing

information whose address is stored in a special type of variable, which is a pointer variable.

The contents of memory locations can be modified by using a pointer variable as follows:

*int_ptr = 25;

It assigns the value 25 to the memory location pointed to by the variable int_ptr. The contents of the

memory location can be read by using the pointer variable as follows:

a = *int_ptr;

It assigns the contents of the memory location pointed to by the address stored in the variable

int_ptr to the variable a of type integer. The program initptr.cpp illustrates the mechanism

of pointer variable definition, binding and dereferencing.

// initptr.cpp: pointer(address variables) usage demonstration
#include <iostream.h>
void main()
{
 int *iptr; // pointer to integer, figure 9.4a
 int var1, var2; // two integer variables, figure 9.4b
 var1 =10; // figure 9.4c
 var2 = 20; // figure 9.4d
 iptr = &var1; // figure 9.4e
 cout << “Address and contents of var1 is “ << iptr << “ and “ << *iptr;
 iptr = &var2; // figure 9.4f
 cout<<” \nAddress and contents of var2 is “ << iptr << “ and “ << *iptr;
 *iptr =125; // figure 9.4g
 var1 = *iptr * 1; // figure 9.4h
}

Run

Address and contents of var1 is Oxlf8afff4 and 10
Address and contents of var2 is Oxlf8afff2 and 20

In main(), the first statement

int *iptr;

specifies that iptr is a pointer to an integer. The asterisk prefixed to the variable name specifies that

iptr is a pointer variable. The data type int specifies that iptr can point to any integer type item(s)

stored in the main memory. The statement

int *iptr; // pointer to integer, figure 9.4a

Pointers and Runtime Binding 297

could also be written as

int* iptr;

It makes no difference as far as the compiler is concerned. But there are certain advantages in following

the former convention(i.e., placing the * closer to the variable name). The compiler always associates

the * with the pointer variable name rather than the data type, thus allowing both pointer variable type

and nonpointer variable of a particular data type to be defined in a single definition. Thus, the following

statements

int *iptr; // pointer to integer, figure 9.4a

int var1, var2; // two integer variables, figure 9.4b

are valid. They can also be written in a single equivalent statement as follows:

int *iptr, var1, var2;

An asterisk must be prefixed to the name of each pointer variable to define multiple pointers using a

single statement. For instance, the statement,

float *f1, *f2, *f3;

defines f1, f2, and f3 as pointers to float variables.

The program initptr.cpp has highlighted the following important facts about pointers:

 The asterisk(*) used as an indirection operator has a different meaning from the asterisk used

while defining pointer variables.

Fig. 9.4 Dereferencing of pointers

fff8
fff4

fff2

iptr

(a) int *iptr;

(b) int varl,var2; (c) varl = 10; (d) var2 = 20;

(e) iptr = &var1; (f) iptr = &var2;

(h) var1 = *iptr + 1;(g) *iptr = 125;

var1

var2

fff4

fff2

var1

var2

fff4

fff2

var1

var2

fff4

fff2

var1

var2

fff8 fff4

iptr

fff4

fff2

var1

var2
fff8 fff2

iptr

fff4

fff2

var1

var2
fff8 fff2

iptr
fff4

fff2

var1

var2
fff8 fff2

iptr

10

20

10

10

20

10

20

126

125

10

125

Mastering C++298

 Indirection allows the contents of a variable to be accessed and manipulated without using the

name of the variable.

All variables that can be accessed directly(by their names) can also be accessed indirectly by means

of pointers. The power of pointers becomes evident in situations where indirect access is the only way

to access variables in memory. Figure 9.4 gives a pictorial representation of accessing a variable using

a pointer.

9.4.3 Pointers and Parameter Passing

Pointers provide a two-way communication between the service requester and service provider. It is

achieved by passing the address of the actual parameters instead of their contents. Any modification

done to formal variables in the function will be automatically reflected in the actual parameters when

they are passed by address. A program to swap two numbers is listed in swap.cpp.

// swap.cpp: swap 2 numbers using pointers
#include <iostream.h>
void swap(float *, float *);
void main()
{
 float a, b;
 cout << “Enter real number <a>: “;
 cin >> a;
 cout << “Enter real number : “;
 cin >> b;
 // Pass address of the variables whose values are to be swapped
 swap(&a, &b); // figure 9.6a
 cout << “After swapping\n”;
 cout << “a contains ” << a << endl;
 cout << “b contains ” << b;
}
void swap(float *pa, float *pb) // function to swap two numbers
{
 float temp;
 temp = *pa; // figure 9.6b
 *pa = *pb; // figure 9.6c
 *pb = temp; // figure 9.6d
}

Run

Enter real number <a>: 10.5
Enter real number : 20.9
After swapping
a contains 20.9
b contains 10.5

In main(), the statement

swap(&a, &b);

Pointers and Runtime Binding 299

assigns addresses of the actual parameters to the formal

parameters, which are of type pointer. However, they

are manipulated differently (see Figure 9.5). In main(), the

parameters are accessed directly with their names whereas in

swap(), they are accessed using the indirection operator.

In swap(), accessing contents of the memory location

pointed to by the variable pa, actually accesses the contents

of the variable a. Similarly, accessing the contents of the

memory location pointed to by the variable pb actually access

the contents of the variable b. Hence, swapping the contents

of memory using pointer variables pa and pb along with

the indirection operator will in fact exchange the contents of

the actual parameters a and b (passed by caller) as shown in

Figure 9.6.
Fig 9.5 Data addressing in different

perspectives

1310

main() swap()

1312 20.9

10.5 a

b

a, b *pa,*pb

Fig 9.6 Swapping of two numbers

10.5fff0

a

main()

swap(&a, &b)

20.9fff2

b

fff0f800

pa

swap()

fff2f802

pb

f804

temp

temp=*pa

*pa=*pb

*pb=temp

swap(&a, &b) temp=*pa

*pa=*pb

*pb=temp

10.5fff0

a

main()

20.9fff2

b

(a) swap(&a, &b)

fff0f800

pa

swap()

fff2f802

pb

f804

temp

10.5

(b) temp = *pa;

20.9fff0

a

main()

swap(&a, &b)

20.9fff2

b

fff0f800

pa

swap()

fff2f802

pb

f804

temp

temp=*pa

*pa=*pb

*pb=temp

swap(&a, &b)
temp=*pa

*pa=*pb

*pb=temp

20.9fff0

a

main()

10.5fff2

b

(c) *pa = *pb;

fff0f800

pa

swap()

fff2f802

pb

f804

temp

10.5

(d) *pb = temp;

10.5

Mastering C++300

9.5 VOID POINTERS

Pointers defined to be of a specific data type cannot hold the address of some other type of variable,

i.e., it is syntactically incorrect in C++ to assign the address of(say) an integer variable to a pointer

of type float. Consider the following definitions:

 float *f-ptr; // pointer to float
 int my_int; // integer variable

The assignment of incompatible variable address to a pointer variable in a statement such as

 f_ptr = &my_int;

results in compilation error. Such type-compatibility problems can be overcome by using a general-

purpose pointer type called void pointer. The format for declaring a void pointer is as follows:

 void *v_ptr; // define a pointer to void

It uses the reserved word void for specifying the type of the pointer. Pointers defined in this manner do

not have any type associated with them and can hold the address of any type of variable. The following

are some valid C++ statements:

void *vd_ptr;
int *it_ptr;
int invar;
char chvar;
float flvar;
vd_ptr = &invar; // valid
vd_ptr = &chvar; // valid
vd_ptr = &flvar; // valid
it_ptr = &invar; // valid

The following are some invalid statements:

it_ptr = &chvar; // invalid

it_ptr = &flvar; // invalid

Pointers to void cannot be directly dereferenced like other pointer variables using the indirection

operator. Prior to dereferencing a pointer to void, it must be suitably typecasted to the required

data type. The program voidptr.cpp illustrates the typecasting of void pointers while accessing

memory locations pointed to by them.

// voidptr.cpp: the use of void pointers to hold pointer of any type
#include <iostream.h>
void main()
{
 int il = 100; // define and initialize int il to 100
 float f1 = 200.5; // define and initialize float f1 to 200.50
 void *vptr; // define pointer to void
 vptr = &il; // pointer assignment
 cout << “il contains” << *((int *) vptr) << endl;
 vptr = &fl; // pointer assignment

Pointers and Runtime Binding 301

 cout << “fl contains” << *((float *) vptr);
}

Run

il contains 100
f1 contains 200.5

The expression *((float*)vptr) in the statement

cout << “fl contains “ << *((float *) vptr);

displays the contents of the variable f1 using a void pointer

variable with typecasting. Figure 9.7 indicates various

components of the expression *((float*)vptr)). When

a function is designed to do similar operations on different

data types, void pointers can be used to pass parameters to

the function.

9.6 POINTER ARITHMETIC

The size of the data type to which the pointer variable refers is the number of bytes of memory accessed

when the pointer variable is dereferenced using the indirection operator. The number of bytes accessed

by using a pointer depends on its type, but the size of the pointer variable remains the same irrespective

of the data type to which it is pointing(see Table 9.1). The size of the pointer variable is large enough to

hold the memory address. For example, when dereferenced(in a particular implementation of the C++

compiler—on 16-bit system),

 a pointer to an integer accesses 2 bytes of memory,

 a pointer to a char accesses 1 byte of memory,

 a pointer to a float accesses 4 bytes of memory, and

 a pointer to a double accesses 8 bytes of memory.

The C++ language allows arithmetic operations to be performed on pointer variables. It is, however,

the responsibility of the programmer to see that the result obtained by performing pointer arithmetic is

the address of relevant and meaningful data.

The arithmetic operators available for use with pointers can be classified as

 Unary operators: ++(increment) and --(decrement)

 Binary operators: +(addition) and -(subtraction).

Table 9.1 Size of data types and their pointers

Data type Data size Pointer type

near far

char 1 2 4

short 2 2 4

int 2(16-bit compiler)

4(32-bit compiler)

2 4

long 4 2 4

float 4 2 4

double 8 2 4

Fig. 9.7 Typecasting void pointer

pointer typecasting void pointer

*((float *) vptr)

Mastering C++302

The following are some of the examples of pointer arithmetic:

int a, b, *p, *q;
p = -q; // Illegal use of pointer
p <<= 1; // Illegal use of pointer
p = p - b; // Valid
p = p - q; // Invalid: Nonportable pointer conversion
p =(int*)(p - q); // Valid
p = p - q - a; // Invalid: Nonportable pointer conversion
p =(int *)(p - q) - a; // Valid
p = p + a; // Valid
p = p + q; // Invalid pointer addition
p = p + a; // Invalid pointer addition
p = p * q; // Illegal use of pointer
p = p * a; // Illegal use of pointer
p = p / q; // Illegal use of pointer
p = p / b; // Illegal use of pointer
p = a / p; // Illegal use of pointer
a = *p ** q; // Valid and it is same as a =(*p) *(*q);

The C++ compiler takes into account the size of the data type being pointed, while performing

arithmetic operations on a pointer. For example, if a pointer to an integer is incremented using the

++ operator(preceding or succeeding the pointer) then the initial address contained in the pointer

is incremented by 2 and not 1, assuming that an integer occupies two bytes in memory. Similarly,

incrementing a pointer to float causes the initial address contained in the float pointer to be actually

incremented by 4 and not 1(if the size of the float variable is 4 on the machine). In general, a pointer to

some type, d_type(where d_type can be primitive or user-defined data type), when incremented by

an integral value i, has the following effect:

(current address in pointer) + i * size of(d_type)

Consider the following statements:

float *sum;
char *name;

A statement such as

sum+ +; or ++sum;

advances the pointer variable sum to point to the next element. If the pointer variable sum holds the

address 1000, on execution of the above statement, the variable sum will hold the address (1000+4)
= 1004 since the size of float is 4 bytes. Similarly, when a statement such as

name++; or ++name;

is executed, and if the pointer variable name points to address 2000 earlier, then it will hold the

address(2000+1), since the size of char is one byte. This concept applies to all arithmetic operations

performed on pointer variables.

When a pointer variable is incremented, its value actually gets incremented by the size of the type to

which it points. For example, let pi be a pointer to an integer defined with the statement

int* pi;

Pointers and Runtime Binding 303

Also, let pi point to the memory location 1020, i.e., the number 1020 is stored in the pointer pi.

Now, a statement which increments pi, such as

pi++;

will add two to pi, making it 1022 (assuming that the size of an integer is 2 bytes). This makes pi

point to the next integer. Similarly, the statement

pi--;

will decrement the value of pi by 2. The pointer arithmetic on different types is shown in Table 9.2.

Table 9.2 Pointer arithmetic

Pointer variable Pointer value Pointer increment Pointer value after increment

char * a; 10 a++;/++a;
a=a+3;

11(a+sizeof (char))
13(a+sizeof (char)*3)

int * b; 10 b++;/++b;
b=b+2;

12(b+sizeof (int))
14(b+sizeof (int)*2)

long * c; 10 c++;/++c;
c=c+3;

14(c+sizeof (long))
22(c+sizeof (long)*3)

float * d; 10 d++;/++d;
d=d+2;

14(d+sizeof (float))
18(d+sizeof (float)*2)

double * e; 10 e++;/++e;
e=e+2;

18(e+sizeof (double))
26(e+sizeof (double)*2)

Pointer arithmetic becomes significant for accessing and processing array elements efficiently(a

more detailed account of array processing with pointers is taken up later in this chapter). Note that

pointer arithmetic cannot be performed on void pointers without typecasting, since they have no type

.associated with them.

The elements of an array can be efficiently accessed by using a pointer. The program ptrarrl.
cpp illustrates the use of pointer holding the address of arrays and pointer arithmetic in manipulating

large amount of data stored in sequence.

// ptrarrl.cpp: smallest in an array of ‘n’ elements using pointers
#include <iostream.h>
void main()
{
 int i,n, small, *ptr, a[50];
 cout << “Size of the array? “;
 cin >> n;
 cout << “Array elements ?\n”;
 for {i = 0; i < n; i++)
 cin >> a[i];
 // assign address of a[0] to pointer ‘ptr’. This can be done in two
 // way: 1.ptr = &a[0]; 2. ptr = a;
 ptr = a;
 // contents of a[0] assigned to small
 small = *ptr;

Mastering C++304

 // pointer points to next element in the array i.e., a[l]
 ptr++;
 // loop n-1 times to search for smallest element in the array
 for(i = 1; i < n; i++)
 {
 if(small > *ptr)
 small = *ptr;
 ptr++; // pointer is incremented to point to a[i+l]
 }
 cout << “Smallest element is “ << small;
}

Run

Size of the array ? 5
Array elements ?
4 2 6 1 9
Smallest element is 1

In main(), the statement

ptr = a;

assigns the address of the 0th element of the array to the integer pointer ptr. Hence, the statement

small = *ptr;

effectively assigns the value of a[0] to the variable small. When ptr is incremented, the value

stored in ptr is incremented by sizeof(int) [i.e., = 2 in DOS and = 4 in UNIX] to point to the

next element of the array.

It is interesting to note that the name of the array represents the starting address of the array, i.e., it

is the address of the first element in the array. Hence, the expression a[i] can also be represented by

the expression *(a+i).

9.7 RUNTIME MEMORY MANAGEMENT

C++ provides two special operators new and delete to perform memory allocation and deallocation

at runtime respectively. These operators with their syntax and suitable examples are already discussed

in the earlier chapter on Moving from C to C++ . An additional discussion on the new operator follows:

The new operator must always be supplied with a data type in place of type-name. Items surrounded

by angle brackets are optional. The syntax of the new operator is as follows:

<::> new <new-args> type-name <(initializer)>

<::> new <new-args>(type-name) <(initializer)>

The components present in the syntax has the following meaning:

 :: operator, invokes the global version of new.

 new-args cap be used to supply additional arguments to new. It is used when the program has

an overloaded version of new that matches the optional arguments.

 Initializer, if present, is used to initialize the memory.

Pointers and Runtime Binding 305

A request for non-array allocation uses the appropriate operator new() function. Any request for

array allocation will call the appropriate operator new []() function. Selection of the operator is

done as follows:

 By default, the operator new[]() calls the operator new().

 If a class Type has an overloaded version of operator new[](), arrays of Type will be allocated

using Type:: operator new []().

 If a class Type has an overloaded version of new and it is not the array allocation operator new
[]() then the arrays of Type will be allocated using Type :: operator new().

 If none of the above cases apply, the global ::operator new() is used.

More details on dynamic objects is discussed in later chapters.

9.7.1 Handling Errors for the new Operator

The new operator offers dynamic storage allocation similar to the standard library function malloc().

It is particularly designed keeping OOP in mind and throws an exception if the allocation fails. For

more details on handling exceptions raised by the new operator, refer to the chapter on Exception

Handling.

The user can define a function to be invoked when the new operator fails. The new operator can be

informed about the new-handler() function, by using set_new_handler() and pass a pointer

to the new-handler(). The new operator can be configured to return NULL on failure as follows:

set_new_handler(0).

It sets the handler to NULL so that the new operator returns NULL when it fails to allocate the requested

amount of memory and thus exhibiting the behavior of the standard function malloc() .The program

newhand.cpp illustrates the mechanism of handling the failure of memory allocation.

// newhand.cpp: new operator memory allocation test
#include <iostream.h>
#include <process.h>
#include <new.h>
void main(void)
{
 int * data;
 int size;
 set_new_handler(0);
 cout << “How many bytes to allocate: “;
 cin >> size;
 if((data = new int[size]))
 cout << “Memory allocation success, address = “ << data;
 else
 {
 cout << “Could not allocate. Bye ... “;
 exit(1);
 }
 delete data;
}

Mastering C++306

Run1

How many bytes to allocate: 100
Memory allocation success, address = Oxl6be

Run2

How many bytes to allocate: 30000
Could not allocate. Bye ...

Note: A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero size

allocations return distinct, non-null pointers.

9.8 POINTERS TO POINTERS

C++ allows programmers to define a pointer to pointers, which offers flexibility in handling arrays,

passing pointer variables to functions, etc. The syntax for defining a pointer to pointer is

DataType **PtrToPtr;

which uses two * symbols(placed one beside the other). It implies that PtrToPtr is a pointer-to-

a-pointer addressing a data object of type DataType. This feature is often used for representing

two-dimensional arrays. The program ptr2ptr.cpp illustrates the format for defining and using a

pointer to another pointer.

// ptr2ptr.cpp: definition and use of pointers to pointers
#include <iostream.h>
void main(void)
{
 int *iptr; // iptr as a pointer to an integer, figure 9.8a
 int **ptriptr; // Defines pointer to int pointer, figure 9.8b
 int data; // Some integer location, figure 9.8c
 iptr = &data; // iptr now points to data, figure 9.8d
 ptriptr = &iptr; // ptriptr points to iptr, figure 9.8e
 *iptr = 100; // Same as data = 100, figure 9.8f
 cout << “The variable ‘data’ contains “ << data << endl;
 **ptriptr = 200; // Same as data = 200, figure 9.8g
 cout << “The variable ‘data’ contains “ << data << endl;
 data = 300; // figure 9.8h
 cout << “ptriptr is pointing to “ << **ptriptr << endl;
}

Run

The variable ‘data’ contains 100
The variable ‘data’ contains 200
ptriptr is pointing to 300

In main(), the statement

 int **ptriptr;

creates a pointer variable which holds a pointer to another pointer variable. The statement

Pointers and Runtime Binding 307

ptriptr = &iptr;

assigns address of the pointer variable iptr to ptriptr. The value pointed by iptr can also be

accessed by ptriptr as follows:

**ptriptr

The expression **ptriptr effectively accesses the contents of the variable data. The various

operations on the pointer to a pointer are shown in Figure 9.8.

Fig. 9.8 Pointers to pointer and dereferencing

iptr

fff8 fff0

ptriptr fff4
data

(a) int *iptr; (b) int**ptriptr;

(c) int data;

fff4
data

fff4fff8

iptr

(d) iptr = &data;

ptriptr

fff0

fff8

iptr

fff4
data

(e) ptriptr = &iptr;

fff4

fff8 ptriptr

fff0

fff8

iptr

fff4
data

(f) *iptr = 100;

fff4

fff8

100

ptriptr

fff0

fff8

iptr

fff4
data

(g) **ptriptr = 200;

fff4

fff8

ptriptr

fff0

fff8

iptr

fff4
data

(h) data = 300;

fff4

fff8

300200

9.8.1 Passing Address of a Pointer

When a pointer variable is defined, a memory location for the pointer is allocated, but it will not be

initialized. Before using the pointer variable, it should be initialized. If the pointer variable has to be

initialized in a function other than where it is defined then the pointer’s address has to be passed to the

function. The contents of the pointer-to-a-pointer variable can be used to access or modify the pointer

type formal variable. The program big.cpp illustrates passing the address of a pointer, so that the

pointer can be made to point to a desired variable(in this program, it is the biggest of two integers).

Mastering C++308

big.cpp: program to find the biggest number using pointers
#include <iostream.h>
void FindBig(int *pa, int *pb, int **pbig);
{
 // compare the contents of *pa and *pb and assign their address to pbig
 if(*pa > *pb)
 *pbig = pa;
 else
 *pbig = pb;
}
void main()
{
 int a, b, *big;
 cout << “Enter two integers: “;
 cin >> a >> b;
 FindBig(&a, &b, &big);
 cout << “The value as obtained from the pointer: “ << *big;
}

Run

Enter two integers: 10 20
The value as obtained from the pointer: 20

In main(), the statement

FindBig(&a, &b, &big);

passes a, b, and big variables by address. It assigns the address of the variable a or b to the pointer

variable big. In FindBig(), the statement

*pbig = pa;

effectively stores the address of the variable a in the pointer variable big, which is defined in the

main() function.

9.9 ARRAY OF POINTERS

An array of pointers is similar to an array of any predefined data type. As a pointer variable always

contains an address, an array of pointers is a collection of addresses. These can be addresses of ordinary

isolated variables or addresses of array elements. The elements of an array of pointers are stored in the

memory just like the elements of any other kind of array. All rules that apply to other arrays also apply

to the array of pointers.

The syntax for defining an array of pointers is the same as array definition, except that the array

name is preceded by the star symbol during definition as follows:

DataType *ArrayName[ARRSIZE];

An array of pointers is useful for holding a pointer to a list of strings. They can be utilized in

implementing algorithms involving excessive data movements. It is a traditional style to sort data,

by data movement. This method of sorting incurs much overhead in terms of both the time and space

Pointers and Runtime Binding 309

complexity, as it requires temporary space for exchanging the data between the records and has

excessive data movement. This is especially true if the size of the data being sorted is large. Pointers

can be utilized to perform the same with much flexibility and less overhead. In this method, instead

of data exchange, pointers are exchanged to accomplish the same task. The program sortptr.c

illustrates a method of sorting data without swapping their contents.

// sortptr.cpp: sorting of strings by pointer movement

#include <iostream.h>

#include <string.h>

// bubble sort algorithm based sorting function. It speeds up sorting

// by exchanging the pointers instead of heavy data movement

void SortByPtrExchange(char ** person, int n)

{

 int i, j, flag;

 char *temp;

 fort i = 0; i < n-1; i++) // for i = 0 to n-2

 {

 flag = 1;

 for(j = 0; j <(n-l-i); j++) // for j = 0 to(n-i-2)

 {

 if(strcmp(person[j], person[j+1]) > 0)

 {

 flag =0; // still not sorted and requires next iteration

 // exchange pointers

 temp = person[j];

 person[j] = person[j+1];

 person[j+1] = temp;

 }

 }

 if(flag)

 break; // data are in sorted order now; no need of next iteration

 }

}

void main()

{

 int i, n = 0;

 char *person[100];

 char choice;

 do

 {

 person[n] = new char[40]; // allocate space for a string

 cout << “Enter Name: “;

 cin >> person[n++];

 cout << “Enter another(y/n)? “;

 cin >> choice;

 } while(choice == ‘y’);

 cout << “Unsprted list: “;

Mastering C++310

 for(i = 0; i < n; i ++)

 cout << endl << person[i];

 SortByPtrExchange(person, n);

 cout << endl << “Sorted list: “;

 for(i = 0; i < n; i ++)

 cout << endl << person[i];

 // release memory allocated

 for(i = 0; i < n; i++)

 delete person[i];

}

Run

Enter Name: Tejaswi

Enter another(y/n) ? y

Enter Name: Prasad

Enter another(y/n) ? y

Enter Name: Prakash

Enter another(y/n) ? y

Enter Name: Sudeep

Enter another(y/n) ? y

Enter Name: Anand

Enter another(y/n) ? n

Unsorted list:

Tejaswi

Prasad

Prakash

Sudeep

Anand

Sorted list:

Anand

Prakash

Prasad

Sudeep

Tejaswi

In main(), the statement

person[n] = new char[40];

allocates 40 bytes of memory to the(n+l)th element and stores its memory address in the array of

pointers to strings indexed by n. The statement

SortByPtrExchange(person, n);

invokes the sorting function by passing the array of pointers and data count as actual parameters. Note

that array is passed to a function just by mentioning its name. This is equivalent to passing an entire

array; the address of the first element of an array can be used to access any element in the array by using

offset values. The data sorted by SortByPtrExchange() do not change their physical location(see

Figure 9.9). The effect of sorting is seen when strings are accessed using pointers in a sequence.

Pointers and Runtime Binding 311

9.9.1 Precedence of * and [] Operators

In C++, the notations *p[3] and (*p)[3] are different since * operator has a lower precedence than

the [] operator. The following examples illustrate the difference between these two notations:

 1. int *data[10];

It defines an array of 10 pointers. The increment operation such as

 data++; or ++data;

is invalid; the array variable data is a constant pointer.

 2. int(*data) [10];

 It defines a pointer to an array of 10 elements. The increment operation such as

 data++; or ++data;

is invalid; the variable data will point beyond 10 integers, i.e., 10 *sizeof(int) will be added to

the variable data. The program show.cpp illustrates the use of defining a pointer to a matrix having

arbitrary number of rows and fixed number of columns.

//show.cpp: matrix of unknown number of rows and known number of columns
#include <iostream.h>
void show(int a[][3], int m)
{
 int(*c) [3]; // pointer to an array of 3 elements
 c = a;

Fig. 9.9 Sorting using pointers

char *person[100]

1000

1002

1004

1006

1008

1500

1540

1580

1620

1660

1500

1540

1580

1620

1660

Tejaswi

Prasad

Prakash

Sudeep

Anand

person[0]

person[1]

person[2]

person[3]

person[4]

unsorted pointers

char *person[100]

1000

1002

1004

1006

1008

1500

1540

1580

1620

1660

1500

1540

1580

1620

1660

Tejaswi

Prasad

Prakash

Sudeep

Anand

person[0]

person[1]

person[2]

person[3]

person[4]

unsorted pointers

Mastering C++312

 for(int i = 0; i < m; i++)
 {
 for (int j = 0; j < 3; j++)
 cout << c[i][j] << " ";
 cout << endl;
 }
}
void main()
{
 int c[2][3]={{1,2,3), {4,5,6}};
 show(c, 2);
}
Run

1 2 3
4 5 6

In show(), the statement

int(*c)[3];

defines a pointer to an array of three elements. It is useful for processing two-dimensional array

parameters declared with unknown number of rows. The statement

c = a;

assigns the address of a two-dimensional array having three columns. The variable c allows access to

all the array elements in the same way as a matrix. It allows pointer increment operations such as

c++; or ++c;

It increments the pointer by 3*sizeof(int).

9.10 DYNAMIC MULTI-DIMENSIONAL ARRAYS

Pointers permit the creation of multidimensional arrays dynamically so that the amount of memory

required by the array can be determined at runtime depending on the problem size. A two-dimensional

array can be thought of as a collection of a number of one-dimensional arrays-each representing a row.

The 2D array is stored in memory in the row major form and it can be created dynamically using the

following steps:

 1. Define a pointer to pointers matrix variable: int**p;

 2. Allocate memory for storing pointers to all rows of a matrix:

 p = new int *[row];

 3. Allocate memory for all column elements:

for(int i = 0; i < row; i++)

 p[i] = new int[col];

The model of a dynamic matrix is shown in Figure 9.10. It is possible to access the two-dimensional

array elements using pointers in the same way as the one-dimensional array. Each row of the two-

dimensional array is treated as a one dimensional array. The name of the array indicates the starting

address of the array. The expressions arrayname [i] and (arrayname+i) point to the ith row

Pointers and Runtime Binding 313

of the array. Therefore, *(arrayname+ i) + j points to the jth element in the ith row of the

array. The subscript j actually acts as an offset to the base address of the ith row. The two-dimensional

dynamic matrix elements can also be accessed by using the notation a[i][j].

// matrix.cpp: matrix manipulation and dynamically resource allocation
#include <iostream.h>
#include <process.h>
int **MatAlloc(int row, int col)
{
 int **p;
 p = new int *[row];
 for(int i = 0; i < row; i++)
 p[i] = new int[col];
 return p;
}
void MatRelease(int **p, int row)
{
 for(int i = 0; i < row; i++)
 delete p[i];
 delete p;
}
void MatRead(int **a, int row, int col)
{
 int i, j;
 for(i = 0; i < row; i++)
 for(j = 0; j < col; j++)
 {
 cout << "Matrix[" << i << "," << j << "] = ? ";
 cin >> a[i][j];

Fig. 9.10 Model of dynamic matrix

sizeof(int) = 2 bytes

sizeof(int*) = 2 bytes, near pointer

= 4 bytes, far pointer

0 1 2 3 4

col

p[0]

p[1]

p[2]

p[3]

row

p = new int * [row];

for(int i=0; i < row; i++)

p=new int [col];

.

.

.

.

{ {

{

{

Mastering C++314

 }
}
// multiplication of matrices, c3.mul(cl, c2): c3 = cl*c2
void MatMul(int **a, int m, int n, int **b, int p, int q, int **c)
{
 int i, j, k;
 if(n != p)
 {
 cout << "Error: Invalid matrix order for multiplication";
 exit(1);
 }
 for(i = 0; i < m; i++)
 for(j = 0; j < q; j++)
 {
 c[i][j] = 0;
 for(k = 0; k < n; k++)
 c[i][j] += a[i][k] * b[k][j];
 }
}
void MatShow(int **a, int row, int col)
{
 int i, j;
 for(i = 0; i < row; i++)
 {
 cout << endl;
 for(j = 0; j < col; j++)
 cout << a[i][j] << “ ”;
 }
}
void main()
{
 int **a, **b, **c;
 int m, n, p, q;
 cout << "Enter Matrix A details..." << endl;
 cout << "How many rows ? ";
 cin >> m;
 cout << "How many columns ? ";
 cin >> n;
 a = MatAlloc(m, n);
 MatRead(a, m, n);
 cout << "Enter Matrix B details..." << endl;
 cout << "How many rows ? ";
 cin >> p;
 cout << “How many columns ? ";
 cin >> q;
 b = MatAlloc(p, q);
 MatRead(b, p, q);
 c = MatAlloc(m, q);
 MatMul (a, m, n, b, p, q, c);

Pointers and Runtime Binding 315

 cout << “Matrix C = A * B ...";
 MatShow(c, m, q);
}

Run

Enter Matrix A details...
How many rows ? 3
How many columns ? 2
Matrix[0,0] = ? 1
Matrix[0,1] = ? 1
Matrix[1,0] = ? 1
Matrix[1,1] = ? 1
Matrix[2,0] = ? 1
Matrix[2,1] = ? 1
Enter Matrix B details...
How many rows ? 2
How many columns ? 3
Matrix[0,0] = ? 1
Matrix[0,1] = ? 1
Matrix[0,2] = ? 1
Matrix[1,0] = ? 1
Matrix[1,1] = ? 1
Matrix[1,2] = ? 1
Matrix C = A * B ...
2 2 2
2 2 2
2 2 2

9.10.1 Three-dimensional Array

A three-dimensional array can be thought of as an array of two-dimensional arrays. Each element of a

three-dimensional array is accessed using three subscripts, one for each dimension.

As usual, the array name points to the base address of the three-dimensional array. The array

name with a single subscript i contains the base address of the ith two-dimensional array. Hence,

arrayname[i] or (arrayname+i) is the address of the ith two dimensional array. The expression

arrayname[i] [j] or *(arrayname+i)+j represents the base address of the jth row in the

ith two-dimensional array. Similarly, the expression *(*(arrayname+j)+k) points to the kth

element in the jth row in the ith two-dimensional array. The program 3ptr.cpp illustrates these

concepts.

// 3ptr.cpp: pointer to 3-dimensional arrays

#include <iostream.h>

void main()

{

 int arr[2] [3] [2] ={ {{2,1},(3,6},{5, 3}}, {{0,9},(2,3},{5,8}}};

 cout << arr << endl;

 cout << *arr << endl;

Mastering C++316

 cout << **arr << endl;

 cout << ***arr << endl;

 cout << arr+1 << endl;

 cout << *arr+l << endl;

 cout << **arr+l << endl;

 cout << ***arr+l << endl;

 for(int i=0; i < 2; i++)

 {

 for(int j=0; j < 3; j++)

 {

 for(int k=0; k < 2; k++)

 {

 cout << "arr["<< i << "][" << j << "][" << k << "] = ";

 cout << *(*(*(arr+i)+j)+k) << endl;

 }

 }

 }

}

Run

0xffb8

0xffb8

0xffb8

2

0xffc4

0xffbc

0xffba

3

arr[0][0][0] = 2

arr[0][0][1] = 1

arr[0][1][0] = 3

arr[0][1][1] = 6

arr[0][2][0] = 5

arr[0][2][1] = 3

arr[1][0][0] = 0

arr[1][0][1] = 9

arr[1][1][0] = 2

arr[1][1][1] = 3

arr[1][2][0] = 5

arr[1][2][1] = 8

The array arr will be stored in memory as shown in Figure 9.11. In the above program, the

array name arr is the base address of the three-dimensional array. The expression *arr is the base

address of the 0th two-dimensional array, **arr is the 0th row in the 0th two-dimensional array and

***arr contains the value stored in the 0th column and 0th row of the 0th two dimensional array.

The expression arr+1 is the base address of the first two-dimensional array, *arr+l is the address of

the first row in the 0th two-dimensional array, **arr+l gives the address of 0th row and first column

Pointers and Runtime Binding 317

of a zero-dimensional array, ***arr+l adds 1 to its current value(2) obtained from the 0th element in

the 0th row of the 0th two-dimensional array. The expression within the for loop prints the contents

of the three-dimensional array in the order in which they are stored in memory.

9.11 POINTER CONSTANTS

As mentioned earlier, the name of an array holds the starting address of the array. Hence, if arr[3]

is an array of any data type then the name of the array arr is the address of(and does not point to) the

0th element of the array and arr+1 is the address of the first element of the array. If arr is a pointer

then arr+i cannot be replaced by an expression arr++ executing i times. Using the increment

operator with it(the name of the array) is incorrect as the starting address of the array has been placed

in the code directly by the compiler, thus making the array name a constant. The array name does not

have any storage location allocated unlike a pointer variable which itself has a storage location. Hence,

performing an increment operation on the address of the array(which is a constant) is like performing

the increment operation ; 5++, which is meaningless. The program ptrinc.cpp illustrates these

concepts.

// ptrinc.cpp: pointers can be incremented but not an array
#include <iostream.h>
void main()
{
 int ia[3] = { 2, 5, 9 };
 int *ptr=ia;
 for(int i = 0; i < 3; i++)
 {
 // cout << *(ia++); error, array address of ia cannot be changed
 cout << " " << *ptr++; // note: pointer update
 }
}

Run

2 5 9

In the above program, the elements of the array are accessed using the pointer ptr which is assigned

the starting address of the array ia. The pointer variable ptr is incremented every time to point to the

next element. The expression ia++ is incorrect.

Fig. 9.11 Pointer to three-dimensional arrays

3

3

2

(a) Three dimensional array (b) Memory organisation for 3-D array

0xffb8 0xffc4

Zeroth 2-d
array

First 2-d
array

2 1 3 6 5 3 0 9 2 3 5 8

Mastering C++318

9.12 POINTERS AND STRING FUNCTIONS

Like arrays, pointers holding address of strings are widely used for manipulating strings. C++’s library

or user-defined functions can be used for manipulating strings. These functions assume the character

\0 as the end-of-string indicator and hence, it is not considered as part of a string data. Therefore, to

store a string of length L, allocate (L+1) bytes of memory. A pointer to the string is passed to these

functions instead of the entire string. The program strfunc.cpp illustrates string manipulations

using standard and user-defined functions.

// strfunc.cpp: user defined string processing functions
#include <iostream.h>
#include <string.h>
// user defined string processing functions prototype
int my_strlen(char *str);
void my_strcpy(char *s2, char *s1);
void my_strcat(char *s2, char *s1);
int my_strcmp(char *s1, char *s2);
void main()
{
 char temp[100], *sl, *s2, *s3;
 cout << “Enter stringl: “;
 cin >> temp;
 s1 = new char[strlen(temp)+1];
 my_strcpy(s1, temp);
 cout << “Enter string2: “;
 cin >> temp;
 s2 = new char[strlen(temp)+1];
 my_strcpy(s2, temp);
 cout << “Length of stringl: “ << my_strlen(s1)/ << endl;
 s3 = new char[strlen(s1) + my_strlen(s2) + 1];
 my_strcpy(s3, s1);
 my_strcat(s3, s2);
 cout << “Strings’ on concatenation: “ << s3 << endl;
 cout << “String comparison using ...” << endl;
 cout << “ Library function: “ << strcrmp(s1, s2) << endl;
 cout << “ User’s function: “ << my_strcmp(s1, s2) << endl;
 delete s1;
 delete s2;
 delete s3;
}
int my_strlen(char *str)
{
 char *ptr = str;
 while(*ptr != ‘\0’) // move ptr to end of string
 ++ptr;
 return ptr-str; // address of last character - starting address = length
}

Pointers and Runtime Binding 319

void my_strcpy(char *s2, char *s1)

{

 while(*s1!= ‘\0’)

 *s2++ = *s1++;

 *s2 = ‘\0’; // copy end of string

}

void my_strcat(char *s2, char *s1)

{

 // move end of string

 while(*s2 != '\0’)

 s2++;

 // append s1 to s2

 while(*s1 != ‘\0’)

 *s2++ = *s1++;

 *s2 = ‘\0’; // copy end of string

}

int my_strcmp(char *s1, char *s2)

{

 // compare as long as they are equal

 while(*s1 == *s2 &&(*s1 != NULL || *s2 != NULL))

 {

 s1++;

 s2++;

 }

 return *s1 - *s2;

}

Run

Enter string1: Object

Enter string2: Oriented

Length of string1: 6

Strings’ on concatenation: ObjectOriented

String comparison using ...

 Library function: -16

 User’s function: -16

9.13 ENVIRONMENT SPECIFIC ISSUES

Pointer variables, like other variables, are also allocated memory whenever they are defined. The size

of the memory allocated (in bytes) to a pointer variable depends on whether the pointer just holds

the offset part of the address, or both the segment and offset values. The memory model in which

the program is compiled also influences the size of the pointer variables used in that program. C++

compilers(such as Borland or Microsoft C++) running under DOS environment support six different

memory models, each of which determines the amount of memory allocated to the program’s data and

code (see Table 9.3).

Mastering C++320

Normally, all pointers defined in a program in the small model contain only the offset part of the

address. Such pointers are known as near pointers, for which two bytes of memory are allocated. The

use of near pointers limits the programmer to access only those memory locations, which lie within

a single segment only.(The maximum size of a segment is 64 KB). This limitation can be overcome

by the use of pointers, which are capable of holding both the segment as well as the offset part of

an address. Such pointers are called far pointers, for which four bytes of memory are allocated. It is

possible to access any memory location using far pointers. The far pointers can be defined(even in a

small memory model) by using the keyword far as follows:

 int far *ifarptr; // defines a far pointer to int

 char far *cfarptr; // defines a far pointer to char

In the compact and large models, the data area can be more than 64K but any single data structure

like array or structure) should be smaller than 64 KB. For example, if an array is defined as int
far *ary; then ary will have both a segment and an offset part, but when pointer arithmetic is

done, only the offset part is used and not the segment part. If ary = 0x5437 : Oxfffe and it

is incremented then ary will become 0x5437:0x0000, i.e., the offset part wraps around and the

segment part remains unchanged; hence any single data structure should be less than 64 K. However,

such limitations are overcome in other memory models such as huge.

Table 9.3 Memory models

Memory model Segment Pointer

Code Data Stack Code Data

Tiny 64K near near

Small 64K 64K near near

Medium 1MB 64K far near

Compact 64K 1MB near far

Large 1MB 1MB far far

Huge 1MB 64K each 64K each far far

C++ compilers in MS-DOS normally provide three specialized, predefined macros, viz., MK_FP,
FP_SEG, and FP_OFF for use with far and huge pointers. The MK_FP macro takes two unsigned

integer input arguments which are the segment and the offset addresses of the location to be accessed

and returns a value that can be used to initialize a far or huge pointer variable. Here is an example

for initializing a far pointer variable.

 char far *cptr; // define a far pointer variable
 ...
 cptr =(char far *) MK_FP(0xb800, 0x0000);

It causes the far pointer cptr to point to a byte which resides in segment Oxb800(in hex) and at

an offset 0x0000(in hex). Note that the macro function MK_FP returns a far pointer to void which

must be typecasted suitably before its use.

The macros FP_SEG and FP_OFF require a far pointer as their only input argument, and they

return the segment and offset parts of the address contained in that far pointer. The three macros

mentioned above become available by including the header file dos.h.

Pointers and Runtime Binding 321

The program farptr.cpp defines a far pointer to a character, initializes it with an arbitrary

address(say segment = Oxb800 and offset= 0x0000), extracts, and prints the segment and offset

of the same pointer. It also prints the ASCII character residing at the address b800 : 0000.

// farptr.cpp:far pointers and related macros to access display memory
#include <dos.h>
#include <iostream.h>
void main()
{
 char ch;
 char far *cptr; // define far pointer to character
 unsigned int seg_val, off_val;
 // initialize far pointer
 cptr =(char far *) MK_FP(Oxb800,,0x0000);
 // fetch segment address from far pointer
 seg_val = FP_SEG(cptr);
 // fetch offset address from far pointer
 off_val = FP_OFF(cptr);
 ch = *cptr;
 cout << “Character at 0xb800 : 0x0000 = “ << ch << endl;
 cout << “Segment part of cptr = “ << hex << seg_val << endl;
 cout << “Offset part of cptr = “ << hex << off_val << endl;
}

Run

Character at 0xb800 : 0x0000 = S
Segment part of cptr = b800
Offset part of cptr =0

Note: The ASCII character printed by the above program will be the same as the first character on

the top left corner of the monitor. It is because the address b8000:0600 is a location in the video

memory, which holds the ASCII value of the character appearing in the top left corner in the text mode.

9.14 POINTERS TO FUNCTIONS

A pointer to a function can be defined to hold the

starting address of a function, and the same can

be used to invoke a function. It is also possible to

pass addresses of different functions at different

times thus making the function more flexible and

abstract. The syntax of defining a pointer to a function is shown in Figure 9.12.

The definition of a pointer to a function requires the function’s return type and the function’s

argument list to be specified along with the pointer variable. It should be remembered that the function

prototype or definition should be known before its address is assigned to a pointer.

Once a pointer to a function is defined, it can be used to point to any function which matches with

the return type and the argument list stated in the definition of the pointer to a function. Consider a

statement such as

Fig. 9.12 Syntax of defining a pointer to a function

pointer to function

ReturnType(*PtrToFn)(arguments_if_any);

Mastering C++322

 int(*any_func)(int, int)

It defines the variable any_func as a pointer to a function. The variable any_func can point to any

function that takes two integer arguments and returns a single integer value. For instance, it can point

to the following functions:

 int min(int a, int b);

 int max(int a, int b);

 int add(int x, int y);

9.14.1 Address of a Function

The address of a function can be obtained by just specifying the name of the function without the

trailing parentheses. The following statements assign address of the functions to pointer to the function

variable any_f unc since the prototype of all of them is same:

 any_func = min;

 any_func = max;

 any_func = add;

Invoking a Function using Pointers
The syntax for invoking a function using a pointer to a function is as follows:

 (*PtrToFn)(arguments_if_any);

 or

 PtrToFn(arguments_if_any);

Consider the following pointer to functions

 int(*pfuncl)(int);

 float(*pfunc2)(float, float);

If these hold addresses of an appropriate function, the statements

 (*pfuncl)(2);

 (*pfunc2)(2.5, a);

 pfuncl(i);

invoke functions pointed to by them. The parameters can be constants or variables.

In the definition of pointers to functions, the pointer variable along with the symbol * plays the role

of the function name. Hence, while invoking functions using pointers, the function name is replaced by

the pointer variable. The program rfact.cpp illustrates this concept.

// rfact.cpp: pointer to function and its use
 #include <iostream.h>
long fact(int num)
{
 if(num ==0)
 return 1;
 else

Pointers and Runtime Binding 323

 return num * fact(num - 1);
}
void main(void)
{
 int n;
 long(*ptrfact)(int); // definition of pointer to function
 ptrfact = fact; // address of function to pointer assignment
 cout << “Enter the number whose factorial is to be found: “;
 cin << n;
 long fl = (*ptrfact)(n);
 cout << “The factorial of “ << n << “ is “ << f1 << endl;
 cout << “The factorial of “ << n+1 << “ is “ << ptrfact(n+1) << endl;
}

Run

Enter the number whose factorial is to be found: 5
The factorial of 5 is 120
The factorial of 6 is 720

In the above program, a pointer ptrfact is defined to point to a function which takes an integer

argument and returns an integer value. Then the address of the function fact is assigned to the pointer

ptrfact. The function fact computes the factorial of a given positive integer. The function fact

is invoked using the pointer variable ptrfact.

Recursive call to main()
When an attempt is made to invoke main() within a program, generally compilers generate an error

message such as:

 cannot call main from within the program

Because in C++, main() cannot be invoked recursively; however it is compiler dependent. The

following operations cannot be performed on main():

 main() cannot be invoked recursively.

 main() cannot be overloaded

 main() cannot be declared inline

 main() cannot be declared static

The first restriction can be violated by using a pointer to functions. The program rmain.cpp

invokes main() recursively using a pointer to functions.

// rmain.cpp: recursive call to main() using a pointer to functions
#include <iostream.h>
void main()
{
 void(*p){);
 cout << “Hello...”;
 p = main;
 (*P)();

Mastering C++324

}

Run

Hello...Hello...Hello...Hello...Hello...Hello...Hello...Hello...
Hello...Hello...

The above program generates Hello... message indefinite number of times. It stops when stack

overflow occurs. In main(), the statements

 p = main;

 (*P)();

assign the address of main() to the pointer p and transfer control to main() using pointer to a

function respectively.

Passing Function Address
The address of a function can be passed as an argument to a functions, either by a function name or

a pointer holding the address of a function. The program passfn.cpp illustrates these concepts. It

takes two integer parameters and returns the largest and smallest among them.

//passfn.cpp: passing pointer to function type parameters
#include <iostream.h>
int small(int a, int b;
{
 return a < b ? a : b;
}
int large(int a, int b)
{
 return a > b ? a : b;
}
int select(int (*fn)(int, int), int x, int y)
{
 int value = fn(x, y);
 return value;
}
void main(void)
{
 int m, n;
 int(*ptrf)(int, int); // definition of pointer to function
 cout << “Enter two integers: " ;
 cin >> m >> n;
 int high = select(large, m, n); // function as parameter
 ptrf = small;
 int low = select(ptrf, m, n), // pointer to function as parameter
 cout << “Large = “ << high << endl;
 cout << “Small = “ << low;
}

Run

Enter two integers: 10 20
Large = 20
Small = 10

Pointers and Runtime Binding 325

In the above program, the function declarator

 int select! int(*fn)(int, int), int x, int y)

indicates that it takes the pointer to a function as the first parameter and the remaining two integer

parameters. In main(), the statement

 int high = select(large, m, n); // function as parameter

passes the address of the function large() and two integer variables as actual parameters. The pointer

to the function parameter large operates on the last two parameters m and n and returns an integer result.

Similarly, the statement.

 int low = select(ptrf, m, n); // pointer to function as parameter

passes a pointer to a function variable ptrf [note that ptrf is initialized to the address of small()].

Such a mechanism is useful in selecting the type of operation to be performed at runtime.

9.15 POINTERS TO CONSTANT OBJECTS

Consider the statement

const int* pi; // it is the same as: int const * pi;

It defines pi as a pointer to a constant integer. Let pi be initialized by the statement

 int i[20];
 pi = i;

i.e., *pi would refer to the integer i [0]. Due to the definition of pi (which, as mentioned above, is

const int* pi;), statements such as

*pi = 10; or even pi[10] = 20;

are invalid. It results in compile-time errors. But pi itself can be changed, i.e., a statement such as

pi++;

is perfectly valid. Such pointers can be used as character pointers when the pointer has to be passed to

a function for printing. It is a good practice to code such a function for instance, print() as follows:

 void print(const char* str)
 {
 cout << str;
 }

It accepts a const char* (pointer to constant character). The string being pointed to cannot be

modified. This is a safety measure, since it avoids accidental modification of the string passed to the

function. In the function, the pointer str can be changed and a statement such as

str++;,

is valid. But this does not affect the calling procedure, since the pointer is passed by value.

Mastering C++326

9.16 CONSTANT POINTERS

The statement

int* const pi = i;

defines a constant pointer to an integer(assume that i is an integer array). In this case, the use of a

statement such as

*pi = 10;

is perfectly valid, but others that modify the pointer, such as

pi++;

are invalid and result in compile-time errors.

A pointer definition such as

const int* const pi = i;

will disallow any modifications to pi or the integer to which pi is referencing. (Assume as before that

i is an integer array).

9.17 POINTER TO STRUCTURES

A pointer can also hold the address of user-defined data types such as structures. Similar to pointers to

standard data types, pointers to user-defined data types can be initialized with address of statically or

dynamically created data items. Note that in C++, structures can combine both the data and functions

operating on it into a single unit. Both the data and function members of a structure are accessed in the

same way. The syntax for defining a pointer to structures is shown in Figure 9.13.

Fig. 9.13 Syntax of defining a pointer to structure

name of the structure pointer to structure

StructureName *ptr1, ...;

The syntax for accessing members of a structure using a structure pointer is as follows:

StructPtrVar->MemberName;

The symbol -> is called the arrow operator. (The dot operator connects a structure with a member

of the structure; the arrow operator connects a pointer with a member of the structure). The program

bdate.cpp illustrates the mechanism of creating user-defined data-type variables dynamically.

// bdate.cpp: displaying birth date of the authors
#include <iostream.h>
struct date
{ //specifies a structure
 int day;

Pointers and Runtime Binding 327

 int month;

 int year;

 void show()

 {

 cout “<< day << “-” << month << “-” << year << endl;

 }

};

void read(date *dp)

{

 cout << “Enter day: “;

 cin >> dp->day;

 cout << “Enter month: “;*

 cin >> dp->month;

 cout << “Enter year: “;

 cin >> dp->year;

}

voidmain()

}

 date dl, *dp1, *dp2;

 cout << “Enter birth date of boy...” << end1;

 read(&dl);

 // read date2

 dp2 = new date; // allocate memory dynamically

 cout << “Enter birth date of girl.. . “ << end1;

 read(dp2);

 cout << “Birth date of boy: “;

 dp1 = &dl; // dp1 points to statically allocated structure

 dp1->show();

 cout << “Birth date of girl: “;

 dp2->show();
 delete dp2; // release memo

}

Run

Enter birth date of boy...

Enter day: 14

Enter month: 4

Enter year: 71

Enter birth date of girl. . .

Enter day: 1

Enter month: 4

Enter year: 72

Birth date of boy: 14-4-71

Birth date of girl: 1-4-72

In main(), the statement

date dl, *dp1, *dp2;

Mastering C++328

creates the variable dl and two pointers of type structure date. The statement

dp2 = new date; // allocate memory dynamically

creates the structure date type item dynamically and stores its address in a pointer variable dp2. The

statement

dp1 = &d1; //dp1 points to statically allocated structure

assigns the address of statically created variable dl to the pointer variable dp1. The statement,

dp1->show();

accesses the member function show() of date using the pointer variable dp1. The statement

delete dp2;

releases the memory allocated to the pointer variable dp2.

9.17.1 Arithmetic Operations on Pointer to Structures

Consider the statement

data *dl;

It defines the pointer variable dl to the structure date. The statement

++d1->day;

increments the contents of the member variable day and not dl. However, the statement

(++d1)->day;

increments dl first, and then accesses day. The statement

d1++->day;

increments dl after accessing the member variable day. The statement

d1++; or ++dl;

increments d1 by sizeof(date).

9.17.2 Self-Referential Structure

A structure having references to itself is called a self-referential structure. It is useful for implementing

data structures such as linked lists, trees, etc. A linked list consists of structures related to each other

through pointers. The self-referential pointer in the structure points to the next node of a list. The

organization of a linked list is shown in Figure 9.1.4.

Fig. 9.14 Linked list with self-referential structures

struct LIST

data

*next

first

3
.

7
.

5
.

Pointers and Runtime Binding 329

Case Study
Consider a scenario where you are required to create a C++ program that emulates a linked-list data

structure. The nodes of the linked list should be represented with the help of self referential structure.

The program must support basic linked-list operations such as inserting a new node, deleting an existing

node and displaying the linked-list contents.

The program list.cpp shows the implementation of a linked list and its related operations. It uses

a self-referential structure LIST, which contains a pointer to the next node as one of the data items.

// list.cpp: self referential structure-linked.list
#include <iostream.h>
#include <new.h>
#include <process.h>
#define SUCC(node) node->next
struct LIST
{
 int data; // node data
 LIST *next; // pointer to next node
};
// creates node using data and returns pointer to first node of the list
LIST * InsertNode(int data, LIST *first)
{
 LIST *newnode;
 newnode = new LIST; // allocate memory for node
 if(newnode == NULL)
 {
 cout << “Error: Out-of-memory” << endl;
 exit(1);
 }
 newnode->data = data; // Initialize list data member
 SUCC(newnode) = first; // new node becomes first node
 return newnode;
}
// deletes node whose data matches input data and returns updated list
LIST * DeleteNode (int data, LIST *first)
{
 LIST *current, *pred; // work space for insertion
 if(!first)
 {
 cout << “Empty list” << endl;
 return first;
 }
 for(pred=current=first; current; pred=current, current = SUCC(current))
 if(current->data == data)
 {
 // node found, release this node
 if(current == first) // if node to be deleted is first node
 first = SUCC{ current); // then update list pointer
 else

Mastering C++330

 SUCC(pred } = SUCC(current); // bypass the node
 delete current; // release allocated memory
 return first;
 }
 return(first);
}
// Display list
void DisplayList(LIST *first)
{
 LIST *list;
 for(list = first; list; list = SUCC(list))
 cout << "->" << list->data;
 cout << endl;
}
void main()
{
 LIST *list = NULL; // list is empty
 int choice, data;
 set_new_handler(0); // makes new to return to NULL if it fails
 cout << “Linked-list manipulations program... \n”;
 while(l)
 {
 cout << “List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: “;
 cin >> choice;
 switch(choice)
 {
 case 1:
 cout << “Enter data for node to be created: “;
 cin >> data;
 list = InsertNode(data, list);
 break;
 case 2:
 cout << “List contents: “;
 DisplayList(list);
 break;
 case 3:
 cout << “Enter data for node to be delete: “;
 cin >> data;
 list = DeleteNode(data, list);
 break;
 case 4:
 cout << “End of Linked List Computation !!.\n”;
 return;
 default:
 cout << “Bad Option Selected\n”;
 break;
 }
 }

}

Pointers and Runtime Binding 331

Run

Linked-list manipulations program. . .
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 1
Enter data for node to be created: 5
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 1
Enter data for node to be created: 7
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 1
Enter data for node to be created: 3
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 2
List contents: ->3->7.->5
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 3
Enter data for node to be delete: 7
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 2
List contents: ->3->5
List operation, 1- Insert, 2-Display, 3-Delete, 4-Quit: 4
End of Linked List Computation !!.

In main(), the statement

list = InsertNode(data, list);

takes an integer type data and a pointer to the first node as input parameters. It returns a pointer to the

updated linked list. Initially, the second parameter has to be set to NULL indicating an empty linked list.

The statement

list = DeleteNode(data, list);

deletes a node which matches with the parameter data and returns the address of the first node in the

linked list to the pointer list. The statement

DisplayList(list);

prints the data information contents of a linked list on the console.

9.18 WILD POINTERS

Pointers have to be handled very carefully since issues associated with them are confusing. Especially,

the scope and extent of a data object, to which a pointer is pointing to is a crucial aspect. Pointers

exhibit wild behavior if these crucial issues are not taken into consideration while accessing data. A

pointer becomes a wild pointer when it is pointing to an unallocated memory or when it is pointing to

a data item whose memory is already released. Side effects of such pointers are creation of garbage

memory and dangling reference. The memory becomes garbage memory when a pointer pointing to

a memory object(data item) is lost; i.e., it indicates that the memory item continues to exist, but the

pointer to it is lost; it happens when memory is not released explicitly. A memory access using a pointer

is known as dangling reference when a pointer to the memory item continues to exist, but memory

allocated to that item is released; i.e., accessing the memory object, for which no memory is allocated.

Pointers become wild pointers under the following situations:

 When a pointer is uninitialized

Mastering C++332

 Pointer modification

 Pointer referencing to a data which is destroyed

When a Pointer is Uninitialized

It contains an illegal address and it is difficult to predict the outcome of a program. For instance, in the

definition

int *p;

it is impossible to predict which integer value the pointer p is pointing to. The pointer wildl.cpp

illustrates accessing data through the uninitialized variables.

// wildl.cpp: accessing uninitialized pointer
#include <iostream.h>
void main()
{
 int *p; // pointer is uninitialized
 for(int i =0; i < 10; i++)
 cout << p[i] << “ “; // accessing uninitialized pointer
}

Run (under MS-DOS)

0 21838 19532 17184 17736 19267 0 14 0 -1

Run (under UNIX)

-2130509557 73728 8192 0 105384 8224 0 0 -1139793920 -80506873

It can be observed that the output generated by the program is different from system to system. The

use of a statement such as

p[l] =10;

might modify some sensitive data pertaining to a system leading to corruption of the whole system or

the program may behave erratically. Under UNIX system, such errors will lead to segment violation

error as illustrated in the program wild2.cpp.

// wild2.cpp: assigning data using uninitialized pointers

#include <iostream.h>

#include <string.h>

void main()

{

 char *name;

 strcpy(name, “Savithri “); // assigning without memory allocation

 cout << name;

}

Run (under MS-DOS)

Savithri Null pointer assignment

Run (under UNIX)

Segmentation fault(core dumped)

Pointers and Runtime Binding 333

In main(), the statement

strcpy(name, “Savithri “);

assigns the string "Savithri" to a pointer to string, for which memory is not allocated. From the

output, it can be noted that in the UNIX environment the program immediately terminates by core

dumping when such a situation is detected. Hence, use a statement such as

name = new chart [10];

to avoid such runtime errors before trying to store anything in the memory.

Pointer Modification
The inadvertent storage of a new address in a pointer variable is referred to as pointer modification.

This situation will occur when some other wild pointer modifies the address of a valid pointer. It

transforms a valid pointer to a wild pointer.

Pointer Referencing to a Data which is Destroyed
In this case, the pointer tries to access a memory object or item which no longer exists. It is illustrated

in the program wild3.cpp.

// wild3.cpp: assigning destroyed object

#include <iostream.h>

#include <string.h>

char * nameplease();

char * charploase();

void main()

{

 char *pl, *p2;

 p1 = nameplease();

 p2 = charplease();

 cout << “Name = “ << p1 << endl;

 cout << “Char = “ << p2 << endl;

}

char * nameplease()

{

 char name[] = “Savithri “;

 return name;

}

 char * charplease()

{

 char ch;

 ch = ‘X’;

 return &ch;

}

Run

Name = SavivN’

Char = i

Mastering C++334

In the function nameplease() invoked by the statement

p1 = nameplease();

when the address of the variable name is returned, the control comes out of the function nameplease()

and hence, the variable name dies(since it is an auto variable). Thus, p1 would contain the address of

the variable which does not exist. In effect, this is a situation of dangling reference. In such a situation,

the compiler issues a warning such as

Suspicious pointer reference

or

Returning a reference to a local object

It implies that a pointer or reference to a local(auto) variable/object should never be returned. As soon

as the function is terminated, the memory assigned to the local variable is released or gets destroyed,

and any reference or pointer points to some invalid data. However, returning a copy(return by value) of

a local variable/object is valid.

Another important point to be noted is that avoid storing the address of a variable or an object into a

pointer in the inner block, and using the same in the outer block. The program wild4.cpp illustrates

the wild pointer accessing garbage location.

// wild4.cpp: out of scope of a block variable access
#include <iostream.h>
#include <string.h>
void main()
{
 char *pl;
 {
 char name[] = “Savithri “;
 p1 = name;
 }
 //do some processing here
 cout << “Name = “ << p1 << end1;

Run

Name = Savith@$!

In main(), the statement

cout << “Name = “ << p1 << end1;

accesses the data pointed to by the pointer variable p1. The variable p1 is assigned to point to the

variable name defined within an inner block. When the execution of this block is completed, all the

variables are destroyed and hence, accessing of data stored in the variable name becomes invalid data.

In some situation, the programs might execute properly, but they may corrupt other program’s data and

lead to system crash.

The above discussion also holds good for pointers to objects. Like variables, whenever an object

goes out of scope, it is destroyed. Referencing such objects is like accessing an invalid data variable and

hence, such reference should be avoided.

Pointers and Runtime Binding 335

SOLVED PROBLEMS

 1. Write a program to count the number of characters in a word using a pointer to a string.

#include<iostream.h>
void main()
{
 int count = 0;
 char str[20] = “Programming”;
 char *str_ptr;
 str_ptr=str;
 while(*str_ptr!=’\0’)
 {
 count++;
 str_ptr++;
 }
 cout<<”Number of characters in the word ”<<str<<” = ”<<count;
}

Run

Number of characters in the word Programming = 11

 2. Write a program to arrange the given set of numbers in ascending order using a pointer.

#include<iostream.h>
#define SIZE 10
void sort(int *);
void main()
{
 int a[SIZE]={4,59,84,35,9,17,41,19,2,21};
 int i, *ptr, *temp;
 ptr=a;
 temp=ptr;
 cout<<”Given array elements:\n”;
 for(i=0;i<SIZE;i++)
 {
 cout<<*temp<<”\t”;
 temp++;
 }
 sort(ptr);
 temp=ptr;
 cout<<»\nSorted array elements:\n»;
 for(i=0;i<SIZE;i++)
 {
 cout<<*temp<<”\t”;
 temp++;
 }

+
+

Mastering C++336

}
void sort(int *x)
{
 int k,i,temp;
 for(k=0;k<=(SIZE-2);k++)
 {
 i=0;
 while(i<=(SIZE-k-2))
 {
 if(*(x+i)>*(x+i+1))
 {
 temp=*(x+i);
 (x+i)=(x+i+1);
 *(x+i+1)=temp;
 }
 i=i+1;
 }
 }
}
Run

Given array elements:
4 59 84 35 9 17 41 19 2 21
Sorted array elements:
2 4 9 17 19 21 35 41 59 84

REVIEW QUESTIONS ++
 9.1 What are pointers? What are the advantages of using pointers in programming? Explain

addressing mode required to access memory locations using pointers.

 9.2 Under what situations, is the use of pointers indispensable?

 9.3 Write a program to print address of the variables defined by the following statement:

int a, b = 10;
float c = 2, d;

 9.4 Explain the syntax for defining pointer variables. How different are these from normal

variables?

 9.5 What is dereferencing of pointers? Write a program to dereference the pointer variables in

the following statements(print value pointed to by pointer variables):

int *a; double *b;
a = &i; b = &f;

 9.6 What are the differences between passing parameters by value and by pointers? Give

examples.

 9.7 What are the different arithmetic operations that can be performed on pointer variables?

Consider the following definitions:

int *a, *b, c; float *e; char *p;

Pointers and Runtime Binding 337

 The pointer variables a, b, and c are initially pointing to memory locations 100, 150,

and 50(assume) respectively. What is the address stored in the pointer variable(a, b,

and c) on execution of the following statements?

a++;
b = --a;
cout << *b++;
cout << *++p;
e++;
= &c;

 9.8 Consider the following definitions:

int *a, *b, c; float *e; char *p; int il, *ip;
char ch; long 1; double *d; long double Ib;

 What is the return value of sizeof() operator when applied to the variables created by

the above statements individually? For instance, the return value of sizeof(int) or
sizeof (il) is 2(in DOS) and 4(in UNIX). Comment on such differences.

 9.9 What is runtime memory management? What support is provided by C++ for this and how

does it differ from C’s memory management?

 9.10 Write a program for finding the smallest and largest in a list of N numbers. Accept the value

of N at runtime and allocate the necessary amount of storage for storing numbers.

 9.11 Write an interactive program for manipulation of matrices. Support addition, subtraction,

and multiplication operations on them. Create matrices dynamically.

 9.12 Write a program for sorting names of persons by swapping pointers instead of data. Use

Comb sort algorithm for sorting. (Comb sort is explained in the chapter Arrays and

Strings).

 9.13 Explain the syntax for defining pointers to functions. Write a program which supports the

following:

a = compute(sin, 1.345);
b = compute(log, 150);
c = computer(sqrt, 4.0);

 9.14 Consider the function show() which is defined as follows:

 void show(int a, int b, int c)
 {
 cout << a << “ “ << b << “ “ << c;
 }
 int *i, j;
 i = &j;
 j = 2;
 int k[] = { 1, 2, 3 };

 What is the output of the following statements: (Note that actual parameters are

evaluated from right to left while assigning them to formal parameters)

show(*i, j, *k);
show(*i, *i++, *i);
show(*k, *k++, *k++);

Mastering C++338

 9.15 What are the differences between pointers to constants and constant pointers? Give

examples.

 9.16 Write a program for creating a linked list and support insertion and deletion operations

on it.

 9.17 Nodes of linked list have to be modeled using nested structures.

 9.18 Define the following:(a) Wild pointers(b) Garbage(c) Dangling reference. Consider the

following program:

 #include <iostream.h>
 void main()
 {
 int * a;
 const int *b;
 int *const p;
 int c = 2, d = 3;
 cout << a; b = &C; p = &d;
 *b = 10;
 b = new int;
 *b = 10;
 delete b;
 cout << *b;
 a = new int[10];
 a [9] = 20;
 a[10] = 30;
 a = new int[5];
 a++;
 ++b; .
 cout << *a;
 }

 Observe the above program carefully and find out where all garbage, dangling reference,

and wild pointers exist. Identify statements which are treated as errorneous by the

compiler.

 9.20 Write the function locate(s, pattern), which returns -1 if the string pattern does

not exist in s, otherwise returns the location at which it is found.

 9.21 Consider the following statements:

char *name;
chat stt[20];
name = new char[strlen(str)+1];
strcpy(name, str);

 Why is one more extra byte is allocated to the string name? What will happen if one extra

byte is not allocated? What is the effect of the following statements during runtime?

char *s;
cin >> s;

 Does the second statement lead to any runtime error? Give reasons.

Classes and
Objects

 10.1 INTRODUCTION

Object-oriented programming paradigm is playing an increasingly significant

role in the design and implementation of software systems. It simplifies

the development of large and complex software systems and helps in the

production of software, which is modular, easily understandable, reusable,

and adaptable to changes. The object-

oriented approach centers around modeling the real-world problems in

terms of objects (data decomposition), which is in contrast to older,

more traditional approaches (that emphasize a function-oriented view,

separating data and procedures (algorithm decomposition). Object-

oriented modeling is a new way of visualizing problems using models

organized around the real-world concepts. Objects are the result of

programming methodology rather than a language.

Object-oriented programming constructs modeled out of data types

are called classes. Defining variables of a class data type is known as

a class instantiation and such variables are called objects. (Object is

an instance of a class.) A class encloses both the data and functions

that operate on the data, into a single unit as shown in Figure 10.1. The

variables and functions enclosed in a class are called data members

and member functions respectively. Member functions define the

permissible operations on the data members of a class.

Placing data and functions together in a single unit is the central theme of object-oriented

programming. The programmers are entirely responsible for creating their own classes and can also

have access to classes developed by the software vendors.

Classes are the basic language construct of C++ for creating the user-defined data types. They

are syntactically an extension of structures. The difference is that all the members of structures are

public by default whereas, the members of classes are private by default. Class follows the principle

that the information about a module should be private to the module unless it is specifically declared

public.

10
Data

data1

data2

data3

Functions

funcl()

func2()

func3()

Fig. 10.1 Class grouping

data and functions

Mastering C++340

10.2 CLASS SPECIFICATION

C++ provides support for defining classes, which is a

significant feature that makes C++ an object-oriented

language. In C terms, a class is the natural evolution of a

structure. Classes contain not only data but also functions.

The functions are called member functions and define the

set of operations that can be performed on the data members

of a class. Thus, a class can be described as a collection of

data members along with member functions. This property

of C++, which allows association of data and functions into a

single unit, is called encapsulation. Sometimes, classes may

not contain any data members or member functions(and such classes are called empty classes). The

syntax of a class specification is shown in Figure 10.2.

The class specifies the type and scope of its members. The keyword class indicates that the

name which follows(ClassName) is an abstract data type. The body of a class is enclosed within the

curly braces followed by a semicolon—the end of a class specification. The body of a class contains

declaration of variables and functions, collectively known as members. The variables declared inside a

class are known as data members, and functions are known as member functions. These members are

usually grouped under two sections, private and public, which define the visibility of members.

The private members are accessible only to their own class’s members. On the other hand, public

members are not only accessible to their own members, but also from outside the class. The members

in the beginning of a class without any access specifier are private by default. Hence, the first use of the

keyword private in a class is optional. A class which is totally private is hidden from the external

world and will not serve any useful purpose.

The following declaration illustrates the specification of a class called student having roll_no

and name as its data members:

 class student

 {

 int roll_no; // roll number

 char name[20]; // name of a student

 public:

 void setdatat (int roll_no_in, char *name_in)

 {

 roll_no = roll_no_in;

 strcpy(name, name_in);

 }

 void outdata()

 {

 cout << “Roll No = “<< roll_no << endl;

 cout << “Name = “<< name << endl;

 }

 };

class ClassName

{

// body of a class

};

Semicolon required here

Keyword
Name of the user
defined class

Fig. 10.2 Syntax of class specification

Classes and Objects 341

A class should be given some meaningful name (for instance, student), reflecting the information

it holds. The class name student becomes a new data-type identifier, which satisfies the properties

of abstraction; it can be used to define instances of class data type. The class student contains two

data members and two member functions. The data members are private by default while both the

member functions are public as specified. The member function setdata() can be used to assign

values to the date members roll_no and name. The member function outdata() can be used for

displaying the value of data members. The data members of the class student cannot be accessed by

any other function except member functions of the student class. It is a general practice to declare

data members as private and member functions as public. Three different notations for representation

of the student class is shown in Figure 10.3.

int roll_no

char name[20]

setdata()

outdata()

int roll_no;
char name[20];

(a) (b) (c)

setdata()

outdata()

private:

roll_no
name

outdata()

setdata()

Fig. 10.3 Different representations of the class student

The names of data and member functions of a class can be the same as those in other classes; the

members of different classes do not conflict with each other. Essentially, a class identifies all the data

members associated with its declaration. The following example illustrates this concept:

 class Person

 {

 private:

 char name[20];

 int age;

 };

The data member name appears in the student class and in the Person class declarations,

but their scope is limited to their respective classes. However, more than one class with the same

class_name in a program is an error, whether the declarations are identical or not. A class can have

multiple member functions(but not data members) with the same name as long as they differ in terms

of signature; this feature is known as method overloading.

Like structures, the data members of the class cannot be initialized during their declaration, but they

can be initialized by its member functions as follows:

 class GeoObject

 {

Mastering C++342

 float x, y = 5; //Error: data members cannot be initialized here

 void SetOrigin() //set point to origin

 {

 x = y = 0.0;

 }

 };

The data members x or y of the class GeoObject cannot be initialized at the point of their

declaration, but, they can be initialized in member functions as indicated in the SetOrigin()

member function.

10.3 CLASS OBJECTS

A class specification only declares the structure of objects and it must be instantiated in order to make

use of the services provided by it. This process of creating objects(variables) of the class is called class

instantiation. It is the definition of an object that actually creates objects in the program by setting aside

memory space for its storage. Hence, a class is like a blueprint of a house and it indicates how the data

and functions are used when the class is instantiated. The necessary resources are allocated only when

a class is instantiated. The syntax for defining objects of a class is shown in Figure 10.4. Note that the

keyword class is optional.

class ClassName ObjectName, ...;

Keyword

Name of the user
defined class

Name of the user defined
object

Fig. 10.4 Syntax for creating objects

An example of class instantiation for creating objects is shown below:

 class student s1;

 or
 student s1;

It creates the object s1 of the class student. More than one object can be created with a single

statement as follows:

 class student s1, s2, s3, s4;

 or
 student s1, s2, s3, s4;

It creates multiple objects of the class student.

The definition of an object is similar to that of a variable of any primitive data type. Objects can

also be created by placing their names immediately after the closing brace like in the creation of the

structure variables. Thus, the definition
class student

{

} s1, s2, s3, s4;

Classes and Objects 343

creates objects sl, s2, s3, and s4 of the class student. In C++, the convention of defining objects

at the point of class specification is rarely followed; the user would like to define the objects as and

when required, or at the point of their usage.

An object is a conceptual entity possessing the following properties: It is identifiable. It has features that span a local state space. It has operations that can change the status of the system locally, while also inducing operations

in peer objects. It refers to a thing, either a tangible or a mental construct, which is identifiable by the users of

the target system.

10.4 ACCESSING CLASS MEMBERS

Once an object of a class has been created, there must be a provision to access its members. This is

achieved by using the member access operator, dot(.). The syntax for accessing members(data and

functions) of a class is shown in Figure 10.5.

(b) Syntax for accessing member function of a class

(a) Syntax for accessing data member of a class

Name of the user defined object

member access specifier

data member of a class

ObjectName DataMember

Name of the user defined object

member access specifier

name of the member function

arguments to the function

ObjectName . FunctionName (Actual Arguments)

.

Fig. 10.5 Syntax for accessing class members

If a member to be accessed is a function then a pair of parentheses is to be added following the

function name. The following statements access member functions of the object s1, which is an

instance of the student class:

 s1.setdata(10, “Rajkumar”);

 s1.outdata();

The program student.cpp illustrates the declaration of the class student with the operations

on its objects.

Mastering C++344

//student.cpp: member functions defined inside the body of the student

class

#include <iostream.h>

#include <string.h>

class student

{

 private:

 int roll_no; // roll number

 char name[20]; // name of a student

 public:

 // initializing data members

 void setdata(int roll_no_in, char *name_in)

 {

 roll_no = roll_no_in;

 strcpy(name, name_in);

 }

 // display data members on the console screen

 void outdata()

 {

 cout << “Roll No = “<< roll_no << endl;

 cout << “Name = “<< name << endl;

 }

};

void main()

{

 student s1; // first object/variable of class student

 student s2; // second object/variable of class student

 s1.setdata(1, “Tejaswi”); // object s1 calls member setdata()

 s2.setdata(10, “Rajkumar”); //object s2 calls member setdata()

 cout << “Student details...” << endl;

 s1.outdata(); // object s1 calls member function outdata()

 s2.outdata(); //object s2 calls member function outdata()

}

Run

The various actions performed on objects of the class student are portrayed in Figure 10.6 with

the client object accessing the services provided by the class student.

In main(), the statements

 student s1; // first object/variable of class student

 student s2; // second object/variable of class student

create two objects called s1 and s2 of the student class. The statements

 s1.setdata(1, “Tejaswi”); //object s1 calls member function setdata

 s2.setdata(10, “Rajkumar”); //object s2 calls member function setdata

Classes and Objects 345

initialize the data members of the objects s1 and s2. The object s1’s data member roll_no is

assigned 1 and name is assigned Tejaswi. Similarly, the object s2’s data member roll_no is assigned

10 and name is assigned Raj kumar.

outdata()

int roll_no
char name[20]

private member
variables

setdata(roll_no, name)

Instance of the class student

Client program

student s2;
...

s2.setdata(10,"Rajkumar");

s2.outdata();

Fig. 10.6 Student object and member access

The statements

 s1.outdata(); // object s1 calls member function outdata

 s2.outdata(); // object s2 calls member function outdata

call their member outdata() to display the contents of data members namely, roll_no and name of

student objects s1 and s2 in succession. Thus, the two objects s1 and s2 of the class student have

different data values as shown in Figure 10.7.

Case Study

Consider a scenario where it is required to represent a rectangle with the help of a class. Write a

C++ program that defines the rectangle class for storing the length and breadth of the rectangle and

computing its area.

The program rect.cpp demonstrates how a rectangle is represented with the help of a class

object.

// rect.cpp: representing rectangle using classes

#include<iostream.h>

class rect

{

 int length, breadth;

 public:

 void read(int i, int j)

 {

 length = i;

 breadth = j;

 }

Mastering C++346

 int area()

 {

 return(length*breadth);

 }

};

void main()

{

 int x, y;

 rect r;

 cout<<"Enter the length and breadth of the rectange: ";

 cin>>x>>y;

 r.read(x,y);

 cout<<"Area of the rectanlge = "<<r.area();

}

Run

Enter the length and breadth of the rectangle: 4 10

Area of the rectangle = 40

Client-Server Model

In conventional programming languages, a function is invoked on a piece of data(function-driven

communication), whereas in an OOPL(object-oriented programming language), a message is sent

objects of class student

S
pecifications

for

student objects
student s1; student s2;

roll_no

1

name

Tejaswi

roll_no

10

name

Rajkumar

Fig. 10.7 Two objects of the class student

Classes and Objects 347

to an object(message-driven communication), i.e., conventional programming is based on function

abstraction whereas, object-oriented programming is based on data abstraction.

The object accessing its class members resembles a client-server model. A client seeks a service

whereas, a server provides services requested by a client. In the above example, the class student

resembles a server whereas, the objects of the class student resemble clients. They make calls to the

server by sending messages. In the statement

s2.setdata(10, “Rajkumar”); // object s2 calls member function setdata

the object s2 sends the message setdata to the server with the parameters 10 and Rajkumar. As a

server, the member function setdata() of the class student performs the operation of setting the

data members according to the messages sent to it. Similarly, the statement

s2-outdata();

can be visualized as sending message(outdata) to object s2‘s class to display object contents.

The term message is commonly used in OOP terminology to provide an illusion of objects as

discrete entities, and a user communicates with them by calling their member functions as shown in

Figure 10.8. Thus, by its very nature, OO computation resembles a client-server computing model.

Information
Message

Object

Client's Data Server

Client

[1
] R

equest

[3
] S

erv
ice

done

Server Services

setdata()

getdata()

class student
"Rajkumar"

10

[2] Clients Data
Update

Rajkumar

10

s2.setdata (10, "Rajkumar");

student s2;

Fig. 10.8 Client-server model for message communication

In OOP, the process of programming involves the following steps: Creation of classes for defining objects and their behaviors Creation of class objects; class declaration acts like a blueprint for which physical resources are

not allocated Establishment of communication among objects through message passing

Similar to the real-world objects. OO objects also have a lifecycle. They can be created and destroyed

automatically whenever necessary. Communication between the objects can take place as long as

they are alive(active). Communication among the objects takes place in the same way as people pass

messages to one another. The concept of programming with the message-passing model is an efficient

way of modeling real-world problems on computers.

Mastering C++348

A message for an object is interpreted as a request for execution of a procedure. The subroutine or

function is invoked soon after receiving the message and the desired results are generated within an

object. It comprises the name of an object, the name of a function, and the information to be sent to an

object.

10.5 DEFINING MEMBER FUNCTIONS

The data members of a class must be declared within the body of the class, whereas the member

functions of the class can be defined in any one of the following ways: Inside the class specification Outside the class specification

The syntax of a member-function definition changes depending on whether it is defined inside

or outside the class specification. However, irrespective of the location of their definition(inside or

outside a class), the member functions must perform the same operation. Therefore, the code inside

the function body would be identical in both the cases. The compiler treats these two types of function

definitions in a different manner.

10.5.1 Member Functions Inside the Class Body

The syntax for specifying a member function declaration is similar to a normal function definition

except that it is enclosed within the body

of a class and is shown in Figure 10.9.

All the member functions defined within

the body of a class are treated as inline

by default except those members, having

looping statements such as for, while,

etc., and it also depends on compilers.

The program date1.cpp demons-

trating the definition of member functions

with the class specification of the date

class. It has private data members day,

month, year and inline member fun-

ctions, set() which initializes data

members, and show(), which displays

the value stored in the data members.

// date1.cpp: date class with member functions defined inside a class

#include <iostream.h>

class date

{

 private:

 int day;

 int month;

 int year;

class ClassName
{
private:

int age;
int SetAge(int agein) Memberfunction
{

age = agein; // body of the function
}

. . .
public:

int b;
void myfunc() Member function
{

// body of a function
}

};

Fig. 10.9 Member function defined within a class

Classes and Objects 349

 public:

 void set(int DayIn, int MonthIn, int YearIn)

 {

 day = DayIn;

 month = MonthIn;

 year = YearIn;

 }

 void show()

 {

 cout << day << “ -” << month << “ -” << year << end1;

 }

};

void main()

{

 date d1, d2, d3; //date objects d1, d2, and d3 creation

 // set date of births

 d1.set(26, 3, 1958);

 d2.set(14, 4, 1971);

 d3.set(1, 9, 1973);

 cout << “Birth Date of the First Author: “;

 d1.show();

 cout << “Birth Date of the Second Author: “;

 d2.show();

 cout << “Birth Date of the Third Author: “;

 d3.show();

}

Run

Birth Date of the First Author: 26-3-1958

Birth Date of the Second Author: 14-4-1971

Birth Date of the Third Author: 1-4-1972

Member functions defined inside a class are considered inline functions by default, thus, offering

both advantages and limitations of inline functions. However, in some implementations, member

functions having loop instructions such as for, while, do..while, etc., are not treated as

inline functions. The compiler produces a warning message if an attempt is made to define inline

member functions with loop instructions. Normally, functions with a small body are defined inside the

class specification. In the above student class specification, the functions set() and show() are

treated as inline functions by the compiler.

10.5.2 Member Functions Outside the Class Body

Another method of defining a member function is to declare a function prototype within the body

of a class and then define it outside the body of a class. Since the functions defined outside the class

specification have the same syntax as normal functions, there should be a mechanism of binding the

functions to the class to which they belong. This is done by using the scope resolution operator(::). It

acts as an identity-label to inform the compiler the class to which the function belongs. The general

Mastering C++350

format of a member-function definition is shown in Figure 10.10. This form of syntax can be used with

members defined either inside or outside the body of a class, but member functions defined outside the

body of a class must follow this syntax.

The label ClassName :: informs the compiler that the function MemberFunction() is the

member of the class ClassName. The scope of the function is restricted to only the objects and other

members of the class. The program datel.cpp having member functions inside the body of the date

class is modified to date2.cpp which defines member functions outside the body of a class.

// date2.cpp: date class with member functions defined outside the class body

#include <iostream.h>

class date

{

 private:

 int day;

 int month;

 int year;

 public:

 void set(int DayIn, int MonthIn, int YearIn); //declaration

 void show(); // declaration

};

void date::set(int DayIn, int MonthIn, int YearIn) //definition

{

 day = DayIn;

 month = MonthIn;

 year = YearIn;

}

void date::show() // definition

{

 cout << day << “-”<< month << “-” << year << endl;

}

void main()

{

 date dl, d2, d3; // date objects dl, d2, and d3 creation

 // set date of births

 d1.set(26, 3, 1958);

 d2.set(14, 4, 1971);

 d3.set(1, 9, 1973);

 cout << “Birth Date- of the First Author: “;

Fig. 10.10 Member-function definition outside a class declaration

class ClassName
{

....
ReturnType MemberFunction(arguments);
....

};

ReturnType ClassName :: MemberFunction (arguments)
{
// body of the function

}

user defined class name

Scope resolution operator

function prototype

Classes and Objects 351

 d1.show();

 cout << “Birth Date of the Second Author: “;

 d2.show();

 cout << “Birth Date of the Third Author: “;

 d3.show();

}

Run

Birth Date of the First Author: 26-3-1958

Birth Date of the Second Author: 14-4-1971

Birth Date of the Third Author: 1-4-1972

Consider the member functions set() and show() defined in the above program:

 void date::set(int DayIn, int MonthIn, int YearIn)

 {

 day = DayIn;

 }

 void date::show()

 {

 cout << day << “-”<< month << “-”<< year << end1;

}

In the above definitions, the label date :: informs the compiler that the functions set and show

are the members of the date class. It can access all the members(date and functions) of the date class

and also global data items and functions if necessary. Some of the special characteristics of the member

functions are the following. A program can have several classes and they can have member functions with the same name.

The ambiguity of the compiler in deciding which function belongs to which class can be resolved

by the use of membership label(ClassName: :), the scope resolution operator. Private members of a class can be accessed by all the members of the class, whereas nonmember

functions are not allowed to access. However, friend functions(discussed later) can access them. Member functions of the same class can access all other members of their own class without the

use of the dot operator. Member functions defined as public act as an interface between the service provider(server)

and the service seeker(client). A class can have multiple member functions with the same name as long as they differ in terms

of argument specification(data type or number of arguments).

10.6 OUTSIDE MEMBER FUNCTIONS AS inline

OOP provides feature of separating policy from mechanism. Policy provides guidelines for defining

specification, whereas mechanism provides guidelines for design and implementation. It is a good

practice to declare the class specification first and then implement class member functions outside

the class specification. The inline member functions are a group of member functions that decrease

Mastering C++352

the overhead involved in accessing member functions and make the usage of member functions more

efficient. An inline member function is treated like a macro; any call to this function in a program is

replaced by the function itself. This is called inline expansion. By this, the overhead incurred in the

transfer of control by the function call and. the function return statements are cut down. Note that

inline functions are also called open subroutines since they get expanded at the point of a call, whereas

normal functions are called closed subroutines since only call to a function exists at the point of their

call. A member function prototype defined within a class is declared without any special keyword.

C++ treats all the member functions that are defined within a class as inline functions and those

defined outside as non-inline(outline). Member functions declared outside the class declaration can be

made inline by prefixing the inline to its definition as shown in Figure 10.11.

Keyword: indicated function defined
outside a class body is inline

inline ReturnType ClassName :: FunctionName(arguments)

{

// body of Inline function

}

Fig. 10.11 Inline function definition outside the class declaration

The keyword inline acts as a function qualifier. The modified program of date2.cpp is listed

in date3.cpp, making all the member functions of the class date as inline member functions.

// date3.cpp: date class with member functions defined outside as inline

#include <iostream.h>

class date

{ // specifies a structure

 private:

 int day;

 int month;

 int year;

 public:

 void set(int DayIn, int MonthIn, int YearIn); //declaration

 void show(); // declaration

};

inline void date::set(int DayIn, int MonthIn, int YearIn)

{

 day = DayIn;

 month = MonthIn;

 year = YearIn;

}

inline void date::show() // definition

{

 cout << day << “-” << month << “-”<< year << end1;

}

void main()

{

Classes and Objects 353

 date dl, d2, d3; // date objects d1, d2, and d3 creation

 // set date of births

 d1.set(26, 3, 1958);

 d2.set(14, 4, 1971);

 d3.set(1, 4, 1972);

 cout << “Birth Date of the First Author: “;

 dl.show();

 cout << “Birth Date of the Second Author: “;

 d2.show();

 cout << “Birth Date of the Third Author: “;

 d3.show();

}

Run

Birth Date of the First Author: 26-3-1958

Birth Date of the Second Author: 14-4-1971

Birth Date of the Third Author: 1-4-1972

In the above program, the member functions set() and show() of the class date are considered

as inline member functions defined outside the body of the class date. They are explicitly defined as

inline functions with the use of the inline qualifier. The use of the inline qualifier in the statements

inline void date::set(int DayIn, int MonthIn, int YearIn)

inline void date::show()

inform the compiler to treat the member functions set() and show() as inline functions. The

method of invoking inline member functions is the same as those of the normal functions. In main(),

the statements

dl.set(26, 3, 1958);

d2.show();

will be replaced by the function itself since the function is an inline function. Note that the inline

qualifier is tagged to the inline member function at the point of its definition.

The feature of inline member functions is useful only when they are short. Declaring a function

having many statements as inline is not advisable, since it will make the object code of a program very

large. However, some C++ compilers judge(determine) whether a given function can be appropriately

sized to inline expanded. If the function is too large to be expanded, it will not be treated as inline. In

this case, declaring a function inline will not guarantee that the compiler will consider it as an inline

function.

10.6.1 When to Use inline Functions

The following are simple thumb rules in deciding as to when inline functions should be used: In general, inline functions should not be used. Defining inline functions can be considered once a fully developed and tested program runs

too slowly and shows bottlenecks in certain functions. A profiler (which runs the program

and determines where most of the execution time is spent) can be used in deciding such an

optimization.

Mastering C++354 Inline functions can be used when member functions consist of one very simple statement such as

the return statement in date :: getday(), which can be implemented as follows:

 inline int date::getday() // definition

 {

 return day;

 } It is only useful to implement an inline function if the time spent during a function call is more

compared to the function body execution time. An example, where an inline function has no

effect at all is the following:

 inline void date::show() // definition

 {

 cout << day << “-” << month << “-” << year << endl;

 }

 The above function, which is presumed to be a member of the class date for the sake of

argument, contains only one statement; but takes relatively a long time to execute. In general,

functions which perform input and output operation spend a considerable amount of time. The

effect of conversion of the function show() to inline would lead to reduction in execution time.

Inline functions have one disadvantage: the actual code is inserted by the compiler and, therefore, it

should be known at compile time. Hence, an inline function cannot be located in a runtime library.

Practically, an inline function is placed near the declaration of a class, usually in the same header file.

It results in a header file having the declaration of a class with its implementation visible to the user.

10.7 ACCESSING MEMBER FUNCTIONS WITHIN THE CLASS

A member function of a class is accessed by the objects of that class using the dot operator. A member

function of a class can call any other member function of its own class irrespective of its privilege

and this situation is called nesting of member functions. The method for calling member functions of

one’s own class is similar to calling any other standard(library) functions as illustrated in the program

nesting.cpp.

// nesting.cpp: A member function accessing another member function

#include <iostream.h>

class NumberPairs

{

 int numl, num2; // private by default

 public:

 void read()

 {

 cout << “Enter First Number: “;

 cin >> num1;

 cout << “Enter Second Number: “;

 cin >> num2;

 }

 int max() // member function

Classes and Objects 355

 {

 if(num1 > num2)

 return num1;

 else

 return num2;

 }

 // Nesting of member function

 void ShowMax()

 {

 // calls member function max()

 cout << “Maximum = “ << max();

 }

};

void main()

{

 NumberPairs n1;

 n1.read();

 n1.ShowMax();

}

Run

Enter First Number: 5

Enter Second Number: 10

Maximum = 10

The class NumberPairs has the member function ShowMax() having the statement

 cout << “Maximum = “ << max();

It calls the member function max() to compute the maximum of class data members num1 and

num2.

10.8 DATA HIDING

Data is hidden inside a class, so that it cannot be accessed even by mistake by any function outside the

class, which is a key feature of OOP. C++ imposes a restriction to access both the data and functions of

a class. It is achieved by declaring the data part as private. All the data and functions defined in a class

are private by default. But for the sake of clarity, the items are declared as private explicitly. Normally,

data members are declared as private and member functions are declared as public. This is illustrated

in the program part.cpp.

// part.cpp:class hiding vehicle details

#include <iostream.h>

class part

{

 private: // private members

 int ModelNum; // model number

 int PartNum; // part number

 float cost; // cost of a part

Mastering C++356

 public: //public members

 void SetPart(int mn, int pn, float c)

 {

 ModelNum = mn;

 PartNum = pn;

 cost = c;

 }

 void ShowPart()

 {

 cout << “Model: “ << ModelNum << endl;

 cout << “Number: “ << PartNum << endl;

 cout << “Cost: “ << cost << endl;

 }

};

void main()

{

 part p1, p2; // objects p1 and p2 of class part are defined

 // Values are passed to their object

 p1.SetPart(1996, 23, 1250.55);

 p2.SetPart(2000, 243, 2354:75);

 // Each object display their values

 cout << “First Part Details ...” << endl;

 p1.ShowPart();

 cout << “Second Part Details ...” << endl;

 p2.ShowPart();

}

Run

First Part Details ...

Model: 1996

Number : 23

Cost :

l250.550049

Second Part Details ...

Model: 2000

Number: 243

Cost: 2354.75

In the above program, the data fields ModelNum, PartNum, and cost of the class part cannot

be accessed by direct references using pl.ModelNum, p1.PartNum, and p1.cost respectively.

When a class is used, its declaration must be available. Thus, a user of the class is presented with a

description of the class. The internal details of the class, which are not essential to the user, are not

presented to him/her. This is the concept of information hiding or data encapsulation. As far as the

user is concerned, the knowledge of accessible data and member functions of a class is enough. These

interfaces, usually called the user interface methods, specify their abstracted functionality. Thus, to the

user, a class is like a black box with a characterized behavior.

The purpose of data encapsulation is to prevent accidental modification of information of a class. It

is achieved by imposing a set of rules—the manner in which a class is to be manipulated and the data

and functions of the class can be accessed. The following are the three kinds of users of a class:

Classes and Objects 357 A class member, which can access all the data members and functions of its class Generic users, which define the instance of a class Derived classes, which can access members based on privileges

Each user has different access privileges to the object. A class differentiates between access privileges

by partitioning its contents and associating each one of them with any one of the following keywords: private public protected

These keywords are called access-control specifiers. All the members that follow a keyword(up to

another keyword) belong to that type. If no keyword is specified then the members are assumed to have

private privilege. The following specification of a class illustrates these concepts:

class PiggyBank

{

 int Money; // Private by default

 void Display() // Private by default

 {

 ...

 }

 private: // Private by declaration

 int AccNumber;

 public:

 int code; // Public

 void SetData(int a, int b) // Public

 {

 ...

 }

 protected:

 int PolicyCode; // Protected

 void GetPolicyCode() // Protected

 {

 ...

 }

};

In the above declaration, the members Money, AccNumber, and Display() will be of

type private; the members code and SetData() will be of type public; and the members

PolicyCode and GetData() will be of type protected.

Data hiding is mainly designed to protect well-intentioned programmers from honest mistakes. It

protects access to the data according to the design decision made while designing a class. Programmers

who really want to figure out a way to access highly protected data such as private, will find it hard

to do so even by accident. There are mechanisms to access even private data using friends, pointer to

members, etc., from outside the class.

10.8.1 Private Members

The private members of a class have strict access control. Only the member functions of the same

class can access these members. The private members of a class are inaccessible outside the class,

Mastering C++358

thus, providing a mechanism for preventing accidental

modifications of the data members. It is illustrated in

Figure 10.12. Strictly speaking, information hiding

is implemented only partially, the private members

can still be accessed. Access control in C++ has the

objective of reducing the likelihood of bugs and

enhancing consistency. Since the basic intention of

declaring a class is to use it in a program, the class

should have at least one member that is not private.

The following example illustrates the situation

when all the members of a class are declared as private:

class Inaccessible

{

 int x;

 void Display(}

 {

 cout << “\nData = “ << x;

 }

 };

 void main()

 {

 Inaccessible objl; // Creating an object.

 objl.x = 5; // Error: Invalid access.

 objl.Display(); // Error: Invalid access.

}

The class having all the members with private access control is of no use; there is no means available

to communicate with the external world. Therefore, classes of the above type will not contribute

anything to the program.

10.8.2 Protected Members

The access control of the protected members is similar to that of private members and has more

significance in inheritance. Hence, detailed discussion on this is postponed to the chapter on Inheritance.

Access control of protected members is shown in Figure 10.13.

Fig. 10.12 Private-member accessibility

class Person
{

private :
// private members
.....
int age;
int getage();
....

};

Person p1;
a=p1,age;
p1.getage(); cannot access private function

cannot access private data

private function

private data

access specifier

Note: colon here

class Person
{

protected:
// protected members
.....
int age;
int getage();
....

};

Person p1;
a=p1.age;
p1.getage();

cannot access protected member
(same as private)

protected function

protected data

access specifier

Note: colon here

}

Fig. 10.13 Protected-members accessibility

Classes and Objects 359

10.8.3 Public Members

The members of a class, which are to be visible

(accessible) outside the class, should be declared in

public section. All data members and functions declared

in the public section of the class can be accessed without

any restriction from anywhere in the program, either by

functions that belong to the class or by those external

to the class. Accessibility control of public members is

shown in Figure 10.14.

10.9 ACCESS BOUNDARY OF OBJECTS REVISITED

Hierarchy of access, is where privilege codes can see the whole structure of an object, but external

codes can see only the public features. The access limit of members within a class, or from objects of

a class is shown in Table 10.1 and Figure 10.15.

Fig. 10.14 Public-member accessibility

class Person
{

public:
// public members
.....
int age;
int getage();
....

};
Person p1;
a=p1.age;
p1.getage(); can access public function

can access public data

public function

public data

access specifier

Note: colon here

Table 10.1 Visibility of class members

Access Specifier
Accessible to

Own class Members Object of a Class

private: Yes No

protected: Yes No

public: Yes Yes

The following declaration of a class illustrates the visibility limit of the various class members:

class MyClass

{

 private:

 int a;

 void f1()

 {

class C;

private:

public:

C objc;

Object of class C

can access only

public member of C

Not allowed

Member functions of

class C can access

both private and

public members

Fig. 10.15 Class-member accessibility

Mastering C++360

 //can refer to data members a, b, c and functions f1, f2, and f

 }

 protected:

 int b:

 void f2()

 {

 //can refer to data member a, b, c and functions f1, f2, and f

 }

 public:

 int c:

 void f3()

 {

 //can refer to data member a, b, c and functions f1, f2, and

 }

};

Consider the statements

 MyClass objx; // objx is an object of class MyClass

 int d; // temporary variable d

They define an object objx and an integer variable d. The accessibility of members of the class

MyClass through the object objx is illustrated in the following section.

 1. Accessing private members of the class MyClass:
 d = objx.a; //Error: ‘MyClass::a’ is not accessible

 objx.f1(); //Error: ‘MyClass::f1()’ is not accessible

 Both the statements are invalid because the private members of the class are inaccessible.

 2. Accessing protected members of the class MyClass:
 d = objx.b; //Error: ‘MyClass::b’ is not accessible

 objx.f2(); //Error: ‘MyClass::f2()’ is not accessible

 Both the statements are invalid because the protected members of the class are inaccessible.

 3. Accessing public members of the class MyClass:
 d = objx.c; // OK

 objx.f3(); // OK

 Both the statements are valid because the public members of the class are accessible.

10.10 EMPTY CLASSES

Although the main reason for using a class is to encapsulate data and code, it is however, possible to

have a class that has neither data nor code. In other words, it is possible to have empty classes. The

declaration of empty classes is as follows:

 class xyz { };

 class Empty { };

 class abc

 {

 };

Classes and Objects 361

During the initial stages of development of a project, some of the classes are either not fully identified,

or not fully implemented. In such cases, they are implemented as empty classes during the first few

implementations of the project. Such empty classes are also called stubs. The significant usage of

empty classes can be found with exception handling; it is illustrated in the chapter Exception Handling.

10.11 POINTERS WITHIN A CLASS

The size of data members such as vectors when defined using arrays must be known at compile time

itself. In this case, vector size cannot be increased or decreased irrespective of the requirement. This

inflexibility of arrays can be overcome by having a data member for storing vector elements whose size

can be dynamically changed during runtime. The program vector.cpp facilitates the creation of the

vector of varying size during runtime. It has a pointer member instead of an array member. The size of

the vector is varied by creating an object whose vector size is known only at runtime.

// vector.cpp: vector class with array dynamically allocated

#include <iostream.h>

class vector

{

 int *v; // pointer to a vector

 int sz; // size of a vector

public:

 void VectorSize(int size) // allocate memory dynamically

 {

 sz = size;

 v = new int[size]; // dynamically allocate vector

 }

 void read();

 void show_sum();

 void release() // release memory allocated

 {

 delete v;

 }

};

void vector::read()

{

 for(int i = 0; i < sz; i++)

 {

 cout << “Enter vector[“ << i << “]?”;

 cin >> v[i];

 }

}

void vector::show_sum()

{

 int sum = 0;

 for(int i = 0; i < sz; i++)

 sum += v[i];

 cout << “Vector Sum = “ << sum;

Mastering C++362

}

void main()

{

 vector vl;

 int count;

 cout << “How many elements are there in vector: “;

 cin >> count;

 vl.VectorSize(count); // set vector size

 vl.read();

 vl.show_sum();

 vl.release(); // free vector resources

}

Run

How many elements are there in vector: 5

Enter vector[0] ? 1

Enter vector[1] ? 2

Enter vector{ 2] ? 3

Enter vector[3] ? 4

Enter vector[4] ? 5

Vector Sum = 15

In main(), the statement

 vector vl;

creates an object vl of the class vector and the statement

 vi.VectorSize(count); // set vector size

allocates the required amount(specified by the parameter count) of memory, dynamically for vector

elements storage. The last statement

 vl.release();

releases the memory allocated to the pointer data member v of the vector class. The operation of

dynamic allocation of memory to data members can be at best realized by defining constructor and

destructor functions.(More details can be found in the chapter Object Initialization and Cleanup).

10.12 PASSING OBJECTS AS ARGUMENTS

It is possible to have functions which accept objects of a class as arguments, just as there are functions

which accept other variables as arguments. Like any other data type, an object can be passed as an

argument to a function by the following ways: pass-by-value, a copy of the entire object is passed to the function pass-by-reference, only the address of the object is passed implicitly to the function pass-by-pointer, the address of the object is passed explicitly to the function

In the case of pass-by-value, a copy of the object is passed to the function and any modifications

made to the object inside the function is not reflected in the object used to call the function. Whereas,

Classes and Objects 363

in pass-by-reference or pointer, an address of the object is passed to the function and any changes made

to the object inside the function is reflected in the actual object. The parameter passing by reference

or pointer is more efficient, since only the address of the object is passed and not a copy of the entire

object.

10.12.1 Passing Objects by Value

The program distance.cpp illustrates the use of objects as function arguments in pass-by-value

mechanism. It performs the addition of distance in feet and inches format.

// distance.cpp: distance manipulation in feet and inches

#include <iostream.h>

class distance

{

 private:

 float feet;

 float inches;

 public:

 void init(float ft, float in)

 {

 feet = ft;

 inches = in;

 }

 void read()

 {

 cout << “Enter feet: “; cin >> feet;

 cout << “Enter inches: “; cin >> inches;

 }

 void show()

 {

 cout << feet << “-” << inches << ‘\”‘;

 }

 void add(distance dl, distance d2)

 {

 feet = dl.feet + d2.feet;

 inches = dl.inches + d2.inches;

 if(inches >= 12.0)

 {

 // 1 foot = 12.0 inches

 feet = feet + 1.0;

 inches = inches - 12.0;

 }

 }

};

void main()

{

 distance dl, d2, d3;

 d2.init(11.0, 6.25);

Mastering C++364

 dl.read();

 cout << “dl = “; dl.show();

 cout << “\nd2 = “; d2.show();

 d3.add(dl, d2); // d3 = dl + d2

 cout << “\nd3 = dl+d2 = “; d3.show();

}

Run

Enter feet: 12.0

Enter inches : 7.25

dl = 12’-7.25”

d2 = 11’-6.25”

d3 = dl+ d2 = 24’-1.5”

In main(), the statement

 d3.add(dl, d2); // d3 = dl + d2

invokes the member function add() of the class distance by the object d3, with the objects dl

and d2 as arguments. It can directly access the feet and inches variables of d3. The members of dl

and d2 can be accessed only by using the dot operator(like dl.feet and dl.inches) within the

add() member. Figure 10.16 shows the two objects dl and d2 being added together with the result

stored in the recipient object d3. Any modification made to the data members of the objects dl and d2

are not visible to the caller’s actual parameters.

Member functions of
d3 can refer to its
data directly

24.0

d3

feet

feet

inches

inches

1.5

d3.add (d1, d2);

d1

feet

12.0

7.25

inches

d1.inches

d1.feet

d2

feet

11.0

6.25

inches

d2.inches

d2.feet

Data in objects passed as
arguments is referred
with the dot operator

Fig. 10.16 Objects of the distance class as parameters

Classes and Objects 365

10.12.2 Passing Objects by Reference

Accessibility of the objects passed by reference is similar to those passed by value. Modifications carried

out on such objects in the called function will also be reflected in the calling function. The method of

passing objects as reference parameters to a function is illustrated in the program account.cpp.

Given the account numbers and the balance of two accounts, this program transfers a specified sum

from one of these accounts to the other and then, updates the balance in both the accounts.

// account.cpp: passing objects as parameters to functions

include< iostrearn.h>

class AccClass

{

 private: // class data members

 int accno;

 float balance;

 public: // class function members

 void getdata()

 {

 cout << “Enter the account number for accl object: ”;

 cin >> accno;

 cout << “Enter the balance: ”;

 cin >> balance;

 }

 void setdata(int accIn)

 {

 accno = accIn;

 balance = 0;

 }

 void setdata(int accIn, float balanceIn)

 {

 accno = accIn;

 balance = balanceIn;

 }

 void display()

 {

 cout << “Account number is: “ << accno << endl;

 cout << “Balance is: “ << balance << endl;

 }

 void MoneyTransfer(AccClass & acc, float amount);

};

// accl.MoneyTransfer(acc2, 100),transfers 100 rupees from accl to acc2

void AccClass::MoneyTransfer(AccClass & acc, float amount)

{

 balance = balance - amount; // deduct money from source

 ace.balance = ace.balance + amount; // add money to destination

}

void main()

{

Mastering C++366

 int trans_money;

 AccClass accl, acc2, acc3;

 accl.getdata();

 acc2.setdata(10);

 acc3.setdata(20, 750.5);

 cout << “Account Information.. “ << endl;

 accl.display();

 acc2.display();

 acc3.display();

 cout << “How much money is to be transferred from acc3 to accl: “;

 cin >> trans_money;

 acc3.MoneyTransfer(accl,trans_money); //transfers money from acc3 to accl

 cout << “Updated Information about accounts...” << endl;

 accl.display();

 acc2.display();

 acc3.display();

}

Run

Enter the account number for accl object: 1

Enter the balance: 100

Account Information...

Account number is: 1

Balance is: 100

Account number is: 10

Balance is: 0

Account number is: 20

Balance is: 750.5

How much money is to be transferred from acc3 to accl: 200

Updated Information about accounts...

Account number is: 1

Balance is: 300

Account number is: 10

Balance is: 0

Account number is: 20

Balance is: 550.5

In main(), the statement

 acc3.MoneyTransfer(accl, trans_money);

transfers the object accl by reference to the member function MoneyTransfer(). It is to be noted

that when the MoneyTransfer() is invoked with accl as the object parameter, the data members

of acc3 are accessed without the use of the class member access operator, while the data members

of accl are accessed by using their names in association with the name of the object to which they

belong. An object can also be passed to a nonmember function of the class and that can have access to

the public members only through the objects passed as arguments to it.

Classes and Objects 367

10.12.3 Passing Objects by Pointer

The members of objects passed by pointer are accessed by using the -> operator, and they have similar

effect as those passed by value. The above program requires the following changes if parameters are to

be passed by pointer:

 1. The prototype of the member function MoneyTransfer() has to be changed to

 void MoneyTransfer(AccClass * acc, float amount);

 2. The definition of the member function MoneyTransfer() has to be changed to
 void AccClass::MoneyTransfer(AccClass & ace, float amount)

 {

 balance = balance - amount; // deduct money from source

 acc->balance = acc->balance + amount; // add money to destination

 }

 3. The statement invoking the member function MoneyTransfer() has to be changed to
 acc3.MoneyTransfer(&accl, trans_money);

10.13 RETURNING OBJECTS FROM FUNCTIONS

Similar to sending objects as parameters to functions, it is also possible to return objects from functions.

The syntax used is similar to that of returning variables from functions. The return type of the function

is declared as the return object type. It is illustrated in the program complex.cpp.

// complex.cpp: Addition of Complex Numbers, class complex as data type

#include <iostream.h>

#include <math.h>

class complex

{

 private:

 float real; // real part of complex number

 float imag; // imaginary part of complex, number

 public:

 void getdata()

 {

 cout << “Real Part ? “;

 cin >> real;

 cout << “Imag Part ? “;

 cin >> imag;

 }

 void outdata(char *msg) // display number in x+iy form

 {

 cout << msg << real;

 if(imag < 0)

 cout << “-i”;

 else

 cout << “+ i”;

 cout << fabs(imag) << endl;

Mastering C++368

 }

 complex add(complex c2); // addition of complex numbers

};

complex complex::add(complex c2) // add default and c2 objects

{

 complex temp; // object temp of complex class

 temp.real = real + c2.real; // add real parts

 temp.imag = imag + c2.imag; // add imaginary parts

 return(temp); // return complex object

}

void main()

{

 complex cl, c2, c3; // c1, c2, and c2 are objects of complex

 cout << “Enter Complex Number cl .. ” << endl;

 c1.getdata();

 cout << “Enter Complex Number c2 .. ” << endl;

 c2.getdata();

 c3 = cl.add(c2); // add cl and c2 assign to c3

 c3.outdata(“c3 = cl.add(c2): “);

}

Run

Enter Complex Number cl..

Real Part? 1.5

Imag Part? 2

Enter Complex Number c2..

Real Part? 3

Imag Part? -4.3

c3 = cl.add(c2): 4.5-i2.3

In main(), the statement

 c3 = cl.add(c2); // add cl and c2 assign to c3

invokes the function add() of the class complex by passing the object c2 as a parameter. The

statement in this function,

 return(temp); // return complex object

returns the object temp as a return object.

10.14 FRIEND FUNCTIONS AND FRIEND CLASSES

The concept of encapsulation and data hiding dictate that nonmember functions should not be allowed

to access an object’s private and protected members. The policy is if you are not a member you cannot

get it. Sometimes this feature leads to considerable inconvenience in programming. Imagine that the

user wants a function to operate on objects of two different classes. At such times, it is required to

allow functions outside a class to access and manipulate the private members of the class. In C++, this

is achieved by using the concept of friends.

Classes and Objects 369

One of the convenient and controversial features of C++ is allowing nonmember functions to access

even the private members of a class using friend functions or friend classes. It permits a function or all

the functions of another class to access a different class’s private members. The accessibility of class

members in various forms is shown in Figure 10.17.

class X class Y

private:

data or function

protected:

data or function

friend class Y;

friend function1();

friend z:fz1();

function1()

friend of X

class Z

fz1()

fz2()

fy2()

fy1()

Fig. 10.17 Class-member accessibility in various forms

The function declaration must be prefixed by the keyword friend whereas the function definition

must not. The function could be defined anywhere in the program similar to any normal C++ function.

The functions that are declared with the keyword friend are called friend functions. A function can

be a friend to multiple classes. A friend function possesses the following special characteristics: The scope of a friend function is not limited to the class in which it has been declared as a friend. A friend function cannot be called using the object of that class; it is not in the scope of the class.

It can be invoked like a normal function without the use of any object. Unlike class-member functions, it cannot access the class members directly. However, it can use

the object and the dot operator with each member name to access both the private and public

members. It can be either declared in the private part or the public part of a class without affecting its

meaning. Consider the following skeleton of the program code to illustrate friend functions.

Mastering C++370

class A

{

 private:

 int value; // value is private data

 public:

 void setval(int v)

 { value = v; }

 int getval ()

 { return(value); }

};

// function decrement: tries to alter A’s private data

void decrement(A &a)

{

 a.value--; // Error:: not allowed to access private data

}

class B // class B: tries to access A’s private data

{

 public:

 void touch(A &a)

 { a.value++; }

};

This code will not compile since the function decrement() and the function touch() of the

class B attempt to access a private data member of the class A.

The function can be allowed explicitly to access A’s data and class B members can be allowed to

access the class A’s data. To accomplish this, the offending classless function decrement() and the

class B are declared to be friends of the class A as illustrated in the following code:

class A

{

 public:

 friend class B; // B is my friend, I trust him

 friend void decrement(A &what); // decrement () is also a good pal

};

Concerning friendship between classes, the following should be noted: Friendship is not mutual by default. That is, once B is declared as a friend of A, this does not give

A the right to access the private members of the class B. Friendship, when applied to program design, is an escape mechanism which creates exceptions to

the rule of data hiding. Usage of friend classes should, therefore, be limited to those cases where

it is absolutely essential.

10.14.1 Bridging Classes with Friend Functions

Consider a situation of operating on objects of two different classes. In such a situation, friend functions

can be used to bridge the two classes. It is illustrated in the program friend1.cpp. The syntax of

defining friend nonmember function is shown in Figure 10.18.

Classes and Objects 371

class Testclass
{

int num1, num2;
......
public:

// public members

......
};

float sum (Testclass obj)
{
float result;
result = obj.num1 + obj.num2;
return result;

}

friend float sum (Testclass obj);

No friend keyword

No scope resolution operator, Testclass :: sum cannot be made

Private data member

keyword

Fig. 10.18 Friend function of a class

// friendl.cpp: Normal function accessing object’s private members

#include <iostream.h>

class two; // advance declaration like function prototype

class one

{

 private:

 int datal;

 public:

 void setdata(int init)

 {

 datal = init;

 }

 friend int add_both(one a, two b }; // friend function

};

class two

{

 private:

 int data2;

 public:

 void setdata(int init)

 {

 data2 = init;

 }

 friend int add_both(one a, two b); // friend function

};

// friend function of class one and two

int add_both(one a, two b)

{

 return a.datal + b.data2; // a.datal and b.data2 are private

}

Mastering C++372

void main()

{

 one a;

 two b;

 a.setdata(5);

 b.setdata(10);

 cout << “Sum of one and two: “ << add_both(a, b);

}

Run

Sum of one and two: 15

The above program contains two classes named one and two. To allow the normal function add_

both() to have an access to private data members of objects of these classes, it must be declared as a

friend function. It has been declared with the friend keyword in both the classes as

 friend int add_both(one a, two b);

This declaration can be placed either in the private or the public section of the class.

An object of each class has been passed as an argument to the function add_both(). Being a

friend function, it can access the private members of both classes through these arguments.

Observe the following declaration at the beginning of the program:

 class two; // advance declaration like function prototype

It is necessary, since a class cannot be referred until it has been declared before the class one. It

informs the compiler that the class two’s specification will appear later.

Though friend functions add flexibility to the language and make programming convenient in

certain situations, they are controversial; it goes against the philosophy that only member functions can

access a class’s private data. Friend functions should be used sparingly. If a program uses many friend

functions, it can easily be concluded that there is a basic flaw in the design of a program and it would be

better to redesign such programs. However, friend functions are very useful in certain situations. One

such example is when a friend is used to increase the versatility of overloaded operators, which will be

discussed in the chapter Operator Overloading. Friend functions are useful in the following situations: Function operating on objects of two different classes. This is the ideal situation where the friend

function can be used to bridge two classes. Friend functions can be used to increase the versatility of overloaded operators. Sometimes, a friend allows a more obvious syntax for calling a function, rather than what a

member function can do.

10.14.2 Friend Classes

Friend functions permit an exception to the rules of data encapsulation. The friend keyword allows

a function, or all the functions of another class to manipulate the private members of the original class.

The syntax of declaring a friend class is shown in Figure 10.19.

All the member functions of one class can be friend functions of another class. The program

friend2.cpp demonstrates the method of bridging classes using a friend class.

Classes and Objects 373

Fig. 10.19 The girl class is a friend of the class boy

class boy
{

private:
int income1;
int income2;

public;
int gettotal()
{

return incomel + income2;
}

};

class girl

{

friend class girl;//class girl can access private members

// all the member of class girl can access attributes of boy
.......
public
int grilgfunc(boy b1)
{

result = b1.income1+b1.incom2;
return result;

}

void show()
{

boy b1;
cout << "Income1: " << b1.income1; // private data of boy

}

};

private specifier

public specifier

private data of
class boy

private data of
class boy

// friend2.cpp: class girl is declared as a friend of class boy

#include <iostream.h>

// forward declaration of class girl; is optional

class boy

{

 private: // private members

 int incomel;

 int income2;

 public:

 void setdata(int inl, int in2)

 {

 incomel = inl;

 income2 = in2;

 }

 friend class girl; // class girl can access private data

};

class girl

{

 int income; // income is private data member

 public:

 int girlfunc(boy bl)

 {

 return bl.incomel+bl.income2;

Mastering C++374

 }

 void setdata(int in)

 {

 income = in;

 }

 void show()

 {

 boy bl;

 bl.setdata(100, 200);

 cout << “boy’s Income! in show(): “ << bl.incomel << endl;

 cout << “girl’s income in show(): “ << income << endl;

 }

};

void main()

{

 boy bl;

 girl gl;’

 bl.setdata(500, 1000);

 gl.setdata(300);

 cout << “boy bl total income: “ << gl.girlfunc(bl) << endl;

 gl.show();

};

Run

boy bl total income: 1500

boy’s Incomel in show(): 100

girl’s income in show(): 300

The statement in the class boy

 friend class girl; // class girl can access private data members

declares that all the member functions of the class girl are friend functions of the class boy but not

the other way.(Thus, in C++, the class girl, the friend class of the class boy, does not mean that the

class boy is the friend of the class girl). The objects of the class girl can access all the members

of the class boy irrespective of their access privileges.

The function show() in the girl class

 cout << “boy’s Incomel in show() : “ << bl. incomel << endl;

accesses the private data member income1 of the boy class.

10.14.3 Class Friend to a Specified Class Member

When only a specific member function of one class should be a friend function of another class, it

must be specified explicitly using the scope resolution operator as shown in Figure 10.20. The function

girlfunc() is a member function of the class girl and a friend of the class boy.

In the class girl, only function girlfunc() is allowed to access the private data and functions

of the class boy. So only this function could be specifically made a friend in the class boy as illustrated

in the program friend3.cpp.

Classes and Objects 375

class boy

{

private:

int income1;

int income2;

public;

int gettotal()

{

return incomel + income2;

}

};

class girl
{

public:

int grilgfunc(boy b1)

{

result = b1.income1 + b1.income2;

return result;

}

void show() // cannot access private member of boy
{

boy b1; // only public member can be accessed
}

};

private specifier

public specifier

private data members of class boy

class name to which this function is a member

friend girl :: girlfunc (boy b1), // class girl's girlfunc() is allowed to

// access data and functions of class boy

Fig. 10.20 Member function to which class boy is a friend

//friend3.cpp: specific member function class girl is friend of boy

#include <iostream.h>

class boy; // advance declaration like function prototype

class girl

{

 int income; // income is private data member

 public:

 int girlfunc(boy bl);

 void setdata(int in)

 {

 income = in;

 }

 void show()

 {

 cout << “girl income: “ << income;

 }

};

class boy

{

 private: // private members

 int incomel;

 int income2;

 public:

Mastering C++376

 void setdata(int inl, int in2)

 {

 incomel = inl;

 income2 = in2;

 }

 // only this function can access private data of boy

 friend int girl::girlfunc(boy bl);

};

// only this function can access private data of the boy class

int girl::girlfunc{ boy bl)

{

 return bl.incomel+bl.income2;

}

void main()

{

 boy bl;

 girl gl;

 bl.setdata(500, 1000);

 gl.setdata(300);

 cout << “boy bl total income: “ << gl.girlfunc(bl) << endl;

 gl.show();

}

Run

boy bl total income: 1500

girl income: 300

The null-body class declaration statement

 class boy; // advance declaration like function prototype

appears in the beginning of the program; a class cannot be referred until it has been declared before the

class girl. It informs the compiler that the class boy is defined later. The statement in the class boy

 friend int girl::girlfunc(boy bl);

declares that only member function girlfunc() of the class girl can access private data and

member functions of the class boy.

10.15 CONSTANT PARAMETERS AND MEMBER FUNCTIONS

Certain member functions of a class access the class data members without modifying them. It is

advisable to declare such functions as const(constant) functions. The syntax for declaring const

member functions is shown in Figure 10.21. A const member function is used to indicate that it does

not alter the data fields of the object, but only inspects them.

ReturnType FunctionName(arguments) const

Keyword

Fig. 10.21 Syntax of declaring a constant member function

Classes and Objects 377

A member function which does not alter any data members in the class can be declared as a const

member function. The following statements illustrate the same:

 void showname() const;

 float divide() const;

The qualifier const is suffixed to the function in both the declaration and the definition. The

compiler will generate an error message if such functions attempt to alter the class data members. The

concept of constant member functions is illustrated in the program constmem.cpp.

// constmem.cpp: person class with const member functions

#include <iostream.h>

#include <string.h>

class Person

{

 private:

 char *name; // name of person

 char *address; // address field

 char *phone; // telephone number

 public:

 void init();

 void clear();

 // functions to set fields

 void setname(char const *str);

 void setaddress(char const *str);

 void setphone(char const *str);

 // functions to inspect fields

 char const *getname(void) const;

 char const *getaddress(void) const;

 char const *getphone(void) const;

};

// initialize class data members to NULL

inline void Person::init()

{

 name = address = phone = 0;

}

// release memory allocated to class data members

inline void Person::clear()

{

 delete name;

 delete address;:

 delete phone;

}

// interface functions set...()

void Person::setname(char const *str)

{

 if(name)

Mastering C++378

 delete name;

 name = new char[strlen(str) + 1]

 strcpy(name, str);

}

void Person::setaddress(char const *str)

{

 if(address)

 delete address;

 address = new char[strlen(str) + 1];

 strcpy(address, str);

}

void Person::setphone(char const *str)

{

 if(phone)

 delete phone;

 phone = new char[strlen(str) + 1];

 strcpy(phone, str);

}

inline char const *Person::getname() const

{

 return name;

}

inline char const *Person::getaddress() const

{

 return address;

}

inline char const *Person::getphone() const

{

 return phone;

}

void printperson(Person const &p)

{

 if(p.getname())

 cout << “Name : “ << p.getname() << endl;

 if(p.getaddress())

 cout << “Address: “ << p.getaddress() << endl;

 if(p.getphone())

 cout << “Phone : “ << p.getphone() << endl;

}

void main()

{

 Person p1, p2;

 p1.init();

 p2.init();

 p1.setname(“Rajkumar”);

Classes and Objects 379

 p1.setaddress(“E-mail: rajacdacb.ernet.in”);

 p2.setphone(“90-080-5584271”);

 printperson(p1);

 p2.setname(“Venugopal K R”);

 p2.setaddress(“Bangalore University”);

 p2.setphone(“-not sure-”);

 printperson(p2);

 p1.clear();

 p2.clear();

}

Run

Name : Rajkumar

Address : E-mail: raj@cdacb.ernet.in

Phone : 90-080-5584271

Name : Venugopal K R

Address : Bangalore University

Phone : -not sure-

As illustrated in this program, the keyword const occurs following the argument list of functions.

Again the following Const-Rule applies: whichever appears before the keyword const must not alter

its contents and if any attempt is made to alter data, the compiler issues an error message. The same

specification must be repeated in the definition of member functions:

char const *Person::getname() const

{

 return name;

}

A member function, which is declared and defined as const, should not alter any data fields of its

class. In other words, a statement like

 name = 0;

in the above const function getname() would lead to a compilation error.

The formal parameter to the function

 void printperson(Person const &p)

is declared as a constant object. The private data members by specification itself cannot be modified. If

the object parameter is declared as const, even its public data members cannot be modified. Thus the

function printperson() can only read public data members, but cannot modify them.

The purpose of const functions lies in the fact that C++ allows const objects to be created.

For such objects only the const member, which does not modify them, has to be called. The only

exception to the rule are the constructors and destructors: these are called automatically. This feature

is comparable to the definition of a variable int const max=10; such a variable may be initialized

on its definition. Analogously, the constructor can initialize its object at the definition, but subsequent

assignments cannot be performed. Generally, it is good to declare member functions which do not

modify their object to be const.

Mastering C++380

10.16 STRUCTURES AND CLASSES

Structures and classes in C++ are given the same set of features. For example, structures may also be

used to group data as well as functions. In C++, the difference between structures and classes is that

by default, structure members have public accessibility, whereas class members have private access

control unless otherwise explicitly stated. The declaration for a structure in C++ is similar to a class

specification. It is illustrated in the following declaration:

class complex

{

 private: // private part

 float real; // real part of complex number

 float imag; // imaginary part of complex number

 public: // public part

 void getdata();

 void outdata(char *msg);

 complex AddComplex(complex c2);

};

A similar structure may be created as shown below:

struct complex

{

 private: // private part

 float real; // real part of complex number

 float imag; // imaginary part of complex number

 public: // public part

 void getdata();

 void outdata(char *msg);

 complex AddComplex(complex c2);

};

The above declarations of class and structure can be written without any loss of meaning as follows:

class complex

(

 // by default private part, the keyword private is omitted

 float real; // real part of complex number

 float imag; // imaginary part of complex number

 public: // public part

 void getdata();

 void outdata(char *msg);

 complex AddComplex(complex c2);

};

Thus, in the absence of the keyword private, the members of a class are treated as private till

another access-specifier keyword(private or public) is encountered. However, in a structure, the

members are treated as public by default. It is illustrated in the following declaration:

Classes and Objects 381

struct complex

{

 //by default public, the keyword public is omitted

 void getdatat);

 void outdata(char *msg);

 complex AddComplex(complex c2);

 private: // private part

 float real; // real part of complex number

 float imag; // imaginary part of complex number

};

Note Most programmers prefer to use a class to group data as well as functions, a structure to group

only data, following the conventions of C. It is advisable to use the keywords private and public

explicitly in the declaration of classes and structures to improve readability of the program code.

10.17 STATIC DATA AND MEMBER FUNCTIONS

Earlier examples of classes have shown that each object of a class has its own set of public or private

data. Each public or private function then accesses the object’s own version of the data. In some

situations, it is desirable to have one or more common data fields, which are accessible to all objects of

the class. An example of such a situation is keeping the status of how many objects of a class are created

and how many of them are currently active in the program. Another example is a flag variable, which

states whether some specific initialization has occurred; only the first object of the class performs the

initialization and then sets the flag to done.

Such situations are analogous to a C code, where several functions need to access the same variable.

A common solution in C is to define all these functions in one source file and to declare the variable

as static: the variable name is then not known beyond the scope of the source file. This approach is

quite valid, but does not agree with the philosophy of one data or function per program having multiple

source files. Another C-like solution is to create the variable in question with unusual names such

as __MYFLAG, _6ULDV8, etc., with the hope that other parts of the program(libraries, link modules,

etc.) do not make use by defining these variables by accident. Neither the first, nor the second C-like

solution is elegant. C++, therefore, allows static data and functions, which are common to all objects

of a class.

10.17.1 Static Data Member Definition

In Turbo C++ version 1.0, static data members were not required to be explicitly defined. Wheh the

linker finds undefined static data, it would automatically define them and allocate storage for them

instead of generating errors, but both new versions of Turbo C++ and Borland C++ insist on the explicit

definition; no other way to define a static data exists. The syntax of defining a static data member of a

class is shown in Figure 10.22.

The static data members can be initialized during their definition outside all the member functions,

in the same way as global variables are initialized. The definition and initialization of a static data

member usually occur in one of the source files of the class functions. The statement which defines and

Mastering C++382

initializes the variable MyClass::count(count is a data member of MyClass) is always valid

whether count is declared private, public, or protected inside the class MyClass. The reason is that

static data members accessed in this way are essentially global data.

10.17.2 Private Static Data Members

When a data member is required to be accessible to more than one function, the normal procedure

adopted in a function-oriented language is to declare it as an external variable. But this technique

may be dangerous as it exposes external data variable to accidental modification, which may have

undesirable effects on the efficient and reliable working of the program.

C++ provides an elegant solution to that problem in the form of static data members. The usual

technique that is adopted is to declare the static data member in the private section of a class. Thus,

effective data hiding is achieved, as the data is only accessible through the member functions, while

providing access to all the objects of that class. This is illustrated in the program count.cpp.

// count.cpp: counts how many calls are made to a member function set()

#include <iostream.h>

class MyClass

{

 static int count; // static member

 int number;

 public:

 // initializes object’s member and increments function call

 void set(int num)

 {

 number = num;

 ++count;

 }

 void show()

 {

 cout << “\nNumber of calls made to ‘set()’ through any object: "

 << count;

 }

};

// static member count is shared by all the objects of class MyClass

class ClassName

{

......

static DataType DataMember;

......

};

DataType ClassName :: DataMember = InitiaValue;

Initialization is optional

Static data member
storage qualifier

Fig. 10.22 Static data member declaration in a class and its definition

outside the class

Classes and Objects 383

int MyClass::count = 0; // definition and initialization of a data member

void main()

{

 MyClass objl;

 obj1.show();

 objl.set(100);

 obj1.show();

 MyClass obj2, obj3;

 obj2.set(200);

 obj2.show(); //same result even with objl.show and obj3.show();

 obj2.set(250);

 obj3.set(300);

 objl.show(); //same result even with obj2.show and obj3.show();

}

Run

Number of calls made to ‘set()‘ through any object: 0

Number of calls made to ‘set()‘ through any object: 1

Number of calls made to ‘set()‘ through any object: 2

Number of calls made to ‘set()‘ through any object: 4

Omission of the statement

 int MyClass::count = 0;

in the above program would generate a linking error although the program is compiled successfully.

This is because the statement in the class MyClass

 static int count;

would not have been defined anywhere and it is a static variable within a class. Hence, an error would

be generated if a value is assigned to count without any memory being allocated to it. It is possible to

omit initialization of a static member variable when it is defined, as shown below:

 int MyClass::count;

Irrespective of whether the data member is private, public, or protected, it must always be defined

using the scope-resolution operator. Static variables act like a bridge between objects of the same class.

The linker allocates storage for a static member when the variable is defined even if no objects are

actually created from the class.

10.17.3 Access Rules for Static Data Members

The public static data members can be accessed using the scope resolution operator or through objects

with member-access operator. Using the scope-resolution operator is a completely new notation for

member access. However, the accessibility of private static data members is same as that of normal

private members.

The static data members which are declared public are similar to normal global variables. They can

be addressed by the program by prefixing class name and scope-resolution operator. It is illustrated in

the following code fragment:

Mastering C++384

class Test

{

 public:

 static int public_int;

 private:

 static int private_int;

};

void main()

{

 Test::public_int = 145; // ok

 Test::private_int = 12; // wrong, do not touch the private data members

 Test myobj;

 myobj.public_int = 145; //ok

 myobj.priyate_int = 12; // wrong, do not access the private data member

}

The static data member public_int defined in the class Test can be accessed using the scope-

resolution operator prefixed by its class name as follows:

 Test::public_int = 145; // ok

Whereas, the data member private_int cannot be accessed using the scope-resolution operator.

Therefore, the statement

 Test::private_int = 12; // wrong, dp not touch the private data members

leads to a compilation error. Objects accessing the static data member access the same data that is

accessed by using the scope-resolution operator. The statement

 myobj.public_int = 145; // ok

refers to the public static data member. However, a private static data member cannot be accessed either

by using the scope resolution or the dot operator.

10.17.4 Static Member Functions

Besides static data, C++ allows the definition of static functions. These static functions can access only

the static members(data or function) declared in the same class; non static data are unavailable to these

functions. Static member functions declared in the public part of a class declaration can be accessed

without specifying an object of the class. It is illustrated in the program dirs.cpp.

// dirs.cpp: static data and member functions of a class

#include <iostream.h>

#include <string.h>

class Directory

{

 public:

 // the static string

 static char path []; // declaration

Classes and Objects 385

 // constructors, destructors etc. not shown here

 // here’s the static public function

 static void setpath(char const *newpath);

};

// the static function

void Directory::setpath(char const *newpath)

{

 strcpy(path, newpath);

}

// definition of the static variable

char Directory::path [199] = “/usr/raj”; // definition

void main()

{

 // static data member access, which is defined as public

 cout << “Path: “ << Directory: :path << endl;

 // Alternative (1): calling setpath() without

 // an object of the class Directory

 Directory::setpath (“/usr”);

 cout << “Path: “ << Directory::path << endl;

 // Alternative(2): with an object

 Directory dir;

 dir.setpath(“/etc”);

 cout << “Path: “ << dir.path;

}

Run

Path: /usr/raj

Path: /usr

Path: /etc

Static member functions can also be defined in the private region of a class. Such private static

member functions can access only static data members and can invoke static member functions. The

following points should be noted about static members: Only one copy of a static data member exists for all the instances of a class. A static member function can access only static members of its class. Static data members must be defined and initialized like global variables, otherwise the linker

generates errors. Static members defined as public can either be accessed through the scope-resolution operator as

 C1assName::MemberName

 or through the object of a class as

 ObjectName.MemberName

That is, static members can be accessed using only the class name, without referring to a particular

object.

Mastering C++386

Object 1 Object 2 Object N

Separate memory for object's data members
Shared memory for class functions

data 1

data 2

data M

data 1

data 2

data M

data 1

data 2

data M

function 3()

function K()

function 2()

function 1()

10.18 CLASS, OBJECTS, AND MEMORY RESOURCES

When a class is declared, memory is not allocated to the data members of the class. Thus, there exists a

template, but data members cannot be manipulated unless an instance of this class is created by defining

an object. It might give an impression that when an object of a particular class is created, memory is

allocated to both its data members and member functions. This is partly true. When an object is created,

memory is allocated only to its data members and not to member functions.

Member functions are created and stored in memory only once when a class specification is declared.

All objects of that class have access to the same area in the memory where the member functions are

stored. It is also logically true as the member functions are the same for all objects and there is no

point in allocating a separate copy for each and every object created using the same class specification.

However, separate storage is allocated for every object’s data members since they contain different

values. It allows different objects to handle their data in a manner that suits them.

The organization of memory resource for the objects is depicted in Figure 10.23. It can be observed

that N objects of the same class are created and data members of those objects are stored in distinct

memory locations, whereas the member functions of object1 to objectN are stored in the same

Fig. 10.23 Memory for objects data and function members

Classes and Objects 387

memory area. Thus, each object has a separate copy of data members and the different objects share the

member functions among them. It is simpler to visualize each object as containing both its own data

and functions. But the knowledge of what happens behind the scene is useful in estimating the time and

space complexity of a program during its execution.

10.18.1 Static Data Members

Whenever a class is instantiated, memory is allocated to the created object. But there exists an exception

to this rule. Storage space for data members which are declared as static is allocated only once

during the class declaration. Subsequently, all objects of this class have access to this data member,

i.e., all instances of the class access the same data member. When one of them modifies the static data

member, the effect is visible to all the instances of the class.

The organization of memory resource for the object’s static data members is shown in Figure

10.24. It can be observed that in the N objects of the same class, automatic data members(of each

object) are stored in distinct memory locations, whereas static data members(of all objects) are stored

in the same memory locations. Thus, each object has a separate copy of the automatic data members

and they share static data members among them.

Object 1 Object 2 Object N

Separate memory for class's automatic data members
Shared memory for class's static data members

data 1

data 2

data M

data 1

data 2

data M

data 1

data 2

data M

static data 1

static data 2

static data 3

static data K

Fig. 10.24 Memory for objects’ static and automatic data members

Mastering C++388

A static data member is allocated a fixed area of storage at link time, like a global variable, but the

variable’s identifier is accessed only using the scope-resolution operator with the class name. Thus, static

data is useful when all the objects of the same class must share a common item of information having

same characteristics as nonstatic members. It is visible only within the class, but its extent(lifespan) is

the entire program-execution period.

Data members are generally allocated with the same storage class. If an object is declared auto, all

its data is auto; static objects have static data members. Static data members are an exception to this

rule; when an object is created, memory is not allocated to its static members(if there are any), because

this would cause multiple copies of the static data member appear in every object.

10.19 CLASS-DESIGN STEPS

As pointed out by the designer of C++, Dr Bjarne Stroustrup, “Considering designing a single class is

typically not a good idea. Concepts do not exist in isolation; rather, a concept is defined in the context

of other concepts. Similarly, a class does not exist in isolation, but is declared together with logically

related classes. Such a set is often called a class library or a component. Sometimes all classes in a

component constitute a single class hierarchy, sometimes they do not.”

The set of classes in a component is united by some logical criteria, often by a component style and

by a reliance on common services. A component is thus the unit of design, documentation, ownership,

and often reuse. However, to use any part of a component, one needs to understand the logical criteria

that define the component, the conventions and style embodied in the design of the components and its

documentation, and the common services(if any).

The design of a component is a challenging task. It can be easily handled by breaking it into steps

so that focus can be placed on the various subtasks in a logical and complete way. (Unlike structured

programming, OOP concentrates on data decomposition instead of algorithm decomposition.) However,

there is no one right method for component design, Here is a series of steps that have worked well in

the design of components with most designers:

 [1]. Find the concepts/classes and their most fundamental relationships.

 [2]. Refine the classes by specifying the sets of operations on them.

 a. Classify these operations. In particular, consider the needs for construction, copying, and

destruction. C++ features for defining such operations are discussed in the chapter on Object

Initialization and Cleanup.

 b. Provide standard interface. It must provide the same look and feel of standard data types to

user-defined data types. C++ has constructs for defining such standard interfaces, discussed in

the chapter on Operator Overloading.

 c. Consider minimalism, completeness, and convenience.

 [3]. Refine the classes by specifying their dependencies on other classes:

 a. Inheritance. (Discussed in the chapter on Inheritance)

 b. Use dependencies.

 [4]. Specify the interfaces for the classes.

 a. Separate functions into private, public, and protected operations.

 b. Specify the exact type of the operations on the classes.

Classes and Objects 389

Note that these steps are iterative in nature and hence, several sequences over these steps are required

to produce a design code. It is advisable to design these classes as template classes as discussed in the

chapter Generic Programming with Templates. The error-handling model adopted in these classes must

use exceptions to report runtime errors; discussed in the chapter Exception Handling. Once objects are

created dynamically, there must be provision to invoke operations on these objects dynamically. These

features are discussed in the chapter Virtual Functions. Apart from the class-design steps, a true object-

oriented development passes through object-oriented analysis, design, testing, etc., phases; discussed

in the chapter OO Analysis, Design and Development.

SOLVED PROBLEM

Write a program to declare a class employee, consisting of data members emp_no and emp_

name. Write the member functions accept() to accept and display() to display the data

for five employees.

#include<iostream.h>

#include<string.h>

class employee

{

 int emp_no;

 char emp_name[25];

 public:

 void accept(int i, char *j)

 {

 emp_no = i;

 strcpy(emp_name, j);

 }

 void display()

 {

 cout<<"\nEmployee Number: "<<emp_no<<"\tEmployee Name: "<<emp_name;

 }

};

void main()

{

 int i;

 int no;

 char name[25];

 employee e[5];

 cout<<"Enter the details for five employees: \n";

 for(i=0;i<5;i++)

 {

 cout<<"Number: ";

 cin>>no;

 cout<<"Name: ";

 cin>>name;

+
+

Mastering C++390

 e[i].accept(no, name);

 }

 cout<<"*****Employee Details*****";

 for(i=0;i<5;i++)

 e[i].display();

}

Run

Enter the details for five employees:

Number: 1

Name: Vishwanathan

Number: 2

Name: Archana

Number: 3

Name: Prasad

Number: 4

Name: Sarthak

Number: 5

Name: Ganeshan

*****Employee Details*****

Employee Number: 1 Employee Name: Vishwanathan

Employee Number: 2 Employee Name: Archana

Employee Number: 3 Employee Name: Prasad

Employee Number: 4 Employee Name: Sarthak

Employee Number: 5 Employee Name: Ganeshan

REVIEW QUESTIONS

 10.1 What is a class? Describe the syntax for declaring a class with examples.

 10.2 What are the differences between structures and classes in C++?

 10.3 What are objects? Describe the syntax for defining objects with examples. Explain how

C++ supports encapsulation and data abstraction.

 10.4 Write a program illustrating class declaration, definition, and accessing class members.

 10.5 Explain the client-server model of object communication.

 10.6 The university requires an interactive student database package that permits one to

keep track of the dynamic student population in the campus. This database maintains at

the minimum, a student’s name, roll number, marks of three hardcore subjects and three

softcore subjects. The information about any student can come at any time.

 (a) What kind of data structure is suited for the above implementation and why?

 (b) Give the class specification.

 (c) Given a student’s roll number, how do we determine the marks scored by -the stu-

dent?

 10.7. What are the guidelines that need to be followed for deciding whether to make the

member functions inline or not?

++

Classes and Objects 391

 10.8. What is the difference between member functions defined inside and outside the body of

a class? How are inline member functions defined outside the body of a class?

 10.9. What is data hiding? What are the different mechanisms for protecting data from the

external users of a class’s objects?

 10.10. What are empty classes? Can instances of an empty class be created? Give reasons.

 10.11. Write a program for adding two vectors(which are objects of the class Vector). Use

dynamic data members instead of arrays for storing vector elements.

 10.12. Explain the different methods of passing object parameters.

 10.13. Write an interactive program for manipulating objects of the Distance class. Support

member functions for adding and subtracting distance members of two objects.

 10.14. What are friend functions and friend classes? Write a normal function which adds objects

of the complex number class. Declare this normal function as friend of the Complex

class.

 10.15. Write a program for processing objects of the Student class. Declare member functions

such as show() as read-only member functions.

 10.16. Bring out the differences between auto and static storage class data members. Can

static member functions of a class access all types of members of a class. Give reasons.

What are the access rules for accessing static members?

 10.17. Discuss memory requirements for classes, objects, data members, member functions,

static, and nonstatic data members.

 10.18. Why is object-oriented programming approach the preferred form of programming over

other approaches.

 10.19. Write a program for manipulating coordinates in the rectangle was coordinate system.

Represent points as objects. The class Point must include members such as x and y (as

data members), and add(), sub(), angle(), etc. (as member functions).

 10.20. Write a program for manipulating coordinates in the Polar coordinate system.

Represent points as objects. The class Polar must include data members such as

radius and theta, and member functions such as add(), sub(), angle(), etc.

 10.21. Explain steps involved in designing class components as suggested by the C++ designer.

Object Initialization
and Clean-up

 11.1 CLASS REVISITED

A class encapsulates both data and functions manipulating them into

a single unit. It can be further used as an abstract data type for defining

a class instance called object. As with standard data types, there must

exist a provision to initialize objects of a class during their definition

itself. Consider an example of the class bag having two data members:

contents to hold fruits and itemCount to hold the number of items currently stored in the bag.

It has interface functions such as SetEmpty(), put(), and show() whose usage is illustrated in

the program bag.cpp.

// bag.cpp: Bag into which fruits can be placed
#include <iostream.h>
const int MAX_ITEMS = 25; //Maximum number of items that a bag can hold
class Bag
{
 private:
 int contents [MAX_ITEMS]; // bag memory area
 int ItemCount; // Number of items present in a bag
 public:
 // sets ItemCount to empty
 void SetEmpty()
 {
 ItemCount = 0; // When you purchase a bag, it will be empty
 }
 void put(int item) // puts item into bag
 {
 contents[ItemCount++] = item; // counter update
 }
 void show();
};
// display contents of a bag
void Bag::show()
{
 for(int i = 0; i < ItemCount; i++)
 cout << contents[i] << “ “;

11

Object Initialization and Clean-up 393

 cout << endl;
}
void main()
{
 int item;
 Bag bag;
 bag.SetEmpty(); // set bag to empty
 while(1)
 {
 cout<<“Enter Item Number to be put into the bag <0-no item>: ”;
 cin >> item;
 if(item == 0) // items ends, break
 break;
 bag.put(item);
 cout << “Items in Bag: “;
 bag.show();
 }
}

Run

Enter Item Number to be put into the bag <0-no item>: 1
Items in Bag: 1
Enter Item Number to be put into the bag <0-no item>: 3
Items in Bag: 1 3
Enter Item Number to be put into the bag <0-no item>: 2
Items in Bag: 1 3 2
Enter Item Number to be put into the bag <0-no item>: 4
Items in Bag: 1 3 2 4
Enter Item Number to be put into the bag <0-no item>: 0

In main(), the statement

Bag bag;

creates the object bag without initializing the ItemCount to 0 automatically. However, it is performed

by a call to the function SetEmpty() as follows:

bag.SetEmpty(); // set bag to empty

According to the philosophy of OOPs, when a new object such as bag is created, it will naturally be

empty. To provide such a behavior in the above program, it is necessary to invoke the member function

SetEmpty explicitly. In reality, when a bag is purchased, it might contain some items placed inside

the bag as gift items. Such a situation in C++ can be simulated by

Bag bagl = 2;

It creates the object bag and initializes it with 2, indicating that the bag is sold with two gift items.

It resembles the procedure of initialization of a built-in data type during creation, i.e., there must be a

provision in C++ to initialize objects during creation itself.

It is, therefore, clear that OOP must provide a support for initializing objects when they are created,

and destroy them when they are no longer needed. Hence, a class in C++ may contain two special

Mastering C++394

member functions dealing with the internal workings of a class. These functions are the constructors

and destructors. A constructor enables an object to initialize itself during creation and the destructor

destroys the object when it is no longer required, by releasing all the resources allocated to it. These

operations are called object initialization and clean-up respectively.

11.2 CONSTRUCTORS

A constructor is a special member function whose main operation is to allocate the required resources

such as memory and initialize the objects of its class. A constructor is distinct from other member

functions of the class, and it has the same name as its class. It is executed automatically when a class is

instantiated (object is created). It is generally used to initialize object member parameters and allocate

the necessary resources to the object members. The constructor has no return value specification (not

even void). For instance, for the class Bag, the constructor is Bag:: Bag().

The C++ runtime system makes sure that the constructor of a class is the first member function to

be executed automatically when an object of the class is created. In other words, the constructor is

executed every time an object of that class is defined. Normally, constructors are used for initializing

the class data members. It is of course possible to define a class which has no constructor at all; in

such a case, the runtime system calls a dummy constructor (i.e., which performs no action) when its

object is created. The syntax for defining a constructor with its prototype within the class body and

the actual definition outside it is shown in Figure 11.1. Similar to other members, the constructor can

be defined either within or outside the body of a class. It can access any data member like all other

member functions but cannot be invoked explicitly and must have public status to serve its purpose. The

constructor which does not take arguments explicitly is called a default constructor.

Fig. 11.1 Syntax of constructor

class ClassName

{
..... // private members

public :

// public members

ClassName () ;

};

ClassName :: ClassName()

{

// constructor body definition

}

must be public

Constructor prototype

no return type nor void

Constructor definition

The initialization may entail calling functions, allocating dynamic storage, setting variables to

specific values, and so on. Since the constructor is executed every time an object is created, it can

be used to assign initial values to the data members of the object. It will reduce the burden on the

programmer to specifically initialize the data within each object that is created and hence, prevent

errors. These constructors do not have any return type, since they are invoked during the creation of

objects transparently. But they can have as many arguments as necessary.

The program newbag.cpp has a counter, which can be used to count events or objects placed in

a bag. Since the counter has to start from zero value and count upwards, a mechanism is required by

which the counter can be set to zero as soon as it is created. An appropriate solution to this situation is

to use a constructor.

Object Initialization and Clean-up 395

// newbag.cpp: Bag into which fruits can be placed with constructor

#include <iostream.h>

const int MAX_ITEMS = 25; // Maximum number of items that a bag can hold

class Bag

{

 private:

 int contents[MAX_ITEMS]; // bag memory area

 int ItemCount; // Number of items present in a bag

 public:

 // sets ItemCount to empty

 Bag() // constructor

 {

 ItemCount = 0; // When you purchase a bag, it will be empty

 }

 void put(int item) // puts item into bag

 {

 contents[ItemCount++] = item; // item into bag, counter update

 }

 void show();

};

// display contents of the bag

void Bag::show()

{

 for(int i = 0; i < ItemCount; i++)

 cout << contents[i] << “ “;

 cout << endl;

}

void main()

{

 int item;

 Bag bag;

 while(1)

 {

 cout << “Enter Item Number to be put into the bag <0-no item>: “;

 cin >> item;

 if(item == 0) // items ends, break

 break;

 bag.put(item);

 cout << “Items in Bag: “;

 bag.show();

 }

}

Run

Enter Item Number to be put into the bag <0-no item>: 1

Items in Bag: 1

Enter Item Number to be put into the bag <0-no item>: 3

Mastering C++396

Items in Bag: 1 3

Enter Item Number to be put into the bag <0-no item>: 2

Items in Bag: 1 3 2

Enter Item Number to be put into the bag <0-no item>: 4

Items in Bag: 1 3 2 4

Enter Item Number to be put into the bag <0-no item>: 0

In main(), the class instantiation statement

Bag bag;

creates the object bag and initializes ItemCount to zero by invoking the no-argument constructor

Bag::Bag()

automatically. In the earlier program bag.cpp, these actions are performed by the following

statements:

Bag bag;

bag.SetEmpty(); // set bag to empty

First, the object bag is created and then, SetEmpty() is explicitly invoked to initialize the data

member ItemCount to zero.

When an object is a local nonstatic variable in a function, the constructor Bag() is called when the

function is invoked. When an object is a global or a static variable, the constructor Bag() is invoked

before the execution of main() as illustrated in the program testl.cpp.

// testl.cpp: a class Test with a constructor function
#include <iostream.h>
class Test
{
 public: // ‘public’ function:
 Test(); // the constructor
};
Test::Test() // here is the definition
{
 cout << “constructor of class Test called” << endl;
}
// and here is the test program:
Test G; // global object
void func()
{
 Test L; // local object in function func()
 cout << “here’s function func()” << endl;
}
void main()
{
 Test X; // local object in function main()
 cout << “main() function” << endl;
 func();
}

Object Initialization and Clean-up 397

Run

constructor of class Test called (global object G)

constructor of class Test called (object X in main())

main() function
constructor of class Test called (object L in func())

here’s function func()

The output produced by the program is as desired (see Run—the text in parentheses indicates

comment). The program shows how a class Test is defined, which consists of only one function: the

constructor. The constructor performs only one action; a message is printed. The program contains

three objects of the class Test: first a global object, second a local object in main(), and third another

local object in func().

A constructor has the following characteristics:

 It has the same name as that of the class to which it belongs.

 It is executed automatically whenever the class is instantiated.

 It does not have any return type.

 It is normally used to initialize the data members of a class.

 It is also used to allocate resources such as memory to the dynamic data members of a class.

11.3 PARAMETERIZED CONSTRUCTORS

Constructors can be invoked with arguments, just as in the case of functions. The argument list can be

specified within braces similar to the argument list in the function. Constructors with arguments are

called parameterized constructors. The distinguishing characteristic is that the name of the constructor

functions have to be the same as that of its class name. In the earlier program newbag.cpp, another

constructor with arguments could have been provided with one integer value to initialize the data

members ItemCount and contents[]. The syntax of parameterized constructors and their

access is shown in Figure 11.2.

Since C++ allows function overloading, a constructor with arguments can co-exist with another

constructor without arguments. The class Bag would thus have two constructors. The usage of a

Fig. 11.2 Parameterized constructor

class Test

{
......

public:

Test(int data1)

{

.....

}

......
};

Test t1(2);

Test t2(3);

constructor with parameter

2 is passed as parameter

3 is passed as parameter

Mastering C++398

constructor with arguments is illustrated in the modified program giftbag.cpp of newbag.cpp. The

object is initialized during its creation.

// giftbag.cpp: Bag which has some items when gifted
#include <iostream.h>
const int MAX_ITEMS = 25; // Maximum number of items that a bag can hold
class Bag
{
 private:
 int contents [MAX_ITEMS]; // bag memory area
 int ItemCount; // Number of items present in a bag
 public:
 // sets ItemCount to empty, it is gifted as empty bag
 Bag() // constructor without arguments
 {
 ItemCount = 0;
 }
 Bag (int item) // constructor with arguments
 {
 contents[0] = item; // when bag is gifted, it’ll have some items
 ItemCount = 1;
 }
 void put(int item) // puts item into bag
 {
 contents [ItemCount++] = item; // item into bag, counter update
 }
 void show();
};
// display contents of a bag
void Bag::show()
{
 if(ItemCount)
 for(int i = 0; i < ItemCount; i++)
 cout << contents[i] << “ “;
 else
 cout << “Nil”;
 cout << endl;
}
void main()
{
 int item;
 Bag bagl; // uses Bag::Bag() constructor
 Bag bag2(4); // uses Bag::Bag(int item) constructor
 cout << “Gifted bagl initially has: “;
 bagl.show();
 cout << “Gifted bag2 initially has: “;
 bag2.show();
 while(1)
 {

Object Initialization and Clean-up 399

 cout << “Enter Item Number to be put into the bag2 <0-no item>: “;
 cin >> item;
 if(item == 0) // items ends, break
 break;
 bag2.put(item);
 cout << “Items in bag2: “;
 bag2.show();
 }
)

Run

Gifted bagl initially has: Nil
Gifted bag2 initially has: 4
Enter Item Number to be put into the bag2 <0-no item>: 1
Items in bag2: 4 1
Enter Item Number to be put into the bag2 <0-no item>: 2
Items in bag2: 4 1 2
Enter Item Number to be put into the bag2 <0-no item>: 3
Items in bag2: 4 1 2 3
Enter Item Number to be put into the bag2 <0-no item>: 0

The Bag class has two constructors. The first constructor does not have any arguments. The next

constructor has a single argument. The statement

Bag bagl;

creates the object bagl and initializes its data member Itemcount by invoking the no-argument

constructor Bag:: Bag(). The next statement

Bag bag2(4);

creates the object bag2 and sets its data members itemcount to 1 and contents to 4 by invoking

the one-argument constructor Bag:: Bag (int item). The concept of having multiple constructors

and their invocation based on suitable arguments during the creation of objects bagl and bag2 with

user interface is shown in Figure 11.3.

Fig. 11.3 Bag class and parameterized constructor

Instances of the class Bag

Client program

show(); Bag();

private:

int contents[];

int ItemCount;

p
u
t
(
i
n
t
i
t
e
m
)
; B

a
g
(
i
n
t
i
t
e
m
)
;

Bag bag1;

Bag bag2(4);

bag2.put(item);

bag2.show();

Mastering C++400

When a constructor is declared not to accept any arguments, it is called a default constructor. It

is invoked when the object is instantiated with no arguments. The constructor Bag() is a default

constructor. Since a default constructor takes no arguments, it follows that each class can have only one

default constructor. The operation of the default constructor function is usually to initialize data, used

subsequently by other member functions. It can also be used to allocate the necessary resources, such

as memory, dynamically.

11.4 DESTRUCTOR

When an object is no longer needed, it can be destroyed. A class can have another special member

function called the destructor, which is invoked when an object is destroyed. This function complements

the operation performed by any of the constructors, in the sense that it is invoked when an object ceases

to exist. For objects which are local nonstatic variables, the destructor is called when the function

in which the object is defined is about to terminate. For static or global variables, the destructor is

called before the program terminates. Even when a program is interrupted using an exit() call, the

destructors are called for all objects which exist at that time.

The syntax of the destructor is shown in Figure 11.4. Destructor is a member function having the

character ~(tilde) followed by the name of its class and brackets (i.e., ~classname()). It is invoked

automatically to reclaim all the resources allocated to the object when the object goes out of scope and

is no longer needed.

Fig. 11.4 Syntax of destructor

class ClassName

{
..... // private members

public :

// public members

~ ClassName();
};

ClassName :: ~ ClassName()

{

// destructor body definition

}

must be public

Destructor prototype

Tilde character, destructor returns nothing

Destructor definition

Similar to constructors, a destructor must be declared in the public section of a class so that it is

accessible to all its users. Destructors have no return type. It is incorrect to even declare a void return

type. A class cannot have more than one destructor. The program test.cpp illustrates the use of

destructors.

//test.cpp: a class Test with a constructor and destructor

#include <iostream.h>

class Test

{

 public: // ‘public’ function:

 Test(); // the constructor

 ~Test(); // the destructor

Object Initialization and Clean-up 401

};

Test::Test() // here is the definition of constructor

{

 cout << “constructor of class Test called” << endl;

}

Test::~Test() // here is the definition of destructor

{

 cout << “destructor of class Test called” << endl;

}

void main()

{

 Test x; // constructor is called while creating

 cout << “terminating main()” << endl;

} // object x goes out of scope, destructor is called

Run

constructor of class Test called

terminating main()

destructor of class Test called

An interesting aspect of constructors and destructors is illustrated in the program count.cpp. It

keeps track of the number of objects created and how many of them are still alive.

// count.cpp: counts how many objects are created and how may are alive

include <iostream.h>

int nobjects =0; // number of objects of the class MyClass

int nobj_alive = 0; // number of objects present of the class MyClass

class MyClass

{

 public:

 MyClass() // increments objects count

 {

 ++nobjects; // add to total

 ++nobj_alive; // add to the active

 }

 ~MyClass () // decrements active objects count

 {

 --nobj_alive; // deduct one from active objects list

 }

 void show()

 {

 cout << “Total number of objects created: “ << nobjects << endl;

 cout<< “Number of objects currently alive: “<< nobj_alive << endl;

 }

};

void main()

{

Mastering C++402

 MyClass objl;

 obj1.show ();

 { // new block

 MyClass objl, obj2;

 obj2.show (); // can be obj1.show()

 } // objl and obj2 goes out of scope, hence deleted

 obj1.show();

 MyClass obj2, obj3;

 obj2.show(); // can be objl.show() or obj3.show()

}

Run

Total number of objects created: 1

Number of objects currently alive: 1

Total number of objects created: 3

Number of objects currently alive: 3

Total number of objects created: 3

Number of objects currently alive: 1

Total number of objects created: 5

Number of objects currently alive: 3

The constructor in the above program increments the global variables nobjects and nobj_
alive, by one. Whenever an object is created, the constructor is invoked automatically and counters

are updated to maintain the object’s statistics. The destructor decrements only the count variable

nobj_alive by one. Whenever objects go out of scope, the destructor is invoked automatically and

the counters will get updated (decremented). The status can be retrieved by using the member function

show() of the class MyClass. It prints the same message irrespective of the object invoking it; (it

uses global data, which remains the same irrespective of the object’s message).

The following rules need to be considered while defining a destructor for a given class:

 The destructor function has the same name as the class but prefixed by a tilde (~). The tilde

distinguishes it from a constructor of the same class.

 Unlike the constructor, the destructor does not take any arguments. This is because there is only

one way to destroy an object.

 The destructor has neither arguments, nor a return value.

 The destructor has no return type like the constructor, since it is invoked automatically whenever

an object goes out of scope.

 There can be only one destructor in each class. This is essentially a violation of the rule that a

function can take arguments, thereby making function overloading impossible.

11.5 CONSTRUCTOR OVERLOADING

An interesting feature of the constructors is that a class can have multiple constructors. This is called

constructor overloading. All the constructors have the same name as the corresponding class, and

they differ only in terms of their signature (in terms of the number of arguments, or data types of their

arguments, or both) as illustrated in the program account.cpp.

Object Initialization and Clean-up 403

// account.cpp: passing objects as parameters to functions
#include<iostream.h>
class AccClass
{
 private: // class data members
 int accno;
 float balance;
 public: // class function members
 AccClass() // Constructor no.l
 {
 cout << “Enter the account number for accl object: “;
 cin >> accno;
 cout << “Enter the balance: “;
 cin >> balance;
 }
 AccClass(int an) // Constructor no.2
 {
 accno = an;
 balance =0.0;
 }
 AccClass(int acval, float bal) // Constructor no.3
 {
 accno = acval;
 balance = bal;
 }
 void display()
 {
 cout << “Account number is: “ << accno << endl;
 cout << “Balance is: “ << balance << endl,
 }
 void MoneyTransfer(AccClass & acc, float amount);
};
// accl.MoneyTransfer(acc2, 100),transfers 100 rupees from accl to acc2
void AccClass::MoneyTransfer(AccClass & acc, float amount)
{
 balance = balance - amount; // deduct money from source
 acc.balance = acc.balance + amount; // add money to destination
}
void main()
{
 int trans_money;
 AccClass accl; // uses constructor 1
 AccClass acc2(10); // uses constructor 2
 AccClass acc3(20, 750.5); // uses constructor 3
 cout << “Account Information...” << endl;
 accl.display();
 acc2.display();
 acc3.display();
 cout << “How much money is to be transferred from acc3 to accl: “;

Mastering C++404

 cin >> trans_money;
 // transfer trans_money from acc3 to accl
 acc3.MoneyTransfer(accl, trans_money),
 cout << “Updated Information about accounts...” << endl;
 accl.display();
 acc2.display();
 acc3.display();
}

Run

Enter the account number for accl object: 1
Enter the balance: 100
Account Information...
Account number is: 1
Balance is: 100
Account number is: 10
Balance is: 0
Account number is: 20
Balance is: 750.5
How much money is to be transferred from acc3 to accl: 200
Updated Information about accounts...
Account number is: 1
Balance is: 300
Account number is: 10
Balance is: 0
Account number is: 20
Balance is: 550.5

In case of a class having multiple constructors, a constructor is invoked during the creation of an

object depending on the number and type of arguments passed. The default constructor can also be

defined along with other constructors, if necessary. The invocation of different constructors during the

creation of an object of the class AccClass is shown in Figure 11.5.

In this program, whenever a new account is created, one of the three steps is chosen:

 If no arguments are passed then the program prompts the user for an account number and balance

by invoking the no-argument constructor, AccClass().

Fig. 11.5 Constructor overloading

class AccClass

{
......

public:

AccClass();

AccClass(int an);

AccClass(int acval, float bal);

......
};

AccClass acc1;

AccClass

AccClass

acc2(10)

acc3(20, 750, 5);

overloaded constructors

Object Initialization and Clean-up 405

 If only an int argument, is provided then the account number is initialized with the value passed

as an input argument while the balance is set to 0.0 by invoking the one-argument constructor

AccClass(int).

 If both an int as well as a float argument is provided then the account number is set to the

int value while the balance is set to the float value by invoking the two-argument constructor,

AccClass(int,, float).

Differences between Constructors and Destructors
The following are the differences between constructors and destructors:

 Arguments cannot be passed to destructors.

 Only one destructor can be declared for a given class as a consequence of the fact that destructors

cannot have arguments and hence, destructors cannot be overloaded.

 Destructors can be virtual, while constructors cannot be virtual. More details can be found in the

chapter Virtual Functions.

11.6 ORDER OF CONSTRUCTION AND DESTRUCTION

The possibility of defining constructors with arguments offers an opportunity to monitor (examine) the

exact moment at which an object is created or destroyed during the execution of a program. This has

been illustrated in the program test2.cpp using the Test class.

// test2.cpp: the class Test with a constructor and destructor function

#include <iostream.h>

#include <string.h>

class Test

{

 private:

 char *name;

 public: // ‘public’ function:

 Test(); // the constructor

 Test(char *msg); // one-argument constructor

 ~Test();

};

Test::Test() // here is the

{ // definition

 name = new char[strlen(“unnamed”)+1];

 strcpy(name, “unnamed”);

 cout << ”Test object ‘unnamed’ created” << endl;

}

Test::Test(char *NameIn)

{

 name = new char[strlen(NameIn)+1];

 strcpy(name, NameIn);

 cout << “Test object “ << NameIn << “ created” << endl;

Mastering C++406

}

Test::~Test()

{

 cout <<“Test object “ << name << “ destroyed” << endl;

 delete name; // release memory

}

// and here is the test program:

Test g(“global”); // global object

void func()

{

 Test l(“func”); // local object in function func()

 cout << “here’s function func()” << endl;

}

void main()

{

 Test x(“main”); // local object in function main{)

 func();

 cout << “main() function - termination” << endl;

}

Run

Test object global created

Test object main created

Test object func created

here’s function func()

Test object func destroyed

main()function - termination

Test object main destroyed

Test object global destroyed

By defining objects of the class Test with specific names, the construction and destruction of these

objects can be monitored. In the above program, global objects are created first, hence the statement

Test g(“global”);

creates the object g and initializes its member name to “global”. In func(), the statement

Test 1(“func”);

creates the local object 1 and initializes its member name to “func”. In main(), the statement

Test x(“main”); // local object in function main()

creates the local object x and initializes its member name to “main”.

The object which goes out of scope is immediately destroyed. In the above program, the function

func() terminates first and hence, the local object 1 is destroyed first, which can also be observed

from the program output. Secondly, the object x is destroyed during the termination of the function

main(). Finally, the global object g is destroyed. When more than one object is created globally, or

locally, they are destroyed in the reverse chronological order (object created most recently is the first

one to be destroyed).

Object Initialization and Clean-up 407

11.7 CONSTRUCTORS WITH DEFAULT ARGUMENTS

Like any other function in C++, constructors can also be defined with default arguments. If any

arguments are passed during the creation of an object, the compiler selects the suitable constructor with

default arguments. The program complexl.cpp illustrates the usage of default arguments during the

creation of objects of the complex type class.

// complexl.cpp: default arguments to complex class
#include <iostream.h>
#include <math.h>
class complex
{
 private:
 float real; // real part of complex number
 float imag; // imaginary part of complex number
 public:
 complex() // constructor 0
 {
 real = imag =0.0;
 }
 complex(float real_in, float imag_in = 0.0) // constructorl
 {
 real = real_in;
 imag = imag_in;
 }
 void show(char *msg) // display complex number in x+iy form
 {
 cout << msg << real;
 if(imag < 0)
 cout << “-i”;
 else
 cout << “ +i”;
 cout << fabs(imag) << endl;
 }
 complex add(complex c2); // Addition of complex numbers
};
// temp = default object + c2;
complex complex::add(complex c2) // add default and c2 complex objects
{
 complex temp; // object temp of complex class
 temp.real = real + c2.real; // add real parts
 temp.imag = imag + c2.imag; // add imaginary parts
 return(temp); // return complex object
}
void main()
{
 complex cl(1.5, 2.0); // uses constructorl
 complex c2(2.2); // uses constructorl with default imag value

Mastering C++408

 complex c3; // uses constructor0
 cl.show(“cl = ”);
 c2.show(“c2 = ”);
 c3 = cl.add(c2); // add cl and c2 assign to c3
 c3.show(“c3 = cl.add(c2): “);
}
Run

cl = 1.5+i2
c2 = 2.2+i0
c3 = cl.add(c2) : 3.7+i2

The constructor complex(), in the class complex is declared as

complex(float real_in, float imag_in = 0.0) // constructorl

The default value of the argument imag_in is zero.

Then, the statement in main(),

complex c2(2.2);

passes only one parameter explicitly to the constructor. The compiler treats this statement as,

complex c2(2.2, 0.0);

by assuming the second argument to have default argument value (image_in = 0.0) specified at

the declaration of the constructor. However, the statement,

complex cl (1.5, 2.0);.

assigns 1.5 to real_in and 2.0 to imag_in. If the actual parameter is explicitly specified, it overrides

the default value. As stated earlier, the missing arguments must be the trailing ones. The invocation of a

constructor with default arguments while creating objects of the class complex is shown in Figure 11.6.

Fig. 11.6 Default arguments to constructor

class complex
{

......

public:
......

complex();
complex(float real_in,float imag_in=6.0;
.......

};

complex c1(1.5,2.0);

complex c2(2.2);

complex c3;

Suppose the specification of the constructor complex(float, float) is changed to,

complex(float real_in = 0.0, float imag_in = 0.0)

in the above program, it causes ambiguity while using a statement such as,

complex cl;

The confusion is whether to call the no-argument constructor,

Object Initialization and Clean-up 409

Fig. 11.7 Syntax of creating nameless objects

ClassName (arguments);

class name arguments to constructor

complex::complex()

or the two-argument default constructor

complex::complex(float = 0.0, float = 0.0)

Hence, such a specification should be avoided. If no constructors are defined, the compiler tries to

generate a default constructor. This default constructor simply allocates storage to build an object of

its class. A constructor that has all default arguments is similar to a default (no-argument) constructor,

because it can be called without any explicit arguments. This may also lead to errors as shown in the

following program segment:

class X
{
 int value;
 public:
 X()
 {
 value=0;
 }
 X(int i=0)
 {
 value=i;
 }
};
void main()
{
 X c; // Error: This leads to errors as compiler will not be
 // able to decide which constructor should be called
 X cl(4); // OK
}

Trying to create an object of the class X without any arguments will cause an error as two different

constructors satisfy the requirement. Hence, the statement,

X c;

causes the ambiguity whether to call X:: x() or X:: X (int i= 0). In this, if the default

constructor is removed, the program works properly.

11.8 NAMELESS OBJECTS

C++ not only supports the creation of named objects, but also the creation of unnamed objects. In

the object creation statement, the name of an

object need not be mentioned. The general format

for instantiating nameless objects is shown in

Figure 11.7.

In the above syntax, the name of the object is

not mentioned. However, the method of passing

Mastering C++410

arguments to a constructor, and the procedure for creating the nameless object is similar to the

procedure for creating named objects. Passing arguments to an object is optional and if no arguments

are mentioned, a default constructor of the class is invoked. If arguments are mentioned in the object-

creation statement, C++ invokes a constructor of the class that matches with the argument types. After

execution of the constructor, nameless objects are immediately destroyed and the destructor of the class

is invoked as a part of the object clean-up activity. Hence, the scope of a nameless object is limited only

to the statement in which it is created.

The feature of nameless object creation is useful in functions returning an object. The program

noname.cpp demonstrates the creation of nameless objects.

// noname.cpp: Nameless object creation

#include <iostream.h>

class nameless

{
 int a;

 public:

 nameless()

 {

 cout << “Constructor” << endl;

 }

 ~nameless()

 {

 cout << “Destructor” << endl;

 }

};

void main()

{

 nameless(); // nameless object is created as well as destroyed here

 nameless nl;

 nameless n2;

 cout << “Program terminates” << endl;

}

Run

Constructor <— nameless()

Destructor <— nameless()

Constructor <— nameless nl()

Constructor <— nameless n2()

Program terminates

Destructor <— during program termination

Destructor <— during program termination

From the output it is observed that the first two output statements are generated by the statement

nameless();// nameless object is created as well as destroyed here

It can be observed that a nameless object is created and destroyed at the same point. But this is not

the case with named objects.

Object Initialization and Clean-up 411

The statements,

nameless nl;
nameless n2;

create the named objects nl and n2 and they are destroyed during the termination of the program.

11.9 DYNAMIC INITIALIZATION THROUGH CONSTRUCTORS

Object’s data members can be dynamically initialized during runtime, even after their creation. The

advantage of this feature is that it supports different initialization formats using overloaded constructors.

It provides flexibility of using different forms of data at runtime depending upon the user’s need.

Consider an example of naming persons. Some persons have only the first name (person name),

some have the first and second name (person name and surname), and others have all the three (person

name, middle name, and surname). The program name.cpp illustrates the use of objects for holding

names and constructing them at runtime using dynamic initialization.

// name.cpp: object with different name pattern
#include <iostream.h>
#include <string.h>
class name
{
 private:
 char first[15]; // first name
 char middle[15]; // middle name
 char last[15]; // last name
 public:
 name() // constructor0
 {
 // initialize all string pointers to NULL
 first[0] = middle[0] = last[0] = ‘\0‘;
 }
 name(char *FirstName); // constructorl
 name(char *FirstName, char *MiddleName); // constructor2
 //constructor3
 name(char *FirstName, char *MiddleName, char *LastName);
 void show(char *msg);
};
inline name::name(char *FirstName)
{
 strcpy(first, FirstName);
 middle[0] = last[0] = ‘\0’; // others to NULL
}
inline name::name(char *FirstName, char *MiddleName)
{
 strcpy(first, FirstName);
 strcpy(middle, MiddleName);
 last[0] = ‘\0’; // others to NULL
}

Mastering C++412

name::name(char *FirstName, char *MiddleName, char *LastName)
{
 strcpy(first, FirstName);
 strcpy(middle, MiddleName);
 strcpy(last, LastName);
}
void name::show(char *msg)
{
 cout << msg << endl;
 cout << “First Name: “ << first << endl;
 if(middle[0])
 cout << “Middle Name: “ << middle << endl;
 if(lastt[0])
 cout << “Last Name: “ << last << endl;
}
void main()
{
 name nl, n2, n3; // constructor0
 nl = name(“Rajkumar”); // constructorl
 n2 = name(“Savithri”, “S”); // constructor2
 n3 = name(“Venugopal”, “K”, “R”); // constructor3
 nl.show(“First person details...”);
 n2.show(“Second person details...”);
 n3.show(“Third person details...”);
};

Run

First person details...
First Name: Rajkumar
Second person details...
First Name: Savithri
Middle Name: S
Third person details...
First Name: Venugopal
Middle Name: K
Last Name: R

The program has four constructors. The arguments to the last three constructors are passed during

runtime. The user input is used to initialize the name class’s objects in one of the following forms:

 No name at all: default constructor (constructor0) is invoked

 The first name: constructor1 is invoked

 The first and second name: construct2 or is invoked

 The first, second, and third name: constructor3 is invoked

The compiler selects an appropriate constructor while creating objects by choosing one that matches

the input values. For instance, in the situation

n2 = name(“Savithri”, “S”); // constructor2

Object Initialization and Clean-up 413

the compiler selects the two-argument constructor

name (char *FirstName, char *MiddleName); // constructor2

which matches the call for initializing the object n2’s data members.

11.10 CONSTRUCTORS WITH DYNAMIC OPERATIONS

A major application of constructors and destructors is in the management of memory allocation during

runtime. It will enable a program to allocate the right amount of memory during execution for each

object when the object’s data member size is not the same. Allocation of memory to objects at the time

of their construction is known as dynamic construction. The allocated memory can be released when

the object is no longer needed (goes out of scope) at runtime and is known as dynamic destruction.

The program vectorl.cpp shows the use of new and delete operators during object creation and

destruction respectively.

// vector1.cpp: vector class with array dynamically allocated
#include <iostream.h>
class vector
{
 int *v; // pointer to a vector
 int sz; // size of a vector
public:
 vector(int size) // constructor
 {
 sz = size;
 v = new int[size]; // dynamically allocate vector
 }
 ~vector() // destructor
 {
 delete v; // release vector memory
 }
 void read();
 void show_sum();
};
void vector::read()
{
 for(int i = 0; i < sz; i++)
 {
 cout << “Enter vector[“ << i << “]? ”;
 cin >> v[i];
 }
}
void vector::show_sum()
{
 int sum = 0;
 for(int i = 0; i < sz; i++)
 sum += v[i];
 cout << “Vector Sum = “ << sum;

Mastering C++414

}
void main()
{
 int count;
 cout << “How many elements are in the vector: “;
 cin >> count;
 // create an object of vector class and compute sum of vector elments
 vector vl(count);
 vl.read();
 vl.show_sum();
}

Run

How many elements are in the vector: 5
Enter vector[0] ? 1
Enter vector[1] ? 2
Enter vector[2] ? 3
Enter vector[3] ? 4
Enter vector[4] ? 5
Vector Sum = 15

In main(), the statement,

 vector vl(count);

creates the object vl of the class vector dynamically of the size specified by the variable count (it is

also read at runtime). The function read() accepts elements of the vector class from the console

and show_sum() computes the sum of all the vector elements and prints the same on the console.

The following points can be emphasized on dynamic initialization of objects.

 A constructor of the class makes sure that the data members are initially 0 pointers (NULL).

 A constructor with parameters allocates the right amount of memory resources.

 A destructor releases all the allocated memory.

11.11 COPY CONSTRUCTOR

The parameters of a constructor can be of any of the data types except an object of its own class as a

value parameter. Hence, declaration of the following class specification leads to an error.

class X
{
 private:
 ...
 ...
 public:
 X (X obj); // Error: obj is value parameter
};

Object Initialization and Clean-up 415

However, a class’s own object can be passed as a reference parameter. Thus, the class specification

shown in Figure 11.8 is valid.

Such a constructor having a reference to an instance of its own class as an argument is known as a

copy constructor.

The compiler copies all the members of the user-defined source object to the destination object

in the assignment statement, when its members are statically allocated. The data members which are

dynamically allocated must be copied to the destination object explicitly. It can be performed by either

using the assignment operator, or the copy constructor. Consider the following statements,

vector vl(5), v2(5);

vl = v2; // operator = invoked

vector v3 = v2; // copy constructor is invoked

Assuming that vl and v2 are the predefined objects of the class vector, the statement

vl = v2;

will not invoke the copy constructor even though vl and v2 are the objects of the class vector. It

must cause the compiler to copy the data from v2, member-by-member, into vl. This is the task of

the assignment operator. For more details on assignment operator overloading, refer to the chapter on

Operator Overloading. The next statement,

vector v3 = v2;

initializes one object with another object during definition. The data members of v2 are copied member-

by-member into v3. It is the default action performed by the copy constructor. The statement,

vector v3(v2)

is treated in the same way as the statement,

vector v3 = v2;

by the compiler.

The default actions performed by the compiler are insufficient if data members of an object

are dynamically changeable. It can be overcome by overriding these default actions. The program

vector2.cpp illustrates the concept of overriding default operations performed by a user-defined

copy constructor.

// vector2.cpp: copy constructor for vector elements copying
#include <iostream.h>
class vector
{

Fig. 11.8 Copy constructor

class X

{

......

public:

X()

X(X &obj);

};

X(int a);

reference to an object of the class X

copy constructor

Mastering C++416

 int * v; // pointer to vector

 int size; // size of vector v

 public:

 vector(int vector_size)

 {

 size = vector_size;

 v = new int[vector_size];

 }

 vector(vector &v2);

 ~vector()

 {

 delete v;

 }

 int & elem(int i)

 {

 if(i >= size)

 {

 cout << endl << “Error: Out of Range”;

 return -1; // illegal access

 }

 return v[i];

 }

 void show();

};

// copy constructor, vector vl = v2;

vector::vector (vector &v2)

{

 cout << “\nCopy constructor invoked”;

 size = v2.size; // size of vl is equal to size of v2

 v = new int[v2.size]; // allocate memory of the vector vl

 for (int i = 0; i < v2.size; i++)

 v[i] = v2.v[i];

}

void vector::show()

{

 for(int i = 0; i < size; i++)

 cout << elem(i) << “, “;

}

void main()

{

 int i;

 vector vl(5), v2(5);

 for (i = 0; i < 5; i++)

 v2.elem(i) = i + 1;

 vl = v2; // copy constructor is not invoked

 vector v3 = v2; // copy constructor is invoked, vector v3(v2)

Object Initialization and Clean-up 417

 cout << “\nvector vl: “;

 vl.show();

 cout << “\nvector v2: “;

 v2.show();

 cout << “\nvector v2: “;

 v3.show();

}

Run

Copy constructor invoked

vector vl: 1, 2, 3, 4, 5,

vector v2: 1, 2, 3, 4, 5,

vector v2: 1, 2, 3, 4, 5,

A copy constructor copies the data members from one object to another. The function also prints

the message (copy constructor invoked) to assist the user in keeping track of its execution.

The copy constructor takes only one argument, an object of the type vector, passed by reference.

The prototype is

vector(vector &v2);

It is essential to use a reference in the argument of a copy constructor. It should not be passed as a value;

if an argument is passed by value, its copy constructor would call itself to copy the actual parameter to

the formal parameter. This process would go on-and-on until the system runs out of memory. Hence,

in a copy constructor, the argument must always be passed by reference, preventing creation of copies.

A copy constructor also gets invoked when the arguments are passed by value to functions, and when

values are returned from functions. If an object is passed by value, the argument on which the function

operates is created using a copy constructor. If an object is passed by address, or reference, the copy

constructor would not be invoked, since, in such a case, copies of the objects need not be created. When

an object is returned from a function, the copy constructor is invoked to create a copy of the value

returned by the function.

11.12 CONSTRUCTORS FOR TWO-DIMENSIONAL ARRAYS

A class can have multidimensional arrays as data members. Their size can be either statically defined

or dynamically varied during runtime. A parameterized constructor can be used to specify the size of

the matrix dynamically.

Case Study
Consider a scenario where it is required to design a class named matrix for storing matrix elements. The

size of the matrix is specified at runtime on the basis of which the class constructor reserves memory

space using dynamic memory allocation technique.

The program matrix.cpp illustrates the method of constructing a matrix of size MaxRow x
MaxCol. It has member functions to perform various matrix operations such as addition, subtraction,

etc. The destructor releases memory allocated to the matrix whenever an object of the class matrix

goes out of scope.

Mastering C++418

// matrix.cpp: Matrix manipulation class with dynamic resource allocation
#include <iostream.h>
#include <process.h>
const int TRUE = 1;
const int FALSE = 0;
class matrix
{
 private:
 int MaxRow; // number of rows
 int MaxCol; // number of columns
 int **p; // pointer to 2 dimensional array
 public:
 matrix()
 {
 MaxRow = 0; MaxCol = 0;
 p = NULL;
 }
 matrix(int row, int col);
 ~matrix();
 void read();
 void show();
 void add(matrix &a, matrix &b);
 void sub(matrix &a, matrix &b);
 void mul(matrix &a, matrix &b);
 int eql(matrix &b);
};
matrix::matrix(int row, int col) // constructor
{
 MaxRow = row;
 MaxCol = col;
 p = new int *[MaxRow]; // dynamic allocation
 for(int i = 0; i < MaxRow; i++)
 p[i] = new int[MaxCol];
}
matrix::~matrix() // destructor
{
 for(int i = 0; i < MaxRow; i++)
 delete p[i];
 delete p;
}
// addition of matrices, c3.add(c1, c2): c3 = cl+c2
void matrix::add(matrix &a, matrix &b)
{
 int i, j;
 MaxRow = a.MaxRow;
 MaxCo1 = a.MaxCo1;
 if(a.MaxRow != b.MaxRow || a.MaxCol != b.MaxCol)
 {
 cout << “Error: Invalid matrix order for addition”;

Object Initialization and Clean-up 419

 exit(1);
 }
 for (i = 0; i < MaxRow; i++)
 for(j = 0; j < MaxCol; j++)
 p[i] [j] = a.p[i] [j] + b.p[i][j];
}
// summation of matrices, c3.sub(cl, c2): c3 = cl-c2
void matrix::sub(matrix &a, matrix &b)
{
 int i, j;
 MaxRow = a.MaxRow;
 MaxCol = a.MaxCol;
 if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)
 {
 cout << “Error: Invalid matrix order for subtraction”;
 exit(1);
 }
 for(i = 0; i < MaxRow; i++)
 for(j = 0; j < MaxCol; j++)
 p[i] [j] = a.p[i][j] - b.p[i] [j];
}
// multiplication of matrices, c3.mul(cl, c2) : c3 = cl*c2
void matrix::mul(matrix &a, matrix &b)
{
 int i, j, k;
 MaxRow = a.MaxRow;
 MaxCol = b.MaxCol;
 if (a.MaxCol != b.MaxRow)
 {
 cout << “Error: Invalid matrix order for multiplication”;
 exit(1);
 }
 for(i = 0; i < a.MaxRow; i++)
 for(j = 0; j < b.MaxCol; j++)
 {
 p[i][j] = 0;
 for(k = 0; k < a.MaxCol; k++)
 p[i][j] += a.p[i][k] * b.p[k][j];
 }
}
// compare matrices
int matrix::eql(matrix &b)
{
 int i, j;
 for(i = 0; i < MaxRow; i++)
 for(j = 0; j < MaxCol; j++)
 if(p[i][j] != b.p[i][j])
 return 0;
 return 1;

Mastering C++420

}
void matrix::read()
{
 int i, j;
 for(i = 0; i < MaxRow; i++)
 for(j = 0; j < MaxCol; j++)
 {
 cout << “Matrix[“ << i << “,” << j << “] =? “;
 cin >> p[i] [j];
 }
}
void matrix::show()
{
 int i, j;
 for(i = 0; i < MaxRow; i++)
 {
 cout << endl;
 for(j = 0; j < MaxCol; j++)
 cout << p[i][j] << “ “;
 }
}
void main()
{
 int m, n, p, q;
 cout << “Enter Matrix A details... “ << endl;
 cout << “How many rows? “;
 cin >> m;
 cout << “How many columns? “;
 cin >> n;
 matrix a(m, n);
 a.read();
 cout << “Enter Matrix B details...” << endl;
 cout << “How many rows? “;
 cin >> p;
 cout << “How many columns? “;
 cin >> q;
 matrix b(p, q);
 b.read();
 cout << “Matrix A is ... “;
 a.show();
 cout << endl << “Matrix B is ...”;
 b.show();
 matrix c(m, n);
 c.add(a, b);
 cout << endl << “C = A + B...”;
 c.show();
 matrix d(m, n);
 d.sub(a, b);
 cout << endl << “D = A - B...”;

Object Initialization and Clean-up 421

 d.show ();
 matrix e(m, q);
 e.mul(a, b);
 cout << endl << “E = A * B...”;
 e.show();
 cout << endl << “ (Is matrix A equal to matrix B)? “;
 if(a.eq1 (b))
 cout << “Yes”;
 else
 cout << “No”;
 }

Run

Enter Matrix A details...
How many rows? 3
How many columns? 3
Matrix[0,0] = ? 2
Matrix[0,1] = ? 2
Matrix[0,2] = ? 2
Matrix[1,0] = ? 2
Matrix[l,l] = ? 2
Matrix[1,2] = ? 2
Matrix[2,0] = ? 2
Matrix[2,l] = ? 2
Matrix[2,2] = ? 2
Enter Matrix B details...
How many rows? 3
How many columns? 3
Matrix[0,0] = ? 1
Matrix[0,l] = ? 1
Matrix[0,2] = ? 1
Matrix[l,0] = ? 1
Matrix[l,l] = ? 1
Matrix[1,2] = ? 1
Matrix[2,0] = ? 1
Matrix[2,l] = ? 1
Matrix[2,2] = ? 1
Matrix A is ...
2 2 2
2 2 2
2 2 2
Matrix B is ...
1 1 1
1 1 1
1 1 1
C = A + B...
3 3 3
3 3 3
3 3 3
D = A - B...
1 l l
1 1 1

Mastering C++422

1 1 1
E = A * B...
6 6 6
6 6 6
6 6 6
(Is matrix A equal to matrix B)? No

The constructor first creates a vector pointer to a list of integers of size MaxRow. It then allocates an

integer type vector of size MaxCol pointed to by each element p[i]. Figure 11.9 shows the allocation

of memory for the elements of a matrix whose size is MaxRow x MaxCol dynamically.

Fig. 11.9 Constructor creating matrix dynamically

= 2 bytes, near pointer

= 4 bytes, far pointer

10 2 3 4

p[0]

p[1]

p[2]

p[3]

p

MaxRow

sizeof(int*)

MaxCol

sizeof(int)=2 bytes

p = new int * [MaxRow];

for(int i=0; i<MaxRow; i++)

p[i]=new int[MaxCol];

class matrix
{

private
int**p; //point to matrix

public:
matrix()
{

}

};
........
........

}
}

}
}}

11.13 CONSTANT OBJECTS AND CONSTRUCTOR

C++ allows to define constant objects of user-defined

classes similar to constants of standard data types.

The syntax for defining a constant object is shown in

Figure 11.10.

The data members of a constant object can be

initialized only by a constructor, as a part of the object-

creation procedure. Once a constant object is created, no member functions of its class can modify its

data members. They can only read the contents of the data member. Such data members are termed as

Fig. 11.10 Constant object creation

ClassName const ObjectName (parameter)

Keyowrd object of type read only

Object Initialization and Clean-up 423

read-only data members and the object is termed constant, or read-only object. The const objects

behave like a ROM (Read Only Memory) of a computer. In such a memory, the data is stored during

their fabrication, like constant objects are initialized only by a constructor during its creation. It is

illustrated in the program person.cpp.

// person.cpp: person class with const member functions

#include <iostream.h>

#include <string.h>

class Person

{

 private:

 char *name; // name of person

 char *address; // address field

 char *phone; // telephone number

 public:

 Person(char *NameIn, char *AddressIn, char *PhoneIn);

 ~Person();

 // functions to set fields

 void Person::changename (char const *NameIn);

 // functions to inspect fields

 char const *getname(void) const;

 char const *getaddress(void) const;

 char const *getphone(void) const;

};

// constructor

void Person::Person(char *NameIn, char *AddressIn, char *PhoneIn)

{

 name = new char[strlen(NameIn)+1];

 strcpy(name, NameIn);

 address = new char[strlen(AddressIn)+1];

 strcpy(address, AddressIn);

 phone = new char[strlen(PhoneIn)+1];

 strcpy(phone, PhoneIn):

}

// destructor, release memory allocated to class data members

inline void Person::~Person()

{

 delete name;

 delete address;

 delete phone;

}

// interface functions get...()

inline char const *Person::getname() const

{

 return name;

}

inline char const *Person;:getaddress() const

Mastering C++424

{

 return address;

}

inline char const *Person::getphone() const

{

 return phone;

}

void Person::changename(char const *NameIn)

{

 if(name)

 delete name;

 name = new char[strlen(NameIn)+1];

 strcpy(name, NameIn);

}

void printperson(Person const &p)

{

 if(p.getname())

 cout << “Name : “ << p.getname() << endl;

 if(p.getaddress())

 cout << “Address: “ << p.getaddress() << endl;

 if(p.getphone())

 cout << “Phone : “ << p.getphone() << endl;

}

void main()

{

 Person const me(“Rajkumar”,”E-mail: raj@cdacb.ernet.in”,

 “91-080-5584271”);

 printperson(me);

 Person you(“XYZ”, “-not sure-”, “-not sure-”);

 cout << “You XYZ by default...” << endl;

 printperson(you);

 you.changename(“ABC”);

 cout << “You XYZ changed to ABC ...” << endl;

 printperson(you);

}

Run

Name : Rajkumar

Address : E-mail: raj@cdacb.ernet.in

Phone : 91-080-5584271

You XYZ by default...

Name : XYZ

Address : -not sure-

Phone : -not sure-

You XYZ changed to ABC ...

Name : ABC

Address : -not sure-

Phone : -not sure-

Object Initialization and Clean-up 425

The above program shows how a constant object of the class Person can be defined. At the point of

the definition of an object, the data fields are initialized (this is the action of the constructor). Following

the definition,

Person const me(“Rajkumar”, “raj@cdacb.ernet.in”, “91-080-5584271”);

it would be illegal to try to redefine the name, address, or phone number for the object me; hence, the

statement

me.setname(“Bill Gates”);

would not be accepted by the compiler. Generally, it is a good habit to define objects and member

functions, which do not modify their data as constant type.

11.14 STATIC DATA MEMBERS WITH CONSTRUCTORS

 AND DESTRUCTORS

Each object of a class has its own public or private data members, which are accessible only to its

member functions. In certain situations, it is desirable to have one or more common data fields, which

are accessible to all the objects of the class. An example of such a situation is to keep track of the status

of how many objects of a class are created and how many of them are currently active in the program.

Based on the number of objects present, some specific initialization has to be performed; only the first

object of the class would then perform the initialization and set the flag to done.

The use of static data members with constructors and destructors is illustrated by the program

graph.cpp. It has a class called Graphics, which defines the communication of a program with

a graphics device (such as EGA or VGA screen). The initial preparation of the device, i.e., switching

from text mode to graphics mode, is an action of the constructor and depends on a static flag variable

nobjects. The variable nobjects simply counts the number of objects of the class Graphics
present at that time. Similarly, the destructor of a class may switch back from graphics mode to text

mode when the last graphical object ceases to exist.

// graph.cpp: keeps count of how many objects are created
#include <iostream.h>
class Graphics
{
 private:
 // counter of number of objects
 static int nobjects;
 // hypothetical functions to switch to graphics
 // mode or back to text mode
 void setgraphicsmode()
 {}
 void settextmode()
 {}
 public:
 // constructor, destructor
 Graphics();
 ~Graphics();

Mastering C++426

 //other interface is not shown here,to draw lines, or circles etc.
 int get_count() const
 {
 return nobjects;
 }
};
// the constructor
Graphics::Graphics()
{
 if (! nobjects)
 setgraphicsmode();
 nobjects++;
}
// the destructor
Graphics::~Graphics()
{
 nobjects— —;
 if (! nobjects)
 settextmode();
}
void my_func()
{
 Graphics obj; // nobject is incremented by its constructor
 cout<<“\nNo.of Graphics Object’s while in my_func = “<<obj.get_count();
} // obj goes out of scope, destructor is called
// the static data member
int Graphics::nobjects = 0;//global:if not defined generates linker error
void main()
{
 Graphics obj1;
 cout<<“No. of Graphics Object’s before my_func = “<<objl.get_count();
 my_func();
 cout<<“\nNo. of Graphics Object’s after my_func = “«objl.get_count();
 Graphics obj2, obj3, obj4;
 cout<<“\nValue of static member nobjects after all 3 more objects...”;
 cout << “\nIn objl = “ << obj1.get_count();
 cout << “\nIn obj2 = “ << obj2.get_count();
 cout << “\nIn obj3 = “ << obj3.get_count();
 cout << “\nIn obj4 = “ << obj4.get_count();
}

Run

No. of Graphics Object’s before my_func = 1
No. of Graphics Object’s while in my_func = 2
No. of Graphics Object’s after my_func = 1
Value of static member nobjects after all 3 more objects...
In objl = 4
In obj2 = 4
In obj3 = 4
In obj4 = 4

Object Initialization and Clean-up 427

The purpose of the variable nobjects is to count the number of objects of the class Graphics,

which exist at a given time. When the first object is created, the graphics device is initialized. When the

last object is destroyed, the switch from graphics mode to text mode is made. The statement

int Graphics::nobjects = 0;

defines and initializes the static data member. If this statement is missing, the linker will generate the

error: undefined Graphics :: nobjects symbol.

It is obvious that when the class Graphics defines more than one constructor, each constructor

would need to increment the variable nobjects and possibly would have to initialize the graphics

mode. The constructor

Graphics::Graphics()

increments the variable nobjects by one and the destructor

Graphics::-Graphics()

decrements the variable nobjects by one. Therefore, for every object created, the variable nobjects

is incremented by one and whenever an object of the class Graphics goes out of scope, the variable

nobjects is decremented by one.

11.15 NESTED CLASSES

The power of abstraction of a class can be increased by including other class declarations inside a class.

A class declared inside the declaration of another class is called a nested class. Nested classes provide

classes with non-global status. Host and nested classes follow the same access rules for members that

exist between non-nested classes. Nested classes could be used to hide specialized classes and their

instances within a host class.

A member of a class may itself be a class. Such nesting enables building of very powerful data

structures. The Student class can be enhanced to accommodate the date of birth of a student. The

new member data type date is a class by itself as shown below:

class Student
{
 private:
 int roll_no;
 char name [25];
 char branch[15];
 int marks;
 public:
 class date
 {
 int day;
 int month;
 int year;
 public:
 date()
 {

Mastering C++428

 ... // initializing members of date class
 }
 read();
 // other member functions of date class
 } birthday; // instance of the nested date class
 Student()
 {
 // initialize members of Student class
 }
 ~Student()
 {

 }
 read()
 {
 //read members of Student class’s object including ‘birthday’
 cin >> roll_no;

 birthday.read(); // accessing member of a nested class date
 }
 // other member functions of Student class
};

The embedded class date is declared within the enclosing class declaration. An object of type

Student can be defined as follows:

Student s1;

The year in which the student s1 was born can be accessed as follows:

s1.birthday.year

 A statement such as,

s1.date.day = 2; //error

is invalid, because members of the nested class must be accessed using its object name.

The feature of nesting of classes is useful while implementing powerful data structures such as

linked lists and trees. For instance, the stack data structure can be implemented having a node data

member which is an instance of another class (node class).

SOLVED PROBLEM

Write a program that takes the (x, y) coordinates of two points and outputs the distance between

them using constructors.

#include <iostream.h>

class point

{

 private:

+
+

Object Initialization and Clean-up 429

 int x, y;

 public:

 point()

 {

 x=0;

 y=0;

 }

 point(int a, int b);

 ~point();

 void distance(point &a, point &b);

 void display();

};

point::point(int a, int b)

{

 x=a;

 y=b;

}

void point:: distance(point &a, point &b)

{

 x=a.x-b.x;

 y=a.y-b.y;

}

void point:: display()

{

 cout<<”x = “<<x;

 cout<<”\ny = “<<y;

}

void main()

{

 point p1(40,18);

 point p2(12,9);

 point p3;

 p3.distance(p1,p2);

 cout<<Coordinates of P1: \n;

 p1.display();

 cout<<\nCoordinates of P2: \n;

 p2.display();

 cout<<\nDistance between P1 and P2: \n;

 p3.display();

}

Run

Coordinates of P1:

x = 40

y = 18

Coordinates of P2:

Mastering C++430

x = 12

y = 9

Distance between P1 and P2:

x = 28

y = 9

Define a class having data members int a and float b, with default, parameterized, and

copy constructors.

#include <iostream.h>
class data
{
 private:
 int a;
 float b;
 public:
 data()
 {
 a=0;
 b=0;
 }
 data(int, float);
 data(data &);
 void display();
};
data::data(int x, float y)
{
 a=x;
 b=y;
}
data:: data(data &d)
{
 a=d.a;
 b=d.b;
}
void data:: display()
{
 cout<<”a = “<<a<<”\tb = “<<b;
}
void main()
{
 data d1;
 data d2(12,9.9);
 data d3(d2);
 cout<<”For Default constructor: \n”;
 d1.display();
 cout<<”\nFor Parameterized constructor: \n”;
 d2.display();

Object Initialization and Clean-up 431

 cout<<”\nFor Copy constructor: \n”;
 d3.display();
}

Run

For Default constructor
a = 0 b = 0
For Parameterized constructor:
a = 12 b = 9.9
For copy constructor:
a = 12 b = 9.9

REVIEW QUESTIONS ++
 11.1 What are constructors and destructors? Explain how they differ from normal functions.

 11.2 What are the differences between default and parameterized constructors?

 11.3 What are copy constructors? Explain their need.

 11.4 What is the order of construction and Destruction of objects?

 11.5 What are read-only objects? What is the role of a constructor in creating such objects?

 11.6 State which of the following statements are TRUE or FALSE. Give reasons.

 (a) Constructors must be explicitly invoked.

 (b) Constructors defined in private sections are useful.

 (c) Constructors can return values.

 (d) Destructors are invoked automatically.

 (e) Destructors take input parameters.

 (f) Destructors can be overloaded.

 (g) Constructors cannot be overloaded.

 (h) Constructors can take default arguments.

 (i) Data members of nameless objects can be initialized using constructors only.

 (j) Constructors can allocate memory during runtime.

 (k) A class member function can take its class’s objects as value arguments.

 (1) Constant objects can be initialized by using constructors only.

 (m) Data members of a class can be initialized at the point of their definition.

 11.7 Consider a class called MyArray having pointer to integers as its data member. Its objects

must appear like arrays, but they must be dynamically re-sizable. Write a program to

illustrate the use of constructors in the MyArray class.

 11.8 Write a program to model Time class using constructors.

 11.9 Distinguish between the following two statements:

 String name(“Smrithi”);

 String name = “Smrithi”;

Mastering C++432

 11.10 Declare a class called String. It must have constructors which allow definition of objects

in the following form: {The class String has data member str of type char *)

 String namel; // str points to NULL

 String name2 =. “Minu”; // one-argument constructor is invoked

 String nameS = name2; //one-argument constructor taking String
object

 Write a program to model the String class and to manipulate its objects. The destructor

must release memory allocated to the str data member by its counterpart.

 11.11 Create a class, which keeps track of the number of its instances. Use static data member,

constructors, and destructors to maintain updated information about active objects.

Dynamic Objects

 12.1 INTRODUCTION

C++ takes the middle ground between languages (such as C and Pascal)

which support dynamic memory allocation (discussed in the chapter

Pointers and Runtime Binding) and languages (like Java), in which all

variables are dynamically allocated. C++ supports creation of objects with

scoped lifetimes (stack-based objects) and with arbitrary lifetimes (heap-

based objects). Stack-based objects are managed by the compiler implicitly, whereas heap-based

objects are managed by the programmers explicitly.

C++ is different from C because it not only allocates memory for an object, but also initializes them.

Thus, when a dynamic object is created, it creates a live object, and not just a chunk of memory big

enough to hold the object. It is initialized with necessary data at runtime. Unlike dynamic memory

allocation which just allocates memory, dynamic object creation supported by C++ allocates and

initializes objects at runtime.

A class can be instantiated at runtime and objects created by such instantiation are called dynamic

objects. The lifetime of dynamic objects in C++ (which is allocated from heap memory—the free store)

is managed explicitly by the program. The program must guarantee that each dynamic object is deleted

when it is no longer needed, and certainly before it becomes garbage. (There is no garbage collection

in standard C++, and few programs can afford to produce garbage.) For each dynamic allocation, a

policy that determines the objects’s lifetime must be found by the programmer and implemented. These

policies used in managing dynamic objects will be discussed at the end of this chapter. The lifetime of

an object in C++ is the interval of time it exists by occupying memory. Creation and deletion of objects

as and when required offers a great degree of flexibility in programming.

Objects with scoped lifetimes are created in the stack memory. Stack memory is a store house which

holds local variables or objects, and whenever they go out of scope, the memory allocated for them in

the stack is released automatically. Objects with arbitrary lifetimes are created in the heap memory.

These dynamic objects can be created or destroyed, as and when required, explicitly by the programmer.

The operators new and delete used with standard data type variable’s management can also be used

for creating or destroying objects at runtime respectively.

12

Mastering C++434

12.2 POINTERS TO OBJECTS

The C++ language defines two operators which are specific for the allocation and deallocation of

memory. These operators are new and delete. The new operator is used to create dynamic objects

and the delete operator is used to release the memory allocated to the dynamic object by the new
operator. A pointer to a variable can be defined to hold the address of an object, which is created

statically or dynamically. Such pointer variables can be used to access data or function members of a

class using the * or -> operators.

12.2.1 Pointer to Object Definition

Pointers can be used to hold addresses of objects, just as they can hold addresses of primitive and user-

defined data items. The need for using pointers to objects becomes clear when objects are to be created

while the program is being executed, which is an instance of dynamic allocation of memory. The new

operator can also be used to obtain the address of the allocated memory area besides allocating storage

area to the objects of the given class. Thus, the address returned by the new operator may be used to

initialize a pointer to an object.

The general format for defining a pointer to an object is shown in Figure 12.1, which is similar to

the way in which pointers to other data types are declared and defined. A pointer can be made to point

to an existing object, or to a newly created object using the new operator. The address operator & can

be used to get the address of an object, which is defined statically during compile time. In the following

statement

ptr_to_object = &object;

The & operator in the expression &object returns the address of the object and the same is initialized

to a pointer variable ptr_to_object.

Fig. 12.1 Syntax of defining a pointer to an object

ptr_to_object = new ClassName;

ptr_to_object = &object;

ClassName * ptr_to_object;

name of the class name of the pointer to the object of the class

address of a statically created object

object created dynamically

Dynamic Objects 435

12.2.2 Accessing Members of Objects

In order to utilize a pointer to an object, it is necessary to have some means by which the members

of that object can be accessed and manipulated. As in the case of pointers to structures, there are two

approaches to referring and accessing the members of an object whose address resides in a pointer. The

operator -> can also be used to access members of an object using a pointer to objects. The expression

to access a class member using a pointer is as follows:

pointer_to_object -> member_name

or

*pointer_to_object. member_name

The member to be accessed through the object pointer can be either a data or function member (see

Figure 12.2). The program ptrobj1.cpp illustrates the definition of pointers to objects and their

usage in accessing members of a class.

Fig. 12.2 Pointer accessing class members

class XYZ

{

private:

int a;

int b;

public:

int c,d;

int func1();

};

XYZ obj1;

XYZ *ptr;

ptr = &obj1;

ptr->c

ptr->func1();

obj1

a

b

c

d
{

// ptrobj1.cpp: pointer to object, pointing to statically created objects
#include <iostream.h>
class someclass
{
 public:
 int data1;
 char data2;
 someclass()
 {
 cout << “Constructor someclass() is invoked\n”;
 datal = 1, data2 = ‘A’;
 }
 ~someclass()
 {
 cout << “Destructor ~someclass() is invoked\n”;
 }
 void show()
 {

Mastering C++436

 cout << “data1 = “ << data1;
 cout << “ data2 = “ << data2 << end1;
 }
};
void main(void)
{
 someclass *ptr; // define a pointer to object of class someclass
 someclass objectl; // object of type someclass created statically
 ptr = &object1;
 cout << “Accessing object through object1.show() ...” << end1;
 object1.show();
 cout << “Accessing object through ptr->show()...” << end1;
 ptr->show(); //it can be *ptr.show();
}

Run

Constructor someclass() is invoked
Accessing object through object1.show() ...
datal = 1 data2 = A
Accessing object through ptr->show()...
datal = 1 data2 = A
Destructor ~someclass() is invoked

In main(), the statement,

 ptr = &object1;

assigns the address of the object object1 of the class someclass to the pointer ptr. The statement

ptr->show();

or

*ptr.show()

invokes the member function show() of the object pointed to by the pointer ptr. It points to the

object1, and hence executes the function show() of the respective class.

12.2.3 Creating and Deleting Dynamic Objects

A dynamic object can be created by the execution of a new operator expression. The syntax for creating

a dynamic object using the new operator is as follows:

 new ClassName

It returns the address of a newly created object. The returned address of an object can be stored in a

variable of type pointer to object (ptr_to_object) as follows:

 ptr_to_object = new ClassName;

While creating a dynamic object, if a class has the default constructor, it is invoked as a part of

object-creation activity. Once a pointer is holding the address of a dynamic object, its members can be

accessed by using the -> operator.

Dynamic Objects 437

The entity that executes the new expression is the dynamic object’s creator. The creator may be a

(member) function, an object, or a class. The creator of a dynamic object must be in a position to fully

determine the object’s lifetime. The creator cannot be inferred from the source code alone. Although

the creator is determined by the intent of the programmer, the language constrains the choice. In the

program ptrobj1.cpp, the function main() is the creator of the object pointed to by variable

ptr_to_object and hence, it is responsible for destroying it.

The syntax of the delete operator releasing memory allocated to a dynamic object is as follows:

 delete ptr_to_object;

It destroys the object pointed to by the ptr_to_object variable. It also invokes the destructor

of the class if it exists as a part of object-destruction activity before releasing memory allocated to an

object by the new operator.

The program ptrobj2.cpp illustrates the binding of dynamic objects address to a pointer variable.

The pointer defined is initialized with the address returned by the new operator, which actually creates

the object.

// ptrobj2.cpp: pointer to object, pointing to dynamically created objects
include <iostream.h>
class someclass
{
 public:
 int data1;
 char data2;
 someclass()
 {
 cout << “Constructor someclass() is invoked\n”;
 data1 = 1, data2 = ‘A’;
 }
 ~someclass()
 {
 cout << “Destructor ~someclass() is invoked\n”;
 }
 void show()
 {
 cout << “data1 = “ << data1;
 cout << “ data2 = “ << data2 << end1;
 }
};
void main (void)
{
 someclass *ptr; // define a pointer to object of class someclass
 cout << “Creating dynamic object...” << end1;
 pfr = new someclass(); // object created dynamically
 cout << “Accessing dynamic object through ptr->show()...” << end1;
 ptr->show();
 cout << “Destroying dynamic object...” << end1;
 delete ptr; // object destroyed dynamically
}

Mastering C++438

Run

Creating dynamic object. . .
Constructor someclass() is invoked
Accessing dynamic object through ptr->show()...
data1 = 1 data2 = A
Destroying dynamic object. . .
Destructor ~someclass() is invoked

In main(), the statement

 ptr = new someclass; // object created dynamically

creates the nameless object of the class someclass dynamically and assigns its address to the object

pointer ptr. It executes the constructor of the class someclass automatically during the creation of

dynamic objects. The default argument constructor initializes the data members data1 and data2.

These data can be referenced by other member functions of its class. The statement

ptr->show();

invokes the member function show() of the object pointed to by the pointer variable ptr. It points

to the object of the class someclass and hence, executes its member function show() as illustrated

in Figure 12.3.

Fig. 12.3 Object pointers and dynamic binding

obj1

class someclass

{

......

void show();

......

};

someclass *ptr;

someclass obj1;

someclass obj2;

ptr = &obj1;

ptr = &obj2;

ptr = new someclass;

ptr->show();

ptr

obj2

ptr

xxx

obj1

obj2ptr

obj1

obj2

obj1

obj2

Dynamic Objects 439

When the dynamic object pointed to by the variable ptr goes out of scope, the memory allocated to

that object is not released automatically. It must be performed explicitly as follows:

delete ptr;

The above statement releases the memory allocated to the dynamically created object by the new

operator. In addition to this, it also invokes the destructor function ~someclass() to perform clean-

up of resources allocated to the object’s data members. In this class, object data members are not

allocated with any resources dynamically and hence, there is no need to release them explicitly.

Whenever it is necessary to determine the size of the memory area allocated to an object by the new

operator, the sizeof operator may be used. For instance, the expression sizeof(someclass)

returns the number of bytes required for the creation of an object of the class someclass.

12.2.4 Dereferencing Pointers

As the new operator returns a pointer to

an area of memory that holds an object, it

should be possible to refer to the original

object by dereferencing the pointer. This

method of memory allocation requires the

use of both the indirection operator * and the

reference operator &. The general format for

such a declaration is shown in Figure 12.4.

Such reference variables can be used like other variables without any special mechanism. The

program useref.cpp illustrates the concept of binding reference variables at runtime.

// useref.cpp: Illustrates a variant usage of reference operator
#include <iostream.h>
void main(void)
{
 int & t1 = *(new int); // Declares an integer variable using new
 int t2, t3; // Regular int definitions
 t1 = t3 = 5;
 t2 = 10;
 t1 = t1 + t2;
 cout << “Sum of “ << t3; // Display old value of t1
 cout << “ and “ << t2;
 cout << “ is : “ << t1; // Prints sum of t1 and t2
}

Run

Sum of 5 and 10 is : 15

Observe that the variable t1 in the program is a variable of type reference to an integer.

Also, the pointer returned by new *(new int), is dereferenced in order to refer to the original integer

object which is finally associated with the reference variable t1. In the case of reference variables to

class objects or structures, the members are accessed with the usual dot membership operator.

Fig. 12.4 Syntax of dereferencing pointers

DataType & ReferenceVar=*(new DataType);

data indirection operator dynamic allocation

Mastering C++440

12.2.5 Reference to Dynamic Objects

The address of dynamic objects returned by the new operator can be dereferenced and reference to

them can be created as follows:

 ClassName &RefObj = *(new ClassName);

The reference to object RefObj can be used as a normal object; the memory allocated to such

objects cannot be released except during the termination of the program. The program refobj.cpp
illustrates the dereferencing of objects using reference pointers.

// refobj.cpp: reference to dynamic objects

#include <iostream.h>

#include <string.h>

class student

{

 private:

 int roll_no; // roll number

 char name[20]; // name of a student

 public:

 // initializing data members

 void setdata(int roll_no_in, char *name_in)

 {

 roll_no = roll_no_in;

 strcpy (name, name_in);

 }

 // display data members on the console screen

 void outdata()

 {

 cout << “Roll No = “ << roll_no << end1;

 cout << “Name = “ << name << end1;

 }

};

void main()

{

 student &s1 = *(new student); // reference to a dynamic object

 s1.setdata(1, “Savithri”);

 s1.outdata();

 student &s2 = *(new student); // reference to a dynamic object

 s2.setdata(2, “Bhavani”);

 s2.outdata();

 student s3;

 s3.setdata(3, “Vani”);

 student &s4 = s3; // reference to static object

 s3.outdata();

 s4.outdata();

Dynamic Objects 441

}

Run

Roll No = 1

Name = Savithri

Roll No = 2

Name = Bhavani

Roll No = 3

Name = Vani

Roll No = 3

Name = Vani

In main(), the statement

student &s1 = *(new student);

creates a dynamic object of the class student and binds it to the reference variable s1. The expression

*(new student) creates a dynamic object. The memory allocated to such objects cannot be released

except during the termination of the program. The statement

s1.setdata(1, “Savithri”);

accesses the member setdata() in the same way as normal object accesses. The statement

student &s4 = s3;

creates the reference to a normal object with the name s4. Note that reference objects are accessed in

the same way, whether normal or dynamic type objects.

12.3 LIVE OBJECTS

The operator new allocates memory big enough to store an object and initializes it with the required

data. Objects created dynamically with their data members initialized during creation are known as

live objects. To create a live object, the constructor must be invoked automatically which performs

initialization of data members. Similarly, the destructor for an object must be invoked automatically

before the memory for that object is deallocated. The syntax for creating a live object is as follows:

ptr_to_object = new ClassName(parameters)

A class whose live object is to be created must have at least one constructor. The number of

parameters passed specified at the point of creation of dynamic objects can be zero or more. If no

arguments are specified, the default constructor (constructor with zero arguments) will be invoked

automatically. If a class has more than one constructor, the constructor that matches the parameters

specified is invoked for initialization of the dynamic object. Note that there is no special syntax for

releasing memory allocated to the objects, which are created and initialized by passing parameters.

Hence, the syntax for destroying live objects is the same as that of normal dynamic objects.

The program student3.cpp illustrates the creation of live objects and their manipulation. It has

a class called student having three constructor functions for initializing static or dynamic objects.

The information required for initializing some dynamic objects is passed as parameters and some are

initialized with information read at runtime.

Mastering C++442

// student3.cpp: manipulation of live objects
#include <iostream.h>
#include <string.h>
class student
{
 private:
 int roll_no; // roll number
 char *name; // name of a student
 public:
 // initializing data members using constructors
 student() // constructor 0
 {
 char flag, str[50];
 cout << “Do you want to initialize the object (y/n): “;
 cin >> flag;
 if(flag == ‘y’ || flag == ‘Y’)
 {
 cout << “Enter Roll no. of student: “;
 cin >> roll_no;
 cout << “Enter Name of student: “;
 cin >> str;
 name = new char[strlen(str)+1]; // dynamic initialization
 strcpy(name, str);
 }
 else
 {
 roll_no = 0;
 name = NULL;
 }
 student(int roll_no_in) // constructor 1
 {
 roll_no = roll_no_in;
 name = NULL;
 }
 student(int roll_no_in, char *name_in) // constructor 2
 {
 roll_no = roll_no_in;
 name = new char{ strlen(name_in)+1];
 strcpy(name, name_in);
 }
 ~student()
 {
 if(name)
 delete name; // release memory allocated to name member
 }
 void set (int roll_no_in, char *name_in)
 {
 student(roll_no_in, name_in);

Dynamic Objects 443

 }
 // display data members on the console screen
 void show()
 {
 if(roll_no) // if(roll_no ! = 0)
 cout << “Roll No: “ << roll_no << end1;
 else
 cout << “Roll No: (not initialized)” << end1;
 if(name) // if(name != NULL)
 cout << “Name: “ << name << end1;
 else
 cout << “Name: (not initialized)” << end1;
 }
};
void main()
{
 student *s1, *s2, *s3, *s4;
 s1 = new student; // will be initialized during run time by the user
 s2 = new student; // will be initialized during run time by the user
 s3 = new student(1); // partially live object
 s4 = new student(2, “Bhavani”); // fully live object
 cout << “Live objects contents...” << end1;
 // display contents of all live objects
 s1->show();
 s2->show();
 s3->show();
 s4->show();
 // release the memory allocated to dynamic objects s1, s2, s3, and s4
 delete s1;
 delete s2;
 delete s3;
 delete s4;
}

Run

Do you want to initialize the object (y/n): n
Do you want to initialize the object (y/n): y
Enter Roll no. of student: 5
Enter Name of student: Rekha
Live objects contents...
Roll No: (not initialized)
Name: (not initialized)
Roll No: 5
Name: Rekha
Roll No: 1
Name: (not initialized)
Roll No: 2
Name: Bhavani

Mastering C++444

In main(), the statement

student *sl, *s2, *s3, *s4;

creates pointer variables to objects of the class student. The statements

s1 = new student;
s2 = new student;

create two objects dynamically and store their addresses in the variables s1 and s2 respectively. These

objects are initialized by invoking the default constructor which reads the data entered by the user at

runtime. The statement

s3 = new student(1);

creates an object and initializes its first data member by invoking the one-argument constructor. The

object s3 is a partially initialized object. The statement

s4 = new student(2, “Bhavani”);

creates an object named s4 and initializes all its data members by invoking the two-argument

constructor. The member function show() of the class student is invoked for all the objects pointed

to by s1, s2, s3, and s4 to display students’ roll numbers and their names. All the objects created

in this program are destroyed explicitly by using the delete operator. The destructor is invoked

automatically for each one of these objects to release the memory allocated to their string data member

name. For instance, the statement,

delete s2;

releases the memory allocated to the object pointed to by s2 and also invokes the destructor to clean

up.

12.4 ARRAY OF OBJECTS

C++ allows the user to create an array of any data type including user-defined data types. Thus, an array

of variables of a class data type can also be defined, and such variables are called an array of objects.

An array of objects is often used to handle a group of objects, which reside contiguously in the memory.

Consider the following class specification:

class student
{
 private:
 int roll_no; // roll number
 char name[20]; // name of a student
 public:
 void setdata(int roll_no_in, char *name_in);
 void outdata();
};

The identifier student is a user-defined data type and can be used to create objects that relate

to students of different courses. The following definition creates an array of objects of the student

class:

Dynamic Objects 445

student science[10]; // array of science course students
student medical[5]; // array of medical course students
student engg[25]; // array of engineering course students

The array science contains ten objects, namely science [0], .., science [9] of type

student class, the medical array contains 5 objects, and the engg array contains 25 objects.

An array of objects is stored in the memory in the same

way as a multidimensional array created at compile time.

The representation of an array of engg objects is shown

in Figure 12.5. Note that only the memory space for data

members of the objects is created; member functions

are stored separately and shared by all the objects of

student class.

An array of objects behaves similar to any other data-

type array. The individual element of an array of objects is

referenced by using its index, and member of an object is

accessed using the dot operator

For instance, the statement

engg[i].setdata(10, “Rajkumar”);

sets the data members of the ith element of the array engg. Similarly, the statement

engg[i].outdata();

will display the data of the ith element of the array engg[i]. The program student1.cpp

illustrates the use of the array of objects.

// student1.cpp: array of student data type
#include <iostream.h>
#include <string.h>
class student
{
 private:
 int roll_no; // roll number
 char name[20]; // name of a student
 public:
 // initializing data members
 void setdata(int roll_no_in, char *name_in)
 {
 roll_no = roll_no_in;
 strcpy(name, name_in);
 }
 // display data members on the console screen
 void outdata()
 {
 cout << “Roll No = “ << roll_no << end1;
 cout << “Name = “ << name << end1;
 }

Fig. 12.5 Storage for data items in an array

of objects

roll_no

name

roll_no

name

roll_no

name

engg[0]

engg[1]

engg[24]}

}
}

Mastering C++446

};
void main()
{
 int i, roll_no, count;
 char response, name[20];
 student s[10]; // array of 10 objects
 count = 0;
 for (i = 0; i < 10; i++)
 {
 cout << “Initialize student object (y/n): “;
 cin >> response;
 if(response = = ‘y’ || response == ‘Y’)
 {
 cout << “Enter Roll no. of student: “;
 cin >> roll_no;
 cout << “Enter Name of student: “;
 cin >> name;
 s[i].setdata(roll_no, name);
 count++;
 }
 else
 break;
 }
 cout << “Student details. . .” << end1;
 for(i = 0; i < count; i++)
 s[i].outdata();
}
Run

Initialize student object (y/n): y
Enter Roll no. of student: 1
Enter Name of student: Rajkumar
Initialize student object (y/n): y
Enter Roll no. of student: 2
Enter Name of student: Tejaswi
Initialize student object (y/n): y
Enter Roll no. of student: 3
Enter Name of student: Savithri
Initialize student object (y/n): n
Student details...
Roll No = 1
Name = Rajkumar
Roll No = 2
Name = Tejaswi
Roll No = 3
Name = Savithri

In main(), the statement

student s[10];

Dynamic Objects 447

creates an array of 10 possible objects of the student class. It should be clearly understood that an

array of objects allow better organization of the program instead of having 10 different variables and

each one of them is the object of the student class. Note that the subscripted notation used for object

is similar to the manner in which arrays of other data types are usually handled. The statement

s[i].outdata();

executes the outdata() member function in the student class for the ith object of the s array.

12.5 ARRAY OF POINTERS TO OBJECTS

An array of pointers to objects is often used to handle a group of objects, which need not necessarily

reside contiguously in memory, as in the case of a static array of objects. This approach is more flexible,

in comparison with placing the objects themselves in an array; because objects could be dynamically

created as and when they are required. The syntax for defining an array of pointers to objects is the

same as any of the fundamental types. The program student2.cpp illustrates the concept of an

array of pointers to objects.

// student2.cpp: array of pointers to student
#include <iostream.h>
#include <string.h>
class student
{
 private:
 int roll_no; // roll number
 char name [20]; // name of a student
 public:
 // initializing data members
 void setdata(int roll_no_in, char *name_in)
 {
 roll_no = roll_no_in;
 strcpy(name, name_in);
 }
 // display data members on the console screen
 void outdata()
 {
 cout << “Roll No = “ << roll_no << end1;
 cout << “Name = “ << name << end1;
 }
};
void main()
{
 int i, roll_no, count;
 char response, name[20];
 student * s[10]; // array of pointers to objects
 count = 0;
 for (i = 0; i < 10; i++)
 {

Mastering C++448

 cout << “Create student object (y/n): “;
 cin >> response;
 if(response == ‘y’ || response == ‘Y’)
 {
 cout << “Enter Roll no. of student: “;
 cin >> roll_no;
 cout << “Enter Name of student: “;
 cin >> name;
 s[i] = new student; // dynamically creating objects
 s[i]->setdata(roll_no, name);
 count++;
 }
 else
 break;
 }
 cout << “Student details...” << end1;
 for(i = 0; i < count; i++)
 s[i]->outdata();
 for(i = 0; i < count; i++) // release memory allocated to all objects
 delete s[i];
}

Run

Create student object (y/n): y
Enter Roll no. of student: 1
Enter Name of student: Rajkumar
Create student object (y/n): Y
Enter Roll no. of student: 2
Enter Name of student: Tejaswi
Create student object (y/n) : y
Enter Roll no. of student: 3
Enter Name of student: Savithri
Create student object (y/n): n
Student details...
Roll No = 1
Name = Rajkumar
Roll No = 2
Name = Tejaswi
Roll No = 3
Name = Savithri

In main(), the statement

student *s[10];

creates an array of pointers of 10 possible student objects. It should be clearly understood that the

space required for an array of 10 pointers to student objects is certainly less than the space for an

array of 10 student objects. Hence, the student class objects are created by the program as and

when they are needed (see Figure 12.6).

Dynamic Objects 449

Note that the subscripted notation used for object pointers is similar to the manner in which arrays

of other data types are usually handled. Thus, s[count] is same as *(s + count) in the program.

Similarly, the statement

s[i]->outdata();

executes the outdata() member function in the student class for the ith object of the s array.

Pointers to objects could be effectively used to create and manipulate data structures like linked lists,

stacks, queues, etc.

12.6 POINTERS TO OBJECT MEMBERS

Whenever an object is created, memory is allocated to it. The data defining the object is held in the

space allocated to it, i.e., the data and member functions of the object reside at specific memory

locations subsequent to the creation of the object. Thus, a pointer to an object member can be obtained

by applying the address-of operator (&) to a fully qualified class member-name (which may be a data

item or a member function). A fully qualified member name is used to refer to a member of a class

without any ambiguity. For instance, the declaration

<class_name>::<member_name>;

is a fully qualified declaration naming the member <member_name> of the class <class_name>.

Preceding the above member reference with an & operator causes the address of the member <member_
name> of the class <class_name> to be returned.

Members of a class can be accessed using either a pointer to an object, or a pointer to the members

themselves. The address of a member can be obtained by using the address operator (&) to a fully

qualified member name of a class similar to variables. A pointer to class members is declared using

the operator : : * with the class name. The syntax for defining the pointer to class members is shown

in Figure 12.7.

Fig. 12.6 Array of pointers to objects and dynamic binding

s[0] = new student;

s[1] = new student;

s[2] = new student;

3

Savithri name[20]

roll_no.

2

Tejaswi name[20]

roll_no.

1

Rajkumar name[20]

roll_no.

student*s(10)

s[0]

s[1]

s[2]

s[3]

s[4]

s[5]

s[6]

s[7]

s[8]

s[9]

Mastering C++450

A variable of type pointer to a member of class X can be defined as follows:

DataType X:: *ptr_name;

The ptr_name is a pointer to a data member of class X, which is of type DataType. A pointer to a

member function can be defined as follows:

ReturnType (X::* fn_ptr) (arguments);

It defines a pointer variable fn_ptr as a pointer to a member function of the class X which takes one

or more arguments as specified by arguments and returns a value of type ReturnType. Consider

the following specification of the class X:

class X
{
 private:
 int y;
 public:
 int a;
 public:
 int b;
 int init(int z);
};

A pointer to the member a or b is defined as follows:

int X::*ip;

The address of the member a can be assigned by

ip = &X::a;

Similarly, the address of the member b can be assigned by

ip = &X::b;

The address of the member a can also be assigned to a pointer during its definition as

int X::*ip = &X::a;

The pointer variable ip, acts like the class member so that it can be invoked with a class object. In

the above statement, the phrase X::* implies a pointer-to-member of the class X. The phrase &X::a

implies address of the member a of the class X.

Fig. 12.7 Syntax of defining a pointer to class members

DataType ClassName :: *PointerName ;

PointerName = &ClassName :: Member

address of a member of a class

pointer to a member of a class

Dynamic Objects 451

The address of the private member y cannot be assigned by using the statement

ip = &X::y;

Private members have the same access control privilege even with a pointer to the class members.

A normal pointer variable cannot be used as a pointer to the class member. Hence, the statement

int *ptr = &X: :a;

is invalid. The pointer and the variable have meaning only when they are associated with the class to

which they belong. The scope-resolution operator must be applied to both the pointer and the member.

Like pointers to data members, pointers to member functions can also be defined and invoked using the

dereferencing operators. A pointer to the member function init() is defined as follows:

int (X::*init_ptr)(int);

The address of the member init() can be assigned by

init_ptr = &X::init;

to the pointer variable init_ptr. The different methods of accessing class members is shown in

Figure 12.8.

Fig. 12.8 Different ways of accessing class members

ObjectName . Member

ObjectName *PointerToMember;

PointerToObject -> Member;

PointerToObject -> *PointerToMember;

(d) Accessing class member through the pointer to object and member

(c) Accessing class member through the pointer to object

(b) Accessing class member through its pointer

(a) Common way of assessing a class member

pointer to class member

pointer to object

pointer to object pointer to class member

12.6.1 Access through Objects

C++ provides the operator. * (dot-star) exclusively for use with pointers to members. It is called the

member dereferencing operator. This operator is used to access class members using a pointer to

members and it must be used with the objects of the class. The following statement,

X obj1;

Mastering C++452

creates the object obj1 of the class X. Using the pointer variable ip, the following statement accesses

the data member variable.

obj1.*ip = 20; // if ip is bound to a, it is same as the obj1.a;
cout << obj1.*ip;
int k = obj1.*ip;

Member functions can also be accessed using the operator . * as follows:

(obj1.*init_ptr) (5); // same as the objl.init() call

int k = (obj1.*init_ptr) (5);

The general format can be deduced to the following:

(object-name.*pointer-to-member-function)(arguments);

In such calls, the parentheses must be used explicitly, since the precedence of () is higher than the

dereferencing .* operator.

12.6.2 Access through Object Pointers

C++ provides another operator ->* for use exclusively with pointers to members. It is called the

member dereferencing operator. This operator is used to access a member using a pointer to it with a

pointer to the object. The following statements

X obj1;
X *pobj;

create the object obj1 of the class X and the pointer pobj to the objects of the class X. Using the

pointer variable ip (defined earlier), the following statements access the member variables.

pobj->*ip = 20; // accesses a if ip is bound to data member a
cout << pobj->*ip; // display data member a
int k = pobj->*ip; // k = data member a’s contents

Member functions can also be accessed using the operator ->* as follows.

(pobj.*init_ptr) (5);
iht k = (pobj->*init_ptr) (5);

The general format can be deduced to the following:

(pointer-to-object->*pointer-to-member-function)(arguments);

In such calls, the parentheses must be used explicitly, since the precedence of () is higher than the

dereferencing ->* operator. The program ptrmemb.cpp illustrates the concept of a pointer to class

members.

// ptrmemb.cpp: pointer to class members

#include <iostream.h>

class X

{

 private:

 int y; //through pointer it cannot be accessed

Dynamic Objects 453

 public: // all public members can be accessed through pointers

 int a;

 int b;

 int init(int z)

 {

 a = z;

 return z;

 }

};

void main()

{

 X obj ;

 int X::*ip; // pointer to data member

 ip = &X::a; // address of data member a is assigned to pointer

 // access through object

 obj.*ip = 10;

 cout << “a in obj, after obj.*ip = 10 is “ << obj.*ip << end1;

 X *pobj; // pointer to object of the class X

 pobj = &obj;

 // access through object pointer

 pobj->*ip = 10;

 cout << “a in obj, after pobj->*ip = 10 is “ << pobj->*ip << end1;

 int (X::*ptr_init) (int); // pointer to member function

 ptr_init = &X::init; // pointer to member function init()

 // access through object

 (obj.*ptr_init)(5);

 cout << “a in obj, after (obj.*ptr_init)(5) = “ << obj.a << end1;

 // access through object pointer

 (pobj->*ptr_init)(5);

 cout << “a in obj, after (pobj->*ptr_init) (5) = “ << obj.a << end1;

}

Run

a in obj, after obj.*ip = 10 is 10

a in obj, after pobj->*ip =10 is 10

a in obj, after (obj.*ptr_init)(5) = 5

a in obj, after (pobj->*ptr_init)(5) = 5

12.6.3 Access Through Friend Functions

The friend functions can access private data members of a class although it is not in the scope of the

class. Similarly, members of any access privilege can be accessed using pointers to members. Both the

dereferencing operators .* and ->* can be used to access class members. The program friend.cpp
illustrates the concept of accessing class members through pointers from friend functions.

Mastering C++454

// friend.cpp: friend functions and pointer to members

#include <iostream.h>

class X

{

 private:

 int a;

 int b;

 public:

 X()

 {

 a = b = 0;

 }

 void SetMembers(int a1, int b1)

 {

 a = al;

 b = bl;

 }

 friend int sum(X x);

};

int sum(X objx)

{

 int X::*pa = &X::a; // pointer to member a

 int X::*pb = &X::b; // pointer to member b

 X *pobjx = &objx; // pointer to object of the class X

 int result;

 // the member a is accessed through objects

 // and the member b is accessed through object pointer

 result = objx.*pa + pobjx->*pb; // sum a and b;

 return result;

}

void main()

{

 X objx;

 void (X::*pfunc) (int, int);

 pfunc = &X: :SetMembers;

 (objx.*pfunc)(5, 6); // equivalent to objx.SetMembers(5, 6)

 cout << “Sum = “ << sum(objx) << endl;

 X *pobjx; // pointer to object of the class X

 pobjx = &objx;

 (pobjx->*pfunc)(7, 8); // equivalent to pobjx->SetMembers(5, 6)

 cout << “Sum = “ << sum(objx) << end1;

}

Run

Sum = 11

Sum = 15

Dynamic Objects 455

12.7 FUNCTION set_new_handler()

The C++ runtime system makes sure that when memory allocation fails, an error function is activated.

By default, this function returns the value 0 to the caller of new, so that the pointer which is assigned

by new is set to zero. The error function can be redefined, but it must comply with a few prerequisites,

which are, unfortunately, compiler-dependent.

The function set_new_handler() sets the function to be called when a request for memory

allocation through the operator new() function cannot be satisfied. Its prototype is

void (* set_new_handler(void (* my_handler) ()))();

If new() cannot allocate the requested memory, it invokes the handler set by set_new_handler().

The user-defined function my_handler() should specify the actions to be taken when new() cannot

satisfy a request for memory allocation.

If my_handler() returns, new() will again attempt to satisfy the request. Ideally, my_
handler() would release the memory and return. Then new() would be able to satisfy the request

and the program would continue. However, if my__handler() cannot provide memory for new(),

my_handler() must terminate the program. Otherwise, an infinite loop will be created.

The default handler is reset by set_new_handler(0). Preferably, it is advisable to overload the

new() to take appropriate actions as per the application requirement.

The function set_new_handler() returns the old handler, if it has been defined. By default, no

handler is installed. The user-defined argument function, my_handler(), should not return a value.

The program memhnd.cpp demonstrates the implementation of a user-defined function (in Borland

C++) to handle a memory-resource shortage error.

// memhnd.cpp: user-defined handler to handle out-of-memory issue
#include <iostream.h>
#include <new.h>
#include <process.h>
void out_of_memory()
{
 cout << “Memory exhausted, cannot allocate”;
 exit(1); // terminate the program
}
void main()
{
 int *ip;
 long total_allocated = 0L;
 //install error function
 set_new_handler(out_of_memory);
 // eat up all memory
 cout << “Ok, allocating ..” << end1;
 while (1)
 {
 ip = new int [100];
 total_allocated + = 100L;

Mastering C++456

 cout << “Now got a total of “ << total_allocated << “ bytes” << endl;
 }
}

Run

Ok, allocating..
Now got a total of 100 bytes
Now got a total of 200 bytes

Now got a total of 29900 bytes
Memory exhausted, cannot allocate

The advantage of an allocation error function lies in the fact that once installed, new can be used

without bothering whether the memory allocation has succeeded or not: upon failure, the error function

is automatically invoked and the program terminates. It is a good practice to install a new handler in

each C++ program, even when the actual code of the program does not allocate memory. Memory

allocation can also fail in code which is not directly visible to the programmer, e.g., when streams are

used or when strings are duplicated by low-level functions.

Most often, even standard C functions which allocate memory such as strdup(), malloc(),

realloc(), etc., trigger (invoke) the new handler when the memory allocation fails. That is, once

a new handler is installed, such functions can be used in a C++ program without testing for errors.

However, compilers exit where the C functions do not trigger the new handler.

12.8 this POINTER

It is observed that a member function of a given class is always invoked in the context of some object

of the class; there is always an implicit substrate (implicitly defined) for the function to act on. C++

has a keyword this to address this substrate (it is not available in the static member functions). The

keyword this is a pointer variable, which always contains the address of the object in question. The

this pointer is implicitly defined in each member function (whether public or private); therefore, it

appears as if each member function of the class Test contains the following declaration:

extern Test *this;

Every member function of a class is born with a pointer called this, which points to the object with

which the member function is associated.

Thus, the member function of every object has access to a pointer named this, which points to the

object itself. When a member function is invoked, it comes into existence with the value of this set to

the address of the object for which it is called. The this pointer can be treated like any other pointer to

an object. Using a this pointer, any member function can find out the address of the object of which it

is a member. The method of accessing a member of a class from within a class using the this pointer

is shown in Figure 12.9.

The this pointer can also be used to access the data in the object it points to. The program this.
cpp illustrates the working of this pointer.

Dynamic Objects 457

// this.cpp:accessing data members through this pointer
#include <iostream.h>
class Test
{
 private:
 int a;
 public:
 void setdata(int init_a)
 {
 a = init_a; // normal way to set data
 cout<<“Address of my object, this in setdata(): “<< this <<end1;
 this->a = init_a; // another way to set data
 }
 void showdata()
 {
 // normal way to show data
 cout << “Data accessed in normal way: “ << a << end1;
 cout<<“Address of my object, this in showdata(): “<< this<<end1;
 // data access through this pointer
 cout << “Data accessed through this->a: “ << this->a;
 }
};
void main()
{
 Test my;
 my.setdata (25);
 my.showdata();
}

Run

Address of my object, this in setdata(): 0xfff2
Data accessed in normal way: 25
Address of my object, this in showdata() : 0xfff2
Data accessed through this->a: 25

Fig. 12.9 Accessing class members using this pointer

class Test

{
int a;

public:

func1()

{

}

func2()

{

.....

this -> a; or a

this -> func1() or func1()

};

refers to data member

refers to member function

Mastering C++458

A more practical use of the this pointer is in returning values from member functions. When an

object is local to the function, the object will be destroyed when the function terminates. It necessitates

the need for a more permanent object while returning it by reference. Consider the member function

add() of the class complex:

complex complex::add(complex c2)
{
 real = real + c2.real; // add real parts
 imag = imag + c2.imag; // add imaginary parts
 return complex(real, imag); // create an object and return
}

It adds the object c2 to a default object and returns the updated default object by explicitly creating a

nameless object using the statement

return complex(real, imag);

It can be replaced by the statement

return *this;

without the loss of functionality. The modified definition of add() appears as follows:

complex complex::add(complex c2)
{
 real = real + c2.real; // add real parts
 imag = imag + c2.imag; // add imaginary parts
 return *this;

}

Since this is a pointer to the object of which the function is a member, *this naturally refers to the

object pointed to by this pointer. The statement

return *this;

returns this object by value.

 For a given class X, in each one of its member functions, the pointer this is implicitly declared as

X *const this;

and initialized to point to the object for which the member function is invoked. As the pointer this

is declared as * const, it cannot be changed for a particular object ensuring that the access to the

object is not lost, even accidentally. However, the value of this is different for every individual object

declared or created in the program. The compiler treats this as a keyword (reserved word), as a result

of which it cannot be explicitly declared. Further, it (the compiler) also places a restriction which

prevents the keyword this from being used outside a class member function body.

12.9 SELF-REFERENTIAL CLASSES

Many frequently used dynamic data structures like stacks, queues, linked lists, etc., use self-referential

members. Classes can contain one or more members which are pointers to other objects of the same

Dynamic Objects 459

class. The this pointer holds an address of the next object in a data structure. Such a feature is

essential for implementing dynamic data structures such as linked lists, stacks, trees, etc.

12.9.1 Linked List

A list having a node, which is a pointer to the next node in a list is called a linked list. The pictorial

representation of a linked list having a pointer to the next object of the same class is shown in Figure

12.10.

Fig. 12.10 Linked list with self-referential classes

class linked list

data

*next

first

3 42

Case Study
Consider a scenario where it is required to implement a linked list using a class. The class must contain

a pointer member which points to the next node in the list. Write a program that uses such a self-

referential class to implement the linked list. The list representation shown in Figure 12.10 can be used

for reference.

The program list.cpp demonstrates how a linked list of integers is implemented using a self-

referential class.

// list.cpp: Linked list having self reference

#include <iostream.h>

#include <process.h>

// linked list class

class list

{

 private:

 int data; // data of a node

 list *next; // pointer to next node

 public:

 list()

 {

 data = 0;

 next = NULL;

 }

 list(int dat)

 {

 data = dat;

 next = NULL;

 }

 ~list()()

 int get() { return data; }

Mastering C++460

 void insert(list *node); // Inserts new node at list

 friend void display(list *); // Display list

};

// Inserts node. If list empty the first node is created else the

// new node is inserted at the end of a list

void list::insert (list *node)

{

 list *last = this; //this node pointer to catch last node

 while(last->next) //if node-next !=NULL, it is not last node

 last = last->next;

 last->next = node; //make last node point to new node

}

// Displays the doubly linked list in both forward and reverse order by

// making use of the series of next and prev pointers.

void display(list *first)

{

 list *traverse;

 cout << “List traversal yields: “;

 // scan for all the elements

 for(traverse = first; traverse; traverse = traverse->next)

 cout << traverse->data << “, “;

 cout << endl;

}

void main(void)

{

 int choice, data;

 list *first = NULL; // initially points to NULL

 list *node; // pointer to new node to be created

 while (1)

 {

 cout << “Linked List...” << end1;

 cout << “1.Insert” << end1;

 cout << “2.Display” << end1;

 cout << “3.Quit” << end1;

 cout << “Enter Choice: “;

 cin >> choice;

 switch (choice)

 {

 case 1:

 cout << “Enter Data: “;

 cin >> data;

 node = new list(data);

 if(first == NULL)

 first = node;

 else

 first->insert(node);

 break;

Dynamic Objects 461

 case 2:

 display(first);

 break; // Display list,

 case 3:

 exit(1);

 default:

 cout << “Bad option selected” << end1;

 continue;

 }

 }

}

Run

Linked List...

1. Insert

2. Display

3. Quit

Enter Choice: 1

Enter Data: 2

Linked List...

1. Insert

2. Display

3. Quit

Enter Choice: 2

List traversal yields: 2,

Linked List...

1. Insert

2. Display

3. Quit

Enter Choice: 1

Enter Data: 3

Linked List…

1. Insert

2. Display

3. Quit

Enter Choice: 1

Enter Data: 4

Linked List...

1. Insert

2. Display

3. Quit

Enter Choice: 2

List traversal yields: 2, 3, 4,

Linked List. . .

1. Insert

2. Display

3. Quit

Enter Choice: 3

Mastering C++462

The use of a self-referential class is inevitable in the above program, since each node in the stack has

a pointer to another node of its own type, which is its predecessor (in the case of the stack).

Several problems whose solutions are based on the use of data structures like trees, graphs, and lists

make extensive use of self-referential classes.

12.9.2 Doubly Linked List

Using the this pointer when referring to a member of its own class is often unnecessary, as illustrated

earlier; the major use of the this pointer is for writing member functions that manipulate pointers

directly. The doubly linked list has two pointer nodes: one pointing to the next node in the list and

another pointing to the previous node in the list. The pictorial representation of a doubly linked list is

shown in Figure 12.11.

Fig. 12.11 Doubly linked-list representation

class doubly
linked list

data

*prev

*next

first

3 7 5

The program dll.cpp makes use of the data structure, the doubly linked list, illustrating the

typical use of the this pointer at relevant points. The this pointer is particularly used as a pointer to

the first node while traversing through the entire list.

// dll.cpp: doubly linked list
#include <iostream.h>
#include <process.h>
class dll // doubly linked list class
{
 private:
 int data; // data of a node
 dll *prev; // pointer to previous node
 dll *next; // pointer to next node
 public:
 dll()
 {
 data = 0;
 prev = next = NULL;
 }
 dll(int data_in)
 {
 data = data_in;
 prev = next = NULL;

Dynamic Objects 463

 }
 ~dll()
 {
 cout << “->“ << data;
 }
 int get() (return data;)
 void insert(dll *node); // Inserts new node at list
 friend void display(dll *); // Display list
 void FreeAllNodes();
};
// Inserts node. If list empty the first node is created else the
// new node is inserted immediately after the first node
void dll:: insert (dll *node)
{
 dll *last;
 // find out last node, this points to first node
 for(last = this; last->next; last = last->next);
 // insert new node at the end of list
 node->prev = last;
 node->next = last-> next;
 last->next = node;
}
void dll::FreeAllNodes()
{
 cout << “Freeing the node with data: “;
 // this points to first node, use it to release all the nodes
 for(dll * first = this; first; first = first->next)
 delete first;
}
// Displays the doubly linked list in both forward and reverse order making
// use of the series of next and prev pointers.
void display (dll *first)
{
 dll *traverse = first;
 if(traverse == NULL)
 {
 cout << “Nothing to display !” << endl; // along the list.
 return;
}
else
{
 cout << “Processing with forward -> pointer: “;
 // scan for all the elements in forward direction
 for (;traverse->next; traverse = traverse->next)
 cout << “->“ << traverse->data;
 // display last element
 cout << “->“ << traverse->data << end1;
 cout << “Processing with backward <- pointer: “;
 // scan for all the elements in reverse direction

Mastering C++464

 for(;traverse->prev; traverse = traverse->prev)
 cout << “->“ << traverse->data;
 // display first element
 cout << “->“ << traverse->data << end1;
 }
}
dll * InsertNode(dll *first, int data)
{
 dll *node;
 node = new dll(data);
 if(first == NULL)
 first = node;
 else
 first->insert(node);
 return first;
}
void main(void)
{
 int choice, data;
 dll * first = NULL; // initially points to NULL
 cout << “Double Linked List Manipulation...” << end1;
 while(1)
 {
 cout << “Enter Choice ([1] Insert, [2] Display, [3] Quit): “;
 cin >> choice;
 switch (choice)
 {
 case 1:
 cout << “Enter Data: “;
 cin >> data;
 first = InsertNode(first, data);
 break;
 cast 2:
 display(first);
 break; // Display list.
 case 3:
 first->FreeAllNodes(); // release all nodes
 exit(1);
 default:
 cout << “Bad option selected” << end1;
 continue;
 }
 }
}

Run

Double Linked List Manipulation...
Enter Choice ([1] Insert, [2] Display, [3] Quit): 1
Enter Data: 3

Dynamic Objects 465

Enter Choice ([1] Insert, [2] Display, [3.] Quit) : 2
Processing with forward -> pointer; ->3
Processing with backward <- pointer: ->3
Enter Choice ([1] Insert, [2] Display, [3] Quit): 1
Enter Data: 7
Enter Choice ([1] Insert, [2] Display, [3] Quit): 2
Processing with forward -> pointer: ->3->7
Processing with backward <- pointer: ->7->3
Enter Choice ([1] Insert, [2] Display, [3] Quit): 1
Enter Data: 5
Enter Choice ([1] Insert, [2] Display, [3] Quit): 2
Processing with forward -> pointer: ->3->7->5
Processing with backward <- pointer: ->5->7->3
Enter Choice ([1] Insert, [2] Display, [3] Quit): 0
Bad option selected
Enter Choice ([1] Insert, [2] Display, [3] Quit): 3
Freeing the node with data: ->3->7->5

Besides handling dynamic data structures, the this pointer finds extensive application in the

following contexts:

 Member functions returning pointers to their respective objects

 Overloaded operators which return object values by reference

 Virtual functions wherein decisions, as to which version of an overloaded function is to be

executed, is taken only during runtime (late binding)

12.10 GUIDELINES FOR PASSING OBJECT PARAMETERS

The parameters to normal functions or member functions of a class can be passed either by value,

pointer, or reference. However, passing some objects by pointers or reference is much efficient when

compared to passing by value even though modification in a callee need not be reflected in the caller.

A few guidelines that help in taking a decision on choosing an appropriate parameter-passing scheme

are the following:

[1] If a function does not modify an argument, which is a built-in type or a “small” user-defined type

(class objects), pass arguments by value. The meaning of “small” refers to data-type, which require few

bytes to represent its objects and is system dependent.

[2] If a function modifies an argument, which is a built-in type, pass arguments by a pointer. It makes

processing of data explicit to anyone reading the code, which modifies built-in type variables.

[3] If a function modifies or does not modify a “large” user-defined type, pass arguments by reference.

Any function which modifies private data (and hence, protected) of an object must either be a member

function or a friend function. This is justifiable, since the “class” has control over the functions which

modify the class’s private data. In this case, just because the address of an object is handed over to a

function does not mean the function can secretly modify the private data of an object. As far as object

data members are concerned, it is very clear and straightforward to answer “Who has permission to

modify this object?” Hence, it is advisable to pass reference to an object instead of a value or a pointer.

Mastering C++466

SOLVED PROBLEMS

 1. Write a program to design a class for adding two objects using a friend function.

#include<iostream.h>
class B;
class A
{
 int a1;
 public:
 void set(int val)
 {
 a1=val;
 }
 friend int add(A, B); //Declaration of friend function
};
class B
{
 int b1;
 public:
 void set(int val)
 {
 b1=val;
 }
 friend int add(A, B); //Declaration of friend function
};
int add(A x, B y) //Definition of friend function
{
 return(x.a1+y.b1);
}
void main()
{
 A ObjA;
 B ObjB;
 ObjA.set(9);
 ObjB.set(10);
 cout<<”Sum of objects A and B using friend function = “<<add(ObjA, ObjB);
}

Run

Sum of objects of A and B using friend function = 19

 2. Write a C++ program to explain how member functions can be accessed using pointers.

#include<iostream.h>
class test
{
 int data;

+
+

Dynamic Objects 467

 public:
 void func(int val)
 {
 data=val;
 }
};
void main()
{
 test t1;
 void (test:: *testptr) (int); //Declaration of Pointer to member func-
tion
 testptr = &test::func;
 cout<<”Initializing test class object t1 using pointer...”;
 (t1.*testptr)(10);
 cout<<”\nObject initialized successfully”;
}

Run

Initializing test class object t1 using pointer...
Object initialized successfully

REVIEW QUESTIONS ++
 12.1 What is the difference between dynamic memory allocation and dynamic objects?

 12.2 Justify the need of object clean-up and initialization facility for creating live objects.

 12.3 Explain why C++ is treated as the middle ground between static and dynamic binding

languages.

 12.4 What is the difference between stack-based and heap-based objects?

 12.5 What is dereferencing of objects? Write a program for illustrating the use of object

references.

 12.6 What are self-referential classes? Write a program to create an ordered linked list.

 12.7 What are live objects? Write a program to illustrate live objects supporting different

ways of creating them. Will an object created using the new operator occupy more space

than necessary?

 12.8 Write a program to access members of a student class using a pointer to object members.

 12.9 Justify the need for “allowing pointers to class members accessing private members of a

class”

 12.10 Explain how memory allocation failure can be handled in C++?

 12.11 What is the this pointer? What is your reaction to the statement:

 delete this;

 Write a program demonstrating the use of the this pointer.

 12.12 Write an interactive program for creating a doubly linked list. The program must support

ordered insertion and deletion of a node.

Operator
Overloading

 13.1 INTRODUCTION

The operators such as +, -, +=, >, >>, etc., are designed to operate

only on standard data types in structured programming languages such as

C. The + operator can be used to perform the addition operation on integer,

floating-point, or mixed data types as indicated in the expression (a+b).

In this expression, the data type of the operands a and b on which the +

operator is operating, is not mentioned explicitly. In such cases, the compiler implicitly selects suitable

addition operation (integer, floating-point, double, etc.) depending on the data type of operands without

any assistance from the programmer. Consider the following statements:

int a, b, c;
float x, y, z;
c = a + b; // 1 integer addition and assignment
z = x + y; // 2 floating-point addition and assignment
x = a + b; // 3 integer addition and floating point assignment

The operators = and + behave quite differently in the above statements: the first statement does

integer addition and assigns the result to c, the second performs floating-point addition and assigns the

result to z, and the last performs integer addition and assigns the result to the floating-point variable

x. It indicates that the + operator is overloaded implicitly to operate on operands of any standard data

type supported by the language. Unlike C, in C++, such operators can also be overloaded explicitly to

operate on operands of user-defined data types. For instance, the statement

c3 = AddComplex(cl, c2);

performs the addition of operands cl and c2 belonging to the user-defined data type and assigns

the result to c3 (which is also operand of the user-defined datatype). In C++, by overloading the +

operator, the above statement can be changed to an easily readable form:

c3 = cl + c2;

It tries to make the user-defined data types behave in a manner similar (and have the same look and feel)

to the built-in data types, thereby allowing the user to redefine the language itself. Operator overloading,

thus, allows to provide additional meaning to operators such as +,*, >=,+=, etc., when they are

applied to user-defined data types. It allows the user to program (develop solution to) the problems as

perceived in the real world.

13

Operator Overloading 469

The operator-overloading feature of C++ is one of the methods of realizing polymorphism. The

word polymorphism is derived from the Greek words poly and morphism (polymorphism = poly +

morphism). Here, poly refers to many or multiple and morphism refers to actions, i.e., performing many

actions with a single operator. As stated earlier, the + operator performs integer addition if the operands

are of integer type and floating point addition if the operands are of real type.

The concept of operator overloading can also be applied to data conversion. C++ offers automatic

conversion of primitive data types. For example, in the statement x = a + b, the compiler implicitly

converts the integer result to floating-point representation and then assigns to the float variable x. But

the conversion of user-defined data types requires some effort on the part of the programmer. Thus,

operator overloading concepts are applied to the following two principle areas:

 Extending capability of operators to operate on user-defined data

 Data conversion

Operator overloading extends the semantics of an operator without changing its syntax. The

grammatical rules defined by C++ that govern its use such as the number of operands, precedence,

and associativity of the operator remain the same for overloaded operators. Therefore, it should be

remembered that the overloaded operator should not change its original meaning. However, semantics

(meaning) can be changed, but it is advisable to retain the predefined logical meaning.

13.2 OVERLOADABLE OPERATORS

C++ provides a wide variety of operators to perform operations on various operands. The operators are

classified into unary and binary operators based on the number of arguments on which they operate.

C++ allows almost all operators to be overloaded in which case atleast one operand must be an instance

of a class (object). It allows overloading of the operators listed in Table 13.1.

Table 13.1 C++ overloadable operators

Operator Category Operators

Arithmetic +, –, *, /, %

Bit-wise &, |, ~, ^

Logical &&, ||, !

Relational >, <, ==, !=, <=, >=

Assignment or initialization =

Arithmetic assignment +=, –=, /=, %=, &=, /=, ^=

Shift <<, >>, <<=, >>=

Unary ++, ––

Subscripting []

Function call ()

Dereferencing –>

Unary sign prefix +, –

Allocate and free New, delete

The precedence relation of overloadable operators and their expression syntax remains the same

even after overloading. Even if there is a provision to change the operator precedence or the expression

Mastering C++470

syntax, it does not offer any advantage. For instance, it is improper to define a unary division (/) or

a binary complement (~), since the change of precedence or syntax leads to ambiguity. For example,

defining an operator ** to represent exponentiation as in the case of the Fortran language, appears to

be obvious; however, interpretation of the expression a**b leads to confusion—whether to interpret it

as a*(*b) or (a)**(b), because, C++ already interprets it as a*(*b).

13.3 UNARY OPERATOR OVERLOADING

Consider an example of the class Index which keeps track of the index value. The program indexl.
cpp having class members to maintain the index value is listed below:

// indexl.cpp: Index class with functions to keep track of index value
#include <iostream.h>
class Index
{
 private:
 int value; // Index Value
 public:
 Index() // No argument constructor
 {
 value = 0;
 }
 int GetIndex() // Index Access
 {
 return value;
 }
 void NextIndex() // Advance Index
 {
 value = value + 1;
 }
};
void main()
{
 Index idxl, idx2; // idxl and idx2 are objects of Index class
 // Display index values
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
 // Advance Index objects
 idxl.NextIndex();
 idx2.NextIndex();
 idx2.NextIndex();
 // Display index values
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
}

Run

Indexl = 0

Operator Overloading 471

Index2 = 0
Indexl = 1
Index2 = 2

The function Nextlndex() advances (increments) the index value. Instead of using such functions,

the operators like ++ (increment operator) can be used to perform the same job. It enhances the program

readability without the loss of functionality. A new version of the class program indexl.cpp is

rewritten using overloaded increment operator. The program index2.cpp illustrates overloading of

the ++ operator.

// index2.cpp: Index class with operator overloading
#include <iostream.h>
class Index
{
 private:
 int value; // Index Value
 public:
 Index() // No argument constructor
 {
 value = 0;
 }
 int GetIndex() // Index Access
 {
 return value;
 }
 void operator ++() // prefix or postfix increment operator
 {
 value = value + 1; // value++;
 }
};
void main()
{
 Index idxl, idx2; // idxl and idx2 are objects of Index class
 // Display index values
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
 // Advance Index objects with ++ operators
 ++idxl; // equivalent to idxl.operator++();
 idx2++;
 idx2++;
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
}

Run

Indexl = 0
Index2 = 0
Indexl = 1
Index2 = 2

Mastering C++472

In main(), the statements

 ++idxl; // equivalent to idxl.operator ++();

 idx2++;

invoke the overloaded ++ operator member function defined in the class Index:

 void operator ++() // prefix or postfix increment operator

The name of this overloaded function is ++. The word operator is a keyword and is preceded

by the return type void. The operator to be overloaded is written immediately after the keyword

operator. This declarator informs the compiler to invoke the overloaded operator function ++
whenever the unary increment operator is prefixed or postfixed to an object of the Index class.

The variables idx1 and idx2 are the objects of the class Index. The index value is advanced

by using statements such as ++idx1; idx2++; instead of explicitly invoking the member function

Nextindex() as in the earlier program. The operator is applied to objects of the Index class. Yet the

operator function ++ takes no arguments. It increments the data member value of the Index class’s

objects. Figure 13.1 shows the Index class representation and invocation of its member functions

when they are accessed implicitly (constructor function) or explicitly (other members).

Fig. 13.1 Index class and ++ operator overloading

Client program

Instances of the class Index

Index()

(constructor)

private member
variables

int value;

void operator++()

G
e
t
I
n
d
e
x
(
)

(in
itia

liz
e
)

Index idx1,idx2;

idx1.GetIndex();

idx2.GetIndex();

++ idx1;

idx2++;{

{

13.4 operator KEYWORD

The keyword operator facilitates overloading of the C++ operators. The general format of

operator overloading is shown in Figure 13.2. The keyword operator indicates that the operator

symbol following it is the C++ operator to be overloaded to operate on members of its class. The

operator overloaded in a class is known as overloaded operator function.

Overloading without explicit arguments to an operator function is known as unary operator

overloading and overloading with a single explicit argument is known as binary operator overloading.

Operator Overloading 473

However, with friend functions, unary operators take one explicit argument and binary operators take

two explicit arguments. The syntax of overloading the unary operator is shown in Figure 13.3.

Fig. 13.2 Syntax of operator overloading

Function return type: primitive, void, or user defined

Keyword

Operator to be overloaded (see Table 13.1)

Arguments to Operator
Function

ReturnType operator OperatorSymbol ([arg1, [arg2]])

{

// body of Operator function

}

Fig. 13.3 Syntax for overloading unary operator

Function return type: primitive, void, or user defined

Keyword
Operator to be overloaded

No explicit arguments

ReturnType operator OperatorSymbol()

{

// body of Operator function

}

The following examples illustrate the overloading of unary operators:

 (1) Index operator +();

 (2) int operator -();

 (3) void operator ++();

 (4) void operator --();

 (5) int operator *();

Similar to other member functions of a class, an overloaded operator member function can be either

defined within the body of a class or outside the body of a class. The following class specification

defines an overloaded operator member function within the body of a class:

class MyClass
{
 // class data or function stuff
 int operator++() // member function definition
 {
 // body of a function
 }
};

Mastering C++474

A skeleton of the same class having the operator member function definition outside its body is as

follows:

class MyClass
{
 // class data or function stuff
 int operator ++() // prototype declaration,
};
// overloaded member function definition
int MyClass: :operator ++()
{
 // body of a function
}

The process of operator overloading generally involves the following steps:

 1. Declare a class (that defines the data type) whose objects are to be manipulated using operators.

 2. Declare the operator function in the public part of the class. It can be either a normal member

function or a friend function.

 3. Define the operator function either within the body of a class or outside the body of the class

(however, the function prototype must exist inside the class body).

 The syntax for invoking the overloaded unary operator function is as follows:

 object operand

 operator object

The first syntax can be used to invoke a prefix operator function, for instance, ++idx1, and the

second syntax can be used to invoke a postfix operator function, for instance, idx1++.

The syntax for invoking the overloaded binary operator function is as follows:

 object1 operator object2

For instance, the expression idxl+idx2 invokes the overloaded member function + of the idx1

object’s class by passing idx2 as the argument. Note that in an expression invoking the binary operator

function, one of the operands must be the object. The above syntax is interpreted as follows:

 object1.operator OperatorSymbol (object2)

Operator Arguments
In main() of the index2.cpp program, operator++() is applied to the object of the class

Index as in the expression idx2++; it can be observed that the operator++() takes no arguments

explicitly. The execution of the expression idx2++ invokes a member function operator++()

defined in the class Index. In this function, the data members of the object idx2 are manipulated.

13.5 OPERATOR RETURN VALUES

The operator function in the program index2.cpp has a subtle defect. An attempt to use an expression

such as

Operator Overloading 475

idx1 = idx2++;

will lead to a compilation error like Improper Assignment, because the return type of operator++ is

defined as void type. The above assignment statement tries to assign the void return type to the object

(idx1) of the index class. Such an assignment operation can be permitted after modifying the

return type of the operator ++() member function of the Index class in the index2.cpp program.

A program with required modifications is listed in index3.cpp.

// index3.cpp: Index class with overloaded operator returning an object
#include <iostream.h>
class Index
{
 private:
 int value; // Index Value
 public:
 Index() // No argument constructor
 {
 value = 0;
 }
 int GetIndex() // Index Access
 {
 return value;
 }
 Index operator ++() // Returns’Index object
 {
 Index temp; // temp object
 value *value + 1; // update index value
 temp.value = value; // initialize temp object
 return temp; // return temp object
 }
};
void main()
{
 Index idx1, idx2; // idxl and idx2 are objects of class Index
 cout << "\nIndex1 = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
 idx1 = idx2++; //returned object of idx2++ is assigned to idxl
 idx2++; // returned object of idx2++ is unused
 cout << "\nIndex1 = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
}

Run

Indexl = 0
Index2 = 0
Indexl = 1
Index2 = 2

In main(), the statement

idx1 = idx2++; //returned object of idx2++ is assigned to idx1

Mastering C++476

invokes the overloaded operator function and assigns the return value to the object idx1 of the class

Index. The operator ++() function creates a new object of the class Index called temp to be used

as a return value; it can be assigned to another object. The value data member of the implicit object

idx2 is incremented and then assigned to the temp object which is returned to the caller. The returned

object is assigned to the destination object idx1.

13.6 NAMELESS TEMPORARY OBJECTS

In the program index3.cpp, an intermediate (a temporary) object temp is created as a return object.

A convenient way to return an object is to create a nameless object in the return statement itself. The

program index4.cpp, illustrates the overloaded operator function returning a nameless object.

// Index4.cpp: Index class with overloaded operator returning nameless

object

#include <iostream.h>

class Index

{

 private:

 int value; // Index Value

 public:

 Index() // No argument constructor

 { value = 0; }

 Index (int val) // Constructor with one argument

 {

 value = val;

 }

 int GetIndex() // Index Access

 {

 return value;

 }

 Index operator ++() // Returns nameless object of class Index

 {

 value = value + 1;

 return Index(value); // calls one-argument constructor

 }

};

void main()

{

 Index idxl, idx2; // idxl and idx2 are the objects of Index

 cout << "\nIndexl = " << idxl.GetIndex();

 cout << "\nIndex2 = " << idx2.GetIndex();

 idx1 = idx2++; // return object idx2++ is assigned to object idx1

 idx2++; // return object idx2++ is unused

 cout << "\nIndexl = " << idxl.GetIndex();

 cout << "\nIndex2 = " << idx2.GetIndex();

Operator Overloading 477

}

Run

Index1 = 0

Index2 = 0

Index1 = 1

Index2 = 2

In the program index3.cpp, the statements used to return an object are the following:

 Index temp;

 value = value + 1;

 temp, value = value;

 return temp;

In this program, the statements,

 value = value + 1;

 return Index(value);

perform the same operation as achieved by the above four statements. It creates a nameless object by

passing an initialization value. To perform this operation, the following parameterized constructor is

added as the constructor member function to the Index class:

 Index(int val)
 {
 value = val;
 }

13.7 LIMITATIONS OF INCREMENT/DECREMENT OPERATORS

The prefix notation causes a variable (of type standard data type) to be updated before its value is used

in the expression, whereas the postfix notation causes it to be updated after its value is used. However,

the statement (built using user-defined data types and overloaded operator),

idxl = ++idx2;

has exactly the same effect as the statement

idxl = idx2++;

When ++ and -- operators are overloaded, there is no distinction between the prefix and postfix

overloaded operator functions. This problem is circumvented in advanced implementations of C++,

which provides additional syntax to express and distinguish between prefix and postfix overloaded

operator functions. A new syntax to indicate the postfix operator overloaded function is:

operator ++(int)

The program index5.cpp illustrates the invocation of prefix and postfix operator functions. Note

that the old syntax is used to overload prefix operator functions.

Mastering C++478

// index5.cpp: Index class with overloaded prefix and postfix unary operators
#include <iostream.h>
class Index
{
 private:
 int value; // Index Value
 public:
 Index() // No argument constructor
 { value =0; }
 Index(int val) // Constructor with one argument
 {
 value = val;
 }
 int GetIndex() // Index Access
 {
 return value;
 }
 //Operator overloading for prefix operator
 Index operator ++()
 {
 // Object is created with the ++value, hence object is
 // created with a new value of ‘value’ and returned
 return Index (++value);
 }
 // Operator overloading for postfix operator
 Index operator ++(int)
 {
 // Object is created with the value++, hence object is
 // created with old value of ‘value’ and returned
 return Index(value++);
 }
};
void main()
{
 index idxl(2), idx2(2), idx3, idx4;
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
 idx3 = idxl++; // postfix increment
 idx4 = ++idx2; // prefix increment
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex3 = " << idx3.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
 cout << "\nIndex4 = " << idx4.GetIndex();
}

Run

Index1 = 2
Index2 = 2
Index1 = 3

Operator Overloading 479

Index3 = 2
Index2 = 3
Index4 = 3

In the postfix operator ++ (int) function, first a nameless object with the old index value is

created and then, the index value is updated to achieve the intended operation. The compiler will just

make a call to this function for postfix operation, but the responsibility of achieving this rests on the

programmer.

The above discussion on unary plus overloading is also applicable to overloading of unary decrement

and negation operators. It is illustrated by the program index6.cpp.

// index6.cpp: Index class with unary operator overloading -, ++, and --
#include <iostream.h>
class Index
{
 private:
 int value; // Index Value
 public:
 Index() // No argument constructor
 { value = 0; }
 Index(int val) // Constructor with one argument
 {
 value = val;
 }
 int GetIndex() // Index Access
 {
 return value;
 }
 Index operator -() // Negation of Index Value
 {
 return Index(-value);,
 }
 Index operator ++() // Prefix increment
 {
 ++value;
 return Index(value);
 }
 Index operator --() // Prefix decrement
 {
 -- value;
 return Index(value);
 }
};
void main()
{
 Index idxl, idx2;
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();

Mastering C++480

 idx2++;
 idxl = -idx2; // negate idx2 and assign to idx1
 ++idx2;
 --idx2; // prefix decrement
 cout << "\nIndexl = " << idxl.GetIndex();
 cout << "\nIndex2 = " << idx2.GetIndex();
}

Run

Indexl = 0
Index2 = 0
Indexl = -1
Index2 = 1

Overloading of unary operator does not necessarily mean that it is overloaded to operate on a class’s

object, which has a single data member. Within the body of a overloaded unary operator function, any

amount of data can be manipulated.

Case Study
Consider a scenario where it is required to create a program for storing and maintaining date information

with the help of a class. The program must overload the ++ operator to increment the date value stored

by class’s object.

The program mydate.cpp demonstrates how date information is stored in a class object. It uses a

class called date having three data members: day, month, and year. The overloaded ++ operator

increments the date value by updating the date object’s data members.

// mydate.cpp: overloading ++ operator to increment date
#include <iostream,h>
class date
{
 int day;
 int month;
 int year;
 public:
 date()
 {
 day = 0; month = 0; year = 0;
 }
 date(int d, int m, int y)
 {
 day = d; month = m; year = y;
 }
 void read()
 {
 cout << "Enter date <dd mm yyyy>: ";
 cin >> day >> month >> year;
 }
 void show()

Operator Overloading 481

 {
 cout << day << ":" << month << ":" << year;
 }
 int IsLeapYear()
 {
 if((year % 4 == 0 && year % 100 ! = 0) || (year % 400 == 0))
 return 1;
 else
 return 0;
 }
 int thisMonthMaxDay()
 {
 int m[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
 if(month == 2 && IsLeapYear())
 return 29; // February month with leap year will have 28 days
 else
 return m [month-1];
 }
 // unary increment operator overloading
 void operator ++()
 {
 ++day;
 // adjust all fields of date according to current day
 // so that they hold valid date
 if(day > thisMonthMaxDay())
 {
 // set day to 1 and increment month
 day = 1;
 month++;
 }
 if(month > 12)
 {
 // month to January (1) and increment year
 month = 1;
 year++;
 }
 }
};
void nextday(data & d)
{
 cout << "Date "; d.show();
 ++d; // invokes operator function
 cout << " on increment becomes "; d.show();
 cout << endl;
}
void main()
{
 date dl(14, 4, 1971);
 date d2(28, 2, 1992); // leap year

Mastering C++482

 date d3(28, 2, 1993);
 date d4(31, 12, 1995);
 nextday(dl);
 nextday(d2 };
 nextday(d3);
 nextday(d4);
 date today;
 today.read();
 nextday(today);
}

Run

Date 14:4:1971 on increment becomes 15:4:1971
Date 28:2:1992 on increment becomes 29:2:1992
Date 28:2:1993 on increment becomes 1:3:1993
Date 31:12:1995 on increment becomes 1:1:1996
Enter date <dd mm yyyy>: 11 9 1996
Date 11:9:1996 on increment becomes 12:9:1996

The updation of date requires to take care of conditions such as whether the year is a leap year or

not. If it is leap year and month is February, it will have 29 days instead of the usual 28 days. Such cases

need to be handled explicitly (see the second and third output lines in Run).

13.8 BINARY OPERATOR OVERLOADING

The concept of overloading unary operators applies also to binary operators. The syntax for overloading

a binary operator is shown in Figure 13.4.

Fig. 13.4 Syntax for overloading a binary operator

Function return type: primitive, void, or user defined

Keyword

Operator to be overloaded

Argument to Operator
Function

ReturnType operator OperatorSymbol(arg)

{

// body of Operator function

}

The binary overloaded operator function takes the first object as an implicit operand and the second

operand must be passed explicitly. The data members of the first object are accessed without using

the dot operator, whereas, the second argument members can be accessed using the dot operator if the

argument is an object, otherwise it can be accessed directly. Note that the overloaded binary operator

function is a member function defined in the first object’s class.

Operator Overloading 483

The following examples illustrate the overloading of binary operators:

complex operator + (complex cl);

int operator - (int a);

void operator * (complex cl);

void operator / (complex cl);

complex operator += (complex cl);

Similar to unary operators, binary operators also have to return values so that cascaded assignment

expressions can be formed. The programs illustrating the overloading of binary operators are discussed

in the following sections.

13.9 ARITHMETIC OPERATORS

Consider an example involving operations on complex numbers to illustrate the concept of binary

operator overloading. Complex numbers consists of two parts: real part and imaginary part. It is

represented as (x+iy), where x is the real part and y is the imaginary part. The process of performing

the addition operation is illustrated below. Let cl, c2, and c3 be three complex numbers represented

as follows:

cl = xl + i yl;

c2 = x2 + i y2;

The operation c3 = cl + c2 is given by

c3 = (cl.xl + c2.x2) + i (cl.yl + c2.y2);

The program complex1.cpp performs addition of complex numbers without operator overloading.

// complexl.cpp: Addition of Complex Numbers
#include <iostream.h>
class complex
{
 private:
 float real; // real part of complex number
 float imag; // imaginary part of complex number
 public:
 complex() // no argument constructor
 {
 real = imag = 0.0;
 }
 void getdata()
 {
 cout << "Real Part ? ";
 cin << real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 complex AddComplex(complex c2);. // Add complex numbers

Mastering C++484

 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" << real;
 cout << ", " << imag << ")";
 }
};
// adds default and c2 complex objects
complex complex::AddComplex(complex c2)
{
 complex temp; // object temp of complex class
 temp.real = real + c2.real; // add real parts
 temp, imag = imag + c2.imag; // add imaginary parts
 return(temp); // return complex object
}
void main()
{
 complex cl, c2, c3; // cl, c2, c3 are object of complex class
 cout << "Enter Complex Number cl.." << endl;
 cl.getdata();
 cout << "Enter Complex Number c2.." << endl;
 c2.getdata();
 c3 = cl.AddComplex(c2); // add cl and c2 and assign the result to c3
 c3.outdata("c3 = cl.AddComplex(c2): ");
}

Run

Enter Complex Number cl..
Real Part ? 2.5
Imag Part ? 2.0
Enter Complex Number c2..
Real Part ? 3.0
Imag Part ? 1.5
c3 = cl.AddComplex(c2) : (5.5, 3.5)

In main(), the statement

c3 = cl.AddComplex(c2);

invokes the member function AddComplex() of the c1 object’s class and adds c2 to it and then the

returned result object is assigned to c3. By overloading the + operator, this clumsy and dense-looking

statement can be represented in the simplified standard (usual) form as follows:

c3 = cl + c2;

The program complex2.cpp illustrates the overloading of the binary operator + in order to perform

addition of complex numbers.

// complex2.cpp: Complex Numbers operations with operator overloading
#include <iostream.h>
class complex
{

Operator Overloading 485

 private:
 float real; // real part of complex number
 float imag; // imaginary part of complex number
 public:
 complex() // no argument constructor
 {
 real = imag = 0.0;
 }
 void getdata() // read complex number
 {
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 complex operator + (complex c2); // complex addition
 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" << real;
 cout << "," << imag << ")";
 }
};
// add default and c2 complex objects
complex complex::operator + (complex c2)
{
 complex temp; // object temp of complex class
 temp.real = real + c2.real; // add real parts
 temp.imag = imag + c2.imag; // add imaginary parts
 return(temp); // return complex object
}
void main()
{
 complex cl, c2, c3; // cl, c2, c3 are object of complex class
 cout << "Enter Complex Number cl.." << endl;
 cl.getdata();
 cout << "Enter Complex Number c2.." << endl;
 c2.getdata();
 c3 = cl + c2; // add cl and c2 and assign the result to c3
 c3.outdata("c3 = cl + c2: "); // display result
}

Run

Enter Complex Number cl...
Real Part ? 2.5
Imag Part ? 2.0
Enter Complex Number c2...
Real Part ? 3.0
Imag Part ? 1.5
c3 = cl + c2: (5.5, 3.5)

Mastering C++486

In the class complex, the operator+() function is declared as follows.

complex operator + (complex c2);

This function takes one explicit argument of type complex and returns the result of complex

type. In a statement such as

c3 = cl + c2; // c3 = cl.operator+(c2);

it is very important to understand the mechanism of returning a value and relating the arguments of the

operator to its objects. When the compiler encounters such expressions, it examines the argument types

of the operator. In this case, since the first argument is of type complex, the compiler realizes that it

must invoke the operator member +() function defined in the complex class (Figure 13.5).

Fig. 13.5 Complex numbers and operator overloading

Client program

Instances of the class complex

complex()

(constructor)

private member
variables

float real;

float imag;

operator+(complex c2)

(addition)

g
e
t
d
a
t
a
(
)

(in
itia

liz
e
)

complex c1,c2,c3;

c1.getdata();

c2.getdata();

c3=c1+c2;

{

c3.outdata();

o
u
t
d
a
t
a
(
)

The argument on the left side of the operator (cl in this case) is the object of a class having

overloaded operator function as its member function. The object on the right side (c2 in this case) of

the operator is passed as the actual argument to the overloaded operator function. The operator returns

a value (complex object temp in this case), which can be assigned to another object (c3 in this case)

or can be used in other ways (as argument or term in an expression, etc.).

The expression c1+c2 invokes the operator +() member function, cl object’s data members are

accessed directly since this is the object of which the operator function is a member. The right operand

is treated as an argument to the function and its members are accessed using the member access dot

operator (as c2.real and c2.imag).

In the overloading of binary operators, as a rule, the left-hand operand is used to invoke the operator

function and the right-hand operand is passed as an argument to the operator function. The mechanism

of handling operands of an overloaded binary operator is illustrated in Figure 13.6.

Similarly, functions can be created to overload other operators to perform addition, subtraction,

multiplication, division, etc. The program complex3.cpp illustrates the overloading of various

arithmetic operators for manipulating complex numbers.

Operator Overloading 487

// complex3.cpp: Manipulation of Complex Numbers
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;
 public:
 complex()
 {
 real = imag = 0;
 }
 void getdata() // read complex number
 {
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" << real;
 cout << "," << imag << ")";
 }
 complex operator + (complex c2);
 complex operator - (complex c2);
 complex operator * (complex c2);
 complex operator / (complex c2);
};

Fig. 13.6 Operator overloading in class complex

y

complex operator+(complex c2)

{

complex temp;

temp.x=

temp.y=

return(temp);

}

temp

5.5

3.5

c3

5.5

3.5

x

y

c1

2.5

2.0

x

y

c2;

3.0

1.5

x

y

= +

x

y +

+ c2.x ;

c2.y ;

Mastering C++488

// addition of complex numbers, c3 = cl + c2
complex complex::operator + (complex c2)
{
 complex temp;
 temp.real = real + c2.real;
 temp.imag = imag + c2.imag;
 return(temp);
}
// subtraction of complex numbers, c3 = cl - c2;
complex complex::operator - (complex c2)
{
 complex temp;
 temp.real = real - c2.real;
 temp.imag = imag - c2.imag;
 return(temp);
}
// Multiplication of complex numbers, c3 = cl * c2
complex complex::operator * (complex c2)
{
 complex temp;
 temp.real = real * c2.real - imag * c2.imag;
 temp.imag = real * c2.imag + imag * c2.real;
 return(temp);
}
// Division of complex numbers, c3 = cl / c2
complex complex::operator / (complex c2)
{
 complex temp;
 float qt;
 qt = c2.real*c2.real+c2.imag*c2.imag;
 temp.real = (real * c2.real + imag * c2.imag)/qt;
 temp.imag = (imag * c2.real- real * c2.imag) /qt;
 return(temp);
}
void main()
{
 complex cl, c2, c3;
 // read complex numbers cl and c2
 cout << "Enter Complex Number cl.." << endl;
 cl.getdata();
 cout << "Enter Complex Number c2.." << endl;
 c2.getdata();
 cout << "Entered Complex Numbers are...";
 c1.outdata("cl = ");
 c2.outdata("c2 = ");
 cout << endl << "Computational results are...";
 c3 = cl + c2’
 c3.outdata("c3 = cl + c2: ");
 c3 = cl - c2;
 c3.outdata("c3 = cl - c2: ");
 c3 = cl * c2;

Operator Overloading 489

 c3.outdata("c3 = cl * c2: ");
 c3 = cl / c2;
 c3.outdata("c3 = cl / c2: ");
 c3 = cl + c2 + cl.+ c2;
 c3.outdata("c3 = cl + c2 + cl + c2: ");
 c3 = cl * c2 + cl / c2;
 c3.outdata("c3 = cl * c2 + cl / c2: ");
}

Run

Enter Complex Number cl..
Real Part ? 2.5
Imag Part ? 2.0
Enter Complex Number c2..
Real Part ? 3.0
Imag Part ? 1.5
Entered Complex Numbers are...
cl = (2.5, 2)
c2 = (3, 1.5)
Computational results are...
c3 = cl + c2: (5.5, 3.5)
c3 = cl - c2: (-0.5, 0.5)
c3 = cl * c2: (4.5, 9.75)
c3 = cl / c2: (0.933333, 0.2)
c3 = cl + c2 + cl + c2: (11, 7)
c3 = cl * c2 + cl / c2: (5.43333, 9.95)

In main(), the statement,

c3 = cl + c2 + cl + c2;

is evaluated as

((cl.operator*(c2)).operator+(cl)).operator+(c2);

from left to right, since all the operators have the same precedence. However, the statement

c3 = cl * c2 + cl / c3;

is evaluated as

(cl.operator*(c2)).operator+(cl.operator/(c2))

Operators with higher precedence are evaluated first, followed by those with lower precedence.

13.10 CONCATENATION OF STRINGS

Normally, concatenation of strings is performed by using the library function strcat() explicitly. To

illustrate this concept, consider the strings str1 and str2 which are defined as follows:

char strl[50] = "Welcome to ";

char str2[25] = "Operator Overloading";

Mastering C++490

The strings strl and str2 are combined, and the result is stored in strl by invoking the function

strcat() as follows:

strcat(strl, str2);

On execution, str2 remains unchanged. In C++, such operations can also be performed by defining

a string class and overloading the + operator. A statement such as,

strl = strl + str2;

for concatenation of string (where strl and str2 are the objects of a class string) would be perfectly

valid. The program string.cpp defines a string class and uses it to concatenate strings.

// string.cpp: Concatenation of strings
#include <iostream.h>
#include <string.h>
const int BUFF_SIZE =50; // length of string
class string // user defined string class
{
 private:
 char str[BUFF_SIZE];
 public:
 string() // constructorl without arguments
 {
 strcpy(str, "");
 }
 string(char *MyStr) // constructor2, one argument
 {
 strcpy(str, MyStr); // MyStr is copied to str
 }
 void echo() // display string
 {
 cout << str;
 }
 string operator +(string s) // overloading + operator
 {
 string temp = str; //creates object and strcpy(temp.str, str);
 strcat(temp.str, s.str); // temp.str = temp.str + s.str
 return temp; // return string object temp
 }
};
void main()
{
 string strl = "Welcome to "; // uses constructor2
 string str2 = "Operator Overloading"; // uses constructor2
 string str3; // uses constructorl, str3.str = NULL
 // display strings of strl, str2, and str3
 cout << "\nBefore str3 = strl + str2;..";
 cout << "\nstrl = ";
 strl.echo();
 cout << "\nstr2 = ";

Operator Overloading 491

 str2.echo();
 cout << "\nstr3 = ";
 str3.echo();
 str3 = strl + str2; // strl invokes its operator + function with str2
 // display strings of strl, str2, and str3
 cout << "\nAfter str3 = strl + str2;..";
 cout << "\nstrl = ";
 strl.echo();
 cout << "\nstr2 = ";
 str2.echo();
 cout << "\nstr3 = ";
 str3.echo();
}

Run

Before str3 = strl + str2; ..
strl = Welcome to
str2 = Operator Overloading
str3 =
After str3 = strl + str2;..
strl = Welcome to
str2 = Operator Overloading
str3 = Welcome to Operator Overloading

The prototype of the string concatenation operator function

string operator +(string s) // overloading + operator

indicates that the + operator takes one argument of type string object and returns an object of the same

type. The concatenation is performed by creating a temporary string object temp and initializing it

with the first string. The second string is added to first string in the object temp using the strcat()

and finally the resultant temporary string object temp is returned. In this case, the length of strl

plus str2 should not exceed BUPF_SIZE. If it exceeds then the behavior of the program may be

unpredictable. It can be overcome by testing the length of strl plus str2 before concatenating them

in the operator +() function of the string class and then taking appropriate actions.

13.11 COMPARISON OPERATORS

Similar to arithmetic operators, the relational operators can be overloaded for comparing the magnitudes

of the operands. The relational operators can also operate on the user-defined data types similar to the

way they operate on primitive datatypes. The program idxcmp.cpp demonstrates the overloading of

the comparison operator < to compare indexes.

// idxcmp.cpp: Index comparison with overloading of < operator

#include <iostream.h>

enum boolean { FALSE, TRUE };

class Index

Mastering C++492

{

 private:

 int value; // Index Value

 public:

 Index() // No argument constructor

 {

 value = 0;

 }

 Index(int val) // Constructor with one argument

 {

 value = val;

 }

 int GetIndex() // Index Access

 {

 return value;

 }

 boolean operator< (Index idx) //compare indexes

 {

 return(value < idx.value ? TRUE : FALSE);

 }

};

void main()

{

 Index idx1 = 5;

 Index idx2 = 10;

 cout << "\nIndexl = " << idxl.GetIndex();

 cout << "\nIndex2 = " << idx2.GetIndex();

 if(idxl < idx2)

 cout << "\nIndexl is less than Index2";

 else

 cout << "\nIndexl is not less than Index2";

}

Run

Indexl = 5

index2 = 10

Indexl is less than Index2

The concept of overloading the comparison operator < in the above program is similar to overloading

arithmetic operators. The operator function <() returns TRUE or FALSE depending on the magnitudes

of the Index operands.

13.11.1 Strings Comparison

The relational operators such as <, >, ==, etc., can be overloaded to operate on strings. These

operators return TRUE or FALSE depending on the contents of the string arguments. The program

strcmp.cpp illustrates the overloading of relational operators in a string class.

Operator Overloading 493

// strcmp.cpp: Comparison of strings
#include <iostream.h>
#include <string.h>
const int BUFF_SIZE = 50; // length of string
enum boolean { FALSE, TRUE };
class string // user defined string class
{
 private:
 char str[BUFF_SIZE];
 public:
 string() // constructor without arguments
 {
 strcpy(str, "");
 }
 void read() // read string
 {
 cin >> str;
 // cout << str;
 }
 void echo() // display string
 {
 cout << str;
 }
 boolean operator < (string s) // overloading < operator
 {
 if(strcmp(str, s.str) < 0)
 return TRUE; // str < s.str in lexicographical order
 else
 return FALSE;
 }
 boolean operator > (string s) // overloading > operator
 {
 if(strcmp(str, s.str) > 0)
 return TRUE; // str > s.str in lexicographical order
 else
 return FALSE;
 }
 boolean operator == (char *MyStr) // overloading == operator
 {
 if(strcmp(str, MyStr) == 0)
 return TRUE; // str and MyStr are same
 else
 return FALSE;
 }
};
void main()
{
 string strl, str2; // uses constructor 1
 while(TRUE)

Mastering C++494

 {

 cout << "\nEnter Stringl <’end’ to stop>: ";

 strl.read();

 if (strl == "end")

 break;

 cout << "Enter String2: ";

 str2.read();

 cout << "Comparison Status: ";

 // display comparison status

 // display format: Stringl "comparison status <, >, = " String2

 strl.echo();

 if(strl < str2)

 cout << " < ";

 else

 if(strl > str2)

 cout << " > ";

 else

 cout << " = ";

 str2.echo();

 }

 cout << "\nBye.!! That’s all folks.!";

}

Run

Enter Stringl <’end’ to stop>: C

Enter String2: C++

Comparison Status: C < C++

Enter Stringl <’end’ to stop>: Rajkumar

Enter String2: Bindu

Comparison Status: Rajkumar > Bindu

Enter Stringl <’end’ to stop>: Rajkumar

Enter String2: Venuaopal

Comparison Status: Rajkumar < Venugopal

Enter Stringl <’end’ to stop>: HELLO

Enter String2: HELLO

Comparison Status: HELLO = HELLO

Enter Stringl <’end’ to stop>: end

Bye.!! That’s all folks.!

The overloaded operator functions of the class string uses the library function strcmp() to

compare the two strings. The strcmp (..) operates as follows:

 It returns 0 if both the strings are equal.

 It returns a negative value if the first string is less than the second one.

 It returns a positive value if the first string is greater than the second one.

The terms less than, greater than, or equal to are used in the lexicographic sense to indicate whether

the first string appears before or after the second in the alphabetical order.

Operator Overloading 495

The prototype of string comparison function

boolean operator == (char *MyStr)

indicates that the == operator takes one argument of type pointer-to-character and returns TRUE

or FALSE depending on the operand’s weightage in lexicographical order. The strcmp() in the

function body compares the object’s attribute str with the argument MyStr. From this example, it

is understood that the arguments to an overloaded operator need not be of the same data type, but the

overloaded operator must be a member function of the first object.

13.12 ARITHMETIC ASSIGNMENT OPERATORS

Like arithmetic operators, arithmetic assignment operators can also be overloaded to perform an

arithmetic operation followed by an assignment operation. Such statements are useful in replacing

the expressions involving operations on two operands and storing the result in the first operand. For

instance, a statement such as

cl = cl + c2;

can be replaced by

cl += c2;

The program complex4.cpp illustrates the overloading of arithmetic assignment operators to

manipulate complex numbers.

// complex4.cpp: Overloading of +=, -=, * =, /= operators for complex class
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;
 public:
 complex() // constructor1
 {
 real = imag = 0;
 }
 void getdata() // read complex number
 {
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" .<< real;
 cout << ", " << imag << ")";
 }

Mastering C++496

 void operator += (complex c2);
 void operator -= (complex c2);
 void operator *= (complex c2);
 void operator /= (complex c2);
};
// addition of complex numbers, cl += c2 instead of cl = cl + c2;
void complex;:operator += (complex c2)
{
 real = real + c2.real;
 imag = imag + c2.imag;
}
// subtraction of complex numbers, cl -= c2, i.e., cl = cl - c2;
void complex::operator -= (complex c2)
{
 real = real - c2.real;
 imag = imag - c2.imag;
}
// Multiplication of complex numbers, cl *= c2, instead of cl = cl*c2
void complex::operator *= (complex c2)
{
 complex old = *this; // *this is an object of type complex
 real = old.real * c2.real - old.imag * c2.imag;
 imag = old.real * c2.imag + old.imag * c2.real;
}
// Division of complex numbers, cl /= c2, i.e., cl = cl / c2
void complex::operator /= (complex c2)
{
 complex old = *this;
 float qt;
 qt = c2.real*c2.real+c2.imag*c2.imag;
 real = (old.real * c2.real + old.imag * c2.imag)/qt;
 imag = (old.imag * c2.real - old.real * c2.imag)/qt;
}
void main()
{
 complex c1, c2, c3;
 // read complex numbers c1 and c2
 cout << "Enter Complex Number c1.. " << end1;
 cl.getdata();
 cout << "Enter Complex Number c2.." << end1;
 c2.getdata();
 cout << "Entered Complex Numbers are... ";
 cl.outdata("c1 = ");
 c2.outdata("c2 = ");
 cout << end1 << "Computational results are...";
 // c3 = c1 + c2
 c3 = cl;
 c3 += c2;
 c3.outdata("let c3 = cl, c3 += c2: ");

Operator Overloading 497

 // c3 = cl - c2
 c3 = cl;
 c3 -= c2;
 c3.outdata("let c3 = cl, c3 -=c2: ");
 // c3 = cl * c2
 c3 = cl;
 c3 *= c2;
 c3.outdata("let c3 = cl, c3 *= c2: ");
 // c3 = cl / c2
 c3 = cl;
 c3 /= c2.;
 c3.outdata("let c3 = cl, c3 /= c2: ");
}

Run

Enter Complex Number cl..
Real Part ? 2.5
Imag Part ? 2.0
Enter Complex Number c2..
Real Part ? 3.0
Imag Part ? 1.5
Entered Complex Numbers are...
cl = (2.5, 2)
c2 = (3, 1.5)
Computational results are...
let c3 = cl, c3 += c2: (5.5, 3.5)
let c3 = cl, c3 -= c2: (-0.5, 0.5)
let c3 = cl, c3 *= c2: (4.5, 9.75)
let c3 = cl, c3 /= c2: (0.933333, 0.2)

Observe the difference between the operator function +() defined in the program complex3.cpp

and operator function +=() defined in the program complex4.cpp. In the former, a new temporary

object of complex type must be created and returned by the function, so that the resultant object can

be assigned to a third complex object, as in the statement

c3 = cl + c2;

In the latter, the function operator+=() is a member function of the object (destination object’s

class), which receives the result of computation. Hence, the function operator +=() has no return

value; it returns void type. Normally, the result of the assignment operation is not required. In a

statement, such as,

c3 += c2;

the operator alone is used without bothering about the return value.

 The use of the arithmetic assignment operator in a complicated statement such as,

c3 = cl += c2;

requires a return value. Such requirements can be satisfied by having the function operator +=(),

which terminates with the statement such as

Mastering C++498

return(*this); or return complex(real, imag);

In the first case, the current object is returned and in the latter case, a nameless object is created with

initialization and is returned as illustrated in the program complex5.cpp.

// complex5.cpp: Overloading of += operator for complex expressions
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;
 public:
 complex() //no argument constructor
 {
 real = imag = 0.0;
 }
 void getdata() // read complex number
 {
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 complex operator + (complex c2); // complex addition
 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" << real;
 cout << ‘, " << imag << ")";
 }
 complex operator += (complex c2);
};
// addition of complex numbers, cl += c2 instead of cl = cl + c2;
// return complex object *this or build temporary object and return.
complex complex::operator += (complex c2)
{
 real = real + c2.real;
 imag = imag + c2.imag;
 return(*this); // *this is current object
}
void main()
{
 complex cl, c2, c3;
 cout << "Enter Complex Number cl.." << endl;
 cl.getdata();
 cout << "Enter Complex Number c2.." << endl;
 c2. getdata(),
 // Performs 1. cl += c2 and 2. c3 = cl

Operator Overloading 499

 c3 = cl += c2; // cl += c2 is evaluated first, and assigned to c3
 cout << "\nOn execution of c3 = cl += c2..";
 cl.outdata("Complex cl: ");
 c2.outdata("Complex c2: ");

 c3.outdata("Complex c3: ");
}

Run

Enter Complex Number cl..
Real Part ? 2.5
Imag Part ? 2.0
Enter Complex Number c2..
Real Part ? 3.0
Imag Part ? 1.5
On execution of c3 = cl += c2..
Complex cl: (5.5, 3.5)
Complex c2: (3, 1.5)
Complex c3: (5.5, 3.5)

13.13 OVERLOADING OF new AND delete OPERATORS

The memory allocation operators new and delete can be overloaded to handle memory resource

in a customized way. It allows the programmer to gain full control over the memory resource and to

handle resource crunch errors such as Out of Memory within a class. The main reason for overloading

these functions is to increase the efficiency of memory management. An application designed to handle

memory allocation by itself through overloading can easily detect memory leaks (improper usage). It

can also be used to create the illusion of infinite amount of main memory (virtual memory, which exists

in effect but not in reality).

The program resource.cpp illustrates the overloading of new and delete operators. The

normal call to the new operator, such as

ptr = new vector;

dynamically creates a vector object and returns a pointer to that object. The overloaded operator

function new in the vector class not only creates an object, but also allocates the resource for its internal

data members.

// resource.cpp: Overloading of new and delete operators

#include <iostream.h>

const int ARRAY_SIZE = 10;

class vector

{

 private:

 int * array; // array is dynamically allocatable data member

 public:

 // overloading of new operator

 void * operator new(size_t size)

Mastering C++500

 {

 vector *my_vector;

 my_vector = ::new vector; // it refers to global new, otherwise

 // leads to recursive call of vector::new

 my_vector->array = new int[ARRAY_SIZE]; // calls ::new

 return my_vector;

 }

 // overloading of delete operator

 void operator delete(void* vec)

 {

 vector *my_vect;

 my_vect = (vector *) vec;

 delete (int *) my_vect->array; // calls ::delete

 ::delete vec; // it refers to global delete, otherwise

 // leads to recursive call of vector::delete

 }

 void read();

 int sum();

};

void vector::read()

{

 for(int i = 0; i < ARRAY_SIZE; i++)

 {

 cout << "vector[" << i << "] = ? ";

 cin >> array[i];

 }

}

int veetor::sum()

{

 int sum = 0;

 for(int i = 0; i < ARRAY_SIZE; i++)

 sum += array[i];

 return Sum;

}

void main()

{

 vector *my_vector = new vector;

 cout << "Enter Vector data..." << endl;

 my_vector->read();

 cout << "Sum of Vector = " << my_vector->sum();

 delete my_vector;

}

Run

Enter Vector data..

vector[0] = ? 1

vector[1] = ? 2

Operator Overloading 501

vector[2] = ? 3

vector[3] = ? 4

vector[4] = ? 5

vector[5] = ? 6

vector[6] = ? 7

vector[7] = ? 8

vector[8] = ? 9

vector[9] = ? 10

Sum of Vector = 55

In main(), the statement

vector *my_vector new vector;

invokes the overloaded operator member function

void * operator new(size_t size)

defined in the class vector as

void * operator new(size_t size)

{

 vector *my_vector;

 my_vector = ::new vector; // it refers to global new, otherwise

 // leads to recursive call of vector:: new

 my_vector->array = new int [ARRAY_SIZE]; // calls ::new

 return my_vector;

}

In the above function, the statement

my_vector = ::new Vector; // it refers to global new, ‘otherwise

creates an object of the vector class. If the scope-resolution operator is not used, the overloaded

operator function is called recursively leading to stack overflow. Hence, prefixing of the scope-

resolution operator to the new operator forces to use the standard new operator supported by the

language instead of the one defined in the program. The class vector has a data item of type dynamic

array, defined by int *array- Another statement in the above function

my_vector->array = new int[ARRAY_SIZE]; // calls ::new

creates an array and dynamically allocates memory to it.

Similar to the overloaded new operator function, the overloaded delete operator function handles

the process of releasing memory that has been allocated during the dynamic object creation by the new

operator; it also releases the memory allocated to the internal data item array through the function call

delete my_vector;

It invokes the overloaded operator function

void operator delete(void* vec)

to release the entire memory resource allocated to the my_vector object and its data members.

Mastering C++502

13.14 DATA CONVERSION

Representing the same data in multiple forms is a common practice in scientific computations. It

involves the conversion of data from one form to another, for instance, conversion from radian to

degree, polar to rectangular, and vice versa. Implicit invocation of the conversion procedure in C++ is

achieved by overloading the assignment operator, =. The assignment operator assigns the contents of a

variable, the result of an expression, or a constant, to another variable. For example,

varl = var2; // varl and var2 are defined as integer variables

assigns the value of var2 to varl which are of the same data type. User-defined objects of the same

class can also be assigned to one another. In a statement such as

c3 = cl + c2; // cl, c2, and c3 are objects of complex class

the result of addition, which is of type complex is assigned to another object c3 of the complex

class. The assignment of one variable/object to another variable/object, which are of the same data-

type is achieved by copying the contents of all member data items from source object to the destination

object. Such operations do not require any conversion procedure for the data-type conversion. In the

above expression, the result of (cl+c2) is of the same data type as that of the destination object c3.

Hence, the compiler does not require any special instruction from the user to perform the assignment

of objects.

Thus, assignment of data items are handled by the compiler with no effort on the part of the user,

whether they are basic or user-defined, provided both source and destination data items are of the

same data type. In case the data items are of different types, data-conversion interface function must

be explicitly specified by the user. These include conversions between basic and user-defined types or

between the user-defined data items of different types.

13.15 CONVERSION BETWEEN BASIC DATA TYPES

Consider the statement

weight = age; // weight is of float type and age is of integer type

where weight is of type float and age is of type integer. Here, the compiler calls a special routine

to convert the value of age, which is represented in an integer format, to a floating-point format, so that

it can be assigned to weight. The compiler has several built-in routines for the conversion of basic

data types such as char to int, float to double, etc. This feature of the compiler, which performs

conversion of data without the user intervention is known as implicit type conversion.

The compiler can be instructed explicitly to perform type conversion using the type-conversion

operators known as type-cast operators. For instance, to convert int to float, the statement is

weight = (float) age;

where the keyword float enclosed between braces is the typecast operator. In C++, the above statement

can also be expressed in a more readable form as

Operator Overloading 503

weight = float(age);

The explicit conversion of float to int uses the same built-in routine as implicit conversion.

13.16 CONVERSION BETWEEN OBJECTS AND BASIC TYPES

The compiler supports data conversion of only built-in data types supported by the language. The

user cannot rely on the compiler to perform conversion from user-defined data types to primitive data

types and vice versa, because the compiler does not know anything about the logical meaning of user-

defined data types. Therefore, to perform a meaningful conversion, the user must supply the necessary

conversion function. In this case, the conversion process can be from basic data types to user-defined

data types or from the user-defined data types to basic data types.

The process of conversion between the user-defined type and basic type is illustrated in the program

meter.cpp listed below. In this example, the user-defined type is the class Meter, which represents

a unit of length in the MRS measurement system. The basic type is f1oat, which is used to represent

a unit of length in CGS measurement system.

The conversion between centimeter and meter can be performed by the following relations:

Length in cm = Length in meter * 100

Length in meter = Length in cm /100

13.16.1 Where and How the Conversion Function Should Exist ?

To convert data from a basic type to

a user-defined type, the conversion

function should be defined in the user-

defined object’s class in the form of the

constructor. This constructor function

takes a single argument of basic data

type as shown in Figure 13.7.

In the case of conversion from a

user-defined type to a basic type, the

conversion function should be defined

in the user-defined object’s class in

the form of the operator function.

The operator function is defined as

an overloaded basic data type which

takes no arguments. It converts the data

members of an object to basic data types

and returns a basic data item. The syntax

of such a conversion function is shown

in Figure 13.8.

In the above syntax, it can be observed that the conversion operator function has no return type

specification. However, it should return BasicType value. The program meter.cpp illustrates the

conversion of the Meter class’s object to float representing centimeter and vice-versa.

Fig. 13.7 Conversion function: basic to user-defined

Constructor(BasicType

{

// steps for converting

// BasicType to object attributes

}

Constructor of a class Primitive data item

Fig. 13.8 Conversion function: user-defined to basic

operator BasicType()

{

// steps for converting

// object attributes to BasicType

}

Keyword operator Primitive data type: char, int, float, etc.

Mastering C++504

// meter.cpp: Conversion from Meter to Centimeter and vice-versa
#include <iostream.h>
// Meter class for MKS measurement system
class Meter
{
 private:
 float length; // length in meter
 public:
 Meter() // constructor0, no arguments
 {
 length = 0.0;
 }
 // Conversion from Basic data-item to user-defined type
 // InitLength is in centimeter unit
 Meter(float InitLength) // constructorl, one argument
 {
 length = InitLength / 100.0; // centimeter to meter
 }
 // Conversion from user-defined type to Basic data-item
 // i.e., from meter to centimeter
 operator float()
 {
 float LengthCms;
 LengthCms = length * 100.0; // meter to centimeter
 return(LengthCms);
 }
 void GetLength()
 {
 cout << "\nEnterLength (in meters): ";
 cin >> length;
 }
 void ShowLength()
 {
 cout << "Length (in meter) = " << length;
 }
};
void main()
{
 // Basic to User-defined conversion demonstration Section
 Meter meterl; // uses constructor0
 float lengthl;
 cout << "Enter Length (in cms): ";
 cin >> lengthl;
 meterl = lengthl; // converts basic to user-defined, uses constructorl
 meterl.ShowLength();
 // User-defined to Basic conversion demonstration Section
 Meter meter2; // uses constructor()
 float length2;
 meter2.GetLength();

Operator Overloading 505

 length2 = meter2; //converts user-defined to basic, uses operator float()
 cout << "Length (in cms) = " << length2;
}

Run

Enter Length (in cms): 150.0
Length (in meter) = 1.5
Enter Length (in meters) : 1.669
Length (in cms) = 166.900009

13.16.2 Basic to User-Defined Data Type Conversion

In main(), the statement

 meterl = lengthl; // converts basic to user-defined, uses constructorl

converts basic data item lengthl of float type to the object meterl by invoking the one-argument

constructor:

Meter(float InitLength) // constructorl, one argument

This constructor is invoked while creating objects of the class Meter using a single argument of type

float. It converts the input argument represented in centimeters to meters and assigns the resultant

value to length data member.

The statements such as

Meter meterl = 150.0;

meterl = lengthl;

invoke the same conversion function. The only difference is, that in the case of the first statement, the

conversion function is invoked as a part of object-creation activity, whereas in the case of the second

statement, the compiler first searches for the overloaded assignment operator function, and if that is not

found, it invokes the one-argument constructor,

The distinction between the function definition and the assignment operator overloading for type

conversion is blurred by the compiler; the compiler looks for a constructor if an overloaded = operator

function is not available to perform data conversion.

13.16.3 User-Defined to Basic Data Type Conversion

In main(), the statement,

length2 = meter2; // convert user-defined to basic, uses operator float()

converts the object meter2 to the basic data item of float type by invoking the overloaded operator

function:

 operator float()
 {
 float LengthCms;
 LengthCms = length * 100.0; // meter to centimeter
 return(LengthCms);
 }

Mastering C++506

The above conversion function can also be invoked explicitly as follows:

 length2 = (float) meter2;

or as

 length2 = float(meter2);

The compiler searches for the appropriate conversion function. First, the compiler looks for an

overloaded = operator. If it does not find one then it looks for a conversion function and invokes the

same implicitly for data conversion.

13.16.4 Conversion between Strings and String Objects

The program strconv.cpp demonstrates the use of a one-argument constructor and a conversion

function.

// strconv.cpp: conversion between basic string (char *) and class string
#include <iostream.h>
#include <string.h>
const int BUFF_SIZE = 50; // length of string
class string // user defined string class
{
 private:
 char str[BUFF_SIZE];
 public:
 string() // constructorl without arguments
 {
 strcpy(str, "");
 }
 string(char *MyStr) // constructor2, one argument
 {
 strcpy(str, MyStr); // MyStr is copied to str
 }
 void echo() // display string
 {
 cout << str;
 }
 // conversion function to convert String object item to char * item
 operator char * () // invoked if destination data-item is char* type
 {
 return str;
 }
};
void main()
{
 // Conversion from string of type char * to string object
 char msg[20] = "OOPs the Great";
 string strl; // uses constructor 1
 strl = msg; // uses the function 'string (char *MyStr)'

Operator Overloading 507

 cout << "strl = ";
 strl.echo();
 // Conversion from object to char * type
 char *receive;
 string str2 = "It is nice to learn";
 receive = str2; // uses the function ‘operator char * ()’
 cout << "\nstr2 = ";
 cout << receive;
}

Run

strl = OOPs the Great
str2 = It is nice to learn

In the above example, the one-argument constructor

 string(char *MyStr) // constructor2, one argument

 {

 strcpy(str, MyStr); // MyStr is copied to str

 }

converts a normal string defined using char* to an object of class string. The string is passed as an

argument to the function; it copies the string MyStr to the str data member of the object.

The conversion will be applied during creation of the string object with initialization or during the

assignment of a normal string to the string object. In the statement

string str2 = "It is nice to learn";

the conversion of normal string to string object initialization is performed during creation of the object

str2. Whereas, in the statement

strl = msg; // uses the function ‘string(char *MyStr)

the conversion of normal string defined as char* type variable msg to string object initialization is

performed during assignment. The conversion function

operator char *() // invoked if destination data-item is char * type

{

 return str;

}

is used to convert from a string object to a normal string. It is invoked by the statement,

receive = str2; // uses the function 'operator char *()

The object str2 can also be passed to the indirection operator << to display a string stored in the

data member str as shown in the statement,

cout << str2;

The object str2 is passed as an argument to the overloaded output stream operator <<. But, it does

not know anything about the user-defined object str2. This is resolved by the compiler by searching

Mastering C++508

for a function which converts the object to a data type known to the operator <<(). In this case,

the compiler finds the operator function char*(), returning the char* type known to the stream

operator. If the compiler does not find the conversion function, it reports an error.

"Operator cannot be applied to these operands in function main()"

The program strconv.cpp clearly demonstrates the data conversions that take place not only

‘during object creation and in assignment statements, but also in the case of arguments passed to

operators (for instance, <<) or functions. Incompatible arguments can also be passed to an operator

or a function as long as there exists a conversion function. The incompatibility between the formal

arguments of the operator function and actual arguments is resolved by the compiler.

13.17 CONVERSION BETWEEN OBJECTS OF DIFFERENT CLASSES

The C++ compiler does not support data conversion between objects of user-defined classes. The data-

conversion methods: one-argument constructor and conversion function, can also used for conversions

among user-defined data types. The choice between these two methods for data conversion depends on

whether the conversion function should be defined in the source object or destination object. Consider

the following skeleton code:

 ClassA objecta;

 ClassB objectb;

 objecta = objectb;

where objecta and objectb are the objects of classes ClassA and ClassB respectively. The

conversion method can be either defined in ClassA or ClassB depending on whether it should be a

one-argument constructor or an operator function.

13.17.1 Conversion Routine in Source Object: operator function

The conversion routine in the source object’s class is implemented as an operator function. The

segment of code shown in Figure 13.9 for class declaration demonstrates the method of implementing

a conversion routine in the source object’s class.

In an assignment statement such as,

objecta = objectb;

objectb is the source object of the class ClassB and objecta is the destination object of the class

ClassA. The conversion function operator ClassA() exists in the source object’s class.

The program d2rl.cpp illustrates the concept of defining a conversion routine in the

source object. The conversion of an angle between degrees and radians is achieved by the following

relations:

 Angle in Radian = Angle in Degree * PI /180.0

 Angle in Degree = Angle in Radian * 180.0 / PI, where PI = 22/7

Operator Overloading 509

 // d2r1.cpp: Degree to Radian, Conversion Routine in Source class
#include <iostream.h>
const float PI = 3.141592654;
class Radian
{
 private:
 float rad; // radian
 public:
 Radian() // constructor0, no arguments
 {
 rad = 0.0;
 }
 Radian(float InitRad) // constructorl
 {
 rad = InitRad;
 }
 float GetRadian() // Access function
 {
 return(rad);
 }
 void Output() // Display of radian
 {
 cout << "Radian = " << GetRadian();
 }
};

Fig. 13.9 Conversion routine in source object

// Destination object class

class ClassA

{

// ClassA stuff here

};

// Source object class

class ClassB

{

private:

// attributes of classB

public:

operator ClassA()

{

// program stuff for converting ClassB object

// to ClassA object attributes

}

. . .

. . .

};

Destination object's class name

Conversion operator function

Mastering C++510

class Degree

{

 private:

 float degree; // Degree

 public:

 Degree() // constructor0, no arguments

 {

 degree = 0.0;

 }

 // radian = degree; conversion routine at the source

 // This function will be called if we try to assign

 // object degree to object of type radian

 operator Radian()

 {

 // convert degree to radian and create an object radian

 // and then return, here radian constructorl is called

 return(Radian(degree * PI / 180.0));

 }

 void Input() // Read degree

 {

 cout << "Enter Degree: ";

 cin >> degree;

 }

};

void main(void)

{

 Degree degl; // degree using constructor0

 Radian radl; // radian using constructor0

 // Read Input values

 degl.Input();

 radl = degl; // uses ‘operator Radian()’

 // display radian and degree

 radl.Output();

}

Run1

Enter Degree: 90

Radian = 1.570796

Run2

Enter Degree: 180

Radian = 3.141593

In main(), the statement

radl = degl; // uses ‘operator Radian()’

Operator Overloading 511

assigns the deg1 object of class Degree to the radl object of the class Radian. Since both the

objects deg1 and rad1 are instances of different classes, the conversion during assignment option is

performed by the member function:

operator Radian()
{
 // convert degree to radian and create an object radian
 // and then return, here radian constructorl is called
 return (Radian(degree * PI / 180.0));
}

It is defined in the source object’s class Degree; and is chosen by the compiler for converting the

object degl to rad1 implicitly.

13.17.2 Conversion Routine in Destination Object: constructor function

The conversion routine can also be defined in the destination object’s class as a one-argument

constructor. The segment of code shown in Figure 13.10 for class declaration demonstrates the method

of implementing a conversion routine in the destination object’s class.

Fig. 13.10 Conversion routine in destination object

// Source object class

class ClassB

{

// ClassB stuff here

};

// Destination object class

class ClassA

{

private:

// attributes of classA

public:

ClassA(ClassB objectb)

{

// program stuff for converting ClassB object

// to ClassA object attributes

// private attributes of ClassB are accessed

// through its public functions

...

...

}

};

Destination object's class name

object of a source class

Constructor function

In an assignment statement such as

objecta = objectb;

objectb is the source object of GlassB and objecta is the destination object of class ClassA.

The conversion function (constructor function in this case) ClassA(ClassB objectb) is defined

Mastering C++512

in the destination object’s class. The program d2r2.cpp illustrates the concept of defining conversion

function in the destination object.

// d2r2.cpp: Degree to Radian. Conversion Routine in the Destination
object.
#include <iostreain.h>
const float PI = 3.141592654;
class Degree
{
 private:
 float degree; // Degree
 public:
 Degree() // constructor0, no arguments
 {
 degree = 0.0;
 }
 float GetDegree() // Access function
 {
 return(degree);
 }
 void Input() // Read degree
 {
 cout << "Enter Degree: ";
 cin >> degree;
 }
};
class Radian
{
 private:
 float rad; // radian
 public:
 Radian() // constructor0, no arguments
 {
 rad = 0.0;
 }
 float GetRadian() // Access function
 {
 return(rad);
 }
 // radian = degree: Conversion routine is in destination object’s class
 Radian(Degree deg)
 {
 rad = deg.GetDegree() * PI / 180.0;
 }
 void Output() // Display of radian
 {
 cout << "Radian = ‘ << GetRadian();
 }
};

Operator Overloading 513

void main(void)
{
 Degree degl; // degree using constructor0
 Radian radl; // radian using constructor0
 // Read Input values
 degl.Input();
 radl = degl; // uses Radian(Degree deg)
 radl.Output(); // display radian and degree
}

Run1

Enter Degree: 90
Radian = 1.570796

Run2

Enter Degree: 180
Radian = 3.141593

In main(), the statement

radl = degl; // convert degree to radian, uses Radian(Degree deg)

assigns the user-defined object degl to another object radl. Since the objects degl and radl are

of different types, the conversion during the assignment operation is performed by a member function

Radian(Degree deg)
{
 rad = deg.GetDegree() * PI / 180.0;
}

defined in the destination object’s class Radian as a one-argument constructor. It is chosen by the

compiler for converting the object deg1’s attributes to rad1’s attributes implicitly. The constructor

must be able to access the private data members defined in the source object’s class. The Degree class

defines the following interface function

float GetDegree() // Access function
{
 return(degree);
}

to access the private data members. Note that the body of the function main() in the program d2r2.
cpp is the same as that in the program d2rl.cpp, although the conversion methods have appeared

in different forms.

13.17.3 Complete Conversion

The program degrad.cpp illustrates the concept of defining conversion functions in the source or

destination object’s class. In this program, angles in degrees can be converted to radians, or angles in

radians can be converted to degrees. The class Degree has conversion functions: constructor function

and operator function. A class can have any number of conversion functions as long as their signatures

are different.

Mastering C++514

// degrad.cpp: Degree to Radian data conversion and vice-versa
#include <iostream.h>
const float PI = 3.141592654;
class Radian
{
 private:
 float rad; // radian
 public:
 Radian() // constructor0, no arguments
 {
 rad = 0.0;
 Radian(float InitRad) // constructorl, one argument
 { rad = InitRad; }
 float GetRadian() // Access function
 {
 return(rad);
 }
 void Input() // Read radian
 {
 cout << "Enter Radian: ";
 cin >> rad;
 }
 void Output() // Display of radian
 {
 cout << "Radian = " << GetRadian() << endl;
 }
};
class Degree
{
 private:
 float degree; // Degree
 public:
 Degree() // constructor0, no arguments
 {
 degree = 0.0;
 }
 // degree = radian: Conversion routine at the destination
 Degree(Radian rad) // constructorl, one-argument constructor
 {
 degree = rad.GetRadian() * 180.0 / PI;
 }
 float GetDegree() //Access function
 {
 return(degree);
 }
 // radian = degree; conversion routine at the source
 operator Radian()
 {
 // convert degree to radian and create an object radian
 // and then return, here radian constructor 1 is called.

Operator Overloading 515

 return(Radian(degree * PI / 180.0));
 }
 void Input() // Read degree
 {
 cout << "Enter Degree: ";
 cin >> degree;
 }
 void Output() // Display output
 {
 cout << "Degree = " << degree << endl;
 }
};
void main(void)
{
 Degree degl, deg2; // degree using constructor0
 Radian radl, rad2; // radian using constructor0
 // degree to radian conversion
 degl.Input();
 radl = degl; // convert degree to radian, uses ’operator Radian()’
 radl.Output();
 // radian to degree conversion
 rad2.Input();
 deg2 = rad2; // convert radian to degree, uses Degree(Radian rad)
 deg2.Output();
}

Run

Enter Degree: 180
Radian = 3.141593
Enter Radian: 3.142
Degree = 180.023331

13.17.4 One-Argument Constructor or Operator Function ?

From the above discussion, it is evident that either the one-argument constructor or the operator function

can be used for converting objects of different classes. A wide variety of classes in the form of class

libraries are available commercially. But, they are supplied as object modules (machine code in linkable

form) and not as source modules. The user has no control over the modification of such classes. This

leads to a problem of conversion between the objects defined using the classes supplied by the software

vendors and objects defined using the classes declared by the user. This problem can be circumvented

by defining a conversion routine in the user-defined classes. It can be a one-argument constructor or a

operator function depending on whether the user-defined object is a source or destination object. The

thumb rules for deciding where conversion routine has to be defined are the following:

 If the user-defined object is a source object, the conversion routine must be defined as an operator

function in the source object’s class.

 If the user-defined object is a destination object, the conversion routine must be defined as a one-

argument constructor in the destination object’s class.

Mastering C++516

 If both the source and destination object are the instances of user-defined classes, the conversion

routine can be placed either in the source object’s class as an operator function or in the destination

object’s class as a constructor function.

13.18 SUBSCRIPT OPERATOR OVERLOADING

The subscript operator [] can be overloaded to access the attributes of an object. It is mainly useful for

bounds checking while accessing elements of an array. Consider the following definition

 int a[10];

An expression such as a [20] is syntactically valid though it is accessing an element beyond the

range. Such an illegal access can be detected by overloading subscript operators. The user-defined class

can overload the [] operator and check for validity of accesses to array of objects and permit access to

its members only when the index value is valid.

An array of primitive data types can be accessed using integer subscripts only. However, when it is

overloaded, it can take parameters other than integer types, i.e., the argument of an operator function

[] need not be an integer; it can be of any data type. The program script.cpp illustrates the

concept of overloading the subscript operator [].

// script.cpp: Subscripted operator overloading
#include <iostream.h>
#include <string.h>
typedef struct AccountEntry
{
 int number; // account number
 char name[25]; // name of account holder
} AccountEntry;
class AccountBook
{
 private:
 int aCount; // account holders count
 AccountEntry account[10]; // accounts table
 public:
 AccountBook(int aCountIn) // constructor 1
 {
 aCount = aCountIn;
 }
 void AccountEntry();
 int operator [] (char * nameIn);
 char * operator [] (int numberIn);
};
// takes name as input, returns account number
int AccountBook::operator [] (char *nameIn)
{
 for(int i = 0; i < aCount; i++)
 if(strcmp(nameIn, account[i].name) == 0)
 return account [i].number; // found name, return its account number

Operator Overloading 517

 return 0;
}
// takes number as input, returns name corresponding to account number
char * AccountBook::operator [] (int numberIn)
{
 for(int i = 0; i < aCount; i++)
 if(numberIn == account[i].number)
 return account[i].name;
 return 0;
}
void AccountBook::AccountEntry()
{
 for(int i = 0; i < aCount; i++)
 {
 cout << "Account Number: ";
 cin >> account[i].number;
 cout << "Account Holder Name: ";
 cin >> account[i].name;
 }
}
void main()
{
 int accno;
 char name[25];
 AccountBook accounts(5); // account having 5 customers
 cout << "Building 5 Customers Database" << endl;
 accounts.AccountEntry(); // read
 cout << "\nAccessing Accounts Information";
 cout << "\nTo access Name Enter Account Number: ";
 cin >> accno;
 cout << "Name: " << accounts[accno]; //operator [] (int numberIn)
 cout << "\nTo access Account Number, Enter Name: ";
 cin >> name;
 cout << "Account Number: " << accounts[name];
 // uses, operator [] (char *nameIn)
}

Run

Building 5 Customers Database
Account Number: 1
Account Holder Name: Rajkumar
Account Number: 2
Account Holder Name: Kiran
Account Number: 3
Account Holder Name: Ravishanker
Account Number: 4
Account Holder Name: Anand
Account Number: 5
Account Holder Name: Sindhu

Mastering C++518

Accessing Accounts Information
To access Name Enter Account Number: 1
Name: Rajkumar
To access Account Number, Enter Name: Sindhu
Account Number: 5

In main(), the statement

accounts.AccountEntry(); // read

reads a database of five account holders and initializes the object’s data members. The statement

cout << "Name: " << accounts[accno]; // operator [](int numberln)

uses the function

char * operator [] (int numberIn);

and returns the name of the account holder for a given account number. The statement

cout << "Account Number: " << accounts[name];

uses the function

int operator [] (char *nameIn)

and returns the account number corresponding to the name of the given account holder’s name. The

compiler selects the appropriate function which matches with the actual parameter’s data type.

13.19 OVERLOADING WITH FRIEND FUNCTIONS

Friend functions play a very important role in operator overloading by providing the flexibility denied

by the member functions of a class. They allow overloading of stream operators (<< or >>) for stream

computation on user-defined data types. The only difference between a friend function and a member

function is that the friend function requires the arguments to be explicitly passed to the function and

processes them explicitly, whereas the member function considers the first argument implicitly. Friend

functions can either be used with unary or binary operators. The syntax of operator overloading with

friend functions is shown in Figure 13.11.

Fig. 13.11 Syntax of overloading with friend function

friend ReturnType operator OperatorSymbol (arg1 [,arg2])

{

// body of Operator Friend function

}

friend keyword

Function return type : primitive, void, or user defined

Keyword

Operator to be overloaded

Arguments to
operator function

Operator Overloading 519

The prototype of the friend function must be prefixed with the keyword friend inside the class

body. The body of the friend function can appear either inside or outside the body of a class. It is

advisable to define a friend function outside the body of a class. The definition of the friend function

outside the body of a class is defined as a normal function and is not prefixed with the friend

keyword. The arguments of the friend functions are generally objects of friend classes. In a friend

function, all the members of a class (to which this function is a friend) can be accessed by using its

objects. Friend function is not allowed to access members of a class (to which it is a friend) directly,

but it can access all the members including the private members by using objects of that class. Hence,

a friend function is similar to a normal function except that it can access the private members of a class

using its objects.

13.19.1 Unary Operator Overloading using Friend Functions

The program complex6.cpp illustrates the concept of negation of complex numbers. The negation

function returns the negated object without modifying the source object.

// complex6.cpp: Negation of complex number with Unary Operator
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;
 public:
 complex() // no argument constructor
 {
 real = imag = 0.0;
 }
 void getdata(); // read complex number
 void outdata(char *msg); // display complex number
 // overloading of unary minus operator to support c2 = - cl
 friend complex operator - (complex cl)
 {
 complex c;
 c.real = -cl.real;
 c.imag = -cl.imag;
 return(c);
 }
 void readdata();
};
void complex::readdata()
{
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
}
void complex::outdata(char *msg)

Mastering C++520

{
 cout << endl << msg;
 cout << "(" << real;
 cout << ", " << imag << ") ";
}
void main()
{
 complex cl, c2;
 cout << "Enter Complex cl.." << endl;
 cl.readdata();
 c2 = -cl; // invokes complex operator -()
 cl.outdata("Complex cl : ");
 c2.outdata("Complex c2 = -Complex cl: "),
}

Run

Enter Complex cl..
Real Part ? 1.5
Imag Part ? -2.5
Complex cl : (1.5, -2.5)
Complex c2 = -Complex cl: (-1.5, 2.5)

The complex-number negation function without a friend is declared as follows:

complex operator -()

In this case, arguments are implicitly assumed. Using the keyword friend, it is declared as follows:

friend complex operator - (complex cl)

The above friend operator function cannot access members of the class complex directly, unlike

its member functions. In main(), the statement

c2 = -cl; // invokes unary operator function, complex operator -()

computes the negation of c1 and assigns it to c2. It returns the negated result without negating contents

of the c1 object. The object c1 is passed as a value parameter to the negate operator function and any

modification to its data members will be reflected in the c1 object.

The negation operation can also be applied to an object to modify its data members. In this case,

the same object acts both as a source and a destination object. It is similar to representing a negative

number. This can be achieved by passing the object as a reference parameter to the negation operator

function so that the negation of its data members can be also reflected in the calling object. The program

complex7.cpp illustrates the concept of negation of complex numbers having the same source and

destination operands.

// complex7.cpp: Negation of Complex Number with Unary Operator Overloading
#include <iostream.h>
class complex
{
 private:
 float real;

Operator Overloading 521

 float imag;
 public:
 complex() { real = imag = 0; }
 void readdata();
 void outdata(char *msg);
 // Note: friend function with explicit reference parameter
 // overloading of unary minus, -cl
 friend void operator - (complex & cl); // definition outside
};
// friend function of the class complex
// Note that, the keyword friend should not prefixed while defining outside
void operator - (complex & cl)
{
 cl.real = -cl.real;
 cl.imag = -cl.imag;
}
void complex::readdata()
{
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
}
void complex::outdata(char *msg)
{
 cout << endl << msg;
 cout << "(" << real;
 cout << "," << imag << ")";
}
void main()
{
 complex cl;
 cout << "Enter Complex cl.." << endl;
 c1.readdata();
 -cl; // invokes unary operator function, complex operator -()
 cl.outdatat "Result of -Complex cl: ");
}

Run

Enter Complex cl..
Real Part ? 1.5
Imag Part ? -2.5
Result of -Complex cl: (-1.5, 2.5)

In main(), the statement

-cl; // invokes unary operator function, complex operator -()

invokes the function

void operator - (complex & cl)

Mastering C++522

by passing the object c1 by reference. Thus, the negation of c1 in the function is also reflected in the

calling object. Note that the definition of the operator friend function is the same as normal functions.

13.19.2 Binary Operator Overloading using Friend Function

The complex number discussed in the program complex2.cpp can be modified using a friend

operator function as follows:

 1. Modify the member function prototype as follows:

friend complex operator + (complex cl, complex c2)

 2. Redefine the operator function as follows:

friend complex operator + (complex cl, complex c2)

{

 complex c;

 c.real = cl.real + c2.real;

 c.imag = cl.imag + c2.imag;

 return(c);

}

In the above definition, the input object parameters cl and c2 are handled explicitly without considering

the first argument as an implicit argument. The statement

c3 = cl + c2;

is equivalent to the statement

c3 = operator + (cl, c2);

The result generated by the friend function is same as that generated by the member function. But,

friend functions offer the flexibility of writing an expression as a combination of operands of user-

defined and primitive data types. For instance, consider the statement

c3 = cl + 2.0;

The expression cl + 2.0 is made up of the object cl and a primitive type. In case of an operator

member function, both the operands must be of the object’s data type. When the friend operator

functions are used, both the operands need not be instances of the user-defined data type. It requires

a parameterized constructor taking a primitive data-type parameter. The program complex8.cpp

illustrates the concept of overloading an operator function as a friend function.

// complex8.cpp: Addition of Complex Numbers with friend feature
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;
 public:
 complex()

Operator Overloading 523

 {}
 complex(int realpart)
 {
 real = realpart;
 }
 void readdata()
 {
 cout << "Real Part ? ";
 cin >> real;
 cout << "Imag Part ? ";
 cin >> imag;
 }
 void outdata(char *msg) // display complex number
 {
 cout << endl << msg;
 cout << "(" << real;
 cout << ", " << imag << ")";
 }
 friend complex operator + (complex cl, complex c2);
};
// note that friend keyword and scope resolution operator are not used
complex operator + (complex cl, complex c2)
{
 complex c;
 c.real = cl.real + c2.real;
 c.imag = cl.imag + c2.imag;
 return(c);
}
void main()
{
 complex cl, c2, c3 = 3.0;
 cout << "Enter Complexl cl..:" << endl;
 cl.readdata();
 cout << "Enter Complex2 c2..:" << endl;
 c2.readdata();
 c3 = cl + c2;
 c3.outdata("Result of c3 = cl + c2: ");
 // 2.0 is considered as real part of complex
 c3 = cl + 2.0; // c3 = cl + complex(2.0)
 c3.outdata("Result of c3 = cl + 2.0: ");
 // 3.0 is considered as real part of complex
 c3 = 3.0 + c2; // c3 = complex(3.0) + c2
 c3.outdata("Result of c3 = 3.0 + c2: ");
}

Run

Enter Complexl cl.. :
Real Part ? 1
Imag Part ? 2

Mastering C++524

Enter Complex2 c2..:
Real Part ? 3
Imag Part 4
Result of c3 = cl + c2: (4, 6)
Result of c3 = cl + 2.0: (3, 2)
Result of c3 = 3.0 + c2: (6, 4)

In main(), the statement

c3 = cl + 2.0; // c3 = cl + complex(2.0)

has an expression, which is a combination of the object c1 and the primitive floating-point constant

2.0. Though, there is no member function matching this expression, the compiler will resolve this by

treating the expression as follows:

c3 = cl + complex(2.0);

The compiler invokes the single-argument constructor and converts the primitive value to a new

temporary object (here, 2.0 is considered as a real part of the complex number) and passes it to the

friend operator function:

friend complex operator + (complex cl, complex c2)

The sum of the object cl and a new temporary object complex (2.0) is computed and assigned

to object c3. The new temporary objects are destroyed immediately after execution of the statement

due to which it is created. The above expression can also be written as

c3 = 2.0 + cl;

Recall that the left-hand operand is responsible for invoking its member function; but this statement

has a numeric constant instead of an object. The outcome of either expression is the same, since the

compiler treats it as follows:

c3 = complex(2.0) + cl;

In C++, an object can be used not only to invoke a friend function, but also as an argument to a friend

function. Thus, to the friend operator functions, a built-in type operand can be passed either as the first

operand or as the second operand.

13.19.3 Overloading Stream Operators using Friend Function

The iostream facility of C++ provides an easy means to perform I/O. The class istream uses the

predefined stream cin that can be used to read data from the standard input device. The extraction

operator >> is used for performing input operations in the iostream library; The insertion operator

<< is used for performing output operations in the iostream library.

Similar to the built-in variables, the user-defined objects can also be read or displayed using the *

stream operators. In case of the overloaded operator << function, the ostream & is taken as the first

argument of a friend function of a class. The return value of this friend function is of type ostream
& as shown in Figure 13.12.

Similarly, for overloading the >> operator, the istream & is taken as the first argument of a friend

function of the class. The return value of this friend function is of type istream & as shown in Figure

13.13. In both the cases, a reference to an object of the current class is taken as the second argument

and the same is returned by reference.

Operator Overloading 525

The program complex9.cpp illustrates the flexibility of overloading stream operators and their

usage with objects of the user-defined data type.

// complex9.cpp: Addition of Complex Numbers with stream overloading
#include <iostream.h>
class complex
{
 private:
 float real;
 float imag;.
 public:
 complex() { }
 complex(float InReal)
 {
 real = InReal;
 imag = 0;

Fig. 13.12 Overloading output stream operator as friend function

Keyword

friend ostream & operator << (ostream &Out, arg)

{

// display attributes of user defined object: arg with cout or Out

return Out;

}

Output stream class

Reference type return

Keyword

Output stream operator

Output stream object: cout

User defined object

Reference object return: cout

Fig. 13.13 Overloading input stream operator as friend function

Keyword

friend istream & operator >> (istream &In, arg)

{

// read attributes of object arg with In or cin object

return In;

}

Input stream class

Reference type return

Keyword

Input stream operator

Input stream object: cin

User defined object

Reference object return: cin

Mastering C++526

 }
 void outdata();
 friend complex operator + (complex cl, complex c2)
 {
 complex c;
 c.real = cl.real + c2.real;
 c.imag = cl.imag + c2.imag;
 return(c);
 }
 friend istream & operator >> (istream &In, complex &c);
 friend ostream & operator << (ostream &Out, complex &c);
};
istream & operator >> (istream & In, complex & c)
{
 cout << "Real Part ? ";
 In >> c.real; // cin >> c.real;
 cout << "Imag Part ? ";
 In >> c.imag; // cin >> c.imag;
 return In;
}
ostream & operator << (ostream &Out, complex & c)
{
 Out << "(" << c.real; // or cout << "Real = " << c.real;
 Out << ", " << c.imag << ")"; // cout in place of Out
 return Out;
}
void main()
{
 complex cl, c2, c3 = 3;
 cout << "Enter Complexl cl..:" << endl;
 cin >> cl;
 cout << "Enter Complex2 c2..:" << endl;
 cin >> c2;
 c3 = cl + c2;
 cout << "Result of c3 = cl + c2: ";
 cout << c3;
 // 2.0 is considered as real part of complex
 c3 = cl + 2.0; // c3 = cl + complex(2.0)
 cout<<endl<<"Result of c3 = cl + 2.0: "; //c3=cl + complex (2.0);
 cout << c3;
 // 3.0 is considered as real part of complex
 c3 = 3.0 + c2;
 cout<< endl<<"Result of c3 = 3.0 + c2: "; //c3=complex(3.0) + c2;
 cout << c3;
}

Run

Enter Complexl cl..:
Real Part ? 1

Operator Overloading 527

Imag Part ? 2
Enter Complex2 c2..:
Real Part ? 3
Imag Part ? 4
Result of c3 = cl + c2: (4, 6)
Result of c3 = cl + 2.0: (3, 2)
Result of c3 = 3.0 + c2: (6, 4)

In main(), the statements

cin >> cl;

cin >> c2;

read user-defined class’s objects cl and c2 in the same way as built-in data type variables by using

the input stream operator. Also, the sum of the complex numbers cl and c2 stored in c3 is displayed

by the statement,

cout << c3;

similar to any built-in data item using the output stream operator. The overloaded stream operator

functions performing I/O operations with complex numbers are the following:

friend istream & operator >> (istream &In, complex &c);

friend ostream & operator << (ostream &0ut, complex &c);

The classes istream and ostream are defined in the header file iostream.h, which has been

included in the program. C++ does not allow overloading of operators listed in Table 13.2 as friend

operator functions. They can, however, be overloaded as operator member functions.

Table 13.2 Operators that cannot be overloaded as friend operators

Operator Category Operator

Assignment =

Function cell ()

Subscribing []

Class-member access –>

13.20 ASSIGNMENT OPERATOR OVERLOADING

The compiler copies all the members of a user-defined source object to a destination object in an

assignment statement, when its members are statically allocated. The data members, which are

dynamically allocated, must be copied to the destination object explicitly by overloading the assignment

operator. Two examples of this process are the assignment operator and the copy constructor. Consider

the following statements:

vector vl(5), v2(5);

vl = v2; // operator = invoked

vector v3 = v2; // copy constructor is invoked

Mastering C++528

The first statement defines two objects vl and v2 of the class vector. The second assignment

statement

vl = v2;

will cause the compiler to copy the data from v2, member-by-member, into vl. The action is similar

to the default operation performed by the assignment operator. The next statement

vector v3 = v2,

initializes one object with another object during definition. This statement causes a similar action after

creating the new object v3. The data members from v2 are copied member-by-member into v3. This

action is similar to the operation performed by the copy constructor, by default.

The default actions performed by the compiler (to perform assignment operation) are insufficient

if the object’s state is dynamically varying. Such objects can be processed by overriding these default

actions. The program vector.cpp illustrates the concept of overriding default actions by the user-

defined overloaded assignment operator and copy constructor.

// vector.cpp: overloaded assignment operator for vector elements copying
#include <iostream.h>
class vector
{
 int * v; // pointer to vector
 int size; // size of vector v
 public:
 vector(int vector_size)
 {
 size = vector_size;
 v = new int[vector_size];
 }
 vector (vector &v2);
 ~vector()
 {
 delete v;
 }
 void operator = (vector & v2);
 int & elem(int i)
 {
 if(i >= size)
 cout << endl << "Error: Out of Range";
 return v[i];
 }
 void show();
};
// copy constructor, vector vl = v2;
vector::vector(vector &v2)
{
 cout << "\nCopy constructor invoked";
 size = v2.size; // size of vl is equal to size of v2
 v = new int [v2.size]; // allocate memory of the vector vl

Operator Overloading 529

 for(int i = 0; i < v2.size; i++)
 v[i] = v2.v[i];
}
// overloading assignment operator, vl = v2, vl is implicit
void vector::operator = (vector & v2)
{
 cout << "\nAssignment operation invoked";
 // memory is already allocated to the vector and vl.size = v2.size
 for(int i = 0; i < v2.size; i++)
 v[i] = v2.v[i];
}
void veccor::show()
{
 for(int i = 0; i < size; i++)
 cout << elem(i) << ", ";
}
void main()
{
 int i;
 vector vl(5), v2(5);
 for(i = 0; i < 5; i++)
 v2.elem(i) = i + 1;
 vl = v2; // operator = invoked
 vector v3 = v2; // copy constructor is invoked
 cout << "\nvector vl: ";
 vl.show();
 cout << "\nvector v2: ";
 v2.show();
 cout << "\nvector v2: ";
 v3.show();
}

Run

Assignment operation invoked
Copy constructor invoked
vector vl: 1, 2, 3, 4, 5,
vector v2: l, 2, 3, 4, 5,
vector v2: 1, 2, 3, 4, 5,

The overloaded = operator function does the job of copying the data members from one object to

another. The function also prints a message to assist the user in keeping track of its execution.

The copy constructor

vector(vector &v2);

takes one argument, an object of the type vector, passed by reference. It is essential to pass a reference

argument to the copy constructor. It cannot be passed by value. When an argument is passed by value,

its copy is constructed using the copy constructor, i.e., the copy constructor would call itself to make

this copy. This process would go on until the system runs out of memory. Hence, arguments to the copy

constructor must be always passed by reference, thus preventing creation of copies. A copy constructor

Mastering C++530

also gets invoked when arguments are passed by value to functions and when values are returned from

functions. When an object is passed by value, the argument on which the function operates is created

using a copy constructor. If an object is passed by its address or reference, the copy constructor of

course would not be invoked, and the copies of the objects are not created. When an object is returned

from a function, the copy constructor is invoked to create a copy of the value returned by the function.

13.21 TRACING MEMORY LEAKS

Memory fragmentation can affect program performance, but memory leaks frequently cause programs

to crash. A memory leak occurs when the user program fails to free an allocated memory block. The

new operator can be overloaded to write signature bytes for the blocks it allocates. The meaning of

memory leak is that dynamic memory being allocated (newed) without being teleasing (deleted). The

executable size quickly outgrows the size of memory in the machine, requiring an undesirable amount

of swapping activity. The first step in attacking this problem is to find where memory is being requested,

used, and not returned.

13.21.1 Approach

In C++, it is easy to overload the built-in new and delete operators with user-supplied versions

and thereby determine when the memory is requested and to which memory location it is bounded.

The program mleak.cpp overloads new and delete operators and records the memory location

to which the request is bound, in the disk file space.raw. It also records all those bindings that are

released using explicit memory-free request command.

// mleak.cpp: Memory leak tracing
#include <:iostream.h>
#include <stdio.h>
#include <process.h>
#include <alloc.h>
#include <string.h>
//global information
static space_debug = 1; // space_debug switch, ON
FILE * fp_space = NULL; // file pointer to the debug info
void * operator new(size_t size)
{
 void *ptr;
 if(space_debug)
 {
 if(fp_space == NULL } // first time call to new or delete
 {
 // open leak debug info file which is unopened
 if((fp_space = fopen("space.raw", "w")) =* NULL)
 {
 cout << "Error opening space.raw in write mode";
 exit(1);
 }
 }

Operator Overloading 531

 }
 iff (ptr = malloc(size)) == NULL)
 {
 cout << "out of memory space";
 exit(1);
 }
 if(space_debug) // debug switch is ON, store memory info
 fprintf(fp_space, "new(%d) -> %x\n", size, ptr);
 return ptr;
}
void operator delete(void *ptr)
{
 if(space_debug)
 {
 // open leak debug info file which is unopened
 if(fp_space == NULL) // first time call to new or delete
 {
 if((fp_space = fopen("space.raw", "w")) == NULL)
 {
 cout << "Error opening space.raw in write mode";
 exit(1);
 }
 }
}
if(ptr) // if valid pointer
{
 free((char *} ptr);
 if(space_debug) // debug switch is ON, store memory info
 fprintf(fp_space, "free <- %x\n", ptr };
 }
}
void main()
{
 int *vector;
 char *buffer;
 vector = (int *) new int[10];
 buffer = (char *) new char[6];
 for(int i = 0; i < 10; i++)
 vector[i] = i+1;
 strcpy(buffer, "hello");
 cout << "vector = ";
 for(i = 0; i < 10; i++)
 cout << vector[i] << " ";
 cout << endl << "buffer = " << buffer;
 delete vector; // vector is deallocated
 fclose(fp_space);
}

Run

vector = 1 2 3 4 5 6 7 8 9 10
buffer = hello

Mastering C++532

The space_debug variable allows the programmer to decide whether to trace a particular portion

of code or not. When tracing is desired, it must be set to a nonzero (debug ON) value. When the

following statements:

vector = (int *) new int[10];

buffer = (char *) new char[6];

are invoked in the program, the overloaded new operator allocates the requested amount of memory

and returns a pointer to the memory location to which it is bound. In addition, it records this memory

address to which it is bound, in the disk file space.raw. Similarly, the overloaded delete operator

releases the memory pointed to by the input pointer and also records the memory address in the disk

file. In the above Run, the information recorded in the space.raw file is the following:

new(36) -> bd2

new(516) -> bfa

new(36) -> e02

new(516) -> e2a

new(36) -> 1032

new(516) -> 105a

new(10) -> 1262

newt 6) -> 127a

free <- 1262

free <- bfa

free <- bd2

free <- e2a

free <- e02

free <- 105a

free <- 1032

The first six requests are made by the program execution start-up routine. They can be discarded in

the memory-leak tracing analysis. The seventh and eighth requests are made in the program explicitly.

Similarly, the last six memory-free requests made by the system can be discarded during analysis.

These requests vary from system to system. The first request to free memory is made by the statement

delete vector; // vector is deallocated

The pointer returned for the requests

vector = (int *) new int[10];

buffer = (char *) new chart [6];

are the following:

newt (10) –> 1262

newt (6) –> 127a

By tracing the above allocation address information in the free list, it can be detected that the

new(6) pointer address is not released, leading to memory leak. In the program it can be observed that

the memory allocated for the variable vector is released explicitly whereas the memory allocated for

the variable buffer is not released. It can also be noticed from the trace of memory debug information.

Operator Overloading 533

13.22 NICETIES OF OPERATOR OVERLOADING AND CONVERSIONS

Operator overloading and data conversion features of C++ provide an opportunity to the user to redefine

the C++ language. The polymorphism feature of C++ is a bonus for the user to customize C++ to their

taste. Of course, it can be misused, since C++ does not restrict the user from misusing (exploiting)

the feature of operator overloading. Consider an example of overloading the + operator to perform

arithmetic on the user-defined objects x, y, and z.

The statement,

x = y + z;

can represent a different meaning as compared with that conveyed by the operation with basic data

types. In the body of the overloaded function, even if subtraction operation is performed instead of

addition, C++ neither signals an error nor restricts such an operation. The above operation can also

mean concatenation of strings y and z, and storing the result in x (x, y, and z are object’s of the

String class). Thus, operator overloading provides the ability to redefine the building blocks of the

language and allows to manipulate the user-defined data items in a more intuitive and readable way.

The program misuse.cpp illustrates the misuse of the operator overloading feature in C++. The

compiler only validates syntax errors but not the semantics.

// misuse.cpp: Misuse of operator overloading, performs subtraction instead
// of addition operation
#include <iostream.h>
class number
{
 private:
 int num;
 public:
 void read() // number read function
 {
 cin >> num;
 }
 int get() // private member num access function
 {
 return num;
 }
 // overloaded operator for number addition
 number operator+(number num2)
 {
 number sum;
 sum.num = num - num2.num; // subtraction instead of addition
 return sum;
 }
};
void main()
{
 number numl, num2, sum;

Mastering C++534

 cout << "Enter Number 1: ";
 numl.read();
 cout << "Enter Number 2: ";
 num2.read();
 sum = numl + num2; // addition of number
 cout << "sum = numl + num2 = " << sum.get();
}

Run1

Enter Number 1: 20
Enter Number 2: 10
sum = numl + num2 = 10

Run2

Enter Number 1: 5
Enter Number 2: 10
sum = numl + num2 = -5

In main(), the statement

sum = numl + num2; // addition of number

is supposed to perform addition of two numbers numl and num2, but instead it performs subtraction.

The statement in the body of the overloaded operator function number operator+ (..)

sum.num = num - num2.num; // instead of addition, subtraction is done

performs subtraction instead of addition. Such neglected use of operator overloading is not taken care

by the C++ compiler, but it is the responsibility of the programmer.

As operator overloading is only a notational convenience, the language should try to prevent its

misuse (but C++ does not prevent). It is indeed said that the meaning of operators applied to standard

data types cannot be redefined. The intent is to make C++ extensible, but not mutable. Hence, operators

cannot be overloaded for enumerations, although it would be sometimes desirable and fully sensible.

13.22.1 Guidelines

It is essential to follow syntax and semantic rules of the language while extending the power of C++ using

operator overloading. In fact, the operator-overloading feature opens up vast vistas of opportunities for

creative programmers (for instance, new and delete can be overloaded to detect memory leaks as

illustrated earlier). The following are some guidelines that needs to be kept in mind while overloading

any operators to support user-defined data types:

Retain Meaning
Overloaded operators must perform operations similar to those defined for primitive/basic data types.

The operator + can be overloaded to perform subtraction; and the operator * can be overloaded to

perform division operation. However, such definitions should be avoided to retain the intuitive meaning

of the operators. For example, the overloaded operator +() function operating on user defined data-

items must retain a meaning similar to addition. The operator + could perform the union operation on

set data type, concatenation on string data type, etc.

Operator Overloading 535

Retain Syntax

The syntactic characteristics and operator hierarchy cannot be changed by overloading. Therefore,

overloaded operators must be used in the same way they are used for basic data types. For example,

if cl and c2 are the objects of the complex class, the arithmetic assignment operator in the statement

cl += c2;

sets cl to the sum of cl and c2. The overloaded version of any operator should do something

analogous to the standard definition of the language. The above statement should perform an operation

similar to the statement

cl = cl+c2;

Use Functions when Appropriate

An operator must not be overloaded if it does not perform the obvious operation. It should not demand

the user’s effort in order to identify the actual operation performed by the operator. The main aim

of overloading is to make the program code more readable. If the meaning of an operation to be

performed by the overloaded operator is unpredictable or doubtful to the user, it is advisable to use a

more descriptive and meaningful function name.

Avoid Ambiguity

The existence of multiple data-conversion routines performing the same operations, places the compiler

in an ambiguous state. It does not know which one to select for conversion. For instance, existence of

a one-argument constructor in the destination object’s class and operator function also in the source

object’s class performing the same conversion function, confuses the compiler; it does not know which

one to select and issues an error message. Therefore, avoid defining multiple routines performing the

same operation, which become ambiguous during compilation. The program confuse.cpp illustrates

the ambiguity which arises when multiple conversion routines exist in a program.

// confuse.cpp: conversion routines for object A’s to object B
class B; // forward specification
class A // source class
{
 // data members of the class A
 public:
 A()
 {}
 // conversion routine in source, operator function
 operator B()

 {
 B b_obj;
 // convert A class’s object into class B’s object, b_obj
 return b_obj;
 }
 // other member functions of the class A
};
class B // destination class
{

Mastering C++536

 // data members of the class B
 public:
 B()
 {}
 // conversion routine in destination, one-argument constructor
 B(A a_obj)

 {
 // convert source class A’s object to initialize data members of B
 }
 // other member functions of the class B
};
void main(void)
{
 A a_obj;
 B b_obj;
 b_obj = a_obj;

 // other operations on objects of the classes A and B if necessary
}

In main(), the statement

b_obj = a_obj;

leads to the following compilation error:

Error confuse.cpp 35: Ambiguity between ‘A::operator B()’ and
 ‘B::B(A)’in function main()

It is because the source object a_obj ‘s class A has operator conversion function and the destination

object b_obj’s class B also has a conversion function in the form of a one-argument constructor

function.

All Operators Cannot be Overloaded

C++ supports a wide variety of operators, but all of them cannot be overloaded (see Table 13.3) to

operate in an analogous way on standard operators. These excluded operators are very few compared

to the large number of operators, which qualify for overloading.

Table 13.3 Non-overloadable C++ operators

Operator Category Operators

Member access (dot operator)

Scope resolution :: (global access)

Conditional ?: (conditional statement)

Pointer to member *

Size of Data Type sizeof (..)

An operator such as ?: has an inherent meaning and it requires three arguments. C++ does not

support the overloading of an operator, which operates on three operands. Hence, the conditional

operator, which is the only ternary operator in the C++ language, cannot be overloaded.

Operator Overloading 537

SOLVED PROBLEMS

 1. Write a C++ program that takes two values of time (hour, minute, second) and outputs their

sum using constructors and operator overloading.

#include<iostream.h>
class date
{
 int hr;
 int min;
 int sec;
 public:
 date() //default constructor
 {
 hr=min=sec=0;
 }
 date(int h, int m, int s) // parameterized constructor
 {
 hr=h;
 min=m;
 sec=s;
 }
 void show(void)
 {
 cout<<hr<<" hours, "<<min<<" minutes, "<<sec<<" seconds";
 }
 date operator + (date d2);
};
date date::operator + (date d2) // Overloading + operator to add two
date values
{
 date temp_date;
 temp_date.sec=sec+d2.sec;
 if(temp_date.sec>=60)
 {
 temp_date.min++;
 temp_date.sec=temp_date.sec-60;
 }
 temp_date.min=temp_date.min+min+d2.min;
 if(temp_date.min>=60)
 {
 temp_date.hr++;
 temp_date.min=temp_date.min-60;
 }
 temp_date.hr=temp_date.hr+hr+d2.hr;
 return(temp_date);
}

+
+

Mastering C++538

void main()
{
 date date1(2, 4, 56);
 date date2(10, 59, 11);
 date date3;
 date3 = date1 + date2;
 date1.show();
 cout<<" + ";
 date2.show();
 cout<<" = ";
 date3.show();
}
Run

2 hours, 4 minutes, 56 seconds + 10 hours, 59 minutes, 11 seconds = 13
hours, 4 minutes, 7 seconds

 2. Consider a fruit basket class with a number of apples and a number of mangoes as data members.

Overload the ‘+’ operator to add two objects of this class.

#include<iostream.h>
class basket
{
 int apples;
 int mangoes;
 public:
 basket()
 {
 apples=mangoes=0;
 }
 basket(int a, int m)
 {
 apples=a;
 mangoes=m;
 }
 void show(void)
 {
 cout<<apples<<" Apples and "<<mangoes<<" Mangoes";
 }
 basket operator + (basket b2);
};
basket basket::operator + (basket b2)
{
 basket temp_basket;
 temp_basket.apples=apples+b2.apples;
 temp_basket.mangoes=mangoes+b2.mangoes;
 return(temp_basket);
}

Operator Overloading 539

void main()
{
 basket basket1(7,10);
 basket basket2(4,5);
 basket basket3;
 cout<<"Basket 1 contains:\n";
 basket1.show();
 cout<<"\nBasket 2 contains:\n";
 basket2.show();
 basket3 = basket1 + basket2;
 cout<<"\nAdding fruits from Basket 1 and Basket 2 results in:\n";
 basket3.show();
}

Run

Basket 1 contains:
7 Apples and 10 Mangoes
Basket 2 contains:
4 Apples and 5 Mangoes
Adding fruits from Basket 1 and Basket 2 results in:
11 Apples and 15 Mangoes

REVIEW QUESTIONS ++
 13.1 What is operator overloading? Explain the importance of operator overloading.

 13.2 List the operators that cannot be overloaded and justify why they cannot be overloaded.

 13.3 What is an operator function? Describe an operator function with syntax and examples.

 13.4 Write a program to overload unary operator, say ++ for incrementing distance in FPS

system. Describe the working model of an overloaded operator with the same program.

 13.5 What are the limitations of overloading unary increment/decrement operator? How are

they overcome?

 13.6 Explain the syntax of binary operator overloading. How many arguments are required in

the definition of an overloaded binary operator?

 13.7 Write a program to overload the unary operator for processing counters. It should

support both upward and downward counting. It must also support the operator for

adding two counters and storing the result in another counter.

 13.8 Write a program to overload arithmetic operators for manipulating vectors.

 13.9 Overload new and delete operators to manipulate objects of the Student class. The

Student class must contain data members such as char *name, int roll_no,int
branch, etc. The overloaded new and delete operators must allocate memory for the

Student class object and its data members.

 13.10 Design classes called Polar and Rectangle for representing a point in the polar and

rectangle systems. Support data-conversion function to support statements such as

 Rectangle rl, r2; Polar p1, p2;
 rl = p1; p2 = r2;

Mastering C++540

 13.11 Write a program to manipulate N student objects. Overload the subscript operator for

bounds checking while accessing ith student object.

 13.12 Why is the friend function not allowed to access members of a class directly although its

body can appear within the class body ?

 13.13 Write a program to overload stream operators for reading or displaying contents of the

Vector class’s objects as follows:

 cin >> vl; cout << v2;

 13.14 Suggest and implement an approach to trace memory leakage.

 13.15 State with reasons whether the following statements are TRUE or FALSE:

 (a) Precedence and associatively of overloaded operators can be changed.

 (b) Semantics of overloaded operators can be changed.

 (c) With overloading binary operator, the left and right operands are explicitly passed.

 (d) The overloaded operator functions parameters must be user-defined objects only.

 (e) A constructor can be used to convert user-defined data types only.

 (f) An object of a class can be assigned to basic type operand.

 (g) Syntax of overloaded operators can be changed.

 (h) The parameter type to overloaded subscript [] operator can be of any data type.

 (i) Friend functions can access members of a class directly.

 (j) The ternary operator can be overloaded.

 (k) The compiler reports an error if overloaded + operator performs - operation.

 13.16 Design classes such that they support the following statements:

Rupee rl, r2; Dollar dl, d2;
 dl = r2; // converts rupee (Indian currency) to dollar (US currency)
 r2 = d2; // converts dollar (US currency) to rupee (Indian currency)

 Write a complete program which does such conversions according to the world market

value.

 13.17 Write a program for manipulating linked list supporting node operations as follows:

 node = node + 2; node = node - 3;

 The first statement creates a new node with node information 2 and the second statement

deletes a node with node information 3.

 13.18 Write a program for creating a doubly linked list. It must support the following operations:

 firstnode = node; firstnode += 10; Node *n = nodel + node2;

 The doubly linked list class should have overloaded node creation and deletion operator

function should appear in the form of overloaded + and - operator functions respectively.

 13.19 Write an interactive operator overloaded program for manipulating matrices. Overload

operators such as >>, <<, +, –, *, = =.

 13.20 Write an interactive operator overloaded program to manipulate the three-variable

polynomial: anxnynzn + an–lx
n–1yn–1zn–1+...+ a1x1y1z1 + a0

Inheritance

 14.1 INTRODUCTION

Inheritance is a technique of organizing information in a hierarchical form.

It is like a child inheriting the features of its parents (such as features of the

mother and habits of the father). In real world, an object is described by

using inheritance. It derives general properties of an object by tracing an

inheritance tree from one specific instance, upwards towards the primitive

concepts at the root.

Inheritance allows new classes to be built from older and less specialized classes instead of being

rewritten from scratch. Classes are created by first inheriting all the variables and behavior defined

by some primitive class and then adding specialized variables and behaviors. In object-oriented

programming, classes encapsulate data and functions into one package. New classes can be built from

existing ones, just as a builder constructs a skyscraper out of bricks, stone, and other relatively simple

material. The technique of building new classes from the existing classes is called inheritance.

14

Fig. 14.1 Base-class and derived-class relationship

Base class

Feature A

Feature B

Feature C

Feature D

Feature A

Feature B

Feature C

Derived class
Defined in base class

and also accessible from

derived class

Defined in derived class}

}

Mastering C++542

Inheritance, a prime feature of OOP, can be stated as the process of creating new classes (called

derived classes), from the existing classes (called base classes). The derived class inherits all the

capabilities of the base class and can add refinements and extensions of its own. The base class remains

unchanged. The derivation of a new class from the existing class is represented in Figure 14.1. The

derived class inherits the features of the base class (A, B, and C) and adds its own features (D). The

arrow in the diagram symbolizes derived from. Its direction from the derived class towards the base

class, represents that the derived class accesses features of the base class and not vice versa.

A number of terms are used to describe classes that are related through inheritance. A base class is

often called the ancestor, parent, or superclass, and a derived class is called the descendent, child, or

subclass. A derived class may itself be a base class from which additional classes are derived. There is

no specific limit on the number of classes that may be derived from one another, which forms a class

hierarchy.

14.2 CLASS REVISITED

C++, not only supports the access specifiers private and public, but also an important access

specifier, protected, which is significant in class inheritance. As far as the access limit is concerned,

within a class or from the objects of a class, protected access limit is same as that of the private

specifier. However, the protected specifier has a prominent role to play in inheritance. A class can use

all the three visibility modes as illustrated below:

class ClassName

{

 private:

 // visible to member functions within

 // its class but not in derived class

 protected:

 // visible to member functions within

 // its class and derived class

 public:

 // visible to member functions within

 // its class, derived classes and through object

};

Similar to the private members of a class, the protected members can be accessed only within the

class. That is, in the hierarchy of access, privilege code (members and friends) can see the whole

structure of an object, whereas the external code can see only the public features. Consider the following

definition of a class to illustrate the visibility limit of the various class members:

class X

{

 private:

 int a;

 void fl()

 {

Inheritance 543

 //.. can refer to members a, b, c, and functions fl, f2, and f3

 }

 protected:

 int b;

 void f2()

 {

 //.. can refer to members a, b, c, and functions fl, f2, and f3

 }

 public:

 int c;

 void f3()

 {

 //.. can refer to members a, b, c, and functions fl, f2, and f3

 }

};

The data member a is private to the class X and is accessible only to members of its own class, that

is, member functions fl(),f2(),f3() can access a directly. However, statements outside and even

member functions of the derived class are not allowed to access a directly. In addition, the member

function f1() can be called only by other members of the class X. The statements outside the class

cannot call f1(), which is exclusively a private property of the class X.

The data member b and the member function f2() are protected. These members are accessible to

other member functions of the class X and member functions in a derived class. However, outside the

class, protected members have private status. The statements outside the class cannot directly access

members b or f2() using the class.

The data member c and the member function f3() are public, and may be accessed directly by all

the members of the class X, or by members in a derived class, or by objects of the class. Public members

are always accessible to all users of the class.

The following statements,

X objx; // objx is an object of class X

int d; // temporary variable d

define the object objx of the class X and the integer variable d. The member access privileges are

illustrated by the following statements referring to the object objx.

Accessing Private Members of the Class X

 d = objx.a; // Error: ‘X::a’ is not accessible

 objx.fl(); // Error: ‘X::fl()’ is not accessible

Both the statements are invalid because the private members of a class are inaccessible to the object

objx.

Accessing Protected Members of the Class X

 d = objx.b; // Error: ‘X::b’ is not accessible

 objx.f2(); // Error: ‘X::f2()’ is not accessible

Both the statements are invalid because the protected members of a class are inaccessible since they

are private to the class X.

Mastering C++544

Accessing Public Members of the Class X

 d = objx.c; //OK

 objx.f3(); //OK

Both the statements are valid because the public members of a class are accessible to statements outside

the scope of the class.

The program bag.cpp uses the access modifier protected to hold data members, instead of using

the private access specifier. It indicates that the protected members are inheritable to derived classes.

However, they have the same status as private members in the base class.

// bag.cpp: Bag into which fruits can be placed

#include <iostream.h>

enum boolean { FALSE, TRUE };

// Maximum number of items that a bag can hold

const int MAX_ITEMS = 25;

class Bag

{

 protected: // Note: not private

 int contents[MAX_ITEMS]; // bag memory area

 int ItemCount; // Number of items present in a bag

 public:

 Bag() // no-argument constructor

 {

 ItemCount = 0; // When you purchase a bag, it will be empty

 }

 void put(int item) // puts item into bag

 {

 contents[ItemCount++] = item; // item into bag, counter update

 }

 boolean IsEmpty() // 1, if bag is empty, 0, otherwise

 {

 return ItemCount == 0 ? TRUE : FALSE;

 }

 boolean IsFull() // 1, if bag is full, 0, otherwise

 {

 return ItemCount == MAX_ITEMS ? TRUE : FALSE;

 }

 boolean IsExist(int item);

 void show();

};

// returns 1, if item is in bag, 0, otherwise

boolean Bag::IsExist(int item }

{

 for(int i = 0; i < ItemCount; i++)

 if(contents[i] == item)

 return TRUE;

 return FALSE;

}

Inheritance 545

// display contents of a bag

void Bag::show()

{

 for(int i = 0; i < ItemCount; i++)

 cout << contents[i] << " ”;

 cout << endl;

}

void main()

{

 Bag bag;

 int item

 while (TRUE)

 {

 cout << "Enter Item Number to be put into the bag <0-no item>: ";

 cin >> item;

 if (item == 0) // end of an item, break

 break;

 bag.put(item);

 cout << "Items in Bag: ";

 bag.show();

 if(bag.IsFull())

 {

 cout << "Bag Full, no more items can be placed”;

 break;

 }

 }

}

Run

Enter Item Number to be put into the bag <0-no item>: 1

Items in Bag: 1

Enter Item Number to be put into the bag <0-no item>: 2

Items in Bag: 1 2

Enter Item Number to be put into the bag <0-no item>: 3

Items in Bag: 1 2 3

Enter Item Number to be put into the bag <0-no item>: 3

Items in Bag: 1 2 3 3

Enter Item Number to be put into the bag <0-no item>: 1

Items in Bag: 1 2 3 3 1

Enter Item Number to be put into the bag <0-no item>: 0

In main(), the statement,

Bag bag;

creates the object bag and initializes the data member ItemCount to 0 through a constructor. The

statement

bag.put(item);

stores the items into the bag. It does not check for the entry of duplicate items into a bag. Any item type

can be placed any number of times into a bag and of course, without exceeding the limit or size of bag.

Mastering C++546

14.3 DERIVED CLASS DECLARATION

A derived class extends its features by inheriting the properties of another class, called base class and

adding features of its own. The declaration of a derived class specifies its relationship with the base

class in addition to its own features. The syntax of declaring a derived class is shown in Figure 14.2.

Note that no memory is allocated to the declaration of a derived class, but memory is allocated when it

is instantiated to create objects.

Fig. 14.2 Syntax of derived class declaration

class DerivedClass:[VisibilityMode] BaseClass
{

// members of derived class
// and they can access members of the base class

};

derived class name

is derived from

Inheritance type: public or private

base class name

The derivation of DerivedClass from the BaseClass is indicated by the colon(:). The

VisibilityMode enclosed within the square brackets implies that it is optional. The default

visibility mode is private. If the visibility mode is specified, it must be either public or private.

Visibility mode specifies whether the features of the base class are publicly or privately inherited.

The following are the three possible styles of derivation:

1. class D: public B // public derivation

 {

 // members of D

 };

2. class D: private B // private derivation

 {

 // members of D

 };

3. class D: B // private derivation by default

 {

 // members of D

 };

Inheritance of a base class with visibility mode public, by a derived class, causes public

members of the base class to become public members of the derived class and the protected

members of the base class become protected members of the derived class. Member functions and

objects of the derived class can treat these derived members as though they are defined in the derived

class itself. It is known that the public members of a class can be accessed by the objects of the class.

Hence, the objects of a derived class can access public members of the base class that are inherited

as public using the dot operator. However, protected members cannot be accessed with the dot

operator. (See Figure 14.3.)

Inheritance 547

Inheritance of a base class with visibility mode private by a derived class, causes public members

of the base class to become private members of the derived class and the protected members

of the base class become private members of the derived class. Member functions and objects of a

derived class can treat these derived members as though they are defined in the derived class with the

private modifier. Thus, objects of a derived class cannot access these members.

Subsequent derivation of the classes from a privately derived class cannot access any members of

the grandparent class. The visibility of base class members undergoes modifications in a derived class

as summarized in Table 14.1.

Table 14.1 Visibility of class members

Base-class visibility

Derived class visibility

Public derivation Private derivation

private Not inherited (inherited base class

members can access)

Not inherited (inherited base class

members can access)

protected protected private

public public private

The private members of the base class remain private to the base class, whether the base class is

inherited publicly or privately. They add to the data items of the derived class and they are not directly

accessible to the members of a derived class. Derived classes can access them through the inherited

member functions of the base class (see Figure 14.4).

Fig 14.3 Access control of class members

class Base

class Derv: public Base

Derv objD

Base objB

public

protected

private

public

protected

private

Mastering C++548

14.3.1 A Sample Program on Single Inheritance

A derived class may begin its existence with a

copy of its base class members, including any

other members inherited from more distantly

related classes. A derived class inherits data

members and member functions, but not the

constructor or destructor from its base class.

Recall that the program bag.cpp discussed

earlier has the class Bag and its instance, the bag object. A bag could be made empty or filled with

items (fruits). The Bag class can be subjected to set operations such as union, intersection, etc.. It can

be achieved by either modifying the Bag class or by deriving a new class called Set from the Bag

class as shown in Figure 14.5.

Considering that a large amount of time is spent in the development of the Bag class as well as

in testing and debugging, it is not at all advisable to extend the Bag class by modifying as it will be

impractical to rewrite or modify the original class especially in a large project when many programmers

are involved. Also, such a change would not be possible if the Bag class is a part of a commercial class

library for which no source code is available to the user. Hence, rather than modifying Bag, a new class

set can be derived from it and the required new features can be added. It saves development cost, effort,

and time.

The program union.cpp demonstrates the mechanism of extending the Bag class by using the

feature of inheritance. In this case, a new class Set is derived from the existing class Bag without any

modifications. A derived class Set inherits all the properties of the class Bag and extends itself by

adding some of its own features to support set assignment and union operation.

// union.cpp: Union of sets. Set class by inheritance of Bag class

#include <iostream.h>

enum boolean { FALSE, TRUE };

const int MAX_ITEMS = 25; // Maximum number of items that bag can hold

class Bag

Fig. 14.4 Members of derived class on inheritance

private data/function members of base class

protected/public
data

protected/public
functions

data/functions

data members of
derived class

member functions of
derived class

d
e
ri
v
e
d
 c

la
s
s
's

o
w

n
 m

e
m

b
e
rs

in
h
e
ri
te

d
 m

e
m

b
e
rs

o
f
a
 b

a
s
e
 c

la
s
s

Fig. 14.5 Inheritance of bag class

Derived class

Base classBag

Set

class Bag

class Set:public Bag

Inheritance 549

{

 protected: // Note: not private

 int contents[MAX_ITEMS]; // bag memory area

 int ItemCount; // number of items present in the bag

 public:

 Bag() // no-argument constructor

 {

 ItemCount =0; // When you purchase a bag, it will be empty

 }

 void put (int item) // puts item into bag

 {

 contents[ItemCount++] = item; // item into bag, counter update

 }

 boolean IsEmpty() // 1, if bag is empty, 0, otherwise

 {

 return ItemCount == 0 ? TRUE : FALSE;

 }

 boolean IsFull() // 1, if bag is full, 0, otherwise

 {

 return ItemCount == MAX_ITEMS ? TRUE : FALSE;

 }

 boolean IsExist(int item);

 void show();

};

// returns 1, if item is in bag, 0, otherwise

boolean Bag::IsExist(int item)

{

 for(int i = 0; i < ItemCount; i++)

 if(contents[i] == item)

 return TRUE;

 return FALSE;

}

// display contents of a bag

void Bag::show()

{

 for(int i = 0; i < ItemCount; i++)

 cout << contents[i] << ” ”;

 cout << endl;

}

class Set: public Bag

{

 public:

 void add(int element)

 {

 if(!IsExist(element) && !IsFull())

 put(element);

 // element does not exist in set and it is not full

 }

 void read();

Mastering C++550

 void operator = (Set s1);

 friend Set operator + (Set s1, Set s2);

};

void Set::read()

{

 int element;

 while(TRUE)

 {

 cout << "Enter Set Element <0- end>: ";

 cin >> element;

 if(element == 0)

 break;

 add(element);

 }

}

void Set::operator = (Set s2)

{

 for(int i = 0; i < s2.ItemCount; i++)

 contents[i] = s2.contents[i]; // access Bag::contents

 ItemCount = s2.ItemCount;

}

Set operator + (Set s1, Set s2)

{

 Set temp;

 temp = s1; // copy all elements of set s1 to temp

 // copy those elements of set s2 into temp, those not exist in set s1

 for(int i = 0; i < s2.ItemCount; i++)

 {

 if(!sl.IsExist(s2.contents [i])) //if element of s2 is not in s1

 temp.add(s2.contents[i]); // copy the unique element

 }

 return(temp);

}

void main()

{

 Set s1, s2, s3; //uses no-argument constructor of Bag class

 cout << "Enter Set 1 elements..” << endl;

 sl.read();

 cout << "Enter Set 2 elements..” << endl;

 s2.read();

 s3 = s1 + s2;

 cout << endl << "Union of s1 and s2 : ";

 s3.show(); // uses Bag::show() base class

}

Run

Enter Set 1 elements..

Enter Set Element <0- end>: 1

Enter Set Element <0- end>: 2

Inheritance 551

Enter Set Element <0- end>: 3

Enter Set Element <0- end>: 4

Enter Set Element <0- end>: 0

Enter Set 2 elements..

Enter Set Element <0- end>: 2

Enter Set Element <0- end>: 4

Enter Set Element <0- end>: 5

Enter Set Element <0- end>: 6

Enter Set Element <0- end>: 0

Union of s1 and s2 : 1 2 3 4 5 6

In the above program, the Set class has its own features to perform set union by using the member

functions of Bag. The statement

class Set: public Bag

derives a new class Set from the base class Bag. The base class Bag is publicly inherited by the

derived class Set. Hence, the members of the Bag class that are protected become protected and

public become public in the derived class Set. The Set class can treat all the members of the Bag

class as though they are its own.

The relationship between the base class Bag and the derived class Set has been depicted in Figure

14.5. Remember, that the arrow in the diagram, means derived from. The arrow indicates that the

derived class Set refers to the data and member functions of the base class Bag, while the base class

Bag has no access to the derived class Set.

14.3.2 Access to Constructor

In main(), the statement

Set si, s2, s3; // uses no-argument constructor of Bag class

creates three objects s1, s2, and s3 of the class Set and initializes the ItemCount variable to 0

in all the three objects, even though a constructor does not exist in the derived class Set. Thus, if

a constructor is not defined in the derived class, C++ will use an appropriate constructor from the

base class. In the above example, there is no constructor defined in the class Set and, therefore, the

compiler uses the no-argument constructor

Bag() // no-argument constructor

{

 ItemCount =0; // When you purchase a bag, it will be empty

}

defined in the Bag class. The use of the base class’s constructor in the absence of a constructor in the

derived class, exhibits the true nature of inheritance that happens normally in day-to-day life.

14.3.3 Base Class Unchanged

It may be recalled that the base class remains unchanged even if other classes have been derived from

it. In main() of the program union.cpp, objects of type Bag could be defined as

Mastering C++552

Bag bag; // object of the base class

Behaviors of such objects remain the same irrespective of the existence of a derived class such as Set.

It should also be noted that inheritance does not work in reverse. The base class and its objects do

not know about any classes derived from it. In the example union.cpp, the objects of the base class

Bag, cannot use the function, operator*() of the derived class Set.

14.3.4 Accessing Base Class Member Functions

The object s3 of class Set also uses the function show() from the base class Bag. The statement

s3.show(); // uses Bag::show() base class

in the main(), refers to the function show(), which does not exist in the derived class Set. It is

resolved by the compiler by selecting the member function show() defined in the base class Bag.

14.4 FORMS OF INHERITANCE

The derived class inherits some or all the features of the base class depending on the visibility mode and

level of inheritance. Level of inheritance refers to the length of its (derived class) path from the root (top

base class). A base class itself might have been derived from other classes in the hierarchy. Inheritance

is classified into the following forms based on the levels of inheritance and interrelation among the

classes involved in the inheritance process:

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

 Multipath inheritance

The different forms of inheritance relationship is depicted in Figure 14.6. The pictorial representation

of inheritance showing the interrelationship among the classes involved is known as the inheritance

tree or class hierarchy. Base classes are represented at higher levels (top of the hierarchy, say root) and

derived classes at the bottom of the hierarchy. The arrow directed from the derived class towards the

base class indicates that the derived class accesses features of the base class without modifying it, but

not vice versa (Some use the convention of representing the arrow in the opposite direction to indicate

inherited from or ‘derived from).

Single Inheritance
Derivation of a class from only one base class is called single inheritance. The sample program union.

cpp discussed above falls under this category. Figure 14.6a depicts single inheritance.

Multiple Inheritance
Derivation of a class from several (two or more) base classes is called multiple inheritance. Figure

14.6b depicts multiple inheritance.

Inheritance 553

Hierarchical Inheritance
Derivation of several classes from a single base class, i.e., the traits of one class may be inherited by

more than one class, is called hierarchical inheritance. Figure 14.6c depicts hierarchical inheritance.

Multilevel Inheritance
Derivation of a class from another derived class is called multilevel inheritance. Figure 14.6d depicts

multilevel inheritance.

Hybrid Inheritance
Derivation of a class involving more than one form of inheritance is known as hybrid inheritance.

Figure 14.6e depicts hybrid inheritance.

Multipath Inheritance
Derivation of a class from other derived classes, which are derived from the same base class is called

multiparth inheritance. Figure 14.6f depicts multipath inheritance.

Fig. 14.6 Forms of inheritance

A

(a) Single inheritance

B

(b) Multiple inheritance (c) Hierarchical inheritance

(d) Multilevel inheritance (e) Hybrid inheritance (f) Multipath inheritance

A

B

C

A B

C

A

B C D

A

B

D

C

A

B C

D

14.5 INHERITANCE AND MEMBER ACCESSIBILITY

The examples discussed earlier demonstrated the features of inheritance, which enhances the

capabilities of the existing classes without modifying them. It is also observed that the private members

of a base class, which cannot be inherited, are overcome by the use of the access specifier protected.

Accessibility refers to the authorization granted to access the members of a class by using an access

specifier or modifier with or without inheritance. It defines the guidelines as to when a member function

in the base class can be used by the objects of the derived class.

A protected member can be considered as a hybrid of a private and a public member. Like private

members, protected members are accessible only to its class member functions and they are invisible

outside the class. Like public members, protected members are inherited by derived classes and are also

accessible to member functions of the derived class. The following rules are to be borne in mind while

deciding whether to define members as private, protected, or public:

Mastering C++554

 1. A private member is accessible only to members of the class in which the private member is

declared. They cannot be inherited.

 2. A private member of the base class can be accessed in the derived class through the member

functions of the base class.

 3. A protected member is accessible to members of its own class and to any of the members in a

derived class.

 4. If a class is expected to be used as a base class in future then members which might be needed in

the derived class should be declared protected rather than private.

 5. A public member is accessible to members of its own class, members of the derived class, and

outside users of the class.

 6. The private, protected, and public sections may appear as many times as needed in a class and

in any order. In case an inline member function refers to another member (data or function),

that member must be declared before the inline member function is defined. Nevertheless, it is a

normal practice to place the private section first, followed by the protected section and finally the

public section.

 7. The visibility mode in the derivation of a new class can be either private or public.

 8. Constructors of the base class and the derived class are automatically invoked when the derived

class is instantiated. If a base class has constructors with arguments then their invocations must

be explicitly specified in the derived class’s initialization section. However, the no-argument

constructor need not be invoked explicitly. Remember that constructors must be defined in the

public section of a class (base and derived), otherwise the compiler generates the error message:

unable to access constructor.

Consider the following declarations of the base class to illustrate public and private inheritance:

class B // base class

{

 private:

 int privateB; // private member of base

 protected:

 int protectedB; // protected member of base

 public:

 int publicB; // public member of base

 int getBprivate()

 {

 return privateB,

 }

};

14.5.1 Public Inheritance

Consider the following declaration to illustrate the derivation of a new class D from the base class B

publicly declared earlier:

class D: public B // publicly derived class

{

 private:

Inheritance 555

 int privateD;

 protected:

 int protectedD;

 public:

 int publicD;

 void myfunc()

 {

 int a;

 a = privateB; // Error: B::privateB is not accessible

 a = getBprivate(); // OK, inherited member accesses private data

 a = protectedB; // OK

 a = publicB; // OK

 }

};

The member function, myfunc() of the derived class D can access protectedB and publicB

inherited from base class B. Since the class B is inherited as public by the derived class D, the status

of members protectedB, publicB, getBprivate() remain unchanged in the derived class D.

The statements

D objd; // objd is a object of class D

int d; // temporary variable d

define the object objd and the integer variable d. Consider the following statements referring to the

object objd. Access to the protected member of the base class B in the statement,

d = objd.protectedB; // Error: ‘B::protectedB’is not accessible

is invalid; protectedB has protected visibility status in the class D. However the public member of

the class B in the statement

d = objd.publicB; // OK

is valid; publicB has public visibility status in the class D. The inherited member function,

getBprivate() in the statement

d = objd.getBprivate(); //OK,inherited member accesses private data

accesses a private data member of the base class.

In a subsequent derivation such as

 class X : public D

 {

 public:

 void g();

 };

the member function g() in the derived class X may still access members protectedB and publicB

and even retains the original protected, and public status. Note that private members of the classes B

and D can be accessed through inherited members of the base class.

Mastering C++556

14.5.2 Private Inheritance

Consider the following declaration to illustrate the derivation of the new class D from the existing base

class B privately:

class D: private B // privately derived class

{

 private:

 int privateD;

 protected:

 int protectedD;

 public:

 int publicD;

 void myfunc()

 {

 int a;

 a = privateB; // Error: B::privateB is not accessible

 a = getBprivate(); // OK,inherited member accesses private data

 a = protectedB; // OK

 a = publicB; // OK

 }

};

The member function myfunc() of the derived class D may access protectedB and publicB

inherited from the base class B. Since, the base class B is inherited as the private base class of the

derived class D, the status of members protectedB, publicB and getBprivate() become

private in the derived class D. The statements

 D objd; // objd is a object of class D

 int d; // temporary variable d

define the object objd and the integer variable d. Consider the following statements referring to the

object objd. Access to’the protected member of the base class B in the statement

 d = objd.protectedB; // Error: B::protectedB is not accessible

is invalid; protectedB has private visibility status in the class D. Access to the public member of

class B in the statement

 d = objd.publicB; // Error: B::publicB is not accessible

is also invalid; publicB has private visibility status in the class D. The use of inherited member

function, getBprivate() in the statement

 d = objd.getBprivate(); // Error: getBprivate() is not accessible

is invalid; it has become a private member of the derived class D, however, a member function of the

derived class can access—myfunc() accesses getBprivate() function.

In a subsequent derivation such as

 class X : public D // X is derived with D as base class

 {

 public:

 void g();

 };

Inheritance 557

the member function g() in X cannot access members protectedB and publicB since these

members have gained private visibility status in the class D. However, they (including private

members of the classes B and D) can be accessed through inherited members of the base class.

14.5.3 Member Functions Accessibility

The various categories of functions which have access to the private and protected members could be

any of the following:

 A member function of a class

 A member function of a derived class

 A friend function of a class

 A member function of a friend class

Table 14.2 Access control to class members

Function Type Access directly to

Private Protected Public

Class Member Yes Yes Yes

Derived class member No Yes Yes

Friend Yes Yes Yes

Friend class member Yes Yes Yes

The friend functions and member functions of a friend class have direct access to both the private

and protected members of a class. A member function of a class has access to all the members of its

own class, be it private, protected, or public. The member functions of a derived class can directly

access only the protected or public members; however they can access the private members

through the member functions of the base class. Table 14.2 and Figure 14.7 summarize the scope of

access in various situations.

Fig. 14.7 Access mechanism in classes

class B

class D1 : public B

private

protected

public

private

protected

public

private

protected

public

private

protected

public

class X : public D1, public D2

class D2 : private B

Mastering C++558

14.6 CONSTRUCTORS IN DERIVED CLASSES

The constructors play an important role in initializing an object’s data members and allocating required

resources such as memory. The derived class need not have a constructor as long as the base class has

a no-argument constructor. However, if the base class has constructors with arguments (one or more)

then it is mandatory for the derived class to have a constructor and pass the arguments to the base class

constructor. In the application of inheritance, objects of the derived class are usually created instead

of the base class. Hence, it makes sense for the derived class to have a constructor and pass arguments

to the constructor of the base class. When an object of a derived class is created, the constructor of the

base class is executed first and later, the constructor of the derived class.

The following examples illustrate the order of invocation of constructors in the base class and the

derived class.

No Constructors in the Base Class and Derived Class

When there are no constructors either in the base or derived classes, the compiler automatically creates

objects of classes without any error when the class is instantiated.

// cons1.cpp: No-constructors in base class and derived class

#include <iostream.h>

class,B // base class

{

 // body of base class, without constructors

};

class D: public B // publicly derived class

{

 // body of derived base class, without constructors

 public:

 void msg()

 {

 cout << "No constructors exists in base and derived class” << endl;

 }

};

void main()

{

 D objd; // base constructor

 objd.msg();

}

Run

No constructors exists in base and derived class

Constructor Only in the Base Class

// cons2.cpp: constructor in base class only

#include <iostream.h>

class B // base class

Inheritance 559

{

 public:

 B()

 {

 cout << "No-argument constructor of the base class B is executed”;

 }

};

class D: public B // publicly derived class

{

 public:

};

void main()

{

 D objl; // accesses base constructor

}

Run

No-argument constructor of the base class B is executed

Constructor Only in the Derived Class

// cons3.cpp: constructors in derived class only

#include <iostream.h>

class B // base class

{

 // body of base class, without constructors

};

class D: public B // publicly derived class

{

 // body of derived base class, without constructors

 public:

 D()

 {

 cout << "Constructos exists in only in derived class” << endl;

 }

};

void main()

{

 D objd; // accesses derived constructor

}

Run

Constructors exists in only in derived class

Constructor in Both Base and Derived Classes

// cons4.cpp: constructor in base and derived classes

#include <iostream.h>

class B // base class

Mastering C++560

{

 public:

 B()

 {

 cout << "No-argument constructor of the base class B executed first/n”;

 }

};

class D: public B // publicly derived class

{

 public:

 D()

 {

 cout<<”No-argument constructor of the derived class D executed next”;

 }

};

void main()

{

 D objd; // access both base constructor

}

Run

No-argument constructor of the base class B executed first

No-argument constructor of the derived class D executed next

Multiple Constructors in Base Class and a Single Constructor in Derived class

// cons5.cpp: multiple constructors in base and single in derived classes

#include <iostream.h>

class B // base class

{

 public:

 B() { cout << "No-argument constructor of the base class B”; }

 B(int a) { cout <<”One-argument constructor of the base class B”;}

};

class D: public B // publicly derived class

{

 public:

 D(int a)

 { cout << "\nOne-argument constructor of the derived class D”; }

};

void main()

{

 D objd(3);

}

Run

No-argument constructor of the base class B

One-argument constructor of the derived class D

Inheritance 561

Constructor in Base and Derived Classes Without Default Constructor
The compiler looks for the no-argument constructor by default in the base class. If there is a constructor

in the base class, the following conditions must be met:

 The base class must have a no-argument constructor.

 If the base class does not have a default constructor and has an argument constructor, they must

be explicitly invoked, otherwise the compiler generates an error.

// cons6.cpp: constructor in base and derived class

#include <iostream.h>

class B // base class

{

 public:

 B(int a) { cout << "One-argument constructor of the base class B”; }

};

class D: public B // publicly derived class

{

 public:

 D(int a)

 { cout << "\nOne-argument constructor of the derived class D”; }

};

void main()

{

 D objd(3);

}

The compilation of the above program generates the following error:

Cannot find ‘default’ constructor to initialize base class ‘B’

This error can be overcome by explicit invocation of a constructor of the base class as illustrated in the

program cons7.cpp.

Explicit Invocation in the Absence of a Default Constructor

// cons7.cpp: constructor in base and derived classes

#include <iostream.h>

class B // base class

{

 public:

 B(int a)

 { cout << "One-argument constructor of the base class B”; }

};

class D: public B // publicly derived class

{

 public:

 D(int a) : B(a)

 { cout << "\nOne-argument constructor of the derived class D”; }

};

Mastering C++562

void main()

{

 D objd(3);

}

Run

One-argument constructor of the base class B

One-argument constructor of the derived class D

In the derived class D, the statement

D(int a) :B(a)

defines the derived class constructor D(int a) and calls the constructor of the base class using

the special form :B(a). Here, the constructor of B is first invoked with an argument a specified in the

constructor function D and then the constructor of D is invoked.

Constructor in a Multiple Inherited Class with Default Invocation

// cons8.cpp: constructor in base and derived class, order of invocation

#include <iostream.h>

class Bl // base class

{

 public:

 Bl() { cout << "\nNo-argument constructor of the base class Bl”; }

};

class B2 // base class

{

 public:

 B2() { cout << "\nNo-argument constructor of the base class B2”; }

};

class D: public B2, public Bl // publicly derived class

{

 public:

 D()

 { cout << "\nNo-argument constructor of the derived class D”; }

};

void main()

{

 D objd;

}

Run

No-argument constructor of the base class B2

No-argument constructor of the base class Bl

No-argument constructor of the derived class D

The statement

 class D: public B2, public Bl // publicly derived class

Inheritance 563

specifies that the class D is derived from the base classes Bl and B2 in order. Hence, constructors are

invoked in the order B2(), Bl(), and D(); the constructors can be defined with or without arguments.

Constructor in a Multiple Inherited Class with Explicit Invocation

// cons9.cpp: constructors with explicit invocation

#include <iostream.h>

class Bl // base class

{

 public:

 Bl() { cout << "\nNo-argument constructor of the base class Bl”; }

};

class B2 // base class

{

 public:

 B2() { cout << "\nNo-argument constructor of the base class B2”; }

};

class D: public Bl, public B2

 public:

 D(): B2(), Bl() // explicit call to constructors

 { cout << "\nNo-argument constructor of the derived class D”; }

};

void main()

{

 D objd;

}

Run

No-argument constructor of the base class Bl

No-argument constructor of the base class B2

No-argument constructor of the derived class D

In the above program, the statement

class D: public Bl, public B2 // publicly derived class

specifies that, the class D is derived from the base classes B1 and B2 in order. The statement

D(): B2(), Bl()

in the derived class D, specifies that the base class constructors must be called. However, the constructors

are invoked in the order B1(), B2, and D, the order in which the base classes appear in the declaration

of the derived class.

Constructor in Base and Derived Classes in Multiple Inheritance

// cons10.cpp: constructor in base and derived classes, order of invocation

#include <iostream.h>

class Bl // base class

{

 public:

Mastering C++564

 Bl() { cout << "\nNo-argument constructor of the base class Bl”; }

};

class B2 // base class

{

 public:

 B2() { cout << "\nNo-argument constructor of a base class B2”; }

};

class D: public Bl, virtual B2 // public Bl, private virtual B2

{

 public:

 D(): Bl(), B2()

 { cout << "\nNo-argument constructor of the derived class D”; }

};

void main()

{

 D objd; // base constructor

}

Run

No-argument constructor of a base class B2

No-argument constructor of the base class Bl

No-argument constructor of the derived class D

The statement

class D: public Bl, virtual B2 // public Bl, private virtual B2

specifies that the class D is derived from the base classes Bl and B2. The statement

D():B1(), B2()

in the derived class D, specifies that the base class constructors must be called. However, the con-

structors are invoked in the order B2(), Bl, and D(), instead of the order in which base classes

appear in the declaration of the derived class, since, the virtual base class constructors are invoked first

followed by an orderly invocation of constructors of other classes.

Constructor in Multilevel Inheritance

// cons11.cpp: constructor in base and derived classes, order of invocation

#include <iostream.h>

class B // base class

{

 public:

 B() { cout << "\nNo-argument constructor of a base class B”; }

};

class Dl: public B // derived class

{

 public:

 Dl() { cout << "\nNo-argument constructor of a base class Dl”; }

};

Inheritance 565

class D2: public Dl // publicly derived class

{

 public:

 D2()

 { cout << "\nNo-argument constructor of a derived class D2”; }

};

void main()

{

 D2 objd; // base constructor

};

Run

No-argument constructor of a base class B

No-argument constructor of a base class Dl

No-argument constructor of a derived class D2

The statement

class D2: public Dl // publicly derived class

specifies that the class D2 is derived from the derived class Dl of B. The constructors are invoked in

the order B(), Dl(), and D2() corresponding to the order of inheritance.

In the derived class, first the constructors of virtual base classes are invoked, second any nonvirtual

classes, and finally the derived class constructor. Table 14.3 shows the order of invocation of constructors

in a derived class.

Table 14.3 Order of invocation of constructors

Method of Inheritance Order of Execution

class D: public B

{

 ...

};

B(): base constructor
D(): derived constructor

class D: public Bl, public B2

{

 ...

};

Bl(): base constructor
B2(): base constructor
D(): derived constructor

class D: public Bl, virtual B2

{

 ...

};

B2(): virtual base constructor
Bl(): base constructor
D(): derived constructor

class Dl: public B

{

 ...

};

class D2: public Dl

{

 ..

};

B(): super base constructor
Dl(): base constructor
D2(): derived constructor

Mastering C++566

14.7 DESTRUCTORS IN DERIVED CLASSES

Unlike constructors, destructors in the class hierarchy (parent and child class) are invoked in the reverse

order of the constructor invocation. The destructor of that class whose constructor was executed last,

while building object of the derived class, will be executed first whenever the object goes out of scope.

If destructors are missing in any class in the hierarchy of classes, that class’s destructor is not invoked.

The program cons12.cpp illustrates the order of invocation of constructors and destructors in

handling instances of a derived class.

// cons12.cpp: order of invocation of constructors and destructors

#include <iostream.h>

class Bl // base class

{

 public:

 Bl() { cout << "\nNo-argument constructor of the base class Bl”; }

 ~Bl()

 {

 cout << "\nDestructor in the base class Bl”;

 }

};

class B2 // base class

{

 public:

 B2() { cout << "\nNo-argument constructor of the base class B2”; }

 ~B2()

 {

 cout << "\nDestructor in the base class B2”;

 }

};

class D: public Bl, public B2 // publicly derived class

{

 public:

 D()

 { cout << ‘\nNo-argument constructor of the derived class D”; }

 ~D()

 {

 cout << "\nDestructor in the base class D”;

 }

};

void main()

{

 D objd;

}

Run

No-argument constructor of the base class Bl

No-argument constructor of the base class B2

Inheritance 567

No-argument constructor of the derived class D

Destructor in the base class D

Destructor in the base class B2

Destructor in the base class Bl

Note that in this program the constructors are invoked in the order of Bl(), B2(), D() whereas,

the destructors are invoked in the order of D(), B2(), Bl(), which is in reverse order.

In case of dynamically created objects using the new operator, they must be destroyed explicitly

by invoking the delete operator. More specialized class (which are at the bottom of the hierarchy)

destructors are called before a more general one (which are at the top of the hierarchy). As usual, no

arguments can be passed to destructors, nor can any return type be declared.

14.8 CONSTRUCTOR INVOCATION AND DATA-MEMBER

INITIALIZATION

In multiple inheritance, the constructors of base classes are invoked first, in the order in which they

appear in the declaration of the derived class, whereas in the case of multilevel inheritance, they are

executed in the order of inheritance. It is the responsibility of the derived class to supply initial values

to the base-class constructor, when the derived-class objects are created. Initial values can be supplied

either by the object of a derived class or a constant value can be mentioned in the definition of the

constructor. The syntax for defining a constructor in a derived class is shown in Figure 14.8.

Fig. 14.8 Syntax of derived-class constructor

DerivedClass(arg_list):Base1(arg_list1),Base2(arg_list2)..,BaseN(arg_listM)
{

// body of the constructor of derived class
};

Constructor name; derived class name

Separator for derived and base class constructors

Base class1 constructor

Arguments

The parameters arg_listl, arg_list2,.., arg_listM are the list of arguments passed to the

constructor or they can be any constant value those match with the arguments of the constructor list of

base classes.

C++ supports another method of initializing the objects of classes through the use of the initialization

list in the constructor function. It facilitates the initialization of data members by specifying them in the

header section of the constructor. The general form of this method is shown in Figure 14.9.

Data member initialization is represented by

DataMemberName(value)

The data members (DataMemberName) to be initialized are followed by the initialization value

enclosed in parentheses (resembles a function call). The value can be arguments of a constructor,

Mastering C++568

expression or other data members. In the initialization section, any parameter of the argument list can

be used as an initialization value. The data member to be initialized must be a member of its own class.

The program const13.cpp illustrates the use of the initialization section of the constructor. The

following rules must be noted about the initialization and order of invocation of constructors:

 The initialization statements (in the initialization section) are executed in the order of definition

of data members in the class.

 Constructors are invoked in the order of inheritance. However, the following rules apply when a

class is instantiated: first, the constructors of virtual base classes are invoked, second, any non-

virtual classes, and finally, the derived class constructor.

// cons13.cpp: data members initialization through initialization-section

#include <iostream.h>

class B // base class

{

 protected:

 int x, y;

 public:

 B(int a, int b): x(a), y(b) {} // x = a, y = b

};

class D: public B // derived class

{

 private:

 int a, b;

 public:

 D(int p, int. q, int r) : a(p), B(p, q), b(r) {}

 void output()

 {

 cout << "x = " << x << endl;

 cout << "y = " << y << endl;

 cout << "a = " << a << endl;

 cout << "b = " << b << endl;

 }

};

void main()

{

 D objb(5, 10, 15);

Fig. 14.9 Syntax of initialization at derived class constructor

Separator for derived class constructor and
initialization section

Initialization of data members and
invocation of base class constructors

Derived class constructor name

DerivedClass(arg_list) : InitializationSection
{

// body of the constructor of derived class
};

Inheritance 569

 objb. output;();

}

Run

x = 5

y = 10

a = 5

b = 15

The constructor statement in the class B

B(int a, int b): x(a), y(b) {} // x = a, y = b

initializes the data members x and y to a and b respectively. The constructor statement in the class D

D(int p, int q, int r) : a(p), B(p, q), b(r) {}

initializes the data members a and b to p and r respectively. It invokes the constructor B(int, int)

of the base class B.

Consider the following declaration of class to illustrate the order of initialization:

class B // base class

{

 private:

 int x, y;

 public:

 B(int a, int b): x(a), y(b) {} // x = a, y = b

};

Assume the constructor of the class B is rewritten for illustration and object objb is defined as

B objb(5, 10);

The following examples illustrate the initialization of data members with different formats:

B(int a, int b): x(a), y(a+b)

The data member x is assigned the value a and y is assigned the value of the expression (a+b), i.e.,

x = 5 and y = (5+10) =15.

B(int a, int b): x(a), y(x+b)

The data member x is assigned the value of a and y is assigned the value of the expression (x+b),

i.e., x = 5 and y = (5+10) = 15. Note that the newly initialized data member can also be used

in further initializations.

B(int a, int b): y(a), x(y+b)

It produces a wrong result, because the statement which initializes the data member x is the first

one to be executed (x is defined the first data member in the class B). Hence, the computation

x(y+b) (i.e. x = y+b) produces a wrong result because the data member y is not yet initialized. The

program runtime.cpp illustrates this case. Thus, the order of data members in the initialization list

is important.

Mastering C++570

// runtime.cpp: initialization through constructor header

#include <iostream.h>

class B

{

 private:

 int x, y;

 public:

 B(int a, int b): y(a), x(y+b) {} // No compilation, but run-time

 void print()

 {

 cout << x << endl;

 cout << y << endl;

 }

};

Void main()

{

 B b (2, 3);

 b.print();

}

Run

4211

2

The compiler converts the constructor of the class B into the following form:

B(int a, int b)

{

 x = (y+b);

 y = a;

}

In the above converted constructor, it should be noted that the statement

x = (y+b);

refers to the data member y which is still not initialized. Hence, the program produces the wrong result.

14.9 OVERLOADED MEMBER FUNCTIONS

The members of a derived class can have the same name as those defined in the base class. An object of

a derived class refers to its own functions even if they are defined in both the base class and the derived

class. The program cons14.cpp illustrates the overloaded data and member functions in the base

and derived classes.

// cons14.cpp: overloaded members in base and derived classes

#include <iostream.h>

class B // base class

Inheritance 571

{

 protected:

 int x;

 int y;

 public:

 B() {}

 void read()

 {

 cout << "X in class B ? ";

 cin >> x;

 cout << "Y in class B ? ";

 cin >> y;

 };

 void show()

 {

 cout << "X in class B = " << x << endl;

 cout << "Y in class B = " << y << endl;

 }

};

class D: public B // publicly derived class

{

 protected:

 int y;

 int z;

 public:

 void read()

 {

 B::read(); // read base class data first

 cout << "Y in class D ? ";

 cin >> y;

 cout << "Z in class D ? ",

 cin >> z;

 };

 void show()

 {

 B::show(); // display base class data first

 cout << "Y in class D = " << y << endl;

 cout << "Z in class D = " << z << endl;

 cout <<”Y of B, show from D = "<< B::y; //refers to y of class B

 };

);

void main()

{

 D objd;

 cout << "Enter data for object of class D ..” << endl;

 objd.read();

 cout << "Contents of object of class D ..” << endl;

 objd.show();

}

Mastering C++572

Run

Enter data for object of class D ..

X in class B ? 1

Y in class B ? 2

Y in class D ? 1

Z in class D ? 4

Contents of object of class D ..

X in class B = 1

Y in class B = 2

Y in class D = 3

Z in class D = 4

Y of B, show from D = 2

In the derived class, there can also be functions with the same name as those in the base class. It

results in ambiguity. The compiler resolves the conflict by using the following rule:

If the same member (data/function) exists in both the base class and the derived class, the member

in the derived class will be executed.

The above rule is true for derived classes. Objects of the base class do not know anything about the

derived class and will always use the base class members. Consider the statements

objd.read();

objd.show()

in the function main(). In the first statement, objd, the object of a class D, invokes the read()

function defined in the class D, instead of the read() function of the class B. Similarly, the function

show() referenced by the objd uses the function defined in the class D.

14.9.1 Scope Resolution with Overriding Functions

The statement in class D

B::read(); // read base class data first

refers to the function read() defined in the base class B due to the use of the scope-resolution

operation. Similarly, the statement

B::show(); // display base class data first

in the function show() of the derived class D refers to the show() function of the base class B.

The statement

cout << "Y of B, show from D = " << B: :y; // refers to y of class B

in the function show() has B::y, which

refers to the data member defined in the base

class B and not the one defined in the derived

class D. These features of C++ demonstrate

the creation of powerful functions using

primitive functions. The general format of

scope resolution for class members is shown

in Figure 14.10.
Fig. 14.10 Syntax of member function access through

scope-resolution operator

Name of a class

Scope resolution operator

Name of the member
function to be Invoked

ClassName :: MemberName()

Inheritance 573

For instance, as in the following statements

 B::read() refers to the member function read() defined in the class B

 B::y refers to the data member y defined in the class B

prefixing the class name to the member separated by the scope-resolution operator :: informs the

compiler to call the member function specified in the class B.

14.9.2 Inheritance in the Stack Class

The various programs discussed so far, belong

to the category of single Inheritance. Another

practical example of inheritance is the stack,

which is the most popularly used data structure

in building compilers, execution of recursive

programs, allocating storage for local variables,

and so on. The stack operates on the principle of

Last-In-First-Out, popularly called LIFO policy.

The last item entered into the stack is the first

one to come out as shown in Figure 14.11.

The program stack.cpp has two classes,

Stack as the base class and MyStack as the

derived class of Stack. The base class Stack

models a stack as a simple data storage device. It allows to push integers onto the stack and pop them

off. However, it has a potential flaw. It does not check for the underflow or overflow that occurs in the

manipulation of a stack. The program might not work since data would be placed in memory beyond

the end of the stack[] array. Trying to pop too many items from the stack results in popping out

meaningless data since it would be reading data from memory locations outside the array.

The potential flaw in the class Stack can be overcome by developing a new class MyStack, a

derived class inherited from the old stack class Stack. Objects of MyStack operate exactly the same

way as those of Stack, except that it will issue a warning if an attempt is made to push an item onto a

stack which is already full, or try to pop items out of an empty stack.

// stack.cpp: Overloading of functions in base and derived classes

#include <iostream.h>

const int MAX_ELEMENTS = 5; // maximum size of stack, you can change this

class Stack // base class

{

 protected: // Note: cannot be private

 int stack[MAX_ELEMENTS + 1]; // for stack[1].. stack[MAX_ELEMENTS]

 int StackTop; // It points to current stack top element

 public:

 Stack()

 {

 StackTop =0; // Initially no elements in stack, stack empty

 }

 void push(int element)

Fig. 14.11 Stack operations

Push Push Pop

Top Object

Mastering C++574

 {

 ++StackTop; // Update StackTop for new entry

 stack[StackTop] = element; // put element into the stack

 }

 void pop(int &element)

 {

 element = stack[StackTop];

 --StackTop; // Update StackTop to point to next element

 }

};

// derivation of a new class from the class Stack

class MyStack : public Stack

{

 public:

 int push(int element) // return 1, if success, 0 otherwise

 {

 if (StackTop < MAX_ELEMENTS) // if stack is not full

 {

 Stack::push(element); // calls base class push

 return 1; // push successful

 }

 cout << "Stack Overflow” << endl;

 return 0; // stack overflow

 }

 int pop(int & element) // return 1, if success, 0 otherwise

 {

 if(StackTop > 0) // if stack is not full

 {

 Stack::pop(element); // calls base class pop

 return 1; // pop successful

 }

 cout << "Stack Underflow” << endl;

 return 0; // stack underflow

 }

};

void main()

{

 MyStack stack;

 int element;

 // push elements into Stack until it overflows

 cout << "Enter Integer data to put into the stack ...” << endl;

 do

 {

 cout << "Element, to Push ? ";

 cin >> element;

}

while(stack.push(element)); // push and check for overflow

// pop all elements from stack

cout << "The Stack Contains...” << endl;

Inheritance 575

while(stack.pop(element))

cout << "pop: " << element << endl;

}

Run

Enter Integer data to put into the stack...

Element to Push ? 1

Element to Push ? 2

Element to Push ? 3

Element to Push ? 4

Element to Push ? 5

Element to Push ? 6

Stack Overflow

The Stack Contains...

pop: 5

pop: 4

pop: 3

pop: 2

pop: 1

Stack Underflow

14.10 ABSTRACT CLASSES

In order to exploit the potential benefits of inheritance, the base classes are improved or enhanced

without modifications, which results in a derived class or inherited class. The objects created often are

the instances of a derived class but not of the base class. The base class becomes just the foundation

for building new classes and hence such classes are called abstract base classes or abstract classes.

An abstract class is one that has no instances and is not designed to create objects. An abstract class is

only designed to be inherited. It specifies an interface at a certain level of inheritance and provides a

framework, upon which other classes can be built.

In the previous example (stack.cpp), the class Stack serves as a framework for building the

derived classes and it is treated as a member of the derived class MyStack. The abstract class is the

most important class and normally exists at the root of the hierarchy; it is a pathway to extending the

system. Hence, the class Stack is sometimes loosely called abstract class or abstract base class,

meaning that no actual instances (objects) of these classes are created. However, abstract classes, in

addition to inheritance, have more significance in connection with virtual functions, which will be

discussed later in the chapter on Virtual Functions.

An abstract class has other benefits. It provides a framework upon which other classes can be built

and need not follow the trick of C (language, C++’s base class) programming. Most C programmers

follow tricks of creating skeleton code and then copying and modifying the skeleton to create new

functionality. One problem with a skeleton code is if any modification is done to the skeleton code,

the changes must be propagated manually throughout the system—an error-prone process at best. In

addition, it is difficult to find out whether bugs are in the original skeleton or in modified system

versions. By using abstract classes, the interface can be changed which immediately propagate changes

throughout the system with no errors. All changes made by the programmer in the derived classes are

shown explicitly in the code, any bugs that show up are almost isolated in the new code.

Mastering C++576

14.11 MULTILEVEL INHERITANCE

Derivation of a class from another derived class is called multilevel inheritance. It is very common in

inheritance that a class is derived from a derived class as shown in Figure 14.12. The class B is the base

class for the derived class Dl, which in turn serves as a base class for the derived class D2. The class

D1 provides a link for the inheritance between B and D2, and is known as intermediate base class. The

chain B, Dl, D2 is known as the inheritance path.

Fig. 14.12 Multilevel inheritance

class D2:public B1

class D1:public D

class B Base Class B

Derived Class D1
(Intermediate base class)

Derived Class D2D2

D1

B

A derived class with multilevel inheritance is declared as follows:

class B {...}; // Base class,

class Dl: public B() // Dl derived from B

class D2: public Dl() // D2 derived from Dl

The multilevel inheritance mechanism can be extended to any number of levels.

The inheritance relation shown in Figure 14.13 is modeled in the program exam.cpp. It consists

of three classes, namely, person, student, and exam. Here, the class person is the base class,

student is the intermediate base class, and exam is the derived class. The student class inherits

the properties of the person class whereas, the exam class inherits the properties of the student

class (directly) and properties of the person class (indirectly).

Fig. 14.13 Multilevel inheritance

personclass person

student

exam

class student;public person

class exam:public student

Inheritance 577

// exam.cpp: Models Examination database using Inheritance

#include <iostream.h>

const int MAX_LEN = 25; // maximum length of name

class person

{

 private: // Note: cannot be referred by derived class

 char name [MAX_LEN]; // person name

 char sex; // person sex, M - male, F – female

 int age; // person age

 public:

 void ReadData()

 {

 cout << "Name ? ";

 cin >> name;

 cout << "Sex ? ";

 cin >> sex;

 cout << "Age ? ";

 cin >> age;

 }

 void DisplayData()

 {

 cout << "Name: " << name << endl;

 cout << "Sex : " << sex << endl;

 cout << "Age : " << age << endl;

 }

};

class student : public person // publicly derived intermediate-base class

{

 private:

 int RollNo; // student roll number in a class

 char branch[20]; // branch or subject student is studying

 public:

 void ReadData()

 {

 person::ReadData(); // uses ReadData of person class

 cout << "Roll Number ? ";

 cin >> RollNo;

 cout << "Branch Studying ? ";

 cin >> branch;

 }

 void DisplayData()

 {

 person::DisplayData(); // uses DisplayData of person class

 cout << "Roll Number: " << RollNo << endl;

 cout << "Branch: " << branch << endl;

 }

};

class exam: public student // derived class

{

Mastering C++578

 protected:

 int SublMarks;

 int Sub2Marks;

 public:

 void ReadData()

 {

 student::ReadData(); // uses ReadData of student class

 cout << "Marks Scored in Subject 1 < Max:100> ? ";

 cin >> SublMarks;

 cout << "Marks Scored in Subject 2 < Max:100> ? ";

 cin >> Sub2Marks;

 }

 void Display-Data()

 {

 student::DisplayData(); // uses DisplayData of student class

 cout << "Marks Scored in Subject 1: " << SublMarks << endl;

 cout << "Marks Scored in Subject 2: " << Sub2Marks << endl;

 cout << "Total Marks Scored: " << TotalMarks();

 }

 int TotalMarks()

 {

 return SublMarks + Sub2Marks;

 }

};

void main()

{

 exam annual;

 cout << "Enter data for Student...” << endl;

 annual.ReadData(); // uses exam::ReadData

 cout << "Student details...” << endl;

 annual.DisplayData(); // exam::DisplayData

}

Run

Name ? Rajkumar

Sex ? M

Age ? 24

Roll Number ? 9.

Branch Studying ? Computer-Technology

Marks Scored in Subject 1 < Max:100> ? 92

Marks Scored in Subject 2 < Max:100> ? 88

Student details...

Name: Rajkumar

Sex : M

Age : 24

Roll Number: 9

Branch: Computer-Technology

Marks Scored in Subject 1: 92

Marks Scored in Subject 2: 88

Total Marks Scored: 180

Inheritance 579

In main(), the statements

annual.ReadData(); // uses exam::ReadData.

annual.DisplayData(); // exam::DisplayData

refer to the member functions of the class exam, since annual is its object. The statements in

ReadData() function of the class exam

student::ReadData(); // uses ReadData of student class

student::DisplayData(); // uses DisplayData of student class

refers to the functions defined in the student class.

14.12 MULTIPLE INHERITANCE

A class can be derived by inheriting the traits of two or more base classes. Multiple inheritance refers

to the derivation of a class from several (two or more) base classes. It allows the combination of the

features of several existing, tested, and well-proven classes as a starting point for defining new classes.

The multiple inheritance model is shown in Figure 14.14a and its syntax is shown in Figure 14.14b.

The default visibility mode is private. If visibility mode is specified, it must be either public or

private. In multiple inheritance also, the inheritance of base classes with visibility mode public,

implies that the public members of the base class become public members of the derived class

and protected members of the base class become protected members of the derived class.

Inheritance of base classes with visibility mode private causes both the public and protected

members of the base class to become private members of the derived class. However, in both the

cases, private members of the base class are not inherited and they can be accessed through member

functions of the base class.

Fig. 14.14 Multiple inheritance

Base class 1 Base class 1 Base class 1

Derived class

(a) Mutiple inheritance model

derived class name

is derived from

Inheritance type

base class1

(b) Syntax of mutiple inheritance

class DerivedClass:[VisibilityMode] BaseClass1, ...

{

// members of derived class

// and can access members of base class

};

Mastering C++580

The following declaration illustrates the concept of multiple inheritance:

class D: public Bl, public B2 // multiple inheritance

{

 private:

 int privateD;

 void fund() {}

 protected:

 int protectedD; // D’s own features

 void func2()

 { /* Null body function */ }

 public:

 int publicD; // D’s own features

 void func3();

};

The base classes B1 and B2 from which D is derived are listed following the colon in D’s specification;

they are separated by commas.

14.12.1 Constructors and Destructors

The constructors in base classes can be no-argument constructors or multiple-argument constructors as

discussed in the following sections.

No-Argument Constructor
Consider an example with the base classes A and B having constructors and the derived class C which

has a no-argument constructor as in the program mul_inhl.cpp.

// mul_inhl.cpp: no-argument constructors in base and derived classes

#include <iostream.h>

class A // base classl

{

 public:

 A()

 { cout << "a”; }

};

class B // base class2

{

 public

 B()

 { Cout << "b”; }

};

class C: public A, public B // derived class

{

 public:

 C()

 { cout << "c"; }

};

void main()

Inheritance 581

{

 C objc;

}

Run

abc

The base class constructors are always executed first, working from the first base class to the last and

finally through the derived class constructor. Since the derived class is declared as

class C: public A, public B

The constructor of the base class A is executed first, followed by the constructor of the class B and

finally the constructor of the derived class C. Hence, the above program would print abc on the screen.

If classes involved in multiple inheritance have destructors, they are invoked in the reverse order of the

constructors invocation.

Passing Parameters to Multiple Constructors

Some or all parameters that are supplied to a derived-class constructor may be passed to the base

class(es) constructor. Therefore, if any base-class constructor has one or more parameters, all classes

derived from it must also have constructors with or without parameters. The program mul_inh2.cpp

illustrates the base classes A and B having constructors with arguments; their derived class C must also

have constructors.

// mul_inh2.cpp: constructors with arguments, must be called explicitly

#include <iostream.h>

class A // base classl

{

 public:

 A (char c)

 { cout << c; }

};

class B // base class2

{

 public:

 B(char b)

 { cout << b; }

};

class C: public A, public B // derived class

{

 public:

 C(char cl, char c2, char c3): A(cl), B(c2)

 { cout << c3; }

};

main()

{

 C objc(‘a’, ‘b’, ‘c’);

}

Run

abc

Mastering C++582

In this case, the parameters c2 and c3 are passed to the constructors of the base classes A and B

respectively. The arguments a, b and c are actually passed to the constructors of A, B, and C respectively

even though they are parameters to the constructor of the class C. The constructors are executed in the

order A, B, and C, hence, the above program would print abc on the screen. In general, parameters can

be passed to the constructors of the base class as shown in the following syntax:

derived(parameter list)-basel(parameter listl), base2(parameter

list2),...

The parameter lists of the base classes’ constructors may contain any expression that has global scope

(e.g., global constants, global variables, dynamically initialized global variables), as well as parameters

that were passed to the derived class’s constructor. The program mul_inh3.cpp illustrates the

handling of constructors with arguments in the base class and the derived class.

// mul_inh3.cpp: constructors with arguments, if not called explicitly

#include <iostream.h>

class A // base classl

{

 public:

 A(char c)

 { cout << c; }

};

class B // base class2

{

 public:

 B(char b)

 { cout << b; }

};

class C: public A, public B

{

 public:

 C(char cl, char c2, char c3): B(c2)

 { cout << c3; }

};

main()

{

 C objc (‘a’, ‘b’, ‘c’);

}

The above program cannot be executed, since the following error is generated during compilation:

Error: Cannot find ‘A::A()’ to initialize base class in function

C::C(char, char, char)

If there are constructors in the base class and all of them are of type constructors with arguments,

they must be explicitly specified in the derived class constructor. Otherwise, the compiler generates a

compilation error. However, if a no-argument constructor also exists along with other constructors in

the base class, the compiler invokes the no-argument constructor as a default. Note that the base classes

used in inheritance must preferably have a no-argument constructor.

Inheritance 583

14.12.2 Ambiguity in Member Access

Ambiguity is a problem that surfaces in certain situations involving multiple inheritance. Consider the

following cases:

 Base classes having functions with the same name

 The class derived from these base classes is not having a function with the name as those of its

base classes

 Members of a derived class or its objects referring to a member, whose name is the same as those

in base classes

These situations create ambiguity in deciding which of the base class’s function has to be referred.

This problem is resolved using the scope-resolution operator as shown in Figure 14.15. The program

mul_inh4.cpp illustrates the same.

Fig. 14.15 Syntax of handling ambiguity in multiple inheritance

ObjectName . BaseClassName :: MemberName(..)

instance of the derived class

member specifier

base class in which function is defined

Function to be invoked
in base class

// mul_inh4.cpp: overloaded functions in base classes

#include <iostream.h>

class A // base classl

{

 char ch; // private data, default

 public:

 A(char c)

 { ch = c; }

 void show()

 {

 cout << ch;

 }

};

class B // base class2

{

 char ch; // private data, default

 public:

 B(char b)

 { ch = b; }

 void show()

 {

 cout << ch;

 }

};

Mastering C++584

class C: public A, public B

{

 char ch; // private data, default

 public:

 C(char cl, char c2, char c3): A(cl), B(c2)

 {

 ch = c3;

 }

};

main()

{

 C objc(‘a’, ‘b’, ‘c’);

 // objc.show(); // Error: Field ‘show’ is ambiguous in C

 cout << endl << "objc.A::show() = ";

 objc.A::show();

 cout << endl << "objc.B::show() = ";

 objc.B::show();

}

Run

objc.A::show() = a

objc.B::show() = b

In main(), the statement

 objc.show(); // Error: Field 'show' is ambiguous in C

is ambiguous (whether to choose A::show() or B::show()?) to the compiler resulting in a

compilation error. It is resolved using the scope-resolution operator as follows.

objc.A::show();

refers to the version of show() in the class A, while,

objc.B::show();

refers to the function in the class B. Thus, the scope-resolution operator circumvents the ambiguity.

The program mul_inh5.cpp illustrates the base and derived classes, which have members with

the same name.

// mul_inh5.cpp: overloaded functions in base and derived classes

#include <iostream.h>

class A // base classl

{

 char ch; // private data, default

 public:

 A(char c)

 { ch = c; }

 void show()

 {

 cout << ch;

Inheritance 585

 }

};

class B // base class2

{

 char ch; // private data, default

 public:

 B(char b)

 { ch = b; }

 void show()

 {

 cout << ch;

 }

};

class C: public A, public B

{

 char ch; // private data, default

 public:

 C(char cl, char c2, char c3): A(cl), B(c2)

 { ch = c3; }

 void show()

 {

 // show(); invokes C::show(), leading to infinite recursion

 A::show();

 B::show();

 cout << ch;

 }

};

main()

{

 C objc(‘a’, ‘b’, ‘c’);

 cout << "objc.show() = ";

 objc.show(); // refers to show() defined in the derived class C

 cout << endl << "objc.C::show() = ";

 objc.C::show();

 cout << endl << "objc.A::show() = ";

 objc.A::show();

 cout << endl << "objc.B: :show() = ";

 objc.B::show();

}

Run

objc.show() = abc

objc.C::show() = abc

objc.A::show() = a

objc.B::show() = b

In main(), the statements

objc.show();

objc.C::show();

Mastering C++586

refer to the same version of show() defined in the class c, while

objc.A::show();

refers to the version of show () defined in the class A, and

objc.B::show();

refers to the function defined in the class B. In the derived class C, statements in show()

A::show();

B::show();

refer to the functions defined in the classes A and B respectively.

14.12.3 Example on Multiple Inheritance

Consider a publishing company that publishes and

markets books, whose activities are shown in Figure

14.16. Create a class publication that stores the

title (string) and price (float) of a publication.

Create another class sales that holds an array

of three float’s so that it can record the sales of a

particular publication for the last three months. From

these two classes, derive a new class called book that

holds pages of integer type. Each of these classes

should have the member functions getdata() and

display().

From the publication and sales classes,

derive the tape class, which adds playing time in minutes (type float). Create another class pamphlet

from publication, which has no features of its own. Derive a class notice from the pamphlet class

having data members char whom[20] and member functions getdata() and putdata().

The program publishl.cpp models the class hierarchy shown in Figure 14.16. Note that

inheritance of the class publication by the classes, pamphlet, book, and tape illustrates the

reuse of the code.

// publishl.cpp: Multiple products company modeling with multiple

inheritance

#include <iostream.h>

class publication // base class, appears as abstract class

{

 private:

 char title[40]; // name of the publication work

 float price; // price of a publication

 public:

 void getdata()

 {

 cout << "\tEnter Title: ";

 cin >> title;

 cout << "\tEnter Price: ";

Fig. 14.16 Multiple products company

salespublication

bookpamphlet

notice

tape

Inheritance 587

 cin >> price;

 }

 void display()

 {

 cout << "\tTitle = " << title << endl;

 cout << "\tPrice = ‘ << price << endl;

 }

};

class sales // base class

{

 private:

 float PublishSales[3];//sales of a publication for the last 3 months

 public:

 void getdata();

 void display();

};

void sales::getdata()

{

 int i;

 fort i = 0; i < 3; i++)

 {

 cout << ”\tEnter Sales of ” << i+1 << ” Month: ”;

 cin >> PublishSales[i];

 }

}

void sales::display()

{

 int i;

 int TotalSales = 0;

 fort i = 0; i < 3; i++)

 {

 cout<<” \tSales of "<<i+l<< " Month = " << PublishSales [i] << endl;

 TotalSales += PublishSales[i];

 }

 cout << "\tTotal Sales = " << TotalSales << endl;

}

class book : public publication, public sales // derived class

{

 private:

 int pages; // number of pages in a book

 public:

 void getdata() // overloaded function

 {

 publication::getdata();

 cout << "\tEnter Number of Pages: ";

 cin >> pages;

 sales::getdata();

 }

 void display()

Mastering C++588

 {

 publication::display();

 cout << "\tNumber of Pages = " << pages << endl;

 sales::display();

 }

};

class tape : public publication, public sales // derived class

{

 private:

 float PlayTime; // playing time in minutes

 public:

 void getdata()

 {

 publication::getdata();

 cout << "\tEnter Playing Time in Minute:”;

 cin >> PlayTime;

 sales::getdata();

 }

 void display()

 {

 publication::display();

 cout << "\tPlaying Time in Minute = " << PlayTime << endl;

 sales::display();

 }

};

//for pamphlet class, sales class is not inherited, because, pamphlets

// cannot be sold, they are published for advertisement purpose

class pamphlet : public publication // derived class

{

};

class notice: public pamphlet // derived, can access publics of pamphlet

{

 private:

 char whom[20]; // notice to all distributors

 public:

 void getdata()

 {

 pamphlet::getdata(); // intern calls getdata of publication

 cout << "\tEnter Type of Distributor: ";

 cin >> whom;

 }

 void display()

 {

 pamphlet::display(); // intern calls display of publication

 cout << "\tType of Distributor = " << whom << endl;

 }

};

void main()

{

 book bookl;

Inheritance 589

 tape tape1;

 pamphlet pampl;

 notice noticel;

 cout << "Enter Book Publication Data ...” << endl;

 bookl.getdata();

 cout << "Enter Tape Publication Data ...” << endl;

 tapel.getdata();

 cout << "Enter Pamphlet Publication Data ...” << endl;

 pampl.getdata();

 cout << "Enter Notice Publication Data ...” << endl;”

 noticel.getdata();

 cout << "Book Publication Data ...” << endl;

 bookl.display();

 cout << "Tape Publication Data ...” << endl;

 tapel.display();

 cout << "Pamphlet Publication Data ...” << endl;

 pampl.display();

 cout << "Notice Publication Data ...” << endl;

 noticel.display();

}

Run

Enter Book Publication Data ...

 Enter Title: Microprocessor-x86-Programmin

 Enter Price: 180

 Enter Number of Pages: 750

 Enter Sales of 1 Month: 1000

 Enter Sales of 2 Month: 500

 Enter Sales of 3 Month: 800

 Enter Tape Publication Data ...

 Enter Title: Love-1947

 Enter Price: 100

 Enter Playing Time in Minute: 10

 Enter Sales of 1 Month: 200

 Enter Sales of 2 Month: 500

 Enter Sales of 3 Month: 400

Enter Pamphlet Publication Data ...

 Enter Title: Advanced-Computing-95-Conference

 Enter Price: 10

Enter Notice Publication Data ...

 Enter Title: General-Meeting

 Enter Price: 100

 Enter Type of Distributor: Retail

Book Publication Data...

 Title = Microprocessor-x86-Programming

 Price = 180

 Number of Pages = 705

 Sales of 1 Month = 1000

 Sales of 2 Month = 500

 Sales of 3 Month = 800

 Total Sales = 2300

Mastering C++590

Tape Publication Data ...

 Title = Love-1947

 Price = 100

 Playing Time in Minute = 10

 Sales of 1 Month = 200

 Sales of 2 Month = 500

 Sales of 3 Month = 400

 Total Sales = 1100

Pamphlet Publication Data ...

 Title = Advanced-Computing-95-Conference

 Price = 10

Notice Publication Data ...

 Title = General-Meeting

 Price = 100

 Type of Distributor = Retail

14.13 HIERARCHICAL INHERITANCE

A well-established method of program design is the hierarchical model, which can be modeled better

using the concepts of inheritance. Many programming problems fall into this category. The hierarchical

model follows a top-down approach by breaking up a complex class into simplex constituent classes. In

other words, in the hierarchical model, a complex class is conceptualized as being made up of simpler

classes. Hierarchical inheritance resembles the multilevel inheritance, in which only one derived class

path is taken into consideration.

In C++, hierarchical programs can be easily converted into class hierarchies. The superclass (base

class) includes the features that are common to all the subclasses (derived classes). A subclass is created

by inheriting the properties of the base class and adding some of its own features. The subclass can

serve as a superclass for the lower-level classes again, and so on.

Case Study
Consider a scenario where you are required to represent the classification of vehicles with the help

of a C++ program. The program must use the concept of hierarchical inheritance to represent vehicle

categories. You can use the illustration shown in Figure 14.17 as a reference for classification of vehicles

at a broad level.

The program vehicle.cpp implements the class hierarchy for this problem.

Fig. 14.17 Classification of vehicles

Vehicle

Light Motor

Gear Motor Non Gear Motor Passenger Goods

Heavy Motor

Inheritance 591

// vehicle.cpp: Vehicle Database Hierarchical Model

#include <iostream.h>

const MAX_LEN= 25; // length of string

class Vehicle

{

 protected:

 char name[MAX_LEN]; // name of the vehicle

 int WheelsCount; // number of wheels to vehicle

 public:

 void GetData()

 {

 cout << "Name of the Vehicle ? ";

 cin >> name;

 cout << "Wheels ? ";

 cin >> WheelsCount;

 }

 void DisplayData()

 {

 cout << "Name of the Vehicle : " << name << endl;

 cout << "Wheels : " << WheelsCount << endl;

 }

};

class LightMotor: public Vehicle

{

 protected:

 int SpeedLimit;

 public:

 void GetData()

 {

 Vehicle::GetData();

 cout << "Speed Limit ? ";

 cin >> SpeedLimit;

 }

 void DisplayData()

 {

 Vehicle::DisplayData();

 cout << "Speed Limit : " << SpeedLimit << endl;

 }

};

class HeavyMotor: public Vehicle

{

 protected:

 int LoadCapacity; // load carrying capacity

 char permit[MAX_LEN]; // permits: state, country, international

 public:

 void GetData()

 {

 Vehicle::GetData();

 cout << "Load Carrying Capacity ? ";

Mastering C++592

 cin >> LoadCapacity;

 cout << "Permit Type ? ";

 cin >> permit;

 }

 void DisplayData()

 {

 Vehicle::DisplayData();

 cout << "Load Carrying Capacity : " << LoadCapacity << endl;

 cout << "Permit: " << permit << endl;

 }

};

class GearMotor: public LightMotor

{

 protected:

 int GearCount;

 public:

 void GetData()

 {

 LightMotor::GetData();

 cout << "No. of Gears ? ";

 cin >> GearCount;

 }

 void DisplayData()

 {

 LightMotor::DisplayData();

 cout << "Gears: " << GearCount << endl;

 }

};

class NonGearMotor: public LightMotor

{

 public:

 void GetData()

 {

 LightMotor::GetData();

 }

 void DisplayData()

 {

 LightMotor::DisplayData();

 }

};

class Passenger: public HeavyMotor

{

 protected:

 int sitting;

 int standing;

 public:

 void GetData()

 {

 HeavyMotor::GetData();

Inheritance 593

 cout << "Maximum Seats ? ";

 cin >> sitting;

 cout’<< "Maximum Standing ?";

 cin >> standing;

 }

 void DisplayData()

 {

 HeavyMotor::DisplayData();

 cout << "Maximum Seats: " << sitting << endl;

 cout << "Maximum Standing: " << standing << endl;

 }

};

class Goods: public HeavyMotor

{

 public:

 void GetData()

 {

 HeavyMotor::GetData();

 }

 void DisplayData()

 {

 HeavyMotor::DisplayData();

 }

};

void main()

{

 GearMotor vehil;

 Passenger vehi2;

 // read vehicle data

 cout << "Enter Data for Gear Motor Vehicle ...” << endl;

 vehil.GetData();

 cout << "Enter Data for Passenger Motor Vehicle ...” << endl;

 vehi2.GetData();

 // display vehicle data

 cout << ”Data of Gear Motor Vehicle ...” << endl;

 vehil.DisplayData();

 cout << "Data of Passenger Motor Vehicle ...” << endl;

 vehi2.DisplayData();

}

Run

Enter Data for Gear Motor Vehicle ...

Name of the Vehicle ? Maruti-Car

Wheels 4

Speed Limit ? 4

No. of Gears ? 5

Enter Data for Passenger Motor Vehicle ...

Name of the Vehicle ? KSRTC-BUS

Wheels ? 4

Mastering C++594

Load Carrying Capacity ? 60

Permit Type ? National

Maximum Seats ? 45

Maximum Standing ? 60

Data of Gear Motor Vehicle ...

Name of the Vehicle : Maruti-Car

Wheels : 4

Speed Limit : 4

Gears: 5

Data of Passenger Motor Vehicle ...

Name of the Vehicle : KSRTC-BUS

Wheels : 4

Load Carrying Capacity : 60

Permit: National

Maximum Seats: 45

Maximum Standing: 15

14.14 MULTIPATH INHERITANCE AND VIRTUAL BASE CLASSES

The form of inheritance which derives a new

class by multiple inheritance of base classes,

which are derived earlier from the same base

class, is known as multipath inheritance. It

involves more than one form of inheritance,

namely multilevel, multiple, and hierarchical as

shown in Figure 14.18. The child class is derived

from the base classes parent1 and parent2

(multiple inheritance), which themselves have a

common base class grandparent (hierarchical inheritance). The child inherits the properties of the

grandparent class (multilevel inheritance) via two separate paths as shown by the broken line. The

classes parent1 and parent2 are referred to as direct base classes, whereas grandparent is referred

to as the indirect base class.

Multipath inheritance can pose some problems in compilation. The public and protected members of

the grandparent are inherited into the child class twice—first, via the parent1 class and then via the

parent2 class. Therefore, the child class would have duplicate sets of members of the grandparent

which leads to ambiguity during compilation and it should be avoided.

C++ supports another important concept called virtual base classes to handle ambiguity caused due

to the multipath inheritance. It is achieved by making the common base class as a virtual base class

while declaring the direct or intermediate classes as shown below:

class A

{

 public:

 void func()

 {

Fig. 14.18 Multipath inheritance

Grandparent

Child

Parent1 Parent2

Inheritance 595

 // body of function

 }

};

class Bl: public virtual A

{

 // body of class Bl

};

class B2: public virtual A

{

 // body of class B2

};

class D: public Bl, public B2

 // body of class D

}

Consider the statement

objd.func();

where objd is the object of class D and invokes the func() defined in the class A. If the keyword

virtual does not exist in the declaration of classes Bl and B2, a call to func() leads to the

following compilation error:

Error: Member is ambiguous : ‘A::func’ and ‘A::func’

C++ takes necessary care to see that only one

copy of the class is inherited, when a class is

inherited as virtual irrespective of the number

of paths that exist between the virtual base class

and the derived class. The keywords virtual

and public or protected may be used in any

order.

Consider the processing of the result of a

student depicted in Figure 14.19. In this

case, the result class is derived from the classes InternalExam and ExternalExam, which

are derived classes of the common class student. The program int_ext.cpp implements the

concepts of virtual classes.

// int_ext.cpp: Student result based on internal and external marks

// Multipath Inheritance with virtual classes

#include <iostream.h>

const int MAX_LEN =25; // maximum length of name

class student

{

 protected:

 int RollNo; // student roll number in a class

 char branch[20]; // branch or subject student is studying

 public:

 void ReadStudentData()

Fig. 14.19 Virtual base classes

Student

Result

Internal Exam External Exam

Mastering C++596

 {

 cout << "Roll Number ? ";

 cin >> RollNo;

 cout << "Branch Studying ? ";

 cin >> branch;

 }

 void DisplayStudentData()

 {

 cout << "Roll Number: " << RollNo << endl;

 cout << "Branch: " << branch << endl;

 }

};

class InternalExam: virtual public student

{

 protected:

 int SublMarks;

 int Sub2Marks;

 public:

 void ReadData()

 {

 cout << "Marks Scored in Subject 1 < Max:100> ?"

 cin >> SublMarks;

 cout << "Marks Scored in Subject 2 < Max:100> ?;

 cin >> Sub2Marks;

 }

 void DisplayData()

 {

 cout<<”Internal Marks Scored in Subject 1: "<<SublMarks << endl;

 cout<<”Internal Marks Scored in Subject 2: "<<Sub2Marks << endl;

 cout<<”Internal Total Marks Scored: "<<InternalTotalMarks() <<endl;

 }

 int InternalTotalMarks()

 {

 return SublMarks + Sub2Marks;

 }

};

class ExternalExam: virtual public student

{

 protected:

 int SublMarks;

 int Sub2Marks;

 public:

 void ReadData()

 {

 cout << "Marks Scored in Subject 1 < Max:100> ? ";

 cin >> SublMarks;

 cout << "Marks Scored in Subject 2 < Max:100> ? ;

 cin >> Sub2Marks;

 }

Inheritance 597

 void DisplayData()

 {

 cout<<”External Marks Scored in Subject 1: "<<SublMarks << endl;

 cout<<”External Marks Scored in Subject 2: "<<Sub2Marks << endl;

 cout<<”External total Marks Scored: "<<ExternalTotalMarks() <<endl;

 }

 int ExternalTotalMarks()

 {

 return SublMarks + Sub2Marks;

 }

};

class result: public InternalExam, public ExternalExam

{

 private:

 int total;

 public:

 int TotalMarks()

 {

 return InternalTotalMarks() + ExternalTotalMarks();

 }

};

void main()

{

 result studentl;

 cout << "Enter data for Studentl ...” << endl;

 studentl.ReadStudentData(); // virtual resolves ambiguity

 cout << "Enter Internal Marks ...” << endl;

 Studentl.InternalExam:ReadData();

 cout << "Enter External Marks ...” << endl;

 studentl.ExternalExam:ReadData();

 cout << ”Student details ...” << endl;

 studentl.DisplayStudentData(); // virtual resolves ambiguity

 studentl.InternalExam::DisplayData();

 Studentl.ExternalExam::DisplayData();

 cout << ”Total Marks = ” << studentl.TotalMarks();

}

Run

Enter data for Studentl ...

Roll Number ? 9

Branch Studying ? Computer-Technology

Enter Internal Marks ...

Marks Scored in Subject 1 < Max:100> ? 80

Marks Scored in Subject 2 < Max:100> ? 85

Enter External Marks ...

Marks Scored in Subject 1 < Max:100> ? 89

Marks Scored in Subject 2 < Max:100> ? 90

Student details ...

Roll Number: 9

Mastering C++598

Branch Computer-Technology

Internal Marks Scored in Subject 1: 80

Internal Marks Scored in Subject 2: 85

Internal Total Marks Scored: 165

External Marks Scored in Subject 1: 89

External Marks Scored in Subject 2: 90

External Total Marks Scored: 179

Total Marks = 344

Another typical example of virtual classes having their derived classes invoking their base class’s

constructors is through the initialization section. The program vir.cpp has classes A, B, C, and D

representing multipath inheritance.

// vir.cpp: virtual classes with data members initialization

#include <iostream.h>

class A

{

 protected:

 int x;

 public:

 A()

 { x = -1; }

 A(int i)

 { x = i; }

 int geta()

 { return x; }

};

class B: virtual public A

{

 protected:

 int y;

 public:

 B(int i, int k) : A(i)

 { y = k; };

 int getb()

 { return y; }

 void show()

 {

 cout << x << ” ” << geta()<<””<< getb();

 }

};

class C:virtual public A

{

 protected:

 int z;

 public:

 C(int i,int k) : A(i)

 { z = k; };

Inheritance 599

 int getc()

 { return z; }

 void show()

 {

 cout << x << ” ” << geta() << ” ” << getc();

 }

};

class D: public B,public C

{

 public:

 // invoke A() and then B(i,j) and C(i,j)

 D(int i, int j) : B(i,j), C(i,j) {}

 void show()

 {

 cout << x << ” ” << geta() << ” ” << getb();

 cout << ” ” << getc() << ” ” << getc();

 }

};

void main()

{

 D dl(3, 5);

 cout << endl << "Object dl contents: ";

 dl.show();

 B bl(7, 9);

 cout << endl << "Object bl contents: ";

 bl.show();

 C cl(11, 13);

 cout << endl << "Object c1 contents: ";

 cl.show();

}

Run

Object dl contents: -1-1 5 5 5

Object bl contents: 7 7 9

Object cl contents: 11 11 13

In main(), the statement

B bl(7, 9);

invokes the constructor of the class B

B(int i, int k) : A(i)

which calls the single-argument constructor of the class A and then it executes. Similarly, the statement

C cl(11, 13);

invokes first the single argument constructor of the class B and then it executes. The first statement in

the main() function

D dl(3, 5);

Mastering C++600

is supposed to invoke the constructor

D(int i, int j) : B(i,j), C(i,j) {}

which in turn invokes the constructors of the B and C classes and is expected to produce the results:

Object dl contents: 3 3 5 5 5

assuming that the constructor A(i) is invoked, but this has not happened.

According to the inheritance principle, first, the super base class must be instantiated and then

followed by the lower level class, finally the one whose object has to be created (no grandchild without

grandfather). When an object of the class D has to be created, first the constructor of the class A is to be

invoked. The default no-argument constructor A() is invoked instead of the one-argument constructor.

Even if it invokes the one-argument constructor, either through the

B(int i,int k) : A(i)

or through the

C(int i,int k) : A(i)

it leads to confusion; there are two calls to the constructor which is illegal. It is similar to arguing that

father is created before the grandfather, which is neither true in real life nor in C++. Therefore, C++

selects, the no-argument constructor to avoid all these issues. If the constructor of D specification is

changed to,

D(int i, int j) : A(i), B(i,j), C(i,j) {}

It produces the result as expected; the one-argument constructor of the super class A is explicitly

specified in the initialization section..

14.15 HYBRID INHERITANCE

There are many situations where more than one form of

inheritance is used in designing the class. For example,

consider the case of processing the student results

as discussed in the program exam.cpp in multilevel

inheritance. Suppose the weightage for a sport is also taken

into consideration for finalizing the results. The weightage

for sports is stored in a separate class called sports. The

new inheritance relationships between various classes

would be as shown in Figure 14.20, which indicate both

multilevel and multiple inheritance.

The inheritance relation shown in Figure 14.20 is

modeled in the program sports.cpp. It consists of five

classes, namely person, student, exam, sports,

and result. The class exam is derived by multilevel

inheritance. The derivation of the class result from the classes exam and sports exhibits multipath

inheritance. Therefore, it has properties of the class person indirectly through two paths: from the

exam class and sport class.

Fig. 14.20 Hybrid (multilevel, multipath)

inheritance

person

student

exam

sports

result

Inheritance 601

// sports.cpp: Models student grading based on exam score and sports

#include <iostream.h>

const int MAX_LEN = 25; // maximum length of name

class person

{

 private: // Note: cannot be referred by derived class

 char name[MAX_LEN]; // person name

 char sex; // person sex, M - male, F - female

 int age; // person age

 public:

 void ReadPerson()

 {

 cout << "Name ? ";

 cin >> name;

 cout << "Sex ? ";

 cin >> sex;

 cout << "Age ? ";

 cin >> age;

 }

 void DisplayPerson()

 {

 cout << "Name: " << name << endl;

 cout << "Sex : " << sex << endl;

 cout << "Age : " << age << endl;

 }

};

class sports: public virtual person // note: virtual class

{

 private:

 char name [MAX_LEN]; // name of game

 int score; // score awarded for result declaration

 protected:

 void ReadData()

 {

 cout << "Game Played ? ";

 cin >> name;

 cout << "Game Score ? ";

 cin >> score;

 }

 void DisplayData()

 {

 cout << "Sports Played: " << name << endl;

 cout << "Game Score: " << score << endl;

 }

 int SportsScore()

 {

 return score;

 }

};

class student : public virtual person // note: virtual class

{

Mastering C++602

 private:

 int RollNo; // student roll number in a class

 char branch[20]; // branch or subject student is studying

 public:

 void ReadData()

 {

 cout << "Roll Number ? ";

 cin >> RollNo;

 cout << "Branch Studying ? ";

 cin >> branch;

 }

 void DisplayData()

 {

 cout << "Roll Number: " << RollNo << endl;

 cout << "Branch: " << branch << endl;

 }

};

class exam: public student

{

 protected:

 int SublMarks;

 int Sub2Marks;

 public:

 void ReadData()

 {

 cout << "Marks Scored in Subject 1 < Max:100> ? ";

 cin >> SublMarks;

 cout << "Marks Scored in Subject 2 < Max:100> ? ";

 cin >> Sub2Marks;

 }

 void DisplayData()

 {

 student::DisplayData(); // uses DisplayData() of student class

 cout << "Marks Scored in Subject 1: " << SublMarks << endl;

 cout << "Marks Scored in Subject 2: " << Sub2Marks << endl;

 cout << "Total Marks Scored: " << TotalMarks() << endl;

 }

 int TotalMarks()

 {

 return SublMarks + Sub2Marks;

 }

};

class result: public exam, public sports

{

 private:

 int total;

 public:

 void ReadData()

 {

Inheritance 603

 ReadPerson(); // access person class member

 student::ReadData();

 exam::ReadData(); // uses ReadData() of exam class

 sports::ReadData();

 }

 void DisplayData()

 {

 DisplayPerson(); // access person class member

 student:: Display-Data();

 exam::DisplayData();

 sports::DisplayData();

 cout<<"0verall Performance, (exam + sports) : "<<Percentage() <<"%";

 }

 int Percentage()

 {

 return (exam::TotalMarks() + SportsScore())/3;

 }

};

void main()

{

 result student;

 cout << "Enter data for Student ...” << endl;

 student.ReadData();

 cout << "Student details ...” << endl;

 Student.DisplayData();

}

Run

Enter data for Student ...

Name ? Rajkumar

Sex ? M

Age ? 24

Roll Number ? 9

Branch Studying ? Computer-Technology

Marks Scored in Subject 1 < Max:100> ? 92

Marks Scored in Subject 2 < Max:100> ? 88

Sports Played ? Cricket

Game Score ? 85

Student details ...

Name: Rajkumar

Sex : M

Age : 24

Roll Number: 9

Branch: Computer-Technology

Marks Scored in Subject 1: 92

Marks Scored in Subject 2: 88

Total Marks Scored: 180

Sports Played: Cricket

Game Score: 85

Overall Performance, (exam+sports): 88%

Mastering C++604

14.16 OBJECT COMPOSITION—DELEGATION

Most of us understand concepts such as objects, interfaces, classes, and inheritance. The challenge lies

in applying them to build flexible and reusable software. The two most common techniques for reusing

functionality in object-oriented systems are class inheritance and object composition. As explained,

inheritance is a mechanism of building a new class by deriving certain properties from other classes. In

inheritance, if the class D is derived from the class B, it is said that D is a kind of B; the class D has all

the properties of B in addition to the features of its own.

A commonly recurring situation is one where objects are

used as data members in a class. The use of objects in a class

as data members is referred to as object composition. Object

composition is an alternative to class inheritance. Here, new

functionality is obtained by assembling or composing objects to

support more powerful functionality. This new approach takes a

view that an object can be a collection of many other objects and

the relationship is called a has-a relationship or containership. In

OOP, the has-a relationship occurs when an object of one class

is contained in another class as a data member. In other words,

a class can contain objects of other classes as its members (see

Figure 14.21).

In the case of inheritance (kind-of relationship), the constructors of the base class are first invoked

before the constructor of the derived class; whereas in the case of has-a relationship, the constructor

of the class D is invoked first and then the object of B is created. The concept of creating the member

objects first using respective member constructors and then the other ordinary members can also be

accomplished in a has-a relationship by using an initialization-list in the constructor of the nested class.

Consider the following class declarations:

class B

{

 // body of a class

};

class D

{

 B ObjectB; // b is a object of class B

 public:

 D(arg-list) : ObjectB(arg-listl);

};

where arg-list is the list of arguments to be supplied during the creation of objects of the class

D. These parameters are used in initializing the members of the class D. The arg-list1 is used to

initialize the members of the class B. In this case, first, the constructor of the class B is executed and

then the constructor of the class D. The program nesting.cpp demonstrates the method of invoking

a constructor of another object in a class.

Fig. 14.21 Object composition

class B

{
.....

.....

};

class D

{
.....

B obj b;

.....
};

B objb;

class B

class B

Inheritance 605

// nesting.cpp: Nested class constructor invocation

#include <iostream.h>

class B

{

 public:

 int num;

 B() //no argument constructor

 { num = 0; }

 B(int a)

 {

 cout << "Constructor B(int a) is invoked” << endl;

 num = a;

 }

};

class D

{

 int datal;

 B objb; // object of another class

 public:

 D(int a): objb(a) // invokes the constructor of ‘objb’

 {

 datal = a;

 }

 void output()

 {

 cout << "Data in Object of Class D = " << datal << endl;

 cout<<”Data in Member object of class B in class D = "<<objb.num;

 }

};

void main()

{

 D objd(10);

 objd.output();

}

Run

Constructor B(int a) is invoked

Data in Object of Class D = 10

Data in Member object of class B in class D = 10

14.16.1 Delegation

Delegation is a way of making object composition as powerful as inheritance for reuse. In delegation,

two objects are involved in handling a request: a receiving object delegates operations to its delegate.

This is analogous to subclasses deferring requests to parent classes. In certain situations, inheritance

and containership relationships can serve the same purpose. It is illustrated by the following code:

Mastering C++606

 class publication // base classl

 {

 // body of the publication class

 };

 class sales // base class2

 {

 // body of the sales class

 };

The book class can be derived from the publication and sales classes using inheritance

relationship as follows:

 class book: public publication, public sales

 {

 // body of the book class

 };

The above functionality can also be achieved by composing objects of the classes publication

and sales into the class book as follows:

class book

{

 publication pub; // composition of object of the class publication

 sales market; // composition of object of the class sales

};

The book class contains instances of the classes publication and sales. The book class

delegates its publication and sales issues to instances of the publication and sales

classes (see Figure 14.22). Delegation shows that inheritance can be replaced with object composition

as a mechanism for code reuse. The program publish2.cpp models the delegation shown in Figure

14.21.

The classes publication and sales have the same declaration as in inheritance relation but they

are used in a different way by the book class. Although containership is an alternative to inheritance

Fig. 14.22 Delegation in publication class

sales

getdata()

PublishSales[3]

book

getdata()

publication

getdata()

title
price

cin>>Publish[i]
pub.getdata();

market.getdata();

cin>>title;

cin>>price;

Inheritance 607

and offers the functionality of inheritance, it does not provide flexibility of ownership. Inheritance

relationship is simpler to implement and offers a clearer conceptual framework.

// publish2.cpp: Publication, Sales details, Objects inside a class

#include <iostream.h>

class publication // base class, appears as abstract class

{

 private:

 char title[40]; // name of the publication work

 float price; // price of a publication

 public:

 void getdata()

 {

 cout << "\tEnter Title: ";

 cin >> title;

 cout << "\tEnter Price: ";

 cin >> price;

 }

 void display()

 {

 cout << "\tTitle = " << title << endl;

 cout << "\tPrice = " << price << endl;

 }

};

class sales // base class

{

 private:

 float PublishSales [3]; //sales of publication for the last 3 months

 public:

 void getdata();

 void display();

};

void sales::getdata()

{

 int i;

 for(i = 0; i < 3; i++)

 {

 cout << ”\tEnter Sales of ” << i+1 << ” Month: ”;

 cin >> PublishSales[i];

 }

}

void sales::display()

{

 int i;

 int TotalSales = 0;

Mastering C++608

 for(i =0; i < 3; i++)

 {

 cout<<”\tSales of " << i+1 <<” Month = " << PublishSales [i] << endl;

 TotalSales += PublishSales[i];

 }

 cout << "\tTotal Sales = " << TotalSales << endl;

}

class book

{

 private:

 int pages; // number of pages in a book

 public:

 publication pub;

 sales market;

 void getdata() // overloaded function

 {

 pub.getdata();

 cout << "\tEnter Number of Pages: ";

 cin >> pages;

 market.getdata();

 }

 void display()

 {

 pub.display();

 cout << "\tNumber of Pages = " << pages << endl;

 market.display{);

 }

};

void main()

{

 book bookl;

 cout << "Enter Book Publication Data ...” << endl;

 bookl.getdata();

 cout << "Book Publication Data ...” << endl;

 bookl.display();

}

Run

Enter Book Publication Data ...

 Enter Title: Microprocessor-x86-Programming

 Enter Price: 180

 Enter Number of Pages: 750

 Enter Sales of 1 Month: 1000

 Enter Sales of 2 Month: 500

 Enter Sales of 3 Month: 800

Inheritance 609

Book Publication Data ...

 Title = Microprocessor-x86-Programming

 Price = 180

 Number of Pages = 705

 Sales of 1 Month = 1000

 Sales of 2 Month = 500

 Sales of 3 Month = 800

14.17 WHEN TO USE INHERITANCE?

The following principles have to be followed to promote the use of inheritance in programming, which

leads to code reuse, ease of code maintenance, and extension:

 The most common use of inheritance and subclassing is for specialization, which is the most

obvious and direct use of the is-a rule. If two abstract concepts A and B are being considered,

and the sentence A is a B makes sense, then it is probably correct in making A as a subclass of B.

Examples, car is a Vehicle, triangle is a Shape, etc.

 Another frequent use of inheritance is to guarantee that classes maintain a certain common

interface; that is, they implement the same methods. The parent class can be a combination

of implemented operations and operations that are to be implemented in the child classes.

Often, there is no interface change between the supertype and subtype—the child implements

the behavior described instead of its parent class. This feature has much significance with pure

virtual function and will be discussed in the chapter Virtual Functions.

 Using generalization technique, a subclass extends the behavior of the superclass to create a more

general kind of object. This is often applicable when one is building on a base of existing classes

that should not, or cannot, be modified.

 While subclassing for generalization modifies or expands on the existing functionality of a

class, subclassing for extension adds totally new abilities. Subclassing for extension can be

distinguished from subclassing for generalization in derivation. Generalization must override

at least one method from the parent, and the functionality is tied to that of the parent whereas

extension simply adds new methods to those of the parent, and functionality is less strongly tied

to the existing parent methods.

 In subclassing for limitation, the behavior of the subclass is more restricted than the behavior

of the superclass. Like subclassing for generalization, subclassing for limitation occurs most

frequently when a programmer is building on a base of existing classes that should not or cannot

be modified.

 Subclassing for variance is useful when two or more classes have similar implementations, but

there does not seem to be any hierarchical relationship between the concepts represented by the

classes. Often, however, a better alternative is to factor out the common code into an abstract

class, and derive the classes from these common ancestors.

 Subclassing by combination occurs when a subclass represents a combined feature from two or

more parent classes.

Mastering C++610

14.18 BENEFITS OF INHERITANCE

There are many important benefits that can be derived from the proper use of inheritance. They are

code reuse, ease of code maintenance and extension, and reduction in the time to market. The following

situations explain benefits of inheritance:

 When inherited from another class, the code that provides a behavior required in the derived

class need not have to be rewritten. Benefits of reusable code include increased reliability and a

decreased maintenance cost because of sharing of the code by all its users.

 Code sharing can occur at several levels. For example, at a higher level, many users or projects

can use the same class. These are referred to as software components. At the lower level, code

can be shared by two or more classes within a project.

 When multiple classes inherit from the same superclass, it guarantees that the behavior they

inherit will be the same in all cases.

 Inheritance permits the construction of reusable software components. Already, several such

libraries are commercially available and many more are expected to be available in the near

future.

 When a software system can be constructed largely out of reusable components, development

time can be concentrated on understanding the portion of a new system. Thus, software systems

can be generated more quickly and easily by rapid prototyping.

14.19 COST OF INHERITANCE

In spite of many benefits of inheritance, it incurs compiler overhead. In an inheritance relationship, there

are certain members in the base class that are not at all used; however data space is allocated to them.

This necessitates the need for specialized inheritance, which is complex to develop. The following are

some of the perceived costs of inheritance:

 Inherited methods, which must be prepared to deal with arbitrary subclasses, are often slower

than specialized codes.

 The use of any software library frequently imposes a size penalty over the use of systems specially

constructed for a specific project. Although this expense may in some cases be substantial, it is

also true that as memory cost decreases, the size of programs is becoming less important.

 Message passing by its very nature is a more costly operation than the invocation of simple

procedures. The increased cost is however marginal and is often much lower in statically bound

languages like C++. Therefore, the increased cost must be weighed against the benefits of the

object-oriented techniques.

 Although object-oriented programming is often touted as a solution to the problem of software

complexity, overuse or improper use of inheritance can simply replace one form of complexity

with another.

Inheritance 611

SOLVED PROBLEMS

 1. Write a program to implement the inheritance as shown in the figure. Assume a suitable

member function to accept and display data.

Class name: emp_info

Member variable:
basic_salary

Class name: employee

Member variable:
emp_id
emp_name

Class name: emp_union

Member variable:
member_id

#include<iostream.h>

class employee

{

 protected:

 int emp_id;

 char emp_name[30];

 public:

 void getdata()

 {

 cout<<”Enter employee number: ";

 cin>>emp_id;

 cout<<”Enter employee name: ";

 cin>>emp_name;

 }

 void displaydata()

 {

 cout<<”\nEmployee Number: "<<emp_id<<”\nEmployee Name: "<<emp_name;

 }

};

class emp_union

{

 protected:

 int member_id;

 public:

 void getdata()

 {

 cout<<”Enter member id: ";

 cin>>member_id;

+
+

Mastering C++612

 }

 void displaydata()

 {

 cout<<”\nMember ID: "<<member_id;

 }

};

class emp_info: public employee, public emp_union

{

 protected:

 float basic_salary;

 public:

 void getdata()

 {

 employee:: getdata();

 emp_union:: getdata();

 cout<<”Enter basic salary: ";

 cin>>basic_salary;

 }

 void displaydata()

 {

 employee:: displaydata();

 emp_union:: displaydata();

 cout<<”\nBasic Salary: "<<basic_salary;

 }

};

void main()

{

 emp_info e1;

 e1.getdata();

 e1.displaydata();

}

Run

Enter employee number: 23

Enter employee name: Krishnan

Enter member id: 443

Enter basic salary: 8500

Employee Number: 23

Employee Name: Krishnan

Member ID: 443

Basic Salary: 8500

 2. Write a C++ program handling the following details for students and staff using inheritance.
 Create appropriate base and derived classes. Input the details and output them.

Inheritance 613

#include<iostream.h>

#include<iomanip.h>

class details

{

 protected:

 char name[30];

 char address[50];

 public:

 void getdata()

 {

 cout<<”Name: ";

 cin.getline(name,30);

 cout<<”Address: ";

 cin.getline(address,50);

 }

 void displaydata()

 {

 cout<<”\nName: "<<name<<”\nAddress: "<<address;

 }

};

class student: public details

{

 protected:

 float marks;

 public:

 void getdata()

 {

 details:: getdata();

 cout<<”Percentage Marks: ";

 cin>>marks;

 }

 void displaydata()

 {

 details:: displaydata();

 cout<<”\nPercentage Marks: "<<marks;

 }

};

class staff: public details

{

 protected:

 float salary;

 public:

 void getdata()

 {

 details:: getdata();

 cout<<”Salary: ";

 cin>>salary;

 }

 void displaydata()

Mastering C++614

 {

 details:: displaydata();

 cout<<”\nSalary: "<<salary;

 }

};

void main()

{

 student student1;

 staff staff1;

 cout<<”Enter student data:\n”;

 student1.getdata();

 cout<<”Enter staff data:”;

 staff1.getdata();

 cout<<”Displaying student and staff data:\n”;

 student1.displaydata();

 staff1.displaydata();

}

Run

Enter student data:

Name: Venkatesh

Address: H.No. 89, AGM Society, Bangalore

Percentage Marks: 78.4

Enter staff data:

Name: Vijayan

Address: H.No. A-2, SLR Society, Bangalore

Salary: 25000

Displaying student and staff data:

Name: Venkatesh

Address: H.No. 89, AGM Society, Bangalore

Percentage Marks: 78.4

Name: Vijayan

Address: H.No. A-2, SLR Society, Bangalore

Salary: 25000

REVIEW QUESTIONS ++
 14.1 What is inheritance? Explain the need of inheritance with suitable examples.

 14.2 What are the differences between the access specifiers private and protected?

 14.3 What are base and derived classes? Create a base class called Stack and derived class

called MyStack. Write a program to use these classes for manipulating objects.

 14.4 Explain the syntax for declaring the derived class. Draw access privilege diagram for

members of a base and derived class.

 14.5 What are the differences between a C++ struct and C++ class in terms of encapsulation

and inheritance?

Inheritance 615

 14.6 What are the different forms of inheritance supported by C++? Explain them with an

example.

 14.7 What is a class hierarchy? Explain how inheritance helps in building class hierarchies.

 14.8 Can a base class access members of a derived class? Give reasons.

 14.9 What is visibility mode? What are the different inheritance visibility modes supported by

C++?

 14.10 What are the differences between inheriting a class with public and private visibility

mode?

 14.11 Declare two classes named Window and Door. Derive a new class called House from

those two classes. The Window and Door base classes must have attributes which

reflect a happy home. All classes must have interface functions such as overloaded

stream operator functions for reading and displaying attributes. Write an interactive

program to model the above relation.

 14.12 State with reasons whether the following statements are TRUE or FALSE:

 (a) Both base and derived classes need not have constructors.

 (b) Only a base class cannot have constructors.

 (c) Only a derived class can have constructors.

 (d) A no-argument constructor of the base class is invoked when a derived class is

instantiated.

 (e) When a derived class is instantiated, only the derived class constructors are invoked.

 (f) Derived class members cannot access private members of a base class.

 (g) When a derived class is instantiated, memory is allocated to all data members of both

the base and derived classes,

 (h) If a base class does not have no-argument constructor and has parameterized con-

structors, it must be explicitly invoked from a derived class.

 (i) Constructors are invoked starting from the top base class to the derived class order.

 (j) Destructors are invoked starting from the top base class to the derived class order.

 (k) Destructors are invoked in the reverse order of constructors.

 (1) Base-class constructors can be explicitly invoked from the derived class.

 14.13 Explain how base-class member functions can be invoked in a derived class if the derived

class also has a member function with the same name.

 14.14 What are virtual classes? Explain the need for virtual classes while building class hierarchy.

 14.15 What are abstract classes? Explain the role of an abstract class while building a class

hierarchy.

 14.16 Consider an example of declaring the examination result. Design three classes: Student,

Exam, and Result. The Student class has data members such as those representing

roll number, name, etc. Create the class Exam by inheriting the Student class. The

Exam class adds data members representing the marks scored in six subjects. Derive the

Result from the Exam class and it has its own data members such as total_marks.

Write an interactive program to model this relationship. What type of inheritance does

this model belong to ?

Mastering C++616

 14.17 A new scheme for evaluation of students performance is formulated that gives also

weightage for sports. Extend the inheritance relation discussed in the above program

(14.16) such that the Result class also inherits properties of the Sports class. Note

that the Sports class is a derived class of the Student class. Write a program to model

this relationship such that members of the Students class are not inherited twice.

What type of inheritance does this model belongs to?

 14.18 What is containership or delegation? How does it differ from inheritance?

 14.19 It is required to find out the cost of constructing a house. Create a base class called House.

There are two classes called Door and Window available. The House class has members

which provide information related to the area of construction, door, window details, etc.

It delegates responsibility of computing the cost of doors and windows construction

to the Door and Window classes respectively. In C++, this can be achieved by having

instances of the classes Door and Window in the House class. Write an interactive

program to model the above relationship.

 14.20 Write an interactive program to create a graphic class hierarchy. Create an abstract base

class called Figure and derive two classes Close and Open from that. Declare two

more classes called Polygon and Ellipse using the Close class. Create derived

classes Line and Polyline from the Open class. Define three objects (triangle,

rectangle, and pentagon) of the class Polygon. All classes must have appropriate

member functions including constructors and destructors.

Virtual Functions

 15.1 INTRODUCTION

Polymorphism in biology means the ability of an organism to assume a

variety of forms. In C++, it indicates the form of a member function that can

be changed at runtime. Such member functions are called virtual functions

and the corresponding class is called polymorphic class. The objects of the

polymorphic class, addressed by pointers, change at runtime and respond

differently for the same message. Such a mechanism requires postponement of binding of a function

call to the member function (declared as virtual) until runtime.

15

Fig. 15.1 Types of polymorphism in C++

Polymorphism

Compile Time Run-Time

Virtual
Functions

Operator
Overloading

Function
Overloading

It has been observed that, function overloading and operator overloading features of C++ have

allowed to realize polymorphism. Yet, there is another mechanism to implement polymorphism in C++;

through dynamic binding. Figure 15.1 illustrates the taxonomy of polymorphism in C++. Function

overloading is realized by invoking a suitable function whose signature matches with the arguments

specified in the function-call statement. Operator overloading is realized by allowing operators to

operate on the user-defined data types with the same interface as that of the standard data types. In both

cases, the compiler is aware of the complete information regarding the type and number of operands.

Hence, it is possible for the compiler to select a suitable function at compile time.

Mastering C++618

15.2 NEED FOR VIRTUAL FUNCTIONS

When objects of different classes in a class hierarchy react to the same message in their own unique

ways, they are said to exhibit polymorphic behavior. The program parent1.cpp illustrates the need

of such polymorphic behavior. It has the base class Father and the derived class Son and has a

member function (called show) with the same name and prototype. Note that in C++ a pointer to the

base class can be used to point to its derived-class objects.

// parent1.cpp: invoking derived class member through base class pointer
#include <iostream.h>
#include <string.h>
class Father
{
 char name[20]; // father name
 public:
 Father(char * fname)
 {
 strcpy(name, fname); // fname contains Father’s name
 }
 void show() // show() in base class
 {
 cout << "Father name: " << name << endl;
 }
};
class Son: public Father
{
 char name[20]; // son name
 public:
 // two-argument constructor; invokes one-argument constructor of Father
 Son(char *sname, char *fname): Father(fname)
 {
 strcpy(name, sname); // sname contains son’s name
 }
 void show() // show() in derived class
 {
 cout << "Son name: " << name << endl;
 }
};
void main()
{
 Father *fp; // pointer to the Father class’s objects;
 Father f1("Eshwarappa");
 fp = &fl; // fp points to Father class object
 fp->show(); // display father show() function
 Son sl("Rajkumar", "Eshwarappa");
 fp = &sl; // valid assignment
 fp->show(); // guess what is the output ? Father or Son!

Virtual Functions 619

}

Run

Father name: Eshwarappa
Father name: Eshwarappa

In main(), the statement

Father *fp; // pointer to the Father class’s objects;

defines a pointer variable fp. The statement

fp = &fl; // fp points to Father class object

assigns the address of the object f1 of the class Father to fp. After this, when a statement such as

fp->show(); // display father show() function

is executed, the member function defined in the class Father is invoked. In C++, a base class pointer

is fully type-compatible with its derived class pointers and hence, the statement such as

fp = &sl; // valid assignment

is valid. It assigns the address of the object s1 of the class Son to fp. After this, when the statement

fp->show(); // guess what is the output ? Father or Son!

is executed (it is interesting to note that), it still invokes the member function show() defined in the

class Father!

There must be a provision to use the member function show() to display the state of objects of both

the Father and Son classes using the same interface. This decision cannot be taken by the compiler,

since the prototype is identical in both the cases.

In C++, a function call can be bound to the actual function either at compile time or at runtime.

Resolving a function call at compile time is known as compile-time or early or static binding

whereas, resolving a function call at runtime is known as runtime or late or dynamic binding. Runtime

polymorphism allows to postpone the decision of selecting the suitable member functions until runtime.

In C++, this is achieved by using virtual functions.

Virtual functions allow programmers to declare functions in a base class, which can be defined in

each derived class. A pointer to an object of a base class can also point to the objects of its derived

classes. In this case, a member function to be invoked depends on the the class’s object to which the

pointer is pointing. When a call to any object is made using the same interface (irrespective of object

to which pointer variable is pointing), the function relevant to that object will be selected at runtime.

The program parent2.cpp illustrates the effect of virtual functions on an overloaded function in a

class hierarchy.

// parent1.cpp: base class pointer and virtual function
#include <iostream.h>
#include <string.h>
class Father
{
char name [20]; // father name
public:

Mastering C++620

 Father(char *fname)
 {
 strcpy(name, fname); // fname contains Father’s name
 }
 virtual void show() // show() in base class declared as virtual
 {
 cout << "Father name: " << name << endl;
 }
};
class Son: public Father
{
 char name[20]; //son name
 public:
 // two-argument constructor; invokes one-argument constructor of Father
 Son(char *sname, char *fname): Father(fname)
 {
 strcpy(name, sname); // sname contains son’s name
 }
 void show() // show() in derived class
 {
 cout << "Son name: " << name << endl;
 }
};
void main()
{
 Father *fp; // pointer to the Father class’s objects;
 Father fl("Eshwarappa");
 fp = &fl; // fp points to Father class object
 fp->show(); // display father show() function
 Son sl("Rajkumar", "Eshwarappa");
 fp = &sl; // valid assignment
 fp->show(); // guess what is the output? Father or Son!
}

Run

Father name: Eshwarappa
Son name: Rajkumar

It is interesting to note that the output generated by the above program is as expected. (What is

interesting about the above program when compared to the earlier parent1.cpp?) The only

difference is the member function show() defined in the class Father has the following declarator:

virtual void show() // show() in base class declared as virtual

It indicates that the member function show() is virtual and binding of a call to this function must be

postponed until runtime. Hence, the last statement in main(),

fp->show(); // guess what is the output? Father or Son!

invokes the member function defined in the class Son! during the execution of this statement, the

system notices that show() is a virtual function in base class and hence, it decides to invoke the

Virtual Functions 621

member function defined in the derived class (instead of the base class) if the base-class pointer is

pointing to the derived-class object.

The knowledge of pointers to a base class and derived classes is essential to understand and to

explore the full potential of virtual functions. Hence, a detailed discussion on how the above program

is able to work as expected and syntax of virtual functions is postponed to later sections.

15.3 POINTER TO DERIVED CLASS OBJECTS

The concept of derived classes specifies hierarchical relationship between various objects and expresses

the commonality between them. The properties common to different classes are placed at the top of

the hierarchy, which becomes the base class, and all other classes are derived from this base class. A

derived class is often said to inherit properties of the base class, and so, this relationship is known as

the inheritance relationship.

Pointers can be used with the objects of base classes or derived classes. Pointer to objects of a base

class are type compatible with pointers to objects of a derived class, thus allowing a single pointer

variable to be used as a pointer to objects of a base class and its derived classes. For instance, in the

above declaration having the classes Parent and Child, a pointer declared as a pointer to Parent

objects can also be used as a pointer to Child objects. C++ makes polymorphism possible through a

rule that one should memorize: a base-class pointer may address an object of its own class or an object

of any class derived from the base class. (See Figure 15.2.)

Fig. 15.2 A base-class pointer may address a derived-class object

Object of base class

A base-class pointer may
address objects of the
base class or objects of
any derived class

A derived-class pointer
may address objects of
the derived class, but not
objects of the base class

Object of derived class

Object of derived class

Base-class
pointer

Derived-class
pointer

Consider the following definitions to illustrate type compatibility of pointers.

Father *basep; // pointer to Parent class

Father f; // base class object

Son s; // derived class object

The statement

basep = &f;

Mastering C++622

assigns the address of the object f of the class Father to the pointer variable basep. The statement

basep = &s;

assigns the address of the objects of the class Son to the pointer variable basep. Such an assignment

is perfectly valid in C++, since the pointer to an object of a base class is fully type compatible with a

pointer to objects of its derived classes.

The use of a pointer to the objects of a base class with the objects of its derived class raises a new

problem. It does not allow access even to public members of a derived class. That is, it allows access

only to those members inherited from the base class but not to the members which are defined in the

derived class. Even in case, any member of the Son class has the same name as one of the members of

the Father class, reference to it using the base class pointer basep will always access the base-class

member and not the derived-class member. The program family1.cpp illustrates the use of the base

pointer with the derived objects.

// familyl.cpp: pointer to base class and derived class objects
#include <iostream.h>
class Father
{
 protected:
 int f_age;
 public:
 Father(int n)
 {
 f_age = n;
 }
 int GetAge(void)
 {
 return f_age;
 }
};
// Son inherits all the properties of father
class Son : public Father
{
 protected:
 int s_age;
 public:
 Son(int n, int m):Father(n)
 {
 s_age = m;
 }
 int GetAge(void)
 {
 return s_age;
 }
 void son_func()
 {
 cout << "son’s own function";
 }

Virtual Functions 623

};
void main()
{
 Father *basep;
 basep = new Father(45); // pointer to father
 cout << "basep points to base object..." << endl;
 cout << "Father’s Age: ";
 cout << basep->GetAge() << endl; // calls Father::GetAge
 delete basep;
 // accessing derived object
 basep = new Son(45, 20); // pointer to son
 cout << "basep points to derived object..." << endl;
 cout << "Son’s Age: ";
 cout << basep->GetAge() << endl; // calls Father::GetAge()
 cout << "By typecasting, ((Son*) basep)..." << endl;
 cout << "Son’s Age: ";
 cout << ((Son*) basep)->GetAge() << endl; // calls Son::GetAge()
 delete basep;
 // accessing with derived object pointer
 Son son1(45, 20);
 Son *derivedp = &son1;
 cout << "accessing through derived class pointer..." << endl;
 cout << "Son’s Age: ";
 cout << derivedp->GetAge();
}

Run

basep points to base object...
Father’s Age: 45
basep points to derived object...
Son’s Age: 45
By typecasting, ((Son*) basep)...
Son’s Age: 20
accessing through derived class pointer...
Son’s Age: 20

The expression, basep->GetAge() in the statement,

cout << basep->GetAge() << endl;

invokes GetAge() defined in the Father class; basep holds the address of the Father class

object. Even when the pointer basep is made to point to the derived object, it invokes the function

defined in the Father class. However, the typecasted expression

((Son*) basep)->GetAge()

invokes the GetAge() defined in the derived class Son since the pointer is explicitly typecasted. In

the above program, the use of the statement

basep->son_func(); // error: not member of Father

generates a compilation error since, son_func() is not a member of the Father class or it is not

within the scope of the Father class.

Mastering C++624

However, when typecasted as

((Son *)basep)->son_func(); // OK

it will not generate any errors and will invoke the function defined in the Son class. (See Figure 15.3.)

The rule that a base class pointer may address an object of its own class or an object of any class

derived from the base class is a one-way route. In other words, a pointer to a derived-class object cannot

Fig. 15.3 A base pointer accessing derived objects

class Son : public Father

{

......

int GetAge(void)

......

};

class Father

{

......

int GetAge(void)

......

};

basep=new Father(45);

basep->GetAge()

Father *basep;

GetAge()

Father object

basep=new Son(45,20);

basep->GetAge()

Father *basep;

GetAge()

Son object

GetAge()

Father

Son

basep=new Son(45,20);

(Son *)basep->GetAge()

Father *basep;

GetAge()

Son object

GetAge()

Father

Son

derivedp=new Son(45,20);

derivedp->GetAge()

Son *derivedp;

GetAge()

Son object

GetAge()

Father

Son

Virtual Functions 625

address an object of the base class. If a pointer to a derived class is allowed to address the base-class

object, the compiler will expect members of the derived class to be in the base class also (which is not

possible). (See Figure 15.4.) A pointer to the derived class can be used as a pointer to other classes

which are derived from it. In general, a pointer to a class at a particular level can be used as a pointer

to objects of classes which are below that level in the class hierarchy. Any attempt to override this rule

is treated as an error.

Fig. 15.4 A base class pointer can address data members inherited by a derived class

Base class pointer

Base class

Ok Ok Ok

Ok Ok

Pointer to
derived class A

Not allowed!

Base class data
members

Derived class A

inherited data
members

New data members

Derived class B

inherited base and
derived class data
members

New data members

15.4 DEFINITION OF VIRTUAL FUNCTIONS

C++ provides a solution to invoke the exact version of the member function, which has to be decided

at runtime using virtual functions. They are the means by which functions of the base class can be

overridden by the functions of the derived class. The keyword virtual provides a mechanism for

defining the virtual functions. When declaring the base-class member functions, the keyword virtual

is used with those functions, which are to be bound dynamically. The syntax of defining a virtual

function in a class is shown in Figure 15.5.

Fig. 15.5 Syntax of virtual function

class MyClass

{

public:

......

......

virtual ReturnType FunctionName(arguments)

{

......

......

}

......
};

keyword

Mastering C++626

Virtual functions should be defined in the public section of a class to realize its full potential benefits.

When such a declaration is made, it allows to decide which function to be used at runtime, based on

the type of object, pointed to by the base pointer, rather than the type of the pointer. The program

family2.cpp illustrates the use of a base pointer to point to different objects for executing different

implementations of the virtual functions.

// family2.cpp: Binding pointer to base class’s object to base or derived
// objects at runtime and invoking respective members if they are virtual
#include <iostream.h>
class Father
{
 protected:
 int f_age;
 public:
 Father(int n)
 {
 f_age = n;
 }
 virtual int GetAge(void)
 {
 return f_age;
 }
};
// Son inherits all the properties of father
class Son : public Father
{
 protected:
 int s_age;
 public:
 Son(int n, int m):Father(n)
 {
 s_age = m;
 }
 int GetAge(void)
 {
 return s_age;
 }
};
void main()
{
 Father *basep;
 // points to Father’s object
 basep = new Father(45); // pointer to father
 cout << "Father’s Age: ";
 cout << basep->GetAge() << endl; // calls Father::GetAge
 delete basep;
 // points to Son’s object
 basep = new Son(45, 20); // pointer to son

Virtual Functions 627

 cout << "Son’s Age: ";
 cout << basep->GetAge() << endl; // calls Son::GetAge()
 delete basep;
}

Run

Father’s Age: 45
son’s Age: 20

The statement in the base class Father

virtual int GetAge(void)

indicates that an invocation of the GetAge() through the pointer to an object must be resolved at

runtime based on to which class’s object the pointer is pointing. A pointer to objects of the base class

can be made to point to its derived-class objects. Figure 15.6 illustrates the use of virtual functions in

invoking functions at runtime.

In main(), the statement

Father *basep;

Fig. 15.6 Virtual functions and dynamic binding (base pointer accessing derived objects)

Father(int n);

int f_age;

Son(int n,int m):
Father(n);

virtual int GetAge()

int s_age;

int GetAge();

Instances of the class Son

basep->GetAge();

basep = new Son(45, 20);

basep->GetAge();

basep = new Father(45);

Father *basep;

Instances of the class Father

Client program

Mastering C++628

creates a pointer variable to the object of the base class Father, and the statement

basep = new Father(45); // pointer to Father

creates an object of the class Father dynamically and assigns the pointer to the variable basep. The

statement

cout << basep->GetAge() << endl; // calls father::GetAge

invokes the member function GetAge() of the Father class. The statement

basep = new Son(45, 20); // pointer to son

creates an object of the class Son dynamically and assigns its address to the pointer variable basep.

The statement

cout << basep->GetAge() << endl; // calls Son::GetAge

invokes the member function GetAge() of the Son class. If a call to a nonvirtual function is made in

this case, it invokes the member function of the class Father instead of the class Son. Note that the

same pointer is able to invoke the base or derived class’s member function depending on which class’s

object the pointer is addressing.

It is important to note that virtual functions have to be accessed through a pointer to the base class.

However, they can be accessed through objects instead of pointers. It is to be remembered that runtime

polymorphism is achieved only when a virtual function is accessed through a pointer to the base class.

Note that when a function is defined as virtual in the base class, and the same function is redefined in

the derived class then that function is virtual by default. Only class member functions can be declared

as virtual functions. Regular functions and friend functions do not qualify as virtual functions.

15.5 ARRAY OF POINTERS TO BASE-CLASS OBJECTS

A key property associated with polymorphism is late or dynamic binding, which ensures that if an

operation with more than one implementation (method) is called on a polymorphic entity then the

appropriate version is selected on the basis of its dynamic type (and is called runtime dispatch). In

C++, runtime dispatch is only available for operations declared as virtual in the superclass. The process

of runtime dispatch of a function call request is illustrated in Figure 15.7. The code which requests a

runtime dispatcher holds pointers to objects of different classes of the same class hierarchy. One of the

simplest methods of implementation is to create an array of pointers (or pointers to pointers or linked

list or any other data structure suitable for holding pointers to objects) as a pointer storehouse and

invoke functions dynamically by scanning over them.

In Figure 15.7, it can be observed that the class graphics has the function draw(), which plots

the points and each of the derived classes—line, triangle, rectangle, and circle—have

their own draw() function, which plots the corresponding entities on the screen. In the absence of

virtual functions, all the outputs would be pictures of points because all the calls refer to the function

draw() of the base class. However, with virtual functions, the same segment of program code

generates different outputs by invoking the member function of the corresponding object.

The program draw.cpp illustrates a practical usage of virtual functions and models the problem

described above. It uses an array of pointers to objects for storing a pointer to objects of different

derived classes of the base class graphics. The common interface function in all the classes is

Virtual Functions 629

draw(), which is declared as virtual in the base class and defined as a normal function in all the other

derived classes.

// draw.cpp: graphic class hierarchy with virtual functions
#include <iostream.h>
class graphics
{
 public:
 virtual void draw() // virtual draw function in base class
 {
 cout << "point" << endl;
 }
};
class line: public graphics
{
 public:

Fig. 15.7 Compile time and runtime binding of functions

graphics

draw()
draw()

draw()code

in parent

Parent class

child classes

draw()

draw()code

in child

draw()draw()draw()

line

draw()

triangle

draw()

rectangle

draw()

circle

draw()

without virtual
function

with virtual
function

graphics * basep[] = { &line_obj, &tri_obj;
&rect_obj, &cir_obj };

for (i=0; i < NO_PICTURES; i++)
basep[i] -> draw();

Mastering C++630

 void draw()
 {
 cout << "line" << endl;
 }
};
class triangle: public graphics
{
 public:
 void draw()
 {
 cout << "triangle" << endl;
 }
};
class rectangle: public graphics
{
 public:
 void draw()
 {
 cout << "rectangle" << endl;
 }
};
class circle: public graphics
{
 public:
 void draw()
 {
 cout << "circle" << endl;
 }
};
void main()
{
 graphics point_obj;
 line line_obj;
 triangle tri_obj;
 rectangle rect_obj;
 circle circle_obj;
 graphics *basep[]=
 {
 &point_obj, &line_obj,
 &tri_obj, &rect_obj, &circle_obj
};
cout << "Following figures are drawn with basep[i]->draw()..."<< endl;
for(int i = 0; i < 5; i++)
 basep[i]->draw();
}

Run

Following figures are drawn with basep[i]->draw() ...
point

Virtual Functions 631

line
triangle
rectangle
circle

In main(), the statement

for(int i = 0; i < 5; i++)
basep[i]->draw();

invokes a different draw() version based on the object to which the current pointer basep[i] is

pointing. (See Figure 15.7.)

15.6 PURE VIRTUAL FUNCTIONS

Virtual functions defined inside the base class normally serve as a framework for future design of the

class hierarchy; these functions can be overridden by the methods in the derived classes. In most of

the cases, these virtual functions are defined with a null body, it has no definition. Such functions in

the base class are similar to do-nothing or dummy functions and in C++, they are called pure virtual

functions. The syntax of defining pure virtual functions is shown in Figure 15.8. A pure virtual function

is declared as a virtual function with its declaration followed by = 0.

Fig. 15.8 Syntax of pure virtual function

class Myclass

{

public:

......

......

virtual ReturnType FunctionName (arguments) = 0;

......

......

};

keyword null function body

A pure virtual function declared in a base class has no implementation as far as the base class is

concerned. The classes derived from a base class having a pure virtual function have to define such a

function or redeclare it as a pure virtual function. It must be noted that a class containing pure virtual

functions cannot be used to define any objects of its own and hence such classes are called pure abstract

classes or simply abstract classes. Whereas all other classes without pure virtual functions and which

are instantiated are called concrete classes.

A pure virtual function is an unfinished placeholder that the derived class is expected to complete.

The following are the properties of pure virtual functions:

 A pure virtual function has no implementation in the base class and hence, a class with pure

virtual functions cannot be instantiated.

 It acts as an empty bucket (virtual function is a partially filled bucket) that the derived class is

supposed to fill.

 A pure virtual member function can be invoked by its derived class.

Mastering C++632

The concept of abstract class (a class with pure virtual function) is necessary in order to understand

pure virtual functions and it is illustrated in the program pure.cpp. Note that a class with one or more

pure virtual functions cannot be instantiated.

// pure.cpp: pure virtual function with abstract class
#include <iostream.h>
class AbsPerson
{
 public:
 virtual void Servicel (int n); // normal virtual member function
 virtual void Service2 (int n) = 0; // Pure virtual member function
};
void AbsPerson::Servicel(int n)
{
 Service2(n);
}
class Person : public AbsPerson
{
 public:
 void Service2(inc n);
};
void Person::Service2(int n)
{
 cout << "The number of Years of service: " << (58 - n) << endl;
}
void main()
{
 Person Father, Son;
 Father.Servicel(50);
 Son.Service2(20);
}

Run

The number of Years of service: 8
The number of Years of service: 38

In main(), the statement

Father.Servicel(50);

invokes the virtual function Servicel() defined in the class AbsPerson and this in turn invokes

Service2(). The Service2() of the class Person is invoked instead of AbsPerson; it is

declared as a pure virtual function.

Case Study

Consider a scenario where you are required to create a C++ program that applies the concept of pure

virtual function for computing the octal and hexadecimal equivalents of an integer value. The integer

value is stored in the base class called number while octal and hexadecimal values are computed by

the derived classes octnum and hexnum respectively.

Virtual Functions 633

The program number.cpp defines the class hierarchy for the given scenario. The base class

number declares a pure virtual function called show(), which is further redefined in the derived

classes octnum and hexnum.

//number.cpp: pure virtual function
#include<iostream.h>
class number
{
 protected:
 int num;
 public:
 void getdata();
 virtual void show()=0; //declaring pure virtual function
};
void number:: getdata()
{
 cout<<"\nEnter an integer number: ";
 cin>>num;
}
class octnum: public number
{
 public:
 void show() //redefining pure virtual function
 {
 cout <<"Octal equivalent of "<<num<<" = ";
 cout.unsetf(ios::dec);
 cout.setf(ios::oct | ios::showbase);
 cout<<num;
 cout.unsetf(ios::oct);
 cout.setf(ios::dec | ios::showbase);
 }
};
class hexnum: public number
{
 public:
 void show() //redefining pure virtual function
 {
 cout <<"Hexadecimal equivalent of "<<num<<" = ";
 cout.unsetf(ios::dec);
 cout.setf(ios::hex | ios::showbase);
 cout<<num;
 cout.unsetf(ios::hex);
 cout.setf(ios::dec | ios::showbase);
 }
};
void main()
{
 octnum o1;
 hexnum h1;

Mastering C++634

 o1.getdata();
 o1.show();
 h1.getdata();
 h1.show();
}

Run

Enter an integer number: 11
Octal equivalent of 11 = o13
Enter an integer number: 11
Hexadecimal equivalent of 11 = oxb

15.7 ABSTRACT CLASSES

Abstract classes (classes with at least one virtual function) can be used as frameworks upon which new

classes can be built to provide new functionality. A framework is a combination of class libraries (set of

cooperative classes) with predefined flow of control. It can be a set of reusable abstract classes and the

programmer can extend them. For instance, abstract classes can be easily tuned to develop graphical

editors for different domains like artistic drawing, music composition, and mechanical CAD. Abstract

classes with virtual functions can be used as an aid to debugging. Suppose, it is required to build a

project consisting of a number of classes, possibly using a large number of programmers. It is necessary

to make sure that every class in the project has a common debugging interface. A good approach is

to create an abstract class from which all other classes in the project will be inherited. Since any new

classes in the project must inherit from the base class, programmers are not free to create a different

interface. Therefore, it can be guaranteed that all the classes in the project will respond to the same

debugging commands.

The implementation of such a software system is illustrated by creating a header file containing an

abstract debugger class with abstract functions. The header file debug.h is an example of an abstract

base class for debugging. (The program pure.cpp has the pure abstract class AbsPerson.)

// debug.h: Abstract class for debugging
#include <iostream.h>
class debuggable
{
 public:
 virtual void dump()
 {
 cout<< "debuggable error: no dump() defined for this class "<<end1;
 }
};

If someone derives a new class from the class debuggable and does not redefine dump(), it

warns when the user tries to dump any object of that new class, because the base class version of

dump() will be used. A few classes derived from the class debuggable are listed in the program

dbgtest.cpp, for testing the debuggable class.

Virtual Functions 635

// dbgtest.cpp: testing of debuggable class

#include "debug.h"

class X: public debuggable

{

 int a, b, c;

 public:

 X(int aa = 0, int bb = 0, int cc = 0)

 {

 a = aa; b = bb; c = cc;

 }

 // other implementation of dump

 void dump()

 {

 cout << "a=" << a << " b=" << b << " c=" << c << endl;

 }

};

class Y: public debuggable

{

 int i, j, k;

 public:

 Y(int ii = 0, int jj = 0, int kk = 0)

 {

 i = ii; j = jj; k = kk;

 }

 // other implementation of dump

 void dump()

 {

 cout << "i=" << i << " j = " << j << " k=" << k << endl;

 }

};

class Z: public debuggable

{

 int p, q, r;

 public:

 Z(int pp = 0, int qq = 0, int rr = 0)

 {

 p = pp; q = qq; r = rr;

 }

};

void main()

{

 X x(1, 2, 3);

 Y y(2, 4, 5);

 Z z;

 x.dump();

 y.dump();

 z.dump();

Mastering C++636

 // you can treat x, y, and z as members of the class debuggable

 debuggable *dbg[3];

 dbg[0] = &x;

 dbg[l] = &y;

 dbg[2] = &z;

 cout<< "Dumping through passing the same message to all objects... \n";

 for(int i = 0; i < 3; i++)

 dbg[i]->dump();

}

Run

a=l b=2 c=3

i=2 j=4 k=5

debuggable error: no dump() defined for this class

Dumping through passing the same message to all objects...

a=l b=2 c=3

i=2 j=4 k=5

debuggable error: no dump() defined for this class

In main(), the statements

x.dump();
y.dump();

invoke their own implementation of dump(), whereas the statement

z.dump()

executes the virtual function dump() defined in the base class since it does not have an implementation

of dump() in its own class. The statement which is in the scope of the for loop

dbg[i]->dump();

passes the same messages to all the objects, which are instances of the class derived from the class

debuggable. All of them respond in different ways to the same message. If they do not have any

response function of their own, they respond through their parent function (in this the object z responds

by invoking the dump() defined in the parent class debuggable). Thus, any object in the system

can be dumped or can add the object’s address to the list of debuggable pointers and call dump() as

a member of the object. Hence, it is said that "switch statements are to C what virtual functions

are to C++."

An abstract class becomes very powerful when it is integrated into a system and changes are

required for the interface. Imagine how difficult this would have been in a conventional language.

First, it is required to make sure that the debugging interface is properly implemented in all parts of

the system. If changes to the interface are to be made, it is required to check each part separately to

ensure that the new interface is properly added. With the availability of abstract classes in C++, it just

requires to change the abstract class and recompile the system. The interface automatically propagates

throughout the system; when virtual function(s) added in the new interface is redefined in the derived

class, the compiler ensures strict conformation to the interface. For instance, if the programmer is

required to add a function called trace() to the class debuggable, the header file can be modified

to accommodate this function as shown in debug2.h.

Virtual Functions 637

// debug2.h: Abstract class for debugging
#include <iostream.h>
class debuggable
{
 public:
 virtual void dump()
 {
 cout<<"debuggable error: no dump() defined for this class"<<endl;
 }
 virtual void trace()
 {
 cout<<"debuggable error: no trace() defined for this class"<<endl;
 }
};

When this new abstract class is used in dbgtest.cpp, the virtual function trace() may or may

not be redefined in the derived classes X, Y, and Z. It is optional until needed. That is, the debugging

framework can be designed into classes, and even changes can be made to the framework midway so

that it can reflect throughout the project without any problem. When trace() is redefined in the new

classes, the interface (function prototype) must be identical as in the base class debuggable. If they

do not conform to the interface declared in the parent class, the compiler will either generate an error

or make the function non virtual, depending on how the compiler implementation handles this issue.

An abstract class with one or more pure virtual functions has the following properties:

 Describes an unrealized concept (which is yet to be conceived).

 Objects of an abstract class type cannot be created.

 Derived classes can be built from these abstract classes.

 Objects of the derived classes can be created provided these derived classes do not have any pure

virtual functions.

15.8 VIRTUAL DESTRUCTORS

Just like declaring member functions as virtual, destructors can be declared as virtual, whereas

constructors cannot be virtual. Virtual destructors are controlled in the same way as virtual functions.

When a derived object pointed to by the base-class pointer is deleted, a destructor of the derived class

as well as destructors of all its base classes are invoked. It is illustrated in the program family3.cpp.

In this program, if the destructor is made a nonvirtual destructor in the base class, only the base class’s

destructor is invoked when the object is deleted.

// family3.cpp: virtual destructors in parent class

#include <iostream.h>

#include <string.h>

class Father

{

 protected:

 char * f_name;

Mastering C++638

 public:

 Father(char *name)

 {

 f_name = new char[strlen(name)+1];

 strcpy(f_name, name);

 }

 virtual ~Father() // virtual destructors

 {

 delete f_name;

 cout << "~Father() is invoked" << endl;

 }

 virtual void show() // virtual function

 {

 cout << "Father’s Name: " << f_name << endl;

 }

};

// Son inherits all the properties of father

class Son : public Father

{

 protected:

 char *s_name;

 public:

 Son(char * fname, char * sname):Father(fname)

 {

 s_name = new char[strlen(sname)+1];

 strcpy(s_name, sname);

 }

 ~Son()

 {

 delete s_name;

 cout << "~Son() is invoked" << endl;

 }

 void show()

 {

 cout << "Father’s Name: " << f_name << endl;

 cout << "Son’s Name: " << s_name << endl;

 }

};

void main()

{

 Father *basep;

 // points to Father’s object

 basep = new Father("Eshwarappa"); // pointer to father

 cout << "basep points to base object..." << endl;

 basep –> show();

 delete basep;

 // points to Son’s object

Virtual Functions 639

 basep = new Son("Eshwarappa", "Rajkumar"); // pointer to son

 cout << "basep points to derived object..." << endl;

 basep->show();

 delete basep;

}

Run

basep points to base object...

Father’s Name: Eshwarappa

~Father() is invoked

basep points to derived object...

Father’s Name: Eshwarappa

Son’s Name: Rajkumar

~Son() is invoked

~Father() is invoked

In main(), the variable basep is a pointer to the base class Father. The statement

basep = new Son("Eshwarappa", "Rajkumar"); // pointer to son

creates a dynamic object of the class Son by allocating memory required for its data members also. It

is important that memory allocated to object and its data members has to be released explicitly when

the object pointed to by basep goes out of scope.

In the normal case, when the destructor of the base class is not a virtual function, the statement

delete basep;

would have deleted only the first string through the base-class destructor, but in this case it also deletes

the string Eshwarappa through the derived-class destructor. The base-class destructor is declared

as virtual and basep actually addresses the Son’s object and hence, the destructors in the

Son’s class as well as the Father’s class are invoked. Note that while constructing an object, the

constructors are invoked from the top of a hierarchy (topmost base class) up to the current class and

while destroying an object, destructors are invoked from the current class to the topmost base class in

the hierarchy. For instance, in the above program, the statement

basep = new Son("Eshwarappa", "Rajkumar"); //pointer to son

invokes the constructor of the class Father first and then the constructor of the class Son. The

statement

delete basep;

having basep pointing to the dynamically created instance of the class Son, invokes the destructor of

the class Son first and the destructor of the class Father (unlike in the natural world, in C++, the son

dies first before the father; however there are exceptions).

A virtual destructor is used in the following situations:

 A virtual destructor is used when one class needs to delete an object of a derived class addressed

by the base pointers and invoke a base-class destructor to release resources allocated to it.

 Destructors of a base class should be declared as virtual functions; When a delete operation is

performed on an object by a pointer or reference, the program will first call the object destructor

instead of the destructor associated with the pointer or reference type.

Mastering C++640

15.9 HOW IS DYNAMIC BINDING ACHIEVED ?

To perform dynamic binding of a member function in C++, the function is declared virtual. Any

function in a class can be declared virtual. When functions are declared virtual, the compiler adds a

data member secretly to the class. This data member is referred to as a virtual pointer (VPTR). The

Virtual Table (VTBL) contains pointers to all the functions that have been declared as virtual in a class,

or any other classes that are inherited. The program vptrsize.cpp shows evidence of the secret

existence of VPTR.

// vptrsize.cpp: using sizeof operator to detect existence of VPTR
#include <iostream.h>
class nonvirtual
{
 int x;
 public:
 void func()
 {}
};
class withvirtual
{
 int x;
 public:
 virtual void func()
 {}
};
void main()
{
 cout << "sizeof(nonvirtual) = " << sizeof (nonvirtual) << endl;
 cout << "sizeof(withvirtual) = " << sizeof(withvirtual);
}

Run

sizeof (nonvirtual) = 2
sizeof (withvirtual) = 4

Whenever a call to a virtual function is made in the C++ program, the compiler generates a code to

treat VPTR as the starting address of an array of pointers to functions. The function call code simply

indexes into this array and calls the function located at the indexed addresses. The binding of the

function call always requires this dynamic indexing activity; it always happens at runtime. That is, if a

call to a virtual function is made, while treating the object in question, as a member of its base class, the

correct derived-class function will be called. It is illustrated in the program shapes.cpp.

// shapes.cpp: inheritance and virtual functions

#include <iostream.h>

class description

{

Virtual Functions 641

 protected: //so derived class have access

 char * information;

 public:

 description (char *info): information(info)

 {}

 virtual void show()

 {

 cout << information << endl;

 }

};

class sphere: public description

{

 float radius;

 public:

 sphere(char *info, float rad): description(info), radius(rad)

 {}

 void show()

 {

 cout << information;

 cout << " Radius = " << radius << endl;

 }

};

class cube: public description

{

 float edge_length;

 public:

 cube(char *info, float edg_len) : description (info), edge_length(edg_len)

 {}

 void show()

 {

 cout << information;

 cout << " Edge Length = " << edge_length << endl;

 }

};

sphere small_ball("mine", 1.0),

 beach_ball("plane", 24.0),

 plan_toid("moon", 1e24);

cube crystal("carbon", le-24),

 ice("party",1.0),

 box("card board", 16.0);

description *shapes[] =

{

 &small_ball,

 &beach_ball,

 &plan_toid,

 &crystal,

 &ice,

Mastering C++642

 &box

};

void main()

{

 small_ball.show();

 beach_ball.show();

 plan_toid.show(};

 crystal.show();

 ice.show();

 box.show();

 // put all description in the list

 cout << "Dynamic Invocation of show()..." << endl;

 for (int i = 0; i < sizeof(shapes)/sizeof(shapes [0]); i++)

 shapes[i]->show();

}

Run

mine Radius = 1

plane Radius = 24

moon Radius = le+24

carbon Edge Length = le-24

party Edge Length = 1

card board Edge Length = 16

Dynamic Invocation of show()...

mine Radius = 1

plane Radius = 24

moon Radius = le+24

carbon Edge Length = le-24

party Edge Length = 1

card board Edge Length = 16

From the output, it can be observed that virtual functions are essential for creating objects with

the same interface and similar functionality but with different implementations. A debatable issue is

"Why is the programmer given the option to make a function virtual and why not just let the compiler

create all functions as virtual?" C++ allows the programmer to decide whether to declare a function as

virtual or nonvirtual. This design decision has been made to favor runtime efficiency. A virtual function

requires an extra dereference to be made when it is invoked. The language defaults are in favor of

maximum efficiency, which is accomplished through static binding. Thus, the programmer is forced

to be aware of the difference between early and late binding, and to know when to apply late binding.

Several other object-oriented languages, such as Smalltalk and Java, always use late binding.

Virtual Functions Trade-Offs
C++ stores the addresses of the virtual member functions in the internal table. When C++ statements call

these member functions, the correct address is fetched from the internal table; this process consumes

some time. Hence, the use of virtual functions reduces the program’s performance to a certain extent

but at the same time offers greater flexibility.

Virtual Functions 643

15.10 RULES FOR VIRTUAL FUNCTIONS

The following rules hold good with respect to virtual functions:

 When a virtual function in a base class is created, there must be a definition of the virtual function

in the base class even if base class version of the function is never actually called. However, pure

virtual functions are exceptions.

 They cannot be static members.

 They can be a friend function to another class.

 They are accessed using object pointers.

 A base pointer can serve as a pointer to a derived object since it is type compatible, whereas a

derived object pointer variable cannot serve as a pointer to base objects.

 Its prototype in a base class and derived class must be identical for the virtual function to work

properly.

 The class cannot have virtual constructors, but can contain virtual destructor. In fact, virtual

destructors are essential to the solutions of some problems. It is also possible to have virtual

operator overloading.

 More importantly, to realize the potential benefits of virtual functions supporting runtime

polymorphism, they should be declared in the public section of a class.

SOLVED PROBLEM

Write a C++ program to create a base class called shape. Use this class to store two double

type values that could be used to compute the area of figures. Derive two specific classes called

triangle and rectangle from the base-shape. Add to the base class, a member function

get_data() to initialize base-class data members and another member function display_
area() to compute and display the area of figures. Make display_area() as a virtual func-

tion and redefine this function in derived classes to suit their requirements.

#include<iostream.h>
class shape
{
 protected:
 float val1, val2;
 public:
 void getdata(float a, float b)
 {
 val1=a;
 val2=b;
 }
 virtual void display_area()
 {
 }
};

+
+

Mastering C++644

class triangle: public shape
{
 public:
 void display_area()
 {
 cout<<"\nArea of triangle = "<<0.5*val1*val2;
 }
};
class rectangle: public shape
{
 public:
 void display_area()
 {
 cout<<"\nArea of rectangle = "<<val1*val2;
 }
};
void main()
{
 shape *sptr;
 sptr= new triangle();
 sptr->getdata(4.5,2.2);
 sptr->display_area();
 sptr= new rectangle();
 sptr->getdata(4.5,2.2);
 sptr->display_area();
}

Run

Area of triangle = 4.95
Area of rectangle = 9.90

REVIEW QUESTIONS ++
 15.1 Describe different methods of realizing polymorphism in C++.

 15.2 Justify the need for virtual functions in C++.

 15.3 Why does C++ support type-compatible pointers unlike C?

 15.4 State which of the following statements are TRUE or FALSE. Give reasons.

 (a) In C++, pointers to int data type can be used to point to float types.

 (b) A pointer to a base class can point to an object of any class.

 (c) Pointer to a class at the top of the class hierarchy can point to any class objects in that

hierarchy.

 (d) A virtual functions allow invoking different function with the same statement.

 (e) The size of a class having a virtual function is the same as that without virtual func-

tions.

Virtual Functions 645

 (f) A class with a virtual function can be instantiated.

 (g) A class with a pure virtual function can be instantiated.

 (h) A class with pure virtual functions is created by designers, whereas derived classes

are created by programmers.

 (i) Specification of a virtual function in the base class and its derived class must be same,

 (j) Pure virtual functions postpone implementation of a member function to its derived

class.

 15.5 Create a vehicle class hierarchy with topmost base having the following specification:

 class vehicle
 {
 int reg_no;
 int cost;
 public:
 virtual void start() = 0;
 virtual void stop();
 virtual void show();

 };

 Write a complete program having derived classes such as heavy, lightweight,

vehicle, etc.

 15.6 What is runtime dispatching? Explain how C++ handles runtime dispatching.

 15.7 What are pure virtual functions? How do they differ from normal virtual functions?

 15.8 What are abstract classes? Write a program having student as an abstract class and

create many derived classes such as Engineering, Science, Medical, etc., from the

student class. Create their objects and process them.

 15.9 What are virtual destructors? How do they differ from normal destructors? Can

constructors be declared as virtual constructors? Give reasons.

 15.10 Explain how dynamic binding is achieved by the C++ compilers. What is the size of the

following classes?

 class X
 {
 int x;
 public:
 void read();
 };
 class Y
 {
 int a;
 public:
 virtual void read();
 };
 class Z

Mastering C++646

 {
 int a;
 public:
 virtual void read();
 virtual void show();
 };

 15.11 What are the rules that need to be kept in mind while deciding virtual functions?

 15.12 Correct the errors in the following program and include missing components:

 class ABC
 {
 int a;
 public:
 };
 void main()
 {
 ABC.al;
 al.read();
 al.show();
 ABC a2 = 10;
 a2.show();
 }

 15.13 Consider an example of a bookshop which sells books and video tapes. These two classes

are inherited from the base class called media. The media class has command data

members such as title and publication. The book class has data members

for storing a number of pages in a book, and the tape class has the playing time in a

tape. Each class will have member functions such as read() and show(). In the base

class, these members have to be defined as virtual functions. Write a program which

models the class hierarchy for the bookshop and processes objects of these classes using

pointers to the base class.

Generic
Programming with
Templates

 16.1 INTRODUCTION

A significant benefit of object-oriented programming is reusability of code

which eliminates redundant coding. An important feature of C++ called

templates strengthens this benefit of OOP and provides great flexibility

to the language. Templates support generic programming, which allows

to develop reusable software components such as functions, classes, etc.,

supporting different data types in a single framework. For instance, functions such as sort, search,

swap, etc., which support various data types, can be developed.

A template in C++ allows the construction of a family of template functions and classes to perform

the same operation on different data types. The templates declared for functions are called function

templates and those declared for classes are called class templates. They perform appropriate operations

depending on the data type of the parameters passed to them.

A C++ function/class is normally designed to handle a specific data type. Often, their functionality

makes sense conceptually with other data types. Considering a class/function as a framework around

a data type and supporting various operations on that data type, makes sense to isolate the data type

altogether from the function/class. It allows a single template to deal with a generic data type T.

16.2 FUNCTION TEMPLATES

There are several functions of considerable importance which have to be used frequently with different

data types. The limitation of such functions is that they operate only on a particular data type. It can

be overcome by defining that function as a function template or generic function. A function template

specifies how an individual function can be constructed. The program mswap.cpp illustrates the need

for function templates. It consists of multiple swap functions for swapping different values of different

data types.

// mswap.cpp: Multiple swap functions

#include <iostream.h>

void swap(char & x, char & y)

{

 char t; // temporary variable used in swapping

16

Mastering C++648

 t = x;

 x = y;

 y = t;

}

void swap(int & x, int & y) // by reference

{

 int t; // temporary variable used in swapping

 t = x;

 x = y;

 Y = t;

}

void swap(float & x, float & y) // by reference

{

 float t; // temporary variable used in swapping

 t = x;

 x = y;

 y = t;

}

void main()

{

 char chl, ch2;

 cout << "Enter two Characters <chl, ch2>: ";

 cin >> chl >> ch2;

 swap(chl, ch2); // compiler invokes swap(char &a, char &b);

 cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;

 int a, b;

 cout << "Enter two integers <a, b>: ";

 cin >> a >> b;

 swap(a, b); // compiler invokes swap(int &a, int &b);

 cout << "On swapping <a, b>: " << a << " " << b << endl;

 float c, d;

 cout << "Enter two floats <c, d>: ";

 cin >> c >> d;

 swap(c, d); //compiler invokes swap(float &a, float &b);

 cout << "On swapping <c, d>: " << c << " " << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

The above program has three swap functions

void swap(char & x, char & y);

void swap(int & x, int & y);

void swap(float & x, float & y);

Generic Programming with Templates 649

whose logic of swapping is same and differs only in terms of data type. Such functions can be declared

as a single function template without redefining them for each and every data type. The C++ template

feature enables substitution of a single piece of code for all these overloaded functions with a single

template function as follows:

template <class T>

void swap(T & x, T & y) // by reference

{

 T t; // template type temporary variable used in swapping

 t = x;

 x = y;

 y = t;

}

Such functions are known as function templates. When the swap operation is requested on operands

of any data type, the compiler creates a function internally without the user intervention and invokes

the same.

16.2.1 Syntax of Function Template

A function template is prefixed with the keyword template and a list of template-type arguments.

These template-type arguments are called generic data types, since their exact representation (memory

requirement and data representation) is not known in the declaration of the function template. It is

known only at the point of a call to a function template. The syntax of declaring the function template

is shown in Figure 16.1.

Fig. 16.1 Syntax of function template

keyword

template
data types atleast one argument

must be template type

template <class T, ...>

ReturnType FuncName (arguments)

{

.... // body of template function

....

}

The syntax of a function template is similar to a normal function except that it uses variables whose

data types are not known until a call to it is made. A call to a template function is similar to that of a

normal function and the parameters can be of any data type. When the compiler encounters a call to

such functions, it identifies the data type of the parameters and creates a function internally and makes

a call to it. The internally created function is unknown to the user. The program gswap.cpp makes

use of templates and avoids the overhead of rewriting functions having a body of the same pattern, but

operating on different data types.

Mastering C++650

// gswap.cpp: generic function for swapping

#include <iostream.h>

template <class T>

void swap(T & x, T & y) //by reference

{

 T t; // template type temporary variable used in swapping

 t = x;

 x = y;

 Y = t;

}

void main()

{

 char chl, ch2;

 cout << "Enter two Characters <chl, ch2>: ";

 cin >> chl >> ch2;

 swap(chl, ch2); // compiler creates and calls swap(char &x, char &y);

 cout << "On swapping <chl, ch2>: " << chl << " " << ch2 << endl;

 int a, b;

 cout << "Enter two integers <a, b>: ";

 cin >> a >> b;

 swap(a, b); // compiler creates and calls swap (int &x, int &y);

 cout << "On swapping <a, b>: " << a << " " << b << endl;

 float c, d;

 cout << "Enter two floats <c, d>: ";

 cin >> c >> d;

 swap(c, d); // compiler creates and calls swap(float &x, float &y);

 cout << "On swapping <c, d>: " << c << " " << d;

}

Run

Enter two Characters <chl, ch2>: R K

On swapping <chl, ch2>: K R

Enter two integers <a, b>: 5 10

On swapping <a, b>: 10 5

Enter two floats <c, d>: 20.5 99.5

On swapping <c, d>: 99.5 20.5

In main(), the statement

swap(chl, ch2);

invokes the swap() function with char type variables. When it is encountered by the compiler, it

internally creates a function of type,

swap(char &x, char &y);

The compiler automatically identifies the data type of the arguments passed to the template function and

creates a new function and makes an appropriate call. The process of handling the template functions

by the compiler is totally invisible to the user. Similarly, the compiler converts the following calls

swap(a, b); // compiler creates swap(int &x, int &y);

swap(c, d); // compiler creates swap(float &x, float &y);

Generic Programming with Templates 651

into equivalent functions and calls them based on their parameter data types. Theoretically speaking,

all the data types share the same template function swap(). However, the compiler has created three

swap() functions operating on char, int, and float.

16.2.2 Invocation of Function Template

The example of the function template for finding the maximum of two data items is given below:

template <class T>

T max(T a, T b)

{

 if(a > b)

 return a;

 else

 return b;

}

The function template is invoked in the same manner as a normal function as follows:

x = max(y, z);

However, it is processed differently by the compiler. The compiler creates a new function using

its template and makes a call to it. A function generated internally from a function template is called

template function. Template arguments are not specified explicitly while calling a function template.

The program max1.cpp demonstrates the method of declaring a function template and its usage.

// maxl.cpp: finding maximum of two data items using function template

#include <iostream.h>

template <class T>

T max(T a, T b)

{

 if(a > b)

 return a;

 else

 return b;

}

void main()

{

 //max with character data types

 char ch, chl, ch2;

 cout << "Enter two characters <chl, ch2>: ";

 cin >> chl >>.ch2;

 ch = max(chl, ch2);

 cout << "max(chl, ch2): " << ch << endl;

 // max with integer data types

 int a, b, c;

 cout << "Enter two integers <a, b>: ";

 cin >> a >> b;

 c = max(a, b);

Mastering C++652

 cout << "max(a, b): " << c << endl;

 // max with floating data types

 float fl, f2, f3;

 cout << "Enter two floats <fl, f2>: ";

 cin >> f1 >> f2;

 f3 = max(fl, f2);

 cout << "max(fl, f2): " << f3;

}

Run

Enter two characters <chl, ch2>: A B

max(chl, ch2) : B

Enter two integers <a, b>: 20 10

max(a, b): 20

Enter two floats <fl, f2>: 20.5 30.9

max(fl, f2): 30.9

In the above program, the compiler creates as many max() functions as the number of calls to the

function template max(). Once an internal function is created for a particular data type, all future

invocation to the function template with that data type will refer to it. For instance, the statement

c = max(a, b); // a, b, and c are integers

invokes the function template max() first time, the compiler creates max() which handles integer

data. Future invocation such as,

i = max(j, k); // i, j, and k are integers

accesses the function created at the first call since, the data-type parameters j and k is the same as that

of the first call. However, if j and k are other than integers, it creates a new function internally and

makes a call to it.

16.2.3 Function and Function Template

Function templates are not suitable for handling all data types, and hence, it is necessary to override

function templates by using normal functions for specific data types. When a statement such as

max(strl, str2)

is executed, it will not produce the desired result. The above call compares memory addresses of

strings instead of their contents. The logic for comparing strings is different from comparing integer or

floating-point data type. It requires the function having the definition:

 char * max(char * a, char * b)

 {

 return(strcmp(a, b) > 0 ? a : b);

 }

If the program has both the function and function template with the same name, first, the compiler

selects the normal function if it matches with the requested data type. Otherwise, it creates a function

using a function template. This is illustrated in the program max2.cpp.

Generic Programming with Templates 653

// max2.cpp: maximum of standard and derived data type items

#include <iostream.h>

#include <string.h>

template <class T>

T max(T a, T b)

{

 if(a > b)

 return a;

 else

 return b;

}

// specifically for string data types

char * max(char *a, char *b)

{

 if(strcmp(a, b) > 0)

 return a;

 else

 return b;

}

void main()

{

 // max with character data types

 char ch, chl, ch2;

 cout << "Enter two characters <chl, ch2>: ";

 cin >> chl >> ch2;

 ch = max(chl, ch2);

 cout << "max(chl, ch2): " << ch << endl;

 // max with integer data types

 int a, b, c;

 cout << "Enter two integers <a, b>: ";

 cin >> a >> b;

 c = max(a, b);

 cout << "max(a, b): " << c << endl;

 // max with string data types

 char strl[20], str2[20];

 cout << "Enter two strings <strl, str2>: ";

 cin >> strl >> str2;

 cout << "max(strl, str2): " << max(strl, str2);

}

Run

Enter two characters <chl, ch2>: A Z

max(chl, ch2): Z

Enter two integers <a, b>: 5 6

max(a, b): 6

Enter two strings <strl, str2>: Tejaswi Rajkumar

max(strl, str2): Tejaswi

In main(), the statement

cout << "max(strl, str2): " << max(strl, str2);

has the expression,

max(strl, str2)

Mastering C++654

The compiler selects the user-defined normal function instead of creating a new function, since the

function call matches the user-defined function.

16.2.4 Bubble Sort Function Template

Sorting is the most commonly used operation particularly in data-processing applications. These

applications require a function to sort data elements of different data types. Such functions can be

declared as function template and can be used to sort data items of any type. The program bsort.

cpp illustrates the declaration of function template for bubble sort and its use on integer and floating-

point data types.

// bsort.cpp: template functions for bubble-sort

#include <iostream.h>

enum boolean { false, true };

template <class T>

void swap(T & x, T & y) //by reference

{

 T t; // template type temporary variable used in swapping

 t = x;

 x = y;

 y = t;

}

template< class T >

void BubbleSort(T & SortData, int Size)

{

 boolean swapped = true;

 for(int i = 0; (i < Size - 1) && swapped; i++)

 {

 swapped = false;

 for(int j = 0; j < (Size - 1) - i; j++)

 if(SortData[j] > SortData[j + 1])

 {

 swapped = true;

 swap(SortData[j], SortData[j + 1]);

 }

 }

}

void main(void)

{

 int IntNums[25];

 float FloatNums[25];

 int i, size;

 cout << "Program to sort elements..." << endl;

 // Integer numbers sorting

 cout << "Enter the size of the integer vector <max-25>: ";

 cin >> size;

Generic Programming with Templates 655

 cout << "Enter the elements of the integer vector..." << endl;

 for(i = 0; i < size; i++)

 cin >> IntNums[i];

 BubbleSort(IntNums, size);

 cout << "Sorted Vector:" << endl;

 for(i = 0; i < size; i++)

 cout << IntNums[i] << " ";

 // Floating point numbers sorting

 cout << "\nEnter the size of the float vector <max-25>: ";

 cin>> size;

 cout << "Enter the elements of the float vector..." << endl;

 for(i = 0; i < size; i++)

 cin >> FloatNums[i];

 BubbleSort(FloatNums, size);

 cout << "Sorted Vector:" << endl;

 for(i = 0; i < size; i++)

 cout << FloatNums[i] << " ";

}

Run

Program to sort elements...

Enter the size of the integer vector <max-25>: 4

Enter the elements of the integer vector...

8

4

1

6

Sorted Vector:

1 4 6 8

Enter the size of the float vector <max-25>: 3

Enter the elements of the float vector...

8.5

3.2

8.9

Sorted Vector:

3.2 8.5 8.9

In main(), when the compiler encounters the statement

BubbleSort(IntNums, size);

it creates the bubble-sort function internally for sorting integer numbers; the parameter IntNums is of

type integer. Similarly, when the compiler encounters the statement

BubbleSort(FloatNums, size);

it creates bubble-sort function internally for sorting floating-point numbers. The same template function

can be used to sort any other data types. Note that the compiler creates a function internally for a

particular data type only once and if there are more requests with the same data type, the compiler

accesses the old internally created function.

Mastering C++656

16.2.5 Usage of Template Arguments

Every template argument specified in the template-argument list must be used as a generic data type for

the definition of the formal parameters. If any of the generic data types is not used in the definition of

formal parameters, such function templates are treated as invalid templates. The use of partial number

of generic data types in a function defining formal parameters is also treated as an error. All the formal

parameters need not be of generic type. The following sections show some function templates which

are invalid declarations:

No-argument Template Function
template < class T >

T pop(void) // error: T is not used as an argument

{

 return *--Stack;

}

Template-type Argument Unused
template < class T >

void test (int x) // error: T is not used as an argument

{

 T temp;

 //.. test stuff

}

Usage of Partial Number of Template Arguments
template< class T, class U >

void insert (T & x) // error: U is not used in the argument

{

 U 1Ptr;

 //.. test stuff

}

The template argument U is not used in argument types, and hence, the compiler reports an error.

16.3 OVERLOADED FUNCTION TEMPLATES

The function templates cman also be overloaded with multiple declarations. It may be overloaded

either by (other) functions of its name or by (other) template functions of the same name. Similar

to overloading of normal functions, overloaded functions must differ either in terms of number of

parameters or their type. The program tprint.cpp illustrates the overloading of function templates:

// tprint.cpp: overloaded template functions

#include <iostream.h>

template <class T>

void print(T data) // single template argument

{

 cout << data << endl;

Generic Programming with Templates 657

}

template <class T>

void print(T data, int nTimes) // template and standard argument

{

 for(int i = 0; i < nTimes; i++)

 cout << data << endl;

}

void main()

{

 print(1);

 print(1.5);

 print(520, 2);

 print("OOP is Great", 3);

}

Run

1

1.5

520

520

OOP is Great

OOP is Great

OOP is Great

In the above program, the templates

void print(T data) // single template argument

void print(T data, int nTimes) // template and standard argument

overload the function template print (), but each one of these functions is distinguishable by the

number of arguments and the type of the arguments. In main(), the statements

print(1);

print(1.5);

access the one-argument function template, whereas the statements

print(520, 2);

print("OOP is Great", 3);

access the two-argument function template. Note that in these statements, the required function is

selected based on the number of arguments supplied at the point of call.

The compiler adopts the following rules for selecting a suitable template when the program has

overloaded function templates.

 [1] Look for an exact match on functions; if found, call it.

 [2] Look for a function template from which a function that can be called with an exact match can be

generated; if found, call it.

 [3] Try ordinary overloading resolution for the functions; if found, call it.

If no match is found in all the three alternatives then that call is treated as an error. In each case if

there is more than one alternative in the first step that finds a match, the call is ambiguous and is an

error.

Mastering C++658

A match on a template (step [2]) implies that a specific template function with arguments that

exactly match the types of the arguments will be generated. In this case, not even trivial type conversion

is applied while matching a call to a function template.

16.4 NESTING OF FUNCTION CALLS

Recursively designed algorithms will have nested calls to themselves. Their implementation in the

form of function templates will also have recursive calls (calls to itself). The binary search can be

implemented by using recursion. It searches for an item in a list of ordered data by applying the divide-

and-conquer strategy. The program bsearch.cpp illustrates the template-based implementation of

recursive binary-search algorithm.

// bsearch.cpp: binary search function template

#include <iostream.h>

enum boolean { false, true };

// recursive binary search

template <class T>

int RecBinSearch(T Data[], T SrchElem, int low, int high)

{

 if(low > high)

 return -1;

 int mid = (low + high)/2;

 if(SrchElem < Data[mid])

 return RecBinSearch(Data, SrchElem, low, mid - 1);

 else

 if(SrchElem > Data[mid])

 return RecBinSearch(Data, SrchElem, mid + 1, high);

 return mid;

}

void main(void)

{

 int elem, size, num[25], index;

 cout << "Program to search integer elements..." << endl;

 cout << "How many elements ? ";

 cin >> size;

 cout<<"Enter the elements in ascending order for binary search... "<<endl;

 for(int i = 0; i < size; i++)

 cin >> num[i];

 cout << "Enter the element to be searched: ";

 cin >> elem;

 if((index = RecBinSearch(num, elem, 0, size))== -1)

 cout << "Element " << elem << " not found" << endl;

 else

 cout << "Element " << elem << " found at position " << index;

}

Generic Programming with Templates 659

Run

Program to search integer elements...

How many elements ? 4

Enter the elements in ascending order for binary search...

1

4

6

8

Enter the element to be searched: 6

Element 6 found at position 2

In main(), when the compiler encounters the expression,

RecBinSearch(num, elem, 0, size)

it creates the search function internally. The function RecBinSearch() has recursive calls to itself.

In this case, the compiler will not create a new function, instead, it uses the internally created function.

16.5 MULTIPLE ARGUMENTS FUNCTION TEMPLATE

So far, all the function templates dealt with a single generic argument. Declaration of a function template

for functions having multiple parameters of different types requires multiple generic arguments. The

program multiple.cpp illustrates the need for multiple template arguments.

// multiple.cpp use of multiple template arguments

struct A

{

 int x;

 int y;

};

struct B

{

 int x;

 double y;

};

template < class T >

void Assign_A(T a, T b, A & S1)

{

 Sl.x = a;

 Sl.y = b;

}

template < class T >

void Assign_B(T a, T b, B & S2)

{

 S2.x = a;

 S2.y = b;

}

Mastering C++660

void main(void)

{

 A S1;

 B S2;

 Assign_A(3, 4, S1);

 Assign_B(3, 3.1415, S2);//Error: no match for Assign_B(int,double,B)’

}

In main(), the statement

Assign__B(3, 3.1415, S2);

leads to compilation errors, since the above program neither has the normal function nor function

template matching with its parameters data types. Both the templates expect the first two parameters

to be of the same data type and none of them matches the above call. The solution to the problem

encountered in the above program is to declare the second template function as follows:

template < class T, class U >

void Assign_B(T a, U b, B & S2)

{

 S2.x = a;

 S2.y = b;

}

The declaration of the function template is the same, except that it has an extra argument in the

template-argument list, i.e., class U. This declaration informs the compiler that the template function

Assign_B() with two arguments should be instantiated. The compiler calls the appropriate

instantiation. Any number of generic data types can be declared, provided all these generic data types

are used in declaring formal parameters. The function Assign_A can also be declared as follows:

template< class T, class U >

void Assign_A(T a, U b, A & S2)

{

 Sl.x = a;

 Sl.y = b;

}

Since the dummy arguments T and U are same in the function call Assign_A, it would be better to

define the function template with a single dummy argument rather than two dummy arguments.

All template arguments for a function template must be of template type arguments, otherwise, it

leads to an error. For instance, the following declaration

template< class T, unsigned SIZE >

void BubbleSort (T & Data, unsigned SIZE)

{

 //....

 //....

}

is not allowed. However, such declarations are allowed with class templates.

Generic Programming with Templates 661

16.6 USER-DEFINED TEMPLATE ARGUMENTS

In addition to primitive data types, user-defined types can be passed to function templates. Its

declaration is same as the function template processing standard data types as illustrated in the program

student.cpp.

// student.cpp: student record and template with user defined data types

#include <iostream.h>

struct stuRec

{

 char name[30];

 int age;

 char collegeCode;

};

template <class T>

void Display(T& t)

{

 cout << t << endl;

}

ostream& operator << (ostream & out, stuRec & s)

{

 out << "Name: " << s.name << endl;

 out << "Age : " << s.age << endl;

 out << "College Code: " << s.collegeCode << endl;

 return out;

}

void main(void)

{

 stuRec s1;

 cout << "Enter student record details..." << endl;

 cout << "Name: "; cin >> s1.name;

 cout << "Age : "; cin >> s1.age;

 cout << "College Code: "; cin >> s1.collegeCode;

 cout << "The student record:" << endl;

 cout << "Name: "; Display(s1.name);

 cout << "Age : "; Display(s1.age);

 cout << "College Code:

 Display(s1.collegeCode); // it in turn calls operator << defined above

 cout << "The student record:" << endl;

 Display(s1);

}

Run

Enter student record details...

Name: Chinamma

Age : 18

College Code: A

Mastering C++662

The student record:

Name: Chinamma

Age : 18

College Code: A

The student record:

Name: Chinamma

Age : 18

College Code: A

In main(), the statement

Display(s1);

accesses the function template; the statement

cout << t << endl;

in Display() invokes the overloaded operator function,

ostream& operator << (ostream & out, stuRec & s)

In the cout statement, when the compiler encounters the user-defined data item, it searches for the

overloaded stream operator function and makes a call to it.

16.7 CLASS TEMPLATES

Similar to functions, classes can also be declared to operate on different data types. Such classes are

called class templates. A class template specifies how individual classes can be constructed similar to

normal class specification. These classes model a generic class which support similar operations for

different data types. A generic stack class can be created, which can be used for storing data of type

integer, real, double, etc. Consider an example of a stack (modeling last-in-first-out data structure) to

illustrate the need and benefits of class templates. The class declaration for stacks of type character,

integer, and double would be as follows:

class CharStack

{

 char array[25]; // declare a stack of 25 characters

 unsigned int top;

 public:

 CharStack();

 void Push(const char & element);

 char Pop(void);

 unsigned int GetSize(void) const;.

};

class IntStack

{

 int array[25]; // declare a stack of 25 integers

 unsigned int top;

 public:

 IntStack();

Generic Programming with Templates 663

 void Push(const int & element);

 int Pop(void);

 unsigned int GetSize(void) const;

};

class DbleStack

{

 double array[25]; // declare a stack of 25 double

 unsigned int top;

 public:

 DbleStack();

 void Push(const double & element);

 double Pop(void);

 unsigned int GetSize(void) const;

};

As seen in the above three declarations, a separate stack class is required for each and every data

type. Template declaration enables substitution of code for all the three declarations of stacks with a

single template class as follows:

template < class T >

class DataStack

{

 T array[25]; // declare a stack of 25 elements of data type T

 unsigned int top;

 public:

 DataStack();

 void Push(const T & element);

 T Pop(void);

 unsigned int GetSize(void) const;

};

The syntax of declaring class templates and defining objects using the same is shown in Figure 16.2.

The definition of a class template implies defining template data and member functions.

Fig. 16.2 Syntax of class template declaration

keyword template datatypes T1, T2,....

template <clas T1, class T2, ...>

class ClassName

{

// data items of template type T1, T2,

T1 datal;

// functions of template arguments T1, T2,

void funcl (T1 a, T2 &b);

....

T func2 (T2 *x, T2 *y);

};

Mastering C++664

The prefix template <class T> specifies that

a template is being declared, and that a type-name

T will be used in the declaration. In other words,

DataStack is a parameterized class with T as its

generic data type.

Any call to the template functions and classes

needs to be associated with a data type or a class.

The compiler then instantiates a copy of the template

function or template class for the data type specified.

The syntax for creating objects using the class templates is shown in Figure 16.3.

A statement to create an object of type stack that can hold integers is as follows:

DataStack <int> stack_int; // stack of integers

Similarly, objects that hold characters, floats, and doubles can be created by the following statements:

DataStack <char> stack_char; // stack of characters

DataStack <float> stack_float; // stack of floats

DataStack <double> stack_double; // stack of doubles

However, the usage of these stack objects is similar to those of normal objects. For instance, to push the

integer value 10 into the stack_int object, the following statement is used:

stack_int.push(10);

16.7.1 Template Arguments

A template can have character strings, function names, and constant expressions in addition to template

type arguments. Consider the following class template to illustrate, how the compiler handles the

creation of objects using class templates:

template <class T, int size>

class myclass

{

 T arr[size];

};

The value supplied for a nontemplate-type argument must be a constant expression; its value must

be known at compile time. When the objects of the class template are created using a statement such as

myclass <float,10> newl;

the compiler creates the following class:

class myclass

{

 float arr[10];

};

Again, if a statement such as,

myclass <int, 5> new2;

Fig. 16.3 Syntax for class-template instantiation

datatype to be substituted
for template datatype

ClassName <char> object1;
ClassName <int> object2;
.....
ClassName <some_other_class> object5;

Generic Programming with Templates 665

is encountered for creating the object new2, the compiler creates the following class:

class myclass

{

 int arr[5];

};

16.7.2 Member Function Templates

A member function of a template class is implicitly treated as a template function and it can have

template arguments which are the same as its class template arguments. For instance, the class template

DataStack has the member function,

void Push(const T & element);

The parameter element is of type template argument. Its syntax when defined outside is as

follows:

template <class T>

void DataStack <T>::Push(const T &element);

The syntax for declaring member functions of a template class outside its body is shown in Figure 16.4.

Fig. 16.4 Syntax for declaring member function

of class template outside its body

template <class T1, ...>

class BaseClass

{

// template type data and functions

void func1(T1 a);

};

template <class T1, ...>

void ClassName <T1,...>::func1(T1 a)

{

// function template body

};

The program vector.cpp illustrates the declaration of the vector class and its usage in defining

its objects. It has a data member which is a pointer to an array of type T. The type T can be int, float,

etc., depending on the type of the object created.

// vector.cpp: parametrized vector class

#include <iostream.h>

template <class T>

class vector

{

 T * v; // changes to int *v, float *v, ..., etc

 int size; // size of vector v

 public:

 vector(int vector_size)

Mastering C++666

 {

 size = vector_size;

 v = new T[vector_size]; // v = new int[size],...

 }

 ~vector()

 {

 delete v;

 }

 T & elem(int i)

 {

 if(i >= size)

 cout << endl << "Error: Out of Range";

 return v[i];

 }

 void show();

};

template <class T>

void vector<T>::show()

{

 for(int i = 0; i < size; i++)

 cout << elem(i) << ", ";

}

void main()

{

 int i;

 vector <int> int_vect(5);

 vector <float> float_vect(4);

 for(i = 0; i < 5; i++)

 int_vect.elem(i) = i + 1;

 for(i = 0; i < 4; i++)

 float_vect.elem(i) = float(i + 1.5);

 cout << "Integer Vector:";

 int_vect.show();

 cout << endl << "Floating Vector: ";

 float_vect.show();

}

Run

Integer Vector: 1, 2, 3, 4, 5,

Floating Vector: 1.5, 2.5, 3.5, 4.5,

Note that the class template specification is very much similar to the ordinary class specification

except for the prefix,

template<class T>

and the use of T in the place of data type. This prefix informs the compiler that the class declaration

following it is a template and uses T as a type name in the declaration. The type T may be substituted

by any data type including the user-defined-types. In main(), the statement,

Generic Programming with Templates 667

vector <int> int_vect(5);

vector <float> float_vect(4);

creates the vector objects int_vect and float_vect to hold vectors of type integer and

floating point respectively. Once objects of class template are created, the use of those objects is

the same as the nontemplate class objects.

16.7.3 Class Template with Multiple Arguments

The template class is instantiated by specifying predefined data type or user-defined data classes. The

data type is specified in angular braces <>. The syntax for instantiating class template is as follows:

TemplateClassName < type > instance;

TemplateClassName < typel, type2 > instance (arguments);

The instantiation specifies the objects of specified data type. If a different data type is to be specified,

a new declaration statement must be used.

The declaration of template classes with multiple arguments is similar to the function template with

multiple arguments. However, the arguments need not be of template type. These may include character

strings, addresses of objects and functions with external linkage, static class members, and constant

expressions. Consider the following declaration:

template < class T, unsigned SIZE’>

class StackN

{

 protected:

 T Array(SIZE];

 unsigned int top;

 public:

 Stack20() { top = 0; }

 void Push(const T & elem) { Array [top++] = elem; }

 T Pop(void) { return Array[--top]; }

 int GetSize(void) const { return top+1; }

 T & GetTop(void) { return Array[top]; }

};

The declaration of the class template StackN is preceded by,

template < class T, unsigned SIZE >

as before, except that it has two arguments. The second argument is an (typed) unsigned argument.

Making SIZE an argument of the template class StackN rather than to its objects, infers that the sizes

of class StackN is known at compile time so that class StackN can be fully declared at compile

time. The class template StackN with a variable stack size can be instantiated by specifying the size

in the argument list. This makes a template, such as StackN, useful for implementing general-purpose

data structure. The above declarations provide the user freedom to define many instances of the class

StackN, each operating on different data types and of variable size. The following statements define

objects of the class template StackN for storing integers and characters respectively.

Mastering C++668

StackN < int, 20> Intstk;

StackN < char, 50 > Chrstk;

A known type argument in the template class (second argument in the above case) must be a constant

expression (evaluated at the compile time) of the appropriate type.

The list allows insertion operation at the front and deletion operation at the end of a list. The list

class can have any number of template data elements, as shown in the following declaration.

template< class R, class S, class T >

class SnglList

{

 private:

 R data_l;

 S data_2;

 T data_3;

 public:

 SnglList< R, S, T > *next;

 SnglList(void) { next = NULL; }

 friend ostream & operator<<(ostream &, SnglList< R, S, T > &);

 friend istream & operator>>(istream &, SnglList< R, S, T > &);

};

The objects of class templates having multiple arguments can be created as follows:

SnglList <int, float, double> node;

SnglList < int, unsigned, double > *Root, *End;

16.8 INHERITANCE OF CLASS TEMPLATE

A combination of templates and inheritance can be used in developing hierarchal data structures such

as container classes. A base class in a hierarchy represents a commonality of methods and properties.

Use of templates with respect to inheritance involves the following:

 Derive a class template from a base class, which is a template class.

 Derive a class template from the base class, which is a template class, add more template members

in the derived class.

 Derive a class from a base class which is not a template, and add template members to that class.

 Derive a class from a base class which is a template class and restrict the template feature, so that

the derived class and its derivatives do not have the template feature.

The template features provided in the base classes can be restricted by specifying the type, when the

class is derived. All the arguments in the template argument list of the base class have to be replaced by

predefined types. In such a case, the derived class does not inherit the template feature, but is just a class

of specified data type stated at the point of inheritance declaration. The syntax for declaring derived

classes from template-based base classes is shown in Figure 16.5.

Generic Programming with Templates 669

The class deriving a template-type base class can be a normal class or a class template. If a new

derived class is a normal class, the data type of template arguments to the base class must be specified

at the point of derivation. Otherwise, template arguments type specified at the point of instantiation of

a class template can also be passed.

Consider an example of declaring the template class Vector. It inherits all the properties from the

base template class sVector. The derived template class Vector is still a static vector containing

twenty elements. Member functions that perform insert, delete and search are added to the derived class.

The member functions have the prefix <template class T>, since the derived class operates on

the undeclared type T. The specification of a new template class created by inheriting another template-

based base class is given below:

 template< class T >

 class Vector : public sVector< T >

 {

 ...

 read();

 ...

 };

The member functions defined with its class body have the same syntax as members of nontemplate-

type classes. However, a member function defined outside the body of a class, for instance, has the

following specification:

 template <class T>

 void Vector<T>::read()

 {

 ...// body of the read()

 }

Note that the member functions of a class template are treated as function-template type members. The

class Vector can be instantiated as follows:

Vector <int> vl;

In this case, the int specified in angular brackets is first assigned to the generic data type in the

Vector class and then the same is also passed to its base class.

Fig. 16.5 Syntax for inheriting template base class

datatype for template
in base class

template <class T1, ...>

class BaseClass

{

// template type data and functions

};

template <class T1, ...>

class DerivedClass : public BaseClass <T1, ...>

{

// template type data and functions

};

Mastering C++670

A derived class of a template based base class is not necessarily template derived class. That is, the

nontemplate-based derived classes can also be created from the template-based base classes. In this

case, the undefined template argument T has to be specified during derivation, for instance, as follows:

 class Vector : public sVector< int >

 {

 ...

 };

It creates a new class called Vector from the template-based base class sVector. The int is

passed as template argument type to the base class.

The program union.cpp illustrates the mechanism of extending the class template Bag by using

the feature of inheritance. In this case, a new class template Set is derived from the existing class

template Bag without any modifications. A derived class template Set inherits all the properties of

the class template Bag and extends itself by adding some more features of its own to support set

assignment and union operation.

// union.cpp: Union of sets. Set class by inheritance of Bag class

#include <iostream.h>

enum boolean { FALSE, TRUE };

const int MAX_ITEMS = 25; // Maximum number of items that the bag can hold

template <class T>

class Bag

{

 protected: // Note: not private

 T contents[MAX_ITEMS]; // bag memory area

 int ItemCount; // Number of items present in the bag

 public:

 Bag() // no-argument constructor

 {

 ItemCount = 0; // When you purchase a bag, it will be empty

 }

 void put(T item) // puts item into bag

 {

 contents[ItemCount++] = item; // item into bag, counter update

 }

 boolean IsEmpty() // 1, if bag is empty, 0, otherwise

 {

 return ItemCount == 0 ? TRUE : FALSE;

 }

 boolean IsFull() // 1, if bag is full, 0, otherwise

 {

 return ItemCount == MAX_ITEMS ? TRUE : FALSE;

 }

 boolean IsExist(T item);

 void show();

};

// returns 1, if item is in bag, 0, otherwise

template <class T>

Generic Programming with Templates 671

boolean Bag<T>::IsExist(T item)

{

 for(int i = 0; i < ItemCount; i++)

 if(contents[i] == item)

 return TRUE;

 return FALSE;

}

// display contents of a bag

template <class T>

void Bag<T>::show()

{

 for(int i = 0; i < ItemCount; i++)

 cout << contents[i] << " ";

 cout << endl;

}

template <class S>

class Set: public Bag <S>

{

 public:

 void add(S element)

 {

 if(!IsExist(element) && !IsFull())

 put(element);

 }

 void read();

 void operator = (Set s1);

 friend Set operator + (Set s1, Set s2);

};

template <class S>

void Set<S>::read()

{

 S element;

 while(TRUE)

 {

 cout << "Enter Set Element <0— end>: ";

 cin >> element;

 if(element == 0)

 break;

 add(element);

 }

}

template <class S>

void Set<S>:: operator = (Set <S> s2)

{

 for(int i = 0; i < s2.ItemCount; i++)

 contents[i] = s2.contents[i];

 ItemCount = s2.ItemCount;

}

template <class S>

Mastering C++672

Set<S> operator + (Set <S> s1. Set <S> s2)

{

 Set <S> temp;

 temp = s1; // copy all elements of set s1 to temp

 // copy those elements of set s2 into temp, those not exist in set s1

 for(int i = 0; i < s2.ItemCount; i++)

 {

 if(!s1.IsExist(s2.contents[i])) // if element of s2 is not in s1

 temp.add(s2.contents[i]); // copy the unique element

 }

 return(temp);

}

void main()

{

 Set <int> s1;

 Set <int> s2;

 Set <int> S3;

 cout << "Enter Set 1 elements.." << endl;

 sl.read();

 cout << "Enter Set 2 elements.." << endl;

 s2.read();

 s3 = s1 + s2;

 cout << endl << "Union of s1 and s2 : ";

 s3.show(); // uses Bag::show() base class

}

Run

Enter Set 1 elements ..

Enter Set Element <0- end>: 1

Enter Set Element <0- end>: 2

Enter Set Element <0- end>: 3

Enter Set Element <0- end>: 4

Enter Set Element <0- end>: 0

Enter Set 2 elements..

Enter Set Element <0- end>: 2

Enter Set Element <0- end>: 4

Enter Set Element <0- end>: 5

Enter Set Element <0- end>: 6

Enter Set Element <0- end>: 0

Union of s1 and s2 : 1 2 3 4 5 6

In the above program, the template class Set has its own features to perform set union by using the

member functions of the class Bag. The statement

template <class S>

class Set: public Bag <S>

derives the new template class Set known as derived class from the base class Bag. The base class

Bag is publicly inherited by the derived class Set. Hence, the members of Bag class, which are

protected remain protected and public remain public in the derived class Set. The Set class can treat

Generic Programming with Templates 673

all the members of the Bag class as they are of its own. The derived class Set refers to the data and

member functions of the base class Bag, while the base class Bag has no access to the derived class

Set.

16.9 CLASS TEMPLATE CONTAINERSHIP

The usage of delegation (containership) with templates allows to build powerful programming

components (data structures). It refers to having an object of one class contained in another class as a

data member. The container class (i.e., a class that holds objects of some other type) is of considerable

importance when implementing data structures. Inheritance supports the is-a relationship whereas

containership supports the has-a relationship.

Case Study

Consider a scenario where you are required to create a C++ program that uses the concept of class-

template containership for implementing a binary tree and its related operations.

The program tree.cpp illustrates the use of containership in building an unbalanced binary tree.

It has two classes, TreeNode and BinaryTree. The first class represents the node structure of a

binary tree, whereas the second class represents the set of operations which can be performed on a tree.

The class TreeNode has two pointers to objects of its own which serve as the pointers to child nodes.

The class BinaryTree has a pointer to the root node of the tree, which is an instance of the class

TreeNode, thus delegating node handling issues to the TreeNode class.

// tree.cpp: Binary Tree Operations (create, print, traverse, and search)

#include <iostream.h>

#include <stdio.h>

template <class T>

class TreeNode

{

 protected:

 T data; /* data to be stored in a tree */

 TreeNode <T> *left; /* pointer to a left sub tree*/

 TreeNode <T> *right; /* pointer to a right sub tree */

 public:

 TreeNode(const T& dataIn)

 {

 data = dataIn;

 left = right = NULL;

 }

 TreeNode(const T& dataIn, TreeNode <T> *1, TreeNode <T> *r)

 {

 data = dataIn;

 left = 1;

 right = r;

 }

 friend class BinaryTre <T>;

};

Mastering C++674

template <class T>

class BinaryTree

{

 protected:

 TreeNode<T> *root;

 TreeNode<T> *InsertNode(TreeNode <T> *root, T data);

 public:

 BinaryTree()

 {

 root = NULL;

 }

 void PrintTreeTriangle(TreeNode <T> * tree, int level);

 void PrintTreeDiagonal(TreeNode <T> *tree, int level);

 void PreOrderTraverse(TreeNode <T> *tree);

 void InOrderTraverse(TreeNode <T> *tree);

 void PostOrderTraverse(TreeNode <T> *tree);

 TreeNode <T> * SearchTree(TreeNode <T> *tree, T data);

 void PreOrder(),

 {

 PreOrderTraverse(root);

 }

 void InOrder()

 {

 InOrderTraverse(root);

 }

 void PostOrder()

 {

 PostOrderTraverse(root);

 }

 void PrintTree(int disptype)

 {

 if(disptype == 1)

 PrintTreeTriangle(root, 1);

 else

 PrintTreeDiagonal(root, 1);

 }

 void Insert(T data)

 {

 root = InsertNode(root, data);

 }

 TreeNode <T> * Search(T data)

 {

 return SearchTree(root, data);

 }

};

// Insert ‘data’ into tree

template <class T>

TreeNode<T> * BinaryTree<T>::InsertNode(TreeNode <T> *tree, T data)

{

Generic Programming with Templates 675

 /* Is Tree NULL */

 if(!tree)

 {

 tree = new TreeNode<T>(data, NULL, NULL);

 return(tree);

}

/* Is data less than the parent element */

if(data < tree->data)

 treer—>left = InsertNode(tree->left, data);

else

 /* Is data greater than the parent element */

 if(data > tree->data)

 tree->right = InsertNode(tree->right, data);

 /* data already exists */

 return(tree);

}

// PreOrder Traversal

template <class T>

void BinaryTree<T>::PreOrderTraverse(TreeNode <T> *tree)

{

 if(tree)

 {

 cout << tree->data << " "; // Process node

 PreOrderTraverse(tree->left);

 PreOrderTraverse(tree->right);

 }

}

// In Order Traversal

template <class T>

void BinaryTree<T>::InOrderTraverse(TreeNode <T> *tree)

{

 if(tree)

 {

 PostOrderTraverse(tree->left);

 cout << tree->data << " "; // Process node

 PostOrderTraverse(tree->right);

 }

}

// Post Order Traversal

template <class T>

void BinaryTree<T>::PostOrderTraverse(TreeNode <T> *tree)

{

 if(tree)

 {

 PostOrderTraverse(tree->left);

 PostOrderTraverse(tree->right);

 cout << tree->data << " "; // Process node

 }

}

Mastering C++676

// Tree Printing in Triangle Form

template <class T>

void BinaryTree<T>::PrintTreeTriangle(TreeNode <T> *tree, int level)

{

 if(tree)

 {

 PrintTreeTriangle(tree->right, level+1);

 cout << "\n";

 for(int i = 0; i < level; i++)

 cout << " ";

 cout << tree->data;

 PrintTreeTriangle(tree->left, level+1);

 }

}

// Tree Printing in Diagonal Form

template <class T>

void BinaryTree<T>::PrintTreeDiagonal(TreeNode <T> *tree, int level)

{

 if(tree)

 {

 cout << "\n";

 for(int i = 0; i < level; i++)

 cout << " ";

 cout << tree->data;

 PrintTreeDiagonal(tree->left, level+1);

 PrintTreeDiagonal(tree->right, level+1);

 }

}

// search for data item in the tree

template <class T>

TreeNode <T> * BinaryTree<T>::SearchTree(TreeNode <T> *tree, T data)

{

 while(tree)

 {

 /* Is data less than the parent element */

 if(data < tree->data)

 tree = tree->left;

 else

 /* Is data greater than the parent element */

 if(data > tree->data)

 tree = tree->right;

 else

 return(tree);

 }

 return(NULL);

 }

 void main()

{

 float data, disptype;

Generic Programming with Templates 677

 BinaryTree <float> btree; // tree’s root node

 cout << "This Program Demonstrates the Binary Tree Operations" << end1;

 cout << "Tree Display Style: [1] - Triangular [2] - Diagonal form: ";

 cin >> disptype;

 cout << "Tree creation process..." << endl;

 while(1)

 {

 cout << "Enter node number to be inserted <0-END>: ";

 cin >> data;

 if(data == 0)

 break;

 btree.Insert(data);

 cout << "Binary Tree is...";

 btree.PrintTree(disptype);

 cout << "\n Pre-Order Traversal: ";

 btree.PreOrder();

 cout << "\n In-Order Traversal: ";

 btree.InOrder();

 cout << "\nPost-Order Traversal: ";

 btree.PostOrder();

 cout << endl;

 }

 cout << "Tree search process..." << endl;

 while(1)

 {

 cout << "Enter node number to be searched <0-END>: ";

 cin >> data;

 if(data == 0)

 break;

 if(btree.Search(data))

 cout << "Found data in the Tree" << endl;

 else

 cout << "Not found data in the Tree" << endl;

 }

}

Run

This Program Demonstrates the Binary Tree Operations

Tree Display Style: [1] - Triangular [2] - Diagonal form: 1

Tree creation process...

Enter node number to be inserted <0-END>: 5

Binary Tree is...

 5

Pre-Order Traversal: 5

 In-Order Traversal: 5

Post-Order Traversal: 5

Enter node number to be inserted <0-END>: 3

Binary Tree is...

 5

Mastering C++678

 3

Pre-Order Traversal: 5 3

 In-Order Traversal: 3 5

Post-Order Traversal: 3 5

Enter node number to be inserted <0-END>: 8

Binary Tree Is...

 8

 5

 3

Pre-Order Traversal: 5 3 8

 In-Order Traversal: 3 5 8

Post-Order Traversal: 3 8 5

Enter node number to be inserted <0-END>: 2

Binary Tree is...

 8

 5

 3

 2

Pre-Order Traversal: 5 3 2 8

 In-Order Traversal: 2 3 5 8

Post-Order Traversal: 2 3 8 5

Enter node number to be inserted <0-END>: 9

Binary Tree is...

 9

 8

 5

 3

 2

Pre-Order Traversal: 5 3 2 8 9

 In-Order Traversal: 2 3 5 9 8

Post-Order Traversal: 2 3 9 8 5

Enter node number to be inserted <0-END>: 0

Tree search process...

Enter node number to be searched <0-END>: 8

Found data in the Tree

Enter node number to be searched <0-END>: 1

Not found data in the Tree

Enter node number to be searched <0-END>: 0.

16.10 CLASS TEMPLATE WITH OVERLOADED OPERATORS

The class template can also be declared for a class having operator-overloaded member functions.

The syntax for declaring operator-overloaded functions is the same as class-template members

and overloaded functions. The class template with operator overloading will allow to truly extend

the language and at the same time retain the readability of object manipulation code. The program

complex.cpp illustrates the overloading of the + operator in the class template complex. In this

case, the members of the complex number (real and imaginary) can be any of the standard data types.

Generic Programming with Templates 679

// complex.cpp: template class for operator overloaded complex class

#include <iostream.h>

template <class T>

class complex

{

 private:

 T real; // real part of complex number

 T imag; // imaginary part of complex number

 public:

 complex() // no argument constructor

 {

 real = imag = 0.0;

 }

 void getdata() // read complex number

 {

 cout << "Real Part ? ";

 cin >> real;

 cout << "Imag Part ? ";

 cin >> imag;

 }

 complex operator + (complex c2);// complex addition

 void outdata(char *msg) // display complex number

 {

 cout << msg << "(" << real;

 cout << ", " << imag << ")" << endl;

 }

};

template <class T>

complex <T> complex<T>::operator + (complex <T>c2)

{

 complex <T> temp; // object temp of complex class

 temp.real = real + c2.real; // add real parts

 temp.imag = imag + c2.imag; // add imaginary parts

 return(temp); // return complex object

}

void main()

{

 complex <int> cl, c2, c3; // integer complex objects

 cout << "Addition of integer complex objects..." << endl;

 cout << "Enter complex number cl.." << endl;

 cl.getdata();

 cout << "Enter complex number c2.." << endl;

 c2.getdata();

 c3 = cl + c2; // integer addition

 c3.outdata("c3 = cl + c2: "); // display result

 complex <float> c4, c5, c6; // integer complex objects

 cout << "Addition of float complex objects..." << endl;

 cout << "Enter complex number c4.." << endl;

 c4.getdata();

Mastering C++680

 cout << "Enter complex number c5.." << endl;

 c5.getdata();

 c6 = c4 + c5; // floating addition

 c6.outdata("c6 = c4 + c5: "); // display result

}

Run

Addition of integer complex objects...

Enter complex number cl ..

Real Part ? 1

Imag Part ? 2

Enter complex number c2 ..

Real Part ? 3

Imag Part ? 4

c3 = cl + c2: (4, 6)

Addition of float complex objects...

Enter complex number c4 ..

Real Part ? 1.5

Imag Part ? 2.5

Enter complex number c5 ..

Real Part ? 2.4

Imag Part ? 3.7

c6 = c4 + c5: (3.9, 6.2)

In main(), the statements

complex <int> cl, c2, c3; // integer complex objects

complex <float> c4, c5, c6; // integer complex objects

when encountered by the compiler, creates two complex classes internally for handling numbers with

integer and real data type members and instances of those classes. The statement

c3 = cl + c2; // integer addition

performs integer operation on complex objects, and the statement

c6 = c4 + c5; // floating addition

performs floating-point operation on complex objects.

SOLVED PROBLEMS

1. Write a function template for finding the minimum value contained in an array.

#include<iostream.h>

#define N 5

template <class T>

T min(T *arr)

{

+
+

Generic Programming with Templates 681

 int i =0;

 T m=arr[0];

 for (i=1;i<N;i++)

 if(arr[i]<m)

 m=arr[i];

 return(m);

}

void main()

{

 int i_min;

 float f_min;

 int a[5]={55,6,7,-1,8};

 float b[5]={2.3, 2.1, 8.4, 7.5, 3.0};

 i_min=min(a);

 f_min=min(b);

 cout<<"Minimum value in integer array = "<<i_min;

 cout<<"\nMinimum value in float array = "<<f_min;

}

Run

Minimum value in integer array = -1

Minimum value in float array = 2.1

2. Demonstrate the use of generic programming to create a function template that adds two

values and returns the results. The values that are added using the function template can be of

integer, character, or float type.

#include<iostream.h>

template <class T>

T add(T a, T b)

{

 return(a+b);

}

void main()

{

 int i1 = 10;

 int i2 = 20;

 float f1 = 8.2;

 float f2 = 9.9;

 char c1 = ’#’;

 char c2 = ‘$’;

 cout<<"\n"<<i1<<" + "<<i2<<" = "<<add(i1,i2);

 cout<<"\n"<<f1<<" + "<<f2<<" = "<<add(f1,f2);

 cout<<"\n"<<c1<<" + "<<c2<<" = "<<add(c1,c2);

}

Run

10 + 20 = 30

8.2 + 9.9 = 18.1

+ $ = G

Mastering C++682

REVIEW QUESTIONS ++
 16.1 What is generic programming? What are its advantages? State some of its applications.

 16.2 What is a function template ? Write a function template for finding the largest number in a

given array. The array parameter must be of generic data types.

 16.3 Explain how the compiler processes calls to a function template.

 16.4 State whether the following statements are TRUE or FALSE. Give reasons.

 (a) Generic data type is known at runtime.

 (b) Function templates requires more memory space than normal function.

 (c) Templates are processed by the compiler.

 (d) Special mechanism is required to execute function templates.

 (e) The compiler reports an error if any one of the generic data type indicated in tem-

plate-type list is unused for defining formal parameters.

 (f) A derived class of a template-based base class is not necessarily template derived

class.

 (g) Overloaded operator functions can be function templates.

 (h) The syntax for defining objects of a class template is slightly different from the defini-

tion of the normal class’s objects,

 (i) Parameters to constructors can be of template type.

 16.5 What is a class template? Explain the syntax of a class template with suitable examples.

 16.6 Explain how the compiler processes calls to a class template.

 16.7 Explain the syntax for inheriting a template-based superclass. Note that the derived

class can again be template-based or nontemplate-based. Illustrate with suitable

programming examples.

 16.8 Write a template-based program for adding objects of the Vector class. Use dynamic data

members instead of arrays for storing vector elements.

 16.9 Write a program for manipulating a linked list supporting node operations as follows:

 node = node + 2; node = node - 3;

 Node <int> *n = nodel + node2;

 The first statement creates a new node with node information 2 and the second statement

deletes a node with node information 3. The node class must be of type template.

 16.10 Write an interactive program for creating a doubly linked list. The program must support

ordered insertion and deletion of a node. The doubly linked-list class must be of template

type.

 16.11 Design template classes such that they support the following statements:

Rupee <float> rl, r2;

Dollar <float> dl, d2;

dl = r2; // converts rupee (Indian currency) to dollar (US currency)

r2 = d2; // converts dollar (US currency) to rupee (Indian currency)

Generic Programming with Templates 683

 Write a complete program which does such conversions according to the world market

value.

 16.12 Consider an example of a bookshop which sells books and video tapes. It is modeled by book

and tape classes. These two classes are inherited from the base class called media. The

media class has common data members such as title and publication. The book

class has data members for storing a number of pages in a book, and the tape class has

the playing time in a tape. Each class will have member functions such as read() and

show(). In the base class, these members have to be defined as virtual functions. Write

a program which models this class hierarchy and processes their objects using pointers

to base class only. (Use virtual functions, and all classes must be template-based.)

Streams Computation
with Console

In general, there are several kinds of streams to form physical entities such

as streams of water (rivers), streams of electrons (electricity), streams of

cars (traffic), and streams of characters (message packet). The notion of

streams and streams computation can be visualized through the illustration

of a river. It may be the Amazon river flowing into the Atlantic Ocean as

shown in Figure 17.1. Drops of water collectively form a continuous stream.

Streams join to form a river. Looking over the upper river area to the lower

river area, streams converge into one stream so that a tree of streams is

formed, whose root stream goes into the ocean. One drop from one branch stream may reach the ocean

slightly earlier or later than another in a different branch stream.

17

Fig. 17.1 Streams of water drops flowing into an ocean

Water drops

O
c
e
a
n

17.1 WHAT ARE STREAMS ?

Every program must go through the process of input–computation–output flow so that it can take

some data as input and generate the processed data as output. It necessitates the need for a mechanism,

which supplies the input data to a program and presents the processed data in the desired form. In

the earlier chapters, the input and output operations were performed using cin and cout with the

Streams Computation with Console 685

stream operators >> and << respectively. Streams handling I/O operations are different from ANSI

C functions. C++ supports a wide variety of features to control the way data is read and the output is

presented.

C++ uses the concept of streams and stream classes to perform I/O operations with console and disk

files. The stream classes supporting console-based input and output operations are discussed in this

chapter and those supporting file-based input and output operations are discussed in the next chapter,

Streams Computation with Files.

C++ streams deal with a sequence of characters and hence, an ocean in the above figure can be

visualized as an object or a receiver and each drop of water as a character, flowing into the object.

Streams are classified into input streams and output streams. Streams resemble the producer and

consumer model. The producer produces items to be consumed by the consumer. The producers and

consumers are connected by the C++ operators >> or <<. In C++, the I/O system is designed to operate

on a wide variety of devices including console, disks, printers, etc. It is designed to provide a consistent

and device-independent interface. It allows uniform use of any I/O device—be it a disk, a terminal, or

a printer as shown in Figure 17.2a. The computer resources involved in the stream computation include

display, keyboard, files, printers, etc. The stream is an object flowing from one place to another. For

instance, in nature, a stream normally refers to the flow of water from the hills to the oceans. Similarly,

in C++, a stream is used to refer to the flow of data from a particular device to the program’s variables.

The device here refers to files, memory arrays, keyboard, console, and so on. In C++, these streams are

treated as objects to support consistent access interface.

Fig. 17.2 C++streams

Monitor

Printer

Disk

cout

char

int

float

User
Object

<<

(a) Consistent stream interface with devices

Output stream

(b) Data streams

Output
device

insertion
into output
stream

extraction
from input
stream

Input stream
Input

device

Mastering C++686

Some of the above devices exhibit the characteristics of either a producer or a consumer and others

exhibit the characteristics of both the producer and consumer depending on the operations performed on

them. For instance, the keyboard exhibits the nature of only a producer, printers or monitors screen exhibit

the nature of only a consumer, whereas, a file stored on the disk can behave as a producer or consumer

depending on the operation initiated on it. The stream model of C++ is shown in Figure 17.2b.

A stream is a series of bytes, which act either as a source from which input data can be extracted or as

a destination to which the output can be sent. The source stream provides data to the program called the

input stream, and the destination stream that receives data from the program is called the output stream.

17.1.1 What are C++ Streams?

The C language supports an extensive set of library functions for managing I/O operations. Every C

programmer is familiar with printf(), scanf(), puts(), gets(), fopen(), fwrite(),

fread(), fscanf(), fclose(), and related I/O functions defined in the header file stdio.h. These

functions have served programmers very well, but they are inadequate and clumsy when used with

object-oriented programming. For instance, the user cannot add a new format, either for printf()

or scanf() function, to handle the user-defined data type. Further, the stdio.h functions are

inconsistent in parameter ordering and semantics.

In C++, streams with operator overloading provide a mechanism for filtering. The standard stream

operators << and >> do not know anything about the user-defined data types. They can be overloaded

to operate on user-defined data items. Overloaded stream operators filter the user-defined data items

and transfer only basic data items to the standard stream operators. Consider the following statements

to illustrate the streams capability:

cout << complex1;

...

cin >> complex2;

The data items complex1 and complex2 are the objects of the complex class. The operators >>
or << do not know anything about the objects complex1 and complex2. These are overloaded in the

complex class as member functions, which process the attributes of complex objects as basic data

items. Collectively, it appears as if the stream operators operate even on objects of the complex class.

This illusion is made possible because of the feature of overloading the stream operators.

The C++ language offers a mechanism which permits the creation of an extensible and consistent

input-output system in the form of streams library. It is a collection of classes and objects which can be

used to build a powerful system, or modified and extended to handle the user-defined data types. There

are different classes for handling input and output streams, as also for streams connecting different

devices to the program. C++ streams are also treated as filters, since they have capability to change the

data representation from one number system to another when requested.

17.2 PREDEFINED CONSOLE STREAMS

C++ contains several predefined streams that are opened automatically when the execution of a

program starts. The most prominent predefined streams in C++ are related to the console device. The

four standard streams—cin, cout, cerr, and clog—are automatically opened before the function

Streams Computation with Console 687

main() is executed; they are closed after main() has completed. These predefined stream objects

(are declared in iostream.h) have the following meaning:

cin Standard input (usually keyboard) corresponding to stdin in C.

cout Standard output (usually screen) corresponding to stdout in C.

cerr Standard error output (usually screen) corresponding to stderr in C.

clog A fully buffered version of cerr (no C equivalent).

The stream objects cin and cout have been used extensively in the earlier chapters. It is known

that cin (console input) represents the input stream connected to the standard input device and cout

(console output) represents the output stream connected to the standard output device. The standard

input and output devices normally refer to the keyboard and the monitor respectively. However, if

required, these streams can be redirected to any other devices or files.

17.2.1 Comparison of I/O using C’s stdio.h and C++’s iostream.h

The functions declared in the header file stdio.h such as printf(), scanf(), etc., require the

use of format strings. Consider an example of displaying the contents of the integer variable on the

console to illustrate the flexibility offered by the C++ streams. If the variable i were to be defined by

the statement

int i;

then the printf() statement to display the value of the variable i would be,

printf(“%d”, i);

and the statement to read data would be,

scanf(“%d”, &i);

Consider a situation in which the printf() or scanf() statement occurs at several places in a

program. Suppose the program specifications are changed, and it is decided that the variable i must

hold larger values, the definition of i would be changed to,

long i;

The user is now left with the thankless job of searching for all the statements that read or display the

variable i and replacing %d by % ld in the format strings. On the other hand, in C++, the iostream.h

functions are overloaded to take care of all the basic types. For instance, the statements

cout << i;
cin >> i;

will work correctly without the need for any modification irrespective of the data type of the i variable.

The stream-based I/O operations can be performed with variables of all the basic data types such as

char, signed char, short int, long, etc. In addition to these, the << and >> operators are

overloaded to operate on pointers to characters also (for performing input or output with the NULL

terminated strings). The traditional beginner’s C program is usually called “Hello World” and is

listed in the program hello.c.

Mastering C++688

/* hello.c: printing Hello World message */
#include <stdio.h>
void main()
{
 printf(“Hello World”);
}

Run

Hello World

The standard function printf() is in the C library that sends characters to the standard output

device. The Hello World program will also work in C++, because C++ supports ANSI C function

library. A new C++ program that does the same operation as C’s Hello World is listed in hello.
cpp.

// hello.cpp: printing Hello World message
#include <iostream.h>
void main()
{
 cout << “Hello World”;
}

Run

Hello World

The header file iostream.h supports streams programming features by supporting predefined

stream objects. The C++’s stream insertion operator, << sends the message Hello World to the

predefined console object, cout which, in turn, prints on the console.

17.2.2 Output Redirection

The output generated by cout can be redirected to files, whereas that generated by cerr and clog

cannot be redirected. That is, the following on the command line

shell: hello > outfile

redirects console output to the file named outfile. The output file contains only those messages

generated by cout but not by cerr and clog. They always redirect to console as illustrated in the

program redirect.cpp.

/ / redirect.cpp: printing Hello World message
#include <iostream.h>
void main()
{
 cout << “Hello World with cout\n”;
 cerr << “Hello World with cerr\n”;
 clog << “Hello World with clog\n”;
}

Streams Computation with Console 689

Run

Hello World with cerr
Hello World with clog

Note: The program is executed by issuing the following command at the shell prompt:

redirect > outfile

On execution, the messages shown at RUN appear on the console whereas the first message Hello
World with cout is stored in the file outfile.

The main advantage of using iostream.h functions over the stdio.h functions is data

independence; the freedom to write code without worrying too much about the variable types. Mixed

usage of stdio and the stream class functions to perform output is not advisable. This is because they

use different buffers and the order in which the output appears may not conform to the order in which

the output statements appear in the program.

17.2.3 Features of cin and cout

Before examining the facilities available with cout and cin, it is useful to know that the objects cin

and cout are instances of certain classes defined in iostream.h. The object cout is an instance of

class ostream_with_assign, which is derived from the superclass ostream. Hence, effectively

cout has the functionality of the class ostream. Similarly, cin, an instance of the class istream_
with_assign, has the functionality of the class istream.

17.3 HIERARCHY OF CONSOLE STREAM CLASSES

The C++ input-output system supports a hierarchy of classes that are used to manipulate both the console

and disk files, called stream classes. The stream classes are implemented in a rather elaborate hierarchy.

The knowledge of C++’s input and output stream class hierarchy will result in the potential utilization of

stream classes. Figure 17.3 depicts hierarchy of classes, which are used with the console device.

Fig. 17.3 Hierarchy of console stream classes

streambuf *bp =
& strstreambase::buf

ios

istream streambuf

iostream

pointer

output

ostream

input

istream_withassign istream_withassign ostream_withassign

Mastering C++690

The iostream facility of C++ provides an easy means to perform I/O. The class istream uses the

predefined stream cin that can be used to read data from the standard input device. The extraction

operator >>, is used to get data from a stream. The insertion operator << is used to output data into a

stream. A stream object must appear on the left side of the << or >> operator; however, multiple stream

operators can be concatenated on a single line, even when they refer to objects of different types. For

instance, consider the following statements:

cout << iteml << “**” << cl << my_object << 22;

cin >> int_var >> float_var >> my_object;

The first statement outputs objects of different types (both the standard and user defined) and the

second statement reads data of different types.

The classes istream, ostream, and iostream, which are designed exclusively to manage the

console device, are declared in the header file iostream.h. The actions performed by these classes

related to console device management are described below:

ios Class
It provides operations common to both input and output. It contains a pointer to a buffer object

(streambuf). It has constants and member functions that are essential for handling formatted input

and output operations.

The classes derived from the ios class (istream, ostream, iostream) perform specialized

input-output operations with high-level formatting:

 istream (input stream) does formatted input

 ostream (output stream) does formatted output

 iostream (input/output stream) does formatted input and output

The pointer streambuf in the ios class provides an abstraction for communicating to a physical

device and classes derived from it deal with files, memory, etc. The class ios communicates to a

streambuf, which maintains information on the state of the streambuf (good, bad, eof, etc.), and

maintains flags used by the istream and ostream.

istream Class
It is a derived class of ios and hence inherits the properties of ios. It defines input functions such

as get(), getline(), and read(). In addition, it has an overloaded member function, stream

extraction operator >> to read data from a standard input device to the memory items.

ostream Class
It is a derived class of ios, and hence, inherits the properties of ios. It defines output functions such

as put() and write(). In addition, it has an overloaded member function, stream insertion operator

<< to write data from memory items to a standard output device.

iostream Class
It is derived from multiple base classes, istream and ostream, which are in turn inherited from

the class ios. It provides facility for handling both input and output streams, and supports all the

operations provided by istream and ostream classes.

The classes istream_withassign, ostream_withassign, and iostream_withassign

add the assignment operators to their parent classes.

Streams Computation with Console 691

17.4 UNFORMATTED I/O OPERATIONS

The most commonly used objects throughout all C++ programs are cin and cout. They are predefined

in the header file iostream.h which supports the input and output of data of various types. This is

achieved by overloading the operators << and >> to recognize all the basic data types. The input or

extraction operator is overloaded in the istream class and output or insertion operator is overloaded

in the ostream class.

17.4.1 put() and get() Functions

The stream classes of C++ support two member functions, get() and put(). The function get()

is a member function of the input stream class istream and is used to read a single character from

the input device. The function put() is a member function of the output stream class ostream and

is used to write a single character to the output device. The function get() has two versions with the

following prototypes:

void get(char &);
int get(void);

Both the functions can fetch a white-space character including the blank space, tab, and newline

character. It is well known that the member functions are invoked by their objects using dot operators.

Hence, these two functions can be used to perform input operation either by using the predefined object

cin or an user-defined object of the istream class. The program get.cpp illustrates the use of

get() function to read a line (until the carriage return key is pressed).

// get.cpp: Read characters using get() of istream
#include <iostream.h>
void main()
{
 char c;
 cin.get(c);
 while (c ! = ‘ \n’)
 {
 cout << c;
 cin.get(c); // reads a character
 // replace the above statement by cin >> c; and see the output
 }
}

Run

Hello World
Hello World

In main(), the statement

cin.get(c);

invokes the member function get() of the object cin of the istream class. It reads a character into

the variable c from the standard input device. If this statement is replaced by the statement,

Mastering C++692

cin >> c;

it will not work as desired, since the operator >> will skip blanks and newline characters. Another

version of get() can also be used in the above program as follows:

c = cin.get();

It reads a single character and returns the same.

The function put() which is a member function of the output stream class ostream prints a

character representation of the input parameter. For instance, the statement,

cout.put(‘R’);

prints the character R, and the statement

cout.put(c);

prints the contents of the character variable c. The input parameter can also be a numeric constant and

hence, the statement

cout.put(65);

prints the character A (65 is a ASCII code of character A). The program put.cpp prints the ASCII

table (since put() considers input parameter as a ASCII code of a character to be printed).

// put.cpp: prints ASCII table using put() function
#include <iostream.h>
void main()
{
 char c;
 for(int i = 0; i < 255; i++)
 {
 if(i == 26)
 continue;
 cout << i << ” ”;
 cout.put(i); // change to cout << i; and see the output difference
 cout << endl;
 }
}

Run

[prints ASCII code and its character representation]

In main(), the statement

cout.put(i);

prints a character represented by the ASCII code whose value is passed as an input argument through

the variable i.

17.4.2 getline() and write() Functions

The C++ stream classes support line-oriented functions, getline() and write() to perform input

and output operations. The getline() function reads a whole line of text that ends with new line or

Streams Computation with Console 693

until the maximum limit is reached. Consider the program spacel.cpp for reading an input string

having a blank space in between.

// space1.cpp: the effect of white-space characters on the >> operator
#include <iostream.h>
#include <iomanip.h>
void main()
{
 char test[40];
 cout << “Enter string: “;
 cin >> test;
 cout << “Output string: “;
 cout << test;
}

Run

Enter string: Hello World
Output string: Hello

In main(), the statement

cin >> test;

reads a string until it encounters a white space. If the input to the above program is “Hello World”,

the output is going to be just “Hello”. The reason being the operator >> considers all white-space

characters in the input stream as delimiters. To remedy this, use the member function getline() of

the cin object’s class as shown in the program space2.cpp.

// space2.cpp: the effect of white-space characters on the >> operator
#include <iostream.h>
#include <iomanip.h>
void main()
{
 char test[40];
 cout << “Enter string: “;
 cin.getline(test, 40);
 cout << “Output string: “;
 cout << test;
}

Run

Enter string: Hello World
Output string: Hello World

In main(), the statement

cin.getline(test, 40);

reads a string until it encounters the new line character or maximum number of characters (40). Now,

an input of “Hello World” will produce the output as desired. The istream::getline member

function has the following versions:

Mastering C++694

istream& getline(signed char*, int len, char = ‘\n’);

istream& getline(unsigned char*, int len, char = ‘\n’);

They operate in the following ways:

 Extracts character up to the delimiter

 Stores the characters in the buffer

 Removes the delimiter from the input stream

 Does not place the delimiter into the buffer

 Maximum number of characters extracted is 1en-1

The terminator character can be any character. The terminator character is read but not saved into a

buffer; instead, it is replaced by the null character.

The prototype of write() functions is

ostream::write(char * buffer, int size);

It displays size (second parameter) number of characters from the input buffer. The display does not

stop even when the NULL character is encountered. If the length of the buffer is less than the indicated

size, it displays beyond the bounds of the buffer. Therefore, it is the responsibility of the user to make

sure that the size does not exceed the length of the string. The program stand.cpp illustrates the use

of write() in string processing.

//stand.cpp: display stand of “Object Computing with C++”;
#include <iostream.h>
#include <string.h>
void main()
{
 char *stringl = “Object-Computing”;
 char *string2 = “ with C++”;
 int i;
 int lenl = strlen(stringl);
 int 1en2 = strlen(string2);
 for(i = 1; i < lenl; i++)
 {
 cout.write(stringl, i);
 cout << endl;
 }
 for(i = lenl; i > 0; i— —)
 {
 cout.write(stringl, i);
 cout << endl;
 }
 // print both the string
 cout.write(stringl, lenl);
 cout.write(string2, len2);
 cout << endl;
 // above two write() can be replaced below single statement
 cout.write(stringl, len1).write(string2, len2);

Streams Computation with Console 695

 cout << endl;
 cout.write(stringl, 6);
}

Run

O
Ob
Obj
Obje
Objec
Object
Object-
Object-C
Object-Co
Object-Com
Object-Comp
Object-Compu
Object-Comput
Object-Computi
Object-Computin
Object-Computing
Object-Computin
Object-Computi
Object-Comput
Object-Compu
Object-Comp
Object-Com
Object-Co
Object-C
Object-
Object
Objec
Obje
Obj
Ob
O
Object-Computing with C++
Object-Computing with C++
Object

In main(), the last statement

cout.write(stringl, 6);

indicates to display six characters from the string string1 even though the input string has more

characters than the number of characters requested to be displayed. The two statements,

cout.write(stringl, lenl);
cout.write(string2, 1en2);

can be replaced by the single statement,

cout.write(stringl, lenl).write(string2, 1en2);

Mastering C++696

The dot operator with the predefined object cout indicates that the function write is a member of

the class ostream. The invocation of write() function returns the object of type ostream which

again invokes the write() function.

17.5 FORMATTED CONSOLE I/O OPERATIONS

Most programs need to output data in various styles. A common requirement is to reserve an area of the

screen for a field, without knowing the number of characters the data of that field will occupy. To do

this, there must be a provision for alignment of fields to left or right, or padded with some characters.

C++ supports a wide variety of features to perform input or output in different formats. They include

the following:

 ios stream class member functions and flags

 Standard manipulators

 User-defined manipulators

17.5.1 ios Class Functions and Flags

The stream class ios contains a large number of member functions to assist in formatting the output in

a number of ways. The most important among these functions are shown in Table 17.1.

Table 17.1 ios class member functions

width() Specifies the required number of fields to be used while displaying the output

value

precision() Specifies the number of digits to be displayed after the decimal point

fill() Specifies a character to be used to fill the unused area of a field. By default, fills

blank space character.

setf() Sets format flag that control the form of output display

unsetf() Clears the specified flag

17.5.2 Defining Display Field Width

The function width() is a member function of the ios class and is used to define the width of the

field to be used while displaying the output value. It must be accessed using objects of the ios class

(commonly accessed using the cout object). It has the following two forms:

int width();

int width(int w);

where w is the field width, i.e., number of columns to be used for displaying output. The first form of

width() returns the current width setting, whereas the second form width (int) sets the width to

the specified integer value and returns the previous width. It specifies field width for the item, which is

displayed first immediately after the setting. After displaying an item, it will revert to the default width.

Streams Computation with Console 697

For instance, the statements

cout.width(4);
cout << 20 << 123;

produce the following output:

2 0 1 2 3

The first value is printed in right-justified form in four columns. The next item is printed immediately

after the first item without any separation; width(4) is then reverted to the default value, which prints

in left-justified form with default size. It can be overcome by explicitly setting the width of every item

with each cout statement as follows:

cout.width(4);
cout << 20;
cout.width (4);
cout << 123;

These statements produce the following output.

2 0 1 2 3

It should be noted that field width should be specified for each item independently if a width other

than the default is desired for output. If the field width specified is smaller than the required width to

display items, the field is expanded to the required space without truncation. For instance,

cout.width(2);
cout << 2000;

These statements produce the following output:

2 0 0 0

without truncating even though width is specified as two. The program student.cpp illustrates the

use of the width() function in formatting the displayed output.

// student.cpp: printing student details in the form of table
#include <iostream.h>
const int MAX_MARKS = 600; // maximum marks
class student
{
 private:
 char name[ll]; // name of a student
 int marks; // marks scored by a student
 public:
 void read();
 void show();
};
void student::read()
{

Mastering C++698

 cout << “Enter Name: “;
 cin >> name;
 cout << “Enter Marks Secured: “;
 cin >> marks;
}
 void student::show()
{
 cout.width(10);
 cout << name;
 cout.width(6);
 cout << marks;
 cout.width(10);
 cout << int(float(marks)/MAX_MARKS * 100); // percentage
}
void main()
{
 int i, count;
 student *s; // pointers to objects
 cout << “How many students ? “;
 cin >> count;
 s = new student[count]; // array of objects, student s[count]
 for(i = 0; i < count; i++)
 {
 cout << “Enter Student “ << i+1 << “ details..” << endl;
 s[i].read();
 }
 cout << “Student Report...” << endl;
 cout.width(3);
 cout << “R#”;
 cout.width(10);
 cout << “Student”;
 cout.width(6);
 cout << “Marks”;
 cout.width(15);
 cout << “Percentage” << endl;
 for(i = 0; i < count; i++)
 {
 cout.width(3);
 cout << i+1; // roll_no
 s[i].show();
 cout << endl;
 }
}

Run

How many students? 3
Enter Student 1 details..
Enter Name: Tejaswi
Enter Marks Secured: 450
Enter Student 2 details..
Enter Name: Rajkumar

Streams Computation with Console 699

Enter Marks Secured: 535
Enter Student 3 details..
Enter Name: Bindu
Enter Marks Secured: 429
Student Report...
R# Student Marks Percentage
1 Tejaswi 450 75
2 Rajkumar 525 87
3 Bindu 429 71

17.5.3 Setting Precision

The function precision() is a member of the ios class and is used to specify the number of digits

to be displayed after the decimal point while printing a floating-point number. By default, the precision

size is six. This function must be accessed using objects of the ios class (commonly accessed using

cout object). It has the following two forms:

int precision(); // returns current precision
int precision(int d);

where d is the number of digits to the right of the decimal point. It sets the floating-point precision and

returns the previous setting. For example, the statements

 cout.precision(2);
 cout << 2.23 << endl;
 cout << 5.169 << endl;
 cout << 3.5055 << endl;
 cout << 4.003 << endl;

will produce the following output:

 2.23 (perfect fit)
 5.17 (rounded)
 3.51 (rounded)
 4 (no trailing zeros, truncated)

After displaying an item, the user-defined precision will not revert to the default value. Different

values can be processed with different precisions by having multiple precision statements. For instance,

cout.precision(1);
cout << 2.23 << endl;
cout.precision(3);
cout << 5.1691 << endl;

will produce the following output:

2.2 (truncated)
5.169 (truncated)

Consider the statements:

cout.precision(3);
cout << 12.53 << 20.5 << 2;

Mastering C++700

which produce the following output all packed together:

1 2 · 5 3 2 0 · 5 2

It can be overcome by the combined use of width() and precision to control the output format.

The statements

cout.precision(2);
cout.width(6);
cout << 12.53;
cout.width(6);
cout << 20.5;
cout.width(6);
cout << 2;

will produce the following output:

1 2 · 5 3 2 0 . 5 2

It must be noted from the above output that the unused width is filled with blank characters. Unlike

width(), the precision() must be reset for each data item being output if new precision is

desired.

17.5.4 Filling and Padding

The function fi11() is a member of the ios class and is used to specify the character to be displayed

in the unused portion of the display width. By default, a blank character is displayed in the unused

portion if the display width is larger than that required by the value. It has the following two forms:

int fill(); // returns current fill character
int fill(ch);

where ch is the character to be filled in the unused portion. For example, the statements

cout.fill (‘*’);
cout.precision(2);
cout.width(6);
cout << 12.53;
cout.width(6);
cout << 20.5;
cout.width(6);
cout << 2;

will produce the following output:

* 1 2 · 5 3 * * 2 0 · 5 * * * * * 2

It is seen from the above output that the unused width is filled with asterisk character as set by the

statement cout.fill(‘*’);. Similar to precision(), the effect of fill() continues unless

explicitly modified by the other fill() statement.

Streams Computation with Console 701

Case Study
Consider a scenario where you are required to create a C++ program that displays the salary for different

roles in an organization. The program must use the concept of filling and padding while displaying the

details across two different columns.

The program salary.cpp uses the width() and fill() functions to display the salary details

in a formatted manner.

// salary.cpp: filling and padding

#include <iostream.h>

void main()

{

 char *desig[5] = { “CEO”, “Manager”, “Receptionist”, “Clerk”, “Peon” };

 int salary[5] = { 10200, 5200, 2950, 950, 750 };

 cout << “Salary Structure Based on Designation” << endl;

 cout << “ ----------------------------------- “ << endl;

 cout.width(15);

 cout << “Designation”;

 cout << “ “;

 cout.width(15);

 cout << “Salary (in Rs.)» << endl;

 cout << “--------------------------------- << endl;

 for(int i = 0; i < 5; i++)

 {

 cout.fill (‘.’);

 cout.width(15);

 cout << desig[i];

 cout << “ “;

 cout.fill (‘*’);

 cout.width(15);

 cout << salary[i] << endl;

 }

 cout << “ ----------------------------” << endl;

}

Run

Salary Structure Based on Designation

Designation Salary (in Rs.)

............CEO **********10200

........Manager ***********5200

...Receptionist ***********2950

..........Clerk ************950

...........Peon ************750

Note that such a form of output representation is extensively used by financial institutions to

represent money transactions so that no one can modify the amount (money representation) easily.

Mastering C++702

17.5.5 Formatting with Flags and Bit-fields

From the earlier examples, it can be noted that when the function width() is used, results are printed

in the right-justified form (which is not a usual practice). C++ provides a mechanism to set the printing

of results in the left-justified form, scientific notation, etc. The member function of the ios class,

setf() (setf stands for set flags) is used to set flags and bit fields that control the output. It has the

following two forms:

long setf(long _setbits, long _field);
long setf(long_setbits);

where _setbits is one of the flags defined in the class ios. It specifies the format action required for

the output, and _field specifies the group to which the formatting flag belongs. Both the forms return

the previous settings. The actions of flags and bit fields when set with setf() are shown in Table 17.2.

There are three bit fields and each group has format flags that are mutually exclusive. For instance,

cout.setf(ios::right, ios::adjustfield);
cout.setf(ios::oct, ios::basefield);
cout.setf(ios::scientific, ios::floatfield);

Note that the flag argument (first) should be one of the groups (bit field) of the second argument.

Table 17.2 Flags and bit fields for setf() function

Flags value Bit field Effect produced

ios::left ios::adjustfield Left-justified output

ios::right ios::adjustfield Right-adjust output

ios::internal ios::adjustfield Padding occurs between the sign or base indicator and

the number, when the number output fails to fill the

full width of the field.

ios::dec ios::basefield Decimal conversion

ios::oct ios::basefield Octal conversion

ios::hex ios::basefield Hexadecimal conversion

ios::scientific ios::floatfield Use exponential floating notation

ios::fixed ios::floatfield Use ordinary floating notation

Consider the following statements:

 cout.setf(ios::left, ios::adjustfield);
 cout.fill(‘*’);
 cout.precision(2);
 cout.width(6);
 cout << 12.53;
 cout.width(6);
 cout << 20.5;
 cout.width(6);
 cout << 2;

Streams Computation with Console 703

The output produced by the above statements is

1 2 · 5 3 * 2 0 · 5 * * 2 * * * * *

The statements

cout.setf(ios::internal, ios::adjustfield);
cout.fill (‘*’);
cout.precision(3);
cout.width(10);
cout << -420.53;

will produce the following output:

– * * * 4 2 0 · 5 3

If the last statement is replaced by

cout << -420.534;

the following output will be generated:

– * * 4 2 0 · 5 3 4

Note that the sign is left justified and the value is right justified. The space between them is filled with

stars.

17.5.6 Displaying Trailing Zeros and Plus Sign

Streams support the feature of avoiding truncation of the trailing zeros in the output. For instance, the

following statements:

cout << 20.55 << endl;
cout << 55.40 << endl;
cout << 10.00 << endl;

produce the output as shown below:

2 0 · 5 5

5 5 · 4

1 0

It can be observed that the trailing zeros in second and third output have been truncated. The ios

class has the flag showpoint which when set, prints the trailing zeros also. It is set by the following

statement

cout.setf(ios::showpoint);

which causes the cout to display the trailing decimal point and zero. The following statements

cout.setf(ios::showpoint);
cout.precision(2);

Mastering C++704

cout << 20.55 << endl;
cout << 55.40 << endl;
cout << 10.00 << endl;

would produce the output as shown below:

2 0 · 5 5

5 5 · 4 0

1 0 · 0 0

Similarly, the plus symbol can be printed using the following statement:

cout.setf(ios::showpos);

For example, the statements

cout.setf(ios::showpos); // positive sign
cout.setf(ios::showpoint); // trailing zero and point
cout.setf(ios::internal, ios::adjustfield);
cout.precision(3);
cout.width(10);
cout << 420.53;

will produce the following output:

+ 4 2 0 · 5 3 0

Table 17.3 presents a summary of flags that do not have bit fields for the setf() function.

Table 17.3 Flags that do not have bit fields for setf() function

Flag's value Effect produced

ios::showbase Use base indicator on output

ios::showpos Add '+' to positive integers

ios::showpoint Include decimal point and trailing zeros in output

ios::uppercase Upper-case hex output

ios::skipws Skips white-space characters on input.

ios::unitbuf Flush after insertion, (i.e., use a buffer of size 1)

ios::stdio Flush stdout and stderr after insertion

The flag setting ios::skipws is set by default. The white-space characters are space, tab, newline,

carriage return, form feed, and vertical tab. While performing formatted input (with the >> operator),

Streams Computation with Console 705

an input stream (such as cin) behaves as if these characters are not present in the input. Use this flag

with the resetiosflags manipulator, to prevent skipping white-space characters.

The flags can be reset by using the ios::unsetf member function. It has the following syntax:

long unsetf(long);

and is invoked as follows:

cout.unsetf(ios::showpos);

It clears the bits corresponding to show positive-sign symbol (when number displayed is positive) and

returns the previous settings.

17.6 MANIPULATORS

The C++ streams package makes use of the notion of stream manipulators, principally as a means of

manipulating the formatting state associated with a stream. These manipulators are functions that can

be used with the << or the >> operator to alter the behavior of any stream class instances including

the cin and cout. C++ has manipulators which produce output and consume input to extend stream

I/O formatting. Such manipulators can be especially useful for simple parsing of stream inputs.

Manipulators are broadly categorized as producers and consumers. A producer manipulator is one

which generates output on an output stream, for example, endl. Similarly, a consumer manipulator

consumes input from an input stream, for example, ws.

Manipulators are special functions that are specifically designed to modify the working of a stream.

They can be embedded in the I/O statements to modify the form parameters of a stream. All the

predefined manipulators are defined in the header file iomanip.h. Manipulators are more convenient

to use than their counterparts, defined by the ios class. There can be more than one manipulator in a

statement and they can be chained as shown in the following statements:

cout << manipl << manip2 << manip2 << item;
cout << manipl << iteml << item2 << manip2 << item3;

This kind of chaining of manipulators is useful in displaying several columns of output. Manipulators

are categorized into the following two types:

 Nonparameterized manipulators

 Parameterized manipulators

As mentioned before, cout and cin work elegantly with any basic type. They do not require

specification of type of variables while performing I/O. The format string of C’s I/O function requires

display control information such as width; number system, etc., apart from the variable types in the

format string. The program hex.c clarifies these concepts.

/* hex.c: read hexadecimal number and display the same in decimal */

#include <stdio.h>

void main()

{

 int num;

 printf(“Enter any hexadecimal number: “);

Mastering C++706

 scanf(“%x”, &num); /*Input in hexadecimal*/

 /*output i in decimal, in a field of width 6*/

 printf(“The input number in decimal = “);

 printf(“%6d”, num);

}

Run

Enter any hexadecimal number: ab

The input number in decimal = 171

This kind of code is often useful. The question arises. How can this be done with cin and cout?

The answer lies in the manipulators. For example, the above lines of code that used scanf() and

printf() can be rewritten as listed in the program hex.cpp.

// hex.cpp: read hexadecimal number and display the same in decimal
#include <iostream.h>
#include <iomanip.h> // for manipulators
void main()
{
 int num;
 cout << “Enter any hexadecimal number: “;
 cin >> hex >> num; // Input in hexadecimal
 // output i in decimal, in a field of width 6
 cout << “The input number in decimal = “;
 cout << setw(6) << num;
}

Run

Enter any hexadecimal number: ab
The input number in decimal = 171

The manipulator hex sets the conversion base for cin to 16. So cin interprets the input characters

as digits of a hexadecimal number. The manipulator setw sets the field width as 6 for cout! Thus,

the input to the above program (ab) is converted into decimal and displayed (16*a+b = 16*10+11
= 171).

The C++ iostream package contains a rather small handful of predefined producer-consumer

manipulators, the only instance of consumer being the white-space eater, for example, ws. Other

predefined manipulators set stream state variables which influence processing of input and output, for

example, hex. The implementation of the ios class as well as the implementation of the insertion and

extraction operators correspond to the data type of an item they process. The list of nonparameterized

manipulators and parameterized manipulator functions are shown in tables 17.4 and 17.5 respectively.

Each one of these can be used with either the << or the >> operator without incurring any compile-time

errors. But some of them affect only output streams such as cout, and some others, only input streams

such as cin. Unless otherwise mentioned, these manipulators affect both types of streams. The first six

manipulators—dec,hex, oct,ws,endl, and ends—are defined in iostream.h itself and the

rest are in the header file iomanip.h.

Streams Computation with Console 707

Table 17.4 C++’s predefined nonparameterized manipulators

Manipulator Action Performed

dec Sets the conversion base to 10

hex Sets the conversion base to 16

oct Sets the conversion base to 8

ws Extracts white-space characters from an input stream. Characters in the stream will be extract-

ed until a nonwhite-space character is found, or an error (such as EOF) occurs. As expected, it

affects only input streams.

endl Outputs a newline and flushes stream. Affects only output streams "\n"

ends Outputs a NULL character ('\0'); Affects only output streams

flush Flushes the stream. Affects only output streams

Table 17.5 C++’s predefined parameterized manipulators

Manipulator Action Performed Equivalent to

setw(int width) Sets the field width width

setprecision(int prec) Sets the floating-point precision precision

setfill (int fchar) Sets the fill character fi11

setbase(int base) Sets the conversion base

0: Base 10 is used for output

8: Use octal for input and output

10: Use decimal for input and output

16: Use hexadecimal for input and output

setiosflags(long flags) Sets the format flag setf

resetiosflags(long flags) Resets the format flag unsetf

17.6.1 Buffering

When a stream is buffered, each insertion or extraction does not have a corresponding I/O operation to

physically write to or read data from a device. Instead, insertions and extractions are stored in a buffer

from which data is written or read in chunks.

In C++, it is possible to force data buffered in an output stream to be written. It is called flushing and

it ensures that everything stored in an output buffer has been displayed. In general, flushing is done when

interactive input is requested by the user, so that the program can be sure that information displayed on

the screen is completely up-to-date. The cout’s buffer can be flushed using the statement

cout.flush();

A program can tie an input stream to an output device. In this case, the output stream is flushed

when any characters are fetched from the input stream. For instance, cin is automatically tied to cout

to be sure that everything has been physically displayed before any input occurs. The user-defined

streams can be tied using the tie() function as follows:

Mastering C++708

istream input;
ostreain output;
....

input.tie(output);

The last statement forces the C++ I/O system, to flush the object stream, output every time the fetch

operation is initiated using the object input.

The parameterized manipulators are described below:

setw (int width)

Sets the width of the output field specified by the integer parameter width. The output field width is

reset to 0 every time an output is performed using the << operator. When the output field width is 0,

normal output is done (without filling or aligning). Hence, use the setw manipulator to specify the

field width before every output for which a particular field width is desired.

setprecision(int prec)

Sets the precision used for floating-point output. The number of digits to be shown after the decimal

point is given by the integer prec.

setfill (int fchar)

Sets the fill character to that specified in fchar. The fill character is used to fill (or pad) the empty

space in the output field when the width of the output variable is less than the width of the output field.

The default fill character is the space character.

setbase (int base)

Sets the conversion base according to the integer base, which can assume any one of the following four

values:

0: Base 10 is used for output;

8: Use octal for input and output.

10: Use decimal for input and output.

16: Use hexadecimal for input and output.

The base to be used for input is specified as a part of the input itself—inputs beginning with 0 are

treated as octal, those beginning with 0x are treated as hexadecimal. Otherwise the base is assumed as

decimal.

setiosflags (long flags)

The parameter flags can be any of the flags listed in ios stream class. More than one flag can be set

with the same manipulator by ORing the flags.

The statement

cout << setw(8) << 1234;

prints the value 1234 right-justified in the field width of 8 characters. The output can be left justified

using the statement,

cout << setw(8) << setiosflags(ios::left) << 1234;

The key difference between manipulators and the ios class interface functions is in their

implementation. The ios member functions are used to read the previous format state, which can be

used to know the current state or save for future usage, whereas, the manipulators do not return the

Streams Computation with Console 709

previous format state. The program foutput.cpp illustrates the use of some of the manipulators

with output streams.

// foutput.cpp: various formatting flags with the << operator
#include <iostream.h>
#include <iomanip.h>
void main()
{
 int x = 100;
 cout << hex << x << ‘ ‘ << dec << x << endl;
 float f = 122.3434;
 cout << f << endl;
 cout << setprecision(3);
 cout << f << endl;
 cout << setw(6) << setfill(‘0’);
 cout << setiosflags(ios::internal | ios::ShowBase);
 cout << hex << x << endl;
 cout << setiosflags(ios:: scientific) << f << endl;
}

Run

64 100
122.343399
122.343
0x0064
1.223e+02

In main(), the statement

cout << hex << x << endl;

outputs 0x0064, since the field width 6 and the fill character ‘0’ is filled between the base indicator

‘0x’ (due to ios::showbase) and the number 64 (padding like this occurs due to ios:internal

being set).

The program payroll.cpp uses the manipulators for displaying numeric quantities for accounting

purposes so that the decimal points are aligned in a single column.

// payroll.cpp: payroll like output example
#include <iostream.h>
#include <iomanip.h>
void main()
{
 float f1=123.45, f2=34.65, f3=56;
 cout << setiosflags(ios::showpoint|ios::fixed)
 << setiosflags(ios::right);
 cout << setw(6) << fl << endl;
 cout << setw(6) << f2 << endl;
 cout << setw(6) << f3 << endl;
}

Mastering C++710

Run

123.45
 34.65
 56.00

Setting the flag ios::showpoint will display the point even though a floating point number has

no significant digits to the right of the decimal point (the variable f3). Setting ios::fixed ensures

output in fixed point rather than in exponential notation. The decimal points happen to be aligned due

to two manipulators: setprecision (2) shows two digits after the decimal point and setiosflags
(ios::right) displays output in right-justified manner.

// oct.cpp: Usage of number-base manipulators with cin
#include <iostream.h>
#include <iomanip.h>
void main()
{
 int i;
 // The statement below always interprets the input as octal digits
 cout << “Enter octal number: “;
 cin >> oct >> i;
 cout << “Its decimal equivalent is “;
 cout << i << endl;
 //The base used by cin in the statement is decided at the time of input
 cout << “Enter decimal number: “;
 cin >> setbase(0) >> i;
 cout << “Its output: “;
 cout << i;
}

Run1

Enter octal number: 111
Its decimal equivalent is 73
Enter decimal number: 0111
Its output: 73

Run2

Enter octal number: 111
Its decimal equivalent is 73
Enter decimal number: Oxlll
Its output: 273

In the cin statement

cin >> oct >> i;

data input is always interpreted as an octal number. So, if the input is 111, the output using the cout

statement here is 73. Whereas, in the statement

cin >> setbase(0) >> i;

Streams Computation with Console 711

if the input to the cin statement here is 111 then it is assumed to be a decimal number. If it is 0111, it

is assumed as an octal number. Finally, an input such as 0x111 is assumed hexadecimal. So the output

of the last cout statement will be 111 in the first case, 73 in the second, and 273 in the third.

The program mattab.cpp illustrates the use of manipulators and ios functions in formatting the

output.

// mattab.cpp: prints mathematical table having sqr, sqrt, and log columns
#include <iostream.h>
#include <iomanip.h>
#include <math.h>
// macro for computing square of a number
#define sqr(x) ((x)*(x))
void main()
{
 int num;
 cout << “Enter Any Integer Number: “;
 cin >> num;
 cout << “--” << endl;
 cout << setw(5) << “NUM” << setw(10) << “SQR”;
 cout << setw(15) << “SQRT” << setw(15)<< “LOG” << endl;
 cout << “---” << endl;
 cout.setf(ios::showpoint); // display trailing zeros
 for(int i = 1; i <= num; i++)
 {
 cout << setw(5) << i
 << setw(10) << sqr(i)
 << setw(15) << setprecision(3)<< sqrt((double) i)
 << setw(15) << setprecision(4) <<setiosflags(ios::scientific)
 << log((double) i) << endl << resetiosflags(ios::scientific)
 }
 cout << “---” << endl;
}

Run

Enter Any Integer Number: 10
--
NUM SQR SQRT LOG
--
 1 1 1.000 0.0000e+00
 2 4 1.414 6.9315e–01
 3 9 1.732 1.0986e+00
 4 16 2.000 1.3863e+00
 5 25 2.236 1.6094e+00
 6 36 2.449 1.7918e+00
 7 49 2.646 1.9459e+00
 8 64 2.828 2.0794e+00
 9 81 3.000 2.1972e+00

10 100 3.162 2.3026e+00

Mastering C++712

17.7 CUSTOM/USER-DEFINED MANIPULATORS

An important feature of C++ streams is that they also work well with the user-defined manipulators as

they do with built-in manipulators. Hence, the users can design their own (customized) manipulators

to control the appearance of the output depending upon their taste and need. The syntax for creating a

custom manipulator is shown in Figure 17.4. In the syntax, manipulator is the name of the user-defined

manipulator.

Fig. 17.4 Syntax of creating a custom manipulator

arguments for parame-
terised manipulator

name of the user
defined manipulator

manipulator caller and
stream cascading object

ostream & manipulator(ostream & output, arguments_if_any)
{
......
.....(manipulator code)
.....
return output;

}

The program space3.cpp creates and uses the user-defined manipulator sp that inserts space into

the output stream and flushes it. It eliminates the usage of messy statements such as,

cout << x << ‘ ’ << y << ‘ ’ << z << ‘ ’ << w << endl;

to output a series of variables separated by spaces. The statement can be written as

cout << x << sp << y << sp << z << sp << w << endl;

which appears more elegant and simple to use and understand.

// space3.cpp: custom built manipulator
#include <iostream.h>
// The user-defined manipulator
ostream & sp(ostream& os)
{
 os << ‘ ‘ << flush; //or cout << ‘ ‘ << flush
 return os;
}
void main()
{
 int x=l, y=2, z=3, w=4;
 cout << x << sp << y << sp << z << sp << w << endl;
}

Run

1 2 3 4

Streams Computation with Console 713

In the above program, the function

ostream & sp(ostream& os)

defines a manipulator called sp that prints a single space and flushes the same to console for immediate

display without buffering.

Another interesting use of manipulators is demonstrated in the program currency.cpp. It

defines manipulators for prefixing the currency symbol to an item cost depending on the currency used

by the country which has manufactured the item.

// currency.cpp: custom built manipulator for currency unit representation
#include<iostream.h>
// currency in Indian rupees
ostream & rupee(ostream& os)
{
 os << “Rs. “ << flush;
 return os;
}
// currency unit in US dollar
ostream & dollar(ostream& os)
{
 cout << “US$ “ << flush;
 return os;
}
void main()
{
 char iteml[25], item2[25];
 unsigned int costl, cost2;
 cout << “Item Sales in India...” << endl;
 cout << “Enter Item Name: “;
 cin.getline(iteml, 25);
 cout << “Cost of Item: “;
 cin >> costl;
 cout << “Item Sales in US...” << endl;
 cout << “Enter Item Name: “;
 cin.ignore();
 cin.getline(item2, 25);
 cout << “Cost of Item: “;
 cin >> cost2;
 cout << “Item Cost Statistics...” << endl;
 cout << “Item Name: “ << iteml << endl;
 cout << “Cost: “ << rupee << costl << endl;
 cout << “Item Name: “ << item2 << endl;
 cout << “Cost: “ << dollar << cost2 << endl;
}

Run

Item Sales in India...
Enter Item Name: PARAM Supercomputer

Mastering C++714

Cost of Item: 55000
Item Sales in US...
Enter Item Name: CRAY Supercomputer
Cost of Item: 40500
Item Cost Statistics...
Item Name: PARAM Supercomputer
Cost: Rs. 55000
Item Name: CRAY Supercomputer
Cost: US$ 40500

17.7.1 Standard Manipulators Implementation

The previous example was easy, since the manipulator did not accept any parameters in the output

statement. The function that overloads the << operator to accept manipulators merely needs to call

the manipulator with the output stream object (cout in this case). Manipulators accepting parameters

initiate many actions. Consider the manipulator declared in iomanip.h header file, setw(int), to

illustrate the implementation of manipulators. The declaration of this manipulator is

ostrearn & setw(ostream&, int);

But in the output statement, setw is called with only one integer argument:

cout << setw(6) << i;

Another function (also called setw) is needed that accepts only one argument of type integer. It

does not know which output object needs to have its field width set, assuming the output object as

cout will unduly restrict its use (for instance, it would not be possible to use it directly with files). To

resolve this impasse, the following solution is used. A class called omanip_int is declared. It has

two private members: a pointer to a function (the actual manipulator) and an integer that specifies the

width. It has a constructor that sets these members, and a friend function that overloads the << operator

and calls the actual manipulator.

class omanip_int
{
 private:
 ostream& (*f)(ostream&, int); // Pointer to the actual manipulator
 int w; // Width to be set
 public:
 //Constructor
 omanip_int(ostream& (*tf)(ostream&,int), int tw)
 { f = tf;
 w = tw;
 }
 // overloading stream output operator
 friend ostream& operator << (ostream& os, omanip_int o)
 {
 return o.f(os, o.w); // Call the actual manipulator.
 }
};

Streams Computation with Console 715

Two more functions are now required; one that actually manipulates the stream, and another that is

invoked from the output statement. They are declared as follows:

//Actual manipulator
ostream& setw(ostream& os, int w)
{
 os.width(w);
 return os;
}
// This is called first from the output statement.
//It accepts an integer and returns an instance of class omanip_int
omanip_int setw(int w)
{
 return omanip_int(setw, w); // returns nameless object
}

Now, the statement

cout<< setw(6) << i;

will first call the second setw manipulator that remembers the width passed in an instance of the class

omanip_int. The actual function to be called is also recorded here. This instance is returned. The

first << above now has the return value of setw(6)—an instance of omanip_int on the right, and

cout on the left. The overloaded function (defined in the class omanip_int) is invoked, which

in turn calls the actual manipulator. The same concept can be utilized while implementing the user-

defined manipulators.

17.7.2 Parameterized Custom Manipulators

Most manipulators do not accept parameters and are simple to use. Sometimes it is necessary to

pass data to the manipulators, however, as with the built-in manipulator setw(int). The program

presented in pmani.cpp, implements a manipulator that accepts three arguments—width, precision,

and fill character. The manipulator is useful as a shorthand notation for setting the above parameters to

output floating-point variables with different width, precision, and fill characters.

// pmani.cpp: Parameterized Manipulator

#include <iostream.h>

#include <iomanip.h>

// output manipulator taking arguments of type int, int, char

class my_manipulator

{

 private:

 int width, precision;

 char fill;

 public:

 //Constructor

 my_manipulator(int tw, int tp, char tf): width (tw), precision (tp), fill(tf)

 {}

Mastering C++716

 //Overloaded << operator

 friend ostream & operator << (ostream& os, my_manipulator object);

};

//Actual manipulator called by overloaded operator << friend function

ostream & operator << (ostream& os, my_manipulator object)

{

 os << setw(object.width) << setprecision(object.precision) \

 << setfill(object, fill);

 os << setiosflags(ios::showpoint|ios::right);

 return os;

}

//Function called first from the output statement

my_manipulator set_float(int w, int p, char f)

{

 return my_manipulator (w, p, f); // nameless object is returned

}

void main()

{

 float fl=123.2734, f2=23.271, f3=16.1673;

 // set_float accepts three parameters-width, precision and fill charac-

ter

 cout << set_float(10, 3, ‘*’) << fl << endl;

 cout << set_float(9, 2, ‘^’) << f2 << endl;

 cout << set_float(8, 3, ‘#’) << f3 << endl;

}

Run

***123.273

^^^^23.27

##16.167

In main(), the statement

cout << set_float(10, 3, ‘*’) << f1 << endl;

has the call to the normal function as,

set_float(10, 3, ‘*’)

which in turn creates the nameless object of the class my_manipulator (and initializes its members)

and returns the same. Thus, the above output statement effectively becomes,

cout << my_manipulator (set_float, 10, 3, ‘*’) << fl << endl;

The class my_manipulator is a friend of the overloaded operator function and hence, the mutated

output statement invokes the function,

friend ostream& operator << (ostream& os, my_manipulator object)

which actually sets the format for the output’s appearance and returns the reference to cout so that the

item that immediately follows it will be printed in the desired format. After printing one item, format

specification will immediately revert to the default.

Streams Computation with Console 717

17.8 STREAM OPERATORS WITH USER-DEFINED CLASSES

The elegance of streams is that it can not only be used with built-in C++ data types, but also with user-

defined classes. It requires overloading of the stream insertion and extraction operators. In case of the

overloaded friend stream operator << function, the ostream& is considered as the first argument.

The return value of this friend function is of type ostream&. Similarly, for overloading the friend

stream operator >> function, the istream& is considered the first argument. The value returned by

this friend function is of type istream&. In both the cases, a reference to an object of the class to

which this operator function is a friend is taken as the second argument. After processing the data

members of the second argument, the first argument istream object would be returned. Overloading

of stream operators to support user-defined data types has been discussed earlier in detail in the chapter

on Operator Overloading.

The insertion operator << has been overloaded to have an instance of ostream (or one of its derived

classes) on the left and an instance of any basic variable type on the right. Similarly, the >> operator is

overloaded to have an instance of istream class on the left and any basic variable type on the right.

17.8.1 Insertion Operator << Overloading

Consider the prototype of the overloaded << operator to gain a better understanding of streams

computation. For instance, the prototype of insertion operator overloaded to display integer data is as

follows:

ostream & operator << (ostream&, int);

Recall that effectively cout is an instance of the class ostream. Hence, if the variable num is an

integer then the statement

cout << num;

invokes the overloaded operator function with a reference to cout as the first parameter, and the value

of the variable num as the second. For further overloading, i.e., for this operator to work with user-

defined classes, another overloaded function is necessary, similar to the above function declaration. A

new operator function accepts a reference to the instance of user-defined class instead of an integer.

17.8.2 Extraction Operator >> Overloading

The >> operator (used with istream) can also be overloaded to take care of user-defined types.

Inclusion of a function to overload the >> operator helps in writing more compact and readable code

in the main(). The program point.cpp illustrates the overloading of stream operators to operate

on user-defined data items.

// point.cpp: use of both << and >> with a user-defined class.

#include <iostream.h>

// user defined class

class POINT

{

 private:

Mastering C++718

 int x, y;

 public:

 POINT()

 {

 x = y = 0;

 }

 friend ostream & operator << (ostream &os, POINT &p);

 friend istream & operator >> (istream & is, POINT &p);

};

// friend function to POINT

ostream & operator << (ostream& os, POINT &p)

{

 OS << ‘(‘ << p.X << ‘,’ << p.y << ‘)‘;

 return os;

}

istream & operator >> (istream &is, POINT &p)

{

 is >> p.x >> p.y;

 return is;

}

void main()

{

 POINT p1, p2;

 cout << “Enter two coordinate points (p1, p2): “;

 cin >> p1 >> p2; // invokes overloaded operator >>()

 cout << “Coordinate points you entered are: “ << endl;

 cout << p1 << endl << p2 << endl; // calls overloaded operator <<()

}

Run

Enter two coordinate points (p1, p2): 2 3 5 6

Coordinate points you entered are:

(2,3)

(5,6)

In main(), the statement

cin >> p1 >> p2; // invokes overloaded operator >>()

illustrates cascading of stream operators to read data; the leftmost >> is executed first, and invokes the

overloaded operator function with the first parameter as a reference to cin, and the second parameter

as a reference to the instance of POINT p1. The return value of this function (which is cin itself) is

used as the left-hand side of the second >> operator, and so on.

 The friend function of the class POINT,

istream & operator >> (istream &is, POINT &p)

overloads the >> operator. It is similar to overloading the output operator. Again, note that the return

value enables cascading of the >> operator.

Streams Computation with Console 719

17.8.3 Necessity of Friend Functions

The function overloading the operators >> and << need not always be declared as friend. If the data

members x and y were public members of the class POINT, or, if a public member function existed

in POINT which output the values of x and y, the friend function declarations would be unnecessary

inside the class.

17.8.4 How do the Manipulators Work with the << Operator?

Consider the usage of the manipulator endl:

cout << endl;

in the previous examples, to insert a newline. The manipulator end1 is the function that is declared as,

ostream far & endl(ostream far &);

in the header file iostream.h. Thus, endl is a function that accepts a reference to an ostream

(such as cout) and returns the same (a reference to an ostream). Recall that invocation of a function

with its name without any parentheses is considered a pointer to a function. Now it is simple to

understand the appearance of the endl on the right side of the << operator; the operator is overloaded

to have pointers to functions of this type (that accept a reference to an ostream and return the same).

SOLVED PROBLEMS

1. Write a C++ program that uses manipulators to read a hexadecimal value as input and display

its octal equivalent as output.

#include<iostream.h>
void main()
{
 int num;
 cout<<”Enter a hexadecimal value: “;
 cin>>hex>>num;
 cout<<”Octal equivalent: “;
 cout<<oct<<num;
}

Run

Enter a hexadecimal value: A
Octal equivalent: 10

 2. Write a C++ program that displays the value of PI at different levels of precision.

#include<iostream.h>

void main()

{

 float PI = 3.14159265;

 int i;

+
+

Mastering C++720

 cout<<”The values of PI at different levels of precision are:\n”;

 for(i=1;i<=5;i++)

 {

 cout.precision(i);

 cout<<PI<<endl;

 }

}

Run

The values of PI at different levels of precision are:

3.1

3.14

3.142

3.1416

3.14159

REVIEW QUESTIONS ++
 17.1 What are streams? Explain the features of C++ stream I/O with C’s I/O system.

 17.2 List C++ predefined streams and explain them with suitable example programs.

 17.3 Draw console stream class hierarchy and explain its members.

 17.4 What is the difference between the statements

 cin >> ch;
 ch = cin.get();

 17.5 Write a program to illustrate the difference between cin and getline() while reading

strings.

 17.6 What is the output of the following statements:,

 (a) cout << 65;
 (b) cout.put(65);
 (c) cout. put (‘A’);

 17.7 Write a program to print the ASCII table using streams.

 17.8 Write an interactive program to print a.string entered in a pyramid form. For instance, the

string “object” has to be displayed as follows:

o
o b

o b j
o b j e

o b j e c
o b j e c t

 17.9 Write an interactive program to print a rectangle with diamond shape gap exactly at the

center of that rectangle. Accept a string from standard input device and print output on

standard output device. Here is the sample output when the string “object-object”

is entered by the user:

Streams Computation with Console 721

 object-object
 object object
 objec bject
 obj ject
 ob ct
 o t
 ob ct
 obj ect
 obje ject
 objec bject
 object object
 object-object

 17.10 Write an interactive program to print the salary slip in the following format:

 Centre for Development of Advanced Computing
Bangalore, India - 560 025

Salary-Slip for the Month of XXXXXX 1996
 --
 Date: dd/mm/yy
 Employee Name: xxxxxxxxxxx Employee No.: xxx
 Grade: xx Basic Salary: xxxxx.xx
 No. of days present: xx

 <---PAYMENTS---> <---DEDUCTIONS---> <---PECOVERIES--->
 BASIC xxxxx.xx PF xxx. xx LIC xxx.x
 DA xxxxx.xx FPF xx.xx CCUBE CONTR. xx.x
 HRA xxxx.xx VPF xx.xx SOCIETY ADV x.x
 CCA xxx.xx BEFUND x.xx RENT RECV xxx.x
 DDA x.xx P.TAX xxx.xx PF LOAN xxx.x
 ARREARS x.xx CANTEEN xxx.xx SALARY ADV xxxx.x
 ADHOC.ALW xxx.xx WELFARE xx.x TOUR ADV xxx.x

 TOTAL PAY xxxxx.xx TOTAL DED xxxx.x TOTAL RECV xxxx.x
 NET PAY: xxxxx.xx
 (SIGNATURE)

 17.11 Explain the various methods of performing formatted stream I/O operations.

 17.12 What are manipulators? List the various predefined manipulators supported by C++ I/O

streams.

 17.13 How are the input and output streams tied using the istream.tie() member function?

 17.14 Write a program to display numbers 0 to 10 in octal, decimal, and hexadecimal systems.

 17.15 What are custom manipulators? Write a custom manipulator for inserting 8 spaces in

output.

 17.16 Explain how standard manipulators are implemented.

 17.17 Illustrate parameterized custom manipulators using a suitable program.

 17.18 Write a program to overload stream operators for reading and displaying the object of

a class Employee. The members of this class include name, emp_np, DateOfBirth,

basic, grade, qualification, etc.

Streams
Computation
with Files

18.1 INTRODUCTION

A computer system stores programs and data in secondary storage in the

form of files. Storing programs and data permanently in main memory is not

preferred due to the following reasons:

 Main memory is usually too small to permanently store all the needed

programs and data.

 Main memory is a volatile storage device, which loses its contents when power is turned off.

The most visible entity in a computer system is a file. The operating system implements the abstract

concept of a file by providing file services and managing mass storage devices such as floppy disks,

tapes, and hard disks. The various components involved in file processing are shown in Figure 18.1.

18

Fig. 18.1 Program console and file interaction

Secondary storage

Data Files

write data
(to files)

cin >> var;

(get data from
keyboard)

Hello

cout << var;

(put data
to screen)

read data
(from files)

program-file
interaction

program-console
interaction

Program + Data

Primary storage

Keyboard

Streams Computation with Files 723

18.1.1 What is a File?

A file is a collection of related information defined by its creator. Commonly, files represent programs

(both source and object forms) and data. Data may be numeric, alphabetic, or alphanumeric. Files

may be free-form, such as text files, or may be rigidly formatted. In general, a file is a sequence of

bits, bytes, lines, or records whose meaning is defined by its creator and user. A file is named and is

referred to by its name. To define a file properly, it is necessary to consider the operations which can be

performed on files. The operating system provides most of the essential file manipulation services such

as create, open, write, read, rewind, close, and delete.

A program typically involves data communication between the console and the program or between

the files and program, or even both. The program must at least perform data exchange between processor

and main memory. Note that a program without the capability to communicate with the external world

will serve no useful purpose (irrespective of the objective with which it is designed).

The streams computation model for manipulating files resemble the console streams model. It uses

file streams as a means of communication between the programs and the data files. The input stream

supplies data to the program and the output stream receives data from the program. Thus, the input

stream extracts the data from the file and supplies it to the program, whereas output stream stores the

data into the file supplied by the program. The movement of data between the disk files and input/

output stream in a program is depicted in Figure 18.2.

Fig. 18.2 File input and output streams

Input stream
read data

Disk

files

write data

Output stream
data

output

Program

data

input

18.2 HIERARCHY OF FILE STREAM CLASSES

The file-handling techniques of C++ support file manipulation in the form of stream objects. The stream

objects cin and cout are used extensively to deal with the standard input and output devices. These

objects are predefined in the header file, iostream.h as a part of the C++ language. There are no

such predefined objects for disk files. All class declarations have to be done explicitly in the program.

Mastering C++724

There are three classes for handling files:

 ifstream - for handling input files

 ofstream - for handling output files

 fstream - for handling files on which both input and output can be performed

These classes are derived from fstreambase and from those declared in the header file

iostream.h (istream, iostream, ostream). The hierarchy of C++ file stream classes is

shown in Figure 18.3.

Fig. 18.3 Hierarchy of file stream classes

ios
pointer

streambuf

ostreamistreamiostream.h
file

fstreamifstream

streambuf

fstream base

ofstream filebuf
fstream.h

file

The classes ifstream, ofstream, and fstream are designed exclusively to manage the disk

files and their declaration exists in the header file fstream.h. To use these classes, include the

following statement in the program

#include <fstream.h>

The actions performed by classes related to file management are described below:

filebuf

The class filebuf sets the file buffer to read and write. It contains constant member used in open()

of file stream class. It also contains close() as a member.

fstreambuf

The class fstreambuf supports operations common to the file streams. It serves as a base class for

the derived classes ifstream, ofstream, and fstream and contains open() and close() as

member functions.

Streams Computation with Files 725

ifstream

The class ifstream supports input operations. It contains open() with default input mode and

inherits get(), getline(), read(), seekg(), and tellg() functions from istream.

ofstream
The class ofstream supports output operations. It contains open() with default output mode and

inherits put(), seekp(), tellp(), and write() functions from ostream.

fstream

The class fstream supports simultaneous input and output operations. It contains open() with

default input mode and inherits all the functions from istream and ostream classes through

iostream.

18.3 OPENING AND CLOSING OF FILES

In order to process a file, first, it must be opened to get a handle. The file handle serves as a pointer to

the file. Typically, manipulation of a file involves the following steps:

 Name the file on the disk

 Open the file to get the file pointer

 Process the file (read/write)

 Check for errors while processing

 Close the file after its complete usage

The filename is a string of characters, with which a file is logically identified by the user. It provides

a means to communicate with the user transparently. The number and type of characters used in naming

a file depends on the operating system. Normally, a file has two parts: a primary name and an optional

extension. If the file name has an extension, it is separated by a period from the primary name. Some of

the valid file names in the MS-DOS based machines are the following:

 student.cpp
 data.txt
 copy.exe
 student.obj
 student.exe
 TEMP
 datal
 tax.in

In MS-DOS systems, the maximum size of a primary name is eight characters and that of an extension

is three characters. However, in UNIX based machines, the file name can be up to 31 characters and any

number of extensions separated by dots. Some valid file names in the UNIX system include all those

valid in MS-DOS and in addition, it includes the following:

 .login (no primary name, acts as hidden file)

 xyz.txt.mine
 text_data_file
 student.8sem.raj

Mastering C++726

In order to get a file pointer, first the file must be created (if it does not exist) and linked to the

file name. A file stream can be defined using stream classes, ifstream, ofstream, or fstream
depending on the purpose (read or write). In C++, a file can be opened using the following:

 The constructor function of the class

 The member function open() of the class

After processing an opened file, it must be closed. It can be closed either by explicitly using the

close() member function of the class or it is automatically closed by the destructor of the class,

when the file stream object goes out of scope (expires).

18.3.1 Opening Files Using Constructors

In order to access a file, it has to be opened either in read, write, or append mode. In all the three file

stream classes, a file can be opened by passing a filename as the first parameter in the constructor itself.

For example, the statement

ifstream infile(“test.txt”);

opens the file test.txt for input. It is known that a constructor is used to initialize an object during

its creation. Hence, the constructor can be utilized to initialize the filename to be used with the file-

stream object. The creation and assignment of file name to the file-stream object involves the following

steps:

 Create a file-stream object using the appropriate class depending on the type of file stream

required. For example, ifstream can be used to create the input stream, ofstream can be

used to create the output stream, and fstream can be used to create the input and output stream.

 Bind the file stream to the disk. In the disk, file stream is identified by a file name.

For instance, the following statement opens a file named database for input:

ifstream infile (“database”);

It creates infile as the object of the class ifstream that manages the input stream, and opens the

file database and binds it to the output stream disk file. Similarly, the statement

ofstream outfile(“data.out”);

defines outfile as the object of the class ostream, and binds it to the file data.out for writing.

The program statements can refer to the file objects similar to the stream objects. The syntax for

performing I/O operations with standard input-output devices also holds good for files. For instance, to

print the message Hello World on the console and into the file, the following commands can be issued:

cout << “Hello World”;

This prints the message Hello world on the standard output device. Whereas, the statement

myfile << “Hello World”;

print the message Hello World into the file pointed to by the file pointer myfile (Figure 18.4).

The following statements:

outfile << “Hello World”; // write string constant
outfile << salary; // write variable content
outfile << 750; // write 750 to file

Streams Computation with Files 727

print the string “Hello World” and the contents of the variable salary to the output file. Similarly,

the following statements:

infile >> name; // read string
infile >> age; // read integer
infile >> number; // read float

read the variables name, age, and number from the input file stream infile.

The constructors of all these classes are declared in the header file fstream.h. The prototypes of

file-stream constructors are shown in Figure 18.5.

Fig. 18.4 File I/O with stream operators

data file

result file

Disk

Output stream

Input stream O
p
e
ra

ti
n
g
 S

y
s
te

m

P
ro

g
ra

m

outfile << "Hello World";

infile >> name;

Fig. 18.5 Prototype of file stream class constructors

filename with its path open mode access permssion

(a) constructor of class ifstream

(c) constructor of class fstream

(b) constructor of class ofstream

ifstream (const char *path, int mode=ios: :in, int prot=filebuf::openprot);

ofstream (const char *path, int mode=ios: :out, int prot=filebuf::openprot);

fstream (const char *path, int mode=ios: :in|ios::out, int prot=filebuf::openprot);

Mastering C++728

The stream class arguments have the following meaning:

path

It specifies the pathname of the file to be opened. If the file is in the current directory, only the filename

needs to be specified. Otherwise, separate the directory names by a backslash (\) in the MS-DOS or a

slash (/) in the UNIX operating systems.

mode

It specifies the mode in which the file is to be opened. The argument may be specified by using

enumerated constants declared in the ios class.

prot

It specifies the access permission. It is not used if ios::nocreate is used in mode. The default

permissions are set in the static variable filebuf::openprot for both read and write (the file can

be read from and written to) permissions. The access permissions can be read only (S_IREAD) or write

only (S_IWRITE). Under UNIX, the prot parameter can be used to specify read, write, and execute

permissions to specific owner categories (viz., user, group and others).

The file must be closed to release all the resources allocated to it. It is known that the destructor

normally does the clean-up operation. Whenever the file-stream object goes out of scope or the program

terminates its execution, the file is automatically closed by the destructor. The program stdfile.cpp
creates a file student.out using constructors and writes student details into it.

// stdfile.cpp: student file, creating file with constructor function
#include <fstream.h>
void main()
{
 char name[30];
 int marks;
 ofstream fout (“student.out”); // connect student.out to fout
 // read first student details
 cout << “Enter Name: “;
 cin >> name;
 cout << “Enter Marks Secured: “;
 cin >> marks;
 // write to a file
 fout << name << endl;
 fout << marks << endl;
 // read second student details
 cout << “Enter Name: “;
 cin >> name;
 cout << “Enter Marks Secured: “;
 cin >> marks;
 // write to a file
 fout << name << endl;
 fout << marks << endl;
}

Streams Computation with Files 729

Run

Enter Name: Rajkumar
Enter Marks Secured: 95
Enter Name: Tejaswi
Enter Marks Secured: 90
Note: On execution the file student.out contains the following.
Rajkumar
95
Tejaswi
90

In main(), the statement

ofstream fout (“student.out”); // connect student.out to fout

creates the object fout and binds it to the file student.out by opening it in the write mode. The

statement

fout << name << endl;

writes the string name to the file, and the statement

fout << marks << endl;

writes the integer variable marks to the file. The file student.out is closed automatically when

the program terminates.

Note that when a file is opened in write-only mode, a new file is created if a file with the same name

does not exists. Otherwise, the current contents of the file are truncated and opened in write mode. The

program stdread.cpp opens file student.out using a constructor and prints its contents on the

console.

// stdread.cpp: student file, read the file student.out
#include <fstream.h>
void main()
{
 char name[30];
 int marks;
 ifstream fin (“student.out”) // connect student.out to fout
 // read first student details
 fin >> name;
 fin >> marks;
 cout << “Name: “ << name << endl;
 cout << “Marks Secured: “ << marks << endl;
 // read second student details
 fin >> name;
 fin >> marks;
 cout << “Name: “ << name << endl;
 cout << “Marks Secured: “ << marks << endl;
}

Mastering C++730

Run

Name: Rajkumar
Marks Secured: 95
Name: Tejaswi
Marks Secured: 90

The above program must be executed only when a file with the name student.out already exists

and has data as expected by the program.

18.3.2 Opening and Closing of Files Explicitly

The file can also be opened explicitly using the function open() instead of a constructor. This

mechanism is generally used when different files are to be associated with the same object at different

times. The syntax for opening a file is shown in Figure 18.6. The file can be closed explicitly using the

close() function as follows:

stream_0bject.close();

Fig. 18.6 Syntax of opening the file

(b) file stream object and attaching file name explicitly

(a) file stream object and attaching file name

Stream object creation

attaching the file name

ifstream, ofstream, fstream user defined object disk filename

file-stream-class stream-object ("filename");

file-stream-class stream-object;

stream-object.open ("filename");

The following examples illustrate file open and close operations.

Opening a File in write() Mode

ofstream fout; // create stream for output

....

fout.open(“student.out”); // bind stream to file

....

fout.close(); // disconnect stream from student.out

....

fout.open(“person.out”); // bind stream to another file

....

Streams Computation with Files 731

Opening a File in read() Mode:

ofstream fin; // create stream for input

....

fin.open(“student.in”); // bind stream to file

....

fin.close(); // disconnect stream from student.in

....

fin.open(“student.out”); // bind stream to another file

There is a limit on the maximum number of files which can be opened. This constraint is imposed

by the underlying operating system on which a program executes. For instance, in MS-DOS, the entry

FILES=N in the CONFIG.SYS file; the entry FILES=20 indicates there can be a maximum of 20

files opened at a time. If any attempt is made to open a file above this limit, it fails and returns the

NULL handle. Therefore, it is advisable to close a file when it is no longer needed.

18.4 TESTING FOR ERRORS

The assumption of a file operation (opening, processing, or closing) is always successful in an ideal

situation. There are situations when the user tries to open a non-existent file in read mode or tries to open

a file in write mode which has been marked as read-only. File operations fail under such circumstances.

Such errors must be trapped and appropriate actions must be taken before further processing.

This can be done using the operator ! with an instance of the ifstream, ofstream or fstream.

The operator ! is overloaded to return nonzero in case any stream errors have occurred. For example,

to open a file for input and test whether it has successfully opened (it will not be opened if the file does

not exist), the following code may be used:

 ifstream in_file(“test.txt”);
 //test for error
 if(!in_file)
 { //File wasn’t opened
 cerr << “Cannot open test.txt\n”;
 exit(1);
 }

Once the file has been opened successfully, a common activity is to read from the file while the

end-of-file has not yet been reached. Using the name of a file stream instance in place of a condition

expression (such as inside an if or while statement) evaluates to nonzero only when no errors have

occurred in the file. Hence, errors such as end-of-file can be tested as follows:

 while (in_file) // while EOF has not been reached
 {
 //Read from the file.
 }

where in_file is an instance of ifstream, but an instance of ofstream or fstream can equally

be used in such situations.

Mastering C++732

An example using ifstream to output the contents of a file is given below. Note the use of the

manipulator resetiosflags to prevent skipping white-space characters in the input. A program to

display the contents of a file (filename is entered interactively) on the console is listed in fdisp.cpp.

// fdisp.cpp: display file contents using if stream to input from a file
#include <fstream.h>
#include <iomanip.h>
int main()
{
 char ch;
 char filename[25];
 cout << “Enter Name of the File: “;
 cin >> filename;
 // create a file object in read mode
 ifstream ifile(filename);
 if(!ifile) // file open status
 {
 cerr << “Error opening “ << filename << endl;
 return 1;
 }
 ifile >> resetiosflags(ios::skipws); //do not skip space or new line
 //Comment above line; then execute the program, you will see funny result
 while(ifile) // while EOF not reached.
 {
 ifile >> ch; // read a character from file
 cout << ch; // display character on console
 }
 return 0;
}

Run

Enter Name of the File: mytype.cpp
[The contents of the input file, mytype.cpp is displayed on console]

In main(), the statement

ifstream ifile(filename);

creates the disk file object ifile for a file name entered interactively in the read mode. In the absence

of the statement,

ifile >> resetiosflags(ios::skipws);

the file will be displayed without any spaces or new lines, since the >> operator neglects any white-

space characters by default. The statement

ifile >> ch;

reads a character from the file in a manner similar to cin. It does not skip white-space characters since

the ios::skipws flag is reset. The object ifile becomes 0 as soon as it reaches the end of the file

and hence, the statement

Streams Computation with Files 733

while(ifile)

loops until end of file is reached. All those files that are opened by a program must be closed by it.

Otherwise, the system closes all those files which are in open state during the termination of a program.

The program keyin.cpp waits for keyboard input and dumps all input characters into the file

key.txt until the end-of-file (Ctrl-Z) character is pressed followed by the carriage-return key.

// keyin.cpp: Reads all the characters entered and stores the same in
the file
#include <fstream.h>
void main()
{
 char ch;
 cout<<”Enter characters..<Ctrl-Z followed by carriage-return to stop>\n”;
 ofstream ofile(“key.txt”); // opens file in output ASCII mode
 while(cin) // not end of file
 {
 cin.get(ch); // read character from console
 ofile << ch; // write to file
 }
 ofile.close(); // close file
}

Run

Enter characters..<Ctrl-Z followed by carriage-return to stop>
1
A B C..X Y Z
^Z

Note: The file key.txt has all the above characters except ^z

In main(), the statement

ofstream ofile(“key.txt”);

opens the file key:txt in output mode. The statement

cin.get (ch);

reads a character from the input device without skipping white-space characters. Hence, the

resetiosflags (ios::skipws) manipulator need not be used to prevent skipping of white-space

characters. The statement

ofile << ch;

writes a character to the output file. The statement

ofile.close();

closes the file.

Another approach for detecting the end-of-file condition is using the member function eof(). This

operates as follows:

stream-object. eof() = 0 if end-of-file is not detected

 = non-zero if end-of-file is detected

Mastering C++734

The function eof() is a member function of the class ios. For example

if(fin.eof())

 // end-of-file

else

 // not end-of-file

The program stdwr.cpp illustrates the processing of errors that occur while manipulating files.

// stdwr.cpp: student file, creating, writing, and reading the same
#include <fstream.h>
void student_write(int count)
{
 char name[30];
 int i, marks;
 // create a file, open it in write mode and save data.
 ofstream fout; // create a file object
 fout.open(“student.out”); // connect file object to file
 if(!fout)
 {
 cout << “Error: “ << “student.out cannot be opened in write mode”;
 return;
)
 for(i = 0; i < count; i++)
{
 cout << “Enter Name: “;
 cin >> name;
 cout << “Enter Marks Secured: “;
 cin >> marks;
 // write to a file
 fout << name << endl;
 fout << marks << endl;
}
fout.close(); // disconnect a file
}
void student_read()
{
 char name[30];
 int i, marks;
 // create a file, open it in write mode and save data
 ifstream fin; // create a file object
 fin.open(“student.out”); // connect file object to file
 if(!fin)
 {
 cout << “Error: “ << “student.out cannot be opened in read mode”;
 return;
 }
 while(1)
 {

Streams Computation with Files 735

 fin >> name;
 fin >> marks;
 if(fin.eof())
 break;
 cout << “Name: “ << name << endl;
 cout << “Marks Secured: “ << marks << endl;
 }
 fin.close(); // disconnect a file
}
void main{)
{
 int count;
 cout << “How many students? “;
 cin >> count;
 cout << “Enter student details to be stored...” << endl;
 student_write(count);
 cout << “Student details processed from the file...” << endl;
 student_read();
}

Run

How many students? 3
Enter student details to be stored...
Enter Name: Mangala
Enter Marks Secured: 75
Enter Name: Chatterjee
Enter Marks Secured: 99
Enter Name: Rao-M-G
Enter Marks Secured: 50
Student details processed from the file...
Name: Mangala
Marks Secured: 75
Name: Chatterjee
Marks Secured: 99
Name: Rao-M-G
Marks Secured: 50

In student_write(), the statement

fout.open(“student.out”); // connect file object to file

opens the file student.out and connects the same to the stream object fout. The statement

if(!fout)

verifies whether the file is opened successfully or not. The condition is true, when ! fout is nonzero.

 The statement in student_read()

if(fin.eof())
 break;

checks for the end-of-file and terminates file processing if the end-of-file is reached.

Mastering C++736

18.5 FILE MODES

The constructors of ifstream and key.txt and the function open() are used to create files as

well as open the existing files in the default mode (text mode). In both methods, the only argument

used is the filename. C++ provides a mechanism of opening a file in different modes in which case the

second parameter must be explicitly passed. The syntax is as follows:

stream-object.open(“filename”, mode);

It opens the file in the specified mode. The list of file modes are shown in Table 18.1 with mode values

and their meanings.

Table 18.1 File-open modes

mode value Effect on the Mode

ios::in open for reading.

ios::out open for writing.

ios::ate seek (go) to the end of file at opening time.

ios::app append mode: all writes occur at end of file.

ios::trunc truncate the file if it already exists.

ios::nocreate open fails if file does not exist.

ios::noreplace open fails if file already exists.

ios::binary open as a binary file.

The following points can be noted regarding file modes:

 Opening a file in ios::out mode also opens it in the ios::trunc mode by default. That is,

if the file already exists, it is truncated.

 Both ios::app and ios::ate sets pointers to the end-of-file, but they differ in terms of the

types of operations permitted on a file. The ios::app allows to add data from the end-of-file,

whereas ios::ate mode allows to add or modify the existing data anywhere in the file. In both

the cases, a file is created if it is non-existent.

 The mode ios::app can be used only with output files.

 The stream classes ifstream and ofstream open files in read and write modes respectively

by default.

 For fstream class, the mode parameter must be explicitly passed.

 More than one value may be ORed to have a combined effect. For instance, the following

statement opens a file for reading in binary mode:

istream in_file(“myfile”, ios::in | ios::binary);

The program payfile.cpp generates a payroll-like output and directs the output to the file

pay.txt instead of cout. It stores floating-point data in the form of ASCII characters instead of

machine representation (binary form).

Streams Computation with Files 737

// payfile: payroll like output example printing results to file
#inciude <fstream.h>
#include <iomanip.h>
void main()
{
 float f1=123.45, f2=34.65, f3=56;
 //open file “pay.txt” in output mode and truncate its contents if exists
 ofstream out_file(“pay.txt”, ios::trunc);
 out_file << setiosflags(ios::showpoint|ios::fixed)
 << setiosflags(ios::right);
 out_file << setw(6) << fl << endl;
 out_file << setw(6) << f2 << endl;
 out_file << setw(6) << f3 << endl;
}

Run

After execution of the program, the file pay.txt contains the following:
123.45
 34.65
 56.00

In main(), the statement

ofstream out_file(“pay.txt”, ios::trunc);

creates the file pay.txt and truncates its contents if the file already exists. As with the console

streams, manipulators can be used with any of the file-stream instances.

18.6 FILE POINTERS AND THEIR MANIPULATIONS

The knowledge of the logical location at which the current read or write operations occur is of great

importance in achieving faster access to information stored in a file. The file-management system

associates two pointers, called file pointers with each file. In C++, they are called get pointer (input

pointer) and put pointer (output pointer). These pointers facilitate the movement across the file while

reading or writing. The get pointer specifies a location from where the current reading operation is

initiated. The put pointer specifies a location from where the current writing operation is initiated. On

completion of a read or write operation, the appropriate pointer will be advanced automatically.

18.6.1 Default Actions

The file pointers are set to a suitable location initially based on the mode in which the file is opened.

Fundamentally, a file can be opened in the read mode, write mode, or append mode. The logical location

of file pointers when a file is opened is discussed below (see Figure 18.7.):

Read-only Mode

When a file is opened in read-only mode, the input (get) pointer is initialized to point to the beginning

of the file, so that the file can be read from the start.

Mastering C++738

Write-only Mode

When a file is opened in write-only mode, the

existing contents of the file are deleted (if a given

file already exists) and the output pointer is set to

point to the beginning of the file, so that data can

be written from the start.

Append Mode

When a file is opened in append mode, the existing

contents of the file remain unaffected (if a given file

already exists) and the output pointer is set to point

to the end of the file so that data can be written

(appended) at the end of the existing contents.

18.6.2 Functions for Manipulation of File Pointers

The C++ I/O system supports four functions for setting a file pointer to any desired position inside the

file or to get the current file pointer. These allow the programmer to have control over a position in the

file where the read or write operation takes place. The functions are listed in Table 18.2.

Table 18.2 File pointer control functions

Function Member of class Action Performed

seekg() ifstream Moves get file pointer to a specific location

seekp() ofstream Moves put file pointer to a specific location

tellg() ifstream Returns the current position of the get pointer

tellp() ofstream Returns the current position of the put pointer

The seekp() and tellp() are member functions of ofstream. The seekg() and tellg() are

member functions of ifstream. The class fstream deals with files in both input and output modes. Hence,

there are two file pointers in the class fstream—the put pointer used for writing and the get pointer used

for reading. All four functions mentioned above are available in the class fstream. The seekp() and

tellp() deal with the put pointer, while seekg() and tellg() deal with the get pointer.

The two seek functions have the following prototypes:

istream & seekg(long offset, seek_dir origin = ios::beg);
ostream & seekp(long offset, seek_dir origin = ios::beg);

Both functions set a file pointer to a certain offset relative to the specified origin. The second

parameter origin represents the reference point from where the offset is measured. It can be specified

by using an enumeration declaration (seek_dir) given in the ios class. (See Table 18.3.)

Table 18.3 File seek origins

origin value Seeks from

ios::beg seek from beginning of file

ios::cur seek from current location

ios::end seek from end of file

Fig. 18.7 File pointer position on opening a file

Append mode

Write mode

Read mode

input pointer

output pointer

output pointer

"hello" file

"hello" file

"hello" file

H e l l o o l dW r

H e l l o o l dW r

Streams Computation with Files 739

For example, the statement

infile.seekg(20, ios::beg);
or

infile.seekg(20);

moves the file pointer to the 20th byte in the file infile. After this, if a read operation is initiated, the

reading starts from the 21st item (bytes in file are numbered from zero) within the file. The statement

outfile.seekp(20, ios::beg);
or

outfile.seekp(20);

moves the file pointer to the 20th byte in the file outfile. After this, if a write operation is initiated,

the writing starts from the 21st item (bytes in file are numbered from zero) within the file. Consider the

following statements:

ofstream outfile(“student.out”, ios::app);
int size = outfile.tellp();

The first statement creates the file stream object outfile, and connects it to the disk file student.
out. It moves the output pointer to the end of the file. The second statement assigns the value of the

put pointer to the integer variable size, which in this case represents the number of bytes in the file.

The program fsize.cpp prints the size of a file, whose name is given as a command line parameter.

// fsize.cpp: file size finding using seekg and tellg
#include <fstream.h>
int main(int argc, char *argv[])
{
 if(argc < 2) //no filename is passed
{
 cout << “Usage: fsize <filename>”;
 return 1;
}
ifstream infile(argv[1]); // file open in read and write mode
if(!infile) // open success
{
 cerr << “Error opening “ << argv[1] << endl;
 return 1;
}
infile.seekg(0, ios::end); // set read pointer to end of file
cout << “File Size=” << infile.tellg(); // read current position
return 0;
}

Run 1

Usage: fsize <filename>

Run2

File Size=437

Mastering C++740

In main(), the statement

infile.seekg(0, ios::end);

moves the read pointer to the end of the file, and the statement

infile.tellg();

reads the get pointer value. In this situation, it represents the size of the file.

The seekg() sets the get pointer while seekp() sets the put pointer to the specified location.

Some of the pointer offset calls and their actions are shown in Table 18.4 and Figure 18.8. It is assumed

that the variable fput is the object of the stream class ofstream and fin is the object of the stream

class ifstream.

Table 18.4 Seek calls and their actions

Seek call Action performed

fout.seekg(0, ios::beg) Go to the beginning of the file

fout.seekg(0, ios::cur) Stay at the current file

fout.seekg(0, ios::end) Go to the end of the file

fout.seekg(n, ios::beg) Move to (n + 1) byte location in the file

fout.seekg(n, ios::cur) Move forward by n bytes from current position

fout.seekg(-n, ios::cur) Move backward by n bytes from current position

fout.seekg(-n, ios::end) Move backward by n bytes from the end

fin.seekp(n, ios::beg) Move write pointer to (n +1) byte location

fin.seekp(-n, ios::cur) Move write pointer backward by n bytes

Fig. 18.8 Seek positions and their origin

ios::beg

file

seek-origin

ios::cur ios::end

(ios:beg,offset)

(ios:cur,offset)

(ios::end,offset)

(1)seekp/g(offset, ios:;beg);

(3)seekp/g(offset, ios:;end);

(2)seekp/g(offset, ios:;cur);

(1)

(2)

(3)

Streams Computation with Files 741

18.7 SEQUENTIAL ACCESS TO A FILE

Unlike other programming languages (such as COBOL), C++ does not provide commands organizing

and processing files as sequential or direct (random) files. However, it provides file-manipulation

commands which can be used by the programmer to device access to files sequentially or randomly. A

sequential file has to be accessed sequentially; to access the particular data in the file, all the preceding

data items have to be read and discarded. A random file allows access to the specific data without the

need for accessing its preceding data items. However, it can also be accessed sequentially. Organizing

a file either as sequential or random depends on the type of media on which the file is organized and

stored. For instance, a file on a tape must be accessed sequentially, whereas a file on a hard disk or

floppy disk can be accessed either sequentially or randomly. In C++, it is the responsibility of the

programmer to devise a mechanism for accessing a file.

The C++ file-stream system supports a wide variety of functions to perform the input-output operation

on files. The functions, put() and get(), are designed to manage a single character at a time. The other

functions, write() and read(), are designed to manipulate blocks of character data.

18.7.1 The put() and get() Functions

The function get() is a member function of the file-stream class fstream, and is used to read a

single character from the file. The function put() is a member function of the output stream class

fstream, and is used to write a single character to the output file. The program putget.cpp reads

a string from the standard input device, and writes the same to a file character by character. A sequential

file is created and its pointer is positioned at the beginning of the file. It is processed sequentially until

the end-of-file is encountered.

// putget.cpp: writes and reads characters from the file
#include <fstream.h>
void main()
{
 char c, string[75];
 fstream file(“student.txt”, ios::in | los::out);
 cout << “Enter String: “;
 cin.getline(string, 74);
 for(int i = 0; string [i]; i++)
 file.put (string[i]);
 file.seekg(0); // seek to the beginning
 cout << “Output String: “
 while(file)
 {
 file.get (c); // reads a character
 cout << c;
 }
}

Run

Enter String: Object-Computing with C++
Output String: Object-Computing with C++

Mastering C++742

Note: The file student.txt contains the entered string.

The stream fstream provides the facility to open a file in both read and write modes; so that the

file can be processed randomly by positioning the file pointers.

18.8 ASCII AND BINARY FILES

The stream operators insertion and extraction always manipulate and deal with formatted data. Data has

to be formatted to produce logical information. This is because most of the I/O devices communicate

to the computer system using ASCII code, but the CPU processes these data using the binary system.

Hence, it is necessary to convert data while reading from the input device or displaying data on the

output device. Most visible data-formatting operation is alignment of display fields. In addition to this,

data-formatting operation also occurs transparently while transferring data between the program and

console or a file. For example, in order to display an integer value, the << operator converts the number

into a stream of ASCII characters. Similarly, the >> operator converts the input ASCII characters to

binary while reading data from the input device. For instance, when a number, say, 120, is typed in

response to an input statement such as

cin >> i;

the user enters data by typing on the keyboard. In this case, stream operator receives ASCII codes of the

numeric characters 1, 2, and 0 (which are 49, 50, and 48). The >> operator function converts the input

ASCII data to binary and assigns to the variable i. Similarly, the << operator in a statement such as

cout << i;

converts the content of the variable i (say, 120) into three ASCII characters, 49, 50, and 48 and then

sends the same to the standard output device. The representation of an integer in the character form and

binary form is shown in Figure 18.9.

Fig. 18.9 Integer representation in ASCII and binary format

Binary formatASCII format

1 byte

5 bytes

2 bytes

2 bytes

Representation size varies
according to magnitude

Representation size remains varies
irrespective of magnitude

File I/O requires
data conversion, Binary
to ASCII while writing to file
and ASCII to binary while
reading a file

File I/O requires
no conversion, of data and
hence fast access to a file

3 2
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

10 1 1 1 1 1 1 1 1 1 1 1 1 1 13 2 6 0

®

® ®

®

4

0

Streams Computation with Files 743

When the character \n is written to a text file (ASCII file), it is actually converted into the sequence

\r and \n and then written to a file. Similarly, while reading a character if this sequence is encountered,

it is converted to a single character \n and transferred to the reader. The following section discusses

other distinction between file operations on ASCII and binary files.

18.8.1 write() and read() functions

At the user end, generally the values are represented in ASCII, whereas, inside the machine their binary

equivalents are used. In certain cases, it is not necessary to store information in the form of ASCII

characters. For instance, in a database application, storing an integer in binary form instead of a string

of ASCII characters saves a lot of disk space and makes retrieval faster. To store or retrieve data in

binary form, the member functions write() or read() can be used.

Unlike put() and get(), the write() and read() functions access data in binary format. In

binary format, the data representation in the file and in the system is the same. The difference between

the representation of data in text form and binary is shown in Figure 18.9. The number of bytes required

to represent an integer in text form is proportional to its magnitude, whereas in binary form, the size is

always fixed irrespective of its magnitude. Thus, the binary form is more accurate, and provides faster

access to the file because no conversion is required while performing read or write. The read() and

write() functions have the following syntax:

infile.read((char *) &variable, sizeof(variable));
outfile.write((char *) &variable, sizeof(variable));

The first parameter is a pointer to a memory location at which the data retrieved from the file is to

be stored in case of read() and address at which data is to be written when retrieved from a file in

case of write(). The second parameter indicates the number of bytes to be transferred. The program

fwr.cpp illustrates the creation and manipulation of binary files.

// fwr.cpp: use of write and read member of file streams
#include <fstream.h>
void main()
{
 int numl = 530;
 float num2 = 1050.25;
 // open file in write binary mode, write integer and close
 ofstream out_file(“number.bin”, ios::binary);
 out_file.write((char *) &numl, sizeof(numl));
 out_file.write((char *) &num2, sizeof(float));
 out_file.close();
 // open file in read binary mode, read integer and close
 ifstream in_file(“number.bin”, ios::binary);
 in_file.read((char*)&numl, sizeof(int));
 in_file.read((char*)&num2, sizeof(num2));
 cout << numl << “ “ << num2 << endl;
 in_file.close();
}

Run

530 1050.25

Mastering C++744

In main(); the statement

out_file.write((char *) &numl, sizeof(numl));

writes the contents of the integer variable numl to the disk file. The number of bytes to be written can

be computed by sizeof(numl) or sizeof(int). The statement

in_file.read((char*)&numl, sizeof(int));

reads sizeof(int) number of bytes from the file and stores in the memory location pointed to by

the second parameter.

18.9 SAVING AND RETRIEVING OF OBJECTS

C++ does not support the creation of persistence objects. Persistence objects are those which outlive

the program execution time and exist between executions of a program. All database systems support

persistence. In C++, this is not supported, however, the programmer can build it explicitly using file

streams in a program. The stream operators can be overloaded to save objects into a file or retrieve objects

from a file. The stream operators << and >> are also member functions of the file-manipulation stream

classes of stream and ifstream. The concept of overloading file stream operators is the same as that

of overloading of console stream operators as discussed in the earlier chapter: Operator Overloading.

The stream operators have to be overloaded as friend operator functions of user-defined classes

whose objects are to be manipulated with file streams. The stream operator << function takes the

ofstream& (reference object parameter) as the first argument and the second parameter can be a

reference object of a class. The return value of this operator function is object of the ofstream& type.

The operator >> function takes the ifstream& (reference object parameter) as the first argument and

the second parameter can be a reference object of a class. The return value of this operator function is

the object of the type ifstream&. Thus, in both the cases, a reference to an object of the current class

is taken as the second argument and after manipulating the second parameter, a reference to an object

of the respective stream class is returned.

The program objsave.cpp illustrates the flexibility gained by overloading the insertion and

extraction operators while saving objects into a file or retrieving objects from a file.

// objsave.cpp: saving a object to a file with stream operator overloaded
#include <fstream.h>
#include <ctype.h> // for toupper
#include <string.h> // for strlen
#define MAXNAME 40
class Person
{
 private:
 char name[MAXNAME];
 int age;
 public:
 // this function writes the class’s data members to the file
 void write(ofstream &os)
 {

Streams Computation with Files 745

 os.write(name, strlen(name));
 os << ends;
 os.write((char*)&age, sizeof(age));
 }
 // this function reads the class’s date member from the file.
 // It returns nonzero if no errors were encountered while reading
 int read(ifstream &is)
 {
 is.get(name, MAXNAME, 0);
 name(is.gcount()] = 0;
 is.ignore(1); // ignore the NULL terminator in the file.
 is.read((char*)&age, sizeof(age));
 return is.good();
 }
 // stream operator, << overloading
 friend ostream & operator << (ostream &os, Person &b);
 // stream operator >> operator overloading
 friend istream &operator >> (istream &is, Person &b);
 // output file stream operator overloading
 friend ofstream &operator << (ofstream &fos, Person &b)
 {
 b.write(fos);
 return fos;
 }
 // output file stream operator overloading
 friend ifstream &operator >> (ifstream &fos, Person &b)
 {
 b.read(fos);
 return fos;
 }
};
istream &operator >> (istream &is, Person &b)
{
 cout << “Name: “;
 is >> ws; // flush input buffer
 is.get(b.name, MAXNAME);
 cout << “Age : “;
 is >> ws >> b.age;
 return is;
}
ostream &operator << (ostream &os, Person &b)
{
 os << b.name << endl;
 os << b.age << endl;
 return os;
}
void main()
{
 Person p_obj;

Mastering C++746

 // open a file in binary mode and write objects to it
 ofstream ofile(“person.txt”, ios::trunc|ios::binary);
 char ch;
 do
 {
 cin >> p_obj; // read object
 ofile << p_obj; // write object to the output file
 cout << “Another? “;
 cin >> ch;
 } while(toupper(ch) == ‘Y’);
 ofile.close();
 // Output loop, display file content
 ifstream ifile(“person.txt”, ios::binary);
 cout << “The objects written to the file were:..”; << endl;
 while(1)
 {
 ifile >> p_obj; // extract person object from file
 if(ifile.fail()) // file read fail, end-of-file
 break;
 cout << p_obj; // display person object on console
 }
}

Run

Name: Tejaswi
Age : 5
Another? y
Name: Savithri
Age : 23
Another? n
The objects written to the file were:..
Tejaswi
5
Savithri
23

In the above program, the object p_obj of the class Person is retrieved from or saved to a file just

like a variable of a built-in data type. The statement

cin >> p_obj;

reads the object, p_obj from the standard input device, whereas the statement

ifile >> p_obj;

retrieves the object, p_obj from the input file ifile. The statement

cout << p_obj;

displays the object, p_obj on the standard output device and the statement

ofile << p_obj;

stores the object p_obj in the file. The mechanism of manipulating user-defined objects with stream

operators is depicted in Figure 18.10.

Streams Computation with Files 747

The classes ifstream and ofstream are declared in the fstream.h header file. The member

functions of the stream classes ifstream and ofstream, get() and write() can be used to

manipulate user-defined objects in disk files. These functions handle the entire structure of an object as

a single unit, and store or retrieve in binary format. For instance, the member function write() of the

class ofstream, writes a class’s object from memory byte-by-byte without conversion to the target

disk file opened in binary mode. It is important to note that only data members of a class are copied to

the disk file. For instance, the statement in the above program,

ofile << p_obj;

can be replaced by the statement

ofile.write((char *) &p_obj, sizeof(p_obj));

to store the object p_obj to the disk file. Likewise, the statement

ifile >> p_obj;

can be replaced by:

ifile.read((char *) &p_obj, sizeof(p_obj));

in order to retrieve the object from the disk file. The length of the object is computed using the sizeof

operator. It returns the number of bytes required to hold all the data members of the p_obj object.

18.10 FILE INPUT/OUTPUT WITH fstream CLASS

The class fstream supports simultaneous input and output operations. It contains open() with

input mode as default. It inherits all the functions from istream and ostream classes through

iostream. The program student.cpp illustrates the role of fstream class in the manipulation

Fig. 18.10 Files and objects interaction

Client program

person per_obj;

ofstream ofile

("person.txt",..);

cin >> per_obj;

ofile << per_obj;

ifstream ifile

("person.txt",..);

ifile >> per_obj;

cout << per_obj;

ope
rat

or>
>(i

fst
rea

m,.
.)

operator >>
(istream,person & b)

o
p
e
r
a
t
o
r
<
<

(
o
s
t
r
e
a
m
,
p
e
r
s
o
n
&
b
)

char name[]

int age

o
p
e
r
a
t
o
r

<
<

(
o
f
s
t
r
e
a
m
,
.
.
)

Mastering C++748

of files. It reads the data from the input file student.in and writes the processed information into

another disk file student.out.

// student.cpp: reads students from files and writes result to another file
#include <iostream.h>
#include <fstream.h>
#include <conio.h>
#include <process.h>
void main()
{
 fstream infile; // input file
 fstream outfile; // output file
 int i, count, percentage;
 char name[30];
 // Open source file for reading
 infile.open(“student.in”, ios::in);
 if(infile.fail())
 {
 cout << “Error: student.in file non-existent”;
 exit(1);
 }
 outfile.open(“student.out”, ios::out);
 if(outfile.fail())
 {
 cout << “Error: unable to open student.out in write mode”;
 exit(1);
 }
 infile >> count; // how many students
 // write header to output file
 outfile << “ Students Information Processing” << endl << endl;
 outfile << “--” << endl;
 for(i = 0; i < count; i++)
 {
 // read data and percentage secured from the input file
 infile >> name;
 infile >> percentage;
 // write name and class secured based on percentage to output file
 outfile << “Name: “ << name << endl;
 outfile << “Percentage: “ << percentage << endl;
 outfile << “Passed in: “;
 if(percentage >= 70)
 outfile << “First class with distinction”;
 else
 if(percentage >= 60)
 outfile << “First class”;
 else
 if(percentage >= 50)
 outfile << “Second class”;
 else

Streams Computation with Files 749

 if(percentage >= 35)
 outfile << “Third class”;
 else
 outfile << “Sorry, Failed!”;
 outfile << endl;
 outfile << “--” << endl;
 }
 // close files
 infile.close();
 outfile.close();
}
Run

Note that before running the above program, create the input file student.in containing the data

according to the following format:

1. Number of students

2. First student name (without blanks)

3. First student percentage score

 ….

 ….

N. Last student name

 Last student percentage score

It processes the input file and writes results to the output file; see the contents of the student.out.

The input file student.in contains the following information:

6
Rajkumar
84
Tejaswi
82
Smrithi
60
Anand
55
Rajshree
40
Ramesh
33

The above Run has created the output file student.out containing the following:

 Students Information Processing
--
Name: Rajkumar
Percentage: 84
Passed in: First class with distinction
--

Mastering C++750

Name: Tejaswi
Percentage: 82
Passed in: First class with distinction
--
Name: Smrithi
Percentage: 60
Passed in: First class
--
Name: Anand
Percentage: 55
Passed in: Second class
--
Name: Rajshree
Percentage: 40
Passed in: Third class
--
Name: Ramesh
Percentage: 33
Passed in: Sorry, Failed!
--

In main(), the statements

fstream infile; // input file
fstream outfile; // output file

create objects of the stream class fstream and the statements

infile.open(“student.in”, ios::in);
outfile.open(“student.out”, ios::out);

bind the stream objects infile and outfile to disk files named student.in and student.out

respectively. Note that the stream objects infile and outfile are instances of the fstream class,

but they are opened in different modes, i.e., infile is opened in the read mode, whereas outfile is

opened in the write mode. The statement

infile >> name;

reads name string from the input disk file, and the statement

outfile << “Name: “ << name << endl;

writes the same to the output disk file. The file processing is carried on until all the records are processed.

Note that the syntax for writing to the disk file resembles that used for writing to the console.

18.11 RANDOM ACCESS TO A FILE

The program fio.cpp handles files using the fstream class. It uses fstream to perform both input-

output operation on the test.del file. Since the class fstream is derived from iostream, both

input and output can be done on the same stream (same file in this case).

Streams Computation with Files 751

// fio.cpp: Input and output operations on file, random access

#include <iostream.h>

#include <fstream.h>

#define READ_SIZE 6

void main()

{

 char reader[READ_SIZE + 1];

 // fstream constructor, open in binary input and output mode

 fstream fstr(“test.del”, ios::binary|ios::in|ios::out);

 // Write the numbers 0 to 9 to file

 for(int i = 0; i < 10; i++)

 fstr << i;

 // Set the write (put) pointer.

 fstr.seekp(2);

 fstr << ”Hello”;

 // Set the read (get) pointer.

 fstr.seekg(4);

 fstr,read(reader, READ_SIZE);

 reader[READ_SIZE] = 0; // end of string

 cout << reader << endl;

}

Run

11o789

Note that an instance of fstream has two file pointers associated with it: a get pointer used while

reading, and a put file pointer used while writing. The statement

fstr.seekp(2);

sets the put pointer to an offset 2.

The program first writes ASCII codes of the digits 0 to 9 to the file test.del, moves the put

pointer by an offset 2 from the beginning of the file and the overwrites the numbers 3 through 6 with

the string “Hello”. It then reads 6 characters from the offset 4 into the array reader. The last line of

the program will display these 6 characters, which will be 11O789. After all writes are completed, the

contents of the file test.del will be 01HellO789

The facility for direct file processing is essential in database applications. They perform extensive

data read, write, update, and search activities. These actions require movement of the file pointers (get

or put) from one position to another. This can be easily performed by using the seek(), read(),

and write() functions.

The location at which the mth object is stored can be computed using a relation:

location = m * sizeof (object)

This specifies the offset at which the object is stored in a file. It can be used to manipulate the mth

object by using the read() or write() functions.

Mastering C++752

Case Study
Consider a scenario where you are required to create a C++ program that stores objects containing a

person’s name and age details, in a text file. The program must implement random file access approach

to allow the users to update any of the stored objects at random.

The program direct.cpp illustrates the mechanism of updating a file by random access. It uses

the file person.txt to store objects and then these objects can be updated if necessary. The file

pointers get and put are positioned based on the object to be accessed.

// direct.cpp: accessing objects randomly
#include <fstream.h>
#include <ctype.h> // For toupper
#include <string.h> // For strlen
#define MAXNAME 40
class Person
{
 private:,
 char name[MAXNAME];
 int age;
 public:
 // this function writes the class’s data members to the file
 void write(ofstream &os)
 {
 os.write(name, strlen(name));
 os << ends;
 os.write((char*) &age, sizeof(age));
 }
 // this function reads the class’s date member from the file.
 //It returns nonzero if no errors were encountered while reading.
 int read(ifstream &is)
 {
 is.get(name, MAXNAME, 0);
 name[is.gcount()] =0;
 is.ignore(1); // ignore the NULL terminator in the file.
 is.read(- (char*) &age, sizeof(age));
 return is.good();
 }
 // stream operator, << overloading
 friend ostream & operator << (ostream &os, Person &b);
 // stream operator >> operator overloading
 friend istream &operator >> (istream &is, Person &b);
 // output file stream operator overloading
};
istream &operator >> (istream &is, Person &b)
{
 cout << “Name:”;
 is >> ws; //flush input buffer
 is.get(b.name, MAXNAME);
 cout << “Age : “;

Streams Computation with Files 753

 is >> ws >> b.age;
 return is;
}
ostream &operator << (ostream &os, Person &b)
{
 os << “Name: “ << b.name << endl;
 os << “Age : “ << b.age<< endl;
 return os;
}
void main()
{
 Person p_obj;
 int count, obj_id;
 cout << “Database Creation...” << endl;
 // open a file in binary mode and write objects to it
 ofstream ofile(“person.dat”, ios::trunc|ios::binary);
 count = 0;
 char ch;
 do
 {
 cout << “Enter Object “ << count << “ details...” << endl;
 cin >> p_obj;
 count = count + 1;
 // write object to the output file
 ofile.write((char *) &p_obj, sizeof(p_obj));
 cout << “Another? “;
 cin >> ch;
 } while(toupper(ch) == ‘Y’);
 ofile.close();
 // Output loop, display file content
 fstream iofile(“person.dat”, ios::binary|ios::in|ios::out);
 cout << “Database Access... “ << endl;
 while(1)
 {
 cout << “Enter the object number to be accessed <-l to end>:”;
 cin >> obj_id;
 if(obj_id < 0 || obj_id >= count)
 break;
 int location = obj_id * sizeof(p_obj);
 iofile.seekg(location, ios::beg);
 iofile.read((char *) &p_obj, sizeof(p_obj));
 cout << p_obj;
 cout << “Wants to Modify? “;
 cin >> ch;
 if(ch == ‘y’ || ch == ‘Y’)
 {
 cin >> p_obj;
 // update the object in the file
 iofile.seekp(location, ios::beg);

Mastering C++754

 iofile.write((char *) &p_obj, sizeof(p_obj));
 }
 }
 iofile.close();
}

Run

Database Creation...
Enter Object 0 details. . .
Name: Rajkumar
Age: 25
Another? y
Enter Object 1 details...
Name: Tejaswi
Age : 20
Another? y
Enter Object 2 details...
Name: Kalpana
Age : 15
Another? n
Database Access...
Enter the object number to be accessed <-l to end>: 0
Name: Rajkumar
Age : 25
Wants to Modify? n
Enter the object number to be accessed <-l to end>: 1
Name: Tejaswi
Age : 20
Wants to Modify? y
Name: Tejaswi
Age : 5
Enter the object number to be accessed <-l to end>: 1
Name: Tejaswi
Age : 5
Wants to Modify? n
Enter the object number to be accessed <-l to end>: -1

In the program, initially a database is created without supporting its modification during creation.

After creating the database file, the object iofile of class fstream is created using the statement,

fstream iofile(“person.dat”, ios::binary | ios::in | ios::out);

It connects the file person.dat to the stream-based object and permits both the read and write

operations to be performed on the same file.

To read objects randomly, there must be a mechanism for converting object-id (object request) into

the location at which it is stored. This is achieved by computing the location of the object storage using

the relation:

int location = obj_id * sizeof (p_obj);

and put pointer is set to this by

Streams Computation with Files 755

iofile.seekg(location, ios::beg);

and the statement:

iofile.read((char *) &p_obj, sizeof(p_obj));

reads the file and stores into the object.

18.12 IN-MEMORY BUFFERS AND DATA FORMATTING

The C’s I/O system has two functions: sscanf() and sprintf() (whose prototypes appear in the

stdio.h header file) for formatted I/O with memory buffers. The function sscanf() performs

formatted input from a character array, and sprintf() does formatted output to a character array.

These functions are normally used while displaying numbers in graphical environments (like BGI and

Windows) where the output functions accept only strings.

C++ supports stream classes (declared in strstrea.h): istrstream (handling input of data

from the array), ostrstream (handling output of data to the array), and strstream (transfer of

data both ways) to handle character arrays in memory. In many cases, these streams may be easier

to use than ordinary strings, since their buffers are dynamic. These streams can be used with stream

operators, manipulators, etc., in the same way as the file streams. But their constructors have different

specification. The program cmdadd.cpp illustrates the use of istrstream class in creating stream

buffers and using it for extracting the data. It adds all the numbers passed as command-line arguments.

// cmdadd.cpp: addition of numbers passed through command line
#include <strstrea.h>
void main(int argc, char *argv[])
{
 int i = 1;
 long num, sum=0;
 if(argc < 2)
 {
 cout << “Usage: cmdadd list_of_numbers_to_be_added”;
 return;
 }
 while(--argc)
 {
 istrstream arg(argv[i]);
 arg >> num;
 sum += num;
 i++;
 }
 cout << sum << endl;
}

Run

At System prompt: cmdadd 123
6

Mastering C++756

In main(), the statement

istrstream arg(argv[i]);

creates an object of the class istrstream and connects the same to a buffer. This object can now be

used to read data from the associated buffer. The statement

arg >> num;

extracts the data value and stores into the variable num. This method of accessing data is similar to

performing I/O with the console and a file.

18.13 ERROR HANDLING DURING FILE MANIPULATIONS

In the real-time environment, many users access different files without any predefined access pattern.

The following are the different situations that can arise while manipulating a file:

 Attempting to open a non-existent file in read-mode.

 Trying to open a read-only marked file in write-mode.

 Trying to open a file with invalid name.

 Attempting to read beyond the end-of-the-file.

 Sufficient disk space is not available while writing to a file.

 Attempting to manipulate an unopened file.

 Stream object created but not connected to a file.

 Media (disk) errors reading/writing a file.

Such conditions must be detected while manipulating files and appropriate action should be taken to

achieve consistent access to files.

Every stream (ifstream, ofstream, and fstream) has a state associated with it. Errors and

nonstandard conditions are handled by setting and testing this state appropriately. The stream status

variable and information recorded by its bits is shown in Figure 18.11.

Fig. 18.11 State variable format

Unused

end-of-file

xxxx

R/W fail

invalid operation

hard error

Streams Computation with Files 757

The ios class supports several functions to access the status recorded in the data member

io_state. These functions and the meaning of their return values are shown in Table 18.5.

Table 18.5 Error handling functions and their return values

Function Meaning of Return Value

eof() TRUE, (nonzero) if EOF encountered while reading FALSE, (zero) otherwise

fail() TRUE, if read or write operation has failed; FALSE, otherwise

bad() TRUE, invalid operation is attempted or any unrecoverable errors FALSE; otherwise

however, it can be recovered

good() TRUE, if operation is successful, i.e., all the above are functions that return false, if

file.good() is true, everything is fine and can proceed for further processing

rdstate() returns the status-state data member of the class ios

clear() clear error states and further operations can be attempted

The following examples illustrates the mechanism for checking errors during file operations:

Opening a non-existent file in Read Mode
ifstream infile (“myfile.dat”);
if(!infile)
{
 // file does not exist
}

Open Fail: Opening Read-only Marked File
ofstream outfile(“myfile.dat”);
if(!infile) // or if(infile.bad())
{
 // file already exist and marked as read only
}

Detecting End of File
while(!infile.eof()) // processes until end-of-file is reached
{
 // process file
}

Read Fail
infile.read(...);
if(infile.bad())
{
 // file cannot be processed further
}

Invalid Filename
infile.open(“|-*”);

Mastering C++758

if(!infile)
{
 // invalid file name
}

Processing Unopened File
infile.read(..); // read file
if(infile.fail))
{
 // file is not opened
}

The program outfile.cpp illustrates the trapping of all possible errors, which may be encountered

during file processing.

// outfile.cpp: writes all the input into the file ‘sample.out’
#include <fstream.h>
#include <process.h>
#include <string.h>
void main()
{
 char buff[80];
 ofstream outfile; // output file
 outfile.open(“sample.out”); // open in output mode
 if(outfile.bad()) // open fail
 {
 cout << “Error: sample.out unable to open”;
 exit(1);
 }
 // loop until input = “end”
 whiie(l)
 {
 cin.getline(buff, 80); // read a line from keyboard
 if(strcmp(buff, “end”) == 0)
 break;
 outfile << buff << endl; // write to output file
 if(outfile.fail())
 {
 cout << “write operation fail”;
 exit(1);
 }
}
outfile.close();
}

Run

OOP is good
C++ is OOP
C++ is good
end

Streams Computation with Files 759

Note: On execution of the above program, the file sample.out contains the following information

entered through the standard input device, keyboard:

OOP is good

C++ is OOP

C++ is good

In main(), the statement

ofstream outfile; // output file

creates the object outfile and the statement

outfile.open(“sample.out”); // open in output mode

opens the file sample.out in the output mode. The statement

if (outfile.bad()) // open fail

checks for the status of the file open command. If open fails, it returns 1, otherwise 0. The statement

outfile << buff << endl; // write to output file

writes the contents of the variable buff followed by a newline character to the file. The statement

if(outfile.fail())

checks for the status of the preceding write operation.

18.14 FILTER UTILITIES

The operating system provides many tools for browsing through the contents of the file, copying one

file to another, printing files on the printer, and beautifying the content of files. Such utilities are called

filter utilities because of their nature of filtering input files and presenting them in an appealing form.

For instance, the more command (DOS or UNIX) display the contents of the files page by page on the

console. Using the services of C++ streams such filter utilities can be built. Filter utilities are designed

usually to accept the name of a file to be processed through the command-line arguments.

The command-line arguments are entered by the user at the shell prompt, and are delimited by white

space. (The first argument is a name of the command; filename containing the executable program).

These arguments are passed to the main() function of the program with the following syntax:

main(int argc, char *argv[])

The first argument argc represents the argument count, whereas, the second argument is a pointer

to an argument vector. For instance, when the following command is issued at the shell prompt,

copy boy.exe girl.exe

the value of argc and argv are as follows:

argc = 3
argv[0] = copy
argv[1] = boy.exe
argv[2] = girl.exe

Mastering C++760

The program cp.cpp is designed as a filter utility. It copies the source file into another destination

file in the disk. The names of the source and destination files have to passed through the command-line

arguments. It can be used to copy both the ASCII and BINARY files.

// cp.cpp: Copy a file to another file

#include <iostream.h>

#include <fstream.h>

#include <conio.h>

#include <process.h>

const int BUFFSIZE = 512;

int CopyFile(char *SourceFile, char *DestinationFile)

{

 fstream infile; // source file

 fstream outfile; // destination file

 char buff[BUFFSIZE + 1];

 // Open.source file for reading

 infile.open(SourceFile, ios::in | ios::binary);

 if(infile.fail())

 {

 cout << “Error: “ << SourceFile << “ non-existent”;

 return 1; // no input file

 }

 outfile.open(DestinationFile, ios::out | ios::binary);

 if(outfile.fail())

 {

 cout << “Error: “ << DestinationFile << “ unable to open”;

 return 2; // cannot be written to a destination file

 }

 while(!infile.eof())

 {

 infile.read((char *) buff, BUFFSIZE);

 outfile.write((char *) buff, infile.gcount());

 if(infile.gcount() < BUFFSIZE)

 break;

 }

 infile.close();

 outfile.close();

 return 0; // successful copy

}

void main(int argc, char *argv[])

{

 cout<< “cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.\n”;

 if(argc < 3)

 {

 cout << “Usage: cp <source file> <destination file>”;

Streams Computation with Files 761

 exit(1);

 }

 if(CopyFile(argv[l], argv[2]) != 0)

 cout << “\nfile copy operation failed.”;

}

Run1

cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.

Usage: cp <source file> <destination file>

Run2

cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.

Error: noname.cpp non-existent

file copy operation failed.

Run3

cp - Copy file, Copyright (C) 1996, RAJ, C-DAC, Bangalore.

The arguments passed at the command line for the above three executions are as follows:

Run1: cp

Run2: en noname.exe name.exe
Run3: cp cp.cpp.temp.cpp

In main(), the statements

fstream infile;// source file
fstream outfile;// destination file

create two objects infile and outfile of the class fstream. They can be used either to read or

write to the disk. The statement

infile.open(SourceFile, ios::in | ios::binary);

opens SourceFile in binary read mode and assigns the handle to the object infile. Whereas, the

statement

outfile.open(DestinationFile, ios::out | ios::binary);

opens DestinationFile in binary write mode and assigns the handle to the object outfile.

 The statement

infile.read((char *) buff, BUFFSIZE);

reads the BUFFSIZE number of characters from the infile into the variable buff, and the statement

outfile.write((char *) buff, infile.gcount());

writes the number of characters that are read (gcount() returns the count of the number of characters

read successfully) from the input file into the destination disk file.

 The statement

if(infile.gcount() < BUFFSIZE)

Mastering C++762

checks whether the number of characters read from the input file is less than the requested number. If

yes, it indicates that the input file has no more characters to be read and terminates the reading process.

 The statements

infile.close(); outfile.close();

close both the input and output files from further processing.

SOLVED PROBLEMS

1.Write a program to count the number of lines, spaces and tabs in a file.

#include<iostream.h>

#include<fstream.h>

#include<iomanip.h>

/*The program reads data from Fil1.txt. Contents of the file are:

F I L E

Handling

in C++

*/

void main()

{

 int space, tab, line;

 char c;

 space=tab=line=0;

 ifstream fin(“File1.txt”);

 fin>>resetiosflags(ios::skipws);

 while(fin)

 {

 fin>>c;

 if(c==’ ‘)

 space++;

 if(c==’\t’)

 tab++;

 if(c==’\n’)

 line++;

 }

 cout<<”Number of blank spaces = “<<space<<”\nNumber of tabs = “<<tab<<”\n

 Number of lines = “<<line;

}

Run

Number of blank spaces = 3

Number of tabs = 1

Number of lines = 2

+
+

Streams Computation with Files 763

2. Write a C++ program to read the contents of a text file.

#include<iostream.h>
#include<fstream.h>
#include<iomanip.h>
/*Contents of file Sample.txt
File Handling in C++
*/
void main()
{
 char c;
 ifstream fin(“Sample.txt”);
 cout<<”Here are the contents of the file, Sample.txt...\n”;
 fin>>resetiosflags(ios::skipws);
 while(fin)
 {
 fin>>c;
 cout<<c;
 }
}

Run

Here are the contents of the file, Sample.txt...
File Handling in C++

REVIEW QUESTIONS ++
 18.1 What is a file? What are the steps involved in manipulating a file in a C++ program?

 18.2 Explain the various file stream classes needed for file manipulations?

 18.3 Describe different methods of opening a file. Write a program to open a file named “xxx.
bio” and write your name and other details into that file.

 18.4 What are the different types of errors that might pop up while processing files?

 18.5 Write an interactive program that accepts student’s score and prints the result to a file.

 18.6 Explain how while (input_file) expression detects the end of a file?

 18.7 What are file modes? Describe various file-mode options available.

 18.8 The file-open modes ios::app and ios::ate set file pointer to end-of-file. What then,

is the difference between them?

 18.9 What are file pointers? Describe get pointers and put pointers.

 18.10 What are the differences between sequential and random files?

 18.11 What are the differences between ASCII and binary files?

 18.12 Write a program which copies the contents of one file to a new file by removing

unnecessary spaces between words.

Mastering C++764

 18.13 Create a class called student. This class should have overloaded stream operator

functions to save or retrieve objects of the student class from a file. Write an interactive

program to manipulate objects of the student class with a file.

 18.14 What are filter utilities? Write a program to display files on the screen pagewise. The

output must pause after every page and continue until carriage return (enter) key is

pressed. Accept name of a file to be processed from the command line.

 18.15 Explain how memory buffers can be connected to stream objects.

 18.16 Write an interactive program to maintain an employee database. It has to maintain

information such as employee id, name, qualification, designation, salary, etc. The user

must be able to access all details about a person either by entering employee name or by

employee id. Note that request for information may come randomly. It has to support an

option for creating, updating, and deleting a database (in addition to query).

Exception
Handling

19.1 INTRODUCTION

The increase in complexity and size of the software systems and the increase

in society’s dependence on the computer systems have been accompanied by

an increase in the costs associated with their failure. The rising cost of failure

in a computer system has stimulated interest in improving software reliability.

Software does not degrade physically as a function of time or environmental stress. It was assumed

earlier that the concepts such as reliability or failure rate were not applicable to computer programs. It

is true that a program that has once performed a given task as specified will continue to do so provided

that none of the following change: the input, the computing environment, or user requirements.

However, it is not reasonable to expect a program to be constantly operating on the same input data,

because changes in computing environment and user requirements must be accommodated in most of

the applications. Past and current failure-free operation cannot be taken as a dependable indication that

there will be no failure in the future.

The two main techniques for building reliable software (for dependable computing) are fault

avoidance and fault tolerance. Fault avoidance deals with the prevention of fault occurrence by

construction. It emphasizes on techniques to be applied during system development to ensure that

the running system satisfies all reliability criteria apriori. It emphasizes that a sound way to deal with

design faults is to stop them from getting into the system in the first place. Fault tolerance deals with

the method of providing services complying with the specification in spite of faults having occurred (or

occurring) by redundancy. In C++, exception handling allows building fault-tolerant systems.

The fault-tolerance approach attempts to increase reliability by designing the system to continue to

provide service in spite of the presence of faults. It begins with error detection. It must be possible to

detect the occurrence of a latent error before it leads to failure. Once an error has been detected, the goal

is error recovery. The goal of a fault-tolerant design is to improve dependability by enabling the system

to perform its intended function in the presence of a given number of faults.

The Annotated C++ Reference Manual (ARM) by Ellis and Stroustrup states Exception handling

provides a way of transferring control and information to an unspecified caller that has expressed

willingness to handle exceptions of a given type. Exceptions of arbitrary types can be ‘thrown and

caught’ and the set of exceptions a function may throw can be specified. The termination model of

exception handling is provided. Exception handling can be used to support notions of error handling

and fault-tolerant computing.

19

Mastering C++766

19.2 ERROR HANDLING

In traditional programming techniques, validation of input data and some runtime errors were handled

explicitly by the module in which the error occurred. Although the users of these modules know how to

cope with such errors, there is no means to detect the errors and handle them in the user’s code instead

of the library. The notion of exceptions is supported in C++ to deal with such problems. Here, exception

refers to unexpected condition in a program. The unusual conditions could be faults, causing an error

which in turn causes the program to fail. The error-handling mechanism of C++ is generally referred

to as exception handling. It provides a straightforward mechanism for adding reliable error-handling

mechanism in a program.

Generally, exceptions are classified into synchronous and asynchronous exceptions. The exceptions

which occur during the program execution, due to some fault in the input data or technique that

is not suitable to handle the current class of data, within the program, are known as synchronous

exceptions. For instance, errors such as out-of-range, overflow, underflow, and so on belong to the

class of synchronous exceptions. The exceptions caused by events or faults unrelated (external) to

the program and beyond the control of the program are called asynchronous exceptions. For instance,

errors such as keyboard interrupts, hardware malfunctions, disk failure, and so on belong to the class of

asynchronous exceptions. The proposed exception handling mechanism in C++ is designed to handle

only synchronous exceptions caused within a program.

Exception handling is an integral part of the ANSI/ISO C++ language standard. This standardization

ensures that the power of object-oriented design is supported throughout the program. An especially

strong feature of the standard is the availability of virtual functions and the use of objects to define

exceptions. Virtual functions guarantee a minimum runtime overhead—zero additional program

overhead if no exceptions are thrown. When used properly, C++ exception handling solves many

problems with alternative error-handling techniques (such as returning error values from methods or

using global error handlers).

In accordance with ANSI specifications, recent implementation of most C++ compilers are

supporting the exception-handling model. When an abnormal situation arises at runtime, the program

should terminate. However, throwing an exception allows the user to gather information at the throw

point that could be useful in diagnosing the causes which led to failure. An user can also specify in the

exception handler the actions to be taken before the program terminates. Only synchronous exceptions

are handled (the cause of failure is generated from within the program). An event such as Control-C

(which is generated from outside the program) is not considered to be an exception.

19.3 EXCEPTION-HANDLING MODEL

When a program encounters an abnormal situation for which it is not designed, the user may transfer

control to some other part of the program that is designed to deal with the problem. This is done

by throwing an exception. The exception-handling mechanism uses three blocks: try, throw, and

catch. The relationship of these three exception handling constructs called the exception-handling

model is shown in Figure 19.1.

The try block must be followed immediately by a handler, which is a catch block. If an exception

is thrown in the try block, the program control is transferred to the appropriate exception handler. The

program should attempt to catch any exception that is thrown by any function. Failure to do so could

Exception Handling 767

result in abnormal termination of the program. Though C++ allows an exception to be of any type, it is

useful to make exceptions as objects. The exception object is treated exactly the same way as other

normal objects. An exception carries information from the point where the exception is thrown to the

point where the exception is caught. This information allows the program user to know as to when the

program encounters an anomaly at runtime.

19.4 EXCEPTION-HANDLING CONSTRUCTS

Exception-handling mechanism transfers control and information from a point of exception in a

program to an exception handler associated with the try block. An exception handler will be invoked

only by a thrown expression in the code executed by the handler’s try block or by functions called

from the handler’s try block. C++ offers the following three constructs for defining these blocks.

 try

 throw

 catch

The exception handler is indicated by the catch keyword. The handler must be used immediately

after the try-block. The keyword catch can also occur immediately after another catch. Each

handler will only evaluate an exception that matches, or can be converted to the type specified in its

argument list, exception thrown by the program must be caught and processed by the exception handler.

If the program fails to provide an exception handler for a thrown exception, the program will call the
terminate() function.

Exception handlers are evaluated in the order they are encountered. An exception is said to be caught

when its type matches the type in the catch statement. Once a type match is made, program control is

Fig. 19.1 Exception-handling model

try Block

Perform operation which may throw or
invoke external function if needed

Invoke function naving throw block

catches all exceptions thrown from
within try block or by function invoked
within a try block

throw Block

Catch block

if(failure

throw object;

e
xc
e
p
tio
n

exception

Mastering C++768

transferred to the handler. The handler specifies what actions should be taken to deal with the program

anomaly. The stack-unwinding (catch clean-up) operation is initiated immediately after processing the

catch block that matches with the exception type. In a normal sequence (no exceptions are raised),

stack unwinding is performed immediately after the try block and program execution continues. (A

goto statement can be used to transfer program control out of a handler but such a statement can never

be used to enter a handler.) After the handler has been executed, the program continues its execution

from the point after the last handler for the current try block and no other handlers are evaluated for

the current exception.

19.4.1 throw Construct

The keyword throw is used to raise an exception when

an error is generated in the computation. The throw

expression initializes a temporary object of the type

T (to match the type of argument arg) used in throw

(T arg). The syntax of the throw construct is shown

in Figure 19.2.

19.4.2 catch Construct

The exception handler is indicated by the catch keyword. It must be used immediately after the

statements marked by the try keyword. The catch handler can also occur immediately after another

catch. Each handler will only evaluate an exception that matches, or can be converted to the type

specified in its argument list. The syntax of the catch construct is shown in Figure 19.3.

Fig. 19.2 Syntax of throw construct

Keyword
Named object, nameless

object, or by default, nothing

throw T;

Keyword
object name, or nameless object

(same as throw argument)

catch (T)

{

{

// actions for handling an exception

Fig. 19.3 Syntax of catch construct

19.4.3 try Construct

The try keyword defines a boundary within which an exception can occur. A block of code in which

an exception can occur must be prefixed by the keyword try. Following the try keyword is a block

of code enclosed by braces. This indicates that the program is prepared to test for the existence of

exceptions. If an exception occurs, the program flow is interrupted. The syntax of the try construct is

shown in Figure 19.4.

A block of code in which an exception can occur must be prefixed by the keyword try. The try
keyword is followed by a block of code enclosed within braces. It indicates that the program is prepared

for testing the existence of exceptions. If an exception occurs, the program flow is interrupted and the

exception handler is invoked.

Exception Handling 769

The mechanism suggests that error-handling code must perform the following tasks.

 1. Detect the problem causing exception (Hit the exception)

 2. Inform that an error has occurred (Throw the exception)

 3. Receive the error information (Catch the exception)

 4. Take corrective actions (Handle the exceptions)

Exception-handling code resembles the following pattern:

my_function()
{

 if(operation_fail)
 throw Objectl; // throw-point

}
....
try
{ // begin of try block

 my_function(); // call the function my_function
 if(overflow)
 throw Object2; // throw-point

} // end of try block
 catch(Objectl)
{

 // take corrective action for operation_fail

Fig. 19.4 Syntax of try construct

Keyword

try
{

// code raising exception for referring to
// a function raising exception

}
catch (type_idl)
{

// actions for handling an exception
}
...
...
catch (type_idn)
{

// action for handling an execption
}

{

Mastering C++770

 }
 catch(Object2)
 {

 // take corrective action for overflow

 }

The following sequence of steps are performed when an exception is raised:

 The program searches for a matching handler.

 If a handler is found, the stack is unwound to that point.

 Program control is transferred to the handler.

 If no handler is found, the program will invoke the terminate() function (explained later). If

no exceptions are thrown, the program executes in the normal fashion.

The program divzero.cpp illustrates the mechanism for detecting errors, raising exceptions, and

handling such exceptions. It has the class number to store an integer number and the member function

read() to read a number from the console and the member function div() to perform division

operations. It raises exception if an attempt is made to perform divide-by-zero operation. It has an

empty class named DIVIDE used as the throw’s expression-id.

// divzero.cpp: Divide Operation Validation, (divide-by-zero)
#include <iostream.h>
class number
{
 private:
 int num;
 public:
 void read() // read number from keyboard
 {
 cin >> num;
 }
 class DIVIDE {}; // abstract class used in exceptions
 int div(number num2)
 {
 if(num2.num == 0) // check for zero division if yes
 throw DIVIDE(); // raise exception
 else
 return num / num2.num; // compute and return the result
 }
};
int main()
{
 number numl, num2;
 int result;
 cout << “Enter Number 1: “;
 numl.read();

Exception Handling 771

 cout << “Enter Number 2: “;

 num2.read();

 // statements must be enclosed in try block if you intend to handle

 // exceptions raised by them

 try

 {

 cout << “trying division operation...”;

 result = numl.div(num2);

 cout << “succeeded” << endl;

 }

 catch(number::DIVIDE) // exception handler block

 {

 // actions taken in response to exception

 cout << “failed” << endl;

 cout << “Exception: Divide-By-Zero”;

 return 1;

 }

 //no exceptions, display result

 cout << “numl/num2 = “ << result;

 return 0;

}

Run1

Enter Number 1: 10

Enter Number 2: 2

trying division operation...succeeded

numl/num2 = 5

Run2

Enter Number 1: 10

Enter Number 2: 0

trying division operation...failed

Exception: Divide-By-Zero

In main(), the try block

try
{ ...; result = numl.div(num2), ...; }

invokes the member function div() to perform the division operation. If any attempt is made to divide

by zero, the following statement in div()

if(num2.num == 0) // check for zero division if yes
 throw DIVIDE(); // raise exception

detects the same and raises the exception by passing a nameless object of the type class DIVIDE. All

the statements following the one which raised the exception are skipped (see output of Run2 above)

and search for an exception handler begins. The runtime system searches the catch block to detect

the handler.

Mastering C++772

The block of code in main() following the try block:

catch(number::DIVIDE)

{

 cout << “Exception: Divide-By-Zero”;

 return 1;

}

will catch the exception raised due to the call to the function in the try block and executes its body

(see Figure 19.5). If no exception is raised, the exception handling catch block will not be executed

and execution proceeds to the next statement, which displays the result.

Fig. 19.5 Exception handling in the number class

Instance of the class number

Client program
void read();

private:

int num;

int div(number num2) {
try {

if(num2.num ==0)
throw DIVIDE();

number num1, num2;

num1.read();
num2.read();
try {
result=num1.div(num2);
}
catch(DIVIDE)
{

...
}

19.4.4 Array Reference Out of Bound

The program arrbound.cpp illustrates the mechanism of validating array-element references. If

any attempt is made to refer to an element whose index is beyond the array size, an exception is raised.

// arrbound.cpp: Array Reference Bound Validation
#include <iostream.h>
const int ARR_SIZE = 10; // maximum array size
class array
{
 private:
 int arr[ARR_SIZE];
 public:
 class RANGE {}; // Range abstract class
 int & operator[](int i)
 {
 if(i < 0 || i >= ARR_SIZE)
 throw RANGE(); // throw abstract object
 return arr[i]; // valid reference
 }

Exception Handling 773

};
void main()
{
 array a; // create array
 cout << “Maximum array size allowed = “ << ARR_SIZE << endl;
 try
 {
 cout << “Trying to refer a[l]... “;
 a[l] = 10;
 cout << “succeeded” << endl;
 cout << “Trying to refer a[15]... “;
 a[15] = 10; // refer 15th element from array a, causes exception
 cout << “succeeded” << endl;
 }
 catch(array::RANGE) // true if throw is executed in try scope
 {
 // action for exception
 cout << “Out of Range in Array Reference”;
 }
}

Run

Maximum array size allowed = 10
Trying to refer a[l]...succeeded
Trying to refer a[15]...Out of Range in Array Reference

The statement in the try block of main():

a[l] = 10;

updates the first element of the array. However, another statement

a[15] = 10;

in the same block, tries to update the fifteenth element. It leads to an exception since the array size is

only 10. This exception is caught by the. statement

catch(array::RANGE)

which issues a warning message on the standard output.

19.5 HANDLER THROWING THE SAME EXCEPTION AGAIN

There are several good reasons to allow an exception to be implicitly propagated from a function (callee)

to its caller. Of course, it follows the democracy principle: a client (caller) is the better candidate to

decide what actions are to be taken when something goes wrong. If a function does not want to take

any corrective action in response to an exception, it can pass the same to the caller of a function. The

throw construct without an explicit exception parameter raises the previous exception. An exception

must currently exist, otherwise terminate() is invoked. The program pass.cpp illustrates the

method of passing the same exception to the caller if the current handler is unable to handle it.

Mastering C++774

// pass.cpp: passing all exceptions that occur in parent to child
#include <iostream.h>
#include <process.h>
const int ARR_SIZE = 10; // maximum array size
class array
{
 private:
 int arr[ARR_SIZE];
 public:
 array();
 class RANGE {}; // Range abstract class
 int & operator[](int i)
 {
 if(i < 0 || i >= ARR_SIZE)
 throw RANGE(); // throw abstract object
 return arr[i]; // valid reference
 }
};
array::array()
{
 for(int i = 0; i < ARR_SIZE; i++)
 arr[i] = i;
}
// read an element from the array, if any exception pass the same to caller
int read(array & a, int index)
{
 int element;
 try
 {
 element = a[index];
 }
 catch(array::RANGE) // catch the exceptions raised in class
 {
 cout << endl<< “Parent passing exception to child to handle”<<endl;
 throw; // pass all exceptions to the caller
 }
 return element;
}
void main()
{
 array a; // create array object
 int index, element;
 cout << “Maximum vector size allowed = “ << ARR_SIZE << endl;
 while(1)
 {
 cout << “Enter element to referenced: “;
 cin >> index;
 try
 {

Exception Handling 775

 cout << “Trying to access object array ‘a’ for index = “<<index;
 element = read(a, index);
 cout << endl << “Element in Array = “ << element << endl;
 }
 catch(array::RANGE) // true if throw is executed in try scope
 {
 // action for exception
 cout << “Child: Out of Range in Array Reference”;
 exit(1);
 }
 }
}

Run

Maximum vector size allowed = 10
Enter element to referenced: 1
Trying to access object array ‘a’ for index = 1
Element in Array = 1
Enter element to referenced: 5
Trying to access object array ‘a’ for index = 5
Element in Array = 5
Enter element to referenced: 10
Trying to access object array ‘a’ for index = 10
Parent passing exception to child to handle
Child: Out of Range in Array Reference

The catch block in the function read() does not take any corrective action for the exception

array::RANGE. It throws the exception to the caller and the catch block in main() terminates

the program after displaying the message:

Child: Out of Range in Array Reference

on the standard output device.

19.6 LIST OF EXCEPTIONS

Raising or catching an exception affects the way a function relates to other functions. C++ language

makes it possible for the user to specify a list of exceptions that a function can throw. This exception

Fig. 19.6 Syntax of specifying a list of exceptions

Function definition:
Eg: int func (arguments)

FunctionSpecification throw (type id1, type id2. ...)

{

// Function body raising exceptions of error occurs

}

List of exception that
can be raised

Mastering C++776

specification can be used as a suffix to the function declaration specifying the list of exceptions that a

function may directly or indirectly throw as a part of a function declaration. The syntax for exception

specification is shown in Figure 19.6.

The exception list, which is the function suffix, is not considered to be a part of the specification of a

function. Consequently, a pointer to a function is not affected by the function’s exception specification.

Such a pointer checks only the function’s return value and argument types. Therefore, the following is

legal:

void f1(void) throw(); // cannot throw exceptions
void f2(void) throw (BETA); // can throw BETA objects
int func() throw(X, Y) // can throw only X and Y exceptions
{. . .
}

C++ allows to have pointers to a function raising exception, for instance,

void (* fptr)(); // Pointer to a function returning void

fptr = fl;

fptr = f2;

However, extreme care should be taken when overriding virtual functions; the exception specification

is not considered as a part of the function type, it is possible to violate the program design. If an

exception which is not listed in the exception specification is thrown, the function unexpected()

will be called (discussed later in this chapter).

In the following example, the derived class BETA::vfunc is defined so that it should not throw

any exceptions—a departure from the original function declaration.

class ALPHA
{
 public:
 struct ALPHA_ERR {};
 virtual void vfunc(void) throw (ALPHA_ERR) {};
 // Exception specification
};
class BETA : public ALPHA
{
 void vfunc(void) throw() {}; // Exception specification is changed
};

The following are examples of functions with exception specifications.

void fl(); // The function can throw any exception
void f2() throw(); // Should not throw any exceptions
void f3() throw(A, B*); // Can throw exceptions publicly derived
 // from A, or a pointer to publicly derived B

19.6.1 Raising an Unspecified Exception

The definition and all declarations of such a function must have an exception specification containing

the same set of type ids. If a function throws an exception not listed in its specification, the program will

Exception Handling 777

call the function unexpected(). This is a runtime issue and it will not be flagged at compile time.

Therefore, care must be taken to handle any exception which can be thrown by statements/functions

invoked within a function.

void my_funcl() throw (A, B)
{
 // Body of function.
}

This example specifies a list of exceptions that my_funcl() can throw. No other exception will

propagate out of my_funcl. If an exception other than A or B is generated within my_funcl, it

is considered an unexpected exception and program control will be transferred to the predefined

unexpected function. The program signl.cpp illustrates raising of an exception other than that

specified in the exception list.

// signl.cpp: determine whether the input is +ve or -ve through exceptions

#include <iostream.h>

class positive {};

class negative {};

class zero {};

// this function can raise only positive and negative exceptions

void what_sign(int num) throw(positive, negative)

{

 if(num > 0)

 throw positive();

 else

 if(num < 0)

 throw negative();

 else

 throw zero(); // unspecified exception

}

void main()

{

 int num;

 cout << “Enter any number: “;

 cin >> num;

 try

 {

 what_sign(num);

 }

 catch(positive)

 { cout << “+ve Exception”; }

 catch(negative)

 { cout << “-ve Exception”; }

 catch(zero)

 { cout << “0 Exception”; }

}

Mastering C++778

Run1

Enter any number: 10
+ve Exception

Run2

Enter any number: -10
-ve Exception

Run3

Enter any number: 0
Abnormal program termination

The prototype of the function what_sign() is specified as

void what_sign(int num) throw(positive, negative)

It indicates that this function can raise positive and negative exceptions, but the statement

throw zero(); // unspecified exception

raises the exception zero, which is not in the exception list of this function. It calls the default exception

handler, which aborts the execution of the program (see Run3) although there exists an explicit

exception handler in the caller of this function.

19.6.2 Exceptions in a No-Exception Function

The following function and exception specification indicates that it will not generate any exception:

void my_func2() throw()

{

 // Body of this function.

}

If any statement in the body of my_func2() throws an exception, the control is transferred to

library function abort(), which terminates the program by issuing an error message. The program

sign2.cpp illustrates the effect of raising an exception in a function which is not supposed to raise

any exception.

// sign2.cpp: determine whether the input is positive or negative
#include <iostream.h>
class zero {};
// this function cannot raise exception
void what_sign(int num) throw()
{
 if(num > 0)
 cout << “+ve number”;
 else
 if(num < 0)
 cout << “-ve number”;
 else
 throw zero(); // unspecified exception

Exception Handling 779

}
void main()
{
 int num;
 cout << “Enter any number: “;
 cin >> num;
 try
 {
 what_sign(num);
 }
 catch(zero)
 { cout << “0 Exception”; }
}

Run1

Enter any number: 10
+ve number

Run2

Enter any number: -10
-ve number

Run3

Enter any number: 0
Abnormal program termination

The prototype of the function what_sign():

void what_sign(int num) throw()

indicates that it does not raise any exception, but the statement

throw zero(); // unspecified exception

raises the exception. It invokes the default exception handler which aborts the execution of the program

(see Run3) though there exists an explicit exception handler in the caller of this function.

19.7 CATCH ALL EXCEPTIONS

C++ supports a feature to catch all the exceptions raised in the try block. The syntax of the catch

construct to handle all the exceptions raised in the try block is shown in Figure 19.7.

Fig. 19.7 Syntax of catch all construct

three dots: indicate catch all exceptions

catch (. . .)

{

// actions for handling an exception

}

Mastering C++780

The three dots in the catch(...) indicates that it catches all types of exceptions raised in its

preceding try block. The program catal11.cpp illustrates the mechanism of handling all the

exceptions raised by a single handler.

// catall1.cpp: All exceptions are caught
#include <iostream.h>
class excep2 {};
void main()
{
 try
 {
 cout << “Throwing uncaught exception” << endl;
 throw excep2();
 }
 catch(...) // catch all the exceptions
 {
 // action for exception
 cout << “Caught all exceptions” << endl;
 }
 cout << “I am displayed”;
}

Run

Throwing uncaught exception
Caught all exceptions
I am displayed

The statement in the try block of main():

throw excep2();

raises the exception excep2(). It is caught by the statement,

catch (...) // catch all the exceptions

The program having multiple catch all exceptions is illustrated in cata112.cpp. It has multiple

functions calling one another.

// cata112.cpp: making exception-specifications and handle all exceptions
#include <iostream.h>
class ALPHA(); // Exception declaration
ALPHA _a; // object of ALPHA
void f3(void) throw (ALPHA)
{
 // Will throw only type-alpha objects
 cout << “f3() was called” << endl;
 throw(_a); // throw exception explicit object
}
void f2(void) throw()
{

Exception Handling 781

 // should not throw exceptions
 try
 { // wrap all code in a try-block
 cout << “f2() was called” << endl;
 f3();
 }
 catch (...)
 { // trap all exceptions
 cout << “f2() has elements with exceptions!” << endl;
 }
}
int main()
{
 try
 {
 f2();
 return 0; // f2 succeeds, terminate
 }
 catch(...)
 {
 cout << “Need more handlers!”;
 }
 cout << endl << “continued after handling exceptions”;
 return 1;
}

Run

f2() was called
f3() was called
f2() has elements with exceptions!

In f3(), the statement

throw(_a); // throw exception explicit object

throws the exception using the named object _a, which is the instance of the class ALPHA. It is caught

by the handler in the caller function f2(). There is a handler to catch all exceptions in main(), but is

not activated; all the exceptions are caught in f2() and no exceptions are passed to its caller.

19.8 EXCEPTIONS IN CONSTRUCTORS AND DESTRUCTORS

When an exception is thrown, the copy constructor is invoked as a part of the exception handling. The

copy constructor is used to initialize a temporary object at the throw point. Other copies may be generated

by the program. When the program flow is interrupted by an exception, destructors are invoked for all

automatic objects which were constructed from the entry point of the try-block. If the exception was

thrown during construction of some object, destructors will be called only for those objects which were

fully constructed. For example, if an array of objects was under construction when an exception was

thrown, destructors will be called only for the array elements which were fully constructed.

Mastering C++782

As a building block of design patterns for proper handling of exceptions, there is a need for secure

operations that allow transfer of resource responsibilities without throwing exceptions. In C++, it is a

bad idea to leave a destructor by throwing an exception. This is because a destructor may be invoked

during runtime stack unwinding when another exception was thrown; a second throw that aborts one

of these destructors will immediately invoke terminate(), which aborts the program by default. In

other words, all destructors in a C++ program should have an empty specification throw(). This is

called secure operations.

Those objects which are created from a try block to any statement raising an exception serve no

purpose if any exception is raised. Hence, they must be destroyed by releasing the allocated resources.

The process of calling a destructor for automatic objects constructed on the path from a try block to a

thrown expression is called stack unwinding. The program twoexcep.cpp illustrates the concept of

having multiple types of exceptions in a program.

//twoexcep.cpp: Array Creation and Reference Bound Validation
#include <iostream.h>
const int ARR_SIZE = 10; // maximum array size, that can be allocated
class array
{
 private:
 int *arr; // pointer to array
 int size; // maximum array size
 public:
 class SIZE {}; // Size abstract class
 class RANGE {}; // Range abstract class
 array(int SizeRequest) // constructor
 {
 if(SizeRequest < 0 || SizeRequest > ARR_SIZE)
 throw SIZE();
 // allocate resources
 size = SizeRequest;
 arr = new int[size];
 }
 ~array() // destructor
 {
 // deallocate resources
 delete arr;
 }
 int & operator[](int i) // subscript operator overloading
 {
 if(i < 0 || i > size)
 throw RANGE(); // throw abstract object
 return arr[i]; // valid reference
 }
};
void main()
{
 cout << “Maximum array size allowed = “ << ARR_SIZE << endl;
 try

Exception Handling 783

 {
 cout << “Trying to create object al(5)...”;
 array al(5); // create array
 cout << “succeeded” << endl;
 cout << “Trying to refer al[5]...”;
 al[5] = 10;
 cout << “succeeded..”;
 cout << ”al[5] = “ << al[5] << endl;
 cout << “Trying to refer al[15] ...”;
 al[15] = 10; // causes exception
 cout << “succeeded” << endl;
}
catch(array::SIZE)
{
 // action for exception
 cout << “..Size exceeds allowable Limit” << endl;
}
catch(array::RANGE) // true if throw is executed in try scope
{
 // action for exception
 cout << “..Array Reference Out of Range” << endl;
}
 // Array creation unsuccessful, Request > ARR_SIZE
 try
 {
 cout << “Trying to create object a2 (15),..”;
 array a2(15); // create array, causes exception
 cout<< “succeeded” << endl;
 a2[3] = 3; // valid access
 }
 catch(array::SIZE)
 {
 // action for exception
 cout << “....Size exceeds allowable Limit” << endl;
 }
 catch(array::RANGE) // true if throw is executed in try scope
 {
 // action for exception
 cout << “....Array Reference Out of Range” << endl;
 }
}

Run

Maximum array size allowed = 10
Trying to create object al(5)...succeeded
Trying to refer al[5]...succeeded..al[5] = 10
Trying to refer al[15].....Array Reference Out of Range
Trying to create object a2(15).......Size exceeds allowable Limit

Mastering C++784

The one-argument constructor of the class array,

array(int SizeRequest) // constructor

throws an exception,

throw SIZE();

if an attempt is made to create an array beyond the allowable range. The statement

if (i < 0 || i > size)

 throw RANGE(); // throw abstract object

throws an exception if an attempt is made to access an array element by using an invalid index (lower

than minimum bound or higher than the maximum bound).

19.9 HANDLING UNCAUGHT EXCEPTIONS

The uncaught exception-handling mechanism relies on two library functions, terminate() and

unexpected(), for coping with exceptions unhandled explicitly. C++ supports the following special

functions to handle uncaught exceptions in a systematic manner:

 terminate()

 set_terminate()

 unexpected()

 set_unexpected()

19.9.1 terminate()

The function terminate() is invoked when an exception is raised and the handler is not found. The

default action for terminate is to invoke abort(). Such a default action causes immediate termination

of the program execution. The program uncaught.cpp illustrates the series of events that can occur

when the program encounters an exception for which no handler can be found.

// uncaught.cpp: Uncaught exception invokes abort() automatically
#include <iostream.h>
class excepl {};
class excep2 {};
void main()
{
 try
 {
 cout << “Throwing uncaught exception” << endl;
 throw excep2();
 }
 catch(excepl) // true if throw excepl is executed in try scope
 {
 // action for exception
 cout << “Exception 1”;
 }

Exception Handling 785

 // excep2 is not caught hence, program aborts
 // here without proceeding further
 cout << “I am not displayed”;
}

Run

Throwing uncaught exception
Abnormal program termination

The statement in main()’s try block

throw excep2();

raises an exception excep2 for which no handler exists. Here, terminate() comes to rescue this

condition. When the terminate() function is called, the program aborts by displaying the message

Abnormal program termination

and does not proceed further.

 The programmer can modify the way the program will terminate when an exception is generated.

The terminate() function can call an user-defined function instead of abort() if the user-defined

function is registered with the set_terminate() function.

19.9.2 set_terminate()

The set_terminate function allows the user to install a function that defines the program’s actions

to be taken to terminate the program when a handler for the exception cannot be found. The actions

are defined in t_func(), which is declared to be a function of type terminate_function. A

terminate_function type defined in except.h, is a function that takes no arguments, and

returns nothing. By default, an exception for which no handler can be found results in the program

calling the terminate function. This will normally result in a call to abort the function. The program

then ends with the message: Abnormal program termination. If some function other than abort() is

to be invoked by the terminate(), the user should define the t_func() function. This t_func()
function can be installed by set_terminate() as the termination function. The installation of

t_func() allows the user to implement any action that is not taken by abort(). The syntax of the

set_terminate() function declared in the header file except.h is as follows:

typedef void (*terminate_function)();
terminate_function set_terminate(terminate_function t_func);
// Define your termination scheme
terminate_function my_terminate(void)
{
 // Take actions before terminating
 // should not throw exceptions
 exit(1); // must end somehow
}
// Register your termination function
set_terminate(my_terminate);

Mastering C++786

The program myhand.cpp handles uncaught exceptions with the user-specified terminate function.

// myhand.cpp: All exceptions are not caught, executes MyTerminate()
#include <iostream.h>
#include <except.h>
Class excepl {};
class excep2 {};
void MyTerminate()
{
 cout << “My Terminate is invoked”;
 exit(1);
}
void main()
{
 set_terminate(MyTerminate); // sets to our own terminate function
 try
 {
 cout << “Throwing uncaught exception\n”;
 throw excep2();
 }
 catch(excepl)
 {
 // action for exception
 cout << “Caught exception, excepl\n”;
 }
 // program abort() here; MyTerminate() will be called
 cout << “I am not displayed”;
}

Run

Throwing uncaught exception
My Terminate is invoked

In main(), the statement

set_terminate(MyTerminate);

sets the function MyTerminate as a termination function to be invoked when there exists no exception

handler for the exception raised. The statement in the try block,

throw excep2();

raises the exception excep2, which is uncaught. The system automatically invokes the function

MyTerminate as a part of unhandled exceptions.

19.9.3 unexpected ()

The unexpected function is called when a function throws an exception not listed in its exception

specification. The program calls unexpected() which calls any user-defined function registered by

set_unexpected(). If no function is registered with set_unexpected, the unexpected()

function then invokes the terminate() function. The prototype of the unexpected() call is

Exception Handling 787

void unexpected();

The function unexpected() returns nothing (void) but it can throw an exception through the

execution of a function registered by the set_unexpected() function.

// sign3.cpp: unexpected exceptions
#include <iostream.h>
#include <process.h> // has prototype for exit()
#include <except.h>
class zero { };
// this function cannot raise exception
void what_sign(int num) throw()
{
 if(num > 0)
 cout << “+ve number”;
 else
 if(num < 0)
 cout << “-ve number”;
 else
 throw zero(); // unspecified exception
}
void main()
{
 int num;
 cout << “Enter any number: “;
 cin >> num;
 try
 {
 what_sign(num);
 }
 catch(...)
 {
 cout << “catch all exceptions”;
 }
 cout << endl << “end of main()”;
}

Run1

Enter any number: 10
+ve number
end of main()

Run2

Enter any number: -3
-ve number
end of main()

Run3

Enter any number: 0
Abnormal program termination

Mastering C++788

The function

void what_sign(int num) throw()

raises an unspecified exception

throw zero(); // unspecified exception

leading to the invocation of the unexpected() function automatically (see Run3).

19.9.4 set_unexpected()

The function set_unexpected() lets the user install a function that defines the program’s actions

to be taken when a function throws an exception not listed in its exception specification. The actions

are defined in unexpected_func() library function. By default, an unexpected exception causes

unexpected() to be called, which in turn calls unexpected_func().

 Program behavior when a function is registered with set_unexpected():

// Define your unexpected handler
unexpected_function my_unexpected(void)
{
 // Define actions to take
 // possibly make adjustments
}
// register your handler
set_unexpected(my_unexpected);

The program sign4.cpp illustrates the mechanism of defining the user-defined unexpected
exception handler. The user-defined unexpected_func() must not return to its caller. An attempt

to return to the caller results in an undefined program behavior. The unexpected_func() can

invoke abort(), exit(), or terminate() functions.

// sign4.cpp: unexpected exceptions through user-defined function

#include <iostream.h>

#include <process.h> // has prototype for exit()

#include <except.h>

class zero {}; // empty class

// this function cannot raise exception

void what_sign(int num) throw()

{

 if(num > 0)

 cout << “+ve number”;

 else

 if(num < 0)

 cout << “-ve number”;

 else

 throw zero(); // unspecified exception

}

// this is automatically called whenever an unexpected exception occurs

void MyUnexpected()

Exception Handling 789

{

 cout << “My unexpected handler is invoked”;

 exit(1);

}

void main()

{

 int num;

 cout << “Enter any number: ”;

 cin >> num;

 set_unexpected(MyUnexpected); // user defined handler

 try

 {

 what_sign(num);

 }

 catch (...) // catch all exceptions

 {

 cout << “catch all exceptions”;

 }

 cout << endl << “end of main()”;

}

Run1

Enter any number: 10

+ve number

end of main()

Run2

Enter any number: -3

-ve number

end of main()

Run3

Enter any number: 0

My unexpected handler is invoked

The function what_sign() raises an unspecified exception,

throw zero(); // unspecified exception

leading to the invocation of the user-defined MyUnexpected() automatically (see Run3).

19.10 EXCEPTIONS IN OPERATOR OVERLOADED FUNCTIONS

The program interact.cpp illustrates the mechanism for handling exceptions in the vector class,

while creating its objects and accessing its elements either for a read or write operation. It overloads the

operator [] to simulate the array operations on the user-defined data type.

Mastering C++790

// interact.cpp: interactive program raises exception for improper data
#include <iostream.h>
#include <process.h>
const int VEC_SIZE = 10; // maximum vector size, that can be allocated
class vector
{
 private:
 int *vec; // pointer to array for vector elements
 int size; // maximum vector size
 public:
 class SIZE {}; // Size abstract class
 class RANGE {}; // Range abstract class
 vector(int SizeRequest)
 {
 if(SizeRequest <= 0 || SizeRequest > VEC_SIZE)
 throw SIZE();
 size = SizeRequest;
 vec = new int[size];
 }
 ~vector() // destructor
 {
 delete vec;
 }
 // subscripted operator overloading
 int & operator[](int i);
};
// subscripted operator overloading
int & vector::operator[](int i)
{
 if (i < 0 || i >= size)
 throw RANGE(); // throw abstract object
 return vec[i]; // valid reference
}
void main()
{
 int size, data, index;
 cout << “Maximum vector size allowed = “ << VEC_SIZE << endl;
 try
 {
 cout << “What is the size of vector you want to create: “;
 cin >> size;
 cout << “Trying to create object vector vl of size = “ << size;
 vector vl(size); // create vector
 cout << “...succeeded” << endl;
 cout << “Which vector element you want to access (index): “;
 cin >> index;
 cout << “What is the new value for vl[“ << index << “]: “;
 cin >> data;
 cout << “Trying to modify al[“ << index << “]...”;

Exception Handling 791

 vl[index] = data;
 cout << “succeeded” << endl;
 cout << “New Value of al[“ << index << “] = “ << vl [index];
}
catch(vector::SIZE)
{
 // action for exception
 cout << “failed” << endl;
 cout << “Vector creation size exceeds allowable limit”;
 exit(1);
}
catch(vector::RANGE) // true if throw is executed in try scope
{
 // action for exception
 cout << “...failed” << endl;
 cout << “Vector reference out-of-range”;
 exit(1);
 }
}

Run1

Maximum vector size allowed = 10
What is the size of vector you want to create: 5
Trying to create object vector vl of size-5...succeeded
Which vector element you want to access (index): 2
What is the new value for vl[2]: 7
Trying to modify al [2]...succeeded
New Value of al[2] = 7

Run2

Maximum vector size allowed = 10
What is the size of vector you want to create: 5
Trying to create object vector vl of size = 5...succeeded
Which vector element you want to access (index): 10
What is the new value for vl [10]: 2
Trying to modify al[10]...failed
Vector reference out-of-range

Run3

Maximum vector size allowed = 10
What is the size of vector you want to create: 15
Trying to create object vector vl of size = 15
Vector creation size exceeds allowable limit

Note:

Run1: All operations are valid, no exception is generated

Run2: Invalid vector reference, exception generated

Run3: Invalid size for vector creation, exception generated

Mastering C++792

In Run2, an attempt is made to refer to the 11th element (but index is 10) of the vector whose size is 10.

It raises an exception, which is caught by the statement,

catch(vector::RANGE)

In Run3, an attempt is made to create the vector of size 15, but the allowable limit is 10 as restricted by

the value of VEC_SIZE constant. The statement

catch(vector::SIZE)

catches the exception raised while creating objects of the vector class.

19.11 EXCEPTIONS IN INHERITANCE TREE

The mechanism of handling exceptions in the base and derived classes is illustrated in virtual.cpp.

// virtual.cpp: Binding a pointer to base class’ object to base or de-
rived
// objects at runtime and invoking respective members if they are virtual
#include <iostream.h>
#include <process.h>
// empty class for Father and Son inheritance
class WRONG_AGE
{};
class Father
{
 protected:
 int f_age;
 public:
 Father(int n)
 {
 if(n < 0)
 throw WRONG_AGE();
 f_age = n;
 }
 virtual int GetAge(void)
 {
 return f_age;
 }
};
// Son inherits all the properties of father
class Son : public Father
{
 protected:
 int s_age;
 public:
 Son(int n, int m):Father(n)
 {
 // if son’s age is greater or equal to father, throw exception

Exception Handling 793

 if(m >= n)
 throw WRONG_AGE();
 s_age = m;
 }
 virtual int GetAge(void)
 {
 return s_age;
 }
};
void main()
{
 int father_age;
 int son_age;
 Father *basep; //pointer to father objects
 cout << “Enter Age of Father: “;
 cin >> father_age;
 try
 {
 basep = new Father(father_age) // pointer to father
 }
 catch(WRONG_AGE)
 {
 cout << “Error: Father’s Age is < 0”;
 exit(1);
 }
 cout << “Father’s Age: “;
 cout << basep->GetAge() << endl; // calls father::GetAge
 delete basep; // remove Father class object
 cout << “Enter Age of Son: “;
 cin >> son_age;
 try
 {
 basep = new Son(father_age, son_age); // pointer to son
 }
 catch(WRONG_AGE)
 {
 cout << “Error: Father age cannot be less than son age!!!”;
 exit(1);
 }
 cout << “Son’s Age: “;
 cout << basep->GetAge() << endl; // calls son::GetAge()
 delete basep; // remove Son class object
}

Run1

Enter Age of Father: 45
Father’s Age: 45
Enter Age of Son: 20
Son’s Age: 20

Mastering C++794

Run2

Enter Age of Father: 20
Father’s Age: 20
Enter Age of Son: 45
Error: Father age cannot be less than son age!!!

Run3

Enter Age of Father: -2
Error: Father’s Age is < 0

The first try block in the main() will check for the validity of the father’s age. As in Run3, if the

father’s age is less than zero, the exception WRONG_AGE is raised.

The second try block in the main() will check for the validity of the son’s age in accordance

with the father’s age. As in Run2, if the son’s age is greater than the age of the father, the exception

WRONG_AGE is raised.

19.12 EXCEPTIONS IN CLASS TEMPLATES

The program matrix.cpp illustrates the exception-handling mechanism along with other features

of OOP such as class templates, operator overloading including friend functions, binary operators,

assignment through object copy, etc. The specification of the template class matrix with exceptions is

similar to that without exceptions, but, errors are handled using exceptions instead of returning an error

code as a function return value.

// matrix.cpp: Matrix manipulation class template and exception handling

#include <iostream.h>

#include <process.h>

const int TRUE = 1;

const int FALSE = 0;

// empty class for matrix exception

class MatError

{};

// template matrix class

template <class T>

class matrix

{

 private:

 int MaxRow; // number of rows

 int MaxCol; // number of columns

 T MatPtr[5] [5]; // if T is int, int MatrPtr[5][5];

 public:

 matrix()

 {

 MaxRow = 0; MaxCol = 0;

 }

Exception Handling 795

 matrix::matrix(int row, int col)

 {

 MaxRow = row;

 MaxCol = col;

 }

 friend istream & operator >> (istream & cin, matrix <T> &dm);

 friend ostream & operator << (ostream & cout, matrix <T> &sm);

 matrix <T> operator + (matrix <T> b);

 matrix <T> operator - (matrix <T> b);

 matrix <T> operator * (matrix <T> b);

 void operator = (matrix <T> b);

 int operator == (matrix <T> b);

};

template <class T>

matrix<T> matrix<T>::operator + (matrix <T> b)

{

 matrix <T> c(MaxRow, MaxCol);

 int i, j;

 if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)

 throw MatError();

 for(i = 0; i < MaxRow; i++)

 for(j = 0, j < MaxCol; j++)

 c.MatPtr[i][j] = MatPtr[i][j] + b.MatPtr[i][j];

 return(c);

}

template <class T>

matrix <T> matrix<T>::operator - (matrix <T> b)

{

 matrix <T> c(MaxRow, MaxCol);

 int i, j;

 if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)

 throw MatError();

 for (i = 0; i < MaxRow; i++)

 for(j = 0; j < MaxCol; j++)

 c.MatPtr[i][j] = MatPtr[i][j] - b.MatPtr[i][j];

 return(c);

}

template <class T>

matrix <T> matrix<T>::operator * (matrix <T> b)

{

 matrix <T> c(MaxRow, b.MaxCol);

 int i, j, k;

 if (MaxCol != b.MaxRow)

 throw MatError();

 for(i = 0; i < c.MaxRow; i++)

 for(j = 0; j < c.MaxCol; j++)

 {

Mastering C++796

 c.MatPtr[i][j] = 0;

 for(k = 0; k < MaxCol; k++)

 c.MatPtr[i] [j] += MatPtr[i][k] * b.MatPtr[k] [j];

 }

 return(c);

}

template <class T>

int matrix<T>::operator == (matrix <T> b)

{

 int i, j;

 if(MaxRow != b.MaxRow || MaxCol != b.MaxCol)

 return(FALSE);

 for(i = 0; i < MaxRow; i++)

 {

 for(j = 0; j < MaxCol; j++)

 if(MatPtr[i][j] != b.MatPtr[i][j])

 return(FALSE);

 }

 return(TRUE);

}

// function invoked when statement of type matrix a = matrix b is used

template <class T>

void matrix<T>::operator = (matrix <T> b)

{

 int i, j;

 MaxRow = b.MaxRow;

 MaxCol = b.MaxCol;

 for(i = 0; i < MaxRow; i++)

 for(j = 0; j < MaxCol; j++)

 MatPtr[i][J] = b.MatPtr[i][j];

}

template <class T>

istream & operator >> (istream & cin, matrix <T> &dm)

{

 int i, j;

 cout << “How many rows? “;

 cin >> dm.MaxRow;

 cout << “How many columns? “;

 cin >> dm.MaxCol;

 for(i = 0; i< dm.MaxRow; i++)

 for(j = 0; j < dm.MaxCol; j++)

 {

 cout << “Matrix[” << i << “, “ << j << “] =? “;

 cin >> dm.MatPtr[i][j];

 }

 return(cin);

}

Exception Handling 797

template <class T>

ostream &operator << (ostream & cout, matrix <T> &sm)

{

 int i, j;

 for(i = 0; i < sm.MaxRow; i++)

 {

 cout << endl;

 for(j = 0; j < sm.MaxCol; j++)

 cout << sm.MatPtr[i][j] << “ “;

 }

 return(cout);

}

void main()

{

 matrix <int> a; //to store float elements

 matrix <int> b; //matrix <float> a; matrix <float> b;

 cout << “Enter Matrix A details. . . “ << endl;

 cin >> a;

 cout << “Enter Matrix B details... “ << endl;

 cin >> b;

 cout << “Matrix A is ... “;

 cout << a << endl;

 cout << “Matrix B is ... “;

 cout << b;

 matrix <int> c;

 try

 {

 c = a + b;

 cout << endl << “C = A + B...”;

 cout << c;

 }

 catch(MatError)

 {

 cout << endl << “Error: Invalid matrix order for addition”;

 }

 matrix <int> d;

 try

 {

 d = a - b;

 cout << endl << “D = A - B... “;

 cout << d;

 }

 catch(MatError)

 {

 cout << endl << “Error: Invalid matrix order for subtraction”;

 }

 matrix <int> e(3, 3);

Mastering C++798

 try

 {

 e = a * b;

 cout << endl << “E = A * B...”;

 cout << e;

 }

 catch(MatError)

 {

 cout << endl << “Error: Invalid matrix order for multiplication”;

 }

 cout << endl << “(Is matrix A equal to matrix B)? “;

 if(a == b)

 cout << “Yes”;

 else

 cout << “No”;

}

Run

Enter Matrix A details...

How many rows? 1

How many columns? 2

Matrix[0,0] =? 1

Matrix [0,1] =? 2

Enter Matrix B details...

How many rows? 2

How many columns? 1

Matrix[0,0] =? 1

Matrix[1,0] =? 2

Matrix A is ...

1 2

Matrix B is ...

1

2

Error: Invalid matrix order for addition

Error: Invalid matrix order for subtraction

E = A * B...

5

(Is matrix A equal to matrix B) ? No

In the definition of matrix class’s member functions, it can be observed that the validity of a

matrix operation is handled by exceptions. For instance, in the overloaded member function operator

+, the statement

if(MaxRow != b.MaxRow || MaxCol ! = b.MaxCol)
{
 cout << “Error: Invalid matrix order for addition”;
 throw MatError;
}

Exception Handling 799

raises an exception MatError if there is a mismatch in the row and column count of the two matrices

involved in the addition operation. Note that function templates can also raise exceptions.

19.13 FAULT-TOLERANT DESIGN TECHNIQUES

Fault-tolerant software design techniques can be classified into the following:

 (1) N-version programming

 (2) Recovery block

These schemes correspond to the hardware fault-tolerance methods, static redundancy (fault

masking or voting) and dynamic redundancy respectively.

19.13.1 -Version Programming

In this technique, N programmers develop N algorithms for the same problem without interacting

with each other. All these algorithms are executed simultaneously on a multiprocessor system and the

majority solution is taken as the correct answer.

19.13.2 Recovery Block

The recovery-block structure represents the dynamic redundancy approach to software fault tolerance.

It consists of three software elements: (1) primary routine, which executes critical software functions;

(2) acceptance test, which tests the output of the primary routine after each execution; and (3) alternate

routine, which performs the same function as the primary routine (but may be less capable or slower),

and is invoked by an acceptance test after detection of a fault.

In fault tolerance, once the error has been detected, the next goal is error recovery. The erroneous

state must be replaced by an acceptable valid state from which processing may proceed. Forward error

recovery attempts to identify any damage to the system state and to repair it in some way, so that failure

may be avoided. It simply restores previously saved values of the system state and proceeds from there,

possibly using a different program than the one that led to the error. Backward error recovery can be

used with unanticipated faults and unlike forward error recovery, it can be used to recover from design

faults. Figure 19.8 demonstrates the model of a recovery block and its requirements.

The simplest structure of the recovery block is

Ensure T
 By P
Else
 By Q
Else
 Error

where T is the acceptance-test condition that is expected to be met by successful execution of either

primary routine P or the alternate routine Q. The structure is easily expanded to accommodate several

alternatives Ql, Q2,.., Qn.

Mastering C++800

19.14 CASE-STUDY ON SOFTWARE FAULT TOLERANCE

A simple example is chosen for the study of fault-tolerance programming and the same is used for

implementation in C++. C++ does not provide any explicit constructs for fault tolerance, however,

the constructs throw, try, and catch can be suitably used to simulate the action of fault tolerance.

These exception-handling constructs are suitable for implementing the recovery-block technique.

Consider a procedure (P) for computing:

sum = i’+j’+ k’;

The body of P is the sequential composition of the operation

(cl) i = i+j;
(c2) i = i+k;

The behavior of the above procedure P can be examined by considering various versions of the

procedure P(proc p) for different values of the variables i., j. and k.

Version 1

proc P signal OW

begin

 i = i + j [0V -> signal OW];

 i = i + k [0V -> i = i - j; signal OW];

end

Fig. 19.8 Recovery block programming model

Output
YesResults

OK?
Version - 1

No

Version - 2 Results
OK?

Output
Yes

No

Version - N Results
OK?

Output
Yes

No

Signal
FAILURE

Exception Handling 801

The semantic definition of the assignment operator = specifies that whenever the evaluation of the

right-hand side expression terminates exceptionally (overflow occurs, OV), no new value is assigned to

the left-hand side variable. Then, P will terminate exceptionally by executing the recovery block (if it

exists) and signals an OW (overflow word) exception label in the final state.

Data Case 1 i <- MaxValue, j <- MaxValue, and k <- (-MaxValue)

Operation i+j+k (as per data case 1) is valid, but i+j exceeds the representation limit leading to an

exception.

Version 2

proc P signal OW

begin

 i = i + k [OV-> signal OW];

 i = i + j [OV -> i = i - k; signal OW];

end

This version terminates with a valid final state for the data case 1.

Data Case 2 i <- MaxValue, j <- (-MaxValue), and k <- (MaxValue)

Operation i+j+k (as per data case 2) is valid, but (i+k) exceeds the representation limit leading to

an exception.

Version 3

proc P signal OW

begin

 j = j + k [OV -> signal OW];

 i = i + j [OV -> j = j - k; signal OW];

end

This version terminates with a valid final state for the data case 1 and case 2.

Data Case 3 i < - (-MaxValue), j <- MaxValue, and k <- (MaxValue)

Operation i+j+k (as per data case 3) is valid, but j+k exceeds the representation limit leading to an

exception.

Recovery Block for Procedure P:i <- i+j+k:

Ensure no exception
By Version – 1
 Else
 By Version - 2
 Else By Version – 3
 Else FAIL

19.14.1 Recovery-Block Implementation

The recovery-block technique can be implemented by nesting the exception-handling constructs of

C++. To understand the concepts of fault-tolerant programming, consider a computer system having

Mastering C++802

a 4-bit processor, supporting both signed and unsigned numbers. Some of its characteristics are the

following.

 Maximum signed number can be represented is 7 (24–1 –1).

 Maximum unsigned number can be represented is 15 (24 –1).

 Overflow will be indicated if the result exceeds the limit of representation.

The program recovery.cpp handles all the three data cases and demonstrates the characteristics

desired in a fault-tolerance program.

// recovery.cpp: Recover Block of sum(i, j, k)

#include <iostream.h>

const int MAX_SIG_INT = 7; // say, maximum signed integer number

const int MAX_UNSIG_INT = 15; // say, maximum unsigned integer number

class OVERFLOW {}; // Overflow abstract class

int sum(int i, int j, int k)

{

 int result;

 try

 {

 // Versionl procedure

 result = i+j;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 result = result+k;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 cout << “Version-1 succeeds” << endl;

 }

 catch(OVERFLOW)

 {

 cout << “Version-1 fails” << endl;

 try

 {

 // Version2 procedure

 result = i+k;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 result = result+j;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 cout << “Version-2 succeeds” << endl;

 }

 catch(OVERFLOW)

 {

 cout << “Version-2 fails” << endl;

 try

Exception Handling 803

 {

 // Version3 procedure

 result = j+k;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 result = result+i;

 if(result > MAX_SIG_INT)

 throw OVERFLOW();

 cout << “Version-3 succeeds” << endl;

 }

 catch(OVERFLOW)

 {

 cout << “Error: Overflow. All versions failed” << endl;

 }

 }

 }

 return result;

}

void main()

{

 int result;

 cout << “Sum of 7, -3, 2 computation...” << endl;

 result = sum(7, -3, 2); // versionl computes

 cout << “Sum = “ << result << endl;

 cout << “Sum of 7, 2, -3 computation...” << endl;

 result = sum(7, 2, -3); // version2 computes

 cout << “Sum = “ << result << endl;

 // Device data such that version-3 succeeds

 cout << “Sum of 3, 3, 2 computation...” << endl;

 result = sum(3, 3, 2); // all version fails

 cout << “Sum = “ << result << endl;

}

Run

Sum of 7, -3, 2 computation. . .

Version-1 succeeds

Sum = 6

Sum of 7, 2, -3 computation. . .

Version-1 fails

Version-2 succeeds

Sum = 6

Sum of 3, 3, 2 computation...

Version-1 fails

Version-2 fails

Error: Overflow. All versions failed

Sum = 8

Mastering C++804

19.15 MEMORY ALLOCATION FAILURE EXCEPTION

The operator new tries to create an object of the data type Type dynamically by allocating (if possible)

sizeof(Type) bytes in free store (also called the heap). It calculates the size of Type without the

need for an explicit sizeof operator. Further, the pointer returned is of the correct type, pointer to

Type, without the need for explicit casting. The storage duration of the new object is from the point

of creation until the operator delete destroys it by deallocating its memory, or until the end of the

program. If successful, new returns a pointer to the new object. By default, an allocation failure (such

as insufficient or fragmented heap memory) results in the predefined exception xalloc being thrown.

The user program should always be prepared to catch the xalloc exception before trying to access the

new object (unless a user-defined new handler function is defined). The program newl.cpp illustrates

the simple mechanism of handling exceptions raised by the new operator.

// new”!.cpp: new operator memory allocation test
#include <except.h>
#include <iostream.h>
void main (void)
{
 int * data;
 int size;
 cout << “How many bytes to be allocate: “;
 cin >> size;
 try
 {
 data = new int[size];
 cout << “Memory allocation success, address = “ << data;
 }
 catch(xalloc) // new fail exception
 { // Enter this block only of xalloc, is thrown.
 // You could request other actions before terminating
 cout << “Could not allocate. Bye ...”;
 exit(l);
 }
 delete data;
}

Run1

How many bytes to be allocate: 100
Memory allocation success, address = Oxl6be

Run2

How many bytes to be allocate: 30000
Could not allocate. Bye . . .

A request for allocation of 0 bytes returns a non-null pointer. Repeated requests for zero-size

allocations return distinct, non-null pointers. The program new2.cpp illustrates the handling of

exceptions while allocating memory for a matrix.

Exception Handling 805

// new2.cpp: Allocate a two-dimensional space, initialize, and delete it.
#include <except.h>
#include <iostream.h>
void display(long **data, int m, int n);
void de_allocate(long **data, int m);
long main (void)
{
 int m, n; // m rows and n columns
 long **data;
 cout << “Enter rows and columns count: “;
 cin >> m >> n;
 try
 { // Test for exceptions
 data = new long *[m]; // Step 1: Set up the rows.
 for (int j = 0; j < m; j++)
 data[j] = new long[n]; // Step 2: Set up the columns
}
catch(xalloc)
{ // Enter this block only if xalloc is thrown.
 // Other actions could be requested before terminating
 cout << “Could not allocate. Bye ...”;
 exit(l);
}
for(long i = 0; i < m; i++)
 for(long j = 0; j < n; j++)
 data[i][j] = i + j; // Arbitrary initialization
 display(data, m, n);
 de_allocate(data, m);
 return 0;
}
void display(long **data, int m, int n)
{
 for(int i = 0; i < m; i++)
 {
 for(int j = 0; j < n; j++)
 cout << data[i][j] << ” ”;
 cout << endl;
 }
}
void de_allocate(long **data, int m)
{
 for(int i = 0; i < m; i++)
 delete[] data[i]; // Step 1: Delete the columns
 delete[] data; // Step 2: Delete the rows
}

Run1

Enter rows and columns count: 3 4
0 1 2 3

Mastering C++806

1 2 3 4
2 3 4 5

Run2

Enter rows and columns count: 100 300
Could not allocate. Bye ...

19.16 TEN RULES FOR HANDLING EXCEPTIONS SUCCESSFULLY

The amount of modification required to fully exploit the feature of exception handling in existing

software is high. Experts point out... If you want to design your own exceptions and integrate them into

pre-existing classes, first understand the engineering effort—not only throwing exceptions but to handle

them as well. Many experts are concerned that exceptions will lull programmers into a false sense of

security, believing that their code is handling errors, while in reality the exceptions are compounding

more errors and hindering the software development. Implementing a real class such that it is exception

safe can be challenging; sometimes it is not feasible.

In general, the use of exception handling is complicated by the interaction of C++ language features

with certain C/C++ idioms, as well as the demanding robustness requirements expected of exception-

safe. For instance, the combination of exception handling, templates, dynamic memory, and destructors

make expressions containing multiple side effects difficult to program robustly. For instance, consider

the following simple C++ pseudocode function:

template <class T>

void SomeClass::add(parameters)

{

 element_array[element_number++] = T(parameters);

 // ...

}

which uses a standard C/C++ idiom (auto-incrementing) for adding a new element into an array.

However, both the (unknown) constructors of T and its assignment operator might potentially throw

exceptions. In both the cases, it is unclear whether element_number will be incremented or not.

Moreover, the array element being assigned to, will also be in an uncertain state, which might even

cause the destructor of the class SomeClass to fail!

19.6.1 Resources

The most vexing problems of exception handling arise from improper resource management. It leads

to unrelease or double-release of resources. Here, the central concept of a resource is something that

provides functionality. In many cases, a resource is equivalent to a data structure. However, a data

structure is considered a resource if it lives beyond a single operation. This constraint implies that

resources have an internal state. This state is identified by all the resource’s data values, which may be

modified by operations on the resource. Often, a resource corresponds to one or more components in

a subsystem such as a search table or a database. Smaller entities can also be considered as resources

such as single elements of a search table or records in a database. Likewise, large systems such as all-

user processes in an operating system or a network of computers can be viewed as resources.

Exception Handling 807

An important operation on a resource is releasing it, i.e., changing the state of a program in

such a way that this resource is no longer active. In C++, this release is usually accomplished by a

destructor—either in a delete expression, at the end of a block, or within another destructor. However,

other operations can be used to release resources such as the following

 The C standard library function fclose() releases a resource of the type FILE *.

 A list node might be shut down by putting it into a free list rather than returning it to heap

memory by calling delete.

 A stack class may store its elements in an array. In this case, releasing the resource (i.e., top

element of the stack) is often accomplished by a simple decrement of the index. Thus, the top

element is no longer accessible after this operation.

It is necessary to design all the resources in an exception-safe way because exceptions might be

thrown at arbitrary places in a program.

19.16.2 Problems with Exception Handling

There are several ways to integrate exception handling into a subsystem. One way is to design it

during the initial development of the subsystem. Often, however, exception-handling declarations and

statements are added to an existing subsystem after it has been designed with the intent of making it

more robust. In both the cases, especially in the latter, the following issues might be considered and

solved.

 1. The design of the exception class types and the class hierarchy. It should address the issues

such as which exceptions should be distinguishable by their type, which should be distinguished

by data member values, which standard exceptions are to be reused, or which special-purpose

exception classes are to be defined.

 2. How to throw an exception, i.e., the C++ syntax for raising an exception.

 3. How to pass exceptions upwards i.e., what must be done to correctly manage the resources that

are affected as the stack unwinds.

 4. How to handle an exception, i.e., remedying the problem that was the original reason for throwing

an exception.

 5. Syntactic and readability issues. For instance, indentation, grouping of handlers, etc.

 6. Use of exception handling in large systems. For example, how to handle more than one exception

at the same time, how to indicate more than one problem with more than one resource, etc.

 7. Testability of programs with exception handling. For example, how should the “all branches”-

coverage criterion for sufficient testing be redefined in the presence of exception handling.

 8. Maintenance of exception handling declarations and statements in the life cycle of software

systems. For example, how does the presence of exception handling influence the understandability

of code? How might the extension of class hierarchy interact with exception handling (for

example, if virtual functions in derived classes need to throw exceptions different from those in

the base class).

The concept of simply throw an exception if you do not know what to do will reduce program

robustness and frustrate programmers who have to deal with all these exceptions. Therefore, the ten

rules discussed below need to be followed in order to manage the exceptions well:

Mastering C++808

Rule 1

Do not throw an exception unless absolutely necessary.

A basic principle of software engineering: Allow composition of resources, i.e., complex resources are

composed from simpler ones. C++ has many construction methods to facilitate resource composition.

Improper handling of an exception in such systems can lead to bad (inconsistent) states. A bad resource

cannot be repaired—sometimes it may not even be possible to destroy it. Consider the following

definition of the member function push() in the Stack class:

template <class T>

void Stack<T>::push(T e)

{

 vec[top++] = e; // vector insertion can cause exception

}

An exception in the assignment will leave the top index incremented, yet the assignment to the new

top element will not occur. Any access to the top element will find an unassigned value. Such exceptions

must be carefully designed so that consistency of resource is maintained. Throwing exceptions cause

some resources to be in a bad state that could be cleaned up by some handler.

Rule 2

It is not advisable to simply throw some exceptions deep in the call stack and then let C++ unwind the

stack until a handler is found; this might leave behind damaged resources that cannot even be destroyed

afterwards.

Two appealing solutions for handling bad resources are the following:

 (a) Reorder the statements in each update method so that no bad composite states are encountered,

even between two subresources.

 (b) Modify each update so that if a resource enters a bad state, it is restored to the original state it had

before the update occurred.

The push() member function of the Stack class can be reordered as follows:

 template <class T>
 void Stack<T>::push(T e)
 {

 vec[top] = e; // vector insertion can cause exception
 ++top;

 }

In the above case, the stack index top will not lead to a bad state when exception occurs at assignment

of e to vec.

Restoring the state back to its original value before the operation is started is complex with nontrivial

C++ programs. Classes with virtual functions and templates are commonly used to write code that calls

functions which are unknown at the time when the calling code is written. Therefore, it is much more

Exception Handling 809

harder to integrate exception handling into C++, compared to C. However, it is possible to handle

exceptions without too much effort.

Rule 3

All the resources should be designed in such a way that every technically possible state is a shut-down

state.

The following design principle can be concluded when resources are designed according to Rule 3.

The only thing an exception handler can do with a damaged resource is to shut it down (release or free).

Rule 4

The responsibility for managing a resource lies either with a class (i.e., the destructor of the class

releases the resource); or with the block that acquired the resources (i.e., the resource is released on

exit from the block).

Consider a simple example of Stack data structure. It has a push() function that sometimes has

to allocate a new array. It does this in the following way:

 if(buffer is too small)

 {

 T *new_buffer = new T[nelems]; // (a)

 ...fill new_buffer...;

 delete [] vec; // (b)

 vec = new_buffer;

 }

At step (a) in the above segment, the resource new_buffer is created under the responsibility of the

block. If anything goes wrong after this point, it would be the responsibility of the block to delete the

buffer again (which it does not do in the code). At step (b), the responsibility is transferred to the stack

object by assigning it to the member vec of the class Stack. The responsibility to release resources

now lies with the object’s destructor. Thus, if a function is exited due to an exception, the destructor

has to release the buffer.

Rule 5

Symmetric resource management; resource management of a purely block-local resource: The

responsibility of a block-local resource always lies with the acquiring block.

Of course, with this method, it is not possible to put a resource under the object responsibility, which

is necessary for all asymmetric resource-management problems. Two general schemes (or patterns) for

solving this type of problem are 1) setting resource of an object, and 2) replacing an object resource. As

a building block, these patterns need secure operations that allow to transfer resource responsibilities

without throwing exceptions, i.e., all destructors in a C++ program should have an empty specification

throw(). The first problem arises most often in constructors and assignment operators where a new

dynamic resource is needed to store part of the object’s value. Resource management for such a resource

is done as indicated in Rule 6. The second problem arises in the implementation of containers that

automatically adjust their size, for example, the Stack class. Again, clear responsibility management

is the key to the correct design as indicated in Rule 7.

Mastering C++810

Rule 6

Resource management for a new object resource. To handle this, use the fallowing pattern:

 (a) A load resource of suitable size is acquired.

 (b) The resource is used (usually initialized) as necessary.

 (c) The resource is put under an object’s responsibility.

The responsibility of the resources lies with the acquiring block in the above steps a) and b) and with

some object after c). The responsibility transfer at c) must happen in such a way that the responsibility

is always with exactly one agent—either the object or the block.

Rule 7

Resource management for replacing an object resource. To handle this situation, use the following

pattern:

 (a) A local resource of suitable size is acquired under block responsibility.

 (b) The resource is used (usually initialized) as necessary.

 (c) The responsibilities for the object resource and local resource are exchanged.

 (d) The new local resource (the former object resource) is released.

The following is an example of such a sequence:

template <class T>

void Stack::pop()(T & e) // throw(bad_alloc, ..T(),..)

{

 if(top == nelems)

 {

 nelems *= 2;

 AutoPtrArray <T> new_buffer = nelems; // (a)

 for(int i = 0; i < n; ++i) // (b)

 new_buffer[i] = vec[i];

 new_buffer.swap_with(vec); // (c)

 /* destructor of new_buffer */ // (d)

 }

 vec[top++] = e;

}

Rule 8

When designing a throw-and-keep resource, all operations with side effects on subresources occurring

in some resource constraint must be viewed as resource acquisitions.

Rule 9

Each modification of a subresource of a throw-and-keep resource that might throw an exception must

be wrapped as shown in the following code:

Exception Handling 811

try
{
 //... modification...;
}
catch(...)
{
 // make subresource invisible to all operations
 // except those that destroy it
 throw;
}

Moreover, all the actions in the catch block must be secure operations.

Rule 10

Resource management for a new object resource with return statement. To handle this situation, use

the following pattern:

 (a) A local resource is acquired.

 (b) The responsibility of the local and the object resources are swapped.

 (c) The resource is used as necessary (including the return statement). If an exception is thrown in

(c), perform (d) and (e):

 (d) The responsibility of the local and the object resources are swapped back.

 (e) The exception is re-thrown (in order to avoid losing information about error occurrence and

reason for its occurrence).

The following is an example of such a sequence:

template <class T>
T KeepableStack: :pop() (T & e) // throw(XPopOnEmptyStack, . . .T(T&))
{
 if(top == 0)
 throw XPopOnEmptyStack(“Stack<T>::pop”);
 Auto_uinit new_top(top-1); // (a)
 new_top.swap_with(top); // (b)
 try
 {
 return vec[top]; // (c)
 }
 catch(. . .)
 {
 new_top.swap_with(top); // (d)
 throw; // (e)
 }
}

Based on the background of the above ten rules in managing exception handling, it is possible to

design new patterns. A new pattern for responsibility management includes transferring responsibilities

from an acquiring block to a surrounding block; or from one object to another, and so on.

Mastering C++812

SOLVED PROBLEMS

 1. Write a program that uses try-catch mechanism to check whether the input entered by the

user is of correct type or not.

#include<iostream.h>
void main()
{
 int num;
 label:
 try
 {
 cout<<”Please enter an integer value: “;
 cin>>num;
 if(!cin.fail())
 cout<<”\nYou entered a correct type of value”;
 else
 throw num;
 }
 catch(...)
 {
 cout<<”\nYou entered an incorrect type of value; try again”;
 cin.clear();
 cin.ignore();
 goto label;
 }
}

Run 1

Please enter an integer value: 9
You entered a correct type of value

Run 2

Please enter an integer value: 10.7
You entered an incorrect type of value; try again
Please enter an integer value: 8
You entered a correct type of value

2. Write a program to demonstrate multiple catch blocks.

#include<iostream.h>
void main()
{
 int i;
 cout<<”Press an integer value between 1 - 3 to test exception handling
with multiple catch blocks..”;
 cin>>i;

+
+

Exception Handling 813

 try
 {
 if(i==1)
 {
 cout<<”\nThrowing integer value...”;
 throw(1);
 }
 if(i==2)
 {
 cout<<”\nThrowing double value...”;
 throw(1.12);
 }
 if(i==3)
 {
 cout<<”\nThrowing character value...”;
 throw(‘A’);
 }
 }
 catch(int i)
 {
 cout<<”\nCaught an integer value “<<i;
 }
 catch(double i)
 {
 cout<<”\nCaught a double value “<<i;
 }
 catch(char i)
 {
 cout<<”\nCaught a character value “<<i;
 }
}

Run 1

Press an integer value between 1 - 3 to test exception handling with
multiple catch blocks..1
Throwing integer value...
Caught an integer value 1

Run 2

Press an integer value between 1 - 3 to test exception handling with
multiple catch blocks..2
Throwing double value...
Caught a double value 1.12

Run 3

Press an integer value between 1 - 3 to test exception handling with
multiple catch blocks..3
Throwing character value...
Caught a character value A

Mastering C++814

REVIEW QUESTIONS ++
 19.1 What are exceptions? What are the differences between synchronous and asynchronous

exceptions?

 19.2 Explain the techniques of building reliable software.

 19.3 Explain the exception handling model of C++ with various constructs supported by it.

 19.4 Write an interactive program to compute the square root of a number. The input value

must be tested for validity. If it is negative, the user-defined function my_sqrt() should

raise an exception.

 19.5 What is the syntax for indicating a list of exceptions that a function can raise? What

happens if an unspecified exception is raised?

 19.6 Write a program to demonstrate the catching of all exceptions.

 19.7 What happens when an exception is raised in a try block having a few constructed

objects? What is stack unwinding?

 19.8 What happens when a raised exception is not caught by a catch block?

 19.9 How does C++’s throwing and catching exceptions differ from C’ setjmp() and long
jmp()?

 19.10 Write a program which transfers the control to user-defined terminate() function

when a raised exception is uncaught.

 19.11 When is the function unexpected() invoked? Write/a program which installs the

user-defined unexpected function to handle exceptions.

 19.12 Write an interactive program which divides two complex numbers. Overload divide (/)

operator. Handle cases such as division-by-zero using exceptions.

 19.13 Consider that the base class Stack is available. It does not take care of situations such

as overflow or underflow. Enhance this class to MyStack which raises an exception

whenever overflow or underflow error occurs.

 19.14 What are the different fault-tolerant design techniques available? Explain the recovery-

block programming technique with a suitable example.

 19.15 When memory allocation fails, how does the new operator notify the error to the caller?

 19.16 Write a program to add two vectors. Each vector object, an instance of the class Vector,

has dynamic allocation of their data members. Catch the exception raised by the new
operator and take corrective actions.

 19.17 Explain why addition of exceptions to most software is likely to diminish the overall

reliability and impede the software development process if extraordinary care is not

taken.

 19.18 List the ten rules for handling exceptions successfully

 19.19 What are the issues that need to be considered while designing fault-tolerant software?

 19.20 Write a program for matrix multiplication. The matrix-multiplication function should

notify if the order of the matrix is invalid using exceptions.

OO Analysis,
Design and
Development

OOP systems are sold on the promise of improved productivity through

object reuse and high level of code modularity. These aspects precisely lead

to their greatest benefit, namely, improved software quality, considering

“the objective of OO design is to mirror real-world objects” in the software

systems. OO technology encompasses not only OOP but also other OO

concepts such as user interface, analysis, design, and database management

systems. Lastly, using OOP facilitates an iterative style of development

rather than the traditional waterfall approaches. The object-oriented

20

Fig. 20.1 Structured vs. object-oriented computational model

updatedelete new

printreport

Customer Account

(a) Structured computational model

System Operation
Data Flow
Control Flow

Account_1

Account_1
attributed

Account_Histroy

AcctHist
attributes

Customer

Customer
attributes

new

update

Transaction

Trans
attributes

post

undo

(b) Object-oriented computational model

roll_over

archive

list_tx

print

update

Mastering C++816

approach centers around modeling the real world in terms of objects, in contrast to the traditional

approaches which emphasize function-oriented view and separate data and functions.

Software engineering deals with the various tools, methods, and procedures required for controlling

the complexity of software development, project management, and its maintenance. Object-oriented

development emphasizes on using programming languages with certain unique capabilities for real-

world object modeling. Object model is the conceptual framework for object-oriented development.

The four major elements of this model are encapsulation, abstraction, modularity, and hierarchy.

The computational model of the structured and object-oriented model is shown in Figure 20.1. OO

development tends to be iterative and incremental growth, compared to conventional development.

A systems development methodology combines tools and techniques to guide the process of

developing large-scale information systems. Dramatic improvement in hardware performance and

the adoption of high-level languages has enabled building of large and more complicated systems.

The conventional methodologies decompose the process of system development lifecycle into discrete

project phases with frozen deliverables or formal documents, which serve as the input to the next phase.

20.1 SOFTWARE LIFE CYCLE: WATERFALL MODEL

Software systems pass through two principal phases during their life cycle:

 The development phase

 The operations and maintenance phase

The development phase begins when the need for the product is identified; it ends when the

implemented product is tested and delivered for operation. Operation and maintenance include all

activities during the operation of the software such as fixing bugs discovered during operation, making

performance enhancements, adapting the system to its environment, adding minor features, etc. During

this phase, the system may also evolve when major functions are added. To illustrate the software life

cycle, the waterfall model or conventional life-cycle model (see Figure 20.2) has proven convenient.

Fig. 20.2 Waterfall model for software development

Problem
definition

Analysis

Design

Coding

Testing

Maintenance

OO Analysis, Design and Development 817

Conventional life cycle of software development passes through various phases. They include

definition of system requirements, generation of software requirements, software design, coding, and

final testing and reliability modeling.

Problem Definition
The first stage in the development process is understanding the problem in question and its requirements.

Requirements may be specified by the end user, or if the software system is embedded within a larger

system, they may be derived from the system requirements. Requirements, therefore, include the

context in which the problem arose, functionality expected from the system, and system constraints.

At this point, the managers and software specialists decide whether it is feasible to build the system.

Analysis
A system analyst observes the feasibility of system development. If system development is cost-effective

based on the management approval, then design, coding, etc., phases will be executed. Otherwise, it

will be aborted; no progress of other phases will be made. The analysis phase delivers requirements

specification. If the project is approved, software specialists try to understand the requirements and

define the specifications to meet those requirements. The system specification serves as an interface

between the designer and implementor as well as between the implementor and user. This describes

external behavior of the software without bothering about the internal implementation. Specification

must be carefully checked for suitability, omission, inconsistencies, and ambiguities.

Design
Design is the process of mapping system requirements defined during analysis to an abstract

representation of a specific system implementation, meeting the cost and performance constraints. The

detailed design involves the analysis of various alternatives, including trade-off among the number of

possible solutions based on the existing constraints.

It describes how the system is to be implemented so that it meets the specification. Since the whole

system may be very complex, the main design objective is decomposition. The system is divided into

modules and their interactions. The modules may then be further decomposed into submodules and

procedures until each module can be implemented easily.

Coding/Implementation
Once the specification and the design of the software is over, the choice of a programming language

remains as one of the most critical aspects in producing reliable software. Implementation involves the

actual production of code. Although it is one of the important phases, it takes only 20% of the total

development time. The reliability of the code produced depends on the coding standards, implementation

strategies, and the facilities provided by the host language for reliable programming.

Testing
The truth hurts: Many software development organizations pay lip service to quality—shipping untested

software when deadline pressures dictate, the not-so-surprising conclusion drawn from many surveys.

Testing is the process of exercising or evaluating a system or system component by manual or

automated means to verify that it satisfies the specified requirements. Normally, most of the testing

and debugging is done after the system has been implemented (integrated testing). A large percentage

of errors discovered during testing originates in the requirement and design phases. Requirement

and design errors are more expensive to correct (typically, about 100 times more expensive than

Mastering C++818

implementation errors). Clearly, more efforts are needed to be spent in requirement definition and

design, which must be considered separate stages in software development. People must become more

aware of the importance of earlier phases in the software life cycle.

Once the software is developed, it has to be subjected to tests at the module (unit) level, module

integration level, software/hardware integration (system) level, and finally at the system level. Module

testing focuses on individual software units or related groups of units. Module integration testing

focuses on combining software and hardware units, to evaluate the interaction among them. System

testing focuses on complete, integrated systems to evaluate compliance with requirement specification.

A module has to be tested for logical errors and computational errors while the interface is checked

to see whether the interaction between the modules are proper. The techniques that have been proposed

for unit testing include the following:

 Path testing: Each possible path from input to output is traversed once.

 Branch testing: Each path must be traversed at least once.

 Functional testing: Each functional decomposition is tested at least once.

 Special values testing: Testing for all values assumed to cause problems.

 Anomaly analysis: Testing the program constructs that can cause problems.

 Interface analysis: Testing for problems at module interfaces.

Maintenance
Once the system is put into operation, it must be maintained, which includes fixing bugs discovered

during operation, adapting the system to a particular environment, and tuning it to improve performance.

If some major changes or improvements are made to increase the functionality or performance, the

system may undergo an evolution. The boundary between maintenance and evolution is fuzzy because

what constitutes a major change is a subjective opinion.

Maintenance absorbs a large fraction of the cost incurred during the software life cycle. A major

portion of maintenance activity is a consequence of misinterpreted user requirements or faulty

debugging during operation, which thereby introduces errors that did not exist earlier. Some of these

maintenance problems could be reduced if more attention is paid to the development. If programmers

have clearly understood the users’ requirements, if they have documented the specification, design,

and code properly, and if they have tested the system fully before its release, maintenance would not

be so difficult and costly. To reduce maintenance costs, the software life cycle is divided into two

fundamental phases—development and operation/maintenance. Software engineers should view these

as distinct phases so that both receive sufficient attention during the software life cycle.

20.2 COST OF ERROR CORRECTION

Software development process includes analysis and generation of software requirements, software

design, coding, final testing, and reliability modeling. Each one of these development phase includes

verification, since it is easy to detect errors at each stage and also it will avoid error propagation from

one stage to another. Further, it has been shown that the cost of correction of errors increases sharply as

the development stage advances. The relative cost of correcting errors is 1% during the design phase,

3% during the coding phase, 21% during the testing phase, and rises to 75% when the software is put

into operation. (See Figure 20.3.)

OO Analysis, Design and Development 819

The following are the different types of errors that may

creep into the design of a software system:

 Incomplete or erroneous specification

 Intentional deviation from specification

 Violation of programming standards

 Erroneous data accessing

 Erroneous decision logic or sequencing

 Erroneous arithmetic computations

 Invalid timing

 Improper interrupt handling

 Wrong constants and data values

 Inaccurate documentation

20.3 CHANGE MANAGEMENT

Changes to a system are bound to happen many times either during the system design, or after complete

implementation of the system, or during system operation. Hence, it is very essential to define the

change-management process. The changes can be in the form of any modification to functionality

during the design phase. It can also be due to any modification to agreed functionality or deliverable

description in any phase. Some of the factors causing changes in a project are the following:

 Customer misunderstanding

 Inadequate specification

 New customer request

 Organization changes

 Government regulation

20.3.1 What is a Change?

A change is an alteration to the project scope, deliverables,

or milestones that would affect the project cost, schedule, or

quality. Change is inevitable and occurs during the course of a

project as shown in Figure 20.4. Once the implemented system

becomes stable, many new requirements can be incorporated

with minimal change to the design. The project manager is

responsible for change control. Different categories of change

exist: mandatory, critical, and nice to have. These changes

must pass through proper channel and all documents must

be updated. Before initiating the change process, it must be

first investigated and its impact on various factors must be

Fig. 20.3 Cost of error correction vs

development stage

Te
st

in
g

(2
1%

)

System
under operation

(75%)

C
o
d
in

g

(3
%

)

D
esign

(1%
)

Fig 20.4 Change requests during

system development

System
changes System

Analysis
Change to

system

Analysis

Design

Code

Change to
design

Change to
code

System
Design

Programming

Test

Product

Bugs

Design
changes

Mastering C++820

thoroughly studied. The project manger can accept the change request, or reject the change request, or

return the change request for further investigation or clarification. Once a change request is approved,

it has to be incorporated appropriately at the respective level or may even be carried out to all other

phases. If it is improperly handled, it might even lead to the collapse of the whole system.

20.4 REUSABLE COMPONENTS

Another important strategy that helps in reliable programming is to use all well-proven, tested software

modules without redesigning them. The usage of such well-proven modules decreases the development

effort and increases reliability. Though this idea is not very popular, except in scientific subroutines

and some database applications, it is becoming increasingly acceptable to the software-development

community since the recent languages support the concept of modularization and separate compilation

of those modules.

Some of the important components of reusability or levels of reusability are code, data, design,

specification, etc. The most popular level of reusability is code reusability.

20.4.1 Reusing Code

It can be in the form of making a call to the subroutines library. Other forms of code reusability are the

following:

Cut and Paste of Code

In this method, the required portion of a code is cut and pasted in another module and necessary

changes are incorporated.

Source-level Includes

In C++, it is performed by including the header file by using the include preprocessor directive.

Binary Links

Making call to a function stored in the library in the form of executable code.

Runtime Invocation
In all the above three forms of source code reuse, while writing the program itself, the programmer has

to know which component he/she wishes to reuse. The binding of the reused components takes place at

coding time, compile time, or link time. In some cases, the flexibility of runtime binding is essential. In

C++, it is supported by virtual functions. The important point to be noted about the OO paradigm is the

degree to which the OOPL supports dynamic binding may strongly influence the degree of reusability

in the organization.

20.4.2 Reusing Data

Some of the data declared in a header file can be reused extensively by including that in a program.

These can be in the form of macro constants, literals, enumerated constants, etc.

OO Analysis, Design and Development 821

20.4.3 Reusing Designs

The major problem with code reuse is that coding takes place after major activity: analysis and design.

It is well known that only 15 percent of project duration is used by coding phase, so any attempt to

increase coding productivity (through high-level languages) can have only a limited impact on overall

project productivity.

Earlier, a major focus was given to source-level components. Today, focus is shifted to achieving

significant results through reuse of the design and specification level. As pointed out by experts, code

reuse typically occurs at the bottom levels of a system design hierarchy, whereas design reuse occurs in

most of the branches of hierarchy (see Figure 20.5).

20.4.4 Reusing Specificiation

Although design reuse is good, specification reuse is much better. It eliminates completely (almost) the

effort needed in designing, coding, and testing an implementation of that specification.

20.4.5 Miscellaneous Reuse Components

While code, data, design, and specification are the most obvious candidates for reuse, they are not the

only ones. Some of the possible candidates are

 Cost-benefit calculations

 User documentation

 Feasibility studies

 Test cases, test procedures, test drivers, test stubs

Among all the entities involved in the software project, one component that cannot be reused is

the people (who make up the project team). The experience, infrastructures, etc., gained by a project

team during one project should be carried over, that is, reused in the next project whenever possible.

This seems to be common sense, but it is not common in the software industry. It is because, teams

are busted apart at the end of the project and individuals are scattered and reassigned to other projects

or they might change organizations (which is most common in the software industry). Hence, people-

Fig. 20.5 Code reuse vs design reuse

Code reuse Design reuse

Mastering C++822

ware approaches to software productivity often achieve results several times greater than technical

approaches.

20.5 SOFTWARE LIFE CYCLE: FOUNTAIN-FLOW MODEL

The conventional model requires a large amount of time to be spent in formulating the problem

specifications. It delays the writing of code, and programmers may be impatient. In addition, the

conventional life-cycle model permits little feedback from the end user until the coding stage, which

is at the end of the life cycle. At this point, if the system does not meet the specifications, the design

and code become very expensive. It is often easier to change an existing system than to redevelop the

specifications and design a new system. The conventional model fails to address software reusability,

hence the existing software is not usable as a starting point.

Objects are represented as individual entities which uniquely identify their own contents as well as

the operations that may be performed on them. Thus, it is a philosophy of system design to decompose

a problem into a set of abstract object types or resources in the system and a set of operations that

manipulate instances in the system; and a set of operations that manipulate instances of each object

type. The OO paradigm views a system as a collection of entities called objects that interact with each

other to meet a specific objective. (See Figure 20.6).

OO methodology allows the end-users, analysts, designers, and programmers to view various

components of the system in the same way, thus simplifying the process of mapping the customer

requirement to the implementation model. The real-world entities are represented in the form of

objects. Objects play the central role in all phases of the software-development process. Therefore,

there is a high degree of overlap and interaction among the phases. The use of waterfall model in the

design of OO based system does not allow overlap and interaction among the development phases. This

problem can be circumvented by using a model that resembles a fountain. The resultant model is called

fountain-flow model and is shown in Figure 20.7. It allows a higher-level phase to interact with its lower

phase and again proceed to a higher-level phase.

Fig. 20.6 Objects interacting with each other

Data

Object D

Methods

Object C

Data

Methods

Data

Methods

Object A

Data

Methods

Object B

Process

Input Output

OO Analysis, Design and Development 823

20.6 OBJECT-ORIENTED NOTATIONS

Graphical notations play a major role while representing the design and development processes, and

object-oriented design is no exception. They increase the ease with which ideas can be exchanged among

the members of a project team. Object-oriented design requires notations for representing classes,

objects, derived classes and their interrelationship, and interactions among objects. Unfortunately, for

representing these aspects, there are no standard notations. In this book, authors have used their own

notations in addition to some commonly used notations, which are discussed in earlier chapters such as

Object-Oriented Paradigm, Classes and Objects, Inheritance, etc.

20.7 OBJECT-ORIENTED METHODOLOGIES

Many Object-Oriented Analysis (OOA) and Object-Oriented Design (OOD) methodologies have

emerged recently, although the concepts underlying object-orientation as a programming discipline has

been developed long time ago. Object orientation certainly encompasses many novel concepts, and is

popularly called a new paradigm for software development. Object-oriented methodologies represent a

radical change over conventional methodologies such as structured analysis.

Various object-oriented methodologies can be best investigated by dividing them into two camps—

revolutionaries and synthesists. Revolutionaries believe that object orientation is a radical change that

Fig. 20.7 Fountain-flow model for OO system development

Object-oriented analysis

Object-oriented design

Object-oriented programming

Object in problem space

Object in solution space

Objects in program

OOA

OOD

OOP

Application

Maintenance Further development

Mastering C++824

renders conventional methodologies and ways of thinking (about design) obsolete. Synthesists, by

contrast, view object orientation as simply an accumulation of sound software-engineering principles

which adopters can graft onto their existing methodologies with relative ease.

The revolutionaries (Booch, Coad, Yourdon) state the following:

 There should be no doubt that object-oriented design is fundamentally diffefent from traditional

structured-design approaches. It requires a different way of thinking about decomposition, and it

produces software architectures that are largely outside the realm of the structured-design culture.

 There is no doubt that one could arrive at the same results using different methods; but it is

revealed from experience that the thinking process, the discovery process, and the communication

between the user and analyst are fundamentally different with OOA than with structured analysis.

 On the other side, the synthesists (Wasserman, Pircher, Muller, Page Jones, and Weiss) state the

following:

 Object-Oriented Structured Design (OOSD) methodology is essentially an elaboration of

structured design. They state that the foundation of OOSD is structured design, and that structured

design includes most of the necessary concepts and notations for OOSD.

 The problems that object orientation has been widely touted as a revolutionary approach is a

complete break with the past. This would be fascinating if it were true, but it is not like most

engineering developments, the object-oriented approach is a refinement of some of the best

software engineering ideas of the past.

The leading analysis methodologies are the following:

 DeMarco structured analysis

 Yourdon modern structured analysis

 Martin information engineering analysis

 Bailin object-oriented requirements specification

 Coad and Yourdon object-oriented analysis

 Shlaer and Mellor object-oriented analysis

The leading design methodologies are the following:

 Yourdon and Constantine structured design

 Martin information engineering design

 Wasserman et al. object-oriented structured design

 Booch object-oriented design

 Wirfs-Brock et al. responsibility-driven design

20.7.1 Object-Oriented Analysis

Object-oriented analysis provides a simple, yet powerful mechanism for identifying objects, the

building blocks of the software to be developed. It is mainly concerned with the decomposition of a

problem into component parts and establishing a logical model to describe the system. The various

steps involved in OOA are shown in Figure 20.8.

The two general findings about object-oriented analysis are

 1. OOA fulfills the properties of analysis, and

 2. OOA has a smooth transition to design.

OO Analysis, Design and Development 825

OOA model should cover objectives, application

domain knowledge, requirements of the environments,

and requirements of the computer system.

Objectives

These are the ultimate expectations of the users towards

the entire information system (both computerized and

manual), i.e., the objectives which are to be fullfilled

through the interplay between the computer system

and the surrounding human organization.

Application Domain Knowledge
This defines the vocabulary of the application, its

meaning, and properties.

Requirements of the Environment
This is a description of the behavior required from the

human organization to meet the objectives.

Requirements of the Computer System
This is a description of the behavior required from the computer system to meet the objectives.

For most OOA/OOD approaches, the difference between analysis and design is not recognized as

the difference between the user requirement and the solution, but simply as the difference between

“what” and “how”. It is interpreted as “Analysis is aimed at describing what a target system is supposed

to do to obtain an agreement with a customer bearing the expenses. While design is aimed at describing

how the designed system will work...”.

20.7.2 Positive Trends in OOA

OOA has evolved and focuses on system dynamics. Novel features of this method include the following:

 1. It does not assume that a previously written requirement specification exists.

 2. It focuses on the analysis content, including goals and objectives.

 3. It considers external objects as initiators of the scenario.

 4. Attention to requirement elicitation is given by creating scenarios from a structured interview

process.

 5. Symbolic execution can be obtained, because scripts and state transition are coupled through pre-

and post-conditions.

20.7.3 Object-Oriented Design

Object-oriented design is a radical change from both process-oriented and data-oriented methods. The

OOD methodologies collectively model several important dimensions of a target system not addressed

by conventional methodologies. These dimensions relate to the detailed definition of classes and

inheritance, class and object relationships, encapsulated operations, and message connections. The

need for adopters to acquire new competencies related to these dimensions, combined with Booch’s

uncontested observation that OOD uses a completely different structuring principle (based on object-

Fig. 20.8 Steps in object-oriented analysis

Identify
objects

Problem
definition

Requirement
specifications

Objects in
problem space

Identify
services

Identify
collaborations

Design

Mastering C++826

oriented rather than function-oriented decomposition of system components), renders OOD as a radical

change.

Object-oriented design is concerned with mapping of objects in the problem space into objects in

the solution space. It creates an overall architectural model and computational model of the system.

In OOD, structure of the complete system is built using bottom-up approach, whereas class–member

functions are designed using top-down functional decomposition. It is important to construct structured

hierarchies, identify abstract base classes, and simplify the inter-object communication. Reusability

of classes from previous design using inheritance principle, classification of objects (grouping) into

subsystems providing specialized services, and determination of appropriate protocols are some of the

considerations of the design stage.

 Most of the object-oriented methodologies emphasize the following steps:

 1. Review of objects created in the analysis phase.

 2. Specification of class dependencies

 3. Organization of class hierarchies using inheritance principles

 4. Design of classes

 5. Design of member functions

 6. Design of driver program

20.8 COAD AND YOURDON OBJECT-ORIENTED ANALYSIS

Coad and Yourdon OOA methodology can be viewed as building upon the best concepts from

information modeling, object-oriented programming languages, and knowledge-based systems. OOA

results in a five-layer model of the problem domain, where each layer builds on the previous layers. The

layered model is constructed using a five-step procedure.

 Define objects and classes. Look for structures, other systems, devices, events, roles, operational

procedures, sites, and organizational units.

 Define structures. Look for relationships between classes and represent them as either general-

to-specific structures (for example, employee-to-sales manager) or whole-to-part structures (for

example, car-to-engine).

 Define subject areas. Examine top-level objects within whole-to-part hierarchies and mark these

as candidate subject areas. Refine subject areas to minimize interdependencies between subjects.

 Define attributes. Identify the atomic characteristics of the object as attributes of the object.

Also, look for associative relationships between objects and determine the cardinality of those

relationships.

 Define services. For each class and object, identify all the services it performs, either on its own

behalf or for the benefit of other classes and objects.

The primary tools for Coad and Yourdon OOA are class and object diagrams and service charts. The

class and object diagram has five levels, which are built incrementally during each of the five analysis

steps outlined above. Service charts, which are much similar to a (traditional) flow chart, are used

during the service definition phase to represent the internal logic of services. In addition, service charts

portray state-dependent behavior such as preconditions and triggers (operations that are activated by

the occurrence of a predefined event).

OO Analysis, Design and Development 827

20.9 BOOCH’S OBJECT-ORIENTED DESIGN

While there are many object-oriented design methodologies, one approach that reflects the essential

features of object-oriented design is presented by Grady Booch. The four major steps involved in the

object-oriented design (OOD) process are

 1. Identification of classes (and objects)

 2. Identification of semantics of classes (and objects)

 3. Identification of relationship between classes (and objects)

 4. Implementation of classes (and objects)

Identification of Classes (and Objects)
In this step, key abstractions in the problem space are identified and labeled as potential candidates for

classes and objects.

Identification of Semantics of Classes (and Objects)
In this step, the meanings of classes and objects identified in the previous step are established, which

includes definition of the life cycles of each object from creation to destruction.

Identification of Relationship between Classes (and Objects)
In this step, interactions between classes and objects, such as, patterns of inheritance among classes

and patterns of visibility among objects and classes (what classes and objects should be able to “see”

each other) are identified.

Implementation of Classes (and Objects)
In this step, detailed internal views are constructed, including definition of methods and their behaviors.

Objects and classes have to be allocated to modules (as defined in the target language environment) and

resulting programs to processor (where the target environment supports multiple processors).

The primary tools used during OOD are

 Class diagrams and class templates (which emphasize class definitions and inheritance

relationships)

 Object diagrams and timing diagrams (which stress message definitions, visibility, and threads of

control)

 State-transition diagrams (to model object states and transitions)

 Operation templates (to capture definitions of services)

 Module diagrams and templates (to capture physical design decisions about the assignment of

objects and classes to modules)

 Process diagrams and templates (to assign modules to processors in a situation where a

multiprocessor configuration is supported)

20.10 CLASS DESIGN

Whether the design methodology chosen is Booch’s OOD or any of the several other methodologies,

design of classes is consistently declared to be central to the OO paradigm. Note that class design has

Mastering C++828

the highest priority in OOD, and since it deals with the functional requirements of the system, it must

occur before system design (mapping objects to processors/processes) and program design (reconciling

of functionality using the target languages and tools, etc.). Classes are developed either for building

applications or for building class libraries or hierarchies. The class hierarchy is built by combining data

hierarchy and procedure hierarchy as shown in Figure 20.9.

The output of the analysis phase must be transformed into a set of abstract class designs. Class-

design methods arrive at internal representational and algorithmic specifications that meet the

declarative constraints of analysis models. The various steps involved in class development are shown

in Figure 20.10. It includes class requirements, class design, testing, debugging, and finally ends with

class certification. The various OOA/OOD methodologies discussed earlier have emphasized on class

development.

A design framework states that every class should be designed so as to be amenable for use as a

component by other classes. The class-design principles focus on design for reuse and it includes the

following:

 1. Design of (abstract) class rather than one shot objects.

 2. Design of class interfaces (accessors, methods) rather than of attributes and transitions.

 3. Standardization of interfaces, leading to the specification of interoperable subclasses and the

creation of applications frameworks.

 4. Design of reliable interaction protocols, often supplementing pure event-driven models.

 5. Design of mechanisms and protocols for transmitting state information between cooperating

objects.

 6. Design of service and enslavement protocols (access control, locking, etc.) so that objects may be

used more predictably and reliably by its users.

 7. Minimization of representational and informational demands upon clients (low coupling).

Fig. 20.9 Class hierarchy combining data and procedure hierarchy

Conventional procedural approach Object-oriented approach

data structure hierarchy

is
replaced

by

class hierarchy

procedure hierarchy

OO Analysis, Design and Development 829

20.10.1 Design of Members

Properly designed member functions of a class help in processing an object with ease. They define

operations that are to be performed on the object’s data. These functions are similar to C functions and

hence, algorithm decomposition (functional decomposition) can be used as shown in Figure 20.11.

The execution of a program written in any language always starts from the fixed subroutine. In C++,

it starts from the main() function and hence, every program must contain a main() function code,

known as the driver program. Execution of the program begins and ends normally from this main().

The driver program is responsible for processing command-line arguments, creating objects required

throughout the lifespan of the program, handling communication between objects, providing necessary

user interface, controlling resources, and displaying results.

The driver program is the gateway to the end users. Therefore, the user-system interface should be

carefully designed to be user-friendly so that users can operate in a natural way.

Fig. 20.10 Steps in class design and development

Class
Certification

Class/Cluster
Test

Method Test

Debugging

White Box
Unit Test Design

Driver
Development

Black Box
Unit Test Design

Class
Requirements

Class
Design

Component
Search

Component
Development

Component
Specialization

Component
Aggregation

Mastering C++830

20.10.2 Implementation

Implementation phase is mainly concerned with conversion of OOD into program code. It also includes

testing of software to some extent. A suitable object-oriented language such as C++ has to be employed

for writing programs. In coding phase, codes of classes, member functions, and the main() function

have to be developed. It becomes easy once a detailed design has been done with care.

Once the system is coded, it has to be tested and testing is an essential part of the software

development process. A detailed test plan should be designed as to what, when, and how the system has

to be tested. Testing of class interfaces and class dependencies has to be carried out by programmers

during development. Once the complete system is integrated, it can be tested as a whole to see whether

the system performs as intended.

20.11 HOW TO BUILD RELIABLE CODE?

The first thing that one should understand is it is hard to build a complex software that works well. In

the search of salvation, or what the software engineer and author Fred Brooks calls the silver bullet,

many people concentrate on models, techniques, and tools. Once upon a time, there were structured

programming and high-level languages, now there are application builders, componentware, and

object-oriented programming techniques. Reliable software can be written using goto’s and assembly

language, and truly dismal code has been produced using impeccably modern tools and techniques.

The reality is that one factor which completely dominates every other in determining software

quality is how well the project is managed. A development team must know what code it is supposed to

build, must test the software constantly as it evolves, and must be willing to sacrifice some development

speed on the altar of reliability. The leaders of the team need to establish a policy for building and

testing code. Tools are valuable because they make it easier to implement a policy, but they cannot

define a policy. That is, if the team leaders fail to do their job, no tool or technique can save them.

Fig. 20.11 Top-down design approach for functions design of the driver function

Modules of function 2

B12 D12

D1 D2B1 B2

B C D

A

Class Name

Data

Object

Function 2

Function 1

OO Analysis, Design and Development 831

One reason that quality often takes a backseat is that it is not free. Reliable softwares often have

fewer features and take longer time to produce. No trick or technique will eliminate the complexity of

a modern application, but here are a few guidelines that are extremely useful. Nine ways to write more

reliable software are the following:

 Fight for a stable design

 Cleanly divide up tasks

 Avoid shortcuts

 Use assertions liberally

 Use tools judiciously

 Rely on fewer programmers

 Deligently fight features

 Use formal methods where appropriate

 Begin Testing Once You Write the First Line of Code

Fight for a Stable Design
In addition to the changing system specifications, another obstacle to building a good system is a design

that keeps changing. Each change means redoing the code that has already been written, shifting plans

in midstream, and disturbing the internal consistency of the system.

The problem is that often nobody knows precisely what the program should do until there is a

preliminary version to run. An excellent strategy is to build mock-ups and prototypes with which

potential users can start working initially, so that the design settles down as soon as possible. Once

designers chalk out the basic structure of the system, any changes that are not critical can wait until the

next version. This is a hard line to hold on, but the developer can come close to it.

Cleanly Divide Up Tasks
When designing a complex system, remember to divide the work into smaller pieces that have good

interfaces and share the appropriate data structure. If this is done properly, even some bad implementation

decisions will not ruin the overall design and performance of the system. Object-oriented languages

provide an easy way to express and enforce the decomposition strategy, but they do not tell the designer

how to do the job. It is definitely better to have a good design implemented in C than a poor one in

C++. However, C++ will help in the long run in terms of better management, reusability, understanding

(coordination) among team members, future enhancements, code maintenance, etc.

Avoid Shortcuts
Programmers often do not bother to fix design errors while coding. Most of them are more fascinated

toward writing cryptic code. Avoid shortcuts by insisting that each procedure is carefully documented.

The implementation tricks clearly written can act as a useful document.

Use Assertions Liberally
An assertion is simply a line of code that says, “I think this is true. If it is not, something is wrong, so

stop execution, and let me know immediately.” If a value is supposed to be within a certain range, it

must be checked first. Make sure that pointers point to valid locations and that internal data structures

are consistent. Just like code inserted for debugging a program, the designer can compile assertions

out of production code (using conditional compilation facilities) before it enters the final testing stages.

Mastering C++832

There are many reason for writing program code with assertions. They enable to find the problem

quickly and makes them easier to track down.

Use Tools Judiciously

Tools are not a panacea to all problems, they cannot help to fix (detect) bugs in a project that has been

administered badly. But tools can make it easier for development teams to put good policies into effect.

The source-code management tools help coordinate modules being used by multiple developers.

There are also some tools that can find certain errors in the program code instead of forcing the

developer to do it. The UNIX utility lint (or the turbo-charged version offered in Centerline’s Code

Center) will find some syntax errors and mismatches between different source-code files. Purify, from

Pure Software, and Bounds Checker from Numega Technologies, catch a wide variety of memory

errors as soon as they occur, rather than letting them to manifest themselves later on. Other tools

perform regression tests or perform code-coverage analysis to see if there are any dusty corners in the

program that are not being exercised.

Rely on Fewer Programmers

An easy way to reduce the number of bugs in a project is to cut down the number of people who are

involved in it. The advantages are less management overhead, less need for coordination, and more

interaction among the team members, who are building the system. The number of members can be

reduced by having individual programmers produce code more quickly or by reducing the amount of

code that needs to be written. CASE tools, application builders, and code reuse attempt to meet one

or both these goals. While these products do not always live up to their promise, they can simplify a

project development so that a smaller team can handle it.

20.12 OO SOFTWARE PERFORMANCE TUNING

Performance is defined as the number of instructions executed along the critical paths. Following are

some of the guidelines to be kept in mind while optimizing the program code for tuning its performance:

Move Assumptions From a Method to its Callers

For example, a method might validate that the appropriated semaphore is locked by the current

thread before modifying a shared resource protected by that semaphore. Instead, if all callers lock the

semaphore before the call, it would no doubt be efficient, but also more dangerous and less general,

to explicitly move the assumptions of lock ownership to the callers. This category of change tends to

remove code from a method, and proportionally increase the number of warnings in the commentary

describing the assumption made by the method.

Move Code from Callers of a Method into the Method

The objective here is to move the context of a call from the caller into the method. For example, if a

caller is looping through hundreds of page table addresses in order to convert disk request to disk sector

addresses, the conversion method can be augmented with a fatter interface that passes a collection of

addresses, and the loop can be moved into the method. This is important in methods with protocol

considerations such as lock ownership.

OO Analysis, Design and Development 833

Object Pools
This technique minimizes calls to constructors in a manner analogous to memory pools minimizing the

calls to the operator new. The key is to reuse objects rather than constructing new ones. For example,

if 80% of the fields in a page-fault object are the same for most page faults, it is possible to avoid the

overhead by preconstruction page-fault objects, and adjusting the object’s state via a method rather than

initializing all the fields using a constructor. This is a special case of avoiding data movement.

Caches
Instruction counts could sometimes be reduced by introducing caches. Note that the implied increase in

data size can produce more page faults, however, there were no tools available to predict the correlation.

This issue is still being investigated.

Dead Code Removed
Implicit C++ constructor and destructor calls provide a new variant of dead-code removal. In some

cases, the previous changes made to the local objects are superfluous. Removing these local objects

can avoid wasting instructions. In some cases, removing these has saved over 1,000 instructions along

a critical path.

Inlining
A function is expanded inline when the compiler replaces a traditional CALL instruction with code

contained in the body of the function. In addition to eliminating the cost of setting up the stack frame,

the optimizer can procedurally integrate the called function body into the caller’s code by performing

traditional optimization techniques across the call boundary by usng techniques such as register

liveness, constant propagation, and loop-invariant code motion.

20.13 SOFTWARE PROJECT MANAGEMENT

Software project management is a complex undertaking. It requires project managers who are competent

technical specialists and have some level of understanding and appreciation for the management

principles as computer professionals. Knowing how to manage large projects is a critical skill for the

computer professional. Many projects in the computer industry have failed to achieve their objectives

due to lack of managerial skills. Consider the following circumstances:

 Project objectives are poorly defined and/or understood, even by members of the project team.

 Project deadlines are dictated by external events or imposed arbitrarily by administrators.

 Project budgets are based on naive estimates given by inexperienced managers.

 Project staffing is determined more by availability than ability.

The outcome of projects launched under such circumstances is easily predicted. Managing a well-

planned and well-staffed project is challenging; with fuzzy objectives, unrealistic schedules, inadequate

budget, and weak staffing, project managers would need a miracle to succeed.

20.13.1 Guidelines for Launching a Project
Every project is unique in its management requirements, but certain steps can be taken at the time the

project is launched to improve the prospects. The following guidelines are offered for managing the

project well:

Mastering C++834

 Establish a realistic project objective, setting forth in detail what will be accomplished if the

project is successful.

 Appoint a competent project manager whose administrative, technical, and political skills

commensurate with the task.

 Set up the project organization at an appropriate level and establish the appropriate communications

links among all the elements of the organization that must play a role in the project’s success.

 Staff the project with the proper mix of technical and administrative skills. Avoid, whenever

possible, part-time assignments so that the individuals who are working on the project can devote

their full attention to it.

 Identify key project milestones which, when achieved, will demonstrate definitive progress

toward the ultimate project objective.

 Note: This step, plus Steps 6-11 below, may require several iterations before a satisfactory plan,

schedule, and budget can be developed and approved.

 Plan the project in detail, identifying all tasks that must be completed to reach each milestone.

 Assign each task to an individual or to a specific organization so that responsibility for its

completion is unambiguous.

 Estimate the time required to complete each task. It is essential that the time estimate for each

task be made by the individual or organization that bears the responsibility for completing it.

 Estimate the cost of completing each task (or groups of tasks); again, these estimates should be

made by the responsible person.

 Produce a project schedule and time-phased budget (using critical-path or similar network

techniques when the size of the project warrants).

 Distribute the plan, schedule, and budget to all concerned parties and confirm their “ownership”

of the tasks assigned to them.

 Review the project schedule and budget regularly. At each review meeting, ask for reaffirmation

of plans and schedules (for the forthcoming period). While managing large and complex projects,

carry out project reviews, take minutes to document key decisions and follow-up assignments.

 Update project plans and schedules after each review meeting and distribute them as noted

previously.

 Manage the project!

Of course, no project-management philosophy can guarantee the success of any project, no matter

how noble its objectives are, of how diligently it is applied. It can, however, materially improve the

prospects for success, provided all project participants accept the philosophy and it is administered in

a consistent and disciplined manner.

20.14 PLAN FOR OO BATTLE

After all the theory and discussions about object-oriented programming, success with OO (Object-

Oriented Technology) requires a commitment, as well as a plan, for action. The software designers,

who excited by the new technology, are often ready to make the commitment with no planning at

all. Just to recall, if you are not planning, you are planning for failure. Here are a series of planning

steps articulated by OO experts for the major management planning activities required for successful

implementation of object orientation:

OO Analysis, Design and Development 835

Obtain Initial Advice
It is necessary to have consultation with an experienced OO consultant before embarking on the OO

bandwagon, to take a decision on suitability of OO methodologies and its benefits. This must provide

an insight into the key decision makers in the organization what steps are involved, how long it will

take, how much it will cost, what benefits are likely to accrue, and what risks must be accepted.

Obtain Management Commitment
This is a crucial issue and important for the success of the object orientation in the organization than

the technical features of OO technology or the choice of C++ over Smalltalk. If the management is

opposed then it probably won’t work out.

Conduct Pilot Projects
Similar to all new technologies, OO needs to be validated and demonstrated to the organization. This

is usually demonstrated through the use of a pilot project. A pilot project should be medium-sized and

within the context of the organization. It is known that the failure of a pilot project will not bankrupt

the organization. A good pilot project should be staffed by enthusiastic volunteers who are well trained

and well supported by expert consulting assistance. A final conclusion can be reached from the viability

of the proposed new technology.

Develop a Training Plan
Training for object orientation is important before taking any initiative to switch over to OO development.

It is necessary to train programmers, designers, system analysts, and project leaders. If the management

cannot afford to train all of them at once, it can be done in multiple phases.

 Document management expectations

 Develop an OO development life cycle

 Choose OOA/OOD/OOP/OOT methods

 Choose OOP language and compiler

 Choose OO case tools and repository

 Identify OO based matrices

 Revise software development plan

20.15 A FINAL WORD

The activities summarized in this chapter and C++ programming issues discussed in the earlier chapters

can be mastered only with hands-on experience. OO is surely not suitable for managing small projects

and it may appear to be very costly. OO methodology has been born to stay and is all set to win. It will

surely help in the long term and has impact right from the system study to the system maintenance and

of course, even in training the end users.

There are many optimistic and pessimistic views on adopting this new technology. The use of latest

technology has played a very significant role in the success of several (world-class) organizations and

even individuals. It is well known that “the future belongs to those who use the latest technology”, and

you might as well start now; delaying the decision by a day will just add one more day to a process that

is bound to take several years. If you are worried that you are not the first one in the industry (state,

Mastering C++836

country, or world) to adopt OO, do not worry, you are not the last person. Perhaps the best advice

(drawn from the Proceeding of the National Conference on Computers in Education and Training,

India) on adopting new technology in the rapidly changing computer world is here:

“Our initial backwardness, our late arrival on the scene, and the small investments we made in the

past need not remain as our handicaps but can be turned into our most valuable advantages if we make

the right decisions now, order judicious investments and march forward with determination.”

REVIEW QUESTIONS ++
 20.1 Compare the object-oriented computational model with the structured computational

model.

 20.2 Explain the water-fall model of software development.

 20.3 Why does the cost of error correction increase as the development phase progresses?

 20.4 What are the issues to be considered while selecting a language for software

implementation?

 20.5 What is change? Explain how change management can be handled?

 20.6 What are the different reusable components? Explain why code reusability occurs at the

bottom of hierarchy and design reuse occurs in most of the branches of hierarchy?

 20.7 Explain the fountain-flow model of software development.

 20.8 Draw object-orientated notations for class, object, inheritance, delegation, etc.

 20.9 Investigate object-oriented methodologies as viewed by revolutionaries and synthesists.

 20.10 Explain the steps involved in object-oriented analysis.

 20.11 Explain the Coad and Yourdon object-oriented analysis method.

 20.12 Explain the Booch object-oriented design method.

 20.13 Compare the object-oriented and traditional analysis methodologies.

 20.14 Compare the object-oriented and traditional design methodologies.

 20.15 What is design for reuse? Explain the steps involved in a class design.

 20.16 What is a driver function? What are its responsibilities?

 20.17 What are the steps involved in building a reliable code?

 20.18 State and explain the guidelines for tuning performance of an OO software.

 20.19 What is the software project management? State guidelines for launching a project.

 20.20 What are the steps involved in the major management planning required for successful

implementation of the object-oriented system?

Appendix A:
C++ Keywords and
Operators

C++ supports a wide variety of keywords and operators to support object-oriented programming. The
following sections illustrate them with syntax, description, and examples.

1. asm,_asm,_asm: Embed assembly statements

Syntax:

 asm <opcode> <operands> <; or newline>

 _asm <opcode> <operands> <; or newline>

 _asm <opcode> <operands> <; or newline>

Description: It allows to embed assembly-language statements in between C++ statements.
These assembly-language statements are machine dependent; and portability of a program is lost when
such statements are used.

Example: asm mov ax, _stklen

 asm add bx, cx

 asm add bx, 10

Any C++ statement can be replaced by the appropriate assembly-language equivalent statements.
In order to include a number of asm statements, surround them with braces by using the following
format:

 asm {

 pop ax; pop ds

 iret

 }

2. auto: Define variables

Syntax: [auto] <data definition>,

Description: It defines variables whose resources are released as soon as they go out of scope. All
the local variables are auto by default and hence, auto storage class is rarely specified explicitly.

Mastering C++838

Example:

 int main(int argc, char **argv)
 {
 auto int i;
 i = 5;
 return i;
 }

3. break: Pass control out of the current loop

Syntax: break;

Description: It causes control to pass to the statement following the innermost enclosing while,
do, for, or switch statement.

Example:

 for(i = 0; i < n; i++)
 {

 if(wants_to_terminate_loop)
 break; // transfers control to the next statement outside loop
 }

4. case: Specify actions when the switch expression matches with it

Syntax: case <constant expressions>:
where <constant expression> must be a unique integer constant value.

Description: The list of possible branch points within switch <statement> is determined by
the matching case statement within the switch body. Once a value is computed for <expression>,
the list of possible <constant expression> values determined from all case statements is
searched for a match. If a match is found, execution continues after the matching case statement until
a break statement is encountered or till the end of switch is reached.

Example:
 switch (figure_type) // figure_type is character variable
 {
 case ‘1’:
 draw_line(xl, yl, x2, y2);
 break; // transfers to next statement to switch
 case ‘c’ :
 draw_circle(x, y, r);
 break; // transfers to next statement to switch

 default: // execute if none of the cases match with switch expression
 cout << “invalid figure code”;
 break; //it can be omitted
 }

 839

5. catch: Capture exception thrown

Syntax: catch (<exception-object>)

Description: An exception thrown in the program is caught by the catch statement. It follows
the try statement and is responsible for taking corrective actions in response to an exception.

Example:

 class div_by_zero { }; // empty class

 int div(int a, int b)

 {

 if(b == 0)

 throw div_by_zero(); // divide by zero error;

 return a/b;

 }

 try

 {

 // read a and b value if necessary

 int c = div(a, b);

 // no exception... do other activities

 }

 catch(div_by_zero)

 {

 cout << “Divide by zero”;

 // take necessary action

 }

6. char: Define character variables

Syntax: char <varl>, . ., <varn>;

Description: It defines variable(s) of type character which is 1 byte in length. They can be signed
(default) or unsigned.

Example: char chl, *name;

7. class: Encloses data and functions into a single unit

Syntax: class <classname> [<:baselist>] { <member list> };

 <classname> can be any identifier unique within its scope.

 <baselist> lists the base class(es) that this class derives from and it is optional.

 <member list> declares the class’s data members and member functions.

Description: It declares a C++ class which combines both the data and functions on those data

Appendix A: C++ Keywords and Operators

Mastering C++840

into a single unit. Within a class, the data are called data members and the functions are called member

functions.

Example:
 class student // declares class called student

 {

 char *name; // data member

 char *getname() // member function

 {

 return name;

 }

 };

8. const: Define constant variable

It creates a constant variable and makes it a read-only variable.

Syntax:

 const [data type] <variable name> [= <value>];

 <function name> (const <type> <variable name>)

Description: In the first version, the const modifier enables to assign an initial value to a
variable that cannot be changed later by the program. It can be used to define constant variables of
primitive and user-defined data types.

Example: const int my_age = 25;

Any assignments to my_age will result in a compiler error. Note that, a const variable can be
indirectly modified by using a pointer as follows:

*(int *)&my_age = 35;

When the const modifier is used with a pointer parameter in a function’s parameter list, the function
cannot modify the variable that the pointer points to as follows:

 double sqrt (const double a);

Here the sqrt() is prevented from modifying the input value passed through a variable.

9. continue: Transfer control

Syntax: continue;

Description: It passes control to the end of the innermost enclosing while, do, or for statement,
at which the loop continuation condition is evaluated.

Example:

 fort (i = 0; i < 20; i++)
 {

 841

 if(array[i] == 0)

 continue; // skips this iteration

 array[i] = l/array[i];

 }

10. default: Default operation when all cases fail

Syntax: default:

Description: In a switch statement, if a case match is not found and the default: prefix is
found within the switch body, control is transferred to that point; otherwise, the switch body is skipped
entirely.

Example: (see case)

11. delete: Deallocate memory

Syntax: delete <pointer_to_name>;

Description: It destroys an object by releasing all the resources allocated to it by the new
operator. The delete operator destroys the object <name> by deallocating sizeof(<name>)
bytes (pointed to by <pointer_to_name>). The storage duration of the new object is from the
point of creation until the operator delete deallocates its memory, or until the end of the program.

Example:
 int *p; // pointer to integer

 p = new int[100]; // allocate memory for 100 integer elements

 delete p; // deallocate memory allocated to p using new operator

12. do: do..while loop

Syntax: do <statement> while <expression>;

Description: The <statements> enclosed within the body of a loop is executed repeatedly as
long as the value of <expression> remains nonzero. Irrespective of the value of a <expression>,
this loop executes its body at least once.

Example:
 i = 1; factorial = 1;
 do
 {
 factorial *= i;
 i++;
 } while (i <= n);

Appendix A: C++ Keywords and Operators

Mastering C++842

13. double: Define double-precision real variable

Syntax: double <varl>, ...<varn>;

Description: It defines variables of real type which is 8 bytes in length. Use of double or float
requires linking in the floating-point math package if a numeric coprocessor does not exist in the
system. Most of the compilers include a math package automatically if floating-point numbers are used
in a program.

Example: double a, b; // a and b are double type variables

14. else: Acions when the if condition fails

Syntax:
 if(condition)
 statement1; //if condition is true
 else
 statement2; //if condition is false

Description: It specifies the alternate statement to be executed when the if condition fails.

Example:
 if(boy_age > girl_age)
 cout << “boy is elder than girl”;
 else
 cout << “girl is elder than boy”;

15. enum: Declare enumerated constants

Syntax: enum [<type_tag>] {<constant_name> [= <value>], ...} [var_list];

Description: It declares a set of constants of type int. A <type_tag> is an optional and is
used to name the set. <constant_name> is the name of a constant that can optionally be assigned
the value of <value>. Note that <value> must be an integer. If <value> is missing, it is assumed
to be <prev> + 1 where <prev> is the value of the previous integer constant in the list. For the
first integer constant in the list, the default value is 0. <var_list> is an optional variable list that can
follow the type declaration. It assigns variables to the enum type.

Example: enum modes {LASTMODE = -1, BW40 = 0, C40, BW80, C80, MONO = 7};

In the above declaration, modes is the type tag, LASTMODE,BW40,C40, etc., are the enumerated
constant names. The value of C40 is 1 (BW40 + l) and BW80 = 2 (C40 + l), etc.

16. extern: Specify variable/function type which is defined elsewhere

Syntax: extern <data definition>;

 extern <function prototype>;

Description: It declares variables/functions and indicates that the actual storage and initial value
of a variable or the body of a function, is defined elsewhere, usually in a separate source-code module.
The keyword extern is optional for a function prototype.

 843

The extern variables cannot be initialized at the point of declaration and if they are not defined a
linker error Undefined symbol ‘symbol-name’ in module ‘module-name’ is generated.

Example:

extern int _fmode;

extern void factorial(int n);

17. float: Define float variables

Syntax: float <varl>, ...<varn>;

Description: It defines variables of float data type, which are 4 bytes in length. Use of double or
float requires linking in the floating-point math package. Most of the compilers including Borland C++
will do this automatically, if floating-point numbers are used in a program.

Example: float a, b;

18. for: Loop

Syntax: for ([<exprl>]; [<expr2>]; [<expr3>]) <statement>

Description: The <statement> enclosed with the body of a loop is executed repeatedly as
long as the value of <expr2> remains nonzero. The <statement> is executed repeatedly until
the value of <expr2> is 0. The <exprl> is evaluated before the first iteration and is usually used
to initialize variables of the for loop. The <expr2> is evaluated before entering the loop statement.
After each iteration of the loop, <expr3> is evaluated, and is usually used to increment a loop counter.

In C++, <exprl> can have an expression or variable definition. The scope of any identifier defined
in <exprl> is extended to outside its loop and those defined within the loop body is limited to that
loop iteration. All the expressions are optional. If <expr2> is left out, it is assumed to be 1.

Example:
 for(i=0; i < 100; i++)

 cout << “i = “ << i << endl;

19. friend: Allow other function/class to access private members of a class

Syntax: friend <identifier>;

Description: A friend of a class can be a function or a class. A friend function or friend class
is allowed to access private or protected members of a class. A class which wants an other class or
function to be its friend, should explicitly declare it as its friend. A friend function or class cannot
access members of a class to which it is a friend directly; it has to access them using class objects.

Example:

 class stars
 {
 private:
 int magnitude;

Appendix A: C++ Keywords and Operators

Mastering C++844

 friend galaxy; // galaxy is friend class
 }”;
 class galaxy
 {
 . . .
 void func()
 {
 stars si;
 si.magnitude = 100; // valid since galaxy is a friend of stars
 . . .
 }
 };

The above declaration states that the class galaxy can access all the members of the class stars but not
vice versa.

20. goto: Transfer control

Syntax: goto <identifier>;

Description: It transfers control to the specified location. Control is unconditionally transferred
to the location of a local label specified by <identifier>.

Example:
 Again:
 . . .
 . . .
 goto Again;

Note that labels must be followed by a statement.

21. if: Actions when the if condition succeeds

Syntax:

 if(<expression>) //if statement
 <statementl>; if (<expression>) // if-else statement
 <statementl>;
 else
 <statement2>;

Description: It transfers control conditionally to a required statement based on the conditional
result. If <expression> is nonzero when evaluated, <statementl> is executed. In the second
case, <statement2> is executed if the <expression> is zero. An optional else can follow an
if statement, but no statements can come between an if statement and an else; however, multiple
statements can be enclosed within flower brackets.

Examples:

 if(count < 50)
 count++;
 if(x < y)

 845

 small = x;
 else
 small = y;

The #if and #else preprocessor statements (directives) look similar to the if and else
statements, but have very different effects and their effect can be seen only at compile time. They
decide which source file lines are to be compiled and which are to be ignored.

22. inline: Substitute the function body at the point of call

Syntax:
inline <datatype> <function>(<parameters>) { <statements>; }

inline <datatype> <class>::<function> (<parameters>) {<statements>;}

Description: It declares/defines C++ inline functions. The compiler substitutes a function call by
the body of a function so that program execution speed increases. Member functions defined within the
body of a class are treated as inline functions by default.

The first syntax declares an inline function by default. This syntax can be used to define normal
functions or member functions as inline functions. The second syntax declares an inline function
explicitly and such definitions need not fall within the class definition.

Inline functions are best reserved for small, frequently used functions, and any normal function can
also be made inline.

Example:

 // Implicit inline statement
 int num; // global num
 class cat
 {
 public:
 char* func(void) { return num; } // inline function implicitly
 char* num;
 }
 // Explicit inline statement
 inline char* cat::func(void) { return num; }

Any C++ function can be declared inline as follows:

 inline swap(int *a, int *b)
 {
 // swap without using temporary variable
 *a = *a + *b;
 *b = *a - *b; // *b = (*a + *b) - *b = *a
 *a = *a - *b; // *a = (*a + *b) - *a = *b
 }

23. int: Define integer variable

Syntax: int <varl>, .., <varn>;

Appendix A: C++ Keywords and Operators

Mastering C++846

Description: It defines variables of integer data type which is one word in length. They can be
signed (default) or unsigned. It is represented by 2 bytes under a 16-bit operating system (e.g., MS-
DOS) and a 16-bit compiler (Borland C++), and 4 bytes under a 32-bit OS and compilers (e.g., Under
UNIX).

Examples:

 int i, j;
 long x; // int is implied
 signed int i; // signed is default
 unsigned long int i; // int OK, not needed

24. new: Allocate memory

Syntax:
 <pointer_to_name> = new <name> [count];

 <pointer_to_name> = new <name> (init_value);

Description: The new operator creates an object <name> by allocating sizeof (<name>)*
count bytes from the heap. The storage duration of the new object is from the point of creation until
the operator delete deallocates its memory, or until the end of the program.

Example: (see delete)

 int *iptr = new int[15]; // allocates 15 integer memory

 int *a = new (10); // allocates a integer and assigns 10

25. operator: Overload operator

Syntax:
 operator <operator symbol>(<parameters>)
 {
 <statements>;
 }

Description: It allows to define a new action for the existing C++ over-loadable operators to
operate on user-defined data types. The keyword operator followed by an operator symbol, defines
a new (overloaded) action for the given operator.

Example:

 complex operator +(complex cl, complex c2)
 {
 return complex(cl.real + c2.real, cl.imag + c2.imag);
 }

26. private: Specify class members’ access scope

Syntax: private: <declarations>

Description: It explicitly declares members of a class to have private privilege. If a member is
private, it can be accessed only by member functions or friends of the class. Members of a class are
private by default unless otherwise specified explicitly.

 847

Example:
 class Abe
 {
 int a; // private by default
 . . .
 public:
 int c;
 . . .
 private: // private by explicit
 int b;
 . . .
 protected: // protected by declaration
 int c;
 . . .
 public: // public by declaration
 . . .
 };

27. protected: Specify class members’ access scope

Syntax: protected: <declarations>

Description: It explicitly declares members of a class to have protected privilege so that they
are inheritable to derived classes similar to public members. They can either have private or protected
status in derived classes depending on the type of derivation. Note that protected members have the
same privilege as private members except that they are inheritable.

Example: (see private)

28. public: Members accessible to all users

Syntax: public: <declarations>

Description: It explicitly declares members of a class to have public privilege and they are
accessible to all the users. If a member is public, it can be used by any function. In C++, members of a
struct or union are public by default.

Example: (see private)

29. register: Allocate a register for the variable

Syntax: register <data definitions>;

Description: It informs the compiler to allocate a CPU register if possible for the variable to
speedup data access.

Example: register int i;

30. return: Transfer control to the caller

Syntax: return [<expression>];

Appendix A: C++ Keywords and Operators

Mastering C++848

Description: Returns control immediately from the currently executing function to the calling
routine, optionally returning a value.

Example:
 double sqr(double x)
 {
 return x*x;
 }

31. short: Define 16-bit integer variables

Syntax: short <varl>, .., <varn>;

Description: It defines variables of type integer each having 2 bytes in length. They can be signed
(default) or unsigned.

Example: short i, j; // i and j are variables

32. signed: Declare variables as signed

Syntax: signed <data type> <varl>, .., <varn>;

Description: The keyword signed is a qualifier (modifier) which allows to define variables of
type char, int, and long, etc., as signed numbers. Even if this type qualifier is omitted, the variables
are treated as signed by default.

Example: signed int i, j;

33. sizeof: Determine the number of bytes required to represent a data type or its variable

Syntax:
 sizeof(<expression>)
 sizeof(<type>)

Description: It returns the size, in bytes, of the given expression or data type.

Examples:
 a = sizeof(int); // size of integer
 nitems = sizeof(table)/sizeof(table[0]); // number of entries in a table

34. static: Scope of variable

Syntax:
static <data definition>
static <function definition>;

Description It declares variables as static and preserves the variables’ value. A function or data
element is only known within the scope of the current function or module. If a local variable is defined
as static, its value is preserved between successive calls to that function.

 849

Examples:

 static int i; // scope is restricted to a module
 static void printnewline (void) {} // restricted to a module
 void funcl()
 {
 static int a = 0; //this is executed only once in lifetime of program
 . . .
 a++; // its value is preserved
 }

35. struct: Creates heterogeneous data type

Syntax:

 struct [<struct-type-name>]
 {
 [<type> <variable-name[, variable-name, ...]>];
 [<type> <variable-name[, variable-name, ...]>];
 . . .

 } [<structure variables>];

Description: It groups variables into a single record. Though both <struct type name>
and <structure variables> are optional, one of the two must appear. Elements in the record
are defined by specifying a <type> followed by one or more <variable-name > (separated by
commas). Different variable types can be separated by a semicolon.

Example:

 struct my_struct

 {

 char name[80], phone_number[80];

 int age, height;

 } my_friend;

The above statements declare a structure containing two strings (name and phone_number) and
two integers (age and height). It also defines the variable my_friend. To access members of a
structure, use a member access operator as illustrated by the statement below:

strcpy(my_friend.name, “Mr. Anand”);

To define additional variables of the same type, use the keyword struct followed by the <struct
type name>, followed by the variable names as follows:

struct my_struct my_friends[100];
struct my_struct a, b;

Structure variables can be defined without prefixing the struct keyword as follows:

my_struct c, d;

Functions can also be defined within C++ structures.

Appendix A: C++ Keywords and Operators

Mastering C++850

36. switch: Transfers control to matching case

Syntax:
 switch (<expression>)
 {
 case <constant_expression>:

 default:

 }

Description: The switch causes control to branch to one of a list of possible statements specified
in case/default block. The case statement whose constant value matches with the switch expression
result will be executed. If none of the cases match, then default statement is executed if it exists.

Example: (see case)

37. template: Declare generic functions or classes

Syntax: template < template-argument-list > declaration

Description: It constructs a family of related functions or classes. It can be used to declare
function templates and class templates.
Examples:

 template < class T >
 swap (T & a, T & b) // function template
 {
 T temp;
 temp = a;
 a = b;
 b = temp;
 }
 template <class T> // class template
 class myclass
 {
 T a;

 };

38. this: Pointer to current object

Syntax:
 this // address of the class in which it is referenced

 this->member // access a member

Description: It is a predefined pointer variable within every class and points to the current object.
this is passed as a hidden argument in all calls to non static member functions. The keyword this
is a local variable available in the body of any nonstatic member function. The keyword this does

 851

not need to be declared and is rarely referred to explicitly in a function definition. However, it is used
implicitly within the function for member references.

Example:
 class date
 {
 int day;
 . . .
 void init()
 {
 this->day = 1; // same as day = 1
 }
 };

If x.func (y) is called, where y is a member of x, the variable this is set to &x and y is set to
this->y, which is equivalent to x.y.

39. throw: Raise an exception

Syntax: throw object; // object of a class

Description: It allows to raise an exception when an error is generated during computation. It
normally raises an exception using a temporary object of an empty class.

Example: (see catch)

40. try: Enclose a code raising an exception

Syntax: try {
 // code raising exception
 }

Description: A code raising an exception or exceptions must be enclosed within a try block. It
indicates that the program is prepared to test for the existence of an exception if it occurs within the
scope of the try block. The catch block following the try block will actually take appropriate action for
all those exceptions raised.

Example: (see catch)

41. typedef: Enhance existing data type

Syntax: typedef <type definition> < identifier>;

Description: It assigns the symbol name <identifier> to the data type definition <type
definition>. It helps in declaring a convenient name for the existing data type and thus simplifies
representation of complicated statements.

Examples:

 typedef unsigned char byte; //a new data type called byte is created
 typedef struct

Appendix A: C++ Keywords and Operators

Mastering C++852

 {
 double re, im;
 } complex;
 typedef int * array_t; // array_t p; is same as int *p;

The definition such as

byte a, b;

is actually treated as

unsigned char a, b;

42. union: All members share the same memory

Syntax:
 union [<union type name>]
 {
 <type> <variable names>;

 } [<union variables>];

Description: It is similar to a struct, except that its members share the same storage space.

Example:

 union int_or_long
 {
 int i;
 long 1;
 } a_number;

The compiler will allocate enough storage in a_number to accommodate the largest element in the
union. Unlike a struct, the variables a_number. i and a_number. 1 occupy the same location
in memory. Thus, writing into one will overwrite the other. Elements of a union are accessed in the
same manner as a struct.

43. virtual: Declares a virtual function or class

Syntax:

 class classname

 {

 virtual int myfunc()=0;

 };

Description: It can be used to make a function or class virtual. A virtual function allows derived
classes to provide different versions of a base-class function, which is declared as a virtual function. A
virtual class allows to inherit only one copy of a base class indirectly from more than one immediate
base classes.

 853

Examples:

Virtual function:
 class figure
 {
 virtual void draw() =0; // definition in derived class
 };
 class line: public figure
 {
 . . .
 draw() // implements virtual function declared in base class
 {
 // draw line
 }
 };

 figure *fig; // can point to its derived class objects also
 line 11;

 fig = &11;
 fig->draw(); // invoke draw() defined in the class line

Virtual class:
 class B {...};
 class D : B, B {...}; // illegal

However, a base class can be indirectly passed to the derived class more than once:
 class X : public B {...};
 class Y : public B {...};
 class Z : public X, public Y {...}; // Error

In this case, each object of the class Z will have two sub-objects of the class B.
If this causes problems, the keyword virtual can be added to a base-class specifier. For example,

 class X : virtual public B { ... };
 class Y : virtual public B { ... };
 class Z : public X, public Y { ... };

B is now a virtual base class, and class Z has only one sub-object of the class B.

44. void: Empty data type

Syntax:
 void varl, var2, ..., varn;
 void funcname(..);

Description: It can be used to define variables or declare functions which return nothing. When
used as a function return type, void means that the function does not return a value.

Example: The function definition returning no data to a caller is as follows:

 void hello (char *name)
 {
 cout << “Hello, “ << name;

Appendix A: C++ Keywords and Operators

Mastering C++854

 }

The function that does not take any parameters is indicated by void, for instance, int init (void)
Void pointers cannot be dereferenced without explicit type casting. This is because the compiler cannot
determine the size of the object pointed to by the pointer. For example,

 int x; float r;
 void *p = &x; /* p points to x */
 int main (void)
 {
 *(int *) p = 2;
 p = &r; /* p points to r */
 *(float *)p = 1.1;
 }

45. volatile: Update memory when the variable is assigned to register

Syntax: volatile <data definition>;

Description: It indicates that a variable can be changed by a background routine. Every reference
to the variable will reload the contents from memory rather than take advantage of situations where
a register is allocated to the variable for efficiency purpose. Note that C++ allows volatile to be
applied to objects.

Example: volatile int i;

46. while: while loop, repeats execution

Syntax: while (<expression>) <statement>

Description: The <statement> is executed repeatedly as long as the value of <expression>
remains nonzero. The test takes place before each execution of the <statement>.

Example:

 i = 1; factorial =1;
 while(i <= n)
 {
 factorial *= i;
 i++;
 }

C++ Operators

Some of the operators such as new, delete, etc. have been discussed in the previous section. In
addition to them, C supports many other operators which are summarized in Table A.1. Every operator
has precedence and associativity associated with them. Precedence specifies the operator to be evaluated
first when an expression is of mixed-mode type, whereas, associativity specifies the order in which
operands associated with each operator are to be evaluated.

Table A.1 C++ operators

 855

Operator Summary

::
::

Scope resolution
global

ClassName :: member
:: name

->
[]
()
()
++
--

member selection
member selection
subscripting
function call
value construction
post increment
post decrement

object . member
pointer -> member
pointer [expr]
expr (expr_list)
type (expr_list)
lvalue ++
lvalue --

sizeof
sizeof
++
--
~
!
–
+
&
*
new
delete
delete []
()

size of object
size of type
pre-increment
pre-decrement
complement
not
unary minus
unary plus
address of
dereference
create (allocate)
destory (de-allocate)
destroy array
cast (type conversion)

size of expr
sizeof (type)
++ lvalue
-- lvalue
~ exor
! expr
- expr
+ expr
& lvalue
* expr
new type
delete pointer
delete [] pointer
(type) expr

.*
->*

member selection
member selection

object .* pointer-to-member
pointer ->* pointer- to -member

*
/
%

multiply
divide
modulo (remainder)

expr * expr
expr / expr
expr % expr

+
-

add (plus)
subtract (minus)

expr + expr
expr - expr

<<
>>

shift left
shift right

expr << expr
expr >> expr

<
<=
>
>=

less than
less than or equal
greater than
greater than or equal

expr < expr
expr <= expr
expr > expr
expr >= expr

= =
! =

equal
not equal

expr == expr
expr != expr

& bitwise AND expr & expr

^ bitwise exclusive OR expr ^ expr

| bitwise inclusive OR expr | expr

&& logical AND expr && expr

|| logical inclusive OR expr || expr

?; conditional expression expr ? expr : expr

Appendix A: C++ Keywords and Operators

Mastering C++856

=
*=
/=
%=
+=
-=
<<=
>>=
&=
|=
^=

simple assignment
multiply and assign
divide and assign
modulo and assign
add and assign
subtract and assign
shift left and assign
AND and assign
inclusive OR and assign
exclusive OR and assign

lvalue = expr
lvalue *= expr
lvalue /= expr
lvalue %= expr
lvalue += expr
lvalue -= expr
lvalue <<= expr
lvalue >>= expr
lvalue &= expr
lvalue | = expr
lvalue A= expr

throw throw exception
comma (sequencing)

throw expr
expr expr

Table A.1 C++ operators (contd.)

Appendix B:
New Features of
ANSI C++ Standard

ANSI C++ Standard adds several new features to the core C++ programming language. These features
enhance programming efficiency by providing additional capabilities to the programmers. Table B.1
lists some of the key features of ANSI C++ Standard:

Table B.1 New features of ANSI C++ Standard

New data types Newly added data types are bool and wchar_t.

New operators Newly added operators are const_cast, static_cast, dynamic_cast, reinterpret_

cast, type id.

New keywords Newly added keywords include explicit, mutable and operator keywords, such as
and, or, not_eq, not, etc.

New header style New header style of ANSI standard does not require appending extension ‘.h’ at
the end of header file names.

Namespace Namespace is a container used for defining scope for variables and identifiers.
For example, the C++ Standard Library is declared in the std namespace.

1. New Data Types

bool

The bool data type is used for storing Boolean type values, viz. true and false. The numeric equivalent
of true is 1 and false is 0.

Example:
bool flag;
if(num1>num2)
 flag = true;
else
 flag = false;

wchar_t

The wchar_t data type is used for storing two-byte wide characters. Unlike a one-byte char variable, a
wchar_t variable can store a maximum of 256 character values. Thus, it is used for storing characters
of those languages which have more than 128 characters.

Mastering C++858

Example:
wchar_t ch;
ch = La;

In the above example, L is a wide character literal that is used for representing two-byte wide
characters.

2. New Operators

Table B.2 lists the four new cast operators provided by ANSI C++ standard:

Table B.2 Cast operators

Operator Description Syntax Example

static_cast Converts standard data types static_cast <type>
(object)

int x = 10;
float y =
static_cast<float> x;

const_cast Overrides the const or
volatile modifiers associated
with a type

const_cast <type>
(object)

const int x = 10;
int *y;
y =
const_cast<int*>(&x);

reinterpret_

cast

Converts one pointer type to
another. It also converts
number to pointer and
vice versa

reinterpret_cast <type>
(object)

int x = 10;
int *y;
y =
reinterpret_
cast<int*>(x);

dynamic_cast Converts base class pointer
(or reference) to derived class
pointer (or reference) and
vice versa. The base class
must contain at least one
virtual function

dynamic_cast <type>
(object)

base *ptr1; //base class
pointer
derived *ptr2; //derived
class pointer
ptr1=dynamic_cast
<base*>(ptr2);

In addition to the cast operators, ANSI C++ also provides the typeid operator, which helps to
determine the type of an object at run time. Here’s the syntax and example of using the typeid operator.

Syntax:
char *typedetails = typeid(obj).name();

Here, typeid() returns the name of obj object’s class and stores it in typedetails character array.

Example:
base b1;
char *c_name;
c_name = typeid(b1).name();

A call to the typeid() operator returns a reference to the typeinfo class. The name function of the
typeinfo class further returns the required class name of the object type. To use the typeid operator, the
typeinfo header class must be included in a program.

 859

3. New Keywords

ANSI C++ offers several new keywords for the logical operators to improve the readability of programs
containing logical expressions. Programmers have a choice to use either the operator or the operator
keyword.

Table B.3 lists the operator keywords:

Table B.3 Operator keywords

Operator Operator Keyword

&& and

|| or

& bitand

| bitor

&= and_eq

|= or_eq

! not

!= not_eq

^ xor

^= xor_eq

~ compl

In addition to the operator keywords, the new keywords added by ANSI C++ standard include: explicit: Prevents implicit type conversion by class constructors by specifying the constructors
as explicit. mutable: Allows a non constant data member to be modified by a constant member function.
The mutable keyword is prefixed while declaring the data member, for example, ‘mutable int i;’.

4. New Header Style

The new header style proposed by ANSI standard prevents the programmers from adding the customary
‘.h’ extension at the end of header file names.

For example,
#include <iostream.h>

can now be simply written as,
#include <iostream>

However, if you still add ‘.h’ at the end of header file names, the compiler will not throw any
errors.

As part of the ANSI standard, some of the header files have also been renamed. For instance, math.h
has been renamed as cmath while string.h has been renamed as cstring. The complete list of header files
can be found in the C++ Standard Library.

Appendix B: New Features of ANSI C++ Standard

Mastering C++860

5. Namespace
Namespace is a container used for defining global scope for variables and identifiers. To use the
members of a namespace, the namespace must be included in a program. For example, consider the
following statement:

using namespace std;

The above statement is routinely specified at the beginning of every ANSI C++ program. It basically
allows the program to access all the members defined within the std namespace. The std namespace
contains all classes and functions of the C++ Standard Library.

You can also define your own namespace and then use it across different programs. Here’s the
syntax for defining a namespace:

namespace <name>
{
 <declaration of namespace members>
}

A namespace can be used in a program with the help of using directive. Here’s the syntax:

The using directive is always specified at the beginning of a program.

6. Standard Template Library

Standard Template Library (STL) is a collection of pre-defined generic classes and functions that can
be used by programmers in various situations. STL was originally developed by Alexander Stepanov
and Meng Lee of Hewlett-Packard before it formally became a part of the ANSI C++ standard. Its
components are included in the Standard C++ Library.

The contents of STL are mainly template classes and functions that can be customized by
programmers as per their requirement. The three key components of STL are: Containers: Are predefined objects that store similar type data. Algorithm: Are functions for processing container data. Iterators: Are analogous to pointers and are used for accessing container data.

7. Containers

STL contains a set of pre-defined containers that can be used in a variety of programming situations.
Some of the key containers are: vector: Stores vector or array elements list: Stores list elements map: Stores unique key-value pairs stack: Stores stack elements queue: Stores queue elements

Each of these container types supports the related data access methods. For instance a stack container
allows elements to be stored and retrieved in Last-In-First-Out (LIFO) manner.

8. Algorithms

Algorithms contain a set of pre-defined functions that help process the container data in a certain

 861

manner. To use these algorithms, the <algorithm> header file must be included in a program.
Some of the key algorithms include: count(): Counts the number of occurrences of a value in the specified container sequence find():Finds the first occurrence of a value in the container for_each(): Processes each element of the container swap(): Swaps two elements sort(): Sorts a container sequence

9. Iterators

An iterator is analogous to a pointer that allows access to a container element. Iterators are typically
used for traversing a list of container elements.

The various iterators are: Input: Provides linear access to read the container elements in the forward direction. Output: Provides linear access to write the container elements in the forward direction. Forward: Provides linear access to read and write the container elements in the forward direction. Bidirectional: Provides linear access to read and write the container elements in both forward
and backward direction. Random: Provides random access to read and write the container elements in both forward and
backward direction.

10. Sample STL Program

Here’s a simple program that uses STL components:

#include <iostream>
#include <list>
using namespace std;

void main()
{
 list<int> L1; //Defines a list type container L1
 L.push_back(10); //Inserts a value at the end of the list
 L.push_back(99);
 L.push_front(20); //Inserts a value at the beginning of the list
 L.push_back(100);
 L.insert(--L.end(),50); //Inserts a value at second last position in
the list

 list<int>::iterator i; //Defines an iterator i

 cout<<”List elements are:\n”;
 for(i=L.begin();i!=L.end();i++) //Reads the list elements
 cout <<*i<<” “;
}

Run

List elements are:
20 10 99 50 100

Appendix B: New Features of ANSI C++ Standard

Function Description Include File

abort() abnormally terminates a program stdlib.h

abs() returns the absolute value of an integer math. h

acos() calculates the arc cosine math.h

asctime() converts date and time to ASCII time.h

asin() calculates the arc sine math.h

assert() tests a condition and possibly aborts assert.h

atan() calculates the arc tangent math.h

atan2() calculates the arc tangent of y/x math.h

atexit() registers an exit function stdlib.h

atof() converts a string to a floating-point number math.h

atoi() converts a string to an integer stdlib.h

atol() converts a string to a long integer stdlib.h

bsearch() binary search of an array stdlib.h

calloc() allocates main memory stdlib.h

ceil() rounds up math.h

clearerr() resets error indication stdio.h

clock() determines processor time time.h

cos() calculates the cosine of a value math.h

cosh() calculates the hyperbolic cosine of a value math.h

ctime() converts date and time to a string time.h

exit() terminates program stdlib.h

fabs() returns the absolute value of a floating-point number math.h

fclose() closes a stream stdio.h

feof() detects end-of-file on a stream stdio.h

ferror() detects errors in a stream stdio.h

fflush() flushes a stream stdio.h

Appendix C:
C++ Library
Function

 863

fgetc() gets character from stream stdio.h

fgetpos() gets the current file pointer stdio.h

fgets() gets a string from a stream stdio.h

floor() rounds down math.h

fmod() calculates x modulo y, the remainder of x/y math. h

fopen() opens a stream stdio.h

fprintf() writes formatted output to a stream stdio.h

fputc() puts a character on a stream stdio.h

fputs() outputs a string on a stream stdio.h

fread() reads data from a stream stdio.h

free() free allocated block alloc.h

freopen() associates a new file with an open stream stdio.h

frexp() splits a double number into its mantissa and exponent math.h

fscanf() scans and formats input from a stream stdio.h

fseek() repositions a file pointer on a stream stdio.h

fsetpos() positions the file pointer of a stream stdio.h

fstat() gets file statistics ays\stat.h

ftell() returns the current file pointer stdio.h

fwrite() writes to a stream stdio.h

getc() gets a character from a stream stdio.h

getchar() gets a character from stdin stdio.h

gets() gets a string from stdin stdio.h

isalnum() character classification macro ctype.h

isalpha() character classification macro ctype.h

isascii() character classification macro ctype.h

iscntr1() character classification macro ctype.h

isdigit() character classification macro ctype.h

isgraph() character classification macro ctype.h

islower() character classification macro ctype.h

isprint() character classification macro ctype.h

ispunct() character classification macro ctype.h

isspace() character classification macro ctype.h

isupper() character classification macro ctype.h

isxdigit() character classification macro ctype.h

labs() gives long absolute value math.h

Appendix C: C++ Library Function

Mastering C++864

ldexp() calculates x * 2exp math.h

ldiv() divides two longs, returning quotient and remainder stdlib.h

log() calculates the natural logarithm of x math.h

loglO() calculates log10x math.h

malloc() allocates main memory stdlib.h

memchr() searches n bytes for a character c mem.h

memcmp() compares two blocks up to a length of exactly n bytes mem.h

memcpy() copies a block of n bytes mem.h

memset() sets n bytes of a block of memory to the byte c mem. h

mktime() converts time to calendar format time.h

perror() prints a system error message stdio.h

pow() calculates x to the power of y math.h

printf() writes formatted output to stdout stdio.h

putc() outputs a character to a stream stdio.h

putchar() outputs character on stdout stdio.h

puts() outputs a string to stdout stdio.h

raise() sends a software signal to the executing program signal.h

rand() random number generator stdlib.h

realloc() reallocates main memory stdlib.h

remove() removes a file stdio.h

rename() renames a file stdio.h

rmdir() remove a file directory dir.h

scanf() scans and formats input from the stdin stream stdio.h

setbuf() assigns a buffer to a stream stdio.h

setjmp() set up for nonlocal goto setjmp.h

signal() specifies signal-handling actions signal.h

sin() calculates sine math.h

sinh() calculates hyperbolic sine math.h

sprintf() writes formatted ouput to a string stdio.h

srand() initializes random number generator stdlib.h

sscanf() scans and formats input from a string stdio.h

stat() gets information about a file sys\stat.h

strcat() appends one string to another string.h

strchr() scans a string for the first occurrence of a given character string.h

strcmp() compares one string with another string.h

 865

strcoll() compares two strings string.h

strcpy() copies one string into another string.h

strcspn() scans a string for initial segment string.h

strdup() copies a string into a newly created location string.h

srerror() returns a pointer to an error message string string.h

strftime() formats time for output time.h

strlen() calculates the length of a string string.h

strncat() appends a portion of one string to another string.h

strncmp() compares a portion of one string to a portion of another string.h

strncpy() copies a given number of bytes from one string into another stdio.h

strrchr() scans a string for the last occurrence of a given character string.h

strspn() scans a string for the first segment (a subset of a given string) string.h

strstr() scans a string for the occurrence of a given substring string.h

strtod() converts a string to a double value stdlib.h

strtok() searches one string for tokens string.h

strtoul() converts a string to an unsigned long in the given radix stdlib.h

strxfrm() transforms a portion of a string string.h

system() invokes the shell in order to execute a command stdlib.h

tanh() calculates the hyperbolic tangent math.h

time() gets the time of the day time.h

tmpnam() creates a unique file name stdio.h

tolower() translates characters to lowercase ctype.h

toupper() translates characters to uppercase ctype.h

ungetc() pushes a character back into the input stream stdio.h

vfprintf() writes formatted output to a stream stdio.h

vprintf() writes formatted output to stdout stdarg.h

vsprintf() writes formatted output to a string stdarg.h

Appendix C: C++ Library Function

abstract class It acts as a framework for creating new classes. It appears normally as the root of a class
hierarchy. Its instances cannot be created.

abstract data type It is a data type whose internal representation is fully transparent to the user. They
are popularly called ADTs (Abstract Data Types).

access operations They allow access to the internal state of objects, without modifying them.

actor A model of concurrent computation in distributed systems. Computations are carried out in
response to the communications sent to the actor system.

alias A different name given to a variable. Variable aliasing allows to access the same data with different
names.

attributes Data members of an object.

base class A class from which new classes can be created.

callee A function which is called. It is also known as called function.

caller A function which calls. It is also known as calling function.

class It is the basic language construct in C++ for creating user-defined data types. It unites both the
data and functions that operate on data.

class hierarchy The set of superclasses and subclasses derived from the superclasses can be arranged in
a treelike structure, with the superclasses on top of all classes derived from them. Such an arrangement
is called a hierarchy of classes.

class object A variable whose data type is a class.

client An object which request services of other objects.

constructor A special member function of a class, which is invoked automatically whenever an
instance of a class is created. It has the same name as its class.

container class A class that can store objects of other classes. Normally, data structure classes act as
container classes.

copy constructor A constructor which receives objects of the same class as argument. Object
parameters to copy constructors must be passed either by reference or as pointers.

CORBA It is an acronym for Common Object Request Broker Architecture. Object Management
Group (OMG) developed standards for connecting and integrating object applications running in

Appendix D:
Glossary

 867

heterogeneous, distributed computing environments. Defines the request protocol used by objects in
communicating across platform and machine boundaries.

data abstraction It refers to creation of new data types that are well suited to an application to be
programmed. It provides the ability to create user-defined data types, for modeling a real-world object,
having the properties of built-in data types and a set of permitted operators.

data flow diagram A diagram that shows the flow of data through a system. It can have nodes to also
process those data.

data hiding It hides data from the rest of the program. Internal representation of hidden data is unknown
to its users. However, it can be accessed by using interface functions.

data member A variable that is defined in a class declaration.

default parameter A parameter whose value is specified at the function declaration and is used if the
corresponding actual parameter is missing in a call to that function.

delegation It is an alternative to class inheritance. Delegation is a way of making object composition
as powerful as inheritance for reuse. In delegation, two objects are involved in handling a request: a
receiving object delegates operations to its delegate.

derived class A class that inherits properties of other classes (base classes).

destructor A special member function of a class, which is invoked automatically whenever an object
goes out of scope. It has the same name as its class with a tilde character prefixed.

dynamic binding It postpones the binding of a function call to a function until runtime. This is also
known as late or runtime biding.

dynamic memory allocation It allows to allocate the requested amount of primary memory at runtime.

dynamic objects A class can be instantiated at runtime and objects created by such instantiation are
called dynamic objects.

early binding The binding of a function call to a function is done during compile time. This is also
known as static or compile-time binding.

encapsulation It is a mechanism that associates the code and the data it manipulates into a single unit
and keeps them safe from external interference and misuse. In C++, this is supported by a construct
called class. An instance of a class is known as an object, which represents a real-world entity.

exception It refers to any unusual condition in a program. It is used to notify an error to a caller.

exception handling It provides a way of transferring control and information to an unspecified caller
that has expressed willingness to handle exceptions of a given type. Exception handling can be used to
support notions of error handling and fault-tolerant computing.

extensibility It is a feature which allows to extend the functionality of existing software components.
In C++, this is achieved through abstract classes and inheritance.

extraction operator The operator >> which is used to read data from input stream object.

free store A pool of memory from which storage space of objects or variables is allocated. This is also
know as heap.

friend A function which has authorization to access the private members of a class though it is not a
member of the class.

Appendix D: Glossary

Mastering C++868

friend class A class that can access private members of another class. That is, all member functions of
a friend class are friend functions.

function overloading It allows multiple functions to assume the same name as long as they differ in
terms of number of parameters or their data type.

function prototype It just specifies function return type and its arguments data type with function
implementation. It is also know as function declarator.

genericity It is a technique for defining software components that have more than one interpretation
depending on the parameter’s data type. It allows the declaration of data items without specifying their
exact data type. Such unknown data types (generic data type) are resolved at the time of their usage
(function call) based on the data type of parameters.

header file A file containing declaration of new data types, macros, and function prototypes. For
example, iostream.h is a header file.

indirection operator The * operator prefixed to a pointer variable. It is used to access the contents of
the memory pointed to by a pointer variable.

inheritance It allows the extension and reuse of the existing code without having to rewrite the code
from scratch. Inheritance involves derivation of new classes from existing ones, thus enabling the
creation of a hierarchy of classes that simulates the class and subclass concept of the real world. A new
class created using existing classes (base classes) is called the derived class. This phenomenon is called
inheritance. The derived class inherits the members—both data and functions of the base class.

inheritance path A series of classes that provide a path along which inheritance can takes place.

inline function A function whose body is substituted at the place of its call.

insertion operator The operator << which is used to send data to an output stream object.

instance A variable or an object of a class is known as an instance of a class.

instantiation The process of creation of objects of a class is called class instantiation.

interface Member functions that allow to access data members of a class.

late binding Refer to dynamic binding.

lifetime It is the interval of time an object exists by occupying memory.

manipulator A data object that is used with stream operators.

member Data and functions defined with a class are called members except friend functions.

member functions Functions which are members of a class are known as member functions.

message It is a request sent to an object.

message passing It is the process of invoking an operation on an object. In response to a message, the
corresponding method (procedure) is executed in the object.

method A member function is also called method.

multiple inheritance The mechanism by which a class is derived from more than one base class is
known as multiple inheritance. Instances of classes with multiple inheritance have instance variables
for each of the inherited base classes.

NULL The character that is used to indicate the end of the string.

 869

NULL pointer A pointer that does not hold the address of any object. It is an instance of a class.

ODMG It is the acronym for Object Database Management Group. Small consortium, loosely affiliated
with OMG, established to define a standard for data model and language interfaces to object-oriented
database management systems.

OMG It is the acronym for Object Management Group. Consortium of OO software vendors, developers,
and users promoting the use of objects for the development of distributed computing systems. World
Wide Web (WWW) home page located at http://www.omg.org.

OO It is the acronym for Object-Oriented. It is an adjective (modifier) indicating that the associated
noun has features to support role-oriented decomposition, modeling, or construction.

OOA It is the acronym for Object-Oriented Analysis. Use of role-oriented decomposition techniques
to model a system.

OOBE It is the acronym for Object-Oriented Business Engineering. Application of object concepts to
the design or restructuring of business processes or enterprise architecture.

OOD It is the acronym for Object-Oriented Design. Application of object concepts to the design of
software.

OODB It is the acronym for Object-Oriented Database. A database where units of information are
defined and managed as objects.

OOP It is the acronym for Object-Oriented Programming. An application of object concepts to the
implementation of software, employing an OOPL.

OOPL It is the acronym for Object-Oriented Programming Languages. Programming language that
includes features to support objects, such as data abstraction, encapsulation, subclassing, inheritance,
and polymorphism; examples include C++, Smalltalk, Self, Eiffel. May be a hybrid (incremented)
language that extends an otherwise non-OO base language through the addition of OO constructs (e.g.,
C++, Objective-C, Object Pascal, Ada).

OOPSLA A conference called Object-Oriented Programming, Systems, Languages, and Applications.

operator overloading It allows to extend functionality of a existing operator to operate on user-defined
data type also.

pass by pointer The address of an actual parameter is explicitly passed to a function.

pass by reference The address of an actual parameter is implicitly passed to a function.

pass by value A copy of the actual parameter value is passed to a function.

persistence The phenomenon where object (data) outlives the program execution time and exists
between executions of a program is known as persistence. All database systems support persistence.
In C++, this is not supported. However, the user can build it explicitly using file streams in a program.

polymorphism It is a feature that allows a single name/operator to be associated with different
operations depending on the type of data passed. In C++, it is achieved by function overloading,
operator overloading, and dynamic binding (virtual functions).

preprocessor A part of the compiler that processes header files, macros, and escape sequences with
the designated character.

Appendix D: Glossary

Mastering C++870

private member A class member which is accessible to only members of a class or friend functions.

protected member A class member whose scope is the same as private except that it is inheritable.

public member A class member which is accessible to external users through dot operator.

pure virtual function A function whose declaration exist in a base class and implementation in derived
classes. A class having pure virtual member functions cannot be instantiated and hence, such classes
are called abstract classes.

reusability A feature which allows to build new classes from existing classes.

scope The region of code in which an item is visible.

scope resolution operator It permits a program to reference an identifier in the global scope that has
been hidden by another identifier with the same name in the local scope.

server An object which services the client’s requests.

static binding Refer to early binding.

static member A class member which is declared as static. A static data member of a class is shared by
all the instances of the class. A static member function cannot access auto members of a class.

stream A sequence of characters is called stream. It can be an input stream or an output stream.

structured programming Software development methodology which employs functional
decomposition and a top-down design approach for developing modular software (traditional
programming technique of breaking a task into modular subtasks).

subclass Another name for derived class.

superclass Another name for base class.

templates See Genericity.

this pointer It is a pointer (named as this) to the current object.

type conversion A conversion of a value from one type to another.

virtual base classes A class which gets inherited to a derived class more than once has to be declared
as virtual. Such base classes are called virtual base classes.

virtual functions A member function prefixed with the keyword virtual. It allows to achieve
dynamic binding.

Appendix E:
ASCII Character Set

Character Decimal

(NUL) 00

 (SOH) 01

 (STX) 02

 (ETX) 03

 (EOT) 04

 (ENQ) 05

 (ACK) 06

 (BEL) 07

 (BS) 08

 (HT) 09

 (LF) 10

 (VT) 11

 (FF) 12

 (CR) 13

 (SO) 14

 (SI) 15

 (DLE) 16

 (DC1) 17

 (DC2) 18

!! (DC3) 19

 (DC4) 20

§ (NAK) 21

_ (SYN) 22

 (ETB) 23

 (CAN) 24

 (EM) 25

 (SUB) 26

 (ESC) 27

(cursor right) (FS) 28

(cursor left) (GS) 29

(cursor up) (RS) 30

(cursor down)(US) 31

(SP) 32

! 33

" 34

35

$ 36

% 37

& 38

’ 39

(40

) 41

* 42

+ 43

’ 44

– 45

. 46

/ 47

0 48

1 49

2 50

3 51

4 52

5 53

Character Decimal

Mastering C++872

6 54

7 55

8 56

9 57

: 58

; 59

< 60

= 61

> 62

? 63

@ 64

A 65

B 66

C 67

D 68

E 69

F 70

G 71

H 72

l 73

J 74

K 75

L 76

M 77

N 78

O 79

P 80

Q 81

R 82

S 83

T 84

U 85

V 86

W 87

X 88

Y 89

Z 90

[91

\ 92

] 93

^ 94

_ 95

’ 96

a 97

b 98

c 99

d 100

e 101

f 102

g 103

h 104

i 105

j 106

k 107

l 108

m 109

n 110

o 111

p 112

q 113

r 114

s 115

t 116

u 117

v 118

w 119

x 120

y 121

z 122

{ 123

Character Decimal Character Decimal

 873

| 124

} 125

~ 126

(DEL) 127

Ç 128

Ü 129

é 130

â 131

ä 132

à 133

å 134

ç 135

ê 136

ë 137

è 138

ï 139

î 140

ì 141

Ä 142

Å 143

É 144

æ 145

Æ 146

Ô 147

ö 148

Ò 149

û 150

ù 151

ÿ 152

Ö 153

ü 154

¢ 155

£ 156

¥ 157

Pt 158

f 159

á 160

í 161

ó 162

Ú 163

^ 164

Ñ 165

a 166

o 167

¿ 168

169
170

½ 171

¼ 172

¡ 173

« 174

» 175

176

177

178

179

180

181

182

183

184

185

186
187

188

189

190

191

192

Character Decimal Character Decimal

Appendix E: ASCII Character Set

Mastering C++874

193

194

195

– 196

-| 197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

. 250

251

252

z 253

254

(SP) 255

Character Decimal Character Decimal

 875

The ASCII SYMBOLS

NUL — Null
SOH — Start of Heading
STX — Start of Text
ETX — End of Text
EOT — End of Transmission
ENQ — Enquiry
ACK — Acknowledge
BEL — Bell
BS — Backspace
HT — Horizontal Tabulation
LF — Line Feed
VT — Vertical Tabulation
FF — Form Feed
CR — Carriage Return
SO — Shift Out
Sl — Shift In
DLE — Data Link Escape
DC — Device Control
NAK — Negative Acknowledge
SYN — Synchronous Idle
ETB — End of Transmission Block
CAN — Cancel
EM — End of Medium
SUB — Substitute
ESC — Escape
FS — File Separator
GS — Group Separator
RS — Record Separator
US — Unit Separator
SP — Space (Blank)
DEL — Delete

Appendix E: ASCII Character Set

 [1] Alan Joch, Nine ways to make your code more reliable—How Software Doesn’t Work ?, Byte
Magazine 49-60p, October 1995.

 [2] Bernd Muller, Is Object-Oriented Programming Structured Programming?, ACM SIGPLAN
Notices, Volume 28, No. 9, September 1993.

 [3] Bjarne Stroustrup, The C++ Programming Language (3rd Edition), Addison Wesley, 2000.

 [4] Bjarne Stroustrup, The Design and Evolution of C++, Addison Wesley, 1994.

 [5] Bruce Eckel, Using C++, Osborne McGraw Hill, 1989.

 [6] Capper, Colgate, Hunter, and James, The impact of object-oriented technology on software

quality: Three case histories, IBM Systems Journal, Volume 33, No. 1,1994.

 [7] D Dechanpeaur et al, The Process of Object Oriented Design, Seventh Annual Conference on
Object-Oriented Programming, System, Language, and Applications (OOPSLA), 1992.

 [8] Data Quest Magazine, OOP—New Software Paradigm, 1-15 April, 1995, India.

 [9] E Balagurusamy, Object-Oriented Programming with C++, TataMcGraw Hill Publications,
1996.

 [10] Edmund X Dejesus, Big OOP, No Oops, Byte, August 1995.

 [11] Edward Yourdon, Object-Oriented Systems Design, Prentice Hall Inc, 1994.

 [12] Harald M Muller, Ten Rules for Handling Exceptions Handling Successfully, C++ Report, Jan.
1996.

 [13] Henda Hodjami, A Reuse approach based on Object-Orientation, Software Engineering Notes,
Proceedings of the Symposium on Software Reusability, August 1995.

 [14] James and Josephine, Reuse Through Inheritance, Software Engineering Notes, Proceedings of
the Symposium on Software Reusability, August 1995.

 [15] Keith Gorlen, C++ Under UNIX, UNIX Papers, Waite Groups.

 [16] Margaret A Ellis and Bjarne Stroustrup, The Annotated C++Reference Manual, Addison-
Wesley, Reading, MA, 1990, ISBN 0-201-51459-1.

 [17] Markku Sakkinen, The Darker Side of C++ Revisited, Department of Computer Science and
Information Systems, University of Jyvaskyla, Finland.

 [18] Nicholas Wilt, Templates in C++, Supplement to Dr. Dobb’s Journal, December 1992.

 [19] Rajkumar, Fault Tolerant Computing, A Seminar Report, Bangalore University, 1995.

 [20] Randall Hyde, Object-Oriented Programming in Assembly Language, Dr. Dobb’s Journal, Mar.
1990.

Appendix F:
Bibliography

 877

 [21] Tim Rentsch, Object-Oriented Programming, SIGPLAN Notices, September, 1992.

 [22] Robert G Fichman and Chris F Kemerer, Object-Oriented and Conventional Analysis and Design

Methodologies, IEEE Computer, 1992.

 [23] Robert Lafore, Object-Oriented Programming in Turbo C++, Waite Group, 1992.

 [24] Steven J, A Technique for Tracing Memory Leaks in C++, NCR Microelectronics, Colorado,
1992.

 [25] SunSoft, C++ Selected Reading, Object-Oriented Programming, August 1994.

 [26] Turbo C++, Library Reference Manual, Borland International Inc., 1990

 [27] Venugopal K R and Vimala H S, Programming with Fortran, TataMcGraw Hill, India, 1994.

 [28] Venugopal K R and Vimala H S, Programming with Pascal and C, Tata McGraw Hill, India,
1994.

 [29] Venugopal K R and Rajkumar, Microprocessor x86 Programming, BPB Publications, India,
1995.

 [30] Venugopal K R and Maya, Programming with Pascal, Tata McGraw Hill, India, 1997.

 [31] Venugopal K R and Sudeep, Programming with C, Tata McGraw Hill, India, 1997.

 [32] Scott Meyers, Effective C++, Addison Wesley, 3rd edition, 2005.

 [33] Andrei Alexandrescu, Modern C++, Addison Wesley, 2001.

 [34] Venugopal K R and Chandrakanth N, Problems and Solutions in C++, TaTa McGraw Hill, 2008.

Appendix F: Bibliography

! (not equal) relational operator,

! (NOT) logical operator, 125-126

!= (not equal to) relational operator, 122

#define preprocessor directive, 42,140

% (remainder) arithmetic operator, 118-121

%= (remainder) assignment operator, 130-131

& (address) operator, 134, 293-300

& (AND) bitwise operator, 126-127

&& (AND) logical operator, 124, 125

&= (bitwise AND) assignment operator, 131

* (indirection) operator, 134, 295

* (multiplication) operator, 118-120

*= (multiplication assignment) operator, 130

+ (addition) arithmetic operator, 118-120

++(increment) operator, 131

|= (addition) assignment operator, 131

– (subtraction) arithmetic operator, 118-120

– –(decrement) operator, 131

-= (subtraction) assignment operator, 131

/ (division) arithmetic operator, 118-120

/= (division) assignment operator, 131

< (lessthan) relational operator, 122

<<(left shift) bitwise operator, 126-127

<<= (left shift) assignment operator, 131

<= (lessthan or equal to) relational operator, 122

= (equal) assignment operator, 131

== (equal to) relational operator, 122

> (greater than) relational operator, 122

>=(greater than equal to) relational operator, 122

>>(right shift) bitwise operator, 126-127

^ (exclusive OR) bitwise operator, 126-127

^=(bitwise exclusive OR)assignment operator,131

| (inclusive OR) bitwise operator, 126-127

|| (OR) logical operator, 124-125

~ (compliment) bitwise operator, 126-127

?: (ternary operator), 132

A

absolute address,

abstraction, 4,5,6, 341, 347

abstract class, 631

access control specifier, 357

address operator, 134, 293-294, 434

addresses,

 absolute, 292

 offset, 292

 arrays, 181-206

 passing to function, 324

 returning from functions, 230

 segment, 292

 segment offset, 292

 variables, 107, 114

algorithm decomposition, 339

arguments,

 arrays, 237-238

 command line, 755

 in function calls, 212

 in function declarator, 212

 passing data to, 214-215

 passing multiple arguments, 217-218

 passing variables as, 215

arithmetic operator,

 %(remainder), 118-121

 *(multiplication), 118-121

 +(addition), 118-121

 -(subtraction), 118-121

 /(division), 118-121

arrays, 181-206

Index

 879

 arrays of strings, 200-203

 arrays of structures, 265-270

 accessing members of, 264

 initialization, 268

 as arguments, 246-248

 bound checking, 186

 definition, 183

 entering data into,

 initializing, 194, 196

 multidimensional, 192-195

 objects, 444-447

 passing to functions, 237-239

 pointer variables, 294

 pointers, 291-338

 sorting,

 bubble sort, 188-189

 comb sort, 190-191

 strings, 195-200

assignment operators, 130

auto string class,

B

Bibliography, 871

binary, 127-128

 mode files, 736

 operator overloading, 468-469

binding, 291

 early, 20, 619, 642, 862

 late, 18, 20, 91 642

bits, 126

bitwise operators, 126-130

bound checking arrays, 186

break statement, 168-170

bubble sort, 188-189

C

calling functions, 208

 function calls with arguments, 212

cast operator,

character(char) variable type, 108

character set, 105

closing files, 725

classes, 339-391

 declaration of, 340

 instantiation, 339, 342

 private, 339-341, 357

 protected, 357

 public, 339-341, 357

 templates, 5

class design, 827-830

class template, 647

client server model, 346

COBRA,

command line arguments, 759

comments, 39-41, 73

command line compilation, 34

composition, 604-609

conditional operator(ternary operator), 132-134

constant object, 422

constants, 137-140

constructors, 394-432

continue statement, 173-174

conceptual entity, 343

concrete class, 631

copy constructor, 414-417

D

Data, 109, 114

 decomposition, 339

 demotion, 136

 entering into structures, 261

 hiding, 355-359

 passing to functions, 214-218

 promotion, 136

 returning from functions, 218-219

 members, 339-340

Data types, 108, 109

 character(char), 108

 double precision floating point, 108, 109

 double, 108

 enumerated(enum), 142-145

 floating point(float), 108

 integer(int), 108

 long double precision floating point,

 (long double), 109

 long integer(long), 109

 short integer(short), 109

Index

Index880

 structure, 257

 void, 252

destructors, 400-402

delete operator, 71, 499

delegation, 605-609

do-while loop, 166-168

default arguments, 227-230

default constructor, 394, 400

driver function, 830

dynamic construction, 413

dynamic destruction, 413

dynamic binding, 617, 619

dynamic objects, 433-467

E

early binding, 20

empty classes, 340

encapsulation, 76-77

entering data into arrays, 186

entering data into structures, 261

enumerated(enum) data type, 142

escape sequences, 139

expression, 113-115

external variables, 245

extensibility, 4

exception, 765

 catch, 766-768

 handling, 765-814

 synchronous exception, 766

 asynchronous exception, 766

 throw, 766-768

 try, 766-768

F

far keyword, 320-321

far pointer, 320-321

fault tolerance, 765

fault avoidance, 765

file streams, 100

file strings, 686

floating point(float) variable type, 111

for loop, 159-163

 body, 159

 comma operator, 161

 compound statements, 153, 161

 loop expressions, 158

 increment(update) expression, 160

 initialize expression, 160

 test expression, 160

 multiple statement, 161

fountain flow model, 822

friend functions, 368, 371-376

function template, 647

function overloading, 231-235

functions, 207-256

 default arguments, 227-230

 inline functions, 230-231

 recursive functions, 249-251

 main(), 252

 parameter passing, 221-226

 passing addresses to, 222

 passing arguments to, 214-217

 passing arrays to, 237-239

 passing data to, 214-215

 passing multiple arguments to, 217-218

 passing structures to, 272

 passing two-dimensional arrays to, 237

 passing objects as arguments, 362-367

 passing constants as arguments, 214-215

 prototypes, 212

 variable number of arguments, 246-249

function components, 210-214

function templates, 65-68, 236-237

G

genericity, 5

generic datatype, 647

generic programming, 647-683

H

header files, 32, 219

 compiler directives, 33

 function prototypes, 211

hierarchy of operations, 121

 881

heritage of C++, 21

hello world, 31

huge pointer, 320

I

I/O (input/output)

 operations, 685

 system, 686

identifiers, variables, 105

if statement, 153-155

 multiple statements, 171

 nested, 157-159

if-else statement, 155-159

 compound statement, 157-158

 nested, 157-158

increment operator, 131

inheritance, 541-616

 heirarchical, 590

 hybrid, 600

 multiple, 579

 multilevel, 576

 multipath, 594

 single, 552

inline functions, 54-55

instance, 340

internet,

integer(int) variable type, 108

J

Java, 20, 22

Java virtual machine, 22

K

keywords, 106

 delete, 413

 far, 320

 new, 413

L

late binding, 18, 91

lifetime of variables, 243

 automatic, 244

 external, 245

 static, 244

library functions, 219

live objects, 441-444

literals, 42, 134, 140

logical operators, 124-126

long double precision floating point -

 (long double) variable type, 109

long integer(long or long int) variable type, 109

loops, 159-168

 break statement, 168-170

 continue statement, 173-174

 do-while loop, 166-168

 for loop, 159-163

 while loop, 163-166

M

macros, #define preprocessor directive, 141-142

main() function, 252

members of structure accessing, 260

member functions, 340-341

method overloading, 341

message communication, 18

message passing model, 347

memory leak, 530-532

migrating objects, 29

modulus operator, 120

monolithic programming, 6

multilevel inheritance, 552, 553, 564-565

multipath inheritance, 553, 594

multiplication(*) operator, 118

multiple inheritance, 552-

N

names of variables, 107

naming classes, 340

name mangling, 57

near pointer, 320

networking, 28

new operator, 69

new key word, 67, 68, 282

Index

Index882

O

object, 1, 9, 11, 342

 cleanup, 392-432

 initialization, 392-432

object-oriented, 1-30, 815-836

 analysis, 817

 design, 817

 methodologies, 823

 programming, 1, 5, 6

OO learning curve, 24

open subroutine, 352

operator overloading, 468-540

operator, 468-540

operators, 105-151

 associativity, 147

 precedence, 147

overloading, 468-540

 binary operator, 469, 472

 unary operator, 470-472

P

Passing, 221-226

 addresses to functions, 222

 arguments to functions, 214-218

 structures to functions, 272

 parameters, 221

persistence, 3, 4

pointers, 291-338

pointer arithmetic, 301-304

porting, 27

polymorphism, 17, 469, 617

polymorphic class, 617

preprocessor directives, 147

Programming paradigm, 5-8

 monolithic programming, 6

 proceduralprogramming, 6

 structured programming, 7

 object-oriented programming, 5, 8-9

Project management, 833-834

private, 339-340

protected, 543

profiler, 353

programming styles, 5

 constraint oriented, 6

 logic-oriented, 6

 object oriented, 6

 rule-oriented, 6

 procedural oriented, 6

public, 340-341, 542

Q

qualifiers, 115-118

 sign, 118

 size, 116

R

recurrsion, 249-251

recursive functions, 249

redundancy, 799

 static, 799

 dynamic, 799

reference variables, 47

register variables, 244

relational operators, 121-124

reliable code, 830

runtime dispatch, 628

runtime binding, 291-338

return() statement, 210, 213

reusable components, 820

S

scope resolution operator, 44-45, 349, 350

scope of variables, 240

size of operator, 116

software engineering, 19, 24

software reuse, 25-27

sorting arrays, 187-191

 bubble sort, 188-189

 comb sort, 190-191

stack, 239-240, 293, 573

static binding, 619

static variables, 245

streams, 35-39, 684-721

stream variables,

stream I/O function, 684-721

 883

strings, 195-203

structured programming, 7

single inheritance, 548

structures, 257-290

 accessing, 260

 array of, 265-270

 declaration, 257

 initialization, 261

 nesting of, 262-265

 pointer to, 326-331

Smalltalk, 21

switch statement, 170-173

T

templates, 5, 647-683

template class, 662

template function, 651, 656

type checking, 49

this pointer, 456-458

tokens, 105

typecast operators, 503

typedef statement, 60, 134

U

unary operator overloading, 470

unions, 281-283

unsigned (unsigned)variable type, 110

unsigned integer variable type, 110

V

variable, 107

 definition, 109

 extent, 240

 initialization, 109

 scope, 240

virtual destructors, 637

virtual functions, 91, 617-646

virtual pointer(VPTR), 640

virtual table(VTBL), 640

void, 252

void pointer, 300-301

W

water fall model, 816

while loop, 163-166

wild pointer, 331-334

world wide web, 28

Index

	Title
	1 Object-Oriented Paradigm
	2 Moving from C to C++
	3 C++ at a Glance
	4 Data Types, Operators and Expressions
	5 Control Flow
	6 Arrays and Strings
	7 Modular Programming with Functions
	8 Structures and Unions
	9 Pointers and Runtime Binding
	10 Classes and Objects
	11 Object Initialization and Clean-up
	12 Dynamic Objects
	13 Operator Overloading
	14 Inheritance
	15 Virtual Functions
	16 Generic Programming with Templates
	17 Streams Computation with Console
	18 Streams Computation with Files
	19 Exception Handling
	20 OO Analysis, Design and Development
	Appendix
	Index

