

About the Author

Soumitra Kumar Mandal obtained a BE (Electrical Engineering) from Bengal Engineering College,

Shibpur, Calcutta University, and an MTech (Electrical Engineering) with specialisation in Power Electronics

from Institute of Technology, Banaras Hindu University, Varanasi. Thereafter, he obtained a PhD degree

from Punjab University, Chandigarh. He started his career as a lecturer of electrical engineering at SSGM

College of Engineering, Shegaon. Later he joined Punjab Engineering College, Chandigarh, as a lecturer, and

served there from March 1999 to January 2004. In February 2004, he joined National Institute of Technical

Teachers’ Training and Research, Kolkata, and is presently Associate Professor of Electrical Engineering

at this institute. Prof. Mandal is also a life member of ISTE and a member of IE. Throughout his academic

career, he has published twenty research papers in national and international journals and presented many

papers in national and international conferences. His research interests are in the field of computer-controlled

drives, microprocessor-and-microcontroller-based system design, embedded system design and neuro-fuzzy

computing.

Microprocessors
and

Microcontrollers

Soumitra Kumar Mandal
Associate Professor

National Institute of Technical Teachers’ Training and Research

Kolkata

New Delhi

McGraw Hill Education (India) Private Limited
NEW DELHI

McGraw Hill Education Offices

New York St Louis San Francisco Auckland Bogotá Caracas

Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

San Juan Santiago Singapore Sydney Tokyo Toronto

McGraw Hill Education (India) Private Limited

Published by McGraw Hill Education (India) Private Limited

P-24, Green Park Extension, New Delhi 110016

Microprocessors and Microcontrollers (WBUT), 3e

Copyright © 2014, 2013, 2012, 2011, 2010 by McGraw Hill Education (India) Private Limited.

No part of this publication can be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission of

the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they may not

be reproduced for publication.

This edition can be exported from India only by the publishers,

McGraw Hill Education (India) Private Limited

ISBN (13 digits) : 978-93-392-1425-8

ISBN (10 digits) : 93-392-1425-0

Managing Director: Kaushik Bellani

Head—Higher Education Publishing and Marketing: Vibha Mahajan

Senior Publishing Manager—SEM & Tech Ed: Shalini Jha

Editorial Executive: Koyel Ghosh

Manager—Production Systems: Satinder S Baveja

Assistant Manager—Editorial Services: Sohini Mukherjee

Assistant Manager—Production: Anjali Razdan

Assistant General Manager: Marketing—Higher Education: Vijay Sarathi

Asst. Product Manager—SEM & Tech Ed: Tina Jajoriya

Senior Graphic Designer (Cover): Meenu Raghav

General Manager—Production: Rajender P Ghansela

Production Manager: Reji Kumar

Information contained in this work has been obtained by McGraw Hill Education (India), from sources believed to
be reliable. However, neither McGraw Hill Education (India) nor its authors guarantee the accuracy or completeness
of any information published herein, and neither McGraw Hill Education (India) nor its authors shall be responsible
for any errors, omissions, or damages arising out of use of this information. This work is published with the
understanding that McGraw Hill Education (India) and its authors are supplying information but are not attempting
to render engineering or other professional services. If such services are required, the assistance of an appropriate
professional should be sought.

Typeset at Print-O-World, 2579, Mandir Lane, Shadipur, New Delhi 110 008, and printed at Magic International Pvt. Ltd.,

Plot No. 26E, Sector-31(INDUSTRIAL), Site-IV, Greater Noida - 201306

Cover Printer : Magic International Pvt. Ltd.

RAZLCRAORYXYY

Contents

Preface xiii

Roadmap to the Syllabus xvii

 1. Introduction to Microprocessors and Microcontrollers 1.1–1.13

 1.1 Introduction to Microprocessors and Microcontrollers 1.1

 1.2 History of Microprocessors 1.2

 1.3 Microprocessor 1.3

 1.4 Microcomputer 1.4

 1.5 Evolution of Microprocessors 1.5

 1.6 Microprocessor Applications 1.9

 1.7 Evolution of Microcontrollers 1.9

 1.8 Advantages and Disadvantages of Microcontrollers 1.10

 1.9 Applications of Microcontrollers 1.11

 Review Questions 1.11

 Multiple-Choice Questions 1.12

 Answers to Multiple-Choice Questions 1.13

 2. Architecture of 8085 Microprocessor 2.1–2.21

 2.1 Introduction 2.1

 2.2 Architecture of the 8085 Microprocessor 2.4

 2.3 PIN Diagram of the 8085 Microprocessor 2.14

 2.4 Comparison of 8085 and 8080A 2.18

 Review Questions 2.19

 Multiple-Choice Questions 2.20

 Answers to Multiple-Choice Questions 2.21

 3. Instruction Set of 8085 Microprocessor 3.1–3.46

 3.1 Introduction 3.1

 3.2 Addressing Modes 3.1

 3.3 Instruction Set 3.3

 3.4 Instruction and Data Formats 3.7

 3.5 8085 Instructions 3.10

 3.6 Instruction Timing Diagram 3.29

 3.7 Timing Diagram 3.31

 Review Questions 3.43

 Multiple-Choice Questions 3.44

 Answers to Multiple-Choice Questions 3.46

 4. Assembly Language Programming Using 8085 4.1–4.54

 4.1 Introduction 4.1

 4.2 Machine Language 4.2

 4.3 Assembly Language 4.2

 4.4 High-Level Language 4.3

 4.5 Stack 4.4

 4.6 Subroutines 4.8

 4.7 Time Delay Loops 4.11

 4.8 Modular Programming 4.15

 4.9 Macro 4.16

 4.10 Instruction Format 4.17

 4.11 Assembly-Language Programs 4.18

 Review Questions 4.52

 Multiple-Choice Questions 4.53

 Answers to Multiple-Choice Questions 4.54

 5. Memory and Interfacing with 8085 Microprocessor 5.1–5.25

 5.1 Introduction 5.1

 5.2 Memory Interfacing 5.1

 5.3 Types of Memory 5.1

 5.4 Memory Organisation 5.4

 5.5 Rom and RAM ICs 5.7

 5.6 Memory Map 5.9

 5.7 Address Decoding 5.11

 5.8 Memory Interfacing to Microprocessor 5.12

 Review Questions 5.23

 Multiple-Choice Questions 5.24

 Answers to Multiple-Choice Questions 5.25

 6. Interrupts of 8085 Microprocessor 6.1–6.17

 6.1 Introduction 6.1

 6.2 Classification of Interrupts 6.2

 6.3 The 8085 Interrupts 6.2

 6.4 Interrupt Vectors and Vector Table 6.4

 6.5 Interrupt Instructions 6.9

 6.6 Pending Interrupts 6.14

 6.7 Serial Mode Operation using SID and SOD Pins of 8085 Micro-Processor 6.15

 Review Questions 6.16

 Multiple-Choice Questions 6.17

 Answers to Multiple-Choice Questions 6.17

 7. 8051 Microcontroller Architecture 7.1–7.42

 7.1 Introduction 7.1

 7.2 Architecture of 8051 Microcontroller 7.4

 7.3 Memory Organisation 7.9

 7.4 Pin Diagram of 8051 Microcontroller 7.14

Contentsviii

 7.5 Power Management 7.22

 7.6 Timers/Counters 7.24

 7.7 Interrupts 7.29

 7.8 Serial Communication 7.33

 Review Questions 7.40

 Multiple-Choice Questions 7.41

 Answers to Multiple-Choice Questions 7.42

 8. Instruction Set and Programming of 8051 Microcontroller 8.1–8.57

 8.1 Introduction 8.1

 8.2 Addressing Modes 8.1

 8.3 8051 Instruction Set 8.5

 8.4 Simple Examples in Assembly Language Programs of 8051 Microcontroller 8.31

 8.5 Assembly Language Programs 8.32

 Review Questions 8.55

 Multiple-Choice Questions 8.56

 Answers to Multiple-Choice Questions 8.57

 9. Architecture of 8086 and 8088 Microprocessors 9.1–9.53

 9.1 Introduction 9.1

 9.2 Architecture of 8086 9.1

 9.3 Registers 9.5

 9.4 Logical and Physical Address 9.9

 9.5 Address Bus, Data Bus, Control Bus 9.11

 9.6 8086 Memory Addressing 9.11

 9.7 PIN Description of 8086 9.15

 9.8 Memory Read and Write Bus Cycle of 8086 9.20

 9.9 Intel 8088 Processor 9.28

 9.10 Demultiplexing of System Bus in 8086 and 8088 Microprocessor 9.33

 9.11 Some Important ICs 8284A, 8286/8287, 8282/8283, and 8288 9.34

 9.12 Interrupts of 8086/8088 Microprocessor 9.43

 9.13 EPROM Interfacing with 8086 9.49

 Review Questions 9.51

 Multiple-Choice Questions 9.52

 Answers to Multiple-Choice Questions 9.53

 10. Instruction Set of 8086 Microprocessor 10.1–10.64

 10.1 Introduction 10.1

 10.2 Addressing Modes 10.1

 10.3 8086 Instruction Set 10.11

 10.4 8086 Instruction Set Summary 10.49

 Review Questions 10.62

 Multiple-Choice Questions 10.63

 Answers to Multiple-Choice Questions 10.64

ixContents

 11. Assembly-Language Program of the 8086 Microprocessor 11.1–11.41

 11.1 Introduction 11.1

 11.2 Assembly-Language Commands 11.4

 11.3 Assembly-Language Programs 11.13

 Review Questions 11.39

 Multiple-Choice Questions 11.40

 Answers to Multiple-Choice Questions 11.41

 12. 8255 Interfacing with 8085, 8086 and 8051 Microcontroller 12.1–12.23

 12.1 Introduction 12.1

 12.2 Architecture of Intel 8255A 12.1

 12.3 Group A and Group B Controls 12.2

 12.4 Operating Modes 12.5

 12.5 Control Word 12.12

 12.6 Examples to Determine the Control Word 12.13

 12.7 Applications of 8255 PPI 12.15

 12.8 8255 Interfacing with 8085 Microprocessor 12.15

 12.9 8255 Interfacing with 8086 Microprocessor 12.17

 12.10 8255 Interfacing with 8051 Microcontroller 12.19

 Review Questions 12.22

 Multiple-Choice Questions 12.22

 Answers to Multiple-Choice Questions 12.23

 13. 8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.1-13.23

 13.1 Introduction 13.1

 13.2 Pin Diagram of 8253 13.2

 13.3 Block Diagram 13.5

 13.4 Control Word Register 13.6

 13.5 Operational Modes 13.7

 13.6 8253 Interfacing with 8085 Microprocessor 13.17

 13.7 8253 Interfacing with 8086 Microprocessor 13.18

 13.8 8253 Interfacing with 8051 Microcontroller 13.21

 Review Questions 13.22

 Multiple-Choice Questions 13.22

 Answers to Multiple-Choice Questions 13.23

 14. 8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.1-14.19

 14.1 Introduction to Programmable Interrupt Controller 14.1

 14.2 Pin Diagram of 8259A 14.3

 14.3 Functional Description 14.5

 14.4 Interrupt Sequence 14.6

 14.5 Interfacing of 8259A with 8085 14.6

 14.6 Programming of 8259A 14.8

 14.7 8259 Interfacing with 8085 Microprocessor 14.16

 14.8 8259 Interfacing with 8086 Microprocessor 14.16

 14.9 8259 Interfacing with 8051 Microcontroller 14.17

Contentsx

 Review Questions 14.18

 Multiple-Choice Questions 14.19

 Answers to Multiple-Choice Questions 14.19

 15. 8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.1-15.15

 15.1 Introduction 15.1

 15.2 Pin Diagram of 8279 15.2

 15.3 Functional Description 15.3

 15.4 Operating Modes of 8279 15.5

 15.5 Software Operation 15.6

 15.6 Interfacing 8279 with 8085 Microprocessor 15.10

 15.7 Keyboard Interface of 8279 15.10 15.8 Sixteen-Digit Display Interface of 8279 15.11

 15.9 8279 Interfacing with 8086 Microprocessor 15.12

 15.10 8279 Interfacing with 8051 Microcontroller 15.12

 Review Questions 15.14

 Multiple-Choice Questions 15.14

 Answers to Multiple-Choice Questions 15.15

 16. 8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.1–16.19

 16.1 Introduction 16.1

 16.2 Functional Block Diagram 16.2

 16.3 Pin Diagram of 8251 16.6

 16.4 8251 Interface with 8085 Microprocessor 16.10

 16.5 Programming and Operating Modes of 8251 16.11

 16.6 8251 Interfacing with 8086 Microprocessor 16.17

 16.7 8251 Interfacing with 8051 Microcontroller 16.17

 Review Questions 16.18

 Multiple-Choice Questions 16.19

 Answers to Multiple-Choice Questions 16.19

 17. Direct Memory Access (DMA) Controller 8257 17.1–17.17

 17.1 Introduction 17.1

 17.2 Pin Diagram 17.2

 17.3 Architecture of 8257 17.4

 17.4 DMA Operations 17.9

 17.5 Interfacing of 8257 with 8085 Microprocessor 17.11

 Review Questions 17.16

 Multiple-Choice Questions 17.17

 Answers to Multiple-Choice Questions 17.17

 18. ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 18.1–18.42

 8086 and 8051

 18.1 Introduction 18.1

 18.2 Counting Type A/D Converter 18.2

 18.3 Successive Approximation ADC 18.3

 18.4 Parallel or Flash Converter 18.5

xiContents

 18.5 Specification of ADC 18.6

 18.6 ADC ICs 18.7

 18.7 Interfacing of ADC0800 with 8085 using 8255 18.9

 18.8 Interfacing of ADC 0800 and Multiplexer with 8085 using 8255 18.12

 18.9 Interfacing of 12-Bit ADC 0800 with 8085 using 8255 18.13

 18.10 ADC 0808 Interfacing with 8086 using 8255 18.15

 18.11 ADC 0808 Interfacing with 8051 Microcontroller using 8255 18.16

 18.12 Digital to Analog Converters (DAC) 18.17

 18.13 Binary Weighted or R/2N R DAC 18.18

 18.14 R–2R Ladder Circuit 18.19

 18.15 D/A Converter Specification 18.21

 18.16 Interfacing of DAC ICs with 8085 using 8255 18.22

 18.17 DAC 0808 Interfacing with 8086 using 8255 18.25

 18.18 DAC 0808 Interfacing with 8051 Microcontroller using 8255 18.26

 18.19 Keyboard Interfacing with 8085 Microprocessor 18.26

 18.20 Keyboard Interfacing with 8086 Microprocessor 18.28

 18.21 Keyboard Interfacing with 8051 Microcontroller 18.29

 18.22 LCD Interfacing with 8051 Microcontroller 18.31

 18.23 Seven-Segment Display 18.36

 Review Questions 18.40

 Multiple-Choice Questions 18.41

 Answers to Multiple-Choice Questions 18.42

 19. Introduction to PIC Microcontroller (16F877) 19.1–19.14

 19.1 Introduction 19.1

 19.2 Features of PIC16F 877 Microcontroller 19.2

 19.3 Pin Diagram and Architecture of PIC16F877 Microcontroller 19.3

 19.4 Memory Organization of PIC 16F877 19.7

 19.5 CPU Registers 19.9

 19.6 Addressing Modes 19.10

 19.7 Instruction Set of PIC 16F877 19.11

 19.8 Applications of PIC 16F877 19.13

 Review Questions 19.13

 Multiple-Choice Questions 19.14

 Answers to Multiple-Choice Questions 19.14

 Appendix A.1-A.3

 Model Question Paper 1 M.1–M.3

 Model Question Paper 2 M.4–M.6

 Model Question Paper 3 M.7–M.9

 Solution of 2009 WBUT Paper S.1–S.8

 Solution of 2010 WBUT Paper (EI-405) S.9–S.16

 Solution of 2010 WBUT Paper (EI-502) S.17–S.26

 Solution of 2011 WBUT Paper S.27–S.42

 Solution of 2011 WBUT Paper EI(EC) 502 S.43–S.49

 Solution of 2012 WBUT Paper (EI 402) S.50–S.60

 Solution of 2012 WBUT Paper (EC 502) S.61–S.68

 Solution of 2013 WBUT Paper (EC 502) S.69–S.79

Contentsxii

Preface

Introduction

Though the progress and advancement in microprocessor technology has been very fast, the study of the

basic principles of the digital building blocks of 8085 and 8086 microprocessors and 8051 microcontrollers

is still in vogue. This subject has been incorporated as part of the syllabus of undergraduate engineering

courses, namely, Computer Science Engineering, Electronics and Communication Engineering, Electrical

Engineering, Electrical and Electronics Engineering, and Instrumentation and Control Engineering.

Target Reader

This book is based on the latest revised syllabi of Microprocessors and Microcontrollers as taught in the

West Bengal University of Technology (WBUT). Although a large number of books on microprocessors are

available in the market, most of these cover either the 8085 microprocessor and its interfacing or advanced

microprocessors, the 8086 to Pentium processors or the 8051 microcontroller. Consequently, there is no one

book which covers all the topics starting from the 8085 microprocessor to the 8086 microprocessor and the

8051 microcontroller and PIC controller. In this book, I have attempted to fill this gap by covering all these

topics in detail.

 This book is written for the third-year students of CSE, ECE, EE, EEE, and ICE branches at

WBUT. It will also be useful for fourth-semester students of Applied Electronics and Instrumentation

Engineering. Though this course mitigates a definite percentage in every competitive examination of engi-

neering professionals, namely, IES, UPSC, GATE, etc., it is basically written to help students acquire a strong

foundation in the concepts of microprocessors and microcontrollers, their architecture, programming, and

applications.

Salient Features

Coverage and chapter organisation as per the latest WBUT syllabus

Each topic is covered in depth from basic concepts to industrial applications of microprocessors and

microcontrollers

Hands-on practice with Hardware, ICs, Assembler, EPROM Programmers, Design of Small-Scale

Embedded Systems

Dedicated chapter on PIC Microcontroller (16F877)

Model Question Papers at the end for self-assessment

Latest Solved WBUT Question Papers

Pedagogy

 Illustrations: 500

 Multiple-Choice Questions: 230

 Review Questions: 340

Chapter Organisation

This book comprises 19 chapters. Chapter 1 presents the introduction to microprocessors and microcon-

trollers. This chapter covers the basic concepts of microprocessors and microcontrollers, history of micro-

processors, evolution of microprocessors and their applications. Chapter 2 deals with the architecture of the

8085 microprocessor in a generalised way. This chapter covers the block diagram of the 8085 microprocessor

and its operating principles. The pin diagram of 8085 microprocessors and function of pins are also explained

elaborately. Chapter 3 describes the different addressing modes, instruction set and instruction timing dia-

grams of the 8085 microprocessor.

Chapter 4 deals with machine language, assembly language, and high-level language. The operation of

stack, subroutines and time-delay loops are discussed here. Modular programming, macro, instruction format

and assembly-language programs are also incorporated in this chapter. In Chapter 5, memory ICs and their

interfacing with the 8085 microprocessor are discussed elaborately. Interrupts of 8085 microprocessors and

serial mode operation using SID and SOD pins of 8085 microprocessor are explained in Chapter 6. Chapter

7 describes the architecture of the 8051 microcontroller. This chapter also describes the special-function

registers and memory organisation, power management, timer/counters, interrupts and serial communication

of the 8051 microcontroller.

Chapter 8 deals with the addressing modes and instruction set of the 8051 microcontroller.

Assembly-language programs for 8051 microcontroller are discussed elaborately in this chapter. The

applications of microcontrollers for keyboard interfacing, A/D converter interfacing, traffic-light control and

stepper-motor control are elucidated here. The architectures of 8086 and 8088 microprocessors are introduced

in Chapter 9. The minimum and maximum mode configurations, memory addressing, pin description of

8086 and 8088 and other supporting ICs such as 8284A, 8286/8287, 8282/8283 and 8288 are incorporated

in this chapter.

Chapter 10 covers the different addressing modes and instruction set of the 8086 in detail. A brief introduc-

tion to assembly-language commands and assembly-language programs of 8086 are described in Chapter 11.

In Chapters 12 to 16, 8255A Programmable Peripheral Interface, 8253 Programmable Timer Interface,

8259 Programmable Interrupt Controller Interface, 8279 Programmable Keyboard and Display Interface,

8251 Serial Communication Interface with 8085 and 8086 microprocessors and 8051 Microcontrollers are

discussed in a lucid manner.

Chapter 17 deals with the 8257 Direct Memory Access (DMA) Controller. In Chapter 18, ADC as well as

DAC ICs and their interfacing with 8085 and 8086 microprocessors and 8051 microcontrollers, keyboard

and multiplexed display, LCD and keyboard interfacing with 8051 microcontrollers are discussed in detail.

Chapter 19 introduces the PIC microcontroller (16F877).

Acknowledgements

I have received immense cooperation and inspiration for writing this book from Dr Gurnam Singh, PEC,

Chandigrah; Dr S Chatterjee, NITTTR, Chandigarh; Dr S K Bhattachariya, Director NITTTR, Kolkata; Prof.

Amitabha Sinha, Director School of IT, WBUT; Dr C K Chanda and Dr P Shyam, Bengal Engineering

College, Shibpur; Dr P Sarkar, Professor and Head, Electrical Engineering Department, Dr S Chattopadhay,

Associate Professor and Dr S Pal, Assistant Professor, NITTTR, Kolkata. I am also thankful to other staff of

the Electrical Engineering Department—Mr A K Das, Mr N K Sarkar, Mr S Roy Choudhury, and Mr Surojit

Mallick who helped me complete the manuscript of this book.

Prefacexiv

 I am also indebted to the following external reviewers who assessed various chapters of the book and con-

tributed with their constructive criticism and suggestions.

Anil Kumar Sharma Abacus Institute of Engineering and Management, 24 Parganas, West Bengal

Debarshi Datta SDET Brainware Group of Institutions, Kolkata, West Bengal

Paulami Basu Malik Techno India College of Technology, Kolkata, West Bengal

Criticism and suggestions for improvement shall be gratefully acknowledged. Readers may contact me

through email at mandal_soumitra@yahoo.com.

Soumitra Kumar Mandal

Publisher’s Note

Remember to write to us. We look forward to receiving your feedback, comments and ideas to enhance the

quality of this book. You can reach us at tmh.corefeedback@gmail.com. Please mention the title and author’s

name as the subject. In case you spot piracy of this book, please do let us know.

xvPreface

ROADMAP TO THE SYLLABUS

This text is useful for subject codes:

CS502 and EC502—CSE, ECE

Microprocessors and Microcontrollers

Module 1:

Introduction to microcomputer-based system. History of evolution of microprocessor and microcontrollers

and their advantages and disadvantages.

Architecture of 8085 microprocessor. Address/data bus demultiplexeing, status signals and the control signal

generation. Instruction set of 8085 microprocessor. Classification of instruction, addressing modes, timing

diagram of the instructions (a few examples).

 CHAPTER 1 INTRODUCTION T

 MICROCONTROLLERS

 CHAPTER 2

 MICROPROCESSOR

 CHAPTER 3 INSTR

 MICROPROCESSOR

Module 2:

Assembly language programming with examples, interrupts of 8085 processor, programming using interrupts.

Serial and parallel data transfer – programmed I/O, interrupts driven I/O, DMA, asynchronous and synchro-

nous serial transmission using SID and SOD pins of 8085 processor.

 CHAPTER 4 ASSEMBLY LANGUA

 CHAPTER 5 MEMORY & INTERFA

 CHAPTER 6 INTERR

 CHAPTER 7 DIRECT MEMORY A

Module 3:

Introduction to MCS-51 microcontroller – Architecture, pin details, memory organization, Hardware fea-

tures of MCS-51, external memory interfacing, timers, interrupts, power management, serial port, addressing

modes, assembly language programming.

The 8086 microprocessor–Architecture, pin details, addressing modes, instruction set, assembly language

programming interrupts.

Support IC chips–8255, 8253, 8259, 8279 and 8251 and their interfacing with 8085, 8086 and microcon-

troller 8051.

 CHAPTER 7 8051 MICROCONTR

 CHAPTER 8 INSTRUCTION SET & PR

 MICROCONTROLLER

 CHAPTER 9

 CHAPTER 10 INSTR

 CHAPTER 11 ASSEMBLY LANGUA

 MICROPROCESSORS

 CHAPTER 12 8255 INTERFACING

 MICROCONTROLLER

 CHAPTER 13 8253 INTERFACING

 MICROCONTROLLER

 CHAPTER 14 8259 INTERFACING

 MICROCONTROLLER

 CHAPTER 15 8279 INTERFACING

 MICROCONTROLLER

 CHAPTER 16 8251 INTERFACING

 MICROCONTROLLER

Module 4:

Keyboard and multiplexed display, LCD interfacing, with 8085, 8086, and 8051. Memory interfacing with

8085, 8086, and 8051–ADC and DAC interfacing with the processor 8085, 8086 and 8051.

Brief introduction to PIC microcontroller (16F877).

 CHAPTER 18 ADC, DAC, KEYBO

 INTERFACING

 CHAPTER 17 DIRECT MEMORY A

 CHAPTER 5 MEMORY & INTERFA

 CHAPTER 19 INTRODUCTION T

This text is useful for subject codes:

EE 504C, EEE504C, ICE504C—EE, EEE, ICE

Microprocessors and Microcontrollers

UNIT 1:

Introduction to computer architecture: Architecture of a typical microprocessor, Bus configuration, The

CPU module, ROM and RAM families, Introduction to assembly language and machine language program-

ming, Instruction set of typical microprocessor (e.g. 8085), Subroutine and stack, Timing diagram, Memory

Interfacing, Interfacing input output-port, Interrupt and interrupt handling, Serial and parallel data transfer

scheme, Programmed and interrupt driven data transfer, Direct memory access, Programmable peripheral

devices, Programmable interval timer, Analog input-output using AD and DA converter.

Roadmap to the Syllabusxviii

 CHAPTER 1 INTRODUCTION T

 MICROCONTROLLERS

 CHAPTER 2

 CHAPTER 3 INSTR

 CHAPTER 4 ASSEMBLY LANGUA

 CHAPTER 5 MEMORY & INTERFA

 CHAPTER 6 INTERR

 CHAPTER 12 8255 INTERFACING

 MICROCONTROLLER

 CHAPTER 13 8253 INTERFACING

 MICROCONTROLLER

 CHAPTER 14 8259 INTERFACING

 MICROCONTROLLER

 CHAPTER 15 8279 INTERFACING

 MICROCONTROLLER

 CHAPTER 16 8251 INTERFACING

 MICROCONTROLLER

 CHAPTER 17 DIRECT MEMORY A

 CHAPTER 18 ADC, DAC, KEYBO

 INTERFACING

UNIT 2:

Assembly language program of a typical microprocessor: Use of compilers, assembler, linker and debugger.

 CHAPTER 4 ASSEMBLY LANGUA

 CHAPTER 11 ASSEMBLY LANGUA

 MICROPROCESSORS

UNIT 3:

Basic 16 bit microprocessor (e.g. 8086): Architecture, Min-max mode.

 CHAPTER 9

 CHAPTER 10 INSTR

UNIT 4:

Introduction to microcontroller: Architecture and instruction set of a typical microcontroller (e.g. PIC16F84

device), Feature of popular controller (processor 8031/8051), Its programming and interfacing.

 CHAPTER 1 INTRODUCTION T

 MICROCONTROLLERS

 CHAPTER 7 8051 MICROCONTR

 CHAPTER 8 INSTRUCTION SET & PR

 MICROCONTROLLER

 CHAPTER 19 INTRODUCTION T

xixRoadmap to the Syllabus

This text is useful for subject code:

EI402—AEIE

Microprocessors and Computer Architecture

Module I:

Introduction to microprocessors: Overview of 8085, Internal architecture, Pin Diagram description. Software

instruction set and Assembly Language Programming, Addressing Modes.

 CHAPTER 1 INTRODUCTION T

 MICROCONTROLLERS

 CHAPTER 2

 CHAPTER 3 INSTR

 CHAPTER 4 ASSEMBLY LANGUA

Module II:

Instruction cycle, Machine cycle, Timing diagrams. Interrupts: Introduction, Interrupt vector table, Interrupt

service routine, Design of programs using interrupts. DMA operation. Stack and stack handling, Call and

subroutine, Counter, Time delay generation.

 CHAPTER 3 INSTRUCTION SET OF 8085 MICROPROCESSOR

 CHAPTER 4 ASSEMBLY LANGUAGE PROGRAMMING USING 8085

 CHAPTER 5 MEMORY & INTERFACING WITH 8085 MICROPROCESSOR

 CHAPTER 6 INTERRUPTS OF 8085 MICROPROCESSOR

 CHAPTER 17 DIRECT MEMORY ACCESS (DMA) CONTROLLER 8257

Module III:

Hardware Interfacing: Interfacing memory, Interfacing I/O devices. Programmable peripheral devices (PPI) –

Intel 8255, Programmable interval timer – Intel 8254, Programmable keyboard/display controller–Intel 8279,

A/D and D/A converters and interfacing of the same.

 CHAPTER 12 8255 INTERFACING

 MICROCONTROLLER

 CHAPTER 13 8253 INTERFACING

 MICROCONTROLLER

 CHAPTER 14 8259 INTERFACING

 MICROCONTROLLER

 CHAPTER 15 8279 INTERFACING

 MICROCONTROLLER

 CHAPTER 16 8251 INTERFACING

 MICROCONTROLLER

 CHAPTER 17 DIRECT MEMORY A

 CHAPTER 18 ADC, DAC, KEYBO

 INTERFACING

Roadmap to the Syllabusxx

CHAPTER

1
Introduction to Microprocessors

and Microcontrollers

 1.1 INTRODUCTION TO MICROPROCESSORS AND MICROCONTROLLERS

Initially, standard logic gates, digital and analog ICs were used to measure any physical and electrical quantity

in all electronics products. A product using standard logic gates can be replaced by interconnections of stan-

dard hardware with the logic stored in a ROM. When the logic circuit is concentrated in only a few compo-

nents, a high degree of design flexibility is possible. This type of system has limitations on size, weight, power

consumption and price. The microprocessor makes it possible to improve old products in all directions and

develop more sophisticated new industrial products incorporating new features. Microprocessor technology

has been used to replace hardware designs, which were formally implemented with logic devices. Actually,

microprocessor applications are limited only by the technology rather than by the imagination of the designers.

 The microprocessor is a VLSI IC in which large numbers of transistors are placed. As microprocessors are

relatively new devices, these devices should be used to implement various functions such as measurement

of electrical and physical quantities, monitoring, controlling and protection of any process control system,

motion control, servo control system and power system, etc. These devices are programmable and can substi-

tute program logic for hardwired logic. Initially, microprocessor cost was too high, but due to rapid decrease

in the microprocessor-based system cost, enormous logic power can be added with some additional integrated

circuits in a microcomputer. The advantages of microprocessor-based design of a system are given below:

 The manufacturing costs of the electronic products are generally lower, but the typical microproces-

sor-based designs cost 20 to 60 per cent of their TTL implementation costs.

 The time and cost for the original development can be substantially lowered. Due to applications of

microprocessors, the design time can be reduced by about two thirds. Presently, numbers of software

are available to design a prototype system before implementation of the final product. Therefore, the

design cycle will continue to decrease.

 Consequently, microprocessor-based products can be brought to the market very early as per con-

sumer requirement.

 Microprocessor-based products have many complex functional capabilities and these products can

be provided at reasonable cost. Therefore, the realization of better products for the same or lower

prices are possible.

 The smaller number of components in a microprocessor system increase the reliability of the final

product.

Microprocessors and Microcontrollers1.2

 Sometimes microprocessor-based products fail. The computational capability of a microprocessor

can be used to perform self-diagnosing of the product to find error and help to remove faults. These

devices also provide substantial reductions in service charges.

 In industry, there are a variety of microprocessor and microcontroller applications such as instrumentation,

industrial control, and aerospace, etc. Some of the actual applications come across industrial boundaries and

these are more informative to about the type of function to be performed. Microprocessors are used in data-

collection terminals, office equipment, business machines, calculators, point-of-sale terminals, and various

kinds of data-communication equipments. As the incremental cost for additional functions is very small in a

microprocessor-based system, always there is an increasing tendency to add greater functional capability. This

tendency is most noticeable in the area of instrumentation, where increasingly sophisticated products are find-

ing their way to the market in growing numbers. Presently, modern instruments have the additional features

such as remote control, programmability, improved readout, and peripheral interfaces.

 Generally, microprocessors and microcontroller are also used to control traffic lights, appliances, motion

control, position control, servo control, elevators, automation, electric car, and control of AC/DC machines,

measurement and display of electrical and physical quantities such as voltage, current, frequency, phase angle,

power factor, power, energy, force, displacement, speed, acceleration, temperature, pressure, stress, strain,

deflection, water level, traffic-light control, overvoltage and overcurrent protection, speed control of dc and

induction motors.

 1.2 HISTORY OF MICROPROCESSORS

In 1643, Blaise Pascal, the French mathematician and philosopher, invented the first mechanical calculator

which could perform addition as well as subtraction. In the 17th century, the multiplication and division

actions were added by the German mathematician Gottfried Leibriz. The difference engine was developed

in 1832 by Charles Babbage, professor of mathematics at Cambridge University. This machine could add,

subtract, multiply, divide and perform a sequence of steps automatically. In 1887, Herman Hollerith invented

a device for automatic census tabulation.

 The first large-scale electronic digital computer was designed and constructed at the Moore School of

Electrical Engineering of the University of Pennsylvania. In 1943, J W Mauchly and J Presper Eckert pre-

pared a proposal for the US army to build an Electronic Numerical Integrator and Computer (ENIAC) and

subsequently started construction of the ENIAC. In 1944, the ENIAC team members started work on stored-

program computers. Then ENIAC was innovated in 1946. It occupied a room of approximately 12 m × 6 m

and contained nearly 18000 vacuum tubes. Its power consumption was about 150 kW and it operated on

numbers with ten decimal digits. Addition could be carried out at the rate of 5000 calculations per second,

multiplication at 350 per second and division at 166 per second. It was able to store up to 20 different num-

bers and recall them immediately whenever required. After that John Von Neumann developed an improved

version of the ENIAC machine with the help of all ENIAC team members.

 In 1949, the Electronic Delay Storage Automatic Calculator (EDSAC) was developed by Maurice Wilkes

at University Mathematical Laboratory, Cambridge University. In 1951, the Universal Automatic Computer

was built. In 1952, the Electronic Discrete Variable Automatic Computer (EDVAC) was developed by J W

Mauchly and J Presper Eckert. This is the first electronic machine to use binary arithmetic. It operated on

binary numbers of 43 digits and could store over 1000 numbers for immediate recall. This was also the first

machine to use an external store using magnetic recording.

 After World War II, scientists made great achievements in solid-state technology development and the tran-

sistor, i.e., a solid-state device was invented in 1948 at Bell Laboratories. Initially, germanium was the chief

material for making the early semiconductor devices such as transistors. The use of silicon lowered costs,

because silicon is much more plentiful than germanium. The mass production methods made transistors

1.3Introduction to Microprocessors and Microcontrollers

common and inexpensive. Then in the late 1950s computer designers started developing ways to use the

transistor in place of vacuum tubes.

 In 1960s, the semiconductor industry developed a way to integrate a number of transistors on one silicon

wafer. The transistors were connected together with small metal traces. When the transistors were connected

together, they became a circuit which performed different functions such as gate, flip-flop, register, counter

or adder. This new technology created the basic semiconductor building blocks. The building blocks or circuit

modules made this way are known as an Integrated Circuits (ICs). Thereafter integrated circuits (ICs) became

feasible and the integration has been developed with time. There are three different stages of development

from the period 1961 to 1972, namely, Small-Scale Integration (SSI), Medium-Scale Integration (MSI) and

Large-Scale Integration (LSI). In general, an SSI chip has dozens of transistors with their associated circuit

components, but an MSI chip has hundreds of transistors and an LSI chip has thousands of transistors.

 Due to the development of SSI and MSI and LSI ICs, desktop computers were built at the end of the 1960s.

These desktop computers were called minicomputers which were used in scientific applications. In the late

1960s and early 1970s, Large-Scale Integration (LSI) became common. Large-scale integration was making

it possible to produce more and more digital circuits on a single IC. After that, the next stage of development

was started by the active research and development effort on solid-state technology. This stage of develop-

ment was called Very Large Scale Integration (VLSI). By the 1980s, VLSI gave us ICs with over 100,000

transistors. In 1965, Gordon Moore noted that the number of transistors on a chip doubled every 18 to 24

months. He made a prediction that semiconductor technology will double its effectiveness every 18 months.

 The microprocessor is an integrated circuit and it is the combination of solid-state technology develop-

ment and the advancing computer technologies. It was developed in the early 1970s using LSI technology. It

performs both control and processing functions with the low cost of a device and the flexibility of a computer.

 1.3 MICROPROCESSOR

The microprocessor is a multipurpose, programmable, and clock-driven integrated circuit. This IC can read

binary instructions from any storage device called memory, accepts binary data as input, processes data

according to instructions, and provides results as output.

 The microprocessor is the Central Processing Unit (CPU) of digital computers and it is constructed with

IC technology. Figure 1.1 shows the block diagram of a microprocessor. The

microprocessor has a digital circuit for data handling and computation under

program control. The microprocessor is a data-processing unit. Data process-

ing includes both computation and data handling. Computation is performed

by logic circuits called the Arithmetic Logic Unit (ALU). The ALU is used to

perform add, subtract, AND, OR, XOR, compare, increment, and decrement

functions. The ALU cannot perform any functions without control signals.

In order to process data, the microprocessor must have control logic which

instructs the microprocessor how to decode and execute the program.

 The control logic sends signals to the microprocessors and instructs how

to operate with the stored instructions in memory. There are four steps in the

operation of a microprocessor. In the first step, the microprocessor fetches an

instruction and in the next step, the control logic decodes what the instruc-

tion has to do. Then decoding is done in the third step and in the last step, the

microprocessor executes the instruction.

 The microprocessor always operates in binary digits: 0 and 1, known as

bits. Bit is an abbreviation for ‘binary digit’ which can be represented in terms

Fig. 1.1 Architecture of a
 microprocessor

Microprocessors and Microcontrollers1.4

of voltages. The microprocessor recognises and processes a group of bits, called the word. Microprocessors

are classified according to their word length such as 8-bit, 16-bit, 32-bit and 64-bit microprocessors. The

microprocessor ICs are programmable so that instructions can be executed by the microprocessor to perform

given tasks within its capability. The instructions are stored in a storage device which is called the memory,

and the microprocessor can read instructions from memory.

 1.4 MICROCOMPUTER

Generally, the words ‘microprocessor’ and ‘microcomputer’ are used to correspond to the same thing, but in

fact these words have different meanings. The microprocessor is an integrated circuit (IC) developed based

on LSI or VLSI technology. It is the core of any computer system, but the microprocessor by itself is com-

pletely useless, until external peripheral devices are connected with it to interact with the outside world. The

microcomputer is a complete computing system and it is built with a microprocessor, input/output devices

and memory (RAM and ROM). The schematic block diagram of a microcomputer is shown in Fig. 1.2. The

detailed architecture of a microcomputer is illustrated in Fig. 1.3.

Arithmetic/Logic Unit (ALU) The ALU performs arithmetic operations such as addition, subtraction,

multiplication, and division and logic operations, namely, AND, OR, XOR, complement, rotate and shift.

After the operations, results must be stored either in a specified register or in the memory.

Register The microprocessor has various general-purpose registers such as B, C, D, E, H, L, and the

Accumulator (A). These registers are used to store data and addresses temporarily during the execution of a

program.

Timing and Control Unit The timing and control unit provides the necessary timing and control

signals to perform any operation in the microcomputer. Actually, it controls the flow of data between the

microprocessor and memory/peripheral devices.

Input Devices The input devices transfer data in binary form the outside world to the microprocessor. The

most commonly used input devices are keyboard, switches, mouse, scanner, and analog-to-digital converter.

Fig. 1.2 Schematic block diagram of a microcomputer

Microprocessor

Input Devices

Output Devices

Memory (RAM and ROM)

1.5Introduction to Microprocessors and Microcontrollers

Output The output devices transfer data from the microprocessor to any output device such as a printer,

plotter, monitor, or magnetic tape.

Memory The memory unit stores the binary information such as instructions and data, and provides

that information to the microprocessor for processing. To execute any instruction, the microprocessor reads

instructions and data from memory. After the computational operations in the ALU, microprocessor again

stores results in the memory for further use.

System Bus: Address Bus, Data Bus and Control Bus The microprocessor always communicates

with input/output devices and the memory with some path called the system bus. The system bus consists of

the Address Bus, Data Bus and Control Bus. The address bus is used to locate any input/output devices and

memory. The Data bus is used to transfer data in binary form between the microprocessor and peripherals.

The microprocessor communicates with only one peripheral at a time. The timing signals are provided by the

control bus of the microprocessor.

 1.5 EVOLUTION OF MICROPROCESSORS

In 1971, the Intel Corporation introduced the first 4-bit microprocessor 4004 which was developed using

LSI technology. In 1972, the 8-bit microprocessor 8008 was produced by Intel. These microprocessors could

not survive as general-purpose microprocessors due to low performance. The first general-purpose 8-bit

microprocessor 8080 was developed in 1974 by Intel. The microprocessor 8085 followed 8080 and had

some additional features. The limitations of 8-bit microprocessors are low operating speed, limited memory-

addressing capability, less number of general-purpose registers and less number of instructions. To overcome

all limitations of the 8085 microprocessor, computer scientists and designers worked towards developing

more powerful processors in terms of architecture, operating speed, memory, and instruction set. As a result,

the 16-bit microprocessor 8086 was developed in 1978.

Fig. 1.3 Architecture of a microcomputer

Microprocessors and Microcontrollers1.6

 Thereafter, in 1982, the 80186 processor was designed with few more instructions and additional on-chip

circuits such as clock generators, timers, DMA controller and interrupt controller, but its addressing capabil-

ity is the same as the 8086 microprocessor. But due to the need of large memory in advanced applications,

processor designers put efforts in designing advanced microprocessors. The 80286 microprocessor is the first

advanced microprocessor with proper memory management and protection abilities. It was developed by

Intel in 1982 and it has an address capability 16 Mbyte and an operating frequency of 12.5 MHz.

 The semiconductor technology could support the fabrication of a CPU with a 32-bit word size and higher

operating frequency. Hence, the 32-bit processor 80386 was developed. The first 32-bit processor is 80386.

The numerical processor 80387 is compatible with 80386. In 1989, the 80486 was developed by Intel which

combines all the features of 80386 after incorporating a math processor 80387 inside the processor.

 After the 80486 microprocessor, the Pentium family of processors was developed. The name Pentium was

derived from the Greek pente, meaning ‘five’, and the Latin ending -ium. The term ‘Pentium processor’ refers

to a family of microprocessors that share a common architecture and instruction set. The original Pentium

processor was a 32-bit microprocessor produced by Intel. The first Pentium processors, P5, were developed

in 1993. The P5 processor operates at a clock frequency of either 60 MHz or 66 MHz. This processor has 3.1

million transistors. The next version of the Pentium processor family, the P54C processor, was introduced in

1994.

 In 1996, the Pentium MMX was introduced with the same basic microarchitecture with MMX instructions,

and larger caches. The P55C (or 80503) Pentium MMX was introduced by Intel in October 1996 and it was

based on the P5 core. It featured a new set of 57 “MMX” instructions intended to improve performance on

multimedia tasks.

 The Pentium Pro is a sixth-generation x86 microprocessor developed and introduced by Intel in November

1995. It was based on the P6 microarchitecture. While the Pentium and Pentium MMX had 3.1 and 4.5 mil-

lion transistors respectively, the Pentium Pro contained 5.5 million transistors.

 The Pentium II processors refer to Intel’s sixth-generation microarchitecture called ‘Intel P6’ introduced

in May 1997. This processor consists of 7.5 million transistors. The Pentium II was an improved version of

the first P6-generation core of the Pentium Pro CPUs, which contained about 5.5 million transistors. In early

1999, the Pentium II was superseded by the Pentium III.

 The Pentium III processors based on the sixth-generation Intel P6 microarchitecture were introduced in

February 1999. These processors were very similar to the earlier Pentium II-microprocessors with the addi-

tion of the SSE instruction set to accelerate floating point and parallel calculations. The first Pentium III vari-

ant was the Katmai, Intel 80525. It was first released at speeds of 450 and 500 MHz. Two more versions were

released: 550 MHz on May 1999 and 600 MHz on August 1999. It was built on a 0.18-μm process. Pentium

III Coppermines running at 500 to 733 MHz were first released on October 1999. From December 1999 to

May 2000, Intel released Pentium IIIs running at speeds of 750, to 1000 MHz (1 GHz). The third revision,

Tualatin (80530), was a trial for Intel’s new 0.13-μm process. Pentium III Tualatins were introduced during

2001 and these processors can operate at speeds of 1.0 to 1.4 GHz. Tualatin performed quite well, especially

in variations which had a 512 kB L2 cache.

 The Pentium III was eventually superseded by the Pentium 4. The Pentium 4 brand refers to Intel’s line

of single-core mainstream desktop and laptop central processing units developed in November 2000. This

processor had the 7th-generation microarchitecture, called NetBurst. The original Pentium 4, codenamed

‘Willamette’, ran at 1.4 and 1.5 GHz and was released in November 2000 on the Socket 423 platform. In

2004, the initial 32-bit x86 instruction set of the Pentium 4 microprocessors was extended by the 64-bit

x86-64 set. Pentium 4 CPUs introduced the SSE2 and, in later versions, SSE3 instruction sets to accelerate

1.7Introduction to Microprocessors and Microcontrollers

calculations, transactions, media processing, 3D graphics, and games. In 2005, the Pentium 4 was comple-

mented by the Pentium D and Pentium Extreme Edition dual-core CPUs.

 A dual-core processor is a CPU with two separate cores on the same die, each with its own cache. It is

the equivalent of getting two microprocessors in one. The Intel Dual Core Processor is the first Double Core

Technology from Intel. It has better performance than all previous processors in Pentium Series. Max 2.33

GHz is available for model no. T2700. A maximum 2 MB L2 cache is available and a maximum of 667 MHz

speed is available. The AMD Athlon 64 X2 Dual-Core Processor was developed in 2007. This processor can

support SSE, SSE2, SSE3, MMX™, 3D technology and a legacy x86 instructions.

 The Intel Core 2 Extreme Quad-Core Processor QX6000 was introduced by Intel in 2007. This processor is

designed to deliver performance across applications and usages in the Internet, image processing, video con-

tent creation, 3D, CAD, games, speech, multimedia and multitasking user environments. The Intel 64 archi-

tecture enables the processor to execute operating systems and applications written to take advantage of the

Intel 64 architecture. Quad-core processors are available in the FC-LGA6 package with a 2x4 MB L2 cache.

 The Intel Core 2 Duo processor uses architecture to create two cores on a single die or, in other words, there

are two chips. It has better performance than dual-core processors in almost all benchmarking tests. They can

be easily overclocked up to 4.0 GHz with suitable coolers. The Intel Core 2 Duo processor E8000 and E7000

series are 64-bit processors that maintain compatibility with IA-32 software and are based on the Enhanced

Intel Core microarchitecture. These processors use Flip-Chip Land Grid Array (FC-LGA8) package technol-

ogy, and plug into a 775-land surface mount, Land Grid Array (LGA) socket. These processors are based on

a 45-nm process technology. The Intel Core 2 Duo processor E8000 series features a 1333 MHz Front Side

Bus (FSB) and 6 MB of L2 cache. The Intel Core™2 Duo processor E8300 and E7200 were released on April

2008 and the Intel Core 2 Duo processor E7600 was developed in June 2009. These processors are used in

Internet audio and streaming video, image processing, multimedia, and multitasking user environments. The

differences between microprocessors are word length, size of the memory and speed at which the micropro-

cessor can execute instructions. The comparison between difference microprocessors is shown in Table 1.1.

Figure1.4 shows the evolution of processors with respect to year of development and number of transistors

in the processor.

Table 1.1 Comparison of different microprocessors

Microprocessor No. of Data bus/ Address Memory Clock Pin Year of

 Transistors Word bus address frequency development

 length range

4004 2300 4-bit 10-bit 640 B/1 kB 750 kHz 16 1971

8008 3500 8-bit 14-bit 16 kB 0.5 – .8 MHz 18 1972

8080 6000 8-bit 16-bit 64 kB 2 MHz 40 1974

8085 6500 8-bit 16-bit 64 kB 3 – 6 MHz 40 1976

8088 29K 8-bit/16-bit 20-bit 1 MB 5 – 10 MHz 40 1980

8086 29K 16-bit 20-bit 1 MB 5 – 10 MHz 40 1978

80186 29K 16-bit 20-bit 1 MB 5 – 16 MHz 68 1982

80286 134K 16-bit 24-bit 16 MB real 6 – 12.5 MHz 68 1982

 4 GB virtual

80386 275K 32-bit 24/32-bit 4 GB real 20 – 33 MHz 132 1985

 64 TB virtual

80486 3200K 32-bit 32-bit 4 GB real 25 – 100 168 1989

 64 TB virtual MHz
Contd.

Microprocessors and Microcontrollers1.8

Microprocessor No. of Data bus/ Address Memory Clock Pin Year of

 Transistors Word bus address frequency development

 length range

Pentium 3200K 32-bit 32-bit 4 GB real 60 – 200 MHz 264 1993

Pentium Pro 5500K 32-bit 36-bit 64 GB 150 – 200 MHz 387 1995

Pentium II 7500K 32-bit 36-bit 64 GB 233 – 400 MHz 387 1997

Pentium III 9500K 32-bit 36-bit 64 GB 600 – 1000 MHz 387 1999

Pentium 4 55000K 32-bit 36-bit 64 GB 1.3 – 2 GHz 478 2001

Dual-Core 1.72 billion 64-bit 40-bit 1 TB 2.93 GHz 2007

Processor

(Athlon)

Core 2 Duo 410 million 64-bit 40-bit 1 TB 3.16 GHz 775 2008

processor transistors

E8500

Fig. 1.4 Evolution of processors

200,000,000

100,000,000

10,000,000

100,000

10,000

1,000

N
o
.
o
f
T
ra
n
s
is
to
rs

Quad Core

Core 2 Duo
Core 2 Quad

Dual Core Itanium 2

P - 4

P - III

P - II
Pentium Processor

Pentium

80486

80286

80386

80186

8086

8008
8085

8080

4004

1970 1975 1980 1985 1990 1995 2000 2005 2008

Year

1,000,000

Table 1.1 (Contd.)

1.9Introduction to Microprocessors and Microcontrollers

 1.6 MICROPROCESSOR APPLICATIONS

The microprocessor started as a 4-bit device. It has progressed to an 8-bit, a 16-bit, a 32-bit and now a 64-bit

device. A microprocessor with a longer word length will solve more problems faster. Therefore, a longer

word length should give a better and faster solution to all problems. However, the consideration of product

cost is important and it has been increased by the number of data bits. The applications of microprocessors

are given below:

Robots, remote-controlled cars, and hand held games.

Microwave ovens, telephone diallers, smart thermostats, shortwave scanners, and TV

remote controls.

VCR control and programming, security systems, and lighting system

controllers

Video display, higher-speed printers, modems, plotters, and communication controllers.

Robotics, processing control, sequence control, and machine tool control.

Logic analysers, communication analysers, disk drive testers, digital oscilloscopes, and smart

voltmeters.

Data, voice, mobile, electronic switching, and routing.

Automatic test equipment at all levels from development, fabrication, component

testing assembly, PCB, module and system testing.

Data acquisition, logging, protection, metering, control and processing, automatic

control of generators voltage and fuel control of furnaces in a power plant.

Instrumentation, monitoring and control, data acquisition, logging and processing.

Cooking ovens, and washing machines.

Quick patient check up, diagnosis, blood analysis, ECG, etc.

Word processing, database management, and storing information.

 1.7 EVOLUTION OF MICROCONTROLLERS

A microcontroller is a small computer on a single Integrated Circuit (IC) containing a processor, memory, and

programmable input/output ports. The program memory, in the form of flash or ROM, is also incorporated on

a chip and a small amount of RAM is also included on a single chip. Microcontrollers are specially designed

for embedded applications.

 After the innovation of 8080 microprocessors in 1975, Intel Corporation started research on developing an

IC which could be used as a microprocessor and should have on-chip data storage. Consequently, Intel devel-

oped the first dedicated microcontroller (MCU) chip 8048 IC in 1976. The 8048 IC, was known as MCS-48

microcontroller and it had only 1-byte instructions.

 In 1980, Intel had developed an 8-bit microcontroller named the 8051 microcontroller. It had 128 bytes

of RAM, 4 K bytes of on-chip ROM, two timers, four parallel ports with each port 8-bits wide and a serial

port. This microcontroller had 2-byte instructions. Thereafter, the 8052 microcontroller was developed. This

Microprocessors and Microcontrollers1.10

microcontroller had all the standard features of 8051 with an extra 128 bytes of RAM, 4K bytes of ROM

and an extra timer. Therefore 8052 had 256 bytes of RAM, 8 K bytes of ROM and three timers. The 8031

microcontroller is also a member of the 8051 family. This microcontroller has all features of 8051 microcon-

troller except 0 K bytes on-chip ROM. Table 1.2 shows the salient features of 8051, 8052, 8031 and 8032

microcontrollers.

Table 1.2 Comparative studies of salient features of 8051, 8052, 8031 and 8032 microcontrollers

Microcontroller ROM RAM No. No. No. No. of Full

IC (on-chip (on chip of of pins of I/O vector duplex

 program data timers in DIP pins interrupts serial I/O

 memory) memory) port

8051 4K bytes 128 bytes 2 40 32 5 1

8052 8K bytes 256 bytes 3 40 32 6 1

8031 0K bytes 128 bytes 2 40 32 5 1

8032 0K bytes 256 bytes 3 40 32 6 1

The 8051 microcontroller was developed by incorporating different types of memory such as UV-EPROM,

NV-RAM and flash. The UV-EPROM version of the 8051 microcontroller is called the 8751 microcon-

troller family. The NV-RAM version of the 8051 microcontroller was called DS500 and it was manufactured

by Dalas semiconductor. The flash ROM version is known as AT89C51 family microcontroller, and it is

manufactured by Atmel corporation. This microcontroller is called Amtel family microcontroller. The Atmel

microcontroller family such as AT89CXX, AT89CXX51 are most widely used in industry. The AT 89C51 has

4K bytes of flash ROM and it is extensively used in development of small projects. The most popular Atmel

microcontrollers are AT89C51, AT89C52, AT89C1051, AT89C2051, AT89C4051, and AT89LV52 and their

features are given in Table 1.3.

Table 1.3 Comparative studies of salient features of AT89C51, AT89C52, AT89C1051, AT89C2051, AT89C4051,
and AT89LV52 microcontrollers

Microcontroller Flash (on- RAM (on- No. of No. of No. No. of Full duplex VCC

IC chip program chip data timers pins in of I/O interrupts serial I/O

 memory) memory) DIP pins port

AT89C51 4K bytes 128 bytes 2 40 32 6 1 5 V

AT89C52 8K bytes 256 bytes 3 40 32 6 1 5 V

AT89C1051 1K bytes 64 bytes 1 20 15 3 1 3 V

AT89C2051 2K bytes 128 bytes 2 20 15 6 1 3 V

AT89C4051 4K bytes 128 bytes 2 20 15 6 1 3 V

AT89LV52 8K bytes 256 bytes 3 40 32 8 1 3 V

 1.8 ADVANTAGES AND DISADVANTAGES OF MICROCONTROLLERS

Advantages The advantages of microcontrollers are as follows:

Microcontrollers are special types of processor chips that are very small and somewhat flexible,

due to their programmable nature.

1.11Introduction to Microprocessors and Microcontrollers

Since microcontrollers are fully integrated inside the processor, i.e., a “computer

on a chip,” these devices operate at faster speeds to execute instructions compared to general purpose

microprocessors.

As microcontrollers are fully integrated onto one chip, these devices are cheap to manufacture.

Usually, microcontrollers have much lower specifications than low-power consumer-grade general-purpose

microprocessors, making them even easier to mass produce.

Once microcontrollers are programmed, typically they cannot be reprogrammed, if microcontrollers

are controlled by Read-Only Memory (ROM) only rather than Random Access Memory (RAM) .

Many tasks can be performed by microcontrollers repetitively and human efforts can be saved.

The programmable nature of these devices also allows manufacturing robots to reproduce these motions very

quickly and consistently, increasing productivity.

Disadvantages The advantages of microcontrollers are as follows:

Microcontrollers have more complex architecture than microprocessors. Therefore,

understanding their functionality is quite difficult.

Due to complexity of the circuit board, the development time of a microcontroller

increases and cost increases.

 1.9 APPLICATIONS OF MICROCONTROLLERS

Nowadays microcontrollers are most commonly used in industrial and household applications. The major

areas of applications are as follows:

 Measurement of any physical quantity such as pressure, force, velocity, acceleration, displacement,

force, stress, strain, and water level

 Microcontroller-based laboratory instruments to measure voltage, current, phase angle, power factor,

frequency, resistance, power, and energy, etc.

 Robot-arm position control

 Angular speed measurement

 Temperature measurement

 dc motor and stepper motor control

 Induction motor control

 Traffic light control system

 Automobile applications

 Household appliances such as washing machine, light control, camera, TV, VCR and video games,

etc.

 Office equipments such as photocopying machines, telephones, fax machines, printers, and security

system, etc.

 1.1 List the components of a microprocessor and microcomputer.

 1.2 Write the difference between microprocessors and microcomputers.

 1.3 What was the first microprocessor? Which company built that microprocessor?

Microprocessors and Microcontrollers1.12

 1.4 Define SSI, MSI, LSI and VLSI.

 1.5 What is ALU? Explain the following terms: registers, control unit, and input and output devices.

 1.6 Draw the architecture of a microcomputer and explain it briefly.

 1.7 Compare between the following processors:

 (i) 8085 and 8086 (ii) 80286 and 80486 (iii) Pentium II and Pentium 4

 1.8 Give a list of applications of microprocessors.

 1.9 Define microprocessor, microcomputer and microcontroller

 1.10 Write the features of 8051 microcontroller

 1.11 List the components of a microprocessor and microcontroller

 1.12 What are the advantages and disadvantages of microcontrollers?

 1.13 Write the application of microcontrollers.

 1.14 What is the major difference between 8051 and 8052 microcontrollers?

 1.15 What are the advantages of microprocessor based system design?

 1.1 The first microprocessor was

 (a) 4001 (b) 4002 (c) 4003 (d) 4004

 1.2 The 64-bit processor is

 (a) Pentium (b) Pentium II (c) Pentium III (d) Pentium 4

 1.3 The memory capacity of the 8085 microprocessor is

 (a) 64 k (b) 1 MB (c) 16 MB (d) 640 B

 1.4 The address bus 80186 microprocessor is

 (a) 16 bit (b) 20 bit (c) 24 bit (d) 32 bit

 1.5 The operating frequency of the 8086 microprocessor is about

 (a) 750 kHz (b) 3 – 6 MHz (c) 5 – 10 MHz (d) 3 – 6 GHz

 1.6 The first electronic computer was

 (a) ENIAC (b) EDVAC (c) EDSAC (d) Difference Engine

 1.7 Ten thousand and more transistors exist in

 (a) LSI ICs (b) MSI ICs (c) SSI ICs (d) VLSI ICs

 1.8 The memory capacity of a Pentium Pro microprocessor is

 (a) 64 KB (b) 64 MB (c) 64 GB (d) 640 B

 1.9 A microcontroller has

 (a) ROM (b) RAM (c) I/o Ports (d) All of these

 1.10 8051 microcontroller is a ______ processor

 (a) 4-bit (b) 8-bit (c) 16-bit (d) 32-bit

 1.11 The 8052 microcontroller has

 (a) 20 pins for I/o (b) 32 pins for I/o (c) 35 pins for I/o (d) 40 pins for I/o

1.13Introduction to Microprocessors and Microcontrollers

 1.12 8051 microcontroller has _______ bytes on chip program memory.

 (a) 2 K (b) 4 K (c) 8 K (d) 16 K

 1.1 (d) 1.2 (d) 1.3 (a) 1.4 (b)

 1.5 (c) 1.6 (a) 1.7 (a) 1.8 (c)

 1.9 (d) 1.10 (b) 1.11 (b) 1.12 (b)

CHAPTER

2
Architecture of 8085 Microprocessor

 2.1 INTRODUCTION

The computer is a machine that processes data and generates information with speed and accuracy. Electronic,

electromechanical devices and software make this machine. It is a programmable machine. The basic block

diagram of a computer is shown in Fig. 2.1. The computer consists of four basic units, namely, input (I/P),

memory, output (O/P), and central processing unit.

Fig. 2.1 Basic block diagram of a computer

2.1.1 Input Devices

An input device accepts data from the environment, converts it into digital form and sends it to the memory

for storing in the computer. Commonly used input devices are punched cards, paper tapes, magnetic tapes,

floppy disks and magnetic disks. Card readers, paper tape readers, magnetic tape readers, disk drives read

data transmitted by input devices. A keyboard terminal can be used as input to the computer. In optical mark

readers and optical character readers, the input data are scanned by an array of photocells, converted into

machine code and transmitted into the memory of the computer for processing. On identical principles, bar-

code readers read the information prepared in bar-code for application in computers. In a magnetic ink reader,

Microprocessors and Microcontrollers2.2

information written or printed in magnetic ink is read and transmitted directly to the memory for processing.

Electronic mouse, touch screens and light pens are also used as input devices.

2.1.2 Memory

A computer system also has storage areas, often referred to as memory. The memory unit stores the informa-

tion to be processed by the CPU. This information consists of the program as well as data. The memory can

receive data, hold them and deliver them when instructed to do so. The storage available in the memory is also

known as main storage or primary storage. The data can be processed only when it is available in the main

memory, which is finite. It may be increased by adding auxiliary or secondary storage, such as magnetic tapes

or magnetic disks. The information stored in the auxiliary storage can be transferred to the main memory for

processing at a high speed.

Architecture of 8085 Microprocessor 2.3

2.1.3 Output Devices

When a program is executed in a computer, the result will be computed and readily available to display.

The computer needs output devices to display the information for the user. The most commonly used output

devices are monitor screens, printers, graphics plotters, speech and microfilms.

Output Devices

Display Devices
Monitor

Printed Output Devices
Line Printer
Character Printer
Page Printer

Plotter Speech Microfilm

2.1.4 Central Processing Unit

The central processing unit is the brain of the computer. It executes the programmer’s software and control

memory, input and output devices. The program is stored in the memory. The CPU fetches instructions of a

program from the memory sequentially. It fetches one instruction at a time, decodes it and then executes it.

After decoding an instruction, the CPU comes to know what operations are to be performed. It also comes to

know whether the data to be processed are in the memory; general-purpose registers of the microprocessor

or at input/output ports. If data are in the general-purpose registers, the CPU executes the program. The CPU

controls memory, input and output devices to receive, store and send data/result of the program under execu-

tion. Under its control programs, data and results are displayed on the CRT, stored in the memory or printed

by the printer. The major components of a CPU are ALU, timing and control unit and registers as depicted

in Fig. 2.2.

Arithmetic Logic Unit (ALU) The ALU performs the

actual processing of data including addition, subtraction,

multiplication and also division. This unit also performs

certain logical operations such as comparing two numbers to

see whether one is larger than the other or if they are equal.

Arithmetic or logic operation is performed by bringing the

required operands into ALU. Suppose two numbers located

in the main memory are to be added. They are brought into

the arithmetic unit and temporarily stored in registers or

in accumulators associated with this unit where the actual

addition is carried out. The result is placed in one of the

registers and subsequently transferred to the memory.

Control Unit The control unit directs and coordinates all activities of the computer system including the

following:

Fig. 2.2 Block diagram of Central Process-
 ing Unit (CPU)

Microprocessors and Microcontrollers2.4

 Although the control section does not process data, it acts as a central nervous system for the other data-

manipulating components of the computer. At the beginning of the processing, the first program instruction is

selected and fed into the control section from the program storage area. Thus it is interpreted, and from there,

signals are sent to other components to execute the necessary action.

 The central processing unit built on a single IC is called a microprocessor. In a microcomputer, the micro-

processor acts as the central processing unit. Figure 2.3 shows the block diagram of a microcomputer. In this

chapter, the architecture of a microprocessor is explained.

Fig. 2.3 Basic block diagram of a microcomputer

 2.2 ARCHITECTURE OF THE 8085 MICROPROCESSOR

The Intel 8085/8085AH is a microprocessor, i.e., an 8-bit parallel central processing unit implemented in

silicon gate NMOS/HMOS/C-MOS technology. It is available in a 40-pin IC package fabricated on a single

LSI chip. It is designed with higher processing speed from 3 MHz to 5 MHz, comparably lower power con-

sumption and power-down mode, thereby offering a high level of system integration. This processor uses a

multiplexed address/data bus. The address bus is split between the 8-bit address bus and the 8-bit data bus.

The on-chip address latch allows a direct interface with the processor. The features of 8085 microprocessors

are given below:

Features

Architecture of 8085 Microprocessor 2.5

2.2.1 Block Diagram of the 8085 Microprocessor

The functional block diagram of the Intel 8085 is depicted in Fig. 2.4. It consists of three main sections; an

arithmetic and logic unit, timing and control unit and a set of registers. These important sections are described

in the subsequent sections.

Fig. 2.4 Architecture of the 8085 microprocessor

SID SOD

Serial I/O Control

8-Bit Internal Data Bus

Interrupt Control

RST

5.5 6.5 7.5 TRAPINTR INTA

Accumulator
Temporary
Register

Flag
Flip-Flops

Arithmetic
Logic Unit

ALU

Instruction
Register

Instruction
Decoder

B

D

H

C

E

L

Stack Pointer

Program Counter

Incrementer/Decrementer
Address Latch

Register
Array

Address Buffer
Data/Address

Buffer

A –A

Address Bus
15 8 AD AD

Address/Data Bus
7 0–

X1

X2

Power Down Timing and Control

Control Status DMA Reset

CLK
OUT

READY RD WR ALE S0 S1 IO/M HOLDHLDA RESET IN RESET OUT

Clock
Generator

2.2.2 Operation of the 8085 Microprocessor

Generally, microprocessor performs four different operations: memory read, memory write, input/output

read and input/output write. In memory read, operation data will be read from memory and in memory write,

devices are I/O write operation.

 The memory read/write and input/output read and write operations are performed as part of communica-

tion between the microprocessor and memory or input/output devices. The microprocessor communicates

with the memory, I/O devices through address bus, data bus and control bus as depicted in Fig. 2.5. For this

Microprocessors and Microcontrollers2.6

communication, firstly the microprocessor identifies the peripheral devices by proper addressing. Then it

sends data and provides control signal for synchronisation.

memory location is identified. Thereafter, the microprocessor sends MEMR control signal which enables the

memory IC. After that, the content of memory location is placed on the data bus and also sent to the micro-

processor. Figure 2.7 shows the data flow diagram for data transfer from the memory to the microprocessor.

The step-by-step procedure of data flow is given below:

specified memory location.

RD send signal in the next clock cycle and the memory IC

is enabled. RD is active for two clock periods.

7

0. After that, data is transferred to the microprocessor.

2.2.3 Arithmetic Logic Unit (ALU)

 All arithmetic and logical operations are performed in the Arithmetic Logic Unit (ALU). The functioning of

the ALU are given in Fig. 2.8. The ALU functioning consists of Accumulator (A), Temporary Register (TR),

Flag Register (FR) and arithmetic logic unit. The temporary register is not accessible to the user. Therefore,

the user cannot read the content of TR. Actually, this register is used to store or load the operand during

arithmetic and logical operations. Accumulator, TR and flag registers are explained in Section 2.1 in detail.

The ALU always operates with one or two operands. Generally, operands are available in general-purpose

Fig. 2.5 Bus structure of the 8085 microprocessor

Architecture of 8085 Microprocessor 2.7

Fig. 2.6 Memory read operation

Fig. 2.7 Data flow from memory to microprocessor

Microprocessors and Microcontrollers2.8

registers or memory locations. The result after arithmetic and logical operations are stored in accumulator.

The sequence of operations in ALU are given below:

 (i) One operand is in the A register.

 (ii) The other operand may be in the general-purpose register or memory location, which will be trans-

ferred to the temporary register.

 (iii) Then content of accumulator and temporary register are considered as inputs of ALU and the speci-

fied operation is carried out in the ALU.

 (iv) The result of ALU operation is transferred in the A register through the internal data bus.

 (v) The content of the flag register will be changed depending on the result.

The arithmetic logic unit (ALU) performs the following operations:

2.2.4 Timing and Control Unit

The control unit controls the operations of different units with the CPU. This unit generates timing sequence

signals for the execution of instructions. This unit controls the data flow between CPU and memory and CPU

Fig. 2.8 ALU functioning

Architecture of 8085 Microprocessor 2.9

the timing and control unit acts as the brain of the microprocessor.

2.2.5 Registers

There is an accumulator register and one flag register. The accumulator is an 8-bit register. Arithmetic and

logical operations are performed in the accumulator, and after operation, the result is stored in the accumula-

Program Counter (PC). The following registers of the Intel 8085 microprocessor are depicted in Fig. 2.4.

Accumulator The accumulator is an 8-bit register, which is part of the Arithmetic Logic Unit (ALU).

This is identified as register A or ACC. It is used to store 8-bit data and to perform arithmetic as well as logic

operations. The final result of an operation performed in the ALU is also stored in the accumulator.

General-Purpose Registers

registers is known as a register pair. The only possible combination register pairs of the 8085 microprocessor

form a register pair by selecting any two registers of

execution of the program, all general-purpose registers

can be accessed by program instructions and also used

for data manipulation.

Special-Purpose Registers In addition to

the above general-purpose registers, the 8085

microprocessor has special-purpose registers, namely,

Program Counter (PC), Stack Pointer (SP), Flags/Status

Registers (SR), Instruction Register (IR), Memory

Address Register (MAR), Temporary Register (TR),

Fig. 2.9 Registers of the 8085 microprocessor

General Purpose
Register

Control Registers

Stack Pointer

Program Counter

Decrementer

Incrementer/

Address Latch

B C

D E

H L

Microprocessors and Microcontrollers2.10

memory address of the next instruction, which will be executed. Actually, this register keeps the track of

memory locations of the instructions during execution of a program. The microprocessor uses this register to

execute instructions in sequence. For this, the microprocessor increments the content of the program counter.

the stack. The stack is a sequence of memory locations in the R/W memory. The starting of the stack is

and retrieve the contents of the accumulator, flags, program counter as well as general-purpose registers

during the execution of a program. The organisation and applications of stacks are incorporated in Chapter 4.

The ALU includes five flip-flops, which are set or reset after an ALU operation

according to data conditions of the result in the accumulator and other general-purpose registers. The status

of each flip-flop is known as flag. Therefore, there are five flags, namely, Carry flag (CY), Parity flag (P), and

Auxiliary Carry flag (AC), Zero flag (Z), and Sign (S) flags. The most commonly used flags are Carry (CY),

Zero (Z) and Sign (S). Generally, the microprocessor uses these flags to test data conditions.

 For example, after addition of two 8-bit numbers, if the sum in the accumulator is larger than eight bits, the

flip-flop, which is used to indicate a carry, is set to one. So the Carry flag (CY) is set to 1. If the result is zero

after any arithmetic operation, the Zero (Z) flag is set to one.

 Figure 2.10 shows an 8-bit register, which indicates bit positions of different flags. This register is known

as flag register and it is adjacent to the accumulator. Though it is an eight bit register, only five bit positions

out of eight are used to store the outputs of the five flip-flops. The flags are stored in the 8-bit register so that

the programmer can check these flags through an instruction. These flags are used in the decision-making

process of the microprocessor.

Fig. 2.10 Flag register

S Z × ×

× – Don't Care

×AC P CY

D7 D6 D5 D4 D3 D2 D1 D0
Bit Position

S – Sign Flag

Z – Zero Flag

AC – Auxiliary Carry Flag

P – Parity Flag

CS – Carry Flag

(a) Carry Flag (CY) The arithmetic operation generates a carry in case of addition or a borrow in case

of subtraction after execution of an arithmetic instruction and the Carry Flag (CY) is set to 1. When the two

8-bit numbers are added and the sum is larger than 8 bits, a carry is produced and the Carry Flag (CY) is set

0 as depicted in Fig. 2.10.

(b) Parity Flag (P) After an arithmetic or logical operation, if the number of 1s in the result is even (even

parity), this parity status flag (P) is set, and if the number of 1s is odd (odd parity), this flag is reset. For

example, if the data byte is 1 1 1 1 1 1 1 1, the number of 1s in the data byte is eight (even parity) and the

2 as shown in Fig. 2.10.

(c) Auxiliary Carry Flag (AC) 3 and

Architecture of 8085 Microprocessor 2.11

4

4 as given in Fig. 2.10.

(d) Zero Flag (Z) When an 8-bit ALU operation results in zero, the Zero (Z) flag is set; otherwise it is

reset. This flag is affected by the results of accumulator and general purpose registers.

(e) Sign Flag (S) The sign flag has its importance only when signed arithmetic operation is performed. In

7 is used to indicate a sign, this flag is set to indicate the

sign of a number.

 The most significant bit of an 8-bit data is the sign bit. When a number is negative, the sign bit is 1. If the

number is positive, the sign bit is 0. For an 8-bit signed operation, the remaining 7 bits are used to represent

-

7 as depicted in Fig. 2.10.

(f) PSW 7 4 2 0 5 3 1

are undefined. The combination of these 8-bits is known as Program Status Word (PSW). The PSW and the

The instruction register holds the operation code (opcode) of the current instruction

of a program during an arithmetic/logical operation. The instruction is fetched from memory prior to

execution. The decoder takes instruction and decodes the instruction. The decoded instruction is then passed

to the next stage for execution.

The Memory Address Register (MAR) holds the address of the next

program instruction. Then MAR feeds the address bus with addresses of the memory location of the program

instruction which will be executed.

This is an 8-bit register, which is associated with the ALU. This register holds data

during arithmetic and logical operation. This register can be used by the microprocessor but this is not

accessible to a programmer.

2.2.6 System Bus: Address Bus, Data and Control Bus

The system bus is collection of wires, which are used to transfer binary numbers, one bit per wire. The 8085

microprocessor communicates with memory and input and output devices using three buses, namely, address

bus, data bus and control bus as depicted in Fig. 2.11.

Fig. 2.11 Microprocessor and its buses

Microprocessors and Microcontrollers2.12

Address Bus

 different

location contains 1 byte of data. The address bus is unidirectional which means numbers are only sent from

bits of the address A15 8 7 0. A7 0 is multiplexed

0 7

and the timing diagram is depicted in Fig. 2.13.

Data Bus The data bus as 8-bit data is stored in each memory location. The data bus is used to move or

transfer data in binary form. The data is transferred between the microprocessor and external devices. In

Fig. 2.12 Multiplexing of lower-order address bus

D Q

D Q

D Q

D Q

D Q

D Q

D Q

D Q

A7

A6

A5

A4

A3

A2

A1

A0

D7

D6

D5

D4

D3

D2

D1

D0

Data
Bus

Lower-Order
Address Bus

Higher-Order
Address Bus

74LS373

8085
Microprocessor

Higher-Order Address Bus
A15

A8

ALE

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

Architecture of 8085 Microprocessor 2.13

the 8085 microprocessor, the data size is 8 bits. Consequently, the data bus typically consists of 8 wires.

Therefore, there are 28 combinations of binary digits. The data bus is used to transmit ‘data’, i.e., information,

results of arithmetic, etc., between memory and the microprocessor. This bus is bi-directional. The size of the

data bus determines what arithmetic can be done. As a data bus is 8 bits wide, the largest number is 11111111

(255 in decimal).

 The address/data bus sends data and address at different instants of time. Therefore, it transmits either

Control Bus The control bus has various lines, which have specific functions for coordinating and

controlling microprocessor operations. For example, RD/WR line is a control signal and this is also a single

WR is logically ‘0’, data can be written in memory and any other

the 8085 microprocessor has the following control lines: S0, S1, RD, WR and IO/M. The microprocessor

unidirectional, and partly bi-directional.

Fig. 2.13 Time multiplexing of address bus

Machine Cycle (M)1

T
1

T
2

T
3

T
4

A –A8 15

AD –AD0 7

ALE

RD

D D0 7–PC LowerL

Lower Order
Address A A0 7–

PC (Higher-Order Address Bus)H

Clock

Microprocessors and Microcontrollers2.14

 2.3 PIN DIAGRAM OF THE 8085 MICROPROCESSOR

Figure 2.14 shows the schematic diagram of Intel 8085. The PIN diagram of the 8085 microprocessor is

illustrated in Fig. 2.15. The descriptions of various pins are as follows:

A15 –A8 (Output, 3-state) These are address buses. These are used for the most significant 8-bits of the

memory address or 8-bits of I/O address, 3-stated during Hold and Halt modes and during RESET.

AD7 –AD0 (Input/Output, 3-state)

purpose. These are used for the least significant 8 bits of the memory address or I/O during the first clock

cycle (T state) of a machine cycle. After that, it becomes the data bus during the second and third clock cycles.

address is changed after the first clock cycle. Actually, this address is latched and used for identifying the

7 0 is used to identify the memory location. Figure 2.12 shows the address bus

A15 to A0 after the latching operation. When the ALE signal is low, the data is latched till the next ALE signal.

The output of the latch represents the low-order address bus A7 0. If ALE is high, the latch is transparent,

which means that the output changes according to input data.

ALE (Output) Address Latch Enable

state of a machine cycle, it becomes high and enables the address to get latched either into the memory

or external latch. The falling edge of ALE is set to guarantee set-up, and can hold times for the address

information. The falling edge ALE can also be used to strobe the status information.

S0 , S1, IO/ M (Output) These are machine cycle status signals sent by the microprocessor to distinguish

the various types of operation given in Table 2.1. IO/M, S0 and S1 become valid at the beginning of a

machine cycle and remain stable throughout the cycle. IO/M signals differentiate whether the address is

M becomes high, I/O operation is performed. It is low for

memory operations. When this signal is combined with RD and WR, this signal transfers the CPU data into

I/O or memory devices.

 Table 2.1 (a) Status codes and states of 8085

 Machine cycle status States

 IO/M S1 S0

 0 0 1 Memory write

 0 1 0 Memory read

 1 0 1 I/O write

 1 1 0 I/O read

 0 1 1 Opcode fetch

 Table 2.1 (b) Status codes and states of 8085

 Machine cycle status States

 IO/M S1 S0

 1 1 1 Interrupt

 Acknowledge

 * 0 0 Halt

 * x x Hold

 * x x Reset

*High impedance state, x — Unspecified

Architecture of 8085 Microprocessor 2.15

RD (Output, 3-state) Read Memory or I/O

Devices RD is

low level, the selected memory or I/O device to be read

which is available in the data bus for the data transfer.

It has 3 states during Hold and Halt modes and during

RESET.

WR (Output, 3-state) Write Memory or I/O

Devices The WR signal is used for WRITE control

operation. The low level on WR indicates the data on the

location. It has 3 states during Hold and Halt modes and

during RESET.

control signals by combining RD, WR and IO/M sig-

nals. The signal IO/M is low for any memory-related

operation. The IO/M RD, WR

signals and generates memory read MEMR and memory

write MEMW control signals. If IO/M becomes high,

then input/output peripheral operations are carried out.

Fig. 2.14 The schematic diagram of Intel 8085

Higher-Order
Address Bus

Lower-Order
Address/Data Bus

RESET IN

RESET OUT

CLK (Out)

SID

SOD

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

READY

HOLD

HLDA

ALE

RD

WR

IO/W

S1

S0

8085

x1

x0

A15

A8

AD7

AD0

Fig. 2.15 Pin diagram of Intel 8085

Microprocessors and Microcontrollers2.16

RD, WR signals and generate I/O read and I/O write

control signals for any I/O related operation.

READY (Input)

Fig. 2.16 Generation of Memory and I/O Read/Write control signals

HOLD (Input)

After receiving the hold request, the CPU will relinquish the use of the bus as soon as the completion of the

current bus cycle.

HLDA (Output)

INTR (Input) INTR is the INTERRUPT REQUEST signal. It is used as general purpose interrupt. Among

interrupts, it has the lowest priority. It is sampled only during the next-to-last clock cycle of an instruction.

If it is active, the Program Counter (PC) will be inhibited from incrementing and an Interrupt Acknowledge

cycle, a RESTART or CALL instruction can be inserted to jump to the interrupt service routine. The INTR

can be enabled and disabled by using software. It is disabled by RESET and immediately after an interrupt is

accepted. Generally, an interrupt signal is used by I/O devices to transfer data to the microprocessor without

wasting its time.

INTA (Output) It is an interrupt acknowledge signal. This is used instead of RD during the instruction

Architecture of 8085 Microprocessor 2.17

cycle after an INTR is accepted. This signal is sent by the microprocessor after INTR is received. It can be

used to activate the 8259 interrupt IC.

RST 5.5, RST 6.5, and RST 7.5

inputs have the same timing as INTR except they cause an internal restart to be automatically inserted. The

priority order of these interrupts is given in Table 2.2. These interrupts have a higher priority than INTR.

These are vectored interrupts and during execution, transfer the program to specified memory location.

 Table 2.2 Interrupt priorities and restart address

 Name Priority Address branched to memory location when

 interrupt occurs

 TRAP 1 0024H

 RST 7.5 2 003CH

 RST 5.5 4 002CH

 INTR 5 The address branched depending on the

 instruction provided to the CPU when the

 interrupt is acknowledged

TRAP (Inputs) Trap interrupt is a non-maskable restart interrupt. It has the highest priority of any interrupt

unaffected by any mask or interrupt enable.

RESETIN (Input) Reset in signal resets the program counter to zero and it also resets the Interrupt Enable

address buses and the control lines are 3-stated during RESETIN and because of the asynchronous nature of

RESETIN, the processor’s internal registers and flags may be altered by RESET with unpredictable results.

RESETIN is a Schmitt-triggered input, allowing connection to an R-C network for power-on RESET delay.

The CPU is held in the reset condition as long as RESETIN is applied.

RESET OUT (Output) RESET OUT indicates that the CPU is in reset condition. This can be used as a

system reset. This signal is also synchronised to the processor clock and lasts an integral number of clock

periods.

X1, X2 (Input) 1 2 terminals are connected to a crystal or RC network or LC network to drive the

1 may be an external clock input from a logic gate. The input frequency is divided

network or LC network is applied to the processor, the microprocessor operates in 3 MHz.

CLK (Output)

1 2 input time period.

SID (Input)

whenever a RIM instruction is executed.

SOD (Output)

SIM instruction.

VCC (+ 5 Volt supply) cc

terminal at pin number 40.

Microprocessors and Microcontrollers2.18

GND (Ground Reference)

 2.4 COMPARISON OF 8085 AND 8080A

Table 2.3 shows the comparisons between 8085 and 8080A based on power supply, frequency and chip

count. The 8085 is much simpler than 8080A for generating status information and control signals. The 8085

includes all 72 instructions of the 8080A, but it has two more instructions such as serial I/O and additional

interrupt lines.

Table 2.3 Comparison between 8085 and 8080A

Parameters 8085 8080A

Functional microprocessor One 8085 IC with latch and gates One 8080A, one 8224 and one 8228

Clock pulse One z Two z1 z2

Clock frequency 3 MHz 2 MHz

 address bus is multiplexed with

 data bus

 information are multiplexed

Interrupt Five lines One line

Extra features Serial I/O lines

Status The lines S0, S1 and IO/M Complex procedure to generate

 indicates operation status status information

Instruction set 74 instructions 72 instructions

 Example 2.1

Sol. When 07H and CFH are added, the result is non zero. The Z flag is set to 0. There is a carry from 3rd bit to 4th

five numbers of 1s in the result, the parity flag (P) is set to 0. Figure 2.8 shows the status of different flags after addition

of 07H and CFH.

ADD 07H and CFH

07H = 0 0 0 0 0 1 1 1

CFH = 1 1 0 0 1 1 1 1

1 1 0 1 0 1 1 0

Result is non-zero
Z is set to 0 (Z = 0)

There are five number of 1s
P is set to 0 (P = 0)

Carry from 3rd bit to 4th bit
AC is set to 1 (AC = 1)MSB of the SUM is 1

S is set to 1 (S = 1)

Fig. 2.8 Status of different flags after addition of 07H and CFH

 Example 2.2

Sol. Z flag is set to 0. There is a carry from 3rd

bit to 4th S flag is

Architecture of 8085 Microprocessor 2.19

necessary interconnection. Explain in brief this architecture.

 2.2 List the various registers of 8085 and explain their function.

 2.4 Explain the need of a program counter, stack pointer and status flags in the architecture of Intel 8085

microprocessor.

 2.5 What is the clock frequency of 8085 microprocessor if crystal frequency is 5 MHz?

would be the status of the 8085 flags CY, P, AC, Z, S on completion of this addition?

MEMR, MEMW, IOR, IOW)

for memory and I/O devices in the 8085-microprocessor.

 2.8 Explain the control and status signals of the microprocessor in memory read and write operations.

 (i) ALE (ii) INTR (iii) INTA

 2.10 Explain the functions of following interrupt signal lines of 8085A

0 7.

 2.13 Write the difference between 8085 and 8080 microprocessor.

between microprocessor, memory and I/O devices.

 2.15 An 8085 program subtracts the hex number 23H and FFH and places the result in its accumulator.

ADD CEH and 9BH

CEH = 1 1 0 0 1 1 1 0

9BH = 1 0 0 1 1 0 1 1

1 0 1 1 0 1 0 0 1

Result is non-zero
is set to 0 (= 0)Z Z

There are four number of 1s
is set to 1 (= 1)P P

Carry from 3rd bit to 4th bit
AC is set to 1 (AC = 1)

Carry is generated
CS is set to 1 (CS = 1)

MSB of the SUM is 0
S is set to 0 (S = 0)

Fig. 2.17 Status of different flags after addition of CEH and 9BH

set to 0. As there are four numbers of 1s in the result, the parity flag (P) is set to 1. The carry is generated after

Microprocessors and Microcontrollers2.20

What would be the status of the 8085 flags CY, P, AC, Z, S after completion of this subtraction.

0 7.

 2.20 Mention the purpose of and lines.

 2.1 The microprocessor was introduced in the year

 (a) 1940 (b) 1971 (c) 1973 (d) 1980

 2.2 Which semiconductor technology is used for fabrication of the 8085 microprocessor?

 (a) ECL (b) NMOS (c) NMOS and HMOS (d) NMOS and CMOS

 2.3 Which of the following microprocessors is a 4-bit microprocessor?

 (a) 4004 (b) 8080 (c) 8085 (d) Z80

 2.4 Which of the following microprocessors is an 8-bit microprocessor?

 (a) 4004 (b) 8080 (c) 8085 (d) Z80

 (a) 8-bit data bus (b) 8-bit address bus

 (c) 8-bit control bus (d) 8 interrupt lines

 2.9 A microprocessor performs as

 (a) CPU of a computer (b) memory of a computer

 (c) output device of a computer (d) input device of a computer

 2.10 A microprocessor is an

 2.11 The program counter in a microprocessor

 (a) keeps the address of the next instruction to be fetched

 (b) counts the number of instructions being executed on the microprocessor

 (c) counts the number of programs being executed on the microprocessor

 (d) counts the number of interrupts handled by the microprocessor

 2.12 The number of flags of the 8085 microprocessor is

Architecture of 8085 Microprocessor 2.21

 2.13 The word size of the 8085 microprocessor is

 2.14 The 8085 microprocessor is a

 (a) 40 pin IC (b) 32 pin IC (c) 28 pin IC (d) 24 pin IC

 2.15 The address bus of microprocessor is

 (a) unidirectional (b) bi-directional

 (c) unidirectional as well as bi-directional (d) none of these

 (a) unidirectional (b) bi-directional

 (c) unidirectional as well as bi-directional (d) none of these

 2.17 Flip-flops are used in a microprocessor to indicate.

 (a) Shift register (b) latches (c) country (d) flags

 2.18 For using a microprocessor-based system,

 (a) a program is required

 (b) the program must be stored in memory before the system can be used

 (c) the program need to be stored in memory

 (d) the program is stored in the internal resistors of the microprocessor.

 2.1 (b) 2.2 (b) 2.3 (a) 2.4 (b) (c)

 2.9 (a) 2.10 (c) 2.11 (a) 2.12 (b)

 2.17 (d) 2.18 (b)

CHAPTER

3
Instruction Set of 8085

Microprocessor

 3.1 INTRODUCTION

An instruction is a specified binary pattern, which is placed inside the microprocessor to perform a specific

operation. The instructions of the 8085 microprocessor are classified into five different groups, namely, data

transfer group, arithmetic group, logical group, branch control group, I/O and machine control group. In

this chapter, all types of instruction groups are explained. The instruction set is the collection of all groups

of instructions. Each instruction has two parts: the first part is the task to be performed. This is known as

operation code (opcode). The second part is data to be operated on, called operands. There are various tech-

niques to specify the operand of instructions. These techniques are known as addressing modes. All types of

addressing modes are enlightened in this chapter. Generally, instructions are stored in the memory devices.

Before execution of any instruction, the microprocessor locates the memory location and fetches the opera-

tional code through a data bus. Then the decoder decodes the instruction and performs the specified function.

Therefore, the opcode fetch and its execution are performed in sequence. The sequencing is done by the

control unit of the microprocessor and synchronised with the clock. The timing diagrams of read and write

operation of the memory and other peripheral devices are incorporated in this chapter.

 3.2 ADDRESSING MODES

The instructions are used to copy or transfer data from a source into a destination. The source may be a reg-

ister, memory, an input port, or an 8-bit number (00H to FFH). In the same way, the destination may also be

a register, memory or an output port. The sources and destination of data are known as operands. There are

various formats to specify operands for instructions. The different techniques of specifying data are called the

addressing modes. Generally, the following addressing modes are used in the 8085 microprocessor:

Microprocessors and Microcontrollers3.2

3.2.1 Direct Addressing

In this addressing mode, the address of the operand always exists within the instruction. This mode can be

used to read data from output devices and store it in the accumulator or write the data and content of the

accumulator to the output devices. Examples of direct addressing are illustrated in Table 3.1.

Table 3.1 Direct addressing

 Instruction Task

 OUT 01H Write data in port 01H

 STA 9000H Store the content of accumulator in the memory location 9000H

In the instruction IN 00H, the address of an I/O port is 00H where the data is available. From this location

data is to be read and stored in the accumulator. Similarly, the content of the accumulator can be sent to the

output port address 01H using OUT 01H instruction.

the instruction itself specifies the source of data. After reading data from 8000H, it will be stored in the

accumulator.

3.2.2 Register Addressing

operands. Consequently, data is provided through the registers. In this mode, the accumulator is implied as

with the contents of the accumulator. Most of the instructions using register addressing mode have 8-bit data

though, some instructions deal with 16-bit register pairs. The example is PCHL instruction. Examples of

register addressing are given in Table 3.2.

Table 3.2 Register addressing

 Instruction Task

 MOV A,B Move the content of B register to accumulator

 SUB B Subtract the content of B register from accumulator

 PCHL Exchanges the contents of the program counter with the contents of the H and L registers

3.2.3 Register Indirect Addressing

In the register indirect mode, the contents of specified registers are used to specify the address of the operand.

Therefore, in register indirect instructions, the address is not explicitly specified. For example, the instruction

MOV A, M means that move the contents of the content of the memory location whose address is stored in

-

tion, load the accumulator with the byte of data that is specified by the address in the B and C register pair.

register indirect addressing.

Instruction Set of 8085 Microprocessor 3.3

Table 3.3 Register indirect addressing

 Instruction Task

 MOV A, M Move the content of the memory location whose address is given in H and L

 registers in accumulator

 MOV M, B Move the content of the accumulator in the memory location whose address

 is given in H and L registers

 and L registers and the content of accumulator

3.2.4 Immediate Addressing

In immediate addressing mode, the operand or data is present within the instruction. Load the immediate data

to the destination which is given in the instruction. Examples of direct addressing are depicted in Table 3.4.

Table 3.4 Immediate addressing

 Instruction Task

 CPI B Compare the contents of the accumulator with the content of B register

The immediate instructions use the accumulator as an implied operand. The MVI (move immediate) instruc-

data 8050H.

3.2.5 Implicit Addressing

The addressing mode of certain instructions can be implied by the instruction’s function. Actually, these

instructions work on the content of the accumulator and there is no need of the address of the operand.

Examples of implicit addressing are given in Table 3.5.

Table 3.5 Implicit addressing

 Instruction Task

 CMA Complement the content of accumulator

 STC Set carry flag

 3.3 INSTRUCTION SET

An instruction is a command applied to the microprocessor to perform a specific function. The instruction set

Microprocessors and Microcontrollers3.4

of a microprocessor means the entire group of instructions. Generally, instructions have been classified into

the following five functional groups.

3.3.1 Data Transfer Group

The data transfer instructions copy data from a source to a destination without modifying the contents of the

source. The term ‘data transfer’ has been used for copying data. The data transfer can be possible between

registers or between memories or between memory and registers or between I/O ports and the accumulator.

The various types of data transfer are shown in Table 3.6.

Table 3.6 Types of data transfer

 Types Examples

 Load specific data byte to a register or a Load register B with the specific data byte FFH

 memory location

 Between a memory location and a register Move data from a memory location 9000H to register B

 Between an I/O device and the accumulator Move data from an input port to the accumulator

Examples

 MOV Move

 MVI Move immediate

 STA Store accumulator directly in memory

register pair.

3.3.2 Arithmetic Group

The arithmetic instructions perform arithmetic operations such as addition, subtraction, increment, and decre-

ment data in registers or memory.

Instruction Set of 8085 Microprocessor 3.5

Addition The contents of a register or the contents of a memory location or any 8-bit number can be added

to the contents of the accumulator. After addition, the sum is stored in the accumulator.

Subtraction An 8-bit number or the contents of a register or the contents of a memory location can be

subtracted from the contents of the accumulator. After subtraction, the results will be stored in the accumulator.

Increment/Decrement The content of a register or a memory location, 8-bit data can be incremented

be incremented or decremented by 1. The increment and decrement operations can also be performed in a

memory location.

Examples

 ACI Add immediate data to accumulator with carry

 SUB Subtract from accumulator

 SUI Subtract immediate data from accumulator

 SBB Subtract from accumulator with borrow (carry) flag

 SBI Subtract immediate from accumulator with borrow (carry) flag

3.3.3 Logical Group

Compare, and Complement with the contents of the accumulator.

AND, OR, Exclusive-OR The content of a register or content of a memory location or content of any

results must be stored in the accumulator.

Rotate Each bit of the accumulator can be shifted either left or right by one bit.

Compare An 8-bit number or the content of a register or content of a memory location be compared with

the contents of the accumulator to check greater than or equal or less than.

Complement The contents of the accumulator can be complemented. Therefore, all 0s are replaced by 1s

and all 1s are replaced by 0s.

Examples

Microprocessors and Microcontrollers3.6

The compare instructions compare the content of a register, or the content of a memory location or an 8-bit

data with the contents of the accumulator.

 CMP Compare

The rotate instructions shift the contents of the accumulator one bit to the left or right:

Complement and carry flag instructions are

 CMA Complement Accumulator

 CMC Complement Carry Flag

 STC Set Carry Flag

3.3.4 Branch Control Group

This group includes the instruction changes in the sequence of program execution using conditional and

Jump Conditional jump

instructions always test certain conditions such as ‘zero’ or ‘carry flag’ and then change the program execution

sequence once the condition arises. On the other hand, when conditions are not used in the instruction set, the

instruction is called unconditional jump.

Call, Return, and Restart These instructions can also change the sequence of a program execution by

call and unconditional call. Conditional call instructions test all condition flags.

The unconditional branch control instructions are as follows:

 JMP Jump

 CALL Call

Conditional branching instructions always check the status of any one of the four condition flags to decide

the sequence of a program execution. The following conditions may be specified:

 NZ Not Zero (Z = 0)

 Z Zero (Z = 1)

 NC No Carry (C = 0)

 C Carry (C = 1)

 PO Parity Odd (P = 0)

 PE Parity Even (P = 1)

 P Plus (S = 0)

 M Minus (S = 1)

Instruction Set of 8085 Microprocessor 3.7

Thus, the conditional branching instructions are specified as follows:

 Jumps Calls Returns

3.3.5 Stack, I/O and Machine Control Group

These instructions are performed by various functions related with stack and input/output ports and machine

control.

The following instructions are related with the Stack and/or Stack Pointer:

 SPHL Move content of H and L to Stack Pointer

The I/O instructions are given below:

 IN Initiate Input Operation

 OUT Initiate Output Operation

The Machine Control instructions are as follows:

 EI Enable Interrupt System

 HLT Halt

 NOP No Operation

 3.4 INSTRUCTION AND DATA FORMATS

In the Intel 8085 microprocessor, instructions are used to perform specified functions. Each instruction con-

sists of two parts, namely, operation code (opcode) and operand. The opcode states the operation, which will

be performed. Each operation always performed with some data. These data are known as operand.

 Instructions are performed by operations with 8-bit data and 16-bit data. 8-bit data can be obtained from a

register or a memory location or input port. Similarly, 16-bit data may be available from a register pair or two

specifying data for instructions, the machine or binary codes of all instructions are of different length. The

Intel 8085 instructions are classified into the following three groups as given below:

Microprocessors and Microcontrollers3.8

3.4.1 One-Byte Instructions

A one-byte instruction consists of the opcode and operand in the same byte. Operand(s) are internal registers

and are coded into the instruction. Some examples are given here.

 Op Code Operand Binary code Hex code Operations

 MOV B,A 0100 0111 47H Copy the contents of the accumulator in

 the register B

 contents of the accumulator

 SUB B 1001 0000 90H Subtract the contents of the register B to

 the contents of the accumulator

 CMA 0010 1111 2FH Compliment each bit in the accumulator

The above instructions are 1-byte instructions. In the first instruction, MOV B, A both operand registers are

other operand is in accumulator, which is assumed. In the CMA instruction, the accumulator is assumed to

be the implicit operand. These instructions are one byte long and each instruction requires only one memory

location.

3.4.2 Two-Byte Instructions

In a two-byte instruction, the first byte specifies the operation code and the second byte states the operand.

The source operand is an 8-bit data immediately subsequenting the opcode.

 Op Code Operand Binary code Hex code Operations

 MVI B,55H 0100 1111 4FH First byte operation code Load an 8-bit data byte (55H) in the

 0101 0101 55H Second byte data B register.

 1000 0101 85H Second byte data accumulator

 0000 0001 01H Second byte data input port address 01H

 0000 0010 02H Second byte data transfer to port address 02H

The above instructions are 2-byte instructions. This instruction would require two consecutive memory loca-

tions to store in memory.

3.4.3 Three-Byte Instructions

In a three-byte instruction, the first byte specifies the operation code (opcode), and the following two are stands

for the 16-bit address. It may be noted that the second byte will be the low-order address and the third byte

will be the high-order address. These instructions are three-byte instructions, which consist of one opcode and

two data bytes. Therefore, this instruction would require three memory locations to store in memory.

Op Code Operand Binary code Hex code Operations

 0000 0000 00H Second byte data registers pair

 1000 0000 80H Third byte data

Instruction Set of 8085 Microprocessor 3.9

JMP 8085H 1100 0011 C3H First byte operation code Jump to the memory location 8085H

 1000 0101 85H Second byte data

 1000 0000 80H Third byte data

 0000 0000 00H Second byte data is copied to the accumulator

 1000 0000 80H Third byte data

3.4.4 Symbols and Abbreviations

The symbols and abbreviations which have been used while explaining Intel 8085 instructions are as follows:

Table 3.7 Symbols and abbreviations of 8085

 Symbol/Abbreviations Meaning

 16-bit address 16-bit address of the memory location

 data 8-bit data

 16-bit data 16-bit data

d s

 A Accumulator

 SP, SPH, SPL SP represents 16-bit stack pointer. SPH is high order 8 bits and SPL low order 8 bits

 of register SP.

 PC, PCH, PCL 16-bit program counter. PCH is high order 8 bits and PCL low order 8 bits of register

 PC.

 PSW Program Status Word

 CS Carry status

 [] The content of the memory location

 ! Move data in the direction of arrow

 + Exchange contents

 /

 0

 5

 - One’s complement

Microprocessors and Microcontrollers3.10

 3.5 8085 INSTRUCTIONS

The 8085 instructions are classified into the following main types as given below:

 Some of Intel 8085 instructions are frequently, some occasionally and some seldom used by the program-

mer. It is not necessary that one should learn all the instructions to understand simple programs. The beginner

Chapter 4. While learning programs the beginner can understand new instructions. The explanations of the

instructions are given below.

3.5.1 Data Transfer Instructions

All data transfer instructions are described below:

MOV Rd, Rs (Move the content of the source register to the destination register)

!

This instruction copies the contents of the source register into the destination register but the contents of the

source register are not altered. For example, the instruction MOV B, C moves the content of register C to

register B. To execute this instruction, 4-clock period are required and flags are not affected.

MOV M, Rs (Move the content of the source register to the memory)

[M]!

The content of the source register moves to the memory location, its location is specified by the contents of

the HL registers. For example, the instruction MOV M, B will move the content B register to the memory

location 8000H if the content of the HL register pair is 8000H.

MOV Rd, M (Move the content of the memory to the destination register)

![M],

The content of memory location moves to a register. For example, the instruction MOV C, M will move the

content of the memory location 8000H to the C register when the content of the HL register pair is 8000H.

MVI Rd, data (Move immediate 8-bit data to the register)

!data,

Machine cycles: 2, States: 7, Flags none, Immediate addressing modes, two-byte instruction

The 8-bit data is stored in the destination register. For example, the instruction MVI B, FFH moves FF to B

register. The code of this instruction is 3E, FF. The 1st byte of the instruction is the opcode and the 2nd byte

of the instruction is the operand, FFH that is to be moved to the register B.

Instruction Set of 8085 Microprocessor 3.11

MVI M, data (Move immediate data to memory)

[M]!data,

Machine cycles: 3, States: 10, Flags: none, immediate addressing, two-byte instruction

The data will be stored in the memory location, which is specified by the contents of the H-L register pair.

Example MVI M, 22H. In this instruction MVI M, 22H, 22H data move to the memory location 8500

H as the content of the H-L register pair is 8500. The opcode for MVI is 36 and 22H is the data. Therefore

instruction code is 36, 22.

LDA 16-bit address (Load Accumulator direct)

A![16-bit Address].

The content of a memory location, specified by a 16-bit address in the operand, is copied to the accumulator

and the contents of the source are not altered.

Example

accumulator. The instruction code is 3A, 00, 90.

LDAX B/D Register pair (Load Accumulator Indirect)

A![BC] or A!

The contents of the selected register pair locate a memory location. This instruction copies the contents of

that memory location into the accumulator. The contents of either the register pair or the memory location are

Example

LXI Register pair, 16-bit data (Load register pair immediate)

! ! !8 LSBs of data.

Machine cycles: 2, States: 10, Flags: none, Immediate Addressing, three byte instructions

\ This instruction loads 16-bit immediate data in the register pair designated in the operand.

Example !90H MSBs

and L !50H LSBs of data.

LHLD 16-bit address (Load H and L registers direct)

L ![address], H![address+1].

Machine cycles: 5, States: 16, Flags: none, direct Addressing: three-byte instructions .

The instruction copies the contents of the memory location located by the 16-bit address into register L and

also copies the content of the next memory location into the register H. The contents of source memory

location 80F0 H into L register and the content of the memory location 80F 1 H is loaded into the H register.

STA 16-bit address (Store accumulator direct)

16-bit Address !A,

Machine cycles: 4, States: 13, Flags: none, direct Addressing, three-byte instructions

The content of the accumulator is stored into the memory location specified by the operand. This is a 3-byte

instruction. The second byte specifies the low-order address and the third byte specifies the high-order

Microprocessors and Microcontrollers3.12

address. Example is STA 9050H. This instruction stores the content of the accumulator in the memory loca-

tion 9050H.

SHLD 16-bit address (Store H and L pair registers direct)

[address]!L, [address +1]![H].

Machine cycles: 5, States: 16, Flags: none, direct addressing, three-byte instructions

The content of L register is stored into the memory location specified by the 16-bit address in the operand

and the content of the H register is also stored into the next memory location by increasing the operand. The

contents of registers HL will not be changed. This is a 3-byte instruction, the second byte specifies the low-

register L in the memory location 8000 H. The content of register H is stored in the memory location 8001 H.

XCHG

H))E

Machine cycles: 1, States: 4, Flags: none, register Addressing.

 Table 3.8 show the 8085 data transfer instruction set summary.

Table 3.8 8085 Data-transfer instructions set summary

Opcode Operand Functions Clock Number

 cycle of bytes Instruction code

MVI M, data Move immediate memory 10 2 0 0 1 1 0 1 1 0

 address

 address

STA 16 bit Load A direct 13 3 0 0 1 1 0 0 1 0

 address

Instruction Set of 8085 Microprocessor 3.13

3.5.2 Arithmetic Instructions

The arithmetic instructions are used to perform arithmetic operations. All arithmetic instructions are explained

below:

ADD R (Add register to accumulator)

A!

The contents of the operand (register) are added to the contents of the accumulator and the result is stored in

ADD M (Add memory to accumulator)

A!A+ [M],

The contents of the memory location specified by the contents of the HL registers are added with the accu-

ADC R (Add register to accumulator with carry)

A!

The contents of the register and the Carry flag are added to the contents of the accumulator and the result is

ADC M (Add register to accumulator with carry)

A!A + M+CS,

The content of the memory location, which is specified by the contents of the H-L register pair and the carry

flag are added to the contents of the accumulator. The result is stored in the accumulator. All flags are effected

ADI 8-bit data (Add immediate 8-bit data to accumulator)

A!A + data,

Machine cycles: 2, States: 7, Flags : all, immediate addressing, Two-byte instruction

The 8-bit immediate data is added to the content of the accumulator and the result is stored in the accumula-

data, 78H can be added with the content of accumulator.

ACI 8-bit data (Add immediate 8-bit data to accumulator with carry)

A!A + data + CS,

Machine cycles: 2, States: 7, Flags : all, immediate addressing, Two byte instruction

The 8-bit data and the Carry flag are added with the contents of the accumulator and the result is stored in

the accumulator. All flags are modified to reflect the result of the addition. For example, the instruction is

ACI 80H.

DAD Register pair (Add register pair to H and L registers)

!

Machine cycles: 3, States: 10, Flags. CS, register Addressing, one byte instruction

Microprocessors and Microcontrollers3.14

The 16-bit contents of the specified register pair can be added to the contents of the H-L register pair and the

sum is stored in the H and L registers. The contents of the source register pair cannot be modified. When the

H-L register pair

SUB R (Subtract register from accumulator)

A!

accumulator. For example, SUB C.

SUB M (Subtract memory from accumulator)

A!

The contents of the memory are subtracted from the contents of the accumulator and the result is placed in

modified to reflect the result. For example, SBB M.

SBB R (Subtract register from accumulator with borrow)

A!

Machine cycles: 2, States: 4, Flags all, register addressing, one-byte instructions

The contents of the register and the borrow flag are subtracted from the contents of the accumulator and the

result is placed in the accumulator. All flags are modified to reflect the result of the subtraction. For example,

SBB B.

SBB M (Subtract memory and borrow from accumulator)

A!

Machine cycles: 2, States: 7, Flags : all, register indirect addressing, one-byte instructions

the accumulator. The result is placed in the accumulator. For example, SBB M.

SUI 8-bit data (Subtract immediate 8-bit data from accumulator)

A!

Machine cycles: 2, States: 7, Flags: all, immediate addressing, two-byte instructions.

The 8-bit data is subtracted from the contents of the accumulator and the result is stored in the accumulator.

All flags are affected to reflect the result of the subtraction. For example, SUI 34H. This instruction will sub-

tract 34 from the content of the accumulator and store the result in the accumulator.

SBI 8-bit data (Subtract immediate 8 bit data from accumulator with borrow)

A!

Machine cycles: 2, States: 7, Flags: all, immediate addressing, two-byte instructions.

The 8-bit data and the borrow flag is subtracted from the contents of the accumulator and the result is stored

in the accumulator. All flags are affected to reflect the result of the subtraction. For example, SBI 34H. This

instruction will subtract 34 and the borrow flag from the content of the accumulator and store the result in

the accumulator.

Instruction Set of 8085 Microprocessor 3.15

INR R (Increment register by 1)

!

The contents of the selected register are incremented by 1 and the result is stored in the same register. All

INR M (Increment memory by 1)

[M]![M] +1

The content of the memory location addressing by H and L registers is incremented by one. In this instruction

INX RP (Increment register pair)

!

The content of the specified register pair is incremented by one and result will be stored in the same register

DCR R

!

Machine cycles: 1, States: 4, Flags: all flags except carry flag, register addressing, one-byte instruction

The contents of the selected register are decremented by 1 and the result is stored in the same place. All flags

DCR M

[M]!

DCX RP

!

The contents of the specified register pair are decremented by 1 and the result is stored in the same place. For

DAA

Machine cycles: 1, States: 4, Flags: all, one byte instruction

-

conversion procedure is as follows:

When the value of the low-order 4-bits in the accumulator is greater than 9 or AC flag is set, the instruction

adds 6 to the low-order four bits. If the value of the high-order 4-bits in the accumulator is greater than 9 or

the Carry flag is set, this instruction adds 6 to the high-order four bits. In this instruction S, Z, AC, P, CY flags

 Table 3.9 shows the 8085 Arithmetic Instruction Set Summary.

Microprocessors and Microcontrollers3.16

Table 3.9 8085 arithmetic instruction set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

ACI 8-bit data Add immediate to A with carry 7 2 1 1 0 0 1 1 1 0

SUB M Subtract memory from A 7 1 1 0 0 1 0 1 1 0

SBB M Subtract memory from A with borrow 7 1 1 0 0 1 1 1 1 0

SUI 8-bit data Subtract immediate from A 7 2 1 1 0 1 0 1 1 0

SBI 8-bit data Subtract immediate from A with borrow 7 2 1 1 0 1 1 1 1 0

3.5.3 Logical Instructions

register or memory. All logical instructions are discussed in this section.

CMP R (Compare register with accumulator)

The contents of the register are compared with the contents of the accumulator. Both contents are conserved.

The result of the comparison can be reflected by setting the flags in PSW. When A < register, carry flag is

set. If A = register, zero flag is set. While A > register, carry and zero flags are reset. For example, CMP B.

Instruction Set of 8085 Microprocessor 3.17

CMP M (Compare memory with accumulator)

and status flags are set according to the result of the comparison. The content of the accumulator remains

uncharged. For example, CMP M.

CPI 8 - bit data (Compare immediate 8 bit data with accumulator)

Machine cycles: 2, States: 7, Flags: all, immediate addressing, Two-byte instructions

The second byte of the instruction or 8-bit data is compared with the contents of the accumulator. The values

being compared remain unchanged. The result of the comparison will be reflected by setting the flags of the

PSW. If A < 8-bit data, carry flag is set. If A = data, zero flag is set. When A > 8-bit data, carry and zero flags

are reset. For example, the instruction is CPI 46H.

ANA R

A!A/

in the accumulator. All flags are modified to reflect the result of the operation. CY is reset and AC is set. For

example, ANA B.

ANA M

A!A/[M].

Machine cycles: 2, States: 7, Flags: all, register indirect addressing, One-byte instructions

the accumulator. The result is placed in the accumulator. All status flags are affected. For example, ANA M.

ANI 8-bit data

A!A/8-bit data

in the accumulator. All flags are modified to reflect the result of the operation. The CY flag is reset and AC

flag is set. For example, ANI 24H.

ORA R

A!A0

accumulator. All flags are modified to reflect the result of the operation. Carry flag (CY) and auxiliary carry

(AC) are reset.

ORA M

A!A 0[M].

Microprocessors and Microcontrollers3.18

is specified by the contents of H and L registers and the result is placed in the accumulator. All flags are modi-

ORI 8-bit data

A!A08-bit data.

Machine cycles: 2, States: 7, Flags: all, Immediate addressing,Two-byte instructions

and the result is placed in the accumulator. All flags are modified to reflect the result of operation. The CY

and AC flags are reset.

XRA R

A!A5

XRA M

A!A5[M]

XRI 8-bit data

A!A5data

Machine cycles: 2, States: 7, Flags: all, immediate Addressing, One-byte instructions

-

lator. Flags are modified to reflect the result of the operation. The CY and AC flag become 1. For example,

RLC

An+1!An, A0!A7, CS!A7

Machine cycles: 1, States: 4, Flags: CS, Addressing: implicit, One-byte instructions

Each bit of the accumulator is rotated left by one bit. The seventh bit of the accumulator is placed in the posi-

0 7 bit as shown in Fig. 3.1. S,

Z, P and AC are not affected.

Fig. 3.1 Diagram for RLC

Instruction Set of 8085 Microprocessor 3.19

RRC

A7!A0, CS !A0, An!An+1

Machine cycles: 1, States: 4, Flags: CS, implicit Addressing, One-byte instructions

0 7 as

well as in the Carry flag. Therefore, CY is modified accordingly as depicted in Fig. 3.2. S, Z, P, and AC are

Fig. 3.2 Diagram for RRC

RAL

An+1!An, CS!A7, A0!CS

Machine cycles: 1, States: 4, Flags: CS, Implicit Addressing , One-byte instructions

The content of the accumulator is rotated left one bit through carry flag. The seventh bit of the accumulator,

7 0. S,

Z, P and AC are not affected but only carry flag is affected as shown in Fig. 3.3.

Fig. 3.3 Diagram for RAL

RAR

An !An+1, CS!A0, A7!CS

Machine cycles: 1, States: 4, Flags: CS, Addressing implicit, One-byte instructions

The content of the accumulator is rotated right one bit through carry flag. The least significant bit of the

0 is placed in the carry flag. The carry flag is placed in the most significant position of the

7 0. In this instruction CS flag is affected as

depicted in Fig. 3.4.

CMA (Complement the accumulator)

A!A

Machine cycles: 1, States: 4, Flags: none, Implicit Addressing, One-byte instruction

Microprocessors and Microcontrollers3.20

Fig. 3.4 Diagram for RAR

The content of the accumulator is complemented, and the result is placed in the accumulator. No flags

are affected. For example, CMA determines one’s complement of 0000 1100 is 1111 0011. Assume A =

00001100.

CMC (Complement the carry)

CS! CS Machine cycles: 1, States: 4, Flags: CS, One-byte instruction

The carry flag CS is complemented. No other flags are affected. For example, CMC.

STC (Set the carry)

CS!1 Machine cycles: 1, States: 4, Flags: CS, One-byte instruction

The carry flag is set to 1. No other flags are affected. For example, STC.

Table 3.10 shows the 8085 logical instruction set summary.

Table 3.10 8085 logical instruction set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CMP M Compare memory with A 7 1 1 0 0 0 0 1 1 0

CPI 8 bit data Compare immediate with A 7 2 1 1 1 1 1 1 1 0

CMA Complement A 4 1 0 0 1 0 1 1 1 1

CMC Complement carry 4 1 0 0 1 1 1 1 1 1

STC Set carry 4 1 0 0 1 1 0 1 1 1

Instruction Set of 8085 Microprocessor 3.21

3.5.4 Branch Group

The branch group instructions are generally used to change the sequence of the program execution. There

are two types of branch instructions, namely, conditional and unconditional. The conditional branch instruc-

tions transfer the program to the specified address when condition is satisfied only. The unconditional branch

instructions transfer the program to the specified address unconditionally. All conditional and unconditional

branch instructions are explained in this section.

JMP 16-bit address (Jump Unconditionally)

PC!Label (16-bit address)

Machine cycles: 3, States: 10, Flags: none, Immediate Addressing.

The program sequence is transferred to the memory location specified by the 16-bit address given in the

8000H unconditionally.

Conditional Jump 16-bit address (Jump Conditionally)

-

tions are given below:

 Opcode Description Flag Status

 JC Jump on Carry CY = 1

 JNC Jump on no Carry CY = 0

 JP Jump on positive S = 0

 JM Jump on minus S = 1

 JZ Jump on zero Z = 1

 JNZ Jump on no zero Z = 0

 JPE Jump on parity even P = 1

 JPO Jump on parity odd P = 0

JC 16-bit address (Jump on carry)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing

example, JC 9000H.

JNC 16-bit address (Jump on no carry)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing

The program is transferred to the memory location specified by the 16-bit address when there is no carry. For

example, JNC 9000H.

JP 16-bit address (Jump on positive)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing

For example, JP 8000H.

Microprocessors and Microcontrollers3.22

JM 16-bit address (Jump on minus)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing.

example, JM 9060H.

JZ 16-bit address (Jump on zero)

PC !

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate addressing.

flag is set. For example, JZ 9500H.

JNZ 16-bit address (Jump on no zero)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing.

is reset. For example, JNZ 9500H.

JPE 16-bit address (Jump on even parity)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none. Immediate Addressing.

16-bit address. For example, JPE 85000H.

JPO 16-bit address (Jump on odd parity)

PC!

Machine cycles: 2/3, States: 7/10, Flags: none, Immediate Addressing.

number of 1s. For example, JPO 8000H.

CALL 16-bit address (Unconditional subroutine CALL)

!PCH , ([SP]-2)!PCL,

 [SP]![SP]-2, PC!16 bit address

Machine cycles: 5, States: 9/18, Flags: none, Immediate/register.

The program sequence is transferred to the memory location specified by the 16-bit address given in the

instruction. Before the transfer, the contents of the program counter (the address of the next instruction after

CALL) are pushed onto the stack. For example, CALL 8700H.

CALL 16-bit address (CALL Conditionally)

!PCH , ([SP]-2)!PCL,

 [SP]![SP]-2, PC!16 bit address

Machine cycles: 2/5, States: 9/18, Flags: none, Immediate/register.

The program sequence is transferred to the memory location specified by the 16-bit address given in the

operand of the instruction based on the specified flag of the PSW. Before the transfer, the address of the next

instruction after the call, or the contents of the program counter is pushed to the stack. All conditional CALL

instructions are given below.

Instruction Set of 8085 Microprocessor 3.23

 Opcode Description Flag Status

 CC Call on Carry CY = 1

 CNC Call on no Carry CY = 0

 CP Call on positive S = 0

 CM Call on minus S = 1

 CZ Call on zero Z = 1

 CNZ Call on no zero Z = 0

 CPE Call on parity even P = 1

 CPO Call on parity odd P = 0

RET

PCL![SP]

PCH![SP]+1

[SP]![SP]+2

the end of a subroutine. The two bytes from the top of the stack are copied into the program counter, and

Conditional Return

PCL ![SP]

PCH ![SP]+1

[SP] ![SP]+2

The program sequence is transferred from the subroutine to the calling program based on the specified flag of

the PSW. The two bytes from the top of the stack are copied into the program counter, and program execution

begins at the new address. All conditional call instructions are given below:

 Opcode Description Flag Status

PCHL

PC! !H, PCL !L

The contents of H and L registers are transferred into program counter. The contents of register H are placed

as the high-order byte of PC register and the contents of register L as the low order byte. For example, PCHL.

Microprocessors and Microcontrollers3.24

RST 0-7

! !PCL

[SP] ! !8 times n

-

ware. These instructions can also be used as software instructions in a program to transfer program execution

to any one of the eight locations. The address of the restart instructions are given below:

 Instruction Restart Address

Interrupt Instructions The 8085 microprocessor has four additional interrupts. The interrupt instructions

 Interrupt Restart Address

-

mary is given in Table 3.12

Table 3.11 8085 JUMP instruction set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

JMP 16-bit address Jump unconditional 10 3 1 1 0 0 0 0 1 1

JC 16-bit address Jump on carry 7/10 3 1 1 0 1 1 0 1 0

JNC 16-bit address Jump on no carry 7/10 3 1 1 0 1 0 0 1 0

JP 16-bit address Jump on positive 7/10 3 1 1 1 1 0 0 1 0

JM 16-bit address Jump on minus 7/10 3 1 1 1 1 1 0 1 0

JZ 16-bit address Jump on zero 7/10 3 1 1 0 0 1 0 1 0

JNZ 16-bit address Jump on no zero 7/10 3 1 1 0 0 0 0 1 0

JPE 16-bit address Jump on parity even 7/10 3 1 1 1 0 1 0 1 0

JPO 16-bit address Jump on parity odd 7/10 3 1 1 1 0 0 0 1 0

Instruction Set of 8085 Microprocessor 3.25

Table 3.12 8085 CALL and Return instruction set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CALL 16-bit address Call unconditional 18 3 1 1 0 0 1 1 0 1

CC 16-bit address Call on carry 9/18 3 1 1 0 1 1 1 0 0

CNC 16-bit address Call on no carry 9/18 3 1 1 0 1 0 1 0 0

CP 16-bit address Call on positive 9/18 3 1 1 1 1 0 1 0 0

CM 16-bit address Call on minus 9/18 3 1 1 1 1 1 1 0 0

CZ 16-bit address Call on zero 9/18 3 1 1 0 0 1 1 0 0

CNZ 16-bit address Call on no zero 9/18 3 1 1 0 0 0 1 0 0

CPE 16-bit address Call on parity even 9/18 3 1 1 1 0 1 1 0 0

CPO 16-bit address Call on parity odd 9/18 3 1 1 1 0 0 1 0 0

3.5.5 Stack/PUSH and POP Instructions

These instructions are used to manipulate stack related operations. All stack instructions are discussed as

follows:

PUSH B (Push the content of register pair B and C to stack)

!B

!C,

[SP]!

The contents of the register pair BC are copied onto the stack in the following sequence. The stack pointer

register is decremented and the contents of the high-order register B are copied into that location. Then stack

pointer register is decremented again and the contents of the low-order register C are copied to that location.

PUSH D

!

! E,

[SP]!

register is decremented and the contents of register E are copied to that location.

Microprocessors and Microcontrollers3.26

PUSH H (Push the content of register pair H and L to stack)

!H

! L

[SP]!

The contents of the register pair H and L are copied onto the stack in the sequence as given above.

PUSH PSW (PUSH accumulator content and flags on stack)

!A

!PSW (Program Status Word)

[SP] !

Machine cycles: 3, States: 12, Flags: none, register indirect addressing,

The stack pointer register is decremented by 1 and the content of the accumulator is pushed into the stack.

Again the stack pointer register is decremented by 1 and the contents of status flags are also pushed into the

stack. Then content of the register SP is decremented by 2 to indicate new stack.

POP B (Pop off stack to register pair B and C)

C![SP]

B![SP] +1

[SP] ![SP] +2

The contents of the memory location pointed out by the stack pointer register are copied to the low-order

register C. The stack pointer is incremented by 1 and the contents of that memory location are copied to the

high-order register B. The stack pointer register is again incremented by 1.

POP D

E![SP]

![SP] + 1

[SP] ![SP] + 2

The contents of the memory location pointed out by the stack pointer register are copied to the register E.

After that the stack pointer register is incremented by 1.

POP H (Pop off stack to register pair H and L)

L![SP]

H![SP] +1

[SP]![SP] +2

The contents of the memory location specified by the stack pointer register are copied to the low-order

register L. The stack pointer is incremented by 1 and the contents of that memory location are copied to the

high-order register H. Then stack pointer register is incremented by 1.

POP PSW (Pop off stack to accumulator and flags)

PSW![SP]

A![SP]+1

Instruction Set of 8085 Microprocessor 3.27

[SP]![SP]+2

The process status word, which was saved during the execution of the POP PSW, can move from the stack to

the PSW. The stack pointer is incremented by 1 and the contents of that memory location are copied to the

accumulator. Then stack pointer register is incremented by 1.

XTHL (Exchange H and L with top of stack)

L"[SP]

H)[SP]+1

The contents of the L register are exchanged with the stack location pointed out by the contents of the stack

contents of the stack pointer register are not altered.

SPHL

"[SP].

Machine cycles: 1, States: 6, Flags none, Addressing: register.

This instruction copied the contents of the H and L registers into the stack pointer register. The contents of

the H register provide the high-order address and the contents of the L register also provide the low-order

address. The contents of the H and L registers are not altered.

The 8085 stack/PUSH and POP instruction set summary is depicted in Table 3.13

Table 3.13 8085 Stack/PUSH and POP instructions set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

PUSH B Push register pair Band C on stack 12 1 1 1 0 0 0 1 0 1

PUSH H Push register pair H and L on stack 12 1 1 1 1 0 0 1 0 1

PUSH PSW Push accumulator A and Flags on stack 12 1 1 1 1 1 0 1 0 1

POP B Pop register pair Band C off stack 10 1 1 1 0 0 0 0 0 1

POP H Pop register pair H and L off stack 10 1 1 1 1 0 0 0 0 1

POP PSW Pop accumulator A and Flags off stack 10 1 1 1 1 1 0 0 0 1

SPHL H and L to stack pointer 6 1 1 1 1 1 1 0 0 1

3.5.6 I/O and Machine Control Instructions

These instructions are used to perform the input/output operations and machine control operations. All I/O

and machine control instructions are explained below:

EI (Enable Interrupts)

Machine cycle: 1, States: 4, Flags: none.

When this instruction is executed, the interrupt enable flip-flop is set and all interrupts are enabled. No flags

are affected. After the acknowledgement of an interrupt, the interrupt enable flip-flop is reset, thus disabling

the interrupts. For example, EI.

Microprocessors and Microcontrollers3.28

DI

Machine cycle: 1, States: 4, Flags: none

NOP (No operations)

Machine cycle: 1, States: 4, Flags: none.

No operation is performed. The instruction is fetched and decoded. However, no operation is executed.

Therefore, the registers and fags are not affected.

For example, NOP.

HLT (Halt and enter wait state)

Machine cycle: 1, States: 5, Flags: none.

When the instruction HLT is executed, the microprocessor finishes executing the current instruction and halts

any further execution. An interrupt or reset is necessary to exit from the halt state. No registers and status

flags are affected. For example, HLT.

SIM (Set Interrupt Mask)

Machine cycle: 1, States: 4, Flags: none

This instruction is used to read the status of interrupts 7.5, 6.5, 5.5 and read serial data input bit. The instruc-

RIM

Machine cycle: 1, States: 4, Flags: none.

This instruction is used to implement the interrupts 7.5, 6.5, 5.5 and read serial data output. When this instruc-

tion is executed, the accumulator is loaded with eight bits with the following interpretations. For example,

IN 8-bit port-address (Input data to accumulator from an I/O port with 8-bit address)

A![Port]

The contents of the input port whose address is specified by 8-bit port address are read and loaded into the

accumulator. For example, IN 00H. This instruction states that the data available on the port address 00H is

moved to the accumulator.

OUT 8 bit port-address (Output data from accumulator to an I/O port with 8-bit address)

[Port]!A

The contents of the accumulator are copied into the I/O port specified by the 8-bit address. For example, OUT

01H. This instruction states that the content of the accumulator is moved to the port address 01H.

Table 3.14 shows the 8085 I/o and machine control instruction set summary.

Table 3.14 8085 I/O and machine control instructions set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

EI Enable interrupts 4 1 1 1 1 1 1 0 1 1

NOP No-operation 4 1 0 0 0 0 0 0 0 0

Instruction Set of 8085 Microprocessor 3.29

SIM Set interrupt musk 4 1 0 0 1 1 0 0 0 0

IN Input 10 1 1 1 0 1 1 0 1 1

OUT output 10 1 1 1 0 1 0 0 1 1

 3.6 INSTRUCTION TIMING DIAGRAM

Instructions are stored in the memory of a microcomputer to perform a specified operation on given data. To

perform a particular task, a programmer should write a sequence of instructions, called a program. To execute

an instruction, the microprocessor fetches one instruction code from the memory via the data bus at a time.

Then it decodes the instruction code in the instruction register and performs the specified function. In the

same way, all other instructions of a program are executed one by one to produce the final result.

 In a 1-byte instruction, only the operation code fetches from the memory and executes it. But in a 2-byte

instruction, and 3-byte instruction, the subsequent codes are fetched, decoded and executed in the same way

of 1-byte instruction. All read operations such as opcode fetch from memory and operand read from memory

are performed within a given time period. The system clock provides the timing of the instruction and this

operation is controlled by the control unit of the microprocessor. In this section, the timing diagram of instruc-

tions are explained in detail. To understand the timing diagram, the following terms must be well known:

T-state, Instruction cycle, Fetch cycle, Execute cycle, and machine cycle.

T–State This is defined as one subdivision of the operation performed in one clock period. Each subdivision

is considered as internal state of operation, which is synchronised with the system clock.

Instruction cycle (IC) This is defined as the total time required executing an instruction completely.

Instruction cycles consist of a fetch cycle and execute cycle as depicted in Fig. 3.5. In a Fetch Cycle (FC),

the microprocessor fetches the opcode from the memory. After the opcode fetch operation, the necessary

steps are carried out to get the operand, if required from the memory and then perform the specific operation

specified in an instruction. This operation is called Execute Cycle (EC). The time period of fetch cycle is

fixed but the time required to execute an instruction or time period of the execute cycle is variable which

depends on the type of instructions. The total time required to execute an instruction is the summation of the

time period of fetch cycle and execute cycle. This can also be written as

IC = FC + EC

3.6.1 Fetch Operation

The first byte of an instruction is known as its opcode. An instruction may be one byte or two bytes or three

bytes long. When an instruction is more than one byte, the other bytes are data or operand. In the Program

Counter (PC), the memory address of the next instruction to be executed is stored. At the starting of a fetch

cycle, the content of the program counter, which is the address of the memory location where the opcode is

stored, will be sent to the memory. Then the memory gets the opcode from memory location on the data bus.

To perform this operation, two consecutive clock pulses are required. In the next clock cycle, data will be

transferred to the microprocessor. To complete the entire fetching operation, four clock cycles are required

as depicted in Fig. 3.6. In slow memory, the microprocessor has to wait till the memory sends the opcode.

The clock cycle for which the CPU waits is known as wait cycle. Therefore, more than four clock cycles are

required for opcode fetch operation in case of a slow memory system.

Microprocessors and Microcontrollers3.30

3.6.2 Execute Operation

decoding the instruction, execution starts. When the operand is in the general-purpose registers, execution is

immediately performed. The time taken in decoding and execution is one clock cycle. When the instruction

contains an operand, which is in the memory, the microprocessor has to perform read operations to get the

desired operand. After receiving the operand from memory, the microprocessor performs the execute opera-

tion. A read cycle is similar to a fetch cycle. In some instructions, a write operation is performed. In case of a

write cycle, data are sent from the microprocessor to the memory or an output device. Therefore, an execute

cycle consists of one or more read or write cycles or both.

Fig. 3.5 Instruction cycle

Fig. 3.6 Fetch cycle

3.6.3 Machine Cycle

The machine cycle is the sequence of operations required to complete one of the following functions:

 Opcode fetch, memory read, memory write, I/O read and I/O write operations. In other words, the opera-

tion of accessing either memory or I/O device is called a machine cycle. In the 8085 microprocessor, the

machine cycle consists of three to six clock cycles. An instruction cycle consists of several machine cycles.

In the first machine cycle of an instruction cycle, the opcode of an instruction is fetched. The 1-byte instruc-

tions require only one machine cycle to fetch the opcode and execute the instruction. Two-byte and three-byte

instructions require more than one machine cycle. The additional machine cycles are required to read data

from memory or I/O devices or to write data into the memory or I/O devices. For example, instruction cycle

for MVI B, data is depicted in Fig. 3.7. This instruction has two machine cycles. The first machine cycle

(M1) for fetching opcode, and the other machine cycle (M2) for reading data from the memory and execute

the instruction.

Fig. 3.7 Instruction cycle

Instruction Set of 8085 Microprocessor 3.31

 3.7 TIMING DIAGRAM

The graphical representation of all steps, which are performed in a machine cycle, is known as the timing

diagram. In this section, the timing diagram for opcode fetch, memory read, memory write, I/O read and I/O

write operations are explained briefly.

3.7.1 Timing Diagram of a Fetch Cycle

In a fetch cycle, the microprocessor fetches the opcode of an instruction from the memory. Figure 3.8 shows

the timing diagram for an opcode fetch cycle of an instruction MOV A, B. Assume that the opcode of instruc-

tion MOV A, B is stored in 8000H and the content of register B is 4FH.

 Memory location Opcode Mnemonics

 8000H 78H MOV A, B

Fig. 3.8 Timing diagram of opcode fetch operation (MOV A, B)

Microprocessors and Microcontrollers3.32

To execute this instruction, four consecutive clock cycles T1, T2, T3 and T4 are required. The sequence of

operations are given below:

First Clock Cycle

1, the microprocessor places the content of program counter, address of the

memory location 8000H, where the opcode is available on the 16-bit address bus. The 8 MSBs of the

memory address (80H) are placed on the high-order address bus, A15 8 and 8 LSBs of the memory

7 0

transfer data during subsequent clock cycles, it is used in time-multiplexed mode.

the memory address. Therefore, low-order address bus is demultiplexed and the complete 16-bit

memory address is available in the subsequent clock cycles to get the opcode from the specified

memory address, 8000H.

M = 0, S0 = 1 and S1 = 1 to indicate opcode fetch

operation.

Second Clock Cycle 2 7 0 is ready to carry data from memory location.

The microprocessor sends the control signal RD = 0 to enable memory and the program counter is incremented

by 1 to 8001H. Now the opcode from the specified memory location, 8000H places on the data bus.

Third Clock Cycle 3, the microprocessor reads the opcode and places it in the instruction register,

RD goes high during T3. The fetch cycle is completed by T3.

Fourth Clock Cycle The microprocessor decodes the instruction opcode in T4. It also places the content

of B register in the temporary register. After that, it transfers to the accumulator.

3.7.2 Timing Diagram of Memory Read

When an instruction is one byte long, only one machine cycle is required as depicted in Fig. 3.8. For example,

decoding of the operation code and its execution takes only one clock cycle, T4. When an instruction is two

or three bytes long, more than one machine cycle are required. In the first machine cycle, M1 the opcode is

fetched from the memory. The subsequent machine cycles M2, and M3 are required to read the operand from

the memory or I/O devices or to write data into the memory or I/O devices. The timing diagram for a two-byte

instruction MVI C, data is illustrated in Fig. 3.9.

 The MVI C, data is a two-byte instruction. In the coded form it is written as 3E, FF where 3E is opcode

for MVI C instruction and FF is data. This instruction is stored in two consecutive memory locations, 8000H

and 8001H.

 Memory location Opcode Mnemonics

 8000H 3E H MOV C, FF H

 8001H FF H

This instruction requires two machine cycles, M1 and M2. The first machine cycle M1 is known as the fetch

cycle to fetch the operation code 3E from the memory. The timing diagram for opcode fetch operation has

already been explained in Section 3.7.1. The second machine cycle M2 is used to read the operand (FFH)

from the memory. Actually this is a memory read cycle. Figure 3.10 shows the machine cycle M2 and its

operation is explained below.

Instruction Set of 8085 Microprocessor 3.33

First Clock Cycle of M2

1) the microprocessor places the content of program counter, 8001H, which

is the address of operand on the 16-bit address bus. The 8 MSBs of the memory address, 80H are

placed on the high-order address bus, A15 8 and 8 LSBs of the memory address, 01H are placed on

7 0.

the memory address. Then low-order address bus is demultiplexed and the complete 16-bit memory

address is available in the subsequent clock cycles to get the operand from memory location, 8001H.

M = 0, S0 = 0 and S1 = 1 to identify the memory read operation.

Second Clock Cycle of M2 7 0 is ready to accept operand from memory. The

microprocessor sends the control signal RD = 0 to enable memory and the program counter is incremented

by 1 to 8002H. After that the operand from the memory location, 8001H is placed on the data bus.

Third Clock Cycle of M2

3, the microprocessor reads the operand. RD becomes high during T3 and the memory is

disabled.

Fig. 3.9 Timing diagram of MVI R, data (MVI C, FFH)

Microprocessors and Microcontrollers3.34

3.7.3 Timing Diagram of I/O Read

In an I/O read operation, the microprocessor reads the data from specified input port or input device. The

I/O read operation is similar to memory read cycle except the control signal IO/M. In a memory ready cycle,

IO/M is low but IO/M is high in case of I/O read cycle operation.

 The timing diagram of I/O read operation is shown in Fig. 3.11. In this case, the address on the A-bus is for

an input device. As I/O device or I/O port addresses is only 8 bits long, the address of I/O device or I/O port

is duplicated on both high-order address bus A8 15 0 7.

 For I/O read operation, the IN instruction is used. One example is IN 00. This is two-byte instruction. The

Fig. 3.10 Timing diagram of memory read operation

Instruction Set of 8085 Microprocessor 3.35

F
ig

. 3
.1

1
 T

im
in

g
d
ia

gr
am

 o
f

IN
 P

or
t

A
d
d
re

ss
 (

IN
 0

0H
)

Microprocessors and Microcontrollers3.36

 Memory location Opcode Mnemonics

 8001H 00 H

 This instruction requires three machine cycles for execution. The first machine cycle is opcode fetch cycle,

and the second machine cycle is a memory read cycle to read the address of input device or input port. In the

third machine cycle, I/O read operation is performed means the data to be read from the input device or input

port. After execution of this instruction, the data is placed in the accumulator. The opcode fetch cycle and

memory read cycle are exactly similar to MVI C, FF H instruction. Figure 3.12 shows the machine cycle M3

of I/O read operation and it is explained below.

T1 State of M3

M becomes high to perform I/O operation

T2 State of M3

RD is low for read operation

T3 State of M3

RD Signal becomes high as I/O read operation has been completely performed.

3.7.4 Timing Diagram of Memory Write

In a memory write operation, the microprocessor sends data from the accumulator or any general-purpose

register to the memory. The timing diagrams of a memory write cycle is depicted in Fig. 3.13. The memory

writes cycle is similar with memory read cycle, but there are differences on status signals. The status signals

S0 = 1 and S1 = 0 and write WR is low during T2 of machine cycle M2 which indicates that the memory write

operation is to be performed.

2 of machine cycle M2 0 7 is not disabled as the data to be

sent out to the memory, which is placed on the low order address bus. When WR becomes high in T3 of

machine cycle M2, the memory write operation will be terminated. The following instructions use the mem-

in Example 3.1.

3.7.5 Timing Diagram of I/O Write

The microprocessor sends the content of accumulator to an I/O port or I/O device in an I/O write cycle.

The operations of an I/O write cycle is similar to a memory write cycle. But the difference between

memory write and I/O write cycle is that IO/M becomes high in case of I/O write cycle. When IO/M is

high, the microprocessor locates the address of any output device or an output port. The address of an output

device or an output port is duplicated on both the high-order address bus A8 15 and low-order address bus

0 7.

 The OUT instruction is used for I/O write operation. This is a two-byte instruction and it requires three

machine cycles as depicted in Fig. 3.13. The first machine cycle is for opcode fetch operation and the second

Instruction Set of 8085 Microprocessor 3.37

Fig. 3.12 Timing diagram of I/O read in machine cycle M3

Microprocessors and Microcontrollers3.38

machine cycle is a memory read cycle for reading the address output device or output port from the memory.

In the next third machine cycle data will be written in output device or output port. In other words, data is to

be sent to the I/O device. The third machine cycle is explained below:

T1 State of M3

M signal is also high to perform I/O operation

T2 State of M3

WR becomes low for write operation

T3 State of M3

Fig. 3.13 Timing diagram for memory write operation

Instruction Set of 8085 Microprocessor 3.39

F
ig

. 3
.1

4
T

im
in

g
d
ia

gr
am

 o
f

O
U

T
 P

or
t

A
d
d
re

ss

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
1

In
p
u
t/
O
u
tp
u
t
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
3

M
e
m
o
ry

R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M

)
2

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

P
C
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)

H
IO

P
o
rt

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A

A
0

7
–

A
–
A

8
1
5

C
lo
c
k

A
D

A
D

0
7

– A
L
E

W
R

IO
/ M

R
D

S
0

S
T
A
T
U
S

S
T
A
T
U
S

S
1

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A

A
0

7
–

D
a
ta
fr
o
m
M
e
m
o
ry

(I
n
s
tr
u
c
ti
o
n
o
p
c
o
d
e
)

D
a
ta
fr
o
m
M
e
m
o
ry

(I
/O

P
o
rt
A
d
d
re
s
s
)

D
a
ta
to

I/
O
P
o
rt

IO
P
o
rt

P
C
L
o
w
e
r

L
D

D
0

7
–

(P
C
+
1
)
L
o
w
e
r

L
D

D
0

7
–

D
D

0
7

–

Microprocessors and Microcontrollers3.40

WR Signal becomes high as I/O read operation has been completed

Example 3.1

Sol. Consider that instruction STA 8000H is stored at 9000H, 9001H and 9002H memory location as

given below:

 Memory location Opcode Mnemonics

 9000 H 32 H STA 8000H

 9001 H 00 H

 9002 H 80 H

 STA 8000H is a three-byte instruction. Figure 3.15 shows the timing diagram of STA 8000H. This

instruction requires four machine cycles as depicted in Fig. 3.15. The first machine cycle M1 is opcode

fetch cycle to read the opcode from 9000H memory location. The memory read cycle machine cycle

M2 is used to read the lower order address from memory location 9001H. The machine cycle M3 is

also a memory read cycle to read the higher order address from 9002H. The last machine cycle M4

can store the contents of A register at the specified memory location 8000H. Therefore machine cycle

M4 is memory write cycle.

 The opcode fetch cycle and first memory read cycle is same as the timing diagram of MVI A, FFH.

In STA 8000H instruction, the second memory read cycle used to read higher order address. In this

section, the operation of M4 has been explained below:

T1 State of M4

1 of machine cycle M4

PCL content 00H and PCH content is 80H.

M signal is low so that program counter content locates the memory location

T2 State of M4

WR becomes low so that write operation

will be performed

T3 State of M4

WR signal will be changed from low to high as I/O read operation has been completed

Example 3.2

Sol.

this instruction is depicted in Fig. 3.16. It is clear for Fig. 3.16 that this instruction requires a three-

machine cycle. The first machine cycle M1 is fetch cycle and other two consecutive machine cycles,

M2 and M3 are memory read cycles.

Instruction Set of 8085 Microprocessor 3.41

F
ig

. 3
.1

5
T

im
in

g
d
ia

gr
am

 o
f

ST
A

 8
00

0H

O
p
c
o
d
e
F
e
tc
h
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
1

M
e
m
o
ry
R
e
a
d
C
y
c
le
(M
)
3

M
e
m
o
ry
R
e
a
d
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
2

M
e
m
o
ry
W
ri
te
C
y
c
le

M
a
c
h
in
e
C
y
c
le
(M
)
4

T
1

T
2

T
3

T
4

T
1

T
2

T
3

T
1

T
2

T
3

T
1

T
2

T
3

A
–
A

8
1
5

C
lo
c
k

A
D

A
D

0
7

– A
L
E

W
R

IO
/M

R
D S
1

S
T
A
T
U
S

S
T
A
T
U
S

S
0

P
C
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H
(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H
9
4
H

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
–
D

0
7

(P
C
+
1
)
L
o
w
e
r
0
1
H

L

(P
C
+
1
)
(H
ig
h
e
r
O
rd
e
r
A
d
d
re
s
s
B
u
s
)
9
0
H

H

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

L
o
w
e
r
O
rd
e
r

A
d
d
re
s
s
A
–
A

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
9
4
H

P
C
–
L
o
w
e
r
0
0
H

L
D

D
0

7
–

(P
C
+
2
)
L
o
w
e
r
0
2
H

L
D
–
D

0
7

0
0
H

D
–
D

0
7

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
c
o
d
e
3
2
H

D
a
ta
fr
o
m
m
e
m
o
ry

O
p
e
ra
n
d
0
0
H

Microprocessors and Microcontrollers3.42

F
ig

. 3
.1

6
T

im
in

g
d
ia

gr
am

 o
f

L
X

I
H

, 8
05

0H

Instruction Set of 8085 Microprocessor 3.43

counter is incremented by 1 to 8001H. In the second machine cycle M2, 8 LSBs of the 16-bit data

(8050H) to be read. Similarly, in the third machine cycle M3, 8 MSBs of the 16-bit data (8050) will

be read. After execution of this instruction, 50H is stored in L register and 80H is also stored in the

H register.

 Memory location Opcode Mnemonics

 8001 H 50 H

 8002 H 80 H

 3.1 What are the types of addressing modes of Intel 8085? Explain any one addressing mode with suit-

able examples.

 3.2 Classify 8085 instructions in various groups. Give a list of examples of instructions for each group.

 3.3 What are the various types of data formats for 8085 instructions? Give a list of examples for each

type of data format.

 3.4 Write the addressing modes of the following instructions:

 3.5 Explain the operation of the following instructions when they are executed:

 3.7 Write instructions for the following operations:

 (a) Clear accumulator

 3.8 Write the difference between

 (c) PUSH and POP

 3.9 Find the machine code for the instruction MOV H, A if the opcode = 01, the register code for H =

1002, and the register code for A = 111.

Microprocessors and Microcontrollers3.44

 3.19 Compare the following instructions:

frequency is 1 MHz

 MOV A, B 5T states

 MOV B, C 5T states

 3.1 The instructions of 8085 microprocessor has been classified into

 (a) four groups of instructions (b) five groups of instructions

 (c) six groups of instructions (d) seven groups of instructions

 (a) data transfer instruction (b) arithmetic instruction

 (c) logical instruction (d) I/O and stack pointer instruction

 3.3 When the PUSH B instruction is executed,

 (a) the content of B register to be copied in the stack

 (b) the content of B register and C register to be copied in the stack

 (c) the content of B register and C register to be stored in the stack and the registers are cleared

 (a) data transfer instruction (b) arithmetic instruction

 (c) logical instruction (d) I/O and stack pointer instruction

 (a) data transfer instructions (b) branch control

 (c) logical instructions (d) I/O and stack pointer instruction

 3.6 A one-byte instruction has

 (a) opcode and an operand (b) opcode only

 (c) opcode and two operands (d) operand only

 3.7 A two-byte instruction consists of

 (a) opcode and an operand (b) opcode only

 (c) opcode and two operands (d) operand only

 3.8 A three-byte instruction should have

 (a) opcode and an operand (b) opcode only

 (c) opcode and two operand (d) operand only

Instruction Set of 8085 Microprocessor 3.45

 3.9 IN 00H is an instruction of

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate-addressing mode

 3.10 STA 9000H is an instruction of

 (a) one byte (b) two bytes (c) three bytes (d) four bytes

 3.11 MOV is an instruction of

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate-addressing mode

 3.12 CMA is an instruction of

 (a) direct addressing mode (b) implicit addressing mode

 (c) register addressing mode (d) immediate-addressing mode

 3.13 SUB A instruction in the 8085 microprocessor

 (a) resets the zero flag (b) sets the zero flag

 (c) sets the carry flag (d) resets the auxiliary carry flag

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate-addressing mode

 3.15 CALL 8000H is an instruction of

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate-addressing mode

 3.16 MOV A, C is executed by

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) four machine cycles

 3.17 HLT is a

 (a) data transfer instruction (b) machine control instruction

 (c) arithmetic instruction (d) logical instruction

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) four machine cycles

 3.19 STA 8000H is executed by

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) four machine cycles

 3.20 OUT 02H is executed by

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) four machine cycles

 (a) one machine cycle (b) two machine cycles

 (c) three machine cycles (d) four machine cycles

 (a) data transfer instruction (b) arithmetic instruction

 (c) logical instruction (d) I/O and stack-pointer instruction

Microprocessors and Microcontrollers3.46

 3.1 (b) 3.2 (a) 3.3 (b) 3.4 (c)

 3.5 (b) 3.6 (b) 3.7 (a) 3.8 (c)

 3.9 (a) 3.10 (c) 3.11 (c) 3.12 (b)

 3.13 (b) 3.14 (d) 3.15 (d) 3.16 (a)

 3.17 (b) 3.18 (d) 3.19 (d) 3.20 (c)

 3.21 (b) 3.22 (b)

CHAPTER

4
Assembly Language

Programming Using 8085

 4.1 INTRODUCTION

A program is a sequence of instructions, which operate on with operands or data. The program may be written

in any one of available languages to achieve the objective of the user. When a programmer writes a program

for a particular problem, the following five steps are followed:

Step 1 Define the problem Before starting, it is required to understand the problem completely and

assume all initical conditions.

Step 2 Plan the solution Break the problem into a modular form and determine how the modules are

logically linked.

Step 3 Code the program Translate the logical solution of each module in an assembly or any

programming language which the microcomputer can understand.

Step 4 Test the program After writing the program, implement/test the program in a microcomputer

system.

Step 5 Documentation All related matters must be documented, as we do not always remember the

most important steps that we took during development of the program.

 The development of the program depends on the skill of the programmer as well as the complexity of the

problem. Generally, the program is fed into the microcomputer through input devices such as the keyboard

and is stored in the memory of the microcomputer. The 8085 microprocessor is able to understand instruc-

tions, which are written in 0s and 1s. When the program is written using 0s and 1s, the program is known

as machine language program. But it is very difficult for a programmer to write a program in machine

language. The other way of writing a program is using mnemonic operation codes in hexadecimal, octal or

binary notations, which are known as assembly language. In assembly language, when a program is executed,

instructions are converted/translated into machine code. The translator which translates/converts an assembly

language program into a machine language is known as an assembler. In this chapter, assembly language

programs are discussed in detail.

Microprocessors and Microcontrollers4.2

 4.2 MACHINE LANGUAGE

Programmers write instructions in various programming languages. Some programs are directly understand-

able by the computer and other programs require intermediate translation steps. Nowadays hundreds of com-

puter languages are available to use in solving different problems. These programming languages are classi-

fied into three general types as given below:

Machine language is the ‘natural language’ of computers. Machine-language programs are usually writ-

ten in binary code. Therefore, 0s and 1s are used in a machine-language program. Machine languages are

machine-dependent, that is, a particular machine language can be used on only one type of computer. In this

language, a specific binary code is used for each instruction. For example, to copy data from register A to B,

the binary code 0100 0111 is used. Similarly, different binary codes are available in the 8085 microprocessor

for different operations such as addition, subtraction, increment, decrement, rotate, and compare. But it is

very difficult to write machine-level programs. The program can be simplified by converting binary code to

hexadecimal.

The Machine language has the following advantages:

 1. This is suitable for small and simple programs.

 2. This program execution is very fast and requires less computation time.

 3. Generally, this language is suitable for prototype applications in the final product.

The disadvantages of machine-language programs are the following:

 1. A program written in machine code is a set of binary numbers. Therefore, program writing is difficult

and time consumable.

 2. It is also very difficult to understand the program, which is written in machine language or hexadeci-

mal form.

 3. Since the program is always written in 0s and 1s, each bit has to be entered individually. Time taken

for data entry becomes very slow and tiresome.

 4. There is always some possibility of errors in writing programs. Even a single bit error in any instruc-

tion can generate unsatisfactory results.

 5. Programs are long.

 4.3 ASSEMBLY LANGUAGE

To overcome the limitations of machine languages, assembly languages were developed. In such a language,

machine-level instructions are replaced by mnemonics. For example, ADD represents addition, SUB rep-

resents subtraction, INC for increment, RAL for rotate left, and CMP for compare. These instructions are

known as mnemonics. A program written in mnemonics is called an assembly-language program. It is easier

for a programmer to write programs in assembly language compared to machine language. It is also easier to

understand an assembly language program. This program is microprocessor specific.

 The assembly language programs are translated to machine-level programs using a translator program

known as assembler as shown in Fig. 4.1.

Assembly Language Programming Using 8085 4.3

The assembly language has the following advantages:

 1. It is easy to write.

 2. It is easy to understand.

 3. Assembly-language programs produce faster results.

 4. This is suitable for real-time control and industrial applications.

 5. It requires less computations time.

The disadvantages of assembly language compared to high-level languages are given below:

 1. The assembly language is microprocessor specific. The detailed knowledge of the particular micro-

processor is required to write a program. The programmer should know about registers and instruc-

tions of the microprocessor.

 2. An assembly-language program is not portable, as the program written for one microprocessor may

not be used in other processors.

 3. Assembly-language program writing is difficult and time consuming compared to high-level

languages.

 4.4 HIGH-LEVEL LANGUAGE

The demerits of assembly languages are overcome by using high-level languages. The high-level languages

can improve the readability by using English words, which would make them easier to understand and sort

out any faults in the program. In addition, the high-level languages relieve the programmer of any need to

understand the internal architecture of the microprocessor. Ideally, the programmer should not even need

to know what processor is being used. For programs written in high-level languages, any type of computer

can be used easily. Therefore, the program should be totally portable. The programs written in high-level

languages are very easy and fast but a compiler is required to translate the high-level language into machine

codes, as the microprocessor can understand only the machine codes 1 or 0.

Translators Translators translate a high-level programming language to the binary steps and make the

program understandable for the computer. There are two general types of translators, namely, compiler and

interpreter. The compiler translates an entire program at one time and then executes it. The interpreter also

translates a program line at a time while executing. The difference between compiler and interpreter is given

below:

Microprocessors and Microcontrollers4.4

 Compiler Interpreter

 Compiled programs execute much faster. Interpreted programs are slower because translation

 takes time.

 Compilation is usually a multi-step process. Interpretation translates in one step.

 Compilers do not require space in memory Interpreters must be in memory while a program

 when programs run. is running.

 It is costlier than an interpreter, and It is cheaper, and suitable for a smaller system.

 suitable for a larger system.

 Instructions written in high-level languages are called statements -

mers to write instructions that look almost like everyday English language and contain commonly used

mathematical notations.

called compilers convert high-level language programs into machine language. FORTRAN, COBOL, BASIC,

PASCAL, ALGOL, PL/M, C/C++ and Java are among the most powerful and most widely used high-level

languages. The features of these high-level languages are discussed in this section.

Advantages of High-Level Language

 1. In high-level languages, the programs are written using instructions and each instruction is very clear

for a specified operation.

 2. Writing programs in high-level languages is very easy and fast. These languages are suitable for large

programs and for developing large projects.

 3. Programs are portable in high-level languages and can be executed in any standard.

 4. Complex mathematical computation is possible in these languages.

 5. Report writing and documentation are simple in high-level languages.

 6. The program is independent of the internal architecture of the microprocessor structure. The pro-

grams are problem oriented and can run in any standard computer.

Disadvantages of High-Level Languages

 1. Each high-level language has a standard syntax and specified rules to write programs.

 2. Each statement of a high-level language is equivalent to many instructions in machine language.

Therefore, the execution time of programs written in high-level languages is more and to reproduce

results, it also takes more time. So the high-level language speed is slow compared to assembly

language.

 4. Large volume of data is to be processed in high-level language and programs in high-level language

require large memory so that memory utilization is less.

 5. To translate a high-level language program into a machine language program, a compiler is required.

Sometimes, compilers are very costly.

 4.5 STACK

The stack is a group of memory locations in Read/Write (R/W) memory of any microcomputer and is used

to store the contents of a register, operand and memory address. The starting location of the stack is defined

Assembly Language Programming Using 8085 4.5

by loading a 16-bit address into the stack pointer, that space is reserved, usually at the top of the memory

map. Theoretically, the size of the stack is unlimited, but it is restricted only by the available R/W memory

in a microcomputer system. The stack can be initialized anywhere in the user memory map, but the stack is

initialized at the highest user memory location so that there will not be any interface with the program.

 In 8085 microprocessor systems, the beginning of the stack is defined in the program by using the

instruction LXI SP, 16-bit. The LXI SP, a 16-bit state that loads the 16-bit address into the stack

using the POP instruction. The microprocessor keeps track of the next available stack memory location by

incrementing or decrementing the address in the stack pointer. The address in the stack pointer (register)

always points to the top of the stack and indicates that the next memory location (SP-1) is available to store

information.

 This method of information storage looks like the process of stacking books one above another. Therefore,

data is always retrieved from the top of the stack. So data are stored in the stack on last-in-first-out (LIFO)

principle.

 The syntax of stack instructions to store data on and retrieve data from the stack are given below:

Opcode Operand Description

LXI SP, 16-bit Load 16-bit address into the stack pointer register. This is a load instruction, similar to

 other 16-bit load instructions discussed previously.

and index registers are listed here.

Opcode Operand Description

POP RP This is a 1-byte instruction and copies the contents of the top two locations of the

POP R stack into the specified register pair or the index register.

POP PSW First, the instruction copies the contents of the stack indicated by SP into the

POP BC low-order register (for example, register C of the BC pair) or as a low-order

POP DE byte into the index register and then increments the stack pointer to SP + 1.

POP It copies the contents of the SP + 1 location into the high order register

 (for example, register B of the BC pair) or as a high-order byte into the index

 register and increments the stack pointer to SP + 2.

 Figure 4.3 shows a stack and stack top location. The SP register holds the address of stack top location,

Microprocessors and Microcontrollers4.6

Program

 7004 POP D

contents of the register pair DE

and Fig.4.4 (b) respectively. Fig. 4.5 (a) and (b) show the stack position before and after the POP operation

correspondingly.

From the above example, the following points can be summarized:

The stack space grows upward in the numerically decreasing order of memory addresses. The con-

tents of DE

Assembly Language Programming Using 8085 4.7

Microprocessors and Microcontrollers4.8

instructions are used to retrieve the information from the stack. The address in the stack pointer reg-

ister always points to the top of the stack, and the address is decremented as information is stored or

retrieved, respectively.

 3. The storage and retrieval of the content of registers on the stack should follow the LIFO (Last-In-

First-Out) sequence.

 4. Information in the stack locations may not be destroyed until new information is stored in that

memory location.

 4.6 SUBROUTINES

When some operations/functions like multiplication and division are repeatedly performed in a main program

like there is time delay between two operations and shorting, etc. The groups of instructions are written to

perform these operations and these groups of instructions are known as subroutine, which will be called by

the main program whenever required. When a main program calls a subroutine, the program execution is

transferred to the subroutine and after the completion of the subroutine, the program execution returns to the

main program. The microprocessor uses the stack to store the return address of the subroutine. For example,

generally subroutines are written for sine, cosine, logarithms, square root, time delay, multiplication func-

tions in 8085 microprocessors.

 The subroutine is implemented with two associated instructions, namely, Call and Return. Call is used

to call a subroutine and the Call instruction is written in the main program. Return is used to return from

the subroutine and the Return instruction is written in the subroutine to return to the main program. When a

subroutine is called, the contents of the program counter are stored on the stack, and the program execution

is transferred to the subroutine address. When the Return instruction is executed at the end of the subroutine,

the memory address stored in the stack is retrieved and the sequence of execution is resumed in the main

program. All types of CALL and RET instructions are explained in this chapter. The syntax of CALL and

RET are given below:

Opcode Operand Description

CALL 16-bit Call subroutine in conditionally located at the memory address specified by 16-bit

 operand.

 This instruction places the address of the next instruction on the stack and transfers the

 program execution to the subroutine address.

RET Return unconditionally from the subroutine.

 This instruction locates the return address on the top of the stack and transfers the

 program execution back to the calling program.

The general characteristics of CALL and RET instructions are given below:

 1. The CALL instructions are 3-byte instruction; the second byte specifies the low-order byte, and the

third byte specifies the high-order byte of the subroutine address.

 2. The Return instructions are 1-byte instructions.

 3. A CALL instruction must be used in conjunction with a Return instruction (conditional or uncondi-

tional) in the subroutine.

The following types of subroutines generally are used in microprocessors:

 1. Multiple call subroutines

Assembly Language Programming Using 8085 4.9

 2. Nested subroutines

 3. Multiple Ending subroutines

4.6.1 Multiple Call Subroutines

Figure 4.6 shows the basic concept of multiple CALL subroutines. This is a subroutine called from many

locations in the main program. For example, the DELAY routine is a multiple call subroutine. These types

the return address can be stored on the stack. When the CALL instruction starts to execute, the subroutine

is called from the 8050 memory location. The return address is stored on the stack and the stack pointer is

Microprocessors and Microcontrollers4.10

4.6.2 Nested Subroutines

When the subroutine is called by another subroutine, it is called nested subroutine. When a subroutine calls

another subroutine, all return addresses are stored on the stack. Therefore, only the number of available stack

locations limits the extent of nesting. The structure of a nested subroutine is depicted in Fig. 4.7.

and the program is transferred to Subroutine II. The sequence of execution and returns to the main program

are shown in Fig. 4.7.

4.6.3 Multiple Ending Subroutines

When a subroutine can be terminated at more than one place, it is called a multiple ending subroutine, as

Assembly Language Programming Using 8085 4.11

 4.7 TIME DELAY LOOPS

Microprocessors perform different operations in sequence and one

operation at a time. To complete an operation, some time is required.

When some time delay is required between two operations, a time

delay loop is used to provide it.

 Time delay can be generated using a register or a register pair.

Initially, a register is loaded with an operand or number and then the

number is decremented until it reaches zero. So a conditional jump

instruction is used in a delay loop to come out from the loop. The time

delay depends on the number, which is loaded in the register. Figure

4.9 shows the flow chart of time delay loop using one register.

Microprocessors and Microcontrollers4.12

4.7.1 Calculation of Time Delay Using One Register

The typical instructions of a time delay loop are given below:

Program

Memory Machine Labels Mnemonics Operands Comments T states

address Codes

8000 06, 80 MVI B, 80 Initialise the B register 7

8002 05 LOOP DCR B Decrement B register 5

8003 C2, 02, 80 JNZ LOOP Jump not zero to LOOP 10/7

 It is clear from the above instructions that MVI B, 80 requires

seven clock cycles (pulses), DCR B requires 5 clock pulses and JNZ

also requires 10 clock pulses during execution. When these instruc-

tions are executed, MVI B, 80 instruction is executed once and the

next two instructions are executed for N times, where N = 128.

-

cuted for 128 times, out of which (N-1)=127 times the program

jumps to the level LOOP as the content of B register is not equal

to zero and takes 10 T states each time. When the content of B

register becomes zero, JNZ is executed and the program will be

out from LOOP. For the last execution of JNZ instruction, only 7

T states are required. The detailed execution of instructions and T

states are given below:

 Instructions Number of times T states

 instruction executed

 MVI B,80 1 7

 DCR B 128 128×5

 JNZ 128 (128-1)×10+7

 Total T states = 1924

The number of T states for execution of LOOP is

= N × T states for DCR B + (N

T states = 1917 T states

 The delay time to execute the LOOP instruction is TL =

T × number of T states for execution of LOOP, where T is the

clock frequency, TL =
5

1
10

6- × 1917 s = 383.4 µs.

 The total time delay TD is calculated from the summation of time to execute instruction of outside LOOP,

TOL and time to execute LOOP instruction, TL.

TD = TOL + TL =
5

1
10

6- × 7 + 10
5

1 6- × 1917 s = 384.8 µs

 Using only one register in a delay loop, a limited time delay is generated. If very high time delay is

required, a register pair will be used in place of the register. Figure 4.10 shows the flow chart for time delay

generation using a register pair. For example, a 16-bit operand is loaded in the DE register pair. Then DE

register pair is decremented by one using DCX D instruction. The DCX instruction does not set the zero flag.

Therefore, additional testing will be done using some extra instructions as the JNZ instruction is executed

only when the zero flag is set.

Assembly Language Programming Using 8085 4.13

 The typical instructions of time delay loop using a register pair are given below:

Program

Memory Machine Labels Mnemonics Operands Comments T states
address Codes

8100 11, 00, 80 LXI D, 8000 Initialise the DE register pair 10

8103 1B LOOP DCX D Decrement DE register pair 5

8104 7B MOV A, E Copy content of E register in accumulator 5

8105 B2 ORA D OR D with accumulator 4

8106 C2, 03, 81 JNZ LOOP Jump not zero to LOOP 10/7

4.7.2 Calculation of Time Delay Using Register Pair

In time delay loop using register pair, LXI D, 8000 is executed once and the other instructions DCX D, MOV

A, E, ORA D and JNZ are executed for many times.

The detail execution of instructions and T states are given below:

 Instructions Number of times instruction executed T states

 LXI D,8000 1 10

 DCX D 32768 32768 × 5

 MOV A, E 32768 32768 × 5

 ORA D 32768 32768 × 4

 Total T states = 786439

The number of T states for execution of LOOP is

 = (N × T states for DCX D + N × T states for MOV A, E + N × ORA D + (N T states for JNZ) + 7

where, N

T states

 = 786429 T states

TL.

 TL = T × number of T states for execution of LOOP

 = 10
5

1 6- × 786429 s = 157.2858 ms (approx).

 The total time delay TD is calculated from the summation of Time to execute instruction of outside LOOP,

TOL and Time to execute LOOP instruction, TL.

TD = TOL + TL = 10
5

1 6- × 10 + 10
5

1 6- × 786429 s

 =157.2878 ms

4.7.3 Time Delay Using Two LOOPs

The time delay can also be generated by using two loops as depicted in Fig. 4.11. The C register is used in

are loaded with numbers. The C register is decremented until it becomes zero. When the content of C register

Microprocessors and Microcontrollers4.14

is zero, decrement B register. If the content of B register is not zero, load the C register with initial value and

repeat the process.

 The example of time delay using two loops is given below:

Program

Memory Machine Labels Mnemonics Operands Comments T state

address Codes

8200 06, 80 MVI B, 80 Initialise the B register 7

8202 0E, FF LOOP-II MVI C, FF Initialise the C register 7

8204 0D LOOP-I DCR C Decrement C register 5

8205 C2, 04, 82 JNZ LOOP-I Jump not zero to LOOP-I 10/7

8208 05 DCR B Decrement B register 5

8209 C2, 02, 82 JNZ LOOP-II Jump not zero to LOOP-II 10/7

820C C9 RET Return to main program 10

 In time delay generation using two loops as given above, MVI B, 80 is executed once and the other instruc-

tions MVI C, FF, DCR C, JNZ, DCR B and JNZ are executed for many times. The detail execution of

instructions and T states are given below:

 Instructions Number of times instruction executed T states

 MVI B,80 1 7 × 1

 MVI C, FF 128 128 × 7

 DCR C 255 × 128 255 × 128 × 5

 DCR B 128 128 × 5

 RET 1 10 × 1

 Total T states = 491157

Time delay will be calculated based on the time delay for LOOP-I and LOOPII. Total number of T states for

LOOP-I and LOOP-II are equal to

T states

 = 491140 T states

TL,

 TL = T number of T states for execution of LOOP -I and LOOP-II

 =

10
5

1 6- × 491140 s = 98.228 ms.

Total delay time (TD)

 = Time to execute instruction of outside LOOP (TOL) + Time to execute LOOP- I and LOOP-II

 = 10
5

1 6- × 7 + 10
5

1 6- × 491140 + 10
5

1 6- × 10

s

 = 98.2314 ms

Assembly Language Programming Using 8085 4.15

 4.8 MODULAR PROGRAMMING

Generally, industry-programming projects consist of thousands

of lines of instructions or operation code. This kind of a huge

monolithic program would be unmanageable and incomprehen-

sible. Therefore, it is difficult to design, write, debug and test the

project. Then the complete project is divided into sub-problems

or small modules. Each independent module is separately named

and has individually invokeable program elements. The size of

the modules are reduced to a humanly comprehensible and man-

ageable level. This approach is known as modular programming.

Usually the divide-and-conquer approach is used in programming.

 Modules are designed, written, tested, debugged by individu-

als or small teams to allow for multiple programmers to work

in parallel. Modules are integrated to become a software system

that satisfies the problem requirements. To integrate successfully,

original decision must be good and interfaces between modules

must be correct.

 Each module will be different, depending on the specific prob-

lem being solved. In very simple problems only one module

exists, but complex problems have many hundreds of modules.

Modules are written in such a way that everybody can understand

the program very easily. Generally, a top-down design is used in

modular programming. In this programming, high-level instruc-

tions break down into smaller sets of instructions and again into

smaller sets until we get the smallest module. The characteristics

of the module are given below:

 1. Each module is independent of other modules.

 2. Each module has one input and one output.

 3. A module is small in size.

 4. Programming a single function per module is a goal.

Advantages of Modular Programming The advantages of

modular programming are the following:

 1. It is easy to write, test and debug a module.

 2. Generally, the modules of common nature are prepared

which can be used at many places.

 3. The programmer can divide tasks and use the previously

written programs.

 4. If a change is to be made, it is made in the particular mod-

ule; the entire program is not affected.

 5. Pieces can be independently debugged.

 6. Work for multiple programmers can be divided.

 7. Code can be reused.

Microprocessors and Microcontrollers4.16

 8. Manageable Reduces problem to smaller, simpler, humanly comprehensible problems.

 9. Divisible Modules can be assigned to different teams/programmers. Enables parallel work, reducing

program development time. Facilitates programming, debugging, testing, maintenance.

 10. Portable Individual modules can be modified to run on other platforms.

 11. Re-usable Modules can be re-used within a program and across programs.

Disadvantages of Modular Programming The disadvantages of modular programming are the

following:

 1. The combining of modules together is a difficult task.

 2. It needs careful documentation as it may affect the other parts of the program.

 3. While testing modules, it is found that the module under test may require data from other modules or

its results may be used by other modules. To solve such problems, special programs called drivers are

to be developed to produce the desired data for the testing of modules. The development of drivers

requires extra effort and time.

 4. Modular programming requires extra time and memory.

 5. The modular programming was originally developed for writing long programs but this technique

can also be used for shorter programs written for microcomputers. Modules ate divided on functional

lines and hence, they can form a library of programs. Modules of 20 to 50 lines should be developed.

They are very useful. There is unnecessary wastage of time in preparing shorter modules. Longer

modules do not become of general nature. The modules should be developed for common tasks and

should be of general form.

 4.9 MACRO

Although 246 instructions are available in the 8085 microprocessor, some new instructions can be developed

using a sequence of known instructions. These new instructions are always assigned a name and known

as MACRO. The name of the macro is used in assembly-language programming. For example, DELAY,

LARGE, SMALL, MUL, and DIV, etc. Most of the assemblers have macro facility. The general form of a

macro is

 Name MACRO arg

 Statement-1

 Statement-2

 ENDM

where, Name is the name of the MACRO, arg represents the arguments of the macro, statements are instruc-

tions, and ENDM is used to end the MACRO.

The example of a DELAY MACRO is

 LOOP DCX B

 MOV A,C

 ORA D

 JNZ LOOP

 ENDM

Assembly Language Programming Using 8085 4.17

 In the above example, DELAY is the name of the MACRO to generate a time delay. In the assembly-

 When a sequence of instructions is written and the macro name is assigned to it, the macro name can be

used repeatedly in the main program and this makes the program easy to understand.

 Another example of MACRO is ADDER as given below:

 MOV A, M

 ADD M

 ENDM

instructions.

 Macros and subroutines are similar. A subroutine requires CALL and RETURN instructions whereas

macros do not. The macros execute faster than subroutines. Macros are used for short sequences of instruc-

tions whereas subroutines for longer ones, generally more than 10 instructions and more. Like subroutines,

a MACRO can be written in nested form. One MACRO can be called by another MACRO. The differences

between a MACRO and SUBROUTINE are the following:

 MACRO SUBROUTINE

 It is used to perform specified operations. Subroutines are also used in specified operations

 like macros.

 In macros, only name of macro is used and In a subroutine CALL and RET are used.

 at the end of each macro ENDM is used.

 Macros are faster than subroutines. Subroutines are slower than macros.

 Macros are used for very few instructions, More than ten instructions are used in a subroutine.

 approximately 10 instructions.

 4.10 INSTRUCTION FORMAT

Each statement in an assembly-language program consists of the following fields: memory address, machine

codes, labels, mnemonics, operands and comments. The commonly used format of an instruction in assembly

language is given below:

Memory Machine Labels Mnemonics Operands Comments

address Codes

Memory Address This is the address of the memory location in which a program or a series of instructions

are stored.

Machine Codes Every instruction has a unique one-byte code called operation code. Instructions are

operated using data. Data may be of one byte or two bytes. Machine codes are the hexadecimal representation

of operation codes.

Microprocessors and Microcontrollers4.18

Labels It is assigned for the instruction in which it appears. The presence of a label in an instruction is

optional. When a label is present, it provides a symbolic name that can be used in branch instructions of the

instruction. If there is no label, then the colon must not be entered. A label may be of any length, from 1 to

35 characters. This appears in a program to identify the name of a memory location for storing data and other

purposes. This is used for conditional/unconditional jumping.

Mnemonics Each instruction has a specific mnemonic. The mnemonic states the operation which will be

executed.

Operands Operands depend on the type of instruction. In a one-byte instruction, there is no operand. Only

one operand exists in two-byte instructions and a three-byte instruction has two operands which are separated

by a comma.

Comments In this field, the general comments about the instructions are always incorporated to understand

the program easily. It is optional. The comment field contains any combination of characters. A comment

may appear on a line and the first character of the line must be a semicolon.

 4.11 ASSEMBLY-LANGUAGE PROGRAMS

4.11.1 Simple Examples of Assembly-Language Programs

Example 1 Transfer data from accumulator to B register.

Mnemonics Opcode Comments

MOV B, A 47 Copy the content of accumulator to B register

Example 2

Mnemonics Opcode Comments

Example 3

Mnemonics Opcode Comments

Example 4

Mnemonics Opcode Comments

Example 5

Mnemonics Opcode Comments

MOV A, M 7E Copy content of memory location in accumulator

Example 6

Mnemonics Opcode Comments

Example 7

Mnemonics Opcode Comments

Assembly Language Programming Using 8085 4.19

Example 8

Mnemonics Opcode Comments

INR M 34 Content of memory location incremented by one

4.11.2 Detect Even and Odd Numbers

Algorithm

 2. Move data into the accumulator.

 4. After AND operation if LSB is 0 then the number is even, otherwise number is odd.

 5. To check LSB, rotate the accumulator right with carry. If the carry flag is set, the number is odd,

otherwise it is even.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8503 36, Number MVI M, NUMBER Store number in memory.

8505 7E MOV A, M Transfer data from memory into accumulator.

8508 0F RRC Rotate accumulator right once so that LSB

 moves to carry bit.

8509 DA, 11, 85 JC LOOP If carry flag is set, number is odd and is stored in

 location 8102.

 stored in location 8001.

 stored in location 8002.

 4.11.3 Addition of two 8-bit Numbers and getting the Sum as 16-bit

Microprocessors and Microcontrollers4.20

Algorithm

 2. Store first data in the memory location.

 4. Store second data in the memory location.

 5. Move second number in accumulator.

 7. Add the content of memory (first data) with accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8008 7E MOV A, M 2nd number in accumulator.

 sum.

800C 66 ADD M Addition of 1st number and 2nd number.

800D D2, 11, 85 JNC LEVEL_1 If carry is not generated, jump to LEVEL_1.

8010 0C INR C When carry is generated, increment C register.

8014 79 MOV A,C Move MSBs of sum in accumulator.

Example

DATA RESULT

Memory location Data Memory location Data

4.11.4 Addition of N 8-bit Numbers

Write a program for addition of a series of 8-bit numbers with carry. The N number of hexadecimal numbers

lie from F101 onwards. F100 has the number of hexadecimal bytes to be added. The result is stored at F200

flow chart for addition of N 8-bit numbers.

Assembly Language Programming Using 8085 4.21

Algorithm

 1. Load the number of bytes to be added in F100 memory location.

 2. Initialise accumulator, as LSBs of the result will be stored in the accumulator.

 3. B register is also initialised to store MSBs of sum.

 4. Let the memory point the number of the bytes to be added and stored in C register.

 5. Move the next memory location for data and data with accumulator.

 6. If carry is generated, B register will be incremented by one.

 7. Decrement the counter having number of bytes.

 8. Check if zero — no repetition from point 5.

 9. Store the result at F200 and F201 location.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

F003 4E MOV C, M Transfer number of bytes from memory location

 to C register.

F004 AF XRA A Clear accumulator register.

 sum.
st

F008 66 ADD M Add memory to accumulator.

F009 D2, 0D, F0 JNC LEVEL_1 If carry is not generated, jump to LEVEL_1.

F00C 04 INR B If carry is generated, increment B register.

F00D 0D LEVEL_1 DCR C Decrement count by one.

F00E C2, 07, F0 JNZ LOOP Test to check whether addition of all numbers are

 done.

F014 78 MOV A,B Copy content of B in accumulator.

Example Consider five (N

DATA RESULT

Memory location Data Memory location Data

Microprocessors and Microcontrollers4.22

Assembly Language Programming Using 8085 4.23

4.11.5 Addition of Two 16-bit Numbers and Sum is more than 16-bit

Assume the first 16-bit number is stored in 8001 and 8002 memory locations. The second 16-bit number

is stored in 8003 and 8004 memory locations. After addition, the result will be stored from 8005 to 8007

Algorithm

 4. Addition of 1st and 2nd number using DAD instruction.

 5. Clear accumulator.

 6. Add accumulator with carry and store result in the accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 to store first number in D-E registers pair.

8500

850A D2, 0E, 85 JNC LEVEL_1 If carry is not generated, jump to the LEVEL_1.

850D 8F ADC A Add carry and accumulator.

Example

DATA RESULT

Memory location Data Memory location Data

Microprocessors and Microcontrollers4.24

4.11.6 Addition of N 16-bit Numbers

Algorithm

N

 5. D-E register pair is loaded with first data.

is not zero, load next number in DE and perform addition.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8614 5E LOOP MOV E, M Copy the content of memory in E register.

8616 56 MOV D, M Copy the content of memory in D register.

8617 4D MOV C, L Move the content of L register to C register.

 ter pair.

Assembly Language Programming Using 8085 4.25

 pushed into stack.

861C DA, 2F, 86 JC LEVEL_1

8622 3D DCR A Decrement accumulator.

8623 CA, 3A, 86 JZ LEVEL_2

8629 69 MOV L, C Move the content of C register to L register.

862C C3, 14, 86 JMP LOOP Jump to LOOP.

8632 3C INR A Increment accumulator.

8636 3F CMC Complement the carry status or reset carry.

8637 C3, 1F, 86 JMP LEVEL_3 Jump to LEVEL_3.

 pointer register.

 pair.

863F 73 MOV M, E Copy the content of E register in memory

 location.

8641 72 MOV M, D Copy the content of D register in memory

 location.

8645 32, 03, 85 STA 8503 Load the content of accumulator to 8503.

4.11.7 Decimal Addition of Two 8-bit Numbers and Sum is 8-bit

Algorithm

 2. Load the first number in the accumulator.

 4. Addition of the content of second memory location with first data.

 5. Decimally adjust the result.

Microprocessors and Microcontrollers4.26

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 pair.

F103 7E MOV A, M Store the first number in accumulator.

 number.

F105 86 ADD M Addition of 1st and 2nd number.

F106 27 DAA Decimal adjust.

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.8 Subtraction of Two 8-bit Numbers

Algorithm

 2. Move first data into accumulator.

 4. Subtract the second data from accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8503 7E MOV A, M Transfer first number in accumulator.

8505 96 SUB M Subtract second number from first number.

8507 77 MOV M, A Store result.

Assembly Language Programming Using 8085 4.27

Example

DATA RESULT

Memory location Data Memory location Data

4.11.9 Subtraction of Two 16-bit Numbers

Consider 1st number in DE registers pair and the 2nd number is in BC register pair. After subtraction result

Algorithm

 3. Compare LSBs of two numbers, E and C. If E > C , find D-B and E-C. When E < C, find D-B-1 and

E+ C +1.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8503 5E MOV E, M Load first two byte number in the DE register

8505 56 MOV D, M

 ond number.

8507 4E MOV C, M Load second two byte number in BC register pair.

8509 46 MOV B, M

850A 7B MOV A, E Transfer LSBs of first number in accumulator.

850B B9 CMP C Compare between LSBs of second number and

 LSBs of first number.

850C DA, 00, 85 JC LEVEL_1 If carry is generated, jump to LEVEL_1.

850F 7B MOV A, E Transfer LSBs of first number in accumulator.

8510 91 SUB C Find E-C.

 location.

8514 7A MOV A, D MSBs of second number in accumulator

8515 98 SUB B Find D-B.

8516 32, 01, 90 STA 9001 Store MSBs , D-B in 9001 location.

Microprocessors and Microcontrollers4.28

851A 79 LEVEL_1 MOV A, C Transfer LSBs of first number in accumulator.

851B 2F CMA Get the complement of C = C.

851C 83 ADD E

C + 1 pair.

851F 32, 00, 90 STA 9000 Store LSBs the result of E+ C

 location.

8522 7A MOV A, D Transfer MSBs of first number in accumulator.

8523 90 SUB B Subtract B from accumulator.

 location.

Example

DATA RESULT

Memory location Data Memory location Data

4.11.10 One’s Complement of an 8-bit Number

-

Algorithm

 2. Move data into accumulator.

 3. Complement accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8003 7E MOV A, M Move the number into accumulator.

8004 3F CMA Complement accumulator.

Assembly Language Programming Using 8085 4.29

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.11 One’s Complement of a 16-bit Number

A 16-bit or 2-byte number is stored in the memory location 9001 and 9002 locations. The result will be stored

Algorithm

 2. Move LSBs data into accumulator.

 3. Complement accumulator.

 6. Move MSBs data into accumulator.

 7. Complement accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9013 7E MOV A, M Move LSBs to accumulator.

9014 2F CMA CMA Complement of LSBs of data.

9019 7E MOV A, M Move MSBs to accumulator.

901A 2F CMA CMA Complement of MSBs of data.

Example

DATA RESULT

Memory location Data Memory location Data.

 4.11.12 Two’s Complement of an 8-bit Number

-

Algorithm

Microprocessors and Microcontrollers4.30

 2. Complement the content of accumulator.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 accumulator.

8513 2F CMA Complement accumulator.

 ment of number.

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.13 Shift an 8-bit Number Left by One Bit

-

Algorithm

 2. Move data from memory to accumulator.

 3. Content of accumulator rotate left by one bit.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8013 7E MOV A, M Move data in accumulator.

8014 07 RLC Content of accumulator rotate left by one bit.

A number will be shifted by one bit when the same number is added with itself. Actually, the number will be

RLC instruction can be replaced by ADD A.

Assembly Language Programming Using 8085 4.31

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.14 Find out the Largest of Two Numbers

-

Algorithm

 2. Compare 2nd number with 1st number.

 3. If 2nd number is greater than 1st number, copy 2nd number in accumulator from memory.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8105 BE CMP M Compare between 2nd number and 1st number.

8106 D2, 0A, 81 JNC LEVEL If borrow (carry) is not generated, jump LEVEL.

8109 7E MOV A,M Move 2nd number in accumulator.

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.15 Find out the Largest Number from an Array of Numbers

locations from 9001 to 9005. The largest number will be stored in the 9006 location. Assume the program

Fig. 4.13.

Algorithm

 3. Move first number in accumulator.

Microprocessors and Microcontrollers4.32

 4. Decrement the count value by one.

 5. Move to next memory location for next data.

 6. Compare the content of memory with content of accumulator.

 7. If carry is generated, copy content of memory in accumulator.

 8. Decrement the count value by one.

 9. If count value does not equal to zero, repeat step 5 to step 8.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9100 0E, 05 MVI C, 05 Load cout value in C register.

9105 7E MOV A, M Copy 1st data in accumulator.

9106 0D DCR C Decrement C register.

9108 BE CMP M Compare next data with the content of accumulator.

9109 D2, 0D, 91 JNC LEVEL If carry is not generated, jump to LEVEL.

910C 7E MOV A, M Copy large number in accumulator from memory.

910D 0D LEVEL DCR C Decrement C register.

910E C2, 07, 91 JNZ LOOP Jump not zero to LOOP.

Example

DATA RESULT

Memory location Data Memory location Data

4.11.16 Find out the Smallest Number from an Array of Numbers

Algorithm

 3. Decrement the count value by one.

 4. Move to next memory location for next data.

 5. Compare the content of memory with content of accumulator.

 6. If carry is not generated, copy the content of memory in accumulator.

Assembly Language Programming Using 8085 4.33

Microprocessors and Microcontrollers4.34

 7. Decrement the count value by one.

 8. If count value does not equal to zero, repeat steps 4 to 8.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8100 0E, 05 MVI C, 05 Load cout value in C register.

8105 7E MOV A, M Copy 1st number in accumulator.

8106 0D DCR C Decrement C register.

8108 BE CMP M Compare next number with the content of

 accumulator.

8109 DA, 0D, 81 JC LEVEL If carry is generated, jump to LEVEL.

810C 7E MOV A, M Copy large number in accumulator from memory.

810D 0D LEVEL DCR C Decrement C register.

810E C2, 07, 81 JNZ LOOP Jump not zero to LOOP.

Example

DATA RESULT

Memory location Data Memory location Data

 4.11.17 Arrange a Series of Numbers in Descending Order

Algorithm

-

sons in D register.

 3. Load the 1st data in accumulator from memory.

 5. Load the next data in B register from memory.

 6. Compare next data with accumulator. Store the smallest number in accumulator and largest number

in memory.

Assembly Language Programming Using 8085 4.35

 7. Then next number is compared with accumulator and store the largest number in memory and small-

est number in accumulator.

 8. This process will continue, till comparison of all numbers have been completed. After completion of

comparison of all numbers, the smallest number in accumulator is stored it in memory. In this way,

the first process will be completed.

 9. At the starting of second process, C register is decremented and store number of comparisons in D

register. Then repeat step-2 to step-8. After completion of this process, smallest number is stored in

 10. C register is decremented and the next process starts if the content of C register is not zero.

The flow chart for arranging a series of numbers in descending order is depicted in Fig. 4.14.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 register.

9102 16, 05 START MVI D, 05 Load count for number of comparisons in D

 register.

9107 7E MOV A, M 1st number in accumulator.

 number.

9109 46 MOV B, M Copy next number in B register from memory.

910A B8 CMP B Compare next number with accumulator.

910B DA, 14, 91 JC LEVEL_1 If the content of accumulator > next number,

 Jump to LEVEL_1.

 ing for storing largest number.

910F 77 MOV M, A Store largest of the two numbers in memory.

9110 78 MOV A, B Move smallest of the two numbers in accumul-

 ator from B register.

9111 C3, 16, 91 JMP LEVEL_2 Jump to LEVEL_2.

9115 70 MOV M, B

9117 15 DCR D Decrement D register to count for number of

 comparisons.

9118 C2, 08, 91 JNZ LOOP Jump zero.

911B 77 MOV M, A Place smallest number in memory.

911C 0D DCR C Decrement count value.

911D C2, 02, 91 JNZ START Jump not zero to START.

Microprocessors and Microcontrollers4.36

Assembly Language Programming Using 8085 4.37

Example

Memory Data Memory After After After After

location location 1st process 2nd process 3rd process 4th process

 4.11.18 Arrange a Series of Numbers in Ascending Order

Algorithm

-

sons in D register.

 3. Load the 1st data in accumulator from memory.

 5. Load the next data in B register from memory.

 6. Compare next data with accumulator. Store the largest number in accumulator and smallest number

in memory.

 7. Then next number is compared with accumulator and store the smallest number in memory and larg-

est number in accumulator.

 8. This process will continue, till comparison of all numbers have been completed. After completion of

comparison of all numbers, the largest number in accumulator and store it in memory. In this way,

first process will be completed.

 9. At the starting of second process, C register is decremented and store number of comparisons in D

 10. C register is decremented and the next process starts, if the content of C register is not zero.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 register.

9102 16, 05 START MVI D, 05 Load count for number of comparisons in D register.

9107 7E MOV A, M 1st number in accumulator.

 number.

Microprocessors and Microcontrollers4.38

9109 46 MOV B, M Copy next number in B register from memory.

910A B8 CMP B Compare next number with accumulator.

910B D2, 14, 91 JNC LEVEL_1 If the content of accumulator > next number, Jump

 to LEVEL_1.

 addressing for storing smallest number.

910F 77 MOV M, A Store smallest of the two numbers in memory.

9110 78 MOV A, B Move largest of the two numbers in accumulator

 from B register.

9111 C3, 16, 91 JMP LEVEL_2 Jump to LEVEL_2.

9115 70 MOV M, B

9117 15 DCR D Decrement D register to count for number of

 comparisons.

9118 C2, 08, 91 JNZ LOOP Jump zero to zero.

911B 77 MOV M, A Place largest number in memory.

911C 0D DCR C Decrement count value.

912D C2, 02, 91 JNZ START Jump not zero to START.

Example

Memory Data Memory After After After After

location location 1st process 2nd process 3rd process 4th process

 4.11.19 Find out Square of a Decimal Number using Look-Up Table

Algorithm

Assembly Language Programming Using 8085 4.39

pair.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

F153 6F MOV L, A Copy the content of accumulator in L register.

F156 7E MOV A, M Move square of decimal number in accumulator

 from memory.

Look-up Table

 ADDRESS SQUARE (decimal)

Example

ADDRESS SQUARE (decimal) ADDRESS Result (decimal)

4.11.20 Find out Square Root of 0, 1, 4, 9, 16, 25, 36, 49, 64 and 81 using
Look-Up Table

Algorithm

Microprocessors and Microcontrollers4.40

register pair.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9103 6F MOV L, A Copy the content of Accumulator in L register

9106 7E MOV A, M Move square root of decimal number in accumula-

 tor from memory.

Look-up Table

 8500 00

 8501 01

 8504 02

 8509 03

 8516 04

 8525 05

 8536 06

 8549 07

 8564 08

 8581 09

Example

ADDRESS SQUARE ADDRESS Result

 4.11.21 Multiplication of Two 8-bit Numbers

Repetitive-Addition Algorithm

 1. Store multiplicand in B register and multiplier in E register.

 4. Decrement B register.

 5. If content of B register is not equal to zero, repeat Step 3 to 5.

Assembly Language Programming Using 8085 4.41

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9103 4E MOV C, M Store multiplier in C register from memory.

9105 5E MOV E, M Multiplicand in E register.

910C 0D DCR C Decrement C register.

910D C2, 0B, 91 JNZ LOOP If not zero, jump to LOOP.

 pair exchanged. Result is stored in DE register.

Example

ADDRESS DATA ADDRESS Result

Binary Multiplication

The other method of multiplication is binary multiplication. If the multiplicand is multiplied by 1, the product

will be equal to the multiplicand. If the multiplicand is multiplied by zero, the product is zero.

For binary multiplication, the following procedure is followed:

Example

Microprocessors and Microcontrollers4.42

 The multiplicand and multiplier are represented in binary form. The product is also in the binary form.

When a multiplicand is multiplied by 1, the product is equal to the multiplicand. When a multiplicand is

multiplied by zero, the product is zero. The procedure for multiplication is given below:

Step-1 The multiplicand is multiplied by the LSB of the multiplier and the partial product is stored. Then

the multiplicand is shifted right.

Step-2 Again the shifted multiplicand is multiplied by the 2nd bit and then added with the previous result.

Then the shifted multiplicand is shifted right. If the bit is a ‘0’ bit, nothing will be added with the partial

product but the multiplicand is simply shifted right by one bit.

Step-3 The step will be repeated till the completion of multiplication of all bits of the multiplier.

 In binary multiplication, the multiplicand is shifted right and shift multiplier left to check the LSB bit

whether it is ‘1’ or ‘0’. Flow chart for multiplication of two numbers is shown in Fig. 4.15.

Algorithm

 1. Load multiplicand and multiplier.

 2. Initialize product value = 0.

 3. Load number of bits of multiplier in C register.

 4. Shift multiplier right by one bit.

by one bit.

 6. DCR counts value.

 7. If the content of C register not zero, modified multiplier again shifted one bit right.

 8. If carry flag is set, shifted multiplicand adds with partial product. Then one again shifts modified

multiplicand left.

 9. Repeat step 6, 7 and 8 till the content of C register becomes zero.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9103 5E MOV E, M Store Multiplicand in E register from memory.

9105 56 MOV D, M Multiplicand in D register.

910E 0F LOOP RRC Rotate accumulation left.

910F D2, 13, 91 JNC LEVEL If there is no carry, jump to level.

 pair exchanged. Result is stored in DE register.

Assembly Language Programming Using 8085 4.43

Microprocessors and Microcontrollers4.44

 pair exchanged. Result is stored in DE register.

9116 37 STC Clear the carry flag using set carry status and then

 complement the carry status.

9117 3F CMC

9118 0D DCR C Decrement C register.

9119 C2, 0E, 91 JNZ LOOP If content of C register is not zero, jump to LOOP.

 9001 memory location.

Example

ADDRESS DATA ADDRESS Result

4.11.22 Division of Two 8-bit Numbers

Repetitive Subtractions The division can be performed by repetitive subtractions. The divisor is

subtracted from the dividend. When there is no borrow, the quotient is incremented by one. If there is borrow,

the quotient and reminder are stored in a specified memory location. Assume dividend and divisor are of

Algorithm

 3. Move dividend in accumulator and copy it in D register.

 4. Subtract divisor from dividend.

 5. If carry is not generated, Increment C register. Repeat Step 3 to 5.

 6. When carry is generated, store quotient, content of C register and remainder content of D register in

memory location.

 7. If zero flag is set, C register incremented by one. Then store quotient, content of C register and

remainder content of D register in memory location.

The flow chart for division of two numbers is illustrated in Fig. 4.16.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9103 36, 22 (Dividend) MVI M, Dividend Store dividend in memory location.

9106 36, 21 (Divisor) MVI M, Divisor Store divisor in memory location.

Assembly Language Programming Using 8085 4.45

910B 7E LOOP MOV A,M Load dividend in accumulator from memory.

910C 57 MOV D,A Copy dividend in D register.

910E 96 SUB M Subtract divisor from dividend.

910F DA, 1B, 91 JC LEVEL_1 If there is carry, jump to LEVEL_1.

9112 CA, 20, 91 JZ LEVEL_2 If there is zero, jump to LEVEL_2.

9116 77 MOV M,A Store modified dividend in memory location from

 accumulator.

9117 0C INR C Increment C register.

9118 C3, 0B, 91 JMP LOOP

911B 37 LEVEL_1 STC Clear the carry flag using set carry status and then

911C 3F CMC complement the carry status.

911D C3, 21, 91 JMP LEVEL_3 Jump to LEVEL_3.

9120 0C LEVEL_2 INR C

Binary Division Binary division is also performed by trial subtractions. The divisor is subtracted from the

8 most significant bits of the dividend. When there is no borrow, the bit of the quotient is set to 1; otherwise

0. Then the dividend and quotient are shifted left by one bit before the next subtraction. The dividend and

quotient can use a 16-bit register. As dividend is shifted, one bit of the register falls vacant in each step and

the quotient is stored in unoccupied bit positions.

 The dividend is a 16-bit number and the divisor is an 8-bit number. When the dividend is an 8-bit number,

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9106 47 MOV B, A Copy the content of accumulator in B register.

910B 90 SUB B Subtract divisor from dividend.

910C DA, 11, 91 JC LEVEL_1 If there is carry, jump to LEVEL_1.

 from accumulator.

Microprocessors and Microcontrollers4.46

Assembly Language Programming Using 8085 4.47

9110 2C INR L Increment L register.

9111 0D LEVEL_1 DCR C Decrement C register.

9112 C2, 12, 91 JNZ LOOP If there is no zero, jump to LOOP.

Example

ADDRESS DATA ADDRESS Result

4.11.23 Convert an 8-bit Hexadecimal Number to a Binary Number

carry, and again content of accumulator is shifted right with carry and content of carry will be stored in previ-

ous memory location. In this way, the operation will be repeated till C register becomes zero.

Algorithm

 2. Initialise the memory location to store result.

 3. Load 8-bit data in accumulator.

 5. Rotate accumulator right with carry.

 6. Copy content of accumulator in E register.

 7. Save carry in accumulator.

 8. Store in memory.

 9. Transfer E register to accumulator.

 10. Clear carry.

 12. Decrement C register.

 13. Repeat steps 6 to 12 till the content of C register becomes zero.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 register pair.

8103 36, DATA MVI M, DATA Load DATA in the memory.

 binary.

Microprocessors and Microcontrollers4.48

810D 1F LOOP RAR Rotate the content of accumulator right with carry.

810E 5F MOV E, A Copy the content of accumulator in register E.

8111 8F ADC A Add the contents of accumulator and carry.

8112 77 MOV M, A Move the content of accumulator in memory.

8113 7B MOV A, E Transfer the content of accumulator in register E.

8114 B7 ORA A Clear carry.

8116 0D DCR C Decrement C register.

8117 C2, 0D, 81 JNZ LOOP If content of C is not zero, Jump to LOOP.

Example

8 Bit DATA Binary number in Memory Location

 8051H 8052H 8053H 8054H 8055H 8056H 8057H 8058H

27 0 0 1 0 0 1 1 1

9F 1 0 0 1 1 1 1 1

4.11.24 Transfer a Block of Data from One Section of Memory to the Other
Section of Memory

Algorithm

 2. Load number of data in C register from memory.

 3. Store the starting address of destination in DE register pair.

 5. Copy data from source to accumulator.

 9. Decrement C register.

 10. If C register is not zero, repeat steps 5 to 9.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

 register pair.

8003 46 MOV B, M Load number of data in B register from memory.

8004 21, 00, 91 LXI D, 9100 Store the destination address in DE register pair.

Assembly Language Programming Using 8085 4.49

8008 7E LOOP MOV A, M Move data from source to accumulator.

800A 77 MOV M, A Store the content of accumulator, data in destina-

 tion address.

800C 13 INX D Increment destination address.

800D 05 DCR B Decrement B register.

800E C2, 08, 80 JNZ LOOP If B is not zero, Jump to LOOP.

Example

Input Result

ADDRESS DATA ADDRESS DATA

4.11.25 Display Digits 0 1 2 3 4 5 6 7 8 9 A B C D E F on the Data Field of
Screen

This program will display a flashing 0 1 2 3 4 5 6 7 8 9 A B C D E F on the data field. The flashing rate

Algorithm

 1. Initialise the stack pointer.

 2. Clear the display.

 3. Point to the data which will be displayed in the data field.

 4. Wait for 50 milliseconds.

 5. Clear the display and wait for 500 ms.

 6. Jump to step-3.

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8000 31, FF, 8C LXI SP, 8CFF Initialise the stack pointer.

8008 3E, 01 MVI A, 01 A is 01 and B is 00 to display character in the data

 field.

800A 06, 00 MVI B,00

Microprocessors and Microcontrollers4.50

 into stack.

800F CD, 47, 03 CALL CLEAR Clear the display by using a subroutine whose

8015 CD, BC, 03 CALL DELAY

8018 CD, D0, 05 CALL OUTPUT Display character in data field.

801E 11, 00, 00 CALL DELAY

8022 C1 POP B

8025 0D DCR C Decrement C register.

8026 C2, 0C, 80 JNZ LOOP_I Jump to LOOP_I if the content of C is not equal to

 zero.

Input

ADDRESS DATA ADDRESS DATA

4.11.26 Rolling Display “HELP 85” on the Address and Data Field of
Screen

Algorithm

 1. Initialise the stack pointer.

 2. Clear the display.

 4. Wait for 500 ms.

 5. Clear the display and wait for 500 ms.

 6. Jump to start.

Assembly Language Programming Using 8085 4.51

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9000 31, FF, 9C LXI SP, 9CFF Initialise the stack pointer.

9003 CD, 47, 03 CALL CLEAR Clear the display by using a subroutine whose

9006 0E, 0A START MVI C, 06 Load the counter, C register with 06.

9008 AF XRA A A is 00 to display character in the address field.

9009 47 MOV B, A

 into stack.

9010 CD, D0, 05 CALL OUTPUT Call OUTPUT subroutine to display characters in

 address field.

9013 3E, 01 MVI A, 01 Initialise A, B for data to be displayed in data field.

9015 06, 00 MVI B, 00

9017 CD, D0, 05 CALL OUTPUT Call OUTPUT subroutine to display characters in

 data field.

901D CD, BC, 03 CALL DELAY

9021 C1 POP B

9024 0D DCR C Decrement C register.

9025 C2, 0D, 90 JNZ LOOP_ I Jump to LOOP_I if the content of C is not equal to

 zero.

 C3, 06, 90 JMP START Jump to START.

Input

ADDRESS DATA ADDRESS DATA

Microprocessors and Microcontrollers4.52

 4.1. Explain the following terms:

 (a) assembly language (b) machine language

 (c) high-level language (d) compiler

 4.2. What are the disadvantages of machine languages? What the advantages of assembly languages?

 4.3. What are translators? Write the differences between compiler and interpreter.

 4.5. Define macro and explain operation of macro with examples. What is the difference between macro

and subroutine?

 4.6. Explain time delay loop using register and register pair. Write some applications of time delay loop.

Calculate the time required to execute the following two instructions if the system clock frequency is

 LOOP: MOV A, B 5 T-states

 JMP LOOP 10 T-states

 4.7. What is modular programming? Write advantages and disadvantages of modular programming.

-

tents of registers B, C and the accumulator after the execution of the following instructions:

 (a) MOV C, A (b) MOV A, B (c) ADD B

assembly-language program to transfer the entire block of data bytes to new memory locations start-

 4.13. N N is

N numbers and stored in 9001.

 4.14. N N is

location starting from 9001.

result in memory location 9501.

 4.17 Write an assembly language program to detect a even and odd numbers.

 4.18 Write an assembly-language program for converting temperature from F to C degree.

 4.19 Write an assembly-language program for shifting an 16-bit number left by two bit.

 4.20 Write an assembly-language program to arrange a series of numbers in descending order using a

subroutine.

Assembly Language Programming Using 8085 4.53

 4.1 The assembler is

 (a) a program that translates mnemonics into binary code

 (b) a program that translates mnemonics into octal code

 (c) an operating system which manages all the programs in the system

(d) a compiler that translates statements from assembly language program into machine language

 4.2 The compiler is

 (a) faster than the interpreter (b) slower than the interpreter

 (c) an interpreter (d) a single-step process

 4.3 When a subroutine is called by the CALL instruction, the microprocessor stores the 16-bit address of

the instruction next to CALL on the

 (a) stack pointer (b) accumulator

 (c) program counter (d) stack

 4.4 When a CALL instruction is executed, the stack pointer register is

 (a) decremented by two (b) incremented by two

 (c) decremented by one (d) incremented by one

 4.5 When the RET instruction is executed at the end of a subroutine,

 (a) the memory address of the RET instruction is transferred to the program counter

 (b) two data bytes stored in the top locations of the stack are transferred to the stack pointer

 (c) the data where the stack is initialised is transferred to the stack pointer

 (d) two data bytes stored in the top two locations of the stack are transferred to the program counter

 (c) two data bytes at the top of the stack are transferred to the program counter

 (c) two data bytes at the top of the stack are transferred to the program counter

 4.8 Opcode is

 (a) the part of the Instruction which tells the computer what operation to perform

 (b) an auxiliary register that stores the data to be added or subtracted from the accumulator

 (c) the register that receives the constructions from memory

 (d) is the data which will be used in data manipulation of instruction

Microprocessors and Microcontrollers4.54

memory location 80EE and 80FF contains 2D and 4E respectively. The following program begins at

 ADD C

 MOV B, M

 MOV M, A

 DAD B

 4.9 What will A contain after the program?

 4.10 What will B contain after the program?

 4.12 What will L contain after the program?

 4.14 What will be the content of memory location 80FF after the program?

 (a) 82AF, 88D4 (b) 82AF, 8450 (c) 8450, 88D4 (d) 82AF, 8452

 4.16 What will be the delay generated by the following instructions?

 MOV C, FF 10 T

 LOOP, DCR C 5 T

 JNZ LOOP 10 / 7T

 (a) 3832 T States (b) 3850 T States

 (c) 3857 T States (d) 3835 T States

 4.1 (d) 4.2 (a) 4.3 (d) 4.4 (a)

 4.5 (d) 4.6 (a) 4.7 (a) 4.8 (a)

 4.9 (a) 4.10 (a) 4.11 (a) 4.12 (a)

 4.13 (a) 4.14 (b) 4.15 (a) 4.16 (c)

CHAPTER

 5.1 INTRODUCTION

The microprocessor is a very powerful IC, which is used to perform various ALU functions with the help

of data from the environment. For this, the microprocessor is connected with memory and input/output

devices to form a microcomputer. The technique of connection between input/output devices and a micro-

processor is known as interfacing. Special attention must always be given during the connection of pins of

peripheral devices and microprocessor pins, as ICs cannot be simply connected. In the development of a micro-

processor-based system, all memory ICs and input/output devices are selected as per requirement of the system

and then interfaced with the microprocessor. Actually address, data and control lines are used for connecting

peripherals. After connecting properly, programs are written in the microprocessor. Programs will be different

for different applications. When the program is executed, the microprocessor communicates with input/output

devices and performs system operations. In this chapter, the interfacing of memory devices are explained.

 5.2 MEMORY INTERFACING

Memory devices are used to store digital information. The simplest type of digital memory device is the flip-

flop, which is capable for storing single bit data, and is volatile and very fast. This device is generally used to

store data in the form of registers. Registers are also used as main memory of computers for internal compu-

tational operations. The basic goal of digital memory is to store and access binary data, which is a sequence of

1’s and 0’s. In this section, different types of memory and its interfacing with a microprocessor is explained.

 5.3 TYPES OF MEMORY

There are two types of semiconductor memories, namely, ROM and RAM. The ROM stands for read only

memory. Data are permanently stored in memory cells from where we are able to read data. ROM cannot

be reprogrammed. This memory is nonvolatile and data is retained when power is switched off. But the data

contents of ROM are accessed randomly just like the volatile memory circuits. Vinyl records and compact

audio disks are typically referred as read-only memory, or ROM, in the digital system.

5
Memory and Interfacing

with 8085 Microprocessor

Microprocessors and Microcontrollers5.2

5.3.1 Classification of ROM

ROMs are manufactured with bipolar technology and MOS technology. Figure 5.1 shows the classification of

ROM. The different features of ROM, PROM, EPROM and EEPROM are explained below:

ROM (Read Only Memory) The data is permanently stored in the memory and these devices are mask

programmed during manufacturing. ROMs cannot be reprogrammed and are of nonvolatile type. These

devices are cheaper than programmable memory devices. The applications of ROM are fixed programmed

instructions, look-up tables, conversions, and some specific operations.

Fig. 5.1 Classification of ROM

PROM (Programmable Read Only Memory) The data can be electrically stored. It can be programmed

by blowing built-in fuses. PROM can be reprogrammed and is of nonvolatile type. These memory devices are

of very low memory density and occupy more space.

EPROM (Erasable Programmable Read Only Memory) These are strictly a MOS device and

programmed by storing charge on insulated gates. These devices are erasable with ultraviolet rays and

reprogrammable after erasing. These memory devices are of nonvolatile type.

EEPROM (Electrically Erasable Programmable Read Only Memory) These memory devices are

electrically programmable by the programmer and the stored data can be erased by ultraviolet light. This is

of nonvolatile type. This is also called Electrically Alterable Programmable Read Only Memory (EAPROM).

5.3.2 Classification of RAM

Read only memory is used only for reading data stored in the memory. ROMs can be programmed only once

and data once recorded cannot be erased. In a RAM, data can be written into its memory as often as desired

and the data stored in a RAM can be read without destroying the contents of the memory.

 Data can be written into and read from a RAM at any selected address in any sequence. When data are writ-

ten into a given address in the RAM, the data previously stored at that address are destroyed and replaced by

the new data. When data are read from a given address in the RAM, the data at that address are not destroyed.

The non-destructive read operation can be thought of as copying the contents of an address while leaving the

content intact. A vinyl record platter is an example of a random-access device. RAM memory is typically

randomly accessed; it is actually virtually/volatile memory.

 There are two types of RAMs, static and dynamic. The basic memory cell in a static RAM is a flip-flop,

bipolar or MOS. After a bit has been stored in the flip-flop of a memory cell, it will remain there while power

Memory and Interfacing with 8085 Microprocessor 5.3

is available. Dynamic RAMs called DRAMs are based on charge, which is stored by using MOS devices.

Since this charge is dissipated by passage of time, DRAMs need periodical recharging or refreshing. RAMs

and Dynamic RAMs are volatile devices. The comparison between different memories based on category,

erasing property, writing mechanism and volatility is illustrated in Table 5.1.

Table 5.1 Comparison of memories

Types of Memory Category Erasing property Writing mechanism Volatility

Read only Memory (ROM) Read only Memory Not possible Masks Nonvolatile

Programmable ROM (PROM) Not possible Electrically Nonvolatile

Erasable PROM (EPROM) Ultra-violet light Electrically Nonvolatile

 and chip level

Electrically Erasable PROM Electrically and Electrically Nonvolatile

(EPROM) byte level

Flash memory Electrically and Electrically Nonvolatile

 block level

Random access memory (RAM) Read and write Electrically and Electrically Volatile

 memory byte level

 RAMs are also manufactured with bipolar technology and MOS technology. The bipolar RAMs are static

RAMs but MOS RAMs are static and dynamic type. Figure 5.2 shows the classification of RAM. The differ-

ent features of static and dynamic RAM are explained below.

Static RAMs These RAMs are built with static or dynamic cells. Five or six transistors are used to store a

single bit. Data can be written and read in nanoseconds. Usually TTL, ECL, NMOS and CMOS technology

are used to manufacture static RAMs. When the power is shut off, data stored in cells can be lost.

Dynamic RAMs In a dynamic memory, data can be stored on capacitors and to retain data every cell has

to be refreshed periodically. One transistor is used to build a memory cell and requires less space. These

memories consume less power compared to static RAMs. The comparison between SRAM and DRAM is

given below:

Table 5.2 Comparison of Static RAM and Dynamic RAM

 Static RAM Dynamic RAM

 required to store data.

 porated with memory.

Microprocessors and Microcontrollers5.4

 5.4 MEMORY ORGANIZATION

The block diagram of a M × K bit memory structure is shown in Fig. 5.3. It has N bit input lines to locate a

address of memory and each address line can store K bits. So the total number of bits in the memory is M

× K bits. Each memory location is represented by address lines to locate M address locations. Here N bits

inputs are required to locate M address locations. The relationship between address locations and input lines

is 2N = M. To generate an address line, an N lines to M lines decoder is used. Actually, the decoder decodes

M locations depending upon inputs. The number of locations and number of bits may be varied for different

memories. When M is the number of locations and K is the number of bits in each location, the size of the

memory is M × K bits. The size of commonly used memory devices are 64, 256, 512, 1024 (1K), 2048 (2K),

4096 (4K), 16384 (16K) but the common values of word size are 1, 2, 4, 8, 12, 16, etc. The Chip Enable (CE)

signal is used to enable the address lines for selecting a bit or a group of bits.

 Nowadays all the semiconductor memory devices are now available in integrated circuit (IC) form. Each

memory IC can store a large number of words. Memory ICs are available in various sizes. The examples of

ICs are 64 × 4 (64 words of 4 bits each), 256 × 8 (256 words of 8 bits each), 1 K × 8 (1024 words of 8 bits

each), 1 M × 8 (1,048,576 words of 8 bits each).

Fig. 5.3 Block diagram of M × K bits Memory

Fig. 5.2 Classification of RAM

Memory and Interfacing with 8085 Microprocessor 5.5

 Each memory IC should have address and data lines including chip select CS, output enable OE and Read/

Write R / W control signals. Figure 5.4 shows the memory organization of an IC. This chip has address lines,

data lines, chip select signals and read and write control signals which are explained below:

Address Lines The memory ICs should have address lines to receive the address values. For a 1K-byte

memory, ten address lines A0–A9 exist. The relationship between number of address lines and size of memory

is 2n, where n is the number of address lines. Similarly, for a 64K byte memory, number of address line is 16,

A0 to A15. Address line A0–An-1 be used to select one of the 2n memory locations.

Data Lines Data lines provide for data input to the IC during write operation and data will be output

from IC during read operation. M data lines D0 – Dm–1 are used for data transfer between microprocessor and

memory IC.

Chip Select Signal CS The chip select signal CS can enable the chip. When the CS is low, memory

access within the chip is possible.

Read or Write R/W The read or write operation can be performed based on R/W control signal. If R/W =1,

data will be read from memory. When R/W = 0, data will be stored in the memory IC.

Output Enable OE The output enable signal is used to connect the output with the data bus.

 For example, the memory organization of 256 × 4 memory IC is depicted in Fig. 5.5. This memory IC has

8 address lines A0–A7 to select 256 memory locations. As there are four data lines, 4 data bits can be stored

in each location. Therefore, the size of the memory is 256 × 4 bits.

 Memory ICs are available in four-bit and eight-bit word configurations. In some applications, sixteen bits

and more than sixteen bits are also used. The memory capacity of each IC is limited. Therefore, memory

expansion is required. The memory size can be expanded by increasing the word size and address locations.

The memory expansion can also be possible by proper interconnections of decoder and memory ICs. Figure

5.6 shows 2K × 8 bits memory using two 1K × 8 bits.

 A 2K-byte RAM can be developed using two 1K byte RAM ICs. In this case, CS is directly connected

with IC1 and the complement of CS is connected to IC2. R/W and OE control signals of both ICs are directly

interconnected as given in Fig. 5.6. The address lines A0–A9 of the ICs are connected in parallel. The chip-1

provides the 1K addresses from 0 to 1023 and the chip-2 provides the next 1K addresses from 1024 to 2047.

Fig. 5.4 Memory organization of 2n × m bits memory IC

Microprocessors and Microcontrollers5.6

As for the first 1K addresses, chip-I is activated and for the next 1K addresses, chip-2 is activated. The chip

select signal is connected with the address line A10. Each chip also provides 8 data lines D0–D7. So that

memory size is increased from 1K byte to 2K byte.

Fig. 5.5 Memory organization of 256 × 4 bits memory IC

Fig. 5.6 Memory organization of 2K × 8 bits memory using two 1K × 8 bits

D
0–7

OEOECS

R/WR/W

D
0–3

A –A
0 9

A –A
0 9

A
10

IC-1

1K × 8-BITS

OE

CS

R/W

D
0–3

A –A
0 9 IC-2

1K × 8-BITS

D –D
0 7

Memory and Interfacing with 8085 Microprocessor 5.7

 Another example is that two 1K × 4 bits RAMs can be combined to develop 1K bytes RAM as depicted

in Fig. 5.7. The IC-1 and IC-2 have ten address lines, which are connected in parallel. The chip select CS,

read/write R / W and output enable OE are also connected together. In this case, memory size is fixed, but

word size is increased from 4 bit to 8 bit. IC-1 and IC-2 are selected at a time for 8-bit data storage or data read

operation.

 The memory organization of 2K bytes using four chips of 1K × 4 bits is illustrated in Fig. 5.8. In this case

the memory sizes as well as word size are increased. The memory size is increased from 1K to 2K, and the

word size is also increased from 4 bits to 8 bits. IC-1 and IC-2 are selected at a time for 8-bit data storage or

data read operation. Similarly, IC-3 and IC-4 are used for 1K × 8 bits memory read/write operations.

 5.5 ROM AND RAM ICs

The organization and operation of memory is already explained briefly in Section 5.4. Most commonly used

ROM and RAM ICs are given in Tables 5.3 and 5.4 respectively with their category, organization, package,

access time, technology and power dissipation, etc.

Fig. 5.7 Memory organization of 1K × 8 bits memory using two 1K × 4 bits

Microprocessors and Microcontrollers5.8

A –A
0 9

A –A
0 9

R/W

CS

D
0–3

R/W

CS OE

I K 4 Bits¥

IC–1

R/W

CS OE

I K 4 Bits¥

IC – 2 D
4–7

D
4–7

CS

R/W

OE

I K 4 Bits¥

IC – 4

CS

R/W

OE

I K 4 Bits¥

IC – 3

D
0–3

R/W

Fig. 5.8 Memory organization of 2K × 8 bits memory using four 1K × 4 bits.

Table 5.3 Commonly used ROM ICs

IC No. Category Package Organization Technology Access time Power

 dissipation

6206D Mask PROM 16-pin DIP Package 512 × 4 Bipolar 60 ns 625 mW

23C1010 MASK ROM 32-PIN DIP/PDIP/SOP/ 128K × 8 MOS 45 ns 250 mW

 PLCC/TSOP Package

23C2000 MASK ROM 32-pin PDIP/PLCC/SOP/ 256K × 8 MOS 70 ns 250 mW

 TSOP Package

23C4000 MASK ROM 32-pin PDIP/PLCC/ SOP/ 512K × 8 MOS 90 ns 210 mW

 TSOP Package

23C6410 Mask ROM 44-pin SOP and 48 pin 8M × 8 MOS 100 ns 420 mW

 TSOP Package 4M × 16

Am1702A PROM 24-pin duel in-line hermetic 256 × 8 MOS 550 ns 1000 mW

 cerdip package

3602A PROM 16-pin DIP package 512 × 4 Bipolar 70 ns 750 mW

3605 PROM 18-pin DIP package 1024 × 4 Bipolar 70 ns 800 mW

27C256 EPROM 28-pin DIP package and 32,768 × 8 Low-power 250 ns 55 mW

 a 32-pin windowed LCC CMOS Contd.

Memory and Interfacing with 8085 Microprocessor 5.9

2716 EPROM 24-pin DIP package 2048 × 8 MOS 450 ns 525 mW

2732A EPROM 24-pin DIP package 4096 × 8 MOS 250 ns 790 mW

2764 EPROM 28-pin DIP package 8192 × 8 MOS 250 ns 790 mW

24AA00/ Serial 8L DIP, SOIC, TSSOP 16 bytes × 8 Low-power 1000 ns 10 mW

24LC00/ EEPROM and 5L SOT-23 packages bits CMOS

24C00

Table 5.4 Commonly used RAM ICs

IC No. Category Package Organization Technology Access time Power

 dissipation

7489 Static RAM 16-pin DIP Package 16 × 4 Bipolar 33 ns 500 mW

2114 Static RAM 18-PIN DIP Package 2K × 4 MOS 200 ns 300 mW

74189 Static RAM 16-pin 16 × 4 Bipolar 50 ns 550 mW

74289 Static RAM DIP Package 16 × 4 Bipolar 35 ns 250 mW

6116 Dynamic 24-pin DIP, Thin Dip, 2K × 4 CMOS 15 ns 4 mW

 RAM SOIC and SOJ package

4166 Dynamic 16-pin DIP Package 16384 × 1 NMOS 200 ns 460 mW

 RAM

2104A Dynamic 16-pin DIP Package 4096 × 1 MOS 150 ns 420 mW

 RAM

2164 16-pin DIP Package 64K × 1 MOS 450 ns 330 mW

Fig. 5.9(a) EPROM Fig. 5.9(b) RAM

 5.6 MEMORY MAP

As 8085 microprocessor has 16 address lines, it has an address capability of 64K (216 = 65,536) from 0000H

to FFFFH. This 64K memory will be used by EPROMs, and RAMs ICs. The assignment of address to various

memory ICs is known as memory map. The memory map of 2K EPROM and a 2K static RAM is depicted

Table 5.3 (Contd.)

Microprocessors and Microcontrollers5.10

in Fig. 5.10. The address of EPROM is from 0000H to 07FFH and the address of RAM is 8000H to 87FFH.

If 2K RAM is not sufficient for programming; another 2K RAM may be connected from 8800H to 9000H as

shown in Fig. 5.10(b). Figure 5.10(c) shows the memory map of a 4K EPROM and a 4K RAM. The address

0000H to 1000H are specified for EPROM and 4K RAM occupies addresses from 8000H to 9000H.

The 2K memories IC have 11 address lines A10–A0, which are used to locate the memory location where data

will be stored or read. The other address lines A12–A15 of the microprocessor can be used for the chip select

signal. The memory map of 2K memories is given below:

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0000H

 h h

 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 07FFH

 The memory map from 0000H to 07FFH can be expressed in terms of page analogy as given below:

(a) (b) (c)

Fig. 5.10(a) Memory map of 2K EPROM and 2K RAM, (b) Memory map of 2K EPROM and 2 × 2K RAM, and
(c) Memory map of 4K EPROM and 4K RAM

 Memory map Page No. Memory map Page No

 0000 }
Page 0

 0400 }
Page 4

 00FF 04FF

 0100 }
Page 1

 0500 }
Page 5

 01FF 05FF

 0200 }
Page 2

 0600 }
Page 6

 02FF 06FF

 0300 }
Page 3

 0700 }
Page 7

 03FF 07FF

Memory and Interfacing with 8085 Microprocessor 5.11

 5.7 ADDRESS DECODING

Figure 5.11 shows the address decoding technique of 8085 microprocessor. A0 – A10 are used for addressing

the EPROM IC. A11 – A15 address lines are applied to a NAND gate to generate the chip select signal CS. The

memory map of EPROM is given below:

 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0000H

 h h

 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 03FFH

Figure 5.12 shows the complete memory and address decoder circuit. In this case, a 3-line to 8-line decoder

can be used to select any one output. Based on inputs at A11, A12, A13 any one output of O0–O7 will be active

low and other output lines remain high. The output lines are connected to the chip select of memory ICs. It is

depicted in Fig. 5.12 that O0 is connected with the chip select of 2K EPROM and O7 is connected with the 2

K RAM. The output lines and corresponding memory address capability is given in Table 5.5.

Fig. 5.11 Address decoding of 2K EPROM

Table 5.5 Memory address selected by the decoder

 Output lines Memory address

 O0 0000H-07FFH

 O1 0800H-0FFFH

 O2 1000H-17FFH

 O3 1800H-1FFFH

 O4 2000H-27FFH

 O5 2800H-2FFFH

 O6 3000H-37FFH

 O7 3800H-3FFFH

Microprocessors and Microcontrollers5.12

Fig. 5.12 Address decoding EPROM using decode

 5.8 MEMORY INTERFACING TO MICROPROCESSOR

The 8085 microprocessor has higher order address bus A8 – A15 and a lower order address/data bus AD0 –

AD7. The lower order address/data bus is multiplexed as address bus and data bus. During the first clock

pulse of a machine cycle, the program counter releases the lower order address in AD0 – AD7 and higher

order address A8 – A15. Then ALE signal is high; the AD0 – AD7 can be used as lower order address bus and

not a data bus. The external latch circuit makes the difference between the address and data bus as shown in

Fig. 5.13.

Fig. 5.13 Multiplexing of lower order address and data bus

Memory and Interfacing with 8085 Microprocessor 5.13

 The microprocessor communicates with various memory ICs. The interfacing between a microprocessor,

memory and I/O devices through address bus, data bus and control bus is depicted in Fig. 5.14. Usually the

address decoder is used to select proper memory and I/O devices.

Fig. 5.14 Schematic block diagram for memory and I/O interfacing with microprocessor

8085
Microprocessor Memory

I/O
Device

I/O
Device

I/O
Device

Control Bus

Address Bus

Data Bus

 When the address decoder is enabled and chip select signals are applied to decoder, RAM or EPROM

or I/O devices are selected. Data will be stored or read from memory devices or I/O devices. The total 64K

addresses are to be assigned to memories and I/O devices. There are two types of address mapping: memory

mapped I/O and I/O mapped I/O.

 In some microprocessors, memory and I/O operation can be differentiated by control signals. The control

signal IO/M is available to distinguish between memory and I/O operations. When the control signal IO/M

is high, I/O operation can be performed. If the control signal IO/M is low, memory operations will be per-

formed. In this case, the same address can be assigned to I/O devices as well as memory location. Generally,

two separate address spaces are exist and each address space can be entirely assigned to either memory or I/O

devices. This technique is known as I/O-mapped-I/O.

 In I/O-mapped-I/O scheme, I/O device cannot be considered as memory location. I/O-mapped-I/O scheme

requires special instruction like IN/OUT to access I/O devices and special signals IO/M . In this scheme, 8085

can access 256 I/O ports. In the 8085 microprocessor, this scheme requires 8-bit address lines. It requires

less hardware to decode 8-bit address. Arithmetical or logical operations cannot be directly performed with

the input data.

 Figure 5.15 shows the connection between microprocessor and I/O devices. The I/O devices are identified

by port addresses. The I/O read and write operations are performed by using software instructions such as IN

and OUT. The I/O read and write operations are controlled by control signals — IOR and IOW respectively.

In this scheme, port addresses are varied from 00H to FFH. Therefore, 256 I/O devices may be connected

with the microprocessor in I/O mapped I/O devices.

Microprocessors and Microcontrollers5.14

 The advantages and disadvantages of I/O mapped I/O are given below.

I/O mapped I/O has the following advantages:

-

cessor, IN and OUT instructions are usually used for data transfer with I/O devices.

long. Therefore the program requires less memory and shorter execution time compared to memory

mapped I/O.

which make program debugging easier.

 I/O mapped I/O has the following disadvantages:

-

tional control signals, IOR and IOW must be generated for read and write operations.

-

tor only to perform arithmetic or logical operations. Different addressing modes are not used in I/O

mapped I/O.

 Figure 5.16 shows the connection between microprocessor and memory. The memory location can be

identified by I/O devices. The memory read and write operations are also performed by using software

instructions such as STA 8000H. In memory read and write operations, MEMR and MEMW control signals

are used.

 When memory location address is the same as port address of I/O devices. An I/O device will be selected

for read and write operations. The memories read and write instructions employ various addressing modes.

As the I/O device is considered as memory location, this type of interfacing is known as memory-mapped

I/O. The advantages and disadvantages of memory mapped I/O are given below.

8085
Microprocessor

Address Bus

Address Decoder

Port
00

Port
01

Port
FF

I/O
Device

I/O
Device

I/O
Device

I/O
Device

Control

Data Bus

Fig. 5.15 I/O mapped I/O devices

Memory and Interfacing with 8085 Microprocessor 5.15

 Memory mapped I/O has the following advantages:

are 16-bit.

devices. The arithmetic and logical operations can be performed on available I/O data directly.

 Memory mapped I/O has the following disadvantages:

-

tions and is longer than I/O instructions.

 The method of memory map is a memory mapped I/O. In a memory mapped I/O scheme, actually a part

of the memory space is allocated to the I/O devices. In this scheme, all the memory reference instructions

can be used in the case of I/O devices and the arithmetic and logical operations are directly performed on

I/O data.

 In memory mapped I/O schemes, I/O device is treated as a memory location. This scheme does not require

any special instruction. The microprocessor can access I/O device by memory instruction. It does not require

special signals. MEMR, MEMW signal can be used to access I/O devices. In this scheme, 8085 can access

64K memory locations or 64K I/O ports. In the 8085 microprocessor, this scheme requires 16 address lines.

More hardware is required to decode 16-bit address. Arithmetical or logical operations can be directly per-

formed with the input/output data. The comparison between memory mapped I/O and I/O mapped I/O is

given in Table 5.6.

 Table 5.6 Comparison between memory mapped I/O and I/O mapped I/O

Memory-Mapped I/O I/O Mapped I/O

16-bit address 8-bit address

MEMR memory read, MEMW memory write IOR I/O read, IOW I/O write

Memory related instructions are I/O related instruction are IN and OUT

MOV M,R, MOV R,M, ADDM, ANA M,

SUB M, STA, LDA, LDAX, STAX Contd.

Fig. 5.16 Memory mapped I/O scheme

Microprocessors and Microcontrollers5.16

Data transfer between any register and I/O Data transfer between accumulator and I/O

The memory map 64K is shared between I/Os The I/O map is independent of the memory map; 256

and system memory input devices and 256 output devices

13 T states (STA, LDA) The IN and OUT instructions are required 10 T–states for

7 T states (MOV M,R) execution

More hardware is needed to decode 16 bit address Less hardware is needed to decode 8-bit address.

Arithmetic or logical operations can be directly Not available

performed with I/O data

 In any microprocessor based system, the design of interface is very important. In this section the memory

interface of memory and microprocessor is explained below.

 The first step is to determine the number of address lines required for memory interface. Find the available

memory address. Design the logic circuit for interfacing.

 Figure 5.17 shows the 8K × 8 RAM interface to 8085 microprocessor. For 4K-memory interface, 13-address

lines are required as 213 = 8K. The 8K memory has starting address in 8000H. Then the end address will be

9FFFH. The following pins are used for interface between microprocessor and memory WR, RD, CS and

A0–A12.

Fig. 5.17 Interfacing 8K byte RAM with microprocessor

 But the pins available for memory interface on microprocessor are WR, RD, IO/M and A0–A15. A0–A12

lines are directly connected with microprocessor and the chip select signal is generated from remaining

address lines A13–A15 and IO/M .

 Interfacing 4K byte RAM with microprocessor is illustrated in Fig. 5.18.

Table 5.6 (Contd.)

Memory and Interfacing with 8085 Microprocessor 5.17

5.8.1 Control Signals for Memory and I/O Devices

The 8085 microprocessor has control signals RD, WR for read and write operation of memory and I/O

devices. This IC also has a status signal IO/M to distinguish the read/write operation of memory or I/O

devices. The memory and I/O devices require the following control signals:

 MEMR (memory read), MEMW (memory write), IOR (I/O read) and IOW (I/O write)

The above control signals are developed from RD, WR and IO/M using gates as depicted in Fig. 5.19.

Fig. 5.18 Interfacing 4K byte RAM with microprocessor

Fig. 5.19 Control Signal of memory and I/O read and write operations

Microprocessors and Microcontrollers5.18

5.8.2 Timing Diagram of Memory Read Cycle and Access Timing

Figure 5.20 shows the typical memory read cycle. The memory must respond with valid data after tACC sec-

onds after placing the memory address on the address bus. tACC is known as address access time. It represents

the maximum amount of time that the memory requires to decode the address and place the data byte on the

data bus. The address access time is in the range of 450 ns to 575 ns. tRD is called the memory read time which

is the maximum amount of time after MEMR becomes low and the valid data will be placed on the data bus.

This time is approximately 300 ns. tCA is the minimum amount of time after MEMR becomes high before

a new address is placed in the address bus. When minimum tCA is not given in the system, a new memory

address will not be placed in the address bus and the previous address output data will be in the data bus.

This is known as bus contention. The tCA is of approximately 20 ns. The detailed operation of memory read

is explained below:

First Clock Cycle of Memory Read

1) the microprocessor places the content of program counter, 8001H, which

is the address of operand on the 16-bit address bus. The 8 MSBs of the memory address, 80H are

placed on the high-order address bus, A15–A8 and 8 LSBs of the memory address, 00H are placed on

the low-order address bus, AD7–AD0.

Fig. 5.20 Memory read cycle

Memory and Interfacing with 8085 Microprocessor 5.19

of the memory address. Then the low-order address bus is demultiplexed and the complete 16-bit

memory address is available in the subsequent clock cycles to get the operand from memory location,

8001H.

M = 0, S0 = 0 and S1 = 1 to identify the memory read operation.

Second Clock Cycle of Memory Read

7–AD0 is ready to accept operand from memory. The microprocessor sends the

control signal MEMR = 0 to enable memory and the program counter is incremented by 1 to 8002H.

After that, the operand from the memory location, 8001H is placed on the data bus.

Third Clock Cycle of Memory Read

3, the microprocessor reads the operand. MEMR signal becomes high during T3 and the

memory is disabled.

5.8.3 Timing Diagram of Memory Write

In a memory write operation, the microprocessor sends data from the accumulator or any general-purpose

register to the memory. The timing diagrams of a memory write cycle are depicted in Fig. 5.21. The memory

write cycle is similar to the memory read cycle, but there are differences on status signals. The status signals

S0 = 1 and S1 = 0 and write WR is low during T2 of machine cycle which indicates that the memory write

operation is to be performed.

Fig. 5.21 Memory write cycle

Microprocessors and Microcontrollers5.20

 During T2 of machine cycle M2, the low-order address bus AD0–AD7 is not disabled as the data is to be

sent out to the memory, which is placed on the low-order address bus. When MEMW becomes high in T3

of machine cycle M2, the memory write operation will be terminated. The following instructions use the

memory write cycle: MOV M, B; MOV M, A and STA 8000 H, etc.

 The memory write cycle begins by placing a valid address on the address bus A0–A15 and valid data is

also placed on the data bus D0–D7 early in the memory write cycle which is known as data write set-up time.

When MEMW becomes low, the memory cycle will be started and MEMW will be low until writing operation

has been completed.

 tAW is the minimum amount of time that valid address will be held on the data bus before MEMW becomes

high. Generally, tAW is 450 ns. tDW is the minimum amount of time that valid data will be held on the bus

before MEMW becomes high and it is approximately 200 ns.

5.8.4 Timing Diagram of I/O Read Cycle

In an I/O read operation the microprocessor reads the data from specified input port or input device. The I/O

read operation is similar to memory read cycle except the control signal IO/M. In a memory ready cycle,

IO/M is low but IO/M is high in case of I/O read cycle operation is that signal IO/M goes high in case of I/O

read.

 The timing diagram of an I/O read operation is shown in Fig. 5.22. In this case, the address on the A-bus is

for an input device. As in an I/O device or I/O port the address is only 8 bits long, the address of I/O device or

I/O port is duplicated on both high-order address bus A8–A15 and low-order address bus AD0–AD7.

 For I/O read operation the IN instruction is used. One example is IN 00. This is a two-byte instruction. The

code of this instruction is DB, 00 where DB is for IN and 00 is the input port address.

 This instruction requires three machine cycles for execution. The first machine cycle is opcode fetch cycle,

and the second machine cycle is a memory read cycle to read the address of input device or input port. In the

third machine cycle, I/O read operation is performed means the data to be read from the input device or input

port. After execution of this instruction, the data is placed in the accumulator. The opcode fetch cycle and

memory read cycle are exactly similar to MVI C, FF H instruction. Figure 5.22 shows the machine cycle M3

of I/O read operation and it is explained below:

T1 State of M3

M becomes high to perform I/O operation.

T2 State of M3

RD is low for read operation.

T3 State of M3

RD Signal becomes high as I/O read operation has been completely performed.

5.8.5 Timing Diagram of I/O Write Cycle

The microprocessor sends the content of the accumulator to an I/O port or I/O device in an I/O write cycle.

The operations of an I/O write cycle is similar to a memory write cycle. But the difference between memory

write and I/O write cycle is that IO/M becomes high in case of I/O write cycle. When IO/M is high, the

Memory and Interfacing with 8085 Microprocessor 5.21

F
ig

. 5
.2

2
T

im
in

g
d
ia

gr
am

 o
f

IN
 P

or
t

A
d
d
re

ss

Microprocessors and Microcontrollers5.22

F
ig

. 5
.2

3
T

im
in

g
d
ia

gr
am

 o
f

O
U

T
 P

or
t

A
d
d
re

ss

Memory and Interfacing with 8085 Microprocessor 5.23

microprocessor locates the address of any output device or an output port. The address of an output device or

an output port is duplicated on both higher-order address bus A8–A15 and lower-order address bus AD0–AD7.

 The OUT instruction is used for I/O write operation. This is a two-byte instruction and it requires three

machine cycles as depicted in Fig. 5.23. The first machine cycle is for opcode fetch operation, and the second

machine cycle is a memory read cycle for reading the address output device or output port from the memory.

In the next third machine cycle data will be written in output device or output port. In other words, data is to

be sent to the I/O device. The third machine cycle is explained below:

T1 State of M3

M signal is also high to perform I/O operation.

T2 State of M3

WR becomes low for write operation.

T3 State of M3

WR Signal becomes high as I/O read operation has been completed.

 5.1 What are the types of memory? Write the comparison between different types of memory.

 5.2 Explain memory mapped I/O and I/O mapped I/O. Write the comparison between memory mapped

I/O and I/O mapped I/O. What are the instructions available in memory mapped I/O and I/O mapped

I/O scheme?

 5.3 What are the advantages and disadvantages of memory mapped I/O over I/O mapped I/O?

 5.4 What are the advantages and disadvantages of I/O mapped I/O over CPU initiated data transfer?

Explain why I/O mapped I/O data transfer technique is limited to 256 input and 256 out peripherals.

 5.5 A semiconductor memory is specified as 4K × 8. Mention the number of words, word size and total

capacity of this memory.

 5.6 Design a memory 16 × 8 from 16 × 4 memory IC.

 5.7 Develop a 32 × 4 memory using 16 × 4 memory ICs.

 5.8 Draw a memory read cycle and explain briefly.

 5.9 Draw a memory write cycle and explain briefly.

 5.10 Draw the timing diagram of I/O read cycle and explain briefly.

 5.11 Draw the timing diagram of I/O write cycle and explain briefly.

 5.12 What are the control signals used for memory and I/O read and write operations?

 5.13 Explain the generation of MEMR, MEMW, IOR and IOW control signals from IO/M, RD, WR

signals.

 5.14 Compare the memory mapped I/O with peripheral mapped I/O.

 5.15 Design to interface 2K × 8 RAM and 4K × 8 RAM to an 8085 microprocessor.

Microprocessors and Microcontrollers5.24

 5.16 Discuss address decoding with a suitable example.

 5.17 Explain memory interfacing with 8085 microprocessor. Design a memory interfacing circuit to inter-

face the following memory ICs

 (i) 2K × 8-bit EPROM 2716. Assume starting address is 8000H.

 (ii) 2K × 4-bit RAM 6116. Consider starting address is 9000H.

 Write the memory map of the above ICs.

 5.18 Compare static RAM and dynamic RAM.

 5.19 Design the interfacing of 8K × 8 bit RAM with the 8085 microprocessor. Assume the starting address

is 7000H. Show the memory map.

 5.20 Design the interfacing circuit to interface two 8K-byte RAM and two 4K-byte EPROM with 8085

microprocessor. Assume the starting address is 8000H. Show the memory map.

 5.21 Draw the memory organization of 2K × 8-bit memory using two 1K × 8 bit memory IC and explain

briefly.

 5.22 Design a memory organization of 1K × 8 bit memory using two 1K × 4 bit memory IC.

 5.23 Draw the memory map of the following

 (a) 2K EPROM with starting address 4000H

 (b) 4K RAM with starting address 8F00H

 5.24 Draw the interfacing circuit to interface 4K byte RAM with 8085 microprocessor and explain briefly.

 5.1 How many address lines are required to access 1MB RAM using microprocessor?

 (a) 16 (b) 8 (c) 20 (d) 12

 5.2 What are the control signals of 8085 microprocessor used to interface I/O devices.

 (a) IO/M, RD, WR (b) IO/M (c) RD (d) WR

 5.3 To design a 4KB RAM with 1024 byte RAM ICs, how many ICs are required?

 (a) 4 (b) 8 (c) 2 (d) None of these

 5.4 In I/O mapped I/O device interfacing, the device has

 (a)16-bit address lines (b) 8-bit address lines

 (c) 20-bit address lines (d) 12-bit address lines

 5.5 In memory mapped I/O device interfacing, the device has

 (a) 16-bit address lines (b) 8-bit address lines

 (c) 20-bit address lines (d) 12-bit address lines

 5.6 When the starting address of 4K RAM is 8000H, the memory map will be

 (a) 8000H–9000H (b) 8000H–8500H

 (c) 8000H–9500H (d) 8000H–A000H

 5.7 If the starting address of 2K RAM is 4000H, the end address of memory map will be

 (a) 4800H (b) 8400H (c) 8000H (d) 4000H

 5.8 A 64K bit memory device can be organized as

 (a) 64K × 1 (b) 16K × 4 (c) 8K × 8 (d) all of these

Memory and Interfacing with 8085 Microprocessor 5.25

 5.9 How many address lines are used to identify an I/O port in I/O mapped I/O and memory mapped I/O?

 (a) 16-bit and 8-bit address lines (b) 8-bit and 16-bit address lines

 (c) 8-bit and 20-bit address lines (d) 16-bit and 12-bit address lines

 5.10 The number of 4K × 4 memory devices are required for 16K × 8 memory

 (a) 2 (b) 3 (c) 4 (d) 8

 5.11 The memory map of a 4K-byte memory chip begins at the location 3000H. The last location of

memory address and number of pages in the chip are

 (a) 2000, 2 (b) 3000, 4 (c) 4000, 16 (d) 5000, 9

 5.12 The number of address lines are required to access 2M byte of data from microprocessor

 (a) 16-bit address lines (b) 8-bit address lines

 (c) 20-bit address lines (d) None of these

 5.13 To design a 2KB RAM with 1024 byte RAM ICs, how many ICs are required

 (a) 4 (b) 8 (c) 2 (d) None of these

 5.14 The address lines required for 16 K byte memory chip are

 (a) 13 (b) 14 (c) 15 (d) 16

 5.15 The number of address lines are required to access 1M byte of data from microprocessor

 (a) 16-bit address lines (b) 20-bit address lines

 (c) 24-bit address lines (d) 32-bit address lines

 5.16 The timing diagram of I/O write Cycle has

 (a) One machine cycle (M1) (b) Two machine cycles (M1 & M2)

 (c) Three machine cycles (M1, M2 & M3) (d) None of these

 5.1 (c) 5.2 (a) 5.3 (a) 5.4 (b)

 5.5 (a) 5.6 (a) 5.7 (a) 5.8 (d)

 5.9 (b) 5.10 (d) 5.11 (c) 5.12 (d)

 5.13 (c) 5.14 (b) 5.15 (b) 5.16 (c)

CHAPTER

6
Interrupts of

8085 Microprocessor

 6.1 INTRODUCTION

An interrupt is the facility provided by the microprocessor to communicate with the outside environment to

let the microprocessor divert its operation based on priority. The interrupts can be used for various applica-

tions in different environments.

 An interrupt is a process where an external device can get the attention of the microprocessor. The process

starts from the I/O device and it is asynchronous type data transfer. Figure 6.1 shows the interrupt-driven

data transfer. The microprocessor can initiate the data transfer after getting an interrupts signal from the I/O

device. The microprocessor can scan the interrupt pin on every machine cycle. When the interrupt signal is

present, microprocessor suspended its present operation after storing the current status in the microproces-

sor so that microprocessor can restart the suspended work again from where it left. Therefore, stack is used

to store the current status. Then the microprocessor provides services the interrupt request by executing an

interrupt service routine.

Fig. 6.1 Interrupt-driven data transfer for an I/O device

Microprocessors and Microcontrollers6.2

 An interrupt is considered to be an emergency signal, which may be serviced. The microprocessor may

respond to it as soon as possible. When the microprocessor receives an interrupt signal, it suspends the

currently executing program and jumps to an Interrupt Service Routine (ISR) to respond to the incoming

interrupt. Each interrupt will most probably have its own ISR. Figure 6.2 shows the interrupt execution.

Responding to an interrupt may be immediate or delayed depending on whether the interrupt is maskable or

non-maskable and whether interrupts are being masked or not. There are two different ways of redirecting the

execution to the ISR depending on whether the interrupt is vectored or non-vectored. In a vectored interrupt,

the address of the subroutine is already known to the microprocessor. In case of a non-vectored interrupt, the

I/O devices will have to supply the address of the subroutine to the microprocessor.

Fig. 6.2 Interrupt execution

 In any microprocessor-based system, I/O devices can use interrupt-driven data transfer. A microprocessor

may have one interrupt level and more than one I/O devices share the interrupt level. The microprocessor may

have many interrupt levels and several I/O devices. Each device can be connected to a interrupt level. When

several I/O devices are connected with a single interrupt level, these devices are reconnected with an 8259

interrupt controller. Using an 8259 interrupt controller, only eight I/O devices can be connected. When more

than eight I/O devices are connected to the 8085 microprocessor, more than 8259 interrupt controllers are

connected in cascade. If each I/O device is connected to an independent interrupt level, the microprocessor

should have several interrupt levels. In this case, the number of I/O devices must be less than the number of

interrupt levels.

 6.2 CLASSIFICATION OF INTERRUPTS

Interrupts can be classified into two types: maskable interrupts and non-maskable interrupts. The maskable

interrupts can be delayed or rejected but the non-maskable interrupts cannot be delayed or rejected. Interrupts

can also be classified into vectored and non-vectored interrupts. In vectored interrupts, the address of the

service routine is hard wired; but in non-vectored interrupts, the address of the service routine needs to be

supplied externally by the device. All types of interrupts are explained in the 8085 interrupts section.

 6.3 THE 8085 INTERRUPTS

When a device interrupts, it actually wants the microprocessor to give a service, which is equivalent to asking

Interrupts of 8085 Microprocessor 6.3

the microprocessor to call a subroutine. This subroutine is known as Interrupt Service Routine (ISR). Figure

6.3 shows the 8085 microprocessor interrupts and their detailed operations are depicted in Fig. 6.4. The ‘EI’

instruction is a one-byte instruction and is used to enable the non-maskable interrupts. The ‘DI’ instruction is

a one-byte instruction and is used to disable the non-maskable interrupts.

 The 8085 microprocessor has a single non-maskable interrupt and the non-maskable interrupt is not

affected by the value of the interrupt enable flip-flop. The processor has five hardware interrupts such as

INTR, RST 5.5, RST 6.5, RST 7.5, and TRAP. They are presented below in the order of their priority from

lowest priority to highest priority:

 INTR is a maskable interrupt. When the interrupt occurs, the processor fetches from the bus one instruc-

tion, usually one of EI and DI instructions.

 The syntax for the interrupt instruction is RST n, where n is equal to 0 to 7. Any one of the 8 RST instruc-

tions (RST0 – RST7) can be executed at a time. During execution, the processor saves the current program

counter into the stack and branches to the memory location. The vector address of this software interrupt is

calculated from N × 8, where N is a 3-bit number from 0 to 7 supplied with the RST instruction. For example,

the vector address of RST 3 is 3 × 8 = 2410 = 0018H. Table 6.1 shows the vector address of RST instructions.

The 8085 recognize 8 RESTART instructions: RST0 – RST7. Each of these would send the execution to a

predetermined hard-wired memory location.

Table 6.1 RST n interrupts vector address

 Restart instruction Hex code Equivalent Vector Address

 RST0 C7 CALL 0000H

 RST1 CF CALL 0008H

 RST2 D7 CALL 0010H

 RST3 DF CALL 0018H

 RST4 E7 CALL 0020H

 RST5 EF CALL 0028H

 RST6 F7 CALL 0030H

 RST7 FF CALL 0038H

 When any of the above instructions are executed, a CALL instruction to the specified address is executed.

The content of the program counter is saved in the stack and the control moves to the specified address. The

vector addresses of the instructions are 8 bytes apart. Therefore, 8 bytes of instructions can be stored at any

vector address. Generally, a 3-byte JMP instruction is stored for the corresponding ISR and program control

is transferred to the desired ISR. The CALL instruction is a 3-byte instruction. The processor calls the sub-

routine, the address of which is specified in the second and third bytes of the instruction. The INTR input is

the only non-vectored interrupt. INTR is maskable using the EI/DI instruction pair.

RST 5.5 is a maskable interrupt. When this interrupt is received, the processor saves the contents of the pro-

gram counter register into the stack and the branches to 002CH address.

RST 6.5 is a maskable interrupt. When this interrupt is received, the processor saves the contents of the pro-

gram counter register into the stack and branches to 0034H address.

RST 7.5 is a maskable interrupt. When this interrupt is received the processor saves the contents of the pro-

gram counter register into the stack and branches to 003CH address.

TRAP is a non-maskable interrupt. It does not need to be enabled, as it cannot be disabled. It has the highest

priority amongst all interrupts. This is edge and level sensitive. This TRAP signal needs to be high and stay

Microprocessors and Microcontrollers6.4

high for recognisation. Once it is recognised, it does not need to be recognised again until it becomes low and

then high again. Generally, TRAP is used for power failure and emergency shutdown. When this interrupt is

received, the processor saves the contents of the PC register into the stack and branches to 0024H address.

Figure 6.4 shows the TRAP interrupts circuit with other interrupts. The positive edge of TRAP input signal

sets the D flip-flop and Q becomes ‘1’. Then AND gate output will be ‘1’ for the duration of high level of

TRAP input. Jump to the vector memory location 0024H as the starting address of an interrupt service routine

for TRAP interrupt is 0024H.

 RST 5.5, RST 6.5, RST 7.5 are all automatically vectored. RST 5.5, RST 6.5, and RST 7.5 are all mask-

able and TRAP is the only non-maskable interrupt in the 8085. TRAP is also automatically vectored. All

maskable interrupts can be enabled or disabled using EI and DI instructions. RST 5.5, RST6.5 and RST7.5

interrupts can be enabled or disabled individually using SIM instruction RST5.5, a maskable interrupt. When

this interrupt is received, the processor saves the contents of the PC register into the stack and branches to

002CH (hexadecimal) address.

Table 6.2 8085 interrupts

 Interrupt Maskable Vectored

 INTR Yes No

 RST 5.5 Yes Yes

 RST 6.5 Yes Yes

 RST 7.5 Yes Yes

 TRAP No Yes

Fig. 6.3 8085 microprocessor interrupts

 6.4 INTERRUPT VECTORS AND VECTOR TABLE

An interrupt vector is a pointer in which the Interrupt Service Routine (ISR) is stored in memory. All vectored

interrupts are mapped onto a memory area called the Interrupt Vector Table as given in Table 6.1 and Table

6.3. The Interrupt Vector Table is generally located in memory page 00 (0000H – 00FFH). The purpose of

the Interrupt Vector Table is to hold the vectors that redirect the microprocessor to the right place when an

interrupt appears.

 For example, assume a device interrupts the microprocessor using the RST 7.5 interrupt line. As the RST

7.5 interrupt is a vectored-type interrupt, microprocessor should know, in which memory location it jumps

Interrupts of 8085 Microprocessor 6.5

using a call instruction to get the ISR address. RST7.5 is known as call 003CH to microprocessor. The micro-

processor jumps to 003CH memory location and it also gets a JMP instruction to the actual ISR address. After

that the microprocessor jumps to the ISR location.

6.4.1 Maskable/Vectored Interrupts of 8085

The 8085 has 4 masked/vectored interrupt inputs. RST 5.5, and RST 6.5 and RST 7.5 are all maskable. They

are automatically vectored according to Table 6.3. The vectors for these interrupts fall in between the vectors

for the RST instructions. For this, they have names like RST 5.5 (RST 5 and a half).

 Table 6.3 Maskable interrupts and vector locations

 Interrupt Vector Address

 RST 5.5 002CH

 RST 6.5 0034H

 RST 7.5 003CH

 The spaces between software interrupt RST 5 and hardware interrupt RST 5.5 is 4 bytes. In this space, a

3-byte JMP instruction is written. The vector address of the hardware interrupts is spaced 8 bytes. Usually, a

three-byte jump instruction is written in this space. The hardware interrupts signal are directly vectored to the

address specified in the interrupt vector table. These interrupts are called vector interrupts.

Fig. 6.4 Interrupts of 8085 microprocessor

Microprocessors and Microcontrollers6.6

6.4.2 Masking RST 5.5, RST 6.5 and RST 7.5

RST 5.5, RST 6.5 and RST 7.5 interrupts are masked at two levels through the interrupt enable flip-flop and

the EI/DI instructions. The interrupt enable flip-flop controls the whole maskable interrupt process through

individual mask flip-flops that control the availability of the individual interrupts. These flip-flops control the

interrupts individually. The 8085 maskable/vectored interrupt should process the following steps.

Step-1 The interrupt process must be enabled using the EI instruction.

Step-2 The 8085 should check for an interrupt during the execution of every instruction.

Step-3 When there is an interrupt and the interrupt is enabled using the interrupt mask, the microprocessor

will complete the executing instruction, and then reset the interrupt flip flop.

Step-4 Thereafter, the microprocessor executes the CALL instruction which sends the execution to the

appropriate memory location according to the interrupt vector table.

Step-5 When the microprocessor executes the call instruction, it saves the address of the next instruction

on the stack.

Step-6 The microprocessor jumps to the specific service routine. The Interrupt Service Routine (ISR) must

incorporate the instruction EI to re-enable the interrupt process.

Step-7 At the end of the service routine, the RET instruction returns the execution to where the program

was interrupted.

6.4.3 Non-Vectored Interrupt

The 8085 non-vectored interrupt processes are completed by the following steps:

Step-1 The interrupt process should be enabled using the EI instruction.

Step-2 The 8085 checks for an interrupt during the execution of every instruction.

Step-3 If INTR is high, MP completes current instruction, disables the interrupt and sends INTA (Interrupt

acknowledge) signal to the device that interrupted.

Step-4 INTA allows the I/O device to send an RST instruction through data bus.

Step-5 After receiving the INTA signal, the microprocessor saves the memory location of the next instruc-

tion on the stack and the program is transferred to ‘call’ location (ISR Call) specified by the RST instruction.

Step-6 The microprocessor performs the ISR. ISR must include the ‘EI’ instruction to enable further inter-

rupt within the program.

Step-7 RET instruction at the end of the ISR allows the microprocessor to retrieve the return address from

the stack and the program is transferred back to where the program was interrupted.

 The 8085 recognises 8 RESTART instructions: RST0 – RST7. Each of these would send the execution to a

predetermined hard-wired memory location given in Table 6.1. The syntax for the interrupt instruction is RST

n, where n is equal to 0 to 7. The restart sequence is made up of three machine cycles.

In the 1st Machine Cycle

interrupting device, the opcode for the specific RST instruction

In the 2nd and 3rd Machine Cycles

Interrupts of 8085 Microprocessor 6.7

 The opcode is simply a collection of bits. The external device produces the opcode for the appropriate

RST instruction. So, the device needs to set the bits of the data bus to the appropriate value in response to an

INTA signal.

(0, 0, 1)(1, 1, 1) (0, 0, 1)

RD

WR

IO/M,S , S1 0

INTA

INTA

ALE

AD – AD0 7

A – A8 15

PC LowerL
RST (SP – 1)L D – D (PC)0 7 H

(SP – 2)L D – D (PC)0 7 L

PC (Higher Order Address Bus)L
(SP – 1)H (SP – 2)H

Machine Cycle (M)1 Machine Cycle (M)2 Machine Cycle (M)3

T1 T2 T3 T4 T5 T1 T2 T3 T1 T2 T3T6

Fig. 6.5 Timing diagram of RST 5 instruction

 The timing diagram of RST 5 is shown in Fig. 6.5. Consider that the RST 5 is stored at 8000H memory

location. This instruction has three machine cycles. In the machine cycle M1, the opcode of RST 5 instruction

is fetched. In the opcode fetch cycle, opcode will be read and decoded. As RST is an interrupt instruction,

it needs to execute its service routine and after execution it must return back to the next memory location of

RST5 instruction. This return address must be stored in the stack.

 The second machine cycle is M2, which is called a memory write cycle. In this machine cycle, the higher

order byte of the the program counter will be stored in the stack. For this, the content of the stack pointer

is decremented by one and a 16-bit content is placed on the address bus. Then the higher order byte of the

program counter is stored in that memory location.

 In the third machine cycle, the content of the stack pointer is also decremented by one and again placed

on the address bus. Thereafter, the lower order byte of the program counter can be stored in that memory

location.

 Figure 6.6 shows an interrupt acknowledge cycle for CALL instruction. M2 and M3 machine cycles are

needed to call the 2-byte address of CALL instruction. Then the content of the program counter is stored in

memory write cycles M4 and M5. After that a new instruction cycle starts.

 Figure 6.7 shows the generation of RST 5 opcode. RST 5 opcode is 11101111 (EFH). If INTR is acknowl-

edged by the microprocessor, INTA signal becomes low. The RST 5 is gated into the system bus. Then the

Microprocessors and Microcontrollers6.8

F
ig

.
6
.6

 T
im

in
g
 D

ia
g
ra

m
 o

f
IN

T
A

 m
ac

h
in

e
cy

cl
e

an
d
 e

x
ec

u
ti

o
n
 o

f
C

A
L

L
 i

n
st

ru
ct

io
n

Interrupts of 8085 Microprocessor 6.9

microprocessor saves the content of the program counter in the STACK

and jumps to the memory location 0028H. In this address, the interrupt

service starts and ends with RET instruction. After execution of RET

instruction, the processor restores the saved address in the stack to the

program counter so that normal execution of the main program can be

started.

 In the 1st machine cycle of the RST operation, the microprocessor

activates the INTA signal. This signal enables the tri-state buffers, which

place the value EFH on the data bus. Therefore, it sends the microproces-

sor the RST 5 instruction. The RST 5 instruction is exactly equivalent to

CALL 0028H.

6.4.4 Triggering Levels

RST 7.5 is positive-edge sensitive. When a positive edge appears on the

RST 7.5 line, logic ‘1’ is stored in the flip-flop as a ‘pending’ interrupt.

Since the value has been stored in the flip-flop, the line does not have to

be high when the microprocessor checks for the interrupt to be recog-

nised. The line must go to zero and back to one before a new interrupt

is recognised.

 RST 6.5 and RST 5.5 are level-sensitive. The interrupting signal must

remain present until the microprocessor checks for interrupts.

 TRAP is edge triggered as well as level triggered. Therefore, TRAP

must be high until this is acknowledged. Figure 6.4 shows the TRAP

interrupt. When the interrupt is acknowledged, the flip-flop of TRAP

interrupt will be cleared so that the next new TRAP interrupt can be

entertained. The summary of all 8085 interrupts is given in Table 6.4.

Table 6.4 8085 interrupts

Interrupt Maskable Masking method Vectored Memory Triggering method

INTR Yes DI/EI No No Level sensitive

RST 5.5 Yes DI/EI SIM Yes No Level sensitive

RST 6.5 Yes DI/EI SIM Yes No Level sensitive

RST 7.5 Yes DI/EI SIM Yes Yes Edge sensitive

TRAP No None Yes No Level and edge

 sensitive

 6.5 INTERRUPT INSTRUCTIONS

The Enable Interrupts (EI) and Disable Interrupts (DI) instructions authorise the microprocessor to allow or

reject interrupts. In case of EI, the interrupts will be enabled following the completion of the next instruc-

tion following the EI. This allows at least one more instruction like JMP or RET, to be executed before the

microprocessor allows itself to be again interrupted. In the DI, the interrupts are disabled immediately and

no flags are affected.

 The Read Interrupt Mask (RIM) and Set Interrupt Mask (SIM) instructions are used to provide interrupt

Fig. 6.7 Generation of
 RST 5 opcode

Microprocessors and Microcontrollers6.10

services of the 8085 microprocessor with the help of the Serial Input Data (SID) and Serial Output Data

(SOD) pins on the device. The discussion of the above two instructions are as follows.

6.5.1 SIM Instruction

Sometimes it is required to enable some selected interrupts and disable some other interrupts. The selected

interrupts are enabling through the Set Interrupt Mask. The Accumulator (A) is loaded with the specified

mask bits. The SIM instruction reads the accumulator content and enables and disables the interrupts.

 The individual masks for RST 5.5, RST 6.5 and RST 7.5 are manipulated using the SIM instruction. This

instruction takes the bit pattern in the accumulator. The SIM instruction reads the accumulator content and

enables or disables the specific interrupts. Figure 6.8 shows the accumulator content for SIM instruction.

Fig. 6.8 Accumulator content for SIM

Serial Data Out

D7 D6 D5 D4 D3 D2 D1 D0

SOD SOE X R 7.5 MSE M 7.5 M 6.5 M 5.5

Enable serial data
0–Ignore bit 7

1–send bit 7 to SOD pin

Not used

Force RST 7.5 Flip Flop to reset

RST 5.5 Mask
0–Available, 1–Masked

RST 6.5 Mask
0–Available, 1–Masked

RST 7.5 Mask
0–Available, 1–Masked

Mask Set enable
0–Ignore bits 0-2
1–set the masks according
to bits 0-2

RST Masks Bits D0, D1, and D2 Bit D0 is the mask for RST 5.5, bit D1 is the mask for RST 6.5 and bit

D2 is the mask for RST 7.5. If the mask bit is 0, the interrupt is available. If the mask bit is 1, the interrupt is

masked. If bits D0 or D1 are set to 1, a signal applied to their respective pins causes no action. When D0 or

D1 are set to 0, their respective bits will be visible through the RIM instruction, and the call to the interrupt

vector will occur. In the case of bit D2, the RIM instruction can indicate that RST 7.5 interrupt is pending,

and an automatic call will not occur.

Mask Set Enable Bit D3 Bit D3 is Mask Set Enable (MSE) and this is an enable for setting the mask.

If it is set to 0, the mask is ignored and the old settings remain. If it is set to 1, the new settings are applied.

The SIM instruction is used for multiple purposes and not only for setting interrupt masks. It is also used to

control functionality such as serial data transmission. Therefore, bit D3 is necessary to tell the microprocessor

whether or not the interrupt masks should be modified.

RST 7.5 Reset Bit D4 Bit D4 is RST 7.5. The RST 7.5 interrupt is the only 8085 interrupt that has

memory. If a signal on RST 7.5 arrives while it is masked, a flip-flop will remember the signal. When RST

7.5 is unmasked, the microprocessor will be interrupted even if the device has removed the interrupt signal.

This flip-flop will be automatically reset when the microprocessor responds to an RST 7.5 interrupt. Bit

4 of the accumulator in the SIM instruction allows explicitly resetting the RST 7.5 memory even if the

microprocessor did not respond to it.

Undefined Bit D5 Bit D5 is not used by the SIM instruction

SOD Enable Bit D6 Bit D6 is used for serial output data enable.

Interrupts of 8085 Microprocessor 6.11

Serial Output Data Bit D7 Bit D7 is used for serial output data. The SIM instruction is used for serial

data transmission. When the SIM instruction is executed, the content of bit D7 of accumulator will be output

on the SOD line.

Example 6.1 Set the interrupt masks so that RST 5.5 is enabled, RST 6.5 is masked, and RST 7.5 is

enabled.

Sol. Initially determine the contents of the accumulator

 Enable 5.5 bit D0 = 0

 Disable 6.5 bit D1 = 1

 Enable 7.5 bit D2 = 0

 Allow setting the masks bit D3 = 1

 Don’t reset the flip flop bit D4 = 0

 Bit 5 is not used bit D5 = 0

 Don’t use serial data bit D6 = 0

 Serial data is ignored bit D7 = 0

 SOD SOE X R7.5 MSE M 7.5 M 6.5 M 5.5

 0 0 0 0 1 0 1 0

Content of accumulator is 0AH. The program for the above operation is given below:

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8000 EB EI Enable all interrupts

8001 3E, 0A MVI A, 0AH Mask to enable RST 7.5, and 5.5, disable 6.5

8003 30 SIM Apply the settings RST masks

6.5.2 RIM Instruction

The RIM instruction loads the accumulator with 8 bits, which consists of the status of the interrupt mask, the

interrupt, enable, the pending interrupts and one bit of serial input data. Figure 6.9 shows the accumulator

content for RIM instruction

Fig. 6.9 Accumulator content for RIM instruction

Microprocessors and Microcontrollers6.12

Interrupt Mask Bits D0, D1, and D2 Bits D0 D1 and D2 represent the current setting of the mask for

each of RST 7.5, RST 6.5 and RST 5.5. A high level shows that interrupt is masked and low level means that

interrupt is not masked. Bits D0 D1 and D2 return the contents of the three mask flip flops. These bits can be

used by a program to read the mask settings in order to modify only the right mask.

Interrupt Enable Bit D3 Bit D3 is the interrupt enable flag. This bit shows whether the maskable interrupt

process is enabled or not. When it is high, interrupt is enabled. If it is low, interrupt is disabled. It returns the

contents of the interrupt enable flip-flop. It can be used by a program to determine whether or not interrupts

are enabled.

Interrupts Pending Bits D4, D5, D6 Bits D4, D5 and D6 represent the pending interrupts. Bits D4 and

D5 return the current value of the RST 5.5 and RST 6.5 pins. Bit D6 returns the current value of the RST 7.5

memory flip-flop. A high level on bits D4, D5 and D6 states that interrupt are pending. When a low level on

bits D4, D5 and D6 states that interrupts are not pending.

Serial Input Data Bit D7 Bit D7 is used for Serial Data Input. The RIM instruction reads the value of the

SID pin on the microprocessor and returns it in this bit.

Example 6.2 Write instructions to call interrupt service subroutine 003CH corresponding to RST7.5 if it

is pending. Assume the content of accumulator is 20H on executing of RIM instruction.

Sol. The program for above operation is given below:

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9000 20 RIM Accumulator content is 20H on executing RIM

 instruction

9001 E6, 40 ANI 40H And immediate with 40H

9003 CD, 3C, 00 CALL 003CH Call interrupts service routine for RST 7.5, when

 RST 7.5 is pending.

Initially, the content of the accumulator is 20H.

 SID P 7.5 P 6.5 P 5.5 IE M 7.5 M 6.5 M 5.5

 0 0 1 0 0 0 0 0

After immediate ANDing with 40H, the content of the accumulator is given below.

 SID P 7.5 P 6.5 P 5.5 IE M 7.5 M 6.5 M 5.5

 0 1 0 0 0 0 0 0

 The 8085 microprocessor has two additional instructions such as Enable Interrupt (EI) and Disable Interrupt

(DI). These instructions can enable or disable all the interrupts except TRAP interrupt. The interrupt enable

flip-flop is manipulated using the EI/DI instructions. Actually, EI and DI instruction generates internally EI

and DI signals. The connections of EI and DI are depicted in Fig. 6.4. The EI signal sets the SR flip-flop

and generates an interrupt output signal. The interrupt enable signal enables the AND gates at the RST 7.5,

RST 6.5 and RST 5.5 inputs. The DI signal can reset the SR flip-flop and makes the interrupt enable output

becomes low. Then all maskable interrupts are disabled. The application of EI and DI is shown in Fig. 6.10.

Interrupts of 8085 Microprocessor 6.13

Example 6.3 Write instructions to enable interrupt RST 7.5 and disable RST 6.5 and RST 5.5.

Sol. The content of accumulator for the SIM instruction to enable interrupt RST 7.5 and disable RST 6.5

and RST 5.5 are

 SOD SOE X P 7.5 MSE M 7.5 M 6.5 M 5.5

 0 0 0 0 1 0 1 1

 Bit D2 is set to 0 and Bit D1 and D0 are reset to 1 to enable interrupt RST 7.5 and disable RST 6.5 and

RST 5.5 respectively. The content of the accumulator is 0BH. The instructions for the above opera-

tion are given below:

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

8500 FB EI Enable all interrupts

8501 3E, 0B MVI A, 0BH Load 0BH to enable RST 7.5, and disable RST 5.5

 and RST 6.5

8502 30 SIM Apply the settings to enable RST 7.5, and disable

 RST 5.5 and RST 6.5

Example 6.4 Write instructions for the following operations:

 The microprocessor has completed the RST 7.5 interrupt. Check if RST 5.5 is pending. When RST 5.5 is

pending, enable RST 5.5 interrupt.

Fig. 6.10

Microprocessors and Microcontrollers6.14

Sol. The content of the accumulator for the RIM instruction for RST 5.5 pending is 10H.

 SOD P 7.5 P 6.5 P 5.5 IE M 7.5 M 6.5 M 5.5

 0 0 0 1 0 0 0 0

The content of the accumulator for the SIM instruction to enable interrupt RST 5.5 and disable RST 6.5 and

RST 7.5 are

 SOD SOE x P 7.5 MSE M 7.5 M 6.5 M 5.5

 0 0 0 0 1 1 1 0

Bit D0 is set to 0 and bits D1 and D2 are reset to 1 to enable interrupt RST 5.5 and disable RST 6.5 and RST

7.5 respectively. Then content of the accumulator is 0EH. The instructions for above operation are as follows:

Program

Memory Machine Labels Mnemonics Operands Comments

address Codes

9000H 20 RIM Read interrupt mask

9001H 47 MOV B, A Store mask information into B register

9002H E6, 10 ANI 10H Check whether RST 5.5 is pending or not

9004H C2, Level JNZ Level

9007H FB EI

9008H C9 RET RST 5.5 is not pending, and return to main program

9009H 78 MOV A, B Read bit pattern and RST 5.5 is pending

900AH E6, 0E ANI 0EH Enable RST 5.5

900CH F6, 08 ORI 08H Enable SIM by setting D3

900EH 30 SIM

900FH CD, 2C, 00 CALL 002CH Call service routine from 002CH

The RIM instructions check whether any interrupts are pending. The ANI 10H masks all bits except D4 to

check pending RST 5.5 interrupt. Bit D4 indicates that RST 5.5 is pending. The ANI 0E and ORI 08H instruc-

tions enable RST 5.5 interrupt. The CALL instruction transfers the execution of the program to the service

routine of RST 5.5.

 6.6 PENDING INTERRUPTS

The 8085 microprocessor has five interrupt lines. Only one interrupt may occur during an ISR and other

interrupts remain pending. If more than one interrupt wants service simultaneously, the microprocessor can

only respond to one interrupt at a time. Therefore, some priority has been assigned to different interrupt lines

which allows their signals to reach the microprocessor according to the priority. This problem can be solved

by one additional circuit known as the priority encoder, 74LS148.

 This circuit has 8 inputs and 3 outputs. The inputs are assigned increasing priorities according to the increas-

ing index of the input, so that Input 7 has highest priority and Input 0 has the lowest. Using the RIM instruction,

the programmer can read the status of the interrupt lines and find if there are any pending interrupts.

Interrupts of 8085 Microprocessor 6.15

 6.7 SERIAL MODE OPERATION USING SID AND SOD PINS OF
8085 MICRO-PROCESSOR

For serial mode of operation, 8085 microprocessor has two serial

input and output pins such as SID and SOD. SID represents

serial input data and SOD represents serial output data. The SID

and SOD pins are used to read/write one-bit data to and from

peripheral devices. There are two software instructions such as

RIM and SIM which are associated with SID and SOD lines.

 The Serial Input Data (SID) line exists inside the 8085 micro-

processor as Pin 5. One bit data can be externally read and stored

using the SID line. The data which is read is stored in the A7 bit

of the accumulator whenever the RIM instruction is executed.

Fig. 6.11 shows the serial input data through SID pin and RIM

instruction.

 When the SID line is connected with +5 V and RIM instruction is executed, the accumulator’s MSB bit

will be loaded with a logic 1 and the content of the accumulator after the execution of RIM instruction is 80

H as depicted in Fig. 6.12.

Pin 5
SID Pin

RIM

Register A

8085 CPU

Fig. 6.11 Execution of RIM instruction

= 80H1

Fig. 6.12 Accumulator content after the execution of RIM instruction with SID = 1

 If the SID is connected with 0 V (Ground) and RIM is executed, the accumulator’s MSB bit will be loaded

with a logic 0. Then the content of the accumulator after the execution of RIM instruction is 00H as shown

in Fig. 6.13.

= 00H0

Fig. 6.13 Accumulator content after the execution of RIM instruction with SID = 0

 The Serial Output Data (SOD) line exists inside the 8085

microprocessor as Pin 4. One bit data can be externally written

in this port. To write data into this port, the SIM instruction must

be executed. The data which is to be written in this port must be

stored in the A7 bit of the accumulator. The A6 bit of the accumu-

lator is called SOE (serial Output Enable) and this bit should be 1

to enable serial data output. Figure 6.14 shows the serial output

data through SOD pin and SIM instruction.

 To write 1 in the SOD line, load the accumulator with C0H and

execute the SIM instruction as shown in Fig. 6.15.

Pin 4
SOD Pin

SIM

Register A

8085 CPU

1

data SOE

Fig. 6.14 Serial output data through
SOD pin and SIM instruction

= C0H1 1

Data SOE

Fig. 6.15 Accumulator content after the execution of SIM instruction

Microprocessors and Microcontrollers6.16

 To write 0 in the SOD line, load the accumulator with 40H and execute the SIM instruction as shown in

Fig. 6.16.

= 40H0 1

Data SOE

Fig. 6.16 Accumulator content after the execution of SIM instruction

 6.1 What are the interrupt pins of 8085 microprocessor? Explain briefly maskable and non-maskable

interrupts. What is meant by priority interrupts?

 6.2 What are the software interrupts of the 8085 microprocessor? Mention interrupts instructions

with their Hex code and vector address. How is the vector address for a software interrupt

determined?

 6.3 Draw the TRAP interrupt and explain briefly. Why is the TRAP input edge and level sensitive? Can

the TRAP interrupt be disabled by a combination of hardware and software? Write some applications

of TRAP interrupt.

 6.4 Draw the SIM instruction format and discuss with an example.

 6.5 Draw the RIM instruction format and discuss with an example. “A RIM instruction should be per-

formed immediately after TRAP occurs.” Why?

 6.6 Explain the software instructions EI and DI. “When returning back to the main program for Interrupt

Service Subroutine (ISS), the software instruction EI is inserted at the end of the ISS”. Why?

 6.7 What do you mean by priority interrupts? Explain the operation of different interrupts available in

8085, with the help of a circuit diagram.

 6.8 Distinguish between

 (i) Vectored and non-vectored interrupt

 (ii) Maskable and non-maskable interrupt

 (iii) Internal and external interrupt

 (iv) Software and hardware interrupt

 6.9 Draw the timing diagram of RST 5 instruction and explain briefly.

 6.10 Explain interrupt driven I/O technique. How does an 8085 microprocessor respond to INTR interrupt

signal?

 6.11 After the execution of RIM instruction, the accumulator contains 49H. Explain the accumulator

contents.

 6.12 Which interrupts are marked after the execution of the following instructions

 MVI A, 1DH, SIM

 6.13 Discuss the serial mode operation using SID and SOD pins of 8085 microprocessor.

 6.14 What are vectored and non-vectored interrupts? Explain the instructions RIM and SIM. Write an

instruction to enable the RST 7.5, RST 6.5 and disable RST 5.5

Interrupts of 8085 Microprocessor 6.17

 6.1 What is the vector address of a software interrupt?

 (a) vector address = interrupt number × 8 (b) vector address = interrupt number × 16

 (c) vector address = interrupt number × 12 (d) vector address = interrupt number × 4

 6.2 If interrupt instruction RST 7 is executed, the program will jump to memory location

 (a) 2000H (b) 0020H (c) 0038H (d) 0016H

 6.3 Which is the highest priority interrupt?

 (a) TRAP (b) RST 6.5 (c) RST 5.5 (d) RST 7.5

 6.4 SIM instruction is used to

 (a) enable RST 7.5, 6.5 and 5.5 (b) disable RST 7.5, 6.5 and 5.5

 (c) enable or disable RST 7.5, 6.5 and 5.5 (d) none of these

 6.5 RST 7.5 interrupt is

 (a) Vectored and maskable (b) Non-vectored and maskable

 (c) Non-vectored and non-maskable (d) Vectored and Non-maskable

 6.6 Which one of the following is the software interrupt of 8085A microprocessor?

 (a) RST 7.5 (b) EI (c) RST0 (d) None of these

 6.7 In order to enable TRAP interrupt, which of the following instructions is/are needed?

 (a) EI only (b) SIM only (c) EI and SIM (d) None of these

 6.8 The call location for TRAP interrupt is

 (a) 0000H (b) 0020H (c) 0024H (d) 0034H

 6.9 The interrupt pin available in the 8085A microprocessor chip is

 (a) ALE (b) HLDA (c) INTER (d) SOD

 6.10 The Call location for RST 7.5 interrupt is

 (a) 003CH (b) 0034H (c) 002CH (d) 0000H

 6.1 (a) 6.2 (c) 6.3 (a) 6.4 (c)

 6.5 (a) 6.6 (c) 6.7 (a) 6.8 (c)

 6.9 (c) 6.10 (a)

CHAPTER

7
8051 Microcontroller Architecture

 7.1 INTRODUCTION

The microprocessor is the core of any computer system, but the microprocessor by itself is completely use-

less, until external peripheral devices are connected with it to interact with the outside world. The microcon-

troller is a single-chip microprocessor system which consists of CPU, data and program memory, serial and

parallel I/O ports, timers and external as well as internal interrupts. Actually, a microcontroller is an entire

computer manufactured on a single chip. Figure 7.1 shows the schematic block diagram of a microcontroller.

The comparison between a microprocessor and microcontroller is given in Table 7.1. The single-chip micro-

controllers are used in instrumentation and process control, automation, remote control, office automation

such as printers, fax machines, intelligent telephones, CD players and some sophisticated communication

equipments. Due to integration of all function blocks on a single-chip microcontroller IC, the sizes of control

board and power consumption are reduced, system reliability increased and also provides more flexibility.

The other advantages of microcontroller-based systems are easy troubleshooting and maintenance; interfac-

ing can be done for additional peripherals, and better software security.

Fig. 7.1 Microcontroller

Microprocessors and Microcontrollers7.2

Table 7.1 Comparison between microprocessor and microcontroller

 Microprocessor Microcontroller

Microprocessor is a single-chip CPU. The block diagram The microcontroller is a single-chip microcomputer sys-

of microprocessor is given below. tem as given below.

It consists of an ALU to perform arithmetic and logic It consists of CPU, data and program memory, serial and

manipulations, registers and a control unit. parallel I/O, timers, external and internal interrupts.

It has address bus, data bus and control bus for interfacing Microcontroller communicates with outside world

with the outside world. through P0, P1, P2 and P3 ports. Ports can be used as

 address and data bus depending upon control signals.

RAM and ROM are not incorporated within chip. RAM is smaller, but it is enough for small applications. If

 it is not sufficient, then external memory may be added in

 the microcontroller-based system.

Microprocessors are used as the CPU in the Microcontrollers are used in small embedded system

microcomputer systems. products to perform control-oriented functions.

Microprocessor instructions perform operations based Microcontroller instructions are able to perform bit-level

on nibbles and bytes. operations and other operations such as based on nibbles,

 bytes, words, or even double words.

Microprocessors are available from 4-bit to 64-bit. 4-bit Microcontrollers are available from 4-bit to 32-bit. 4-bit

microprocessors are used for simple applications. microcontrollers are used for simple applications. 16-bit

8-bit microprocessors are most commonly used in and 32-bit microcontrollers are used for high speed appli-

different applications. 16-bit, 32-bit and 64-bit micro- cations. 8-bit microcontrollers are most commonly used

processors are used for personal computers and in different applications.

high-speed applications.

4-bit to 32-bit microcontrollers are available in the market. Based on the number of bits, microcontrollers are

classified into 4-bit microcontrollers, 8-bit microcontrollers, 16-bit microcontrollers and 32-bit microcon-

trollers. Four-bit microcontrollers are extensively used in electronics toys and example of 4-bit microcon-

trollers are illustrated in Table 7.2. Generally, 8-bit microcontrollers are used in various control applications

such as speed control, position control, and any process control system. Table 7.3 shows the different 8-bit

microcontroller ICs with their features. The 16-bit microcontrollers are developed for high speed control

applications such as servo control system, robotics, etc. These microcontrollers can be programmed in high-

level programming languages as well as assembly language programming. Some 16-bit microcontrollers are

given in Table 7.4. The 32-bit microcontrollers are used for very high speed operations in robotics, image

processing, automobiles, intelligent control system, and telecommunications. Commonly used 32-bit micro-

controllers are 80960 and MC683xx. The microcontrollers are most commonly used in consumer products,

automotive systems, different industrial applications and high speed data processing. A list of microcontroller

8051 Microcontroller Architecture 7.3

applications is given below:

Consumer Products Washing machines, micro-ovens, printers, copiers, compressors, AC machines.

Industrial Applications Control power electronics circuits, DC and AC motor drives, speed and position

control, and motion control, etc.

Automation Antilock braking systems, electronic power steering systems, etc.

High-speed data processing Video conference, image processing, video processing, real-time

compression systems and security, etc.

Table 7.2 4-bit microcontroller families

IC No. of No. of On-chip On-chip program Counters Extra features

 Pins I/O data memory, ROM

 Pins memory

 RAM

TLCS 47 42 35 128 bytes 2K ROM Serial I/O

TMS1000 28 23 64 bytes 1K ROM LED display

COP 420 28 23 64 bytes 1K ROM 1 Serial I/O

MSM6411 16 11 32 bytes 1K ROM

HMCS 40 28 10 32 bytes 512 ROM

Table 7.3 8-bit microcontroller families

IC No. of No. of On-chip On-chip No. of 16-bit No. of Extra

 Pins I/O Pins data memory, program timers/counters vectored features

 RAM memory, interrupts

 ROM

8031 40 32 128 bytes None 2 5 Full duplex serial I/O

8032 40 32 256 bytes None 3 6 Full duplex serial I/O

8051 40 32 128 bytes 4K ROM 2 5 Full duplex serial I/O

8052 40 32 256 bytes 8K ROM 3 6 Full duplex serial I/O

8751 40 32 128 bytes 4K ROM 2 5 Full duplex serial I/O

8752 40 32 256 bytes 8K ROM 3 6 Full duplex serial I/O

Table 7.4 16-bit microcontroller families

IC No. of No. of On-chip On-chip No. of 16-bit No. of Extra

 Pins I/O Pins data memory, program timers/counters vectored features

 RAM memory, interrupts

 ROM

HPC 60 52 512 bytes 16K bytes 4 8 External memory

46164 ROM up to 64K, full

duplex UART, ADC

8096 68 40 256 bytes 8K bytes 2 7 External memory up

 ROM to 64K

8094 48 24 256 bytes – 2 7 External memory up

to 64K

Microprocessors and Microcontrollers7.4

8097 68 24 256 bytes – 2 8 External memory up

to 64K

8095 48 20 256 bytes – 2 8 External memory up

to 64K

8397 68 24 256 bytes 8K bytes 2 8 External memory up

 ROM to 64K

8395 48 20 256 bytes 8K bytes 2 8 External memory up

 ROM to 64K

80C196 160 83 1K bytes 8K bytes 4 16 External memory up

EA register ROM to 2MB, Serial I/O,

 RAM ADC

 3K bytes

 code RAM

 7.2 ARCHITECTURE OF 8051 MICROCONTROLLER

Intel developed the 8051 microcontroller in 1980s. This microcontroller IC consists of standard on-chip

peripherals, i.e., timers, counters, and UART, 4K bytes of on-chip program memory and 128 bytes of data

memory. The 8051 have separate address spaces for program memory and data memory with the help of

modified Harvard architecture. The program memory can be increased to 64 KB. Approximately, 4K bytes of

program instructions can be stored in the internal memory of the 8051. The 8051 can address up to 64 KB of

external data memory. The 8051 memory architecture includes 128 bytes of data memory that are accessible

directly by its instructions. A 32-byte segment of this 128-byte memory block is bit addressable by a subset of

the 8051 instructions, namely, the bit-instructions. For this reason, 8051 microcontroller is known as Boolean

processor and used to deal with binary input and output conditions very efficiently.

 In addition, the device is a low power static design, which offers a wide range of operating frequencies

down to zero. Two software selectable modes of power reduction—idle mode and power-down mode are

available. The idle mode freezes the CPU while allowing the RAM, timers, serial port, and interrupt system

to continue functioning. The power-down mode saves the RAM contents but freezes the oscillators.

 This IC has the following features:

 Fabricated with Philips high-density CMOS technology with operation from 2.7 V to 5.5 V

 8051 Central Processing Unit

 – 4K × 8 ROM

 – 128 × 8 RAM

 – Three 16-bit counter/timers

 – Full duplex serial channel

 – Boolean processor

 – Full static operation

 – Low voltage 2.7V to 5.5V at 16 MHz operation

 – 64K ROM and 64K RAM

Table 7.4

8051 Microcontroller Architecture 7.5

 – Idle mode

 – Power-down mode

 CMOS and TTL compatible

 Frequency range 0 to 33MHz

 4 level priorities interrupt

 6 interrupt sources

 Four 8-bit I/O ports

 Programmable clock out

 Asynchronous port reset

 Figure 7.2 shows the simplified block diagram of 8051 microcontroller. The detailed architecture of 8051

microcontroller has been depicted in Fig. 7.3 which consists of ALU, control and timing unit, RAM/EPROM/

ROM, registers, latches and drivers for ports P0, P1, P2, and P3. The operation of each block has been

explained in this section.

Fig. 7.2 Schematic block diagram of 8051 microcontroller

Accumulator (ACC) The Accumulator register (ACC) acts as an operand register. The accumulator may

be referred as implicit or specified in the instruction by its SFR address 0E0H. ACC commonly used for

data transfer and arithmetic instructions. Accumulator is also bit addressable. ACC.2 states the bit 2 of ACC

register. After any arithmetic operations, the result is stored in ACC.

B Register The B register is used during multiply and divide operations to store the second operands

for multiply and divide instructions MUL AB and DIV AB respectively. After multiplication and division,

part of the result such as upper 8-bits of multiplication result and remainder in case of division are stored in

B register. This register is commonly used as temporary register and can also be accessed through its SFR

address of 0F0H. This register is also bit addressable. It can be used as general purpose register except MUL

and IDIV instructions.

Microprocessors and Microcontrollers7.6

Program Status Word (PSW) This is a special-function register. This register consists of the different

status bits that reflect the current state of microcontroller. Figure 7.4 shows the PSW which resides in the

SFR space. It contains the Carry (CY), the Auxiliary Carry (AC), the two register bank select bits (RS1 and

RS0), the Overflow flag (OV), a Parity bit (P), and two user-definable status flags. The carry bit can serve the

function of a carry bit in arithmetic operations and it also serves as the accumulator for a number of Boolean

operations. The auxiliary carry bit is used in addition of BCD numbers. This bit is set if a carry is generated

out of bit 3 into bit 4. F0 is a general-purpose flag bit available for user applications. The program status bits

and their functions are given in Table 7.5. The bits RS1 and RS0 are used to select the register bank from four

Fig. 7.3 Block diagram of 8051 microcontroller

8051 Microcontroller Architecture 7.7

register banks as depicted in Table 7.6. The overflow flag is used for signed arithmetic operation to determine

whether the result is out of range after signed arithmetic operation. When the result is greater than +127 or

less than –128, OV flag bit is set.

 The parity bit reflects the number of 1s in the accumulator. When the accumulator contains an odd number

of 1s, P = 1. If the accumulator contains an even number of 1s, P = 0.

Table 7.5 Program status bits and their functions

 Symbol Position Address Function

 CY PSW.7 D7H Carry flag

 AC PSW.6 D6H Auxiliary carry flag.

 F0 PSW.5 D5H Flag 0. Available to the user for general purpose.

 RS1 PSW.4 D4H Register bank selector bit 1. Set by software to select the register bank

which will be used.

 RS0 PSW.3 D3H Register bank selector bit 0. Set by software to select the register bank

which will be used.

 OV PSW.2 D2H Overflow flag.

 – PSW.1 D1H Usable as a general-purpose flag.

 P PSW.0 D0H Parity flag. Set/cleared by hardware each instruction cycle to indicate

an odd/even number of ‘1’ in the accumulator.

Table 7.6 Register Bank Selections

 RS1 RS0 Register Bank Address Range

 0 0 0 00H – 07H

 0 1 1 08H – 0FH

 1 0 2 10H – 17H

 1 1 3 18H – 1FH

Stack Pointer (SP) This is an 8-bit register. SP is incremented before the data is stored onto the stack

using PUSH/CALL instructions execution. During PUSH operation, first increment SP and then copy the

data. In the POP operation, initially copy the data and then decrement SP. The 8-bit address of the stack top

is stored in this register. The stack can be located anywhere in the on-chip 128-byte RAM. Initially, the stack

pointer is initialised to 07H after reset operation. Hence the stack begins at locations 08H. The stack can be

relocated by setting SP to the upper memory area in 30H to 7FH.

Data Pointer (DTPR) DTPR is 16-bit register. It consists of a higher byte (DPH) and a lower byte (DPL)

of a 16-bit external data RAM address. It can be accessed as two 8-bit registers or a 16-bit register. DTPR has

been given two addresses in the special-function register bank. DPTR is very useful for string operations and

Fig. 7.4 Program Status Word (Bit Addressable)

Microprocessors and Microcontrollers7.8

look-up table operations. With 16-bit DPTR, a maximum of 64 K of off-chip data memory and a maximum of

64 K of off-chip program memory can be addressed. For this, 16-bit memory location address will be stored

in DPTR through MOV DPTR,#XXXX instruction. To read data from memory location and write data in

memory location, MOVX R0,@DPTR and MOVX @DPTR,#XX are used respectively. This can also be used

as a general-purpose register. To increment the contents of DPTR, INC DPTR instruction is executed. But,

there is no such instruction in 8051 to decrement the DPTR.

Port 0, Port 1, Port 2, Port 3 Latches and Drivers Each latch and corresponding driver of ports 0–3

is allotted to the corresponding on-chip I/O port. All ports are bidirectional input/output ports of 8 bits each.

The addresses of latches are stored in the special function register bank. Using these addresses, ports 0–3 can

be communicated with other ICs and all input/output signals. The output drivers of Ports 0 and 2, and the

input buffers of Port 0 and Port 2, are used in accesses to external memory. In this case, Port 0 outputs the low

byte of the external memory address and Port 2 outputs the higher byte of the external memory address. P1

can be used as input/output port and it acts an important role in programming of internal memory of 8051. P3

can also be used as I/O port. The pins of Port 3 have alternate functions such as serial input line (P3.0), serial

output line (P3.1), external Interrupt lines (P3.2, P3.3), external timer input lines (P3.4, P3.5), external data

memory write strobe (P3.6) and external data memory read strobe (P3.7).

 The port registers specify the value to be output on the specific output port or read value from the specified

input port. Ports are also used as bit addressable. The first bit of port has the same address as the register.

Suppose the port address of P1 is 90H in SFR. The address of P1.0 is 90H and Port address of P1.7 is 97H.

Serial Port Data Buffer The serial port data buffer internally consists of two independent registers such

as transmit buffer and receive buffer at the same location. The transmit buffer is a parallel-in serial-out

register. The serial data receive buffer is a serial-in parallel-out register. The serial data buffer is identified

as SBUF. If data is moved to SBUF, it goes to the transmit buffer and sets serial transmission. When data is

moved from SBUF, it receives serial data from the receive buffer.

Timing Registers There are two 16-bit timing registers in 8051. The 16-bit timer register can be accessed

as their lower and upper bytes. The TH0 and TL0 represent the higher byte and lower byte of the timing

register 0 respectively. In the same way TH1 and TL1 represent the higher byte and lower byte of the timing

register 1 respectively. All timing registers can be accessed by using the four different addresses allotted to

them. The addresses of registers have been stored in the special function registers (SFR) from 80H to FF. In

the 8052, one more pair (TH2 and TL2) exists for Timer/Counter 2. The operation of timing register may be

timing or counting. There is a timer control (TCON) and a timer mode registers (TMOD) to configure all

timers/counters in various modes. These timers can be used to measure pulse width from one microsecond to

65 ms, generate longer time delay and time interval.

Control Registers The control register consists of special function registers such as Interrupt Priority

(IP), Interrupt Enable (IE), Timer Mode (TMOD), Timer Control (TCON), Serial Port Control (SCON) and

Power Control (PCON). All of these registers have allotted addresses in the special function register bank of

8051 microcontroller.

Capture Registers Register pair RCAP2H and RCAP2L exist only in the 8052. Actually these are the

capture registers for the Timer-2. When Timer-2 operates in capture mode operation, a transition at the 8052

T2EX pin causes TH2 and TL2 to be copied into RCAP2H and RCAP2L. Timer-2 has a 16-bit auto-reload

mode and RCAP2H and RCAP2L hold the reload value for this mode operation.

Timing and Control Unit The timing and control unit generates all the necessary timing and control

8051 Microcontroller Architecture 7.9

signals required for the internal operation of the microcontroller. This unit also generates necessary control

signals ALE, , RD and WR to control the external system bus.

Oscillator The oscillator circuit generates the basic timing clock signal for the operation of the

microcontroller using crystal oscillator. The 80C51 microcontroller operates at about 12 MHz frequency.

In this microcontroller, only the quartz crystal oscillator is connected with microcontroller externally and

remaining oscillator circuit components are incorporated in the chip.

Instruction Register (IR) This register is used to decode the opcode of any instruction to be executed.

After decoding, this register sends the decoded information to the timing and control unit to generate necessary

signals for the execution of the specified instruction.

Program Address Register This is an on-chip EPROM and a basic circuit mechanism to internally

address it. EPROM is available in 8051, 8052, 8751 and 8752 microcontrollers and it is not available in 8031

and 8031 microcontrollers.

RAM This block provides internal 128 bytes of RAM.

RAM Address Register The RAM address register is used to generate address of RAM internally.

ALU (Arithmetic and Logic Unit) The ALU performs 8-bit arithmetic and logical operations when the

operands are held at the temporary registers TMP1 and TMP2. These temporary registers cannot be accessed

by users. The output of the ALU is stored in accumulator in most of the arithmetic and logical operations

with few exceptions. Apart from addition and subtraction operations, the 8051 microcontroller also performs

multiplication and division operations. The logical operations such as AND, OR, NOT, Ex-OR operations are

also performed in ALU.

SFR (Special Function Registers) This register bank is a set of registers, which can be addressed

using their respective addresses in the range of 80H to FFH.

 7.3 MEMORY ORGANIZATION

The 80C51 microcontroller has separate address spaces for program memory as well as data memory. Figures

7.5 and 7.6 show the program and data memory respectively. The logical separation of program and data

memory allows the data memory to be accessed by 8-bit addresses and this 8-bit memory access can be stored

quickly and manipulated by an 8-bit CPU. The 16-bit data memory addresses can also be generated through

the DPTR register and data can be read from external memory.

Fig. 7.5 Program memory (Read Only) structure

Microprocessors and Microcontrollers7.10

 The program memory can be read only such as ROM and EPROM. There can be up to 64K bytes of pro-

gram memory. In the 80C51, the lowest 4K bytes of program exist on-chip and 60K bytes program memory is

external memory. In the ROM less versions of microcontrollers program memory is external and its capacity

is about 64K. The read strobe for external program memory is the (Program Store Enable). Depending

on the instructions, the same address can refer to two logically and physically differed memory locations.

 The data memory has a separate address space from program memory. In the 80C51 microcontroller, the

lowest 128 bytes of data memory are available on-chip and maximum 64K bytes of external RAM can be

addressed in the external data memory space. In ROM less version of microcontroller, the lowest 128 bytes are

on-chip. The CPU of microcontroller generates read and write signals during external data memory accesses.

7.3.1 Program Memory

A map of the lower part of the program memory is shown in Fig. 7.7. After reset, the microcontroller starts

fetching instructions from 0000H and the CPU also starts execution from location 0000H. This can be either

on-chip memory or external memory depending on the value of the pin. When is low, the program

memory is external. If is high, the address from 0000H to 0FFFH will refer to on-chip memory and the

address from 1000H to FFFFH can refer to external memory as depicted in Fig. 7.5.

Fig. 7.6 Data memory (Read/Write) structure

Fig. 7.7 8051 Program memory

8051 Microcontroller Architecture 7.11

 It is clear from Fig. 7.7 that each interrupt is assigned a fixed location in program memory. When any inter-

rupt is executed, the CPU will jump to that specified location and it starts execution of the service routine.

For example, external interrupt-0 is assigned to memory location 0003H. When external interrupt 0 is going

to be used, its service routine must start at location 0003H. If the interrupt is not going to be used, its service

location is available as general purpose program memory.

 Usually the interrupt service locations are available at 8-byte intervals: 0003H for external interrupt-0,

000BH for timer-0, 0013H for external interrupt-1, and 001BH for timer-1, etc. When the interrupt service

routine is short, it can reside entirely within that 8-byte interval. But the longer service routines can use a

jump instruction to skip over subsequent interrupt locations.

 The lowest 4K bytes of program memory will be either in the on-chip ROM or in an external ROM. The

internal or external program memory selection can be made by (External Access) pin. In the 80C51, if

the pin is VCC, then the program fetches to internal ROM addresses 0000H through 0FFFH. In this case,

program fetches to addresses 1000H through FFFFH are directed to external ROM.

 When the pin is grounded, all program fetches are directed to external ROM.

 The read strobe to external ROM, is used for all external program fetches. The is not activated

for internal program fetches.

 Figure 7.8 shows the hardware configuration for external program execution. Program memory addresses

are always 16 bits wide. Ports 0 and 2 are dedicated to bus functions during external Program Memory

fetches. Port 0 serves as a time multiplexed address/data bus. When the ALE (Address Latch Enable) signal

is high, Port 0 is used as the low byte of the Program Counter (PCL) as an address. Port 2 is used as the

high byte of the Program Counter (PCH). Then PSEN strobes the EPROM and the code byte is read into the

microcontroller.

7.3.2 Data Memory

The hardware configuration for accessing up to 2K bytes of external RAM is shown in Fig. 7.9. The MOVX

Fig. 7.8 Executing from external program memory

Microprocessors and Microcontrollers7.12

instruction is used to access the external data memory. The CPU in this case is executing from internal

ROM. Port 0 acts as a time-multiplexed address/data bus to the RAM and 3 lines of Port 2 are being used

to page the RAM. The CPU of microcontroller generates RD and WR signals as required during external

RAM accesses. The CPU can be used to access up to 64K bytes of external Data Memory. The external data

memory addresses can be either 1 or 2 bytes wide. One-byte addresses are frequently used in conjunction

with one or more other I/O lines to page the RAM. Two-byte addresses can also be used, in which case the

high address byte is emitted at Port 2.

 The internal and external data memory spaces available to the 80C51 user are given in Fig. 7.10. The

80C51 microcontroller has 256 bytes of RAM on the chip. Among them, only the lower 128 bytes are used

for internal data storage. The upper 128 bytes are used as the special function registers (SFR). The detail of

the lower 128 bytes is illustrated in Fig. 7.11. The lower 128 bytes of RAM which can be accessed by both

direct and indirect addressing can be divided into three segments as listed below:

Register Banks 0-3 The lowest 32-bytes (00H to 1FH) of the on-chip RAM occupied as 4 banks of 8

registers each as depicted in Fig. 7.12. The bank is selected by setting 2 bit in PSW. Only one bank is active

Fig. 7.9 Accessing external data memory

Fig. 7.10 Internal data memory

8051 Microcontroller Architecture 7.13

at a time. By default Bank-0 is selected and its register addresses 00H to 07H. Each bank consists of eight

1-byte registers R0 to R7.

 Reset initializes the stack pointer to location 07H and it is incremented once to start from location 08H,

which is the first register (R0) of the second register bank. Therefore, in order to use more than one register

bank, the SP should be initialized to a different location of the RAM.

Bit Addressable Area The next 16-bytes contain 20H–2FH form a block that can be addressed as either

bytes or individual bits. The bytes can be addressed 20H to 2FH. The bits can be addressed 00H to 7FH as

depicted in Fig.7.13. For accessing the bits, specific instructions are used. Hence, bits 0–7 can also be referred

Fig. 7.11 128-bytes of RAM direct and indirect addressable

Fig. 7.12 Four banks of 8-registers R7–R0

Microprocessors and Microcontrollers7.14

to as bits 20.0–20.7 and bits 8-FH are the same as 21.0–21.7, and so on. Each of the 16-bytes in this segment

can also be addressed as a byte.

Scratch Pad Area The memory locations 30H–7FH are general purpose RAM. On the other hand, if the

stack pointer has been initialized to this area, enough bytes should be left aside to prevent SP data destruction.

 The upper 128 bytes of the on-chip RAM are used for special function registers as shown in Fig. 7.14.

Actually, only 25 of these bytes are used. The other bytes are reserved for advanced versions of the micro-

controller. These bytes are associated with registers which are used for different functions and operation of

microcontroller. Some of these registers are bit addressable and some of these bytes addressable.

 7.4 PIN DIAGRAM OF 8051 MICROCONTROLLER

The 8051 microcontroller is available in DIP, QFP and LLC packages. This is a 40 pin IC. There are four

8-bit ports P0, P1, P2 and P4. Therefore, total 32 pins are covered for 4-ports. The remaining 8 pins are VCC

(power supply), VSS (ground), crystal oscillator pins XTAL1 and XTAL2, RST (Reset), PSEN (Program

Store Enable), ALE (Address Latch Enable), and EA (External Access) respectively. The Pin diagram of

8051 microcontroller is depicted in Fig. 7.15 and schematic pin diagram is illustrated in Fig.7.16. The brief

discussions of all these pins are explained in this section.

Fig. 7.13 Bit addressable RAM

8051 Microcontroller Architecture 7.15

VCC This pin is connected to +5 V supply voltage. A 125-mA current is drawn from supply for 8051/8031

microcontroller and the maximum power dissipation rating is about 1W.

VSS This is a ground pin for supply. All the voltages are specified with respect to this pin.

RST The RST input pin resets the 8051, only when RST pin is high for two or more machine cycles.

There are two ways to reset 8051 microcontroller such as power-on reset and manual reset. When the

microcontroller is reset, all values in the register to will be lost. So the reset values of PC, ACC, B, PSW and

DPTR are 0000H and the content of SP is 0007H. The power-on reset circuit diagram is shown in Fig. 7.17.

A pull-down resistance of 8.2K is connected between RST and ground terminals. A10 μF capacitance is also

connected from VCC to RST pin. These components provide delay about 24 clock cycles. Figure 7.18 shows

the manual reset circuit. A push-button switch is added across the 10 μF capacitor.

ALE (Address Latch Enable) ALE is used for demultiplexing the address and data bus when 8051

microcontroller is interfacing with external memory. Port 0 provides the low-byte of address bus A7 to A0

and data bus D7 to D0. When ALE = 1, port 0 is used as address bus A7 to A0. If ALE = 0, port 0 is used as

the data bus. Usually, ALE is activated periodically with a constant rate of one-sixth of the oscillator

frequency.

Fig. 7.14 SFR memory map

Microprocessors and Microcontrollers7.16

EA (External Access) This pin is connected to

either VCC or ground. When this pin is connected to

VCC or high, 8051 is to execute programs from internal

program memory till address 0FFFH. If EA is low,

microcontroller can execute from external memory only.

PSEN (Program Store Enable) This pin is an

active-low output control signal. This is used as a

read signal for reading data from the external program

memory. This pin is activated after every six-clock

cycles during fetching the data from external program

memory. The pin is remaining high during

execution a program from internal ROM.

XTAL1 and XTAL2 These are the oscillator pins to

connect the crystal oscillators of nominal frequency 12

MHz or 11.059 MHz. XTAL1 is input to the inverting

oscillator amplifier and input to the internal clock

generating circuits. XTAL2 is output from the inverting

oscillator amplifier. Usually the quartz crystal oscillator

is connected to XTAL1 and XTAL2 and it also needs two

capacitors of 30-pf values. One side of each capacitor is

connected to the ground as shown in Fig. 7.19.

 When the 8051 microcontroller is connected to a crys-

tal oscillator and power supply is given, we can observe

the frequency on the XTAL2 pin. The 8051 microcon-

troller’s operation is synchronising with crystal oscilla-

tor output signal. Effectively, the 8051 operates based

on machine cycles. A machine cycle is the minimum

amount of time in which a single 8051 instruction can be

executed, but some instructions take multiple machine

cycles. In 8051, a machine cycle consists of a sequence

of 6 states numbered S1 through S6 (twelve clock cycles)

as shown in Fig. 7.20. Each state time lasts for two oscil-

lator periods. Machine cycle is also called as instruction

cycle. Each instruction cycle has six states (S1–S6) and

each state has two pulses (P1 and P2). Hence a machine

cycle takes 12 oscillator periods or 1ns if the oscillator

frequency is 12 MHz.

Port 0 (P0.0–P0.7) Port 0 consists of 8-bit

bidirectional input/output port pins. These are bit

addressable. This port has been given an address in

the SFR address range. Port 0 acts as multiplexed low order address/data bus AD7–AD0. ALE is used for

demultiplexing address and data bus. When ALE is 0, it provides data D7–D0, but when ALE is 1, it is used

as address A7–A0. The Port 0 pins are open drain I/O. To use the pins of port 0, each pin must be connected

externally to a 10 K ohm pull-up resistor.

Fig. 7.15 Pin diagram of 8051 Microcontroller

8051 Microcontroller Architecture 7.17

Port 1 (P1.0–P1.7) Port 1 pins can be used as either input or output. This port is an 8-bit quasi-bidirectional

bit addressable port and Port 1 pins are internally pulled high with fixed pull-up resistors. Hence, this port

does not need any pull-up resistor as it already has internal pull-up resistance. This port has been given an

address in the SFR address range. User should configure it either as input or output port. This port acts as

input port when write 1 to all its 8 bits. This port acts as output port when write 0 to all its 8 bits. Therefore,

port 1 pins have no dual functions.

Port 2 (P2.0–P2.7) Port 2 is also an 8 quasi-bidirectional bit addressable I/O port and port pins are pulled

high internally. It has also been given an address in the SFR address range. Port 2 generates higher eight bits

of address (A15–A8) during external program and data memory accesses, if ALE is high and EA is low. Port

2 receives higher order address bits during programming the internal ROM of 8051 microcontroller.

Fig. 7.16 Schematic pin diagram of 8051 Microcontroller

Microprocessors and Microcontrollers7.18

Port 3 (P3.0–P3.7) Port 3 is also an 8-bit bi-directional bit-addressable I/O port with internal pull-

up resistances. This port has been given an address in the SFR address range. There are other functions

multiplexed with Port 3 pins as given in Table 7.7.

Table 7.7 Alternative functions of pins P3.0 to P3.7

 Port 3 Alternative function

 P3.0 Acts as serial input data pin (R×D)

 P3.1 Acts as serial output data pin (T×D)

 P3.2 Acts as external interrupt pin 0 (0)

 P3.3 Acts as external interrupt input pin 1 (1)

 P3.4 Acts as external input to timer 0 (T0)

 P3.5 Acts as external input to timer 1 (T1)

 P3.6 Acts as write control signal for external data memory (WR)

 P3.7 Acts as read control signal for external data memory read operation (RD)

 The port structures of 8051 microcontrollers are depicted in Fig. 7.21 and Fig. 7.22. Each port consists of

a latch, an input buffer and an output driver. The D-flip-flop is used as bit latch and it clocks from internal

data bus in response to write to latch from internal CPU bus. The output of flip-flop can be read onto the

internal data bus in response to a Read Latch signal from the internal CPU bus. The operation of Read Pin is

different from Read Latch. The port pin can be read onto the internal data bus whenever CPU sends a read-

pin command.

 Fig. 7.17 Power on reset Fig. 7.18 Power on manual reset

10 Fm

8.2 kW

V
CC

V
CC

RST

V
SS

RESET

8.2 kW

8
0
5
1
M
ic
ro
c
o
n
tr
o
ll
e
r

8051 Microcontroller Architecture 7.19

Fig. 7.19 Oscillator circuit

Fig. 7.20 Instruction cycle of 8051 microcontroller

Fig. 7.21 A pin of Port 1

Microprocessors and Microcontrollers7.20

 Port 1, 2 and 3 are bi-directional ports with fixed internal pull-up resistors. When a port pin is used as

input, 1 must be written to a port latch. The Q = 1, Q = 0, FET is OFF and the pin is simply pulled high by

the pull-up resistor. Thereafter the pin status can be read onto the internal data bus. Writing ‘1’ to output pin

P1.X of Port 1 is shown in Fig. 7.23.

Fig. 7.22 A pin of Port 0

Fig. 7.23 Writing ‘1’ to output pin P1.X of Port 1

 The port pin can be used as output while write 0 onto the pin. Then Q = 0, Q = 1 and FET is ON. The port

pins can sink more current than its source current. Sinking current is about 0.5 mA but source current is in the

order of tens μA only. Figure 7.24 shows writing ‘0’ to output pin P1.X of Port 1. Reading ‘1’ and ‘0’ at input

pin P1.X of Port 1 using MOV A,P1 are depicted in Fig. 7.25 and Fig. 7.26 respectively.

 Port 0 is a bi-directional open drain I/O without internal pull-up resistors. When this port is configured as

an input, it floats as depicted in Fig. 7.27. If ‘1’ is written to a port 0 latch, FET is OFF, the pin floats and

can be used as high-impedance input. To get output of port 0 pins external pull up resistances are connected

between Port 0 pins and +V as shown in Fig. 7.28.

8051 Microcontroller Architecture 7.21

Fig. 7.24 Writing ‘0’ to output pin P1.X of Port 1

Fig. 7.25 Reading ‘1’ at input pin P1.X of Port 1 using MOV A, P1

Read latch

Internal CPU
bus

Write to latch

Read pin

P1.X

CLK

D Q
1

0

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

MOV A.P1
external pin=High

M1

OFF

Read pin = 1 Read latch = 0
Write to latch = 1

1

Fig. 7.26 Reading ‘0’ at input pin P1.X of Port 1 using MOV A, P1

Read latch

Internal CPU
bus

Write to latch

Read pin

P1.X

CLK

D Q
1

0

TB1

TB2

Q

VCC

Load (L)1

P1.X pin

MOV A.P1
external pin–Low

M1

OFF

Read pin = 1 Read latch = 0
Write to latch = 1

0

Microprocessors and Microcontrollers7.22

 7.5 POWER MANAGEMENT

In stop-clock mode, the static design of microcontroller enables the clock speed to be reduced down to 0

MHz. Since the oscillator is stopped, the RAM and Special Function Registers retain their values. Actually,

this mode allows step-by-step utilization and permits reduced system power consumption by reducing the

clock frequency down to any value. For lowest power consumption, the Power Down mode is used.

Fig. 7.27 A pin of Port 0

Fig. 7.28 Port 0 with pull-up resistors

Port 0

P0.0

P0.1

P0.2

P0.3

P0.4

P0.5

P0.6

P0.7

8
0
5
1
M
ic
ro
c
o
n
tr
o
ll
e
r

V
CC

10 kW

8051 Microcontroller Architecture 7.23

The 8051 microcontroller has two power-saving modes, namely idle mode and power-down mode. These

operating modes are activated by software via the PCON (power control) special function registers as shown

in Fig.7.29.

Fig. 7.29 PCON register

7.5.1 Idle Mode

In the idle mode, the CPU puts itself to sleep but all the on-chip peripherals stay active. The idle mode is

activated by the IDL bit. When the IDL bit is high, the microcontroller operates in idle mode. Actually, an

instruction sets the PCON.0 bit. The instruction to invoke the idle mode is the last instruction executed in the

normal operating mode before the idle mode is activated. During this mode, all program execution stops, the

CPU contents, the on-chip

RAM contents are preserved and all of the special function registers remain intact. The oscillator contin-

ues to run but it is blocked from the CPU. The timers and UART continue to operate normally. The idle mode

can be terminated either by any enabled interrupt or by a hardware reset which starts the processor in the

same manner as a power-on reset. Due to activation of any enabled interrupt, the PCON.0 bit will be cleared,

idle mode will be terminated and microcontroller executes the interrupt service routine. After completion of

the interrupt service routine, execution will continue from the instruction following the instruction which set

the idle bit.

7.5.2 Power-Down Mode

To save even more Power, a Power-down mode is used in the microcontroller. The Power-Down mode is

activated by setting the PDWN bit high. This operating mode can be achieved by software. In this mode,

actually the oscillator is stopped and the instruction that invoked Power Down is the last instruction executed.

The timers and the UART and software execution are halted. During this mode, the on-chip RAM and Special

Function Registers retain their values as long as a minimum 2.0 V is applied to the microcontroller chip.

Either a hardware reset or external interrupt can be used to exit from Power-Down mode of the microcon-

troller. Reset redefines all the SFRs but does not change the on-chip RAM. External interrupts allow both the

SFRs and the on-chip RAM to retain their values.

Microprocessors and Microcontrollers7.24

To terminate Power-Down mode, the Reset or external interrupt should not be executed before VCC is

restored to its normal operating level and must be held active long enough (less than 10 ms) for the oscillator

to restart and stabilize.

 7.6 TIMERS/COUNTERS

The 8051 microcontroller has two 16-bit timers/counters such as (T0) and (T1). Each timer

can be programmed to count internal clock pulses of 8051 microcontroller. These timers are used for the fol-

lowing functions:

Calculate time delay between two events

Counting the number of events

Generate baud rate for serial ports

Frequency measurement

Pulse width measurement

Generally a timer is used to count machine cycles and provides a specified time delay. Actually a machine

cycle consists of 12 oscillator periods. Hence the counting rate is about

12

Oscillator frequency .

When the oscillator frequency is 12 MHz, the time period of one clock cycle is 1μs. The counter of the

8051 microcontroller is incremented in response to a transition from 1 to 0 at external pin, either T0 or T1.

The counter output is a count value which represents the occurrence of 1 to 0 transitions at the external pin.

Usually, counters are used as up counter. Figure 7.30 shows a 3-bit counter which counts from 0 to 7 and the

overflow flag is set after counting 7. The 3-bit counter is not used in the 8051 microcontroller, but 8-bit and

Fig. 7.30 3-bit counter circuit

8051 Microcontroller Architecture 7.25

16-bit counters are commonly used. When the 16-bit counter overflows from 0000H to FFFFH, it can set a

flag and generates an interrupt.

The 16 bits of the timer consists of higher byte THx and the lower byte TLx, where x may be either 0 or 1.

For TIMER1, TH1 is the higher byte of timer 1 and TL1 is the lower byte of timer 1 as shown in Fig. 7.31(a).

Similarly, TH0 is the higher byte of timer 0 and TL0 is the lower byte of timer 0 as depicted in Fig. 7.31(b).

Fig. 7.31(a) Timer 1 registers

Fig. 7.31(b) Timer 0 registers

7.6.1 Operating Modes

The timer can be operating in four different modes, namely mode 0, mode 1, mode 2 and mode 3. The mode

bits M1 and M0 in the TMOD register are used to select any one of the operating modes as given below:

 M1 M0 Operating Modes Functions

 0 0 Mode 0 13-bit timer mode

 0 1 Mode 1 16-bit timer mode

 1 0 Mode 3 8-bit timer mode

 1 1 Mode 4 Split timer mode

Timer Mode 0 In this mode, timer operates as a 13-bit timer. THx register is used as an 8-bit counter and

TLx can be used as a 5-bit counter as shown in Fig. 7.32. The count value varies from 0000H to 1FFFH.

Whenever the timer reaches its maximum value 1FFFH, it returns to 0000H and the overflow flag TF is set.

The timer clock frequency is oscillator frequency/12. The clock frequency input to THx is

Oscillator frequency Oscillator frequency

12 2 12 325 =

Fig. 7.32 Timer Mode 0 (13-bit timer)

Microprocessors and Microcontrollers7.26

When oscillator frequency is 12MHz, the clock frequency input to THx is =
12

12 32

MHz
.

The overflow flag is set to zero after 32 × 256 = 8192 machine cycles.

Timer Mode 1 In timer mode-1, timer operates as a 16-bit timer where THx register is used as an 8-bit

counter and TLx is used an 8-bit counter. The timer higher byte THx is connected in cascade with the timer

lower byte TLx as shown in Fig. 7.33 where the timer counts from 0000H to FFFFH. TLx is incremented

from 00H to FFH. After counting FFH, the timer resets to 0 and THx is incremented by 1. As TLx and THx

operate as 16-bit counter, it can count up to 65536D. The overflow occurs after FFFFH and timer overflow

flag is set. After overflow, the counter reset at 0000H when the timer starts counting from a initial value, the

time delay will be

(,)
Frequency

Initial Value12 65 536 -

where, initial value is equal to TLx + THx × 256

Fig. 7.33 Timer Mode 1 (16-bit timer)

Timer Mode 2 In mode 2, timer acts as an 8 bit timer, any values from 00H to FFH to be loaded into the

timer’s register THx. Initially THx will be loaded with the 8-bit value, after that the microcontroller copies

the content of THx into TLx. Then timer starts counting. In this mode, time provides an auto-reload feature.

TLx starts counting up, when TLx reaches FFH, subsequently it is incremented instead of resetting to 0, the

Fig. 7.34 Timer Mode 2 (8 bit timer) as auto-reload timer

8051 Microcontroller Architecture 7.27

TLx must be reset to the value which is stored in THx. Therefore, in timer mode 2, just after overflows of

TLx, it is reloaded with the value, i.e. the content of THx as depicted in Fig.7.34. Hence, the time delay

between overflows is about

()
Frequency

THx12 256 -

Timer Mode 3 In this mode, the Timer

0 divides into two 8-bit counter/timers TL0

and TH0. TH0 and TL0 are two separate

timers with overflow flags TF1 and TF0

respectively as shown in Fig.7.35. The first

counter TL0 acts like mode 0 without pre-

scalar. The second counter TH0 counts CPU

cycles, uses TR1 (timer 1 run bit) as enable,

uses TF1 (timer 1 overflow bit) as flag and

uses timer 1 interrupt. When the timer 1 is

in mode 3, Timer 1 works as counter stopped

if it is in mode 3. Timer 1 operates in mode

0, 1, or 2 and it has gate (INT1) and external

input (T1) but no flag or interrupt. Timer 1

can also be used as baud rate generator.

The timers T0 and T1 can be used

as counters. The difference between the

counter and timer is the source of the clock

pulses to the counters. While it is used as a

timer, the oscillator output pulse can be used

as source of clock pulses after divide by 12.

When it is used as a counter, pin T0 (P3.4)

provide pulses to counter 0 and pin T1(P3.5)

supplies pulses to counter 1. The C/ bit in

TMOD must be set to 1 to enable pulses

from the Tx pin to reach the control circuit.

Figure 7.36 shows the Timer/counter logic.

7.6.2 Control Registers

The timer/counter operation can be controlled by Timer Mode Control (TMOD) register and Timer/Counter

Control (TCON) Register. In this section, the function of TMOD and TCON are explained briefly.

TCON Register The timer/counter control (TCON) register consists of control bits and flags for timers

in the upper nibble and control bits and flags for the external interrupt in the lower nibble as depicted in Fig.

7.37.

Fig. 7.37 Timer/Counter Control (TCON) register

Fig. 7.35 Timer Mode 3

Fig. 7.36 Timer/counter logic

Microprocessors and Microcontrollers7.28

Timer 1 overflows flag. It is set by the hardware when timer/counter 1 overflows. It is cleared by

hardware as processor vectors to the interrupt service routine.

Timer 1 runs control bit. This is set to 1 by software program to enable timer 1 to count. It is cleared

to 0 by program to halt timer.

Timer 0 overflows. It is set by the hardware when timer/counter 0 overflows. It is cleared when the

processor vectors to execute interrupt service routine.

Timer 0 runs control bit. It is set to 1 by program software to enable timer 0 to count. It is cleared to 0

by software to halt timer.

External Interrupt 1 edge flag. This is set to 1 when a high to low (the falling) edge signal is received on

port pin P3.3 (INT1). It is cleared when processor vectors to ISR.

Interrupt 1 type control bit. This bit is set to 1 by program to enable external interrupt 1 to be triggered

by a falling edge signal. It is set to 0 by program to enable a low level signal on external interrupt 1 to generate

an interrupt.

External Interrupt 0 edge flag. It is set to 1 by program to enable interrupt 0 to be triggered by a high

to low (falling edge) signal. This is set to 0 by program to enable a low-level signal on external interrupt 0 to

generate an interrupt.

TMOD Register The time node control (TMOD)

register is used to set the various timer operating modes.

Actually TMOD is related with the two times and can be

considered to be two duplicate 4-bit registers as shown

in Fig. 7.38.

Gate If TRx of TCON is set and GATE=1, timer/counter x will operate only when INTx pin is high for

hardware control. When GATE=0, timer/counter x will run only if TRx =1 for software control.

C/T (Clock/Timer) The C/ bit in TMOD register is used to take decision whether the timer is

used as a timer or an counter. If the timer or counter selector bit is cleared (C/ =0), it is used as a timer to

generate time delay. When C/ =1, it is used as a counter by counting pulses from external input pin Tx (T1

and T0).

Timer/counter operating mode selector bit. This bit is set or cleared by program to select mode.

Timer/counter operating mode selector bit. This bit is set or cleared by program to select mode.

Table 7.8 Timer operating modes

M1 M0 Operating Modes Functions

0 0 Mode 0 13-bit timer mode.

 THx as 8-bit timer/counter and TLx as 5 bit timer/counter (prescalar).

0 1 Mode 1 16-bit timer mode.

 THx and TLx are cascaded and there is no prescalar.

1 0 Mode 3 8-bit Auto reload timer/counter mode. THx hold a count value which is to

be reloaded into TLx after each overflows.

1 1 Mode 4 Split timer mode. Timer 0 is used as two 8-bit timers. Timer 1 stopped

counting and timing function is allowed. Timer 1 can be used as baud rate

generator.

Fig. 7.38 Timer mode control (TMOD) register

8051 Microcontroller Architecture 7.29

 7.7 INTERRUPTS

An interrupt is the occurrence of internal and external events that interrupts the micro-controller to provide

service any device. In case of external events, the status of microprocessor pin is altered. In internal events,

interrupts are generated due to timer overflow or transmission/reception of a byte through the serial port.

After receiving an interrupt signal, the microcontroller interrupts the execution of main program. After sav-

ing the current status, the microprocessor jump to the memory location specified by interrupt and executes a

subprogram called interrupt service routine (ISR). This memory location is called vector. Hence the interrupt

is known as vector interrupt. After provide service to the interrupt, microprocessor restores the original status

and continue to execute main program again.

7.7.1 Interrupts in 8051

There are five interrupt sources for the 8051 microcontroller. The prioritywise five different interrupts of

8051 microcontroller are given below:

External Interrupt 0

Timer 0

External Interrupt 1

Timer 1

Serial Port

These interrupts can recognize 5 different events that can interrupt regular program execution.

Each interrupt can be enabled separately.

Each interrupt type has a separate vector address.

Each interrupt type can be programmed to one of two priority levels.

External interrupts can be programmed for edge or level sensitivity.

Each interrupt can be enabled or disabled by setting bits of the IE (interrupt enable) register. Likewise,

the whole interrupt system can be disabled by clearing the EA bit of the same register as shown in

Fig. 7.39.

In 8051 microcontroller, interrupts are generated by internal operations such as Timer flag 0 (TF0), Timer

flag 1 (TF1), and serial port interrupt (RI or TI). When the timer/counter 0 overflows, the TF0 flag is set to

1. If the timer/counter 1 overflows, the TF1 flag is set to 1. The vector address of TF0 and TF1 are 000BH

and 001BH respectively. The TF0 and TF1 flag will be cleared when the timer flag interrupt makes a pro-

gram call from the timer subroutine. In serial port interrupt, a data byte will be received if RI=1 and a data

byte will be transmitted if TI=1. The vector address of RI or TI is 0023H. Whenever RI or TI becomes 1, the

8051 microcontroller is interrupted and jumps to the memory location 0023H to execute the Interrupt Service

Routine (ISR).

Interrupts are also generated by external signals INT0 and INT1. The INT0 and INT1 are located on pins

P3.2 and P3.3 respectively. External inputs on INT0 and INT1 pins set the interrupt flags IE0 and IE1 in the

TCON register to 1 by level triggered or edge triggered. If the IT0 and IT1 bits of the TCON register are set,

an interrupt will be generated on high to low transition, i.e. on the falling pulse edge. If these bits are cleared,

an interrupt will be continuously executed as far as the pins are held low. The vector address of external inter-

rupt 0 and external interrupt 1 are 0003H and 0013H respectively as shown in Table 7.9.

Microprocessors and Microcontrollers7.30

 Table 7.9 Interrupt vector addresses

 Interrupt Source Flag Vector Address

 External Interrupt 0 IE0 0003H

 Timer 0 TF0 000BH

 External Interrupt 1 IE1 0013H

 Timer 1 TF1 001BH

 Serial Port RI&TI 0023H

7.7.2 Interrupt Control Register

All interrupt operations are controlled by software. The programmer should program the control bits in fol-

lowing registers

Interrupt Enable (IE) Register

Interrupt Priority (IP) register and

Timer Control Register (TCON)

In this section IE and IP registers are explained.

Interrupt Enable (IE) Register IE is Interrupt Enable Register which is shown in Fig. 7.40. The function

of EA, ES, ET1, EX1, ET0 and EX0 are given below:

Fig. 7.39 Interrupts of 8051

8051 Microcontroller Architecture 7.31

global interrupt enable/disable:

 0—disables all interrupt requests.

 1—enables all individual interrupt requests.

enables or disables serial interrupt:

 0—UART system cannot generate an interrupt.

 1—UART system enables an interrupt.

bit enables or disables Timer 1 interrupt:

 0—Timer 1 cannot generate an interrupt.

 1—Timer 1 enables an interrupt.

bit enables or disables external 1 interrupt:

 0—change of the pin INT0 logic state cannot generate an interrupt.

 1—enables an external interrupt on the pin INT0 state change.

bit enables or disables timer 0 interrupt:

 0—Timer 0 cannot generate an interrupt.

 1—enables timer 0 interrupt.

bit enables or disables external 0 interrupt:

 0—change of the INT1 pin logic state cannot generate an interrupt.

 1—enables an external interrupt on the pin INT1 state change and the interrupt vector addresses are given

in Table 7.9

Interrupt Priority (IP) Register The

Interrupt Priority (IP) Register is used to

determine the interrupt priority. Figure 7.41

shows the bit addressable IP register. When

the bit is 0, the corresponding interrupt

has lowest priority and if the bit is 1, the

corresponding interrupt has the higher

priority. When two interrupts occur at the

same time, the higher priority interrupt gets

service fast and then the next higher priority

Fig. 7.40 Interrupt Enable (IE) Register

Fig. 7.41 IP register

D7

-

D6

-

D5

-

D4

PS

D3

PT1

D2

PX1

D1

PT0

D0

PX0

Serial port interrupt
priority level

Timer 1 interrupt
priority level

Timer 0 interrupt
priority level

External Interrupt 1
priority level

External interrupt 0
priority level

Microprocessors and Microcontrollers7.32

interrupt gets service. The priority of interrupts is given below:

IE0 (External Interrupt 0)

TF0 (Timer Flag 0)

IE1 (External Interrupt 1)

TF1 (Timer Flag 1)

RI/TI (Serial Port)

7.7.3 Execution of Interrupt

Assume that the microcontroller is executing the main program and the external interrupt INT1 occurs. The

8051 microcontroller completes the execution of current instruction and save the address of the next instruc-

tion, i.e. the content of program counter (PC) to the stack. The current status of all the interrupts, i.e. the

content of IE register is also saved to the stack. The IE1 flag is disabled so that another INT1 interrupt will

be inhibited.

Then the program counter is loaded with the vector location 0013H which is the predefined address of INT1.

Therefore the program execution has been transferred to the memory location 0013H. A LJMP instruction

is programmed at the memory location. Consequently, the program execution jump to the specified starting

address of Interrupt Service Routine (ISR).

The ISR is written by the programmer and this subprogram states what operation will be performed by the

Fig. 7.42 The sequence of interrupt operation

Complete execution of
current instruction

Store the content of PC to stack

IE flags are saved in stack

INT1 interrupt flag is disabled

Load the starting address 0013H, i.e.
Vector address of INT1 in PC

Main program
execution

Execution

INT1
Occurs

ISR1

PUSH the contents of
registers to the stack

Execution of ISR

POP the contents of
registers to the stack

Execution of RETI

Restore the IE flags

Enable the INT1 interrupt

Restore the content of
PC from stack for next
instruction execution

Main program
execution

Execution

Interrupt vector
0013H

LJMP ISR1

8051 Microcontroller Architecture 7.33

INT1 interrupt. During execution of ISR, initially PUSH the contents of registers to stack and execute the

subprogram part. After execution of the subprogram part, it is required to restore or POP the contents of these

registers. The last instruction in ISR is RETI (Return from interrupt) instruction. When RETI instruction is

executed, 8051 should restore the content of IE register, enable INT1 flag and also restore the content of pro-

gram counter (PC) from the stack. As the PC contains the address of next instruction, 8051 microcontroller

stars to execute the next instruction of main program. Figure 7.42 shows the sequence of operations when the

microcontroller receives an interrupt.

 7.8 SERIAL COMMUNICATION

Serial communication is most commonly used either to control or to receive data from an embedded micro-

processor. The advantage of serial communication is that the number of wires required is less as compared

to that in parallel communication. Serial communication is a form of I/O in which the bits of a byte begin

transferred appear one after the other in a timed sequence on a single wire. Figure 7.43 shows the serial com-

munication through telephone line where P/S is parallel in serial out shift register, S/P Serial in parallel out

shift register, D/A digital to analog converter and A/D is analog to digital converter.

Fig. 7.43 Serial communication through single wire

There are two methods of serial communications, such as synchronous and asynchronous communications. In

synchronous communication, transfer a block of data at a time, but in asynchronous communication transfer

a single byte at a time. Software can be used for synchronous and asynchronous communications, but the

Fig. 7.44 Block diagram of UART (a) Transmitter half

SBUF

T1

Send 8-bit
data

Transmitter buffer
is empty

Serial data transmit

Ten bit
parallel

to
serial

conversion

8-bit
data

Stop bit

Stop bit

Tx

Start bit

8-bit Data

Data bits
Bit time = 1/fbaud

Stop bit

Microprocessors and Microcontrollers7.34

Fig. 7.44 (Contd.) Block diagram of UART (b) Receiver half

SBUF

R1

Receive 8-bit
data

Receive data is
available

Serial data receive

Ten bit
serial

to
parallel

conversion

8-bit
data

Stop bit

Stop bit

Rx
8-bit data

Data bits
Bit time = 1/fbaud

Start bit

Stop bit

Fig. 7.45 Block diagram of UART transmitter for 11-bit transmission

SBUF

TB8

T1

Send 8-bit
data

Put the parity bit
as 9th bit

Transmitter buffer
is empty

Serial data transmit

Eleven bit
parallel

to
Serial

conversion8-bit
Data

Stop bit

9th bit

Stop bit

Tx

Start bit

8-bit data

Data bits
Bit time = 1/fbaud

Stop bit P

programs can be tedious and long. Therefore hardware such as UART and USART are developed. Usually

UART (Universal Asynchronous Receiver Transmitter) or USART (Universal Synchronous Asynchronous

Receiver Transmitter) are used in serial communication. The 8051 microcontroller has a build in UART.

8051 support a full duplex serial port (UART). 8051 has T x D and R x D pins for transmission and receive

serial data respectively. The function of serial port is to perform parallel to serial conversion for data output

and serial to parallel conversion for data input. The block diagram of UART is shown in Fig. 7.44 above.

8051 Microcontroller Architecture 7.35

Fig. 7.46 Block diagram of UART receiver to receive 11 bits

SBUF

R1

RB8

Receive 8-bit
data

Receive data is
available

Read the parity bit
as 9th bit

Serial data Receive

Eleven bit
serial

to
parallel

conversion

8-bit
data

Start bit

Stop bit

9th bit

Rx

P Stop bit8-bit Data

Data Bits
Bit time = 1/fbaud

Start bit

The UART can be used for 9-bit data transmission and receive where 8-bits represent the data byte (infor-

mation of character) and the 9th bit is the parity bit. A block diagram of UART transmitter is depicted in Fig.

7.45 (page 7.34) where the 9th bit is used as the parity bit. Figure 7.46 shows the block diagram of UART

receiver where the 9th bit is used as the parity bit.

The 8051 serial communication can support RS232. RS232 is not compatible to TTL. Therefore, to con-

nect any RS232 to a microcontroller, we must use voltage converters such as MAX232 to convert TTL logic

level to the RS232 voltage levels as shown in Fig.7.47. The MAX232 IC is also known as line driver. The

8051 microcontroller has two pins such as TxD and RxD which are used for transferring and receiving data

serially. TxD and RxD pins are the part of Port 3 (P3.0 and P3.1). These pins are TTL compatible and a line

driver is required to make these pins RS232 compatible. The serial communication between two microcon-

trollers and between microcontroller and microprocessor is also possible.

Fig. 7.47 MAX232 IC as a line driver

Microprocessors and Microcontrollers7.36

7.8.1 Registers for Serial Data Communication

The 8051 microcontroller use the following registers for serial data communication:

SBUF(Serial port data buffer)

SCON(Serial port control) register

PCON(Power control) register

SBUF (Serial port data buffer) The serial port data buffer register has two registers. One register is used

to hold data that to be transmitted through TxD of 8051 and it is write only type. The other register can be

able to hold data from external sources through RxD of 8051 and it is read only type.

SCON (Serial port control) Register The format of SCON (serial port control) register is shown in

Fig. 7.48.

Fig. 7.48 SCON register

Table 7.10 SCON Register

Bit Name Bit Address Function

7 SM0 9FH Serial port mode bit 0. This bit is set/cleared by program to select operating mode

as shown in Table 1.1.

6 SM1 9EH Serial port mode bit 1. This bit is set/cleared by program to select operating mode

as shown in Table 1.1.

5 SM2 9DH This pin enables the mutliprocessor communication feature in modes 2 and 3. In

mode 2 and 3, if SM2=1, then RI will not be activated, if the received 9th data

bit RB8 is 0. In Mode 0, SM2 must be 0. In mode 1, if SM=1, then RI will not be

activated if a valid stop bit is not received.

4 REN 9CH Receiver Enable bit. This bit must be set in order to receive characters. This bit

must be cleared to disable reception.

3 TB8 9BH Transmit bit 8. The 9th bit will be transmitted in mode 2 and 3. This bit can be set/

cleared by software.

2 RB8 9AH Receive bit 8. The 9th bit will be received in mode 2 and 3. In mode 1, if SM2=0,

RB8 is the stop bit that was received. In mod 0, RB8 is not used.

1 TI 99H Transmit Interrupt Flag. This bit is set by hardware at the end of the 8th bit time in

mode 0. This can also be set by hardware at the beginning of the stop bit in other

modes. This bit can be cleared by software.

0 RI 98H Receive Interrupt Flag. This bit is set by hardware at the end of the 8th bit time in

mode 0 or halfway through the stop bit in other modes. This bit can be cleared by

software.

SM0 SM1 Serial Mode Description Baud Rate

0 0 0 8-bit Shift Register Oscillator frequency/ 12

0 1 1 8-bit UART Variable which is set by Timer 1

1 0 2 9-bit UART Oscillator frequency/ 32 or Oscillator frequency/ 64

1 1 3 9-bit UART Variable which is set by Timer 1

8051 Microcontroller Architecture 7.37

PCON (Power control) Register The format of power control register is shown in Fig.7.49

Fig. 7.49 PCON register

 Double baud-rate bit. When this bit is set to 1, timer 1 is used to generate baud rate and the baud

rate is doubled while the serial port is used in modes 1, 2 or 3.

 General-purpose flag bit

 General-purpose flag bit

 Power down bit. When this bit is set, power down operation in 8051 is performed. This is available only

in CHMOS processors.

Idle mode bit. If this bit is set, it activates idle mode operation in 8051. This is available only in CHMOS

processors.

7.8.2 Serial Communication Modes

There are four serial communication modes such as

 Mode 0—Shift register mode

 Mode 1—Standard UART mode

 Mode 2—Multiprocessor mode

 Mode 3—9 bit UART mode

The above modes can be selected by the programmer by proper setting the mode bits SM0 and SM1 in SCON

register.

Mode 0 This mode is known as shift register mode. When SM0 and SM1 are set to 00, the serial port

data buffer (SBUF) receives and transmit data through the RxD pin. TxD pin outputs the shift clock only.

RxD pin is connected to the internal shift frequency clock pulse to provide shift pulses to external circuits.

In this mode eight data bits are transmitted or received. The shit frequency or baud rate is fixed and it can

be determined from the system clock frequency. When the oscillator frequency is f , the baud rate can be

expressed as
f

12

osc . For a 12 MHz crystal, the baud rate is 1 MHz. The transmission operation is initiated by

executing instructions to write data to SBUF. Then data can be shifted out on RxD line when the clock pulse

is applied through TxD line. The receiving operation is initiated when REL=1 and RI=0. REN is set at the

beginning of the program and then RI is cleared to start a data input operation. Figure 7.50 shows the data

transmission/reception in mode 0.

Fig. 7.50 Data transmission/receive in mode 0

Microprocessors and Microcontrollers7.38

Mode 1 When SM0 and SM1 are set to 01, mode 1 operation is performed. In this mode, 10 bits are

transmitted through TxD pin or received through RxD pin. These 10 bits consists of one start bit (0), 8 data

bits (LSB first) and a stop bit (1) as shown in Fig. 7.51. The transmit interrupt flag TI is set once after sending

10 bits. Each bit interval is the inverse of the baud rate frequency and each bit must be maintained high or low

over this interval. After receiving, the stop bit goes to RB8 in SCON register. The baud rate is variable and it

is computed by the timer 1 overflow rate. The baud rate can be expressed as

Baud rate
Timer overflow rate32 1

2
SMOD

=

When the timer 1 operates in auto-reload mode or mode 2 with reload count value in TH1, after each over-

flow the content of TH1 must be loaded into TL1. In this mode of operation, the high nibble of TMOD is

0010B. The baud rate can be expressed as

([])
Baud rate

TH

oscillator frequency

32 12 256 1

2SMOD
=

-

For example, if the contents of TH1 are 230D and the SMOD bit in PCON is 0, the baud rate is 1201 baud or

1.2K (approx) for 12 MHz oscillator frequency.

D1 D2 D3 D4 D5 D6 D7 D8

Receiver samples data at the center of bit time

At least
one stop bit

Stop bit

Stop bit goes to
RB8 for reception

Data Bits

Bit time = 1/fbaud

Idle state

Start bit

Fig. 7.51 Data transmission/receive in mode 1

Mode 2 In this mode, serial operates as a 9-bit UART and 11 bits are transmitted or received. These 11 bits

are a start bit (always 0), 8 data bits (LSB first), a programmable 9th bit and a stop bit (always 1) as shown

in Fig. 7.52. Programmer can define 9th bit as TB8 in SCON and it can be used as the parity bit of data byte.

On reception, the 9th bit is placed into RB8 in SCON. In mode 2, the bit SMOD in PCON and oscillator

frequency determine the baud rate and it can be expressed as

()Baud rate oscillator frequency

64
2SMOD

=

If SMOD = 0, ()Baud rate oscillator frequency
Oscillator frequency

64
2

64

0

= =

If SMOD = 1, ()Baud rate oscillator frequency
Oscillator frequency

64
2

32

1

= =

Mode 3 In this mode, serial port operates as a 9-bit UART with variable baud rate and 11–bits are

transmitted or received. This operating mode is same as mode 2 except baud rate is programmable through

the timer 1 overflow rate. The baud rate calculations are same as that of mode 1 and it can be expressed as

8051 Microcontroller Architecture 7.39

7.8.3 Multiprocessor Communication

8051 microcontrollers can be operating in multiprocessor mode for serial communication mode 2 and mode

3. In this mode, there is a master processor (master microcontroller) which can communicate with more than

one slave processors (slave microcontrollers) as shown in Fig. 7.53. SM2 bit in SCON register is used as a

flag for multiprocessor communication. Whenever a byte has been received, the 8051 will set the RI (Receive

Interrupt) flag. Consequently, the program knows that a byte has been received and it is required to process

data.

In multiprocessor mode, 9-bits are transferred or received. When SM2 is set, the RI flag will be triggered. If

the 9th bit is cleared, The RI flag will never be set. Generally, the 9th bit is kept clear so that the RI flag is set

after receiving any character. In serial communication Modes 2 and 3, the transmitting processor is used as a

master 8051 which can control several slave

8051 microcontroller. The TxD outputs

of the slave microcontrollers are joined

together and connected to the RxD input

of the master microcontroller. The RxD

inputs of the slaves are tired together and

connected to the TxD output of the master.

Each slave microcontroller is assigned a

specified address. When the master wants

to transmit a block of data, it must send

first the address byte of the slave. While

transmitting address byte by the master, the

9th bit is ‘1’ and 9th bit ‘0’ during data bytes

transfer.

Whenever the master 8051 transmits an

address byte, all slave 8051 microcon-

trollers are interrupted. Then slave micro-

controllers check to observe if they are

being addressed or not. Subsequently, the

addressed slave clear its SM2 bit and wait

Fig. 7.52 Eleven bits transmitted in 8051 serial communication mode

Receiver samples data at the center of bit time

At least
one stop bit

Stop bit

Data bits

Bit time = 1/fbaud

Idle state

Start bit

D1 D2 D3 D4 D5 D6 D7 D8 D9

Fig. 7.53 Multiprocessor communication

([])
Baud rate

TH

oscillator frequency

32 12 256 1

2SMOD
=

-
.

Microprocessors and Microcontrollers7.40

to receive the data bytes. Other slaves who are not addressed can continue their operations ignoring the

incoming data bytes and they will be interrupted again while the next address byte is transmitted by master

controller. Usually, the master communicates with one slave at a time and transmit 11 bit which consists of

one start bit (0), 8-data bits (LSB first) TB8 and a stop bit(1). The TB8 is ‘1’ for address byte and ‘0’ for a

data byte.

When the master microcontroller wants to communicate with a slave microcontroller, it sends the address

of the slave with TB8=1. Then all slave microcontrollers receive this address. Initially SM2 bit set to ‘1’. As

all slave microcontrollers check the address to observe if they are being addressed or not. Then the selected

slave microcontroller byte clear its SM2 bit to ‘0’ so that data can be received. In mode 2 and 3, Receive

Interrupt (RI) flag is set if REN=1 and RI=0, SM2=1 and RB8=1 and a valid stop bit is received. After proper

communication between master microcontroller and a slave microcontroller, the data bytes will be sent by

the master with TB8=0.

 7.1 Define microcontroller. Write the differences between microprocessors and microcontrollers.

 7.2 What are microcontroller families? What are the advantages of microcontroller-based systems over

microprocessor-based systems?

 7.3 Give a list of applications of microcontrollers.

 7.4 What are the features of Intel 80C51 microcontroller? What are the general purposes registers of

80C51?

 7.5 Draw the block diagram of the 8051 microcontroller and explain operation of each block briefly.

 7.6 Draw the schematic pin diagram of the 8051 microcontroller and explain operation of the following

pins:

 (i) RST (ii) T×D (iii) R×D (iv) XTAL2 (v) ALE (vi) (vii) (viii) RD (x) WR

 7.7 What is the difference between internal and external program memory? Why is external program

memory used in microcontroller? How can be used to access internal and external program

memory?

 7.8 What is an SFR? How can you identify the bit addressable SFRs from their addresses?

 7.9 What are the ports used for external memory access? How can an I/O pin be used as both input and

output?

 7.10 What do you mean by “bi-directional port” and “quasi-bi-directional port”? How can Port 0 be used

as bi-directional port?

 7.11 Discuss power management in 8051 microcontroller.

 7.12 Explain the various timer modes of 8051 microcontroller. What is the auto-reload mode?

 7.13 Write short notes on the following:

 (i) Serial data communication (ii) interrupts of 8051 (iii) Idle mode of 8051 (iv) Power-down mode

of 8051.

 7.14 Draw the schematic block diagram of multiprocessor communication using 8051 microcontroller

and explain briefly.

 7.15 Draw the block diagram of UART (a) Transmitter half (b) Receiver half and explain their operation

briefly.

 7.16 Explain interrupts in 8051 microcontroller.

8051 Microcontroller Architecture 7.41

 7.1 The 8051 microcontroller has

 (a) 8-bit data bus and 16-bit address bus (b) 16-bit data bus and 8-bit address bus

 (c) 8-bit data bus and 8-bit address bus (d) 16-bit data bus and 16-bit address bus

 7.2 The 8051 microcontroller has

 (a) 4K bytes of on-chip ROM (b) 8K bytes of on-chip ROM

 (c) 16K bytes of on-chip ROM (d) 32K bytes of on-chip ROM

 7.3 The 80C51 microcontroller family has

 (a) 32 pins for I/O (b) 24 pins for I/O (c) 16 pins for I/O (d) 8 pins for I/O

 7.4 The 8051 microcontroller can support

 (a) 5 interrupts (b) 4 interrupts (c) 3 interrupts (d) 2 interrupts

 7.5 A 80C51 microcontroller has

 (a) 128 bytes of on-chip RAM (b) 256 bytes of on-chip RAM

 (c) 228 bytes of on-chip RAM (d) 556 bytes of on-chip RAM

 7.6 A microcontroller has

 (a) 4 on-chip I/O ports (b) 3 on-chip I/O ports

 (c) 2 on-chip I/O ports (d) 1 on-chip I/O ports

 7.7 The number of flags present in 8051 that respond to math operations are

 (a) 2 (b) 3 (c) 4 (d) 5

 7.8 Which of the following are 16-bit registers in the 80C51 microcontroller?

 (a) DPTR (b) IE (c) TMOD (d) PC

 7.9 Which of the following registers can be used to hold address of byte in memory of 80C51?

 (a) DPTR (b) PCON (c) SBUF (d) PSW

 7.10 Which of the following registers can be used as two individual 8-bit registers?

 (a) DPTR (b) PC (c) SBUF (d) PSW

 7.11 Which port can only be used as I/O port

 (a) Port 0 (b) Port 1 (c) Port 2 (d) Port 3

 7.12 Which of the following registers is bit addressable?

 (a) SBUF (b) TMOD (c) PCON (d) PSW

 7.13 The operation of PSW is

 (a) hold the status of register bank currently being used

 (b) holding data during data transfer operation

 (c) holding math flags

 (d) hold address of a byte in memory.

 7.14 How many general-purpose registers exit in 8051?

 (a) 10 (b) 16 (c) 20 (d) 32

 7.15 The 8051 microcontroller has

 (a) One-on-chip timer (b) Two-on-chip timers

 (c) Three-on-chip timers (d) Four-on-chip timers

Microprocessors and Microcontrollers7.42

 7.16 There are _______ interrupt sources for 8051 microcontroller

 (a) 3 (b) 4 (c) 5 (d) 6

 7.17 The power saving mode of 8051 microcontroller is activated by software via

 (a) PCON (b) SCON (c) TCON (d) T2CON

 7.18 The vector address of External interrupt 1 (IE1) is

 (a) 0003H (b) 000BH (c) 0013H (d) 0018H

 7.1 (b) 7.2 (a) 7.3 (a) 7.4 (a)

 7.5 (a) 7.6 (a) 7.7 (c) 7.8 (a) & (d)

 7.9 (a) 7.10 (a) 7.11 (b) 7.12 (d)

 7.13 (c) 7.14 (a) 7.15 (c) 7.16 (c)

 7.17 (a) 7.18 (c)

CHAPTER

 8.1 INTRODUCTION

In Chapter 7, the basic structure of 8051 microcontroller has been discussed elaborately. Like 8085 and

8080 microprocessors, the 8051 microcontroller has different addressing modes to locate operand in the

instructions. In this section all addressing modes of the microcontroller has been discussed with examples.

This microcontroller has arithmetic and logical instructions, data transfer, Boolean operation instructions, bit

operation instructions, branch control instructions and program control instructions. All these instructions are

explained with appropriate examples. The programming format and some simple programs such as addition,

subtraction, multiplication, division, ascending order, descending order, look-up table, key board interface,

A/D converter interface, and stepper motor control have been incorporated in this chapter to understand the

applications of instructions.

 8.2 ADDRESSING MODES

An instruction is used to load or transfer data from a source to a destination. The source may be any register,

internal memory, external memory, any one of four ports or any external I/O peripheral devices. Similarly,

destination may be any registers, memory (internal or external) and I/O devices. In any instruction of the 8051

microcontroller, the data is known as operand. The way in which an operand is specified is called addressing

mode. There are different ways to specify operands for instructions. The commonly used addressing modes

of 8051 microcontroller are as follows:

Immediate Addressing

Register Addressing Mode

Direct Addressing

Indirect Addressing

Indexed Addressing

Relative Addressing

8
Instruction Set and Programming of

8051 Microcontroller

Microprocessors and Microcontrollers8.2

Absolute Addressing

Long Addressing

8.2.1 Immediate Addressing

In immediate addressing mode, the source operand is a constant rather than a variable. The constant operand

can be incorporated into the instruction as a byte of immediate address. The immediate operands are pre-

ceded by # sign in assembly language. The operand may be a numeric constant (decimal or hexadecimal),

a symbolic variable or an arithmetic expression, e.g., MOV A, #FFH This instruction is used to load the

immediate data FF H to A register.

 MOV R0, #26 This is used to load the immediate data byte 26H to register R0.

 All immediate addressing instructions use 8-bit data field. But one exception is that a 16-bit constant is

required for initialisation of the data pointer register (DPTR). For example, MOV DPTR, #9000H. After

execution of MOV DPTR, #9000H instruction, 9000H will be loaded into DPTR register. Table 8.1 shows

some other examples of immediate addressing:

Table 8.1 Examples of immediate addressing

 Instruction Task

 ADD A, # data Add immediate data to accumulator

 SUBB A, # data Subtract immediate data from accumulator with borrow

 MOV Rn, # data Move immediate data to register Rn

 MOV DPTR, #data 16 Load data pointer register with a 16-bit constant

8.2.2 Register Addressing Mode

In the register addressing mode, the selected register bank containing registers R0 through R7 can be accessed

by certain instructions which carry a 3-bit register specification within the opcode of the instruction. As the

three least significant bits of the instruction opcode is used to specify a register, this addressing mode elimi-

nates an address byte. When the instruction is executed, one of the eight registers in the selected bank will

be accessed. One of four banks is selected at execution time by the two banks select bits RS1 and RS0 in the

PSW. e.g., MOV A, R0 Move the content of R0 register into accumulator

 MOV R1, A Move the content of accumulator into R1 register

 Some instructions are specific to a certain register. For example, some instructions always operate on the

accumulator, or data pointer and no address byte is required to point it. The opcode itself specifies the source

of operand and an example is INC A. In this instruction, accumulator itself is the operand. The examples of

other register addressing instructions are given in Table 8.2.

Table 8.2 Examples of register addressing

 Instruction Task

 ADD A, Rn Add the content of register Rn to accumulator.

 SUBB A, Rn Subtract the content of register from accumulator with borrow.

 MOV Rn, A Move data from accumulator to register Rn.

 INC DPTR Increment data pointer register by one.

Instruction Set and Programming of 8051 Microcontroller 8.3

8.2.3 Direct Addressing

In direct addressing mode, the operand is specified by an

8-bit address field in the instruction. Only lower 128 bytes

of internal data RAM and SFRs can be directly addressed

by using single byte address. e.g., MOV A, 33H This

instruction is used to transfer the content of internal memory

(RAM) location 33H to accumulator as shown in Fig. 8.1.

MOV 32, R1 The content of register R1 moves to internal

memory location 32H as depicted in Fig. 8.1.

 Table 8.3 shows some other examples of direct addressing.

Table 8.3 Examples of direct addressing

 Instruction Task

 MOV A, direct Copy the Contents of memory location specified

 by ‘direct’ into accumulator.

 MOV A, SBUF Copy the contents of special function register SBUF into accumulator.

8.2.4 Indirect Addressing

In indirect addressing mode, the instruction specifies a register which contains the address of the operand.

Both internal and external RAM can be indirectly addressed. In this mode, R0 or R1 of selected bank or the

stack pointer may operate as pointer registers for 8-bit addresses. Actually the content of R0 or R1 indicates

an address in internal RAM where data will be stored or read. In assembly language programming, indirect

addressing is presented by an @ symbol before R0 or R1 e.g., MOV A,@R7. In this instruction the content

of R7 represents the internal memory address. As the R7 contain 33H, the internal memory location will be

33H. After the execution of this instruction, the value of internal memory location 33H will be loaded into

accumulator as depicted in Fig. 8.2.

Fig. 8.1 Direct addressing

Fig. 8.2 Indirect addressing

 The Data Pointer Register (DPTR) can also be used as the address register for 16-bit address. Some exam-

ples of indirect addressing are illustrated in Table 8.4.

Table 8.4 Examples of indirect addressing

 Instruction Task

 ADD A, @R0 Add the contents of the address specified by the R0 register to accumulator

 SUBB A, @R1 Subtract the contents of the address specified by the R1 register from accu-

mulator with borrow

Microprocessors and Microcontrollers8.4

 MOV @R
i
, A Move the content of accumulator to indirect RAM specified by R

i
 (R0 or

R1)

 MOV A, @R
i
 Moves a byte of data from internal RAM at location whose address is in R

i

(R0 or R1) to the accumulator

 DEC @R
i
 Decrement indirect RAM specified by R

i
 (R0 or R1)

8.2.5 Indexed Addressing

In indexed addressing, only program memory can be accessed and it can only be read. This addressing mode

is used for reading look-up tables in program memory. The effective address of program memory is calculated

as the summation of the content of base register (program counter PC or data pointer DPTR) and an offset, i.e.

the contents of accumulator. This addressing mode is intended for a JMP or MOVC instruction. e.g. MOVC

A, @A+DPTR When this instruction is executed, move a byte of data from program memory whose address

can be obtained by adding the accumulator to the data pointer, to the accumulator as depicted in Fig. 8.3.

Fig. 8.3 Indexed addressing

A list of examples of indexed addressing are given in Table 8.5.

Table 8.5 Examples of indexed addressing

 Instruction Task

 MOVC A,@A+PC Move a byte of data from program memory whose address can be deter-

mined by sum of accumulator and program counter, to the accumulator.

 MOVC A,@A+DPTR Move a byte of data from program memory whose address can be found

by adding the accumulator and the data pointer, to the accumulator.

 JMP @A+DPTR Jump indirect relative to the data pointer. The address of a jump instruction

is calculated as sum of the accumulator and the data pointer.

8.2.6 Relative Addressing

Generally, this addressing mode is used in certain jump instructions. The relative address is an 8-bit signed

number (–128 to 127), which is added to the program counter to determine the address of next instruction.

Before addition, the program counter is incremented. Therefore, the new address is relative to the next

instruction is determined and then jump to the new address instruction. For example, SJMP Level offset.

When this instruction is executed, the new address can be obtained from the sum of the PC and offset. Then

jump to the new address as depicted in Fig. 8.4. The advantage of relative addressing is that it has position

independent codes.

Instruction Set and Programming of 8051 Microcontroller 8.5

Fig. 8.4 Relative addressing

8.2.7 Absolute Addressing

The absolute addressing is only used with AJMP and

ACALL instructions. The 11 least significant bits of the

destination address comes from the opcode and the upper

five bits are the current upper five bits in the program coun-

ter (PC). In this addressing mode, the destination address

will be within 2K (211) memory. For example, ACALL

addr11.

8.2.8 Long Addressing

The long addressing is used only with the LJMP and

LCALL instructions. These instructions include a full

16-bit destination address. In this mode, the full 64K code

space is available and the instruction is long and position

dependent. For example LJMP 9500H. When this instruc-

tion is executed, it jumps to memory location 9500H.

Example 8.1 Find the addressing modes of the following

instructions:

 (i) ADD A, R7

 (ii) ADD A, 55H

 (iii) MOV A, @R0

 (iv) MUL AB

 (v) MOV A, #FF

 (vi) MOV DPTR, #8000

 (vii) MOVC A, @A+DPTR

Sol. (i) ADD A, R7 instruction is an example of register addressing

 (ii) ADD A, 55H instruction is an example of direct addressing

 (iii) MOV A, @R0 instruction is an example of indirect addressing

 (iv) MUL AB instruction is an example of register addressing

 (v) MOV A, #FF instruction is an example of immediate addressing

 (vi) MOV DPTR, #8000 instruction is an example of immediate addressing

 (vii) MOVC A, @A+DPTR instruction is an example of index addressing

 8.3 8051 INSTRUCTION SET

An instruction is a command applied to a microcontroller to perform specified operation. There are 255 pos-

sible instructions in the 8051 microcontroller. Each instruction consists of operation code (opcode) and oper-

and. Opcode states the specified operation, which will be performed. The operand means data, which will be

used in that operation as no operation can be performed without data. The 8051 instructions have 8-bit opcode.

Data field may be of one byte or two bytes. Based on data (operand) the instructions are classified as one byte,

two-byte and three-byte instructions. 8051 instructions are divided into following groups as given below:

Microprocessors and Microcontrollers8.6

Arithmetic instructions

Logical instructions

Data transfer instructions

Boolean operations instructions

Program control instructions

Branching instructions

 The symbols and abbreviations, which have been used while explaining Intel 8051 microcontroller instruc-

tions, are illustrated in Table 8.6. In this section, all groups of instructions are explained elaborately with

appropriate representations.

Table 8.6 Symbol/Abbreviations of instruction set

 Symbol/Abbreviations Meaning

 addr 16 16-bit address 16-bit destination address. Used by LCALL and LJMP. A branch can be any-

where within the 64K-byte program memory address space.

 addr 11 11-bit address 11-bit destination address. Used by ACALL and AJMP. The branch will be

within the same 2K-byte page of program memory as the first byte of the fol-

lowing instruction.

 #data 8-bit constant included in the instruction.

 #data 16 16-bit constant included in the instruction

 Rn, Ri Register R7–R0 of the currently selected register bank.

 direct 8-bit internal data location’s address. This could be an Internal Data RAM

location (0–127) or a SFR [i.e., I/O port, control register, status register, etc.

(128–255)].

 @Ri 8-bit internal data RAM location (0–255) addressed indirectly through register

R1 or R0.

 rel Signed (two’s complement) 8-bit offset byte. Used by SJMP and all conditional

jumps. Range is –128 to +127 bytes relative to first byte of the instruction

 bit Direct addressed bit in Internal Data RAM or Special Function Register.

 DPTR Data pointer register

 DPH, DPL DPH–Data pointer register higher, DPL—Data pointer register lower

 SP SP represents 16-bit stack pointer

 PC 16-bit program counter

 PSW Program Status Word

 CS Carry status

 [] The content of the memory location

 ! Move data in the direction of arrow

 + Exchange contents

 / Logical AND operation

 0 Logical OR operation

 5 Logical EXCLUSIVE OR

 a Complement

Instruction Set and Programming of 8051 Microcontroller 8.7

8.3.1 Arithmetic Instructions

The arithmetic instructions are used to perform arithmetic operations such as addition, subtraction, incre-

ment, decrement, multiplication, and division. Since different addressing modes are available, an arithmetic

instruction can be written in different ways. All arithmetic instructions are executed in one machine cycle

except INC DPTR, MUL AB and DIV AB. INC DPTR requires two machine cycles and MUL AB and DIV

AB require four-machine cycle. All arithmetic instructions are given below:

ADD A, Rn (Add register to accumulator)

A!A+ Rn,

Machine cycles: 1, States: 12, Flags: all, Register Addressing, One byte instruction

The contents of the operand (register) are added to the contents of the accumulator and the result is stored in

the accumulator. The carry and auxiliary-carry flags are set, respectively, if there is a carry-out from bit 7 or

bit 3, and cleared otherwise. When adding unsigned integers, the carry flag indicates an overflow occurred.

When adding signed integers, OV indicates a negative number produced as the sum of two positive operands,

or a positive sum from two negative operands. For example ADD A, R6 Add the content of register R6 to

accumulator and result in accumulator.

ADD A, direct (Add direct byte to accumulator)

A!A+ [direct]

Machine cycles: 1, States: 12, Flags: all, Direct Addressing, Two byte instruction

The contents of the internal memory location specified by the 8-bit direct are added with accumulator. All

flags are modified to reflect the result of the addition. For example, the instruction is ADD A, 44H.

ADD A, @Ri (Add indirect RAM to accumulator)

A!A+ [R
i
]

Machine cycles: 1, States: 12, Flags: all, Register indirect Addressing, One byte instruction

The contents of the internal RAM whose location is denoted by the content of register Ri (R0 or R1) are added

to the contents of the accumulator and the result is stored in the accumulator, for example, ADD A,@R0.

ADD A, #data (Add immediate data to accumulator)

A!A + #data

Machine cycles: 1, States: 12, Flags: all, Immediate Addressing, Two-byte instruction

Add the number specified by #data to accumulator and the result is stored in the accumulator, for example

ADD A, 36H.

ADDC A, Rn (Add register to accumulator with carry)

A!A + Rn + C

Machine cycles: 1, States: 12. Flags: all, Register Addressing, One-byte instruction.

ADDC instruction simultaneously adds the contents of the register Rn and the Carry flag to the contents

of the accumulator and the result is stored in the accumulator. The carry and auxiliary-carry flags are set,

respectively, if there is a carry-out from bit 7 or bit 3, and cleared otherwise. During adding unsigned integers,

the carry flag indicates an overflow occurred. When adding signed integers, OV indicates a negative number

produced as the sum of two positive operands, or a positive sum from two negative operands. Therefore, flags

Microprocessors and Microcontrollers8.8

are modified to reflect the result of the addition, e.g., ADDC A, R7. If accumulator content is C3H, R7 content

is AAH with the carry flag set, the result in accumulator is 6E and AC cleared, the carry flag and OV set to 1.

ADDC A, direct (Add direct byte to accumulator with carry)

A!A + [direct] + C

Machine cycles: 1, States: 12, Flags: all, direct Addressing, Two-byte instruction

The content of the memory location, which is specified by the direct address and the Carry flag are added to

the contents of the accumulator. After addition, the result is stored in the accumulator. All flags are effected

to reflect the result of the addition, e.g., ADDC A, 55H.

ADDC A, @Ri (Add indirect RAM to accumulator with carry)

A!A + [Ri] + C

Machine cycles: 1, States: 12, Flags: all, Register indirect Addressing, one byte instruction

The contents of the internal memory RAM located by Ri register (R0 or R1) are added to the contents of the

accumulator with carry and the result is stored in the accumulator, e.g., ADDC A, @R1

ADDC A, #data (Add immediate data to ACC with carry)

A!A + C + #data

Machine cycles: 1, States: 12, Flags: all, Immediate Addressing, Two-byte instruction

The 8-bit immediate data (operand) can be added to the contents of the accumulator with carry and the result

is stored in the accumulator, e.g. ADDC A, #FF

SUBB A, Rn (Subtract register from accumulator with borrow)

A!A – Rn – C

Machine cycles: 1, States: 12, Flags: all, Register Addressing, One-byte instructions

SUBB A, Rn states that the content of register Rn and the carry flag are subtracted from the content of the

accumulator. After subtraction, the result is stored in the accumulator. This instruction sets the carry (bor-

row) flag if a borrow is needed for bit 7, and clears C otherwise. AC is set if a borrow is needed for bit 3,

and cleared otherwise. OV is set if a borrow is needed into bit 6, but not into bit 7, or into bit 7, but not bit

6. During subtraction of signed integers, OV indicates a negative number produced when a negative value

is subtracted from a positive value, or a positive result when a positive number is subtracted from a negative

number. For example, SUBB A, R2. If accumulator content is C9H, content of R2 is 54H and the carry flag is

set, the result 74H will be in accumulator with the carry flag and AC cleared but OV set.

SUBB A, direct (Subtract direct byte from accumulator with borrow)

A!A – [direct] – C

Machine cycles: 1, States: 12, Flags all, Direct Addressing, two-byte instructions

The contents of the 8-bit direct memory location are subtracted from the contents of the accumulator with

borrow and the result is placed in the accumulator. All flags will be modified to reflect the result, e.g., SBBB

A, 45H.

SUBB A, @Ri (Subtract indirect RAM from accumulator with borrow)

A!A – [Ri] – C

Machine cycles: 1, States: 12, Flags: all, Register indirect Addressing, One-byte instructions

The content of internal RAM whose location is specified by register Ri (R0 or R1) is subtracted from the

Instruction Set and Programming of 8051 Microcontroller 8.9

content of the accumulator with borrow, and the result is stored in the accumulator, e.g., SUBB A, @R0.

SUBB A, #data (Subtract immediate data from accumulator with borrow)

A!A – #data – C

Machine cycles: 1, States: 12, Flags all, Immediate Addressing, Two-byte instructions

The 8-bit immediate data is subtracted from the contents of the accumulator with borrow and the result is

placed in the accumulator, e.g., SBBB A, 78H.

INC A (Increment accumulator by 1)

A!A + 1.

Machine cycles: 1, States: 12, No Flags are affected, Register Addressing, One-byte instructions

When INC instruction is executed, the indicated variable is incremented by 1. Therefore, the contents of the

accumulator are incremented by 1 and the result is stored in the accumulator, e.g., INC A

INC Rn (Increment register by 1)

Rn!Rn + 1.

Machine cycles: 1, States: 12, No Flags are affected, Register Addressing, One-byte instructions

The contents of the selected register Rn (R0 to R7) are incremented by 1 and the result is stored in the same

register, e.g., INC R5.

INC direct (Increment direct byte)

[direct]![direct] + 1.

Machine cycles: 1, States: 12, No Flags are affected, Direct Addressing, two-byte instructions

The contents of the 8-bit direct memory location are incremented by 1 and the result is stored in the same

memory location, e.g., INC 44H.

INC @Ri (Incrément indirect RAM)

[Ri]![Ri] + 1.

Machine cycles: 1, States: 12, No Flags are affected, Register indirect Addressing, One-byte instructions

The contents of the internal RAM location whose address can be selected by register R0 or R1 are incre-

mented by 1 and the result is stored in the same RAM location, e.g., INC @R0.

INC DPTR (Increment data pointer register by 1)

DPTR!DPTR + 1.

Machine cycles: 2, States: 24, No Flags are affected, Register Addressing, one-byte instructions

The contents of the 16-bit data pointer register are incremented by 1 and the result is stored in the same regis-

ter. A 16-bit increment is performed; an overflow of the low-order byte of the data pointer (DPL) from FFH

to 00H will increment the high-order byte (DPH). No flags are affected, e.g., INC DPTR

DEC A (Decrement accumulator by 1)

A!A – 1.

Machine cycles: 1, States: 12, Flags: No flags are affected, Register Addressing, One-byte instruction

The contents of the accumulator are decremented by 1 and the result is stored in the accumulator, e.g., DEC A.

DEC Rn (Decrement register by 1)

Rn!Rn – 1.

Microprocessors and Microcontrollers8.10

Machine cycles: 1, States: 12, Flags: No flags are affected, Register Addressing, One-byte instruction

The contents of the selected register R0 to R7 are decremented by 1 and the result is stored in the same reg-

ister, e.g., DEC R6.

DEC direct (Decrement direct byte)

[direct]![direct] – 1.

Machine cycles: 1, States: 12, Flags: No flags are affected, Direct Addressing, Two-byte instruction.

The contents of the 8-bit direct memory location is decremented by 1 and the result is stored in the same

memory location, e.g., DEC 34H.

DEC @Ri (Decrement indirect RAM)

[Ri] ! [Ri] – 1.

Machine cycles: 1, States: 12, Flags: No flags are affected, Register indirect Addressing, One-byte instruction

The contents of the internal RAM location specified by register R0 or R1 are decremented by 1 and the result

is stored in the same place, e.g., DEC @Ri.

MUL AB (Multiply A by B)

A7-0!A × B

B15-8

Machine cycles: 4, States: 48, Flags: Flags are affected, Register Addressing, One-byte instruction

MUL AB multiplies the unsigned eight-bit integers in the Accumulator and register B. The low-order byte of

the sixteen-bit product will be stored in the accumulator, and the high-order byte will be stored in B. If the

product is greater than 255 (FFH) the overflow flag is set; otherwise it is cleared. The carry flag is always

cleared, e.g., MUL AB.

DIV AB (Divide A by B)

A15-8 !A/B

B7-0

Machine cycles: 4, States: 48, Flags: Flags are affected, Register Addressing, One-byte instruction

DIV AB divides the unsigned eight-bit integer in the accumulator by the unsigned eight-bit integer in reg-

ister B. After execution of DIV AB, the accumulator receives the integer part of the quotient and register B

receives the integer remainder. The carry and OV flags will be cleared, e.g., DIV AB.

DAA (Decimal adjust accumulator for addition)

Machine cycles: 1, States: 12, Flags : all, One byte instruction

 If [[(A3-0) > 9] 0[(AC)=1]] , then (A3-0)!(A3-0) + 6

AND If [[(A7-4) > 9] 0 [(C)=1]] , then (A7-4)!(A7-4) + 6

The contents of accumulator are transferred from a binary code to two 4-bit Binary Coded Decimal (BCD)

digits. This is the only instruction, which uses the auxiliary flag to perform the binary to BCD conversion.

The conversion procedure is as follows:

When the value of the low-order 4-bits/nibble in the accumulator is greater than 9 or AC flag is set,

the instruction adds 6 to the low-order four bits.

If the value of the high-order 4-bits/nibble in the accumulator is greater than 9 or the Carry flag is set,

the instruction adds 6 to the high-order four bits. In this instruction S, Z, AC, P, CY flags are altered

to reflect the results of the operation, e.g.,

Instruction Set and Programming of 8051 Microcontroller 8.11

 ADC A, R3

 DAA

If the accumulator holds 56H, i.e., the packed BCD digits of decimal number 56 and the content of register

R3 is 67H, i.e., the packed BCD digits of decimal number 67. The carry flag is set. After execution of above

instructions, 24 H will be stored in accumulator as the true sum of 56 and 67 is 124.

Table 8.7 shows the 8051 arithmetic instruction set summary.

Table 8.7 8051 Arithmetic instruction set summary

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

ADD A, Rn Add register to accumulator 12 1 0 0 1 0 1 r r r

ADD A, direct Add direct byte to accumulator 12 2 0 0 1 0 0 1 0 1

ADD A, @Ri Add indirect RAM to accumulator 12 1 0 0 1 0 0 1 1 i

ADD A, #data Add immediate data to accumulator 12 2 0 0 1 0 0 1 0 0

ADDC A, Rn Add register to accumulator with carry 12 1 0 0 1 1 1 r r r

ADDC A, direct Add direct byte to accumulator with carry 12 2 0 0 1 1 0 1 0 1

ADDC A, @Ri Add indirect RAM to Accumulator 12 1 0 0 1 1 0 1 1 i

 with carry

ADDC A, #data Add immediate data to ACC with carry 12 2 0 0 1 1 0 1 0 0

SUBB A, Rn Subtract register from ACC with borrow 12 1 1 0 0 1 1 r r r

SUBB A, direct Subtract direct byte from ACC 12 2 1 0 0 1 0 1 0 1

 with borrow

SUBB A, @Ri Subtract indirect RAM from ACC 12 1 1 0 0 1 0 1 1 i

 with borrow

SUBB A, #data Subtract immediate data from ACC 12 2 1 0 0 1 0 1 0 0

 with borrow

INC A Increment accumulator 12 1 0 0 0 0 0 1 0 0

INC Rn Increment register 12 1 0 0 0 0 1 r r r

INC direct Increment direct byte 12 2 0 0 0 0 0 1 0 1

INC @Ri Increment indirect RAM 12 1 0 0 0 0 0 1 1 i

INC DPTR Increment data pointer 12 1 0 0 0 0 0 0 1 1

DEC A Decrement accumulator 12 1 0 0 0 1 0 1 0 0

DEC Rn Decrement register 12 1 0 0 0 1 1 r r r

DEC direct Decrement direct byte 12 2 0 0 0 1 0 1 0 1

DEC @Ri Decrement indirect RAM 12 1 0 0 0 1 0 1 1 i

MUL AB Multiply A and B 48 1 1 0 1 0 0 1 0 0

DIV AB Divide A by B 48 1 1 0 0 0 0 1 0 0

DAA Decimal adjust accumulator 12 1 1 1 0 1 0 1 0 0

Example 8.2 Write instructions for the following operations:

 (i) Add 23H to the contents of accumulator.

 (ii) Add the content of the memory location specified by R0 with accumulator.

 (iii) Subtract the content of R1 register from accumulator with borrow.

Microprocessors and Microcontrollers8.12

 (iv) Subtract immediately 45 from accumulator register with borrow.

 (v) Increment the content of internal memory location specified by R0.

Sol.

 (i) ADD A, #23; Add 23H to the contents of accumulator.

 (ii) ADD A, @R0; Add the content of the memory location specified by R0 with accumulator.

 (iii) SUBB A, R1; Subtract the content of R1 register from accumulator with borrow.

 (iv) SUBB A, #45 ; Subtract immediately 45 from accumulator register with borrow.

 (v) SBB A, 45; Subtract immediately 45 from ACC register with borrow.

 (vi) INC @R0; Increment the content of internal memory location specified by R0.

Example 8.3 Write instructions for the following operations:

 (i) Multiply the content of accumulator by B register.

 (i) Divide the content of accumulator by B register.

 (ii) Increment data pointer register by one.

Sol.

 (i) MUL A B ; Multiply the content of accumulator by B register.

 (ii) DIV A B ; Divide the content of accumulator by B register.

 (iii) INC DPTR ; Increment data pointer register by one.

8.3.2 Logical Instructions

The logical instructions perform AND, OR, EX-OR, operations; compare, rotate or complement of data in

register or memory. All logical instructions are discussed in this section.

 ANL performs the bitwise logical-AND operation between the variables indicated in instruction and stores

the results in the destination variable. No flags are affected. The two operands allow six addressing-mode

combinations. If the destination is the Accumulator, the source can use register, direct, register-indirect, or

immediate addressing. When the destination is a direct address, the source can be the accumulator or imme-

diate data.

ANL A, Rn (Logical AND register to accumulator)

A!A/Rn

Machine cycles: 1, States: 12, Flags: No flags are affected, Register Addressing, One-byte instructions

The contents of the accumulator are logically ANDed with the contents of the register Rn (R0–R7). The result

is stored in the accumulator. No flags are affected, e.g., ANL A, R5.

ANL A, direct (Logical AND direct byte to accumulator)

A!A/[direct].

 Machine cycles: 1, States: 12, Flags: No flags are affected, Direct Addressing, Two-byte instructions

The content of the 8-bit memory location whose address is specified by the direct address is ANDed with the

accumulator. The result is placed in the accumulator. No flags are affected, e.g., ANL A, direct

ANL A, @Ri (Logical AND direct byte to Accumulator)

A!A/[Ri]

Instruction Set and Programming of 8051 Microcontroller 8.13

Machine cycles: 1, States : 12, Flags: No flags are affected, Register indirect Addressing, One-byte instructions

The content of the memory location whose address is specified by the register R0 or R1 is ANDed with the

accumulator. After ANDing, the result is stored in the accumulator. No flags are affected, e.g., ANL A,@Ri.

ANL A, #data (Logical AND immediate data to accumulator)

A!A/ #data.

Machine cycles: 1, States: 12, Flags: No flags are affected, Immediate Addressing, Two-byte instructions

The contents of the accumulator are logically ANDed with the 8-bit data (#data). After ANDing the result is

stored in the accumulator. No flags are affected, e.g., ANL A, #45H.

ANL direct, A (Logical AND immediate data to direct byte)

A![direct]/A.

Machine cycles: 1, States: 12, Flags: No flags are affected, One-byte instructions

The content of the memory location whose address is specified by the 8-bit direct address is ANDed with the

accumulator. The result will be stored in the 8-bit direct memory address. No flags are affected, e.g., ANL

direct, A.

ANL direct, #data (Logical AND memory with accumulator)

[direct]![direct]/#data.

Machine cycles: 1, States: 12, Flags: No flags are affected, Immediate Addressing, One-byte instructions

The content of the memory location whose address is specified by the 8 bit direct address is ANDed with the

8-bit immediate data. The result will be stored in the 8-bit direct memory address. No flags are affected, e.g.,

ANL direct, #A.

 ORL performs the bitwise logical-OR operation between the indicated variables in instruction and store

the results in the destination byte. No flags are affected. Six different addressing mode combinations are

available for this instruction. When the destination is the Accumulator, the source can use register, direct,

register-indirect, or immediate addressing. While the destination is a direct address, the source can be the

Accumulator or immediate data.

ORL A, Rn (Logical OR register to accumulator)

A!A0Rn

Machine cycles: 1, States: 12, Flags: No flags are affected, Register Addressing, One-byte instructions

The content of register Rn (R0–R7) is logically ORed with the content of the accumulator. The result is stored

in the accumulator. No flags are affected, e.g., ORL A, Rn

ORL A, direct (Logical OR direct byte to accumulator)

A!A0[direct].

Machine cycles: 1, States: 12, Flags: No flags are affected, Direct Addressing, Two-byte instructions

The contents of the accumulator are logically ORed with the contents of the memory location, whose address

is specified by the 8-bit direct address and the result is placed in the accumulator. No flags are affected. The

example is ORA A, direct.

ORL A, @Ri (Logical OR indirect RAM to accumulator)

A!A0[Ri].

Machine cycles: 1, States: 12, Flags: No flags are affected, Register indirect Addressing, One-byte instructions

The contents of the accumulator are logically ORed with the contents of the memory location, whose address

is specified by the content of register R0 or R1. The result is placed in the accumulator. No flags are affected.

Microprocessors and Microcontrollers8.14

The example is ORA A, @R0.

ORL A, #data (Logical OR immediate 8-bit data with accumulator)

A!A0 #8-bit data.

Machine cycles: 1, States: 12, Flags: No flags are affected, Immediate Addressing, Two-byte instructions

In this instruction, 8-bit data is ORed with the content of the accumulator and the result is placed in the accu-

mulator. No flags are affected. The example is ORA A, #45H.

ORL direct, A (Logical OR accumulator to direct byte)

[direct]![direct]0A.

Machine cycles: 1, States: 12, Flags: No flags are affected, Two-byte instructions

The contents of the accumulator are logically ORed with the contents of the memory location, whose address

is specified by the 8 bit direct address and the result is stored in the 8 bit direct address. No flags are affected.

The example is ORA direct, A.

ORL direct, #data (Logical OR immediate data to direct byte)

[direct]![direct]0 #data.

Machine cycles: 2, States: 24, Flags: No flags are affected, Immediate Addressing, Three-byte instructions

The 8-bit immediate data is logically ORed with the contents of the memory location, whose address is speci-

fied by the 8 bit direct address and the result is placed in the 8 bit direct address. No flags are affected. The

example is ORA direct, #data.

 XRL performs the bitwise logical Exclusive-OR operation between the indicated variables in instruction

and, store the results in the destination. No flags are affected. Different addressing mode combinations are

possible for this instruction. When the destination is the Accumulator, the source can use register, direct,

register-indirect, or immediate addressing. If the destination is a direct address, the source can be the accu-

mulator or immediate data.

XRL A, Rn (EXCLUSIVE-OR register with accumulator)

A!A5 Rn

Machine cycles: 1, States: 12, Flags: No flags are affected, Register Addressing, One-byte instructions

The contents of the accumulator are Exclusive ORed with the contents of the register Rn (R0–R7) and the

result is placed in the accumulator. No flags are affected. Example: XRL A, R7 .

XRL A, direct (Exclusive-OR direct byte to accumulator)

A!A5 [direct]

Machine cycles: 1, States: 12, Flags: No flags are affected, Direct Addressing, Two-byte instructions

 The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is

specified by 8-bit direct address and the result is placed in the accumulator. No flags are affected, e.g., XRL

A, direct.

XRL A, @Ri (Exclusive-OR indirect RAM to accumulator)

A!A5 [Ri]

Machine cycles: 1, States: 12, Flags: No flags are affected, Register indirect Addressing, One-byte instructions

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is

specified by the register Ri (R0 or R1) and the result is placed in the accumulator. No flags are affected, e.g.,

XRL A, @R0.

Instruction Set and Programming of 8051 Microcontroller 8.15

XRL A, #data (Exclusive-OR immediate data to accumulator)

A!A5 #data

Machine cycles: 1, States: 12, Flags: No flags are affected, Immediate Addressing, Two-byte instructions

The contents of the accumulator are Exclusive ORed with the 8-bit data. The result is stored in the accumula-

tor. No flags are affected., e.g., XRL A, #78H.

XRL direct, A (Exclusive-OR accumulator to direct byte)

[direct]![direct]5A

Machine cycles: 1, States: 12, Flags: No flags are affected, One-byte instructions

The contents of the accumulator are Exclusive ORed with the contents of the memory location, which is

specified by 8-bit direct address and the result is placed in the same address. No flags are affected, e.g., XRL

direct, A.

XRL direct, #data (Exclusive-OR immediate data to direct byte)

[direct]![direct]5 #data

Machine cycles: 2, States: 24, Flags: No flags are affected, Three-byte instructions

The contents of the 8-bit direct address memory location are Exclusive ORed with 8-bit immediate data and

the result is placed in the 8-bit direct memory address. No flags are affected, e.g., XRL direct, #data.

CLR A (Clear accumulator)

A!0, Machine cycles: 1, States 12, One-byte instruction.

The accumulator is cleared (all bits reset to zero). No flags are affected.

CPL A (Complement accumulator)

A!aA, Machine cycles: 1, States 12, One-byte instruction

Each bit of the accumulator is logically complemented, i.e., one’s complement. Bits which previously con-

tained a one are changed to a zero and vice-versa. No flags are affected.

RL A (Rotate accumulator left)

An+1!An, A0!A7

Machine cycles: 1, States: 12, Flags: No Flags are affected, Implicit Addressing, One-byte instructions

The eight bits in the accumulator are rotated one bit to the left. Bit 7 is rotated into the bit 0 position as shown

in Fig. 8.5. No flags are affected.

For Example, RL A. The accumulator holds the value C5H (11000101) and after execution of RL A instruc-

tion, the accumulator holding the value 8BH (10001011) with the carry unaffected.

Fig. 8.5 Diagram for RL A

RLC A (Rotate accumulator left through the carry)

An+1!An, A0!C, C!A7

Microprocessors and Microcontrollers8.16

Machine cycles: 1, States: 12, Flags: CS, Implicit Addressing, One-byte instructions

The eight bits in the accumulator and the carry flag are together rotated one bit to the left. Bit 7 moves into

the carry flag and the original state of the carry flag moves into the bit 0 position. Each bit of the accumulator

is rotated left by one bit. The seventh bit of the accumulator is placed in the position of carry and carry flag

moves to A0 as shown in Fig. 8.6. No other flags are affected, e.g., RLC A. Assume the accumulator holds

the value C5H (11000101), and the carry is zero. After execution of RLC A, the Accumulator holds the value

8AH (10001010) with the carry set.

Fig. 8.6 Diagram for RLC A

RR A (Rotate accumulator right)

An!An+1, A7!A0

Machine cycles: 1, States: 4, Flags: No flags are affected, Implicit Addressing, One-byte instructions

The eight bits in the accumulator are rotated one bit to the right. Bit 0 is rotated into the bit 7 positions.

Each binary bit of the accumulator is shifted right by one position as depicted in Fig. 8.7. No flags are

affected, e.g., RR A. If the Accumulator holds the value C5H (11000101), after execution RR A instruction,

the Accumulator holds the value E2H (11100010) with the carry unaffected.

Fig. 8.7 Diagram for RR A

RRC A (Rotate Accumulator right through the carry)
A

n
!A

n+1, A7!C, C!A0

Machine cycles: 1, States: 4, Flags: CS, Implicit Addressing, One-byte instructions

The eight bits in the Accumulator and the carry flag are together rotated one bit to the right. Bit 0 moves into

the carry flag; the original state of the carry flag moves into the bit 7 position as shown in Fig. 8.8. No other

flags are affected, e.g., RRC A. When the accumulator holds the value C5H (11000101) and the carry is zero,

after execution of RRC A instruction, the accumulator holds the value 62H (01100010) with the carry set.

SWAP (Swap nibbles within the accumulator)

(A3–0)) (A7–4)

Instruction Set and Programming of 8051 Microcontroller 8.17

Fig. 8.8 Diagram for RRC A

Machine cycles: 1, States 4, Flags: No flags are affected,

SWAP A instruction interchanges the low-order and high-order nibbles of the Accumulator (bits 3-0 and bits

7-4). The SWAP operation can also be thought of as a four-bit rotate instruction. No flags are affected, e.g.,

SWAP A. If the accumulator holds the value C5H (11000101), after execution of SWAP A instruction, the

accumulator holds the value 5CH (01011100).

Table 8.8 shows the 8051 logical instruction set summary

Table 8.8 8051 Logical instruction set summary

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

ANL A, Rn AND register to accumulator 12 1 0 1 0 1 1 r r r

ANL A, direct AND direct byte to accumulator 12 2 0 1 0 1 0 1 0 1

ANL A,@Ri AND indirect RAM to accumulator 12 1 0 1 0 1 0 1 1 i

ANL A,#data AND immediate data to accumulator 12 2 0 1 0 1 0 1 0 0

ANL direct, A AND accumulator to direct byte 12 2 0 1 0 1 0 0 1 0

ANL direct, AND immediate data to direct byte 24 3 0 1 0 1 0 0 1 1

 #data

ORL A, Rn OR register to accumulator 12 1 0 1 0 0 1 r r r

ORL A, direct OR direct byte to accumulator 12 2 0 1 0 0 0 1 0 1

ORL A, @ Ri OR indirect RAM to accumulator 12 1 0 1 0 0 0 1 1 i

ORL A, #data OR immediate data to accumulator 12 2 0 1 0 0 0 1 0 0

ORL direct ,A OR accumulator to direct byte 12 2 0 1 0 0 0 0 1 0

ORL direct, OR immediate data to direct byte 24 3 0 1 0 0 0 0 1 1

 #data

XRL A, Rn Exclusive-OR register to accumulator 12 1 0 1 1 0 1 r r r

XRL A, direct Exclusive-OR direct byte to accumulator 12 2 0 1 1 0 0 1 0 1

XRL A, @ Ri Exclusive-OR indirect RAM to 12 1 0 1 1 0 0 1 1 i

 accumulator

XRL A, # data Exclusive-OR immediate data to 12 2 0 1 1 0 0 1 0 0

 accumulator

XRL direct,A Exclusive-OR accumulator to 12 2 0 1 1 0 0 0 1 0

 direct byte

XRL direct, Exclusive-OR immediate data to 24 3 0 1 1 0 0 0 1 1

 #data direct byte

CLR A Clear accumulator 12 1 1 1 1 0 0 1 0 0

Microprocessors and Microcontrollers8.18

CPL A Complement accumulator 12 1 1 1 1 1 0 1 0 0

RL A Rotate accumulator left 12 1 0 0 1 0 0 0 1 1

RLC A Rotate accumulator left through the carry 12 1 0 0 1 1 0 0 1 1

RR A Rotate accumulator right 12 1 0 0 0 0 0 0 1 1

RRC A Rotate accumulator right through 12 1 0 0 0 1 0 0 1 1

 the carry

SWAP A Swap nibbles within the accumulator 12 1 1 1 0 0 0 1 0 0

8.3.3 Data Transfer Instructions

Data transfer instructions are used to transfer data between registers, register pairs, memory and registers, etc.

The byte variable indicated by the second operand is copied into the location specified by the first operand.

After execution of MOV <destination-byte>, <source-byte>, the source byte is not affected. No other register

or flag is affected. This is the most flexible operation. Fifteen combinations of source and destination address-

ing modes are allowed. All data transfer instructions are described below:

MOV A, Rn (Move register to accumulator)

A!R
n

Machine cycles: 1, States: 12, Flags none, Register Addressing mode, one-byte instruction

This instruction copies the contents of the source register into the accumulator but the contents of the source

register are not changed. Flags and other registers are not affected. For example, MOV A, R2.

MOV A, direct (Move direct byte to accumulator)

A ![direct]

Machine cycles: 1, States: 12, Flag none, Direct Addressing, Two-byte instruction

The content of the memory location moves to accumulator. For example, the instruction MOV A, 44H will

move the content 44H memory location to accumulator.

MOV A, @Ri (Move indirect RAM to accumulator)

A![R
i
]

Machine cycles: 1, States: 12, Flag none, Register Indirect Addressing, one-byte instruction

The content of memory location whose address specified by register R0 or R1 moves to accumulator. For

example, the instruction MOV A, @R0 will move the content of the memory location specified by R0 register

to accumulator.

MOV A, #data (Move immediate data to accumulator)

A! #data

Machine cycles: 1, States: 12, Flags none, immediate addressing modes, two-byte instruction

The 8-bit data can be stored in the accumulator immediately. For example, the instruction MOV A, #44H

moves 44H to accumulator.

MOV Rn, A (Move accumulator to register)

Rn!A

Machine cycles: 1, States: 12, Flags none, Register Addressing, One-byte instruction

The contents of accumulator will be stored in the register Rn (R0–R7). For example, MOV Rn, A.

Instruction Set and Programming of 8051 Microcontroller 8.19

MOV Rn, direct (Move accumulator to register)

Rn![direct]

Machine cycles: 2, States: 12, Flags none, Direct Addressing, Two-byte instruction

The content of 8 bit direct memory location will be stored in register Rn. For example, MOV R2, 22H. When

this instruction is executed, the content of 22H memory location move to register R2.

MOV Rn, #data (Move immediate data to register)

Rn!data

Machine cycles: 1, States: 12, Flags none, Immediate Addressing, two-byte instruction

The 8-bit immediate data will be stored in the register Rn. For example, MOV R4, #67H. When this instruc-

tion is executed, 67H data move to the register R4.

MOV direct, A (Move accumulator to direct byte)

[direct]!A

Machine cycles: 1, States: 12, Flags none, Two-byte instruction

The content of accumulator will be copied in 8-bit direct address memory location. For example, MOV 25,

A. After execution of this instruction, accumulator content move to 25H memory location.

MOV direct, Rn (Move register to direct byte)

[direct]!Rn

Machine cycles: 2, States: 12, Flags none, two-byte instruction

The content of Register Rn (R0–R7) will be stored in memory location, which is specified by the 8-bit direct

address. For example, MOV 45H, R7. If this instruction is executed, R7 register content move to 25H

memory location.

MOV direct, direct (Move direct byte to direct)

[direct]![direct]

Machine cycles: 2, States: 24, Flags none, three-byte instruction

The data will be stored in a 8-bit direct memory location from an 8-bit direct memory location. For example,

MOV 23, 22H. The content of 22H memory location is copied to 23H memory location.

MOV direct, @Ri (Move indirect RAM to direct byte)

[direct]![Ri]

Machine cycles: 3, States: 10, Flags none, Indirect Addressing, two-byte instruction

The content of internal RAM whose address is specified by the contents of the register Ri (R0 or R1) will

be stored in 8-bit direct address memory location. For example, MOV 44H, @R0. After execution of this

instruction, the content of the memory location specified by R0 register will be stored in the 8-bit direct

address memory location.

MOV direct, #data (Move immediate data to direct byte)

[direct] !data

Machine cycles: 2, States: 24, Flags none, Immediate Addressing, Two-byte instruction

The 8-bit immediate data will be stored in the 8-bit direct memory location. For example, MOV 45H, #22H.

In this instruction MOV 45H, #22H, 22H data move to 8-bit direct address memory location 45 H.

MOV @Ri, A (Move accumulator to indirect RAM)

[Ri]!A

Microprocessors and Microcontrollers8.20

Machine cycles: 1, States: 12, Flags none, One-byte instruction

The content of accumulator will be stored in memory location, which is specified by the contents of the

Ri (R0 or R1) register. For example, MOV @R0, A. In this instruction Accumulator Content data move to

memory location specified by R0 register.

MOV @Ri, direct (Move direct byte to indirect RAM)

[Ri] ![direct]

Machine cycles: 2, States: 24, Flags none, Direct Addressing, two-byte instruction

The data of 8-bit direct memory location will be stored in the memory location, which is specified by the

contents of the Ri (R1 or R0) register, For example, MOV @R0, 33H. When this instruction is executed, the

content of 33H memory location move to memory location specified by R0.

MOV @ Ri, #data (Move immediate data to indirect RAM)

[Ri]!#data

Machine cycles: 1, States: 12, Flags none, Immediate Addressing, two-byte instruction

The 8-bit immediate data will be stored in memory location, which is specified by the contents of the Ri

register. Example: MOV @R1, #FFH. After execution of MOV @R1, #FFH instruction, FFH data move to

memory location specified by the R1 register.

MOV DPTR, #data 16 (Load data pointer with a 16-bit constant)

DPTR! data15-0

DPH! data15-8, DPL ! data7-0

Machine cycles: 3, States: 10, Flags none, Immediate Addressing, three-byte instruction

The data pointer register is loaded with the 16-bit constant indicated in the instruction. The 16-bit constant is

loaded into the second and third bytes of the instruction. The second byte (DPH) is the high-order byte and

the third byte (DPL) holds the low-order byte. No flags are affected. This is the only instruction, which moves

16 bits of data at once. For example, MOV DPTR, #8000H. When this instruction is executed, load the value

8000H into the data pointer. Hence DPH will hold 80H and DPL will hold 00H.

 The MOVC A, @A + <base-register> instructions load the Accumulator with a code byte from program

memory. The address of the byte fetched is the sum of the unsigned eight-bit accumulator contents and the

contents of a sixteen-bit base register. The base register may be either the data pointer or the PC. The PC is

incremented before being added with the accumulator. As sixteen-bit addition is performed, a carry-out from

the low-order eight bits may propagate through higher-order bits. No flags are affected. The example of MOV

C instructions are explained below:

MOVC A,@A+DPTR (Move code byte relative to DPTR to ACC)

A![A+DPTR]

Machine cycles: 2, States: 12, Flags none, Index Addressing, one-byte instruction

The contents of memory location, which is specified by the contents of accumulator and the DPTR register,

move to accumulator. For example, MOVC A, @A+DPTR.

MOVC A, @A+PC (Move code byte relative to PC to ACC)

PC!PC+1, A![A + PC]

Machine cycles: 2, States: 24, Flags none, Index Addressing, one-byte instruction

The contents of memory location, which is specified by the contents of accumulator and the PC register,

move to accumulator. For example, MOVC A, @A+PC.

Instruction Set and Programming of 8051 Microcontroller 8.21

 The MOVX <destination-byte>, <source-byte> instruction is used to transfer data between accumulator

and a byte of external memory. There are two types of instructions differing in whether they provide an eight

bit or sixteen-bit in direct address to the external data RAM.

 In the first case, the contents of R0 or R1 of the selected register bank provide an eight-bit address multi-

plexed with data on P0. In the second case, the data pointer registers provides the sixteen bit address, P2 out-

puts the content of DPH, i.e., high-order eight address bits, but P0 multiplexes the low-order eight bits (DPL)

with data. All types of MOVX instruction are explained in this section.

MOVX A, @Ri (Move external RAM (8-bit addr) to ACC)

A![Ri]

Machine cycles: 2, States: 24, Flags none, Indirect Addressing, one-byte instruction

The contents of external RAM location (8-bit address), which is specified by the contents of R0 or R1, move

to accumulator. For example, MOVX A, @R0.

MOVX A, @DPTR (Move external RAM (16-bit addr) to ACC)

A![DPTR]

Machine cycles: 2, States: 24, Flags none, Indirect Addressing, One-byte instruction

The contents of external RAM location (16-bit address), which is specified by the contents of DPTR, move

to accumulator. For example, MOVX A, @DPTR.

MOVX @Ri, A (Move ACC to external RAM (8-bit addr))

[Ri]!A

Machine cycles: 2, States: 24, Flags none, One-byte instruction

The contents of accumulator move to external RAM location (8-bit address), which is specified by the con-

tents of R0 or R1. For example, MOVX @R0, A.

MOVX @DPTR, A (Move ACC to external RAM (16-bit addr))

[DPTR]!A

Machine cycles: 2, States: 24, Flags none, one-byte instruction

The contents of accumulator move to external RAM location (16-bit address), which is specified by the con-

tents of DPTR. For example, MOVX @DPTR, A.

Table 8.9 shows the 8051 data-transfer instruction set summary.

Table 8.9 8051 Data-transfer instructions set summary

 Clock Number

Opcode Operand Functions cycle of bytes Instruction code

MOV A, Rn Move register to accumulator 12 1 1 1 1 0 1 r r r

MOV A, direct Move direct byte to accumulator 12 2 1 1 1 0 0 1 0 1

MOV A, @Ri Move indirect RAM to accumulator 12 1 1 1 1 0 0 1 1 i

MOV A, #data Move immediate data to accumulator 12 2 0 1 1 1 0 1 0 0

MOV Rn, A Move accumulator to register 12 1 1 1 1 1 1 r r r

MOV Rn, direct Move direct byte to register 24 2 1 0 1 0 1 r r r

MOV Rn, #data Move immediate data to register 12 2 0 1 1 1 1 r r r

MOV direct, A Move accumulator to direct byte 12 2 1 1 1 1 0 1 0 1

MOV direct, Rn Move register to direct byte 24 2 1 0 0 0 1 r r r

Microprocessors and Microcontrollers8.22

MOV direct, Move direct byte to direct 24 3 1 0 0 0 0 1 0 1

 direct

MOV direct, @Ri Move indirect RAM to direct byte 24 2 1 0 0 0 0 1 1 i

MOV direct, Move immediate data to direct byte 24 3 0 1 1 1 0 1 0 1

 #data

MOV @Ri, A Move accumulator to indirect RAM 12 1 1 1 1 1 0 1 1 i

MOV @Ri, direct Move direct byte to indirect RAM 24 2 1 0 1 0 0 1 1 i

MOV @Ri, Move immediate data to indirect 12 2 0 1 1 1 0 1 1 i

 #data RAM

MOV DPTR, Load data pointer with a 16-bit 24 3 1 0 0 1 0 0 0 0

 #data16 constant

MOVC A,@A Move code byte relative to 24 1 1 0 0 1 0 0 1 1

 +DPTR DPTR to ACC

MOVC A,@A+PC Move code byte relative to PC to ACC 24 1 1 0 0 0 0 0 1 1

MOVX A, @Ri Move external RAM (8-bit addr) 24 1 1 1 1 0 0 0 1 i

 to ACC

MOVX A,@ Move external RAM (16-bit addr) 24 1 1 1 1 0 0 0 0 0

 DPTR to ACC

MOVX @Ri, A Move ACC to external RAM 24 1 1 1 1 1 0 0 1 i

 (8-bit addr)

MOVX @DPTR, A Move ACC to external RAM 24 1 1 1 1 1 0 0 0 0

 (16-bit addr)

Example 8.4 Write instructions to perform the following operations:

 (i) Move the content of accumulator into R0 register

 (ii) Load immediate 8-bit data (FFH) into accumulator

 (iii) Load Data pointer with 9000H

 (iv) Move the content of accumulator to external RAM location 8000H

Sol.

 (i) MOV A, R0 ; Move the content of accumulator into R0 register

 (ii) MOV A, #FFH; Load immediate 8-bit data (FFH) into accumulator

 (iii) MOV DPTR, #9000H ; Load Data pointer with 9000H

 (iv) MOV DPTR, #8000 ;

 MOVX @DPTR, A; Move the content of accumulator to external RAM location 8000H

8.3.4 Boolean Variable Manipulation

The 8051 controller contains a complete Boolean processor for single-bit operations. In these instructions, all

bit accesses use direct addressing and bits may be set or cleared using single instruction. All Boolean instruc-

tions are explained below:

CLR C (Clear carry)

C!0

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, one byte instruction

This instruction clears the carry flag. No other flags are affected. For example, CLR C.

Instruction Set and Programming of 8051 Microcontroller 8.23

CLR bit (Clear direct bit)

bit!0

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, Two-byte instruction

The indicated bit is cleared (reset or zero). No other flags are affected. CLR can operate on the carry flag

or any directly addressable bit, e.g., Port 1 has previously been written with 5DH (01011101B). The instruc-

tion, CLR P1.2 will leave the port set to 59H (01011001B).

SETB C (Clear carry)

C!1

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, one byte instruction

This instruction set the carry flag. No other flags are affected. For example, SETB C.

SETB bit (Clear direct bit)

bit!1

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, Two-byte instruction

SETB sets the indicated bit to one. SETB can operate on the carry flag or any directly addressable bit. No

other flags are affected, e.g., the carry flag is cleared. Output Port 1 has been written with the value 34H

(00110100B). The instructions, SETB P1.0 will leave the carry flag set to 1 and change the data output on

Port 1 to 35H (00110101B).

CPL C (Complement carry)

C!aC
Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, one byte instruction

This instruction complement the carry flag. No other flags are affected. For example, CPL C.

CPL bit (Complement bit)

bit!abit

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, one byte instruction

The bit variable specified is complemented. When a bit is one, it is changed to zero and vice-versa. No other

flags are affected. CPL can operate on the carry or any directly addressable bit, e.g., Port 1 has previously

been written with 5DH (01011101B). The instruction sequence, CPL P1.1 and CPL P1.2 will leave the port

set to 5BH (01011011B).

ANL C, bit (AND direct bit to carry)

C!C/bit

Machine cycles: 2, States: 24, Flags none, Direct Addressing mode, two-byte instruction

This instruction performs logical AND operation between the source bit and the carry flag. No other flags are

affected. For example, ANL C, ACC.7. AND operation between the accumulator bit 7 and the carry.

ANL C, /bit (Complement bit)

C!C/abit

Machine cycles: 2, States: 24, Flags none, Direct Addressing mode, Two-byte instruction

The slash (“/”) preceding the operand in the assembly language indicates that the logical complement of the

addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected.

For example, ANL C, /OV ; AND with inverse of overflow flag.

Microprocessors and Microcontrollers8.24

ORL C, bit (OR direct bit to carry)

C!C 0bit

Machine cycles: 2, States: 24, Flags none, Direct Addressing mode, two-byte instruction

This instruction performs logical-OR operation between source bit and the carry. No other flags are affected,

e.g., ORL C, ACC.7 ; OR carry with the ACC. BIT 7.

ORL C, /bit (OR complement of direct bit to carry)

C!C 0bit

Machine cycles: 2, States: 24, Flags none, Direct Addressing mode, two-byte instruction

A slash (“/”) preceding the operand in the assembly language indicates that the logical complement of the

addressed bit is used as the source value, but the source bit itself is not affected. No other flags are affected,

e.g., ORL C, /OV ;OR carry with the inverse of OV.

MOV C, bit (Move direct bit to carry)

C!bit

Machine cycles: 1, States: 12, Flags none, Direct Addressing mode, two-byte instruction

This instruction is used to copy the Boolean variable indicated by the second operand into the location speci-

fied by the first operand. No other flags are affected. For example, MOV C, P3.3.

MOV bit, C (Move carry to direct bit)

bit!C

Machine cycles: 2, States: 24, Flags none, Direct Addressing mode, Two-byte instruction

The Boolean variable indicated by the second operand must be copied into the location specified by the first

operand. One of the operands is the carry flag and the other is any directly addressable bit. No other register

or flag is affected, e.g., MOV P1.3, C Assume the carry flag is set and the data present at output Port 1 is 35H

(0011 0101B). After execution of MOV P1.3, C the Port 1 change to 3DH (0011 1101B).

JC rel (Jump if carry is set)

PC!PC + 2, If C = 1, then PC!PC + rel

Machine cycles: 2 States: 24, Flags none, Two-byte instruction

When the carry flag is set, jump to the address indicated in instruction; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after

incrementing the PC twice. No flags are affected, e.g., JC LABEL-1.

JNC rel (Jump if carry is not set)

PC!PC + 2 , If C = 0, then PC!PC + rel

Machine cycles: 2, States: 24, Flags none, Two-byte instruction

If the carry flag is a zero, jump to the address indicated in the instruction; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after

incrementing the PC twice to point to the next instruction. The carry flag is not modified, e.g., JNC LABEL-1.

JB bit, rel (Jump if direct bit is set)

PC!PC + 3 , If bit = 1, then PC!PC + rel

Machine cycles: 2 States: 24, Flags none, Three-byte instruction

If the indicated bit is ‘1’, jump to the address indicated in the instruction; otherwise proceed with the next

Instruction Set and Programming of 8051 Microcontroller 8.25

instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after

incrementing the PC. The bit tested is not modified. No flags are affected, e.g., JB P1.2, LABEL-1.

JNB bit, rel (Jump if direct bit is not set)

PC!PC + 2 , If C = 1, then PC!PC + rel

Machine cycles: 2, States: 24, Flags none, Three-byte instruction

If the indicated bit is a zero, jump to the indicated address in the instruction; otherwise proceed with the next

instruction. The branch destination is computed by adding the signed relative-displacement to the PC, after

incrementing the PC. The bit tested is not modified. No flags are affected, e.g., JNB P1.3, LABEL-1.

JB C bit, rel (Jump if direct bit is set and clear bit)

PC!PC + 3 , If bit = 1, then bit!0, PC!PC + rel

Machine cycles: 2 States: 24, Flags none, Three-byte instruction

If the indicated bit is ‘1’, jump to the address indicated in instruction; otherwise proceed with the next instruc-

tion. The bit will not be cleared if it is already a zero. The branch destination is computed by adding the

signed relative-displacement to the PC, after incrementing the PC. No flags are affected, e.g., JBC ACC.3,

LABEL-1.

Table 8.10 shows the 8051 Boolean instruction set summary

Table 8.10 8051 Boolean instruction set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

CLR C Clear carry 12 1 1 1 0 0 0 0 1 1

CLR bit Clear direct bit 12 2 1 1 0 0 0 0 1 0

SETB C Set carry 12 1 1 1 0 1 0 0 1 1

SETB bit Set direct bit 12 2 1 1 0 1 0 0 1 0

CPL C Complement carry 12 1 1 0 1 1 0 0 1 1

CPL bit Complement direct bit 12 2 1 0 1 1 0 0 1 0

ANL C, bit AND direct bit to carry 24 2 1 0 0 0 0 0 1 0

ANL C,/bit AND complement of direct bit 24 2 1 0 1 1 0 0 0 0

 to carry

ORL C, bit OR direct bit to carry 24 2 0 1 1 1 0 0 1 0

ORL C,/bit OR complement of direct bit to carry 24 2 1 0 1 0 0 0 0 0

MOV C,bit Move direct bit to carry 12 2 1 0 1 0 0 0 1 0

MOV bit,C Move carry to direct bit 24 2 1 0 0 1 0 0 1 0

JC rel Jump if carry is set 24 2 0 1 0 0 0 0 0 0

JNC rel Jump if carry is not set 24 2 0 1 0 1 0 0 0 0

JB Bit, rel Jump if direct bit is set 24 3 0 0 1 0 0 0 0 0

JNB Bit,rel Jump if direct bit is not set 24 3 0 0 1 1 0 0 0 0

JBC bit,rel Jump if direct bit is set and clear bit 24 3 0 0 0 1 0 0 0 0

8.3.5 Branch Group

The branch group instructions are generally used to change the sequence of the program execution. There are

two types of branch instructions ‘namely’ conditional and unconditional. The conditional branch instructions

Microprocessors and Microcontrollers8.26

transfer the program to the specified address when condition is satisfied only. The unconditional branch

instructions transfer the program to the specified address unconditionally. All conditional and unconditional

branch instructions are explained in this section.

ACALL 11-bit address (Absolute subroutine CALL)

PC!PC + 2, SP ! SP + 1, SP!PC7-0,

SP!SP+1, SP!PC15-8, PC10-0 !page address

Machine cycles: 2, States: 24, Flags: none, Two-bytes instruction

ACALL instruction unconditionally calls a subroutine located at the indicated address. This instruction incre-

ments the PC twice to obtain the address of the following instruction, then pushes the 16-bit result onto the

stack (low-order byte first) and increments the stack pointer twice. The destination address can be obtained

by successively concatenating the five high-order bits of the incremented PC, opcode bits 7–5, and the sec-

ond byte of the instruction. This instruction can be used to call a subroutine within the same 2K block of the

program memory. The first byte of the instruction following ACALL. No flags are affected, e.g., ACALL

address 11.

LCALL 16-bit address (Long subroutine CALL)

PC!PC + 3, SP!SP + 1, [SP]!PC7-0,

SP!SP + 1, [SP]!PC15-8, PC!address15-0

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction

LCALL instruction calls a subroutine located at the indicated address. This instruction adds three to the pro-

gram counter to generate the address of the next instruction and then push the 16-bit result onto the stack (low

byte first), and increment the stack pointer by two. Then high-order and low-order bytes of the PC are loaded

with the second and third bytes of the LCALL instruction. Therefore the subroutine may start anywhere in the

full 64K-byte program memory address space. No flags are affected, e.g., LCALL 2000.

RET (Return from subroutine)

PC15-8![SP], SP!SP-1, PC7-0![SP], SP!SP-1

Machine cycles: 2, States: 24, Flags: none, One-byte instruction

The RET instruction pops the high-order and low-order bytes of the PC successively from the stack, and

decrement the stack pointer by two. Generally, this instruction immediately follows ACALL or LCALL. No

flags are affected, e.g., RET.

RETI (Return from interrupt)

PC15-8!SP

SP!SP-1, PC7-0!SP

SP!SP-1

Machine cycles: 2, States: 24, Flags: none, One-byte instruction

RETI instruction pops the high-order and low-order bytes of the PC successively from the stack, and restores

the interrupt logic to accept additional interrupts at the same priority level as the one just processed. The

Stack Pointer is decremented by two. No other registers are affected and the PSW is not automatically

restored to its pre-interrupt status. Usually, this instruction is executed immediately after the point at which

the interrupt request is detected. If a lower- or same-level interrupt has been pending when the RETI instruc-

tion is executed, some instructions will be executed before processing the pending interrupt, e.g., RETI.

AJMP 11-bit address (Absolute jump)

PC!PC + 2, PC10-0!page address

Instruction Set and Programming of 8051 Microcontroller 8.27

Machine cycles: 2, States: 24, Flags: none, Two-byte instruction

AJMP instruction transfers program execution to the indicated address, which is formed at run-time by con-

catenating the high-order five bits of the PC after incrementing the PC by 2, opcode bits 7-5, and the second

byte of the instruction. The destination address must be within the same 2K block of program memory, e.g.,

AJMP 11-bit address.

LJMP 16-bit address (Long Jump)

PC!addr15-0

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction.

LJMP instruction is an unconditional jump to the indicated address, by loading the high-order and low-order

bytes of the PC with the second and third instruction bytes. The destination address will be anywhere in the

full 64K program memory address space. No flags are affected, e.g., LJMP 4000H.

SJMP rel (Short Jump)

PC!PC + 2, PC!PC + rel

Machine cycles: 2, States: 24, Flags: none, Two-byte instruction.

If SJMP rel instruction is executed, program control branches unconditionally to the address indicated. The

branch destination is computed by adding the signed displacement in the second instruction byte to the PC,

after incrementing the PC by 2. The range of destinations is from 128 bytes preceding this instruction to 127

bytes following it, e.g., SJMP 70H.

JMP @A+DPTR (Jump indirect relative to the DPTR)

PC!A + DPTR

Machine cycles: 2, States: 24, Flags: none, One-byte instruction.

The eight-bit unsigned contents of the accumulator is added with the sixteen-bit data pointer, and load the

result to the program counter. This will be the address for subsequent instruction fetches. No flags are

affected, e.g., MOV DPTR,#8000H; JMP @A+DPTR. If the Accumulator is equal to 04H, execution will

jump to label 8004H memory location.

JZ rel (Jump if accumulator is zero)

PC!PC + 2, If A = 0, then PC!PC + rel

Machine cycles: 2, States: 24, Flags: none, Two-byte instruction.

If all bits of the Accumulator are zero, jump to the indicated address; otherwise proceed with the next instruc-

tion. The branch destination address is computed by adding the signed relative-displacement to the PC, after

incrementing the PC by 2. The accumulator is not modified. No flags are affected, e.g., DEC A ; JZ LABEL2.

Assume the accumulator holds 01H. After execution of above instructions, the accumulator will change to

00H and cause jump to the label LABEL2.

JNZ rel (Jump if accumulator is not zero)

PC!PC + 2, If A] 0, then PC!PC + rel

Machine cycles: 2, States: 24, Flags: none, Two-byte instruction.

If any bit of the accumulator is ‘1’, jump to the indicated address; otherwise proceed with the next instruction.

The branch destination address is computed by adding the signed relative-displacement to the PC, after incre-

menting the PC by 2. The accumulator is not modified. No flags are affected, e.g., INC A ; JNZ LABEL2.

Assume the accumulator holds 00H. After execution of above instructions the accumulator will set to 01H

and continue at label LABEL2.

Microprocessors and Microcontrollers8.28

CJNE <dest-byte, <src-byte>, rel instruction is used to compare the magnitudes of the first two operands,

and branches if their values are not equal. The branch destination address is computed by adding the signed

relative-displacement to the PC, after incrementing the PC. The carry flag is set if the unsigned integer value

of <dest-byte> is less than the unsigned integer value of <src-byte>; otherwise, the carry is cleared. All

addressing mode combinations of CJNE instructions are explained below:

CJNE A, direct, rel (Compare direct byte to ACC and jump if not equal)

PC!PC + 3, If A< > direct, then PC!PC + relative offset; If A<direct, then C!1, Else C!0.

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction.

Compare the content of data which is specified by direct memory location and accumulator, thereafter jump

to destination address if not equal. The destination address is computed by addition of PC and relative offset

address after incrementing PC by 3.

CJNE A, #data, rel (Compare immediate to ACC and jump if not equal)

PC!PC + 3, If A< > data, then PC!PC + relative offset; If A<data, then C!1, Else C !0

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction.

Compare the contents of accumulator with 8-bit immediate data, thereafter jump to destination address if not

equal. The destination address is computed by addition of PC and relative offset address after incrementing

PC by 3.

CJNE Rn, #data, rel (Compare immediate to register and jump if not equal)

PC!PC + 3, If Rn< > data, then PC!PC + relative offset; If Rn < data, then C !1, Else C !0

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction.

Compare the contents of register Rn with 8-bit immediate data; thereafter jump to destination address if not

equal. The destination address is computed by addition of PC and relative offset address after incrementing

PC by 3.

CJNE @Ri, #data, rel (Compare immediate to indirect and jump if not equal)

PC!PC + 3, If [Ri]< > data, then PC!PC + relative offset; If Ri < data, then C!1, Else C!0

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction.

Compare the content of memory location which is specified by R0 or R1 and 8-bit immediate data, thereafter

jump to destination address if not equal. The destination address is computed by addition of PC and relative

offset address after incrementing PC by 3.

 DJNZ <byte>, <rel-addr> instruction decrements the first operand by 1 and jump to the address indicated

by the second operand if the resulting value is not zero. An original value of 00H will underflow to FFH. No

flags are affected. The branch destination address will be computed by adding the signed relative-displace-

ment value to the PC, after incrementing the PC. The location of first operand may be a register or directly

addressed byte. Two types of DJNZ instructions are explained below:

DJNZ Rn, rel (Decrement register and jump if not zero)

PC!PC + 2, Rn!Rn-1, If Rn > 0 or Rn < 0, then PC!PC + rel

Machine cycles: 2, States: 24, Flags: none, Three-bytes instruction

Decrements the contents of register Rn by 1 and jump to the address indicated by the instruction if the

resulting value is not zero. The branch destination address would be computed by adding the signed relative-

displacement value to the PC, after incrementing the PC by two, e.g., DJNZ R2, 8-bit offset address.

Instruction Set and Programming of 8051 Microcontroller 8.29

DJNZ direct, rel (Decrement direct byte and jump if not zero)

PC!PC + 2, direct!direct-1, If direct > 0 or direct < 0, then PC!PC + rel

Machine cycles: 2, States: 24, Flags: none, Three-byte instruction

 Decrements the contents of memory location which is specified by direct address, by 1 and jump to the

address indicated by the instruction if the resulting value is not zero. The branch destination would be com-

puted by adding the signed relative-displacement value to the PC, after incrementing the PC by two, e.g.,

DJNZ 40, 8-bit offset address.

NOP (No operation)

PC!PC+1

Machine cycles: 1, States: 12, Flags: none, One-byte instruction

Execution continues at the following instruction. Other than the program counter PC, no registers or flags are

affected, e.g., NOP.

Table 8.11 shows the 8051 Branch group instruction set summary

Table 8.11 8051 Branch group instructions set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

ACALL addr11 Absolute subroutine call 24 2 a10 a9 a8 1 0 0 0 1

LCALL addr16 Long subroutine call 24 3 0 0 0 1 0 0 1 0

RET Return from subroutine 24 1 0 0 1 0 0 0 1 0

RETI Return from interrupt 24 1 0 0 1 1 0 0 1 0

AJMP addr11 Absolute jump 24 2 a10 a9 a8 0 0 0 0 1

LJMP addr16 Long jump 24 3 0 0 0 0 0 0 1 0

SJMP rel Short jump (relative addr) 24 2 1 0 0 0 0 0 0 0

JMP @A+ Jump indirect relative to the DPTR 24 1 0 1 1 1 0 0 1 1

 DPTR

JZ rel Jump if accumulator is zero 24 2 0 1 1 0 0 0 0 0

JNZ rel Jump if accumulator is not zero 24 2 0 1 1 1 0 0 0 0

CJNE A, direct, Compare direct byte to ACC 24 3 1 0 1 1 0 1 0 1

 rel and jump if not equal

CJNE A, #data, Compare immediate to ACC 24 3 1 0 1 1 0 1 0 0

 rel and jump if not equal

CJNE RN, #data, Compare immediate to register 24 3 1 0 1 1 1 r r r

 rel and jump if not equal

CJNE @Ri, # Compare immediate to indirect 24 3 1 0 1 1 0 1 1 i

 data, rel and jump if not equal

DJNZ Rn, rel Decrement register and jump 24 2 1 1 0 1 1 r r r

 if not zero

DJNZ direct,rel Decrement direct byte and 24 3 1 1 0 1 0 1 0 1

 jump if not zero

NOP No operation 12 1 0 0 0 0 0 0 0 0

Microprocessors and Microcontrollers8.30

8.3.6 PUSH, POP and EXCHANGE Instructions

The PUSH and POP instructions are used to manipulate stack related operations. All stack and exchange

instructions discussed as follows:

PUSH direct (Push direct byte onto stack)

SP!SP+1; [SP] ! direct

Machine cycles 2, States: 24, Flags none, Two-bytes instruction

The Stack Pointer is incremented by one. The contents of the indicated variable is then copied into the inter-

nal RAM location addressed by the Stack Pointer. No flags are affected, e.g., PUSH DPL.

POP Direct (Pop direct byte from stack)

Direct![SP]; SP!SP –1

Machine cycles: 2, States: 24, Flags: none, Two-bytes instruction

The contents of the internal RAM location addressed by the stack pointer are read, and the Stack Pointer is

decremented by one. The value read is then transferred to the directly addressed byte indicated. No flags are

affected, e.g., POP DPH and POP SP.

 XCH A,<byte> loads the accumulator with the contents of the indicated variable, at the same time writing

the original accumulator contents to the indicated variable. The source/destination operand can use register,

direct, or register-indirect addressing. All types of XCH instructions are explained below:

XCH A, Rn (Exchange register with accumulator)

A)R
n

Machine cycles: 1, States: 12, Flags: none, One byte instruction

Exchange the contents of specified register Rn with accumulator, e.g., XCH A,R3

XCH A, direct (Exchange direct byte with accumulator)

A)direct

Machine cycles: 1, States: 12, Flags: none, One-byte instruction

Exchange the contents of memory location specified by direct address with accumulator, e.g, XCH A, 40H.

XCH A, @Ri (Exchange indirect RAM with accumulator)

A)[R
i
]

Machine cycles: 1, States: 12, Flags: none, One byte instruction.

Exchange the contents of RAM location which is specified by R0 or R1 with accumulator, e.g., XCH A, @R0.

Assume R0 contains the address 40H, the internal RAM location 40H holds 25H and Accumulator holds 2FH.

After execution of XCH A, @R0, Accumulator contains 25H and internal memory location content is 2FH.

XCHD A, @Ri (Exchange low-order digit indirect RAM with ACC)

A3-0) Ri3-0

Machine cycles: 1, States: 12, Flags: none, One-byte instruction.

XCHD instruction exchanges the low-order nibble of the Accumulator (bits 3-0) with that of the internal

RAM location indirectly addressed by the specified register. The high-order nibbles (bits 7-4) of each register

are not affected. No flags are affected, e.g., XCHD A, @R0.

Instruction Set and Programming of 8051 Microcontroller 8.31

Table 8.12 shows the PUSH, POP and exchange instruction set summary

Table 8.12 8051 12 PUSH, POP and Exchange instructions set summary

Opcode Operand Functions Clock Number Instruction code

 cycle of bytes

PUSH direct Push direct byte onto stack 24 2 1 1 0 0 0 0 0 0

POP direct Pop direct byte from stack 24 2 1 1 0 1 0 0 0 0

XCH A, Rn Exchange register with accumulator 12 1 1 1 0 0 1 r r r

XCH A, direct Exchange direct byte with accumulator 12 2 1 1 0 0 0 1 0 1

XCH A, @ Ri Exchange indirect RAM with 12 1 1 1 0 0 0 1 1 i

 accumulator

XCHD A, @ Ri Exchange low-order digit indirect 12 1 1 1 0 1 0 1 1 i

 RAM with ACC

 8.4 SIMPLE EXAMPLES IN ASSEMBLY LANGUAGE PROGRAMS OF 8051
MICROCONTROLLER

Example 8.4.1 Store 8-bit immediate data (65H) into accumulator.

Mnemonics Opcode Comments

MOV A, #65H Store 65H into accumulator immediately

Example 8.4.2 Load 42H and 55H in Registers R0 and R1 respectively.

Mnemonics Opcode Comments

MOV R0, #42H Load 42H in R0 register

MOV R1, #55H Load 55H in R1 register

Example 8.4.3 Place the contents of external memory location 8000H into accumulator.

Mnemonics Opcode Comments

MOV DPTR, #8000H Load 8000H in data pointer register immediately

MOVX A, @DPTR Copy the content of external memory location 8000H into accumulator

Example 8.4.4 Load 45H in external memory location 8000 H.

Mnemonics Opcode Comments

 MOV DPTR, #8000H Load 8000H in data pointer register immediately

 MOV A, #45H Load 45H into accumulator

 MOVX @DPTR,A Copy the content of Accumulator (45H) into external memory location

8000H

Example 8.4.5 Write program instructions to load a byte in memory location 9000H and increment the

contents of the memory location.

Mnemonics Opcode Comments

 MOV DPTR, #9000H Load 9000H in data pointer register immediately

 MOV A, #48H Load 48H into accumulator

 MOVX @DPTR, A Copy the content of Accumulator 48H into external memory location 9000H

Microprocessors and Microcontrollers8.32

 INC A Increment accumulator

 MOVX @DPTR, A Load 49H, i.e., the content of Accumulator into external memory location

9000H

Example 8.4.6 Store 01H, 02H, 03H and 04H in register R0, R1, R2 and R3 respectively and exchange data

stored in Reg. R0 with R1 and data in Reg. R2 with R3.

Mnemonics Opcode Comments

 MOV R0, #01H Load 01H in R0 register immediately.

 MOV R1, #02H Load 02H in R1 register immediately.

 MOV R2, #03H Load 03H in R2 register immediately.

 MOV R3, #04H Load 04H in R3 register immediately.

 MOV A, R0H Copy the content of R0 into accumulator.

 XCH A, R1 The content of accumulator and register R1 are exchanged.

 MOV R0, A The content of accumulator into R0 register.

 MOV A, R2 Copy the content of R2 into accumulator.

 XCH A, R3 The content of accumulator and register R3 are exchanged.

 MOV R2, A The content of accumulator into R2 register.

 8.5 ASSEMBLY-LANGUAGE PROGRAMS

8.5.1 Addition of Two 8-bit Numbers and Sum is 8-bit

Add 49 H and 56 H. The 1st number 49 H is in the external memory location 9001H. The 2nd number 56 H

is in the external memory location 9002 H. The result is to be stored in the external memory location 9003H.

Memory Machine Codes Mnemonics Operands Comments

address

 8000 90 90 01 MOV DPTR, #9001 Load 16-bit constant 9001 into DPTR

 8003 E0 MOVX A, @DPTR Move the content of external memory

9001 into accumulator

 8004 F5 0B MOV B, A Move accumulator to B

 8006 A3 INC DPTR Increment DPTR

 8007 E0 MOVX A, @DPTR Move second data into Accumulator

 8008 25 0B ADD A, B Add B register with accumulator

 800A A3 INC DPTR Increment DPTR

 800B F0 MOVX @DPTR, A Store result into 9003H

 800C 02 00 00 LJMP 0000

DATA

9001–49 H

9002–56 H

RESULT

9003–9F H. The sum is stored in the memory location 9003 H

Instruction Set and Programming of 8051 Microcontroller 8.33

8.5.2 Two Data 24H and 23H are Stored in RAM Locations 40H and 41H.
Write a Program to find Sum and Store at 42H

Memory Machine Codes Mnemonics Operands Comments

address

 8000 78 40 MOV R0, #40H Load 40H in R0 register.

 8002 A6 24 MOV @R0, #24H Store 24H in 40H memory location.

 8004 E6 MOV A, @R0 Content of 40H location in

accumulator.

 8005 08 INC R0 Increment R0.

 8006 76 23 MOV @R0, #23H Load 23H into 41H memory location.

 8008 26 ADD A, @R0 Content of 41H location is add with

accumulator.

 8009 08 INC R0 Increment R0.

 800A F6 MOV @R0, A Move the content of accumulator into

42H memory location.

 800B 02 00 00 LJMP 0000

8.5.3 Addition of Ten 8-bit Numbers and Sum is 16 bit

Assume ten 8-bit numbers are stored in the internal RAM locations from 31H to 3A. After addition MSD will

be stored in R2 and LSD will be in R3.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 78 31 MOV R0, #31 Load 31H in R0 register.

 8002 79 0A MOV R1, #0A The no. of data in R1 register.

 8004 E4 CLR A Clear accumulator and A becomes 00H.

 8005 FA MOV R2, A Move the accumulator content into R2

register and R2 becomes OOH.

 8006 E6 MOV A, @R0 Move the content of internal RAM

location into accumulator.

 8007 08 LOOP INC R0 Increment R0 register to read next data.

 8008 26 ADD A, @R0 Add next data with Accumulator.

 8009 50 01 JNC Level_1 Jump no carry to Level-1.

 8008 0A INC R2 Increment R2 register.

 800C D9 F9 Level_1 DJNZ R1, LOOP Repeat until R1 becomes 0.

 800E FB MOV R3, A Move the accumulator content into R3

register.

 800F 02 00 00 LJMP 00

Microprocessors and Microcontrollers8.34

8.5.4 Addition of Ten 8-bit Numbers Stored in the External RAM Locations
Starting from 8000H. Sum is 16 bit and Result is Stored in Memory
Locations 8100H and 8101H

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 90 80 00 MOV DPTR, #8000H Load 8000H in data pointer register.

 8003 79 0A MOV R1, #0A The no. of data in R1 register.

 8005 E4 CLR A Clear accumulator and A becomes 00H.

 8006 FA MOV R2, A Initialize R2 register.

 8007 E0 MOVX A, @DPTR Load first data in accumulator.

 8008 FB LOOP MOV R3, A Move data from A to R3.

 8009 A3 INC DPTR Increment DPTR register to MOVE

 800A E0 MOVX A, @DPTR next data in accumulator.

 800B 2B ADD A, R3 Add R3 register with Accumulator.

 800C 50 01 JNC Level_1 Jump no carry to Level_1.

 800E 0A INC R2 Increment R2 register.

 800F D9 F7 Level_1 DJNZ R1, LOOP Repeat until R1 becomes 00H.

 8011 90 81 00 MOV DPTR, #8100 Load 8100H in data pointer register.

 8014 F0 MOVX @DPTR, A Move ACC to external memory loca-

tion 8100H.

 8015 A3 INC DPTR Increment DPTR.

 8016 E3 MOV A, R2 Move R2 register to ACC.

 8017 F0 MOVX @DPTR, A Move ACC to external memory loca-

tion 8101H.

 8018 02 00 00 LJMP 00

8.5.5 Addition of Two 16-bit Numbers and Sum is 16-bit

Assume the first 16-bit number is stored in the internal memory 40H and 41H. The second 16-bit number is

in the internal memory location 42H and 43H. The results are to be stored in 40H and 41H.

Memory Machine Codes Mnemonics Operands Comments

address

 8000 E5 40 MOV A, 40H Move content of internal RAM 40H

into accumulator.

 8002 A8 42 MOV R0, 42H Move content of internal RAM 42H

into R0 register.

 8004 28 ADD A, R0 Add the content of R0 with

accumulator.

 8005 F5 40 MOV 40H, A Copy the Addition of Least

Significant Bytes into 40H internal

RAM location.

 8007 E5 41 MOV A, 41H Move content of internal RAM 41H

into accumulator.

 8009 A9 43 MOV R1, 43H Copy the content of 43H memory

location into R1 register.

Instruction Set and Programming of 8051 Microcontroller 8.35

 800B 39 ADDC A, R1 Add the content of R1 with accumula-

tor with carry.

 800C F5 41 MOV 41H, A Copy the Most Significant Bytes into

41H internal RAM location.

 800E 02 00 00 LJMP 0000

8.5.6 To Convert Packed BCD to two ASCII Numbers and save them in R3
and R2

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 45 MOV A, #45H Load 45H in accumulator.

 8002 F8 MOV R0, A Move content of accumulator in R0

register.

 8003 54 0F ANL A, #0FH Mask the upper nibble A = 05H.

 8005 44 30 ORL A, #30H Make it an ASCII, A = 35H.

 8007 FA MOV R2, A Save ASCII equivalent into R2

register.

 8008 E8 MOV A, R0 Move content of R0 register into

accumulator.

 8009 54 F0 ANL A, #F0H Mask lower nibble, A = 40H.

 800B 03 RR A Rotate right accumulator.

 800C 03 RR A Rotate right accumulator.

 800D 03 RR A Rotate right accumulator .

 800E 03 RR A Rotate right accumulator, A = 04H.

 800F 44 30 ORL A, #30H Make it an ASCII, A = 34H.

 8011 FB MOV R3, A Save ASCII equivalent into R3

register.

8012 02 00 00 LJMP 00

8.5.7 Subtraction of Two 8-Bit Numbers—One Number EFH is in the
Accumulator and Other Number 45H in R0 register. After subtraction,
Result to be Stored in R1 register

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 EF MOV A, #EFH Load EFH into accumulator

 8002 78 45 MOV R0, #45H Load 45H into R0 register

 8004 98 SUBB A, R0 Subtract the content of R0 from

accumulator

 8005 F9 MOV R1, A Move accumulator content into

R1 register

 8006 02 00 00 LJMP 0000

Microprocessors and Microcontrollers8.36

8.5.8 One’s Complement of an 8-bit Number

Assume 45H data is immediately loaded into accumulator. Complement accumulator and store result in

9001H memory location.

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 45 MOV A, #45 Load 45H into accumulator.

 8002 F4 CPL A Complement accumulator.

 8003 90 90 01 MOV DPTR, #9001 Load 9001H in DPTR.

 8006 F0 MOVX @DPTR,A Store accumulator content in 9001H

memory location.

 8007 02 00 00 LJMP 00

8.5.9 One’s Complement of an 16-bit Number

Assume a 16-bit number is stored in 40H and 41H. Find 1’s complement and store in 42H and 43H.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 78 40 MOV R0, #40H Load 40H in R0 register directly.

 8002 E6 MOV A, @R0 Load LSB in accumulator.

 8003 F4 CPL A Complement of accumulator.

 8004 F5 42 MOV 42, A Store in 42H memory location.

 8006 08 INC R0 Increment R0.

 8007 E6 MOV A, @R0 Load MSB into accumulator.

 8008 F4 CPL A Complement of accumulator.

 8009 F5 43 MOV 43, A Store in 42H memory location.

8.5.10 Two’s Complement of an 8-bit Number and Store Result in 9001H
Memory Location

Memory Machine Codes Mnemonics Operands Comments

address

 8000 C3 CLR C Clear carry.

 8001 74 4F MOV A, #4F Move 4FH into accumulator.

 8003 F4 CPL A 1’s complement accumulator.

 8004 24 01 ADD A, #01 1’s complement +1.

 8006 90 90 01 MOV DPTR, #9001 Load 9001 in DPTR.

 8009 F0 MOVX @DPTR, A Store result in 9001H memory

location.

 800A 02 00 00 LJMP 0000

Instruction Set and Programming of 8051 Microcontroller 8.37

8.5.11 Shift an 8-bit Number Right by One Bit and Stored in 50H Memory
Location

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 66 MOV A, #66H Load 66H into accumulator.

 8002 03 RR A Rotate right by one bit.

 8003 F5 50 MOV 50,A Move accumulator content into 50H

memory location.

8.5.12 SWAP 4-MSBs with 4-LSBs in Accumulator and Store in 9100H
Memory Location

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 65 MOV A, #65H Load 65H into accumulator.

 8002 C4 SWAP A Swap command interchanges the

low and high order nibbles.

 8003 90 91 00 MOV DPTR, #9100 Load 9100 in DPTR.

 8006 F0 MOVX @DPTR, A Store accumulator content into

9100H memory location.

 8007 02 00 00 LJMP 00

8.5.13 Move One Section of Data in Internal Memory to Another Section in
Internal Memory

Assume a section of data is stored in internal RAM starting from 40H. These data will be shifted to memory

location starting from 80H.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 78 40 MOV R0, #40H Store 40H in R0 register immediately.

 8002 79 80 MOV R1, #80H Store 80H in R1 register immediately.

 8004 AA 20 MOV R2, #20H Store no of data, 20H in R2 register

immediately.

 8006 E6 LOOP MOV A, @R0 Move register indirect memory location

into accumulator.

 8007 F7 MOV @R1, A Move accumulator content into register

indirect memory location.

 8008 08 INC R0 Increment R0 register.

 8009 09 INC R1 Increment R1 register.

 800A DA FA DJNZ R2, LOOP Repeat until R2 becomes zero.

 800C 02 00 00 LJMP 00

Microprocessors and Microcontrollers8.38

8.5.14 Finding the Largest Number from an Array of Numbers
Assume number of data is stored in 9000H and array of numbers is stored in external data memory starting

from 9001H.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 80 90 00 MOV DPTR, #9000H Load 9000H in data pointer register.

 8003 E0 MOVX A,@DPTR Move content of data pointer into

accumulator.

 8004 F8 MOV R0, A Move accumulator content into R0

register.

 8005 A3 INC DPTR Increment data pointer register.

 8006 E0 MOVX A,@DPTR Move content of data pointer into

accumulator.

 8007 F9 MOV R1, A Copy accumulator content into R1

register.

 8008 18 DEC R0 Decrement R0 register.

 8009 A3 Loop INC DPTR Increment data pointer register.

 800A E0 MOVX A,@DPTR Move content of data pointer into

accumulator.

 800B FA MOV R2, A Move accumulator content into R2

register.

 800C 99 SUBB A, R1 Subtract the content of R1 register from

accumulator.

 800D 40 02 JC Level Jump no carry to shift Level.

 800F EA MOV A, R2 Move R2 register to accumulator.

 8010 F9 MOV R1, A Move accumulator content into R1

register.

 8011 D8 F6 Level DJNZ R0, Loop If R0 is not equal to zero, jump to Loop.

 8013 E9 MOV A, R1 Move R1 to accumulator.

 8014 90 91 00 MOV DPTR, #9100H Load 9100H in DPTR register.

 8017 F0 MOVX @DPTR, A Move content of accumulator into

memory location.

 8018 02 00 00 LJMP 0000

8.5.15 Finding the Smallest Number from an Array of Numbers

Assume number of data is stored in 9000H and array of numbers is stored in external data memory starting

from 9001H.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 90 90 00 MOV DPTR, #9000 Load 9000H in Data pointer register.

 8003 E0 MOVX A, @DPTR Move content of data pointer into

accumulator.

 8004 F8 MOV R0, A Move accumulator content into R0

register.

Instruction Set and Programming of 8051 Microcontroller 8.39

 8005 A3 INC DPTR Increment data pointer register.

 8006 E0 MOVX A,@DPTR Move content of data pointer into

accumulator.

 8007 F9 MOV R1, A Copy accumulator content into R1

register.

 8008 18 DEC R0 Decrement R0 register.

 8009 A3 LOOP INC DPTR Increment data pointer register.

 800A E0 MOVX A,@DPTR Move content of data pointer into

accumulator.

 800B FA MOV R2, A Move accumulator content into R0

register.

 800C 99 SUBB A, R1 Subtract the content of R1 register from

accumulator.

 800D 50 02 JNC Level Jump no carry to Level.

 800F EA MOV A, R2 Move R2 register to accumulator.

 8010 F9 MOV R1, A Move accumulator content into R1

register.

 8011 D8 F6 Level DJNZ R0, LOOP If R0 is not equal to zero, jump to

LOOP.

 8013 E9 MOV A, R1 Move R1 to accumulator .

 8014 90 90 10 MOV DPTR, #9100 Load 9100H in DPTR register.

 8017 F0 MOVX @DPTR, A Move content of accumulator into

memory location.

 8018 02 00 00 LJMP 0000

8.5.16 Arranging a series of Numbers in Descending Order

Assume number of data is stored in R0 register and array of numbers is stored in external data memory start-

ing from 9000H.

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 78 08 MOV R0,#0A Number of data bytes, 0A is stored in

R0.

 8002 18 DEC R0 Decrement R0 by 1.

 8003 90 90 00 LOOP1 MOV DPTR, #9000 Load 9000H in DPTR.

 8006 E8 MOV A, R0 Content of R0 in Accumulator.

 8007 F9 MOV R1, A Content of Accumulator in R1.

 8008 E0 LOOP2 MOVX A, @DPTR Move data into Accumulator.

 8009 FA MOV R2, A Copy data in R2.

 800A A3 INC DPTR Increment DPTR.

 800B E0 MOVX A, @DPTR Move next data in Accumulator.

 800C 9A SUBB A, R2 Compare above two data.

 800D 50 08 JC 8017 Jump to LOOP 3 if carry flag is 0.

 800F E0 MOVX A, @DPTR

Microprocessors and Microcontrollers8.40

 8010 CA XCH A, R2 Exchange data in Accumulator and R2

if carry flag is 1.

 8011 F0 MOVX @DPTR, A Replace current memory data by

Accumulator content.

 8012 15 82 DEC 82 Decrement DPL by 1, DPL=DPL-1.

 8014 EA MOV A, R2 Move R2 content into Accumulator.

 8015 F0 MOVX @DPTR, A Replace previous memory data by R2.

 8016 A3 INC DPTR Increment DPTR .

 8017 D9 EF LOOP3 DJNZ R1, 8008 Decrement R1, if not zero, Jump to

LOOP2.

 8019 D8 E8 DJNZ R0, 8003 Decrement R0, if not zero, Jump to

 LOOP1.

 801B 02 00 00 LJMP 0000

8.5.17 Arranging a Data Array in Ascending Order
Assume number of data is stored in R0 register and array of numbers is stored in external data memory start-

ing from 9000H.

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 78 08 MOV R0, #08 Number of data bytes, 08 is stored in

R0.

 8002 18 DEC R0 Decrement R0 by 1

 8003 90 90 00 LOOP1 MOV DPTR, #9000 Load 9000H in DPTR

 8006 E8 MOV A, R0 Content of R0 in Accumulator

 8007 F9 MOV R1, A Content of Accumulator in R1

 8008 E0 LOOP2 MOVX A,@DPTR Move data into Accumulator

 8009 FA MOV R2, A Copy data in R2

 800A A3 INC DPTR Increment DPTR

 800B E0 MOVX A,@DPTR Move next data in Accumulator

 800C 9A SUBB A, R2 Compare above two data

 800D 50 08 JNC 8017 Jump to LOOP 3 if carry flag is 0

 800F E0 MOVX A,@DPTR

 8010 CA XCH A,R2 Exchange data in Accumulator and R2

if carry flag is 1

 8011 F0 MOVX @DPTR, A Replace current memory data by

Accumulator content

 8012 15 82 DEC 82 Decrement DPL by1, DPL = DPL-1

 8014 EA MOV A, R2 Move R2 content into Accumulator

 8015 F0 MOVX @DPTR,A Replace previous memory data by R2

 8016 A3 INC DPTR Increment DPTR

 8017 D9 EF LOOP3 DJNZ R1, 8008 Decrement R1, if not zero, Jump to

LOOP2

 8019 D8 E8 DJNZ R0, 8003 Decrement R0, if not zero, Jump to

LOOP1

 801B 02 00 00 LJMP 0000

Instruction Set and Programming of 8051 Microcontroller 8.41

8.5.18 Finding Square of a Number Using Look-Up Table

Memory Machine Codes Mnemonics Operands Comments

address

 8000 90 90 00 MOV DPTR, #9000H Load look-up table address 9000H.

 8003 78 05 MOV R0, #05 Load the number 05 in R0.

 8005 E8 MOV A, R0 Move data R0 to Accumulator.

 8006 93 MOVC A, @A+DPTR Get square of 05 from look up table

and stored in Accumulator.

 8007 90 91 00 MOV DPTR, #9100 Load 9100 in DPTR.

 800A F0 MOVX @DPTR, A Send result to 9100H memory

location.

 800B 02 00 00 LJMP 00

 ADDRESS SQUARE

 9000 00

 9001 01

 9002 04

 9003 09

 9004 16

 9005 25

 9006 36

 9007 49

 9008 64

 9009 81

8.5.19 Program to Perform Multiplication of Two Numbers

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 24 MOV A, #24 Load accumulator with 1st number

(24H).

 8002 75 0B 12 MOV B, #12 Load register B with 2nd number

(12H).

 8005 A4 MUL AB Multiplication accumulator with

B register and store result in

accumulator.

 8006 F8 MOV R0, A Store LSB in R0.

 8007 A9 0B MOV R1, B Store MSB in R1.

Microprocessors and Microcontrollers8.42

8.5.20 Division of Two 8-bit Numbers

Memory Machine Codes Mnemonics Operands Comments

address

 8000 74 60 MOV A, #60H Load accumulator with 1st number

(60H).

 8002 75 0B 12 MOV B, #12H Load register B with 2nd number

(12H).

 8005 84 DIV AB Division accumulator with B register

and store result in accumulator.

 8006 F8 MOV R0, A Store result in R0 register.

 8007 A9 0B MOV R1, B Store reminder in R1 register.

8.5.21 Time Delay in Terms of Number of T States for the given Program

Labels Mnemonics Operands Comments

 DELAY MOV R1, #FF Outer loop counter = FFH = 256.

 MOV R0, #FF Inner loop counter = FFH = 256.

 LOOP DJNZ R0, LOOP Loop 256 times.

 DJNZ R1, LOOP Loop 256 times.

 RET Return.

Sol. The DJNZ instruction takes 24 clock periods or T states. Initially the inner loop is executed 256 times.

After that R1 is decremented by 1, again the inner loop is executed 256 times until R1 is not zero. As the outer

loop is also executed for 256 times, total T states = 24 × 256 × 256 + 24 × 256 T states required to execute

DJNZ R0, LOOP and DJNZ R0, LOOP instructions. Twelve T states are required to execute MOV R1, #FF

and MOV R0, #FF instructions. Hence, the total T states for the DELAY loop is 12 + 12 + 24 × 256 × 256 +

24 × 256 T states = 1579032 T states. If the microcontroller operating frequency is 12 MHZ, 24 T states is

equal to 2μs. So that the time delay is equal to 1579032 T states = 131586 μs = 0.13s.

8.5.22 Program to read Port 0 and turn on the LEDs for one second and OFF
for one second if Port 0 is not zero.

The content of port 0 states number of times LEDs ON. Assume that input switches are connected to port 0

and output LEDs are connected to port 1 of 8051.

Labels Mnemonics Operands Comments

 READ MOV A, P0 Read the port 0 switches.

 JZ READ If no switch is on, jump to READ.

 MOV R0, A Move the port 0 value in R0 register.

 ON MOV P1, #0FF Turn ON all LEDs connected to port 1.

 CALL DELAY Call Delay Loop.

 MOV P1, #00 Turn OFF all LEDs connected to port 1.

 CALL DELAY Call Delay Loop.

 DJNZ R0, ON Decrement R0 by 1, if R0 is not zero jump to ON.

Instruction Set and Programming of 8051 Microcontroller 8.43

Labels Mnemonics Operands Comments

 DELAY MOV R1, #FF Middle loop counter = FH = 256.

 MOV R2, #FF Inner loop counter = FFH = 256.

 MOV R3, #08 Outer loop counter for 9 times.

 LOOP DJNZ R2, LOOP Loop 256 times.

 DJNZ R1, LOOP Loop 256 times.

 DJNZ R3, LOOP Loop 8 times.

 RET Return.

 To execute the delay program given in Section 8.5.21, time required is about 0.13s. If the said program

is repeated 8 times, about 1s delay will be generated. Therefore, a middle loop must be incorporated in the

program as given above.

8.5.23 Program for A/D Converter Interfacing with 8051 Microcontroller

Figure 8.9 shows the ADC0804 which is interface with 8051 microcontroller. The clock input for ADC is

taken from the crystal oscillator of the microcontroller. As frequency is very high, two flip-flops are used to

divide the frequency by 4. The connection for start of conversion, SC and end of conversion, EOC signals are

shown in Fig. 8.9. The step of A/D converter is as follows:

Step-1 The start of conversion, SC signal send to pin WR to start the conversion.

Step-2 INTR pin is connected with end of conversion EOC signal. Keep monitoring the INTR pin to check

end of conversion. If INTR is high, keep polling until it becomes low.

Step-3 When the INTR is low, the A/D conversion is completed and the ADC0804 send a high-to-low pulse

to the RD pin.

Fig. 8.9 Interfacing an ADC 0804 with 8051 microcontroller

Microprocessors and Microcontrollers8.44

Fig. 8.9a Timing diagram of Analog to Digital Conversion

 After the initial reset of 8051 microcontroller, all I/O ports are in the floating condition. The first two

instructions in this program, write ones to ports 1 and 0, which make them float. To start the DATA conver-

sion, bit 6 of port 0 is pushed LOW then HIGH using the CLR and set bit SETB instructions. The conversion

process will continue and remains in a WAIT loop until bit 7 of port 0 becomes LOW. Then microcontroller

read the ADC output data through port 1 and stored in register R0. Figure 8.9a shows the timing diagram of

analog to digital conversion using ADC 0804. The program of A/D converter is given below:

Labels Mnemonics Operands Comments

 MOV P1, #0FF All pins of Port 1 become 1.

 MOV P0, #0FF All pins of Port 0 become 1.

 CLR P0.6 Make P0.6 LOW from HIGH for SC. (start conversion)

 SETB P0.6

 WAIT JB P0.7, WAIT Wait until EOC becomes low.

 CLR P0.5 Conversion is completed and RD enable.

 MOV R0, P1 Read the data from port P1 and store it in R0 register.

8.5.24 Microcontroller Based Traffic Control

Nowadays microcontrollers are used to implement the traffic control system. Figure 8.10 shows the simple

model of microcontroller-based traffic control system. The various control signals such as red, green, orange,

forward arrow, right arrow and left arrow are used in this scheme. The forward, right and left arrows are

used to indicate forward, right and left movement respectively. The red (R) signal is used to stop the traffic

in the required lane and the yellow (Y) signal is used as standby, which indicates that the traffic must wait

for the next signal. The green (G) light for a particular lane remains ON for DELAY-1 seconds followed by

the stand- by signal for DELAY-2 seconds. However at a time 3 out of the four roads, the left signal or the

left arrow remains ON even though that lane may have a red signal. The traffic light control is implemented

using a 8051 microcontroller kit having 8255 on board and the interfacing circuit is illustrated in Fig. 8.11.

Each signal is controlled by separate pin of I/O ports. The total number of logic signals required for this

Instruction Set and Programming of 8051 Microcontroller 8.45

arrangement is twenty-four. The programmable peripheral interface device 8255 is used to interface these 24

logic signals with the lamps. The logic ‘0’ and ‘1’ represent the state of the lamp. Logic ‘1’ represents ON and

‘0’ represents OFF. All ports of 8255 are used as output ports. The control word to make all ports as output

ports for Mode 0 operation is 80H. The traffic light control program can be written by the following steps:

Step-1 Initialize all ports of the 8255 as output ports.

Step-2 Determine the required status of port A, port B and port C of 8255 for North to South traffic

movement. Load data into Accumulator and send to port A, port B and port C for North to South traffic

movement.

Step-3 Call delay subroutine-1.

Step-4 Before starting East to West traffic movement, North to south traffic movement will be ready to

stop and East to West traffic must be ready for movement. Therefore determine the required status of port A,

port B and port C for this operation. Then load data into Accumulator and send to port A, port B and port C

so that North to South traffic movement will be ready to stop and East to West traffic must be ready for

movement.

Step-5 Call delay subroutine-2.

Step-6 For East to West traffic movement, determine the required status of port A, port B and port C of

8255. Load data into Accumulator and send to port A, port B and port C for East to West traffic movement.

Step-7 Call delay subroutine-1.

Step-8 Prior to starting South to North traffic movement, East to West traffic will be ready to stop and South

to North traffic must be ready for movement. For this operation determine the status of port A, port B and

port C of 8255. Load required data into accumulator and send to port A, port B and port C so that East to West

traffic will be ready to stop and South to North traffic must be ready for movement.

Step-9 Call delay subroutine-2.

Step-10 Determine the status of port A, port B and port C for South to North traffic movement. Load

require data into accumulator and send to port A, port B and port C for South to North movement.

Step-11 Call delay subroutine-1.

Step-12 Before starting West to East traffic movement, South to North traffic movement will be ready to

stop and West to East traffic must be ready for movement. Find out the status of port A, port B and port C for

this operation. Load required data into Accumulator and send to port A, port B and port C so that South to

North traffic movement will be ready to stop and West to East traffic must be ready for movement.

Step-13 Call delay subroutine-2.

Step-14 For West to East traffic movement, determine the status of port A, port B and port C of 8255. Load

necessary data into Accumulator and send to port A, port B and port C for West to East traffic movement.

Step-15 Call delay subroutine-1.

Step-16 Subsequently West to East traffic movement will be ready to stop and North to South traf-

fic must be ready for movement. Determine the status of port A, port B and port C for this operation. Load

needed data into Accumulator and send to port A, port B and port C. Then West to East traffic movement will

be ready to stop and North to South traffic must be ready for movement.

Step -17 Call delay subroutine-2.

Step-18 Jump to step-2.

 Figure 8.10 shows the bit assignment of ports. Putting 0s and 1s in required position the data byte for each

Microprocessors and Microcontrollers8.46

port can be derived. For example, during North to South traffic movement, the status of port A, port B and

port C are as follows:

 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

 0 0 1 0 0 0 0 1

 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

 0 0 0 0 0 1 0 0

 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

 1 1 1 1 1 0 0 1

 When North to South traffic movement will be ready to stop and East to West traffic must be ready for

movement, the status of port A, port B and port C are as follows:

 PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0

 0 0 0 1 0 0 1 0

 PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0

 0 0 0 0 0 1 0 0

 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

 0 0 0 0 1 0 0 1

 The calculated necessary data bytes of port A, port B and port C for all types of traffic movement are illus-

trated in a Table 8.13 as given below:

Table 8.13 Traffic movement and status of ports

 Traffic movement Status of Port A Status of Port B Status of Port C

North to South traffic movement 21H 04H F9H

North to South traffic movement be 12H 04H 09H

ready to stop and East to West traffic

be ready for start

East to West traffic movement 0CH 27H 89H

East to West traffic movement be ready 94H 20H 08H

to stop and South to North traffic be

ready for start

South to North traffic movement 64H 3CH 18H

South to North traffic movement be A4H 00H 14H

ready to stop and West to East traffic be

ready for start

West to East traffic movement 24H D0H 93H

West to East traffic movement 22H 00H 85H

be ready to stop and North to South

traffic be ready for start

 The green light is provided for the traffic flowing from north to south. The arrows indicate the deviations

in which traffic is allowed to move. The arrows with a cross indicate that the traffic is not allowed to move in

that particular direction. Each signal is controlled by a separate port. The various signals used are red, green,

Instruction Set and Programming of 8051 Microcontroller 8.47

Fig. 8.10 Traffic light control

Fig. 8.11 The interfacing circuit for traffic light control

Microprocessors and Microcontrollers8.48

orange, forward arrow, right and left arrows. The forward arrow, right and left arrows are used to indicate

forward, right and left movement. The red signal is used to stop traffic in the required lane and the orange

signal is used as standby which indicates that the traffic must wait for the next signal. The green lights for a

particular lane remain on for 10 seconds followed by the stand by signal for 4 seconds. However at a time 3

out of the four roads the left signal or the left arrow remains on even though that lane may have a red signal.

This system is implemented using 8051 trainer having 8255 on board. The 8051 is interfaced with the 8255

and output pins are used to control the various signals. The program for Traffic light control is as follows.

Labels Mnemonics Operands Comments

 MOV 0A0, #0E8 Load control word of 8255 into Control word register

whose address is E803H. Control word is 80H.

 MOV R0, #03

 MOV A, #80

 MOVX @R0, A

START MOV R0, #00 Send 21H in Port A, F9H in Port C and 04H in Port B

 MOV A, #21 for North to South traffic movement.

 MOVX @R0, A

 MOV R0, #02

 MOV A, #F9

 MOVX @R0, A

 MOV R0, #01

 MOV A, #04

 MOVX @R0, A

 LCALL DEDAY-1 Call Delay-1 subroutine

 MOV R0, #00 Send 12H in Port A, 09H in Port C and 04H in Port B

 MOV A, #12 for North to South traffic movement will be ready to stop

 MOVX @R0, A and East to West traffic movement is ready to start.

 MOV R0, #02

 MOV A, #09

 MOVX @R0, A

 MOV R0, #01

 MOV A, #04

 MOVX @R0, A

 LCALL DELAY-2 Call Delay-2 subroutine

 MOV R0, #00 Send 0CH in Port A, 89H in Port C and 27H in Port B

 MOV A, #0C for East to West traffic movement.

 MOVX @R0, A

 MOV R0, #02

 MOV A, #89

 MOVX @R0, A

 MOV R0, #01

 MOV A, #27

 MOVX @R0, A

Instruction Set and Programming of 8051 Microcontroller 8.49

 LCALL DEDAY-1 Call Delay-1 subroutine.

 MOV R0, #00 Send 94H in Port A, 08H in Port C and 20H in Port B for

 MOV A, #94 East to West traffic movement will be ready to stop and

 MOVX @R0, A South to North traffic movement is ready to start.

 MOV R0, #02

 MOV A, #08

 MOVX @R0, A

 MOV R0, #01

 MOV A, #20

 MOVX @R0, A

 LCALL DELAY-2 Call Delay-2 subroutine

 MOV R0, #00 Send 64H in Port A, 18H in Port C and 3CH in Port B

for South to North traffic movement

 MOV A, #64

 MOVX @R0, A

 MOV R0, #02

 MOV A, #18

 MOVX @R0, A

 MOV R0, #01

 MOV A, #3C

 MOVX @R0, A

 LCALL DELAY-1 Call Delay-1 subroutine

 MOV R0, #00

 MOV A, #A4 Send A4H in Port A, 14H in Port C and 00H in Port B

 MOVX @R0, A for South to North traffic movement is ready to stop and

 MOV R0, #02 West to East traffic movement will be ready to start

 MOV A, #14

 MOVX @R0, A

 MOV R0, #01

 MOV A, #00

 MOVX @R0, A

 LCALL DEDAY-2 Call Delay-2 subroutine

 MOV R0, #00 Send 24H in Port A, 93H in Port C and D0H in Port B

 MOV A, #24 for West to East traffic movement

 MOVX @R0, A

 MOV R0, #02

 MOV A, #93

 MOVX @R0, A

 MOV R0, #01

Microprocessors and Microcontrollers8.50

 MOV A, #D0

 MOVX @R0, A

 LCALL DELAY-1 Call Delay-1 subroutine

 MOV R0, #00 Send 22H in Port A, 85H in Port C and 00H in Port B for

 MOV A, #22 West to East traffic movement is ready to stop and North

 MOVX @R0, A to South traffic movement will be ready to start

 MOV R0, #02

 MOV A, #85

 MOVX @R0, A

 MOV R0, #01

 MOV A, #00

 MOVX @R0, A

 LCALL DELAY-2 Call Delay-2 subroutine

 LJMP START Jump to START

DELAY-1 SUBROUTINE for 10 SECONDS

 Labels Mnemonics Operands

 MOV R4, #0A

 LOOP-3 MOV R7, #08

 MOV R5, #00

 LOOP-2 MOV R6, #F3

 LOOP-1 DJNZ R5, LOOP_1

 DJNZ R6, LOOP_1

 DJNZ R7, LOOP_2

 DJNZ R4, LOOP_3

 RET

DELAY-1 SUBROUTINE for 4 SECONDS

 Labels Mnemonics Operands

 MOV R4, #04

 LOOP-6 MOV R7, #08

 MOV R5, #00

 LOOP_5 MOV R6, #F3

 LOOP_4 DJNZ R5, LOOP_4

 DJNZ R6, LOOP_4

 DJNZ R7, LOOP_5

 DJNZ R4, LOOP_6

 RET

8.5.25 Microcontroller-Based Stepper Motor Control

Stepper motors are electro-mechanical devices, which convert electrical pulses into proportionate discrete

mechanical rotational movement. To rotate the stepper motor’s shaft, a sequence of pulses is required to be

Instruction Set and Programming of 8051 Microcontroller 8.51

applied to stator windings of stepper motor. When a given number of command pulses are supplied to the

motor, shaft will have turned through a known angle. Therefore, motor can be used to control position by

keeping count of the number of command pulses. Each revolution of the stepper motor’s shaft is made up of

a series of discrete individual steps. A step is defined as the angular rotation produced by the shaft each time

when the motor receives a step pulse. Due to each step, the shaft can rotate a specified angle in degree. The

rotation of the shaft due to each step is called as step angle. The stepper motors are usually used in position

control of robot arms, paper drive mechanism in a printer, machine tools control, process control system,

textile industry, integrated circuit fabrication, electric watches, tape as well as disk drive systems, etc. Further,

the average motor speed is proportional to rate at which the pulse command is delivered. At low command

pulse rate, rotor moves in steps, but when the pulse rate is made sufficiently high, because of the inertia, the

rotor moves smoothly, as in case of dc motors. As motor speed is proportional to rate of command pulses, it

can be used for speed control.

 Figure 8.12 shows four phase stepper motor windings and its interfacing is depicted in Fig. 8.13. The

four windings A1, A2, B1 and B2 are connected to PA3, PA2, PA1 and PA0 respectively. When PA3 is level ‘1’

and PA1 is level ‘1’, the coil A1 and B1 are energized and motor will rotate by one step clockwise. Similarly

coil A1 and B2 will be energized when PA3 is level ‘1’ and PA0 is in level ‘1’ and again motor rotate by one

step. In the same way the other phases are energised sequentially as per Table 8.14 and switching sequence

waveform of windings is illustrated in Fig. 8.14. The assembly language program for stepper motor control

in clockwise as well as anti-clockwise rotation is illustrated below.

Table 8.14 Sequence of switching of windings

 A1 A2 B1 B2 Clockwise CW Counterclockwise CCW

 1 0 1 0 A A

 1 0 0 1 9 9

 0 1 0 1 5 5

 0 1 1 0 6 6

Fig. 8.12 Four-phase stepper motor windings

Microprocessors and Microcontrollers8.52

PROGRAM

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 74 80 MOV A, #80 Load control word 80H in 8255.

 8002 90 E8 03 MOV DPTR, #E803

 8005 F0 MOVX @DPTR, A

 8006 74 00 START MOV A, #00

 8008 12 01 61 LCALL 0161 Call subroutine to read character.

 800B B4 55 03 CJNE A,#55, 8011 Compare if U is pressed.

 800E 12 D0 00 LCALL D000 Call Clockwise rotation subroutine.

 8011 B4 44 03 CJNE A,#44, 8017 Compare if D is pressed.

Fig. 8.14 Switching sequence waveform of windings

Fig. 8.13 Driver circuit of stepper motor

Instruction Set and Programming of 8051 Microcontroller 8.53

 8014 12 90 00 LCALL 9000 Call Counterclockwise rotation

subroutine.

 8017 02 80 06 LJMP 8006 Jump to 8006.

Subroutine for Clockwise rotation

Memory Machine Labels Mnemonics Operands Comments

address Codes

 D000 74 0A LOOP_1 MOV A, #0A Load 0A in accumulator.

 D002 12 C0 00 LCALL C000 Call subroutine to send data, 0AH in

Port A.

 D005 12 B0 00 LCALL B000 Call delay subroutine.

 D008 74 09 MOV A, #09 Load 09 in accumulator.

 D00A 12 C0 00 LCALL C000 Call subroutine to send data, 09H in

Port A.

 D00D 12 B0 00 LCALL B000 Call delay subroutine.

 D010 74 05 MOV A, #05 Load 05 in accumulator.

 D012 12 C0 00 LCALL C000 Call subroutine to send data, 05H in

Port A.

 D015 12 B0 00 LCALL B000 Call delay subroutine.

 D018 74 06 MOV A,#06 Load 06 in accumulator.

 D01A 12 C0 00 LCALL C000 Call subroutine to send data, 06H in

Port A.

 D01D 12 B0 00 LCALL B000 Call delay subroutine.

 D020 02 D0 00 LJMP D000 Jump to LOOP_1.

Subroutine for Counter Clockwise rotation

Memory Machine Labels Mnemonics Operands Comments

address Codes

 9000 74 06 LOOP_2 MOV A, #06 Load 0A in accumulator.

 9002 12 C0 00 LCALL C000 Call subroutine to send data, 0AH in

Port A.

 9005 12 B0 00 LCALL B000 Call delay subroutine.

 D008 74 05 MOV A,#05 Load 09 in accumulator.

 900A 12 C0 00 LCALL C000 Call subroutine to send data, 09H in

Port A.

 900D 12 B0 00 LCALL B000 Call delay subroutine.

 9010 74 09 MOV A,#09 Load 05 in accumulator.

 9012 12 C0 00 LCALL C000 Call subroutine to send data, 05H in

Port A.

 9015 12 B0 00 LCALL B000 Call delay subroutine.

 9018 74 0A MOV A,#0A Load 06 in accumulator.

 901A 12 C0 00 LCALL C000 Call subroutine to send data, 06H in

Port A.

 901D 12 B0 00 LCALL B000 Call delay subroutine.

 9020 02 90 00 LJMP 9000 Jump to LOOP_2.

Microprocessors and Microcontrollers8.54

Subroutine to Send data in Port A

Memory Machine Labels Mnemonics Operands Comments

address Codes

 C000 90 EB 00 MOV DPTR, #E800 Load Port A address E800H in DPTR.

 C003 F0 MOVX @DPTR,A Send accumulator content into Port A.

 C004 22 RET Return.

Delay Subroutine

Memory Machine Labels Mnemonics Operands Comments

address Codes

 B000 7B 10 MOV R3,#10 Move 10H into R3.

 B002 7C FF MOV R4,#FF Move FFH into R4.

 B004 1B DEC R3 Decrement R3.

 B005 BB 00 FC CJNE R3, #00, B004 Compare R3 with 00. if R3 0, jump to

B004.

 B008 1C DEC R4 Decrement R4.

 B009 BC 00 FC CJNE R4,#00, B008 Compare R4 with 00. if R4 0, jump to

B008.

 B00C 22 RET Return.

8.5.26 Program to Display “8051 Microcontroller” on Screen

Delay Subroutine

Memory Machine Labels Mnemonics Operands Comments

address Codes

 8000 90 80 09 MOV DPTR, #8009 Data corresponding to “8051

MICROCONTROLLER” is stored in

program memory starting from 8009.

 8003 12 12 00 LCALL 1200 Call subroutine to display string of

characters on screen.

 8006 02 00 00 LJMP 0000

 Memory address Data

 8009 20 20 20 20 30 30 35 31 20 20 20 20

 8015 4D 49 43 52 4F 43 4F 4E 54 52 4F 4C 4C 45 52 20 20 20

 The main program to display characters on screen is written from 8000H to 8008. Data corresponding to

characters “8051 MICROCONTROLLER” are stored in program memory starting from 8009 as given above.

After executing the above program, “8051 MICROCONTROLLER” will be displayed on screen.

Instruction Set and Programming of 8051 Microcontroller 8.55

 8.1 What are the addressing modes of 8051 microcontroller? Explain each addressing mode with

example.

 8.2 Write the addressing modes of the following instructions

 (i) MOV A,@R0 (ii) MOVX @DPTR, A (iii) MOV A, @A+DPTR (iv) MOA R0, #45H

 8.3 State different types of instructions of 8051 and explain any three instructions from each group of the

instructions.

 8.4 Write instructions to perform the following operations

 (i) Move the content of accumulator to register 7(R7)

 (ii) Move the contents of RAM memory location 55H to port 1

 (iii) Send 22H to port 0

 (iv) Move the value at port 2 to register 1(R1)

 (v) Clear bit 7 of the accumulator

 8.5 Write the difference between the following instructions

 (i) LJMP and SJMP (ii) RET and RETI (iii) MOV and MOVX

 8.6 Write the following programs in assembly language

 (i) Add Two 8-Bit Numbers

 (ii) Add Two 16-Bit Numbers

 (iii) Add a Series of 8-bit Numbers

 (iv) Subtract Two 8-Bit Numbers

 (v) Two’s Complement of an 8-bit Number

 (vi) Find the Largest Number in a Data Array

 (viii) Find Smallest Number in a Data Array

 (ix) Perform Division of Two Numbers

 (x) Perform Multiplication of Two Numbers

 (xi) SWAP 4 MSBs with 4 LSBs in Accumulator

 (xii) Arrange a Series of Numbers in Descending Order

 (xiii) Compare two 8-bit Numbers

 (xiv) Arrange a Data Array in Ascending Order

 8.7 Explain a microcontroller based traffic light control system with assembly language program.

 8.8 Explain 8051 microcontroller based position control system using stepper motor.

 8.9 Draw a circuit diagram for key board interface with 8051 microcontroller and write a program for

reading any key.

 8.10 Write a program for A/D converter interface with 8051 microcontroller.

 8.11 What is the difference between CY and OV flags?

 8.12 What is the addressing mode of MOV A, @ R
i
 instruction?

 8.13 What is the content of the accumulator after execution of the following instructions?

 MOV A, HFFH and ADD A, #23H

 8.14 Which addressing mode is suitable for look-up table access?

 8.15 What are the instructions used to access the program memory?

Microprocessors and Microcontrollers8.56

 8.1 What is the addressing mode of MOV A, 40

 (a) direct addressing (b) indirect addressing

 (c) index addressing (d) register addressing

 8.2 Which instruction does not belong to register addressing mode

 (a) MOV A, R7 (b) MOV R0, R1 (c) MOV A, @R3 (d) MOV R5, A

 8.3 Which of the following instructions is index addressing

 (a) MOVC A, @A+DPTR

 (b) MOVX @DPTR, A

 (c) MOVX A, @DPTR

 (d) MOVX A, @R0

 8.4 MOVX A, @R0 instruction performs

 (a) data transfer from external RAM 8-bit address specified by R0 to accumulator

 (b) data transfer from internal RAM 8-bit address specified by R0 to accumulator

 (c) data transfer from external ROM 8-bit address specified by R0 to accumulator

 (d) data transfer from internal ROM 8-bit address specified by R0 to accumulator

 8.5 Which of the following instructions is incorrect

 (a) CPL A (b) SWAP A (c) CLR C (d) RL B

 8.6 Which of the following flags are affected by the instruction INC A and INC @R0

 (a) carry flag (b) auxiliary carry flag

 (c) overflow flag (d) No flags are affected

 8.7 What will be the output after execution of the following instructions

 MOV A, #55

 ANL A, #67

 (a) 54 (b) 45 (c) 55 (d) 67

 8.8 To exchange the content of A and R0 which instruction is used

 (a) XCH A,R0 (b) XCH A,@R0 (c) XCHD A,@R0 (d) XCH R0,A

 8.9 Which of the following instructions is not a logical instruction

 (a) ANL A, #FF (b) CPL A (c) INC A (d) SWAP A

 8.10 Which of the following instructions is not an arithmetic instruction

 (a) MUL AB (b) ADD A,#66H (c) DIV AB (d) CPL A

 8.11 Which of the following instructions do not perform the increment of the content of memory loca-

tion 50H by 1

 (a) INC 50 (b) MOV R0, #50; INC @R0

 (c) MOV A, #50; INC A (d) MOV R0, #50, INC R0

 8.12 Which of the following instructions are used to swap nibbles inside accumulator

 (a) SWAP A (b) RR A; RR A

 (c) RR A; RR A; RR A; (d) RRC A RRC A; RRC A; RRC A;

Instruction Set and Programming of 8051 Microcontroller 8.57

 8.13 Which of the following instructions is incorrect

 (a) RLC A (b) SWAP B (c) CPL C (d) MOVC A,@A+PC

 8.14 Which of the following instructions is indirect addressing

 (a) MOV A,R0 (b) MOV A, 40H (c) MOV R7, #55 (d) MOV A,@R0

 8.15 The operation “send the content of RAM whose address is specified by R3 to port 3” is performed by

 (a) MOV P3,@R3 (b) MOV P3, R3 (c) MOV @R3, P3 (d) MOV R3, P3

 8.16 What will be the contents of A register after execution of instruction RRC A. Assume the contents

of A before execution is C5H and carry is zero

 (a) 62 (b) 26 (c) 66 (d) 22

 8.1 (a) 8.2 (c) 8.3 (a) 8.4 (a)

 8.5 (d) 8.6 (d) 8.7 (b) 8.8 (a)

 8.9 (c) 8.10 (d) 8.11 (c) 8.12 (a)

 8.13 (b) 8.14 (d) 8.15 (a) 8.16 (a)

CHAPTER

9
Architecture of 8086 and 8088

Microprocessors

 9.1 INTRODUCTION

The Intel 8086 is a high performance 16-bit, N-channel, HMOS microprocessor which is available in three

clock rates: 5, 8, and 10 MHz. The term HMOS stands for ‘High-Speed MOS’. 8086 is Intel’s first 16-bit

microprocessor. This processor was introduced in 1978, due to the demand for more powerful and high-speed

computers. This processor has a more powerful instruction set and more programming flexibility and its

speed is more than the 8085 microprocessor. The CPU of the 8086 processor is implemented in N-channel,

depletion load, and silicon gate technology. This processor has the following features:

The CPU has direct addressing capability of 1 MB memory.

Bit, byte, word and block operations are available.

8-bit and 16-bit signed and unsigned arithmetic in binary and decimal operations are performed.

Available in 40-pin lead CERDIP and plastic DIP package (Dual In-Line Package).

Architectures designed for assembly language as well as high-level language.

 The 8086 is manufactured for standard temperature range (32°F to 180°F) and extended temperature range

(40°F to +225°F). It contains an electronic circuitry of 29000 transistors. The 8086 has 20 address lines and

16 data lines. This CPU can directly address up to 220 = 1 Mbytes of memory. The 16-bit data word can be

divided into a low-order byte and a high-order byte. The 20-bit address lines are time multiplexed to select

lines of low-order byte and a high-order byte data separately. The 8088 is an 8-bit processor designed around

8086 architecture. Internal functions of 8088 are same as the 8086 processor functions. The 8088 processor

has a 20-bit address bus and an 8-bit data bus. The comparison between 8085, 8086 and 8088 microproces-

sors are illustrated in Table 9.1 and Table 9.2. In this chapter, architecture of 8088 and 8088 are discussed in

detail.

 9.2 ARCHITECTURE OF 8086

The 8086 architecture has been implemented using two-stage pipelining in instruction execution. The pro-

cessor logic unit has been divided into Bus Interface Unit (BIU) and Execution Unit (EU). These units are

Microprocessors and Microcontrollers9.2

Table 9.1 Comparison between 8085 and 8086 microprocessors

 8085 Microprocessor 8086 Microprocessor

8085 is an 8-bit processor created in 1977 and it has 8-bit 8086 is a 16-bit processor developed in 1978 and it has a

data bus. 16-bit data bus.

8085 is manufactured using NMOS technology and this 8086 is fabricated based on HMOS technology and this

processor IC consists of about 6200 transistors. processor IC consists of approximately 29000 transistors.

8085 has a 16-bit address bus and can be able to access 8086 has a 20-bit address bus and is able to access 220 =

216 = 64 KB memory locations. 1 MB memory locations.

Number of flags are 5. Number of flags are 9.

Pipelining concept is not used in 8085. 8086 uses pipelining.

Instruction queue does not exist in 8085 and sequentially 8086 has a 6-byte instruction queue in BIU.

execute instructions.

No segment registers exist in 8085. There are four segment registers, CS, DE, ES, SS in 8086.

Only four types of addressing modes are available. Eight types of addressing modes are available.

8085 has less instruction than 8086. Direct multiplication, 8086 has more instructions than 8085. Direct multiplica-

divide, string-byte block movement and loop instructions tion, divide, string-byte block movement and loop instru-

are not available in 8085. ctions are available in 8085.

Table 9.2 Comparison between 8086 and 8088

 8086 Microprocessor 8088 Microprocessor

8086 is a 16-bit processor developed in 1978 and it has 8088 is an 8-bit processor developed in 1979 and it has 8-

a 16-bit data bus. bit data bus.

8086 has a 6-byte instruction queue in BIU. 8086 has a 4-byte instruction queue in BIU.

The 8086 BIU fills the queue when its queue has an The 8088 BIU fetches a new instruction byte to load into

empty space of 2 bytes. the queue, whenever there is one byte hole in the queue.

As 8086 has a 16-bit data bus, 8-bit or 16-bit memory As 8088 has an 8-bit data bus, it can read 8 bits data from

read/write operation is possible in a single operation. memory or I/O devices and write 8-bits of data to memory

 or I/O devices. To read 16-bit data, the 8088 requires

 two memory read operations.

AD15–AD8 pins are used as time multiplexed address/ AD7–AD0 pins are used as time multiplexed address/data

data bus in 8086. bus and A15–A8 pins are used as address bus only in 8088.

BHE is present in 8086 and the external memory inter- BHE is not present in 8088. Therefore, the external memory

faces have even or odd address banks. interfaced will not have been even or odd address banks.

 The external memory will therefore be byte oriented as

 8085.

In 8086 I/O and memory pin is represented as IO/M. In 8088 I/O and memory pin has been inverted and repre-

 sented as IO/M.

The status signals of 8086 are S2, S1 and S0. The status signals of 8086 are IO/M, DT/R and SS0.

The overall execution time of the instructions in 8086 is The overall execution time of the instructions in 8088 is

less compared to 8088 as 8086 has 16-bit data bus and more due to the 8-bit data bus and the 16-bit operations

only 4 clock cycles are required to execute. require additional 4 clock cycles.

always operating asynchronously. The Bus Interface Unit (BIU) provides interface with external memory and

I/O device addresses and data bus, and executes all bus operations. The BIU has a 6-byte instruction queue.

On the other hand, the execution unit takes the instruction from 6-byte instruction queue of BIU and executes

it. Thus, the instruction-fetch time has been drastically reduced.

Architecture of 8086 and 8088 Microprocessors 9.3

 The 8086 is a 16-bit microprocessor and it has a 20-bit address bus and a 16-bit data bus. Therefore, this

processor can directly access 220 = 1,048,567 (1 MB) memory locations. It can read/write 8 bits data or 16

bits data from/to memory or input/output (I/O) devices. The 8086 has time multiplexed address and data

buses. Hence, the number of pins can be reduced, but it slows down the data transfer rate. The block diagram

of internal architecture of 8086 processor is shown in Fig. 9.1. It is divided into two separate functional units

Fig. 9.1 Block diagram of 8086 microprocessor

Microprocessors and Microcontrollers9.4

such as Bus Interface Unit (BIU) and Execution Unit (EU). These two separate units are worked simultane-

ously for instruction execution based on two-stage instruction pipeline principles.

9.2.1 Bus Interface Unit (BIU)

The Bus Interface Unit (BIU) consists of bus interface logic, general-purpose registers, segment registers,

stack pointer, base pointer and index registers, memory addressing logic and a 6-byte instruction queue. The

BIU carries out all bus operations for the execution unit, and it is responsible for executing all external bus

cycles.

 The BIU performs data and addresses transfer between the processor and memory or I/O devices. This

section computes and sends addresses, fetches instruction codes, stores fetched instruction codes in a first-

in-first-out (FIFO) register which is called queue. The BIU is also used to read data from memory and I/O

devices, and write data to memory and I/O devices. While the EU is busy in instruction execution, the BIU

continues to fetch instructions from memory and stores it in the instruction queue.

 This unit relocates addresses of operands while this unit gets un-relocated operand addresses from EU. The

execution unit tells BIU from where to fetch instructions as well as to read data.When the EU executes an

instruction; the BIU resets the queue, fetches the next instruction from the new memory location, and passes

the instructions to the EU. In this way, the 8086 BIU fills the queue when the queue becomes empty spaces

of two bytes. This process is known as pipeline flush.

9.2.2 Execution Unit (EU)

The Execution Unit (EU) consists of Arithmetic Logic Unit (ALU), general-purpose registers, flag registers

(FLAGS), instruction decoder, pointers and index registers, and the control unit which are required to execute

an instruction.

 The EU gets the opcode of an instruction from the instruction queue. Then the EU decodes it and executes

it. The BIU and EU operate independently. When the EU is decoding or executing an instruction, the BIU

fetches instruction codes from the memory and stores them in the queue. This type of overlapped operation of

the BIU and EU functional units of a microprocessor is called pipelining. This process becomes faster except

for JUMP and CALL instructions, as the queue must be dumped and then reloaded from a new address.

Hence, the function of the EU is to execute all instructions, provide address to the BIU for fetching opcode

and operand and perform ALU operations after using various registers as well as the flag register.

9.2.3 Fetch and Execute

During fetch and execute instructions in the 8085 microprocessor, the non-pipeline concept follows so that

instructions are fetched and executed sequentially as shown in Fig.9.2(a). In the 8086 processor, the BIU and

EU performs the fetch and execute operations with overlap. The fetch and execute operations of 8086 are

given below:

The BIU output is the content of the Instruction Pointer register (IP), which is put on the address bus.

Therefore, a byte or word can be read from a specified address into the BIU.

The content of the instruction pointer register is incremented by 1 to get ready for the next instruc-

tion fetch.

After receiving the opcode and operand of instruction, the instruction code must be passed to the

queue which is a FIFO (first-in first-out) register.

Initially, the queue is empty. As soon as the BIU puts the instruction on the queue, the EU draws the

instruction from the queue and starts execution.

Architecture of 8086 and 8088 Microprocessors 9.5

While the EU is executing one instruction, the BIU will continue to fetch new instructions. Depending

upon the execution time of the instruction, the BIU can fill the queue with instructions. When execu-

tion time is more, the queue will be filled completely before the EU is ready to get the next instruc-

tion for execution. Figure 9.2(b) shows the pipeline concept of fetch and execution in BIU and EU.

In this architecture, BIU and EU are operating independently. The advantage of this architecture is

that the EU executes instructions continuously without waiting of fetching the instruction in BIU.

 But sometimes the EU can enter the wait mode. There are three different conditions when the EU operates

in wait mode. The first condition is that an instruction wants to access a memory location which is not in the

queue. Then BIU suspends fetching instructions and outputs the address of memory location. After waiting

for memory access, the BIU can again start filling the queue and the EU also starts to execute instruction

codes from the instruction queue.

 While executing JUMP instruction, the control is to be transferred to a new address which is non-sequen-

tial. But it is known to us that instructions for queue will be executed sequentially. Due to the non-sequential

new address of JUMP instruction, the existing instruction codes in queue will not be executed and the EU

must wait while the instruction at jump address is fetched. During this operation, the existing bytes in the

queue will be discarded.

 The last condition for wait mode operation is possible, when the BIU suspends the instruction fetching

operation. This is feasible when the EU operates slowly to execute an instruction. In case of AAM, ASCII

adjusts for multiplication instruction requires about 83 clock pulses to execute completely. Generally, four

clock cycles are generally required per instruction fetch. Consequently, the queue will be completely filled

during the execution of AAM instruction. Then BIU must wait until the execution of slow instruction has

been completed or the EU pulls one or two bytes from the queue.

 Sometimes the instruction requires to read data from a memory location which is not in the queue. Then

BIU should suspend instruction fetching and wait for output from the address of memory location. After

waiting for reading data from the memory, the EU can again start executing instruction codes from the queue.

Fig. 9.2(b) Instruction fetch and execution of the 8086 processor

Fig. 9.2(a) General instruction fetch and execution for conventional processors (8085)

 9.3 REGISTERS

The 8086 CPU has fourteen 16-bit registers as depicted in Fig. 9.3. All these registers are subdivided into dif-

ferent groups, namely, Data Register Group (four registers), Segment Register Group (four registers), Pointer

and Index Register Group (four registers), Instruction Register (Program Counter) and Flag Register. In this

section all registers are discussed.

Microprocessors and Microcontrollers9.6

9.3.1 Data Registers

The 8086 has four 16-bit general-purpose registers (AX, BX, CX and DX). These registers can be used in

arithmetic, logical operations and temporary storage. Each of these 16-bit registers is further subdivided into

two 8-bit registers (upper and lower bytes) as shown in Table 9.3.

Table 9.3 General purpose data registers

 16-Bit Registers 8-Bit High-order Registers 8-Bit Low-order Registers

 AX AH AL

 BX BH BL

 CX CH CL

 DX DH DL

The functions of each data register are discussed as follows:

AX Register The AX register serves as an accumulator. It performs input/output operations and processes

data through AX or AH or AL. During execution of a 16-bit multiply and divide instruction, AX contains the

one-word operand and the result is stored in the accumulator. In 32-bit multiply and divide instructions, AX

can be used to hold the lower-order word operand. Instructions involving AX or AH or AL and immediately

data usually require less program memory.

BX Register BX can be used as an index register for MOVE operation and a base register while computing

the data memory address.

CX Register CX register can be used as count register for string operations and hold count value

during large-number iterations. In LOOP instructions, CX holds the desired number of repetitions and is

automatically decremented by one after each iteration. While CX becomes zero, the execution of instructions

should be terminated. In the same way, the 8-bit CL register is used as a count register in bit-shifting and

rotate instructions.

Fig. 9.3 Registers of 8086: (a) data registers, (b) pointer and index registers, (c) segment registers,
and (d) flag registers

Architecture of 8086 and 8088 Microprocessors 9.7

DX Register DX can be used as a port address for IN and OUT instructions. The DX may be used in I/O

instructions, multiply and divide instructions. In 32-bit multiply and divide instructions, DX is used to hold

the high-order word operand.

9.3.2 Segment Registers

The concept of memory segmentation has been introduced in the 8086 processor. In memory segmentation,

the complete 1 MB memory can be divided into 16 parts which are called segments. Each segment thus

contains 64 KB of memory. In 8086, there are four segment registers such as Code Segment (CS) Register,

Data Segment (DS) Register, Stack Segment (SS) Register and Extra Segment (ES) Register. The 8086

microprocessor-based system memory is divided into four different segments, namely, Code Segment (CS),

Data Segment (DS), Stack Segment (SS) and Extra Segment (ES). Each segment has a memory space of

64 KB as depicted in Fig. 9.4 and each segment can be addressed by 16-bit segment registers.

Fig. 9.4 Segment registers and segment memory

Code Segment (CS) The code segment register is used for addressing a memory location in the code

segment of the memory in which the program is stored for execution.

Data Segment (DS) Data segment register points to the data segment of the memory, where data is

stored.

Extra Segment (ES) The extra segment is a segment which can be used as another data segment of the

memory. Therefore, extra segment contains data.

Microprocessors and Microcontrollers9.8

Stack Segment (SS) The stack segment register is used for addressing stack segment of memory in

which stack data is stored. The CPU uses the stack for temporarily storing data, i.e., the content of all general-

purpose registers which will be used later.

9.3.3 Pointer and Index Registers

The pointer and index registers of 8086 are as follows:

Stack Pointer (SP)

Base Pointer (BP)

Source Index (SI)

Destination Index (DI)

Instruction Pointer (IP)

Stack Pointer (SP) The stack pointer is used to locate the stack top address. It contains offset address.

In PUSH, POP, CALL and RET instructions, the stack address is determined after adding the contents of the

stack segment register (SS), after 4-bit left-shift, to the contents of SP.

Base Pointer (BP) The Base Pointer (BP) register can provide indirect access to data in stack. The BP

may also be used for general purpose data storage.

Source index (SI) and Destination Index (DI) These registers are used in memory or stack address

computation for general data storage. The main purpose of these registers is to store offset or displacement.

The memory address computation, depend upon addressing modes, the content of Data Segment (DS) and

index registers.

 Sometimes SI is used as source index and DI as destination index. If the content of SI is added with the

content of DS to determine the physical address, it will be used as a source address of data, while the content

of DI is added with the content of ES to find the destination address of the data. These registers can also be

used as general purpose registers.

Instruction Pointer (IP) Generally, the instruction pointer register is used as a program counter. This is

used for the calculation of memory addresses of instructions which will be executed. This register stores the

offset for the instruction. The content of IP is automatically incremented while the execution of an instruction

is going on. The address of the next instruction is computed after adding IP contents to the code segment

register contents after 4 bit left-shift.

9.3.4 Flag Register

The 8086 has a 16-bit flag register. This register is also called Program Status Word. It has nine flags out of

which six are status flags and three are control flags. The status flags are Carry flag (CF), Parity flag (PF),

Auxiliary Carry flag (AF), Zero flag (ZF), Sign flag (SF) and Overflow flag (OF). These status flags are

affected after the execution of arithmetic or logic instructions. The control flags are Trap flag (TF), Interrupt

Flag (IF) and Direction Flag (DF). Figure 9.5 shows the 16-bit flag register of the 8086 processor.

Carry Flag (CF) The carry flag is set to 1, if after arithmetic operation a carry is generated or a borrow is

generated in subtraction. When there is no carry out, the carry flag is reset or zero. This flag can also be used

in some shift and rotate instructions.

Parity Flag (PF) If the result of 8 bits operation or, lower byte of the word operation contains an even

number of 1s, parity flag is set.

Architecture of 8086 and 8088 Microprocessors 9.9

Auxiliary Carry Flag (AF) This flag is set to 1 if there is a carry out of the lower nibble to the higher

nibble of an 8-bit operation. It is used for BCD operations.

Zero Flag (ZF) The zero flag is set to 1, if the result of any arithmetic or logical operation is zero. While

the result is zero, it is reset.

Sign Flag (SF) The sign flag is set to 1, if the MSB of the result is 1 after the arithmetic or logic operations.

This flag represents sign number. Logic 0 indicates positive number and logic 1 is used to represent negative

number.

Overflow Flag (OF) This flag is set to 1 if the signed result cannot be expressed within the number of bits

in the destination operand. This flag is used to detect magnitude overflow in signed arithmetic operations.

During addition operation, the flag is set when there is a carry into the MSB and the flag is reset if there is no

carry out of the MSB. For subtraction operation, the flag is set when the MSB desires a borrow, and the flag

is reset if there is no borrow from MSB.

Direction Flag (DF) The direction flag is used in string operations. When it is set to 1, string bytes can

be accessed from memory address in decrement order, i.e., high memory address to low memory address. If

it is zero, string bytes can be accessed from memory address in increasing order, i.e., low memory address to

high memory address. For example, in MOVS instruction if DF is set to 1, the contents of the index registers

SI and DI are automatically decremented to access the string bytes. If DF = 0, index registers SI and DI are

automatically incremented to access the string bytes.

Interrupt Enable Flag (IF) This flag can be used as an interrupt enable or disable flag. When this flag is

set, the maskable interrupt is enabled and 8086 recognise the external interrupt requests, and the CPU transfer

control to an interrupt vector specified location. When IF is 0, all maskable interrupts are disabled and there

will be no effect on nonmaskable interrupts as well as internally generated interrupts. If 8086 is reset, IF is

automatically cleared.

Trap Flag (TF) TF is a single-step flag. When TF is set to 1, a single step interrupt occurs after the

execution of each instruction and the program can be executed in single-step mode. The TF will be cleared

by the single step interrupt.

 9.4 LOGICAL AND PHYSICAL ADDRESS

The 8086 sends a 20-bit address on the address bus to detect a memory location for memory read or write

operation. Addresses within the segment can be varied from 0000H to FFFFH (64 KB). To detect a memory

location, the segment register supplies the higher-order 16 bits of the 20-bit memory address. The lower-order

Fig. 9.5 Flag register of 8086

CF – Carry flag

PF – Parity flag

AF – Auxil ary car y flag

ZF

i r

– Zero flag

X – Undefined

X XXX DFOF IF TF SF ZF X AF X XPF

15 FlagsH 8 7 FlagsL

SF – Sign flag

TF – Trap flag

IF – Interrupt flag

DF – Directional flag

OF – Overflow flag

CF

0

Microprocessors and Microcontrollers9.10

16 bits of the 20-bit memory address is stored in any of the pointers and index registers or BX register.

Therefore, memory addresses of the 8086 are computed by summing the contents of the segment register

which is shifted left by 4 bits and the content of offset address. The 20-bit address send by the 8086 processor

is called the physical address as depicted in Fig. 9.5.

 The physical address is calculated from the segment address and offset address. The segment register con-

tains the higher-order 16 bits of the starting address of a memory segment. The CPU shifts the content of the

segment register left by four bits or inserts four zeros for the lowest four bits of the 20-bit memory address.

For example, if the content of the code segment register is 4000H, the starting address of the code segment

will be 40000H. Hence the 64-KB memory segment may be anywhere within the complete 1MB memory

based on the content of code segment register, and the starting address should be divisible by 16.

 The offset address is used to determine the memory location distance from the starting address within the

memory segment. An offset can be determined depending upon the addressing modes. The offset address will

be different in different addressing modes. To locate a memory location within a memory segment, the 8086

processor generates a 20-bit physical address.

 To determine the 20-bit physical address with the segment register and offset, the content of segment reg-

ister is left shifted by 4 bits and then an offset is added to it. For example, if the content of CS is 4000H and

an offset is 2000H, the computation of the 20-bit physical address is 42000H. Then 42000H represents the

starting address of the segment in memory. Figure 9.6 shows the computation of physical address.

Fig. 9.6 Construction of physical address

Example 9.1 Determine the physical address when CS = 5300H and IP = 0200H. Write the starting and

ending address of code segment.

Sol. The content of code segment is left shifted by 4 bits and the base address becomes 53000H. To deter-

mine the physical address, the content of IP will be added with the base address. Hence, physical

address = 53000 + 0200 = 53200H

 The starting of code segment memory = 53200H

 As each segment memory consists of 64K memory locations, the end address will be computed after addi-

tion of 64K with the starting of code segment memory.

 The ending address of code segment = 53200 + FFFF = 631FFH.

Architecture of 8086 and 8088 Microprocessors 9.11

 9.5 ADDRESS BUS, DATA BUS, CONTROL BUS

The 8086 processor is connected with memory and I/O devices through a set of parallel lines called buses.

There are three different buses such as address bus, data bus and control bus which are explained below:

Address Bus The 8086 CPU uses the address bus to select the desired memory or I/O device by generating

a unique address which corresponds to the memory location or the location of I/O device of the system.

Address bus is unidirectional and this processor has 20-bit address lines.

Data Bus To transfer data between the CPU and memory and the CPU and I/O devices, data bus is used.

The data which is in the data bus can be used as instruction for the CPU, or the CPU sends data to I/O device

or the CPU receive data from I/O device. Therefore, a data bus is bidirectional.

Control Bus The control bus of 8086 carries control signals which are used to specify the memory and

I/O devices. The control signals of 8086 CPU are M/IO, INTA, ALE, and DEN, etc.

 9.6 8086 MEMORY ADDRESSING

The 8086/8088 processor has 20-bit address lines and it can allow 220 or 1048576 (1 MB) memory loca-

tions. Hence, the 8086 memory address space can be viewed as a sequence of 16 segments as depicted in

Fig. 9.7(a). Capacity of each segment is 64 KB. Each memory location contains 8-bit data or one byte data

and any two consecutive memory locations contain 16-bit data or a word. 524, 287 words are visualised in

Fig. 9.7(b).

Fig. 9.7 (a) Memory map with 16 segments (b) Memory map with 524287 words

Microprocessors and Microcontrollers9.12

Physically, the memory can be organised as two banks such as even and odd bank and each bank consists of

512 KB memory size. The data lines D7–D0 are used for data transfer from even bank and D15–D8 are used

for the odd bank. The even bank is selected by A0 = 0 and BHE = 1 and data bus D7–D0 is connected with this

bank. When A0 = 1 and BHE is low the odd bank is selected and data bus D15–D8 is connected. The address

space is physically connected to a 16-bit data bus by dividing the address space into two 8-bit banks, namely,

odd-addressed bank and even-addressed bank as depicted in Fig. 9.8.

Fig. 9.8 Odd-bank and even-bank memory addressing

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D –D15 8 D D7 0–

A0
BHE

The 8086 reads 16 bits of data from an odd-addressed bank memory and an even addressed bank memory

simultaneously. One bank is connected to the lower byte of the 16-bit data bus, D7–D0 and contains even

address bytes, if A0 = 0 and BHE = 1 an even address bank is selected. The odd-addressed bank is connected

to higher byte of data bus, D15–D8 and contains odd address bytes, when A0 = 1 and Bus High Enable, BHE is

low and odd address bank is selected. Any specific byte within the even-addressed or odd-addressed bank can

be selected by address lines A1–A19. Table 9.4 shows the memory processing depending upon A0 and BHE.

Data can be accessed from the memory in four different ways as given below:

Table 9.4 Selection of proper byte from even and odd memory bank for processing

 BHE A0 Processing

 0 0 Both banks active 16-bit data transfer. 16-bit word transfer on AD15–AD0

 0 1 Only high (odd) bank active, One byte transfer on AD15–AD8

 1 0 Only low (even) bank active, One byte transfer on AD7–AD0

 1 1 No bank active.

9.6.1 8-Bit Data from Even Address Bank

To access memory bytes from an even address, information is transferred over the lower half of the data bus

D7–D0. If A0 = 0, BHE is high to enable the even bank. For example, assume loading one byte data into BH

Architecture of 8086 and 8088 Microprocessors 9.13

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e

r
O

rd
e

r
A

d
d

re
s
s

B
a

n
k

L
o

w
e

r
O

rd
e

r
A

d
d

re
s
s

B
a

n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 10
BHE = 0

register from memory location within the even address bank. The data will be accessed from the even bank

through D7–D0. Then this data will be transferred into the 8086 over lower 8-bit data lines, the 8086 redirects

the data to the higher 8 bits of its internal 16-bit data path and hence data is loaded into the BH register.

 Assume 20-bit address is 20002H. A0 = 0, BHE =1, one byte data can be transferred from the memory.

Only even bank is selected and only one byte will be transferred from 20002H to the data bus as depicted in

Fig. 9.9.

Fig. 9.9 Even bank memory addressing

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A0 = 0BHE = 1

9.6.2 8-Bit Data from Odd Address Bank

To read one byte from an odd address bank, information must be transferred over the higher order data bus,

D15–D8. If A0 = 1, the even memory bank is disabled and BHE is low to enable the odd bank as depicted in

Fig. 9.10.

 Assume the 20-bit address is 20003. As A0 = 1 and BHE = 0, only one byte has to be transferred from

memory. As an odd bank is selected for data transfer, one byte will be transferred from odd bank memory.

The data bus D15–D8 contents data from memory.

Fig. 9.10 Odd bank memory addressing

Microprocessors and Microcontrollers9.14

9.6.3 16-Bit Data Starting from Even Address Bank

Figure 9.11 shows that 16-bit data is accessed from an even address and an odd address respectively, within

a single bus cycle. The address lines A19–A1 select the appropriate byte within each bank. While A0 = 0 and

BHE is low, the even and odd banks are enabled simultaneously. For example, the 20-bit address is 20002.

Since A0 = 0 and BHE = 0, one word or two bytes has to be transferred from memory location 20002 and

20003 respectively. Data from the odd bank is transferred to D15–D8 and data from the even bank is trans-

ferred to D7–D0 data bus. Hence, data bus D15–D0 contents two bytes of data from memory. As WR = 0, M/

IO =1, 16-bit data can be copied into the data bus from memory bank.

Fig. 9.11 Odd and even bank memory addressing

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 00
BHE = 0

9.6.4 16-Bit Data Starting from Odd Address Bank

Generally, a 16-bit word located at an odd address is accessed using two bus cycles. Assume the 20-bit physi-

cal address is 20003H and the 8086 transfers a word in two bus cycles. During first cycle A0 = 1 and BHE

= 0; the odd bank becomes enabled for data transfer and even bank is disabled. RD = 0 and M/IO = 1 for

8086, the odd memory places data on D15–D8 bus. During the first bus cycle the lower byte is accessed from

memory location 20003H as depicted in Fig. 9.12(a). In the second cycle, A0 = 0 and BHE = 1, the even bank

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 10
BHE = 0

Fig. 9.12 (a) First cycle to access one byte from odd bank memory addressing

Architecture of 8086 and 8088 Microprocessors 9.15

20009

20007

20005

20003

20001

20008

20006

20004

20002

20000

Odd Bank

H
ig

h
e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

L
o
w

e
r

O
rd

e
r

A
d
d
re

s
s

B
a
n
k

Even Bank

Address Bus

Data Bus

A –A1 19

D D0 15–

D D15 8– D D7 0–

A = 00
BHE = 1

Fig. 9.12 (b) Second cycle to access one byte from even bank memory addressing

of memory becomes enabled and the odd bank is disabled. Then processor output RD = 0 and M/IO = 1. The

selected even bank memory location content is on D7–D0 bus. Then data is to be accessed. Therefore, during

the second bus cycle, the upper byte is accessed from even address bank memory location 20004H.

 9.7 PIN DESCRIPTION OF 8086

The pin diagram of the 8086 has been shown in Fig.

9.13. The 8086 can operate either in minimum mode

or in maximum mode depending upon the status of

the pin MN/MX. When MN/MX = 5 V, the 8086

works in minimum mode meaning that 8086 operates

in single processor environment. If MN/MX = GND,

it works in maximum mode and the processor can be

operated in multiprocessor environment. To differen-

tiate the minimum and maximum mode operation, a

set of the 8086 pins change their functions, but other

pins have common functions in both the modes. The

pin description of 8086 is as follows:

AD15–AD0 (Bi-directional) Address/Data

Bus These lines constitute the time-multiplexed

address/data bus. These lines are low-order address

bus. They are act as address bus during the first

clock cycle. When AD lines are used to transmit

memory/IO address, the symbol A is used of AD.

For example, A represents A15–A0. When data

are transmitted through AD lines, the symbol D

is used in place of AD. For example, D represents

D7–D0, D15–D8 or D15–D0. Fig. 9.13 Pin diagram of 8086

Microprocessors and Microcontrollers9.16

A19–A16 (Output) These are high-order address lines and they are time multiplexed lines. During T1, these

lines can be used as higher-order 4 bits of memory address. But in I/O operation, these lines are low. During

T2, T3, and T4, they carry status signals.

A16 / S3, A17 / S4 (Output) A16 and A17 are time multiplexed with segment identifier signals S3 and S4.

During T1 clock cycle, A16 and A17 are used as address bits. In T2 to T4 clock cycle, these lines carry status

signals. Table 9.5 shows memory segment identification.

Table 9.5 Memory segment identification

 S4 S3 Function

 0 0 Extra segment memory access

 0 1 Stack segment memory access

 1 0 Code segment memory access

 1 1 Data segment memory access

A18 / S5 (Output) A18 is time multiplexed with interrupt status S5. During T1 clock cycle, A18 is transmitted

to address bus. During other clock cycles (T2, T3 and T4), the status signal S5 is transmitted through this line.

S5 is an interrupt enable status signal. At the beginning of each clock cycle, the status of the interrupt enable

flag S5 is updated.

A19 / S6 (Output) A19 is multiplexed with status signal S6. During T1 clock cycle, A19 is transmitted to

address bus. During T2 to T4, the status signal S6 is available on this line. It is low during T2 to T4.

BHE/S7 (Output) Bus High Enable/Status During T1, the bus high enable signal BHE can be used

to enable data onto the most significant half of data bus, D15–D8. 8-bit devices connected to upper half of

the data bus use BHE signal to condition ship select functions. BHE is low during T1 for read, write and

interrupt acknowledge cycles when a byte is to be transferred on the higher portion of the data bus. This pin

is multiplexed with status signal S7. The S7 status signal is available during T2 to T4. The signal is active low,

and floats to 3 state OFF in hold. It is low during T1 for the first interrupt acknowledge cycle. Table 9.6 shows

the function of BHE and A0.

Table 9.6 Function of BHE and A0

 BHE A0 Function

 0 0 Whole word

 0 1 Upper byte from/to odd address

 1 0 Lower byte from/to even address

 1 1 None

RD (Output) (Read) This control signal is used for read operation. It is an output signal. It is active when

it is LOW. Read signal indicates that the processor is performing a memory or I/O read cycle, depending on

the state of the S2 pin. This signal is used to read devices which reside on the 8086 bus. RD is active low

during T2, T3 and Tw of any read cycle and is guaranteed to remain high in T2 until the 8086 local bus floated.

This signal floats to tristate in hold acknowledge.

READY (Input) The addressed I/O or memory devices send acknowledgment through this pin and it

indicates that the data transfer is completed. The READY signal from memory or I/O devices is synchronised

with the 8284A clock generator to provide READY input to 8086. This signal is active HIGH. When READY

is HIGH, it indicates that the peripheral is ready to transfer data.

Architecture of 8086 and 8088 Microprocessors 9.17

INTR (Interrupt request) It is a level triggered input which is sampled during the last clock cycle of

each instruction to determine if the processor should enter into an interrupt vector look-up table located in

system memory. It can be internally masked by software resetting the interrupt enable bit. INTR is internally

synchronised. This signal is active high.

TEST (Input) This is used in conjunction with the WAIT instruction. If the TEST input is LOW, execution

continues, otherwise the processor waits in an idle state. This input is synchronised internally during each

clock cycle on the leading edge of CLK. When it is low, the microprocessor continues execution, otherwise

it waits.

NMI (Input) Nonmaskable interrupt This is an edge-triggered input which causes a type 2 interrupt. A

subroutine is vectored via an interrupt vector look-up table located in system memory. NMI is not maskable

internally by software. A transition from LOW to HIGH initiates the interrupt at the end of the current

instruction. This input is internally synchronised.

MN/MX (Input) The minimum/maximum signal indicates the operating mode of 8086. When it is

high, the 8086 processor operates in minimum mode. If this pin is low, the processor operates in maximum

mode.

RESET (Input) If the reset signal is active HIGH, processor immediately terminates its present activity

and system is reset. The signal must be active high for at least four clock cycles. It restarts execution, as

described in the instruction set, when RESET returns low. RESET is internally synchronised.

CLK (Input) The signal provides the basic timing for the processor and bus controller. It is asymmetric

with a 33% duty cycle to provide optimised internal timing. Nonmaskable interrupt request.

VCC Power supply, +5 Vdc.

GND Ground.

9.7.1 Operating Modes of 8086

There are two different operating modes for Intel 8086, namely, the minimum mode and the maximum mode.

When only one 8086 processor is to be used in a microcomputer system, the 8086 is used in the minimum

mode of operation. In this mode, the CPU issues the control signals required by memory and I/O devices. In

a multiprocessor system, the 8086 processor operates in the maximum mode. In maximum mode operation

control signals are issued by Intel 8288 bus controller which is used with 8086 for this very purpose. The

level of the pin MN/MX decides the operating mode of 8086. When MN/MX is high, the CPU operates in the

minimum mode. When it is low, the CPU operates in the maximum mode. The pins 24 to 31 of 8086 issue

two different sets of signals. One set of signals is issued when the processor operates in the minimum mode.

The other set of signals is issued while the processor operates in the maximum mode. Thus the pins from 24

to 31 have alternate functions. In this section, the pin description of minimum mode and maximum mode

operations are discussed.

9.7.2 Pin Description in Minimum Mode

In the minimum-mode operation, the pin MN/MX is connected to 5V dc supply. The minimum mode

operation is cheaper as all control signals for memory and I/O are generated by the microprocessor. The sche-

matic pin diagram of 8086 for minimum mode operation is illustrated in Fig. 9.14. The functions of all pins

except pins of 24 to 31 of 8086 are same in this mode. The pins description of 24 to 31 for the minimum mode

are as follows:

Microprocessors and Microcontrollers9.18

INTA (Output) Interrupt Acknowledge This signal is used as a read strobe for interrupt acknowledge

cycles. It is active low during T2, T3 and Tw of each interrupt acknowledge cycles. On receiving an interrupt

signal, the processor issues an active LOW interrupt acknowledge signal.

ALE (Output) Address Latch Enable This signal is provided by the processor to latch the address into

the 8282/8283 address latch. It is HIGH during T1.

DEN (Output) Data Enable This signal can be provided as an output enable for the 8286/8287 in a

minimum system which uses the transceiver. DEN is active low during each memory and I/O access and for

INTA cycles. For a read or INTA cycle, it is active from the middle of T2 until the middle of T4, while for a

write cycle it is active from the beginning of T2 until the middle of T4. DEN floats 3 state OFF in local bus

hold acknowledge. When Intel 8286/8287 octal bus transceiver is used, this signal acts as an output enable

signal. It is active LOW.

DT/R (Output) Data Transmit/Receive DT/R signal is required in minimum mode operation, when

8286/8287 data bus transceiver is used for data flow. This signal is used to control the direction of data flow

through the transceiver. When it is HIGH, CPU send data to I/O device. When it is LOW, the CPU wants to

access I/O device. Logically DT/R is equivalent to S1 in the maximum mode, and its timing is same as for M/

IO. This signal floats to 3 state OFF in local bus hold acknowledge.

WR (Output) Write This pin indicates that the processor is performing a memory write or I/O write cycle,

depending on the state of the M/IO signal. WR is active for T2, T3 and Tw of any write cycle. It is active low

and floats to 3 states OFF in local bus hold acknowledge. When it is LOW, the CPU performs memory or I/O

write operation.

HLDA (Output) HOLD Acknowledge This signal is issued by the processor when it receives a HOLD

signal. This is active HIGH signal. When HOLD request is removed, HLDA goes LOW.

HOLD (Input) Hold The HOLD signal indicates that another device (master) in the microcomputer

17

18

19

20

21

22

23

24

40

33

32

31

30

29

28

27

26

25

8086

2–16 and 39

1

34

35–38

AD –AD
15 0

A /S A /S
19 6 16 3

–

RD

BHE/S
7

MN/MX

WR

M/IO

DEN

DT/R

ALE

HOLD

HLDA

TEST

NMI

INTR

CLK

GND

RESET

READY

INTA

V
CC

GND

Fig. 9.14 Pin diagram of 8086 for minimum mode of operation

Architecture of 8086 and 8088 Microprocessors 9.19

system is requesting for direct memory access or a local bus hold for using the address and data bus. Then the

master sends a HOLD request to the processor through this pin. It is an active HIGH signal.

9.7.3 Pin Description in Maximum Mode

For the maximum mode of operation, the pin MN/MX is grounded. The maximum mode is designed to be

used when a coprocessor exists in the system. The schematic pin diagram of 8086 for maximum mode opera-

tion is depicted in Fig. 9.15. In this mode, the functions of all pins except pins 24 to 31 of 8086 are same. The

description of the pins from 24 to 31 is as follows.

QS1, QS0 (Output) Instruction Queue Status These two signals are decoded to provide instruction

queue status as given below:

Table 9.7 Functions of queue status signals

 QS1 QS0 Function

 0 0 No operation

 0 1 First byte of opcode from queue

 1 0 Empty the queue

 1 1 Subsequent byte from queue

S2, S1 and S0 (Output) Status Signals These signals are connected to the bus controller Intel 8288.

The bus controller decodes these signals to generate eight separate memory and I/O access control signals as

depicted in Table 9.8 which shows the logic for status signals.

Fig. 9.15 Pin diagram of 8086 for maximum mode of operation

Microprocessors and Microcontrollers9.20

 Table 9.8 Logic for status signals S2, S1 and S0

 S2
S1

S0 Function

 0 0 0 Interrupt acknowledge

 0 0 1 Read data from I/O port

 0 1 0 Write data into I/O port

 0 1 1 Halt

 1 0 0 Code access

 1 0 1 Read memory

 1 1 0 Write memory

 1 1 1 Passive

LOCK (Output) This output pin indicates that other system bus masters are not to gain control of the

system bus while LOCK is active low. The LOCK signal is activated by the LOCK prefix instruction and

remains active until the completion of the next instruction. This signal is active low and floats to 3 states OFF

in hold acknowledge.

RQ / GT0 and RQ / GT1 Request/Grant These pins are used by other processors in a multiprocessor

environment. Local bus masters, of other processors force the processor to release the local bus at the end of

the processor’s current bus cycle. Each pin is bidirectional with RQ/GT0 having higher priority than RQ/GT1

and has internal pull-up resistors. Hence, they may be left unconnected.

 9.8 MEMORY READ AND WRITE BUS CYCLE OF 8086

The bus cycle means the Bus Interface Unit (BIU) phenomenon. It is known to us that the EU and BIU work

asynchronously. The EU takes instructions from the instruction queue and executes instructions in a number

of clock periods continuously. These clock periods are not grouped to form machine cycles. Therefore, EU

does not use machine cycles. The EU waits for BIU to handover the instruction whenever the program starts

or the program executes any branch instruction or the BIU is executing data memory access for EU. The

BIU fetches the instruction code from memory, reads data from memory or I/O devices, and writes data into

memory or I/O devices. The clock periods are grouped whenever the BIU accesses memory and I/O devices

for read and write operations. When any external memory or I/O devices are accessed, only four clock cycles

are required to perform read or write operation. These four clock cycles are grouped which is called bus

cycle. In this section, memory and I/O read and write bus cycles for both minimum and maximum modes are

discussed.

9.8.1 Minimum Mode Operation and Timing Diagram

Figure 9.16 shows the minimum mode configuration of 8086. This figure shows a group of ICs which gener-

ate address bus, data bus and control bus signals. The ROM and RAM ICs and I/O ports are connected with

CPU through these buses. The 8282 Latch ICs are used to latch the address from 8086 processor address/

data bus. A15–A0, A19–A16 and BHE are latched during T1 state. The output enable (OE) of 8288 I/O ports are

grounded, therefore the bus will not be floated or high impedance state. The ALE signal from 8086 is used to

strobe address lines in 8282 latches. As data bus is bidirectional, the bidirectional transceivers 8286 ICs are

used. The working principle of 8086 in minimum mode can be explained with timing diagram. The opcode

fetch cycle is similar to memory read cycle. In this section, memory read and write cycles are explained in

detail. The types of data transfer depend on M/IO, RD and WR signals as depicted in Table 9.9.

Architecture of 8086 and 8088 Microprocessors 9.21

Table 9.9 Types of data transfer

 M/IO RD WR Operation

 0 0 1 I/O read

 0 1 0 I/O write

 1 0 1 Memory read

 1 1 0 Memory write

Fig. 9.16 Minimum mode configuration of 8086

Memory Read Bus Cycle for Minimum Mode During minimum mode operation of 8086 processor,

MN/MX is +5 DC. The timing diagram for memory read bus cycle is shown in Fig. 9.17. The following

actions take place during four different clock cycles:

T1 Clock Cycle During T1 clock cycle, the 8086 processor sends the 20-bit address on the address bus.

The 16-bit least significant bits of address sends on AD15– AD0 and four most significant bits of address put

on A19–A16 lines.

Microprocessors and Microcontrollers9.22

ALE is high only during T1. Address is put in the address bus. The falling edge of ALE is used to

latch the address from the address bus.

BHE is high or low depending on 8- or 16-bit read from odd/even address.

M/IO is high to indicate memory operation. It remains high during the entire bus cycle.

DT/R is low and remains low throughout the complete bus cycle, to indicate the direction of data

transfer as memory to the processor.

T2 Clock Cycle During T2 clock cycle, the AD15–AD0 go into high impedance state. This is indicated by

dotted lines as depicted in Fig. 9.17 as bus drivers are disabled.

RD goes low during T2. This signal can be used by the selected memory IC to enable its output buffer.

This is read-control signal.

Fig. 9.17 Memory read bus cycle of 8086 for minimum mode

Architecture of 8086 and 8088 Microprocessors 9.23

 When READY signal is high during T2, it indicates that the memory device is ready and the 8086 operates

normally according to the bus cycle. The READY signal is used by slow memory devices. If the memory is

not ready to transfer data, it does not make READY signal high otherwise the READY is low. If READY is

low during T2, the 8086 inserts a wait state between T3 and T4. The 8086 processor always takes necessary

steps to read data from the memory only when READY becomes high.

DEN goes high to enable the 8286/8287 transceiver

BHE goes high

During T2 to T4, Status signals S3, S4, S5 and S6 are put on the address lines A16/S3 to A19/S6. S3 and

S4 are used to identify the memory segment. S5 indicates interrupt enable status. The status of the

interrupt enable flag bit, S5 is updated at the beginning of each clock cycle.

T3 Clock Cycle DEN is low

Data is put on lines AD0–AD15.

T4 Clock Cycle

M/IO goes low just after T4 clock cycle.

RD goes high.

All bus signals are deactivated and prepared for the next bus cycle.

Memory Write Bus Cycle for Minimum Mode The timing diagram for memory write bus cycle is

shown in Fig. 9.18. The following actions take place during four different clock cycles:

T1 Clock Cycle The write cycle is similar to read cycle, but there are some differences. During T1 clock

cycle, the 8086 processor sends the 20-bit address on the address bus. The 16-bit least significant bits of

address sends on AD15–AD0 and four most significant bits of address put on A16–A19 lines.

ALE is high only during T1. Address is put in the address bus. The falling edge of ALE is used to

latch the address from the address bus.

BHE is high or low depending on 8- or 16-bit read from odd/even address.

M/IO is high to indicate memory operation. It remains high during the entire bus cycle.

DT/R is high and remains high throughout the complete bus cycle, to indicate the direction of data

transfer from the processor to memory.

DEN goes high to enable the 8286/8287 transceiver.

T2 Clock Cycle

WR is low as write control signal.

BHE goes high.

Status is put on the A19–A16 lines. The activity starts during T2 and continues till T4.

T3 Clock Cycle

Data is put on the AD16–AD0 lines.

T4 Clock Cycle

WR becomes high.

M/IO goes low.

Microprocessors and Microcontrollers9.24

I/O READ and Write BUS CYCLE The I/O read bus cycle is similar to memory read cycle. The M/IO

signal is low for I/O read operation and all other signals are same as memory read operation as illustrated in

Fig. 9.17 and can be used as I/O read bus cycle by changing the M/IO signal only. The I/O write bus cycle is

also similar to memory write cycle. The M/IO signal is low for I/O write operation and all other signals are

same for memory write operation as depicted in Fig. 9.18.

9.8.2 Maximum Mode Operation and Timing Diagram

Figure 9.19 shows the maximum-mode configuration of 8086 processor. In the maximum mode, MN/MX pin

of 8086 is strapped to grounded and pin 24 to 31 of 8086 are active in maximum mode. In this mode, micro-

processor status signals S2, S1, and S0 are fed to an 8288 bus controller. The bus controller interprets status

Fig. 9.18 Memory write bus cycle of 8086 for minimum mode

DEN is low.

DT/R goes low.

Architecture of 8086 and 8088 Microprocessors 9.25

signals S2, S1, and S0 generate bus timing and control signals. Here, the 8288 bus controller derive RD, WR,

DEN, DT/R and ALE, MRDC, MWTC, AMWC, IORC, IOWC and AIOWC control output signals.

 IORC, IOWC are I/O read command and I/O write command signals respectively. These signals enable I/O

read or write operations. MRDC and MWTC are used as memory read and memory write command signals

respectively.

 In this mode, more than one processors are interconnected within a system. AEN, IOB and CEN pins are

very useful for multiprocessor systems. AEN, and IOB are grounded, but CEN pin is connected with +5 V.

The MCE/PDEN pin output depends upon the status of the IOB. When IOB is grounded, this pin works as a

master cascade enable to control cascaded 8259A. When IOB is not grounded, this pin acts as a peripheral

data enable. INTA pin is used to generate two interrupt acknowledge signals and fed to the interrupt controller.

 The working principle of 8086 in the maximum mode can be explained with timing diagram. The maxi-

mum mode timing diagram is subdivided into memory read cycle and memory write cycle. The address/data

and address/status timings are similar to the minimum mode. In this section memory read and writes cycles

are explained in detail.

Fig. 9.19 Maximum mode configuration of 8086

Microprocessors and Microcontrollers9.26

Memory Read Bus Cycle for Maximum Mode During minimum-mode operation of 8086 processor,

MN/MX is grounded. The timing diagram for memory read bus cycle in maximum mode operation of 8086

is shown in Fig. 9.20. The following actions take place during four different clock cycles:

Fig. 9.20 Memory read bus cycle of 8086 for maximum mode

T1 Clock Cycle

S2, S1, and S0 are set by 8086 in the starting of clock cycle. These signals are decoded by the 8288

bus controller.

ALE is high only during T1. Address is put on the address bus. The falling edge of ALE is used to

latch the address from the address bus.

BHE is high or low depending on 8- or 16-bit read from odd/even address.

DT/R goes low.

Architecture of 8086 and 8088 Microprocessors 9.27

T2 Clock Cycle

BHE is high.

DEN goes high to enable the 8286/8287 transceiver.

MRDC is low for memory read control signal.

T3 Clock Cycle

Data is put on address/data lines from memory.

The status signals S2, S1, and S0 become inactive.

T4 Clock Cycle

MRDC is high.

DEN goes low to disable the 8286/8287 transceiver.

DT/R goes high.

The READY signal is sampled at the end of T2. If it is low, wait states are inserted between T3 and T4.

Memory Write Bus Cycle for Maximum Mode The timing diagram for memory read bus cycle

in maximum mode operation of 8086 is shown in Fig. 9.21. The following actions take place during four

different clock cycles:

T1 Clock Cycle

S2, S1, and S0 are set by 8086 in the beginning of clock cycle. These signals are decoded by the 8288

bus controller.

ALE is high only during T1. Address is put on the address bus. The falling edge of ALE is used to

latch the address from the address bus.

BHE is high or low depending on 8- or 16-bit read from odd/even address.

T2 Clock Cycle

BHE is high.

DEN goes high to enable the 8286/8287 transceiver.

T3 Clock Cycle

MWTC is low for memory write control signal.

Data is put on address/data lines.

The status signals S2, S1, and S0 become active.

T4 Clock Cycle

MWTC is high.

DEN goes low to disable the 8286/8287 transceiver.

I/O READ and Write BUS CYCLE I/O write bus cycle is similar to memory write cycle. The memory

write operation can be performed by write control signals AMWTC but AIOWC control signal is used for I/O

write. Therefore, in I/O write bus cycle using AIOWC, AMWTC will be replaced by AIOWC as depicted in

Fig. 9.21. Similarly, MRDC will be replaced by IORC in memory read cycle timing diagram as I/O read bus

cycle is similar to memory read cycle as given in Fig. 9.20.

Microprocessors and Microcontrollers9.28

 9.9 INTEL 8088 PROCESSOR

The 8086 processor has tremendous flexibility in programming as compared to 8085. Therefore, after the

introduction of 8086, research work was done for a microprocessor chip which has the programming flex-

ibility like 8086 and the external interface ICs of 8085, so that all existing circuits of 8085 can be compatible

with the new processor. Then 8088 processor was developed. The Intel 8088 is an 8-bit microprocessor. Its

internal architecture is same as that of 8086, i.e., architecture of a 16-bit microprocessor. But the 8088 has

only 8 data lines and hence it can use 8-bit I/O devices which are cheaper compared to 16-bit I/O devices.

Personal computers based on 8088 CPU are cheaper compared to personal computers based on 8086 and

80286 CPU. The clock frequency of 8088 is 5 MHz and that for 8088-2 is 8 MHz. The 8088 microprocessor

is available in 40-pin IC and operates at +5 V dc supply. Its register set, instructions and addressing modes are

same as those of 8086. Its CHMOS version 80C88A operates at 8 MHz clock. The instruction queue length

in case of 8088 processor is of 4 bytes whereas that in 8086 is of 6 bytes. The 8088 CPU uses 8087 math

coprocessor, 20-bit address bus and can directly address up to 1 MB of memory.

Fig. 9.21 Memory write bus cycle of 8086 for maximum mode

Architecture of 8086 and 8088 Microprocessors 9.29

 A computer built around 8088 CPU uses 8284 clock generator, 8282 latches, 8286 transceivers, 8288 bus

controller, 8087 math coprocessor, 8237 DMA controller, 8259 interrupt controller, etc. The 8088 CPU was

very popular and widely used in personal computer, PC/XT. Presently 8088-based computers are no longer

manufactured. In this section, the architecture of 8088 processor, pin description, addressing and timing

diagram are explained.

9.9.1 Architecture of 8088 Microprocessor

Figure 9.22 shows the architecture of the 8088 processor. The set of registers of 8088 is approximately same

Fig. 9.22 Block diagram of 8088 microprocessor

Microprocessors and Microcontrollers9.30

as that of 8086. The architecture of 8088 is same as 8086 architecture, but there are two changes. The 8088

has a 4-byte instruction queue in place of 6-byte instruction queue in 8086 and data bus of 8088 is 8-bit. The

other function blocks are the same as 8086 processor.

 The 8088 processor has 1 Mbyte addressing capability and it has 20-bit address or 20 addressing lines. The

concept of segmented memory and the computational method of physical address are used in 8088 processor

without any change and it is same as 8086 processor. The memory organisation and addressing methods of

8088 are similar like 8086. There is no concept of even address bank and odd address bank of memory in

8088. Therefore, the complete memory is consistently addressed as a bank of 1Mbyte memory locations with

the help of the segmented memory concept.

 As the data bus is 8 bit, the 8088 can access only a byte at a time. Therefore, the speed of operation of 8088

will be reduced as compared to 8086, though internal data bus of 8088 is 16 bit and it can process the 16-bit

data internally. Due to change in address and data bus structure, the timing diagrams of 8088 are different

from 8086.

9.9.2 Pin Description of 8088 Processor

The pin diagram of 8088 is depicted in Fig. 9.23. The functions of 8088 pins except AD7–AD0, AD15–AD8,

Fig. 9.23 Pin diagram of 8088

Architecture of 8086 and 8088 Microprocessors 9.31

SS0 and IO/M pins are exactly same as the pins of 8086. Consequently, the pins functions of SS0, IO/M,

AD7–AD0, A15–A8 are explained in this section.

AD7–AD0 (Address/Data Bus) The AD7–AD0 lines are operated as time multiplexed address/data bus.

When ALE signal is high, these lines can be used as the address of the lower order memory location address

or I/O port address. When ALE is low, these lines are used as data bus D7–D0. During T1 clock cycle, the

AD7–AD0 bus is used as addresses bus. During T2, T3, and T4, states these lines are used as data bus. These

lines are in high impedance state in hold acknowledged and interrupt acknowledge cycles.

A15–A8 (Address Bus) The A15–A8 lines are used as lower order memory location address throughout

the entire bus cycle. During hold acknowledge, these address lines are tristated or high impedance state.

SS0 This pin is newly introduced in 8088 processor instead of BHE pin in 8086. During minimum-mode

operation, the pin SS0 is equivalent to the S0 in the maximum mode. SS0 is always high in maximum mode.

IO/M The IO/M pin is similar to the M/IO pin of 8086. The function of this pin is used to operate the 8088

processor as an 8085 processor, interfacing of memory and I/O devices.

 In the minimum mode, the operations of the 8088 microprocessor depends on control signals SS0, IO/M

and DT/R as given in Table 9.10. The SS0 pin is always high in the maximum-mode operation. The functions

and timings of other pins of 8088 are same as 8086.

Table 9.10 Operation of 8088 processors based on control signals

 IO/M DT/R SS0 Operation

 0 0 0 Code Access

 0 0 1 Read memory

 0 1 0 Write memory

 0 1 1 Passive

 1 0 0 Interrupt Acknowledge

 1 0 1 Read I/O port

 1 1 0 Write I/O port

 1 1 1 HALT

9.9.3 Timing Diagram of 8088 Microprocessor

Each bus cycle of the 8088 processor consists of four T states, T1, T2, T3 and T4. During the first clock cycle

T1, ALE signal is high and A19/S6–A16/S3 are used as A19–A16 address bus, and AD7–AD0 can be used as

A7–A0 address bus. Hence the leading edge of ALE is used to latch the valid 20-bit address during T1 states.

After T1 state A19/S6–A16/S3 are used as status signals S6–S3, the middle bus A15–A8 are always active as

address bus but AD7–AD0 are tristated. During T3 and T4, data is read from memory and placed into data bus.

Therefore, AD7–AD0 is used as data bus in T3 and T4 duration. Figure 9.24 shows the timing diagram for

memory read operation of 8088 microprocessor. After T4, the next bus cycle will be started.

 Figure 9.25 shows the timing diagram of 8088 for memory write bus cycles. In the memory cycle, data will

be available on the data bus during T2, T3 and T4 and the status signals are valid for T2, T3 and T4 duration.

After T4 address/data bus, AD7–AD0 are tristated.

Microprocessors and Microcontrollers9.32

Fig. 9.24 Memory read bus cycle of 8088

Fig. 9.25 Memory write bus cycle of 8088

Architecture of 8086 and 8088 Microprocessors 9.33

 9.10 DEMULTIPLEXING OF SYSTEM BUS IN 8086 AND 8088
MICROPROCESSOR

In the 8086/8088 processor, there are three buses: address, data and control buses. The address/data buses are

operated in time multiplexed. The address bus is required to locate memory and I/O devices for data transfer

through memory and I/O read or write cycles. The data bus is used to transfer data from microprocessor to

memory/ I/O devices or vice versa. The control bus provides control signals to memory/I/O devices for data

transfer operations.

9.10.1 Demultiplexing of System Bus in 8086

The 8086 microprocessor has time multiplexed 16-bit address/data bus AD15–AD0 and 4-bit address/status

bus A19/S6–A16/S3. ALE signal is used to latch the address of 8086. Usually, latch ICs are available with eight

separate latches. Therefore, three latch ICs should be used for demultiplexing twenty bit address lines. Figure

9.26 shows the circuit diagram for latching twenty bit address lines using three 74LS373 Latch ICs. In this

arrangement, two ICs are fully utilised and one latch is partially used.

Fig. 9.26 Demultiplexing of 20-bit address bus in 8086 processor

 The 8086 microprocessor has a 16-bit time multiplexed data bus which is available as address/data bus,

AD15–AD0. Always the data bus is separated from address bus by using 74245 buffers as depicted in Fig.

9.27. The data bus is bi-directional and data can be transferred from microprocessor to memory and from

memory to microprocessor for memory write and read operation respectively. The control signals DEN and

DT/R represents the present of data on the data bus and directional flow of data. These signals are used to

connect the chip enable CE and directional pins of 74245 buffers. While DEN is low, the data is available on

the multiplexed bus.

Microprocessors and Microcontrollers9.34

9.10.2 Demultiplexing of System Bus in 8088

In 8086 A19/S6–A16/S3, AD15–AD0 and BHE/S7 are multiplexed but in 8088 only A7–A0 and A19/S6 – A16/S3

are time multiplexed. The demultiplexing of address bus of 8088 microprocessor is shown in Fig. 9.28. Here,

74LS373 latches are used to demultiplex address/data bus. When ALE = 1, the latches pass the inputs to the

outputs. After one clock time T1, ALE becomes to logic 0. A19/S6–A16/S3 are connected into top latch and

A7–A0 are connected into the bottom latch. These address connections can be able to address 1MB memory

space. The 8088 systems require only one data buffer due to the 8-bit data bus as depicted in Fig. 9.29.

 9.11 SOME IMPORTANT ICs: 8284A, 8286/8287, 8282/8283, AND 8288

The 8086 processor requires a clock signal with very fast rise and fall times which is about 10ns and duty

cycle of 33%. For proper operation, 8086 processor RESET signal must be synchronised with clock signal

and persist for four T states. Actually, the 8284A clock generator IC meets the requirement of CLOCK and

RESET signal.

 Buses of 8086 microprocessors require buffering techniques for reliable data transmission. When any

receiver receives data, it requires a dc load current from the transmitter. Due to this load, the high level out-

put voltage VOH will be reduced and low level output voltage VOL will be increased. Hence noise immunity

of the system will be reduced. In addition, each receiver has an ac load current due to its input capacitance.

Fig. 9.27 Demultiplexing of fully buffered system bus in 8086 processor

Architecture of 8086 and 8088 Microprocessors 9.35

74LS244

G 74LS373 OE

74LS245

D/R G

74LS244

OE

Control

Bus

Data

Bus

Address

Bus

74LS373

OE

A /S
19 6

A /S
18 5

A /S
17 4

A /S
16 3

A –A
15 8

ALE

8088

AD AD
7 0
–

DEN

DT/R

IO/M

RD

WR

A A
19 16
–

A A
15 8
–

A A
7 0
–

D D
7 0
–

IO/M

RD

WR

G

Fig. 9.28 Demultiplexing of address bus in 8088 processor

Fig. 9.29 Demultiplexing of fully buffered system bus in 8088 processor

Microprocessors and Microcontrollers9.36

Truly input capacitor must be charged and discharged whenever the transmitter output state changes from

logic level 1 to 0 or logic level 0 to 1. As the propagation delay time of the transmitted signal increases, the

time availability to the memory and I/O devices will be reduced. Therefore, to minimize the dc as well as ac

loading effect, buffers are required for microprocessor buses. Usually, 8286/8287 buffer ICs are commonly

used in microprocessor-based systems.

 The 8282 and 8283 are 8-bit bipolar latches with three state output buffers. These ICs can be used as

latches, buffers or multiplexers. The 8282 provides non-inverted outputs whereas the 8283 inverts the input

data at its output. In the maximum-mode operation, 8086 requires system control signals such as MRDC,

MWTC, AMWC, IORC, IOWC and AIOWC. The 8288 bus controller chip generates the all control signals.

 To design any microprocessor-based system, 8284A clock generator, 8286/8287 buffers, 8282/8283 I/O

ports and 8288 bus controller are used. In minimum and maximum mode operation, first three ICs are exten-

sively used but 8288 bus control is only used in maximum mode operation. In this section the detail operation

of 8284A clock generator, 8286/8287 buffers, 8282/8283 I/O ports and 8288 bus controller are discussed in

detail.

9.11.1 Clock Generator 8284A

During fetch and execute instructions, the 8086 and 8088 processors require clock pulse which has about

10 ns rise and fall times. The logic-0 level of clock is 0.5 V, to 0.6 V, logic–1 level is about 3.9 V to 5 V and

clock duty cycle is about 33%. The 8086 processor has no clock generator inside the chip. So, an external

clock generator IC must be connected with the processor. The 8284A is a clock generator IC and it is a sup-

porting component to the 8086/ 8088 processors. The 8284A IC has the following features or additional basic

functions such as clock generation, RESET Synchronisation, READY Synchronisation, and a TTL level

peripheral clock signal. The operation of 8284A IC has been explained in this section.

Operation of 8284A The internal logic of the 8284A clock generator is depicted in Fig. 9.30. The upper

half of the logic diagram represents the clock and reset synchronisation section of the 8284A clock generator.

It is depicted in Fig. 9.30 that the crystal oscillator has 2 inputs: Xl and X2. When a crystal is connected to

Xl and X2 terminals, the oscillator generates a square-wave signal and its frequency is same as the crystal

frequency.

 The output square-wave signal is fed to an AND gate and it is inverted by using an inverting buffer to

generate the OSC output signal. The OSC signal can be used as an EFI input to other 8284A clock genera-

tors. When F/C is a logic-0, the output of the AND gate is fed to divide by 3 synchronous counter. If F/C is a

logic-1, then EFI is steered through to the counter.

 The output of the divide by 3 synchronous counters generates the ready signal for synchronisation. The

CLK signal is buffered before output from the clock generator. Another divide by 2 synchronous counters

generate the PCLK signal to the 8086/8088 microprocessor. When the output of the first '3 synchronous

counters fed to the second '2 synchronous counters, the two cascaded counters generate '6 outputs at

PCLK. Figure 9.31 shows the connection between an 8284A and the 8086/8088 processor. Usually, F/C

and CSYNC are connected with ground to select the crystal oscillator. Then a 15-MHz crystal generates the

normal 5-MHz CLK clock signal and a 2.5-MHz peripheral clock signal PCLK.

 The reset section of the 8284A consists of an Schmitt trigger buffered and a D type flip-flop. The D flip-

flop ensures that the timing requirements of the 8086/8088 RESET input are met. This circuit applies the

RESET output signal of clock generator is fed to the microprocessor as shown in Fig. 9.32 and it is active

on the negative edge of the clocks. Hence the reset section meets the timing requirements of the 8086/8088

microprocessor.

Architecture of 8086 and 8088 Microprocessors 9.37

Fig. 9.30 Block diagram of 8284 clock generator

Fig. 9.31 CLK generator 8284A and 8086/88 microprocessor

Pin Functions of 8284A The 8284A is an 18-pin IC which is specifically designed for 8086/8088

microprocessor. The pin diagram of the chip is shown in Fig. 9.32. In this section, the functions of pins are

explained.

1 2 These pins are connected to an external crystal which is used as clock frequency

source of the clock generator. The external crystal clock frequency will be about three times the required

frequency. If the required frequency is 5–MHz, the crystal frequency will be 15–MHz.

CLK is an output pin that provides the clock (CLK) signal which is used as input signal to the 8086/8088

microprocessor system. The CLK pin has an output signal with 33% duty cycle as required by the 8086/8088.

This is an alternate clock input when F/C pin is pulled high. The externally

generated clock signal is supplied to EFI whenever the F/C pin is high.

Microprocessors and Microcontrollers9.38

This is a clock output signal that is one sixth of the crystal. PCLK is half of the clock

frequency and has a 50% duty cycle. The PCLK output signal can be used as a clock signal to the peripheral

equipments in 8086/8088 system.

This is an oscillator output signal which is running at crystal or EF1 frequency.

This signal can be used to provide clock signal at EF1 to the other 8284 clock generators in some multiple

processor system.

F/C The voltage on this pin determines the clocking source for the 8284A. If this input

pin is high, an external clock at EF1 is selected. While it is low, the internal crystal oscillator provides the

clock frequency signal.

This pin is used for synchronisation of clock signals in multiprocessor system

where all processors receive clock at EF1. If the internal crystal oscillator is used, this pin must be grounded.

When CSYNC is high, the 8284A clock generator stops working.

RES To reset 8086 processor, 8284A clock generator should send reset signal. Generally this

pin is connected to a RC network for generating reset signal at power-on.

This signal is connected to the 8086/8088 RESETs input pin. The RESET signal must

be synchronised with clock.

The slow memory or I/O devices can request for extension of bus cycles using RDYl or RDY2

pins. These two wait state ready inputs are provided to support multibus 8086/8088-based system.

The READY output pin connects to the 8086 READY input which enables the bus cycle extension

through wait state clock period insertion between T3 and T4. The 8086 READY signal must be synchronised

with the RDY1 and RDY2 inputs.

ASYNC This input pin is used to select either one or two stages of

synchronization for the RDY1 and RDY2 inputs. If it is low, one level is selected. When it is high, two levels

of synchronization are selected.

Fig. 9.32 Pin Diagram of the 8284A

Architecture of 8086 and 8088 Microprocessors 9.39

1 2 Two ready inputs RDY1, RDY2 have been provided in the 8284A to support multibus system.

8086 CPU may be connected to two separate system buses, on which data transfer takes place. The memory

or I/O devices of any system buses may like to insert wait states. Hence each system bus should have its own

ready line. AEN1 and AEN2 are provided to arbitrate bus priorities whenever RDY1 and RDY2 are active.

The 8284A responds to RDY1 when AEN1 is low. In the same way, clock generator responds to RDY2 if

AEN2 is low.

This pin is connected to +5 V !10%.

This pin must be grounded.

9.11.2 Bidirectional Bus Transceiver 8286/8287

The Intel 8286 and 8287 are bidirectional system bus buffers-cum-drivers. Figure 9.33 shows the pin diagram

of 8286 and 8287 transceiver.

A7–A0 Bidirectional Tristate

These lines are connected to microprocessor data/address bus.

Fig. 9.33 Pin diagram of bidirectional bus transceiver (a) 8286 and (b) 8287

B7–B0 Bidirectional Tristate These lines are connected to system bus

OE Output enable

T Direction Select

VCC Input Power Supply +5 V.

GND This pin is grounded

9.11.3 8-Bit Input-Output Port 8282/8283

The Intel 8282 and 8283 are unidirectional latch buffers. The difference between the 8282 and 8283 is that the

IC 8282 does not change the data and the IC 8283 inverts the input data. Figure 9.34 shows the pin diagram

of 8282 and 8283 input–output port. The pin functions are as follows.

Microprocessors and Microcontrollers9.40

DI7–DI0 Data input

DO7–DO0 Data output

OE Output enable

STB Input data strobe If STB is high, the data on output pins tracks the data on input pins. During

transition of STB from high to low, the data is latched. The data remains unchanged when STB is low. The

data is latched internally till OE is low. If OE is low, the data is put on output lines. The 8282 outputs the data

without inverting and the 8283 inverts the data.

Vcc Input Power Supply +5 V

GND This pin is grounded

Fig. 9.34 Pin diagram of 8-bit I/O port (a) 8282 (b) 8283

9.11.4 8288 Bus Controller

Figure 9.35 shows the 8288 bus controller which is used in the maximum mode operation of 8086 CPU. This

IC receives four inputs such as S2, S1, S0 status signals and CLK from 8086. There are two sets of output

command signals.

 The first set of output command signals are the MULTIBUS command signals. These are the conventional

MEMR, MEMW, IOR and IOW control signals. These signals are renamed as MRDC, MWTC, IORC and

IOWC respectively. These outputs are enabled one clock cycle earlier than the normal write commands. Some

memory and I/O devices require this wider write pulse width.

 The second set of output signals of the 8288 are the bus control signals DT/R, DEN, ALE and MCE/PDEN.

MCE/PDEN is an output signal which has two functions depending on the 8288’s mode of operation such as

I/O bus control or system bus control.

 The three 8288 control inputs CEN, IOB and AEN determine the operating mode as given in Table 9.11.

When CEN and IOB are high or logic level 1, the 8288 operates in the I/O bus mode and the MCE/PDEN

output acts as a peripheral data enable. The function of MCE/PDEN is identical to DEN but it is active only

Architecture of 8086 and 8088 Microprocessors 9.41

Fig. 9.35 Functional diagram of 8288 bus controller

during I/O instructions. This allows the 8288 to control two sets of buses such as the normal system buses and

a special I/O bus dedicated to the processor.

 During the system bus mode, the control signals are active only while the address enabled signal AEN and

IOB inputs are low. In this mode of operation, several 8288 ICs and 8086 processors can be interfaced to the

same set of bus lines. The bus mediator selects the active processor after enabling only one 8288 bus control-

ler through AEN signal. The MCE/PDEN signal becomes MCE (master cascade enable). In this mode, the

MCE/PDEN signal is used to read the address from a master priority interrupt controller, PIC.

Table 9.11 Operating modes of 8288 bus controller

 CEN IOB AEN Operations

 0 x x All command outputs and the DEN and PDEN outputs are disabled or

open-circuited

 1 0 0 System bus mode and all control signals are active. The bus is free for

use and MCE/PDEN = MCE

 1 0 1 System bus mode but all control signals are disabled. The bus is busy,

and is controlled by another bus master

 1 1 x I/O bus mode; all control lines are enabled and MC/PDEN = PDEN

 The pin diagram of the 8288 bus controller is shown in Fig. 9.36. The functions of the pins are described in this

section.

S2, S1, S0 (Status Input Signals) These are bus cycle status signals. These signals are decoded and

control signals are generated.

CLK This is an input signal. It is connected to CLK output of the clock generator 8284.

AEN, CEN, IOB These are bus priority and mode control signals. AEN (bus priority control/enable), CEN

(Command enable) , and IOB (mode control) signals are used to generate various control signals.

MRDC (Memory Read Control Signals) This command signal is used to load the content of memory

location on the data bus.

Microprocessors and Microcontrollers9.42

 Fig. 9.36 Pin diagram of 8288 bus controller

MWTC (Memory Write Control Signals) This command signal is used to store the available data on

the data bus to the specified memory location.

IORC (I/O Read Control Signals) The I/O device can be able to put the available data of the addressed

port on the data bus.

IOWC (I/O Write Control Signals) The I/O device is able to accept the available data on the data bus

and send to the addressed port.

AMWC (Advance Memory Write Control Signal) This signal is activated one clock period earlier

than MWTC.

AIOWC This signal is activated one clock period earlier than IOWC.

MCE/PDEN This is cascade/peripheral data enable. This signal is used in Priority Interrupt Controller

8259A.

INTA (Interrupt Acknowledge) This is used as output signal during two interrupt acknowledge bus

cycles and is used as memory read control signal.

ALE Address Latch Enable signal

DT/R Data direction control signal

DEN Data buffer control signal

Vcc Power Supply Input +5 V.

GND This pin is connected system ground.

Architecture of 8086 and 8088 Microprocessors 9.43

 9.12 INTERRUPTS OF 8086/8088 MICROPROCESSOR

An interrupt is an external signal which sends information to the CPU so that an external device gets service

from CPU. This signal provides a mechanism for changing one program environment to another. Due to an

interrupt, the microprocessor stops execution of its current instruction and calls a procedure to provide ser-

vice to interrupt. At the end of the interrupt service procedure, an IRET instruction is executed to return back

to the main program. The 8086/8088 processor has the following interrupts:

Software interrupts

Nonmaskable interrupts

Internal interrupts

External hardware interrupts

Reset

9.12.1 Software Interrupts

When the source of interrupt is the execution of interrupt instructions, this interrupt is known as software

interrupt. In 8086/8088, there are about 256 interrupts such as INT 00H, INT 01H, INT 02H to INT FFH.

Whenever the INT interrupt instruction is executed, the microprocessor automatically saves the content of the

flag register, Instruction Pointer (IP) and code segment register on the stack and jumps to a specified memory

location. In 8086, the memory location is always four times the value of the interrupt number. When INT n

is executed, the interrupt service routine is located at n × 4 H memory address. For example, INT 02H goes

to 00008H. Software interrupts are always generated by INT instructions and used for divide-by-zero error,

single-step, NMI, break-point, and overflow interrupts.

 For each interrupt, there is a program associated with a specified interrupt. This program is known as

Interrupt Service Routine (ISR). It is also called interrupt handler. When the interrupts occurs, the processor

runs the interrupt service routine according to the interrupt vector table as given in Table 9.12.

Table 9.12 Interrupt vector table

 Physical address assuming

 INT Number CS = 0000H

 INT 00H 00000H

 INT 01H 00004H

 — —

 — —

 INT FEH 003F8H

 INT FFH 003FCH

The interrupt vector table has 256 entries, each containing four bytes. Each interrupt vector consists of a

16-bit offset and the 16-bit segment address. The initial 32 interrupt vectors are spared for various micro-

processor operations and the remaining 224 interrupt vectors are user defined. The lower vector number has

the higher priority, when more than two interrupts occur simultaneously. Figure 9.37 shows the interrupt

pointers. There are 256 address pointers. The starting addresses of their service routines are available in the

program memory as depicted in Fig. 9.37.

Interrupt Type 0—INT 00H (Divide by Zero Error) The 8086 generates a type 0 interrupt, if the

result of DIV or IDIV operation is too large to fit in the destination register. For this interrupt, 8086 pushes

the content of flag register on the stack, resets IF and TF and also pushes the content of CS and IP onto the

Microprocessors and Microcontrollers9.44

stack. Then 8086 gets the starting address of the interrupt service procedure from the interrupt pointer table.

Therefore, load the new value of CS from addresses 00002H and 00003H; also load the new value of IP from

addresses 00000H and 00001H.

Interrupt Type 1—INT 01H (Single Step) During execution of a sequence of instructions, there

is frequently a need to examine the contents of the CPU’s registers and system memory. This is done by

executing one instruction at a time and then inspecting the registers and memory. If they are correct, the user

can give the command to go on and execute the next instruction. This is called the single stepping. When the

8086 Trap Flag (TF) is set, the 8086 perform a type 1 interrupt after execution of each instruction.

 When the CPU gets a type 1 interrupt, initially it pushes the flag register onto the stack, changing the trap

bit and pops the flag register back from the stack. Then it loads the CS value from starting address 00006H

and the IP value from starting address 00004H for the type 1 interrupt service routine. The 8086 has no

instruction to set or reset the trap flag. A sequence of instructions is used to set the trap flag as given below:

PUSHF ; Push flags onto stack

MOV BP, SP ; Copy SP to BP

OR [BP+0], 001000H ; Set TF bit

POP F ; Pop flag register and TF is set

Code Segment 255

Instruction Pointer 255

Instruction Pointer 32

Code Segment 32

Instruction Pointer 31

Code Segment 31

Instruction Pointer 5

Code Segment 5

Instruction Pointer 4

Code Segment 4

Instruction Pointer 3

Code Segment 3

Instruction Pointer 2

Code Segment 2

Instruction Pointer 1

Code Segment 1

Instruction Pointer 0

Code Segment 0

Memory Address

03FE

03FC

0082

0080

007E

007C

0016

0014

0012

0010

000E

000C

000A

0008

0004

0002

0000

0006

^

^
^

^
^
^
^
^
^

Interrupt
Vector-255

Interrupt
Vector-32

Interrupt
Vector-31

Interrupt
Vector-5

Interrupt
Vector-4

Interrupt
Vector-3

Interrupt
Vector-2

Interrupt
Vector-1

User defined^
Reserved^
Overflow

Break point

NMI

Single step

Divide Error
Interrupt
Vector-0

Fig. 9.37 Memory address of interrupt vectors

Architecture of 8086 and 8088 Microprocessors 9.45

To reset the trap flag, the OR instruction will be replaced by AND [BP + 0], 0FEFFH. After reset the trap flag,

when the 8086 processor sends a type 1 interrupt, single-step mode will be disabled.

Interrupt Type 2—INT 02H (Nonmaskable Interrupt) The 8086 performs a type 2 interrupt when

the NMI pin receives a low to high transition signal. Then the CPU, 8086 pushes the content of flag register

on the stack, resets IF and TF and also pushes the content of CS and IP onto the stack. After that, the CPU

jumps to 00008H to fetch the CS: IP of the ISR associated with NMI. As the type 2 interrupt response cannot

be disabled (masked) by any instruction, this interrupt is called a nonmaskable interrupt. Usually, the type 2

interrupt is used to switch off a circuit for protection.

Interrupt Type 3—INT 03H (Break Point) The type 3 interrupt is generated by the execution of INT

03H instruction. This interrupt is used to implement a break-point function in a system. When we insert a

break point in the main program, the system executes all instructions up to the break point and then jumps

to the break-point subroutine. When 8086 executes the INT 03H instruction, it pushes the content of the flag

register onto the stack, resets TF and IF and pushes the CS and IP values onto the stack. Then 8086 gets the

new IP value from the starting address 0000CH and the CS value from the starting address 0000EH.

Interrupt Type 4—INT 04H (Overflow Interrupt) If the result of addition of two signed numbers is

too large to represent in the destination register, the overflow (OF) flag will be set. For example, if we add

0110 1100 (10810) and 0101 0001(8110), the result is 1011 1101. The above result will be correct only for

unsigned binary numbers. For signed number addition, “1” in the MSB of the result represents that the result

is negative and it is in 2’s complement form. Hence the result, 1011 1101 represents –6710, but the correct

result is (18910). If the overflow flag is set, the 8086 provides type 4 interrupt after executing the INTO

instruction.

 During execution of type 4 instruction, the 8086 pushes the content of flag register on the stack, resets

TF and IF and pushes the values of CS and IP on the stack. Then 8086 gets a new IP value from the starting

address 00010H and a new CS value from the starting address 00012H. After that instructions in the ISR

perform the desired operation.

9.12.2 INTR Interrupts, Type 0 to 255

The INTR input pin of 8086 allows external signal to interrupt the execution of a program. INTR can be

masked or disabled so that it cannot cause any interrupt. When the Interrupt Flag (IF) is cleared, INTR input

pin becomes disabled. The IF can be cleared by Clear Interrupt Instruction (CLI).

 When the IF is set, the INTR input will be enabled. The IF can be set by Set Interrupt Instruction (STI).

After reset of 8086 microprocessor, the interrupt flag is automatically cleared. The INTR interrupt is sent to

the 8086 from the 8259A interrupt controller as shown in Fig. 9.38.

8086/8088
CPU

ALE

INTA

INTR

8259A
interrupt
controller

AD – AD7 0

INTA

INT

Interrupt Inputs

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

Fig. 9.38 8259A connected with 8086/8088 microprocessor

Microprocessors and Microcontrollers9.46

 When the 8259A receives an interrupt signal on any one of the IR inputs, it provides an interrupt request

signal to the INTR input of 8086. When the INTR input is enabled with an STI instruction, the 8086 proces-

sor sends an interrupt acknowledge signal. Figure 9.39 shows the interrupt acknowledge bus cycle of 8086.

Vector from 8259A/
external hardware

circuit

Interrupt Acknowledge
Machine Cycle (M)1

Interrupt Acknowledge
Machine Cycle (M)2

T1 T2 T3 T4 T1 T2 T3 T4

Clock

ALE

INTA

AD – AD7 0

Fig. 9.39 8086/8088 interrupt acknowledge bus cycle

9.12.3 External Hardware Interrupt Interface

Figure 9.40 shows the minimum-mode hardware interrupt interface of 8086 microprocessor. The external

hardware interrupt circuit can identify which of the pending interrupts has highest priority. Subsequently,

hardware interrupt circuit passes its type number to the microprocessor. Then 8086 CPU samples INTR input

during the last clock period of each interrupt execution cycle.

 INTR is a level-triggered input. The logic level ‘1’ must be maintained until it is sampled, but it must be

removed before it is sampled next time. Otherwise the same interrupt service routine (ISR) will be repeated.

 INTA becomes logic level ‘0’ in the first interrupt bus cycle to acknowledge the interrupt as the 8086 CPU

has decided to respond to the interrupt.

Interrupt Inputs

INT 255

INT 254

INT 253

INT 32

INT 33

External hardware
Interrupt circuit

8086/8088
CPU

ALE

INTA

INTR

AD – AD7 0

Fig. 9.40 External hardware interrupt interface with 80886/8088 CPU

Architecture of 8086 and 8088 Microprocessors 9.47

 It goes to ‘0’ again in the second bus cycle to request for the interrupt vector type from external device.

Then interrupt-type number is read by the microprocessor and the new value of CS and IP are also read from

the memory. Figure 9.39 shows the interrupt acknowledge bus cycle of 8086.

9.12.4 Priority of 8086/8088 Interrupts

In the 8086/8088 microprocessor, all interrupts must be serviced as priority order. The highest-priority inter-

rupt will be serviced first and then the next highest-priority interrupt will be serviced. Therefore, lower-prior-

ity interrupt service will be provided after a higher-priority one. The priority of interrupts will be controlled

by ISR. The priority order of 8086/8088 interrupts are

Reset

Internal interrupts

Software interrupts

Nonmaskable interrupts

Hardware interrupts

9.12.5 Interrupt Instructions of 8086/8088

The interrupt instructions of 8086/8088 microprocessors are CLI, STI, INT n INTO, HLT and WAIT. The

functional operation of interrupt instructions are given in Table 9.13.

Table 9.13 Interrupt instructions

Mnemonics Function Operation

CLI Clear interrupt instruction, IF affected IF 0

STI Set Interrupt flag, IF affected IF 1

INT n Type n software interrupts. This interrupt (SP – 2) Flags, TF,IF 0, (SP – 4) CS,

 initiates a vectored call of an interrupt CS (2 + 4 × n), IP (SP – 6), IP 4 × n

 service subroutine

IRET Interrupt return, All flags affected IP (SP), CS (SP + 2),

 Flags (SP + 4), SP (SP + 6)

INTO Interrupt overflow, TF and IF affected Same as INT 4

HLT Halt Wait for an external interrupt

WAIT Wait Wait for TEST input to become active

9.12.6 Interrupt Cycle of 8086/8088

The sequence of operations of any interrupt (interrupt cycle) is depicted in Fig. 9.41 and the step-by-step

operation for interrupt is given below:

Step 1 The interrupt sequence starts when an external device requests service by sending an interrupt input.

Step 2 The external hardware circuit or interrupt controller evaluates the priority of the interrupt.

Step 3 The 8086 checks for the INTR at the last T state of the instruction.

Step 4 Check IF before sending interrupt acknowledge signal INTA.

Step 5 8086 initiates the INTA bus cycle. During T1 of the first bus cycle, ALE is high and address/data

bus AD7–AD0 is at high impedance (Z) state and stays high for the bus cycle. During the second interrupt

acknowledge bus cycle, external circuit gates one of the interrupts.

Microprocessors and Microcontrollers9.48

Step 6 The contents of the flag register are pushed on the stack.

Step 7 The Interrupt Flag (IF) and Trap Flag (TF) are cleared. This disables the INTR pin and the trap or

single-step feature.

Step 8 The contents of the Code Segment (CS) is pushed on the stack.

Step 9 The contents of the Instruction Pointer (IP) is pushed on the stack.

Step 10 The interrupt vector type number is multiplied by 4 and generates a memory address. The contents

of this address are fetched and placed into IP. Subsequently, the contents of the memory address (interrupt

vector type number × 4 + 2) are fetched and placed into CS. After that the next instruction executes at the

interrupt service procedure addressed by the interrupt vector.

Step 11 To return from the interrupt service routine, the IRET instruction is executed.

Step 12 Flags return to their state prior to the interrupt. Operation restarts at the prior IP address after CS

and IP are popped.

8086 execute
current instruction

Is there
any

interrupt?

Is
NMI exit ?

No

Yes
Is

INTR exit ?
Is

IF set ?

No

Yes

No

Is
TF set ?

Execute next
instruction Pop CS and IP

Pop Flags
Resume interrupt

Call ISR Execute user
interrupt procedure

Push Flags
Push CS and IP

Read type
Code

Interrupt
acknowledge

Yes

No

Yes

Yes

No

Fig. 9.41 Flow chart of interrupt operation

Architecture of 8086 and 8088 Microprocessors 9.49

 9.13 EPROM INTERFACING WITH 8086

The most commonly used EPROM ICs are 27C256, 2716, 2732A and 2764. IC 27C256A is an erasable pro-

grammable read only memory and it is represented by 32K × 8 EPROM. The 32K is referred as the number

of memory locations in the EPROM. As 1K = 1024, 32 × 1024 or 32,768 memory locations are available in

the device. The 8 represents the number of bits in each memory location.

 In IC27C256, 27 is the standard number for EPROMs and 256 is the number of K bits stored on the

EPROM. Actually, the entire series of EPROMs is represented by 27XXX. The IC27C256 EPROM has 32K

bytes of memory with 8-bit wide data bus AD7–AD0 and 15 address lines A14 to A0. Figure 9.42 shows the

interfacing of EPROM IC27C256 with the 8086/8088 microprocessor.

Address Bus

A - A
14 0

RD OE

27C256

EPROM

Data Bus

AD - AD
7 0

CE

CE

IO/ M

A
15

A
16

A
17

A
18

A
19

Fig. 9.42 EPROM 27C256 interfacing with 8086/8088 microprocessor

 The data bus of the microprocessor AD7–AD0 is connected with the 8-bit data outputs of the EPROM.

The address bus A14–A0 of the microprocessor is connected with the address lines A14–A0 of EPROM. The

remaining address lines A19–A15 for 8086 processor are used to select the memory devices. The memory read

signal RD from the microprocessor is directly connected to the EPROM. The operation of EPROM is con-

trolled by two pins such as chip enable CE and output enable OE. The chip enable signal is generated from

IO/M signal and address lines A19–A15. Therefore, a memory address decoder circuit is used to generate a

CE signal. The output enable OE is used to enable the output buffers in the memory. This device has 8000H

memory locations. When the starting address of EPROM is 60000H, the memory end address is 67FFFH.

The memory map of EPROM 27C256 is given below:

 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

The starting address is 60000H = 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The end address is 67FFFH = 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

To generate the chip enable signal, A15 = 0, A16 = 0, A17 = 1, A18 = 1 and A19 = 0 as depicted in Fig. 9.42.

The IC 2716 EPROM (2K × 8) has only 2 KB of memory and 11 address lines. A decoder can be used to

decode the additional 9 address lines and generate a chip enable signal so that the EPROM can be placed in

any 2KB section of the 1MB address space. If we assume the starting address of 2716 EPROM is FF800H,

Microprocessors and Microcontrollers9.50

the end address will be FFFFFFH. A NAND gate and an OR gate are used to generate chip enable signal

using A19–A11, IO/M and RD from 8086/8088 microprocessor as depicted in Fig. 9.43. The memory map of

IC 2716 is given below:

 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0

The starting address is FF800H= 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

The end address is FFFFFH = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

 To generate the chip enable signal, A11 = 1, A12 = 1, A13 = 1, A14 = 1, A15 = 1, A16 = 1, A17 = 1, A18 = 1 and

A19 = 1 as depicted in Fig. 9.43.

Address Bus

A – A
10 0

AD – AD
7 0

Data Bus

2716

EPROM
A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

IO/M

RD

CE
CE

Fig. 9.43 EPROM 2716 interfacing with 8086/8088 microprocessor

A15

A14

A13

A19

A18
A17

A16

A

B

C
74LS138

G2A

G2B

G1

Memory map

F0000-F1FFF

F2000-F3FFF

F4000-F5FFF

F6000-F7FFF

F8000-F9FFF

FA000-FBFFF

FC000-FDFFF

FE000-FFFFF

A – A12 0
AD – AD7 0

Data Bus

2764
EPROM

CE
RD

2764
EPROM

Data BusAddress Bus

A – A12 0

CE

AD – AD7 0

Fig. 9.44 EPROM 2764 interfacing with 8086/8088 microprocessor

Architecture of 8086 and 8088 Microprocessors 9.51

 In place of a NAND gate decoder, the 3-line to 8-line decoder IC74LS138 is used to select the memory

devices and the 8086/8088 microprocessor can communicate with many EPROM ICs as shown in Fig. 8.22.

There are three enable pins G2A, G2B and G1 which are active low, active low and active high respectively

for proper operation of the decoder. Address lines A12 to A0 are directly connected to IC 2764. A15 to A13 are

used as decoder input and each output of the decoder can select a 2764 EPROM (8K × 8). A19–A16 enable the

decoder. The memory of each selected EPROM is depicted in Fig. 9.44.

 9.1 What are the general-purpose registers of the 8086 and 8088 microprocessor?

 9.2 Write difference between (a) 8085 and 8086 (b) 8086 and 8088.

 9.3 What is the purpose of the queue? How many bytes can be stored in the queue of 8086 and 8088?

 9.4 Draw the schematic block diagram of 8086 and explain the function of each block.

 9.5 Define the logical address and physical address. What are the differences between the logical and

physical memory of the 8086?

 9.6 Determine the physical when CS = 6000H and offset address = 2300H.

 9.7 What is pipelined architecture? How is it implemented in 8086?

 9.8 Explain the concept of segmented memory? What are its advantages?

 9.9 Draw the pin diagram of the 8086 microprocessor. Explain the function of the following pins of

8086:

 (i) ALE (ii) NMI (iii) INTR (iv) HOLD (v) HLDA

 (vi) BHE (vii) LOCK (viii) M/IO (ix) DEN (x) DT/R

 9.10 Draw the minimum-mode system configuration of 8086 with memory and I/O interface and give a

list about the functions performed by each chip.

 9.11 Draw bus cycle timing diagrams for memory read and write operation in the maximum mode and

explain briefly.

 9.12 What is demultiplexing of buses in 8086? Explain demultiplexing of address bus in 8086 and 8088.

 9.13 How do you select the minimum and maximum modes of operation in the 8086/8088?

 9.14 What are the functions of Index registers, pointer registers and instruction pointer?

 9.15 What is the content of DS and IP to locate the physical address location 35678H? Assume the value

of offset address.

 9.16 What are the advantages of having segmentation? How does the 8086 microprocessor support

segmentation?

 9.17 What are the main functions performed by BIU and EV unit of 8086 microprocessor?

 9.18 What do you mean by 16-bit microprocessor?

 9.19 (a) What is the size of data bus and address bus of 8086µp. What is the size addressable memory

present in 8086µp?

 (b) Explain the operations of BIU and EU present in 8086 µp?

 (c) What are the different types of segment registers present in 8086µp?

 (d) What is the difference between MAX mode operation and MIN mode operation in 8086µp?

 (e) What is the function of BHE pin in 8086 µp?

Microprocessors and Microcontrollers9.52

 9.20 (a) Explain how 20-bit physical address is generated in 8086 microprocessor?

 (b) What is the purpose of queue? How many words does the queue store in the 8086 microprocessor?

 (c) How does 8086 support pipelining? Explain.

 9.21 Draw the architecture of 8086. What are the main functions of BIU and EU unit of 8086 µp?

 9.22 What are the different interrupts of 8086 microprocessor? Discuss software interrupts of 8086 in

detail.

 9.23 Draw the block diagram of external hardware interrupt interface with 8086/8088 microprocessor and

explain briefly.

 9.24 Discuss interrupt cycle of 8086 microprocessor with the help of flowchart of interrupt.

 9.25 What are the interrupt pins of 8088/8086 microprocessors?

 9.26 What is the priority order of 8086/8088 interrupts?

 9.27 Draw the EPROM 27C256 interfacing with 8086/8088 microprocessor and state the memory map of

EPROM IC with starting address 60000H

 9.28 When the starting address of 2K EPRDM IC is FF800H, draw the EPROM Interfacing with 8086

microprocessor.

 9.1 8086 has

 (a) 16-bit data bus and 20-bit address bus (b) 8-bit data bus and 20-bit address bus

 (c) 16-bit data bus and 16-bit address bus (d) 8-bit data bus and 16-bit address bus

 9.2 16-bit register of 8086 consists of

 (a) 16 flags (b) 8 flags (c) 9 flags (d) 7 flags

 9.3 Instruction queue of 8086 consists of

 (a) 6 data (b) 8 data (c) 4 data (d) 10 data

 9.4 Instruction queue of 8088 consists of

 (a) 6 data (b) 8 data (c) 4 data (d) 10 data

 9.5 8086 has

 (a) 6 memory segments (b) 8 memory segments

 (c) 4 memory segments (d) 10 memory segments

 9.6 Physical memory of 8086 is

 (a) 1MB (b) 64 KB (c) 2 MB (d) 4 MB

 9.7 Memory map of 8086 is

 (a) 0000H to FFFFH (b) 00000H to FFFFFH

 (c) 0000H to FFFFH (d) 0000H to FFFFH

 9.8 Segment memory capacity of 8086 is

 (a) 1 MB (b) 64 KB (c) 2 MB (d) 4 MB

 9.9 Physical address of 8086 is

 (a) 8-bits (b) 16-bits (c) 20-bits (d) 32-bits

 9.10 Clock frequency of 8086 and 8088 is

Architecture of 8086 and 8088 Microprocessors 9.53

 (a) 5–10 MHz (b) 2–3 MHz (c) 1–3 MHz (d) 2–5 MHz

 9.11 The 8086/88 can be operated in a single step when

 (a) TF set (b) DF set (c) SF set (d) AF set

 9.12 The physical address when DS = 2345H and IP = 1000H is

 (a) 23450H (b) 24450H (c) 12345H (d) 2345H

 9.13 What is the vector location of NMI?

 (a) 00000H (b) 00008H (c) 00010H (d) 00014H

 9.14 The total memory space available in 8086 is

 (a) 16 KB (b) 64 KB (c) 1 MB (d) 256 KB

 9.15 The number of mutiplexed buses in case of 8086 is

 (a) 16 (b) 8 (c) 20 (d) 4

 9.16 8086 exchanges data word with odd memory bank when

 (a) BHE = 0 and A0 = 0 (b) BHE = 0 and A0 = 1

 (c) BHE = 1 and A0 = 0 (d) BHE = 1 and A0 = 1

 9.17 The segment and offset address of the instruction to be executed by 8086 microprocessor are pointed

by

 (a) CS and SI (b) DS and IP (c) CS and SP (d) CS and IP

 9.18 What are the conditions that BIU can suspend fetching instruction?

 (a) Current instruction requires access to emmroy or I/O port

 (b) a transfer control (Jump or Call) instruction occurs

 (c) Instruction queue is full

 (d) All of these

 9.1 (a) 9.2 (c) 9.3 (a) 9.4. (c)

 9.5 (c) 9.6 (a) 9.7 (b) 9.8. (b)

 9.9 (c) 9.10 (a) 9.11 (a) 9.12. (b)

 9.13 (b) 9.14 (c) 9.15 (a) 9.16 (b)

 9.17 (d) 9.18 (d)

CHAPTER

10
Instruction Set of 8086

Microprocessor

 10.1 INTRODUCTION

An instruction is a basic command given to a microprocessor to perform a specified operation with given

data. Each instruction has two groups of bits. One group of bits is known as operation code (opcode) which

defines what operation will be performed by the instruction. The other field is called operand which specifies

data that will be used in arithmetic and logical operation. The addressing mode is used to locate the oper-

and or data. There are different types of addressing modes depending upon the location of data in the 8086

processor.

 The instruction format should have one or more number of fields to represent the instruction. The first field

is called operation code or opcode field, and other fields are known as operand fields. The microprocessor

executes the instruction based on the information of opcode and operand fields.

 In this chapter, the general instruction format, different addressing modes of 8086/8088 processor along

with examples are discussed. All types of instructions with examples are discussed elaborately. This chapter

creates a background of assembly language programming of 8086/8088 processor.

 10.2 ADDRESSING MODES

An instruction is divided into operation code (opcode) and operands. The opcode is a group of bits which

indicate what operation can be performed by the processor. An operand is also known as data (datum) and it

can identify the source and destination of data. The operand can specify a register, a memory location in any

one of the memory segments or I/O ports. Figure 10.1 shows a general instruction format which consists of

six bytes. Some instructions only have opcode and are called single byte instructions. Some instructions con-

tain one, two, three or four byte operands. The detailed operation of instruction sets is explained in Section

10.3.

 There are different ways to specify an operand. Each way of how an operand can be specified is called an

addressing mode. The different addressing modes of 8086 microprocessors are as follows:

Immediate addressing

Microprocessors and Microcontrollers10.2

Register addressing

Memory addressing

Branch addressing

10.2.1 Immediate Addressing

In this mode of addressing, the 8-bits or 16-bits operand is a part of the instruction. For example, MOV

AX, 4000H. In this instruction, the data 4000H can be loaded to the AX register immediately. Some other

examples are given below:

 MOV BX, 7000H; load 7000H in BX register

 MOV CX, 4500H; store 4500H in CX register

10.2.2 Register Addressing

In 8086 microprocessor, some instructions are operated on the general-purpose registers. The data is in the

register that is specified by the instruction. The format for register addressing is

MOV Destination, Source

 In this instruction, the data from the source register can be copied into the destination register. The 8-bit

registers (AL, AH, BL, BH, CL, CH, DL, DH) and 16-bit registers (AX, BX, CX, DX, SI, DI, SP, BP) may be

used for this instruction. The only restriction is that both operands must be of the same length. For example,

 MOV AL, BL ; Copies the value of BL into AL

 MOV AX, BX ; Copies the contents of BX into AX

10.2.3 Memory Addressing

Memory addressing requires determination of a physical address. The physical address can be computed

from the content of segment address and an effective address. The segment address identifies the starting

location of the segment in the memory and the effective address represents the offset of the operand from

the beginning of this segment of memory. The 20-bit effective address can be made up of base, index, and

displacement. The basic formula for a 16-bit effective address and a 20-bit physical address is given below:

 16-bit EA = Base + Index + Displacement

 20-bit PA = Segment × 10 + Base + Index + Displacement

Memory addressing has the following combinations:

Direct addressing

Register indirect addressing

Based addressing

Fig. 10.1 General 8086 instruction format

Instruction Set of 8086 Microprocessor 10.3

Indexed addressing

Based Indexed addressing

Based Indexed with displacement addressing

Direct Addressing In this mode of addressing, the instruction operand specifies the memory address

where data is located. This addressing mode is similar to the immediate addressing mode, but the opcode

follows an effective address instead of data. This is the most common addressing mode. The displacement-

only addressing mode consists of an 8-bit or 16-bit constant that specifies the offset of the actual address of

the target memory location. For example, MOV AX, [5000] copies 2 bytes of data starting from memory

location DS × 10 + 5000H to the AX register. The lower byte is at the location DS × 10 + 5000H and the

higher byte will be at the location DS × 10 + 5001H. Another example is MOV AL, DS:[5000H]. In this

instruction, the content of the memory location DS × 10 + 5000H loads into the AL register.

 In the instruction MOV DS:[2000H], AL means that the content of AL register is moved to memory

location DS × 10 + [2000H]. The computation of memory location for the operand is illustrated in Fig. 10.2.

In this figure, the effective address EA is 2000H and the physical address PA is PA = DS × 10 + EA = 4000

× 10 + 2000 = 42000. The physical address PA computation for other segment registers with same effective

address is given below:

PA = CS × 10 + EA, PA = SS × 10 + EA, and PA = ES × 10 + EA

 Generally, all displacement values or offsets are added with the data segment to determine the physical

address. If anything other than data segment is required, we must use a segment override prefix before the

address. For example, to access memory location 4000H in the stack segment (SS), the instruction will be

MOV AX, SS: [2000H]. Similarly, to access the memory location in the extra segment (ES), the instruction

will be written as MOV AX, ES: [2000H].

Fig. 10.2 Direct memory addressing

Register Indirect Addressing This instruction specifies a register containing an address, where data is

located. The effective address of the data is in the base register BX or an index register that is specified by the

instruction. This addressing mode works with index registers SI, DI, and base registers BX and BP registers.

 The examples of this addressing mode in the 8086 microprocessor are as follows:

 MOV AL, [BX]

 MOV AH, [DI]

 MOV AL, [SI]

 MOV AH, [BP]

The BX, BP, SI, or DI registers use the DS segment by default. The base pointer uses a stack segment by

Microprocessors and Microcontrollers10.4

default. The segment override prefix symbols are used to access data in different segments. The examples of

segment override instructions are as follows:

 MOV AL, CS : [BX]

 MOV AL, DS : [BP]

 MOV AL, SS : [SI]

 MOV AL, ES : [DI]

The effective address EA may either be in a base register (BX or BP) or in an index register (SI and DI). The

physical address can be computed based on contents of the segment register, BX, BP, SI and DI registers as

given below:

PA = CS × 10 + BX, PA = DS × 10 + BP, PA = SS × 10 + DI, and PA = ES × 10 + SI

The general physical address expression for register indirect memory operand is depicted in Fig. 10.3. The

content of BX is 1000H and CS is 2000. Then the physical address is CS × 10 + BX = 2000 × 10 + 1000 =

21000H. After execution the MOV AL, [BX] instruction, the contents of the memory location 21000H which

is 44H will be stored in the AL register.

Fig. 10.3 Register indirect addressing

Based Addressing The 8-bit or 16-bit instruction operand is added to the contents of a base register

(BX or BP), and the resulting value is a pointer to specify the location where the data resides. The effective

address in the based addressing mode is obtained by adding the direct or indirect displacement to the contents

of either the base register BX or the base pointer BP. The effective address and physical address computation

are given below:

 EA = BX + 8-bit displacement EA = BP + 8-bit displacement

 EA = BX + 16-bit displacement EA = BP + 16-bit displacement

 PA = Segment × 10 + BX + 8 bit displacement, PA = Segment × 10 + BP + 8 bit displacement

 PA = Segment × 10 + BX + 16 bit displacement, PA = Segment × 10 + BP + 16 bit displacement

 Segment will be any one of segments CS, DS, SS and ES. Figure 10.4 shows the physical address com-

putation in base addressing mode. When 16-bit displacement DISP = 0025H, the contents of BX register is

0500H and the contents of DS register is 4000H, the physical address = DS × 10 + BX + DISP = 4000H ×

10 + 0500 + 0025 = 40525H. After execution of MOV AL, DS: [BX + DISP] instruction, the contents of the

memory location 40525 will be copied into AL register. The examples of base addressing mode instructions

in 8086 microprocessor are

 MOV AL, [BX+8-bit DISP]

 MOV AH, [BX+8-bit DISP]

Instruction Set of 8086 Microprocessor 10.5

 MOV AL, [BP + 8-bit DISP]

 MOV AH, [BP + 8-bit DISP]

Fig. 10.4 Base addressing

Indexed Addressing These addressing modes can work similar to the based addressing mode. The 8-bit

or 16-bit instruction operand is added to the contents of an index register (SI or DI), and the resulting value

is a pointer to specify the location where data resides.

 The displacement value is used as a pointer to the starting point of an array of data in memory and the

contents of the specified register is used as an index. The EA and PA in the indexed addressing are as follows:

 EA = SI + 8-bit displacement EA = DI + 8-bit displacement

 EA = SI + 16-bit displacement EA = DI + 16-bit displacement

 PA = Segment × 10 + SI + 8-bit displacement, PA = Segment × 10 + DI + 8-bit displacement

 PA = Segment × 10 + SI + 16-bit displacement, PA = Segment × 10 + SI + 16-bit displacement

 Segment will be any one of segment registers (CS, DS, SS and ES).

 The index addressing modes generally involve BX, SI, and DI registers with the data segment. The [BP+

DISP] addressing mode uses the stack segment by default. In the register indirect addressing modes, the seg-

ment override prefixes can be used to specify different segments. The examples of these instructions are as

follows:

 MOV AL, SS: [BX+DISP] MOV AL, ES: [BP+DISP]

 MOV AL, CS: [SI+DISP] MOV AL, SS: [DI+DISP]

 Figure 14.5 shows the physical address computation in index addressing mode. When 16-bit displacement

DISP = 0055H, the contents of SI is 0100H and the contents of DS register is 4000H, the physical address =

DS × 10 + SI + DISP = 4000H × 10 + 0100 + 0055 = 40155H. If MOV AL, DS: [SI + 0025] is executed, the

contents of memory location 40155H, FFH will be loaded into AL register.

Based Indexed Addressing The contents of a base register (BX or BP) is added to the contents of an

index register (SI or DI), and the resulting value is a pointer to specify the location where the data resides. The

effective address is the sum of a base register and an index register which are specified in the instruction. The

based indexed addressing modes are simply combinations of the register indirect addressing modes. These

addressing modes form the offset by adding together a base register (BX or BP) and an index register (SI or

DI). The EA and the PA computation are given below:

Microprocessors and Microcontrollers10.6

AL

6666 40300

40000 H
DS × 10 = 40000

+

+ +

SI

BX

DS

4000

0200

0100

 EA = BX+SI EA = BX+DI

 EA = BP+SI EA = BP+DI

 PA= Segment × 10 + BX+SI, PA= Segment × 10 + BX+DI

 PA= Segment × 10 + BP+SI, PA= Segment × 10 + BP+DI

 Figure 10.6 shows the physical address computation in based indexed addressing mode. For example, if the

content of BX register is 0200H and SI contains 0100H then the instruction MOV AL, [BX + SI] states that

load the content of memory location DS × 10 + BX + SI into AH register. If DS = 4000H, the memory loca-

tion address is 4000 × 10 + 0200 + 0100 = 40300H whose content 66H will be loaded into the AH register.

The examples of this addressing mode instruction are as follows:

 MOV AL, [BX + DI] MOV AL, [BX + SI]

 MOV AL, [BP + SI] MOV AL, [BP + DI]

Fig. 10.5 Indexed addressing

Fig. 10.6 Based indexed addressing

Based Indexed with Displacement Addressing The 8-bit or 16-bit instruction operand is added to

the contents of a base register (BX or BP) and index register (SI or DI), and the resulting value is a pointer to

specify the location where data resides. The effective address is the sum of an 8-bit or 16-bit displacement

and based index address. The computation of EA and PA are given below:

Instruction Set of 8086 Microprocessor 10.7

 EA = BX + SI + 8-bit or 16-bit instruction EA = BX + DI 8-bit or 16-bit instruction

 EA = BP + SI + 8-bit or 16-bit instruction EA = BP + DI 8-bit or 16-bit instruction

 PA = Segment × 10 + BX+SI + 8-bit or 16-bit instruction

 PA = Segment × 10 + BX+DI + 8-bit or 16-bit instruction

 PA = Segment × 10 + BP+SI + 8-bit or 16-bit instruction

 PA = Segment × 10 + BP+DI + 8-bit or 16-bit instruction

 Figure 10.7 shows the physical address computation in based indexed with displacement addressing mode.

When 16-bit displacement DISP = 0020H, the contents of BX register is 4000H, the contents of SI is 0300

and the contents of DS register is 5000H, the physical address = DS × 10 + BX + SI + DISP = 5000H × 10

+ 4000 + 0300 + 0020 = 54320H. When MOV AL, DS:[BX+SI+DISP] is executed, the content of memory

location 54320H will be copied into AL register. The examples of this addressing mode instruction are as

follows:

 MOV AL, [BX+DI+DISP] MOV AL, [BX+SI+DISP]

 MOV AL, [BP+SI+DISP] MOV AL, [BP+DI+DISP]

Fig. 10.7 Based indexed with displacement addressing

String Addressing Mode String is a sequence of bytes or words which are stored in the memory. Store

characters in word processors and data tables are examples of strings. Some instructions are designed to

handle a string of characters or data. These instructions have a special addressing mode where DS:SI is used

as source of string and ES:DI is used to locate the destination address of a string. For example, MOV SB

instruction is used to move a string of source data to the destination location.

 When any MOV instruction is executed, data is always transferred from source to destination. The MOV

instruction for different addressing modes is depicted in Table 10.1. The effective address computation

depends on MOD and R/M bit patterns as shown in Table 10.2. Segment registers for different addressing

modes may be different and its selection also depends on MOD and R/M as illustrated in Table 10.3.

Table 10.1 Addressing modes of 8086/8088 microprocessors

Addressing mode Mnemonic Symbolic Destination Source of Functions

 Operation of Operand Operand

Immediate MOV AX, 2000H AH!20H; AX register Data 2000 Source of data is

addressing mode AL!00 within instruction

Contd.

Microprocessors and Microcontrollers10.8

Register addressing MOV AX, BX AX!BX AX register BX register Source and destination

mode of data are registers of

 microprocessors

Direct addressing MOV AH, [0400] AH! [0400H] AH register 0400H = Memory address is

mode Displacement available within the

 instruction

Register Indirect MOV AX, [SI] AL! [SI]; AX register SI+DS×10= Memory address is

addressing mode AH![SI + 1] memory supplied in any index or

 location pointer registers

Indexed addressing MOV AX, AL! [SI + 6]; AX register [SI+06]+ Memory address is the

mode [SI + 06] AH![SI + 7] DS×10 = sum of the indexed

 memory register and a dis-

 location placement within the

 instruction

Based addressing MOV AX, [BP] AL! [BP] ; AX register BP+DS×10 Memory address is the

mode AH![BP + 1] = memory content of BX or BP

 location register within

 instruction

Based and Indexed MOV [BX + SI], [BX + SI] ! AL; BX+SI+DS× AX register Memory address is the

addressing mode AX [BX + SI + 1] 10 = memory sum of an index register

 ! AH location and a base register

Based and indexed MOV AX, AL![BX + SI AX register [BX+SI+10]+ Memory address is the

with displacement [BX + SI + 10] + 10]: DS×10 = sum of an index

addressing mode AH![BX + SI memory register, a base register

 + 11] location and a displacement

 within instruction

Strings addressing MOV SB [ES : DI]! DI + ES × 10 SI + DS × 10 The memory source

mode [DS : SI] = memory = memory address is register SI in

 If DF = 0, then location location the data segment.

 SI!SI + 1; The memory

 DI !DI + 1. destination address is

 If DF = 1, then register DI in the extra

 SI!SI – 1; segment.

 DI!DI – 1.

Table 10.2 Effective addressing computations corresponding to MOD and R/M fields

R/M MOD MOD MOD MOD

 00 01 10 11

 W=0 W=1

000 [BX]+[SI] [BX]+[SI] + 8-bit DISP [BX]+[SI]+ 16-bit DISP AL AX

001 [BX]+[DI] [BX]+[DI] + 8-bit DISP [BX]+[DI] + 16-bit DISP CL CX

010 [BP]+[SI] [BP]+[SI] + 8-bit DISP [BP]+[SI] + 16-bit DISP DL DX

011 [BP]+[DI] [BP]+[DI] + 8-bit DISP [BP]+[DI] + 16-bit DISP BL BX

100 [SI] [SI] + 8-bit DISP [SI] + 16-bit DISP AH SP

101 [DI] [DI] + 8-bit DISP [DI] + 16-bit DISP CH BP

110 [Direct Address] [Direct Address] + 8-bit DISP [Direct Address] + 16-bit DISP DH SI

111 [BX]+[SI] [BX]+[SI] + 8-bit DISP [BX]+[SI] + 16-bit DISP BH DI

 Memory Mode Register Mode

Contd.

Instruction Set of 8086 Microprocessor 10.9

Table 10.3 Segment registers for different addressing modes corresponding to MOD and R/M fields

R/M MOD MOD MOD Segment Register

 00 01 10

000 [BX]+[SI] [BX]+[SI]+ 8-bit DISP [BX]+[SI]+ 16-bit DISP DS

001 [BX]+[DI] [BX]+[DI] + 8-bit DISP [BX]+[DI] + 16-bit DISP DS

010 [BP]+[SI] [BP]+[SI] + 8-bit DISP [BP]+[SI] + 16-bit DISP DS

011 [BP]+[DI] [BP]+[DI] + 8-bit DISP [BP]+[DI] + 16-bit DISP DS

100 [SI] [SI] + 8-bit DISP [SI] + 16-bit DISP DS

101 [DI] [DI] + 8-bit DISP [DI] + 16-bit DISP DS

110 [Direct Address] [Direct Address] + 8-bit DISP [Direct Address] + 16-bit DISP DS or SS

8-bit DISP = 8-bit displacement 16-bit DISP = 16-bit displacement

10.2.4 Branch Addressing

The basic types of branch addressing are shown in Fig. 10.8. The intrasegment mode used to transfer the con-

trol to a destination that lies in the same segment where the control transfer instruction resides itself. In the

intersegment mode, address is used to transfer the control to a destination that lies in the different segment.

 For the branch control transfer instructions, the addressing modes depend upon whether the destination

location is within the same segment or in a different one. It depends upon the method of passing the destina-

tion address to the processor. There are two types of branch control instructions: intersegment and intraseg-

ment addressing modes.

 During execution of program instruction, when the location to which the control to be transferred lies in a

different segment other than the current one, the mode is called intersegment mode. If the destination location

lies in the same segment the mode is called intrasegment mode.

Fig. 10.8 Branch control transfer instructions

Intrasegment Direct In this branch addressing the effective branch address is sum of an 8-bit or 16-

bit displacement and the current contents of IP. When the displacement is 8-bit long, it is referred to as a

short jump. Intrasegment direct addressing is also referred as relative addressing because the displacement

is computed ‘relative’ to the IP. It may be used with either conditional or unconditional branching, but a

conditional branch instruction can have only 8-bit displacement.

Microprocessors and Microcontrollers10.10

 Figure 10.9 shows intrasegment direct addressing. In the intrasegment direct mode, the destination loca-

tion to which the control is transferred lies in the same segment where the control transfer instruction lies

and appears directly in the instruction as an immediate displacement value. The displacement is relative to

the contents of the IP. The expression for effective address in which the control is transferred is given below:

EA = Contents of IP + 8- bit or 16-bit displacement.

Fig. 10.9 Intrasegment direct addressing

Intrasegment Indirect In intrasegment indirect branch addressing the effective branch address is the

contents of a register or memory location that is accessed using any of the addressing modes except the

immediate mode. The contents of IP are replaced by the effective branch address. This addressing mode may

be used only in unconditional branch instructions. Figure 10.10 shows intrasegment indirect addressing.

In this mode, the control to be transferred lies in the same segment where the control instructions lie and it

is passed indirectly to the instruction. It uses unconditional branch instructions.

Fig. 10.10 Intrasegment indirect

Intersegment Direct This replaces the contents of IP with part of the instruction and the contents of CS

with another part of the instruction. The purpose of this addressing mode is to provide a means of branching

from one code segment to another. Figure 10.11 shows intersegment direct addressing.

 During this mode of operation the location to which the control is to be transferred lies in a different seg-

ment, than in which the control transfer instruction lies, and is called intersegment. This addressing mode

provides facility of branching from one segment to the other segment. The CS and IP specify the destination

address directly in the instruction.

Fig. 10.11 Intersegment direct

Instruction Set of 8086 Microprocessor 10.11

Intersegment Indirect This replaces the contents of IP and CS with the contents of two consecutive

words in memory that are referenced using any of the addressing modes except the immediate and register

modes. Figure 10.12 shows intersegment indirect addressing.

 During this mode of branch addressing the location to which the control is to be transferred lies in a dif-

ferent segment than the segment where the transfer control instruction lies and is passed to the instruction

indirectly.

Fig. 10.12 Intersegment indirect

Example 10.1 Find the addressing modes of the following instructions:

 (i) MOV CX, BX

 (ii) MOV BX, 1234

 (iii) MOV AX, [SI]

 (iv) MOV [Offset Address], 2345

 (v) MOV CX, [BX+SI]

 (vi) MOV AX, [BX+SI+1234]

Sol.

 (i) MOV CX, BX instruction is an example of register addressing mode.

 (ii) MOV BX, 1234 instruction is an example of immediate addressing mode.

 (iii) MOV AX, [SI] instruction is an example of indexed addressing mode.

 (iv) MOV [offset address], 2345 instruction is an example of memory addressing mode.

 (v) MOV CX, [BX+SI] instruction is an example of based indexed addressing mode.

 (vi) MOV AX, [BX+SI+1234] instruction is an example of based indexed with displacement addressing

mode.

 10.3 8086 INSTRUCTION SET

The Intel 8086 Instruction Set is the core of the entire series of processors created by Intel. Some instructions

have been added to this set to accommodate the extra features of later designs, but the set shown here contains

the basic instructions understood by all of the processors. The 8086 instruction set consists of the following

instructions:

 Data Transfer Instructions move, copy, load, exchange, input and output

 Arithmetic Instructions add, subtract, increment, decrement, convert byte/word and compare

 Logical Instructions AND, OR, exclusive OR, shift/rotate and test.

 String Manipulation Instructions load, store, move, compare and scan for byte/word

Microprocessors and Microcontrollers10.12

 Control Transfer Instructions conditional, unconditional, call subroutine and return from subroutine.

 Input/Output Instructions

 Other Instructions setting/clearing flag bits, stack operations, software interrupts, etc.

 The instruction format consists of opcode and operand. Depending upon the opcode and number of oper-

ands present in the instruction, instructions are one byte to six bytes long. The general format of an instruc-

tion is illustrated in Fig.10.13.

Fig. 10.13 Instruction format of 8086/8088 microprocessor

 The first byte of any instruction is the opcode. The bits D7 to D2 specify the operation which will be car-

ried out by the instruction. D1 is the register direction bit (D). This bit defines whether the register operand

in byte 2 is the source or destination operand. While D = 1, register operand is destination operand. If D = 0,

the register operand is the source operand. D0 represents data size (W), whether the data is of 8 bits or 16 bits.

When W = 0, data is 8 bits and if W = 1, data will be 16 bits.

 The second byte of the instruction specifies whether the operand is in the memory or the register. This byte

consists of Mode (D7 –D6 bits), Register (D5, D4, D3 bits) and R/M (D2, D1, D0). The third and fourth bytes of

the instruction specifiy lower 8-bit displacement and higher 8-bit displacement of memory respectively. Then

the last two bytes (fifth and sixth) represent lower 8-bit data and higher 8-bit data.

10.3.1 Classification of Instructions

Instructions are performed operations with 8-bit data and 16-bit data. 8-bit data can be obtained from a reg-

ister or a memory location or input port. In the same way, 16-bit data may be available from any register pair

or two consequent memory locations. Hence, binary codes of instructions are different. Due to different ways

of specifying data for instructions, the machine or binary codes of all instructions are of different lengths.

The Intel 8086/8088 instructions are classified into the following groups based on the number of bytes in

instruction as given below:

One-byte instructions

Two-byte instructions

Three and four-byte instructions

Five and six-byte instructions

One-byte Instructions This is a one-byte instruction which is used as opcode as well as data or operand.

The least three bits of the opcode are used to specify the register operand.

Instruction Set of 8086 Microprocessor 10.13

 The example of one-byte instructions are XLAT, LAHF, SAHF, PUSH AX, POP DS, PUSHF and POPF.

The opcode of these instructions are D7 for XLAT, 9F for LAHF, 9E for SAHF, 50 for PUSH AX, 1F for

POP DS, 9C for PUSHF, and 9D for POPF.

Two-byte Instructions Register-to-register and register to/from memory with no displacements

instructions are two bytes long. In register-to-register instruction, the first byte of the code specifies the

instruction operation (D7–D2) and width of the operand is specified by D1–D0 (W). The second byte represents

the register operand and R/M field as given in Table 10.2.

 The register to/from memory with no displacement instructions are same as register to register instruc-

tions except MOD field as depicted in Fig. 10.14. The MOD field can be used to represent different modes

of addressing as given in Table 10.4.

Fig. 10.14 Two-byte instructions

Table 10.4 Use of MOD field

 MOD Mode of addressing

 00 Memory addressing without displacement

 01 Memory addressing with 8-bit displacement

 10 Memory addressing with 16-bit displacement

The example of two-byte instructions are MOV AX, BX; MOV AL, BL; IN AL, 01; and OUT 02, AL etc.

Microprocessors and Microcontrollers10.14

The opcode and operand of these instructions are as follows:

 89 D8 for MOV AX, BX

 88 D8 for MOV AL, BL

 E4 01 for IN AL, 01

 E6 02 for OUT 02, AL

Three-Byte and Four-Byte Instructions Register to/from memory with displacement and immediate

operand to register instructions are four-byte instructions. The register to/from memory with displacement

instruction consists of one or two additional bytes for displacement and the 2 bytes of the register to/from

memory without displacement as given below:

Register to/from Memory with displacement

 D7 D0 D7 D6 D5 D3 D2 D0 D7 D0 D7 D0

 OP Code MOD REG R/M Lower order DISP Higher order DISP

 Byte 1 Byte 2 Byte 3 Byte 4

 In immediate operand to register instruction, the first byte and the three bits D5–D3 of second byte are used

for opcode. This instruction consists of one or two bytes of immediate data. The format of the instruction is

given below:

 D7 D0 D7 D6 D5 D3 D2 D0 D7 D0 D7 D0

 OP Code 11 REG R/M Lower byte Data Lower byte Data

 Byte 1 Byte 2 Byte 3 Byte 4

 When the instruction consists of one byte of immediate data, it acts as three byte instructions. If the instruc-

tion has two bytes of immediate data, it works as four byte instructions. The example of three-byte instruc-

tions are MOV SI, 0300; MOV CX, 0005; MOV DI, 0100; MOV AL, [0300], and MOV [0400], AL, etc. The

opcode and operands of these three-byte instructions are given below:

 BE 00 03 for MOV SI,0300

 B9 05 00 for MOV CX,0005

 BF 00 01 for MOV DI,0100

 A0 00 03 for MOV AL, [0300] and

 A2 00 04 for MOV [0400], AL.

 The four-byte instructions are MOV [BX+SI+1000], AX; MOV [BX+DI+0447], CL; MOV [BX+SI+0300],

SP; MOV [BP+SI+0400], DL; and MOV [BP+DI+0100], BL. The opcode and operands of four-byte instruc-

tions are as follows:

 89 80 00 10 for MOV [BX+SI+1000], AX

 88 89 47 04 for MOV [BX+DI+0447], CL

 89 A0 00 03 for MOV [BX+SI+0300], SP

 88 92 00 04 for MOV [BP+SI+0400], DL and

 88 9B 00 01 for MOV [BP+DI+0100], BL

Five-and Six-Byte Instructions Immediate operand to memory with 16-bit displacement instructions

are six-byte instructions. The first two bytes represent OPCODE, MOD, OPCODE and R/M fields. The other

four bytes consist of 2 bytes for displacement and 2 bytes for data as given below:

Instruction Set of 8086 Microprocessor 10.15

 D7 D0 D7 D6 D5 D3 D2 D0 D7 D0 D7 D0

 OP Code MOD OPCODE R/M Lower byte DISP Higher byte DISP

 Byte 1 Byte 2 Byte 3 Byte 4

 D7 D0 D7 D0

 Lower byte DISP Higher byte DISP

 Byte 5 Byte 6

Immediate operand to Memory with 16-bit displacement. The example of five byte instructions are MOV

[BX+ SI]+DISP, 22; MOV [BX+ DI] + DISP, 66; MOV [SI]+DISP, 44, etc. The opcode and operands of these

five byte instructions are given below:

 C6 80 DISPL DISPH 22 for MOV [BX+ SI]+DISP, 22

 C6 81 DISPL DISPH 66 for MOV [BX+ DI]+DISP, 66

 C6 84 DISPL DISPH 44 for MOV [SI]+DISP, 44

The six-byte instructions are MOV [BX+SI+1000], 2345; MOV [BX+DI+0447], 2000; MOV [SI+0300],

4466; The opcode and operands of six-byte instructions are as follows:

 C7 80 00 10 45 23 for MOV [BX+SI+1000], 2345

 C7 81 47 04 00 20 for MOV [BX+DI+0447], 2000

 C7 84 00 03 66 44 for MOV [SI+0300], 4466

The 8086 instruction set can be divided into different categories based on their functions as follows:

Data Transfer Instructions These types of instructions are used to copy data from the source operand

to the destination operand. All copy, store, move, load, input and output instructions fall in this category.

Examples of instructions of this group are MOV, LDS, XCHG, PUSH and POP.

Arithmetic and Logical Instructions All the instructions performing arithmetic, logical, increment,

decrement, compare and scan instructions are in this category. For example, ADD, SUB, MUL, DIV, INC,

CMP and DAS, AND, OR, NOT, TEST, XOR.

Branch Instructions These instructions transfer control of execution to the specified address. All CALL,

JUMP, interrupt and return instructions belong to this category.

Loop Instructions These instructions have REP prefix with CX used as count register, they can be used

to implement unconditional and conditional loops. The LOOP, LOOPNZ and LOOPZ instructions are in this

category. Usually, these instructions are used to implement different delay loop.

Processor Control Instructions These instructions control the machine status. CLC, CMC, CLI, STD,

STI, NOP, HLT, WAIT and LOCK instructions are example of machine control instructions.

Flag Manipulation Instructions All these instructions which directly affect the flag register come

under this group of instructions. CLD, STD, CLI, STI instructions belong to this category.

Shift and Rotate Instructions These instructions perform the bitwise shifting OR rotation in either

direction with or without a count in CX register. The examples of instructions are RCL, RCR, ROL, ROR,

SAL, SHL, SAR and SHR.

String Instructions These instructions perform various string manipulation operations like load, move,

scan, compare, store, etc. The examples of string instructions are MOVS, LODS and STOS.

Microprocessors and Microcontrollers10.16

10.3.2 Data Transfer Instructions

The data transfer instructions are used to transfer data between registers, register and memory, register and

immediate data, memory and immediate data. All data transfer instructions are explained in this section.

MOV Destination, Source (Copy data from source to destination)

Destination Source, Flag affected: None

 This instruction performs data movement between registers, register and memory, register and immediate

data, memory and immediate data, between two memory locations, between I/O port and register and between

stack and memory or register. Both 8-bit and 16-bit data registers are used in data transfer instructions.

 In case of immediate addressing mode, a segment register cannot be a destination register. Direct loading

of the segment registers with immediate data is not permitted. To load the segment registers with immediate

data, one will have to load any general-purpose register with data and then it will have to be moved to that

particular segment register.

 Destination Source

 Register Immediate data

 Memory Immediate data

 Register Register

 Register Memory

 Memory Register

 Segment Memory

 Memory Segment

 Register Segment

 Segment Register

The MOV instruction cannot be able to

set the value of the CS and IP registers.

copy value of one segment register to another segment register (should copy to general register first).

Copy immediate value to segment register (should copy to general register first).

MOV Register, Immediate Data This instruction moves immediate 8-bit /16-bit data to the specified

register. Its object code is either 2 or 3 bytes based on data.

 The format of its object code is as follows:

w = 0 for 8 bit data

 1011 w r r r 8-bit data

w = 1 for 16 bit data

 1011 w r r r Lower 8-bit data Higher 8-bit data

r r r = the address of register as illustrated in Table 10.2.

For example, MOV AL, 8-bit data

object code is 1011 w r r r = 1011 0000 = B0 as w = 0 and r r r = 000

If the instruction is MOV AL, FFH, the object code will be B0, FF H

Instruction Set of 8086 Microprocessor 10.17

MOV mem/reg, data When this instruction is executed, immediate 8-bit or 16-bit data moves to a

specified register or a memory location(s) through this instruction. This is not used to transfer immediate

data to a register. The format of its object code is given below:

w = 0 for 8 bits data

 1100 011w Mod 000 R/M 8-bit data

w = 1 for 16 bits data

 1100 011w Mod 000 R/M Lower-8 bit data Higher-8 bit data

Mod R/M and data are explained in Section 10.2.

 In this instruction memory location can be addressed directly or by a register or a combination of register

and displacement.

 For example, MOV [0345], 23H

 When this instruction is executed, 23H will be loaded into the memory location DS × 10 + 0345.The

object code is as follows:

 1100 011w Mod 000 R/M 8-bit data

 This instruction is direct addressing of a memory location. As per Table 10.2, for direct addressing mod =

00, R/M = 110 and w = 0 for 8-bit operation. Then object code is

 = C6, 06, 23

 Another example is MOV [0345], 2345H:

 When this instruction is executed, 45H will be loaded into the memory location DS×10 + 0345 and 23H

will be loaded into DS×10+0346. The object code format of this instruction as given below:

 1100 011w Mod 000 R/M Lower-8 bit data Higher-8 bit data

 This instruction is direct addressing of a memory location. As per Table 10.2, for direct addressing Mod =

00, R/M = 110. W = 1 for 16-bit operation.

Then object code

 = C7, 06, 45, 23

The example of MOV [reg], data instruction is MOV [BX], 45H. When this instruction is executed, data will

be moved to the memory location specified by the content of BX register. The object code is

 1100 011w Mod 000 R/M 8-bit data

Here Mod = 00, R/M = 111 and w = 0 for 8-bit operation. Then object code is

 1100 0110 00 000 111 45

 = C6, 07, 45

Microprocessors and Microcontrollers10.18

MOV ACC, Memory When MOV ACC, memory instruction is executed, the 8-bit data moves from a

memory location to AL or 16-bit data move from two consecutive memory locations to AX register. The

object code of this instruction is

 1010 000w 16-bit offset address

For w = 0, Object code = A0, Offset address

For w = 1, Object code = A1, Offset address

For example, MOV AL, [2340]. This instruction moves the content of offset address 2340H to AL and the

object code is A0, 40, 23. If the content of memory location is 25H, after execution of MOV AL, [2340]; 25H

will be stored in AL.

MOV Memory, ACC The content of accumulator will be stored into memory. This means that content of

AL is stored in memory and contents of AX will be stored in two consecutive memory locations. The object

code is

 1010 001w 16-bit offset address

For w = 1, object code = A3, offset address

For w = 0, object code = A2, offset address

 For example, MOV [4000], AL content of AL is stored in the memory location represented by offset

address 4000H. Then object code is A2, 00, 40.

 Another example is MOV [4000], AX. Content of AX is stored in the two consecutive memory locations

represented by offset address 4000H.

MOV Memory/Register, Memory/Register This instruction is used to move 8-bit or 16-bit data from

one register to another register, one memory to register and register to memory. This instruction cannot be

used for data transfer from memory to memory. The object code is

 1010 10dw Mod reg R/M

 The direction flag d is either 0 or 1. When d = 0, the specified register is the source of the operand. The

Mod and R/M are used for the first operand (the content of memory/register-1) and reg represents the second

operand (the content of memory/register-2). If d = 1, register specifies a register which works as the desti-

nation of the operand. The Mod and R/M are also used for the second operand (memory/register-2) and reg

defines the first operand (mem/register-1).

 For example, MOV BX, CX

 This instruction is used for CX register to BX register data transfer. If d = 0, register specifies a register

which is the source for the operand. When d = 0, Mod and R/M are used for the first operand, i.e., BX. As

per Table 10.2 for BX, mod = 11, R/M = 011. The register defines the second operand, CX (source for the

operand). Then reg is 001 and w = 1. In that case the object code is

 1010 1001 Mod reg R/M

 = 1000 1001, 11 001 011 = 89, CB

 Mod reg R/M

 for for for

 BX CX BX

When d = 1, reg specifies a register which is used as the destination for the operand. If d = 1, Mod and R/M

Instruction Set of 8086 Microprocessor 10.19

are used for the second operand CX; and reg stands for the first operand BX as destination and w = 1. Then

object code is 1000 1011, 11 011 001 = 8B, D9

 Mod reg R/M

 for for for

 CX BX CX

 Hence both codes 89, CB and 8B, D9 are valid for MOV BX, CX instruction.

 Another example is MOV CX, [0500]. The object code of this instruction is

 1000 10dw Mod reg R/M

 In this case, reg will specify register CX which acts as destination for the operand when d = 1. If d = 1,

Mod and R/M are used direct addressing.

 The mod = 00, R/M = 111, CX = 001 and w = 1

 Then the object code is 1000 1011, 00 001 111= 8B, 0F

Example 10.2 Write instructions for the following operations:

 (i) Move the content of DX register into SS register

 (ii) Load 16 bit data from memory location offset address 0300 to AX

 (iii) Load 8 bit data, FF in BL register

 (iv) Source index address 0100 is stored in SI

 (v) Destination index address 0400 is stored in DI

Sol.

 (i) MOV SS,DX ; Move the content of DX register into SS register

 (ii) MOV AX, [0300] ; Load 16 bit data from memory location offset address 0300 to AX

 (iii) MOV BL, FF ; Load 8 bit data, FF in BL register

 (iv) MOV SI, 0100 ; Source index address 0100 is stored in SI

 (v) MOV DI, 0400; Destination index address 0400 is stored in DI

XCHG Destination, Source (Exchange data between source to destination)

Destination Source, Flag affected : None

Destination Source

 Accumulator register

 Memory register

 register register

 This instruction is used to exchange the contents of the specified source and destination operands, which

may be registers or a memory location. But the exchange of contents of two memory locations is not allowed.

Immediate data is not allowed in XCHG instructions. For example, XCHG [4000], AX exchange data

between AX and a memory location represented by offset address 4000 H with the content of data segment.

XCHG AX, BX instruction exchanges data between AX and BX. The data format for register to register and

register to memory is

 1000 011 w Mod reg R/M

and the data format for register to accumulator is 1001 0 reg

Microprocessors and Microcontrollers10.20

 The object code of XCHG AX,BX is 1000 011w Mod reg R/M = 1000 0111 11 000 011= 87 C3 as w =

1, Mod = 11, reg = 000 and R/M = 011. Similarly, the object code of XCHG AL, [BX] = 1000 0110, 00 000

111 = 86, 07 where w = 0, Mod = 00, reg = 000 and R/M = 111.

LAHF (Loads the lower flags byte into AH)

AH Flags, Flag not affected : O A C Z P

 This instruction loads the lower byte of the flags word into the AH register. This command may be used to

observe the status of all the condition code flags at a time. The LAHF instruction followed by a PUSH AX

instruction has same effect of PUSH PSW instruction in 8085.

AH = flags register

AH bit: 7 6 5 4 3 2 1 0

 [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

 Here bits 1, 3, and 5 are reserved.

The object code of LAHF instruction is 9F

 10001 1111

SAHF (Saves AH into lower flags byte)

Flags AH, Flag affected : None

This instruction saves the AH register bit pattern into the lower byte of the flags register

The lower byte of 8086 flag register is same as flag register of 8085. The SAHF instruction replaces the

equivalent flag byte of 8085 with a byte from AH register. POP PSW instruction of 8085 will be translated

to POP AX SAHF on a 8086 processor. The SAHF instruction changes the flags in the lower byte of flag

register. The object code of SAHF instruction is 9E.

 10001 1110

IN port8 or DX (Input data from I/O device)

byte: AL port

word: AL [port]; AH [port+1] or AX (DX), Flag affected : None

 This instruction is used to read data from an input port. The address of the input port can be specified

within the instruction directly or indirectly. AL and AX registers can be used as destinations for 8-bit and

16-bit input operands respectively. DX is the only register which is allowed to carry the port address. To

fetch a byte or word into AL or AX from an 8-bit port or the 16-bit address contained in DX, the 8-bit port

supports the I/O technique of 8085 processors and inputs a byte or word from direct I/O ports 00H to FFH

(0 to 255). When the port address consists of 16 bits, it must be addressed by DX. Input a byte or word from

indirect I/O ports 0000H to FFFFH (0-65535); port address is in DX and flags are not affected. The object

code of this instruction is

For fixed port 1110010w port

For variable port 1110110w

The examples of IN instructions are

IN AL, 01; Load the content of 8-bit port address 01H to AL register. The object code of IN AL,01 is

Instruction Set of 8086 Microprocessor 10.21

1110010w, port address = E4, 01 as w = 0.

IN AX, DX; Read data from a 16-bit port address specified by DX register and stores it in AX register. The

object code of IN AX, DX is 1110 110w = ED as w = 1.

OUT port8 or DX (Output data to I/O device)

byte: [port] AL

word: [port] AL [port+1]*AH or (DX AX)

Flag affected : None

 This instruction is used to write data (byte or word) on an output port. The address of the output port may

be specified in the instruction directly or implicitly in DX. Therefore, the contents of AX or AL are trans-

ferred to a directly or indirectly addressed port after execution. This instruction can output a byte or word to

direct I/O ports 00H to FFH (0 to 255).

 It can send a byte or word to an 8-bit port address or the 16-bit port address contained in DX. The registers

AL and AX are the allowed source operands for 8 bit and 16 bit operations respectively. If the port address is

of 16 bits, it must be in DX. Output a byte or word to indirect I/O ports 0000H to FFFFH (0 to 65535); port

address is in DX and flags are not affected. The object code of this instruction is

For fixed port 1110 011w port

For variable port 1110 111w

The examples of OUT instructions are OUT 02, AL and OUT DX, AX.

OUT 02, AL After execution of this instruction, sends the content of AL to a port address 02H. The object

code of OUT 02, AL is 1110 011w, port address = E6, 02 as w = 0.

OUT DX, AX This instruction sends data available in AX to a port address which is specified by DX register.

The object code of OUT DX, AX is 1110 111w = EF as w = 1.

Example 10.3 Write instructions for the following operations:

 (i) Exchange the byte between memory location offset address 0300 and AL register

 (ii) Load 8 bits of flags into AH register

 (iii) Exchange the word between DX and AX registers

 (iv) Copy a byte from the port address 03H to AL register

 (v) Output the content of accumulator to port address 01H

Sol.

 (i) XCHG AL, [0300] ; Exchange the byte between memory location offset address

 0300 and AL register

 (ii) LAHF ; Load 8 bits of flags in to AH register

 (iii) XCHG DX, AX ; Exchange the word between DX and AX registers

 (iv) IN AL, 03 ; Copy a byte from the port address 03H to AL register

 (v) OUT 01, AX ; Output the content of accumulator to port address 01H

LEA reg16, addr (load effective address)

reg16 effective address (offset) of addr. Flag affected : None

Loads the effective address or offset of memory variable into reg16. This type of data transfer operation is

important to load a segment or general-purpose register with an address directly from memory. The LEA

Microprocessors and Microcontrollers10.22

instruction is used to load a specified register with 16-bit offset address. The object code is

 1000 1101 Mod reg R/M

 For example, LEA SI, address states that the 16-bit effective address loads in the SI register.

LEA BX, ADR Effective address of ADR will be transferred to BX register. The object code of LEA BX,

[0245] = 1000 1101 00 000 001 45 02 = 8D 1E 45 02.

LDS reg16, memory (load data segment)

reg16 [memory16]; DS [memory16 + 2] Flag affected: None

 Loads the DS register and reg16 from memory with the segment and offset values. This instruction loads

the specified register in the instruction with the content of memory location specified as source in the instruc-

tion. It also loads the contents of the memory locations following the specified memory locations into DS

register. The object code is

 1100 0101 Mod reg R/M

 = C5, mod reg r/m

 The example of LDS instruction is LDS AX, [BX]. Load the contents of memory locations specified by the

content of BX register into AX. Here, mod for [BX] = 00, R/M for [BX] = 111 and reg for AX = 000. Then

the object code = C5, 00000111 = C5, 07.

LES reg16, memory (Load extra segment)

reg16 [mem16]; ES [mem16+2] Flag affected : None

Loads the ES register and reg16 with the segment and offset values for the variable in memory. The object

code is

 1100 0100 Mod reg R/M

 The example of LES instruction is LES CX, [4000]. The object code of LES CX, [4000] instruction is

1100 0100 00 001 110 00 40 = C4 0E 00 40.

XLAT (Translate byte in AL by table lookup)

AL DS : [BX+AL], Flag affected : None

 This instruction is used to translate the byte in AL register by adding it to a base value in BX which has been

set to locate the look-up table and the byte located is returned in AL. The physical address of memory location

of look-up table is computed from DS: [BX+AL]. After execution XLAT, the data from the memory location

of the look-up table is loaded into AL register. Using look-up table technique, this instruction is able to find

out the codes in case of code conversion problems. The object code of XLAT instruction is 1101 0111 = D7.

Example 10.4 Write instructions for the following operations:

 (i) Load the content of specified memory location represented by BX into AX register

 (ii) Load the content of specified memory location represented by SI into AL register

 (iii) Load the content of specified memory location represented by SI into AX register

 (iv) Replace a byte in AL register with a byte from the look-up table

Sol.

 (i) LDS AX,[BX] ; Load the content of specified memory location represented by BX into AX register

 (ii) LODSB ; Load the content of specified memory location represented by SI into AL register

 (iii) LODSW; Load the content of specified memory location represented by SI into AX register

 (iv) XLAT; Replace a byte in AL register with a byte from the look-up table

Instruction Set of 8086 Microprocessor 10.23

10.3.3 PUSH and POP Instructions

These instructions are used to manipulate stack-related operations. All stack instructions are explained in this

section.

PUSH Source Push source register onto stack

SP = SP-2; SS:[SP] source register, Flag affected : None

 After execution of this instruction, the content of specified register is pushed onto the stack. The stack

pointer (SP) is decremented by 2 after execution, and then stores the two-byte contents of the operand onto

stack. Initially the higher byte is pushed and then the lower byte is pushed so that the higher byte is stored

in the higher address and the lower byte is stored in the lower address. The actual operation of PUSH BX

instruction is shown in Fig.10.15. The sequence of PUSH operation is as follows:

The current stack top is already occupied in the stack segment memory. So that SP is decremented by

one then store the content of BH into the address pointed by SP and stack segment SS.

Again decrement SP by one and store BL into the memory location pointed by SP and stack segment

SS.

 In this way, SP is decremented by 2 and BH-BL contents are stored in the stack as shown in Fig.10.15.

 Thereafter, contents of SP points to a new stack

top. Assume the content of BX = 1234, SS = 4000

and SP = 01FF. Then content of BH, 12H is stored

in 410FEH and content of BL, 34H is also stored

in 410FDH.

 The object code of PUSH instruction is

For register memory

 1111 1111 Mod 110 R/M

For register

 01010 reg

For Segment register

 000 reg 110

The examples of these instructions are PUSH AX, PUSH BX, PUSH CX, PUSH DS, and PUSH [4000].

The object code for PUSH AX is 50H, for PUSH BX is 53H, for PUSH CX is 51H, for PUSH DS is 1E, for

PUSH [4000] is FF 36 00 40.

PUSHF (Push flags word onto stack)

SP = SP-2; SS: [SP] flags, SP = SP-2; SS:[SP] Source, Flag affected : None

The push flag instruction pushes the content of flag register on the stack. First the upper byte FLAGU and

then the lower byte FLAGL is pushed on it. The SP is decremented by 2, for each push operation. The general

operation of this operation is similar to the PUSH operation. The object code of PUSHF is 100 111 00 = 9C.

POP destination (Pop word at top of stack to destination)

Destination SS:[SP]; SP = SP+2 Flag affected : None

When this instruction is executed, loads the specified register/memory location with the contents of the

Fig. 10.15 The operation of PUSH BX instruction

Microprocessors and Microcontrollers10.24

memory location of which the address is formed using the current stack segment SS and stack pointer SP.

The stack pointer is incremented by 2. The operation of POP instruction is exactly opposite of PUSH instruc-

tion. The actual operation of POP BX instruction is shown in Fig. 10.16. The sequence of POP operation is

as follows:

Copy the content of stack top memory location and stored in BL register and SP is incremented by one.

Then content of memory location is pointed by SP are copied to BH register and SP is also incre-

mented by 1.

Hence SP is incremented by 2 and points to next stack top as depicted in Fig.10.16. Assume 12H is stored in

410FEH and 34H is stored in 410FDH, the con-

tent of SS = 4000 and SP = 01FD. After execution

of POP BX instruction, the content of memory

location 410FDH is copied into BL and content of

memory location 410FEH is also copied into BH.

The object code of POP is

For register/memory

 1000 1111 Mod 000 R/M

For register

 01011 reg

For Segment register

 000 reg 111

The examples of POP instructions are POP AX,

POP BX, POP CX, POP DS, and POP [4000]. The

object code for POP AX is 58H, for POP BX is 5BH, for POP CX is 59H, for POP DS is 1F, for POP [4000]

is 8F 06 00 40.

POPF (Pop word at top of stack to flags register)

flags SS:[SP]; SP = SP+2 Flag affected : All

The pop flags instruction loads the flags register completely from word contents of the memory location cur-

rently addressed by SP and SS. The SP is incremented by 2 for each pop operation.

The object code of POPF is 100 111 01 = 9D

Example 10.5 Write instructions for the following operations:

 (i) Push the content of AX register onto the stack

 (ii) Push the content of memory location offset address 0500 on to the stack

 (iii) Store the content of stack top memory locations in AL and AH registers

 (iv) Store the16-bit flags on to the stack

 (v) Pop the top of the stack into the 16-bit flag word

Sol.

 (i) PUSH AX ; Push the content of AX register on to the stack

 (ii) PUSH [0500] ; Push the content of memory location offset address 0500 on to the stack

Fig. 10.16 The operation of POP BX instruction

Instruction Set of 8086 Microprocessor 10.25

 (iii) POP AX ; Store the content of stack top memory locations in AL and AH registers

 (iv) PUSHF ; Store the16-bit flags on to the stack

 (v) POPF ; Pop the top of the stack into the 16-bit flag word

10.3.4 Arithmetic Instructions

These instructions perform the arithmetic operations such as addition, subtraction, increment, decrement,

negation, multiplication, division and comparing two values. The ASCII adjustment and decimal adjust

instructions also belong to this type of instructions. The 8086/8088 instructions that handle these operations

are ADD, ADC, SUB, SBB, INC, DEC, NEG , MUL, IMUL, DIV, IDIV, and other instructions such as

AAA, AAD, AAM, AAS, DAA, and DAS. In this section, all arithmetic instructions are discussed below in

significant details.

ADD Destination, Source (Add two operands, result remains in destination

Destination (Source + Destination), Flag affected : O S Z A P C

 The ADD instruction adds the contents of source operand (Register or a memory location) specified in

the instruction or an immediate data to the contents of destination (another register or memory location).

After addition, the result is in the destination operand. But both the source and destination operands cannot

be memory operands. It means that memory to memory addition is not possible. After addition the condition

code flags, O, S, Z, A, P and C are affected, depending upon the result. The object code of ADD instruction

is as follows:

Register/Memory with Register

 0000 00dw Mod reg R/M

Immediate to register/memory

 1000 00sw Mod 000 R/M data Data

Immediate to Accumulator

 0000 010w data data

 For example, ADD AX, 0100H instruction can add 16-bit immediate data (0100H) with the content of AX

register and result is stored in AX register. The object code 0000 010w, 16-bit data. Here w = 1, the object

code is 05, 00, 01.

 The example of other ADD instructions are ADD AL, 22H; ADD AX, BX; ADD AL, [BX]; ADD [BX],

CL and ADD [BX], CX. The object code for ADD AL, 22H is 04, 22, for ADD AX, BX is 01, D8, for ADD

AL, [BX] is 02, 07, for ADD [BX], CL is 00, 0F and for ADD [BX], CX is 01, 0F.

ADC Destination, Source (Add two operands with carry from previous add)

Destination (Source + Destination + CF), Flag affected: O S Z A P C

The ADC instruction performs the same operation as ADD instruction, although the carry flag bit is added

with the result. All the condition flags are affected after execution of this instruction. The object code of ADC

instructions are as follows:

Register/Memory with Register

 0001 00dw Mod reg R/M

Immediate to register/memory

 1000 00sw Mod 010 R/M data data

Microprocessors and Microcontrollers10.26

Immediate to Accumulator

 0001 010w data data

The examples ADC instructions are ADC AX, 1234H; ADC AX, CX; ADC AX, [SI]; ADC AX, [4000] ;

ADC [SI], AX; and ADC [4000], BX. The object code for ADC AX, 1234H is 15 34 12; for ADC AX, CX

is 11 C8; for ADC AX, [SI] is 13 04; for ADC AX, [4000] is 13 06 00 40; for ADC [SI], AX is 11 04; and

for ADC [4000], BX is 11 1E 00 40.

SUB Destination, Source (Subtract source from destination, store result in destination)

Destination (Destination — Source), Flag affected : O S Z A P C

The SUB destination, source instruction subtracts the source operand from the destination operand and the

result is stored in the destination operand. The source operand may be a register, memory location or immedi-

ate data. The destination operand may be a register or a memory location. But in an instruction, source and

destination operands both will not be memory operands and destination operand must not be an immediate

data. After execution of this instruction all the condition code flags, O, S, Z , A, P and C are affected.

The object code of SUB instruction is as follows:

Register/Memory with Register

 0010 10dw Mod reg R/M

Immediate to register/memory

 1000 00sw Mod 101 R/M data data

Immediate to Accumulator

 0010 110w data data

For example SUB AX, 0100 Load 0100H to AX register immediately. The object code is

 0010 110w data data

Here w = 1, object is 0010 1101, 16-bit data = 2D, 00, 01H

The other Examples of SUB instructions are SUB AL, 44H; SUB AX, BX; SUB AL, [BX]; SUB [BX], CL

and SUB [BX], CX. The object code for SUB AL, 44H is 2C 44; for SUB AX, BX is 29 D8; for SUB AL,

[BX] is 2A 07; for SUB [BX], CL is 28 0F and for SUB [BX], CX is 29 0F.

SBB Destination, Source (Subtract source and the carry flag bit from destination)

Destination ((Destination — Source) — CF), Flag affected : O S Z A P C

The SBB represents subtract with borrow. In this instruction, it subtracts the source operand and the borrow

flag, which is the result of the previous operations, from the destination operand. The subtraction with borrow

means that subtract 1 from the subtraction obtained by SUB. After subtraction, if carry is generated, a carry

flag is set. The result is stored in the destination operand. All the flags O, S, Z, A, P and C are affected by this

instruction. The object code is

Register/Memory with Register

 0001 10dw Mod reg R/M

Immediate to register/memory

 1000 00sw Mod 011 R/M data data

Immediate to Accumulator

 0000 111w data data

Instruction Set of 8086 Microprocessor 10.27

For example, SBB AX, 0010. Subtract 0010H and the carry flag from AX register immediately. The object

code is

 0000 111w data data

Here w = 1, object is 0000 1111, 16-bit data = 0F, 00, 01H

 The other Examples of SBB instructions are SBB AX, BX; SBB AL, [BX]; SBB [BX], CL and SBB [BX],

CX, and SBB AX, [4000]. The object code for SBB AX, BX is 19 D8; for SBB AL, [BX] is 1A 07; for SBB

[BX], CL is 18 0F; for SBB [BX], CX is 19 0F and for SBB AX, [4000] is 1B 06 00 40.

Example 10.6 Write instructions for the following operations:

 (i) Add 2345H to the contents of AX register

 (ii) Add 22H to the content of the specified memory location represented by the contents of BX register

 (iii) Subtract the content of AX register from AX register

 (iv) Subtract immediately 2345H from BX register with borrow

 (v) Subtract immediately 1000 from memory with offset address 0100H

Sol.

 (i) ADD AX, 2345 ; Add 2345H to the contents of AX register

 (ii) ADD [BX], 22 ; Add 22H to the content of the specified memory location by BX register

 (iii) SUB AX, BX ; Subtract the content of AX register from AX register

 (iv) SBB AX, 2345; Subtract immediately 2345H from BX register with borrow

 (v) SUB [0100], 1000; Subtract immediately 1000 from memory with offset address 0100H

INC Destination (Add 1 to destination)

Destination (Destination +1), Flag affected : O S Z A P

When this instruction is executed, the contents of the specified register or memory location increases by 1.

After execution, the condition flags O, S, Z, A and P are affected but the carry flag is not affected by this

instruction. In this instruction, immediate data cannot be operand. The object code of instruction is

Register/Memory

 1111 111w Mod 000 R/M

Register

 01 000 reg

For example, INC AX. The object code is

 01 000 reg

Here reg = 000 for AX register. Then object code is 0100 0000 = 40

Other examples of INC instructions are INC BX ; INC CX; INC DX and INC [BX]. The object code for

INC BX is 43; for INC CX is 41; for INC DX is 42 and for INC [BX] is FF 07.

DEC Destination (Decrement destination by 1)

Destination (Destination—1), Flag affected: O S Z A P C

This instruction decrements the contents of the specified register or memory location by one or subtracts 1

from the contents of the specified register or memory location. After execution, all the condition flags O,

S, Z, A, P and C are affected depending upon the result. But carry flag is not affected. In this instruction,

Microprocessors and Microcontrollers10.28

immediate data cannot be used as operand. The object code of instruction is

Register/Memory

 1111 111w Mod 001 R/M

Register

 01 001 reg

For example, DEC AX. The object code is

 01 001 reg

Here reg = 000 for AX register. Then object code is 0100 1000 = 48

Other examples of INC instructions are DEC BX ; DEC CX; DEC DX and DEC [BX]. The object code for

DEC BX is 4B ; for DEC CX is 49 ; for DEC DX is 4A and for DEC [BX] is FF 0F.

NEG Destination (Changes the sign of an operand (negate))

Destination (0-Destination), Flag affected: O S Z A P C

This instruction performs a 2’s complement of destination. To obtain a 2’s complement, it subtracts the con-

tents of destination from zero. Then result is stored in the destination operand which may be a register or

a memory location. After execution this instruction all the condition flags O, S, Z, A, P and C are affected.

While OF is set, it means that the operation has not completed successfully. The object code is

 1111 011w Mod 011 R/M

 The example of these instructions are NEG AX ; NEG BX; NEG CX ; NEG DX; NEG AL; NEG BL; NEG

CL and NEG DL. The object code for NEG AX is F7 D8 ; for NEG BX is F7 DB ; for NEG CX is F7 D9 ;

for NEG DX is F7 DA ; for NEG AL is F6 D8 ; for NEG BL is F6 DB ; for NEG CL is F6 D9 and for NEG

DL is F6 DA.

CMP Destination, Source (Compare by subtracting source from destination)

Destination — Source Flag affected : O S Z A P C

This instruction performs a nondestructive subtraction of source from destination but result is not stored.

Actually, the source operand and destination operand are compared. The source operand will be a register or

an immediate data or a memory location and the destination operand may be a register or a memory location.

After comparison, the result will not store anywhere but the flags are affected depending upon the result of

the subtraction. When both of the source and destination operands are equal, zero flag is set. While the source

operand is greater than the destination operand, carry flag is set otherwise carry flag is reset. The object code

is Register/Memory with Register.

 0011 10dw Mod reg R/M

Immediate to register/memory

 1000 00sw Mod 111 R/M data data

Immediate to Accumulator

 0011 110w data data

For example, CMP AX, 0100 Compare 0100H with the content of AX register immediately. The object

code is

 0011 110w data data

Instruction Set of 8086 Microprocessor 10.29

Here w = 1, object is 0011 110w, 16-bit data = 0011 1101, 16-bit data = 3D, 00, 01H

 The other examples of CMP instructions are CMP BX, 1234; CMP AL, 22; CMP BX, [SI]; CMP [0100],

BX and CMP [BX], CX. The object code for CMP BX, 1234 is 81 FB 34 12; for CMP AL, 22 is 3C 22; for

CMP BX, [SI] is 3B 1C; for CMP [0100], for BX is 39 1E 00 01 and for CMP [BX], CX is 39 0F.

Example 10.7 Write instructions for the following operations:

 (i) Compare 16-bit immediately available data (4567H) from AX register

 (ii) Increment the contents of CX register by one

 (iii) Decrement the contents of memory location specified by BX register

 (iv) 2’s Complement of accumulator

 (v) Compare 8 bit immediately available data (FFH) from contents of memory location specified by

Source index address 0400

Sol.

 (i) CMP AX,4567 ; Compare 16-bit immediately available data (4567H) from AX register

 (ii) INC CX ; Increment the contents of CX register by one

 (iii) DEC [BX] ; Decrement the contents of memory location specified by BX register

 (iv) NEG AX ; 2’s Complement of accumulator

 (v) MOV SI,0400 ; load 0400 in SI

 CMP [SI], FF ; Compare 8-bit data (FFH) with the contents of memory location specified by Source

index.

10.3.5 Multiplication and Division Instructions

MUL Source (Multiply 8 or 16-bit source by 8-bit (AL) or 16-bit (AX) value (unsigned))

AX (AL * source 8)

DX:AX (AX * source 16), Flag affected : O C; the S, Z, A, and P flags are left in an indeterminate condition.

 This instruction is an unsigned byte or word multiplication by the contents of AL or AX. An 8-bit source

is multiplied by the contents of AL to generate a 16-bit result in AX. A 16-bit source is multiplied by the

contents of AX to generate a 32-bit result. The most significant word of the result is stored in DX and the

least significant word of the result is stored in AX. The unsigned byte or word will be one of the general pur-

pose registers or memory locations. All the flags are modified depending upon the result. In this instruction

immediate operand is not allowed.

 The object code of MUL instruction is

 1111 011w Mod 100 R/M

 Here, mod and R/M are for memory/register; i.e., for the second operand. The first operand is always in

AL or AX.

 The example is MUL BL. Assume the content of AL register is 22, and register of BL is 11H.

 The object code = 1111 011w, mod 100 R/M = 1111 0110, 11 100011 = F6, E3 as Mod and R/M for BL

are 11 and 011 respectively and w = 0.

 The other examples of MUL instructions are MUL CL; MUL BX ; MUL CX ; MUL DX and MUL

[BX+10]. The object code for MUL CL is F6 E1; for MUL BX is F7 E3; for MUL CX is F7 E1; for MUL

DX is F7 E2 and for MUL [BX+10] is F7 67 10.

Microprocessors and Microcontrollers10.30

IMUL Source (Multiply an 8- or 16-bit source by 8-bit (AL) or 16-bit (AX) value (signed))

AX (AL * source 8)

DX:AX (AX * source 16), Flag affected : O C; the S, Z A and P flags are left in an indeterminate condition.

 This instruction is a signed multiplication of two signed numbers. A signed byte in the source operand

is multiplied by the contents of AL to generate a 16-bit result in AX. The source can be a general purpose

register, memory operand, index register or base register, but it cannot be an immediate data. A 16-bit source

operand is multiplied by the contents of AX to generate a 32-bit result. In case of 32-bit results, the higher

order word or the higher 16 bits is stored in DX and the lower order word or the lower 16 bits is stored in

AX. The AF, PF, SF and ZF flags are undefined after IMUL. If AH and DX contain parts of 16 and 32-bit

result respectively, CF and OF both will be set. AL and AX are the implicit operands in case of 8 bits and 16

bits multiplications respectively. The unused higher bits of the result are filled by the sign bit and CF, AF are

cleared.

 The object code of IMUL is

 1111 011w Mod 101 R/M

 Here, Mod and R/M are for the second operand which is either memory or register. The first operand is

always in AL or AX. During 8-bit multiplication, 7 bits are used to represent a number and the eighth bit

represents its sign. When the sign bit is 0, it represents a positive number. If the sign bit is 1, it represents a

negative number. In case of 16-bit multiplication, 15 bits are used to represent a number and the sixteenth bit

represents its sign.

 The example of IMUL instruction is IMUL BL. Here w = 0, Mod and R/M for BL are 11, R/M = 001

respectively. Then object code = 1111 011w, mod 101 R/M = 1111 0110, 11 101 011 = F6, EB.

 The other examples of IMUL instructions are IMUL CL; IMUL BH; IMUL BX ; IMUL CX ; IMUL DX

and IMUL [BX+10]. The object code for IMUL CL is F6 E9; for IMUL BH is F6 EF; for IMUL BX is F7

EB; for IMUL CX is F7 E9; for IMUL DX is F7 EA and for IMUL [BX+10] is F7 2F 10.

DIV Source (Divide of 16-bit or 32-bit number by 8- or 16-bit number (unsigned))

AL (AX ÷ Source 8)

AH Remainder

AX (DX:AX ÷ Source 16)

DX Remainder

 Flag affected: The O, S, Z, A, P, and C flags are left in an indeterminate condition.

 This is an unsigned divide instruction. This instruction is used to divide a 16-bit unsigned number by an

8-bit unsigned number. When a 16-bit number in AX is divided by an 8-bit source operand, the quotient is

stored in AL and the remainder is stored in AH. If the result is too big to fit in AL, a divide by zero (type 0)

interrupt is generated.

 This instruction is also used to divide a 16-bit unsigned number by a 16-bit or 8-bit operand. The dividend

must be in AX for 16-bit operation and divisor may be specified using any one of the addressing modes

except immediate. A 32-bit number in DX:AX is divided by a 16-bit source with the quotient remaining in

AX and the remainder in DX. When the quotient of a 16-bit operation is greater than FFFFH, a divide-by-

zero (type 0) interrupt is generated. This instruction does not affect any flag.

 The object code DIV instruction is

 1111 011w Mod 110 R/M

Instruction Set of 8086 Microprocessor 10.31

 The example of DIV instruction is DIV BL. This instruction consists of 8-bit divisor in BL and AX con-

tains 16-bit dividend. The object code is 1111 011w, Mod 110 R/M =1111 0110, 11 110011 = F6, F3 as Mod

= 11 and R/M = 011 for BL and w = 0.

 The other examples of DIV instructions are DIV CL; DIV BX ; DIV CX ; DIV DX and DIV [BX+10].

The object code for DIV CL is F6 F1; for DIV BX is F7 F3; for DIV CX is F7 F1; for DIV DX is F7 F2 and

for DIV [BX+10] is F7 37 10.

IDIV Source (Divide of signed 16-bit or 32-bit number by 8- or 16-bit number (signed))

AL (AX ÷ source 8)

AH Remainder

AX (DX:AX ÷ source 16)

DX Remainder

 Flag affected: The O, S, Z, A, P, and C flags are left in an inderterminate condition.

 This is a signed divide. This instruction performs the same operation as DIV instruction. A 16 bit value in

AX is divided by an 8-bit source with the quotient remaining in AL and the remainder in AH. If the result is

too big to fit in AL, a divide by zero (type 0) interrupt is generated.

 A 32-bit number in DX:AX is divided by a 16-bit source with the quotient remaining in AX and the

remainder in DX. Divide by 0 interrupt is generated. If the result (quotient) is too big to fit in AX, a divide by

zero (type 0) interrupt is generated. All the flags are undefined after IDIV instruction.

 The object code of IDIV is

 1111 011w Mod 111 R/M

 The example of IDIV instruction is IDIV BL. The operation of this instruction is dividing AX by CL, both

operands are signed numbers. The object code is 1111 011w, Mod 111 R/M = 1111 0110, 11 111011 = F6,

FB as Mod = 11 and R/M = 011 for BL and w = 0.

 The other examples of DIV instructions are IDIV BH; IDIV CL; IDIV BX ; IDIV CX ; IDIV DX and IDIV

[BX+10]. The object code for IDIV BH is F6 FF; for IDIV CL is F6 F9; for IDIV BX is F7 FB; for IDIV CX

is F7 F9; for IDIV DX is F7 FA and for IDIV [BX+10] is F7 3F 10.

Example 10.8 Write instructions for the following operations:

 (i) Multiply the content of AL by the content of CL

 (ii) Multiply the content of AX by the content of CX

 (iii) Signed multiplication of AL and DL

 (iv) Divide AX by the content of memory location represented by BX

 (v) Signed division of AX and BL

Sol.

 (i) MUL CL ; Multiply the content of AL by the content of CL

 (ii) MUL CX ; Multiply the content of AX by the content of CX

 (iii) IMUL DL ; Signed multiplication of AL and DL

 (iv) DIV [BX] ; Divide AX by the content of memory location represented by BX

 (v) IDIV BL ; Signed division of AX and BL

Microprocessors and Microcontrollers10.32

10.3.6 Arithmetic Adjust Instructions

DAA (Decimal adjustment after addition)

AL (AL adjusted for BCD addition)

 Flag affected: S Z A P C; the O flag is left in an indeterminate condition.

 The DAA instruction is used to transfer the result of the addition of two packed BCD numbers to a valid

BCD number. The result will be stored in AL register only. If after addition, the lower nibble is greater than

9, AF is set. Then 06 will be added to the lower nibble in AL. After addition of 06 in the lower nibble of AL,

if the upper nibble of AL is greater than 9 or if the carry flag is set, 60H will be added to AL through DAA

instruction. After execution of this instruction, AF, CF, PF, and ZF flags are affected. The OF is undefined.

 The object code of DAA is 00100111= 27H

Example 10.9 Write instructions to add two numbers 54 and 26 and use DDA for adjustment of the result.

Sol.

 MOV AL, 54 ; 54 in AL.

 MOV BL, 26 ; 26 in BL.

 ADD AL, BL ; add AL and BL, content of AL = 7A.

 DAA ; adjust result in BCD. AL 80 = 7A + 06.

DAS (Decimal adjust for subtraction)

AL (AL adjusted for BCD subtraction), Flag affected S Z A P C; the O flag is left in an indeterminate

condition.

 The DAS instruction is used to convert the result of subtraction of two packed BCD numbers to a valid

BCD number. The subtraction will be stored in AL register only. While the lower nibble of AL is greater than

9, 06 will be subtracted from the lower nibble of AL. If the result of subtraction sets the carry flag or if the

upper nibble is greater than 9, 60H will be subtracted from AL. AF, CF, SF, PF and ZF flags are affected after

execution of this instruction. The OF is undefined after DAS instruction.

 The object code of DAS is 00101111= 2FH

AAA (ASCII adjust for addition)

AL (AL adjusted for ASCII addition)

 Flag affected: A C; the O, S, Z, and P flags are left in an indeterminate state

 This instruction follows an addition of ‘unpacked’ ASCII data. After execution of ADD instruction, this

AAA instruction is executed for ASCII adjustment of result of addition of two numbers. The result will be

stored in AL register. The AAA instruction converts the resulting contents of AL to unpacked decimal digits.

When the AAA instruction is executed, the lower 4- bits of AL will be checked whether it is a valid BCD

number in the range 0 to 9. If the lower 4- bits of AL is between 0 to 9 and AF is zero, AAA sets the higher

order 4- bits of AL to 0. The content of AH must be cleared before addition. If the value in the lower 4-bits of

AL is greater than 9 then the AL is incremented by 06, AH is incremented by 1, the AF and CF flags are set

to 1, and the higher 4 bits of AL are cleared to 0. After the addition of 05H and 09H, the result 0E is stored

in AL. As lower nibble of AL (E) is greater than 9, the AL is to be incremented by 06 and AH is incremented

by 1. Hence the content of AL is 04H and the content of AH is 01H.

 The object code of AAA is 00110111 = 37H.

AAS (ASCII adjust for subtraction)

AL (AL adjusted for ASCII subtraction)

Flag affected: A C, the O, S, Z, and P flags are left in an indeterminate state.

Instruction Set of 8086 Microprocessor 10.33

 This instruction follows a subtraction of ‘unpacked’ ASCII data. The AAS instruction is used to convert

the result in AL register after subtracting two unpacked ASCII operands. The result is stored in AL register

which is an unpacked decimal number. When the lower 4 bits of AL register are greater than 9 or the AF flag

is set to 1, the AL will be decremented by 6 and AH register is decremented by 1, the CF and AF are set to 1.

If not, the CF and AF are set to 0, the result does not require any correction. Hence, the upper nibble of AL is

0 and lower nibble may be any number from 0 to 9.

 The object code of AAS is 00111111 = 3FH.

AAM (ASCII adjust for multiplication)

AH : AL (AH : AL adjusted for ASCII multiplication), Flag affected S Z P; the O, A, and C flags are left

in an indeterminate condition.

 The AAM instruction is executed to converts the product available in AL into unpacked BCD format. The

AMM (ASCII adjustment after multiplication) instruction follows a multiplication instruction that multiplies

two unpacked BCD numbers, i.e, and higher nibbles of the multiplication number should be 0. Usually, the

multiplication is performed using MUL instruction and the result of multiplication is available in AX. After

execution of AAM instruction, the content of AH is replaced by tens of the decimal multiplication and the

content of AL is replaced by ones of the decimal multiplication. The object code of AAM is 1101 0100 0000

1010 = D4 0A.

Example 10.10 Write instructions to multiply two unpacked BCD numbers 4 and 6 and use AAM for

adjustment of the result.

Sol.

 MOV AL, 04 ; 04 in AL.

 MOV CL, 06 ; 06 in CL.

 MUL CL ; multiply AL by CL, content of AL = 18.

 AAM ; adjust result in BCD. AH 01 and AL 08

CBW (Convert from byte to word (16-bit 8-bit))

AH (filled with bit-7 of AL), AX (AL * source 8), Flag affected: None

 This instruction converts a signed byte in AL to a signed word in AX. Actually, it copies the sign bit of a

byte to be converted to all the bits in the higher byte of the result word. Flags are not affected after execution

of CBW. The object code of CBW is 1001 1000 = 98H.

CWD (Convert from word to double word)

DX (filled with bit-15 of AX), AX (AL * source 8)

Flag affected: None

Converts a 16-bit word in AX to a 32-bit word in DX : AX by sign extension of bit 15 of AX through DX.

Usually, this operation is to be done before signed division. Flags are not affected after execution of CWD.

The object code of CWD is 1001 1001 = 99H.

10.3.7 Logical and Bit Manipulation Instructions

These type of instructions are used for

Basic logical operations such as NOT, AND, OR, and XOR;

Bit by bit shift operations such as SHL (shift logical left), SHR (shift logical right), SAL (shift arith-

metic left), and SAR (shift arithmetic right); and

Microprocessors and Microcontrollers10.34

Rotate operations such as ROR (rotate right without carry), ROL (rotate left without carry), RCR

(rotate right through carry), and RCL (rotate left through carry).

 After execution of the above instructions, all the condition code flags are affected depending upon the

result. In this section the operations of logical and bit manipulation instructions are discussed in detail.

NOT Destination (1’s complement of destination)

Destination (~Destination)

 Flag affected: None

 Converts 1’s to 0’s and 0’s to 1’s in destination.

 The NOT instruction is used to generate complement of the contents of an operand register or a memory

location, bit by bit.

 The object code of NOT is

 1111 011w Mod 010 R/M

 The example of NOT instruction is NOT AL. The object code of NOT AL is 1111 011w 1101 000 = F6

D0 as Mod = 11 and R/M = 000 for AL and w = 0. The other NOT instructions are NOT BL, NOT CL, NOT

DL, NOT AX, NOT BX, NOT CX, and NOT [BX]. The object code for NOT BL is F6 D3; for NOT CL is

F6 D1; for NOT DL is F6 D2; for NOT AX is F7 D0; for NOT BX is F7 D3; for NOT CX is F7 D1, and

for NOT [BX] is F7 17.

AND Destination, Source (Logical AND)

Destination (Destination AND Source)

This instruction performs a bitwise logical AND of source and destination with the result remaining in the

destination. The source operand may be immediate data or a register or a memory location and the destina-

tion operand may be a register or a memory location. For AND operation, at least one of the operands must

be a register or a memory operand. For this instruction, both the operands will not be memory locations and

immediate operands and a destination operand should not be an immediate operand.

 The object codes of AND instruction are as follows:

Register/Memory with Register

 0010 00dw Mod reg R/M

Immediate to register/memory

 1000 000w Mod 100 R/M data data

Immediate to Accumulator

 0010 010w data data

 The example of AND instruction is AND AX, 045B and its object code is 0010 010w 5B 04 = 25 5B 04 as

w = 1. The other examples are AND AX, BX; AND CX, DX; AND AX, [BX] and AND AX, [SI]. The object

code for AND AX, BX is 21 D8; for AND CX, DX is 21 D1; for AND AX, [BX] is 23 07 and for AND AX,

[SI] is 23 04.

OR Destination, Source (Logical OR)

Destination (Destination OR Source)

 The OR instruction performs a bitwise logical OR of source and destination with result remaining in desti-

nation. The OR operation is same as described in case of AND operation. The limitations of OR instruction

based on source and destination operands are also the same as in case of AND operation.

Instruction Set of 8086 Microprocessor 10.35

 The object code of OR instruction is as follows:

Register/Memory with Register

 0000 10dw Mod reg R/M

Immediate to register/memory

 1000 000w Mod 001 R/M data data

Immediate to Accumulator

 0000 110w data data

 The example of OR instruction is OR AX, 2345 and its object code is 0000 110w 45 23 = 0D 45 23 as w

=1. The other examples are OR AX, BX; OR CX, DX; OR AX, [BX] and OR AX, [SI]. The object code for

OR AX, BX is 09 D8; for OR CX, DX is 09 D1; for OR AX, [BX] is 0B 07 and for OR AX, [SI] is 0B 04.

XOR Destination, Source (Exclusive logical OR)

Destination (Destination XOR Source)

 The XOR instruction performs a bitwise logical exclusive OR of source and destination with result remain-

ing in destination. This instruction carries out operations in a similar way to the AND and OR operation. The

limitations of XOR instruction are also the same as in case of AND/OR operation.

 The object code of XOR

Register/Memory with Register

 0011 00dw Mod reg R/M

Immediate to register/memory

 1000 000w Mod 110 R/M data data

Immediate to Accumulator

 0011 010w data data

 The example of XOR instruction is XOR AX, 1234 and its object code is 0011 010w 34 12 = 35 34 12 as

w = 1. The other examples are XOR AX, BX; XOR CX, DX; XOR AX, [BX] and XOR AX, [SI]. The object

code for XOR AX, BX is 31 D8; for XOR CX, DX is 31 D1; for XOR AX, [BX] is 33 07 and for XOR AX,

[SI] is 33 04.

TEST Destination, Source (Nondestructive logical AND)

Flags (Destination AND Source)

 The TEST instruction performs a nondestructive bitwise logical AND of source and destination, setting

flags and leaving destination unchanged. The result of this ANDing operation will not be available, but the

flags are affected. Generally OF, CF, SF, ZF and PF flags are affected. The source operands may be a register

or a memory or immediate data and the destination operands may be a register or a memory.

 The object code of TEST is given below:

Register/Memory and Register

 1000 010w Mod reg R/M

Immediate data and register/memory

 1000 000w Mod 110 R/M data data

Microprocessors and Microcontrollers10.36

Immediate data and Accumulator

 1010 100w data data

 The example of TEST instruction is TEST AX, 6789 and its object code = 1010 100w 89 67=A9 89 67 as

w = 1. The other example of TEST instructions are TEST AX, BX; TEST CX, DX; TEST AX, [BX]; TEST

AX, [DI]. The object code for TEST AX, BX is 85 C3 ; for TEST CX, DX is 85 CA ; for TEST AX, [BX] is

85 07; and for TEST AX, [DI] is 85 05.

Example 10.11 Write instructions for the following operations:

 (i) 1’s complement of the content of DX register

 (ii) AND 1234H with the content of AX register

 (iii) XOR operation between AL and DL registers

 (iv) OR operation between BX and CX registers

 (v) Perform TEST operation between AL and BL registers

Sol.

 (i) NEG DX ; 1’s complement of the content of DX register

 (ii) AND AX, 1234 ; AND 1234H with the content of AX register

 (iii) XOR AL,DL ; XOR operation between AL and DL registers

 (iv) OR BX,CX ; OR operation between BX and CX registers

 (v) TEST AL,BL ; Perform TEST operation between AL and BL registers

SHL/SAL (Shift logical/ Arithmetic left) An+1 An, A15 A14, A0 0, CF A15 All flags are

affected.

 These instructions shift each bit in the destination operand (word or byte) to the left and insert zeros in the

newly introduced least significant bits. The highest order bit shifts into the carry flag as shown in Fig.

10.17. The common format of SHL/SAL instruction is SAL Operand-1, Operand-2.

 The operand-1 will be the content of register or the content of memory. The number of shifts is set by

operand-2. The operand-2 will be an immediate data or content of CL register. The object code of SHL/SAL

instruction is

 1101 00vw Mod 100 R/M

 The example of SHL instructions are SHL AX, CL and SHL AX, 1. Since shifting an integer to the left

one position is equivalent to the multiplication of specified operand by 2. Actually, the shift left instruction

for multiplication by powers of two is as given below:

 SHL AX, 1 ; Result is equivalent to AX*2

 SHL AX, 2 ; Result is equivalent to AX*4

 SHL AX, 3 ; Result is equivalent to AX*8

 SHL AX, 8 ; Result is equivalent to AX*256

Fig. 10.17 Shift left operation

Instruction Set of 8086 Microprocessor 10.37

Assume the content of AX register is 1010 1010 1010 1010=AAAA. After execution of SHL AX, 1 the con-

tent of AX will be 5554 and CY flag set. The object code of SHL AX, 1 is D1 E0. After execution of SHL

AX, 2 the content of AX will be AAA8. All flags are affected depending upon the result.

SHR (Shift logical right) An An+1, CF A0, A15 0, All flags are affected

 This instruction performs bitwise right shifts on the destination operand word or byte and inserts zeros in

the shifted positions. The general format of SHR instruction is SHR Operand-1, Operand-2. The operand-1

may be a register or a memory location. The number of shifts is set by the operand-2. The operand-2 will be

an immediate data or content of CL register. The result is always stored in the destination operand.

 Figure 10.18 shows the shift right operation.

 The object code of SHR instruction is

 1101 00vw Mod 101 R/M

 The example of SHR instructions are SHR AX, CL and SHR AX,1. If the SHR instruction shifts an integer

to the right one position, it performs an unsigned division of destination operand by 2. Actually, each shift to

the right is equivalent to dividing the value by 2 as given below:

 SHR AX, 1 ; Result is equivalent to AX/ 2

 SHR AX, 2 ; Result is equivalent to AX/ 4

 SHR AX, 3 ; Result is equivalent to AX/ 8

 SHR AX, 8 ; Result is equivalent to AX/256

 When the content of AX register is 1010 1010 1010 1010 = AAAA, after execution of SHR AX, 1 the

content of AX will be 5555. The object code of SHR AX, 1 is D1 E8. After execution of MOV CL,02 and

SHR AX, CL the content of AX will be 2AAA. All flags are affected depending upon the result. This shift

operation shifts the operand through the carry flag.

Fig. 10.18 Shift right operation

SAR (Shift arithmetic right)

An An+1, CF A0, A15 A15 All flags are affected.

 The SAR instruction performs right shifts all the bits in the destination operand (word or byte) to the right

one bit. This instruction is replicating the most significant bit of the operand in the newly inserted positions.

 The common format of SAR instruction is SAR Operand-1, Operand-2. The Operand-1 may be a register

or a memory location. The number of shifts is set by Operand-2. The Operand-2 will be an immediate data

or content of CL register. The result is always stored in the destination operand. Figure 10.19 shows the

arithmetic shift right operation.

 The object code of SAR instruction is

 1101 00vw Mod 111 R/M

 The example of SAR instructions are SAR AX, CL and SAR AX,1. As the SAR instruction shifts an inte-

ger to the right one position, it performs a signed division of destination operand by 2. Actually, each shift to

the right divides the value by 2 as given below:

 SAR AX, 1 ; Result is equivalent to signed division by 2

Microprocessors and Microcontrollers10.38

 SAR AX, 2 ; Result is equivalent to signed division by 4

 SAR AX, 3 ; Result is equivalent to signed division by 8

 SAR AX, 8 ; Result is equivalent to signed division by 256

 If the content of AX register is 1010 1010 1010 1010 = AAAA, after execution of SAR AX, 1 the content

of AX will be D555. The object code of SAR AX,1 is D1 F8. After execution of SAR AX, 2 the content of

AX will be EAAA. All flags are affected depending upon the result. This shift operation shifts the operand

through the carry flag.

ROR (Rotate right without carry) An An+1, A15 A0, CF A0. All flags are affected

 The ROR instruction rotates the contents of the destination operand to the right bit-wise either by one or by

the count specified in CL without carry. The least significant bit is stored into the carry flag and simultane-

ously it is transferred into the most significant bit position after each shift operation as shown in Fig.10.20.

 The common format of ROR instruction is ROR Operand-1, Operand-2. The operand-1 may be a register

except segment register or a memory location. The operand-2 will be an immediate data or content of CL

register. The number of shifts is set by operand-2. The result is always stored in the destination operand.

 The object code of ROR instruction is

 1101 00vw Mod 001 R/M

 The example of ROR instructions are ROR AX, CL and ROR AX,1.

 The PF, SF and ZF flags are left unchanged by this instruction.

 Consider the content of AX register is 1010 1010 1111 1010 = AAFA. After execution of ROR AX, 1 the

content of AX will be 557D. The object code of ROR AX,1 is D1 C8. After execution of MOV CL,02 and

ROR AX, CL the content of AX will be AABE.

Fig. 10.19 Arithmetic shift right operation

Fig. 10.20 Rotate right without carry

ROL (Rotate left without carry) An+1 An, A0 A15, CF A15. All flags are affected.

The ROL instruction rotates the content of the destination operand to the left by one or by the specified

number of bits in CL without carry. The most significant bit is pushed into the carry flag as well as the least

significant bit position after each bit shift operation. The other bits are shifted left subsequently as depicted

in Fig.10.21. The PF, SF, and ZF flags are left unchanged by this operation. Its format is same as ROR. The

object code of ROL instruction is

 1101 00vw Mod 000 R/M

 The example of ROL instructions are ROL AX,1 and ROL AX, CL.

 Assume the content of AX register is 1010 1010 1111 1010 = AAFA. After execution of ROL AX, 1 the

Instruction Set of 8086 Microprocessor 10.39

content of AX will be 55F5. The object code of ROL AX,1 is D1 C0. After execution of MOV CL,02 and

ROL AX, CL the content of AX will be ABEA.

RCR (Rotate right through carry) An An+1, A15 CF, CF A0. All flags are affected

 This instruction rotates the contents of the destination operand bits right by one or by the specified number

of bits in CL through Carry Flag (CF). After each rotate operation, the carry flag is pushed into the MSB of

the operand and the LSB is pushed into carry flag and the other bits are subsequently shifted right as given in

Fig.10.22. The SF, PF, ZF are left unchanged. Its format is same as ROR. The object code of RCR instruc-

tion is

 1101 00vw Mod 011 R/M

 The example of RCR instructions are RCR AX,1 and RCR AX, CL.

When the content of AX register is 1010 1010 1111 1010 = AAFA, after execution of RCR AX, 1 the content

of AX will be 557D. The object code of RCR AX,1 is D1 D8. After execution of MOV CL,02 and RCR AX,

CL the content of AX will be 2ABE.

RCL (Rotate left through carry) An+1 An, CF A15, A0 CF. All flags are affected.

 The RCL instruction rotates the contents of the destination operand left by one or by the specified number

of bits in CL through carry flag (CF). After each rotate operation, the carry flag is pushed into LSB and the

MSB of the operand is pushed into carry flag. The remaining bits are subsequently shifted left as shown in

Fig.10.23. The SF, PF, ZF are left unchanged. The object code of RCL instruction is

 1101 00vw Mod 010 R/M

 The example of RCL instructions are RCL AX,1 and RCL AX, CL.

 When the content of AX register is 1010 1010 1111 1010 = AAFA, after execution of RCL AX, 1 the con-

tent of AX will be 55F4. The object code of RCL AX,1 is D1 D0. After execution of MOV CL,02 and RCL

AX, CL the content of AX will be ABE9.

Fig. 10.21 Rotate left without carry

Fig. 10.22 Rotate right through carry

Fig. 10.23 Rotate left through carry

Example 10.12 Write instructions for the following operations:

 (i) Shift content of BL left two times

Microprocessors and Microcontrollers10.40

 (ii) Rotate content of BX left without carry one times

 (iii) Shift logical right of the memory location represented by CS : SI one time

 (iv) Rotate right without carry of AX registers three times

Sol.

 (i) MOV CL, 02

 SHL BL, CL ; Shift content of BL left two times

 (ii) ROL BX, 1 ; Rotate content of BX left without carry one times

 (iii) SHR [SI], 1 ; Shift logical right of the memory location represented by CS:SI one time

 (iv) MOV CL, 03

 ROR AX, CL ; Rotate right without carry of AX registers three times

10.3.8 Jump Instructions

The Jump instructions are generally used to change the sequence of the program execution. There are two

types of Jump instructions, namely, conditional and unconditional. The conditional Jump instructions trans-

fer the program to the specified address when condition is satisfied only. The unconditional Jump instruc-

tions transfer the program to the specified address unconditionally. All conditional and unconditional Jump

instructions are discussed in this section.

JMP target (Unconditional jump to target).

The jump instruction unconditionally transfers the control of execution to the specified address using an 8-bit

or 16-bit displacement or CS: IP. After execution of this instruction, no flags are affected. The Jump instruc-

tions have different formats to specify the jump address:

 Sort: IP (IP+(target displacement sign-extended))

 Near: IP (IP+(target displacement))

 Indirect: IP (register or value in memory)

 Far: CS targ_seg;

 IP targ_offset AX (AL * source 8)

 Flag affected: None

Short jumps are within ±128 bytes of jmp instruction —only IP is affected.

Near jumps are within same segment —only IP is affected. Near jump allows a jump within ±32 KB

Indirect jumps are within same segment —only IP is affected.

Far jumps are to a different segment —both CS and IP are affected.

The object code of unconditional JMP instruction is

Direct with segment

1110 1001 disp-low disp-high

Direct within segment short

1110 1011 disp

Indirect within segment

1111 1111 Mod 100 R/M

Instruction Set of 8086 Microprocessor 10.41

Direct Intersegment

1110 1010 Offset-low Offset-high

Seg-low Seg-high

Indirect Intersegment

1111 1111 Mod 101 R/M

JCXZ Target(short) (Jump short if CX register is 0)

Flag affected: None

 The object codes of JCXZ jump on CX zero instructions are

1110 0011 disp

Jcond (Jump on condition)

IP (IP+(8-bit displacement sign-extended to 16 bits)), Flag affected None

 If conditional jump instructions are executed, program control can be transferred to the address specified

by the instruction itself. If the condition are not satisfied, instructions are executed sequentially. Here, con-

dition is the status of flag. After execution of these instructions, no flags are affected. The address will be

specified in the instruction which will be varied from –80H (–128) bytes to 7FH(127) bytes. Therefore only

short jumps can be implemented using conditional branch instructions. The conditions of Jump instruction

are given in Table 10.5.

Table 10.5 Conditional JUMP instructions

Instruction Condition Operation

JO O = 1 Jump on overflow set

JNO O = 0 Jump on overflow clear

JB / JNAE C = 1 Jump if below/Jump if not above or equal

JAE / JNB C = 0 Jump if above or equal/Jump if not below

JE / JNZ Z = 1 Jump if equal/Jump if not zero

JNE / JNZ Z = 0 Jump if not equal/Jump if not zero

JBE / JNA C = 1 or Z = 1 Jump if below or equal/Jump if not above

JA / JNBE C = 0 and Z = 0 Jump if above/Jump if not below or equal

JS S = 1 Jump on sign set

JNS S = 0 Jump on sign clear

JP / JPE P = 1 Jump on parity bit set (parity even)

JNP / JPO P = 0 Jump on parity bit clear (parity odd)

JL / JNGE S = 1 or O = 1 Jump if less/Jump if not greater than or equal to

JGE / JNL S = O Jump if greater than or equal to/Jump if not less

JLE / JNG Z = 1 or S and O = 1 Jump if less than or equal to/Jump if not greater than

JG / JNLE Z = 0 or S = O Jump if greater than/Jump if not less than or equal to

The object codes of all conditional jump instructions are

JE/JZ Jump on equal/zero

0111 0100 disp

Microprocessors and Microcontrollers10.42

JL/JNGE Jump on less/not greater or equal

0111 1100 disp

JLE/JNZ Jump on less or equal/not greater

0111 1110 disp

JB/JNAE Jump on Below/not above or equal

0111 0010 disp

JBE/JNA Jump on below or equal/not above

0111 0110 disp

JP/JPE Jump on parity/parity even

0111 1010 disp

JO Jump on overflow

0111 0000 disp

JS Jump on sign

0111 1000 disp

JE/JZ Jump on equal/zero

0111 0100 disp

10.3.9 Loop Instructions

The LOOP instruction executes the part of the program from the level or address specified in the instruction

up to the loop instruction, CX number of times. After each iteration, CX is decremented automatically. If the

content of CX is not zero, the LOOP instruction transfers control to starting address of the LOOP for execu-

tion. If CX is zero, the execution of LOOP instruction is completed and then next instruction of the program

will be executed. The LOOP instruction can be explained with an example as follows:

 LEA SI, 0100 ; Load SI with source address of data

 LEA DI, 0200 ; Load DI with destination address of data

 MOV CX, 0009 ; Number of bytes 9 is loaded in CX register

START LODSB ; Data byte to AL and increment SI by 1.

 STOSB ; The content of AL is stored in destination address represented by DI increment

DI by 1.

 LOOP START ; repeat until CX = 0

 The above example shows how a string of bytes can be shifted from one memory block specified by SI to

other memory block specified by DI using LOOP instructions. The LODSB instruction is equivalent to

 MOV AL, [SI]

 INC SI

the STOSB instruction is equivalent to

 MOV [DI], AL

 INC DI

Instruction Set of 8086 Microprocessor 10.43

and the LOOP instruction is equivalent to

 DEC CX

 JNZ START

 In this case LODSB and STOSB instructions are executed 9 times and a block of 9 byte data will be copied

from source memory to destination memory sequentially.

LOOP Target (short) (Loop to short target)

CX (CX-1); Jump if CX != 0

The CX register is decremented by 1. If CX now is not equal to 0, loop back to target. Otherwise, continue.

The object codes of LOOP is

1110 0010 DISP

LOOPE/Z Target (short) (Loop to short target if Z bit set)

CX (CX-1); jump if CX! = 0 and ZF = 1

The CX register is decremented by 1. If CX is not equal to 0 or if the Z bit is set, loop back to short target.

The object codes of all conditional jump instructions are

1110 0001 DISP

LOOPNE/NZ (Loop to short target if Z bit is clear)

CX (CX-1); jump if CX! = 0 and ZF = 0

The CX register is decremented by 1. If CX is not equal to 0 or if the Z bit is clear, loop back to short target.

The object codes of all conditional jump instructions are

1110 0000 DISP

10.3.10 CALL and RETURN Instructions

The CALL and RET (return) instructions are used to call a subroutine or a procedure that can be executed sev-

eral times from a main program. The starting address of the subroutine or procedure can be specified directly

or indirectly depending upon the addressing mode. There are two types of procedures namely intrasegment

and intersegment. The subroutine within segment is known as intrasegment subroutine or NEAR CALL. The

subroutine from one segment to another segment is known as intersegment subroutine or FAR CALL. These

instructions are unconditional branch instructions. After execution of these instructions, the incremented IP

and CS are stored onto the stack and loads the CS and IP registers with the segment and offset addresses of

the procedure to be called. For NEAR CALL, only IP register is stored on stack. But for FAR CALL, both

IP and CS are stored onto the stack. Hence the NEAR and FAR CALLs can be discriminated using opcode.

CALL target (Call a procedure) NEAR CALL: PUSH IP, JMP to target

SP IP, SP SP-2, IP IP + DISP

FAR CALL: PUSH CS, PUSH IP, JMP to target Flag affected None

SP CS, SP SP-2, SP IP, SP SP-2, IP 16 bit DATA

CS 16 bit DATA

The syntax for a near call (same segment) is CALL target.

The syntax for a far call (different segment) is CALL FAR target.

The object code of call instruction is

Direct within segment

Microprocessors and Microcontrollers10.44

1110 1000 disp-low disp-high

Direct Intersegment

1001 1010 Offset-low Offset-high

Seg-low Seg-high

Indirect within segment

1111 1111 Mod 010 R/M

Indirect Intersegment

1111 1111 Mod 011 R/M

RET (Return from procedure)

RET n (return from procedure and add n to SP)

Near return: POP IP

IP SP, SP SP+2 The syntax for a near return is RET.

Far return: POP IP, POP CS Flag affected None

IP SP, SP SP+2, CS SP, SP SP + DISP The syntax for a far return is RET FAR.

 During execution of CALL instruction, initially the IP and CS of the next instruction is pushed onto the

stack, then the control is transferred to the procedure. At the end of execution of procedure, RET instruc-

tion must be executed. When RET instruction is executed, the previously stored content of IP and CS along

with flags are retrieved into CS, IP and flag registers from the stack respectively. After that the execution

of the main program again starts. Usually, the procedures are two types, namely, a near procedure and a far

procedure. In case of a NEAR procedure, the current contents of SP points to IP but for a FAR procedure,

the current contents of SP points to IP and CS at the time of return. Actually the RET instructions are four

types such as

 Return within segment

 Return within segement adding 16 bit immediate displacement to the contents of SP.

 Return intersegment

 Return intersegemnt adding 16-bit immediate displacement to the contents of SP.

The object code of RET instruction is

Within segment

1100 0011

Within Segment Adding Immediate to SP

1100 0010 data-low data-high

Intersegment

1100 1011

Intersegment Adding Immediate to SP

1100 1010 data-low data-high

 The RET n form adds n to the SP to compensate for stack growth when arguments are pushed onto the

stack prior to a procedure call.

Instruction Set of 8086 Microprocessor 10.45

INT n (Interrupt (software)) PUSHF; IF 0; TF 0; PUSH CS; PUSH IP

IP 0000:[type * 4];

CS 0000:[(type * 4) + 2], Flag affected: I T

INT n is a software interrupt to be serviced. The flags and current CS : IP are pushed onto the stack. The

CS:IP stored in the vector indicated by the interrupt number are then loaded and the next instruction is fetched

from that interrupt service routine address. There are 256 interrupts corresponding to the types from 00H to

FFH in the interrupt structure of 8086. When an INT n instruction is executed, the TYPE byte N is multiplied

by 4 and the contents of IP and CS of the interrupt service routine will be taken from the hexadecimal multi-

plication (N × 4) as offset address and 0000 as segment address.

INTO (Interrupt on overflow) If OF = 1, then perform INT through vector 4

Flag affected: None

Interrupts the system if the overflow bit is set following a mathematical instruction. This indicates a carry

from a signed value.

 This instruction is executed, when the overflow flag OF is set. The new contents of IP and CS are taken

from the address 0000: 0010 as explained in INT type instruction. This is equivalent to a type 4 interrupt

instruction.

 The object code of INTO instruction is

1100 1110

IRET return from interrupt service routine

POP IP; POP CS; POPF AX (AL * src8), Flag affected All

When an interrupt service routine is to be called, before transferring control to it, the IP, CS and flag register

are stored onto the stack to indicate the location from where the execution is to be continued after the ISR is

executed. This instruction appears at the bottom of all interrupt service routines (ISR).

 When IRET is executed, the values of IP, CS and flags are retrieved from the stack to continue the execu-

tion of the main program.

 The object code of IRET instruction is

1100 1111

10.3.11 String Instructions

Usually, a series of data bytes is known as a string of bytes and a series of data words is known as a string

of words. For moving a string of bytes or words, 8086/8088 processors have five instructions such as STOS

(store string byte or word), LODS (load string byte or word), MOVS (move string byte or word), SCAS (scan

string byte or word) and CMPS (compare string byte or word). For these instructions, source of string byte or

word is DS:SI and destination of string byte or word is ES:SI. After execution of these instructions, the offset

memory pointer SI and DI are incremented or decremented by one or two depending upon direction flag. In

this section, STOS, LODS, MOVS, SCAS and CMPS are explained.

MOVSB (Move string byte) ES : [DI] DS : [SI]; DI = DI ± 1; SI = SI ± 1, Flag affected None.

Moves a string a byte at a time from source memory DS:SI to destination memory ES:DI. SI and DI are

incremented or decremented by 1, depending on Direction Flag (DF). The object code of MOVSB is 1010

010w = A4 as w = 0.

Microprocessors and Microcontrollers10.46

MOVSW (Move string word) ES : [DI] DS : [SI]; DI = DI ± 2; SI = SI ± 2, Flag affected None.

Moves a string a word at a time from source memory DS:SI to destination memory ES:DI. SI and DI are

incremented or decremented by 2, depending on Direction Flag (DF). The object code of MOVSW is 1010

010w =A5 as w = 1.

STOSB (Store string byte) ES : [DI] AL; DI = DI ± 1, Flag affected None.

Moves a string one byte at a time from AL to destination memory address ES:DI. DI is then incremented or

decremented by 1, depending on Direction Flag (DF). The object code of STOSB is 1010 101w =AA as w = 0.

STOSW (Store string word) ES : [DI] AX; DI = DI ± 2, Flag affected None.

Moves a string one word at a time from AX to destination memory address ES:DI. DI is then incremented

or decremented by 2, depending on Direction Flag (DF). The object code of STOSW is 1010 101w = AB as

w = 1.

LODSB (Load string byte)

Moves a string one byte at a time from source memory address DS:SI to AL. Then SI is incremented or dec-

remented by 1, depending on Direction Flag (DF). The object code of LODSB is 1010 110w = AC as w = 0.

LODSW (Load string word)

Moves a string one word at a time from source memory address DS:SI to AX. Then SI is incremented or dec-

remented by 2, depending on Direction Flag (DF). The object code of LODSW is 1010 110w = AD as w = 1.

CMPSB (Compare string byte)

The byte or 8-bit data at DS:SI is compared with the byte or 8-bit data at ES:DI and the flags are set accord-

ingly. Both SI and DI are incremented or decremented by 1, depending on the Direction Flag (DF). This

instruction is combined with an REP prefix, so that we can compare two strings and we can also find at what

point two strings no longer are equal. The object code of CMPSB is 1010 011w = A6 as w = 0.

CMPSW (Compare string word) Flags (result of CMP DS : [SI], ES : [DI]) DI = DI ± 2; SI = SI

± 2, Flag affected as CMP.

The word or 16-bit data at DS:SI is compared with the word or 16-bit data at ES:DI and the flags are set

accordingly. Both SI and DI are incremented or decremented by 2, depending on the Direction Flag (DF).

This instruction is combined with an REP prefix, so that we can compare two strings and we can also locate

at what point two strings no longer are equal. The object code of CMPSW is 1010 011w = A7 as w = 1.

SCASB (Scan string byte) Flags (result of CMP ES:[DI], AL); DI = DI ± 1, Flag affected same as

CMP instruction.

The byte or 8-bit data at ES:DI is compared to the contents of AL and correspondingly flags are set. DI is

incremented or decremented by 1 depending upon the Direction Flag (DF). The SCASB can be combined

with a REP prefix, so that we can be able to scan a string looking for the first occurrence of a particular byte.

The object code of SCASB is 1010 111w = AE as w = 0.

SCASW (Scan string word)

The word or 16-bit data at ES:DI is compared to the contents of AX and correspondingly flags are set. DI is

incremented or decremented by 2 depending upon the Direction Flag (DF). The SCASW can be combined

with a REP prefix, so that we can be able to scan a string looking for the first occurrence of a particular word.

The object code of SCASW is 1010 111w = AF as w = 1.

Instruction Set of 8086 Microprocessor 10.47

REPEAT Instructions The string instructions are used to operate on large blocks of data. To refer a string,

two parameters are required such as (i) starting/end address of the string, and (ii) length of the string. Usually,

starting/end address of the string is represented by DS:SI and the length of a string is stored as count in the

CX register. After each iteration, the incrementing or decrementing of the pointer (SI or DI) depends upon the

direction flag (DF) and the counter is decremented by one. To perform the string instructions repeatedly, REP

(repeat) instructions are used. Hence the string instruction with the REP prefix is executed repeatedly until the

CX register becomes zero. If CX becomes zero, the execution proceeds to the next instruction in sequence.

The most commonly used REP instructions are REP (repeat), REPE (repeat while equal), REPZ (repeat while

zero), REPNE (repeat while not equal), and REPNZ (repeat while not zero) which are explained below.

REP / REPE / REPZ (Repeat string instruction (prefix)) CX (CX-1); until CX=0, Flag affected Z

This is a prefix byte that forces a string operation to be repeated as long as CX is not equal to 0. CX is dec-

remented once for each repetition. The object code of REPZ/REPE instruction is 1111 001Z = F3 as Z = 1.

REPNE / REPNZ (Repeat string instruction while not zero (prefix)) ZF 0; CX (CX-1);

String Operation repeats while (CX! = 0 and ZF! = 0), Flag affected Z.

This is a prefix byte that keeps a string operation repeating while CX is not zero and Z!=0. The object code

of REPNZ/REPNE instruction is 1111 001Z = F2 as Z = 0.

Example 10.13 Write instruction to move a string of 9 bytes from source address DS:SI to destination

address ES:DI. Assume DS = 4000H, ES = 6000H, SI = 0100H, DI = 0200H.

Sol.

 MOV AX,4000 ; Load 4000H in AX register

 MOV DS,AX ; Load data segment address 4000H

 MOV AX,6000 ; Load 6000H in AX register

 MOV ES,AX ; Load extra segment address 6000H

 MOV CX,0009 ; Store number of data in CX register

 MOV SI,0100 ; SI register is loaded with 0100H

 MOV DI,0200 ; DI register is loaded with 0200H

 CLD ; Clear direction flag DF

 REP MOVSB ; move a string of 9 bytes from source address DS:SI to destination address ES:DI.

10.3.12 Processor Control Instructions

These instructions control the operation of processor and set or clear the status indicators. These instructions

are classified into two types such as flag manipulation instructions and machine control instructions. The flag

manipulation instructions directly change some flags of 8086 processor but the machine control instructions

control the system bus functions.

 The Carry (CF), Direction (DF) and Interrupt (IF) flags can be set or reset directly and the carry flag can be

inverted by these instructions. The DF and IF are processor control bits. DF is used with the string instruc-

tions to change the content of pointer registers. When DF = 0, pointer register (DI) is incremented. When

DF = 1, pointer register (DI) is decremented. The STD (set direction flag) and CLD (clear direction flag)

instructions are used to set or clear this flag. The STI (Set Interrupt Flag) and CLI (clear interrupt flag) are

used to enable or disable maskable interrupts on INTR line. When TF (trap flag) is set, a type 1 interrupt is

generated after execution of each processor instructions. There are no specific instructions to set or reset the

Microprocessors and Microcontrollers10.48

TF. POPF and SAHF instructions, which are termed as data transfer instructions are used to modify flags.

The machine control instructions are HLT, WAIT, NOP ESC and LOCK. Some instructions are specially

used for coprocessors. There are three coprocessors instructions as WAIT, LOCK and ESC. In this section all

processor control instructions are explained.

CLC (Clear the carry flag) CF 0, Flag affected C. The CLC instruction is used the carry flag low.

The object code of CLC instruction is 1111 1000 = F8

CMC (Complement the carry flag) CF ~CF, Flag affected C.

The CMC instruction is used to complement the carry flag. The object code of CMC instruction is 1111

0101 = F5.

STC (Set the carry flag) CF 1, Flag affected C.

The CMC instruction is used to set the carry flag. The object code of STC instruction is 1111 1001 = F9

CLD (Clear direction flag) DF 0, Flag affected: D.

Clear direction flag to 0. When DF = 0, pointer register (SI or DI) is automatically incremented by 1.

The object code of CLD instruction is 1111 1101 = FC.

STD (Set direction flag) DF 1, Flag affected: D.

Sets direction flag to 1. When DF = 1, pointer register (SI or DI) is automatically decremented by 1.

The object code of STD instruction is 1111 1101 = FD.

CLI (Clear interrupt flag) IF 0, Flag affected: IF.

Clears the interrupt enable flag which disables interrupts.

The object code of CLI instruction is 1111 1010 = FA.

STI (Set interrupt flag) IF 1, Flag affected: IF.

Sets the interrupt enable flag which enables interrupts. The object code of STI instruction is 1111 1011 = FB.

HLT (Halt) Flag affected: None.

Halt instruction is used to ask the processor to stop execution. Actually hangs the processor in a series of self-

inflicted NOP’s until an interrupt occurs. The object code of HLT instruction is 1111 0100 = F4.

WAIT (Wait) Flag affected: None.

Causes the processor to wait for completion signal from coprocessor. The object code of WAIT instruction

is 1001 1011= 9B.

LOCK (Lock bus) Flag affected: None.

This instruction is used to avoid any other processors. Actually, locks the bus attached to LOCK pin of device

while a multi-cycle instruction completes The object code of LOCK instruction is 1111 0000 = F0.

NOP (No operation) When NOP instruction is executed, this instruction does not allow the processor

to perform any operation except for incrementing the IP by one. The object code of NOP instruction is 1001

0000 = 90.

TEST The TEST input is examined by a WAIT instruction.

When the WAIT instruction is executed, it holds the operation of processor with the current status till the

logic level on the TEST pin is low. Therefore, the processor remains in idle state and the TEST pin goes low.

Instruction Set of 8086 Microprocessor 10.49

ESC (Escape) The ESC instruction is used as a prefix to the coprocessor instructions. The 8086 processor

put the source operand on the data bus but no operation further takes place. The coprocessor continuously

examined the data bus content and it is activated by ESC instruction and it reads two operands and thereafter

starts execution. The detailed operation is illustrated in the chapter on Coprocessors.

 10.4 8086 INSTRUCTION SET SUMMARY

The 8086 data transfer instructions set summary are shown in Table 10.6a and 10.6b respectively. Table 10.7

shows the 8086 PUSH and POP Instructions set summary. The 8086 Arithmetic instructions set summary is

depicted in Table 10.8 and the 8086 multiplication and division instructions set summary are illustrated in

Table 10.9. Table 10.10 shows Arithmetic Adjust instruction set summary and the 8086 logical instruction

set summary is given in Table 10.11. The 8086 shift and rotate instructions set summary is depicted in Table

10.12 and the 8086 Jump instructions set summary are illustrated in Table 10.13, Table 10.14 shows the 8086

Loop Instruction Set Summary and the 8086 CALL and RETURN instruction set summary is given in Table

10.15. The 8086 string instructions set summary is depicted in Table 10.16 and Table 10.17 shows the 8086

string instruction set summary. The 8086 string instruction set summary is illustrated in Table 10.18 and the

8086 processor control instructions set summary is depicted in Table 10.19.

Table 10.6a 8085 data-transfer instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

MOV destination, source MOV AX, BX AX BX Register to register

 MOV AL, BL AL BL Register to register

 MOV AX, MEMW AL [0100H]; Memory to register

 AH [0101H]

 MOV AL, MEMB AL [0100H] Memory to register

 MOV MEMW, AX [0100H] AL; Register to memory

 [0101H] AH

 MOV MEMB, BL [0100H] BL Register to memory

 MOV MEMW, 2244H [0100H] 44H; Immediate data to memory

 [0101H] 22H

 MOV MEMB, 44H [0100H] 44H Immediate data to memory

 MOV AL, 22H AL 22H Immediate data to register

 MOV AX, 2000H AL 00H; AH 20H Immediate data to register

 MOV DS, AX DS AX General register to

 segment register

 MOV DX, ES DX ES Segment register to

 general register

 MOV ES, MEMW ES [0101H : 0100H] Memory to segment

 register

 MOV MEMW, CS [0101H: 0100H] CS Segment register to

 memory

XCHG destination, source XCHG AX, BX AX BX Exchange the contents of

 XCHG AL, BL AL BL the word or byte source

 XCHG [SI], BX [SI] BL; operand with the destina-

 [SI+1] BH tion operand; none of the

flags are affected.

LAHF LAHF AH FlagsL Copy the low order flag

byte into AH

Microprocessors and Microcontrollers10.50

SAHF SAHF FlagsL AH Copy AH into the low order

flag byte

 IN Accumulator, port IN AL, 01H AL Port 01H Input a byte or word from

 IN AX, 02H AL Port 02H; AH 03H direct I/O ports 00H to

FFH.

 IN AL, DX AL Port DX Input a byte or word from

 IN AX, DX AL Port DX; indirect I/O ports 0000H

 AH Port DX + 1 to FFFFH; the port address

is in DX; None of the flags

are affected

OUT Port, accumulator OUT 01H, AL Port 01H AL Output a byte or word

 OUT 02H, AX Port 02H AL; to direct I/O ports 00H

 Port 03H AH to FFH

 OUT DX, AL Port DX AL Output a byte or word

 OUT DX, AX Port DX AL; to indirect I/O ports

 Port DX+1 AH 0000H to FFFFH; the port

address is in DX; The flags

are not affected.

Table 10.6b 8086 data transfer instruction set summary

Opcode Operand Mnemonics Symbolic Operation Comments

LEA destination, source LEA DX, MEMB BL 00; BH 01H The effective address

of the source operand

is transferred to the

destination operand; the

flags are not affected

LDS destination, source LDS BX, DWORD BL [SI]; BH[SI+1]; Transferred 32-bit

 PTR[SI] DS [SI+3:SI+2] pointer variable from

LES destination, source LES BX, DWORD BL [SI]; the source operand in

memory to the desti-

 PTR[SI] BH [SI+1]; nation register and

 ES [SI+3:SI+2] register DS or ES; none of

 the flags are affected

 XLAT AL [BX+AL] Replace the byte in Al

 with the byte from the 256

byte lookup table begin-

ning at [BX]; AL is used as

an offset into this table; The

flags are not affected

MEMB = 0100 is used to locate a byte in data segment, MEMW= 0100 is used to locate a word in data segment

Table 10.7 8086 PUSH and POP instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

PUSH Source PUSH BX SP SP – 2; Decrement SP by 2

 [SP + 1] BH; and transfer the word

 [SP] BL from the source ope-rand to

Instruction Set of 8086 Microprocessor 10.51

the top of the

 PUSH DS SP SP – 2; stack pointed by SP

 [SP + 1: SP] DS; and SS

 PUSH [DI + 5] SP SP – 2;

 [SP + 1] [DI + 6];

 [SP] [DI + 5]

POP Destination POP BX BL [SP]; BH [SP + 1]; Increment SP by 2 and

 SP SP + 2 transfer the word from the

 POP DS DS [SP + 1: SP]; top of the stack pointed by

 SP SP + 2 SP and SS to the destina-

 POP [DI + 5] [DI + 6] [SP + 1]; tion operand

 [DI + 5] [SP];

 SP SP + 2

PUSHF None PUSHF SP SP – 2; Push the 16-bit flag word

 [SP + 1: SP] Flags; onto the top of stack

POPF None POPF Flags [SP + 1: SP]; Pop the top of the stack

 SP SP + 2 into the 16-bit flag word

Table 10.8 8086 arithmetic instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

ADD destination, source ADD SI, AX SI SI+AX Substitute the destination

 ADD [BX], CL [BX] [BX]+CH byte or word with the sum

 ADD DI, 4000H DI DI+4000H of the source and destina-

 ADD MEMW, 4000H [0101H:0100H] tion operands; all flags are

 [0101H:0100H]+ 4000H updated

ADC destination, source ADC SI, AX SI SI +AX+ CF Replace the destination

 ADC [BX], CL BX] [BX]+CL+ CF byte or word with the sum

 ADC DI, 4000H DI DI+4000H+ CF of the source and destina-

 ADC MEMW, 4000H [0101H:0100H] tion operands plus the

 [0101H:0100H]+4000H +CF carry; all flags are updated

SUB destination, source SUB SI, AX SI SI-AX Substitute the destination

 SUB [BX], CL [BX] [BX]-CL byte or word with the

 SUB DI, 4000H DI DI-4000H difference between of

 SUB MEMW, 8000H [0101H:0100H] destination operands and

 [0101H:0100H]-4000H source operand; all flags

 are updated

SBB destination, source SBB SI, AX SI SI-AX-CF Replace the destination

 SBB [BX], CL [BX] [BX]-CL-CF byte or word with the diff-

 SBB DI, 4000H DI DI-4000H-CF erence between of destina-

 SBB MEMW, 8000H [0101H:0100H] tion operands and source

 [0101H:0100H]-4000H-CF operand plus the carry; all

 flags are updated

INC destination INC CL CL CL +1 Increment by one or Add

 INC WORD [DI] [DI+ 1:DI] [DI+1:DI]+1 one the byte or word des

 INC MEMBS [0100H] [0100H]+1 tination operand; store the

 result in the destination

 operand; all flags except

 CF are updated.

Microprocessors and Microcontrollers10.52

DEC destination DEC CL CL CL -1 Subtract one from byte or

 DEC WORD [DI] [DI+ 1:DI] [DI+1:DI]-1 word destination operand;

 DEC MEMB [0100H] [0100H]-1 store the result in the des-

 tination operand; all flags

 except CF are updated.

NEG destination NEG AL AL 0 - AL Find the 2’s complement

 NEG WORD [DI] [DI+ 1:DI] 0 -[DI+1:DI] of the byte or word desti-

 NEG MEMB [0100H] 0- [0100H] nation operand; all flags

 except CF are updated.

CMP destination CMP AL, BL AL-BL; update flags Subtract the byte or word

 CMP [DI],BX [DI+1:DI]-BX; update flags source operand from the

 CMP MEMW, 4000H [0101H:0100H]-4000H; similar destination oper-

 update flags and; the operands remain

 CMP DI,4000H DI-4000H; update flags unchanged; all flags are

 updated.

Table 10.9 8086 multiplication and division instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

MUL source MUL BL AX AL × BL Unsigned multiplication

 (Unsigned multiplication) of the source operand byte

 MUL BX DX: AX AX × BX or word and the accumu

 (Unsigned multiplication) lator; results are stored in

 MUL [BX] AX AL × [BX] AX; Double word results

 (Unsigned multiplication) are stored in DX: AX, if

 MUL MEMW DX:AX AX × [0101H:0100H] the result cannot be stored

 (Unsigned multiplication) in a single word CF and

 OF are set; all other flag

 are undefined

IMUL source IMUL BL AX AL × BL Its operation is same as

 (signed multiplication) MUL. The source operand

 IMUL BX DX: AX AX × BX is limited to –128 to +127

 (signed multiplication) for byte multiplication

 IMUL [BX] AX AL × [BX] and –32768 to +32767

 (signed multiplication) for word multiplication.

 IMUL MEMW DX:AX AX × [0101H:0100H] The CF and OF are set if

 (signed multiplication) the result cannot be rep-

 resented in the low order

 register; then the sign bit is

 extended to the high order

 register and the other flags

 are undefined

 DIV source DIV BL AX AL / BL Unsigned division of

 (Unsigned division) the accumulator and the

 DIV BX DX: AX AX / BX source operand byte or

 (Unsigned division) word; the result is stored

 DIV [BX] AX AL / [BX] in AL and the remainder

 (Unsigned division) is stored in AH; for word

 DIVL MEMW DX:AX AX / [0101H:0100H] divisors the result is stored

Instruction Set of 8086 Microprocessor 10.53

 (Unsigned division) in AX with remainder in

DX; when the quotient

exceeds the capacity of its

destination register (AL or

AX), a type 0 interrupt is

generated; and all flags are

not affected.

IDIV source DIV BL AX AL / BL Its operation is same as

 (signed division) DIV; the source operand

 DIV BX DX: AX AX / BX is limited to –128 to + 127

 (signed division) for byte division and

 DIV [BX] AX AL / [BX] –32768 to +32767 for

 (signed division) word division

 DIVL MEMW DX:AX AX / [0101H:0100H]

 (signed division)

Table 10.10 8086 arithmetic adjust instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

DAA none DAA If AL.0F >09 or AF = 1, Adjust the content of AL

 then AL AL + 6; AF 1 to a pair of valid packed

 If AL.F0 > 90 or CF= 1, decimal digits though

 then AL AL + 60H; the addition of two valid

 CF 1 packed or unpacked deci-

 mal operands; all flags

 except of are affected

DAS none DAS If AL . 0F > 9 or AF = 1, Adjust the content of AL

 then AL AL - 6; AF 1 to a pair of valid packed

 If AL. F0 > 90 or CF= 1, decimal digits after the

 then AL AL - 60H; subtraction of two valid

 CF 1 packed or unpacked deci-

 mal operands; all flags

 except OF are affected

AAA none AAA If AL. 0F > 9 or AF = 1, then Adjust the content of AL

 AL AL + 6; AF AH + 1 to a single unpacked deci-

 AF 1; CF AF; mal number following

 AL AL. 0F the addition of two valid

unpacked decimal oper-

ands. The high order half-

byte of AL is zeroed and

AH is incremented by 1; all

flags except AF and CF are

not affected

AAS none AAS If AL . 0F > 9 or AF = 1, Adjust the content of AL

 then AL AL - 6; AF to a single unpacked deci-

 AH -1 AF 1; CF AF; mal number following the

 AL AL . 0F subtraction of two valid

unpacked decimal oper-

ands. The high order

Microprocessors and Microcontrollers10.54

half-byte of AL is zeroed

and AH is decremented by

1; all flags except AF and

CF are not affected

AAM None AAM AH AL/0AH After the multiplication

 AL Remainder of two valid unpacked

 decimal operands, AAM

converts the result in AL to

two valid unpacked deci-

mal digits in AH and AL.

PF, SF, and ZF are affected

AAD None AAD AL (AH × 0AH) + AL Before dividing AX by

 AL 0 a single-digit unpacked,

decimal operand, AAD

converts the two-digit

unpacked decimal number

in AX to a binary number

in AL and 0 in AH. The

quotient will be a valid

unpacked decimal number

in AL and remainder in

AH. PF, SF, and ZF flags

are affected

CBW None CBW If AL > 80H , Before dividing AX by

 then AH 0 a byte operand, CBW

 If AL 7F, then extends the sign of a byte

 AH FFH dividend in AL into AH,

thus converting AL into a

valid signed word in AX;

flags are not affected

CWD None CWD If AX < 8000H, It works as CBW but

 then DX 0 extends the sign of a word

 If AX > 7FFFH, then dividend in AX into double

 DX FFFFH word in DX:AX; flags are

not affected

Table 10.11 8086 logical instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

NOT Destination NOT AX AX AX Complement all bits of

 NOT [SI] [SI] [SI] the byte or word operand;

flags are not affected

AND Destination, AND AX, BX AX AX. BX Perform logical AND

 source AND AL, [SI] AL AL. [SI] operation of the source

 AND AX,0200H AX AX. 0200H and destination byte or

 word operands bit by bit;

the result is stored in the

destination operand; AF is

undefined, all other flags

Instruction Set of 8086 Microprocessor 10.55

are updated

OR Destination, OR AX, BX AX AX + BX Perform logical OR opera

 source OR AL,[SI] AL AL + [SI] tion of the source and des

 OR AX,0200H AX AX+0200H tination byte or word oper

 ands bit by bit; the result

is stored in the destination

operand. AF is undefined,

all other flags are updated

XOR Destination, XOR AX, BX AX AX BX Perform logical exclusive-

 source XOR AL, [SI] AL AL [SI] OR operation of the source

 XOR AX,0200H AX AX 0200H and destination byte or

 word operands bit by bit;

the result is stored in the

destination operand. AF is

undefined, all other flags

are updated

TEST Destination, TEST AX,BX AX. BX; update flags Perform logical AND

 source operation of the source

 TEST AL,[SI] AL. [SI]; update flags and destination byte or

 TEST AX,0200H AX. 0200H; update flags word operands bit by bit:

 the operands remain unch-

 anged; AF is undefined, all

other flags are updated

Table 10.12 8086 shift and rotate instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

SAL/SHL Destination, count SAL AX,1 An+1 An, A15 A14, Shift word or byte operand

 SAL AX,CL A0 0 CF A15 left or right once or CL

times

SAR Destination, count SAR AX,1 An An+1, CF A0, A15 A15 AF is undefined, all other

 SAR AX,CL flags are updated;

SHR Destination, count SHR AX,1 An An+1, CF A0, A15 0 For single-bit shift opera

 SHR AX,CL tion, OF is set if the sign

 of the operand changes

RCL Destination, count RCL AX,1 An+1 An, CF A15, A0 CF Rotate word or byte oper

 RCL AX,CL and left or right once or

 CL times; CF and OF are

 affected; For single-bit

 shift operation, OF is set

 if the sign of the operand

 changes.

RCR Destination, count RCR AX,1 An An+1, A15 CF, CF A0

 RCR AX,CL

ROL Destination, count ROL AX,1 An+1 An, A0 A15, CF A15

 ROL AX,CL

ROR Destination, count ROR AX,1 An An+1, A15 A0, CF A0

 ROR AX,CL

Microprocessors and Microcontrollers10.56

Table 10.13 8086 Jump instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

JMP Near target JMP MEM IP MEM After execution of JMP

 JMP [MEMW] IP [MEMW+1:MEMW] instruction, transfer con

 JMP [BX] IP [BX+1:BX] trol to near target location

 JMP AX IP AX within the segment; the

 addressing mode will be

 direct, memory indirect or

 register indirect

JMP Short target JMP SHORT MEM IP MEM After execution of this

instruction transfer control

to short target location; the

addressing mode will be

direct only

JMP Far target JMP FAR MEMF IP 0003H; CS 9000H After execution of this

 JMP[MEMW] IP [0102H:1001H]; instruction transfer control

 CS [0104H:0103H] to far target location within

 JMP DWORD IP [BX+1:BX]; the segment

 [BX] CS [BX+3:BX+2]

Jcond Short target JNC MEM If CF=0, then IP MEMS After execution of this

instruction transfer control

to the short target address

if the condition is true.

Conditional jumps are pos-

sible only for short targets

JCXZ Short target JCXZ MEM If CX=0, then If CX=0, transfer control

 IP MEMS to the short target address

Table 10.14 8086 loop instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

LOOP Short target LOOP MEM CX CX – 1 Decrement CX register

 If CX 0 , then IP MEM and transfer control to the

short target address if CX

0

LOOPE/ Short target LOOPZ MEM CX CX – 1 Decrement CX register

LOOPZ If (CX 0) . (ZF = 1) , and transfer control to the

 then IP MEM short target address if (CX

 0). (ZF=1; this instruction

affect the flag ZF = 1

LOOPNE/ Short target LOOPNZ CX CX – 1 Decrement CX register

LOOPNZ MEM If (CX 0) . (ZF = 0), and transfer control to the

 then IP MEM short target address if (CX

 0). (ZF = 0); this instruc-

tion affect the flag ZF = 0

Instruction Set of 8086 Microprocessor 10.57

Table 10.15 8086 CALL and RETURN instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

Call Near target CALL MEM SP SP – 2; IP is pushed onto the top

 [SP + 1: SP] IP; of the stack and control

 IP MEM is transferred within the

 CALL SP SP – 2; segment to the near target

 [MEMW] [SP + 1: SP] IP; address

 IP [0101H; 0100H]

 CALL [DI] SP SP – 2;

 [SP + 1: SP] IP;

 IP [DI+ 1: DI]

 CALL DI SP SP – 2;

 [SP + 1: SP] IP;

 IP DI

CALL Far target CALL FAR SP SP – 2; CS and IP are pushed onto

 MEMF [SP + 1: SP] CS; the top of the stack and

 SP SP- 2; control is transferred to the

 [SP+ 1:SP] IP; new segment and far target

 IP 0100H address

 CALL Same as above except:

 [MEMW] CS [0103H : 0102H];

 IP [0101H;0100H]

 CALL Same as above except:

 DWORD [DI] CS [DI +3:DI +2];

 IP [DI + 1: DI]

RET n(near) RET IP [SP + 1: SP]; The word at the top of the

 SP SP+2 stack is popped into IP

 RET 8 IP [SP + 1: SP]; transferring control to

 SP SP+2+8 this new address; RET

 normally used to return

 control to the instruction

 following a near subrou-

tine call; if included, the

optional pop value (n) is

added to SP

RET n(far) RET IP [SP + 1: SP]; As the above except that

 SP SP+2; double word at the top of

 CS [SP + 1: SP]; the stack is popped into IP

 SP SP+ 2; and CS transferring con-

 RET 8 IP [SP + 1: SP]; trol to this new far address

 SP SP+2;

 CS [SP + 1: SP];

 SP SP+ 2 + 8 ;

Microprocessors and Microcontrollers10.58

Table 10.16 8086 string instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

STOSB None STOSB ES:[DI] AL Transfer a byte or word

 If DF = 0, DI DI+1. from register AL to the

 If DF = 1, DI DI-1. string element addressed

by DI in the extra segment;

When DF = 0, increment

DI, otherwise decrement

DI; Flags are not affected

STOSW None STOSW ES:[DI] AL Transfer a word from

 ES:[DI+1] AH. register AX to the string

 If DF = 0, DI DI+2. element addressed by DI

 If DF = 1, DI DI-2. in the extra segment; If DF

= 0, increment DI, else dec-

rement DI; Flags are not

affected

STOS Destination STOS MEMB ES:[MEMB] AL Transfer a byte from regis-

 If DF=0, ter AL to the string element

 MEMB MEMB + 1. addressed by DI in the

 If DF=1, MEMB MEMB -1. extra segment; when DF =

 0, increment MEMB, oth-

 erwise decrement MEMB.

 Flags are not affected

 STOS MEMW ES:[MEMW] AL Transfer a word from

 ES:[MEMW +1] AH. register AX to the string

 If DF=0, element addressed by DI

 MEMW MEMW +2. in the extra segment; if

 If DF=1, MEMW MEMW -2. DF = 0, increment MEMW,

else decrement MEMW.

Flags are not affected

LODSB LODSB AL DS:[SI]. Transfer a byte from the

 If DF=0, SI SI+1. string element addressed

 If DF=1, SI SI-1. by DS:SI to register AL; If

DF = 0, increment SI, else

decrement SI. Flags are not

affected

LODSW LODSW AL DS:[SI]. Transfer a word from the

 AH DS:[SI+1]. string element addressed

 If DF=0, SI SI+2. by DS:SI to register AX; If

 If DF=1, SI SI-2. DF = 0, increment SI, else

decrement SI; Flags are not

affected

LODS Source LODS MEMB AL DS:[MEMB]. Transfer a byte from the

 If DF=0, MEMB MEMB+1. string element addressed

 If DF=1, MEMB MEMB-1. by DS:MEMB to register

AL; When DF=0, incre-

ment MEMB, else decre-

ment MEMB; flags are not

affected

Instruction Set of 8086 Microprocessor 10.59

 LODS MEMW AL DS:[MEMW]. Transfer a word from the

 AH DS:[MEMW+1]. string element addressed

 If DF=0, MEMWDS MEMW+2. by DS: MEMW to register

 If DF=1, MEMW MEMW-2. AX. when DF = 0, incre-

ment MEMW, otherwise

decrement MEMW; flags

are not affected

MOVSB None MOVSB ES:[DI] DS:[SI]. Transfer a byte from the

 If DF=0, string element addressed

 DI DI+1, SI SI+1. by DS:SI to the string ele-

 If DF=1, DI DI-1, SI SI-1. ment addressed by ES: DI;

if DF = 0, increment SI and

DI, else decrement SI and

DI. Flags are not affected

MOVSW None MOVSW ES:[DI] DS:[SI] Transfer a word from the

 ES:[DI+1] DS:[SI+1] string element addressed

 If DF=0, DI DI+2 by DS:SI to the string ele-

 SI SI+2 ment addressed by ES:DI;

 If DF=1, DI DI-2 if DF = 0, increment SI

 SI SI-2. and DI, else decrement

SI and DI. Flags are not

affected

Table 10.17 8086 string instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

MOVS Destination,Source MOVS ES:[MEMBE] DS:[MEMBD]. Transfer a byte from the

 MEMBES If DF=0, string element addressed

 ,MEMBDS MEMBE MEMBE+1 by DS:MEMBD to the

 MEMBD MEMBD+1. string element addressed

 If DF=1, by ES:MEMBE; if DF=0,

 MEMBE MEMBE-1 increment MEMBD and

 MEMBD MEMBD-1. MEMBE, else decrement

MEMBD and MEMBE.

Flags are not affected

MOVS ES:[MEMWE] DS:[MEMWD] Transfer a word from the

 MEMWE, ES:[MEMWE +1] DS: string element addressed

 MEMWD [MEMWD +1] If DF=0, by DS: MEMWD to the

 MEMWE MEMWE +2 string element addressed

 MEMWD MEMWD +2 by ES: MEMWE in the

 If DF=1, extra segment; if DF=0,

 MEMWE MEMWE -2 increment MEMWD and

 MEMWD MEMWD -2. MEMWE, else decrement

MEMWD and MEMWE;

flags are not affected

SCASB SCASB AL - ES:[DI]; Subtract the byte of the

 If DF=0, DI DI+1. string element addressed

 If DF=1, DI DI-1. by ES:DI from AL. if

DF=0, increment DI, else

Microprocessors and Microcontrollers10.60

decrement DI; flags are

updated

SCASW SCASW AX - ES:[DI+1:DI]; Subtract the word of the

 If DF = 0, DI DI+2 string element addressed

 If DF = 1, DI DI-2. by ES:DI from AX; if

DF=0, increment DI, else

decrement DI; flags are

updated

SCAS Destination SCAS MEMBE AL - ES:[MEMBE]; Subtract the byte of the

 If DF = 0, string element addressed

 MEMBE MEMBE +1. by ES: MEMBE from

 If DF=1, MEMBE MEMBE -1. AL; if DF=0, increment

MEMBE, else decre-

ment MEMBE. Flags are

updated

SCAS MEMWE AX - ES:[MEMWE +1: MEMWE]; Subtract the word of the

 If DF=0, MEMWE I MEMWE +2 string element addressed

 If DF=1, MEMWE MEMWE -2. by ES: MEMWES from

AX; if DF=0, increment

MEMWE, else decre-

ment MEMWE; flags are

updated

CMPSB CMPSB DS:[SI] – ES:[DI]; Subtract the byte of the

 If DF=0, DI DI+1 destination string element

 SI SI+1 addressed by ES:DI in the

 If DF=1, DI DI-1 extra segment from byte

 SI SI-1. of the source string element

addressed by DS:SI; if DF

= 0, increment DI and SI,

else decrement SI and DI.

Flags are updated

CMPSW CMPSW DS:[SI+1:SI] – ES:[DI+1 :DI] Subtract the word of the

 If DF=0, DI DI+2 destination string ele

 SI SI+2. ment addressed by ES:DI

 If DF=1, DI DI-2 SI SI-2 from word of the source

string element addressed by

DS:SI; if DF = 0, increment

DI and SI, else decrement

SI and DI; flags are updated

Table 10.18 8086 string instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

CMPS Dest, source CMPS MEMBE, DS:[MEMBD] – ES: Subtract the byte of the

 MEMBD [MEMBDS]; destination string element

 If DF=0 addressed by ES:MEMBE

 MEMBE MEMBE +1 from byte of the source

 MEMBD MEMBD +1 string element addressed

 If DF=1, by DS:MEMBD; if DF=0,

Instruction Set of 8086 Microprocessor 10.61

 MEMBE MEMBE -1 increment MEMBE and

 MEMBD MEMBD -1. MEMBD, else decrement

MEMBD and MEMBE;

flags are updated

 CMPS DS:[MEMWD+1: Subtract the word of the

 MEMWES, MEMWD] – ES: destination string element

 MEMWDS [MEMWE+1 : MEMWE]; addressed by ES:MEMBE

 If DF=0, from word of the source

 MEMWE MEMWE +2 string element addressed

 MEMWD MEMWDS +2. by DS:MEMBD; if DF=0,

 If DF=1, increment MEMBES and

 MEMWE MEMWE -2 MEMBDS, else decrement

 MEMWD MEMWDS MEMBDS and MEMBES;

flags are updated

REP REP STOSB CX CX-1. The string instruction foll-

 Repeat until CX=0 owing the REP prefix is

repeated until CX becomes

to 0

 REP STOSW CX CX-1.

 Repeat until CX=0

 REP MOVSB CX CX-1.

 Repeat until CX=0

 REP MOVSW CX CX-1.

 Repeat until CX=0

REPE/ REPZ SCASB CX CX-1. Repeat the string operation

REPZ Repeat if (ZF=1) and CX 0 if (ZF = 1) and CX 0

 REPZ SCASW CX CX-1. Repeat

 if ZF=1 and CX 0.

 REPZ CMPSB CX CX-1. Repeat

 if ZF=1 and CX 0.

 REPZ CMPSW CX CX-1. Repeat

 if ZF=1 and CX 0

REPNE/ REPNE SCASB CX CX-1. Repeat the string operation

EPNZ Repeat if ZF=0 and CX 0. if (ZF=0) and CX 0

 REPNE SCASW CX CX-1. . Repeat

 if ZF=0 and CX 0

 REPNE CMPSB CX CX-1. . Repeat

 if ZF=0 and CX 0

 REPNE CMPSW CX CX-1. Repeat

 if ZF=0 and CX 0

Table 10.19 8086 processor control instructions set summary

Opcode Operand Mnemonics Symbolic Operation Comments

STC None STC CF 1 Set carry flag

CLC None CLC CF 0 Clear carry flag

CMC None CMC CF CF Complement carry flag

STD None STD DF 1 Set direction flag

CLD None CLD DF 0 Clear direction flag

Microprocessors and Microcontrollers10.62

STI None STI IF 1 Set interrupt flag

CLI None CLI IF 0 Clear interrupt flag

HLT None HLT None Halt

WAIT None WAIT None Wait state when TEST = 1
LOCK Instruction LOCK MOV AX,BX None LOCK = 0 used to prevent

coprocessors from access-

ing the bus during execu-

tion of instruction

NOP None NOP None No operation

ESC Number, source ESC FF, MEMW Data bus [MEMW] Put the contents of the

memory source operand

on the data bus and execute

NOP instruction

 10.1 Define addressing modes of 8086 processors. What are the different addressing modes of 8086

microprocessors? Explain each addressing mode with examples.

 10.2 Write the procedure to determine physical address for the following instructions as given below:

 (i) MOV AX, [SI+03] (ii) MOV AL, CS:[BX+0400]

 (iii) MOV AX, [3000] (iv) MOV AL, [BX+SI+22]

 Assume CS = 4000H, IP = 2300, SI = 02300 and DS = 5000.

 10.3 What is an instruction format? What are the types of instructions of 8086 microprocessors based on

format?

 10.4 Write the classification of 8086 instructions based on functions. Give a list of examples of different

instructions.

 10.5 Write the difference between the following instructions:

 (i) MUL and IMUL (ii) DIV and IDIV (iii) JUMP and LOOP (iv) Shift and Rotate

 10.6 Explain the execution of data transfer instructions with suitable examples.

 10.7 Explain the difference between FAR CALL and NEAR CALL instructions.

 10.8 Explain operation of the following instructions:

 (i) ADD AX, [BX] (ii) INC SI (iii) MUL BX (iv) IMUL DX

 (v) NEG AL (v) DEC DI (vi) XLAT (vi) PUSH and POP

 10.9 Write the difference between following instructions:

 (i) CBW and CWD (ii) MOV reg, immediate and LEA reg, address

 (iii) DEC AX and SUB AX, 1 (iv) RCL and ROL (v) IRET and RET (far)

 10.10 Explain the operation of the LOOP, LOOPE/LOOPZ, and LOOPNE/LOOPNZ instructions. What

does the INT n instruction push onto the stack that the CALL FAR instruction does not? What is the

JCXZ instruction typically used for?

 10.11. Write instructions to perform the following operations:

 (i) Copy content of BX to a memory location in the data segment with offset 0234H

 (ii) Increment content of CX by 1

Instruction Set of 8086 Microprocessor 10.63

 (iii) Multiply AX with 16 bit data 2467H

 (iv) Rotate left the content of AL by two bits

 10.12 Write results after execution of following instructions:

 (a) MOV AL, 22; MOV BL, 44; ADD AL, BL;

 (b) MOV AX, 1002; MOV BX, 44; MUL AX, BL;

 (c) MOV CL, 34; MOV AL, FF; SUB AL, CL ;

 (d) MOV AX, 8796; MOV CL, 2; ROR AX, CL;

 10.13 Which registers are affected by the MUL, IMUL, DIV and IDIV instructions?

 10.14 Which of the shift, rotate and logical instructions do not affect the zero flag?

 10.15 Why does the SAR instructions always clear the overflow flag?

 10.16 What does the NEG instruction do? What instruction is most similar to CMP? What instruction is

most similar to TEST?

 10.17 Give a list of processor control instructions and explain briefly.

 10.18 What is the procedure? What are the different types of procedure in 8086? Discuss each type of pro-

cedure with examples.

 10.1 What is the addressing mode of instruction MOV AX, [BX]?

 (a) Register direct (b) Register indirect

 (c) Immediate addressing (d) Indirect addressing

 10.2 What is the addressing mode of instruction MOV AX, [BX+SI+06]?

 (a) Index addressing (b) Base addressing

 (c) Base index addressing (d) Base index displacement addressing

 10.3 Which of the following instructions is immediate addressing?

 (a) MOV AX, [2000] (b) MOV BX, 2000 (c) MOV AX, [SI] (d) MOV AX, BX

 10.4 Which of the following instructions is based with 16-bit displacement addressing?

 (a) MOV AX, [BX + 06] (b) MOV AX, [BP + 2000]

 (c) MOV AX, [BP + 06] (d) MOV AX, [BP]

 10.5 Which of the following instructions is a four-byte instruction?

 (a) MOV AX, 2345 (b) MUL BX (c) DIV CL (d) ADD AX, [BP + 0200]

 10.6 Which of the following instructions is a six-byte instruction?

 (a) MOV [BX + DI + 0200], 2345 (b) MOV [SI], 5665

 (c) DIV CL (d) ADD BX, [BP + 0200]

 10.7 Which of the following instructions is a logical instruction?

 (a) DIV AB (b) TEST (c) CALL (d) AAM

 10.8 Which of the following instructions affects a carry flag?

 (a) RCR (b) MUL AB (c) JZ (d) INC AX

 10.9 Which of the following instructions is an arithmetic instruction?

 (a) DIV AB (b) ROR (c) STI (d) WAIT

Microprocessors and Microcontrollers10.64

 10.10 The example of a string instruction is

 (a) MOV DX, [SI] (b) XLAT (c) MOVSB (d) AAD

 10.11 2’s complement instruction is

 (a) NEG (b) NOT (c) CMP (d) CMC

 10.12 Which of the following instructions is used to read string of BYTES and send it to other memory

location?

 (a) SCASB (b) MOVSB (c) LODSB (d) LODSB

 10.13 LODSB instruction is used in which of the following register combinations?

 (a) ES:SI (b) ES:DI (c) DS:SI (d) DS:DI

 10.14 Coprocessor control instructions are

 (a) WAIT, LOCK, ESC (b) HALT, STC, CLC

 (c) ROR, RCR, ROL (d) DAA

 10.15 When PUSH instruction is executed, initially

 (a) Upper byte of data is stored on stack and SP = SP – 1

 (b) Upper byte of data is stored on stack and SP = SP + 1

 (c) Lower byte of data is stored on stack and SP = SP – 1

 (d) Lower byte of data is stored on stack and SP = SP + 1

 10.16 A procedure can be called using the instruction

 (a) JMP (b) CALL (c) RET (d) INT n

 10.17 To return a procedure, we use the instruction

 (a) JMP (b) CALL (c) RET (d) INT n

 10.18 Direction flag is used with which of the following instructions?

 (a) Data transfer (b) Branch control instructions

 (c) Spring instructions (d) Logical instructions

 10.1 (b) 10.2 (d) 10.3 (b) 10.4 (b)

 10.5 (d) 10.6 (a) 10.7 (b) 10.8 (a)

 10.9 (a) 10.10 (c) 10.11 (a) 10.12 (b)

 10.13 (c) 10.14 (a) 10.15 (a) 10.16 (b)

 10.17 (c) 10.18 (c)

CHAPTER

11
Assembly-Language Program of

the 8086 Microprocessor

 11.1 INTRODUCTION

Machine-language programming is coding of a program in terms of 0 and 1. During this programming, the

memory control is directly in the hands of the programmer and the programmer is to manage the memory of

the system more efficiently. But the programming, coding and memory management techniques in machine

language programming are very tedious. As the programmer writes all functions in terms of 0 and 1, the pos-

sibility of human errors is more. To write and understand the programs, a programmer should have thorough

knowledge about the architecture and instruction set of processor. The disadvantages of machine-language

programming are given below:

Writing a program is very complicated and time consuming

Possibility of errors in programming are more and humans can only feed the program byte by byte

into system

Debugging the program is very difficult

Only program designer is to understand the program; therefore, this program is not user friendly

 Assembly-language programming is comparatively simpler than machine-language programming. In the

assembly-language programs, the instruction mnemonics are used to write programs directly. These pro-

grams are more readable and understandable than that of machine-language programs. In the assembly lan-

guage, the address values and the constants can be identified by labels. As the labels are clear, the program

becomes more understandable. The tedious byte handling and manipulations are reduced as address and

constants are available inside the program and it is not required to remember them. However, different logi-

cal segments and routines may be assigned with the labels rather than the different addresses. The memory

control feature of machine-language programming is left unchanged by providing storage define facilities in

assembly-language programming. The documentation facility is now available in assembly language.

 An assembler is a program which converts any assembly-language program into the equivalent machine

codes. During conversion, firstly the address of each label is initialised which also substitutes the values for

each of the constants and variables. Thereafter, the assembler generates the equivalent machine code for all

mnemonics and data. The assembler also generates information about syntax errors in the program but the

Microprocessors and Microcontrollers11.2

assembler cannot find out any logical errors in the program. The advantages of assembler are as follows:

Writing programs in assembly language is comparatively easier than machine-level language

programming.

The chances of errors during editing a program is less as mnemonics are used to write program.

It is very easy to enter the program in assembly language.

The debugging is also easier than machine-code programming as mnemonics are purpose suggestive.

This program is more user friendly as the constants and memory address locations can be labelled.

MACROS makes the task of programming easier.

After execution, the results of programs are stored in more user-friendly form.

Flexibility of programming in assembly-language programming is more than in machine-language

programming.

 In any assembly language program, the programmer should mention constants, variables, logical names of

the segments, types of the different routines and modules, and end of file. These types of helps are given to the

assembler using a predefined alphabetical strings called assembler directives. Actually, assembler directives

help the assembler to understand the assembly-language programs properly and help to generate the machine

codes. Usually, the following directives are commonly used in the assembly-language programming.

 DB: Define Byte

 DW: Define Word

 DQ: Define Quadword

 DT: Define Ten Bytes

 ASSUME: Assume Logical Segment Name

 END: End of Program

 ENDP: End of Procedure

 ENDS: End of Segment

 EQU: Equate

 LABEL: Label

 LENGTH: Byte Length of a Label

 NAME: Logical Name of a Module

 OFFSET: Offset of a Label

 ORG : Origin

 PROC: Procedure

 SEG: Segment of a label

 To edit an assembly-language program on an IBM PC in the DOS operating system, different text editors

such as Norton’s editor (NE.Com), Microsoft assembler (MASM.EXE), Linker (LIINK.EXE) and Debugger

(DEBUG.EXE) are commonly used. In this section the basic operations of these editors are explained briefly.

11.1.1 Norton’s Editor

To start Norton’s editor, type NE after C and enter the directory.

C > NE

 After pushing the Enter key, Norton’s editors opening page will be displayed as shown in Fig. 11.1. Then

type the file name. For example, assume the file name is ABC and the screen display is shown in Fig. 11.2.

When any key is pressed, the ABC.ASM file will be opened as depicted in Fig. 11.3. After that, enter text

to edit the assembly-language program. A sample program ABC.ASM is edited to subtract two numbers as

Assembly-Language Program of the 8086 Microprocessor 11.3

shown in Fig. 11.4. If we want to open a file directly, the command is C>NE ABC.ASM. Then ABC.ASM

file will be opened and displayed on the CRT screen. After editing the program or modifying the existing

program, the F3-E command is used to save the program and exit from Norton’s Editor by using the F3-Q

command.

Fig. 11.1 Norton’s Editor’s opening page

Fig. 11.2 Norton’s Editor with file name ABC.ASM

Fig. 11.3 Norton’s Editor opens a file ABC.ASM
Fig. 11.4 Program for subtraction of

two numbers in Norton’s Editor

11.1.2 MASM Editor

The Microsoft assembler MASM is a most popular assembler and it is very easy to use. To enter an assembly-

language program, the command is

C > MASM ABC

or

C > MASM ABC.ASM

 When the above commands are executed, Fig. 11.5 will be displayed on the screen. If we enter the com-

mand C > MASM , Fig. 11.6 will be displayed as the opening page of MASM.

 In Fig. 11.6, the source filename should be typed in the source filename with or without extension.ASM.

Then valid file name will be accepted if the Enter key is pressed. Thereafter, enter the .OBJ file name which

creates the object file of the assembly language program. The listing file is identified by the source filename

and an extension .LST. This file consists of LEVELS, OFFSET ADDRESS, MNEMONICS, DIRECTIVES

and other necessary assembly-language related information. The cross reference filename is also entered in

the same way as the listing file. This file is used for debugging the source program. The .CRF file contains

information such as size of the file in bytes, number of labels, list of labels, and routines of the source pro-

gram. After entering the cross-reference file name, the assembly-language process starts. Then syntax errors

of the program are displayed using error code and the corresponding line number, if the program has any

syntax errors. When the programmer removes all syntax errors, the assembly process will be completed

Microprocessors and Microcontrollers11.4

successfully. After successful assembly process, the .OBJ, .LST and .CRF files, are generated and these files

can be used by the linker programmer to link the object modules and generate an executable (.EXE) file.

11.1.3 LINK

The LINK.EXE file links the different object modules of the source program and function library routines

to generate the executable code of the source program. The input to the linker is the .OBJ file. The linker

program is executed by the command

C>LINK or C>LINK ABC.OBJ

and the display on the screen is shown in Fig. 11.7.

Fig. 11.5 MASM Opening Page

C>MASM ABC
Microsoft Macro assembler Version 5.10
Copyright Microsoft Corp. 1981,1989

Object filename [FILE.OBJ]:
List filename [NUL.LST]:
List filename [NUL.CRF]:

Fig. 11.6 MASM Opening Page

C>MASM
Microsoft Macro assembler Version 5.10
Copyright Microsoft Corp. 1981,1989

Object filename [.ASM]:
List filename [FILE.OBJ]:
List filename [NUL.LST]:
List filename [NUL.CRF]:

Fig. 11.7 Link command screen display

C>LINK
Microsoft Linker Version 3.64
Copyright Microsoft Corp. 1981,1989

Object Module [.OBJ]:
List File [.EXE]:
List filename [NUL.LST]:
Libraries [LIB]:

 11.2 ASSEMBLY-LANGUAGE COMMANDS

DEBUG.COM is a program which allows the programmer to write, execute, debug and trouble shooting of

assembly language programs. This command is used to examine the contents of registers and memory. It

can also be used to execute a program, but one instruction at a time. To start DEBUG, it is required to type

DEBUG after DOS prompt as given below:

C: \>DEBUG

 After typing the above command, press the ‘Enter’ key. Then DEBUG command executed and a hyphen

which is known as DEBUG prompt will be displayed as given below:

C: \>DEBUG

-

 DEBUG has a number of valid commands which are used to write, execute and debug programs. Each

Assembly-Language Program of the 8086 Microprocessor 11.5

command is designed to perform an important task. There are commands to assemble and execute programs,

display the contents of registers and memories, to run a program in single step mode, etc. Generally DEBUG

command is represented by a one-letter symbol such as A for assemble, E for entry, D for display, etc.

11.2.1 A (Assemble Command)

The A command is used to enter mnemonics of an assembly-language program and convert it into machine

codes. When A command is executed, the machine codes are generated and directly stored in the memory.

 After getting DEBUG prompt the starting address is initialized as - A address

 Assume the starting offset address as 1000H, then the assemble can be written as

- A 1000

 When the above instruction is executed, the display on the screen will be

17DA : 1000

 Here, 17DA is the content of Code Segment (CS) register and the offset address will be 1000H.

 When offset is not written after A command, the DEBUG command will be executed assuming the offset

address 1000H.

 To edit some instructions, write instruction after address as given below:

Example 11.1 To load 16-bit data 2045H in AX register and another 16-bit data 6545 in BX register.

 C: \>DEBUG

 - A 1000

 17DA : 1000 MOV AX,2045

 17DA : 1003 MOV BX,6545

 17DA : 1006 HLT

 17DA : 1007

11.2.2 U (Un-assemble Command)

The U command is used to disassemble machine codes of specified memory locations and generates cor-

responding mnemonics and machine codes. This command displays machine codes and mnemonics on the

screen. The default register is CS : IP and the general format is

-U address range

 In Example 11.1, the program is written from 17DA: 1000 to 17DA : 1006. To display machine codes on

the screen the U command can be written as follows:

-U 1000 1006

After execution the above command, the display on screen will be as given below:

17DA : 1000 B8 45 20 MOV AX,2045

17DA : 1003 BB 45 65 MOV BX,6545

17DA : 1006 F4 HLT

-

 When the U command is applied without specifying any address range, DEBUG un-assembles the first 32

bytes starting from the address which is located by the content of IP register or it un-assembles 32 bytes since

last U. The default register for U command is the CS:IP. For example, the display is shown on the screen after

execution of U command without mentioning address.

Microprocessors and Microcontrollers11.6

 Assume the following instructions are stored in the memory locations from 17DA: 1000 to 175A:1020

C: \>DEBUG

- A 1000

17DA : 1000 MOV AX, 2045 ; Load 2045H in AX register

17DA : 1003 MOV BX, 6545 ; Load 6545H in BX register

17DA : 1006 MOV CX, 1234 ; Load 1234H in CX register

17DA : 1009 MOV DX, 1234 ; Load 1234H in DX register

17DA : 100C ADD AX, BX ; Add content of BX with AX

17DA : 100E ADD AX, CX ; Add content of CX with AX

17DA : 1010 ADD AX, DX ; Add content of DX with AX

17DA : 1012 MOV SI, 0100 ; Store 0100 in SI register

17DA : 1015 MOV DI, 0100 ; Store 0100 in DI register

17DA : 1018 NEG AX ; 2’s complement of AX

17DA : 101A NEG BX ; 2’s complement of BX

17DA : 101C NEG CX ; 2’s complement of CX

17DA : 101E NEG DX ; 2’s complement of DX

17DA : 1020 HLT

17DA : 1021

 If we execute the –U 1000 command is executed, the display on screen will be

-U 1000

17DA : 1000 B8 45 20 MOV AX, 2045

17DA : 1003 BB 45 65 MOV BX, 6545

17DA : 1006 B9 34 12 MOV CX, 1234

17DA : 1009 BA 34 12 MOV DX, 1234

17DA : 100C 01 D8 ADD AX, BX

17DA : 100E 01 C8 ADD AX, CX

17DA : 1010 01 D0 ADD AX, DX

17DA : 1012 BE 00 01 MOV SI, 0100

17DA : 1015 BF 00 02 MOV DI, 0100

17DA : 1018 F7 D8 NEG AX

17DA : 101A F7 DB NEG BX

17DA : 101C F7 D9 NEG CX

17DA : 101E F7 DA NEG DX

11.2.3 R (Register Command)

The register command R can be used to display the contents of one or more registers. This instruction also

displays the status of the flags. The general format of the R command is

-R register name

For example, the execution of –R AX command, the DEBUG displays the content of AX register as follows:

C: \>DEBUG

- A 1000

Assembly-Language Program of the 8086 Microprocessor 11.7

17DA : 1000 MOV AX, 2045

17DA : 1003 MOV BX, 6545

17DA : 1006 HLT

17DA : 1007

-GCS:1006

AX=20445 BX=6545 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=0100 NV UP EI PL NZ NA PO NC

17DA : 1006 F4 HLT

-R AX

 AX 2045

:

 When the name of a register is given after R command, the name and the content of that register is dis-

played in the next line. A colon is then displayed as a prompt in the subsequent line. If a new value after the

colon is typed and Enter key is pressed for execution, the content of register will be changed. After, that the

debug prompt is displayed. Again, to see the content of register, write the R command with register name as

given below.

-R AX

 AX 2045

:5000

AX 5000

:

 Usually, the R command is given without a name of a register; the DEBUG displays the contents of all

registers including status flags.

-R

AX=5000 BX=6545 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=0100 NV UP EI PL NZ NA PO NC

17DA : 1006 F4 HLT

Status Flags The status flags with their codes for RESET and SET are illustrated in Table 11.1. F is the

flag register-name to visualise the status of flags. When -R F command is executed, the status of the flags are

displayed in the beginning of the next line. At the end of the list of status of the flags, a hyphen (-) is displayed

as given below. If we want to change status flags, after the hyphen type the desired flags in any order as per

requirement, and then press Enter key.

-R F

 After execution, the flag register will display the format as given below:

NV UP EI PL NZ NA PO NC -

 If we want to change NC to CY, enter desired status of the desired flags after the hyphen as given below:

NV UP EI PL NZ NA PO NC - CY

 To check the changed condition after given R F command, we execute -R F command and the display on

the screen will be

-R F

Microprocessors and Microcontrollers11.8

OV UP EI NG ZR AC PO CY -

Table 11.1 Status flags for RESET and SET

 Name of the flag Reset Set

 Overflow NV OV

 Direction UP DN

 Interrupt DI EI

 Sign PL NG

 Zero NZ ZR

 Auxiliary Carry NA AC

 Parity PO PE

 Carry NC CY

11.2.4 G (Go Command)

The Go command is used to execute any program. The general format of the G command is G = address. The

equal sign (=) put before the specified address which indicates the starting address of program. The default

register for the G command is the CS. Assume a program for addition of two 16-bit numbers which are loaded

in AX and BX registers written from 17DA : 1000 as given below:

C: \>DEBUG

- A 1000

17DA : 1000 MOV AX, 2000

17DA : 1003 MOV BX, 3000

17DA : 1006 ADD AX, BX

17DA : 1008 HLT

17DA : 1009

-G=1000

Program terminated normally

 To execute the above program and to visualise the results, we should write the command as follows:

-G 1008

 In the above command, 1008 is the end address of the program.

 Then the program will be starting from the address CS: 1000 and the contents of all registers and flags will

be displayed as given below:

AX=5000 BX=3000 CX=0000 DX=0000 SP=0004 BP=20CD SI=0000 DI=0000

DS=17DA ES=17DA SS=9FFF CS=17DA IP=1008 NV UP EI PL NZ NA PE NC

17DA:1008 F4 HLT

 Sometimes, the GCS command is used to execute the program. The general format of GCS command is

-GCS: end address of program. The example of GCS command for execution of the above program is given

below:

C:\>DEBUG

-A1000

17DA:1000 MOV AX, 2000

17DA:1003 MOV BX, 3000

Assembly-Language Program of the 8086 Microprocessor 11.9

17DA:1006 ADD AX, BX

17DA:1008 HLT

17DA:1009

-GCS:1008

 After execution, the result will be displayed as given below:

AX=5000 BX=3000 CX=0000 DX=0000 SP=0004 BP=20CD SI=0000 DI=0000

DS=17DA ES=17DA SS=9FFF CS=17DA IP=1008 NV UP EI PL NZ NA PE NC

17DA:1008 F4 HLT

11.2.5 T (Trace Command)

The trace command T is used to run a program in single-step mode. The default register is the CS:IP and the

general format of the trace command is

-T = address

 To test the trace command, we should write a simple program as given below:

C:\>DEBUG

-A1000

17DA:1000 MOV AX, 2456

17DA:1003 MOV BX, 6000

17DA:1006 ADD AX, BX

17DA:1008 HLT

17DA:1009

 To execute the above program in single-step mode, enter the command

-T = 1000

 When we push the enter key after T=1000 command, the first instruction of the program will be executed

and the result will be displayed on the screen as given below:

AX=2456 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=1003 NV UP EI PL NZ NA PO NC

17DA:1003 BB0060 MOV BX, 6000

 The last line of the display is the next instruction which will be executed. To execute the next instruction,

the T command is used in the following format as given below:

-T

AX=2456 BX=6000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=1006 NV UP EI PL NZ NA PO NC

17DA:1006 01D8 ADD AX, BX

-

 When the T command is entered and the enter key is pressed, 17DA:1003 address instruction MOV BX,

6000 will be executed by default as the content of IP is 1003 and the results are displayed as given above.

 To execute any instruction of the program use T = address command. For example, if we want to execute

the third instruction at the memory location 17DA:1006 ADD AX, BX, we should write the following

command:

Microprocessors and Microcontrollers11.10

 -T=1006

 AX=8456 BX=6000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

 DS=17DA ES=17DA SS=17DA CS=17DA IP=1008 OV UP EI NG NZ NA PE NC

 17DA:1008 F4 HLT

 -

 Before typing the T command, the contents of AX and BX register are 2456 and 6000 respectively.

After execution T command, the third instruction will be executed and result will be stored in AX register as

shown above.

 If want to execute more than one instruction by a single command in single-step mode, the common format

of the T command is

-T = address location value

 Here, the address location is the starting address of first instruction from which execution will be started

and value = n, the number of instruction to be executed by single command in single-step mode. Suppose we

want to execute the first and second instructions of a program as illustrated by a single command in single-

step mode, we write the command as given below:

C:\>DEBUG

-A 1000

17DA:1000 MOV AX,1234

17DA:1003 MOV BX, 3456

17DA:1006 ADD AX, BX

17DA:1008 HLT

17DA:1009

-T=1000 02

AX=1234 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=1003 NV UP EI PL NZ NA PO NC

17DA:1003 BB0060 MOV BX, 6000

AX=1234 BX=3456 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=1006 NV UP EI PL NZ NA PO NC

17DA:1006 01D8 ADD AX, BX

-

 After applying the T=1000 02 command, the first instruction 17DA:1000 MOV AX, 1234 will be executed

and the result will be displayed on screen. After that the second instruction 17DA:1003 MOV BX, 3456 will

be executed and again the result will be displayed on screen as shown above.

11.2.6 D (Display Command)

The D command is used to display the contents of specified memory locations. The default register is DS. The

general format of the D command is

-D or -D address

C:\>DEBUG

-A1000

17DA:1000 MOV AX, 2000

Assembly-Language Program of the 8086 Microprocessor 11.11

17DA:1003 MOV BX, 3000

17DA:1006 HLT

17DA:1007

-D

 The display on screen will be from starting address 17DA:0100 by default as given below:

17DA:0100 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:0170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

 Each line can display about 16 bytes. There is a hyphen between the eighth and ninth bytes.

When the –D 1100 is executed, the following data will be displayed on screen

17DA:1100 B8 00 20 BB 00 30 F4 00-00 00 00 00 00 00 00 00

17DA:1110 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1120 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1130 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1140 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1150 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1160 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

17DA:1170 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

The other format of D command is

-D address range

The D command incorporating address range is written as D 1100 1105, the display on screen will be

17DA:1100 B8 00 20 BB 00 30 F4

 When we write the D command with starting address, the DEBUG command is executed and by default

80 (hex) bytes or 128 bytes (80 hex) starting from the given address will be displayed. The command D 0100

will display 128 bytes starting from the memory location DS:0100.

11.2.7 E (Enter Command)

The E command is used to enter machine codes or data. This instruction operates with the register DS by

default. This command can be used in the following ways such as

Sequentially enter data or machine codes

Replace data or machine codes of certain memory locations

The common format to enter data or machine codes sequentially is

-E address list

 When the data are to be entered in DS segment starting from the offset address 0500, the command will

be written as

-E 0500

Microprocessors and Microcontrollers11.12

 After writing the E command, data should be entered in the same line with one space between two adjacent

data as given below:

-E 0500 01 02 03 04 05 06 07 08

 Here data are 01 02 03 04 05 06 07 08 and the starting address is DS:0500. After execution the above

command, data will be entered into memory location DS:0500 to DS:0507. The content of DS:0500 is 01 and

the content of DS:0507 is 08.

 When we want to replace data in DS:0400, we should write the command as E address. The example of

replacing command is given below:

-E 0400

17DA:0400 00.12 00.34 00.56 00.78 00.99 00.AA 00.BB 00.CC

-E 0400

17DA:0400 12.01 34.02 56.03 78.04 99.05 AA.06 BB.07 CC.08

-E 0400

17DA:0400 01. 02. 03. 04. 05. 06. 07. 08.

 When E 0400 command is executed, this will show the contents of the memory location DS:0400 in the

next line as

17DA:0400 00.

where, 17DA is the initial setting for DS by default. 00 is the content of the memory location 17DA:0400. If

we want to change the existing data, enter the new data 12 as shown below:

17DA:0400 00.12

 If we want to change data of the next memory location, the space bar is to be pressed. It will show the

content of the next memory location. To change the existing data 00, enter the new data 34. In this way, data

replacement can be preceded. The maximum number of bytes that can be entered in a line is 8. After replacing

the desired number of data, the Enter key is pressed. While data replacement is continued up to the end of the

line, the next line with current memory address comes automatically.

11.2.8 F (Fill Command)

The Fill command is used to fill the specified range of memory locations with the values which are entered

in a list. The default segment register is the DS. The general format is

-F address range list of data

The example of Fill command is

-F 0300 0304 12 34 56 78 90

 Then a list of values from 12 to 90 will be filled in the memory locations DS:0300 0304. This can be veri-

fied using D command as given below:

C:\>DEBUG

-F 0300 0304 12 34 56 78 90

-D 0300 0304

17DA:0300 12 34 56 78 90

-

Assembly-Language Program of the 8086 Microprocessor 11.13

11.2.9 M (Move Command)

Generally, data movement operation is performed with the M command. The M command usually used to

copy/move the block of data from one memory block into another memory block. By default the DS register

is used to locate data. The general format of the M command is

-M range address

or -M 0100 L 06 0200

 After execution of this command, the data starting from DS:0100 to DS:0105 are copied into the memory

location address beginning from DS:0200 to DS:0205.

11.2.10 S (Search Command)

The search command S is used to search the specified memory locations for the specified list of bytes. By

default data segment register, DS is used to locate data. The general format is

-S address range list

 The list may contain one byte or more than one byte of data. If the list contains only one byte, all addresses

of the byte in the specified range will be displayed. If the list contains more than one byte, then only the first

addresses of the byte string are returned.

 To search a byte (44H) in a specified memory range from DS: 0100 to DS: 0200, the command may be

written as follows:

S 0100 0200 44.

 11.3 ASSEMBLY-LANGUAGE PROGRAMS

11.3.1 Program for Addition of Two 8-Bit Numbers with a Sum of 8 Bits

Assume the first number 22H is stored in AL register and the second number 33H is stored in BL register. The

result after addition of two numbers is to be stored in AL register.

Algorithm

 1. Load first number in AL register.

 2. Store the second data in BL register.

 3. Add second data with AL register.

C:\>DEBUG

-A 1000

17DA:1000 MOV AL, 22 ; Load 22H in AL register

17DA:1002 MOV BL, 33 ; Load 33H in BL register

17DA:1004 ADD AL, BL ; Add content of BL to AL

17DA:1006 HLT

17DA:1007

-G 1006

AX = 0055 BX = 0033 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000

Microprocessors and Microcontrollers11.14

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1006 NV UP EI PL NZ NA PE NC

17DA:1006 F4 HLT

-

 The program is loaded in the memory location 17DA:1000 to 17DA:1006. After editing the program, when

the above program is executed by G1006 command, the result will be displayed on the screen. The content of

AL is 55H which is the addition of 22H and 33H.

11.3.2 Program for Addition of Two 16-Bit Numbers with a Sum of 16 Bits

The first 16-bit number is stored in AX register. The second 16-bit number is stored in BX register. After

addition, the result will be stored in AX.

Algorithm

 1. Store first 16-bit number in AX.

 2. Store second 16-bit number in BX.

 3. Addition of 1st and 2nd number.

C:\>DEBUG

-A 1000

17DA:1000 MOV AX, 4622 ; 16 bit data in AX.

17DA:1003 MOV BX, 3244 ; 16 bit data in BX.

17DA:1006 ADD AX, BX ; Contents of BX is added to AX.

17DA:1008 HLT

17DA:1009

-G 1008

AX = 7866 BX = 3244 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI PL NZ NA PE NC

17DA:1008 F4 HLT

 The program for addition of two 16-bit numbers is loaded in the memory location 17DA:1000 to

17DA:1008. After editing the program, when the above program is executed by G1008 command, the result

will be displayed on the screen. The content of AX is 7866H which is the addition of 4622H and 3244H. As

the sum is of 16 bits, no carry is generated.

11.3.3 Program for Addition of a String of Words with a Sum of 16 Bits

Assume the number of 16-bit data is stored in CX register and a string of words are stored in 17DA:0300 to

17DA:0305. After addition the result is stored in BX. Initially content of BX is 0000H

Algorithm

 1. Initialize SI register with 0300H as source address of data.

 2. Load number of bytes to be added in CX register.

 3. Load a word in AX from the source specified by SI and SI is incremented by 2.

 4. Addition of AX content and BX content.

Assembly-Language Program of the 8086 Microprocessor 11.15

 5. Move content of AX to BX.

 6. Continue step-3 to step-5 until CX=0.

C:\>DEBUG

-A 0100

17DA:0100 MOV SI, 0300 ; Source address in SI.

17DA:0103 MOV CX, 0005 ; Count value is loaded in CX.

17DA:0106 MOV AX, [SI] ; Load AX with data which is located by SI

17DA:0108 ADD AX, BX ; Contents of BX in AX.

17DA:010A INC SI ; Increment SI

17DA:010B INC SI ; Increment SI

17DA:010C MOV BX, AX ; Contents of BX in AX.

17DA:010E DEC CX ; Decrement CX

17DA:010F JNZ 0106 ; Jump to 0106 if CX 0

17DA:0111 HLT

17DA:0112

-ECS:0300

17DA:0300 00.01 00.01 00.02 00.02 00.03 00.03 00.04 00.04

17DA:0308 00.05 00.05

-G 0111

AX=0F0F BX=0F0F CX=0000 DX=0000 SP=FFEE BP=0000 SI=030A DI=0000

DS=17DA ES=17DA SS=17DA CS=17DA IP=0111 NV UP EI PL ZR NA PE NC

17DA:0111 F4 HLT

-

 The above program is entered in the memory location 17DA:0100 to 17DA:0111. Five 16-bit data 0101,

0202, 0303, 0404 and 0505 are entered by the command -ECS:0300 17DA:0300 00.01 00.01 00.02 00.02

00.03 00.03 00.04 00.04 17DA:0308 00.05 00.05. After addition 0101, 0202, 0303, 0404, and 0505

we get 0F0F. Therefore, when the program is executed by G0111 command, the result will be displayed on

the screen as the content of BX and AX registers, 0F0F.

11.3.4 Program for Subtraction of Two 16-Bit Numbers

Consider 1st 16-bit number is in AX register and the 2nd number is in BX register. After subtraction, the

result will be stored in AX.

Algorithm

1. Load 1st number in AX register.

2. Load 2nd number in BX register.

3. Subtract BX from AX.

C:\>DEBUG

-A1000

17DA:1000 MOV AX, FFFF ; 16 bit data in AX

17DA:1003 MOV BX, 6666 ; 16 bit data in BX

17DA:1006 SUB AX,BX ; Contents of BX is subtracted from AX

Microprocessors and Microcontrollers11.16

17DA:1008 HLT

17DA:1009

-G1008

AX=9999 BX=6666 CX=0000 DX=0000 SP=0004 BP=20CD SI=0000 DI=0000

DS=17DA ES=17DA SS=9FFF CS=17DA IP=1008 NV UP EI NG NZ NA PE NC

17DA:1008 F4 HLT

-

 The program for subtraction of two 16-bit numbers is entered in the memory location 17DA:1000 to

17DA:1008. When the above program is executed by G1008 command; the result will be available in AX.

Therefore, the result is content of AX is 9999H which is the subtraction of FFFFH and 6666H.

11.3.5 Program for 1’s Complement of a 16-Bit Number

A 16 bit number is stored in AX register. Result of 1’s complement of AX will be stored in BX.

Algorithm

 1. Load 16-bit dat a in AX register.

 2. Complement the accumulator.

 3. Store one’s complement of AX in BX.

C:\>DEBUG

-A 1000

17DA:1000 MOV AX, 9999 ; 16 bit data in AX

17DA:1003 NOT AX ; 1’s complement of 16 bit data

17DA:1005 MOV BX, AX ; Result is stored in BX

17DA:1007 HLT

17DA:1008

-G 1007

AX = 6666 BX = 6666 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1007 NV UP EI NG NZ NA PO NC

17DA:1007 F4 HLT

-

 The above program is used for 1’s complement of a 16-bit number and it is entered in the memory location

17DA:1000 to 17DA:1007. The above program is executed by G1007 command and result will be available

in AX. After that, the result is content of AX is stored in BX.

11.3.6 Program for 2’s Complement of a 16-Bit Number

Assume that the 16-bit number is stored in AX register. Find the two’s complement of the number and stored

it in BX register.

Algorithm

 1. Store the 16-bit number in AX register.

Assembly-Language Program of the 8086 Microprocessor 11.17

 2. Determine 2’s complement of AX.

 3. Store two’s complement of AX in BX.

C:\>DEBUG

-A 1000

17DA:1000 MOV AX, 2244 ; 16 bit data in AX

17DA:1003 NEG AX ; 2’s complement of 16-bit data

17DA:1005 MOV BX, AX ; Result is stored in BX

17DA:1007 HLT

17DA:1008

-G 1007

AX = DDBC BX = DDBC CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1007 NV UP EI NG NZ AC PO CY

17DA:1007 F4 HLT

-

 The program for 2’s complement of a 16-bit number is stored in the memory location 17DA:1000

to 17DA:1007. When this program is executed by G1007 command, the result will be available in AX.

Therefore, the content of AX is copied into BX.

11.3.7 Program for 2’s Complement of a String of Words

Assume a string of words are stored in 17DA:0300 to 17DA:030B. The number of words is stored in CX

register. Determine the 2’s complement of the string words and stored at the destination address 17DA:0400

to 17DA:040B.

Algorithm

 1. Initialize SI with 0300 as source address of data.

 2. Load number of words in CX registers and initialise DI with 0400 as destination address.

 3. Load a word in AX from the source specified by SI and SI is incremented by 2.

 4. Determine 2’s complement of AX and store at destination address represented by DI.

 5. Continue step-3 and step-4 until CX=0.

C:\>DEBUG

-A 0100

17DA:0100 MOV SI,0300 ; load 0300H in source index register

17DA:0103 MOV CX,0005 ; load number of bytes in CX register

17DA:0106 MOV DI,0400 ; load 0400H in destination index register

17DA:0109 LODSW ; load AL with data addressed by SI and SI = SI + 1

17DA:010A NEG AX ; 2’s complement of 16 bit data

17DA:010C STOSW ; store AL addressed by DI and DI = DI + 1. Result is stored in BX

17DA:010D LOOPNZ 0109 ; Loop unless CX = 0

17DA:010F HLT

17DA:0110

-ECS:0300

Microprocessors and Microcontrollers11.18

17DA:0300 00.01 00.01 00.02 00.02 00.03 00.03 00.04 00.04

17DA:0308 00.05 00.05 00.06 00.06

-G 010F

AX = FAFB BX = 0000 CX = 0000 DX=0000 SP = FFEE BP = 0000 SI = 030A DI = 040A

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010F NV UP EI NG NZ AC PO CY

17DA:010F F4 HLT

-ECS:0400

17DA:0400 FF. FE. FE. FD. FD. FC. FC. FB.

17DA:0408 FB. FA. 00.

-

 The above program is used to find 2’s complement of a string of five 16-bit numbers which are stored in the

memory location 17DA:0300 to 17DA:030B and the program is stored in the memory location 17DA:0100

to 17DA:010F. ECS:0300 command is used to store five 16-bit numbers such as 0101, 0202, 0303, 0404 and

0505. This program can be executed by G010F command and the result will be stored in destination memory

location 17DA:0400 to 17DA:040B. To see the result, ECS:0400 command should be used and the result will

be displayed as given above.

11.3.8 Program to Multiply Two 8-Bit Numbers

Assume the first number 11H is stored in AL register and the second number 22H is stored in BL register.

Multiply contents of AL by BL and the result is to be stored in AX register.

Algorithm

 1. Load first number in AL register.

 2. Store the second data in BL register.

 3. Multiply contents of AL by BL.

C:\>DEBUG

-A 1000

17DA:1000 MOV AL, 11 ; 8 bit multiplicand in AL

17DA:1002 MOV BL, 22 ; 8 bit multiplier in BL

17DA:1004 MUL BL ; Multiply contents of AL by BL

17DA:1006 HLT

17DA:1007

-G 1006

AX=0242 BX=0022 CX=0000 DX=0000 SP=0004 BP=20CD SI=0000 DI=0000

DS=17DA ES=17DA SS=9FFF CS=17DA IP=1006 OV UP EI NG NZ NA PO CY

17DA:1006 F4 HLT

-

 The program for multiplication of two 8-bit numbers is edited in the memory location 17DA:1000 to

17DA:1006. This program is executed by G1006 command and result will be stored in AX register. Hence

the result is content of AX=0242H.

Assembly-Language Program of the 8086 Microprocessor 11.19

11.3.9 Program to Multiply Two 16-Bit Numbers

Assume that the first number 1111H is stored in AX register and the second number 2222H is stored in BX

register. Multiply contents of AX by BX and the result is to be stored in DX and AX registers.

Algorithm

 1. Load first number in AX register.

 4. Store the second data in BX register.

 5. Multiply contents of AX by BX.

C:\>DEBUG

-A 1000

17DA:1000 MOV AX, 1111 ;16-bit multiplicand in AX

17DA:1003 MOV BX, 2222 ; 16-bit multiplicand in BX

17DA:1006 MUL BX ; Multiply contents of AX by BX

17DA:1008 HLT

17DA:1009

-G 1008

AX = 8642 BX = 2222 CX = 0000 DX = 0246 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 OV UP EI NG NZ NA PO CY

17DA:1008 F4 HLT

-

 The above program is used to multiply two 16-bit numbers and it is stored in the memory location

17DA:1000 to 17DA:1006. This program can be executed by G1008 command and the result will be stored

in DX and AX. The result after multiplication of 1111H and 2222H is more than 16 bits. Then lower 16 bits

result is stored in AX and upper 16 bits (most significant bit) of result is stored in DX. Here result is the

content of DX = 0246 and AX = 8642.

11.3.10 Program to Divide Two 8-Bit Numbers

Assume the first number 56H is stored in AL register and the second number 02H is stored in CL register.

Divide contents of AL by CL and the result is to be stored in AX register.

Algorithm

 1. Load first number in AL register.

 2. Store the second data in CL register.

 3. Divide contents of AL by CL and result is AX.

C:\>DEBUG

-A 1000

17DA:1000 MOV AL, 56 ; 8 bit dividend in AL

17DA:1002 MOV CL, 02 ; 8 bit divisor in CL

17DA:1004 DIV CL ; Divide contents of AL by CL

17DA:1006 HLT

17DA:1007

-G 1006

AX=002B BX=0000 CX=0002 DX=0000 SP=0004 BP=20CD SI=0000 DI=0000

Microprocessors and Microcontrollers11.20

DS=17DA ES=17DA SS=9FFF CS=17DA IP=1006 NV UP EI NG NZ NA PO NC

17DA:1006 F4 HLT

-

The program for division of two 8-bit numbers is stored in the memory location 17DA:1000 to 17DA:1006.

When this program is executed by G1006 command, the result will be stored in AX register. Quotient is

stored in AL and remainder is stored in AH. Hence the result is quotient=content of AL= 2B and remainder

=content of AH = 00H.

11.3.11 Program to Divide Two 16-Bit Numbers

Assume that the first number FFFFH is stored in AX register and the second number 2222H is stored in CX

register. Divide AX by CX and the result is to be stored in DX and AX registers.

Algorithm

 1. Load first number in AX register.

 2. Store the second data in CX register.

 3. Divide contents of AX by CX and store result in AX and DX registers.

C:\>DEBUG

-A 1000

17DA:1000 MOV AX, FFFF ; 16 bit dividend in AX

17DA:1003 MOV CX, 2222 ; 16 bit divisor in CX

17DA:1006 DIV CX ; Divide contents of AX by CX

17DA:1008 HLT

17DA:1009

-G 1008

AX = 0007 BX = 0000 CX = 2222 DX = 1111 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 NV UP EI NG NZ NA PO NC

17DA:1008 F4 HLT

-

Quotient = 07 in AL and reminder in DX register

 The above program is used to divide two 16-bit numbers and is stored in the memory location 17DA:1000

to 17DA:1008. If the program is executed by G1008 command, the result will be stored in DX and AX.

Quotient is stored in AX and remainder is stored in DX. Hence the result is quotient = content of AX = 0007

and remainder =content of DX = 1111H.

11.3.12 Program for Rotating a 16-Bit Number Left through
Carry by One Bit

The 16-bit number is stored in AX and rotated left one bit through carry. Store the result in AX.

Algorithm

 1. Load 16-bit data, 1234 in AX register.

 2. Rotate the content of AX left through carry by one bit

C:\>DEBUG

Assembly-Language Program of the 8086 Microprocessor 11.21

-A0100

17B3:0100 MOV AX, 1234 ; Load 1234 in AX

17B3:0103 RCL AX, 1 ; Rotate AX left by 1 bit

17B3:0105 HLT

-G 0105

AX = 2468 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0105 NV UP EI PL NZ NA PO NC

17B3:0105 F4 HLT

 The program for rotating a 16-bit number left through carry by one bit is stored in the memory location

17B3:0100 to 17B3:0103. After execution of this program by G0105 command and result will be stored in

AX register. So the result is content of AX = 2468.

11.3.13 Program for Shift Left of a 16-Bit Number by One Bit

Assume that the 16-bit number is stored in AX and shift left carry. Store the result in memory location start-

ing from 17DA:1010.

Algorithm

 1. Load 16-bit data, 4567 in AX register.

 2. Shift left AX by one bit and store the result in memory location.

C:\>DEBUG

-A1000

17DA:1000 MOV AX, 4567 ;16-bit data 4567H in AX

17DA:1003 SHL AX, 1 ; Data is shifted left by one bit

17DA:1005 MOV [1010], AX ; Save the content of AX in 17DA:1010

17DA:1008 HLT

-G1008

AX = 8ACE BX = 0000 CX = 0000 DX = 0000 SP = 0004 BP = 20CD SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 9FFF CS = 17DA IP = 1008 OV UP EI NG NZ NA PO NC

17DA:1008 F4 HLT

-ECS:1010

17DA:1010 CE. 8A.

 The program for shifting a 16-bit number left by one bit is entered in the memory location 17DA:1000 to

17DA:1008. When this program is executed by G1008 command and result will be available in AX register

and the content of AX = 8ACE is stored in 17DA:1010 as it is displayed by ECS:1010 command.

11.3.14 Program to Find the Largest Number from a String of Words

The count value of number of words 05H is stored in CX register. A string of words is stored in the mem-

ory locations starting from 17B3:0300 to 17B3:0309. The largest word will be stored in memory location

17B3:0400.

Algorithm

 1. Initialize SI as source offset address of word and load numbers of words in CX register.

Microprocessors and Microcontrollers11.22

 2. Initialize AX register with 0000H.

 3. Compare the word from memory with content of accumulator AX. If the word is greater than and

equal to AX, jump to step-5.

 4. Move word from memory to AX.

 5. Increment SI by 2.

 6. Decrement CX. If CX 0, jump to step-3.

 7. Store the result in memory location 17B3:0400.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0300 ; Initialize SI with 0300H as source offset address of word

17B3:0103 MOV CX, 0005 ; Count value of words in CX

17B3:0106 MOV AX, 0000 ; Initialize AX with 0000H

17B3:0109 CMP AX, [SI] ; Compare word from memory with AX

17B3:010B JAE 010F ; Jump to 010F if above and equal

17B3:010D MOV AX, [SI] ; Load word from memory

17B3:010F INC SI ; Increment SI

17B3:0110 INC SI ; Increment SI

17B3:0111 LOOPNZ 0109 ; If CX 0, jump to 0109

17B3:0113 MOV [0400], AX ; Store the content of AX at destination address

17B3:0116 HLT

-ECS:0300

17B3:0300 00.11 00.11 00.22 00.22 00.33 00.33 00.FF 00.FF

17B3:0308 00.99 00.99

-G0116

AX = FFFF BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030A DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0116 NV UP EI PL NZ NA PE NC

17B3:0116 F4 HLT

-ECS:0400

17B3:0400 FF. FF.

 The five 16-bit data or word 1111, 2222, 3333, FFFF, and 9999 are stored in the memory location starting

from 17B3:0300 to 17B3:0309. Therefore the largest number is FFFFH. After execution of above program,

the largest number is stored in memory location 17B3:0400 and it can be displayed by ECS:0400 command

as given above.

11.3.15 Program to Find the Smallest Number from a String of Words

The count value of words 05H is stored in CX register. A string of words is stored in the memory locations

starting from17B3:0300 to 17B3:0309. The smallest word will be stored in memory location 17B3:0400.

Algorithm

 1. Initialize SI as source offset address of word and load numbers of words in CX register.

 2. Initialize AX register with FFFF .

Assembly-Language Program of the 8086 Microprocessor 11.23

 3. Compare the content of memory with content of accumulator, if number in AX is a smaller jump to

step-5.

 4. Move number from memory to AX.

 5. Increment SI by 2.

 6. Decrement CX. If CX 0, jump to step-3.

 7. Store result in memory location 17B3:0400.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0300 ; Initialize SI with 0300H as source offset address of word

17B3:0103 MOV CX, 0005 ; Count value of numbers in CX

17B3:0106 MOV AX, FFFF ; Initialize AX with FFFFH

17B3:0109 CMP AX, [SI] ; Compare word from memory with AX

17B3:010B JB 010F ; Jump to 010F if number in AX is smaller

17B3:010D MOV AX, [SI] ; Load word from memory

17B3:010F INC SI ; Increment SI

17B3:0110 INC SI ; Increment SI

17B3:0111 LOOPNZ 0109 ; If CX 0, jump to 0108

17B3:0113 MOV [0400], AX ; Store the content of AX at destination address

17B3:0116 HLT

-ECS:0300

17B3:0300 00.12 00.34 00.23 00.45 00.34 00.56 00.45 00.67

17B3:0308 00.56 00.78

-G0116

AX = 3412 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030A DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0116 NV UP EI PL NZ NA PE CY

17B3:0116 F4 HLT

-ECS:0400

17B3:0400 12. 34.

-

 The five 16-bit data or word 1234, 2345, 3456, 4567, and 5678 are stored in the memory location start-

ing from 17B3:0300 to 17B3:0309. Therefore, the smallest number is 1234H. After execution of the above

program, the smallest number is stored in memory location 17B3:0400 and it can be displayed by ECS:0400

command as given above.

11.3.16 Program to Transfer a Block of Data from One Section of Memory
to the Other Section of Memory

Assume that a string of bytes is stored in the memory locations starting from 17B3:0300 to 17B3:030E. The

count value of bytes 0FH is stored in CX register. Move the block of data starting from memory location

17B3:0300 to 17B3:030E to other memory location starting from 17B3:0400 to 17B3:040E. The count value

of words 0FH is stored in CX register.

Microprocessors and Microcontrollers11.24

Algorithm

 1. Initialize SI as source offset address of bytes and load numbers of bytes in CX register.

 2. Initialize DI as destination offset address of bytes.

 3. Move byte from source to destination.

 4. Increment SI and DI by 1.

 5. Decrement CX. If CX 0, jump to step-3.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0300 ; Load Source address of data in SI

17B3:0103 MOV DI, 0400 ; Load Destination address of data in SI

17B3:0106 MOV CX, 000F ; Count value for number of bytes in CX

17B3:0109 MOVSB ; Move byte from source to destination

17B3:010A LOOPNZ 0109 ; Decrement CX. If CX 0, jump 0109

17B3:010C HLT

17B3:010D

-ECS:0300

17B3:0300 00.FF 00.EE 00.DD 00.CC 00.AA 00.BB 00.99 00.88

17B3:0308 00.77 00.66 00.55 00.44 00.33 00.22 00.11 00.00

17B3:0310 00.12 00.13

-G010C

AX = 0000 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 030F DI = 040F

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010C NV UP EI PL NZ NA PO NC

17B3:010C F4 HLT

-ECS:0400

17B3:0400 FF. EE. DD. CC. AA. BB. 99. 88.

17B3:0408 77. 66. 55. 44. 33. 22. 11. 00.

17B3:0410 00.

A block of fifteen 8-bit data FF, EE, DD, CC, AA, BB, 99, 88, 77, 66, 55, 44, 33, 22 and 11 are stored in the

memory location starting from 17B3:0300 to 17B3:030E. After execution of the above program by the com-

mand G010C, the said data is stored in new memory location string from 17B3:0400 to 17B3:040E and it

can be displayed by ECS:0400 command as shown above.

11.3.17 Program to Add Two ASCII Numbers

ASCII numbers are in values from 30 H to 39 H for representing numbers 0 to 9. ADD 39 and 38 which are

ASCII numbers represents 9 and 8 respectively. AAA instruction is used for ASCII adjustment after addition.

The program for addition of two ASCII numbers is stored in the memory location 17B3:0100 to 17B3:0109.

After execution ADD AL, BL instruction, the result is 0071H which is stored in AX register. Thereafter

execution of AAA instruction result is available in AX and it is 0107.

C:\>DEBUG

-A0100

Assembly-Language Program of the 8086 Microprocessor 11.25

17B3:0100 MOV AL, 39 ; Load first ASCII number in AL

17B3:0102 MOV BL, 38 ; Load second ASCII number in BL

17B3:0104 MOV AH, 00 ; Initialize AH with 00H

17B3:0106 ADD AL, BL ; Add content of BL with AL

17B3:0108 AAA ; ASCII adjustment of AX after addition

17B3:0109 HLT

-G0109

AX = 0107 BX = 0008 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0109 NV UP EI PL NZ AC PE CY

17B3:0109 F4 HLT

11.3.18 Program to Subtract Two ASCII Numbers

Subtract 39 and 34 which are ASCII numbers represent 9 and 4 respectively. AAS instruction can be used

for ASCII adjustment after subtraction. The program for subtraction of two ASCII numbers is stored in the

memory location 17DA:0100 to 17DA:010B. After the execution of SUB AL, BL instruction, the result is

0005H which is stored in AX register. Afterward execution of AAS and OR AL,30, the instruction result 0035

is available in AX.

C:\>DEBUG

-A0100

17DA:0100 MOV AL,39 ; Load first ASCII number in AL

17DA:0102 MOV BL,34 ; Load second ASCII number in BL

17DA:0104 MOV AH,00 ; Initialize AH with 00H

17DA:0106 SUB AL,BL ; Subtract content of BL from AL

17DA:0108 AAS ; ASCII adjustment of AX after subtraction

17DA:0109 OR AL,30 ; OR 30H with AL

17DA:010B HLT

-G010B

AX = 0035 BX = 0034 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010B NV UP EI PL NZ NA PE NC

17DA:010B F4 HLT

11.3.19 Program to Multiply Two ASCII Numbers

The multiplication of ASCII numbers should not be done unless the most significant number (MSN) is

cleared. To multiply two ASCII numbers 38 and 32, initially after removing MSN, the numbers are repre-

sented as 08 and 02. AAM instruction can be used for ASCII adjustment after multiplication. The program

for multiplication of two ASCII numbers is stored in the memory location 17B3:0100 to 17B3:0108. After

the execution of MUL BL instruction, the result 0005H is stored in AX register. Subsequently execution of

AAM instruction, final result 0106 is available in AX .

-A0100

17B3:0100 MOV AL,08 ; Load first ASCII number in AL

17B3:0102 MOV BL,02 ; Load second ASCII number in BL

Microprocessors and Microcontrollers11.26

17B3:0104 MUL BL ; Multiply BL with AL

17B3:0106 AAM ; ASCII adjustment after multiplication

17B3:0108 HLT

-G 0108

AX = 0106 BX = 0002 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0108 NV UP EI PL NZ NA PE NC

17B3:0108 F4 HLT

11.3.20 Program to Divide Two ASCII Numbers

The division of ASCII numbers should not be done unless the most significant number (MSN) is cleared.

Therefore, AAD instruction requires a two-digit unpacked BCD number before execution. After entering

the two digit unpacked BCD number, AAD is executed to adjust the content of AX. Then AX is divided by

an unpacked BCD number to generate results. The program for division of two ASCII numbers (divide 75

by 8) is stored in the memory location 17B3:0100 to 17B3:0109. After execution of the above program,

result is stored in AX register. The quotient 09 is in AL and reminder 03 is in AH register. The result is also

an unpacked BCD.

C:\>DEBUG

-A0100

17B3:0100 MOV AX,0705 ; Load ASCII number (two digit unpacked BCD) in AX

17B3:0103 AAD ; ASCII adjustment before division

17B3:0105 MOV BL,08 ; Load second ASCII number in BL

17B3:0107 DIV BL ; Divide AL by BL

17B3:0109 HLT

-G0109

AX = 0309 BX = 0008 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0109 NV UP EI PL NZ NA PE NC

17B3:0109 F4 HLT

11.3.21 Program to Arrange a String of Words in Descending Order

A series of five words 1111H, 5555H, 3333H, 2222H, and 4444H are stored in memory locations from

17B3:0302 to 17B3:030B and number of words is stored in the memory location 17B3:0300. Arrange the

above words in descending order.

Algorithm

 1. Store 0005H, number of words to be arranged in DX register from memory and store number of

comparisons in CX register.

 2. Load the 1st word in accumulator from memory.

 3. Increment SI register by 2 for addressing the next word.

 4. Compare the next word from memory with accumulator. Store the smallest word in accumulator and

largest word in memory.

 5. Then next number (word) is compared with the accumulator and store the largest number in memory

and smallest number in accumulator.

Assembly-Language Program of the 8086 Microprocessor 11.27

 6. This process will continue till comparisons of all numbers have been completed. After completion of

comparison of all numbers, the smallest number in accumulator is stored in memory. In this way, the

first process will be completed.

 7. At the starting of second process, DX register is decremented by one and store number of com-

parisons in CX register. Then repeat step-2 to step-6. After completion of this process, the smallest

number in 17B3:030A and second smallest number in 17B3:0308.

 8. DX register is decremented by one and the next process starts, if the content of DX register is not

zero. Then repeat step-2 to step-6.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0300 ; SI loaded with 0300 as source address

17B3:0103 MOV DX, [SI] ; DX loaded with the content of SI

17B3:0105 MOV CX, [SI] ; CX loaded with the content of SI

17B3:0107 DEC CX ; Decrement CX

17B3:0108 INC SI ; Increment SI

17B3:0109 INC SI ; Increment SI

17B3:010A MOV AX, [SI] ; AX is loaded with word from memory represented by SI

17B3:010C INC SI ; Increment SI

17B3:010D INC SI ; Increment SI

17B3:010E CMP AX,[SI] ; Compare AX with the content of memory represented by SI

17B3:0110 JNB 0118 ; Jump to 0118

17B3:0112 XCHG AX, [SI] ; Exchange AX and word stored at memory represented by SI

17B3:0114 DEC SI ; Decrement SI

17B3:0115 DEC SI ; Decrement SI

17B3:0116 MOV [SI], AX ; Move AX to memory represented by SI

17B3:0118 LOOP 010A ; CX decrement by 1. If CX 0, jump to 010A

17B3:011A DEC DX ; Decrement DX

17B3:011B MOV SI, 0300 ; SI loaded with 0300 as source address

17B3:011E JNZ 0105 ; Jump not zero to 0105

17B3:0120 HLT

-ECS:0300

17B3:0300 00.05 00.00 00.11 00.11 00.55 00.55 00.33 00.33

17B3:0308 00.22 00.22 00.44 00.44

-G0120

AX = 3333 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0300 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0120 NV UP EI PL ZR NA PE NC

17B3:0120 F4 HLT

-ECS:0300

17B3:0300 05. 00. 55. 55. 44. 44. 33. 33.

17B3:0308 22. 22. 11. 11.

Microprocessors and Microcontrollers11.28

 The above program is used to arrange a string of words in descending order and this program is stored into

memory 17B3:0100 to 17B3:0120. The 5 words (1111H, 5555H, 3333H, 2222H, and 4444H) are entered

by the command ECS:300. Thereafter, G0120 is used to execute the program and words will be stored in

descending order (5555H, 4444H 3333H, 2222H, and 1111H) as given above.

11.3.22 Program to Arrange a String of Words in Ascending Order

A series of five words 4444H, 1111H, 5555H, 2222H, and 3333H are stored in memory locations from

17B3:0302 to 17B3:031B and number of words is stored in memory location 17B3:0300. Arrange the

above words in ascending order.

Algorithm

 1. Store 0005H, number of words to be arranged in DX register from memory and store number of

comparisons in CX register.

 2. Load the 1st word in accumulator from memory.

 3. Increment SI register for addressing the next word.

 4. Compare next word from memory with accumulator. Store the largest number in accumulator and

smallest number in memory.

 5. Then next number is compared with the accumulator and store the smallest number in memory and

largest number in accumulator.

 6. This process will continue, till comparisons of all numbers have been completed. After completion of

comparison of all numbers, the largest number in accumulator will be stored in memory. In this way,

the first process will be completed.

 7. At the starting of the second process, DX register is decremented by one and store number of com-

parisons in CX register. Then repeat step-2 to step-6. After completion of this process, largest number

is stored in 17B3:0302A and second largest number, in 17B3:0308.

 8. DX register is decremented and the next process starts, if the content of DX register is not zero.

Then repeat step-2 to step-6.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0300 ; SI loaded with 0300 as source address

17B3:0103 MOV DX, [SI] ; DX loaded with the content of SI

17B3:0105 MOV CX, [SI] ; CX loaded with the content of SI

17B3:0107 DEC CX ; Decrement CX

17B3:0108 INC SI ; Increment SI

17B3:0109 INC SI ; Increment SI

17B3:010A MOV AX, [SI] ; AX is loaded with word from memory represented by SI

17B3:010C INC SI ; Increment SI

17B3:010D INC SI ; Increment SI

17B3:010E CMP AX, [SI] ; Compare AX with the content of memory represented by SI

17B3:0110 JB 0118 ; Jump to 0118

17B3:0112 XCHG AX, [SI] ; Exchange AX and word stored at memory represented by SI

17B3:0114 DEC SI ; Decrement SI

Assembly-Language Program of the 8086 Microprocessor 11.29

17B3:0115 DEC SI ; Decrement SI

17B3:0116 MOV [SI], AX ; Move AX to memory represented by SI

17B3:0118 LOOP 010A ; CX decrement by 1. If CX 0, jump to

17B3:011A DEC DX ; Decrement DX

17B3:011B MOV SI, 0300 ; SI loaded with 0300 as source address

17B3:011E JNZ 0105 ; Jump not zero to 0105

17B3:0120 HLT

-ECS:0300

17B3:0300 00.05 00.00 00.44 00.44 00.11 00.11 00.55 00.55

17B3:0308 00.22 00.22 00.33 00.33 00.66 00.66

-G0120

AX = 4444 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0300 DI = 0000

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0120 NV UP EI PL ZR NA PE CY

17B3:0120 F4 HLT

-ECS:0300

17B3:0300 05. 00. 11. 11. 22. 22. 33. 33.

17B3:0308 44. 44. 55. 55. 66. 66.

 The above program is used to arrange a string of words in ascending order stored in memory locations

17B3:0100 to 17B3:0120. The 5 words (4444H, 1111H, 5555H, 2222H, and 3333H) are entered by the com-

mand ECS : 300. Thereafter, G0120 is used to execute the program and all words will be stored in ascending

order (1111H, 2222H, 3333H, 4444H and 5555H) as given above.

11.3.23 Program to Find the Square of a Number using Look-up Table

Load the decimal number in the accumulator. Find the square of decimal number and store it in the mem-

ory location 17B3:0400. The square values of decimal numbers from 0 to 9 are stored in 17B3:0300 to

17B3:0309H and used for look-up table.

Algorithm

 1. Store the decimal number in accumulator.

 2. Load 03H is AH register.

 3. If the decimal number is 02, the content of AH and AL registers are 03 and 02H respectively. Then

the offset address of memory location will be 0302H denoted by AX register. Move AX content into

SI register.

 4. Move square of decimal number in AL from memory location 17B3:0302

 5. Store the result, square value in 17B3:0400.

C:\>DEBUG

-A0100

17B3:0100 MOV AL, 02

17B3:0102 MOV AH, 03

17B3:0104 MOV SI, AX

17B3:0106 MOV AL, [SI]

Microprocessors and Microcontrollers11.30

17B3:0108 MOV DI, 0400

17B3:010B MOV [DI], AL

17B3:010D HLT

-ECS:0300

17B3:0300 00.00 00.01 00.04 00.09 00.16 00.25 00.36 00.49

-G010D

AX = 0304 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0302 DI = 0400

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010D NV UP EI PL NZ NA PO NC

17B3:010D F4 HLT

-ECS:0400

17B3:0400 04.

 The above program can be used to find the square of a decimal number and it is stored into memory

17B3:0100 to 17B3:010D. When G010D is used to execute the program, the square value of 02 is 04 will be

stored in the memory location 17B3:0400.

11.3.24 Program to Find the Square Root of a Number using Look-up Table

Load the decimal number in accumulator. Find the square root of decimal number and store it in the memory

location 17B3:0400. The square values of decimal numbers 0, 1, 4, 9, and 16 are stored in 17B3:0300 , 03001,

0304, 0309, and 0316 and used as look-up table.

Algorithm

 1. Store the decimal number in the accumulator.

 2. Load 03H is AH register.

 3. If the decimal number is 09, the content of AH and AL registers are 03 and 09H respectively. Then

the offset address of memory location will be 0309H denoted by AX register. Move AX content into

SI register.

 4. Move square root of decimal number in AL from memory location 17B3:0309.

 5. Store the result, square value in 17B3:0400.

C:\>DEBUG

-A0100

17B3:0100 MOV AL, 09

17B3:0102 MOV AH, 03

17B3:0104 MOV SI, AX

17B3:0106 MOV AL, [SI]

17B3:0108 MOV DI, 0400

17B3:010B MOV [DI], AL

17B3:010D HLT

-ECS:0300

17B3:0300 00. 00.01

-ECS:0304

17B3:0304 00.02

Assembly-Language Program of the 8086 Microprocessor 11.31

-ECS:0309

17B3:0309 00.03

-ECS:0316

17B3:0316 00.04

-G010D

AX = 0303 BX = 0000 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0309 DI = 0400

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 010D NV UP EI PL NZ NA PO NC

17B3:010D F4 HLT

-ECS:0400

17B3:0400 03.

 The program to find out the square root of a decimal number is stored into memory 17B3:0100 to

17B3:010D. When G010D is used to execute the program and the square root value of 09 is 03, it will be

stored in memory location 17B3:0400.

11.3.25 Program to Find the Addition of Two 3 × 3 Matrices

During addition of two matrices, the corresponding matrix elements are added and developed as a new matrix

as shown below:

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

a b

a b

a b

a b

a b

a b

a b

a b

a b

A B A B

11

21

31

12

22

32

13

23

33

11

21

31

12

22

32

13

23

33

11 11

21 21

31 31

12 12

22 22

32 32

13 13

23 23

33 33

= = + =

+

+

+

+

+

+

+

+

+

> > >H H H
 The matrix A is stored in the memory location 17B3:0200 to 17B3:0208. The matrix B is stored in the

memory location 17B3:0300 to 17B3:0308. After addition of two matrices, the result is stored in the memory

location 17B3:0400 to 17B3:0411.

Algorithm

 1. Store source address of matrix A and B in SI and DI respectively.

 2. Store destination address of A + B in BX register.

 3. Load number of elements of a matrix in CX register.

 4. Initialize AX register.

 5. Load element of matrix A from memory to AL and add the corresponding element of matrix B with

AL.

 6. Store addition of two corresponding elements into destination address.

 7. Increment SI, and DI by one. Increment BX by 2.

 8. Decrement CX by one. If CX 0, execute step-4 to step-8

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0200 ; SI loaded with 0200 as source address of matrix A

17B3:0103 MOV DI, 0300 ; DI loaded with 0300 as source address of matrix B

17B3:0106 MOV BX, 0400 ; BX loaded with 0300 as destination address of matrix A + B

17B3:0109 MOV CX, 0009 ; Load number of elements in a matrix

17B3:010C MOV AX, 0000 ; Initialize AX with 0000H

Microprocessors and Microcontrollers11.32

17B3:010F MOV AL, [SI] ; Load element of matrix A

17B3:0111 ADD AL, [DI] ; Add corresponding element of matrix B with A

17B3:0113 JNB 0118 ; Jump no carry to 0118

17B3:0115 ADD AH,01 ; Add 01 with AH if carry generated

17B3:0118 MOV [BX], AX ; store addition of corresponding elements in destination address

17B3:011A INC SI ; Increment SI

17B3:011B INC DI ; Increment DI

17B3:011C ADD BX, + 02 ; Increment BX by 2

17B3:011F LOOPNZ 010C ; CX decrement by1. If CX 0, jump to 010C

17B3:0121 HLT

-ECS:200

17B3:0200 00.11 00.22 00.33 00.44 00.55 00.66 00.77 00.88

17B3:0208 00.99

-ECS:300

17B3:0300 00.11 00.11 00.33 00.44 00.55 00.66 00.77 00.88

17B3:0308 00.99

-G0121

AX = 0132 BX = 0412 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0209 DI = 0309

DS = 17B3 ES = 17B3 SS = 17B3 CS = 17B3 IP = 0121 NV UP EI PL NZ NA PE NC

17B3:0121 F4 HLT

-ECS:0400

17B3:0400 22. 00. 33. 00. 66. 00. 88. 00.

17B3:0408 AA. 00. CC. 00. EE. 00. 10. 01.

17B3:0410 32. 01.

 The above program can be used to add two 3 × 3 matrixes and it is stored into memory 17B3:0100 to

17B3:0121. ECS : 200 is used to enter the matrix elements of A such as 11, 22, 33, 44, 55, 66, 77, 88 and

99. Similarly the matrix elements of B 11, 22, 33, 44, 55, 66, 77, 88 and 99 are entered by ECS : 300 com-

mand. When G0121 is executed, the result will be displayed as 0022, 0033, 0066, 0088, 00AA, 00CC, 00EE,

0110 and 0132.

11.3.26 Program to Find the Transpose of a 3 × 3 Matrix

The transpose of a matrix A = is A

11

21

31

12

22

32

13

23

33

11

12

13

21

22

23

31

32

33

T
= => >H H

The matrix A is stored in the memory location 17B3:0200 to17B3:0209. After transpose, AT matrix will be

stored in the memory location 17B3:0300 to17B3:0309.

Algorithm

 1. Store source address of matrix A in SI and store destination address of AT in DI.

 2. Load number of rows of a matrix in CL register.

 3. Load element of matrix A from memory to AL.

 4. Store element into destination address.

Assembly-Language Program of the 8086 Microprocessor 11.33

 5. Increment SI by three and DI by one.

 6. Load element of matrix A from memory to AL and store into destination address.

 7. Increment SI by three and DI by one.

 8. Load element of matrix A from memory to AL and store into destination address.

 9. Subtract 05 from SI.

 10. Decrement CL, If CL 0, continue step-3 to step-10.

C:\>DEBUG

-A0100

17B3:0100 MOV SI, 0200 ; SI loaded with 0200 as source address of matrix A

17B3:0103 MOV DI, 0300 ; DI loaded with 03200 as destination address of matrix A

17B3:0106 MOV CL, 03 ; Number of rows in CL

17B3:0108 MOV AL, [SI] ; Load element of matrix A

17B3:010A MOV [DI], AL ; Store element of A in destination address

17B3:010C ADD SI, +03 ; Add 03 with SI

17B3:010F INC DI ; Increment DI

17B3:0110 MOV AL, [SI] ; Load element of matrix A

17B3:0112 MOV [DI],AL ; Store element of A in destination address

17B3:0114 ADD SI, +03 ; Add 03 with SI

17B3:0117 INC DI ; Increment DI

17B3:0118 MOV AL, [SI] ; Load element of matrix A

17B3:011A MOV [DI], AL ; Store element of A in destination address

17B3:011C SUB SI, +05 ; Subtract 05 from SI

17B3:011F INC DI ; Increment DI

17B3:0120 DEC CL ; Decrement CL

17B3:0122 JNZ 0108 ; If CL 0, jump to 0108C

17B3:0124 HLT

-ECS:200

17B3:0200 11. 22. 33. 44. 55. 66. 77. 88.

17B3:0208 99. 00.

-G124

AX=0099 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0203 DI=0309

DS=17B3 ES=17B3 SS=17B3 CS=17B3 IP=0124 NV UP EI PL ZR NA PE NC

17B3:0124 F4 HLT

-ECS:0300

17B3:0300 11. 44. 77. 22. 55. 88. 33. 66.

17B3:0308 99.

-

 This program can be used to find transpose of a 3 × 3 matrix. The ECS : 200 command is used to enter the

matrix elements of A such as 11, 22, 33, 44, 55, 66, 77, 88 and 99. When we execute the program using

Microprocessors and Microcontrollers11.34

G0124 command, AT of matrix A will be stored in the destination address. To display the result, ECS : 0300

will be used and AT will be displayed on screen as 11, 44, 77, 22, 55, 88, 33, 66 and 99.

11.3.27 Program to Find the Multiplication of Two 3 × 3 Matrices

a

a

a

a

a

a

a

a

a

b

b

b

b

b

b

b

b

b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

a b a b a b

Assume two matrices are A B then multiplication

of two matrices is A B

11

21

31

12

22

32

13

23

33

11

21

31

12

22

32

13

23

33

11 11 12 21 13 31

21 11 22 21 23 31

31 11 32 21 33 31

11 12 12 22 13 32

21 12 22 22 23 32

31 12 32 22 33 32

11 13 12 23 13 33

21 13 22 23 23 33

31 13 32 23 33 33

= =

=

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

+ +

> >

>

H H

H
The matrix A is stored in the memory location 17B3:0200 to 17B3:0208. The matrix B is stored in the

memory location 17B3:0300 to 17B3:0308. After addition of two matrices, the result is stored in the memory

location 17B3:0400 to17B3:0411.

C:\>DEBUG

-A100

17DA:0100 MOV BX, 0400 ; BX loaded with 0400 as destination address of matrix A × B

17DA:0103 MOV SI, 0200 ; SI loaded with 0200 as source address of matrix A

17DA:0106 MOV DH, 03 ; Load number of row/column in DH

17DA:0108 MOV DI, 0300 ; DI loaded with 0300 as source address of matrix B

17DA:010B MOV CL, 03 ; Load number of row/column in CL

17DA:010D MOV DL, 03 ; Load number of row/column in DL

17DA:010F MOV BP, 0000 ; Initialize BP with 0000H

17DA:0112 MOV AX, 0000 ; Initialize AX with 0000H

17DA:0115 SAHF

17DA:0116 MOV AL, [SI] ; Load element of matrix A into AL

17DA:0118 MOV CH, [DI] ; Move corresponding element of B into CH

17DA:011A MUL CH ; Multiply corresponding element of B with AL

17DA:011C ADD BP, AX ; Add content of AX with BP

17DA:011E INC SI ; Increment SI by one

17DA:011F ADD DI, + 03 ; Add 03 with DI

17DA:0122 DEC DL ; Decrement DL by one

17DA:0124 JNZ 0116 ; If DL 0, Jump to 0116

17DA:0126 SUB DI, + 08 ; Subtract 08 from DI

17DA:0129 SUB SI, + 03 ; Subtract 03 from SI

17DA:012C MOV [BX], BP ; Store element of A × B into destination memory address

17DA:012E ADD BX, + 02 ; Add 02 with BX

17DA:0131 DEC CL ; Decrement CL by one

17DA:0133 JNZ 010D ; If CL 0, Jump to 0106

Assembly-Language Program of the 8086 Microprocessor 11.35

17DA:0135 ADD SI, + 03 ; Add 03 with SI

17DA:0138 DEC DH ; Decrement DH by one

17DA:013A JNZ 0108 ; If DH 0, Jump to 0106

17DA:013C HLT

-ECS:200

17DA:0200 00.1 00.1 00.1 00.1 00.1 00.1 00.1 00.1

17DA:0208 00.1 00.1 00.1

-ECS:300

17DA:0300 00.1 00.1 00.1 00.1 00.1 00.1 00.1 00.1

17DA:0308 00.1 00.1 00.1

-G013C

AX = 0001 BX = 0412 CX = 0100 DX = 0000 SP = FFEE BP = 0003 SI = 0209 DI = 0303

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 013C NV UP EI PL ZR NA PE NC

17DA:013C F4 HLT

-ECS:400

17DA:0400 03. 00. 03. 00. 03. 00. 03. 00.

17DA:0408 03. 00. 03. 00. 03. 00. 03. 00.

17DA:0410 03. 00.

 The above program can be used to multiply two 3 × 3 matrices. To verify the result very easily, we assume

both A and B matrices are unit matrix. The ECS : 200 is used to enter the matrix elements of A and the matrix

elements of B are entered by ECS : 300. When G0121 is executed, the result will be stored in destination

memory location and ECS : 400 command will be displayed the result on screen as shown above.

11.3.28 Program to Find the Gray Code Equivalent of a Binary Number

The 8 bit binary number is B7 B6 B5 B4 B3 B2 B1 B0. The Gray code number is G7 G6 G5 G4 G3 G2 G1 G0.

The relationship between Gray code and Binary code is G7 = B7 and Gi = Bi 5 Bi+1 where i = 0 to 6. The

program for binary to Gray conversion is given below:

C:\>DEBUG

-A100

17DA:0100 MOV AL, 89 ; Load the binary number in AL

17DA:0102 MOV BL, AL ; Move AL to BL

17DA:0104 CLC ; Clear carry

17DA:0105 RCR AL,1 ; Rotate right through carry by one bit

17DA:0107 XOR BL, AL ; XORing the content of BL and DL

17DA:0109 MOV DL, BL ; Store content of BL in DL register

17DA:010B HLT

-G010B

AX = 0044 BX = 00CD CX = 0000 DX = 00CD SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010B NV UP EI NG NZ NA PO NC

17DA:010B F4 HLT

Microprocessors and Microcontrollers11.36

 The above program can be used to convert binary number 89H into equivalent Gray code. When the pro-

gram is executed by G010B command, the equivalent Gray code of binary number 89H will be stored in DL

register, i.e. CD.

11.3.29 Program to Convert BCD Number to Equivalent Binary Number

The program for converting BCD number into binary equivalent number is given below. Assume the BCD

number is 2345. When the program is executed by G011E command, the equivalent binary of BCD number

2345 will be stored in DX register i.e., 0929H.

C:\>DEBUG

-A100

17DA:0100 MOV BX, 2345 ; The BCD number is stored in BX

17DA:0103 MOV CX, 0000 ; Initialize CX as 0000H

17DA:0106 CMP BX, +00 ; Compare BX with 0000H

17DA:0109 JZ 011C ; Jump zero to 011C

17DA:010B MOV AL, BL ; Copy the content of BL to AL

17DA:010D SUB AL, 01 ; Subtract 01 from AL

17DA:010F DAS ; Decimal adjustment after subtraction

17DA:0110 MOV BL, AL ; Copy the content of AL to BL

17DA:0112 MOV AL, BH ; Copy the content of BH to AL

17DA:0114 SBB AL, 00 ; Subtract 00 from AL with borrow

17DA:0116 DAS ; Decimal adjustment after subtraction

17DA:0117 MOV BH, AL ; Copy the content of AL to BH

17DA:0119 INC CX ; increment CX

17DA:011A JMP 0106 ; Jump to 0106

17DA:011C MOV DX, CX ; Store the Binary number in DX register

17DA:011E HLT

-G11E

AX = 0000 BX = 0000 CX = 0929 DX = 0929 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011E NV UP EI PL ZR NA PE NC

17DA:011E F4 HLT

11.3.30 Program to Find Factorial of BCD Number

The program to determine the factorial of one digit BCD number is developed based on the algorithm as

given below:

Algorithm

 1. If N = 1, then factorial = 1

2. If N > 1, the factorial = N × (factorial of (N–1))

C:\>DEBUG

-A0100

17DA:0100 MOV CX, 0005 ; Store number in CX register

Assembly-Language Program of the 8086 Microprocessor 11.37

17DA:0103 MOV AX, CX ; Copy the content of CX in AX register

17DA:0105 DEC CX ; Decrement CX

17DA:0106 MUL CX ; Multiply CX with AX

17DA:0108 DEC CX ; Decrement CX

17DA:0109 JNZ 0106 ; Jump not zero to 0106

17DA:010B MOV BX, AX ; Store factorial value in BX register

17DA:010D HLT

-G010D

AX = 0078 BX = 0078 CX = 0000 DX = 0000 SP = FFEE BP = 0000 SI = 0000 DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 010D NV UP EI PL ZR NA PE NC

17DA:010D F4 HLT

 The above program can be used to determine factorial 5 or 5!. After editing the program, G010D is used to

execute it. Then factorial 5 will be stored in BX register, i.e. 78H.

11.3.31 Program to Find the Number of Positive Numbers and Negative
Numbers in a Series of Signed Numbers

The algorithm to find the number of positive and negative numbers in a series of signed numbers is illustrated

below:

Algorithm

 1. Load the number in AX register from memory location.

 2. Rotate number left through carry. Carry flag represents the most significant bit of the number.

 3. If the carry flag = 1, the number is negative.

 If the carry flag = 0, the number is positive.

C:\>DEBUG

-A100

17DA:0100 MOV SI, 0200 ; SI is loaded 0200 as source address of data

17DA:0103 MOV BX, 0000 ; Initialize BX register with 0000H

17DA:0106 MOV DX, 0000 ; Initialize DX register with 0000H

17DA:0109 MOV CL,05 ; Load number of data in CL register

17DA:010B MOV AX,[SI] ; Move data into AX register from memory

17DA:010D SHL AX,1 ; Shift left through carry

17DA:010F JB 0114 ; Jump carry to 0114

17DA:0111 INC BX ; Else increment BX register

17DA:0112 JMP 0115 ; Jump to 0115

17DA:0114 INC DX ; Increment DX register

17DA:0115 ADD SI, + 02 ; Add 02 with SI to locate next data in memory

17DA:0118 DEC CL ; Decrement CL

17DA:011A JNZ 010B ; Jump not zero 010B

17DA:011C HLT

-ECS:200

Microprocessors and Microcontrollers11.38

17DA:0200 00.23 00.67 00.01 00.24 00.90 00.90 00.44 00.98

17DA:0208 00.26 00.98

-G11C

AX = 304C BX = 0002 CX = 0000 DX = 0003 SP = FFEE BP = 0000 SI = 020A DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011C NV UP EI PL ZR NA PE NC

17DA:011C F4 HLT

-

 The above program is used to determine the number of positive as well as negative numbers in a series of

signed numbers. ECS:200 command is used to enter five signed numbers 6723, 2401, 9090, 9844 and 9826.

After execution of the program through G11C command, number of positive numbers will be stored in BX

register, i.e. 2 and number of negative numbers will be stored in DX register, i.e. 3.

11.3.32 Program to Find the Number of Even Numbers and Odd Numbers
in a Series of Signed Numbers

The algorithm to find the number of even and odd numbers in a series of signed numbers is illustrated below:

Algorithm

 1. Load the number in AX register from memory location

 2. Rotate number right through carry. Carry flag represents whether the number is even or odd. Actually,

the carry flag is least significant bit of number.

 3. If the carry flag = 1, the number is odd.

 If the carry flag = 0, the number is even.

C:\>DEBUG

-A100

17DA:0100 MOV SI, 0200 ; SI is loaded 0200 as source address of data

17DA:0103 MOV BX, 0000 ; Initialize BX register with 0000H

17DA:0106 MOV DX, 0000 ; Initialize DX register with 0000H

17DA:0109 MOV CL, 05 ; Load number of data in CL register

17DA:010B MOV AX, [SI] ; Move data into AX register from memory

17DA:010D ROR AX, 1 ; Rotate right through carry

17DA:010F JC 0114 ; Jump carry to 0114

17DA:0111 INC BX ; Else increment BX register

17DA:0112 JMP 0115 ; Jump to 0115

17DA:0114 INC DX ; Increment DX register

17DA:0115 ADD SI, 2 ; Add 02 with SI to locate next data in memory

17DA:0118 DEC CL ; Decrement CL

17DA:011A JNZ 010B : Jump not zero to 010B

17DA:011C HLT

-ECS:200

17DA:0200 00.01 00.23 00.00 00.45 00.41 00.34 00.61 00.92

-ECS:208

Assembly-Language Program of the 8086 Microprocessor 11.39

17DA:0208 00.00 00.89

-G11C

AX = 4480 BX = 0002 CX = 0000 DX = 0003 SP = FFEE BP = 0000 SI = 020A DI = 0000

DS = 17DA ES = 17DA SS = 17DA CS = 17DA IP = 011C NV UP EI PL ZR NA PE NC

17DA:011C F4 HLT

-

 The above program can be used to determine the number of even as well as odd numbers in a series of

signed numbers. ECS:200 command is used to enter five signed numbers 2301, 4500, 3441, 9261 and 8900.

When the program is executed by G11C command, the number of even numbers will be stored in BX register,

i.e. 2 and number of odd numbers will be stored in DX register, i.e. 3.

 11.1 What is an assembler? What are the different assemblers used in 8086 programming?

 11.2 Explain DEBUG with some of its important commands.

 11.3 What is A command? What is U command? Explain the operation of the following commands:

 (i) –U 0100 0120 (ii) –U 0100 L10 (iii) –D0100 L 10 (iv) –T = 0100 05

 (v) –ECS:100 (vi) –M 0100 0105 0300 (vii) S 0200 0235 46

 11.4 Write the commands for the following operations:

 (i) To display the content of AX register

 (ii) To display the content of memory locations CS: 0200 to CS: 0250

 (iii) To enter data 22H, 44H, 66H 77H and FFH in the memory location starting from DS: 0300

 (iv) To search a byte 45H from a string DS: 0400 to DS: 0500

 (v) To display the status of flags

 11.5 What are the advantages of assembly-language programming over machine-language programming?

 11.6 Write an assembly-language program to find the largest number in a data array.

 11.7 Write an assembly-language program to find the smallest number in a data array.

 11.8 Write an assembly-language program to find the subtraction of two 3 × 3 matrix.

 11.9 Write an assembly-language program to arrange numbers in descending order.

 11.10 Write an assembly-language program to arrange numbers in ascending order.

 11.11 Write an assembly-language program to block move from one memory location to another location.

 11.12 Write an assembly-language program to find the sum of a series of 16-bit numbers.

 11.13 Write an assembly-language program to find the factorial of a number.

 11.14 Write an assembly-language program to find the subtraction of two 3 × 3 matrices.

 11.15 Write an assembly-language program for addition, subtraction, multiplication and division of two

numbers.

 11.16 Write an assembly-language program for addition of the first 100 decimal numbers.

 11.17 A block of 16-bit data is stored at the memory location starting from DS:0100. Move this block to

the memory location starting from DS:0500.

 11.18 Write an assembly-language program to convert a 16-bit binary number into equivalent GRAY code.

Microprocessors and Microcontrollers11.40

 11.19 Write an assembly-language program to find out the number of occurrences of a byte 44H in a string

of bytes which is stored in the memory location starting from CS:0300 to CS:0320.

 11.20 Write assembly-language programs to find (i) n ! (ii)
()! !

!
n r r

n

-
 (iii) nCp , assume N = 9, r = 2 and

p=3.

 11.21 Write an assembly language program to convert a binary number to its equivalent BCD number.

 11.22 Write an assembly language program to find transpose of a 3 × 3 matrix.

 11.1 What is the output of DL after execution of the following instructions?

 MOV DL, 36

 AND DL, 0F

 (a) 06H (b) 60H (c) 36H (d) 0FH

 11.2 What is the content of AX and DX after execution of the following instructions?

 MOV BL, 9

 MOV AX, 0702

 AAD

 DIV BL

 (a) AX = 0080H BX = 0009H (b) AX = 0008H BX = 0009H

 (c) AX = 0008H BX = 0090H (d) AX = 0800H BX = 0900H

 11.3 What is the result after addition of two ASCII numbers 33 and 37 by the following instructions?

 MOV AX, 0037

 ADD AX, 0033

 AAA

 OR AX, 3030

 (a) 303 1 (b) 1303 (c) 3130 (d) 3310

 11.4 After multiplication of two numbers, the result in AX will be

 MOV AL, 05

 MOV CL, 05

 MUL CL

 AAM

 (a) AX = 0205 (b) AX = 0250 (c) AX = 0025 (d) AX = 2500

 11.5 Which one of the following programs is the right program for complement of a number?

 (a) MOV AX, 2345 (b) MOV AX, 2345 (c) MOV AX, 2345 (d) MOV AX, 2345

 NEG AX CMP AX NOT AX CMC

 11.6 Result of unsigned multiplication of two numbers is

 MOV CL, 25

 MOV AL, 35

Assembly-Language Program of the 8086 Microprocessor 11.41

 MUL CL

 (a) AX = 7A90H (b) AX = 907AH (c) AX = A907H (d) AX = 07A9H

 11.7 Result for addition of two numbers is

 MOV AX, A233

 MOV BX, A455

 ADD AX, BX

 (a) AX = 4688H (b) AX = 4886H (c) AX = 8846H (d) AX = 6884H

 11.8 How many T states are required to execute the following instructions?

 MOV CX,2244 4 T states

 DEC CX 2 T states

 NOP 3 T states

 JNZ Start 16 T states

 (a) 256 T states (b) 184216 T states (c) 2560 T states (d) 2000 T states

 11.9 Content of AX after execution of the following instructions is

 MOV AH, 00H

 MOV BL, 06

 MOV AL, 08

 SUB AL, BL

 AAS

 (a) 0002 (b) FF08 (c) F8F0 (d) 80FF

 11.10 To execute a program, which command is used?

 (a) R (b) G (c) E (d) F

 11.11 Which command is used to see the flag register status?

 (a) U (b) A (c) R (d) F

 11.12 After execution of MOV AX, 9535 and RCL AX,1 the content of AX is

 (a) 2A6A Carry = 0 (b) 2A6A Carry = 1 (c) A26A Carry = 1 (d) 2AA6 Carry = 1

 11.1 (a) 11.2 (b) 11.3 (c) 11.4 (a)

 11.5 (c) 11.6 (d) 11.7 (a) 11.8 (b)

 11.9 (a) 11.10 (b) 11.11 (d) 11.12 (b)

CHAPTER

12
8255 Interfacing with 8085, 8086

and 8051 Microcontroller

 12.1 INTRODUCTION

8255A is a programmable peripheral interface IC and is a multi-port input/output device. This is a general-

purpose programmable I/O device, which may be used with many different microprocessors. There are 24

I/O pins, which may be individually programmed in 2 groups of 12 and used, in 3 major modes of operation.

 The I/O ports can be programmed in a variety of ways as per requirement of the programmer. The features

of this device are given below:

 Generally, this device is used to read data from an external device and write data into an external device.

are called peripheral interface circuits. These circuits are also known as programmable I/O ports, as I/O

ports are programmed to perform specified functions.

 12.2 ARCHITECTURE OF INTEL 8255A

IC package and operates on a single +5 V dc supply. The 8255 has 24 I/O pins, which may be individually

programmed in two groups of twelve input/output lines or three groups of eight lines. The two groups of

I/O pins are called Group A and Group B 8-bit port

and a subgroup of four bits known as 4-bit port. This IC has three eight-bit ports: Port A PA7–PA , Port

B PB7–PB , and Port C PC7–PC . The port C is divided into subgroups such as Port C upper, PC7–PC4

12.2

and Port C lower, PC3–PC . Group A consists of Port A and Port C upper. Group B consists of Port B and

follows:

 PA –PA7 8 pins of port A

 PB –PB7 8 pins of port B

 PC –PC3 4 pins of port Clower

 PC4–PC7 4 pins of port Cupper

The functional descriptions of pins are as follows:

Symbol Type Description

PA –PA7 I/O PORT A bus hold

high and bus hold low which are present on this port.

PB –PB7 I/O PORT B: 8-bit input and output port. This port is used to hold high or low in the same

way as Port A.

PC –PC7 I/O PORT C: 8-bit input and output port. This port may be used as output latch or input

buffer.

7 I/O DATA BUS The data bus lines are bi-directional three-state pins connected to the

system data bus. This three-state bi-directional 8-bit buffer is used to interface the

execution of input or output instructions by the microprocessor. Control words and

status information are also transferred through the data bus buffer.

RESET

CS I CHIP SELECT Chip select is an active low input used to enable the 82C55A onto

RD READ

RD

status information to the microprocessor on the data bus or the microprocessor can

read data from the input port of 8255.

WR I WRITE

WR

output port of 8255 or writes control word into the control word register of 8255.

A –A1 I ADDRESS These input signals, in conjunction with the RD and WR inputs, control

the selection of one of the three ports or the control word register. A and A1 are

normally connected to the least significant bits of the Address Bus A , A1. These lines

are used to select input ports and control word register.

 12.3 GROUP A AND GROUP B CONTROLS

a control word to the 82C55A. The control word contains information about mode of operation, bit set, bit

Group A and Group B, receive ‘commands’ from the control logic signals, RD and WR receives ‘control

words’ from the internal data bus and issues the proper commands to its associated ports.

12.3

Fig. 12.1 Schematic pin diagram of 8255A

Control Group A 7 – PC4)

Control Group B 3 – PC)

The control word register can be both read and write as shown in the ‘Basic Operation’ Table 12.1. The

Fig. 12.2 Pin diagram of Intel 8255A

12.4

Fig. 12.3 Functional block diagram of 8255A

Fig. 12.4 Control word bits of 8255A

12.5

7 will always be a logic ‘1’, as this implies control word mode information.

Table 12.1(a) 82C55A basic input operation

A1 A0 RD WR CS Input Operation (READ Cycle)

Table 12.1(b) 82C55A basic output operation

A1 A0 RD WR CS Output Operation (WRITE)

Table 12.1(c) 82C55A disable operation

A1 A0 RD WR CS Disable Function

 12.4 OPERATING MODES

There are three basic modes of operation of 8255 as follows:

Mode 0 Basic Input/Output

Mode 1

Mode 2 Bi-directional Bus

single output instruction. This allows a single 82C55A to service a variety of peripheral devices with a simple

control word is written.

upper and Port Clower). The

modes for Port A and Port B can be separately defined, though Port C is divided into two portions as required

by the Group A and Group B definitions.

12.4.1 Mode 0—Basic Input/Output

Port B, Port Cupper and Port Clower

output port. No handshaking is required; data is simply written to or read from a specific port.

12.6

Fig. 12.5 Mode 0

 Fig. 12.6 Mode 1

12.7

12.4.2 Mode 1—Strobed Input/Output

This is strobed input/output mode of operation. Only Port A and Port B both can be operating in this mode of

-

nals. These control signals are used for handshaking. PC , PC1 and PC2 pins of PC lower are used to control

the Port B and PC3, PC4, and PC5 pins of PC upper are used to control Port A. The other pins of Port C, i.e.,

PC and PC7 3, PC

and PC7 are used for its control. The pins PC4 and PC5 can be used either as input or output. The combination

 This functional configuration provides a means for transferring I/O data to or from a specified port in

conjunction with strobes or handshaking signals. In mode 1, Port A and Port B use the lines on the Port C to

 Fig. 12.7 Mode 2

12.8

either input or output. Both inputs and outputs are latched. The 4-bit port can be used for control and status

shows the mode 1 operation of Port A and Port B as output port.

Input Control Signal

A low on this input loads data into the input latch.

A high on this output indicates that the data has been loaded into the input latch: in

STB input being low and is reset by the rising edge of the RD input.

requesting service. INTR is set by the condition: STB

by the falling edge of RD

strobing its data into the port.

Controlled by bit set/reset of PC4.

Controlled by bit set/reset of PC2.

Output Control Signal The OBF

has written data out to be specified port. This does not mean valid data is sent out of the port at this time since

OBF OBF. The OBF

will be set by the rising edge of the WR input and reset by ACK input being low.

ACK A ‘low’on this input informs the 82C55A that the data from Port A or Port B is

ready to be accepted. In essence, a response from the peripheral device indicating that it is ready to accept

data.

Fig. 12.8 Timing diagram of Mode 1

12.9

.

2.

The strobe line is in a handshaking mode. The user needs to send OBF to the peripheral device, generates an

ACK from the peripheral device and then latch data into the peripheral device on the rising edge of OBF. The

ACK

‘one’. It is reset by the falling edge of WR.

Fig. 12.9 Input mode of ports A and B in Mode 1

Fig. 12.10 Output of ports A and B in Mode 1

PA –PA
7 0

INTE

A
PC

7

PC
6

PC
3 INTR

A

I/O
WR

PC –
6
PC

2 PC –
4
PC

5

WR

INTE

B

PB –PB
7 0

PC
2

PC
1

ACK
A

OBF
A

PC
0 INTR

B

I/O

OBF
B

ACK
B

12.10

12.4.3 Mode 2—Bi-directional Bus

is only feasible for Port A. Therefore, Port A can be programmed to operate as a bi-directional port. If Port A

-

tion, PC3 to PC7 pins are used to control signals

of Port A.

control and status for the 8-bit, bi-direc-

Bi-Directional Bus I/O Control Signal

A ‘high’ on this output

output operations.

Output Operations

to Port A.

Fig. 12.11 Timing diagram of Mode 1 with Port A and Port B as output port

Fig. 12.12 Mode 2

12.11

A ‘low’ on this input enables the three-

state output buffer of Port A to send out the data. Otherwise,

the output buffer will be in the high impedance state.

Controlled by

bit set/reset of PC4.

Input Operations

A ‘low’on this input loads data into

the input latch.

A ‘high’ on this output indicates

that data has been loaded into the input latch.

Controlled by bit

set/reset of PC4.

12.4.4 Single Bit Set/Reset (BSR) Mode
In this mode, any of the eight bits of Port C can be set or

reset using a single output instruction. This feature reduces

software requirements in control-based applications.

or B, these bits can be set or reset by using the bit set/reset

shows the bit set/reset format.
Fig. 12.13 Timing diagram of Mode 2

Fig. 12.14 Bit set/reset format

12.12

 12.5 CONTROL WORD

The ports of 8255 can be operating any one mode by programming the internal register of 8255. This internal

control word into the control word register, the IC will be configured to operate specified modes of operation.

The functional description of the bits of the control word is as follows:

Bit D0 bit is used to set the Port Clower lower is an input port. If the

lower is an output port.

Bit D1

Port B is an output port.

Bit D2 2

2 is set 1.

Bit D3 It is used for the Port Cupper. If the bit is set to 1, Port Cupper

Port Cupper is an output port.

Bit D4 4

Bit D5 and D6 These bits are used to select the operating mode of Port A. The Port A can be operated in

5 as given below:

 Mode of Port A Bit D6 Bit D5

Bit D7

Table 12.2 Control words of 8255 for Mode 0 operation

 Control word bits Control Port A Port C Port B Port C
 word upper lower

7 5 4 3 2 1

12.13

 12.6 EXAMPLES TO DETERMINE THE CONTROL WORD

the definition of the port, whether it is to be made an input port or output port. If a particular port is to be made

Table 12.2. The following examples will illustrate how to make control words.

Example 12.1

Port Cupper and Clower are input ports.

Sol.

 is set to 1, as Port Clower is an input port.

1 is set to 1, as Port B is an input port.

2

3 is set to 1, as Port Cupper is an input port.

4 is set to 1, as Port A is an input port.

5

7 is set to 1, as Ports A, B and C are used as simple input/output port.

Fig. 12.15

Example 12.2

Port A – input, Port B – output, Port Clower – output and Port Cupper – input

Sol.

12.14

Example 12.3

Port A – input, Port B – output, Port Cupper – output and Port Clower – output

Sol.

Fig. 12.16

Fig. 12.17

Example 12.4

operation:

PC and PC7 act as input.

Sol. –PC5 –PC2

A is operated as an input port, PC3–PC5 are used to control this port. In this operating mode, PC and

PC7 -

Fig. 12.18

Example 12.5

1 operation:

 Remaining pins of the Port C, i.e. PC4 and PC5 are used as input

12.15

Sol. In this mode of operation, PC , PC1 and PC2 are used for the control of Port B. If Port A is used as an

output port. PC3, PC and PC7 are used for controlling Port A. PC4 and PC5 are available to be used

either as input or output. The control word bits for the above configuration of the ports are shown in

 12.7 APPLICATIONS OF 8255 PPI

The 8255 PPI IC is a very powerful tool for interfacing peripheral equipment to the microprocessor-based

system. It represents the optimum use of available pins and is flexible enough to interface almost any I/O

device without the need for additional external logic.

it. The routine manages the software interface between the device and the microprocessor. The functional

definition of the 8255 can be programmed by the I/O service routine and becomes an extension of the system

software. By examining the I/O device interface characteristics for both data transfer and timing, and match-

ing this information to the examples and tables in the detailed operational description, a control word must

typical applications of the 8255 are given below:

Generate a square wave at Port A

Keyboard operation

Traffic light control

Interfacing with dc motors and stepper motors, etc.

 12.8 8255 INTERFACING WITH 8085 MICROPROCESSOR

 and A1 -

processor are directly connected to the A and A1 pins of 8255 IC for selecting three ports such as Port A,

Port B, port C and control word register address. RD, WR 7 of 8255 is connected

CS is generated from A2 to A7 address lines and IO/ M

Fig. 12.19

12.16

Table 12.3 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A7 A A5 A4 A3 A2 A1 A in Hex

Fig. 12.20 8255A interface to 8085 microprocessor

GND

RESET PC0

A1

A0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

Port-C

WR

RD

RESET

A1

A0

WR

RD

PB0

P 1B

PB2

PB3

PB4

PB5

PB6

PB7

Port-B

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Port-A

CS

8255

D –D0 7D –D0 7

VCC

A2

A3

A4

A5

A6

A7

IO/M

8085

12.17

 12.9 8255 INTERFACING WITH 8086 MICROPROCESSOR

address lines are used to drive 8255 IC. A1 and A2 -

nected to the A and A1 pins of 8255 IC for selecting Port A, Port B, Port C and control word register address.

The other lines A , A3–A7 and A8–A15 are used for decoding and generate the chip select signal.

7 . The A and A1 pins of 8255 are

connected with A1 and A2

minimum mode so that IORD and IOWR are connected with RD and WR pins of 8255 and the chip select pin

of 8255 is connected with the decoder circuit output.

To generate the above address, the status of pins A –A15 is given in Table 12.4.

GND

RESET
PC0

A1

A0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

Port-C

WR

RD

RESET

A2

A1

IOWR

IORD

PB0

P 1B

PB2

PB3

PB4

PB5

PB6

PB7

Port-B

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Port-A

CS

8255

D –D0 7D –D0 7

VCC

A2

A8
A0

A15

8086

A3

A7

Fig. 12.21 8255A interface to 8086 microprocessor

12.18

Table 12.4 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
in Hex

1 and A2 address lines of

 and A1 pins of 8255 IC for selecting the address of three

ports A, B, C and the control word register. The other lines A , and A3–A7 are used for decoding and generate

chip select CS

7 7 .

Neglecting the higher order address lines, the addresses of Port A, Port B, Port C and the address of control

–A7

pins is given in Table 12.5

Table 12.5 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A7 A6 A5 A4 A3 A2 A1 A0
in Hex

12.19

GND

RESET
PC0

A1

A0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

Port-C

WR

RD

RESET

A2

A1

IOWR

IORD

PB0

P 1B

PB2

PB3

PB4

PB5

PB6

PB7

Port-B

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Port-A

CS

8255

D –D0 7D –D0 7

VCC

A0

A3

A4

A5

A6

A7

8086

Fig. 12.22 8255A interface to 8086 microprocessor

 12.10 8255 INTERFACING WITH 8051 MICROCONTROLLER

 and A1

microcontroller are directly connected to the A and A1 pins of 8255 IC for selecting the address of Port A,

Port B, Port C and the control word register. The chip select CS signal is generated from A2 to A7 and A8 to

A15

–A15 is

Table 12.6 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
in Hex

12.20

GND

RESET
PC0

A1

A0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

Port-C

WR

RD

RST

A1

A0

WR

RD

PB0

P 1B

PB2

PB3

PB4

PB5

PB6

PB7

Port-B

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Port-A

CS

8255

D –D0 7D –D0 7

VCC

A8

A15

8051

A2

A7

Fig. 12.23 8255A interface to 8051 microcontroller

12.21

 and A1 address lines of

 and A1 pins of 8255 IC to select the address of Port A,

Port B, Port C and control word register. The A2–A7 are used for decoding and generate chip select CS sig-

7 7

–A7 pins is given in Table 12.7.

Table 2.7 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A7 A6 A5 A4 A3 A2 A1 A0
in Hex

GND

RESET
PC0

A1

A0

PC1

PC2

PC3

PC4

PC5

PC6

PC7

Port-C

WR

RD

RST

A1

A0

WR

RD

PB0

P 1B

PB2

PB3

PB4

PB5

PB6

PB7

Port-B

PA0

PA1

PA2

PA3

PA4

PA5

PA6

PA7

Port-A

CS

8255

D –D0 7D –D0 7

VCC

A2

A3

A4

A5

A6

A7

8051

Fig. 12.24 8255A interface to 8051 microcontroller

12.22

7 and PC and to reset them after 1-second delay.

mode 2 operations.

with a timing diagram.

strobed input.

Remaining pins of Port C are used as input

of Port A, Port B, Port C and control word register.

circuit.

the above interfacing circuit.

to Port C.

 12.1 If A and A1

12.23

 12.2 To select Port B of 8255, A and A1 are

is

control word register is

respectively.

1 and A2 and A1 and A2 and A3

 and A1 1 and A and A2 1 and A2

CHAPTER

13
8253 Interfacing with 8085, 8086

and 8051 Microcontroller

 13.1 INTRODUCTION

In the process control system or the automation industry, a number of operations are generally performed

sequentially. Between two operations, a fixed time delay is always specified. In a microprocessor-based

system, time delay can be generated using software. Sequences of operations are also performed based on

software. Therefore, time delay, sequence and counting can be done under the control of a microprocessor.

These most common problems can be solved using the 8253 in any microcomputer system.

 The 8253 is a programmable interval timer/counter specifically designed for use in real-time application

for timing and counting functions such as binary counting, generation of accurate time delay, generation of

square waves, rate generation, hardware/software triggered strobe signal, one-shot signal of desired width,

etc. The function of the 8253 timer is that of a general-purpose, multi-timing element which can be treated as

an array of I/O ports in the system software.

 The generation of accurate time delay using software control or writing instruction is possible. But instead

of writing instructions for time delay loop, the 8253 timer may be used for this. The programmer configures

the 8253 as per requirements. When the counters of the 8253 are initializing with the desired control word,

the counter operates as per requirement. Then a command is given to the 8253 for counting the delay and

it interrupts the CPU. At the instant it has completed its tasks, the output will be obtained from the output

terminal. Multiple delays can easily be implemented by assignment of priority levels in a microprocessor.

 Counter/timers such as a Programmable Rate Generator, Event Counter, Binary Rate Multiplier, Real Time

Clock, Digital One-Shot, and Complex Motor Controller can also be used for non-delay in nature. The 8253

operates in the frequency range of dc to 2.6 MHz. The 8253 uses NMOS technology. The 8253 is compatible

to the 8085 microprocessor. Generally, 8253 can operate in the following modes.

 Mode 0 Interrupt on terminal count

 Mode 1 Programmable one-shot

 Mode 2 Rate generator

 Mode 3 Square-wave generator

 Mode 4 Software triggered mode

 Mode 5 Hardware triggered mode

Microprocessors and Microcontrollers13.2

The pin diagram, block diagram of 8253, interfacing with 8085 microprocessor and operation of each mode

have been explained in this section.

 13.2 PIN DIAGRAM OF 8253

The 8253 timer is a 24-pin IC and operates at +5 V dc. It consists of three independent programmable16-

bit counters: counter-0, counter-1, and counter-2. Each counter operates as a 16-bit down counter and each

counter consists of clock input, gate input and output as depicted in Fig. 13.1. The schematic block diagram

is given in Fig. 13.1. The gate input is used to enable the counting process. Therefore, the starting of counting

may be controlled by external input pulse in gate terminal. After gate is triggered, the counter starts count-

down. When the counter has completed counting, the output signal would be available at the output terminal.

 The programmer can program 8253 using software in any one of the six operating modes: mode-0, mode-

1, mode-2, mode-3, mode-4, and mode-5. The schematic pin diagram of 8253 is shown in Fig. 13.2 and Fig.

13.3. Shows the pin diagram of 8253. The functional descriptions of pins are as follows:

RD (Read) When this pin is low, the CPU is inputting data in the counter.

WR (Write) When this is low, the CPU is outputting data in the form of mode information or loading of

counters.

A0, A1 These pins are normally connected to the address bus. The function of these pins is used to select one

of the three counters to be operated and to address the control word registers for mode selection as follows.

Fig. 13.1 Schematic block diagram of Intel 8253 timer/counter

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.3

 A1 A0 Selection of Counters and Control word register

 0 0 Counter-0

 0 1 Counter-1

 1 0 Counter-2

 1 1 Control word register

Fig. 13.2 Schematic pin diagram of 8253

Fig. 13.3 Schematic pin diagram of 8253

1

2

3

5

10

12

4

6

7

8

9

11

D
7

24

23

22

20

15

13

21

19

18

17

16

14

V
CC

D
6

D
5

D
4

D
3

D
2

D
1

D
0

CLK 0

OUT 0

GATE 0

GND

8253

A
1

A
0

CLK 1

OUT 1

GATE 1

CLK 2

OUT 2

GATE 2

WR

RD

CS

Microprocessors and Microcontrollers13.4

CS Chip Select A ‘low’ on CS input enables the 8253. No reading or writing operation will be performed

until the device is selected. The CS input signal is not used to control the actual operation of the counters.

Data Bus Buffer The 3-state, bi-directional, 8-bit buffers exist in 8253. These buffers are used to interface

the 8253 to the systems data bus D0–D7 lines. Data can be transmitted or received by the buffer upon execution

of input and output CPU instructions. The data bus buffer has three basic functions, namely, programming the

modes of the 8253, loading the count registers and reading the count values.

D0–D7 Bi-directional Data Bus There are eight data lines through which the control word will be

written in the control word register of 8253 counter/timer during programming. The counter will be written

and read through a data bus.

Read/Write Logic The Read/Write Logic accepts inputs from the system bus and, in turn, generates

control signals for operation of 8253. This is enabled by CS . Therefore, no operation can take place to change

the function unless the device has been selected by the system logic. Table 13.1 shows the various functions

of 8253 based on the status of pins associated with read/write logic.

 CS RD WR A1 A0 Function

 0 1 0 0 0 Load Counter No. 0

 0 1 0 0 1 Load Counter No. 1

 0 1 0 1 0 Load Counter No. 2

 0 1 0 1 1 Write Mode Word

 0 0 1 0 0 Read Counter No. 0

 0 0 1 0 1 Read Counter No. 1

 0 0 1 1 0 Read Counter No. 2

 0 0 1 1 1 No Operation 3-State

 1 X X X X Disable 3 State

 0 1 1 X X No Operation 3-State

CLK0, CLK1, CLK2 CLK0 , CLK1 and CLK2 are clocks for Counter 0, Counter 1 and Counter 2

respectively. The countdown of the counter takes place on each high to low transition of clock input.

GATE0, GATE1, GATE2 GATE0, GATE1 and GATE2 are gate terminals of Counter 0, Counter 1 and

Counter 2 respectively. The function of the GATE in different modes is illustrated in Table 13.1.

OUT0, OUT1, OUT2 OUT0, OUT1 and OUT2 are output terminals of Counter 0, Counter 1 and Counter 2

respectively. The output of the 8253 timer depends upon the mode of operation.

Table 13.1 Different modes of operation corresponding to gate signal

Single status mode Low or going low Rising High

0 Disables counting – Enables counting

1 – Initiates counting –

 Resets output after

 next clock

2 Disables counting Initiates counting Enables counting

 Sets output immediately high

3 Disables counting Initiates counting Enables counting

 Sets output immediately high

4 Disables counting – Enables counting

5 – Initiates counting –

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.5

 13.3 BLOCK DIAGRAM

The functional block diagram is illustrated in Fig. 13.1. This device can be divided into functional blocks

such as the counter section and the systems interface section.

Counter Section The 8253 consists of three programmable independent counters: Counter #0, Counter

#1, and Counter #2. These three functional blocks of counters are identical in operation. Each counter consists

of a single 16-bit DOWN counter. The counter can operate in either binary or BCD and its input, gate and

output are configured by the selection of MODES stored in the control word register. The counters are fully

independent and each can have a separate mode configuration and counting operation, binary or BCD. Each

counter can be operated in any of six modes (Mode 0 to Mode 5).

 The reading of the contents of each counter is available to the programmer with simple READ operations

for event-counting applications. Special commands and logic are incorporated in the 8253 so that the contents

of each counter can be read without having to inhibit the clock input.

Systems Interface The CS input signal enables the 8253 timer/counter IC. The RD and WR signals are

used for read and write operations respectively. The 8253 can be interfaced with the microprocessor in the

same manner as all other peripherals of the family. The 8253 timer/counter which consists of three counters

and the control register, will be treated by the systems software as an array of peripheral I/O ports for all

modes of programming.

 Figure 13.4 shows the interfacing between the microprocessor and the 8253 timer. The data bus D0–D7

Fig. 13.4 8253 System interface

Microprocessors and Microcontrollers13.6

is connected with the data bus of the microprocessor. The select inputs A0, A1 of 8253 connect to the A0, A1

address bus signals of the CPU. The CS can be derived directly from the address bus using a linear select

method or it can be connected to the output of a decoder.

 13.4 CONTROL WORD REGISTER

The systems software programs all function of the 8253. This device is programmed to initialize the counter,

select the specified counter mode, and read the count value. A control word must be sent out by the CPU to

initialize each counter of the 8253 to operate in the desired Mode. Before initialization, the mode count, and

output of all counters are undefined. The control words program the mode, loading sequence and selection of

binary or BCD counting. Once programmed, the 8253 is ready to perform any operation which it is assigned

to carry out.

 The control word register is selected when the pins A0, A1 are 11. Then the control word register accepts

information from the data bus buffer and stores it. The information stored in this register controls the opera-

tion of each counter. Each counter has three terminals—CLK, GATE and OUT. The output signal depends on

the operating mode. The GATE signal controls the output signal.

 All of the modes for each counter are programmed by simple instruction. Writing a control word into

the control word register individually programs each counter of the 8253. The control word format is shown

below:

Control Word Format

 D7 D6 D5 D4 D3 D2 D1 D0

 SC1 SC0 RL1 RL0 M2 M1 M0 BCD

SC—Select Counter The SC0 and SC1 bits of the control word select a counter. The selection of counters is given

below:

 SC1 SC0 Select Counter

 0 0 Select Counter- 0

 0 1 Select Counter -1

 1 0 Select Counter -2

 1 1 Illegal

RL—Read/Load The RL0 and RL1 are used to load/read counts as follows:

 RL1 RL0 Read/Load

 0 0 Counter latching operation

 0 1 Read/Load least significant byte only

 1 0 Read/Load most significant byte only

 1 1 Read/Load least significant byte first, then most significant byte

M—Mode Mode selecting bits M0, M1 and M2 select any one of six modes as given below:

 M2 M1 M0 Mode

 0 0 0 Mode 0

 0 0 1 Mode 1

 × 1 0 Mode 2

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.7

 × 1 1 Mode 3

 1 0 0 Mode 4

 1 0 1 Mode 5

BCD

 0 Binary counter, 16-bits

 1 Binary Coded Decimal (BCD) counter (4 Decade)

Reading While Counting The 8253 timer has a command for latching the content of a counter to read

the count value without stopping the counting. This device has a special internal logic to achieve this. The

count value can be read after loading a control word in the control word register. The bit pattern for the

control word for this operation is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 SC1 SC0 0 0 × × × ×

SC1 and SC0 specify counter to be latched.

D5 and D4 00 makes counter latching operation

X indicates ‘doesn’t care’.

For example, the control word for reading the count value of the counter 1 is

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 0 × × × ×

Bits D7 and D6 are 0 and 1 respectively to represent the counter 1.

Bits D5 and D4 are 0 and 0 to represent latching operation.

Other bits are either 1 or 0.

Therefore, the control word for the above operation is 40H.

 Whenever the microprocessor wants to latch the counter, the latching command must be issued every

time and then it reads the content of the counter. In this mode of operation, the counter operation will not be

affected by the latching command. After receiving the latching command, the 8253 latches the content of the

counter and stores it in a storage register. Then the microprocessor reads the content of the register by issuing

a read instruction. This read operation is generally specified by RL1 and RL0 bits of the original mode set

command. For counter latching operation, RL1 and RL0 are ‘0’ and ‘0’ respectively. If RL1 = 0 and RL0 =1,

only read least significant byte LSB of the counter. When RL1 = 1 and RL0 = 0, only read MSB of the count.

If RL1 = 1 and RL0 = 1, read LSB of the count first, and thereafter read MSB of the count.

 13.5 OPERATIONAL MODES

The 8253 consists of three independent negative edge-triggered 16-bit down counters, namely, counter 0,

counter 1 and counter 2. As the counters are fully independent, each counter of 8253 can be programmed in

a different mode configuration and counting operation. The programmer must write the control word in the

control word register and load the count value in a selected count register. Writing the mode control word, the

counter may be selected in any sequence. Each counter’s mode control word register has a separate address

so that it can be loaded independently. Usually, the 8253 is available on a microprocessor kit. Sometimes

8253 timer/counter is also connected with the microprocessor kit externally. The clock frequency is about 1.5

MHz, which is available on the kit. If the clock frequency is about 3 MHz, an edge-triggered flip-flop can be

Microprocessors and Microcontrollers13.8

used to divide this clock frequency by two to obtain a desired clock frequency for operating 8253 properly.

 The port address for control word register and the counters of 8253 are as follows:

 A7 A6 A5 A4 A3 A2 A1 A0

 1 0 0 0 0 0 1 1 83H Address of control word register

 1 0 0 0 0 0 0 0 80H Address of Counter 0

 1 0 0 0 0 0 0 1 81H Address of Counter 1

 1 0 0 0 0 0 1 0 82H Address of Counter 2

 A counter can be used for various applications such as BCD/binary counter, programmable rate generator,

square wave generator, hardware/software triggered strobe, programmable one-shot, generate time delay, etc.

Descriptions of some applications are given below.

13.5.1 MODE 0—Interrupt on Terminal Count

Generally, Mode 0 is used to generate accurate time delay under software control. Firstly, any one counter

of 8253 timer/counter is initialized and loaded with a suitable count to develop the desire time delay. After

termination of counting, the counter interrupts the microprocessor. When counter interrupts the microproces-

sor, the specified operations will be performed by the microprocessor. When the control word is loaded into

the control word register, 8253 timer/counter sets the mode. In Mode 0 operation, the output of the counter

becomes initially low after the mode is set. After mode set operation, the selected counter must be loaded by

the desired count value N.

 In this mode of operation, GATE is kept high. Therefore, just after loading the count registers, the counter

starts to decrement. When counting is going on, the counter output terminal OUT remains low. As soon as

the terminal count reaches 0, the output becomes high. The output remains high until the counter is reloaded

or a new count value is loaded into counter. When the count is reloaded or a new count is loaded, the count-

ing restarts from new count value and again OUT becomes low. The timing diagram for Mode 0 operation is

shown in Fig. 13.6.

Fig. 13.5 Interfacing the 8253

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.9

 While counting is going on, GATE becomes low suddenly and the counter stops counting operation. After

some time if the GATE returns to 1, counting is resumed from the count value at which the counting discon-

tinued. The count value can be changed at any time. A new count value can also be loaded while counting is

going on. But the changes will be effective only after the next GATE trigger. This mode of operation can be

used to generate accurate time delay. This can also be used to perform specified operation after some delay.

The output of OUT terminal may be used to interrupt the microprocessor. The examples of Mode 0 operation

are given below:

Example 13.1 Write a subroutine program to initialize counter 0 in Mode 0 with a count value of 8000H.

Sol. The control word for Mode 0 operation as given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 1 0 0 0 0 = 30H

D7 and D6 have been set to 00 to initialize the counter 0.

D5 and D4 have been set 11 to load the least significant byte of the count first, then the most significant byte.

D3, D2, D1 are set to 000 for Mode 0 operation.

D0 is set to 0 as counting is to be done in binary.

The address of the control register is 83H and the address of the counter 0 is 80H.

The program for loading the control word and 16-bit number in the counter 0 is given below:

Program

Memory address Machine Codes Mnemonics Operands Comments

9000 3E, 30 MVI A, 30 Control word for Mode 0 to initialize

the counter 0

9002 D3, 83 OUT 83 Write the control word into control

word register

9004 3E, 00 MVI A, 00 H Least significant byte of the count.

9006 D3, 80 OUT 80 Load counter 0 by 00H, LSB of count

9008 3E, 80 MVI A, 80 Most significant byte of the count.

900A D3, 80 OUT 80 Load counter 0 by 80H, MSB of count

After execution of the program, the gate signal becomes ONE.

Example 13.2 Read the count value of the counter while the counting is going on. Assume the counter 0

in Mode 0 with a count value 8000H.

Sol. The 8253 timer/counter can be able to read the count value without stopping the counting. The count

Fig. 13.6 Mode 0—interrupt on terminal count

Microprocessors and Microcontrollers13.10

value can be read after loading the control word in the control word register. The control word for

this operation is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 0 x x x x = 00H

D7 and D6 have been set to 00 to represent the counter 0.

D5 and D4 have been set to 00 for latching operation.

D3, D2, D1 and D0 are not checked when D5 and D4 are 0 and 0.

The address of the control register is 83H and the address of the counter 0 is 80H

The program for reading count value of the counter 0 while counting is given below:

Program

Memory address Machine Codes Mnemonics Operands Comments

9000 3E, 30 MVI A, 30 Control word for MODE 0 to initialize

the counter 0

9002 D3, 83 OUT 83 Write the control word into control

word register

9004 3E, 00 MVI A, 00 H Least significant byte of the count

9006 D3, 80 OUT 80 Load counter 0 by 00H, LSB of count

9008 3E, 80 MVI A, 80 Most significant byte of the count

900A D3, 80 OUT 80 Load counter 0 by 80H, MSB of count

900C 3E, 00 MVI A, 00 H Load the control word into control-

word register

900E D3, 83 OUT 83

9010 DB, 80 IN 80 Read least significant byte of the count

value

9012 5F MOV E, A Store least significant byte in E register

9013 DB, 80 IN 80 Read most significant byte of the count

value

9015 57 MOV D, A Store most significant byte in D regis-

ter. The register pair BC contains the

present value of the counter 0

Example 13.3 Counter 0 of 8253 timers is used in Mode 0 to perform addition of an array after certain

delay. Assume count value for delay = 2000H. After completion of counting, the counter interrupts the

microprocessor to jump a memory location for addition of two 8-bit number.

Sol. It is a very simple task to jump from one memory location to another memory location. But, here the

task is to jump from one memory location to another memory location after the microprocessor is

interrupted. For this, all interrupts must be enabled. Then the content of the accumulator will enable

RST 7.5, 6.5 and 5.5 for SIM instruction as given below:

 7 6 5 4 3 2 1 0

 SOD SOE X R7.5 MSE M7.5 M6.5 M5.5

 0 0 0 0 1 0 0 0 = 08H

The control word for Mode 0 operation of the counter 0 is as follows.

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.11

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 1 0 0 0 0 = 30H

D7 and D6 are set to 0 and 0 respectively to initialize the counter 0.

D5 and D4 have been set 11 to load the least significant byte of the count first, after that the most significant

byte must be loaded.

D3, D2, D1 are set to 0 0 0 for Mode 0 operation.

D0 is set to 0 as counting is to be done in binary. Connect OUT terminal of the counter 0 with RST 7.5 of the

microprocessor.

Program

Memory address Machine Codes Mnemonics Operands Comments

8000 FB EI All interrupts are enable

8001 3E, 08 MVI A, 08 Load bit pattern to accumulator to

enable RST 7.5, 6.5 and 5.5

8003 30 SIM RST 7.5, 6.5 and 5.5 are enable.

8004 3E, 30 MVI A, 30 The control word for Mode 0 to initial-

ize counter 0

8006 D3, 13 OUT 83 Write control word into control word

register

8008 3E, 00 MVI A, 00 H Load least significant byte of the count

in the counter 0.

800A D3, 11 OUT 80 Load counter 0 by LSB of count value

800C 3E, 20 MVI A, 20 MSB of count value

800E D3, 11 OUT 80 Load the counter 0 by MSB of count

value

8010 C3, 10, 80 JMP 8010

As soon as the count value is loaded in the counter 0, the counter starts decrementing. When the counting has

been completed, RST 7.5 interrupts microprocessor and the program jumps to the memory location 003C.

After that the monitor transfers the program from 003C location to 9000H. Then the jump instruction which

is stored at 9000H location can transfer the program from 9000H to the starting address of the subroutine,

8500H. The subroutine program is given below:

9000 C3, 00, 85 JMP 8500 Jump to subroutine at 8500H

SERVICE SUBROUTINE

8500 21 00 86 LXI H 8600 Load 8600 in H-L register pair

8503 7E MOV A, M Move content of 8600 into accumulator

8504 23 INX H Increment H-L pair

8505 86 ADD M Add the 2nd data with accumulator

8506 32 02 86 STA 8602 Store result in 8602 memory location

8509 FB EI Enable all interrupts

850A C9 RET

DATA

8600 22

8601 44

RESULT

8602 66

Microprocessors and Microcontrollers13.12

 After execution of subroutine, the program returns from the subroutine to the main program. Before return

to the main program all interrupts must be enabled so that any additional interrupts can be acknowledged.

13.5.2 MODE 1—Programmable One-Shot

In this mode, the counter acts as a retriggerable and programmable one-shot. The rising edge trigger signal

is applied to GATE terminal of counter. In this mode, initially OUT is high after the mode is set. The con-

trol word and the count value must be loaded into the counter. When the mode set operation is done and the

counter is loaded by a count value, the counter starts a decrement count. At the first negative edge of the clock

after the rising edge trigger signal of the GATE input, the output becomes low. Then the output (OUT) will be

low for a number of count clock cycles. After completion of the count, the output becomes high as depicted

in Fig. 13.7. The width of the output pulse depends upon the count value. Consequently, the width of the

output pulse can be varied by changing the count value in the program. Therefore this mode of operation can

be called as programmable one-shot.

Example 13.4 Write a program to operate the counter 0 of 8253 timer/counter in MODE 1.

Sol. The control word for counter 0 in Mode 1 was determined as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 1 0 0 1 0 = 12H

D7 and D6 are set to 0 and 0 respectively to select the counter 0.

D5 and D4 are also set to 0 and 1 respectively for loading only least significant bits (LSB) of the count.

D3, D2 and D1 are set to 001 for Mode 1.

D0 is set to 0 for binary counting.

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, 12 MVI A, 12H Load control word to initialize

counter 0 in MODE 1

8002 D3, 83 OUT 83 Write the control word in con-

trol word register

8004 3E, 10 MVI A, 10 Get count

8006 D3, 80 OUT 80 Load counter 0 with the count

Fig. 13.7 Mode 1—Programmable one-shot

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.13

13.5.3 MODE 2—RATE Generator

In Mode 2, the counter behaves as a divide by counter. Generally, it is used to generate a real-time clock

interrupt. The control word and the count value are loaded into the control word register and counter respec-

tively. After the mode is set, the output of the counter will be initially high. If the counter is loaded by a count

of value N, the output remains high for (N–1) clock pulses. After (N–1) clock pulses, output will be low for

one clock pulse and then output becomes high again as shown in Fig. 13.8. Thereafter the count value N

is reloaded into counter and the output remains high for (N–1) clock pulses and will be low for one clock

pulse. If a new count value is reloaded into the count register between output pulses, the present period is not

affected. The subsequent period reflects the new value of the count.

Contd.

Fig. 13.8 Mode 2—rate generator

Example 13.5 The counter 1 of 8253 time operates in Mode 2, divide by -N binary counter. Assume N =

6 in decimal.

Sol. When the counter 1 of 8253 time operates in Mode 2 and divide by -N binary counter, the control

word are as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 1 0 0 1 0 = 54 hex

D7 and D6 are set to 0 and 1 respectively to initialize the counter 1.

D5 and D4 have been set to 0 and 1 to load the only least significant byte of the count.

D3, D2, D1 are used for mode select. Mode 0 operation D3, D2, D1 are set to 0 1 0.

D0 is set to 0 as counting is to be done in binary.

54H is the control word for MODE 2 operation.

 In the counter 1, GATE1, OUT1 and CLK1 terminals are available at microprocessor kit. Apply +5 to

GATE1 of counter 1 to make it high. The clock has been connected to terminal CLK1. The clock frequency

must be desired frequency approximately 1.5 MHz.

Program

Memory address Machine Codes Mnemonics Operands Comments

8000 3E, 54 MVI A, 54H Load control word for counter 1,

MODE 2, binary counting

Microprocessors and Microcontrollers13.14

8002 D3, 83 OUT 83 83 is address for writing control word

in control word used

8004 3E, 06 MVI A, 06 H Load count value N. A = 06H

8006 D3, 81 OUT 81 81 H is the address for counter-1

8008 76 HLT Stop

13.5.4 MODE 3—Square Wave Generators

In this mode, the counter operates as a square-wave generator. To operate the counter 1 in mode 3, the control

word must be loaded into control word register. After mode setting, the counter is loaded by a count of value

N. When the GATE becomes high, the counter starts counting. The output remains high for half of the count

value, N/2 clock pulses and it remains low for the rest of the count values or N/2 clock pulses. Therefore a

continuous square wave of specified period can be generated at output terminal as depicted in Fig. 13.9.

 For even values of N, the output is high for N/2 clock pulses and low for next N/2 clock pulses. For odd val-

ues of N, the output remains high for (N + 1)/2 clock pulses and low for remaining clock pulses. By changing

the count value, time period of square wave can be controlled. After completion of count, the output state is

changed and the counter is automatically reloaded with the full count and the above process will be repeated.

Example 13.6 Write a program to use the counter 1 of 8253 in Mode 3 as a square-wave generator.

 Assume N = 16. The counter operates as a binary counter.

Sol. The counter 1 has been used as a square-wave generator and the control word for this operation is

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 1 0 1 1 0 = 56 H

Contd.

Fig. 13.9 (a) Mode 3–square wave generator with even count value

Fig. 13.9 (b) Mode 3–square wave generator with odd count value

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.15

D7 and D6 have been set to 0 and 1 to select the counter 1.

D5 and D4 are set to 0 and 1 for loading only LSB of the count.

D3, D2 and D1 are set to 011 for Mode 3 operation.

D0 is set to 0 for binary counting.

Program

Memory address Machine Codes Mnemonics Operands Comments

9000 3E, 56 MVI A, 56H Load the control word for MODE 3 in con-

trol word register to initialize counter 1

9002 D3, 83 OUT 83 Write in control word register

9004 3E, 10 MVI A, 10 H Load the count value for binary counting

9006 D3, 81 OUT 81 Load counter 1 with the count value

9008 76 HLT Stop

 If N = 16, the output will be high for 8 clock cycles and then it will be low for the next 8 clock cycles. When

N = 17, the output remains high for 9 clock pulses and then low for remaining 8 clock pulses. A continuous

square wave can be generated at the output as the counter is reloaded by the same value and the timer repeats

the process repeatedly.

13.5.5 MODE 4—Software Triggered Strobe

In the software triggered strobe operation, the counter output will be high after the mode is set. The GATE

is always high for this mode of operation. When the counter is loaded with a count value, the counter starts

counting. As soon as the count value is loaded into the counter register, it triggers the generation of the strobe.

Therefore, this mode of operation is known as software triggered strobe. When the counter content becomes

0, the output will be low for one clock period and thereafter; output will be remaining high as illustrated in

Fig. 13.10.

Example 13.7 Write a program use counter 2 of 8253 in MODE 4.

Sol. The control word for the counter 2 for Mode 4 operation is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 1 1 1 0 0 0 = B8 hex

D7 and D6 are set to 10 to select the counter 2.

D5 and D4 have been set to 11 to load the LSB of the count value first, then load MSB of the count value.

Fig. 13.10 Mode 4—Software triggered strobe

Microprocessors and Microcontrollers13.16

D3, D2 and D1 have been set to 100 for Mode 4 operation.

D0 is set to 0 for binary counting.

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, B8 MVI A, B8H Load control word to initialize

counter 2 for Mode 4 operation

8002 D3, 83 OUT 83 Write control word in control

word register

8004 3E, 05 LOOP MVI A, 05 Load LSB of the count

8006 D3, 82 OUT 82 Load counter 2 with LSB of

the count

8008 3E, 00 MVI A, 00 Load MSB of the count

800A D3, 82 OUT 82 Load counter 2 with MSB of

the count

800C C3, 04, 80 JMP LOOP

13.5.6 MODE 5—Hardware Triggered Strobe

In this mode of operation, initially the output is high. The control word and count value are loaded in the

counter register. Here GATE input acts as a trigger signal. When low to high transition of the GATE input

occurs, the counter starts to decrement the count value and the output becomes initially high. The output goes

low for one clock period, when the counter completes the count value. As the low to high transition of the

GATE input or the rising edge of GATE trigger the counter, this mode is called hardware triggered strobe as

depicted in Fig. 13.11.

 This mode of the counter operation is also retriggerable. When the GATE input becomes low to high again,

the counter is reloaded by the count value N and the counter starts to decrement the count value once again.

The output will also be low for one clock period on terminal count.

Example 13.8 Write a program to use counter 2 of 8253 in Mode 5 operation.

Sol. The control word for the counter 2 in Mode 5 is as follows:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 1 1 1 0 1 0 = BA H

Fig. 13.11 Mode 5–hardware triggered strobe

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.17

D7 and D6 are set to 1 and 0 respectively to select counter 2. D5 and D4 are set to 11 for loading least signifi-

cant bit first, then most significant bit. D3, D2 and D1 are set to 101 for MODE 5 operation. D0 is set to 0 for

binary counting.

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, BA MVI A, BA Load control word to ini-

tialize counter 2 in Mode 5

operations

8002 D3, 83 OUT 83 Write the control word into

control word register

8004 3E, 06 MVI A, 06 Load LSB of the count

8006 D3, 82 OUT 82 Load the counter 2 with LSB

of the count value

8008 3E, 00 MVI A, 00 Get MSB of the count

800A D3, 82 OUT 82 Load MSB of counter into

counter 2

800C 3E, 80 LOOP MVI A, 80 H Initialize ports of 8255.2

800E D3, 0B OUT 0B Load the counter 2 with MSB

of the count value

8010 3E, 00 MVI A, 00 Generate a pulse output at PC0

8012 D3, 00A OUT 0A terminal, which is connected to

GATE of 8253

8014 3E, 01 MVI A, 01

8016 D3, 0A OUT 0A

8018 C3, 0C, 80 JMP LOOP

 13.6 8253 INTERFACING WITH 8085 MICROPROCESSOR

Figure 13.12 shows the interfacing of 8253 with the 8085 microprocessor. A0 and A1 address lines of 8085

microprocessor are directly connected to the A0 and A1 pins of 8253 IC to select the address of Counter 0,

Counter 1 and Counter 2 and the control word register. The chip select CS signal is generated from A2 to A7

address lines and IO/M using a decoder. RD, WR, and data bus D0 – D7 of 8253 are directly connected
with IOR, IOW and D0 – D7 of the 8085 microprocessor. The port address of Counter 0, Counter 1 and

Counter 2 and the control word register are given in Table 13.2. The operating modes of 8253 are discussed
in Section 13.5 in detail.

Table 13.2 Address of counters and CWR

Ports and Status of I/O Address lines Address

CWR A7 A6 A5 A4 A3 A2 A1 A0
in Hex

Counter 0 1 0 0 0 0 0 0 0 80H

Counter 1 1 0 0 0 0 0 0 1 81H

Counter 2 1 0 0 0 0 0 1 0 82H

CWR 1 0 0 0 0 0 1 1 83H

Microprocessors and Microcontrollers13.18

 13.7 8253 INTERFACING WITH 8086 MICROPROCESSOR

Figure 13.13 shows the 8253 interfacing with the 8086 microprocessor when the higher order address lines

A15–A8 are neglected. The lower order data bus D7–D0 of 8086 is directly connected with D7–D0 of 8253. A0

and A1 pins of 8253 IC are connected with A1 and A2 address lines of 8086 microprocessor. RD and WR
of 8253 is directly connected with IORD and IOWR of 8086. The clock signal of 8086 is divided by 4

and the output pulse divided by 4 counter is used as clock input of 8253. The chip select CS signals is gener-

ated from the address lines A0 and A3 to A7 . Usually, a decoder is used to get CS signal. The port address of

Counter 0, Counter 1 and Counter 2 and control word register are given in Table 13.3.

Table 13.3 Address of counters and CWR

Ports and Status of I/O Address lines Address

CWR A7 A6 A5 A4 A3 A2 A1 A0
in Hex

Counter 0 0 1 0 0 0 0 0 0 40H

Counter 1 0 1 0 0 0 0 1 0 42H

Counter 2 0 1 0 0 0 1 0 0 44H

CWR 0 1 0 0 0 1 1 0 46H

Fig. 13.12 8253 interfacing with 8085 microprocessor

GND

CLK2

GATE2

OUT2

CLK1

GATE1

OUT1

CLK0

GATE0

OUT0

C
o
u
n
te
r-
2

C
o
u
n
te
r-
1

C
o
u
n
te
r-
0

Control word
register

8253

VCC

D –D0 7
D –D0 7

CS

A1

A0

RD

WR

IOR

IOW

A1

A0

8085

A2

A3

A4

A5

A6

A7

IO/M

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.19

To generate a square wave, 8253 must be operating in Mode 3. If Counter 0 is used for this purpose, it will be

operated in BCD mode. Then the control word is 37H as given below:

SC1 SC0 RL1 RL0 M2 M1 M0 BCD Control Word

0 0 1 1 0 1 1 1 37H

If we assume clock frequency is 1.5 MHz, time period T =
.

.
1 5 10

1
0 66

6 = µs.

To generate a square wave of 1 ms time period, the number of T states are required N =
.0 66 10

1 10
6

3

-

-

 = 1500

states

The assembly-language program for the above operation is given below:

MOV AL, 37H Load control word 37H in AL register

OUT 46H, AL Load control word 37H in control word register and 8253 is initialized

MOV AL,00 Write 00 decimal in AL

OUT 40H, AL Load LSB of count in counter 0

MOV AL, 15H Write 15 decimal in AL

Fig. 13.13 8253 interfacing with 8086 microprocessor

GND

CLK2

GATE2

OUT2

CLK1

GATE1

OUT1

CLK0

GATE0

OUT0

C
o
u
n
te
r-
2

C
o
u
n
te
r-
1

C
o
u
n
te
r-
0

Control word
register

8255

VCC

D –D0 7

D –D0 7

CS

A1

A0

RD

WR

IORD

IOWR

A2

A1

8086

A0

A3

A4

A5

A6

A7

D –D0 7

CLK CLK
4

Counter

..

Microprocessors and Microcontrollers13.20

OUT 40H, AL Load MSB of count in Counter 0

HLT Stop

In the 8086 microprocessor interfacing with 8253, 16 address lines can also be used to drive 8253. In this

case, A1 and A2 address lines of 8086 microprocessor are directly connected to the A0 and A1 pins of 8253 IC

for selecting Counter 0, Counter 1, Counter 2 and control word register address. The other lines A0, A3–A7

and A8–A15 are used for generating CS signal. Figure 13.14 shows the 8255 interfacing with 8086 micro-

processor where the address of control word register is 0736H. The addresses of Counter 0, Counter 1 and

Counter 2 are 0730H, 0732H, and 0734H respectively. To generate the above addresses, the status of pins is

given in Table 13.4.

 Table 13.4 Port address of counters and CWR

Ports and Status of I/O Address lines Address

CWR A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
in Hex

Counter 0 0 0 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0730H

Counter 1 0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 0732H

Counter 2 0 0 0 0 0 1 1 1 0 0 1 1 0 1 0 0 0734H

CWR 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 0 0736H

GND

CLK2

GATE2

OUT2

CLK1

GATE1

OUT1

CLK0

GATE0

OUT0

C
o
u
n
te
r-
2

C
o
u
n
te
r-
1

C
o
u
n
te
r-
0

Control word
register

8253

VCC

D –D0 7D –D0 7

CS

A1

A0

RD

WR

IORD

IOWR

A2

A1

8086

A7

A3

A8

A15

CLK CLK4
Counter

..

A0

 Fig. 13.14 8253 interfacing with 8086 microprocessor

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.21

 13.8 8253 INTERFACING WITH 8051 MICROCONTROLLER

Figure 13.15 shows the interfacing of 8253 with 8051 microcontroller. A0 and A1 address lines of 8051 micro-

controller are directly connected to the A0 and A1 pins of 8253 IC for selecting the addresses of Counter 0,

Counter 1, Counter 2 and the control word register. The chip select CS signal is generated from A2 to A7 and

A8 to A15 address lines. When the address of the control word register is EA03H, the addresses of Counter 0,

Counter 1, Counter 2 are EA00H, EA01H and EA02H respectively. To generate the above address, the status

of pins A0–A15 is given in Table 13.5.

Table 13.5 Address of ports and CWR

Ports and Status of I/O Address lines Address

CWR A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0
in Hex

Counter 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 EA00H

Counter 0 1 1 1 0 1 0 1 0 0 0 0 0 0 0 0 1 EA01H

Counter 2 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 0 EA02H

CWR 1 1 1 0 1 0 1 0 0 0 0 0 0 0 1 1 EA03H

GND

CLK2

GATE2

OUT2

CLK1

GATE1

OUT1

CLK0

GATE0

OUT0

C
o
u
n
te
r-
2

C
o
u
n
te
r-
1

C
o
u
n
te
r-
0

Control word
register

8253

VCC

D –D0 7
D –D0 7

CS

A1

A0

RD

WR

RD

WR

A1

A0

8051

A7

A2

A8

A15

D –D0 7

A0

Fig. 13.15 8253 interfacing with 8051 microcontroller

Microprocessors and Microcontrollers13.22

 13.1 Explain the operation of 8253 timer IC with its functional block diagram.

 13.2 Mention the different modes of operation of 8253 IC.

 13.3 Draw the functional block diagram of 8253. How many counters are there in 8253 and how many

modes are there?

 13.4 Explain Mode-0 operation with timing diagram.

 13.5 Explain the importance of GATE signal. How is it used to control the operation of counters?

 13.6 Explain Mode-1 and Mode-2 operations with timing diagrams. Write the difference between Mode-2

and Mode-3 of 8253.

 13.7 Explain Mode-3 and Mode-4 of 8253 with timing diagrams.

 13.8 Write the interfacing procedure to interface 8253 with the 8085 microprocessor.

 13.9 Give a list of applications of the 8253 timer.

 13.10 Write the control word format and explain all modes of operation.

 13.11 Show in a tabular form, the conditions of different modes corresponding to the different status of

GATE signals.

 13.12 Discuss different methods of reading the value of the count in a counter while counting is in progress.

 13.13 Write a program to read the count value of the counter while counting is going on. Assume the coun-

ter 0 in Mode 0 with count value 7000H.

 13.14 Write a program to generate a square wave using 8253.

 13.15 Write a program to use the counter 2 of 8253 in Mode 5 operation.

 13.16 (a) Draw the 8253 interfacing with 8085 microprocessor and write the address of Counter - 0,

Counter - 1, Counter - 2 and control word register.

 (b) Write a program for square wave generator with 10 ms time period.

 13.17 (a) Design the 8253 interfacing with 8086 microprocessor when the address of control word register

is 46H

 (b) Write an assembly language program to generate square wave of 1 ms time period.

 13.18 (a) Draw the 8253 interfacing with 8051 microcontroller when the address of Counter-0 is EA00H

and explain briefly.

 (b) Write a program for rate generator for the above interfacing circuit.

 13.1 Which pin is used to control the output of the counter 2 of 8253 in Mode 2?

 (a) GATE 0 (b) GATE 1 (c) GATE 2 (d) GATE 3

 13.2 What are the bits of the control word to select a counter?

 (a) SC0 SC1 (b) RW0 RW1 (c) M0 M1 M2 (d) BCD, RW0 & RW1

 13.3 The control word register is selected by the read/write logic when

 (a) A0 A1 = 11 (b) A0 A1 = 01 (c) A0 A1 = 10 (d) A0 A1 = 00

8253 Interfacing with 8085, 8086 and 8051 Microcontroller 13.23

 13.4 8253 has

 (a) 6 modes of operation (b) 5 modes of operation

 (c) 4 modes of operation (d) 3 modes of operation

 13.5 8253 is capable to handle clock frequency at

 (a) 1 MHz (b) 2 MHz (c) 3 MHz (d) 4 MHz

 13.6 The control word for Mode 0 operation of Counter - 0 with a count value of 16-bit number is

 (a) 30H (b) 40H (c) 50H (d) 60H

 13.7 In 8253 interfacing with 8086 microprocessor, if the address of counter - 0 is 0740H, the address of

control word register is

 (a) 0743H (b) 0744H (c)0745H (d) 0746H

 13.8 In 8253 interfacing with 8085, A0 and A1 pins of 8253 are connected with ____ pins of 8085

respectively.

 (a) A0 and A1 (b) A1 and A0 (c) A0 and A2 (d) A1 and A2

 13.9 During 8253 interfacing with 8086 microprocessor, A0 and A1 pins of 8253 are connected with ____

pins of 8086 respectively.

 (a) A1 and A2 (b) A2 and A1 (c) A0 and A1 (d) A1 and A0

 13.10 In 8253 interfacing with 8051 microcontroller, A0 and A1 pins of 8253 are connected with ____ pins

of 8051 respectively.

 (a) A1 and A0 (b) A0 and A1 (c) A0 and A2 (d) A1 and A2

 13.1 (c) 13.2 (a) 13.3 (a) 13.4 (a)

 13.5 (b) 13.6 (a) 13.7 (d) 13.8 (a)

 13.9 (a) 13.10 (b)

CHAPTER

 14.1 INTRODUCTION TO PROGRAMMABLE INTERRUPT CONTROLLER

A microprocessor-based system design requires many I/O devices such as keyboards, displays, sensors and

other components. These devices should receive servicing in an efficient manner from the CPU. The most

common method of servicing such devices is known as the polled approach. In this approach, the processor

must test each device in sequence and find the device, which requires servicing. For this, a large portion of the

Fig. 14.1 Interrupt-driven CPU using MUX

14
8259 Interfacing with 8085, 8086

and 8051 Microcontroller

Microprocessors and Microcontrollers14.2

main program is looped through this continuous polling cycle, and such a method has a serious detrimental

effect on system throughput, thus limiting the tasks that could be assumed by the microprocessor and reduc-

ing the cost-effectiveness of using such devices. The other most desirable method is that the microprocessor

can execute its main program and only stop to service peripheral devices when the CPU receives a signal

from the device itself.

 Then the processor should complete whatever instruction is currently being executed and fetch a new

routine that will service the requesting device. However, after completion of service, the processor would

resume exactly where it left off. This method is known as interrupt. Interrupts are used in a microcomputer

system for different applications. When the number of I/O devices are less, the already available interrupts

of microprocessors are sufficient and there is no requirement of Programmable Interrupt Controller as shown

in Fig. 14.1.

 The CPU can access many devices using interrupt signals. In multiple interrupt systems, the CPU must

take care of the priorities for the interrupts and simultaneously occurred interrupts.

 To overcome all difficulties a Programmable Interrupt Controller (PIC) has been designed and can be used

to handle many interrupts at a time. This controller handles all simultaneous interrupt requests along with

their priorities and the microprocessor will be relieved from this task. The Programmable Interrupt Controller

(PIC) functions as an overall manager in an interrupt-driven system environment as depicted in Fig. 14.2.

It accepts requests from the peripheral equipment, and then it determines priority value of all incoming

requests and issues an interrupt to the CPU based on this determination. The 8259A Programmable Interrupt

Controller can be interfaceable with 8085, 8086 and 8088 processors. The features of these devices are given

below:

Features

Fig. 14.2 PIC in an interrupt driven environment

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.3

 14.2 PIN DIAGRAM OF 8259A

The Intel 8259A Programmable Interrupt Controller handles up to eight-vectored priority interrupts for the

CPU. This IC is cascadeable for up to 64-vectored priority interrupts without additional circuitry. This IC is

static, requiring no clock input. The schematic diagram of 8259 is depicted in Fig. 14.3. The pin diagram of

8259A is also shown in Fig. 14.4 and the pin functions are explained below:

Fig. 14.3 Pin diagram of 8259

VCC

GND Ground

CS (Chip Select)

WR (Write)

enables to accept command words from the CPU.

RD (Read)

data bus for the CPU.

Microprocessors and Microcontrollers14.4

D7 – D0 (I/O Bi-directional Data Bus) These pins are used as bi-directional data bus. The control, status

and interrupt-vector informations are transferred through this bus.

CAS0 – CAS2 (I/O Cascade Lines) A 8279A has only eight interrupts. When number of interrupts

bus is used to control a multiple 8259A structure. These pins are outputs for a master 8259A and inputs for

a slave 8259A.

SP / EN (I/O Slave Program/Enable Buffer) This is a dual function pin. When this IC is used in the

INT (Interrupt) This pin goes high whenever a valid interrupt request is asserted. This pin signal is used

to interrupt the CPU. Therefore it is connected to the CPU’s interrupt pin.

IR0 – IR7 (Interrupt Requests)

receive an interrupt request to the CPU by raising an IR input from low to high. The interrupt pin must be

maintained high level until this is acknowledged (edge-triggered mode), or just by a high level on an IR input

(level triggered mode).

INTA (Interrupt Acknowledge) This pin becomes high when a valid interrupt request is asserted. This

pin is used to enable 8259A interrupt-vector data onto the data bus by a sequence of interrupt acknowledge

pulses issued by the CPU.

Fig. 14.4 Schematic diagram of 8259A

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.5

A0 (Address Line) This pin works in conjunction with the CS, WR, and RD pins. This is also used by the

8259A to read various command words the CPU writes and the status the CPU wishes to read. Generally, this

is connected to the CPU A0 address line.

 14.3 FUNCTIONAL DESCRIPTION

-

tional block has been explained below.

Fig. 14.5 Functional diagram of 8259A

Interrupt Request Register (IRR) The interrupts at the IR input lines are handled by two internal

the interrupt requests, which are requesting service and it provides service one by one on the priority basis.

In-Service Register (ISR)

are being serviced, and also keeps a track of the request being served.

Priority Resolver This logic block determines the priorities of the interrupt requests in the IRR. The

Interrupt Mask Register (IMR) This Interrupts Mask Register (IMR) stores the bits that mask the

interrupt lines to be masked. The IMR operates on the IRR based priority resolver.

Interrupt Control Logic The interrupt control logic block manages the interrupt and the interrupt

onto the data bus.

Microprocessors and Microcontrollers14.6

Data Bus Buffer This 3-state, bi-directional 8-bit buffer is used to interface the 8259A to the microprocessor

data bus. Control words and status information are transferred through the data bus buffer.

Read/Write Control Logic This block is used to accept output commands from the CPU. It contains the

Initialization Command Word (ICW) registers and Operation Command Word (OCW) registers which store

the various control formats for device operation. This function block also allows the status of the 8259A to

be transferred onto the data bus.

Cascade Buffer/Comparator

0 1 2) are

outputs when the 8259A is used as a master and are inputs when the 8259A is used as a slave. When the

0 2

lines. The slave thus selected, will send its preprogrammed subroutine address onto the data bus during the

 14.4 INTERRUPT SEQUENCE

The most powerful features of 8259A are programmability and the interrupt routine addressing capability.

This device allows direct or indirect jumping to the specified interrupt service routine without any polling of

the interrupting devices. The interrupt sequence for an interrupt in the 8085-microprocessor system has been

explained below:

7 to IR0) are raised high, setting the corre-

sponding IRR bits.

-

7 0 pins.

group.

 14.5 INTERFACING OF 8259A WITH 8085

Interfacing of 8259 with the 8085 microprocessor is illustrated in Fig. 14.6. When the 8259A PIC receives

waiting for service. This inactive time is not specified and can vary between parts. The designer should be

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.7

aware of this consideration when designing a system that uses the 8259A. It is recommended that proper

asynchronous design techniques be followed.

The interfacing steps are explained below:

 1. The address decoder output is connected with the CS input of the IC.

 2. A0 line is used to select one of the two internal addresses in the device. This is connected to A0 of the

address lines of the microprocessor.

 3. As the device operates in I/O mapped I/O mode, the RD and WR signals are connected to IOR and

IOW signals respectively.

 6. When SP / EN pin is high, only one IC is used in the microprocessor-based system. If more than one

IC are connected in cascade, this pin must be low.

0 1 2 lines are generally opened.

 8. There are eight IR input lines (IR0–IR7) are available. When the IR inputs are not used, they must be

grounded properly to avoid noise pulse in interrupt lines.

Fig. 14.6 Interfacing of 8259 with 8085 microprocessor

Microprocessors and Microcontrollers14.8

 14.6 PROGRAMMING OF 8259A

The 8259A accepts two types of command words generated by the microprocessor. These two types of com-

mand words are Initialisation Command Words (ICWs) and Operation Command Words (OCWs).

14.6.1 Initialisation Command Words (ICWs)

The 8259A programmable interrupt controller can be initialised by sending a sequence of Initialisation

Control Words (ICWs) to the controller. There are four Initialisation Control Words (ICWs). The ICW1 and

ICW2 always send to 8259 systems. When the system has any slave 8259A in the cascade node, ICW3 must

be used. In some special operations such as fully nested mode, ICW4 can be used. All Initialisation command

words are explained below:

Initialisation Command Word 1 (ICW1) Whenever a write command is received with A0 4

1). The ICW1 starts the initialisation

sequence during which the following automatically occur.

 1. The edge sense circuit is reset, which means that following initialisation, an interrupt request (IR)

input must make a low-to-high transition to generate an interrupt.

 2. The Interrupt Mask Register (IMR) is cleared.

 3. IR7 input is assigned lowest priority 7.

 4. The slave mode address is set to 7.

 6. If IC4 is 0, then all functions selected in ICW4 4 is only used in

the buffered mode.

The format of ICW1 is shown in Fig. 14.7.

0 It indicates whether ICW4 is needed or not. If it is 1, ICW4 is needed and if 0, ICW4 is not needed.

1 When this bit is 0, then only one 8259 is in the system. If it is 1, the additional 8259 are there in the

system.

Fig. 14.7 Initialisation Command Words 1

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.9

2

address interval becomes 4.

3 3 determines recognition of the interrupts either in level triggered or edge triggered mode. If this

bit is 1 then the input interrupts will be recognised if they are in the level-triggered mode.

5 7 These are A5–A7 bits as shown in Fig. 14.7. For an interval spacing of 4, A0–A4 bits are automatically

inserted by 8259 while A0–A5 are inserted automatically for an interval of 8. A5–A7 bits are programmable

5 7 of ICW1.

Initialisation Command Word 2 (ICW2) The Initialisation Command Word 2 (ICW2) is shown in Fig.

14.8.

Fig. 14.9(b) Initialisation Command Words 3 (slave mode)

Fig. 14.9(a) Initialisation Command Words 3 (master mode)

Fig. 14.8 Initialisation Command Words 2

7 3 They specify address bits A15 – A11

2 0 They specify address bits A10 – A8

mode. These bits can be set to 0 when working on an 8086 system. T3–T7 are interrupt vector addresses when

the controller operates in 8086/8088 mode.

Initialisation Command Word 3 (ICW3) The ICW3 is used only when there is more than one 8259A

4

only byte 2) through the cascade lines.

4) bits 2 ± 0 identify the slave.

The slave compares its cascade input with these bits and, if they are equal, it releases bytes 2 and 3 of the call

sequence for 8086 on the data bus.

Microprocessors and Microcontrollers14.10

Initialisation Command Word 4 (ICW4)

The format of ICW4 is shown in Fig. 14.10. ICW4 0 bit of ICW1 (IC4) is set. The position

0 4 are explained below:

0

1

2

3 3

4

programmed. In the cascaded mode of operation, when a slave receives a higher priority interrupt request

than one, which is already in service (through the same slave), it would not be recognised by the master. This

 If a truly fully nested structure is required within a slave 8259A, the especially fully nested mode should

ICW4. In this mode, the master will ignore interrupt requests of lower priority, and will respond to requests

of equal or higher priority.

arranged from highest priority (IR0) to lowest priority (IR7). This mode can also be changed through opera-

Fig. 14.10 Initialisation Command Words 4

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.11

interrupt being serviced. The master recognises the higher-level interrupt and can place this interrupt

request to the CPU.

-

interrupt may be recognised by the master.

14.6.2 Programming Sequence of 8259

8259 is programmed by issuing initialisation of command words and

operation command words. Initialisation command words are issued in a

sequence. The algorithm for initialising 8259 is as follows:

 1. Write ICW1

 2. Write ICW2

 3. If 8259 does not in the cascade mode of operation, go to step 5

 4. Write ICW3

 5. If ICW4 is not required, go to step 7

 6. Write ICW4

 7. Ready to accept interrupt sequence

The algorithm for initialisation 8259A programmable interrupt controller

is depicted in Fig. 14.11.

14.6.3 Operation Command Words (OCWs)

These are the command words which command the 8259A to operate in

various interrupt modes. These operating modes are

 1. Fully nested mode

 2. Rotating priority mode

 4. Polled mode

 There are three operation command words such as OCW1, OCW2

and OCW3. These OCWs may be programmed to change the manner in

which the interrupts are to be processed. The OCWs can be loaded into

the 8259A anytime after initialisation.

Operation Command Word 1 (OCW1) The format OCW1 is shown

in Fig. 14.12. OCW1 sets and clears the mask bits by programming the

Interrupt Mask Register (IMR). M7–M0 represents the eight mask bits.

0 indicates the interrupt is unmasked. A write command with A0

interpreted as OCW1, and written after ICW2.
Fig. 14.11 Initialisation sequence
 of 8259

Microprocessors and Microcontrollers14.12

Fig. 14.12 Operation Command Word 1

Operation Command Word 2 (OCW2) The OCW2 enables the user to program 8259 in different modes.

The format OCW2 2 1 0 bits can be used to

rotate and end of interrupt modes and combinations of the two. A chart of these combinations is given below:

R SL EOI Selection

Generally, this command is issued by the CPU just before sending the interrupt service routine. There are two

by the CPU to 8259. The 8259 automatically determines the interrupt level, i.e. highest priority interrupt in

Fig. 14.13 Operation Command Word 2

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.13

determine the IR level. This command is best suited for situations in which priorities of the interrupt levels

programming and lower code requirements within interrupt routines.

interrupt request occurs during this time and interrupts are enabled, it will be serviced regardless of its prior-

keeps interrupting its own routine. This results in unnecessary stack pushes, which could fill up the stack in

a worst-case condition.

When several communication channels are connected to a microcomputer

system, all the channels should be accorded equal priority in sharing information with the microcomputer.

 In this method, once a peripheral is serviced, all other equal priority peripheral should be given a chance

to be serviced before the original peripheral is serviced again. This is accomplished automatically assigning

a peripheral the lowest priority after being serviced. In this way the device, presently being serviced, would

have to wait until all other devices are serviced.

 The automatic rotation is of two types:

0 has the highest priority and IR7 has the lowest priority before command as shown

in Fig. 14.14(a). It is also assumed that IR6 and IR4 are already in service but neither is completed. As IR4

has the highest priority, IR4

reset. Then IR4 becomes the lowest priority and IR5 becomes the highest priority as depicted in Fig. 14.14(b).

Fig. 14.14(a) Priority of interrupts before command

Microprocessors and Microcontrollers14.14

Fig. 14.14(b) Priority of interrupts after command

automatically after the last INTA pulse of an interrupt request. To enter or exit from this mode, a rotate-in-

The set priority command is used to assign an IR level the lowest priority. All other

interrupt levels will be in the fully rested mode based on the newly assigned low priority. The relative priorities

of the interrupt levels before the set priority command and after the set priority command are depicted in Fig.

14.15(a) and 14.15(b) respectively. As IR3 has the highest priority, IR3 routine be executed next. When the IR3

routine is executing and set priority command is issued to the 8259A, priorities will be changed. Then IR6 is

the highest and IR5 as the lowest priority as given in Fig. 14.15(b).

Fig. 14.15(a) Rotating interrupt priority before set priority command

Fig. 14.15(b) Rotating interrupt priority after set priority command

3 The OCW3 are used to perform the following operations:

 2. To set/reset the special mask and polled modes

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.15

Fig. 14.16 Operation Command Word 3`

decide the register to be read.

command is not issued. In this mode, the interrupting devices seeking services from 8085 are polled one after

read by masking its RD and CS

IRR. The poll word is shown in Fig. 14.17.

The format of OCW3 is shown in Fig. 14.16.

Fig. 14.17 Poll Word

3. The special mask mode can be cleared by

loading OCW3

Microprocessors and Microcontrollers14.16

 14.7 8259 INTERFACING WITH 8085 MICROPROCESSOR

Figure 14.18 shows 8259A interfacing with the 8085 microprocessor. The control lines from 8259A are D7 –

D0, RD, WR, A0, INT, INTA and CS signals. The lines available from the 8085 microprocessor for 8259A

interface are RD, WR, IO/M, INTR, INTA, D7 – D0 and A15 – A0 address lines. D7 – D0, RD, WR, INTA, are

directly connected with the 8085 microprocessor. The other lines A7 – A1 and IO/M are used to generate chip

select CS signal. A0 line of 8259 can be connected to AD0 of 8085 microprocessor. When 80H and 81H is

generated by the 8085 microprocessor, the 8259A chip will be selected. The generation of addresses 80H and

81H is given in Table 14.1.

Table 14.1 Address generation 80H and 81H for 8259A

 Status of I/O Address lines Address

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

In Hex

 1 0 0 0 0 0 0 0 80H

 1 0 0 0 0 0 0 1 81H

GND

IR0

RD

A0

WR

INTR

INTA
IR1

IR2

IR3

IR4

IR5

IR6

IR7

A0

CS

8259A

D – D0 7

WR

RD

INTR

INTA

A1

A2

A3

A4

A5

A6

A7

8085

D – D0 7D – D0 7

IO/M

VCC

Fig. 14.18 8259A interfacing with 8085 microprocessor

 14.8 8259 INTERFACING WITH 8086 MICROPROCESSOR

Figure 14.19 shows 8259A interfacing with 8086 microprocessor at the address 0740H and 0742H. The

D7 –D0 of 8259A is directly interfaced with lower byte of the 8086 data bus. A1 line of 8086 microprocessor

is connected with A0 of 8259A. A2 to A5 and A6 to A10 are used to generate chip select signal for 8259A. The

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.17

use of A0 and A11 – A15 is not compulsory to drive the chip select signal. When 0740H and 0742H is gener-

ated by 8086 microprocessor, the 8259A chip will be selected. The generation of address 0740H and 0742H

is given in Table 14.2

Table 14.2 Address generation 0740H and 0742H for 8259A

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 In Hex

0 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0740H

0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0742H

D – D7 0

GND

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

A0

WR

RD

INTR

INTA

A1

A2

A3

A4
A5

A6

A7

8086

M/IO

WR

RD

INTR

A0

A2

A1 Y0

INTA

CS

8259A

74LS138

A8

A9

A10

+VCC

G3G2

G1

Fig. 14.19 8259A interfacing with 8086 microprocessor

 14.9 8259 INTERFACING WITH 8051 MICROCONTROLLER

Figure 14.20 shows 8259A interfacing with 8051 microcontroller. The control lines from 8259A are D7–D0,

RD, WR, A0, INT, INTA and CS signals. The lines available from 8051 microcontroller for 8259A interface

are RD, WR, INT0, D7–D0 and A15 –A0 address lines. D7–D0, RD, WR, and INT signals of 8259A are directly

connected with 8051 microprocessor D7–D0, RD, WR, and INT0 respectively. The INT0 pin receives the

external interrupt from 8259A and A0 line of 8259 can be connected to AD0 of 8051 microcontroller. The

other lines A7–A0 are used to generate chip select CS signal as depicted in Fig.14.20. When 80H and 81H is

is given in Table 14.3

Microprocessors and Microcontrollers14.18

Table 14.3 Address generation 80H and 81H for 8259A

 Status of I/O Address lines Address

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

In Hex

 1 0 0 0 0 0 0 0 80H

 1 0 0 0 0 0 0 1 81H

GND

IR0

RD

A0

WR

INTR

INTR

INTA

INTA

IR1

IR2

IR3

IR4

IR5

IR6

IR7

A0

CS

8259A

D – D0 7

WR

RD

INTO

A1

A2

A3

A4

A5

A6

A7

8051

D – D0 7
D – D0 7

IO/M

VCC

Fig. 14.20 8259A interfacing with 8051 microcontroller

 14.1 What is a Programmable Interrupt Controller?

 14.3 Write the functions of the following pins of 8259A:

0–IR7 0 2 (v) / .

 14.4 How many interrupt levels can be handled by 8259?

8259 Interfacing with 8085, 8086 and 8051 Microcontroller 14.19

 14.10 Write down the format of ICW1 and ICW2 of 8259.

 14.11 Write a short note on 8259 Programmable Interrupt Controller.

 14.1 8259 is a

 (b) programmable keyboard display interface (d) programmable counter

 14.2 8259 can handle

 (a) 8-vectored priority interrupt controller (b) 18-vectored priority interrupt controller

 (c) 16-vectored priority interrupt controller (d) 6-vectored priority interrupt controller

 14.3 In cascade mode, 8259 can handle

 (a) up to 64-vectored priority interrupts (b) up to 46-vectored priority interrupts

 (c) up to 60-vectored priority interrupts (d) up to 40-vectored priority interrupts

 14.4 The logic block which determines the priorities of the interrupt requests in the IRR is called

 (a) Priority resolver (b) Interrupt mask register

 14.5 The _________ pin signal is used to interrupt the CPU

 INTA (c) CS (d) RD

 14.6 In 8259 interfacing with 8085 microprocessor, A0 pin of 8259 is connected with ____ pin of 8085.

 (a) A0 (b) A1 (c) A2 (d) A3

0 pin of 8259 is connected with ____ pin of

8086.

 (a) A0 (b) A1 (c) A2 (d) A3

 14.8 In 8259 interfacing with 8051 microcontroller, A0 pin of 8259 is connected with ____ pin of 8051

microcontroller.

 (a) A0 (b) A1 (c) A2 (d) A3

 14.1 (a) 14.2 (a) 14.3 (a) 14.4 (a)

 14.5 (a) 14.6 (a) 14.7 (b) 14.8 (a)

CHAPTER

15
8279 Interfacing with 8085, 8086

and 8051 Microcontroller

 15.1 INTRODUCTION

In any microprocessor-based system, the keyboard is most commonly used as an input device and a seven-

segment display is used as the output device. The programmer presses the keys on the keyboard as per desired

to feed instruction or data to the CPU. Therefore, the key board is constantly scanned to detect a pressed key.

The display section be also constantly supplied with data to hold it steady, while CPU operates as scan key

and displays it. The CPU will be heavily loaded and system operation becomes slow, as less time will be

available for data processing or ALU operations. If a specific IC performs these operations, then CPU can

handle data processing or ALU operations very efficiently.

 The 8279 is a general-purpose programmable keyboard and display I/O interface device designed for use

in microprocessors. The keyboard portion can provide a scanned interface to a 64-contact key matrix. The

keyboard section can also be interfaced to an array of sensors or a strobed interface keyboard. Key depres-

sions can be 2-key lockout or N-key rollover. Keyboard entries are debounced and strobed in an 8-character

FIFO. When more than 8 characters are entered, the overrun status is set. Key entries set the interrupt output

line to the CPU.

 The display portion provides a scanned display interface for LED, or any popular display devices. Both

numeric and alphanumeric segment displays may be used as well as simple indicators. The 8279 has a 16 ×

8 display RAM. This 16 × 8 display can be organised into dual 16 × 4. The CPU can load the RAM. Both

right entry calculator and left entry typewriter display formats are possible. Both read and write of the display

RAM can be done with auto-increment of the display RAM address. The features of 8279 are given below:

Simultaneous keyboard and display operations

Scanned keyboard mode

Scanned sensor mode

Strobed input entry mode

8-character keyboard FIFO

2-key lockout or N-key rollover with contact debounce

Dual 8- or 16-numerical display

Single 16-character display

Microprocessors and Microcontrollers15.2

Right or left entry 16-byte display RAM

Mode programmable from CPU

Programmable scan timing

Interrupt output on key entry

Different Display modes

 – 8-8 bit Character Display-left entry

 – 16-16 bit Character Display-left entry

 – 8-8 bit Character Display-right entry.

 – 16-16 bit Character Display-right entry.

 15.2 PIN DIAGRAM OF 8279

The 8279 is packaged in a 40-pin DIP. The pin configuration of 8279 is depicted in Fig.15.1. The schematic

diagram of 8279 is shown in Fig. 15.2. The following is a functional description of each pin.

DB0–DB7 (Bi-Directional Data Bus) These are bidirectional data bus. All data and commands between

the CPU and the programmable keyboard interface 8279 are transferred on these lines.

CLK (Clock) Generally, a system clock is used to generate internal timing.

RESET A high signal on this pin is used to reset the 8279. After being reset, the 8279 is placed in the

following mode:

16 8-bit character display—left entry

Encoded scan keyboard—2 key lockout

The clock prescaler is set to 31

CS (Chip Select) A low on this pin enables the programmable keyboard interface, 8279 to receive or

transmit data.

A0 (Buffer Address) A high on this line indicates that the signals in or out are interpreted as a command

or status. A low on this line indicates that they are data.

RD (Read) This output signal is activated from microprocessor to 8279 to receive data from external bus.

WR (Write) This signal enables the data buffers to send data to the external bus.

IRQ (Interrupt Request) In keyboard mode, the interrupt line is high when there is data in the FIFO/

Sensor RAM. The interrupt line becomes low with each FIFO/Sensor RAM read and returns high if there

is some still information in the RAM. In sensor mode, the interrupt line goes high whenever a change in a

sensor is detected.

SL0–SL3 (Scan Lines) Scan lines which are used to scan the key switch or sensor matrix and to select

the display digits. These lines can be either encoded or decoded mode.

RL0–RL7 (Return Line) These are return line inputs. These are connected to the scan lines through the

keys or sensor switches. They have active internal pull-ups to keep them high until switch closures are pulled

down. The switches are connected between the scan lines and return lines. These lines also serve as an 8-bit

input in the Strobed Input mode.

Shift (Shift) The shift input status is stored along with the key position on key closure in the scanned

keyboard modes. Till a switch closure pulled low, it has an active internal pull up to keep it high.

CNTL/STB (Control/Strobed Input Mode) In keyboard modes, CNTL/STB line is used as a control

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.3

input and stored like status on a key closure. The line can be used as the strobe line that enters the data into

the FIFO in the strobed input mode. It has an active internal pull-up to keep it high until the line is pulled

down with a switch closure.

OUT A0–OUT A3 and OUT B0–OUT B3 (OUTPUTS) These are the output ports for the 16 × 4 display

refresh registers. The data from these outputs is synchronised to the scan lines (SL0–SL3) for multiplexed

digit displays. The two 4 bit ports may also be used as one 8-bit port. These two ports may be blanked

independently.

Fig. 15.1 Pin diagram of 8279 Fig. 15.2 The schematic diagram of 8279

BD (Blank Display) This output pin is used to blank the display during digit switching or by a blanking

command.

 15.3 FUNCTIONAL DESCRIPTION

As data input and display are an integral part of all microprocessor designs, the system designer needs an

interface that can control these functions without placing a large load on the CPU. The 8279 provides this

function for 8-bit microprocessors. The 8279 has two sections: keyboard section with a set of four scan

lines and eight return lines and display section with a set of eight output lines for interfacing. The functional

block diagram is shown in Fig. 15.3 and the description of the major elements of the 8279 Programmable

Keyboard/Display interface device is given below.

Microprocessors and Microcontrollers15.4

I/O Control and Data Buffers The I/O control section uses the CS, WR, RD and A0 lines to control

data flow to and from the various internal registers and buffers. All data flow to and from the 8279 is enabled

by CS. The character of the information, given or desired by the CPU, is identified by A0. A logic one means

that the information is a command or status, but a logic zero means the information is data. RD and WR select

the direction of data flow through the data buffers. The data buffers are bi-directional buffers that connect the

internal bus to the external bus. When the chip is not selected (CS =1), the devices are in a high impedance

state. The drivers input during WR, CS and output during RD, CS.

Fig. 15.3 Functional block diagram of 8279

Control and Timing Registers and Timing Control These registers store the keyboard and display

modes and other operating conditions programmed by the CPU. When A0 = 1, the modes are programmed

by presenting the proper command on the data lines and then sending a WR. The command is latched on the

rising edge of WR. The command is then decoded and the appropriate function is set. The timing control unit

controls the basic timings of counter chain. The first counter is a ' N pre-scaler that can be programmed to

yield an internal frequency of 100 kHz which provides a 5.1 ms keyboard scan time and a 10.3 ms debounce

time. The other counters divide down the internal operating frequency of 8279 to provide the proper key scan,

row scan, keyboard scan, and display scan times.

Scan Counter The scan counter has two modes such as encoded mode and decoded mode. In the encoded

mode, the counter provides a binary count that must be externally decoded to provide the scan lines for the

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.5

keyboard and display. In the decoded mode, the scan counter decodes the least significant 2 bits and provides

a decoded 1 of 4 scan on SL0–SL3 while the keyboard is in decoded scan, it can display. This means that only

the first 4 characters in the Display RAM are displayed.

 In the encoded mode, the scan lines are active high outputs. But in the decoded mode, the scan lines are

active low outputs.

Return Buffers and Keyboard Debounce and Control The 8 return lines are buffered and latched

by the return buffers. In the keyboard mode, these lines are scanned for key closure in row-wise when the

debounce circuit detects a closed switch, it waits about 10 ms to check if the switch remains closed. If the

switch is closed, the address of the switch in the matrix, the status of SHIFT and CONTROL are transferred

to the FIFO. In the scanned sensor matrix mode, the contents of the return lines are directly transferred to the

corresponding row of the Sensor RAM (FIFO) during each key scan. In the strobed input mode, the contents

of the return lines are transferred to the FIFO on the rising edge of the CNTL/STB.

FIFO/Sensor RAM and Status In the keyboard or strobed input mode, this block is a dual function

8 × 8 RAM and it operates in FIFO. Each new entry is written into successive RAM positions and then can

be read in order of entry. FIFO status keeps track of the number of characters in the FIFO and whether it is

full or empty. Too many reads or writes will be recognised as an error. The status can be read by an RD with

CS low and A0 high. The status logic also provides an IRQ signal when the FIFO is not empty. In scanned

sensor matrix mode, the unit acts as a sensor RAM. Each row of the sensor RAM is loaded with the status

of the corresponding row of sensor in the sensor matrix. In this mode, IRQ is high if any change in a sensor

is detected.

Display Address Registers and Display RAM The display address registers hold the address of the

word currently being written or read by the CPU and the two 4-bit nibbles can be displayed. The read/write

addresses are programmed by CPU command. The address can be automatically updated after each read or

write operation. Then CPU can directly read the display RAM after the address is set. The addresses for the

A and B nibbles are automatically updated by the 8279 to match data entry by the CPU. The A and B nibbles

can be entered independently or as one word, depending upon the mode set by the CPU. Data entry to the

display can be set to either left or right entry.

 15.4 OPERATING MODES OF 8279

The 8279 is designed to directly connect to the microprocessor bus. Then CPU can program all operating

modes for the 8279. The 8279 operates in input (keyboard) modes and output (display) modes.

15.4.1 Input (Keyboard) Modes

8279 has three input modes such as scanned keyboard, scanned sensor matrix, and strobed input.

Scanned Keyboard In this mode, 8279 can be encoded (8 × 8 key keyboard) or decoded (4 × 8

key keyboard) scan lines. A key depression generates a 6-bit encoding of key position. Position and shift

and control status are stored in the FIFO. Keys are automatically debounced with 2-key lockout or N-key

rollover.

Scanned Sensor Matrix In this mode, a sensor array will be interfaced with 8279 with encoded (8×8

matrix switches) or decoded (4 × 8 matrix switches) scan lines. Key status are stored in RAM addressable

by CPU.

Strobed Input Data on return lines during control line strobe is stored in the FIFO.

Microprocessors and Microcontrollers15.6

15.4.2 Output (Display) Modes 8279 provides two output modes such as display scan and

display entry.

Display Scan In this mode, Programmable Key Board and Display Controller, 8279 provides 8 or 16

character multiplexed displays that can be organised as dual 4-bit or single 8-bit (B0 = D0, A3 = D7) display

unit.

Display Entry Right entry or left entry display formats are executable for 8279 IC.

 15.5 SOFTWARE OPERATION

8279 Commands The following commands program the 8279 operating modes. The commands are sent

on the Data Bus with CS = 0 and A0 =1 and are loaded to the 8279 on the rising edge of WR. All commands

of 8279 are discussed below.

Keyboard/Display Mode Set The command word format to select different modes of operation of 8279

is given below:

 MSB LSB

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 0 D D K K K

where DD is the Display Mode and KKK is the Keyboard Mode.

D D Display mode

0 0 Eight 8-bit character display—Left entry

0 1 Sixteen 8-bit character display—Left entry

1 0 Eight 8-bit character display—Right entry

1 1 Sixteen 8-bit character display—Right entry

K K K Keyboard modes

0 0 0 Encoded Scan Keyboard—2 Key Lockout

0 0 1 Decoded Scan Keyboard—2-Key Lockout

0 1 0 Encoded Scan Keyboard—N-Key Rollover

0 1 1 Decoded Scan Keyboard—N-Key Rollover

1 0 0 Encoded Scan Sensor Matrix

1 0 1 Decoded Scan Sensor Matrix

1 1 0 Strobed Input, Encoded Display Scan

1 1 1 Strobed Input, Decoded Display Scan

Program Clock The clock for operation of 8279 is programmable. All timing signals are generated by

an internal prescaler, which divides the external clock by a programmable integer. Bits PPPPP determine the

value of the integer from 2 to 31. When the system clock frequency is 2 MHz, it is divided by 20 (10100) to

get the clock frequency 2/20 MHZ or 100 KHz.

 D7 D6 D5 D4 D3 D2 D1 D0

 0 0 1 P P P P P

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.7

Read FIFO/Sensor RAM The command format of Read FIFO/Sensor RAM is given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 0 AI x A A A

X = Don’t Care, AI—Auto-Increment flag, AAA—Address pointer to 8 bit FIFO RAM

 Initially, the command word must be written and the CPU sets the 8279 for a read of the FIFO/Sensor

RAM. In the scan keyboard mode, the Auto-Increment flag (AI) and the RAM address bits (AAA) are irrel-

evant. The 8279 will automatically drive the data bus for each subsequent read (A0 = 0) in the same sequence

in which the data first entered the FIFO. When AI flag is set, each subsequent read will be from the FIFO

until another command is issued.

 In the sensor matrix mode, the RAM address bits AAA select one of the 8 rows of the Sensor RAM. While

the AI flag is set (AI = 1), each successive read will be from the subsequent row of the sensor RAM.

Read Display RAM To read the display RAM data, the command format is shown below:

 D7 D6 D5 D4 D3 D2 D1 D0

 0 1 1 AI A A A A

AI—Auto-Increment flag, and AAAA— 4 bit Address for 16-byte display RAM.

 Firstly, the CPU writes this command to the 8279 for a read of the Display RAM. The address bits AAAA

are used to select one of the 16 rows of the Display RAM. When the AI flag is set (AI = 1), this row address

will be incremented after each following read or write to the Display RAM. As the same counter is used for

both reading and writing, this command sets the next read or write address. The Auto-Increment mode for

both read and write operations.

Write Display RAM To write the display RAM data, the command format is given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 0 AI A A A A

 AI—Auto-Increment flag, and AAAA— 4 bit Address for 16-byte display RAM to be written.

 By writing this command, the CPU sets up the 8279 for a write to the Display RAM. After writing the

command with A0 = 1, all subsequent writes with A0 = 0 will be to the Display RAM. The addressing and

Auto-Increment functions are identical to those for the Read Display RAM.

Display Write Inhibit/Blanking This command format enables the programmer to display write inhibit/

blanking operation.

 D7 D6 D5 D4 D3 D2 D1 D0

 1 0 1 x IW IW BL BL

Output nibbles A B A B

 The IW Bits can be used to mask nibble A and nibble B in case of separate 4-bit display ports. The output

lines are divided into two nibbles (OUT A0–OUT A3) and (OUT B0–OUT B3). By setting the IW flag (IW

= 1) for one of the ports, the port becomes marked so that entries to the Display RAM from the CPU do not

affect that port. As a result, each nibble is input to a BCD decoder, and the CPU may write a digit to the

Display RAM without affecting the other digit being displayed. In this case, the bit B0 corresponds to bit D0

on the CPU bus, and the bit A3 corresponds to bit D7.

 If the user requirements is to blank the display, the BL flags are available for each nibble. Both BL bits will

be cleared for blanking both nibbles.

Microprocessors and Microcontrollers15.8

Clear Display RAM This command format for clear display RAM operation is given below:

 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 1 CD2 CD1 CD0 CF CA

The CD2, CD1, and CD0 bits are available in this command to clear all rows of the Display RAM to a select-

able blanking code as given below:

 CD
2
 CD

1
 CD

0

 1 0 x All zeros x don’t care

 1 1 0 A3–A0 = 2(0010) and B3–B0 = 0(0000)

 1 1 1 All ones

 CD2 must be 1 for enabling the clear display command. When CD2 = 0, the clear display command is

invoked by setting CA = 1 and CD1, CD0 bits must be same.

 If the CF bit is 1, the FIFO status is cleared and the interrupt output line is reset. Also, the Sensor RAM

pointer is set to row 0.

 If the Clear All bit (CA) set to 1, this signal combines the effect of CD and CF bits; This CA uses the CD

clearing code on the Display RAM and also clears FIFO status.

End Interrupt/Error Mode Set

 D7 D6 D5 D4 D3 D2 D1 D0

 1 1 1 E x x x x

 For the sensor matrix modes, this command lowers the IRQ line and enables further writing into RAM.

Therefore if any in sensor value is detected, the IRQ line becomes high which inhibits writing into the RAM.

 For the N-key rollover mode, if the E bit is programmed to “1”, the 8279 IC can operate in the special error

mode.

Data Format In the scanned keyboard mode, the character entered into the FIFO corresponds to the

position of the switch in the keyboard plus the status of the CNTL and SHIFT lines. The scanned keyboard

data format is illustrated below:

 D7 D6 D5 D4 D3 D2 D1 D0

 CNTL SHIFT SCAN RETURN

 CNTL is the MSB of the character and SHIFT is the next most significant bit. The next three bits

D5–D3 are from the SCAN counter and indicate the position of the row the key was found in. The remaining

three bits D2–D0 are from the column counter and indicate the position of the column on which the key is

pressed.

 In scanned sensor matrix mode, the data on the return lines (RL7–RL0) is entered directly in the row of the

Sensor RAM that corresponds to the row in the matrix being scanned. Therefore, each switch position maps

directly to a Sensor RAM position. The SHIFT and CNTL inputs are ignored in this mode and switches are

not necessarily the only things that can be connected to the return lines. Any logic that can be triggered by

the scan lines can enter data to the return line inputs. Eight multiplexed input ports could be tied to the return

lines and scanned by the 8279.

 D7 D6 D5 D4 D3 D2 D1 D0

 RL7 RL6 RL5 RL4 RL3 RL2 RL1 RL0

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.9

Display

The left-entry mode is the simplest

display format. This mode is just like typewriter

mode. In this mode, each display position directly

corresponds to a byte in the display RAM. The

first entry goes to the leftmost display position of

the display RAM. The second entry is to the right

of the first one. In this way, the 16th entry goes

to the 15th address position of the Display RAM.

Entering characters from position zero causes the

display to fill from the left. Therefore, the 17th

entry goes to the Display RAM address 0 and 18th

entry goes to Display RAM address 1 as depicted

in Fig.15.4.

The right-entry mode is most

commonly used in electronic calculators. The first

entry is placed in the rightmost display character

of the Display RAM. The second entry goes to the

rightmost character after the display is shifted left

one character as shown in Fig. 15.5. In this way,

the 17th entry goes to the Display RAM address 0

Fig. 15.4 Left-mode entry (auto increment)

Fig. 15.5 Right-mode entry (auto increment)

Microprocessors and Microcontrollers15.10

 15.7 KEYBOARD INTERFACE OF 8279

The keyboard interface of 8279 is depicted in Fig. 15.7. To recognise the keyboard data, the device has a key-

board buffer RAM. The scan lines S0, S1 and S3 are used as inputs of 3 lines to 8 lines decoder. The decoder

and the 18th entry goes to Display RAM address 1 and the leftmost character is shifted off the end and is lost.

In this mode, there is no correspondence between Display RAM address and the display position.

 15.6 INTERFACING 8279 WITH 8085 MICROPROCESSOR

The 8279 can be used as a memory mapped I/O or as an I/O mapped I/O device. The interfacing of 8279 with

microprocessor in I/O mapped I/O mode is depicted in Fig. 15.6. This circuit consists of 8 data lines, RESET,

RD, WR, CS, CLK and C/D which are explained below:

The 8 data lines are connected to the data bus of the microprocessor.

The RESET signal is connected to the RESET OUT of the microprocessor.

RD and WR signals are connected to IOR and IOW control signals.

The address decoder output is also connected to the CS pin of 8279 in order to access the IC as an I/O

mapped device. When the CS signal is active low, the device can communicate with microprocessor.

The address of data port is 30H and the address of command port is 31H.

The command/data C/D signal is connected to A0 address line of the microprocessor for addressing

data register and command register sequentially.

The clock signal, CLK is linked to the system clock.

Fig. 15.6 Interfacing of 8279 with 8085 microprocessor

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.11

output lines drive eight rows of keys. The return lines RL0–RL7 are used as column lines for the keyboard.

The 8 row and 8 column signals can enable the 8279 to interface a 64 key keyboard.

 Sometimes, one key may have more than one function. The shift and control keys are generally used for

this purpose. When any key and either shift or control or both are pressed together, three more function keys

are available from a key. In this way, 64 keys are able to provide 256 functions. For this purpose, control and

shift lines take care of the control and shift keys. Once a key is pressed, an 8-bit code must be loaded into the

buffer RAM and the interrupt request send a signal to the microprocessor which can indicate that the buffer

RAM is not empty.

Fig. 15.7 Keyboard interface with 8279

 15.8 SIXTEEN-DIGIT DISPLAY INTERFACE OF 8279

Figure 10.8 shows the sixteen-digit display using 8279. This consists of a sixteen 8-bit buffer RAM to hold

the 8-bit data for 16 characters or digits. All display digits are multiplexed by four lines to sixteen lines

decoder. Therefore, all digits are not turned ON at a time, but they are ON sequentially. The four scan lines

output 0 to 15 in a cyclic manner, which can be decoded into 16 different lines by the decoder to select any

one digit of the 16-character display. The lines A0–A3 and B0–B3 send the 8-bit information for display. The

BD is used to blank all display digits. If the first digit is selected for display, the content of the first display

buffer will be placed in A0–A3 and B0–B3 lines.

Microprocessors and Microcontrollers15.12

Fig. 15.8 Sixteen-digit display interface with 8279

 15.9 8279 INTERFACING WITH 8086 MICROPROCESSOR

Figure 15.9 shows the 8279 interfacing with the 8086 microprocessor. Lower order data bus D7 – D0 is

directly connected with D7 – D0 of 8279 IC. The RESET signal of 8259 is connected to the RESET pin of the

8086 microprocessor. RD and WR signals of 8086 are connected with RD and WR signals of 8279. Address

line A1 of 8086 is directly interfaced with A0 input of 8279. The address decoder generates the chip select

signal CS from address lines A0, A2 to A7 and M/IO. The address of the data register of 8279 is 0080H and

the control/status write/read address is 0082H. The generation of data port address and control/status write/

read address is given in Table 15.1

Table 15.1 Address generation 0740H and 0742H for 8259A

 Status of I/O Address lines Address

A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 A0 In Hex

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0080H

0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0082H

 15.10 8279 INTERFACING WITH 8051 MICROCONTROLLER

Figure 10.17 shows the 8279 interfacing with the 8051 microcontroller. Data bus D7 – D0 of 8279 IC is

directly connected with D7 – D0 of 8051. The RESET signal of 8259 is connected to the RST pin of 8051

microcontroller. RD and WR signals of the 8259 are connected with RD and WR signals of the 8051. Address

line A0 of 8051 microcontroller is directly interfaced with A0 input of 8279. The address decoder generates

the chip select signal CS from address lines A1 to A7, and A8 to A15. The address of the data register and the

control/status write/read address of 8279 depends on address lines, A0, A1 to A7, and A8 to A15.

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.13

16 DIGIT DISPLAY UNIT

8–bit 7–Seg data

BD

4:16 DECODER

A1

M/IO

A2

A3

A4

A5

A6

A7

A0

A0

3 : 8 DECODER

S – S0 3

S – S0 2

8 Rows

8 Columns

KEYBOARD

CNTLSHIFT

IRQ

RI0–7

D – D0 7

D – D0 7

8279

S – S0 3

A0

CLK

RESET

WR

RD

OUT
B –B0 3

OUT
A –A0 3CS

8086/
8259

System

A1

8259-IR0

D – D0 7

CLK

RESET

WR

RD

+5V MN / MX

Fig. 15.9 8279 interfacing with 8086 microprocessor

16 DIGIT DISPLAY UNIT

8 bit 7 Seg data

BD

4:16 DECODER

A1

A7

A8

A15

3 : 8 DECODER

S – S0 3

S – S0 2

8 Rows

8 Columns

KEYBOARD

CNTLSHIFT

IRQ

RI0–7

D – D0 7

D – D0 7

8279

S – S0 3

A0

CLK

RESET

WR

RD

OUT
B –B0 3

OUT
A –A0 3CS

8051

A0

8259-IR0

D – D0 7

CLK

RST

WR

RD

Decoder

Fig. 15.10 8279 Interfacing with 8051 microcontroller

Microprocessors and Microcontrollers15.14

 15.1. Draw the functional block diagram of 8279 and explain the operation of each block.

 15.2. Write the different features of programmable keyboard and display controller.

 15.3. Write the functions of the following signals

 (i) SL0–SL3 (ii) RL0–RL3 (iii) CNTL/STB (iv) OUTA0–OUTA3

 (v) OUTA0–OUTA3 (vi) IRQ (vii) SHIFT (viii) BD

 15.4. What are the different modes of 8279 programmable keyboards and display controller? Explain each

mode with an example.

 15.5. What are the various input modes in which 8279 operates?

 15.6. Discuss the left-entry mode of the display format.

 15.7. Discuss the right-entry mode of the display format.

 15.8. Explain the seven-segment display interfacing with 8279. How are sixteen-digit displays interfaced

with 8279.

 15.9. Draw a circuit diagram to interface 8279 with microprocessor and explain. Discuss the keyboard

interface of 8279.

 15.10. Write short notes on the following:

 (i) Right entry (ii) Left entry (iii) N-key roller

 (iv) Display RAM (v) 2-key roller (vi) FIFO

 (vii) Command word format of 8279

 15.11 List the major sections of the 8279 programmable keyboard/display interface.

 15.12 In the context of 8279 programmable keyboard/display interface, explain the terms “2 key lock out”

and “N key roll over”

 15.13 What is 8279 better known as?

 15.14 What is two key lockout and N-key rollover made of 8279? How an A/D converter can be interfaced

with a 8085 microprocessor?

 15.15 Write a short note on 8279 programmable keyboard/display interface

 15.16 Draw the 8279 interfacing with 8085 microprocessor and explain the circuit operation briefly.

 15.17 Design the 8279 interfacing with 8086 microprocessor and the generation of data port address and

control/status write/read address.

 15.18 Draw the 8279 interfacing with 8051 microcontroller and explain the circuit operation briefly.

 15.1 8279 displays can operate in

 (a) 8–8-bit character display-left entry only

 (b) 16–16-bit character display-left entry only

 (c) 8–8-bit character display-right entry only

 (d) 8–8-bit character display-left and right entries and 16-16 bit character display-left and right

entries

8279 Interfacing with 8085, 8086 and 8051 Microcontroller 15.15

 15.2 How many bytes of memory is available for the seven segment display?

 (a) 16 × 8 display RAM (b) 16 × 4 display RAM

 (c) 16 × 1 display RAM (d) None of these

 15.3 How many bytes of memory is available for key pressed in 8279 ?

 (a) 8 × 8 RAM (b) 8 × 4 RAM (c) 8 × 1 RAM (d) None of these

 15.4 How many seven-segment displays can be connected with 8279?

 (a) 16 (b) 12 (c) 10 (d) 8

 15.5 How many character keyboards can be connected with 8279 in mode?

 (a) 8 (b) 16 (c) 20 (d) 4

 15.6 8279 is a

 (a) DMA controller (b) programmable keyboard display interface

 (c) counter (d) interrupt controller

 15.7 In 8279 interfacing with 8085 microprocessor/8051 microcontroller, A0 pin of 8279 is connected

with ____ pin of 8085/8051.

 (a) A0 (b) A1 (c) A2 (d) A3

 15.8 During 8279 interfacing with 8086 microprocessor, A0 pin of 8279 is connected with ____ pin of

8086.

 (a) A0 (b) A1 (c) A2 (d) A3

 15.1. (d) 15.2. (a) 15.3. (a) 15.4 (a)

 15.5. (c) 15.6. (b) 15.7 (a) 15.8 (b)

CHAPTER

16
8251 Interfacing with 8085, 8086

and 8051 Microcontroller

 16.1 INTRODUCTION

The serial data transfer is a method of data transfer in which one bit will be transferred at a time. This trans-

mission is always used when the distance is greater than five metres. This method of transmission requires

very few data lines compared to parallel transmission. Serial data transmission can be classified as simplex,

half duplex and full duplex data transfer. In simplex serial data transfer system data is transferred only in one

direction. In the half duplex system, data can be transferred in either direction but in one direction at a time

only. In the full duplex system data can be transmitted in both direction simultaneously.

 The serial data transfer systems can also be classified based on timing signals such as synchronous and

asynchronous data transfer. The difference between synchronous and asynchronous data transfers is given in

Table 16.1.

Table 16.1 Differences between synchronous and asynchronous data transfer

 Asynchronous Data Transfer Synchronous Data Transfer

 In asynchronous data transfer, a word or character is In synchronous data transfer, the transmission begins

 preceded by a start bit and is followed by a stop bit. with a block header, which is a sequence of bits.

 The start bit is a logical 0. The stop bit(s) is (are) a

 logical 1.

 Data can be sent one character at a time. This can be used for transferring large amounts of data

without frequent starts or stops.

 When no data is sent over the line, it is maintained at Since the data sent is synchronous, the end of data is

 an idle value, logic ‘1’. indicated by the sync character(s). After that the line

 can be either low or high.

 Parity bit can be included along with each word or Parity bit can be included along with each word or char-

 character. Each character data can be 5, 6, 7 or 8 bits. acter. Each character data can be 5, 6, 7 or 8 bits.

 The start and stop bits are sent with each character. In synchronous data transfer, the transmitter sends syn-

 Generally, the stop bits may be either one or more chronous characters, which is a pattern of bits to indicate

 bits. The stop bits must be sent at the end of the end of transmission.

 character. It is used to ensure that the start bit of

Microprocessors and Microcontrollers16.2

 the next character will cause a start bit transition on

 the line.

 Asynchronous mode data transfer is used for low Synchronous mode data transfer is used for high-speed

 speed data transfer. Data can move in simplex, data transfer. Data can move in simplex, half duplex and

 half duplex and full duplex methods. full duplex methods.

 In this data transfer, the transmitter is not In synchronous mode data transfer, the receiver and

 synchronised with the receiver by the same clock. transmitter is perfectly synchronised on the same clock

 The clock is an integral multiple of the baud rate pulse.

 (number of bits per second). Generally, this

 multiplication factor is 1, 16, or 64.

 Synchronisation between the receiver and Synchronism between the transmitter and receiver is

 transmitter is required only for the duration of maintained over a block of characters.

 a single character at a time.

 Asynchronous data transfer can be implemented Synchronous data transfer can be implemented by

 by hardware and software. hardware.

 8251 is a powerful programmable communication interface ICs through which the serial data transfer can

be effectively carried out. The Programmable Communication Interface 8251 is a programmable I/O device

designed for serial communication. This IC can be used either in synchronous mode or asynchronous mode.

Therefore, it is called Universal Synchronous Asynchronous Receiver and Transmitter (USART).

 The IC chip is fabricated using N-channel silicon gate technology. The 8251 can be used to transmit and

receive serial data. It accepts data in parallel format from the microprocessor and converts them into serial

data for transmission. This IC also receives serial data and converts them into parallel and sends the data in

parallel. It is available in a 28-pin dual in line package and has the following features:

Synchronous and asynchronous operation

Programmable data word length, parity and stop bits

Parity, overrun and framing error checking instructions and counting loop interactions

Programmed for three different baud rates

Supports up to 1.750 Mbps transmission rates

Divide-by 1, –16, –64 mode

False start bit deletion

The number of stop increase of asynchronous data transfer can be 1 bit, 1½ or 2 bits

Full duplex double buffered transmitter and receiver

Automatic break detection

Internal and external synchronous character detection

Peripheral modem control functions

 This device is mainly used as the asynchronous serial interface between the processor and the external

equipment. This IC can also be used to generate the baud rate clock using external clock and convert outgoing

parallel data into serial data. This IC can also be used to convert incoming serial data into parallel data and it

can control the modem.

 16.2 FUNCTIONAL BLOCK DIAGRAM

The functional block diagram of 8251 IC is shown in Fig. 16.1. This IC consists of four major sections,

namely, transmitter, receiver, modem control and microprocessor interface section. These four sections are

communicated with each other on an internal data bus for serial data transfer.

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.3

16.2.1 The Transmitter

Figure 16.2 shows the transmitter section. This section consists of transmitter buffer register, output regis-

ter and transmits control logic. This section has one input and three outputs. The transmitter buffer register

accepts parallel data from the data bus of microprocessor. Then data can be shifted out of the output register

on the T × D pin after addition of framing bits. The serial data bits are preceded by START bit and succeeded

by STOP bit, which are known as framing bits. For this operation the transmitter must be enabled and CTS

signal must be active low. T × C signal is the transmitter clock signal which controls the bit rate on the T ×

D line. The clock frequency may be 1, 16 or 64 times the baud.

Fig. 16.1 Functional block diagram of 8251 IC

Microprocessors and Microcontrollers16.4

 In the asynchronous mode, the transmitter adds a START bit, depending on how the unit is programmed;

it also adds an optional even or odd parity bit, and either 1, 1½ or 2 STOP bits.

 When the transmitter buffer register is empty, then it outputs a signal T × RDY. It indicates to the CPU that

the 8251 is ready to accept a data character.

 When there is no data in the transmitter output register, then it raises T × E signal to indicate that the trans-

mission is stopped. It is reset when the data is transferred from the buffer register.

16.2.2 The Receiver

The block diagram of the receiver section is depicted in Fig. 16.3. This section consists of a receiver buffer

register, receiver control logic and input register. The receiver section of 8251 USART accepts serial data

on the R × D pin. Then converts it to parallel data according to the required format. When the 8251 is in the

asynchronous mode and it is ready to accept a character, it looks for a low level on the R × D line.

 When it gets a low level, it assumes that it is a START bit and enables an internal counter. At a count

equivalent to one-half of a bit time, the R × D line is sampled again. If the line is still low, a valid START bit

has probably been received and the 8251 proceeds to assemble the character. If the R × D line is high when

Fig. 16.2 Block diagram of transmitter

Fig. 16.3 Block diagram of receiver

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.5

it is sampled, then either a noise pulse has occurred or the receiver has become enabled in the middle of the

transmission of a character. In either case, the receiver aborts its operation and prepares itself to accept a new

character. After the successful reception of a START bit, the 8251 clocks in the data, parity and STOP bits

in the input register, the data is separated and converted into parallel data and then it transfers the data to the

Receiver buffer register. The R × RDY signal is asserted to indicate that a character is available. The R × C

falling edge clock signal is used to disassemble the bits from the serial data.

 When this register is full, the R × RDY line becomes high. This line is then used either to interrupt the

microprocessor or to indicate its own status. The microprocessor then accepts the data from the register.

 R × C line stands for receiver clock. This signal controls the rate at which bits are received by the input

register. The clock can be set to 1, 16, or 64 times the baud in the asynchronous mode.

16.2.3 Modem Control

The modem connection of the IC 8251 is shown in Fig. 16.4. The modem control section provides the genera-

tion of RTS (request to send) and the reception of CTS (clear to send). This section also provides a general-

purpose output DTR (Data Terminal Ready) and a general-purpose input DSR (Data Set Ready). DTR is

generally assigned to modem, indicating that the terminal is ready to communicate and DSR is a signal from

the modem indicating that it is ready for communication.

Fig. 16.4 Block diagram of modem control

Microprocessors and Microcontrollers16.6

 16.3 PIN DIAGRAM OF 8251

Figure 16.5 shows a schematic diagram of Intel 8251 and the pin configuration of 8251A is depicted in Fig.

16.6. The description of pins is as follows:

D0–D7 (Data Bus) The 8-bit data bus is used to read or write status, command word or data from or to

the 8251 A.

Read/Write Control Logic Signals The Read/Write Control Logic consists of three buffer registers

such as data buffer register, control register and status register. It has six input signals CS, C/D, RD, WR,

RESET and CLK.

CS (Chip select) An active-low on this input select inputs 8251 A for communication. When CS is high,

no reading or writing operation can be performed. The data bus is tristated and RD and WR have no effect on

the device.

C/D (Control Word/Data) This pin is used to inform the 8251A that the word on the data bus is either

data or control word/status information. When C/D pin is high, either the control register or status register

will be selected. If this pin is low, data bus buffer is selected. The RD and WR signals are used to distinguish

the control register and the status register respectively.

 Pin Name Function

 D0–D7 Data Bus

 CS Chip select

 C/D Control Word/Data

 RD Read

 WR Write

 RESET RESET

 CLK CLOCK

 T × D Transmit data

 T × C Transmitter clock

 T × RDY Transmitter ready

 T × E Transmitter empty

 R × D Receiving data

 R × C Receiver clock

 R × RDY Receiver ready

 DSR Data set ready

 DTR Data terminal ready

 CTS Clear to send

 RTS Request to send

RD (Read) An active-low on this input informs 8251A that the microprocessor is reading either data or

status information from internal registers of 8251.

WR (Write) The active-low input on WR is used to inform it that the microprocessor is writing data or

control word to 8251.

RESET A high on this input forces the 8251A into an ‘idle’ state. This device will be remaining idle until a

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.7

Fig. 16.5 Schematic diagram of Intel 8251

Fig. 16.6 Pin diagram of Intel 8251

Microprocessors and Microcontrollers16.8

new set of control words is written into it. The minimum required reset pulse width is 6 clock states for each

reset operation.

CLK (CLOCK) The CLK input is used to generate internal device timings and is normally connected to

the output of the clock generator. The input frequency of CLK should be greater than 30 times the receiver

or transmitter data bit transfer rate.

 Table 16.2 shows the status of the control signals CS, C/D, RD, WR and CLK for accessing the different

registers.

Table 16.2 Status of some control signals

CS C/D RD WR State

0 1 1 0 Microprocessor writes instructions in the control register

0 1 0 1 Microprocessor reads status from the status register

0 0 1 0 Microprocessor outputs data to the data buffer

0 0 0 1 Microprocessor accepts data from data buffer

1 x x X USART is not selected for communication

16.3.1 Transmitter

Transmitter control pins are T × D, T × C, T × RDY, and T×E which are explained below:

Fig. 16.7 Control logic and registers of IC

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.9

T × D (Transmit Data Output) The serial data output from the output register is transmitted on the T ×

D pin. The transmitted data bits consist of data along with other informations such as start bit, stop bits and

parity bit.

T × C (Transmitter Clock Input) The transmitter clock input T × C controls the rate at which the

data is to be transmitted. The baud rate is equal to the T × C frequency in synchronous transmission mode.

In asynchronous transmission mode, the baud rate is 1, 1/16 or 1/64 times the T × C. The serial data is

transmitted out by the successive negative edge of the T × C.

T × RDY (Transmitter Ready) This is the output signal, which indicates to the CPU that the transmitter

buffer is empty. The internal circuit of the transmitter is ready to receive a byte of data from the CPU for

transmission. The T × RDY signal is set only when CTS and T × E are active. The T × RDY is reset when the

CPU writes a byte into the buffer register by the rising edge of the WR signal. The T × RDY status bit will

indicate the empty or full status of the transmitter data input register.

T×E (Transmitter Empty) When the T × E output is high, the 8251 has no characters to transmit. This

automatically goes low when a character is received from the CPU for further transmission. If this pin is

high in synchronous mode, it indicates that a character has not been loaded and the SYNC character or

characters are being transmitted or about to be transmitted. The T × E signal can be used to indicate the end

of a transmission mode.

16.3.2 Receiver

Transmitter control pins are R × D, R×C, and R×RDY which are explained below:

R×D-Receive Data Input This input pin of 8251A receives serial data from the outside environment and

delivers to the input register via R × D line which subsequently puts it into parallel form and places in the

receiver buffer register.

R×C (Receiver Clock Input) The R×C receiver clock input pin controls the rate at which the bits are

received by the input register. In the synchronous mode, the baud rate is equal to the R × C frequency. In the

asynchronous mode, the baud rate can be set to either 1 or 1/16 or l/64th of the R × C frequency. The received

data is read into the 8251 on rising edge of R×C.

R × RDY (Receiver Ready) This is a output pin which indicates that 8251A contains a character to be

read by the CPU. This signal can be used to interrupt the CPU as well as polled by the CPU. In synchronous

mode, the receiver must be enabled to set the R × RDY signal and a character must finish assembly and then

be transferred to the data output register. When the data does not read properly from the receiver data output

register before assembly of the next data byte, the overrun condition error flag is set and the previous byte is

over written by the next byte of the incoming data and hence it is lost.

16.3.3 Modem Control Pins

8251 has four modem control pins DSR, DTR, CTS and RTS. The DSR and RTS are inputs but DTR and CTS

are output pins. All these pins are active low. The description of modem control pins are given below:

DSR (Data Set Ready) The DSR input can be used as a general-purpose one-bit inverting input port.

The CPU using a status read operation can test its status. This input is normally used to check the modem

condition such as data set is ready.

Microprocessors and Microcontrollers16.10

DTR (Data Terminal Ready) This is a general-purpose one-bit inverting output port. This can be used

by 8251 to signal the modem about the information that the device is ready to accept data. This port can be

programmed using the command word.

CTS (Clear to Send) This is a one-bit inverting input port. When CTS input line is low, the 8251A will

be enabled to send the serial data, provided D0, the enable bit in the command instruction word should be

enabled if D0 becomes low in the command instruction word while data transmission takes place. If CTS is

switched off, the transmitter will compel sending the stored data.

RTS (Request to Send Data) This is a general-purpose one-bit inverting output port. This can be used

by 8251 to indicate the modem that the receiver is ready to receive a data byte from the modem. Bit D5 of

command instruction format controls the status of the pin.

SYNDET/BD (Synchronous Detect/Break Detect) This pin is used for detection of synchronous

characters in synchronous mode and break characters in asynchronous mode. This pin can be programmed

using appropriate control word. In the input mode or the external synchronous detect mode, a rising edge on

this pin will cause 8251 to start collecting data characters on the rising edge of the next R×C.

 This pin can be used as a break detect in the asynchronous mode. When R × D pin remains low through

two consecutive stop bit sequences, the stop bit sequence contains a stop bit, a start bit, data bits and parity

bits. This is reset when master chip reset or the R × D becomes high.

 16.4 8251 INTERFACE WITH 8085 MICROPROCESSOR

The interfacing connection of 8251 with the microprocessor is shown in Fig. 16.8. This circuit consists

of eight data lines, which are connected to the data bus of the CPU. The 8251 IC can be used either in

Fig. 16.8 Interfacing of 8251 with 8085 microprocessor

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.11

I/O mapped I/O or memory mapped I/O mode. In I/O mapped I/O interface mode, the RD and WR lines

are connected to IOR and IOW control lines. The CLK pin is connected with to the CLK OUT of the

microprocessor to provide synchronization between the microprocessor and 8251. The RESET terminal is

connected to the RESET OUT of the microprocessor. When RESET pin is in high level, the IC 8251 is forced

into the idle mode. The address decoder output is connected to the CS terminal of 8251. The C/D terminal is

used to select internal registers such as control register and data register. Generally, this is connected to the

A0 address bus.

 16.5 PROGRAMMING AND OPERATING MODES OF 8251

The 8251 can be operated in different modes based on mode control words. A set of control words can be

written into the internal registers of 8251A to make it operate in the desired mode. The control words of

8251A are two functional types, namely,

 1. Mode Instruction Control Word

 2. Command Instruction Control Word

 There are two 8-bit control registers in 8251 to load mode word and to load command word. The control

logic and registers of the 8251 IC is depicted in Fig. 16.7. The mode instruction word informs about the initial

parameters such as mode, baud rate, stop bits and parity bit. The command instruction word explains about

enabling the transmitter and receiver section. The mode instruction word and command instruction control

word are explained below.

16.5.1 Mode Instruction Control Word

Mode instruction control word defines the general operational characteristics of 8251A. After reset by using

internal reset command or external reset command, the mode instruction control word must be loaded into

8251 to configure the device as per requirements. These control words are different for synchronous and

asynchronous mode operation. Once mode instruction control word has been written into 8251, SYNC char-

acters (synchronous mode only) or command instructions (synchronous or asynchronous mode) may be pro-

grammed. The mode of operation from synchronous to asynchronous or from asynchronous to synchronous

can be changed by reset the 8251. The typical data is given in Fig. 16.9. The mode instruction format for

asynchronous mode is shown in Fig. 16.10.

Fig. 16.9 Typical data block

Microprocessors and Microcontrollers16.12

Example 16.1 Find the mode instruction for the following operations:

8251 can be operated in asynchronous mode for data transmit.

The baud rate is 16 × Asynch.

The length of character is 8 bits and number of stop bits is 2.

 Assume Odd parity and the address of the control register is 41H and the address of data register is 40H.

The mode instruction word for the above operations is DEH as shown in Fig. 16.11.

Fig. 16.11

To load the instruction word into the control word register, the following statements will be written

 MVI A, DEH

 OUT 41H

Asynchronous Mode (Transmission) The general transmission format for asynchronous

communication is shown in Fig. 16.12. The transmission format consists of start bit, data character, parity bit

and stop bits. 8251 starts to send data on the T × D pin after adding a start bit which is a 1 to 0 transmission.

Then data bits are transmitted using the T × D pin on the falling edge of transmitter clock (T×C) followed by

stop bits. When no data is transmitted by the CPU to 8251, the T × D output pin remains ‘high. If a ‘break’

has been detected, T × D line will go low.

Asynchronous Mode (Receive) The general receive format for asynchronous communication is

shown in Fig. 16.12. Data reception starts with a falling edge of R × D input which indicates the arrival of

start bit. The high to low transition on the R × D line triggers the ‘False start Bit Detection Circuit’ and the

output of this circuit samples the R × D line half-a-bit time later to confirm about the start bit. If R × D is

low, it indicates a valid start bit which starts counting. Then the bit counter locates data bits, parity bits and

stop bits. If any error is occurred during the receiving of data with regard to parity, framing or overrun, the

Fig. 16.10 Instruction format of asynchronous mode

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.13

corresponding flags in the status word will be set. The receiver requires only a one-stop bit to mark end of the

data bit string though the number of stop bits affects the transmitter.

Synchronous Mode Instruction Format The synchronous mode instruction format is shown in Fig.

16.13. For synchronous transition/receiving of data, both D0, D1 will be low. Bit D2 and D3 indicate the

character length. Bit D4 stands for parity enable (PEN) and D5 also stands for even parity (EP). Bit D6 stands

for external synchronous detect (ESD). D6 = 1 for input and D6 = 0 for output. Bit D7 = 1 indicates a single

synchronous character (SCS). But D7 = 0 represents double synchronous characters.

Fig. 16.12 Asynchronous mode transmission and receive formats

Microprocessors and Microcontrollers16.14

Synchronous Mode (Transmission) The general transmission/receive format for synchronous

communication is shown in Fig. 16.14. In transmission format one or two synchronous characters are sent

followed by data characters. When CTS line becomes low, the first character is serially transmitted out. All

the characters are shifted out of the serial output register on the falling edge of the transmitter clock (T×C)

at the same rate as T×C. After completion of transmission, the CPU replenishes the transmitter buffer. When

the CPU fails to provide a character before the transmitter buffer becomes empty, 8251 should send SYNC

characters. In that case, the T × E pin becomes high to indicate that the transmitter buffer is empty.

Synchronous Mode (Receiver) In the synchronous receive mode, the character synchronisation can be

achieved internally or externally. In the internal SYNC mode, the receiver samples the data available as the

R × D pin on the rising edge of R×C. When 8251 is programmed in this mode, ‘ENTER HUNT’ command

should be included in the first command instruction word. The data on R × D pin is sampled on rising edge

of the R × C. The receiver buffer content is compared with the first SYNC character at every edge till a match

occurs. When 8251A is initially programmed for two sync characters, the process can be extended to two

SYNC characters. When both the characters match, the hunting stops. After HUNTING is over, the system

goes for character boundary synchronisation. The SYNMDET pin is set and is rest automatically by a status

read operation. The SYNDET pin gets set in the middle of the parity bit, if the parity is enabled; otherwise

in the middle of the last data bit. In the external SYNC mode, synchronisation can be achieved by applying a

high level on the SYNDET input pin, which forces 8251A out of HUNT mode. The parity and overrun error

can be checked in the same way as in asynchronous mode.

16.5.2 Command Instruction Word

The command instruction controls the actual operations of the selected format like enable transmit/receive,

error reset and modem controls. Once the mode instruction has been written into 8251A and the SYNC char-

acters are loaded (only in synchronous mode), the device is ready for data communication. The command

Fig. 16.13 Synchronous mode instruction format

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.15

instructions can be accepted only after mode instruction in case of asynchronous mode. All further control

words written with C/D will load a command instruction. A reset operation returns the 8251 back to mode

instruction format from the command instruction format. The format of command instruction is depicted in

Fig. 16.15.

 When the 8251 has been programmed by the mode instruction word, the device is ready for data com-

munication. The command instruction controls the actual operation of the selected format. The command

instruction format is explained discussed below:

 The D6 bit is used as the internal reset. The command word with D6 = 1 returns 8251 in the mode instruction

format. When D0 (T × EN) is high, the transmitter becomes enable and data transmission is possible. If D2

(R × EN) is high, it enables the receiver for reception. The D1 bit controls the data terminal ready. The D3 bit

forces the transmitter to send continuous break characters. A high on D4 resets the error flags—PE, OE and

FE (parity, overrun and framing errors respectively). The D5 bit controls the request to send pin of the device.

The D7 bit is used in synchronous mode. This pin enables the receiver to look for the synchronising data.

Fig. 16.14 Synchronous mode instruction format

Microprocessors and Microcontrollers16.16

Status Word Register Format The status word can be read with C/D = 1. The CPU requires various

information to operate properly. All required information are provided by the status word. The status word

is continuously updated by 8251, except during the CPU reads the status word. The status word format is

shown in Fig. 16.16.

D0 stands for the status of the pin T × RDY.

Dl represents the status of the pin R × RDY.

D2 correspond to the status of the pin T × E.

D3 represents parity error. It is set when there is a parity error.

D4 stands for overrun error. It is set when the CPU does not read a character before the next one becomes

available.

D5 represents framing error. It is set when a valid stop bit is not detected.

D6 is used for synchronous mode (SYNDET)

D7 reflects the logic level of the DSR (modem control) pin.

Fig. 16.15 Command instruction word

Fig. 16.16 Status word format

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.17

 16.6 8251 INTERFACING WITH 8086 MICROPROCESSOR

Figure 16.17 shows the interfacing of 8251 with the 8086 microprocessor. Lower order data bus D7 – D0 of

8086 is directly connected with D7 – D0 of 8251 IC. RD, WR, RESET and clock (CLK) signals of 8251

are connected with IOR, IOW, RESET and clock (CLK) signals of 8086 respectively. The C/D terminal

of 8251 is used to select internal registers such as data register and control register. Usually, C/D is connected

to the address line A1 of 8086. The chip select CS signal is generated from address lines A0 and A2 to A7.

Actually, the address decoder output is connected to the CS terminal of 8251. According to Fig. 16.17, the

address of data register of 8251 is FEH and the control resister is FFH. The generation of data port address

and control register address is given in Table 16.3.

Table 16.3 Address generation FEH and FFH for 8251A

 Status of I/O Address lines Address

 A7 A6 A5 A4 A3 A2 A1 A0 in Hex

 1 1 1 1 1 1 1 0 FEH

 1 1 1 1 1 1 1 1 FFH

Fig. 16.17 8251 Interfacing with 8086 microprocessor

 16.7 8251 INTERFACING WITH 8051 MICROCONTROLLER

Figure 16.18 shows the interfacing of 8251 with the 8051 microcontroller. Data bus D7 – D0 of 8251 IC is

directly connected with D7 – D0 of 8051. RD, WR, and RESET signals of 8251 are connected with RD, WR
and RST signals of 8051 respectively. The C / D terminal of 8251 is used to select internal registers such as

data register and control register. Usually, C / D is connected to the address line A0 of 8051. The chip select

CS signal is generated from address lines A0, A2 to A7 and A8 to A15. The address decoder output is connected

to the CS terminal of 8251.

Microprocessors and Microcontrollers16.18

Fig. 16.18 8251 Interfacing with 8086 microprocessor

 16.1. What is serial data transfer? Write the difference between synchronous and asynchronous data

transfer.

 16.2. Define simplex, half duplex and full duplex data transfer.

 16.3. Draw the block diagram of 8251 chip and explain its working principles.

 16.4. Write the functions of the following pins of 8259A:

 (i) T × D (ii) T × E (iii) R × D (iv) T × RDY

 (v) DSR (vi) DTR (vii) C/D (viii) RTS

 16.5. Draw the functional block diagram of 8251 and explain the operation of each block.

 16.6. Describe the Read/Write control logic and registers of 8251.

 16.7. Explain the operation of the transmitter section of 8251. How does the CPU know the transmitter

buffer is empty?

 16.8. Explain the operation of the receiving section of 8251. Why modems used are in case of digital trans-

mission of data?

 16.9. Explain the function of SYNDET/BD pin of 8251.

 16.10. What are the modem control pins associated with 8251? Describe the functioning of these pins.

 16.11. Discuss the mode instruction format for asynchronous transmission/reception.

 16.12. Explain synchronous mode instruction format and command instruction format.

 16.13. Draw the general transmission/receive format for synchronous communication.

 16.14. Draw the status word format and explain the same.

 16.15. Discuss the mode instruction format for synchronous transmission/reception case.

 16.16. Show the command instruction format and explain briefly.

 16.17. Explain how data can be transferred using 8251 USART at different baud rates. Write the features of

8251.

8251 Interfacing with 8085, 8086 and 8051 Microcontroller 16.19

 16.18 Draw the 8251 interfacing with 8085 microprocessor and explain the circuit operation briefly.

 16.19 Design the 8251 interfacing with 8086 microprocessor and the generation of data port address and

control/status write/read address.

 16.20 Draw the 8251 interfacing with 8051 microcontroller and explain the circuit operation briefly.

 16.1. At what speed (baud rate) is data transferred in 8251?

 (a) 300 (b) 256 (c) 150 (d) 9600

 16.2. 8251 is a

 (a) USART IC (b) counter

 (c) interrupt controller (d) programmable peripheral interface

 16.3. The number of stop bits in case of asynchronous data transfer is

 (a) 2 bits (b) 3 bits (c) 4 bits (d) 5 bits

 16.4. 8251 operates in ________ mode.

 (a) synchronous (b) asynchronous

 (c) synchronous and asynchronous (d) none of these

 16.5. When serial data can be transferred in either direction but in one direction at a time, the data transfer

is known as

 (a) simplex (b) half duplex (c) full duplex (d) none of these

 16.6. The UART performs

 (a) a serial to parallel conversion (b) A parallel-to serial conversion

 (c) control and monitoring functions (d) All

 16.7. The USART consists of

 (a) data bus buffer (b) control and logic function

 (b) transmit and receive buffer (c) all of these

 16.8. The modems are used in serial data communication

 (a) as telephone circuits may be connected in some places of the circuit

 (b) as the switched telephone network may be connected in the circuit to reach anyone in the system

 (c) as modulator-demodulator to translate digital into audio frequency signals for transmission

through telephone lines

 (d) all of the above

 16.9 In 8251 interfacing with 8085 microprocessor/8051 microcontroller, C/D pin of 8251 is connected

with ____ pin of 8085/8051.

 (a) A0 (b) A1 (c) A2 (d) A3

 16.10 During 8251 interfacing with 8086 microprocessor, C/D pin of 8251 is connected with ____ pin of

8086.

 (a) A0 (b) A1 (c) A2 (d) A3

 16.1 (d) 16.2 (a) 16.3 (a) 16.4 (c)

 16.5 (b) 16.6 (b) 16.7 (c) 16.8 (d)

 16.9 (a) 16.10 (b)

CHAPTER

17
Direct Memory Access (DMA)

Controller 8257

 17.1 INTRODUCTION

During a bulk of data transfer between memory and any peripheral devices, if I/O data transfer technique is

used, this process takes more time as each byte of the data is transferred through the CPU. If we want to trans-

fer data at a faster rate, the CPU must be isolated and data can be transferred between memory and peripheral

devices directly. This I/O technique is known as Direct Memory Access (DMA) operation.

Fig. 17.1 DMA operation

Microprocessors and Microcontrollers17.2

 Figure 17.1 shows the DMA operation, which consists of CPU, memory devices, I/O peripheral devices,

DMA controller and switches. Usually, the switch positions will be such that the memory and peripheral

devices are connected to the CPU. Therefore, the data bus, address bus and the control bus of the memory and

I/O peripheral devices are connected to the CPU. While the DMA operation is to be performed, the CPU is

completely isolated and the address bus and control bus are taken over by the DMA controller circuitry. The

DMA operation can be carried out by the following sequence as given below:

Initially the device, which requires data transfer between the device and the memory, should send the

DMA request (DRQ) to the DMA controller.

The DMA controller sends a Hold Request (HRQ) line to the CPU and waits for the CPU to assert

the HLDA.

Then microprocessor tri-states all the address bus, data bus and control bus. The CPU relinquishes

the control of the bus and acknowledges the Hold input signal through Hold Acknowledge (HLDA)

output signal. The CPU remains in the HOLD state; the DMA controller becomes the master of bus.

Actually, DMA controller circuit manage the switching of address, data and control buses between

CPU, memory, and I/O devices.

The HLDA signal is fed to the DMA controller. When the DMA controller receive the HLDA signal,

the DMA controller takes care of direct data transfer operation between memory and I/O devices. The

DMA controller sends DACK signal to the peripheral device, which requested for DMA operation.

Then DMA operation can be performed by sending a proper address to the memory and required

control signals to transfer a bank of data.

 At the starting of the DMA operation, the DMA controller should know the starting address of the memory

location, number of bytes to be transferred and type of data transfer from memory to I/O or from I/O to

memory.

 17.2 PIN DIAGRAM

The 8257 IC is a programmable DMA controller. This is available in 40-pin dual in line package. The sche-

matic diagram of 8257 is shown in Fig. 17.2. The pin diagram of 8257 is depicted in Fig. 17.3 and the pin

functions are described below.

DRQ0–DRQ3 These are the four separate DMA request lines. Any I/O device sends a DMA request

signal on one of the DRQ0–DRQ3 lines. When DRQ is high, a DMA request signal is received by the DMA

controller. Among four DMA request lines—DRQ0 has the highest priority and DRQ3 has the lowest priority

in the fixed priority mode.

DACK0–DACK3 These are the DMA acknowledge output lines which sends an acknowledged signal through

any one of these lines to the I/O peripheral devices when this signal is active-low, the line acknowledges the

I/O devices.

A0–A3 These are the least significant address lines. A0–A3 are bi-directional lines. In master mode, these

four least significant memory address lines generated by 8257.

A4–A7 This is the four most significant address lines of lower byte address generated by 8257 in the master

mode DMA operation.

D0–D7 These are bi-directional data lines. These lines are used to interface CPU with internal data bus of

8257 DMA. During programming of the DMA controller, the CPU sends data through data lines for DMA

Direct Memory Access (DMA) Controller 8257 17.3

address register; byte count register and mode set register. When the 8257 operate in master mode, these lines

used to send higher byte of the memory address. Then these 8 MSBs of address are latched using ADSTB

signal. During the first clock cycle of DMA operation, the address is transferred over D0–D7. After that data

bus is available for data transfer during the rest DMA cycle.

IOR This is a bi-directional tristate input line. In the slave mode, the IOR signal is used to read the internal

registers of 8257 by the CPU. This line operates as output in the master mode. In master mode, IOR is used

to read data from I/O peripheral device during DMA write cycle.

IOW This is a bi-directional tristate input line. In the slave mode, IOW signal is used to load the content of

data lines to the upper or lower byte of a 16-bit DMA address register or terminal count register. In the master

mode, data is transferred from memory to I/O devices during DMA memory read cycle.

MEMR This is a memory read output signal. When this is active low, data will be read from memory during

the DMA read cycle.

Fig. 17.2 Schematic pin diagram of 8257 17.3 Pin diagram of 8257

Microprocessors and Microcontrollers17.4

MEMW This is a memory write output signal. When this is active low, data will be written to the memory

during a DMA write cycle.

CLK A clock input is applied to 8257 for internal operation of 8257, which will be synchronized with the

clock.

RESET This is an asynchronous input signal. When this is active high, all DMA channels must be disabled,

all mode registers will be cleared and all the control lines will be in tristates.

CS This is an active-low chip select signal, which enables the 8257 for read and write operations in slave

mode. In the master mode, this is disabled to prevent the chip from getting selected (by CPU) during the

DMA operation.

AEN (Address Enable) This is the address enable signal. When it is high, it indicates that the DMA

operation will be performed. This AEN output can be used to disable the data bus and the control bus driven

by the processor. This output can be used to disable the selection of an I/O device in the system.

ADSTB (Address Strobe) This output from 8257 strobes the most significant byte of the memory

address generated by the DMA controller into the latches.

TC (Terminal Count) This output indicates that the terminal count register content is zero. If the TC

STOP bit in the mode set register is set, the selected channel will be automatically disabled at the end of the

DMA cycle. This pin will be activated when the 14-bit content of the terminal count register of the selected

channel is equal to zero. The lower order 14 bits of the terminal count register are to be programmed for the

desired number of DMA cycles.

MARK When the MARK output is one level, it indicates that the current DMA cycle is the 128th cycle since

the previous MARK output. The mark may be activated after each 128 cycles for the particular peripheral

devices.

READY This is an asynchronous input signal. This is used to extend memory read and write cycles of 8257

by inserting wait states. This is suitable for interfacing slower I/O peripheral devices.

HRQ (Hold Request) The DMA controller sends the hold request as it is connected to the hold signal

input of the microprocessor. This output requests the microprocessor to access the system bus. In the master

mode, this is connected with the HOLD pin of the CPU. In the slave mode, this pin of a slave is connected

with a DRQ input line of the master 8257 and the master is connected with HOLD input of the CPU.

HLDA (Hold Acknowledge) This pin is connected to the HLDA output of the CPU. This input is high

indicates that the microprocessor tristates all the address bus, data bus and control bus.

V + 5 V supply

GND Ground.

 17.3 ARCHITECTURE OF 8257

8257 is a programmable four independent channel DMA controller. Therefore, four peripherals can

send request data transfer simultaneously. The block diagram of internal architecture of 8257 is depicted in

Fig. 17.4. This consists of four DMA channels, control logic for data transfer, read/write logic and data bus

buffer.

Direct Memory Access (DMA) Controller 8257 17.5

Fig. 17.4 Architecture of 8257

Microprocessors and Microcontrollers17.6

17.3.1 Register Organisation of 8257

The 8257 performs the DMA operation using four independent DMA channels. Each DMA channel of 8257

has two 16-bit registers, namely, DMA address register and terminal count register. There are also two com-

mon registers for all the channels such as mode set register and status register. Therefore, there are ten regis-

ters of 8257. The CPU can select any one of the ten registers using address lines A0–A3. Table 17.1 shows the

selection of one of these registers based on A0–A3. All registers are explained below.

DMA Address Registers 8257 has four separate DMA channels CH-0 to CH-3. Each channel has a

DMA request and DMA acknowledge signal. Each DMA channel has one separate DMA address register.

The DMA address register is used to store the starting address of the memory location from where data will

be accessed by the DMA channel. Therefore, the starting address of the memory block will be loaded in the

DMA address register of the DMA channel. Generally, the 8257 DMA controller will access the block of

memory with the starting address stored in the DMA Address Register and transfer to I/O devices through

the DMA channel.

Table 17.1 8257 register selection

Register Byte Address inputs Bi-directional data bus

 A3 A2 A1 A0 D7 D6 D5 D4 D3 D2 D1 D0

CH-0 DMA LSB 0 0 0 0 A7 A6 A5 A4 A3 A2 A1 A0

ADDRESS MSB 0 0 0 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-0 Terminal LSB 0 0 0 1 C7 C6 C5 C4 C3 C2 C1 C0

Count MSB 0 0 0 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-1 DMA LSB 0 0 1 0 A7 A6 A5 A4 A3 A2 A1 A0

ADDRESS MSB 0 0 1 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-1 Terminal LSB 0 0 1 1 C7 C6 C5 C4 C3 C2 C1 C0

Count MSB 0 0 1 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-2 DMA LSB 0 1 0 0 A7 A6 A5 A4 A3 A2 A1 A0

ADDRESS MSB 0 1 0 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-2 Terminal LSB 0 1 0 1 C7 C6 C5 C4 C3 C2 C1 C0

Count MSB 0 1 0 1 Rd Wr C13 C12 C11 C10 C9 C8

CH-3 DMA LSB 0 1 1 0 A7 A6 A5 A4 A3 A2 A1 A0

ADDRESS MSB 0 1 1 0 A15 A14 A13 A12 A11 A10 A9 A8

CH-3 Terminal LSB 0 1 1 1 C7 C6 C5 C4 C3 C2 C1 C0

Count MSB 0 1 1 1 Rd Wr C13 C12 C11 C10 C9 C8

Mode Set – 1 0 0 0 AL TCS CH RP EN3 EN2 EN1 EN0

(Program only)

Status (Read only) – 1 0 0 0 0 0 0 UP TC3 TC2 TC1 TC0

A10–A15—DMA Starting Address, C0–C13—Terminal Count Value,

Rd & Wr—DMA verify (00), Write (01) or Read (10) cycle selection.

AL—Auto Load, TCS—TC STOP, EW—Extended Write, RP—Rotating Priority,

EN3–EN0—Channel Mask Enable, UP—Update Flag, TC3–TC0—Terminal Count Status Bits.

Terminal Count Register Each DMA channel of 8257 has one Terminal Count register (TC). The count

register is a 16-bit register and this is used to store the number of bytes, which will be transferred through a

Direct Memory Access (DMA) Controller 8257 17.7

DMA channel. Therefore, before starting the actual DMA operation the register must be loaded the number

of bytes. The first 14-bits (D0–D13) of the terminal count register are used for this purpose. The maximum

data transfer using 8257 during one DMA operation can be 16K bytes. One of data transfer is known as a

DMA cycle. Hence to transfer a block of data, large numbers of DMA cycles are required.

 The most significant bits D14 and D15 of the count register indicate the type of the DMA function such as

DMA write cycle, DMA read cycle or DMA verify cycle. The DMA operation selection and the correspond-

ing bit configuration of the bits D14 and D15 of the terminal count register is shown in Table 17.2. In DMA

write operation, this device is able to transfer data from peripheral devices to the memory. During the DMA

read operation, the data is transferred from memory to peripheral devices. In DMA verify operation, the 8257

does not involve with the data transfer.

Table 17.2 Selection of DMA Operation Using AI5/RD and Al4 /WR

Bit 15 Bit 14 DMA Operation

0 0 Verify DMA Cycle

0 1 Write DMA Cycle (I/O read and Memory write)

1 0 Read DMA Cycle (Memory read and I/O write)

1 1 (Illegal)

Mode Set Register The mode set register of 8257 can be programmed as per requirement of the

programmer. The control word in the mode set register is used to enable or disable DMA channels individually

and also determines various modes of operation. To enable a DMA channel, the DMA address register and

the terminal count register must be loaded with proper information. The mode set register format is shown

in Fig. 17.5.

 The bits D0–D3 are used to enable or disable any one of the four DMA channels. When D0 is ‘ 1’, channel

0 is enabled.

 If Bit D4 of mode set register is set, rotating priority is enabled, or else the normal priority, i.e., fixed prior-

ity. In the rotating priority mode, the priority of the channels has a circular sequence. The rotating priority is

depicted in Fig. 17.6. After each DMA cycle, the priority of channels are changed. The channel, which has

just been serviced, will have the lowest priority. When the rotating priority bit is reset, each DMA channel

has a fixed priority. In the fixed priority mode, channel 0 has the highest priority and channel 3 has the lowest

priority. The priority of DMA operation is shown in Table 17.3.

Fig. 17.5 Bit definitions of the mode set register

Microprocessors and Microcontrollers17.8

Table 17.3 Priority operations of DMA channels

Priority Channel Just Serviced

 CH 0 CH 1 CH 2 CH 3

Highest priority CH 1 CH 2 CH 3 CH 0

 CH 2 CH 3 CH 0 CH 1

 CH 3 CH 0 CH 1 CH 2

Lowest priority CH 0 CH 1 CH 2 CH 3

 Bit D5 can enable the extended write operation. If the bit is set, the duration of MEMW and I/OW signals

are extended by activating them earlier in the DMA cycle. This is very useful to interface the peripheral

devices with different access times. When the peripheral devices are not accessed within the stipulated time,

it is requested to give one or more wait states in the DMA cycle.

 Bit D6 enables terminal count (TC) STOP. When the TC STOP bit is set, a channel is automatically dis-

abled after the terminal count output goes high and prevent any further DMA operation on the same channel.

If the DMA operation is to be continued or else if another operation is to begin, the DMA channel must be

enabled by a fresh mode set operation in the mode set register.

 Bit D7 of mode set register enables the auto load mode. This bit is set when some DMA operation is repeat-

edly desired—like sending data to CRT monitor. This is known as repetitive or chained DMA operation.

Channels 2 and 3 are used for repetitive DMA operation. Generally, Channel 2 registers are initialised as

usual for the first data block, while Channel 3 registers are used to store the block re-initialisation parameters,

i.e. the DMA starting address and the terminal count. After the first data block is transferred using DMA

Channel 2, the parameters stored in Channel 3 registers are transferred to Channel 2, if the update flag is set.

Status Register The status word register of 8257 is shown in Fig. 17.7. The status word can be read to

know the status of the terminal counts of the four channels CH 0–CH 3. Any of the lower order 4-bits of the

status word register (D0–D3) is set, when the terminal count output corresponding to that channel becomes

high. These bits remain set till the status register is read or the 8257 is reset.

 The update flag is not affected when the status read operation is performed. This flag can be cleared either

by resetting 8257 or by resetting the auto load bit in the mode set register. When the update flag is set, the

contents of Channel 3 registers are reloaded to the corresponding registers of Channel 2.

Data Bus Buffer The 8-bit, bi-directional data bus buffer is interfaced with the internal bus of 8257 and

also with the external system bus. The data bus buffer is tristate type.

Fig. 17.6 Rotating priority of DMA channels

Direct Memory Access (DMA) Controller 8257 17.9

Read/Write Logic The 8257 can operate in either slave mode or master mode. In the slave mode, the

read/write logic accepts the I/O Read (IOR) or I/O Write (IOW) control signals. It decodes the A0–A3 lines

and either writes the contents of the data bus to the addressed internal register or reads the contents of the

selected register depending on IOW or IOR. During the master mode operation, the read/write logic generates

the IOR and IOW signals to control the data flow to or from the selected peripheral devices.

Control Unit The control logic unit controls the sequences of DMA operations and generates the following

control signals: AEN, ADSTB, MEMR, MEMW, TC and MARK. This unit generates the address lines A4–A7

in master mode.

Priority Resolver It resolves the priority of DMA channels of 8257 depending on fixed priority or

rotating priority.

 17.4 DMA OPERATIONS

The 8257 is able to perform three types of operations such as verify DMA operation, write operation and read

operation. This device operates in four different modes, namely, single byte data transfer mode, bust mode,

control over drive mode and not ready mode.

17.4.1 Single-Byte Data Transfer Mode

The complete DMA operation of 8257 in single-byte data transfer mode is described below with the help of

a flow chart as shown in Fig. 17.8.

S1 State S1 is the idle state of DMA operation. In this state, the DMA controller will sample the DMA

request inputs (DRQn) to check whether any peripheral device wants to data transfer between the device

and memory. When any DRQ request is received by the 8257, it sends HRQ (HOLD request) signal to the

microprocessor and enter S0 state.

S0 State In this state, the DMA controller waits for acknowledgement signal from the CPU at the HLDA

input and resolves the priorities of the DMA requests. After detection of a valid HLDA, it exists S0 and enters

S1 state.

S1 State When the DMA controller receives HLDA signal, it indicates that the bus is available for the

transfer. In the S1 state, the DMA controller write the MSB of the DMA address register on its D0–D7 pins

Fig. 17.7 Status register

Microprocessors and Microcontrollers17.10

Fig. 17.8 DMA operation state diagram

Direct Memory Access (DMA) Controller 8257 17.11

and some external device is used to latch the MSB by making use of the ADSTB signal. The LSB of the DMA

address register is put out on the A0–A7 pins. After that it enters S2 state.

S2 State In the S2 state, the DACK line of the used channel is pulled down by the DMA controller to

indicate the peripheral device, which already sends DMA request for the DMA transfer. The read command is

activated in this state. I/OR is used for a DMA write operation, and MEMR is used for a DMA read operation.

When the extended write option is set in this state, it activates the write command. MEMW is used for a DMA

write operation, and I/OW is also used for a DMA read operation. After completion of S2 state, it enters the

S3 state.

S3 State In the S3 state, the write command is activated. Then DMA controller sets the TC and MARK

outputs if the appropriate conditions are satisfied, and it enters the S4 state. During S3 state, it samples the

ready input. If the device in which data will be written is not ready, the device makes the ready input to the

DMA controller low. Then DMA controller enters into the wait state if the ready input is low. It continues to

execute wait cycles until ready input becomes high. When ready input is high, it enters the S4 state.

S4 State In this state, if the TC stop and the TC are active (high), the channel just serviced is disabled. The

DACK, MARK and TC are deactivated. The DMA controller again samples the DMA inputs, and determines

their priorities. If there is no DMA request, it resets the HRQ (HLDA = 0 or DRQ = 0) and enters the S1 state.

17.4. 2 Burst Mode and Consecutive Transfers

When more than one channel request services at a time, the DMA controller operates in burst mode for data

transfer. No overhead is required in switching from one channel to another. In the S4 state, DRQ lines are

sampled and the highest priority request must be indicated for next DMA operation. After completion of

highest priority DMA channel operations, the next higher priority DMA request must be serviced. The HRQ

line is maintained active till all the DRQ lines become low.

17. 4. 3 Control Override Mode

An external device can interrupt the continuous or burst DMA transfer mode by lowering the HLDA line.

After each DMA transfer, the 8257 samples the HLDA line to insure that it is still active. If it is not active, the

8257 completes the current transfer; releases the HRQ line and then returns to the idle state. When DRQ lines

are still active, the 8257 may raise the HRQ line in the third cycle and continue normally.

17.4.4 Not Ready Mode

8257 uses four clock cycles to complete a transfer. Figure 17.9 shows the timing diagram of DMA operation.

The READY input pin is used to interface 8257 with low speed devices. The READY pin status is sampled in

S3 of the state diagram. If READY= 0, the 8257 enters a wait state. The status of READY pin is sampled in

every state till it becomes high. Once the READY = 1, the 8257 proceeds to state S4 from S3 state to complete

the transfer.

 17.5 INTERFACING OF 8257 WITH 8085 MICROPROCESSOR

The 8257 can be interfaced as a memory mapped device or an I/O mapped device. This device can be oper-

ated in slave mode as well as master mode. In this section, the slave mode and master mode operations are

explained briefly with circuit diagram.

Microprocessors and Microcontrollers17.12

17.5.1 Slave Mode Operation

The interfacing of 8257 with the 8085 processor in slave mode operation is shown in Fig. 17.10. In this case,

the 8257 IC is connected in I/O mapped I/O mode and the IOR and IOW pins of the IC are connected to the

IOR and IOW control signals. The data lines D0–D7 are connected to the data bus of the microprocessor.

 The 8257 can also be connected to the system bus as a memory device instead of as an I/O device. This

device operates in memory mapped I/O mode by connecting the system memory control lines to the 8257

I/O control lines and the system I/O control lines to 8257 memory control lines. In this case, the MEMR and

MEMW control lines of the system should be connected to the IOR and IOW input lines of 8257 as shown in

Fig. 17.11. The programming of bit 15 (D15) and bit 14 (D14) in the terminal count register is used for differ-

ent purposes as shown in Table 17.2.

Fig. 17.9 Timing diagram of DMA operation

Direct Memory Access (DMA) Controller 8257 17.13

17.5.2 Master Mode Operation

The 8257 operate in master mode when more than one DMA request lines become active simultaneously.

In this mode, CPU is isolated; the DMA controller is activated for data transfer. The DMA controller should

send the address of memory location and control signals MEMR, MEMW, IOR and IOW. The Interfacing of

8257 with 8085 microprocessor in master mode operation is depicted in Fig.17.12.

 In master mode, the data lines D0–D7 acts as the higher order address line A0–A15. The 8257 enable the

signal AEN (address enable). The AEN is used to disable the demultiplexed address bus of A0–A7 of the 8085

Fig. 17.10 Interfacing of 8257 with 8085 microprocessor in slave mode

Fig. 17.11 System interface for memory mapped I/O

Microprocessors and Microcontrollers17.14

processor. The 8257 load the low-order address byte of the DMA address register in A0–A7 lines. If the AEN

signal is high, the ADSTB (Address Strobe) signal strobes the high order byte of the DMA address register

using the data lines D0–D7.

 Depending upon the DMA read or DMA write operation, the control MEMR, MEMW, IOR and IOW are

activated properly by the 8257. After completion of one byte data transfer, the content of count register is

decremented by one and the address of the DMA address register is incremented by one. Then 8257 send data

necessary control signals to transfer next byte. For each byte of data transfer, the DACK signal is active low.

When all the bytes are transferred, the terminal count (TC) signal becomes high.

Example 17.1 Write a program for the data transfer from memory to a disk. Assume the starting address

of memory location is 8000H and sixteen data will be transferred. The address of the DMA address register

is 70H and the Terminal Count (TC) register is 71H. The address of mode set register is 78H. Data transfer

is done though Channel - 0.

Sol. Figure 17.13 shows the application of DMA for the data transfer from memory to a disk. The program

for the data transfer from memory to a disk is given below:

PROGRAM

Memory address Machine Codes Labels Mnemonics Operands Comments

9000 3E, 41 MVI A,41H Bit D0 = 1 to enable channel

0. Bit D6 = 1 to enable termi-

nal count stop bit. The control

word of mode set register is

41 H

9002 D3, 78 OUT 78H Load 41H into mode set

register

Fig. 17.12 Interfacing of 8257 with 8085 microprocessor in master mode

Direct Memory Access (DMA) Controller 8257 17.15

9004 3E, 10 MVI A,10H Number of data byte (10H)

9006 D3, 71 OUT 71H will be loaded into least sig-

nificant byte of terminal count

register.

9008 3E, 80 MVI A,80H Bit D7 = 1 to indicate the read

900A D3, 71 OUT 71H operation. 80H will be loaded

into most significant byte of

terminal count register.

900C 3E, 00 MVI A,00H 16 bit starting address of mem-

900E D3, 70 OUT 70H ory location (8000H) will be

9010 3E, 80 MVI A,80H written into DMA address reg-

9012 D3, 70 OUT 70H ister of CH-0

Example 17.2 Write a program to transfer 45H byte data from a peripheral device to memory. Assume

the starting address of memory location is 8000H. The address of the DMA address register is 72H and the

terminal count (TC) register is 73H. The address of mode set register is 78H. Data is to be input through

Channel 1.

Fig. 17.13 Disk controller using 8257

Microprocessors and Microcontrollers17.16

Sol.

PROGRAM

Memory address Machine Codes Labels Mnemonics Operands Comments

9000 3E, 41 MVI A, 42H Bit D1 = 1 to enable Channel

0. Bit D6 = 1 to enable termi-

nal count stop bit. The control

word of mode set register is 42

H.

9002 D3, 78 OUT 78H Load 42H into mode set

register.

9004 3E, 10 MVI A, 45H Number of data byte (45H)

9006 D3, 71 OUT 73H will be loaded into least sig-

nificant byte of terminal count

register.

9008 3E, 80 MVI A, 40H Bit D15 = 0, D14 = 1 and D13–

900A D3, 71 OUT 73H D8 = 0 for write DMA cycle.

40H will be loaded into most

significant byte of terminal

count register.

900C 3E, 00 MVI A, 00H 16 bit starting address of mem-

900E D3, 70 OUT 72H ory location (8000H) will be

9010 3E, 80 MVI A, 80H written into DMA address reg-

9012 D3, 70 OUT 72H ister of CH-1.

 17.1. Explain the DMA oper ation with a suitable diagram. Why are DMA controlled data transfers faster?

 17.2. What are the advantages of DMA controlled data transfer over interrupt-driven data transfer?

 17.3. Draw the functional block diagram of 8257 DMA and explain operating principle.

 17.4. What are the building blocks of 8257?

 17.5. Describe the features of 8257. How many I/O devices can access 8257?

 17.6. Draw the architecture of 8257 and explain briefly.

 17.7. What is the maximum value of KB of data that 8257 can transfer?

 17.8. What are the registers available in 8257? How is the 8257 initialised?

 17.9. Describe the flow chart of DMA mode of data transfer. What do you mean by DMA cycle?

 17.10. Explain how the address registers and terminal count registers for each of CH0–CH3 are selected as

also the mode set register and status word register.

 17.11. Describe the status word register of 8257. Draw a timing diagram for DMA operation.

 17.12. Explain the function of the following pins of 8257:

 (i) HRQ (ii) HLDA (iii)TC (iv) READY (v) DACK (vi) DRQ (vii) AEN

 (viii) ADSTB (ix) MARK

 17.13 What is the purpose of DMA controller ? With respect to 8237/8257 explain the DMA operation.

Direct Memory Access (DMA) Controller 8257 17.17

 17.14 What are the priorities of DMA request? Enumerate them

 17.15 What are the different transfer modes of 8257/8237? Explain them in brief.

 17.16 What is the advantage of DMA controlled data transfer over program controlled data transfer?

 17.17 What do you mean by DMA operation? Write down the steps of DMA operation.

 17.18 What is fixed priority mode and what is rotating priority mode?

 17.1 8257 is a

 (a) DMA controller (b) programmable keyboard display interface

 (c) counter (d) interrupt controller

 17.2 The maximum number of data that will be transferred through 8257 is

 (a) 64K (b) 46K (c) 16K (d) 14K

 17.3 DMA has

 (a) one channel (b) two channels (c) three channels (d) four channels

 17.4 The signals used for DMA operation are:

 (a) HRQ (b) HLDA (c) HRQ and HLDA (d) none of these

 17.5 If a DMA request is sent to the microprocessor with a high signal to the HOLD pin, the microproces-

sor acknowledge the request

 (a) after completing the present cycle (b) immediately after receiving the signal

 (c) after completing the program (d) none of these

 17.6 For 8257 controller ________ is the highest priority channel by default

 (a) CH-3 (b) CH-0 (c) CH-1 (d) any channel

 17.1 (a) 17.2 (c) 17.3 (d) 17.4 (c)

 17.5 (a) 17.6 (b)

CHAPTER

18
ADC, DAC, Keyboard, Multiplex

Display and LCD Interfacing with
8085, 8086 and 8051

 18.1 INTRODUCTION

The Analog to Digital Conversion (ADC) is the reverse operation of Digital to Analog Conversion (DAC).

Figure 18.1 shows the block diagram of ADC, which consists of filter, sample and hold, quantizer and digital

processor. The filter circuit is used to avoid the aliasing of high frequency signals and passes the baseband

frequency signal of ADC. Sometimes this filter is also called antialiasing filter. After the filter, a sample and

hold circuit is used to maintain constant the analog input voltage of ADC during the period when the analog

signal is converted into digital. This time period is also called conversion time of ADC. The quantizer circuit

is used after sample and hold to segment the reference voltage into different ranges. If N number of digital

bits represent analog voltages, there are 2N possible subranges. The quantizer determines the specified sub-

ranges corresponding to an analog input voltage. The digital processor can encode the corresponding digital

output. There are different types of ADCs. The classifications of ADC architectures based on speed are slow

speed ADCs, medium speed ADCs and fast speed ADCs. Single slope and dual slope serial ADCs are slow-

speed type and their resolution is very high and accuracy is very good. Medium speeds ADCs are successive

approximation ADCs and Parallel or flash ADCs is high speed ADCs. Resolution is moderate for medium

speed ADCs and resolution is low for flash ADCs. Accuracy of medium speed ADCs is good but flash ADCs

have limited accuracy.

Fig. 18.1 Block diagram of ADC

Analog
Input

Filter
Sample
and
Hold

Quantizer
Digital

Processor

Digital Output

Microprocessors and Microcontrollers18.2

 18.2 COUNTING TYPE A/D CONVERTER

Counting type ADCs are of two types; single-slope serial ADC and dual-slope serial ADC. The operation of

a counting A/D converter is explained in this section.

 The principle of operation of a single-slope serial ADC is to generate a ramp voltage using DAC, which is

compared with the analog input voltage. At the start of the ramp, the counter is started to count from initial

value. When the ramp reaches the analog input voltage, the counter is stopped. The digital value in the coun-

ter is directly related to the input voltage. This converter takes a longer time to convert a large voltage than a

small one and some control signals are required for the start of conversions and end of conversions. The maxi-

mum conversion time is 2N–T, when 2N clock pulses are required to convert, where N is the number of bits, T

is the clock period. The disadvantage of this ADC is that it is unipolar due to a single-slope ramp generator.

Fig. 18.2 Block diagram of single-slope serial ADC

Ramp

DAC

Comparator

Analog input
V
in

Clock

Counter

b
N–1

b0

Digital output

–

+

Fig. 18.3 Single-slope serial ADC with SC and EC signals

b
N–1

b0

Digital output

Ramp

Analog input
V
in

Clock

Counter

DAC

Reset

Comparator

EC

SC

–

+

 Figure 18.2 shows the block diagram of single slope analog to digital converter. This converter consists

of ramp generator, binary counter, comparator, and AND gate. Here, the counter is used to generate digital

output. Initially, analog input is sampled and holds and then applied to positive terminal of the comparator.

The counter is in reset condition and clock is applied in AND gate and counter. When the first clock pulse

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.3

 18.3 SUCCESSIVE APPROXIMATION ADC

The major drawback of a single-slope and dual-slope ramp and counter types of ADC is that the length of

conversion time is very high. The maximum conversion time is 2N clock cycles, where N is the number of

bits. To reduce the conversion time, successive approximation type ADC is very much useful. This converter

is similar to a counter-type ADC, but this converter uses a pattern generator rather than a clock to obtain

digital equivalent value. The pattern generator simply sets one bit at a time starting with the MSB. Therefore,

Fig. 18.4 Waveforms of single-slope serial ADC with SC and EC signals

Analog input V
in

Start of conversion
SC

Ramp output

t = 0 t T=
C

T
C

End of conversion
EC

t

t

is applied, the ramp generator starts to integrate a reference voltage V. When Vin is greater than the output

of the ramp generator, the comparator output is high and clock pulse is applied to a counter to count clock

pulses. If the output of ramp generator is equal to Vin, the comparator output is low. The output of counter is

the desired digital output of analog voltage. Single-slope serial ADC with Start of Conversion (SC) and End

of Conversion (EC) is illustrated in Fig. 18.3. The conversion sequence of a single slope ADC is given below:

 (i) Start of conversion signal resets the counter to zero, and enables the gate to allow clock pulses to be

counted in the counter.

 (ii) The counter outputs are fed into a DAC to generate a ramp output.

 (iii) Then the ramp output is compared with the sampled input signal. The gate output is high till the ramp

voltage equals the input signal.

 (iv) When the ramp output voltage is equal to the input signal, the gate output becomes low and counting stops.

 (v) The gate-disabled signal can be used to indicate the end of conversion.

Figure 18.4 shows the timing diagram of single slope ADC.

Microprocessors and Microcontrollers18.4

the approximation starts by placing logic 1 on the Most Significant Bit (MSB). Then output of the DAC is

compared with the sampled input signal. If the output of the DAC is too high, the MSB is reset to logic 0,

but if it is too low, it is left at logic 1 and the next bit is set. This process is repeated until all bits are at the

correct logic levels in sequence. Consequently, an N-bit ADC will only need N attempts before all the bits

are corrected. Therefore, conversion time is independent of the size of the analog voltage but it depends upon

number of bits.

Fig. 18.5 Successive approximation type ADC

 Figure 18.5 shows the successive approximation type ADC converter. This converter consists of a compara-

tor, a DAC, digital control logic and Successive Approximation Register (SAR). The function of the digital

control logic is to determine the value of each bit in a sequential manner based on the output of the compara-

tor. The conversion processes start with sampling and holding the analog voltage when the start of conversion

signal is given. The digital control logic sets the MSB and resets all other bits. This digital data is fed to the

DAC, which generates an analog voltage Vref /2 and applied to the comparator to compare with the input volt-

age Vin. When the comparator output is high, the digital control logic makes the MSB 1. If the comparator

output is low, the digital control logic makes the MSB 0. After completion of this step, the next MSB is 1 and

other bits are 0. Again, the sampled input is compared to the output of the DAC with this digital data. When

the comparator is high, the second bit is proven to be 1. If the comparator is low, the second bit is 0. In this

way the process will continue until all bits of digital data have not checked by successive approximation. The

successive approximation process for converging to the analog output voltage of DAC is shown in Fig. 18.6

(a) and (b). The number of cycles for conversion for N bit ADC is N. The bipolar analog to digital conversion

can be achieved by using a sign bit either +V or –V.

Fig. 18.6(a) Successive approximation ADC for a analog input voltage

Digital output

Analog input voltage

1000

1010

1100

1011

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.5

 18.4 PARALLEL OR FLASH CONVERTER

Figure 18.7 shows a flash ADC. In case of a three-bit flash ADC, the reference voltage V is divided into eight

different voltages , , , , , , ,
14 14

3
14
5

14
7

14
9

14
11

14
13

 and V. Each voltage is applied to the noninverting

terminal of a comparator. The outputs of comparators are fed to the encoder and the encoder output is the

digital data of analog input. When Vi is 0.7 V, the output of comparators C7 and C6 are 1 and the other com-

parator C5, C4, C3, C2, C1 are low. In this case, the digital output of the encoder is 101, which is equivalent to

an analog input voltage. Therefore, a flash-type ADC converter converts analog voltage into a digital output

in one clock pulse but in two phases. In the first phase, the analog input voltage is sampled and applied to the

comparator inputs. In the second phase, the digital encoder determines the correct digital output and stores it

in a register. Flash ADC can be used as a bipolar converter when weighted resistances are connected between

+V and –V. Table 18.1 shows the analog input, comparator output, and digital output of a flash-type ADC.

 Advantage of a flash converter is high speed but many comparators are required. For a three-bit flash con-

verter, 7 comparators are required and an 8-bit flash converter requires 255 comparators on a chip. Therefore,

power dissipation is very large.

Table 18.1 Analog input, comparator output and digital output of flash converter

 Analog input Comparator outputs Digital output

 voltage

 Vi C7 C6 C5 C4 C3 C2 C1 b2 b1 b0

 0 #Vi # V/14 0 0 0 0 0 0 0 0 0 0

 V/14 # Vi < 3 V/14 0 0 0 0 0 0 1 0 0 1

 3 V/14 # Vi < 5 V/14 0 0 0 0 0 1 1 0 1 0

 5 V/14 # Vi < 7 V/14 0 0 0 0 1 1 1 0 1 1

 7 V/14 # Vi < 9 V/14 0 0 0 1 1 1 1 1 0 0

 9 V/14 # Vi < 11 V/14 0 0 1 1 1 1 1 1 0 1

 11 V/14 # Vi < 13 V/14 0 1 1 1 1 1 1 1 1 0

 13 V/14 # Vi #V 1 1 1 1 1 1 1 1 1 1

Fig. 18.6(b) Timing diagram of ADC

Microprocessors and Microcontrollers18.6

 18.5 SPECIFICATION OF ADC

Generally, manufacturers use the following specifications of an analog to digital converter:

Analog input voltage range

Input impedance

Accuracy

Quantization error

Resolution

Conversion time

Format of digital output

Temperature stability

Analog Input Voltage Range It is the maximum allowable input–voltage range in which ADC will

operate properly. Actually, it is the difference between the smallest and largest analog input voltages to use

the full range of digital outputs. Typical values are 0 to 10 V, 0 to 12 V, !5 V, !10 V, and !12 V.

Input Impedance The input impedance of ADC varies from 1 Kohm to 1 Mohm, depending on the type

of ADC. Input capacitance of ADC is approximately some picofarads.

Quantization Error The full-scale range of analog input voltage is quantized for conversion to a finite

number of steps. The error is a process of quantization called quantization error. Generally, the quantization

error is specified as ½ LSB.

Accuracy The accuracy of an ADC depends on quantization error, digital system noise, gain error, offset

error, and deviation from linearity, etc. Accuracy is determined from the sum of all types of errors. Typical

values of accuracy are !0.001%, !0.01%, !0.02%, and !0.04% of full-scale value.

Fig. 18.7 Flash ADC

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.7

Resolution The resolution is defined by the ratio of reference voltage to number of output states. Actually,

it is the smallest change in analog voltage for LSB.

Resolution = Reference voltage / (2N–1) where N = number of bits of the ADC.

Conversion Time The conversion time of a medium-speed ADC is about 50 µs and for a high-speed

ADC, the conversion time is about a few ns. Therefore conversion time varies from 50 µs to a few ns for slow/

medium speed to a high-speed ADC.

Format of Digital Output Generally, an ADC always uses any standard code namely unipolar binary,

bipolar binary, offset binary, ones complement and twos complement, etc.

Temperature Stability Accuracy of an A/D converter depends on temperature variation. Typical

temperature coefficients of error are 30 ppm/ºC.

 18.6 ADC ICs

The simplified configuration of an ADC IC is shown in Fig. 18.8. The IC performs analog to digital conver-

sion by using Start of Conversion (SC), End of Conversion (EOC) and output enable signals. Commonly

available ADC ICs are single channel 8-bit A/D converter ADC0800, eight channels 8-bit A/D converter

ADC0808/0809, twelve channels 8-bit A/D converter ADC0816/0817, 12-bit A/D converter ADC80. The

ADC0800 is an 8-bit monolithic A/D converter using P channel ion-implanted MOS technology. It consists

of a high-input impedance comparator, 256 series resistors and analog switches, control logic and output

latches as shown in Fig. 18.9. Conversion is performed using a successive approximation technique where the

unknown analog voltage is compared to the voltage of R network using analog switches. When the appropri-

ate R network voltage matches the unknown voltage, conversion is complete and the digital outputs will be an

8-bit complementary binary word corresponding to the unknown voltage. Figure 18.10 shows the timing dia-

gram of this converter. The features of the ADC0800 are low cost, input ranges !5 V to !10 V, no missing

codes, ratiometric conversion, TRI-STATE outputs, contains output latches, TTL compatible, supply voltages

5 V DC and 12 V DC, resolution 8 bits, linearity !1 LSB, conversion speed 40 clock periods, clock range 50

to 800 kHz. Table 18.2 shows the maximum values of ADC’s performance characteristics.

Table 18.2 Performance characteristics of ADC0800

 Parameters Maximum value

 Non-Linearity !2 LSB

 Differential Non-Linearity !½ LSB

 Zero Error !2 LSB

 Zero Error Temperature Coefficient 0.01%/ºC

 Full-Scale Error !2 LSB

 Full-Scale Error Temperature Coefficient 0.01%/ºC

 Input Leakage current 1 µA

 Clock Frequency 800KHz

 Clock Pulse Duty Cycle 60%

 TRI-STATE Enable/Disable Time 1 µs

 Start Conversion Pulse 3½ clock pulse

 Power Supply Current 20 mA

Microprocessors and Microcontrollers18.8

The ADC80 is a 12-bit successive approximation type A/D converter. It is available in 32 pin DIP. The impor-

tant performance characteristics of ADC80 is given in Table 18.3.

Fig. 18.8 Schematic diagram of ADC

Fig. 18.9 Logic diagram of ADC0800

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.9

Table 18.3 Performance characteristics of ADC80

 Parameters Maximum value

 Linearity error !0.012%

 Differential Non-Linearity !½ LSB

 Full-Scale Error Temperature Coefficient 30 ppm/ºC

 Conversion time 25 µs

 Analog input voltage !2.5 V, !5 V, !10 V,

 0 to 5 V, 0 to10 V

 Digital output format Unipolar and bipolar

 Power loss 800 mW

 18.7 INTERFACING OF ADC0800 WITH 8085 USING 8255

Figure 18.11 shows the interfacing connections of ADC0800 with 8085 microprocessor using 8255. Here,

8255 is used in between ADC 0800 and 8085 microprocessor. Port A and Port C upper of 8255 are used as

inputs and Port B and Port C lower of 8255 are used as outputs. The control word of 8255 when Port A and

Port C upper are used as inputs and Port B and Port C lower are used as outputs is 98H. The address of port

A is 00H, the address of port B is 01H and the address of port C is 02H. The control word address is 03H.

 The Start of Conversion (SC) of ADC is connected with PC3 of Port C lower, the end of conversion (EOC)

is connected with the PC7 of Port C upper. The output of ADC IC is also connected with Port A of 8255.

 Initially, the start of conversion signal will be high to start the conversion process. For this, 08H is sent to

Port C by the microprocessor. The port address of Port C is 02H. The instruction OUT 02 sends the content

of accumulator to Port C lower and SC pin becomes high. This pin signal will be high only for clock pulse

duration as it is used to start the conversion process only. Therefore, 00H is loaded into the accumulator by

instruction MVI A,00H. The OUT 02 instruction makes the pin PC3 low. When the analog to digital conver-

sion has been started, some time is taken by the conversion process. At the end of conversion, the ADC sends

the End of Conversion signal (EOC). So the microprocessor should check the EOC signal time to time. If

EOC is high, ADC conversion has been completed. To check EOC signal, IN 00H and RAL instructions are

 Fig. 18.10 Timing diagram of ADC0800

Microprocessors and Microcontrollers18.10

used. If carry is generated, the EOC becomes high and the conversion has been completed. When no carry is

generated, it means that conversion has not completed. So it jumps to the level LOOP to recheck the status

of PC7. After completion of conversion, the microprocessor reads the output of ADC through the instruction

IN 00H. As the ADC output is available in complement form, the CMA instruction is used to convert into the

final result. Then the result, content of accumulator can be stored into a specified memory location. Result of

ADC conversion is given in Table 18.4. The program for ADC interfacing is given below:

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A, 98H Load control word (98H) of

8255 in accumulator.

8002 D3,03 OUT 03H Write control word in control

word register and initialize ports.

8004 3E, 08 MVI A, 08H Send start of conversion signal

through PC3.

8006 D3, 02 OUT 02H PC3 is high.

8008 3E, 00 MVI A, 00H As PC3 will be high for one or

two clock pulse, make it 0.

800A D3, 02 OUT 02H PC3 becomes low.

800C DB, 02 LOOP IN 02 Read end of conversion signal.

800E 17 RAL Rotate accumulator to check

either conversion is over or not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed,

jump to LOOP.

8012 DB, 00 IN 00 Read digital output of A/D

converter.
Contd.

Fig. 18.11 Interfacing of ADC 0800 with 8085 using 8255

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.11

8014 2F CMA Complement of ADC output.

8015 21, 00, 81 LXI H,8100H

8018 77 MOV M, A Store accumulator content in

8000H location.

8019 76 HLT Stop.

Table 18.4 Result of ADC conversion

 Analog Input Digital Output

 5 V FF

 4 V ED

 3 V C7

 2 V B9

 1 V 93

 0 V 80

It is clear from the above result that for 5 V analog input digital output is FFH and for 0V input, digital output

is 80H. To modify the output result, 80 is subtracted from result. Then the modified result is given in Table

18.5. The modified program is given below.

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A,98H Load control word of 8255 in

accumulator.

8002 D3, 03 OUT 03H Write control word in control

word register and initialise ports.

8004 3E, 08 MVI A, 08H Send start of conversion signal

through PC3.

8006 D3, 02 OUT 02H PC3 is high.

8008 3E, 00 MVI A, 00H As PC3 will be high for one or

two clock pulse, make it 0.

800A D3, 02 OUT 02H PC3 becomes low.

800C DB, 02 LOOP IN 02 Read end of conversion signal.

800E 17 RAL Rotate accumulator to check

whether conversion is over or

not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed,

jump to LOOP.

8012 DB, 00 IN 00 Read digital output of A/D

converter.

8014 2F CMA Complement of ADC output .

8015 D6, 80 SUI 80H Subtract 80H.

8017 21, 00, 81 LXI H,8100H

801A 77 MOV M,A Store accumulator content in

8100H location.

801B 76 HLT Stop.

Contd.

Microprocessors and Microcontrollers18.12

 Table 18.5 Modified result

 Analog Input Digital Output

 5 V 7F

 4 V 6D

 3 V 47

 2 V 39

 1 V 13

 0 V 00

 18.8 INTERFACING OF ADC 0800 AND MULTIPLEXER WITH 8085 USING 8255

An analog multiplexer is required for analog to digital conversion of larger number of analog inputs. The

microprocessor sends the channel select signals to the multiplexer to get the desired analog input voltage

from the selected channel. Figure 18.12 shows the schematic circuit diagram, which consists of an analog

multiplexer, A/D converter, and 8255. The analog multiplexer has eight channels. To select any one channel,

send channel select signals through the Port C lower. The SC signal is connected with the pin PC3 and EOC

signal is connected with PC7. Analog input is applied to Channel 1 of the multiplexer. When microproces-

sor sends the 00H into Port C, Channel 1 will be selected and the input voltage of Channel 1 is fed to ADC

converter IC. After that the microprocessor sends the SC signal to ADC to start the conversion process. This

SC signal will be high only for one clock pulse duration. After that the microprocessor checks the end of con-

version signal as to whether the conversion process is completed or not. When EOC is high, the conversion

has completed and the microprocessor reads the ADC output and stores it in a memory location. If the analog

Fig. 18.12 Interfacing of ADC 0800 and multiplexer with 8085 using 8255

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.13

voltage is applied to any one of the channels, the applied voltage will be converted into its digital equivalent

value in the same way.

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, 98 MVI A, 98H Load control word of 8255 in

accumulator.

8002 D3, 03 OUT 03H Write control word in control

word register and initialize

ports.

8004 3E, 00 MVI A, 00H Load 00H to select the multi-

plexer channel.

8006 D3, 02 OUT 02H Channel 1 is selected.

8008 3E, 08 MVI A,08H Send start of conversion signal

through PC3.

800A D3, 02 OUT 02H PC3 is high.

800C 3E, 00 MVI A, 00H As PC3 will be high for 1 or

two clock pulse, make it 0.

800E D3, 02 OUT 02H PC3 becomes low.

8010 DB, 02 LOOP IN 02 Read end of conversion signal

8012 17 RAL Rotate accumulator to check

either conversion is over or

not.

8013 D2, 10, 80 JNC LOOP If conversion is not completed,

jump to LOOP.

8016 DB, 00 IN 00 Read digital output of A/D

converter.

8018 2F CMA Complement of ADC output

8019 D6, 80 SUI 80H Subtract 80H.

801B 21, 00, 81 LXI H, 8100H

801E 77 MOV M, A Store accumulator content in

8000H location.

801F 76 HLT Stop.

 18.9 INTERFACING OF 12-BIT ADC 0800 WITH 8085 USING 8255

Figure 18.13 shows the interfacing of 12-bit ADC with 8085 microprocessor through 8255. Port A, Port

B and Port C upper of 8255 are used as inputs and Port C lower of 8255 is used as output. The start of

conversion (SC) of ADC is connected with PC3 of Port C lower and the End Of Conversion (EOC) is con-

nected with the PC7 of Port C upper. The output of ADC IC is also connected with Port A and Port B of

8255. PA0–PA7 are considered as LSBs of digital output of ADC and PB0–PB3 are used as MSBs of digital

output of ADC. The PB4–PB7 are opened and considered as logic 1. The program for 12-bit ADC interfac-

ing is given below.

Microprocessors and Microcontrollers18.14

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

8000 3E, 9A MVI A, 9AH Load control word (9AH) of 8255 in

accumulator.

8002 D3, 03 OUT 03H Write control word in control word

register and initialize ports.

8004 3E, 08 MVI A, 08H Send start of conversion signal

through PC3.

8006 D3, 02 OUT 02H PC3 is high.

8008 3E, 00 MVI A, 00H As PC3 will be high for 1 or two

clock pulse, make it 0.

800A D3, 02 OUT 02H PC3 becomes low.

800C DB, 02 LOOP IN 02 Read end of conversion signal.

800E 17 RAL Rotate accumulator to check either

conversion is over or not.

800F D2, 0C, 80 JNC LOOP If conversion is not completed, jump

to LOOP.

8012 DB, 00 IN 00 Read digital output of A/D converter

from port A.

8014 2F CMA Complement of ADC output (LSBs).

Fig. 18.13 12-bit ADC interfacing with 8085 microprocessor through 8255

Contd.

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.15

8015 21, 00, 81 LXI H,8100H

8018 77 MOV M,A Store accumulator content (LSB of

output) in 8100H location.

8019 23 INX H

801A DB, 01 IN 01 Read digital output of A/D converter

from port B.

801C 2F CMA Complement of ADC output (MSBs).

801D 77 MOV M,A Store accumulator content (MSB) in

8101H location.

801E 76 HLT Stop.

 18.10 ADC 0808 INTERFACING WITH 8086 USING 8255

Figure 18.14 shows ADC 0808 interfacing with 8086 using 8255 PPI. The analog input is applied to I/P2 ter-

minal of ADC 0808. Therefore, address pins A, B, C should be 0, 1, 0 respectively to select I/P2 channel input.

The OE and ALE pins are kept at +5V to select the ADC and enable the outputs. The Start Of Conversion

(SOC) will be sent through PC0 of Port C and the End Of Conversion (EOC) will be received from PC7 of Port

C. Port A acts as an 8-bit input data port to receive the digital data output from the ADC. In this case, Port A

and Port C upper are used as input ports and Port B and Port C lower are used as output ports. Consequently,

the control word of 8255 is 98H, as given below:

 D7 D6 D5 D4 D3 D2 D1 D0 Control word

 1 0 0 1 1 0 0 0 98H

The assembly-language program for analog-to-digital conversion is given below:

 MOV AL,98H Load control 98H in AL register

 OUT CWR, AL Load 98H in control word register and 8255 is initialized

 MOV AL,02H Load 02H in AL register

 OUT Port B, AL Get 02H in Port B and select the input channel I/P2

 MOV AL, 00H Load 00H in AL register

 OUT Port C, AL Get 00H in Port C and PC0 becomes 0

 MOV AL, 01H Load 01H in AL register

 OUT Port C, AL Get 01H in Port C and PC0 becomes 1 and SOC = 1, then conversion will be started.

 MOV AL,00H Load 00H in AL register

 OUT Port C,AL Get 00H in Port C and PC0 becomes 0

WAIT IN AL, Port C Read Port C and status of Port C is stored in AL

 RCL Rotate the content of AL through carry to check EOC, i.e. PC7 =1

 JNC WAIT If PC7 ! 7, jump to WAIT

 IN AL, Port A If PC7 = 1 and conversion is completed, then read port A and store data, i.e. equivalent

to analog input in AL

 HLT Stop

Contd.

Microprocessors and Microcontrollers18.16

GND

I/P0

I/P1

I/P2

I/P3

I/P5

I/P6

I/P7

Inputs

+5V

I/P4

CLK

ADC 0808

A

B

C

OE

ALE

SOC

EOC

O – O0 7

+5 V

D – D0 7

EOC

SOC

PB0

P 1B

PB2

PC0

PC7

PA – PA0 7

A1

A0

A2

A1
8086

System 8255

D – D0 7

CS

RESET

IOWR

IORD RD

WR

Fig. 18.14 ADC 0808 interfacing with 8086 using 8255

 18.11 ADC 0808 INTERFACING WITH 8051 MICROCONTROLLER USING
8255

Figure 18.15 shows ADC 0808 interfacing with 8051 microcontroller using 8255 PPI. The analog input is

applied to I/P2 terminal of ADC 0808. Therefore, address pins A, B, C should be 0, 1, 0 respectively to select

I/P2 channel input. The OE and ALE pins are kept at +5 V to select the ADC and enable the outputs. The start

of conversion (SOC) will be sent through PC0 of Port C and the end of conversion (EOC) will be received

from PC7 of Port C. Port A acts as an 8-bit input data port to receive the digital data output from the ADC.

In this case, Port A and Port C upper are used as input ports and Port B and Port C lower are used as output

ports. Consequently, the control word of 8255 is 98H as given below:

 D7 D6 D5 D4 D3 D2 D1 D0 Control word

 1 0 0 1 1 0 0 0 98H

The address of Port A, Port B, Port C and the address of the control word register are E800H, E801H, E802H

and E803H respectively. The assembly-language program for analog-to-digital conversion is given below:

 MOV 0A0,#0E8 Load address of control word register E803H

 MOV R0, #03

 MOV A, #98H Load control word 98H in Accumulator

 MOVX @R0, A Load control word 98H in control word register E803H and 8255 is initialized

 MOV A, #02H Load 02H in Accumulator

 MOV R0, #01 Load 01H in R0

 MOVX @R0, A Get 02H in Port B and select the input channel I/P2

 MOV A, #00H Load 00H in Accumulator

 MOV R0, #02 Load 02H in R0

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.17

 MOVX @R0, A Get 00H in Port C and PC0 becomes 0

 MOV A, #01H Load 01H in AL register

 MOVX @R0, A Get 01H in Port C and PC0 becomes 1 and SOC=1, then conversion will be started

 MOV A, #00H Load 00H in Accumulator

 MOVX @R0, A Get 00H in Port C and PC0 becomes 0

WAIT MOVX A,@R0 Read Port C and status of Port C is stored in AL

 RLC A Rotate the content of A through carry to check EOC, i.e. PC7 = 1

 JNC WAIT If PC7 ! 1, Jump to WAIT

 MOV R0, #00 If PC7 = 1 and conversion is completed, then read Port A and store data, i.e. equivalent

to analog input in A

 MOVX A,@R0

 LJMP 0000

GND

I/P0

I/P1

I/P2

I/P3

I/P5

I/P6

I/P7

+5 V

I/P4

CLK

ADC 0808

A

B

C

OE

ALE

SOC

EOC

O –O0 7

+5 V

D –D0 7

EOC

SOC

PB0

P 1B

PB2

PC0

PC7

PA –PA0 7

A1

A0

A1

A0

8255

D – D0 7

CS

RESET

RD

WR

Form

8051

Decoder

A15

A2

Fig. 18.15 ADC 0808 interfacing with 8051 microcontroller using 8255

 18.12 DIGITAL TO ANALOG CONVERTERS (DAC)

The Digital to Analog Converter (DAC) has ability to convert digital signals to analog signals. The digital-

to-analog conversion is a process in which digital words are applied to the input of the DAC and an analog

output signal is generated to represent the respective digital input. In this conversion process, an N-bit digital

data can be mapped into a single analog output voltage. Therefore the analog output of the DAC is a voltage

that is some fraction of a reference voltage.

So, VOut = K × VRef

where, VOut is the analog voltage output, VRef is the reference voltage and K is the fraction.

 Figure 18.16 shows the block diagram of a DAC converter. When a DAC has N-bits digital inputs (b0, b1,

b2, b3… bN–1) and a reference voltage, VRef. The voltage output, VOut can be expressed as

Microprocessors and Microcontrollers18.18

VOut = K × VRef × digital inputs

where, K is the scaling factor

Digital input = 2N–1bN–1 + 2N–2bN–2 + 2N–3bN–3 + . . . + 22b2 + 21b1 + 20b0

 N = number of bits, bN–1= most significant bit, b0 least significant bit

 18.13 BINARY WEIGHTED OR R/2N R DAC

Weighted binary DAC and R–2R ladder are the two types of DAC. Each DAC converter input is a multi-bit

digital signal, and generates an analog output signal equivalent to digital. Each bit of the signal has a different

binary weight. The bit is multiplied by its weighting factor to give its contribution to the whole. The contribu-

tion from each bit is then summed, to give the analog equivalent.

 The binary-weighted-input DAC circuit is a variation on the inverting summer op-amp circuit. The clas-

sic inverting summer circuit is an operational amplifier using negative feedback for controlled gain, with

several voltage inputs and one voltage output. The output voltage is the inverted sum of all input voltages

when all equal resistances are used in the circuit. If any of the input resistors were different, the input volt-

ages would have different degrees of effect on the output, and the output voltage would not be a true sum.

Assume the input resistor values are multiple powers of two: R, 2R, 4R and 8R, instead of R1, R2, R3 and R4,

respectively.

 Figure 18.17 shows the circuit diagram of weighted 4-bit binary DAC. The analog output voltage of a 4-bit

weighted DAC can be expressed as follows.

Fig. 18.16 Block diagram of a digital to analog converter

Fig. 18.17 Weighted 4 bit binary DAC

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.19

 Four input currents I1, I2, I3, I4 and feedback current If are determined from the following expressions:

I1 = V1/R1, I2 = V2/R2, I3 = V3/R3, I4 = V4/R4 and If = Vout /Rf

The sum of the input currents is equal to feedback current If

If = I1 + I2 + I3 + I4

After substituting all current values in the above expressions,

R
V

R
V

R
V

R
V

R
V

f 1

1

2

2

3

3

4

4out
= + + +-

or, V
R

R
V

R

R
V

R

R
V

R

R
V

f f f f

1

1

2

2

3

3

4

4out = + + +-

when 8, 4, 2, 1
R

R

R

R

R

R

R

Rf f f f

1 2 3 4

= = = = , V1 = b3, V2 = b2, V3 = b1 and V4 = b0 the output voltage can be

expressed as

–Vout = 8b3 + 4b2 + 2b1 + b0

 or, –Vout = 23b3 + 22b2 + 21b1 + 20b0

The weighting of bits b0, b1, b2 and b3 is 1, 2, 4 and 8 respectively. For this weighting R4 must be the largest

resistor value, but the others resistances are half the value of the previous.

 18.14 R–2R LADDER CIRCUIT

R–2R ladder circuit can eliminate the larger component spread in a binary weighted DAC. The R–2R lad-

der circuit for converting digital to analog converter uses only resistances of R and 2R as shown in Fig.

18.18. Mathematically, analyzing this ladder network is little bit difficult than weighted resistance DAC. In

a weighted resistance DAC, each bit effect on output is very easily calculated. But in a R–2R ladder network

each binary inputs effect on output can be determined using Thevenin’s theorem for each binary input.

 The effect of b0, b1, b2 are determined as follows:

Fig. 18.18 R–2R ladder circuit of 3 bit DAC

Microprocessors and Microcontrollers18.20

 When b0 = 1, b1 = 0, b2 = 0, the Thevenin’s equivalent resistance and voltage can be determined as given

below:

 Looking from section A – A', 2R||2R the equivalent resistance = R and equivalent voltage is
2

REF .

 Looking from section B – B', R is series with R and sum of these resistance parallel with 2R the equivalent

resistance = R and equivalent voltage is
2
2

REF .

 Looking from section C – C', R is series with R and sum of these resistances parallel with 2R. Then equiva-

lent resistance is equal to R and equivalent voltage is
2
3

REF .

 Similarly the equivalent circuit for b1 is Requ = 3R and Vin =
2
2

REF and the equivalent circuit for b2 is Requ =

3R and Vin =
2

REF . The equivalent circuit is shown in Fig. 18.19.

 R–2R ladder circuit works on the fact that the current reduced by a factor of 2 for each digital input from

LSB to MSB. The I0, I1, and I2 currents are as follows:

I
R

V
I

R

V
I

R

V

2 3 2 3 2 3

REF REF REF

0 3 1 2 2= = = = =

 When all bits are 1, the currents flow into the operational amplifier and produces an output voltage

 Vout = – (I2 + I1 + I0) Rf

 = ,
R

V
b

R

V
b

R

V
b R

2 3 2 3 2 3
REF REF REF

f2 2 1 3 0- + +c m

 = –
V

R

R

2 3

REF f (4b2 + 2b1 + 1b0)

 = –K (4b2 + 2b1 + 1b0)

where, K =
V

R

R

2 3

REF f
+

 In this method of DAC, the larger component spread problem is eliminated and current flowing through

the resistance cannot be changed due to switching and behaves as a constant voltage. This DAC is as fast as

the binary weighted resistance DAC.

Fig. 18.19 Equivalent circuit of R–2R ladder DAC

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.21

 18.15 D/A CONVERTER SPECIFICATION

The performance of a D/A converter is measured based on the following parameters: resolution, accuracy,

linearity, settling time, temperature sensitivity. Generally the manufacturers specify these parameters in data

sheets.

Resolution The resolution of a D/A converter refers to the smallest change in the analog output voltage.

It is equivalent to the value of the Least Significant Bit (LSB). For an n bit D/A converter, maximum number

of steps is 2N–1. When the reference voltage is V, the least significant bit value is given below:

 Reference voltage V
 Resolution = –––––––––––––––––– = –––––
 Number of steps 2N – 1

For an 8-bit D/A converter with a full-scale output of 10 V, the resolution is

2 1

10

255

10
8

-
= = 39.2 mV

Accuracy The output voltage of a D/A converter is different from ideal case. Therefore there is always

some error. The accuracy is measured from the difference actual output voltage and voltage for ideal case.

When the accuracy of D/A converter is !0.25 per cent, the error of converter is 0.25 × 12/100 = 30 mV for

full-scale voltage V = 12 V.

Offset / Zero Scale Error An input code of zero may be expected to give 0 V output. A small offset may

be present and the transfer characteristic does not pass through the origin.

Fig. 18.20 Input/Output characteristics of a D/A converter

Ideal output

Actual output

A
n
a
lo
g
o
u
tp
u
t
n
o
rm

a
li
e
d
to

z
V

R
e
f

Offset error

Digital input

f

D

1

7/8

3/4

5/8

1/2

3/8

1/4

1/8

0

000 001 010 011 100 101 110 111

Microprocessors and Microcontrollers18.22

Linearity Figure 18.20 shows the input–output characteristics of a D/A converter. Zero offset and gain

can develop the characteristic, which passes through the origin and full-scale points. But it is not sure that

intermediate points will always lie on a straight line. A very small error in the weighting factor for a fraction

LSB will cause nonlinearity. Linearity can be expressed by deviation from the ideal line as a percentage, or a

fraction of LSB. It is generally specified as LSB or ±
2

1
 LSB or |f| <

2

1
 D.

Settling Time This is usually expressed as the time taken to settle within half LSB. Generally settling time

will be about 500 ns.

Temperature Sensitivity The D/A converters are temperature sensitive. When the digital inputs are

fixed, the analog output may be varied with temperature due to the temperature sensitivities of the reference

voltages, the operational amplifier and converter circuit resistances, etc. Generally, temperature sensitivity of

DACs is about !50 ppm/ºC in general-purpose converters.

 18.16 INTERFACING OF DAC ICs WITH 8085 USING 8255

Most commonly DAC ICs are 8-bit DAC0800, 12-bit DAC80, 16-bit PCM54 and PCM55, etc. The DAC0800

ICs are monolithic 8-bit high-speed current output digital to analog converters with typical settling times of

100 ns. When it is used as a multiplying DAC, monotonic performance over a 40 to 1 reference current range

is possible. These ICs have high compliance complementary current outputs to allow differential output volt-

ages of 20 Vp-p with simple resistance load as depicted in Fig. 18.21. The features of DAC0800 ICs are as

follows.

Fast settling output current 100 ns

Full-scale error !1LSB

Fig. 18.21 8-bit DAC0800

5 6 7 8 9 10 11 12
414

15

3 16 13 1 2

DAC0800

Digital Inputs

MSB LSB

B1 B2 B3 B4 B5 B6 B7 B8

5 K

5 K

10 V

5 K

Output
Lm311

–

+

Iout

V
+

V
– 0.01 Fµ

0.1 Fµ 0.1 Fµ

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.23

Nonlinearity over temperature !0.1%

Full-scale current drift !100 ppm/C

High output compliance –10 V to +18 V

Complementary current outputs

Interface ability with TTL, CMOS, PMOS, etc.

2 quadrant wide range multiplying capability

Power supply range !4.5 V to !18 V

Low power consumption 33 mW at !5 V

Low cost

 Figure 18.22 shows the circuit diagram for interfacing between DAC0800 and the microprocessor using

8255. The output of Port A is directly interconnected with DAC. All ports of 8255 are operating in output

mode and mode of operation is mode 0. In this configuration, the control word is 80H. The programming of

DAC is given below:

Fig. 18.22 Interfacing of DAC 0800 with 8085 using 8255

Microprocessors and Microcontrollers18.24

Program

Memory address Machine Codes Labels Mnemonics Operands Comments

9000 3E, 80 MVI A, 80H Load control word of 8255 in

accumulator.

9002 D3, 03 OUT 03H Write control word in control

word register.

9004 3E, FF MVI A,FFH Get FF for digital input to

DAC.

9006 D3, 00 OUT 00H Send to port A for input into

DAC.

9008 76 HLT Stop.

 When the digital input is FFH, the analog output voltage is 10 V. If the digital input is 00H the output will

be 0V. Table 18.6 shows the analog output voltage with respect to digital input.

Table 18.6 Analog output voltage w.r.t. digital input

 Digital input of DAC Analog output voltage

 FFH 10 V

 80H 5 V

 00H 0 V

The analog output voltage is Iout × RL

 (Digital..Input)10
 Iout = –––––––––––––– Iref
 (256)10

Fig. 18.23 Interfacing of DAC0800

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.25

 VrefThe reference current Iref = –––––
 Rref

When Vref is 10 V applied through 5K ohms, reference current 2 mAI
R

V

K

V

5

10
ref

ref

ref
= = = .

 The bipolar operation of DAC is shown in Fig. 18.23. Pin 2 of DAC is connected with the non-inverting

terminal of operational amplifier. Pin 4 is connected with the inverting terminal of operational amplifier. In

this case, when FF input is applied to DAC, output is equal to 10 V. If input is 00H, output will be –10 V. The

input and output relationship of bipolar DAC is given in Table 18.7.

Table 18.7 Input/Output relationship of bipolar DAC

 Digital input of DAC Analog output voltage

 FFH 10 V

 80H 0 V

 00H –10 V

 18.17 DAC 0808 INTERFACING WITH 8086 USING 8255

Figure 18.24 DAC0808 Interfacing with 8086 using 8255 PPI. The output of Port A is directly intercon-

nected with DAC. Assume all ports of 8255 are operating in output mode and mode of operation is Mode 0.

Consequently, the control word of 8255 is 80H as given below:

 D7 D6 D5 D4 D3 D2 D1 D0 Control word

 1 0 0 0 0 0 0 0 80H

The reference voltage Vref should be connected with +5 V to generate an output voltage of +5 V amplitude

when input is FFH. The assembly language program for digital to analog conversion is given below:

MOV AL,80H Load control 98H in AL register

OUT CWR, AL Load 98H in control word register and 8255 is initialized

MOV AL,FFH Load FFH in AL register

OUT Port A, AL Get FFH in Port A and FFH will be converted into analog output voltage +5 V

HLT Stop

+ 5 V
Vcc1

3
13

16

2
V0

5 V

5K

741

–

+

2

3

4

14

2.5k

DAC0808

15

B – B1 8

2.5k

0.01 Fµ

–5 V

0.1 Fµ

8255

PA – PA7 0

RD

WR

CS

IOWR

Address
decoder
output

8086
microprocessor

IOR

D –D0 7

Fig. 18.24 DAC 0808 Interfacing with 8086 using 8255

Microprocessors and Microcontrollers18.26

 18.18 DAC 0808 INTERFACING WITH 8051 MICROCONTROLLER USING
8255

Figure 18.25 shows DAC0808 interfacing with 8051 microcontroller using 8255 PPI. The output of Port A

is directly interconnected with DAC. Assume all ports of 8255 are operating in output mode and mode of

operation is Mode 0. Consequently, the control word of 8255 is 80 H as given below:

 D7 D6 D5 D4 D3 D2 D1 D0 Control word

 1 0 0 0 0 0 0 0 80H

The reference voltage Vref should be connected with +5 V to generate an output voltage of +5 V amplitude

when input is FFH. The address of Port A, Port B, Port C and the address of control word register are E800H,

E801H, E802H and E803H respectively. The assembly-language program for digital-to-analog conversion is

given below:

MOV 0A0,#0E8 Load address of control word register E803H

MOV R0, #03

MOV A, #80H Load control word 80H in Accumulator

MOVX @R0, A Load control word 80H in control word register E803H and 8255 is initialized

MOV R0, #00

MOV A, #FFH

MOVX @R0, A Get FFH in Port A and FFH will be converted into analog output voltage +5 V

LJMP 00

+ 5 V
Vcc

1

3 13

16

2
V0

5 V

5K

741

–

+

2

3

4

14

2.5k

DAC0808

15

B –B1 8

2.5k

0.01 Fµ

–5 V

0.1 Fµ

8255

PA –PA7 0

RD

WR

CS

From

8051

D –D0 7

A1

A0

A1

A0

A15

A2

Decoder

Fig. 18.25 DAC 0808 Interfacing with 8051 microcontroller using 8255

 18.19 KEYBOARD INTERFACING WITH 8085 MICROPROCESSOR

The × keyboard interfacing with 8085 microprocessor using 8255 is depicted in Fig. 18.26. Port A is

used as input port for sensing a row of keys and Port B is also used as input port to sense the column number

of any closed key. Initially Port B is continuously read to sense any closed key. If any key is pressed, then

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.27

read Port B to find the column number and read Port A to get the row number. When row number and column

number are known, the numeric value of the key pressed by the user is determined by using formula:

Key pressed = row × 4 = column

It is clear from Fig. 18.26 that the address of the control word register is 83H whereas the address of Port

A and Port B are 80H and 81H respectively. When Port A and Port C are used as output ports and Port B

operates as input port, the control word is 9BH. The assembly-language program for keyboard interfacing is

given below:

A2

A3

A4

A5

A6

A7

IO/M

CS

A0

A1

A0

A1

D –D0 7

8255

8085
Microprocessor

IOW

IOR

RESET

WR

RD

RESET

PB3

PB2

PB1

PB0

PA0

PA1

PA2

PA3

Column 3

Column 2

Column 1

Column 0

Row 0

Row 1

Row 2

Row 3

0

4

8

C

10K

+ 5 V

10K

10K

10K

10K

10K 10K 10K

D

9

5

1 2

6

A

E F

B

7

3

Fig. 18.26 14×4 keyboard interfacing with 8085 microprocessor using 8255

 MVI A, 9BH Load control word 9BH in Accumulator

 OUT 83H Load 9BH in control word register

 XRA A Clear all flags or reset CY flag

 IN 81H Read Port B, i.e. all columns

 ANI 0FH Mask data lies D4–D7

LOOP I CPI 0FH Check if any key is closed

 JZ LOOP I If any key is not closed, jump to LOOP I

 MVI C, 00H C=00H, initialize C register

 IN 81H Read Port B, i.e. all columns

LOOP II RRC Content of A will rotate right without carry by one bit

 JNC LOOP III If no carry, Jump to LOOP III with column number in C

 INR C Increment C

 JMP LOOP II Jump to Loop II for rotate right A by one bit and check carry bit

LOOP III MVI B, 00H B=00H, initialize B

 IN 80H Read Port A, i.e. all rows

Microprocessors and Microcontrollers18.28

LOOP IV RRC Content of A will rotate right without carry by one bit

 JNC LOOP V If no carry, Jump to LOOP III with row number in B

 INR BL Increment B

 JMP LOOP IV Jump to Loop IV for rotate right A by one bit and check carry bit

LOOP V MOV A, B Move row number in A

 RLC Rotate Accumulator left or A is multiplied by 2

 RLC Rotate Accumulator left or A is multiplied by 2

 ADD C Add C with A to get the key number

 HLT

 18.20 KEYBOARD INTERFACING WITH 8086 MICROPROCESSOR

Figure 18.27 shows the 4 × 4 keyboard interfacing with 8086 microprocessor using 8255. Port A is used as

input port for sensing a row of keys and Port B is also used as input port to sense the column number of any

closed key. Initially Port B is continuously read to sense any closed key. If any key is pressed, then read Port

B to find the column number and read Port A to get the row number. When row number and column number

are known, the numeric value of the key pressed by user is determined by using formula:

Key pressed = row × 4 = column

It is clear from Fig.18.27 that the address of control word register is 9006 whereas the address of Port A

and Port B are 9000H and 9002H respectively. When Port A and Port C are used as output ports and Port B

operates as input port, the control word is 9BH. The assembly-language program for keyboard interfacing is

given below:

A0

A12

A13

A14

A15

A3 – A = 011

CS

A1

A2

A0

A1

D –D0 7
8255

8086
Microprocessor

IOW

IOR

RESET

WR

RD

RESET

PB3

PB2

PB1

PB0

PA0

PA1

PA2

PA3

Column 0

Column 1

Column 2

Column 3

Row 0

Row 1

Row 2

Row 3

0

4

8

C

10K

+5 V

10K

10K

10K

10K

10K 10K 10K

D

9

5

1 2

6

A

E F

B

7

3

7430

Fig. 18.27 4 × 4 keyboard interfacing with 8086 microprocessor using 8255

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.29

 MOV AL, 9BH Load control word 9BH in AL

 MOV DX, 9006H Load address of control word register 9006H in DX

 OUT DX, AL Load 9BH in control word register

 MOV BL, 00H Initialize BL=00H

 XOR AX, AX Clear all flags

 MOV DX, 9002H Load address of Port A 9000H in DX

LOOP I IN AL, DX Read Port B, i.e. all columns

 AND AL, 0FH Mask data lies D4–D7

 CMP AL, 0FH Check if any key is closed

 JZ LOOP I If any key is not closed, jump to LOOP I

 MOV CL, 00H CL=00H, initialize CL

 IN AL,DX Read Port B, i.e. all columns

LOOP II ROR AL, 01 Rotate right without carry of AL by one bit

 JNC LOOP III If no carry, Jump to LOOP III with column number in CL

 INC CL Increment CL

 JMP LOOP II Jump to Loop II for rotate right AL by one bit and check carry bit

LOOP III MOV BL,00H BL=00H, initialize BL

 SUB DX,02 Get address of Port A 9000H in DX

 IN AL,DX Read Port A, i.e. all rows

 LOOP IV ROR AL, 01 Rotate right without carry of AL by one bit

 JNC LOOP V If no carry, Jump to LOOP III with row number in BL

 INC BL Increment BL

 JMP LOOP IV Jump to Loop IV for rotate right AL by one bit and check carry bit

 LOOP V MOV AL, BL Move row number in AL

 MOV BL,04H Load 04H in BL

 MUL BL Multiply AL with 04H and result in AL

 ADD CL Add CL with AL to get the key number

 HLT

 18.21 KEYBOARD INTERFACING WITH 8051 MICROCONTROLLER

Figure 18.28 shows the keyboard interfacing with 8051 microcontroller. It is clear from Fig.18.28 that the

keyboard is wired as 4 × 4 row-column matrix. The low-order nibble of port 0 is connected to the rows and

the high order nibble of port 0 is connected to columns. All rows and columns are connected with the 10K

pull-up resistors. As the I/O ports of the 8051 microcontroller can be used as bidirectional port to perform

both read and write operations. Therefore, the status of port 0 can be read to scan the keyboard. Three differ-

ent subroutines such as ROW_READ, COLUMN_READ and CONVERT are used to scan the key which is

actually pressed.

 To find out the row of depressed key, assume all of the columns are LOW and all of the rows are HIGH.

This is possible by executing the instruction MOV P0, #0FH. The HIGH on the rows is actually a floating

state and the rows to be read. The other instructions of ROW_READ subroutine are executed to read each row

and to determine the row number that is LOW and the other three rows will be high.

Microprocessors and Microcontrollers18.30

 After the row read operation, column must be read to determine the column number by executing

COLUMN_READ subroutine. When the instruction MOV P0, #F0 is executed, all of the rows are LOW and

all of the columns are HIGH that float the columns. When any key is still depressed, column of the key will

be LOW. After execution of COLUMN_READ subroutine, the column number will be stored in R1 register.

 Lastly CONVERT subroutine converts the row-column combination to the numeric value of the key

pressed. Rows 0, 1, 2 and 3 have weighting factors of 0, 4, 8 and 12 respectively. Similarly columns 0, 1, 2

and 3 have weighted factors 0, 1, 2 and 3 respectively. The CONVERT subroutine determines the numeric

value of the key pressed by using formula: Key pressed = row × 4 + column. The program for keyboard inter-

facing with 8051 microcontroller is given below:

Fig. 18.28 Keyboard interfacing with 8051 microcontroller

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.31

Labels Mnemonics Operands Comments

 CALL ROW_READ Find out row of key pressed.

 CALL COLUMN_READ Find out column of key pressed.

 CALL CONVERT Convert row/column to key value.

 LJMP 0000

 ROW_READ MOV P0, #0F Output 0s to all columns.

 MOV R0, #00 ROW = 0.

 JNB P0.0, RET_1 If row 0 is LOW, return to RET_1.

 MOV R0, #01 ROW = 1.

 JNB P0.1, RET_1 If row 1 is LOW, return to RET_1.

 MOV R0, #02 ROW = 2.

 JNB P0.2, RET_1 If row 2 is LOW, return to RET_1.

 MOV R0, #03 ROW = 3.

 JNB P0.3, RET_1 If row 3 is LOW, return to RET_1.

 JMP ROW_READ Jump to ROW_READ.

 RET_1 RET Return.

Labels Mnemonics Operands Comments

 COLUMN_READ MOV P0, #0F Output 0s to all rows.

 MOV R1, #00 COLUMN=0.

 JNB P0.4, RET_2 If column 0 is LOW, return to RET_2.

 MOV R1, #01 COLUMN = 1.

 JNB P0.4, RET_2 If column 1 is LOW, return to RET_2.

 MOV R1, #02 COLUMN = 2.

 JNB P0.5, RET_2 If column 2 is LOW, return to RET_2.

 MOV R1, #03 COLUMN = 3.

 JNB P0.6, RET_2 If column 3 is LOW, return to RET_2.

 JMP COLUMN_READ Jump to COLUMN _READ.

 RET_2 RET Return.

Labels Mnemonics Operands Comments

 CONVERT MOV B, #04 Move multiplication factor = 04 to B register.

 MOV A, R0 Move row number to A.

 MUL AB A = row × 4.

 ADD A, R1 A = row × 4 + column which is the key value.

 RET Return.

 18.22 LCD INTERFACING WITH 8051 MICROCONTROLLER

Nowadays LCD is widely used in different display applications and it has replaced LEDs for the
following reasons:

 (i) The price of LEDs is pretty high compared to LCDs and the price of LCDs is declining day by day.

Microprocessors and Microcontrollers18.32

 (ii) LCDs can be used to display numbers, characters and graphics.

 (iii) LCDs have self refreshing ability.

 (iv) There is ease of programming for characters and graphics.

LCD Pin Description The LCD discussed in this section has 16 pins. The function of each pin is given

in Table 18.8.

Table 18.8 Function of each LCD pin

Pin Symbol I/O Description

1 Vss - Ground

2 Vcc - +5 V Power supply

3 VEE - Power supply to control Contrast

4 RS I RS = 0 to select command register RS = 1 to select data register

5 R/W I R/W = 0 for write, R/W = 1 for read

6 E I/O Enable

7 DB0 I/O 8-bit data bus

8 DB2 I/O 8-bit data bus

9 DB3 I/O 8-bit data bus

10 DB4 I/O 8-bit data bus

11 DB5 I/O 8-bit data bus

12 DB6 I/O 8-bit data bus

13 DB7 I/O 8-bit data bus

14 LED– I Ground for LED backlight

15 LED+ I +5 V for LED backlight

LCD Command Codes The LCD command codes are given in Table 18.9.

Table 18.9 LCD command codes

Hex Code Command to LCD instruction register

1 Clear display screen

2 Return home

4 Shift cursor to left or decrement cursor

5 Shift display right

6 Shift cursor to right or increment cursor

7 Shift display left

8 Display off, cursor off

A Display off, cursor on

C Display on, cursor off

E Display on, cursor blinking

F Display on, cursor blinking

10 Shift cursor position to left

14 Shift cursor position to right

18 Shift entire display to the left

1C Shift entire display to the right

80 Force cursor to the beginning to 1st line

C0 Force cursor to the beginning to 2nd line

38 5 × 7 matrix and 2 lines

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.33

In Figure 18.29, the LCD module is connected to the 8051 microcontroller through its I/O ports. It can also

be connected directly to the data bus with the addition of address decoding logic.

33pF
C2

33pF

C1

X1

16MHz

X2XTR1

R2 20KOhm

RST

SW1C3

0.1uF

8051

5 V

Vdd

GND

P1.0
P1.1
P1.2

P1.3
P1.4
P1.5

P1.6
P1.7

P3.6

P3.7

P3.5

P3.4

P3.3

P3.2

P3.1

P3.0

E

RW

RS

GND

VL

VDD

R1
10KOhm

5 V

LCD Module

D0

D1

D2

D3

D4
D5

D6
D7

Fig. 18.29 LCD interfacing with 8051

In this module, the process of displaying characters and numerical numbers is divided into three steps. During

the first step, the module must be initialized and this can set up the built-in LCD controller chip. In the second

step, some user-designed characters must be uploaded to the CGRAM. Then it is possible to display up to

8 custom characters in addition to the 192 characters permanently stored in the module. Lastly, a message

consisting of a mix of standard ASCII characters and custom designed symbols is displayed. An assembly-

language program to display “LCD” on the display module is given below:

 Mnemonics, Operands Comments

 MOV A,#38H Function set- LCD 2 lines, 5 × 7 matrix

 ACALL LCD_ command Call Command subroutine

 ACALL LCD_ delay Call delay subroutine

 MOV A,#0EH Display on and cursor on

 ACALL LCD_ command

 ACALL LCD_ delay

 MOV A,#01H Clear LCD display

 ACALL LCD_ command

 ACALL LCD_ delay

 MOV A,#06H Shift cursor right

 ACALL LCD_ command

Microprocessors and Microcontrollers18.34

 ACALL LCD_ delay

 MOV A,#84H Cursor at line 1 and position 4

 ACALL LCD_ command

 ACALL LCD_ delay

 MOV A,#’L’ Display L

 ACALL LCD_ Data

 ACALL LCD_ delay

 MOV A,#’C’ Display C

 ACALL LCD_ Data

 ACALL LCD_ delay

 MOV A,#’D’ Display D

 ACALL LCD_ Data

 LJMP 0000H

LCD_ command MOV P1,A Send the content of A to Port 1

 CLR P3.0 RS = 0 for command

 CLR P3.1 R/W = 0 for write

 SETB P3.2 E = 1 for high pulse

 CLR P3.2 E = 0 for high to low pulse

 RET

LCD_Data MOV P1, A Send the content of A to Port 1

 SETB P3.0 RS = 1 for data

 CLR P3.1 R/W = 0 for write

 SETB P3.2 E = 1 for high pulse

 CLR P3.2 E = 0 for high to low pulse

LCD_Delay MOV R3,#FFH Load FFH in R3

LOOP1 MOV R4,#FFH Load FFH in R4

LOOP2 DJNZ R4, LOOP2 LOOP2 continue, if R4 ! 0

 DJNZ R3, LOOP1 LOOP1 continue, if R3 ! 0

 RET

Example 18.1 (a) Give the hardware and software to interface, one seven-segment display with 8085 p

whose address is FC23H

 (b) Which addressing mode is used in the above scheme? What change is required if address of the display

is FC H?

(a) Figure 18.30 shows one seven segment display unit interfaced to the 8085 microprocessor using a latch.

The display code in hexadecimal for 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 are C0, F9, A4, B0, 99, 82, F8, 80 and 98

respectively. The port address FC23H is used to interface the display. The address of seven segment display

unit is selected by A15 = A14 = A13 = A12 = A11 = A10 = 1, A9 = A8 = A7 = A6 = 0, A5 = 1, A4 = A3 = A2 = 0, A1 =

A0 = 0, IO/M = 0 and WR = 0. In this interface circuit, A0A1A2A3 are coded using OR gate-1, A4A5A6A7 are

coded using OR-gate-2, A8A9A10A11 are coded using OR-gate-3, A12A13A14A15 are coded using OR-gate-4.

After that the output of OR-gate1, OR-gate-2, OR-gate-3, and OR-gate-4 are ORed with IO/ M and WR, and

a low output signal is generated. Therefore, the CLK to 74LS374 will be applied when the decoding logic

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.35

input is FC23H. For any other address, the logic gates are not enabled and the seven segment display is not

active to latch the data.

A A A A3 2 1 0 a

Address

A15A A A14 13 12 A A A A11 10 9 8 A A A A7 6 5 4

OR
gate-4

b
c
d
e
f
g

h

a

f
g
b

e c

d h

74LS274

D –D7 0

CLK
OR
gate-3

OR
gate-2

OR
gate-1

WR
IO/M

Fig. 18.30 Seven-segment display whose address is FC23H

If we want to display 0 in the seven segment display unit, the following instructions will be executed:

MVI A, C0H Load C0H into accumulator. The display code in hexadecimal for 0 is C0H.

LXI H, FC23H Load FC23H in HL Register pair. FC23H is the address of seven segment display unit.

MOV M, A Content of accumulator send to address FC23H and 0 will be display on the seven segment

display unit.

 (b) The above scheme is a memory mapped I/O scheme and the indirect addressing mode is used.

If the address of the display is FC H, an I/O mapped I/O scheme will be used and the interface of the seven

segment display through 74LS374 is depicted in Fig.18.31.

A A A A3 2 1 0 a

Address

A A A A7 6 5 4
b
c
d
e
f
g

a

f
g

b

e c

d h

74LS274

D –D7 0

CLK
OR-

gate-2
OR-

gate-1

WR
IO/M

Fig. 18.31 Seven-segment display whose address is FCH

Since the port address FCH is used to interface the seven segment display unit, the address of the seven-

segment display unit is selected by A7 = A6 = A5 = A4 = 1, A3 = A2 = 1, A1 = A0 = 0, IO/ M = 0 and WR = 0. In

the above interface circuit, A0A1A2A3 are coded using OR-gate-1, and A4A5A6A7 are coded using OR-gate-2.

When the output of OR-gate-1 and OR-gate-2 are ORed with IO/ M and WR, a low output signal is generated.

Therefore, the CLK will be applied to 74LS374 when the decoding logic input is FCH.

Microprocessors and Microcontrollers18.36

If we want to display 0 in the seven-segment display unit, the following instructions will be executed:

MVI A, C0H Load C0H into accumulator. The display code in hexadecimal for 0 is C0H.

OUT FCH Content of accumulator send to port address FCH and 0 will be display on the seven segment

display unit.

 18.23 SEVEN-SEGMENT DISPLAY

Seven-segment display is widely used in calcula-

tors, digital watches, and measuring instruments, etc.

Generally, Light Emitting Diode (LED), Liquid Crystal

Display (LCD) segments provide the display output

of numerical numbers and characters. To display any

number and character, seven-segment display is most

commonly used. Figure 10.32(a) shows the segment

identification, and display of decimal numbers from 0

to 9 is given in Fig. 10.32(b). The light emitting diodes

emit light when the anode is positive with respect to the

cathode. There are two possible connections, namely,

common anode and common cathode. In common-

anode connection, seven anodes connected to a com-

mon voltage and cathode will be controlled individu-

ally to get the proper display. But in common cathode

connection, anodes can be controlled individually for

display when all cathodes are connected to a common

ground of supply voltage as depicted in Fig. 10.33.

Figure. 10.34 shows the block diagram of a 7-segment display. The decimal number 0 to 9 can be displayed

Fig. 18.32 (a) Segment identification
 (b) Numerical displays

a

b

c

d

e

f

g

a b c d e f g

(a)

(b)

0 1 2 3 4 5 6 7 8 9

Fig. 18.34 Block diagram of
seven-segment display

7- Segment
Display

BCD to

7-Segment Display

A B C D

a b c d e f g

Fig. 18.33 (a) Common-cathode connection, and (b) Common-
anode connection of seven segment display

a

b

c

d

e

f

g g

f

e

d

c

b

a

+ 5v

(a) (b)

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.37

by the binary coded decimal input. For example, the segments a, b, c, d, e, and f will be bright for decimal

number 0. Table 10.1 shows the different segments, which will be bright for decimal numbers 0 to 9. IC

7447 can be used as a decoder circuit for converting binary coded decimal inputs into seven-segment display.

Figure. 10.4 shows the pin configuration of IC 7447 and the pin description is given below:

A0–A3 BCD inputs, RB1 Ripple blanking, LT Lamp test input

BI / BRO Blanking input/Ripple blanking output, a – g Segment outputs

The IC 7447 decodes the input data given in the truth table 18.10. IC 7447 is BCD to 7-segment decoder with

open-collector outputs. The 74LS47 has four input lines of BCD (8421) data, and it generates their comple-

ments internally. Then the decoder decodes the data and decoder outputs can be used to drive indicator seg-

ments directly. Each segment output sinks about 24 mA in the ON/LOW state and can withstand 15 V in the

OFF/HIGH state. Some auxiliary inputs, namely, ripple blanking, lamp test and cascadable zero-suppression

functions are also provided in IC 7447. Zero suppression logic is very useful in multi-seven-segment decoder.

Table 18.10 Truth table for seven-segment display

Decimal

Number Inputs Outputs

 A B C D a b c d e f g

 0 0 0 0 0 1 1 1 1 1 1 0

 1 0 0 0 1 0 1 1 0 0 0 0

 2 0 0 1 0 1 1 0 1 1 0 1

 3 0 0 1 1 1 1 1 1 0 0 1

 4 0 1 0 0 0 1 1 0 0 1 1

 5 0 1 0 1 1 0 1 1 0 1 1

 6 0 1 1 0 0 0 1 1 1 1 1

 7 0 1 1 1 1 1 1 0 0 0 0

 8 1 0 0 0 1 1 1 1 1 1 1

 9 1 0 0 1 1 1 1 0 0 1 1

Fig. 18.36 Block diagram of single-digit display

8085
MP

8055

PA – PA0 3

Decoder
74LS47

Seven-Segment
Display

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Fig. 18.35 Pin configuration of IC
7447

A1

A2

BI/RB0

LT

RBI

A3

A0

GND

VCC

a

g

b

f

c

d

e

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

Microprocessors and Microcontrollers18.38

18.23.1 Single-Digit Display

The seven-segment displays are not directly connected with the I/O ports of 8255. Actually they are con-

nected through either buffers or drivers or decoders. Figure 18.36 shows the interfacing of a decoder and a

seven-segment display with microprocessor. Assume all I/O ports of 8255 operate as output port. Then con-

trol word of 8255 will be 80H. The pins PA0–PA3 of Port A are connected to the decoder 74LS47. Therefore,

binary inputs corresponding to the decimal number 0 to 9 are applied to 74LS47 and the decimal number 0

to 9 will be displayed in the seven-segment display. The program for displaying the decimal number is given

below:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255

 in accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 09 MVI A,09H Load 09 in accumulator

8006 D3, 00 OUT 00 Send 09 to Port A for display

8008 76 HLT Stop

Initially control word of 8255, 80H is loaded in accumulator and writes the control word in control word

register to initialise all ports as output ports. After that, 09H is loaded in the accumulator and microprocessor

outputs 09H in Port A. The binary logic for 9 is output on the pins PA0–PA3, which are connected with seven-

segment display for display. The pins PA4–PA7 are the MSD of the decimal number 09. Hence the logic for 0

is output on the pins PA4–PA7. These pins are not connected anywhere and consequently ‘0’ is not displayed.

18.23.2 Two-Digit Display

In two-digit display, two decoder drivers and two seven-segment displays are used as shown in Fig. 18.37.

The LSB will be displayed in one and MSD will be displayed in another seven-segment display. Thus, two

display units will display two-digit decimal numbers. To display 99H, the program is illustrated. After execu-

tion of this program, PA0–PA3 will be 9H and PA4–PA7 will be 9H. As Port A outputs are connected to two

seven-segment display units though decoder IC 74LS47, 99H will be displayed in the seven-segment display.

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255

 in accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 99 MVI A, 99H Load 99 in accumulator

8006 D3, 00 OUT 00 Send 99 to Port A for display

8008 76 HLT Stop

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.39

18.23.3 Four-Digit Display

Figure 18.38 shows the four-digit display, which consists of four decoder drivers and four seven-segment

display units. Port A and Port B are used for driving the decoder. The program for four-digit display is as

follows:

Memory Machine

address Codes Labels Mnemonics Operands Comments

8000 3E, 80 MVI A, 80H Load control word of 8255 in

 accumulator

8002 D3, 03 OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 12 MVI A, 12H Load 12 in accumulator

8006 D3, 00 OUT 00 Send 12 to Port A for display

8008 3E, 34 MVI A, 34H Load 34 in accumulator

800A D3, 01 OUT 01 Send 34 to Port B for display

800C 76 HLT Stop

Fig. 18.37 Block diagram of two-digit display

8085
MP

8255

PA – PA4 7

PA – PA0 3

Decoder
74LS47

MSD

LSD

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Decoder
74LS47

a
b
c
d
e
f
g

a
b
c
d
e
f
g

Fig. 18.38 Block diagram of four-digit display

8085

MP

8255

PA –PA
4 7

PA –PA
0 3

PB –PB
4 7

PB –PB
0 3

Decoder

74LS47

Decoder

74LS47

Decoder

74LS47

Decoder

74LS47

MSD

LSD

Microprocessors and Microcontrollers18.40

Here, Port A is used to display most significant digits and Port B displays the least significant digits. After

execution of the above program, 1234 will be displayed in the seven-segment display section.

To display more than four digits, more I/O ports and large number interfacing devices are required. To reduce

the number of I/O ports and interfacing components, multiplexing technique is used to display large number

of digits or letters or characters. Figure 18.39 shows the block diagram of a multi-digit display system. In this

system, only one digit will display at a time. PA0–PA3 of Port A is connected to the decoder, and the decoder

outputs are connected to seven-segment display. PB0–PB3 of Port B are fed to the multiplexer for selecting

any one of the several seven-segment display units. Each seven-segment display unit will be turned ON and

OFF in a sequence and this process will be repeated continuously. In this scheme, sixteen digits can be dis-

played simultaneously as the multiplexer has four inputs. Firstly, one of the sixteen seven-segment display

units will be selected through the multiplexer and afterward the desired segments of the seven segments of the

LED are to be turned ON to display any number. The same process may be repeated for the second, third and

other seven-segment LEDs. The process can be repeated in cyclic order with a minimum time delay.

Fig. 18.39 Block diagram of multi-digit display using multiplexer

8085
MP

Seven-
Segment
Display

Seven-
Segment
Display

Seven-
Segment
Display

Seven-
Segment
Display

8255

PA –PA0 3

PB –PB0 3

Decoder

MUX

 18.1 Define ADC. What are the types of ADC? Write some applications of ADCs.

 18.2 Explain counting-type ADC with a suitable diagram. What are the limitations of this converter? How

can you improve the performance of ADC.

 18.3 Explain successive approximation type ADC. Compare dual-slope ADC and successive approxima-

tion ADC.

 18.4 Define resolution. What is the resolution of 12-bit successive approximation ADC?

 18.5 What is DAC? Write some applications of DACs.

 18.6 Draw N-bit binary weight DAC and explain its operation. What are the disadvantages of binary

weight DAC? What is the difference between binary weight DAC and R–2R ladder DAC.

 18.7 Justify the following statements:

 (i) N-bit successive approximation ADC requires only N clock pulses for complete conversion

 (ii) Successive approximation ADC is faster than counting type ADC

 (iii) Quantization error is !½ LSB

 (iv) N-bit flash comparator requires 2N–1 comparators.

 18.8 Interface an A/D converter to 8085 and write a program to convert the analog input to digital.

ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051 18.41

 18.9 Interface a D/A converter to 8085 and write a program to convert the digital input to analog output.

 18.10 Draw the interfacing circuit of a seven-segement display with its decoder to the 8085 microprocessor.

 18.11 Explain principles of multidigit display. Write assembly-language program in 8085 for

 (a) Single-digit display (b) two-digit display

 (c) four-digit display

 18.12 Draw the ADC 0808 interfacing with 8051 microcontroller using 8255. Write assembly-language

program in 8051 for ADC interfacing.

 18.13 Draw the keyboard interfacing with the 8085 microprocessor. Write the assembly-language program

in 8085 for reading a pressed key.

 18.14 Explain LCD interfacing with 8051 microprocessor. Write a assembly language program in 8051 to

display ‘THANK YOU’ on the LCD display screen.

 18.15 Draw the ADC 0808 Interfacing with 8086 using 8255 PPI and explain the circuit operation briefly.

Write an assembly-language program in 8086 for analog-to-digital conversion.

 18.16 Design the ADC 0808 interfacing with 8051 microcontroller using 8255 PPI and explain the circuit

operation briefly. Write an assembly-language program in 8051 for analog-to-digital conversion.

 18.17 Draw the schematic block diagram for DAC 0808 interfacing with 8086 using 8255 PPI and dis-

cuss the circuit operation briefly. Write an assembly-language program in 8086 for digital-to-analog

conversion.

 18.18 Design the DAC 0808 interfacing with 8051 microcontroller using 8255 PPI and explain the circuit

operation briefly. Write an assembly-language program in 8051 for digital-to-analog conversion.

 18.19 Explain the keyboard interfacing with 8085 microprocessor. Write an assembly-language program

for the keyboard interfacing With 8085.

 18.20 Draw the keyboard interfacing with 8086 microprocessor and explain briefly. Write an assembly-

language program for the keyboard interfacing with 8086.

 18.21 Design the keyboard interfacing with 8051 microcontroller and write an assembly-language program

for the keyboard interfacing with 8051.

 18.22 Design the LCD interfacing with the 8051 microcontroller and write an assembly-language program

for the LCD display.

 18.23 Give the hardware and software to interface, one seven-segment display with 8085 µp whose address

is FC23H.

 18.24 Which addressing mode is used in the scheme of Q. 18.23? What change is required if the address of

the display is FCH?

 18.1 The analog voltage corresponding to the LSB of 12-bit A/D converter is

 (a) V/(212 –1) (b) V/(212 + 1) (c) V/212 (d) none of these

 18.2 The resolution of an 8-bit D/A converter with a full-scale output of 10 V is

 (a)
2 1

10
8
+

 (b)
2 1

10
8
-

 (c)
2

10
8

 (d) none of these

Microprocessors and Microcontrollers18.42

 18.3 A digital instrument is used to measure analog voltage and display it in 7–segment display devices.

The instrument has

 (a) an ADC at the input and a DAC at the output

 (b) an ADC at the input

 (c) a DAC at the input

 (d) an ADC at the output

 18.4 Resolution of an N DAC is

 (a) full scale value/2N (b) full scale value/(2N–1)

 (c) full scale value/(2N–1) (d) none of these

 18.5 The resolution of a D/A converter is 0.4 per cent of full scale range. It is

 (a) an 8-bit converter (b) a 10-bit converter

 (c) a 12-bit converter (d) a 16-bit converter

 18.6 A D/A converter’s full scale output voltage is 10 V and its accuracy is +0.4%. The maximum error of

DAC will be

 (a) 20 mV (b) 30 mV (c) 40 mV (d) none of these

 18.7 The speed of conversion is maximum in

 (a) successive approximation ADC (b) flash ADC

 (c) single-slope serial ADC (d) dual-slope ADC

 18.8 In an N-bit flash converter, the number of comparators needed is

 (a) 2N–1 (b) 2N (c) 2N+1 (d) none of these

 18.9 The N-bit successive approximation ADC requires

 (a) 2N–1 clock pulses (b) 2N clock pulses

 (c) N clock pulses (d) none of these

 18.10 A 12-bit A/D converter has the input voltage signal from 0 V to +10 V. The voltage equivalent to 1

LSB will be

 (a) 0 (b) 1.2 mV (c) 2.4 mV (d) 0.833 V

 18.11 An 8-bit A/D converter has a resolution of

 (a)
2

1
4

 (b)
2

1
8

 (c)
2

1
2

 (d)
2

1
16

 18.1 (a) 18.2 (b) 18.3 (d) 18.4 (c)

 18.5 (a) 18.6 (c) 18.7 (b) 18.8 (a)

 18.9 (c) 18.10 (c) 18.11 (b)

CHAPTER

19
Introduction to PIC Microcontroller

(16F877)

 19.1 INTRODUCTION

The Peripheral Interface Controller (PIC) family of microcontrollers was developed by Microchip in 1985.

PIC microcontrollers are based on Harvard architecture and Reduced Instruction Set (RISC). During 1997,

8-bit microcontrollers were introduced by Atmel, based on reduced instruction set. The 8-bit PIC microcon-

trollers such as PIC16CXX, PIC 16F87X, PIC17CXX were also developed by microchip and manufactured

using CMOS Technology. These microcontrollers are extensively used in industry due to their very good per-

formance, low cost and small size. The most commonly used PIC microcontrollers are PIC16C54, PIC16C55,

PIC16C56, PIC16C57, PIC16C71, PIC17C42A, PIC17C43, PIC17C44 and PIC17C752 and their features

are illustrated in Table 19.1. The comparative study of PIC 16F873, PIC 16F874, PIC 16F876 and PIC 16F

877 are given in Table 19.2.

Table 19.1 Comparative studies of salient features of PIC16C54, PIC16C55, PIC16C56, PIC16C57, PIC16C71,
PIC17C42A, PIC17C43, PIC17C44 and PIC17C752 microcontrollers

Microcontroller EPROM RAM No. of No. of No. of No. of No. of ADC

IC (on-chip (on-chip instructions pins in I/O pins timers channels

 program data DIP

 memory) memory)

PIC16C54 512 bytes 25 bytes 33 single-word 18 12 1+ Watchdog -

 instructions timer(WDT)

PIC16C55 512 bytes 24 bytes 33 single-word 28 20 1+ Watchdog -

 instructions timer(WDT)

PIC16C56 1K bytes 25 bytes 33 single-word 18 12 1+ Watchdog -

 instructions timer(WDT)

PIC16C57 2K bytes 72 bytes 33 single-word 28 20 1+ Watchdog -

 instructions timer(WDT)

PIC16C71 1K×14 36 bytes 35 single-word 18 13 1+ Watchdog 4 channels

 bytes instructions timer(WDT) 8-bit ADC

Cont.

Microprocessors and Microcontrollers19.2

PIC17C42A 2K bytes 232 bytes 58 single-word 40 33 4 -

 instructions

PIC17C43 4K bytes 454 bytes 58 single-word 40 33 4 -

 instructions

PIC17C44 8K bytes 454 bytes 58 single-word 40 33 4 -

 instructions

PIC17C752 8K×16 bytes 678 bytes 58 single-word 40 33 4 12-channels

 instructions 10-bit ADC

Table 19.2 The Comparative study of PIC 16F873, PIC 16F874, PIC 16F876 and PIC 16F877

Name PIC 16F873 PIC 16F874 PIC 16F876 PIC 16F877

Program Memory 4k 4k 4k 4k

Data Memory (bytes) 192 192 368 368

EEPROM Data Memory (bytes) 128 128 256 256

I/O ports 3 (A, B, C) 5 (A, B, C, D, E) 3 (A, B, C) 5 (A, B, C, D, E)

Timers 3 3 3 3

Interrupts 13 14 13 14

10 bit Analog to Digital Module 5 input channels 8 input channels 5 input channels 8 input channels

Instruction Set 35 instructions 35 instructions 35 instructions 35 instructions

Capture/Compare/PWM Modules 2 2 2 2

 19.2 FEATURES OF PIC16F877 MICROCONTROLLER

The PIC16F877 microcontroller is the member of PIC 16F87X family of 8-bit microcontrollers. This IC is

manufactured with CMOS technology and available in 40-pin DIP. The features of PIC16F877 microcon-

trollers are given below:

Operating speed: 20 MHz dc clock input and 200 ns dc instruction cycle

RC oscillator for reliable operation

 Timer 0: 8-bit timer/counter with 8-bit prescaler

Count

Introduction to PIC Microcontroller (16F877) 19.3

 Timer 1: 16-bit timer/counter with prescaler, can be incremented during sleep via external crystal/

clock

 Timer 2: 8-bit timer/counter with 8-bit period register, prescaler and postscaler

 Capture is 16-bit, maximum resolution is 12.5 ns

 Compare is 16-bit, maximum resolution is 200 ns

 PWM maximum resolution is 10-bit

RD , WR and CS CS control signals

 19.3 PIN DIAGRAM AND ARCHITECTURE OF PIC16F877
MICROCONTROLLER

The schematic pin diagram of the 40-pin DIP PIC 16F877 is depicted in Fig.19.1 and the detailed pin diagram

of DIP PIC 16F877 is shown in Fig.19.2. There are five ports such as Port A, Port B, Port C, Port D and Port

E. Port A has 6 I/O pins which are used as A/D converter inputs. Port E is also used as A/D converter inputs

and this port has 3 I/O pins. Port B has 8 I/O pins and it can be used as external interrupt sources. Port C has

8 I/O pins and used as serial ports and timer I/O. Port D has 8 I/O pins which are used as parallel slave port.

Table 19.3 shows the applications of different ports. The function of each pin of PIC 16F877 is given in Table

19.4. The basic architecture of PICF877 is depicted in Fig. 19.3.

 Table 19.3 Applications of different ports

Port Name No. of I/O Pins Use of Ports

Port A 6 A/D converter inputs

Port B 8 External interrupt sources

Port C 8 Serial ports, Timer I/O

Port D 8 Parallel slave port

Port E 3 A/D converter inputs

Microprocessors and Microcontrollers19.4

Fig. 19.1 40 pin DIP PIC 16F877

Fig. 19.2 Pin diagram of PIC16F877

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

P
IC
1
6
F
8
7
7

RB7/PGD

RB6/PGD

RB5

RB4

RB3/PGM

RB2

RB1

RB0/INT

VDD

RD7/PSP7

VSS

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2RD1/PSP1

RD0/PSP0

RC3/SCK/SCL

RC2/CCP1

RC1/T1OSI/CCP2

RC0/T1OSO/T1CKI

OSC2/CLKOUT

OSC1/CLKIN

Vss

VDD

RE2/ /AN7CS

RE2/ /AN6WR

RE0/ /AN5RD

RE5/AN4/SS

RA4/T0CKI

RA3/AN3/V
REF+

RA2/AN2/V
REF–

RA1/AN1

RA0/AN0

MCLR/V /THVPP

Introduction to PIC Microcontroller (16F877) 19.5

Fig. 19.3 Architecture of PICF877

USART

Low-Voltage
Programming

Data
EEPROM

CCP1,2
Synchronous
Serial Port

Timer0 Timer1 Timer2 10-bit A/D

RE2/AN7/CS

RE1/AN6/WR

RE0/AN5/RD

PORTE

PORTD

RD7/PSP7–
RD0/PSP0

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA
RC3/SCK/SCL

RC2/CCP1

RC1/T1OSI/CCP2
RC0/T1OSO/T1CKI

RB7/PGD

RB6/PGC
RB5

RB4

RB3/PGM

RB2
RB1

RB0/INT

RA5/AN4/SS
RA4/T0CKI

RA3/AN3/V +REF

RA1/AN1

RA0/AN0

RA2/AN2/V –REF

PORTC

PORTB

PORTA

MCLR V , VDD SS

In-Circuit
Debugger

Brown-out
Reset

Watchdog
Timer

Power-on
Reset

Oscillator
Start-up Timer

Power-up
Timer

OSC1/
CLKIN
OSC2/
CLKOUT

Timing
Generation

Instruction
Decode &
Control

Parallel Slave Port

W Reg

8

ALU

MUX

STATUS Reg

FSR Reg

8

8

3

Indirect
Addr

Addr MUX

9RAM Addr (1)

RAM
File

Registers
368 × 8

Direct Address 7

Instruction Reg

Program
Bus 14

FLASH

Program
Memory
8K × 14 8 Level Stack

(13-bit)

Program Counter
Data Bus 813

Microprocessors and Microcontrollers19.6

Table 19.4 Pin function of PIC 16F877

Pin Name Pin No. I/O/P Type Function

MCLR

This pin is an active low reset to the device.

Port A is a bidirectional I/O port : Pin 2 to Pin 7

RA0/AN0 2 I/O RA0 can be analog input-0.

RA1/AN1 3 I/O RA1 can be analog input-1.

voltage.

voltage.

RA4/T0CKI 6 I/O RA4 can be the clock input to the Timer 0 (timer/Counter).

Output is open drain type.

RA5/SS/AN4 7 I/O RA5 can be analog input-4 or the slave select for the syn-

chronous serial port.

Port E is a bidirectional I/O port : Pin 8 to Pin 10

RE0/ RD/AN5 8 I/O RE0 can be read control for the parallel slave port, or analog

input-5.

RE1/WR/AN6 9 I/O RE1 can be write control for the parallel slave port, or ana-

log input-6.

RE2/CS/AN7 10 I/O RE2 can be select control for the parallel slave port, or ana-

log input-7.

crystal oscillator mode.

Port C is a bidirectional I/O port : Pin 15 to Pin 18 and Pin 23 to Pin 26

RC0/T1OSO/T1CKI 15 I/O RC0 can be the Timer 1 oscillator output or a Timer 1 clock

input.

RC1/T1OSI/CCP2 16 I/O RC1 can be the Timer 1 oscillator input or Capture 2 input/

Compare 2 output/PWM-2 output.

RC2/CCP1 17 I/O RC2 can be the Capture 1 input/Compare 1 output/PWM-1

output.

RC4/SDI/SDA 23 I/O RC4 can be the SPI data in (SPI mode) or data I/O (I2C

mode).

RC5/SDO 24 I/O RC5 can be the SPI data out (SPI mode).

-

chronous clock.

-

nous data.

Port D : Pin 19, 20, 21, 22, 27, 28, 29, 30

RD0/PSP0 19 I/O Port D is a bi-directional I/O port or parallel slave port when

interfacing to a microprocessor bus.

Count

Introduction to PIC Microcontroller (16F877) 19.7

RD1/PSP1 20 I/O

RD2/PSP2 21 I/O

RD3/PSP3 22 I/O

RD4/PSP4 27 I/O

RD5/PSP5 28 I/O

RD6/PSP6 29 I/O

RD7/PSP7 30 I/O

Port B : Pin 33 to Pin 40

Port B is a bidirectional I/O port. Port B can be software programmable.

RB0/INT 33 I/O RB0 can be the external interrupt pin.

RB1 34 I/O

RB2 35 I/O

RB4 37 I/O Interrupt on change pin.

RB5 38 I/O Interrupt on change pin.

-

gramming clock.

-

gramming data.

 19.4 MEMORY ORGANIZATION OF PIC 16F877

The PIC 16F877 microcontroller has separate program memory

organization and data memory organization which are given

below:

Program Memory Organization PIC 16F877 has 8K ×

14 program memory space from 0000H to 1FFFH. This device

has a 13-bit program counter. The reset vector is at 0000H and

the interrupt vector at 0004H. Figure 19.4 shows the program

memory map and stack of PIC 16F877.

Data Memory Organization The data memory is partitioned

into four banks which contain general purpose registers and

special-function registers. The bits RP1 and RP0 are used as the

bank select bits. Table 19.5 shows the bank selection based on

RP1 and RP0.

Table 19.5 Bank selection based on RP1 and RP0

 RP1 RP0 Bank

 0 0 0

 0 1 1

 1 0 2

 1 1 3

Count

Fig. 19.4 Program memory organization

Page 3

Interrupt Vector

Page 2

Page 1

Page 0

Reset Vector

1FFFH

1800H
17FFH

1000H
0FFFH

0800H
07FFH

0005H
0004H

0000H

On-Chip
Program
Memory

Stack Level 8

Stack Level 2

Stack Level 1

CALL, RETURN
RETFIE, RETLW

PC<12:0>

13

Microprocessors and Microcontrollers19.8

Each bank can be extended up to 7FH or 128 bytes. The lower addresses of each bank are reserved for

the special-function registers. Above the special-function registers, general-purpose registers are placed and

these registers are implemented as static RAM. Figure 19.5 shows the register file map of PIC 16F877.

Fig. 19.5 Register file map of PIC 16F877

Bank 2Bank 0 Bank 1 Bank 3
7Fh

General
Purpose
Register

96 Bytes

General
Purpose
Register
80 Bytes

Accesses
70h-7Fh

FFh

F0h

EFh

General
Purpose
Register
80 Bytes

Accesses
70h-7Fh

17Fh

170h

16Fh

General
Purpose
Register
80 Bytes

Accesses
70h-7Fh

1FFh

1F0h

1EFh

1A0h

19Fh

19Eh

19Dh

19Ch

19Bh

19Ah

199h

198h

197h

196h

195h

194h

193h

192h

191h

190h

18Fh

18Eh

18Dh

18Ch

18Bh

18Ah

189h

188h

187h

186h

185h

184h

183h

182h

181h

180h

File
Address

Indirect ddr.(*)A

OPTION_REG

PCL

STATUS

FSR

TRISB

PCLATH

INTCON

EECON1

EECON2

120h

11Fh

11Eh

11Dh

11Ch

11Bh

11Ah

119h

118h

117h

116h

115h

114h

113h

112h

111h

110h

10Fh

10Eh

10Dh

10Ch

10Bh

10Ah

109h

108h

107h

106h

105h

104h

103h

102h

101h

100h

File
Address

General
Purpose
Register
16 Bytes

EEADRH

EEDATH

EEADR

EEDATA

INTCON

PCLATH

PORTB

FSR

STATUS

PCL

TMR0

Indirect ddr.(*)A

File
Address

80h

81h

82h

83h

84h

85h

86h

87h

88h

89h

8Ah

8Bh

8Ch

8Dh

8Eh

8Fh

90h

91h

92h

93h

94h

95h

96h

97h

98h

99h

9Ah

9Bh

9Ch

9Dh

9Eh

9Fh

90h

ADCON1

ADRESL

SPBRG

TXSTA

SSPSTAT

SSPADD

PR2

SSPCON2

PCON

PIE2

PIE1

INTCON

PCLATH

TRISD(1)

TRISE(1)

TRISC

TRISB

TRISA

FSR

STATUS

PCL

OPTION_REG

Indirect. ddr.(*)A

File
Address

00h

01h

02h

03h

84h

05h

06h

07h

08h

09h

0Ah

0Bh

0Ch

0Dh

0Eh

0Fh

10h

11h

12h

13h

14h

15h

16h

17h

18h

19h

1Ah

1Bh

1Ch

1Dh

1Eh

1Fh

20h

Indirect. ddr.A (*)

TMR0

PCL

STATUS

FSR

PORTA

PORTB

PORTC

PORTD (1)

PORTE (1)

PCLATH

INTCON

PIR1

PIR2

TMR1L

TMR1H

T1CON

TMR2

T2CON

SSPBUF

SSPCON

CCPR1L

CCPR1H

CCP1CON

RCSTA

TXREG

RCREG

CCPR2L

CCPR2H

CCP2CON

ADRESH

ADCON0

General
Purpose
Register
16 Bytes

Reserved(2)
Reserved(2)

Introduction to PIC Microcontroller (16F877) 19.9

 19.5 CPU REGISTERS

 (i) W register, (ii) Status Register, (iii) FSR (indirect data memory address pointer), (iv) INDF, and (v)

PC (Program counter).

The above registers are used in execution of the instruction set.

19.5.1 W Register

The W register is known as working register. This register is used by instructions as the source of an operand.

After execution of this instruction, the result can be stored in the W register. Therefore, it acts as an accumula-

tor of other microcontrollers.

19.5.2 Status Register

bank select bits for data memory. Figure 19.6 shows the status register.

Fig. 19.6 Status register

Bit 0: C : Carry/borrow bit

C = 1 if a carry-out from the most significant bit of the result occurred and

C = 0 if no carry-out from the most significant bit of the result occurred

Bit 1: DC: Digit carry/borrow bit

DC = 1 when a carry-out from the 4th lower order bit of the result occurred and

DC = 0 if no carry-out from the 4th lower order bit of the result

Bit 2: Z: Zero bit If the result of an arithmetic or logic operation is zero, Z = 1

If result of an arithmetic or logic operation is not zero, Z = 0

Bit 3: PD: Power-down bit PD

PD

Bit 4: TO : Time-out bit TO

instruction, and

TO will be 0 when a WDT time-out occurred.

bit 6–5: RP1:RP0: Register Bank Select bits. These bits are used for direct addressing.

It is clear from the above that each bank has 128 bytes.

Microprocessors and Microcontrollers19.10

bit 7: IRP: Register Bank Select bit. This bit is used for indirect addressing.

19.5.3 Program Counter (PC)

register is a readable and writeable register. The upper bits (PC<12:8>) are not readable, but are indirectly

cleared. Figure 19.7 shows the two different conditions for the loading of the PC. In Fig. 19.7(a), the PC is

 Fig. 19.7 Loading of PC

 19.6 ADDRESSING MODES

in the PIC16F877 microcontroller.

Direct Addressing Mode In the direct addressing mode, 7 bits (0 to 6) of the instruction can identify the

register file address and the 8th bit of the register comes from the register bank select bit RP0.

Fig. 19.8 Addressing modes of PIC16F877 microcontroller

Bank 1Bank 0 Bank 2 Bank 3

7FH FFH 17FH 1FFH

Data
Memory

Data
Memory

00H 80H 100H 180H

00 01 10 11

bank select location select

RP1:RP0

Direct Addressing

6 0from opcode

bank select location select

IRP

indirect Addressing

6 0FSR register

Introduction to PIC Microcontroller (16F877) 19.11

Indirect Addressing Mode In the indirect addressing mode, the full 8 bits (0 to 7) register file address is

written into FSR register. The register bank will be selected through the 7th bit of FSR register and the content

of IRP. Figure 19.8 shows the direct addressing and indirect addressing of PIC16F877 microcontroller.

 19.7 INSTRUCTION SET OF PIC 16F877

Each instruction of 16F877 is a 14-bit word which is divided into an opcode of one or more operands. An

opcode specifies the instruction type and operands specify the operation of the instruction. The instruction set

of PIC16F877 is classified into three basic categories such as

 (i) Byte-oriented instructions

 (ii) Bit-oriented instructions, and

 instructions

Byte-oriented instructions In byte-oriented in-

structions, ‘f’ represents a file register designator and

‘d’ represents a destination designator. The file register

designator specifies which file register is to be used

by the instruction. The destination designator specifies

where the result of the operation is to be stored. When

‘d’ is zero, the result is stored in the W register. If ‘d’ is

one, the result is placed in the file register specified in

the instruction. The byte-oriented file register opera-

tions are depicted in Fig.19.9

Bit-oriented instructions In bit-oriented instruc-

tions, ‘b’ represents a bit field designator which selects

the number of the bit affected by the operation, but

‘f’ represents the number of the file in which the bit

is located. The bit-oriented file register operations are

depicted in Fig.19.10.

Literal and control instructions In literal and control operations, ‘k’ represents an eight- or eleven- bit

constant or literal value. The literal and control operations are depicted in Fig. 19.11.

Fig. 19.11 Literal and control operations

All instructions are executed within one single instruction cycle, except when a conditional test is true or

the program counter is changed as a result of an instruction. In case of conditional instructions, the execution

takes two instruction cycles where the second cycle is executed as an NOP. Actually, one instruction cycle

consists of four oscillator periods. When the PIC microcontroller oscillator frequency is 4 MHz, the normal

instruction execution time is 1 s. When a conditional test is true or the program counter is changed as a result

Fig. 19.9 Byte-oriented file register operations

Bit-oriented file register operations

13 8 7 6 0

d = 0 for destination W

f = 7-bit file register address
d = 1 for destination f

OPCODE d f (FILE #)

Fig. 19.10 Bit-oriented file register operations

Bit-oriented file register operations

13 10 9 7 6 0

b = 3-bit file address
f = 7-bit file register address

OPCODE b (BIT #) f (FILE #)

Microprocessors and Microcontrollers19.12

of an instruction, the instruction execution time is 2 s. Table 19.6 shows the opcode field descriptions and a

set of instructions for PIC16F877 is given in Table 19.7.

Table 19.6 The opcode field descriptions

Field Function

f Register file address (0 × 00 to 00 × 7F)

w Working register/accumulator

b Bit address within an 8-bit file register

x Don’t care location (= 0 or 1). The assembler will generate code with x = 0

PC Program counter

TO Time-out bit

PD Power-down bit

Table 19.7(a) Instructions: Byte-oriented file register operations

Mnemonics, Operands Description Cycles

ADDWF f,d Add W and f 1

ANDWF f,d AND W with f 1

COMF f, d Complement f 1

DECF f, d Decrement f 1

DECFSZ f, d Decrement f, Skip if 0 1(2)

INCF f, d Increment f 1

INCFSZ f, d Increment f, Skip if 0 1(2)

IORWF f, d Inclusive OR W with f 1

RRF f, d Rotate right f through carry 1

SWAPF f, d Swap nibbles in f 1

XORWF f, d Exclusive OR W with f 1

Table 19.7(b) Instructions : Bit-oriented file register operations

Mnemonics, Operands Description Cycles

BCF f, b Bit Clear f 1

BSF f, b Bit set f 1

BTFSC f, b Bit test f, skip if clear 1(2)

BTFSS f, b Bit test f, skip if set 1(2)

Introduction to PIC Microcontroller (16F877) 19.13

Table 19.7(c) Instructions : Literal and control operations

Mnemonics, Operands Description Cycles

RETFIE - Return from interrupt 2

 19.8 APPLICATIONS OF PIC 16F877

The PIC microcontrollers are commonly used in the following applications:

intercom and sewing machine

Telephones, fax machines, printers and security systems

Digital thermometers, level meters, and multi-meters

Keyboard controllers, modems and plotters

Speed control of ac and dc motors, position control using servomotors and stepper
motors.

Process control systems and automobile applications.

 19.2 Write the different features of the PIC 16F877 microcontroller.

 19.3 How many instructions are used in the PIC 16F877 microcontroller?

 19.4 Draw the schematic pin diagram of the PIC 16F877 microcontroller and explain pin function.

 19.5 Discuss the memory organization of the PIC 16F877 microcontroller.

Microprocessors and Microcontrollers19.14

 19.1 The PIC 16F877 microcontroller has ________ instructions.

 (a) 25 (b) 30 (c) 35 (d) 40

 19.2 The PIC 16F877 microcontroller operates in ________ addressing modes.

 (a) 2 (b) 3 (c) 4 (d) 5

 19.3 The PIC 16F877 microcontroller has ________program memory.

 (a) 1K (b) 2K (c) 4K (d) 8K

 19.4 The PIC 16F877 microcontroller has ________data memory.

 (a) 128 bytes (b) 192 bytes (c) 256 bytes (d) 368 bytes

 19.1 (c) 19.2 (a) 19.3 (d) 19.4 (d)

 MNEMONIC HEX MNEMONIC HEX MNEMONIC HEX

 CODE CODE CODE

MOV A.A 7F MOV H,B 60 POP B C1

MOV A.B 78 MOV H,C 61 POP D D1

MOV A.C 79 MOV H,D 62 POP H E1

MOV A,D 7A MOV H,E 63 POP PSW F1

MOV A,E 7B MOV H,H 64 PUSH B C5

MOV A,H 7C MOV H,L 65 PUSH D D5

MOV A,L 7D MOV H,M 66 PUSH H E5

MOV A,M 7E MOV L,A 6F PUSH PSW F5

MOV B,A 47 MOV L,B 68 PCHL E9

MOV B,B 40 MOV L,C 69 RAL 17

MOV B,C 41 MOV L,D 6A RAR 1F

MOV B,D 42 MOV L,E 6B RC D8

MOV B,E 43 MOV L,H 6C RET C9

MOV B,H 44 MOV L,L 6D RIM 20

MOV B,L 45 MOV L,M 6E RLC 07

MOV B,M 46 MOV M,A 77 RM F8

MOV C,A 4F MOV M,B 70 RNC D0

MOV C,B 48 MOV M,C 71 RNZ C0

MOV C,C 49 MOV M,D 72 RP F0

MOV C,D 4A MOV M,E 73 RPE E8

MOV C,E 4B MOV M,H 74 RPO E0

MOV C,H 4C MOV M,L 75 RRC 0F

MOV C,L 4D MVI A,8-bit 3E RST 0 C7

MOV C,M 4E MVI B,8-bit 06 RST 1 CF

MOV D,A 57 MVI C,8-bit 0E RST 2 D7

MOV D,B 50 MVI D,8-bit 16 RST 3 DF

MOV D,C 51 MVI E,8-bit 1E RST 4 E7

MOV D,D 52 MVI H,8-bit 26 RST 5 EF

8085 Instruction Set

APPENDIX A

Microprocessors and MicrocontrollersA.2

MOV D,E 53 MVI L,8-bit 2E RST 6 F7

MOV D,H 54 MVI M,8-bit 36 RST 7 FF

MOV D,L 55 NOP 00 RZ C8

MOV D,M 56 ORA A B7 SBB A 9F

MOV E,A 5F ORA B B0 SBB B 98

MOV E,B 58 ORA C Bl SBB C 99

MOV E,C 59 ORA D B2 SBB D 9A

MOV E,D 5A ORA E B3 SBB E 9B

MOV E,E 5B ORA H B4 SBB H 9C

MOV E,H 5C ORA L B5 SBB L 9D

MOV E,L 5D ORA M B6 SBB M 9E

MOV E,M 5E ORI 8-bit F6 SBI 8-Bit DE

MOV H,A 67 OUT 8-bit D3 SHLD 16-Bit 22

8085 INSTRUCTION SET

MNEMONIC HEX MNEMONIC HEX MNEMONIC HEX

 CODE CODE CODE

SIM 30 ACI 8-Bit CE CP 16-Bit F4

SPHL F9 ADC A 8F CPE 16-Bit EC

STA 16-Bit 32 ADC B 88 CPI 8-Bit FE

STAX B 02 ADC C 89 CPO 16-Bit E4

STAX D 12 ADC D 8A CZ 16-Bit CC

STC 37 ADC E 8B DAA 27

SUB A 97 ADC H 8C DAD B 09

SUB B 90 ADC L 8D DAD D 19

SUB C 91 ADC M 8E DAD H 29

SUB D 92 ADD A 87 DAD SP 39

SUB E 93 ADD B 80 DCR A 3D

SUB H 94 ADD C 81 DCR B 05

SUB L 95 ADD D 82 DCR C 0D

SUB M 96 ADD E 83 DCR D 15

SUI 8-Bit D6 ADD H 84 DCR E 1D

XCHG EB ADD L 85 DCR H 25

XRA A AF ADD M 86 DCR L 2D

XRA B A8 ADI 8-Bit C6 DCR M 35

XRA C A9 ANA A A7 DCX B 0B

 MNEMONIC HEX MNEMONIC HEX MNEMONIC HEX

 CODE CODE CODE

Appendix A.3

XRA D AA ANA B A0 DCX D 1B

XRA E AB ANA C A1 DCX H 2B

XRA H AC ANA D A2 DCX SP 3B

XRA L AD ANA E A3 DI F3

XRA M AE ANA H A4 EI FB

xri 8-Bit EE ANA L A5 HLT 76

XTHL E3 ANA M A6 IN 8-Bit DB

 ANI 8-Bit E6 INR A 3C

 CALL 16-Bit CD INR B 04

JNC 16-Bit D2 CC 16-Bit DC INR C 0C

JNZ 16-Bit. C2 CM 16-Bit FC INR D 14

JP 16-Bit F2 CMA 2F INR E 1C

JPE 16-Bit EA CMC 3F INR H 24

JPO 16-Bit E2 CMP A BF INR L 2C

JZ 16-Bit CA CMP B B8 INR M 34

LDA 16-Bit 3A CMP C B9 INX B 03

LDAX B 0A CMP D BA I NX D 13

LDAX D 1A CMP E BB INX H 23

LHLD 16-Bit 2A CMP H BC INX SP 33

 LXI B, 16-Bit 01 CMP L BD JC 16-Bit DA

LXI D, 16-Bii 11 CMP M BE JM 16-Bit FA

LXI H, 16-Bit 21 CNC 16-Bit D4 JMP 16-Bit C3

LXI SP. 16-Bit 31 CNZ 16-Bit C4

Full Marks: 70 Duration: 3 Hours

GROUP–A

(Multiple-Choice Questions)

 1. Choose the appropriate answer for the following questions from the given options.

 (10×1=10)

 (i) Data bus of a microprocessor is

 (a) unidirectional (b) bi-directional

 (c) unidirectional as well as bi-directional (d) none-of these

 (ii) MOV A, C is executed by

 (a) 1 machine cycle (b) 2 machine cycle (c) 3 machine cycle (d) 4 machine cycle

 (iii) When CALL instruction is executed, the stack pointer register is

 (a) decremented by two (b) incremented by two

 (c) decremented by one (d) incremented by one

 (iv) The PC contains 8452H and SP contains 88D6H. What will be the content of PC and SP

following a CALL to subroutine at location 82AFH

 (a) 82AF, 88D4 (b) 82AF, 8450 (c) 8450, 88D4 (d) 82AF, 8452

 (v) Which is the highest priority interrupt?

 (a) TRAP (b) RST 6.5 (c) RST 5.5 (d) RST 7.5

 (vi) 8259 is a

 (a) programmable interrupt controller (b) DMA controller

 (c) programmable keyboard display interface (d) programmable counter

 (vii)If A
0
 and A

1
 pins of 8255 are 00, which port will be selected?

 (a) Port A (b) Port B (c) Port C (d) None of these

 (viii) 8253 has

 (a) 6 modes of operation (b) 5 modes of operation

 (c) 4 modes of operation (d) 3 modes of operation

 (ix) 8279 displays can operate in

 (a) 8–8 bit character display-left entry only

 (b) 16–6 bit character display-left entry only

 (c) 8–8 bit character display-right entry only

 (d) 8–8 bit character display-left and right entry and 16–16 bit character display-left and right

entry

 (x) The signals are used for DMA operation

 (a) HRQ (b) HLD (c) HRQ and HLDA (d) none of these

Model Question Paper 1

Microprocessors and MicrocontrollersM.2

 (xi) The resolution of a 8-bit D/A converter with a full-scale output of 10 V is

 (a)
2 1

10
8

-
 (b)

2 1

10
8

+
 (c)

2

10
8
 (d) None of these

 (xii) 8086 has

 (a) 16-bit data bus and 20-bit address bus (b) 8-bit data bus and 20 bit address bus

 (c) 16-bit data bus and 16-bit address bus (d) 8-bit data bus and 16 bit address bus

 (xiii) What is the addressing mode of instruction MOV AX, [BX+SI+06] ?

 (a) index addressing (b) base addressing

 (c) base index addressing (d) base index displacement addressing

 (xiv) What is the output of DL after execution of the following instructions?

 MOV DL, 36

 AND DL, 0F

 (a) DL = 06H (b) 60H (c) 36H (d) 0FH

 (xv) The 80C51 microcontroller family has

 (a) 32 pins for I/O (b) 24 pins for I/O (c) 16 pins for I/O (d) 8 pins for I/O

GROUP–B

(Short-Answer Type Questions)

 Answer any three questions: (3 × 15 = 45)

 2. Draw the schematic diagram to generate Read/Write control signals for memory and I/O devices

in 8085-microprocessor.

 3. Mention the different modes of operation of 8253 IC. Explain rate generator mode of 8253.

 4. Write the functions of the following pins of 8259A.

 (i) T×D (ii) R×D (iii) T×RDY (iv) C/D (v) DSR

 5. Define interrupt. Discuss the different interrupts available in 8085 microprocessor.

 6. Explain the functions of the following instructions:

 (i) LDA 7360H (ii) ADC D (iii) STA 8000H

GROUP–C

(Long-Answer Type Questions)

 Answer any three questions: (3×15 = 45)

 7. (a) A block of 32 bytes data is stored at the memory location starting from 8000H. Write a program

to move this block to the memory location starting from 9000H.

 (b) Draw the timing diagram of I/O read cycle and explain briefly.

 (c) Draw the RIM instruction format and discuss with example. “A RIM instruction should be

performed immediately after TRAP occurs” Why?

 8. (a) What are the different operating modes of 8255? Explain any one operating mode of 8255.

 (b) Write control word in mode 0 operation for the following cases:

 (i) Port A = input port, Port B = output port, Port C = output port

 (ii) Port A = input port, Port B = output port, Port C
U
 = output port, Port CL = input port

 (c) Explain the importance of GATE signal in 8253. How is it used to control the operation of

counters?

 9. (a) Explain the DMA operation with a suitable diagram. Why DMA controlled data transfers

faster? What are the building blocks of 8257?

Model Question Papers M.3

 (b) Draw an interface circuit of an A/D converter to 8085 and write a program to convert the

analog input to digital.

 (c) Show the timing diagram for execution of LDA 3050H instruction.

 10. (a) What is instructions format? What are the types of instructions of 8086 microprocessors?

 (b) Write instructions to perform the following operations.

 (i) Copy the content of BX to a memory location in the data segment with offset 0234H.

 (ii) Increment content of CX by 1.

 (iii) Multiply AX with 16-bit data 2467H.

 (iv) Rotate left the content of AL by two bits.

 (c) Write an assembly language program for 2ms time delay. Assume the system clock time period

is equal to 0.33 μsec.

 11. Write short notes on the following:

 (a) 8259 Interrupt Controller.

 (b) Minimum/Maximum mode operation of 8086μP.

 (c) Segment memory.

 (d) Architecture of 8051 microcontroller.

Model Question Paper 2
Full Marks: 70 Duration: 3 Hours

GROUP–A

(Multiple-Choice Questions)

 1. Choose the appropriate answer for the following questions from the given options. (10×1=10)

 (i) The program counter(PC) in a microprocessor

 (a) keeps the address of the next instruction to be fetched.

 (b) counts the number of instructions being executed on the microprocessor.

 (c) counts the number of programs being executed on the microprocessor.

 (d) counts the number of interrupts handled by the microprocessor.

 (ii) CALL 8000H is an instruction of

 (a) direct addressing mode (b) indirect addressing mode

 (c) register addressing mode (d) immediate addressing mode

 (iii) OUT 02H is executed by

 (a) one machine cycle (b) two machine cycle

 (c) three machine cycle (d) four machine cycle

 (iv) When the RET instruction is executed at the end of a subroutine

 (a) the memory address of the RET instruction is transferred to the program counter.

 (b) two data bytes stored in the top locations of the stack are transferred to stack pointer.

 (c) the data where the stack is initialised is transferred to the stack pointer.

 (d) two data bytes stored in the top two locations of the stack are transferred to the program

counter.

 (v) The number of address lines are required to access 2M byte of data from microprocessor

 (a)16-bit address lines (b) 8-bit address lines

 (c) 20-bit address lines (d) 12-bit address lines

 (vi) RIM instruction is used to

 (a) enable RST 7.5, 6.5 and 5.5

 (b) disable RST 7.5, 6.5 and 5.5

 (c) enable or disable RST 7.5, 6.5 and 5.5

 (d) none of these

 (vii) When port A is used as input, Port B and Port C are used as output, the control word of 8255 is

 (a) 80H (b) 90H (c) 85H (d) 86H

 (viii) Which pin is used to control the output of counters 2 of 8253 in mode 2?

 (a) GATE 0 (b) GATE 1 (c) GATE 2 (d) GATE 3

 (ix) The UART performs

 (a) a serial to parallel conversion (b) a parallel-to-serial conversion

 (c) control and monitoring functions (d) all

Model Question Papers M.5

 x) 8279 is known as

 (a) DMA controller (b) programmable keyboard display interface

 (c) counter (d) interrupt controller

 xi) The resolution of a D/A converter is 0.4 percent of full scale range. It is a/an

 (a) 8-bit converter (b) 10-bit converter

 (c) 12-bit converter (d) 16-bit converter

 xii) Physical memory of 8086 is (a) 1MB (b) 64 KB (c) 2 MB (d) 4 MB

 xiii) What are the control signals of 8085 microprocessor are used to interface I/O devices.

 (a) IO/M, RD, WR (b) IO/M (c) RD (d) WR

 xiv) Which of the following instructions is indirect addressing ?

 (a) MOV A, R
0
 (b) MOV A, 40H

 (c) MOV R
7
, #55 (d) MOV A,@R

0

 xv) Which of the following signals indicates an 8-bit data transfer from odd address bank.

 (a) A
0
 = 0 & BHE = 0 (b) A

0
 = 1 & BHE = 1

 (c) A
0
 = 0 & BHE = 1 (d) A

0
 = 1 & BHE = 0

GROUP–B

(Short-Answer Type Questions)

 Answer any three questions: (3 × 5 = 15)

 2. Draw and explain the time multiplexing of AD
0
 – AD

7
.

 3. What are the control signals are used for memory and I/O read and writes operations?

 4. Distinguish between:

 (a) Vectored and non-vectored interrupt.

 (b) Maskable and non-maskable interrupt.

 5. Write a program to use counter 2 of 8253 in Mode 5 operation.

 6. What is serial data transfer? Write the difference between synchronous and asynchronous data

transfer.

GROUP–C

(Long-Answer Type Questions)

 Answer any three questions: (3 × 15 = 45)

 7. (a) What is the difference between microprocessor and microcontroller? Describe how data can

flow between microprocessor, memory and I/O devices.

 (b) Data byte 28H is stored in register B and data byte 97H is stored in the accumulator. Show the

contents of registers B, C, and the accumulator after the execution of the following instructions:

 (a) MOV C, A (b) MOV A, B (c) ADD B

 (c) Calculate the square of the contents of memory location 9100H using look-up table and place

the result in memory location 9501.

 8. (a) Explain memory interfacing with 8085 microprocessor. Design a memory interfacing circuit

to interface the following memory ICs

 i. 2K × 8-bit EPROM 2716. Assume starting address is 8000H.

 ii. 2K × 4-bit RAM 6116. Consider starting address is 9000H.

Microprocessors and MicrocontrollersM.6

 Write the memory map.

 (b) Explain memory mapped I/O and I/O mapped I/O. Write the comparison between memory

mapped I/O and I/O mapped I/O. What are the instructions available in memory mapped I/O

and I/O mapped I/O scheme?

 (c) Write an assembly language program to add 10 bytes of data in the DS segment starting from

2000H:3000H and store the result in 3000H:2000H location.

 9. (a) What are the software interrupts of 8085 microprocessor? Mention interrupts instructions

with their Hex code and vector address. How is the vector address for a software interrupt in

determined?

 (b) Write the control word format for I/O mode operation of 8255.

 (c) Write an program to generate square wave using 8255.

 10. (a) What will be the contents of the accumulator after the following instruction sequence is

executed?

 LXI H, C490H

 XCHG

 MVI A, 40H

 ADD E

 HLT

 (b) If the system clock is 2MHz, find the time needed to execute the given instructions:

 MVI A, 5AH

 MVI B, A7H

 ADD B

 INR A

 XRA A

 HLT/RST 1

 (c) If the carry flag is reset, specify the contents of the accumulator & CY flag after it executes the

RAL instruction. Assume the content of the accumulator is C4H

 11. Write short notes on the following:

 (a) Interrupt operation/modes of 8259 PIC.

 (b) Rate generator mode of 8253.

 (c) Function of 8251 USART.

 (d) DMA data transfer scheme.

Model Question Paper 3
Full Marks: 70 Duration: 3 Hours

GROUP–A

(Multiple-Choice Questions)

 1. Choose the appropriate answer for the following questions from the given options. (10×1=10)

 (i) If a microprocessor is capable of addressing 64K bytes of memory, its address bus width is

 (a) 16 bits (b) 20 bits (c) 8 bits (d) none of these

 (ii) A three-byte instruction should have

 (a) Opcode and an operand (b) Opcode only

 (c) Opcode and two operand (d) Operand only

 (iii) SUB A instruction in 8085 microprocessor

 (a) resets the carry and sign flag (b) sets the zero and parity flag

 (c) sets the zero and carry flag (d) resets the zero and sign flag

 (iv) Opcode is

 (a) the part of the construction which tells the computer what operation to perform

 (b) an auxiliary register that stores the data to be added or subtracted from the accumulator

 (c) the register that receives the information from memory

 (d) is the data which will be used in data manipulation of instruction

 (v) To design a 4KB RAM with 1024 byte RAM ICs, how many ICs are required

 (a) 4 (b) 8 (c) 2 (d) None of these

 (vi) 8257 is a

 (a) DMA controller (b) Programmable keyboard display interface

 (c) Counter (d) Interrupt controller

 (vii) The N-bit successive approximation ADC requires

 (a) 2N–1 clock pulses (b) 2N clock pulses

 (c) N clock pulses (d) None of these

 (viii) The physical address when DS = 2345H and IP = 1000H is

 (a) 23450H (b) 24450H (c) 12345H (d) 2345H

 (ix) 2’s complement instruction is

 (a) NEG (b) NOT (c) CMP (d) CMC

 (x) 8251 is a

 (a) USART IC (b) counter

 (c) interrupt controller (d) Programmable peripheral interface

 (xi) Which of the following instruction is index addressing?

 (a) MOVC A,@A + DPTR (b) MOVX @DPTR, A

 (c) MOVX A,@DPTR (d) MOVX A,@R
0

Microprocessors and MicrocontrollersM.8

 (xii) What will be the output after execution of the following instructions?

 MOV A, #55

 ANL A, #67

 (a) 54 (b) 45 (c) 55 (d) 67

 (xiii) The 8051 microcontroller has

 (a) 4K bytes of on-chip ROM (a) 8K bytes of on-chip ROM

 (c) 16K bytes of on-chip ROM (d) 32K bytes of on-chip ROM

 (xiv) The Bit set reset mode in 8255 is used with one of the following:

 (a) Port A (b) Port B (c) Port C (d) None of these

 (xv) In 8259, which is the lowest priority interrupt

 (a) IR
0
 (a) IR

3
 (c) IR

4
 (d) IR

7

GROUP–B

(Short-Answer Type Questions)

 Answer any three questions. (3 × 15 = 45)

 2. Mention the purpose of SID and SOD lines. Explain the functions of SIM and RIM instructions in

8088 μP.

 3. Define stack. Explain function of PUSH and POP instructions.

 4. Compare the memory mapped I/O with peripheral mapped I/O.

 5. Write the functions of the following signals

 (i) SL
0
–SL

3
 (ii) RL

0
–RL

3
 (iii) CNTL/STB

 (iv) OUTA
0
–OUTA

3
(v) OUTA

0
–OUTA

3
 (vi) IRQ

 6. What are the advantages of DMA controlled data transfer over interrupt driven data transfer?

GROUP–C

(Long-Answer Type Questions)

 Answer any three questions. (3 × 15 = 45)

 7. (a) What are the flags in 8085? Discuss the flag register with some example.

 (b) Explain the generation of MEMR, MEMW, IOR and IOW control signals from IO/M, RD, WR

signals.

 (c) Explain time delay loop using register and register pair. Write some applications of time delay

loop.

 Calculate the time required to execute the following two instructions if the system clock

frequency is 1MHz.

 LOOP: MOVA, B 5 T-states

 JMP LOOP 10 T-states

 8. (a) What are the advantages and disadvantages of I/O mapped I/O over memory mapped I/O?

Explain why I/O mapped I/O data transfer technique is limited to 256 input and 256 output

peripherals.

Model Question Papers M.9

 (b) What do you mean by priority interrupts? Explain the operation of different interrupts available

in 8085, with the help of circuit diagram.

 (c) Draw an interface circuit of a D/A converter with 8085μP and write a program to convert the

digital input to analog output.

 9. (a) Write a BSR control word to set bits PC
7
 and PC

0
 and to reset them after 1-second delay.

 (b) Determine the control word for the following configuration of the ports of 8255.

 Port A—output and mode of port A is mode 1

 Port B—output and mode of port B is mode 1

 Remaining pins of Port C are used as input

 (c) Write the interfacing procedure to interface 8253 with 8085 microprocessor.

 10. (a) Define physical address and logical address.

 (b) Write the procedure to determine physical address for the following instructions as given

below:

 (i) MOV AX, [SI + 03] (ii) MOV AL, CS:[BX + 0400]

 (iii) MOV AX, [3000] (iv) MOV AL, [BX + SI + 22]

 Assume CS = 4000H, IP = 2300, SI = 02300 and DS = 5000.

 (c) From memory location 00490H successively 0AH, 9CH, B2H and 78H are stored respectively.

What does AX contain after execution of each following instructions. Assume that SI contains

0490H and BP contains 0002H.

 (i) MOV AX,SI (ii) MOV AX, (SI+1)

 (iii) MOV AX, (SI+BP)

 11. (a) Draw the timing diagram for execution of the instruction MVI A, 80H

 (b) Specify the contents of register A and B and the status of flags S, Z and CY as the following

instructions are executed.

 XRA A

 MVI B, 4AH

 SUI 4F

 ANA B

 HLT

 (c) Write an assembly language program to add two sixteen-bit data. Store the result and carry in

two different register pairs.

Solution of 2009 WBUT Paper
GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) Whenever the PUSH instruction is executed the stack pointer is

 (a) decremented by 1 (b) decremented by 2

 (c) incremented by 1 (d) incremented by 2

 (ii) A single instruction to clear the lower four bits of the accumulator in 8085 microprocessor is

 (a)XRI OFH (b) ANI FOH (c) ANI OFH (d) XRI FOH

 (iii) Machine cycles in "CALL" instruction are

 (a) 6 (b) 5 (c) 4 (d) 3

 (iv) Address lines required for 32 k-byte memory chip are

 (a) 13 (b) 14 (c) 15 (d) 16

 (v) For 8255 PPI the bi-directional mode of operation is supported in

 (a) Mode 1 (b) Mode 0 (c) Mode 2 (d) Either (a) and (c)

 (vi) The CWR address of 8255 connected to 8085 is FBh, what will be the address for Port A?

 (a) F8h (b) FAh (c) FC h (d) F9 h

 (vii) The segment and offset address of the instruction to be executed by 8086 microprocessor are

pointed by

 (a) CS and SI (b) DS and IP (c) CS and SP (d) CS and IP

 (viii) Mode 2 of 8253 is

 (a) square wave generator (b) rate generator

 (c) software trigger stroke (d) hardware trigger strobe

 (ix) PSW is a register.

 (a) 8 bits (b) 16 bits (c) 20 bits (d) 32 bits

 (x) If READY pin is grounded, it will introduce states into the bus cycle of 8086

microprocessor

 (a) wait (b) idle (c) wait and remain idle d) all of these

 (xi) The call location for TRAP interrupt is

 (a) 0000h (b) 0020h (c) 0024h (d) 0034h

 (xii) In order to enable TRAP interrupt, which of the following instructions is are needed?

 (a) EI only (b) SIM only (c) EI and SIM (d) none of these

 (xiii) In 8085 microprocessor, the addressable memory is

 (a) 64 KB (b) 1 MB (c) 4 KB (d) 16 KB

 (xiv) What is the length of SP (stack pointer) of 8085 µP?

 (a) 6 bits (b) 8 bits (c) 12 bits (d) 16 bits

 (xv) What will be the content of the accumulator and status of CY flag after RLC operation, if the

content of the accumulator is BC H and CY is 0?

 (a) 79 H, 1 (b) 78 H, 1 (c) 5E H, 0 (d) 5D H, 0

Microprocessors and MicrocontrollersS.2

Solution

(i) (b) decremented by 2 (ii) (b) ANI F0H (iii) (b) 5 (iv) (c) 15

(v) (c) mode 2 (vi) (a) F8H (vii) (d) CS and IP (viii) (b) rate generator

(ix) (a) 8 bit (x) (a) wait (xi) (c) 0024H (xii) (a) EI only

(xiii) (a) 64KB (xiv) (d) 16 bit (xv) (a) 79H, 1

GROUP–B

(Short-Answer Questions)

Answer any three of the following. (3 × 5 = 15)

 2. (a) Differentiate between peripheral mapped I/O and memory mapped I/O.

 Refer Section 5.8 and Table 5.6.

 (b) What are the functions of ALE, HOLD and READY?

 Refer Section 2.3.

 3. The following sequences of instructions are executed by 8085 µP:

 C000 LX1 SP, D050 D050 05

 C003 POPH D051 40

 C004 XRA A D052 52

 C005 MOV A, H D053 03

 C006 ADD L D054 XX

 C007 MOV H, A

 C008 PUSH H

 C009 PUSH PSW

 COOA HLT

 What are the contents of Stack Pointer (SP), Program Counter (PC), Accumulator and HL

pair?

 The content of SP = D050H. After execution of POP H, the content of SP = D050 + 2 = D052H.

When PUSH H is executed, the content of SP will be D052-2 = D050H. After execution of PUSH

PSW, the content of SP = D050-2 = D04E.

 Program Counter (PC) content is C00B after complete execution of above program.

 The content of HL register after execution of LX1 SP, D050 and POP H is 4005. When XRA A

is executed, Accumulator will be cleared or 00H. After execution of MOV A,H and ADD L, the

content of A is 45H. Therefore the content of HL register pair is 4505H.

 4. Discuss the functions of following instruction of 8085:

 RAR, LHLD C020H, DAD, CALL D050H, DCX B

 Refer Section 3.5.

 5. What are the advantages of having segmentation? How does 8086 µP support segmentation?

 The concept of memory segmentation has been introduced in the 8086 processor. Segmentation

of memory is possible through the different segment registers such as Code Segment (CS), Data

Segment (DS) Extra Segment (ES) and Stack Segment (SS). The segmentation can be used by

programmer in relocating the program very easily. In a multiprogramming environment, access

rights can easily be implemented with segments. It is also possible to share segments by different

process. 8086 processor has separate data and code segments. So that, logical address of program

can be loaded into specified segment register and run the program from anywhere in memory.

Sometimes, one program can work on several different sets of data. This is possible by reloading

logical address in DS register and the same program can be run with the new data.

 The advantages of segment memory are given below:

 (i) Allow the memory capacity to be 1MB even though the addresses associated with the

individual instructions are 16 bits wide.

 (ii) Allow the use of separate memory areas for the program code and data and stack portion of

the program

 (iii) Permit a program and/or its data to be placed into different areas of memory whenever the

program is executed.

 (iv) Multitasking becomes easy

 (v) The advantage of having separate code and data segments is that one program can work on

different sets of data. This is possible by reloading data segment register DS to the point to the

new data.

 (vi) Advantage of segment memory is that the reference logical addressed can be loaded into

instruction pointer IP and run the program any where of segment memory as the logical

address varies from 0000H to FFFFH.

 (vii) Programs are re-locatable so that programs can be run at any location in memory.

 In 8086, the code segment register is used for addressing a memory location in the code

segment of the memory in which the program is stored for execution. Data segment register

points to the data segment of the memory, where data is stored. The extra segment is a segment

Solution of 2009 WBUT Paper S.3

Microprocessors and MicrocontrollersS.4

which can be used as another data segment of the memory. Therefore, extra segment contains

data. The stack segment register is used for addressing stack segment of memory in which

stack data is stored. The CPU uses the stack for temporarily store data, i.e. the content of all

general purpose registers which will be used later. In memory segmentation, the complete

1MB memory can be divided into 16 parts which are called segments. Each segment thus

contains 64 KB of memory. Figure 1

 6. What is subroutine? What is the difference between CALL and JMP instructions?

 Refer Section 4.6 and Section 3.5.4.

GROUP–C

(Long-Answer Questions)

Answer any three of the following (3 × 15 = 45)

 7. (a) How many ports are there in 8255 and what are they?

 There are three eight-bit ports in 8255 such as Port A, Port B, and Port C.

 (b) Discuss the different bits of the control word of 8255.

 Refer Section 12.5.

 (c) Write down the MODE-0 control word for the following:

 (i) Port A = Input

 (ii) Port B not used

 (iii) Port C upper = Input, Port C lower = output.

 The Control word Bits of 8255 is given below

 When 8255 operate in mode 0, Port A as Input, Port C upper as Input, Port C lower as output and

Port B not used, the control word will be = 10011010 = 9AH as D
0
 = 1, D

1
 = 1 (assuming Port B

as input), D
2
 = 0, D

3
 = 1, D

4
 = 1, D

5
 D

6
 = 00 and D

7
 = 1.

 (d) Discuss BSR operation of 8255.

 Refer Section 12.4.4 and Fig. 12.14.

 8. (a) Explain how 20-bit physical address is generated in 8086 microprocessor.

 Refer Section 9.4.

 (b) What is the purpose of queue? How many words does the queue store in the 8086

microprocessor?

 Refer Section 9.2.1.

 (c) How does 8086 support pipelining? Explain.

 Refer Section 9.2.3.

 (d) What are the advantages of having memory segmentation?

 Refer Solution 2009 Question 5.

 9. (a) Describe the priority scheme and EOI scheme of 8259.

 Refer Sections 14.3 and 14.4.

 (b) Write down the format of ICW1 and ICW2 of 8259.

 Refer Section 14.6.1.

 (c) With respect to 8237, explain the DMA operation.

 8237 is an advanced Programmable DMA controller. It provides a better performance compared

to 8257. This is capable of transferring a byte or a bulk of data between system memory and

peripherals in either direction. Memory to memory data transfer is also possible in this peripheral.

The 8237 can support four independent DMA channels which can be expanded to any number

after cascading more number of 8237.

 8237 operates in two cycles such as passive cycle and active cycle. Each cycle contains a fixed

number of states. The 8237 can assume six states, when it is in active cycle. During idle cycle, it

is in idle state (SI).

 The 8237 is initially in a state SI means an idle state where the 8237 does not have any valid

pending DMA request. During this time, although the 8237 may be idle, the CPU may program

it in this state. Once there is a DMA request, the 8237 enters state S
0
, which is the first state of

the DMA operation. When the 8237 requests the CPU for a DMA operation and the CPU has

not acknowledged the request, the 8237 waits in S
0
 state. The acknowledge signal from the CPU

indicates that the data transfer may now begin. The S
1
, S

2
, S

3
 and S

4
 are the working states of DMA

operation, in which the actual data transfer is carried out. If more time is required to complete a

transfer than that is allowed, wait states may be inserted between S
2
 and S

3
 or S

3
 and S

4
 using the

READY pin of 8237. So it is clear that a memory read or a memory write DMA operation actually

requires four states S
1
 to S

4
.

 10. (a) Write a program to find out the largest number, starting from D000 H of 10 numbers and

store result in D050 H.

 The count value of numbers 0AH is stored in C register directly and the numbers are stored in

the memory locations from D000 to D009. The largest number will be stored in D050 location.

Assume the program memory starts from 9100H. The algorithm to find out the largest number

from an array is given below:

Solution of 2009 WBUT Paper S.5

Microprocessors and MicrocontrollersS.6

Step 1 Load count value of numbers 0AH in C register immediately

Step 2 Load the first number in accumulator from memory location D000H

Step 3 Move first number in accumulator

Step 4 Decrement the count value by one

Step 5 Move to next memory location for next data

Step 6 Compare the content of memory with content of accumulator

Step 7 If carry is generated, copy content of memory in accumulator

Step 8 Decrement the count value by one.

Step 9 If count value does not equal zero, repeat step 5 to step 8

Step 10 Store result in D050H location

Memory Labels Mnemonics Operands Comments

address

9100 MVI C,0A Load count value in C register

9102 LXI H,D000 Load address of first data in HL register pair

9105 MOV A,M Copy 1st data in accumulator

9106 DCR C Decrement C register

9107 LOOP INX H Increment HL register for address of next data

9108 CMP M Compare next data with the content of

 accumulator

9109 JNC LEVEL If carry is not generated, jump to LEVEL

910C MOV A,M Copy large number in accumulator from memory

910D LEVEL DCR C Decrement C register

910E JNZ LOOP Jump not zero to LOOP

9111 STA D050 Store largest number in D050H location

9114 HLT

Example

 DATA RESULT

 Memory location Data Memory location Data

 D000 02H

 D001 23H D050 FF

 D002 FFH

 D003 47H

 D004 92H

 D005 10H

 D006 56H

 D007 27H

 D008 98H

 D009 40H

 (b) Write a program to find out square of a data using look-up table.

 Refer Section 4.11.20, Page 4.39.

 11. (a) What are the vectored and non-vectored interrupts?

 Refer Sections 6.3 and 6.4.

 (b) Explain the instruction RIM and SIM. Write the program for enable the RST-7.5, RST-

6.5 and disable RST-5.5.

 Refer Section 6.5 for RIM and SIM instruction

 Initially determine the contents of the accumulator for enable the RST-7.5, RST-6.5 and disable

RST-5.5

 Disable 5.5 bit D
0
 = 1

 Enable 6.5 bit D
1
 = 0

 Enable 7.5 bit D
2
 = 0

 Allow setting the masks bit D
3
 = 1

 Don’t reset the flip flop bit D
4
 = 0

 Bit 5 is not used bit D
5
 = 0

 Don’t use serial data bit D
6
 = 0

 Serial data is ignored bit D
7
 = 0

 SOD SDE xxx R7.5 MSE M7.5 M6.5 M5.5

 0 0 0 0 1 0 0 1

 Therefore, the content of accumulator is 09H. The program for above operation is given below:

Memory Labels Mnemonics Operands Comments

address

8000 EI Enable all interrupts

8001 MVI A, 09H Mask to enable RST 7.5, and 6.5, disable 5.5

8003 SIM Apply the settings RST masks

 (c) Discuss how 8253 is used to generate square wave.

 Refer Section 13.5.4.

 (d) What are the major components of 8259A interrupt controller? Explain their functions.

 Refer Section 14.3.

 (e) Write the BSR control word for setting PC
4
 in 8255A.

 In Single Bit Set/Reset (BSR) mode any of the eight bits of Port C can be set or reset using

a single Output instruction. This feature reduces software requirements in control-based

applications.

 When Port C is being used as status/control for Port A or B, these bits can be set or reset by

using the Bit Set/Reset operation just as if they were output ports. Figure 4 shows the Bit set/

reset format.

 The BSR control word to set bit PC
4
 is 00001001 = 09H as D

0
 = 1, D

1
 = 0, D

2
 = 0, D

3
 = 1,

D
4
 = 0, D

5
 = 0, D

6
 = 0, and D

7
 = 0.

Solution of 2009 WBUT Paper S.7

Microprocessors and MicrocontrollersS.8

Solution of 2010 WBUT Paper (EI-405)
GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) RST 7.5 interrupt is

 (a) vectored and maskable (b) vectored and nonmaskable

 (c) direct and maskable (d) direct and nonmaskable.

 (ii) The address lines required for 16K byte memory chip are

 (a) 13 (b) 14 (c) 15 (d) 16

 (iii) The instruction register holds

 (a) flag conditions (b) op code

 (c) instruction address (d) hex codes

 (iv) Through which of the following pins does the 8085A microprocessor communicate with serial

address

 (a) 2 and 3 (b) 4 and 5 (c) 6 and 7 (d) 8 and 9

 (v) In the 8085 microprocessor, the JMP 8050 instruction affects the

 (a) accumulator (b) stack pointer (c) HL pair register (d) program counter

 (vi) A single instruction to clear the lower four bits of the accumulator in the 8085 microprocessor is

 (a) XRI 0FH (b) ANI F0H (c) ANI 0FH (d) XRI F0H

 (vii) The accumulator is a

 (a) register (b) memory address (c) flip-flop (d) address bus

 (viii) Nibble is group of …… bits.

 (a) 2 (b) 4 (c) 8 (d) 1

 (ix) When the LHLD is executed, number of T states required are

 (a) 10 (b) 14 (c) 13 (d) 15

 (x) When the subroutine is called, the address of the instruction next to CALL is saved in

 (a) stack-pointer register (b) program counter

 (c) stack (d) PSW

 (xi) For 8255 PPI, the bidirectional mode of operation is supported in

 (a) Mode-1 (b) Mode-2 (c) Mode-0 (d) either (a) and (b)

 (xii) If the content of the accumulator is F8 , after execution of the RCC instruction, the content of the

accumulator will be

 (a) 9E (b) 8C (c) 8B (d) 7C

Solution

(i) (a) vectored and maskable (ii) (b) 14 (iii) (b) Op code

(iv) (b) 4 and 5 (v) (d) Program counter (vi) (b) ANI 0FH

(vii) (a) register (viii) (b) 4 (ix) (d) 15

(x) (c) stack (xi) (b) Mode-2 (xii) (d) 7C

Microprocessors and MicrocontrollersS.10

GROUP–B

(Short-Answer Questions)

Answer any three of the following. (3 × 5 = 15)

 2. Write the function of the following instructions

 (i) JNC

 Refer Page 3.21.

 (ii) CALL

 Refer Page 3.22.

 (iii) DAD

 Refer Page 3.13.

 (iv) RAR

 Refer Page 3.18.

 (v) MVI

 Refer Page 3.10.

 3. What is a microprocessor? Explain with a block diagram.

 Refer Section 1.2.

 4. Explain the difference between I/O mapped I/O and memory mapped I/O.

 Refer Section 5.8 and Table 5.6.

 5. What is the advantage of multiplexed address and data bus? Show how it can be demultiplexed

in 8085.

 The advantage of multiplexed address and data bus is that the address and data lines are shared. As

a result, less number of pins are required. But it is required to separate the address and data lines.

Therefore, an extra IC is required to demultiplex address line A
0
–A

7
 and data line D

0
–D

7
. When the

multiplex address/data bus is compared with parallel address/data bus, the parallel address/data

bus requires less time to read/write data and the speed of operation increases.

 The 8085 microprocessor has higher-order address bus A
8
–A

15
 and lower order address data bus

AD
0
 – AD

7
. The lower-order address data bus is multiplexed as address bus and data bus. During

the first clock pulse of a machine cycle, the program counter releases the lower order address in

AD
0
– AD

7
 and higher-order address A

8
– A

15
. Then ALE signal is high; the AD

0
– AD

7
 can be used

as lower order address bus and not a data bus. The external latch circuit makes the difference

between the address and data bus as shown in Fig. 1.

 6. How many flag bits are there in the 8085 microprocessor? Explain each of them.

 Refer Page 2.10.

GROUP–C

(Long-Answer Questions)

Answer any three of the following (3 × 15 = 45)

 7. (a) What is the difference between a microprocessor and microcontroller?

 Refer Page 7.2.

 (b) Discuss the memory organization of 8051 microcontroller. What is the function of

program status word (PSW) in 8052?

 Refer Section 7.3 and Page 7.6.

 (c) Explain interrupts in 8051 controller.

 There are five interrupt sources for the 8051 microcontroller. The priority-wise five different

interrupts of 8051 microcontroller are given below:

 These interrupts can recognize 5 different events that can interrupt regular program execution.

interrupt system can be disabled by clearing the EA bit of the same register as shown in Fig. 2.

 If the IT0 and IT1 bits of the TCON register are set, an interrupt will be generated on high to

low transition, i.e., on the falling pulse edge (only in that moment). If these bits are cleared, an

interrupt will be continuously executed as far as the pins are held low.

 IE is Interrupt Enable Register which is shown in Fig.2. The function of EA, ES, ET1, EX1, ET0

and EX0 are given below:

EA — global interrupt enable/disable:

 0 — disables all interrupt requests

 1 — enables all individual interrupt requests

ES — enables or disables serial interrupt:

 0 — UART system cannot generate an interrupt

 1 — UART system enables an interrupt

ALE

AD AD0 7–

8085
Microprocessor

Latch

Address Bus

Data
buffer

A A0 7–

A A0 7–

Solution of 2010 WBUT Paper S.11

Microprocessors and MicrocontrollersS.12

ET1 — bit enables or disables Timer 1 interrupt:

 0 — Timer 1 cannot generate an interrupt

 1 — Timer 1 enables an interrupt

EX1 — bit enables or disables external 1 interrupt:

 0 — change of the pin INT0 logic state cannot generate an interrupt

 1 — enables an external interrupt on the pin INT0 state change

ET0 — bit enables or disables timer 0 interrupt:

 0 — Timer 0 cannot generate an interrupt

 1 — enables timer 0 interrupt

EX0 — bit enables or disables external 0 interrupt:

 0 — change of the INT1 pin logic state cannot generate an interrupt

 1 — enables an external interrupt on the pin INT1 state change and interrupt vector addresses are

 given in Table 1.

Register IE

OR

IE0

IE1

Timer 0

Timer 1

UART

TF0

TF1

TI

RI

OR

0

1

0

1

IT0

IT1

EX0

EX1

ET0

ET1

ES

Interrupt

EA

P
IN

S

Register TCON

INT0

INT1a

EA ET2 ES ET1 EX1 ET0 EX0

0 X 0 0 0 0 0 0

bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0

IE

value after reset

Bit name

 Table 1 Interrupt Vector Addresses

 Source Address

 IE0 03H

 TF0 0BH

 IE1 13H

 TF1 1BH

 RI & TI 23H

 8. (a) Describe the different addressing modes of the 8085 microprocessor.

 Refer Section 3.2.

 (b) Specify the contents of registers A and B and the status flags S, Z and CR when the

following instructions are executed:

 XRA A

 MVI B,4AH

 MVI4FH

 ANA B

 HLT

 XRA A The contents of the accumulator is exclusive ORed with the content of

accumulator. After execution, the content of accumulator will be 00H. The CY

and Ac flags are reset.

 MVI B,4AH Move 4AH into B register immediately. Flags are not affected.

 SBI 4FH The 8-bit data 4FH and the borrow flag is subtracted from the content of the

accumulator. All flags are affected to reflect the result of the subtraction.

 ANA B The content of the accumulator is logically ANDed with the contents of the

register. All flags are modified to reflect the result of the AND operation. CY is

reset and Z flag is set.

 HLT When the HLT instruction is executed, the microprocessor finishes execution

of the current instruction and halts any further execution. No status flags are

affected.

 (c) Write an assembly-language program to generate a square wave of 400 µs delay and use

020 H for the output.

Solution of 2010 WBUT Paper S.13

Microprocessors and MicrocontrollersS.14

 Levels Instructions Comments

 MOV A, 80H 80H is the control word when all ports of 8255 operates as

 output port. Load control word 80H in the accumulator.

 OUT 23H Write control word in control word register.

 START MVI A,FFH Load FFH in the accumulator.

 OUT 20H Send FFH to Port A and all pins of Port A are high

 CALL DELAY Call a delay loop for 400 µs delay.

 MVI A,00H Load 00H in accumulator.

 OUT 20H Send 00H to Port A and all pins of Port A are low.

 CALL DELAY Call a delay loop for 400 µs delay.

 JMP START Jump to START location for generating square wave

 continuously.

 Levels Instructions T states Comments

 DELAY MVI B,A6H 7 Load A6H in register B immediately.

 LOOP DCR B 5 Decrement the content of B by 1.

 JNZ LOOP 10 Jump not zero to LOOP.

 Total number of T states for execution of LOOP is

 = (T states for DCR B +T states for JNZ) × Number of times LOOP is executed

 = (7 + 5) × N

 If the operating frequency of microprocessor is 5 MHz, the total delay time is

 12 N ×
1
 __

f
 = 12 N ×

1

5 × 106
 = 400 × 10–6

 Or N =
400 × 5

12

 = 166.67 = A6H

 Then the content of register B will be A6H for 400 µs delay.

 9. (a) What is tri-state? Why is it important?.

 Any logic gate has two output states: logic ‘0’ and logic ‘1’, but the tri-state logic gates have three

output states as given below:

 The graphic symbol of tri-state logic gates are shown

in Figure 4. The tri-state gate consists of an extra input

terminal called enable or control input (C). When

the control input is at logic ‘0’, the gate performs its

normal operation. If the control input is at logic ‘1’,

the output of gate becomes tri-state or high impedance

state irrespective of inputs. In high impedance state,

the gate is physically disconnected from its output

terminal when C is at logic ‘1’ and the output appears

as an open circuit.

 Usually, tri-state logic gates are used for proper functioning of microprocessor. In a microprocessor

based system, peripheral devices are connected in parallel between address bus and data bus. As

the tri-state logic devices are used in system, peripheral devices do not load the system. Therefore,

the tri-state logic devices are very necessary to avoid loading of the system bus. Hence the

microprocessor can communicate with one peripheral device at a time after enabling the tri-state

control signal.

 (b) Can an input port and output port has the same address? Justify your answer.

 Refer WBUT 2010 Question 4(iii) [EI-502].

 (c) What is the function of a subroutine? How is a subroutine handled in a microprocessor?

 Refer Section 4.6.

 (d) What is the advantage of DMA controlled data transfer over program-controlled data

transfer?

 Refer Section 17.1.

 10. (a) Explain the different modes of operation of 8255.

 Refer Section 12.4 and Page 12.5.

 (b) Explain the control word format of the 8255 in I/O and BSR mode.

 Refer Page 12.4, Fig.12.4 and Sections 12.5 and 12.4.4.

 (c) Write the control word to set Port A as input mode 1 and load this control word into

the control word register. Briefly describe the process of data transfer from input device to

processor with handshaking signal. Draw its timing diagram.

 To compute the control word, we assume that

A is used as input and operation mode of Port A is Mode 1

B can be used as output and operates in Mode 1

PC
6
 and PC

7
 act as input

 Six pins of the Port C, PC
0
 – PC

5
 are used to control Port A and Port B in Mode 1 operation.

PC
0
– PC

2
 are used for the control of the Port B. Port B can be programmed as an input or output

port. When Port A is operated as an input port, PC
3
 – PC

5
 are used to control this port. In this

operating mode PC
6
and PC

7
 may be used as input or output. Figure 5 shows the control-word bits

for the above configuration of the ports. The control word for the above definition of the ports of

Intel 8255 is BD H. To load the control word in control word register, the following instructions

are required

 Instructions Comments

 MOV A, BDH BDH is the control word when all ports of 8255 operates as output port.

 Load control word BDH in the accumulator.

 OUT 23H Write control word in control word register

1 0 1 1 1 1 0 x

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

B D

BIT

Control

word

 Refer Section 7.4.2 and Fig.7.8.

Solution of 2010 WBUT Paper S.15

Microprocessors and MicrocontrollersS.16

 11. (a) Explain how 8254 can be used on a square-wave generator with a 1 ms period. The input

frequency to 8254 is 2MHz.

 We assume that 80H is address of counter-0, 81H is address of counter-1, 82H is address of

counter-2 and 83H is address of control word register.

 To generate a square wave, 8254 should be used in mode 3 and counter-0 will be operating in BCD

mode. The count value can be calculated for 1ms delay period.

 Assume 8254 operates at 2 MHz.

 The time period is 0.5 ms.

 The number of T states is required for 1 ms delay is

 N =
1 × 10–3

0.5 × 10–6

 = 2000 states.

 The control word of 8254 is 37H as shown below:

 SC
1

SC
0

RL
1

RL
0

M
2

M
1

M
0

BCD

 0 0 1 1 0 1 1 1

 The following instruction will be executed to generate a square wave.

 Levels Instructions Comments

 START MOV A, 37H Intialize 8254 counter with control word 37H

 OUT 83 Load control word into control word register. Counter-0

 operates in mode 3

 MVI A, 00H Write 00H in Accumulator

 OUT 80 LSB of count value is 00H which is loaded in the counter

 MVI A, 20H Write 20H in Accumulator

 OUT 80, AL MSB of count value is 20H which is loaded in the counter

 HLT Halt

 (a) Write a note on DMA controller.

 Refer Section 17.1.

Solution of 2010 WBUT Paper (EI-502)
GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) What is the vector location of NMI?

 (a) 00000H (b) 00008H (c) 00010H (d) 00014H

 (ii) The interrupt pin available in the 8085A microprocessor chip is

 (a) ALE (b) HLDA (c) INTER (d) SOD

 (iii) For 8257 controller ______ is the highest priority channel by default.

 (a) CH-3 (b) CH-0 (c) CH-1 (d) any channel

 (iv) The clock frequency is 60 Hz. The clock interrupt handler on a computer needs 2 ms per clock

tick. What percentage of the CPU is devoted to the clock?

 (a) 1.2 (b) 7.5 (c) 12 (d) 18.5

 (v) What is the BSR control word to set PC4?

 (a) 09 (b) 07 (c) 04 (d) 05

 (vi) The total memory space available in 8086 is

 (a) 16 KB (b) 64 KB (c) 1 MB (d) 256 KB

 (vii) An 8-bit A/D converter has a resolution of

 (a)
1
 __

24
 (b)

1
 __

28
 (c)

1
 __

22
 (d)

1

216

 (viii) Select the invalid instruction:

 (a) MOV M,A (b) ADI 67 (c) LDAX B (d) STAX H

 (ix) The maximum operating frequency of 8054 is

 (a) 2 MHz (b) 3 MHz (c) 6 MHz (d) 8 MHz

 (x) The number of multiplexed buses in case of 8086 is

 (a) 16 (b) 8 (c) 20 (d) 4

 (xi) 8086 exchanges data word with odd memory bank when

 (a) BHE- = 0 and A
0
 = 0 (b) BHE- = 0 and A

0
 = 1

 (c) BHE- = 1 and A
0
 = 0 (d) BHE- = 1 and A

0
 = 1

 (xii) If ready pin is grounded, it will introduce ______ states into the bus cycle of 8086/8088 µP.

 (a) wait (b) ideal

 (c) wait and remain ideal (d) all of these

Solution

(i) (b) 00008H (ii) (c) INTER (iii) (b) CH-0 (iv) (c) 12

(v) (a) 09 (vi) (c) 1 MB (vii) (b) 1/28 (viii) STAX H

(ix) (d) 8 MHz (x) (a) 16 (xi) (b) BHE- = 0 and A
0
 = 1

(xii) (a) wait

Microprocessors and MicrocontrollersS.18

GROUP–B

(Short-Answer Questions)

Answer any three of the following. (3 × 5 = 15)

 2. Write down the steps of execution of an instruction sequentially by 8085 microprocessor.

 Refer Section 2.2.2.

 3. Write an ALP in 8085 to find the total number of zeros and ones in a given string. Store the

results in the memory location 9055H onwards.

 Levels Instructions Comments

 LXI H,8000H Address of number of bytes in H-L register pair

 MOV C,M Transfer number of bytes from memory location to register C

 XRA A Clear accumulator register

 MVI B,00H Initialize register B with 00H as number of zeros

 MVI D,00H Initialize register D with 00H as number of ones

 START MOV E,08H Load 08H for number of rotate the accumulator right

 through carry

 INXH Increment HL register pair

 MOV A,M Load the first number in the accumulator

 LOOP2 RAR Rotate the accumulator right through carry

 JC LOOP1 Jump with carry to LOO 1

 INC B Increment B when carry bit is 0

 LOOP1 INC D Increment D when carry bit is 0

 DEC E Decrement E register

 JNZ LOOP2 Jump not zero toe LOOP 2

 DEC C Decrement register C

 JNZ START Jump not zero to START

 MOV A, B Move content of B into register A

 STAX 9055H Store number of zeros in memory location 9055H

 MOV A, D Move content of D into register A

 STAX 9055H Store number of zeros in memory location 9056H

 HLT

 4. (i) Explain why the number of output ports in the peripheral mapped I/O is restricted to 256

ports.

 The input/output instructions (IN and OUT) are used as a 1-byte address. The operation of IN and

OUT instructions are given below.

 IN 8-bit port-address (Input data to accumulator from an I/O port with 8-bit address)

 A¨[Port]

 The contents of the input port whose address is specified. By 8-bit port address are read and loaded

into the accumulator. For example, IN 00H. This instruction states that the data available on the

port address 00H is moved to the accumulator.

 OUT 8 bit port-address (Output data from accumulator to an I/O port with 8-bit address)

 [Port]¨A

 The contents of the accumulator are copied into the I/O port specified by the 8-bit address. For

example, OUT 01H. This instruction states that the content of the accumulator is moved to the port

address 01H.

 With the 1-byte address of IN and OUT instructions, it is possible to address 00H to FFH or 256

ports. Therefore, the number of output ports in the peripheral mapped I/O is restricted to 256

ports.

 (ii) Specify the 8085 signals that are used to enable an input and output port.

 Input output read and write signals (

 IOR and

 IOW) are used to enable input and output port.

 Refer Section 5.8.1

 (iii) If an output port can have the same 8-bit address, how does the 8085 differentiate

between ports?

 The microprocessor can communicate with I/O devices through 8255. It can read data from any

I/O and it can also write data to any I/O devices. The I/O devices are identified by port addresses.

Usually, the I/O read and write operations are performed by using software instructions such as

IN and OUT. The I/O read and write operations are controlled by control signals — IOR and IOW

respectively. The port addresses are varied from 00H to FFH. Therefore, 256 I/O devices may be

connected with microprocessor in I/O mapped I/O devices. As IN and OUT instructions are used

for read and write operation respectively, the input port and output port address may be same but

at a time only one operation can be performed either input or output.

 5. Draw the timing diagram of MOV A,M.

 The instruction MOV A, M is a one-byte instruction, two machine cycles such as instruction

fetch cycle and one memory read cycle, are required to execute this instruction. In fetch cycle,

the microprocessor fetches the opcode of an instruction from the memory. During memory read

cycle, the microprocessors read data from memory and load into accumulator. Figure 1 shows the

timing diagram for an opcode fetch cycle of an instruction MOV A, M. Assume that the opcode

of instruction MOV A,M is 7EH which is stored in 8000H.

 Memory location Opcode Mnemonics

 8000H 7EH MOV A,M

Machine Cycle - 1

To execute the instruction fetch cycle, four consecutive clock cycles T
1
, T

2
, T

3
 and T

4
 are required. The

sequences of operations are given below:

First Clock Cycle

T
1
, the microprocessor, places the content of program counter, address of

the memory location 8000H, where the opcode is available on the 16-bit address bus. The 8 MSBs

of the memory address (80H) are placed on the high-order address bus,A
15

-A
8
 and 8 LSBs of the

memory address (00H) are placed on the low-order address bus,AD
7
-AD

0
. Since the AD bus is

needed to transfer data during subsequent clock cycles, it is used in time-multiplexed mode.

the memory address. Therefore, low-order address bus is demultiplexed and the complete 16-bit

memory address is available in the subsequent clock cycles to get the opcode from the specified

memory address, 8000H.

Solution of 2010 WBUT Paper S.19

Microprocessors and MicrocontrollersS.20

__
 M =0, S

0
 =1 and S

1
=1 to indicate opcode fetch

operation.

Second Clock Cycle

T
2
, low-order bus AD

7
 – AD

0
 is ready to carry data from memory location. The microprocessor

sends the control signal

 RD = 0 to enable memory and the program counter is incremented by 1 to

8001H. Now the opcode from the specified memory location 8000H is placed on the data bus.

Third Clock Cycle

T
3
, the microprocessor reads the opcode and places it in the instruction register, IR. The

memory is disabled when

 RD goes high during T
3
. The fetch cycle is completed by T

3
.

Fourth Clock Cycle

T
4
. It also places the content of memory

location in the temporary register. After that it transfers to the accumulator.

T1 T2 T3 T4

Clock

A A8 15– PC (Hight order address bus)H

AD AD0 7– PC LowerL
D D0 7–

Lower order
adress –A A0 7

Opcode 7EH

ALE

RD

WR

Status

S S01 1

IO/M

Machine Cycle (M)1

Machine Cycle – 2

 During T
1
 state of machine cycle-2, the contents of HL registers are loaded to the address bus

instead of program counter. Therefore, the contents of program counter will not be modified

during T
1
 state. ALE signal is active.

 During T
2
 state, the

 RD signal is low and the data from memory located by the address bus is

loaded into the data bus.

 During T
3
 state, the

 RD signal is high and data from the data bus is transferred into the accumulator

register.

 Refer memory read cycle from Chapter 3.

 6. State the difference between architectures of 8086 and 8088 µP.

 Refer Table 9.2, Page 9.2.

GROUP–C

(Long-Answer Questions)

Answer any three of the following (3 × 15 = 45)

 7. (a) What do you mean by DMA operation? Write down the steps of DMA operation. What

is fixed priority mode and what is rotating priority mode?

 Refer Section 17.1

 Refer Section 17.3.1, Fig. 17.6.

 (b) If the clock frequency is 5 MHz, how much time is required to execute the instruction

MVI B,08H(7T state)? Draw the timing diagram.

 The clock frequency is 5 MHz.

 The time period of clock is
1

5 × 106
 = 0.2 ms

 As 7T states are required to execute the instruction MVI B,08H, the total execution time of the

instruction MVI B,08H is 7 × 0.2 ms = 1.4 ms.

 The timing diagram for a two-byte instruction MVI B, 08H data is illustrated in Fig. 2.

 The MVI B, 08H is a two-byte instruction. In the coded from it is written as 06, 08 where 06 is

opcode for MVI B instruction and 08 is data. This instruction is stored in two consecutive memory

location 8000H and 8001H.

 Memory location Opcode Mnemonics

 8000H 06 H MVI B, 08H

 8001H 08 H

 This instruction requires two machine cycles, M
1
 and M

2
. The first machine cycle M

1
 is known as

the fetch cycle to fetch operation code 3E from the memory. The second machine cycle M
2
 is used

to read the operand (FFH) from the memory. Actually this is a memory read cycle. Fig. shows the

machine cycle M
2
 and its operation is explained below:

First Clock Cycle of M
2

T
1
) the microprocessor places the content of program counter, 8001H,

which is the address of operand on the 16-bit address bus. The 8 MSBs of the memory address,

80H are placed on the high-order address bus, A
15

 – A
8
 and 8 LSBs of the memory address, 00H

are placed on the low-order address bus, AD
7
 – AD

0
.

Solution of 2010 WBUT Paper S.21

Microprocessors and MicrocontrollersS.22

of the memory address. Then low-order address bus is demultiplexed and the complete 16-bit

memory address is available in the subsequent clock cycles to get the operand from memory

location, 8001H. __
 M =0, S

0
 = 0 and S

1
 = 1 to identify the memory read operation.

Second Clock Cycle of M
2

AD
7
 – AD

0
 is ready to accept operand from memory. The microprocessor

sends the control signal

 RD = 0 to enable memory and the program counter is incremented by 1 to

8002H. After that the operand from the memory location, 8001H is placed on the data bus.

Third Clock Cycle of M
2

T
3
, the microprocessor reads the operand

 RD . becomes high during T

3
 and the memory is

disabled.

B.

T1 T2 T3 T4 T1 T2 T3

PC (Higher order Address bus)H PC (Higher order Address bus)H

PC lowerL

Lower order
Address –A A0 7

D D0 7–

Opcode
06H

PC LowerL D D0 7–

Clock

A A8 15–

ALE

RD

IO/M

AD AD0 7–

Status

S S01 1

Lower order
Address –A A0 7

Operand
08H

S1

S0

Machine Sysle (M)1 Machine Sysle (M)2

 8. (a) What is two key lockout and N-key rollover mode of 8279? How an A/D converter can be

interfaced with a 8085 microprocessor?

 Refer Solution of 2008 WBUT Question No. 11(e) and Refer Section 18.7.

 (b) Write an assembly-language program for BCD to binary conversion.

 Refer Page 11.36.

 (c) What the functions of RESET, HOLD, INTERRUPT and READY pins?

 Refer Section 2.3, Page 2.16 and 2.17.

 9. (a) Describe the different addressing modes of the 8086 microprocessor.

 Refer Section 10.2.

 (b) Draw the architecture of 8086. What are the main functions of BIU and EU unit of

8086 µp ?

 Refer Fig. 9.1 and Sections 9.2.1 and 9.2.2.

 (c) How is pipelining achieved in the 8086 microprocessor?

 Refer Section 9.2.3.

 10. (a) What do you mean by an interrupt-driven system? Arrange the interrupt according

to their priority. Define maskable and nonmaskable interrupts. What is interrupt call

location?

 Refer Sections 6.1, 6.2, 6.3 and 6.4.

 (b) Why is a decoder circuit needed? Using 74LS138, explain the interfacing of memory and

IO devices.

 Refer Section 5.8.

 The microprocessor communicates with various memory ICs. The interfacing between

microprocessor, memory and I/O devices through address bus, data bus and control bus is depicted

in Fig. 3. The address decoder is used to select proper memory and I/O devices is given in Fig. 4.

8055
Microprocessor

Memory

Data bus

Control bus

Address bus

I/O
Device

I/O
Device

I/O
Device

Solution of 2010 WBUT Paper S.23

Microprocessors and MicrocontrollersS.24

8085
Microprocessor

Address Bus

Address decoder

I/O
Device

I/O
Device

I/O
Device

I/O
Device

Port
ff

Control

Data bus

Port
00 Port 01

 When address decoder is enabled and chip select signals are applied to decoder, RAM or EPROM

or I/O devices are selected. Data will be stored or read from memory devices or I/O devices. The

total 64K addresses are to be assigned to memories and I/O devices. There are two types of address

mapping: memory mapped I/O and I/O mapped I/O.

 In some microprocessors, memory and I/O operation can be differentiated by control signals.

The control signal IO/
__

 M is available to distinguish between memory and I/O operations. When

the control signal IO/
__

 M is high, an I/O operation can be performed. If the control signal IO/
__

 M is

low, memory operations will be performed. In this case, the same address can be assigned to I/O

devices as well as memory location. Generally, two separate address spaces exist and each address

space can be entirely assigned to either memory or I/O devices. This technique is known as I/O

mapped I/O.

 In an I/O-mapped-I/O scheme, I/O device cannot be considered as memory location. The I/O-

mapped-I/O scheme requires special instruction like IN/OUT to access I/O devices and special

signals IO/
__

 M . In this scheme, 8085 can access 256 I/O ports. In 8085 microprocessor, this scheme

requires 8-bit address lines. It requires less hardware to decode 8-bit address. Arithmetical or

logical operations cannot be directly performed with the input data.

 Figure 8.16 shows the connection between microprocessor and I/O devices. The I/O devices are

identified by port addresses. The I/O read and write operations are performed by using software

instructions such as IN and OUT. The I/O read and write operations are controlled by control

signals—IOR and IOW respectively. In this scheme port address are varied from 00H to FFH.

Therefore, 256 I/O devices may be connected with microprocessor in I/O mapped I/O devices.

 Figure 5 shows the address decoding technique of 8085 microprocessor. A
0
 – A

10
 are used for

addressing the EPROM IC. A
11

 – A
15

 address lines are applied to a NAND gate to generate the chip

select signal

 CS . The memory map of EPROM is given below:

 A
15

 A
14

 A
13

 A
12

 A
11

 A
10

 A
9
 A

8
 A

7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 0000H

 M

 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 03FFH

2K-EPROM

R/W OE

A A
0 10
– D D

0 7
–

CS

CS

A
11

A
15

 Figure 5 shows the complete memory and address decoder circuit. In this case, a 3 line to 8-line

decoder can be used to select any one output. Based on inputs at A
11

, A
12

, A
13

 any one output of

O
0
 – O

7
 will be active low and other output lines remain high. The output lines are connected to

the chip select of memory ICs. It is depicted in Fig. 6 that O
0
 is connected with the chip select of

2K EPROM and O
7
 is connected with the 2 K RAM. The output lines and corresponding memory

address capability is given in Table 1.

3 line

to

8 line

Decoder

2K-EPROM

D D
0 7
–

R/W OE

A
11

A
12

A
13

O
0

O
1

O
2

O
3

O
4

O
5

O
6

O
7

GND GND +5V

G
2A

G
2B

G
1

2K-RAM

D D
0 7
–

R/W OE

CS

CS

A A
0 10
–

A A
0 10
–

Solution of 2010 WBUT Paper S.25

Microprocessors and MicrocontrollersS.26

Table 1 Memory address selected by the decoder

 Output lines Memory address

 O
0
 0000H–07FFH

 O
1
 0800H–0FFFH

 O
2
 1000H–17FFH

 O
3
 1800H–1FFFH

 O
4
 2000H–27FFH

 O
5
 2800H–2FFFH

 O
6
 3000H–37FFH

 O
7
 3800H–3FFFH

 11. (a) Write short notes on any three of the following: 3× 5

 (a)Addressing modes of 8051 microcontroller

 Refer Section 8.2.

 (b) 8259 interrupt controller

 Refer Sections 14.2 and 14.3.

 (c) BSR mode of 8255

 Refer Section 12.4.4.

 (d) MIN/MAX mode operation of 8086 microprocessor

 Refer Solution of 2008 WBUT Question No. 10(d).

 Refer Sections 9.7.1, 9.7.2 and 9.7.3.

 (e) Hardware interrupt of 8085 CPU

 Refer Sections 6.2, 6.3 and 6.4.

Solution of 2011 WBUT Paper
GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) In 8085 the addressable memory is

 (a) 64 kB (b) 1 MB (c) 4 kB (d) 16 kB

 (ii) The addressing mode of the instruction LDA address is

 (a) combined (b) implied (c) register (d) direct

 (iii) The instruction XCHG exchanges the contents of

 (a) ACC and HL pair (b) BC pair and HL pair

 (c) DE pair and HL pair (d) HL pair and memory location

 (iv) Machine cycles for IN instruction are

 (a) 6 (b) 5 (c) 4 (d) 3

 (v) The content of the accumulator is 08H. Then the XRI 80H instruction was executed. The

content of the accumulator is

 (a) 80H (b) FFH (c) 88H (d) 08H

 (vi) RST 7.5 interrupt is

 (a) vectored and maskable (b) non-vectored and maskable

 (c) non-vectored and non-maskable (d) vectored and non-maskable

 (vii) When a subroutine is called, the address of the instruction next to CALL is saved in

 (a) stack pointer (b) program counter

 (c) stock (d) combination of flag and AX register

 (viii) An 8K × 8 ROM holding the monitor program in a microprocessor trainer kit has the end

address

 (a) 8000 H (b) 4000 H (c) 1FFF H (d) 3FFF H

 (ix) How many address lines are there in 8086 microprocessors?

 (a) 16 (b) 8 (c) 20 (d) 12

 (x) The total I/O space available in 8085 if peripheral mapped I/O is used is

 (a) 64 (b) 128 (c) 256 (d) 512

 (xi) 8251 is a

 (a) USART IC (b) counter (c) interrupt controller (d) none of these

 (xii) A single instruction to clear the lower four bits of the accumulator in 8085 microprocessor is

 (a) XRI 0F H (b) ANI F0 H (c) ANI 0F H (d) XRI F0H

Solution

 (i) (a) 64 kB (ii) (d) direct (iii) (c) DE pair and HL pair

 (iv) (d) 3 (v) (c) 88H (vi) (a) vectored and maskable

 (vii) (a) stack pointer (viii) (c) 1FFF H (ix) (c) 20

 (x) (c) 256 (xi) (a) USART IC (xii) (b) ANI F0 H

Microprocessors and MicrocontrollersS.28

GROUP–B

(Short-Answer Type Questions)

Answer any three of the following. (3 × 5 = 15)

 2. State the uses of any three special purpose registers available in 8085 microprocessor.

 Refer Section 2.2.5.

 3. Draw the timing waveform of op-code fetch machine cycle of 8085 microprocessor.

 Refer Section 3.7.1.

 4. Write a subroutine for 1-second delay using 8085 assembly-level instructions.

 Using only one register in a delay loop, a limited time delay is generated. If very high time delay is

required, a register pair will be used in place of a register. For example, a 16-bit operand is loaded

in the DE register pair. Then DE register pair is decremented by one using DCX D instruction. The

DCX instruction does not set the zero flag. Therefore, additional instructions are used for testing

zero flag and JNZ instruction is executed only when the zero flag is set. To generate about 1 s

delay, the typical instructions of the time delay loop using a register pair (LOOP-I) and a register

(LOOP-II) are given below:

 PROGRAM

Memory Machine Labels Mnemonics Operands Comments T state

address Codes

8100 06, 0D MOV B, 0D 7

8102 11, 00, 80 LOOP II LXI D, 4000 Initialise the DE 10

 register pair

8105 1B LOOP-I DCX D Decrement DE 5

 register pair

8106 7B MOV A,E Copy content of E 5

 register in accumulator

8107 B2 ORA D OR D with accumulator 4

8108 C2, 05, 81 JNZ LOOP-I Jump not zero to LOOP 10

810C 05 DCR B 5

810D C2, 02, 81 JNZ LOOP II 10

 The number of T states for execution of LOOP-I is

 = (T states for DCX D + T states for MOV A, E + T states for ORA D + T states for JNZ)

× Number of times LOOP is executed

 = (5 + 5 + 4 + 10) × 16384 T states = 393216 T states

 If the microprocessor clock frequency is 5 MHz, time delay in LOOP-I is equal to T
L
 = T × number

of T states for execution of LOOP =
5

1 × 10–6 × 393216s = 78.6432 ms

 Initially, assume the content of register B will be N. Then time delay for LOOP –II is equal to

 Time delay for LOOP-I × N + T × N × (T states for LXI D,4000 + T states for DCR B + T states

 for JNZ LOOP II) = 78.6432 ms × N +
5

1 × 10–6 × N × (10 + 5 + 10) s

 Total time delay is

 T
D
 = T × T states for MOV B, N + 157.2864 ms × N +

5

1 × 10–6 × N × (10 + 5 + 10) s

 =
5

1 × 10–6 + × 7s + 78.6432 ms × N +
5

1 × 10–6 × N × (10 + 5 + 10) s = 1000 ms

 = 0.0014 ms + 78.6432 ms × N + 0.005 N = 1000 ms

 Therefore, N = 12.71 =0DH (approx)

 5. (a) What are the functions of ALE, HOLD and READY signals?

 Refer Section 2.3.

 (b) Define machine cycle and instruction cycle.

 Refer Pages 3.30 and 3.29.

 6. (a) Give the bit configuration of 8085 flag register

 Refer page 2.10.

 (b) Write down the mode-0 control word of 8255A for the following:

 PORT A = input, PORT B not used, PORT C(upper) = input, PORT C(lower) = output

 The control word bits for the above definition of ports are as shown in Fig.1.

 Bit. No. D
0
 is set to 0, as the Port C

lower
 is an output port.

 As Port B is not used, assume Port B as output and operates in mode 0.

 Therefore, Bit No. D
1
 is set to 0, as the Port B is an output port.

 Bit No. D
2
 is set to 0, as the Port B has to operate in Mode 0.

 Bit No. D
3
 is set to 1, as the Port Cupper is an input port.

 Bit No. D
4
 is set to 1, as the Port A is an input port.

 Bit No. D
5
 and D

6
 are set to 00 as the port A has to operate in Mode 0.

 Bit No. D
7
 is set to 1, as the ports A, B and C are used as simple input/output ports.

 Thus the control word for above operation is 98 H.

9

01 0 1 1 0 0 0

8

D7 D6 D5 D4 D3 D2 D1 D0
BIT

CONTROL

WORD

Fig.1

GROUP – C

(Long-Answer Type Questions)

Answer any three of the following: (3 × 15 = 45)

 7. (a) What are different interrupts in 8085? Give their locations. Distinguish between

maskable and unmaskable interrupts.

 Refer Sections 6.3 and 6.2.

 (b) After the execution of RIM instruction, the accumulator contains 49H.

 Explain the accumulator contents.

 The RIM instruction loads the accumulator with 8 bits, which consists of the status of the

interrupt mask, the interrupt, enable, the pending interrupts and one bit of serial input data.

Figure 2 shows the accumulator content for RIM instruction

Solution of 2011 WBUT Paper S.29

Microprocessors and MicrocontrollersS.30

D7

SID

RST 5.5 Mask
0 – Available, 1 – Masked

RST 6.5 Mask
0 – Available, 1 – Masked

RST 7.5 Mask
0 – Available, 1 – Masked

Interrupt enable value
of the interrupt enable
Flip flop

RST 5.5 Interrupt pending

RST 6.5 Interrupt pending

RST 7.5 Interrupt pending

Serial Data In

D6 D5 D4 D3 D2 D0D1

P 7.5 P 6.5 P 5.5 IE M 7.5 M 6.5 M 6.5

 INTERRUPT MASK BITS D
0
, D

1
, and D

2
: Bits D

0
 D

1
 and D

2
 represent the current setting

of the mask for each of RST 7.5, RST 6.5 and RST 5.5. A high level shows that interrupt

is masked and low level means that interrupt is not masked. Bits D
0
 D

1
 and D

2
 return the

contents of the three mask flip-flops. These bits can be used by a program to read the mask

settings in order to modify only the right mask.

 INTERRUPT ENABLE BIT D
3
: Bit D

3
 is the Interrupt Enable flag. This bit shows whether

the maskable interrupt process is enabled or not. When it is high, interrupt is enabled. If it

is low, interrupt is disabled. It returns the contents of the Interrupt Enable flip-flop. It can be

used by a program to determine whether or not interrupts are enabled.

 INTERRUPTS PENDING BITS D
4
, D

5
, D

6
: Bits D

4
, D

5
 and D

6
 represent the pending

interrupts. Bits D
4
 and D

5
 return the current values of the RST 5.5 and RST 6.5 pins. Bit D

6

returns the current value of the RST 7.5 memory flip-flop. A high level on bits D
4
, D

5
 and D

6

states that interrupt are pending. A low level on bits D
4
, D

5
 and D

6
 states that interrupts are not

pending.

 SERIAL INPUT DATA BIT D
7
: Bit D

7
 is used for serial data input. The RIM instruction

reads the value of the SID pin on the microprocessor and returns it in this bit.

 After execution of RIM instruction, the accumulator content is 49H. Therefore, D
7
 = 0, D

6
 =

1, D
5
 = 0, D

4
 = 0, D

3
 = 1, D

2
 = 0, D

1
 = 0 and D

0
 = 1. Since D

0
 = 1, RST 5.5 is masked. As D

1
=

0 and D
2
 = 0, RST 6.5 and RST 7.5 are available. As D

3
 = 1, interrupt is enabled. Since D

5
 =

0 and D
4
 = 0, RST 5.5 and RST 6.5 interrupts are not pending. As D

6
 = 1, RST 7.5 interrupts

is pending. SID = 0, as D
7
 = 0.

 (c) Which interrupts are marked after the execution of the following instructions?

 MVI A,1DH; SIM

 Sometimes it is required to enable some selected interrupts and disable some other interrupts.

The selected interrupts are enabling through the Set Interrupt mask. The accumulator (A) is

loaded with the specified mask bits. The SIM instruction reads the accumulator content and

enables and disables the interrupts.

 The individual masks for RST 5.5, RST 6.5 and RST 7.5 are manipulated using the SIM

instruction. This instruction takes the bit pattern in the accumulator. The SIM instruction

reads the accumulator content and enables or disables the specific interrupts. Figure 3 shows

the accumulator content for SIM instruction.

 RST MASKS BITS D
0
, D

1
, and D

2
 : Bit D

0
 is the mask for RST 5.5, bit D

1
 is the mask for RST

6.5 and bit D
2
 is the mask for RST 7.5. If the mask bit is 0, the interrupt is available. If the mask

bit is 1, the interrupt is masked. If bits D
0
 or D

1
 are set to 1, a signal applied to their respective pins

causes no action. When D
0
 or D

1
 are set to 0, their respective bits will be visible through the RIM

instruction, and the call to the interrupt vector will occur. In the case of bit D
2
, the RIM instruction

can indicate that RST 7.5 interrupt is pending, and an automatic call will not occur.

 MASK SET ENABLE BIT D
3
: Bit D

3
 is Mask Set Enable (MSE) and this is an enable for setting

the mask. If it is set to 0, the mask is ignored and the old settings remain. If it is set to 1, the

new settings are applied. The SIM instruction is used for multiple purposes and not only for

setting interrupt masks. It is also used to control functionality such as Serial Data Transmission.

Therefore, bit D
3
 is necessary to tell the microprocessor whether or not the interrupt masks should

be modified.

 RST 7.5 RESET BIT D
4
: Bit D

4
 is RST 7.5. The RST 7.5 interrupt is the only 8085 interrupt that

has memory. If a signal on RST7.5 arrives while it is masked, a flip-flop will remember the signal.

When RST7.5 is unmasked, the microprocessor will be interrupted even if the device has removed

the interrupt signal. This flip-flop will be automatically reset when the microprocessor responds

to an RST 7.5 interrupt. Bit 4 of the accumulator in the SIM instruction allows explicitly resetting

the RST 7.5 memory even if the microprocessor did not respond to it.

 UNDEFINED BIT D
5
: Bit D

5
 is not used by the SIM instruction

 SOD ENABLE BIT D
6
: Bit D

6
 is used for serial output data enable.

 SERIAL OUTPUT DATA BIT D
7
: Bit D

7
 is used for serial output data. The SIM instruction is

used for serial data transmission. When the SIM instruction is executed, the content of bit D
7
 of

accumulator will be output on the SOD line.

Solution of 2011 WBUT Paper S.31

Microprocessors and MicrocontrollersS.32

 After the execution of the following instructions

 MVI A,1DH;

 SIM

 the content of accumulator is 1D H as shown below.

SOD SDE xxx R7.5 MSE M7.5 M6.5 M5.5

0 0 0 1 1 1 0 1

 Since the content of accumulator is 1D H, it determines the following operation:

Disable RST 5.5 as bit D
0
 = 1

Enable RST 6.5 as bit D
1
 = 0

Disable RST 7.5 as bit D
2
 = 1

Allow setting the masks as bit D
3
 = 1

Reset the flip-flop as bit D
4
 = 1

Bit 5 is not used as bit D
5
 = 0

Don’t use serial data bit D
6
 = 0

Serial data is ignored bit D
7
 = 0

 8. (a) Discuss the advantages and disadvantages of memory mapped I/O and I/O mapped I/O

scheme. Which scheme is supported by the 8085 microprocessor and how?

 Refer Section 5.8.

 (b) Give the hardware and software to interface, one seven-segment display with 8085 µp

whose address is FC23H.

 Seven-segment display is widely used in calculators, digital watches, and measuring

instruments, etc. Generally, Light Emitting Diode (LED) and Liquid Crystal Display (LCD)

segments provide the display output of numerical numbers and characters. To display any

number and character, the seven-segment display is most commonly used. Figure 4(a) shows

the segment identification and display of decimal numbers 0 to 9 is given in Fig. 4(b). The

a b c d e f g

0 1 2 3 4 5 6 7 8 9

e

d

c

g

f

a

b

(a)

(b)

light emitting diodes emit light when the anode is positive with respect to the cathode. There

are two possible connections, namely common anode and common cathode. In common

anode connection, seven anodes connected to a common voltage and the cathode will be

controlled individually to get the proper display. But in common cathode connection, anodes

can be controlled individually for display when all cathodes are connected to a common

ground of supply voltage as depicted in Fig. 5.

g

f

e

d

g

b

a

g

f

e

d

g

b

a

+ 5v

(a) (b)

 Figure 6 shows one seven-segment display unit interfaced to the 8085 microprocessor using a

latch. The display code in hexadecimal for 0, 1, 2, 3, 4, 5, 6, 7 , 8, 9 are C0, F9, A4, B0, 99, 82,

F8, 80 and 98 respectively. The port address FC23H is used to interface the display. The address

of seven segment display unit is selected by A
15

 = A
14

 = A
13

 = A
12

 = A
11

 = A
10

 = 1, A
9
 = A

8
 = A

7

Solution of 2011 WBUT Paper S.33

Microprocessors and MicrocontrollersS.34

= A
6
 = 0, A

5
 = 1, A

4
 = A

3
 = A

2
 = 0, A

1
 = A

0
 = 1, IO/M = 0 and WR = 0. In this interface circuit,

A
0
A

1
 A

2
 A

3
 are coded using OR gate-1, A

4
A

5
 A

6
 A

7
 are coded using OR gate-2, A

8
A

9
 A

10
 A

11

are coded using OR gate-3, A
12

A
13

 A
14

 A
15

 are coded using OR gate-4. After that the output of

OR-gate1, OR-gate-2, OR-gate-3, and OR-gate-4 are ORed with IO/M and WR, and a low output

signal is generated. Therefore, the CLK to 74LS374 will be applied when the decoding logic input

is FC23H. For any other address, the logic gates are not enabled and the seven-segment display is

not active to latch the data.

 If we want to display 0 in seven-segment display unit, the following instructions will be executed.

 MVI A, C0H Load C0H into accumulator. The display code in hexadecimal for 0 is C0H.

 LXI H, FC23H Load FC23H in HL Register pair. FC23H is the address of seven-segment

display unit.

 MOV M, A Content of accumulator send to address FC23H and 0 will be display on the

seven segment display unit.

 (c) Which addressing mode is used in the above scheme? What change is required if address

of the display is FC H?

 The above scheme is the memory mapped I/O scheme and the indirect addressing mode is used.

 If address of the display is FC H, I/O mapped I/O scheme will be used and the interface of

seven segment-display through 74LS374 is depicted in Fig.7.

D – D7 0

A7A A A6 5 4 A3A A A2 1 0

Address

74LS274

OR
gate-1

OR
gate-1

CLK

WR
lO/M

g

a

bf

e c

d h
h

g
f

e

d

c
b

a

 Since the port address FCH is used to interface the seven-segment display unit, the address of

seven-segment display unit is selected by A
7
 = A

6
 = A

5
 = A

4
 = 1, A

3
 = A

2
 = 1, A

1
 = A

0
 = 0, IO/M

= 0and WR = 0. In the above interface circuit, A
0
A

1
 A

2
 A

3
 are coded using OR gate-1, and A

4
A

5

A
6
 A

7
 are coded using OR gate-2. When the output of OR-gate-1 and OR-gate-2 are ORed with

IO/M and WR, a low output signal is generated. Therefore, the CLK will be applied to 74LS374

when the decoding logic input is FCH.

 If we want to display 0 in seven segment display unit, the following instructions will be executed.

 MVI A, C0H Load C0H into accumulator. The display code in hexadecimal for 0 is C0H.

 OUT FCH Content of accumulator send to port address FCH and 0 will be display on the

seven segment display unit

 9. (a) Describe the different addressing modes of 8086 microprocessor.

 Refer Section 10.2.

 (b) What are the main functions performed by BIU and EU unit of the 8086 microprocessor?

 Refer Sections 9.2.1 and 9.2.2.

 (c) How is pipeline achieved in 8086 microprocessor?

 Refer Section 9.2.3.

 10. Discuss the hardware and software of any microprocessor-based industrial applications.

 Nowadays microprocessors are used to implement the traffic control system. Figure 8 shows the

simple model of microprocessor-based traffic con trol system. The various control signals such

as red, green, orange, forward arrow, right arrow and left arrow are used in this scheme. The

forward, right and left arrows are used to indicate forward, right and left movement respectively.

The red (R) signal is used to stop the traffic in the required lane and the yellow (Y) signal is used

as standby, which indicates that the traffic must wait for the next signal. The green (G) light for a

particular lane remains ON for DELAY-1 seconds followed by the stand by signal for DELAY-2

seconds. However, at a time 3 out of the four roads, the left signal or the left arrow remains ON

even though that lane may have a red signal. The traffic light control is implemented using a

8085 microprocessor kit having 8255 on board and the interfacing circuit is illustrated in Fig. 9.

Each signal is controlled by separate pin of I/O ports. The total number of logic signals required

for this arrangement is twenty-four. The programmable peripheral interface device 8255 is used

to interface these 24 logic signals with the lamps. The logic ‘0’ and ‘1’ represent the state of the

lamp. Logic ‘1’ represents ON and ‘0’ represents OFF. All ports of 8255 are used as output ports.

The control word to make all ports as output ports for Mode 0 operation is 80H. The traffic light

control program can be written by the flowing steps:

Step-1 Initialize all ports of the 8255 as output ports.

Step-2 Determine the required status of port A, port B and port C of 8255 for north to south traffic

movement. Load data into Accumulator and send to port A, port B and port C for north to

South traffic movement.

Step-3 Call delay subroutine -1.

Step-4 Before starting east to west traffic movement, North to south traffic movement will be ready

to stop and east to west traffic must be ready for movement. Therefore, determine the required

status of port A, port B and port C for this operation. Then load data into accumulator and send

to port A, port B and port C for north to south traffic movement will be ready to stop and east

to west traffic must be ready for movement.

Step-5 Call delay subroutine-2

Step-6 For east to west traffic movement, determine the required status of port A, port B and port C of

8255. Load data into accumulator and send to port A, port B and port C for east to west traffic

movement.

Step-7 Call delay subroutine-1.

 Prior to starting south to north traffic movement, east to west traffic will be ready to stop and

South to North traffic must be ready for movement. For this operation determine the status of

port A, port B and port C of 8255. Load required data into accumulator and send to port A,

port B and port C for east to west traffic will be ready to stop and south to north traffic must be

Solution of 2011 WBUT Paper S.35

Microprocessors and MicrocontrollersS.36

ready for movement

 Call delay subroutine-2.

Step-10 Determine the status of port A, port B and port C for south to north traffic movement. Load

required data into accumulator and send to port A, port B and port C for south to north movement.

Step-11 Call delay subroutine-1.

Step-12 Before starting west to east traffic movement, south to north traffic movement will be ready to

stop and west to east traffic must be ready for movement. Find out the status of port A, port B

and port C for this operation. Load required data into accumulator and send to port A, port B

and port C for south to north traffic movement will be ready to stop and west to east traffic must

be ready for movement

Step-13 Call delay subroutine-2.

Step-14 For west to east traffic movement, determine the status of port A, port B and port C of 8255.

Load necessary data into accumulator and send to port A, port B and port C for west to east

traffic movement.

Step-15 Call delay subroutine-1.

Step-16 Subsequently, west to east traffic movement will be ready to stop and north to south traffic must

be ready for movement. Determine the status of port A, port B and port C for this operation.

Load needed data into Accumulator and send to port A, port B and port C west to east traffic

movement will be ready to stop and north to south traffic must be ready for movement

Step-17 Call delay subroutine-2.

Step-18 Jump to step-2.

 Figure 8 shows the bit assignment of ports. Putting 0s and 1s in required position the data byte for

each port can be derived. For example, during north to south traffic movement, the status of port

A, port B and port C are as follows:

 PA
7
 PA

6
 PA

5
 PA

4
 PA

3
 PA

2
 PA

1
 PA

0

 0 0 1 0 0 0 0 1

 PB
7
 PB

6
 PB

5
 PB

4
 PB

3
 PB

2
 PB

1
 PB

0

 0 0 0 0 0 1 0 0

 PC
7
 PC

6
 PC

5
 PC

4
 PC

3
 PC

2
 PC

1
 PC

0

 1 1 1 1 1 0 0 1

 When north to south traffic movement will be ready to stop and east to west traffic must be ready

for movement, the status of port A, port B and port C are as follows:

 PA
7
 PA

6
 PA

5
 PA

4
 PA

3
 PA

2
 PA

1
 PA

0

 0 0 0 1 0 0 1 0

 PB
7
 PB

6
 PB

5
 PB

4
 PB

3
 PB

2
 PB

1
 PB

0

 0 0 0 0 0 1 0 0

 PC
7
 PC

6
 PC

5
 PC

4
 PC

3
 PC

2
 PC

1
 PC

0

 0 0 0 0 1 0 0 1

 The calculated necessary data bytes of port A, port B and port C for all types of traffic movement

are illustrated in a table as given below.

Table 1 Traffic Movement and Status of Ports

Traffic movement Status of

Port A

Status of

Port B

Status of

Port C

North to south traffic movement 21H 04H F9H

North to south traffic movement be ready to stop and

east to west traffic be ready for start

12H 04H 09H

East to west traffic movement 0CH 27H 89H

East to west traffic movement be ready to stop and

south to north traffic be ready for start

94H 20H 08H

South to north traffic movement 64H 3CH 18H

South to north traffic movement be ready to stop and

west to east traffic be ready for start

A4H 00H 14H

West to east traffic movement 24H D0H 93H

West to east traffic movement be ready to stop and north

to south traffic be ready for start

22H 00H 85H

R

PA2

EW

N

S
PA1 PA0

Y G

PC6 PC5 PC4

R

P
A
5
P
A
4

P
A
3

Y
G

PB1

PB0

PC7

G

P
C

1
P
C

2
P
C

3

Y
R PB7

PB6

PB5

G

PA6 PA7 PC0

Y R

PB2 PB3 PB4

Solution of 2011 WBUT Paper S.37

Microprocessors and MicrocontrollersS.38

The program for traffic light control as follows:

PROGRAM for Traffic Light Control

Memory Machine Labels Mnemonics Operands Comments

address Codes

8000 3E, 80 MVI A,80H Load control word of 8255 in

 accumulator

8002 D3,0B OUT 03H Write control word in control word

 register and initialize ports

8004 3E, 21 START MVI A, 21H Send 21H in Port A, F9H in Port C

8006 D3, 00 OUT 00H and 04H in Port B for north to south

8008 3E, F9 MVI A, F9H traffic movement

800A D3, 02 OUT 02H

800C 3E, 04 MVI A, 04H

800E D3, 01 OUT 01H

8010 CD, 00, 81 CALL DELAY_1 Delay-1 memory location is 8100

8013 3E, 12 MVI A, 12H Send 12H in Port A, 09H in Port C

8015 D3, 00 OUT 00H and 04H in Port B for north to south

8017 3E, 09 MVI A, 09H traffic movement will be ready to

8019 D3, 02 OUT 02H stop and east to west traffic

801B 3E, 04 MVI A, 04H movement is ready to start

801C D3, 01 OUT 01H

801E CD, 00, 82 CALL DELAY_2 Delay-2 memory location is 8200

8021 3E, 0C MVI A, 0CH Send 0CH in Port A, 89H in Port C

8023 D3, 00 OUT 00H and 27H in Port B for east to west

8025 3E, 89 MVI A, 89H traffic movement

8027 D3, 02 OUT 02H

8029 3E, 27 MVI A, 27H

802B D3, 01 OUT 01H

802D CD, 00, 81 CALL DELAY_1

8030 3E, 94 MVI A, 94H Send 94H in Port A, 08H in Port C

8032 D3, 00 OUT 00H and 20H in Port B for east to west

8034 3E, 08 MVI A, 08H traffic movement will be ready to

8036 D3, 02 OUT 02H stop and south to north traffic

8038 3E, 20 MVI A, 20H movement is ready to start

803A D3, 01 OUT 01H

803C CD, 00, 82 CALL DELAY_2

803F 3E, 64 MVI A, 64H Send 64H in Port A, 18H in Port C

8041 D3, 00 OUT 00H and 3CH in Port B for South to

8043 3E, 18 MVI A, 18H North traffic movement

8045 D3, 02 OUT 02H

8047 3E, 3C MVI A, 3CH

8049 D3, 01 OUT 01H

804B CD, 00, 81 CALL DELAY_1

804E 3E, A4 MVI A, A4H Send A4H in Port A, 14H in Port

8050 D3, 00 OUT 00H C and 00H in Port B for south to

8052 3E, 14 MVI A, 14H north traffic movement is ready to

8054 D3, 02 OUT 02H stop and west to east traffic

8056 3E, 00 MVI A, 00H movement will be ready to start

8058 D3, 01 OUT 01H

805A CD, 00, 82 CALL DELAY_2

805D 3E, 24 MVI A, 24H Send 24H in Port A, 93H in Port C

805F D3, 00 OUT 00H and D0H in Port B for west to east

8061 3E, 93 MVI A, 93H traffic movement

8063 D3, 02 OUT 02H

8065 3E, D0 MVI A, D0H

8067 D3, 01 OUT 01H

8069 CD, 00, 81 CALL DELAY_1

806C 3E, 22 MVI A, 22H Send 22H in Port A, 85H in Port

806E D3, 00 OUT 00H C and 00H in Port B for west to east

8070 3E, 85 MVI A, 85H traffic movement is ready to stop

8072 D3, 02 OUT 02H and north to south traffic movement

8074 3E, 00 MVI A, 00H will be ready to to start

8076 D3, 01 OUT 01H

8078 CD, 00, 82 CALL DELAY_2

807B C3 JMP START

DELAY SUBROUTINE – 1 (DELAY_1)

Solution of 2011 WBUT Paper S.39

Microprocessors and MicrocontrollersS.40

Subprogram for Delay Subroutine - 1

Memory Machine Labels Mnemonics Operands Comments

address Codes

8100 11, 00, 80 LXI D, 8000 Load suitable delay value in DE

 register pair

8103 1B Level_1 DCX D Decrement the D-E register pair

 by 1

8104 7A MOV A, D Move the content of D into A

8105 B3 ORA E OR operation between A and D

8106 C2, 03, 81 JNZ Level_1 If DE is not equal to zero, jump to

 Level-1

8109 C9 RET

DELAY SUBROUTINE – 2 (DELAY_2)

Subprogram for Delay Subroutine - 2

Memory Machine Labels Mnemonics Operands Comments

address Codes

8200 16, FF MVI D, FF Load suitable delay value FF in

 D register

8202 15 Level-2 DCR D Decrement the D register by 1

8203 C2, 02, 82 JNZ Level-2 If D is not equal to zero, jump to

 Level-2

8206 C9 RET

 11. Write notes on any three of the following:

 (a) Synchronous mode of data transfer

 Refer Sections 16.1, 16.2, Fig. 16.13, Fig. 16.14.

 (b) Interrupt Service Subroutine

 Refer Section 6.1.

 (c) BSR mode of 8255 PPI

 Refer Section 12.4.4.

 (d) Designing I/O ports

 8255 is a programmable peripheral interface IC and is a multi-port input/output device. This is a

general-purpose programmable I/O device, which may be used with many different microprocessors.

The 8255 has 24 I/O pins, which may be individually programmed in two groups of twelve input/

output lines or three groups of eight lines. The two groups of I/O pins are called as Group A and

Group B. Each group contains of a subgroup of eight bits known as 8 bit port and a subgroup of four

bits known as 4 bit port. This IC has three eight bit ports: Port A: PA
7
– PA

0
 , Port B: PB

7
– PB

0
, Port

C: PC
7
– PC

0
. The port C is divided into subgroup such as Port C upper, PC

7
– PC

4
 and Port C lower,

PC
3
 – PC

0
. The Group A consists of Port A and the port C upper. The Group B consists of Port B

and the port C lower. The I/O ports can be programmed in a variety of ways as per requirement of

the programmer. The interface of 8255 PPI with 8085 microprocessor is shown in Fig.10. It is clear

from Fig.10 that

 The number of address lines required is 2, i.e. A
1
 and A

0
.

 The chip select signal (CS) is generated by address lines A
7
, A

6
, A

5
, A

4
, A

3
, A

2
 and IO / M .

 The decoding logic of Port A, Port B, Port C and Control word is given in Table 1.

Table 2

Address A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Port A Address 40H 0 1 0 0 0 0 0 0

Port B Address 41H 0 1 0 0 0 0 0 1

Port C Address 42H 0 1 0 0 0 0 1 0

Control Word Address 43H 0 1 0 0 0 0 1 1

 As per Table 2, the port address of Port A, Port B, Port C and Control word are 40H, 41H, 42H

and 43H respectively.

A7A A A6 5 4
A3 A2 A1 A0

D –7 D0

Decoder
logic

IO/M

CS

RD WR

Port A Port B Port C

8255 PPI

OR
gate-2

OR
gate-1

 (e) Serial mode of operation using 8085 microprocessor

 For serial mode of operation, the 8085 microprocessor has two serial input and output pins such as

SID and SOD. SID represents serial input data and SOD

represents serial output data. The SID and SOD pins are

used to read/write one bit data to and from peripheral

devices. There are two software instructions such as

RIM and SIM which are associated with SID and SOD

lines.

 The Serial input data (SID) line exist inside the 8085

microprocessor as Pin number 5. One bit data can be

externally read and stored using the SID line. The data

which is read is stored in the A
7
 bit of the accumulator

Register A

8085 CPU

RIM

SID Pin
Pin 5

Solution of 2011 WBUT Paper S.41

Microprocessors and MicrocontrollersS.42

whenever RIM instruction is executed. Figure11 shows the serial input data through SID pin and

RIM instruction.

 When the SID line is connected with +5 V and RIM instruction is executed, the Accumulator’s

MSB bit will be loaded with a logic 1 and the content of accumulator after the execution of RIM

instruction is 80 H as depicted in Fig.12.

1 = 80H

 If the SID is connected with 0 V (Ground) and RIM is executed, the Accumulator’s MSB bit will

be loaded with a logic 0. Then the content of Accumulator after the execution of RIM instruction

is 00 H as shown in Fig.13.

0 = 00H

 The Serial Output Data (SOD) line exists inside the 8085 microprocessor as Pin number 4. One

bit data can be externally written in this port. To write data into this port, SIM instruction must

be executed. The data which is to be written in this port must be stored in the A
7
 bit of the

accumulator. The A
6
 bit of the accumulator is called SOE (serial output enable) and this bit should

be 1 to enable serial data output. Figure 14 shows the serial output data through SOD pin and SIM

instruction.

Register A

8085 CPU

SIM

SOD Pin
Pin 4

data SOE

1

 To write 1 in the SOD line, load the accumulator with C0H and execute the SIM instruction as

shown in Fig.15.

1 = C0H1

Data SOE

 To write 0 in the SOD line, load the accumulator with 40H and execute the SIM instruction as

shown in Fig.16.

0 = 40H1

Data SOE

Solution of 2011 WBUT Paper
EI(EC)502

GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) The instruction XCHG exchanges the contents of

 (a) ACC and HL pair (b) BC pair and HL pair

 (c) DE pair and HL pair (d) HL pair and memory location

 (ii) Machine cycles for IN instruction are

 (a) 6 (b) 5 (c) 4 (d) 3

 (iii) RST 7.5 interrupt is

 (a) vectored and maskable (b) non-vectored and maskable

 (c) non-vectored and non-maskable (d) vectored and non-maskable

 (iv) When a subroutine is called the address of the instruction next to CALL is saved in

 (a) stack pointer (b) program counter

 (c) stock (d) combination of flag and AX register

 (v) Which the BSR control word to set PC4?

 (a) 09H (b) 07H (c) 04H (d) 05H

 (vi) An 8K × 8 ROM holding the monitor program in a microprocessor trainer kit has the end

address

 (a) 8000 H (b) 4000 H (c) 1FFF H (d) 3FFF H

 (vii) What will be the content of the accumulator and the status of CY flag after RLC operation, if

the content of the accumulator is BCH and CY is 0?

 (a) 79H, 1 (b) 78H, 1 (c) 5E H, 0 (d) 5D H, 0

 (viii) How many address lines are there in 8086 microprocessors?

 (a) 16 (b) 8 (c) 20 (d) 12

 (ix) The total I/O space available in 8085 if used peripheral mapped I/O

 (a) 64 (b) 128 (c) 256 (d) 512

 (x) 8251 is a

 (a) USART IC (b) counter (c) Interrupt controller (d) none of these

 (xi) If the crystal with 8085 is 2MHz, the time required to execute an instruction of 20T states is

 (a) 20 s (b) 10 s (c) 40 s (d) 5 s

 (xii) A single instruction to clear the lower four bits of the accumulator in 8085 microprocessor is

 (a) XRI 0F H (b) ANI F0 H (c) ANI 0F H (d) XRI F0H

Microprocessors and MicrocontrollersS.44

 Solution

 (i) (c) DE pair and HL pair (ii) (d) 3 (iii) (a) vectored and maskable

 (iv) (a) stack pointer (v) (a) 09H (vi) (c) 1FFF H

 (vii) (a) 79H, 1 (viii) (c) 20 (ix) (c) 256

 (x) (a) USART IC (xi) (b) 10 s (xii) (b) ANI F0 H

GROUP–B

(Short-Answer Type Questions)

Answer any three of the following. (3 × 5 = 15)

 2. Describe the addressing modes of 8085.

 Refer Section 3.2.

 3. (a) What are functions of ALE, HOLD and READY signals?

 Refer Section 2.3.

 (b) Differentiate between I/O mapped I/O and memory mapped I/O

 Refer Table 5.6 (Page 5.15).

 4. Calculate the total time delay for the following loop in the 8085 microprocessor, assuming

the clock period is 0.5 microsecond

 LXI B, 238H ; 10T

 LOOP : DCX B ; 6T

 MOV A,C ; 4T

 ORA B ; 4T

 JNZ LOOP ; 10/7 T

 In the above instructions, LXI B, 238H is executed once and the other instructions (DCX B, MOV

A,C, ORA B and JNZ) are executed for N times where N = 238H =568
D
.

 The number of T states for execution of LOOP is

 = N × T states for DCX B + N × T states for MOV A,C + N × T states for ORA B+

(N – 1) × T states for JNZ + 7

 = 568 × 6 + 568 × 4 + 568 × 4 + (568 – 1)× 10 + 7 T states = 13629 T states

 The total number of T states required for the above instructions are 10 + 13629 T states = 13639

T states

 If the microprocessor clock period is 0.5 micro-second, total time delay in LOOP is equal to

 = T × number of T states for execution of LOOP = 0.5 × 13639 µs = 6.8195ms (approx).

 5. (a) Give the bit configuration of 8085 flag register.

 Refer Fig. 2.10 (Page 2.10)

 (b) Write down the mode-0 control word of 8255A for the following:

 PORT A = input, PORT B not used, PORT C (upper) = input,

 PORT C (lower) = output

 Refer Solution of Question 6(b) of 2011 WBUT Solution (EI-502)

 6. Draw the timing diagram of Memory Read machine cycle of 8085 microprocessor.

 Refer Section 3.7.2.

GROUP – C

(Long-Answer Type Questions)

Answer any three of the following. (3 × 15 = 45)

 7. (a) What are vectored and non-vectored interrupts?

 Refer Sections 6.3 and 6.4.

 Explain the instructions RIM and SIM .

 Refer Sections 6.5.1 and 6.5.2.

 Write an instruction to enable the RST 7.5, RST 6.5 and disable RST 5.5

 Refer Solution of 2009 WBUT Question 11(b).

 (b) Discuss how 8253 is used to generate square waves.

 Refer Section 13.5.4.

 (c) What is the difference between CALL and JMP instructions of 8085 microprocessor?

 The branch group instructions are generally used to change the sequence of the program

execution. There are two types of branch instructions, namely conditional and unconditional.

The conditional branch instructions transfer the program to the specified address when

condition is satisfied only. The unconditional branch instructions transfer the program to the

specified address unconditionally. CALL and JMP instructions are examples of branch group

instructions. The difference between CALL and JMP instructions are given below:

CALL JMP

The specified format of Unconditional CALL

instruction is

CALL 16-bit address

(Unconditional subroutine CALL)

([SP] – 1) PCH , ([ISP]-2) PCL,

[SP] [SP]-2, PC 16 bit address

Machine cycles: 5, States: 9/18.

The program sequence is transferred to the

memory location specified by the 16-bit address

given in the instruction. Before the transfer, the

contents of the program counter (the address

of the next instruction after CALL) are pushed

onto the stack. Example: CALL 8700H

The specified format of Unconditional JUMP

instruction is

JMP 16-bit address

(Jump Unconditionally)

PC Label (16-bit address)

Machine cycles: 3, States 10

The program sequence is transferred to the

memory location specified by the 16-bit

address given in the operand. For example,

in JMP 8000H, the program jumps to the

instruction specified by the address location

8000H unconditionally.

(Contd.)

Solution of 2011 WBUT Paper S.45

Microprocessors and MicrocontrollersS.46

In the conditional CALL instruction, the

program sequence is transferred to the memory

location specified by the 16-bit address given

in the operand of the instruction based on the

specified flag of the PSW. Before the transfer,

the address of the next instruction after the call,

or the contents of the program counter is pushed

to the stack. The examples of conditional jump

instruction are CC (Call on Carry), CNC (Call

on no Carry), CP (Call on Positive), CZ (Call

on Zero), CNZ (Call on no Zero), CPE (Call on

Parity Even) and CPO (Call on Parity Odd)

In the conditional jump instruction; the

program sequence is transferred to the

memory location specified by the 16-bit

address given in the operand based on the

specified flag of the PSW. The examples of

conditional jump instruction are JC(Jump on

Carry), JNC (Jump on no Carry), JP (Jump

on Positive), JZ (Jump on Zero), JNZ (Jump

on No Zero), JPE (Jump on Parity Even) and

JPO (Jump on Parity Odd)

 8. (a) Describe the different addressing modes of 8086 microprocessor.

 Refer Section 10.2.

 (b) What are the main functions performed by BIU and EU unit of 8086 microprocessor?

 Refer Sections 9.2.1 and 9.2.2.

 (c) How is pipeline achieved in 8086 microprocessor?

 Refer Section 9.2.3.

 9. (a) Discuss the memory organization of 8051 microcontroller.

 Refer Section 7.3.

 (b) What are the different interrupts available in 8051 microcontroller?

 Refer Solution of Question 7(c) of 2010 WBUT Solution EI 405.

 (c) Discuss the different addressing modes of 8051 microcontroller.

 Refer Section 8.2.

 10. Discuss the hardware and software of any microprocessor based industrial applications.

 Electrical appliances or any electrical and electronics instruments always require protection against

over and under voltage. The conventional relays are already used for the under and overvoltage,

the maximum and minimum level of voltage are not changeable. Though a microprocessor-based

system is high cost but the advantage of this system is that the same system may provide protection

against maximum and minimum allowable current and voltage with a scope to adjust maximum

and minimum limits.

 The schematic block diagram of the system over voltage protection is shown in Fig.1. It is

depicted in Fig.1 that a single-phase AC supply is connected to a load (electrical appliance)

through an electromagnetic relay. This electrical appliance must be protected from overvoltage

as well as undervoltage. For this, a potential transformer (PT) has been used to collect voltage

signal. The output of PT is fed to the input of peak detector circuit to detect the peak value of the

voltage. The output of peak detector circuit is applied to the A/D Converter for analog-to-digital

conversion. For protection against over and undervoltage, an opto-coupler circuit, MCT2E is used

to connect to the pin PB
0
 of the I/O port. 5 V DC supply has been connected to the opto-coupler

circuit and output has been connected to the energizing coil of an electromagnetic relay through a

diode IN 4007.

Table (Contd.)

 In microprocessor-based protection, initially the upper and lower limiting values of voltage are

stored in memory. Initialize the port A and port C upper as input ports and port B and port C

lower as output ports. The microprocessor receives the output of A/D converter and compares

the same with the upper and lower limiting values of voltage (V
UL

 and V
LL

). Within the safe limit,

the microprocessor sends 0 signal through PB
0
 and relay is OFF and supply current flow through

load. If voltage value is either less than V
LL

 or greater than V
UL

, microprocessor send ‘1’ signal

through PB
0
 and relay coil is energized. As the relay becomes ON, supply voltage is disconnected

from system and the system will be protected. The flowchart of program is given in Fig. 2 and the

assembly-language programming for voltage protection is given below.

PROGRAM for Voltage Protection

Memory Machine Labels Mnemonics Operands Comments

address Codes

8000 21, 00, 81 LXI H, 8100H Initialise memory location 8100H

8003 3E, 50 MVI A, 50H Store digital equivalent of V
LL

 in

8005 77 MOV M, A 8100H location

8006 23 INX H Increment HL register pair

8007 3E,70 MVI A, 70H Store digital equivalent of V
UL

 in

8009 77 MOV M, A 8100H location

800A 3E, 98 MVI A, 98H Load control word of 8255-1 in

 accumulator

800C D3, 03 OUT 03H Write control word in control word

 register and initialize ports

800E 3E, 08 START MVI A, 08H Send start of conversion signal through

 PC
3

8010 D3, 02 OUT 02H PC
3
 is high

8012 3E, 00 MVI A, 00H As PC
3
 will be high for 1or two clock

 pulse, make it 0

8013 D3, 02 OUT 02H PC
3
 becomes low

8015 DB, 02 LOOP IN 02 Read end of conversion signal

8017 17 RAL Rotate accumulator to check either

 conversion is over or not

8018 D2,15, 80 JNC LOOP If conversion is not completed, jump to

 LOOP

801B DB, 00 IN 00 Read digital output of A/D converter

 corresponding to voltage

801D 2F CMA Complement of ADC output

801E D6, 80 SUI 80H Subtract 80H

Solution of 2011 WBUT Paper S.47

Microprocessors and MicrocontrollersS.48

8020 4F MOV C, A Store digital equivalent of voltage in C

 register

8021 21, 00, 81 LXI H, 8100H Load 8100H in HL-register pair

8024 7E MOV A, M Move digital equivalent of V
LL

 voltage

 into accumulator from 8100H location

8025 B9 CMP C Compare C with V
LL

8026 DA, 32, 80 JC TRIP If carry flag is set, jump to trip

8029 79 MOV A, C Move content of C register to

 accumulator

802A 23 INX H Increment HL register pair

802B BE CMP M Compare the content of Memory V
UL

 with accumulator

802C DA, 32, 80 JC TRIP If carry flag is set, jump to trip

802F C3, 0E, 80 JMP START Jump to start

8032 3E, 01 TRIP MVI A, 01H

8034 D3, 01 OUT 01H Send PB
0
 = 1 and trip the circuit

8035 76 HLT Stop

AC Supply

NO

Rectifier

PT

NC

AC Load

I

Peak
Detector

A/D
Converter

EOC
SC

D – D0 7

PC7

PC0

Port A
8255

8085
MP

D
1.5 K

1.5 K
4

SL 100

+
(10 V)
Vcc

5

2

1 100 Ω

PB0

 11. Write notes on any three of the following:

 (a) Synchronous mode of data transfer

 Refer Sections 16.1, 16.2, Fig. 16.13, 16.14.

 (b) Serial mode of operation using 8085 microprocessor

 Refer Solution of 2011 WBUT (EI502) Question No. 11 (e).

 (c) Interfacing memory with a microprocessor

 Refer Section 5.8, Fig. 5.17 and Fig. 5.18.

 (d) Designing I/O ports

 Refer Solution of 2011 WBUT (EI502) Question No. 11 (d).

 (e) Interrupt Service Subroutine

 Refer Section 6.1.

Solution of 2011 WBUT Paper S.49

Solution of 2012 WBUT Paper
(EI402)

 1. Choose the correct alternatives for any ten of the following: (10 × 1 = 10)

 (i) Whenever the PUSH instruction is executed in case of 8085 CPU, the stack pointer is
 (a) decremented by 1 (b) decremented by 2
 (c) incremented by 1 (d) incremented by 2
 (ii) A single instruction to clear the lower four bits of the accumulator in the 8085 microprocessor

is
 (a) XRI 0FH (b) ANI F0H (c) ANI 0FH (d) XRI F0H
 (iii) Machine cycle in “CALL” instruction are
 (a) 6 (b) 5 (c) 4 (d) 3
 (iv) Address lines required for 32k-byte memory chip is
 (a) 13 (b) 14 (c) 15 (d) 16
 (v) The addressing mode used in the instruction of LDAX B
 (a) register (b) immediate (c) register-indirect (d) direct
 (vi) Tri-state buffers are often used to make sure the unselected devices have their data outputs

placed in the
 (a) Logic 1 state (b) high-impedance state
 (c) Logic 0 state (d) input stage
 (vii) To perform Handshake I/O using 8255 PPI, which mode should be chosen?
 (a) Mode 0 (b) Mode 1
 (c) Mode 2 (d) Any of (a) and (b)
 (viii) For Opcode fetch machine cycles the status signals of 8085 microprocessor is
 (a) IO / M = 0, S

1
 = 0, S

0
 = 1 (b) IO / M = 1, S

1
 = 1, S

0
 = 0

 (c) IO / M = 0, S
1
 = 1, S

0
 = 1 (d) IO / M = 1, S

1
 = 0, S

0
 = 1

 (ix) Which one of the following is the non-vectored interrupt of 8085A microprocessor?
 (a) RST 7.5 (b) EI (c) INTR (d) TRAP
 (x) The content of “HL” register pair is 204AH. What will be the content of “HL” register pair

after executing the instruction DAD H?
 (a) 204A (b) 4096 (c) 4094 (d) 2096
 (xi) Whenever the POP instruction is executed, the stack pointer is
 (a) decremented by 1 (b) decremented by 2
 (c) incremented by 1 (d) incremented by 2
 (xii) When the instruction LHLD is executed, number of T-states required are
 (a) 10 (b) 14 (c) 13 (d) 15
 (xiii) SP register holds the

 (a) base address of stack

 (b) address of stack top

 (c) address of the instruction to be fetched

 (d) none of these

 (xiv) Mode-2 of 8254 is

 (a) square wave generator (b) rate generator

 (c) software trigger strobe (d) hardware trigger strobe

 Solution

 (i) (b) decremented by 2 (ii) (b) ANI F0H (iii) (b) 5

 (iv) (c) 15 (v) (c) register-indirect (vi) (b) High–impedance state

 (vii) (b) Mode 1 (viii) (c) IO / M = 0, S
1
 = 1, S

0
 = 1 (ix) (c) INTR

 (x) (c) 4094 (xi) (d) incremented by 2 (xii) (d) 15

 (xiii) (b) address of stack top (xiv) (b) rate generator

GROUP–B

(Short–Answer Type Questions)

Answer any three of the following. (3 × 5 = 15)

 2. (a) What purpose does “READY” signal serve in Intel-8085 microprocessor?

 Refer Section 2.3, Page 2.16.

 (b) Describe the bit assignment of the Flag register in the 8085 microprocessor.

 Refer Section 2.2.5, Page 2.10, Fig.2.10.

 3. (a) Define instruction cycle, machine cycle and T-state.

 For instruction cycle, Refer Section 3.6, Page 3.29

 For machine cycle, Refer Section 3.6.3, Page 3.30

 For T-state, Refer Section 3.6, Page 3.29

 (b) What will be the content of a DE register pair at the end of the program?

 LXI SP, 2000H

 LXI H, 1000H

 DAD SP

 XCHG

 HLT

 After execution of the instruction LXI SP, 2000H, 2000H should be loaded in stack pointer

immediately. When the instruction LXIH, 1000H is executed, 1000H should be loaded in Hand

L register pair immediately. After that if DAD SP instruction is executed, the content of the stack

pointer will be added with the content of the H and L register pair. Hence the content of H and

L register pair will be 3000H. When the instruction XCHG is executed, the content of D and E

register pair and H and L register pair will be exchanged. Therefore, the content of the DE register

pair at the end of the program will be 3000H.

 4. (a) Differentiate memory mapped I/O and I/O Mapped I/O schemes

 Refer Table 5.6, Page 5.15.

 (b) What do you mean by non-maskable (NMI) and vectored interrupt?

 Refer Sections 6.2, 6.3 and 6.4.

Solution of 2012 WBUT Paper S.51

Microprocessors and MicrocontrollersS.52

 5. (a) What are the functions of program counter, stack pointer, and ALE signal?

 For program counter and stack pointer, Refer Section 2.2.5, Page 2.10.

 For ALE signal, Refer Section 2.3, Page 2.14.

 (b) Write the control word format for I/O mode in 8255.

 Refer Section 12.3 (Fig. 12.4), Page 12.4 and Section 12.5.

 6. Draw the Timing diagram of MOV A,M instruction.

 Refer Solution of 2010 WBUT (EI502) Question No. 5.

GROUP–C

(Long–Answer Type Questions)

Answer any three of the following. (3 × 15 = 45)

 7. (a) The following block of data is stored in the memory locations from XX55H to XX5AH.

Transfer the data to the locations XX80H to XX85H in the reverse order (e.g. the data

byte 22H should be stored at XX85H and 37H at XX80H), Data(H) 22,A5, B2, 99, 7F, 37.

 To transfer a block of data from one section of memory to the other section of memory, the

following algorithm will be followed:

 Algorithm

 1. Store the address of number of data in HL register pair.

 2. Load number of data in C register from memory.

 3. Store the starting address of destination in DE register pair.

 4. Increment HL register pair to get data from source.

 5. Copy data from source to accumulator.

 6. Exchange HL and DE register pair, store the content of accumulator in destination address.

 7. Exchange HL and DE register pair.

 8. Increment HL and decrement DE register.

 9. Decrement C register.

 10. If the C register is not zero, repeat steps 5 to 9.

Labels Mnemonics Operands Comments

MVI C,06H Load number of data 06 in C register immediately

LXI H,XX55 Store the address of number of data, XX55H in HL register pair

LXI D,XX85 Store the destination address in DE register pair

LOOP MOV A,M Move data from source to accumulator

XCHG Exchange the content of HL and DE

MOV M,A Store the content of accumulator, data in destination address

INX H Increment source address

DCX D Increment destination address

DCR C Decrement C register

JNZ NEXT If C is not zero, Jump to LOOP

HLT

 Example

Input Result

ADDRESS DATA ADDRESS DATA

XX55 H 22 H XX85 37 H

XX56 H A5 H XX84 7F H

XX57 H B2 H XX83 99 H

XX58 H 99 H XX82 B2 H

XX59 H 7F H XX81 A5 H

XX5A 37 H XX80 22 H

 (b) Write an assembly-language program for packing and unpacking of any number.

 A byte contains two nibbles. When two BCD digits are stored in each nibble, the number is

called a packed BCD. Using packed BCD numbers, the memory can be utilized effectively. In an

unpacked BCD, the BCD is stored in the lower nibble, but the upper nibble contains all 0’s. For

example, 45 is a packed BCD number whereas 04 and 05 are unpacked BCD numbers. For the

conversion from packed BCD to unpacked BCD, the assembly-language program is given below:

Mnemonics Operands Comments

MVI A, 45H Load the packed BCD number 45 in accumulator immediately

MOV B, A Copy the content of accumulator into B register

ANI 0FH Perform logical AND immediate 8-bit data i.e. 0FH with

accumulator. The unpacked BCD number 05 is stored in

Accumulator

 (c) What are interrupts?

 Refer Section 6.14.

 (d) How many hardware interrupts are there?

 There are five hardware interrupts, namely TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR

Solution of 2012 WBUT Paper S.53

Microprocessors and MicrocontrollersS.54

 (e) What are maskable and non-maskable interrupts?

 RST 7.5, RST 6.5, RST 5.5 and INTR are maskable interrupt but TRAP is non-maskable

interrupt non-maskable interrupt.

 8. (a) Draw the timing diagram of the instruction STA 4000H and explain it.

 Refer Example 3.2 in page 3.40 and page 3.41.

 (b) A set of five 8-bit data is stored in five consecutive locations from XX00 to XX04. Write

a program to arrange them in ascending order. (Choose XX as per your kit.)

 Assume XX00 is equivalent to 9000. It is also assumed that a series of five 8-bit numbers such

as F2H, 05H, 88H, 23H, 65H are stored in memory locations from 9000H to 9004H. Arrange

the above numbers in ascending order and to be stored in 9000H to 9004H locations.

 Algorithm

 1. Store 05H, number of data to be arranged in C register and store number of comparisons in D

register.

 2. Initialise the memory location 9000H of first data.

 3. Load the first data in accumulator from memory.

 4. Increment HL register pair for addressing next data.

 5. Load the next data in B register from memory.

 6. Compare next data with accumulator. Store the largest number in accumulator and smallest

number in memory.

 7. Then next number is compared with accumulator and store the smallest number in memory and

largest number in accumulator.

 8. This process will continue, till comparison of all numbers have been completed. After completion

of comparison of all numbers, the largest number in accumulator and store it in memory. In this

way first process will be completed.

 9. At the starting of second process, C register is decremented and store number of comparisons in D

register. Then repeat Step 2 to Step 8. After completion of this process, largest number in 9004H

and second largest number in 9003H.

 10. C register is decremented and the next process starts, if the content of C register is not zero.

Labels Mnemonics Operands Comments

MVI C,05H Load count value of number of data in register C register

START MVI D,05 Load count for number of comparisons in D register

LXI H,9000H Load memory location of first number

MOV A,M First number in accumulator

LOOP INX H Increment H-L register pair for addressing next number

MOV B,M Copy next number in B register from memory

CMP B Compare next number with accumulator

JNC LEVEL_1 If the content of accumulator > next number, Jump to

LEVEL_1

DCX H Decrement H-L register pair to locate the addressing for

storing smallest number

MOV M,A Store smallest of the two numbers in memory

MOV A,B Move largest of the two numbers in accumulator from B

register

JMP LEVEL_2 Jump to LEVEL_2

LEVEL_1 DCX H Store smallest of the two numbers in memory

MOV M,B

LEVEL_2 INX H Increment H-L register pair by one

DCR D Decrement D register to count for number of comparisons

JNZ LOOP Jump zero to

MOV M,A Place largest number in memory

DCR C Decrement count value

JNZ START Jump not zero to START

HLT Halt

Example

DATA RESULT

Memory

location

Data Memory

location

After

first process

After

second

process

After

third

process

After

fourth

process

9000 F2H 9000 05H 05H 05H 05H

9001 05H 9001 88H 23H 23H 23H

9002 88H 9002 23H 65H 65H 65H

9003 23H 9003 65H 88H 88H 88H

9004 65H 9004 F2H F2H F2H F2H

 9. (a) Write the accumulator bit pattern for RIM and SIM instructions.

 Refer Section 6.5.1(Fig.6.8) and 6.5.2 (Fig.6.9).

 (b) Write a program to set PC
4
 and reset PC

7
 lines using BSR mode in 8255.

 Bit number 7 of control word for the 8255 can be used to differentiate between the I/O mode

and the BSR mode. When it is set to 1, 8225 can operate as I/O mode. If it is set to 0,

individual pins of Port C are set or reset as 8255 operate in BSR mode.

 The BSR control word to set bit PC
4
 is 0000 1001 = 09H as D

0
= 1, D

1
= 0, D

2
= 0, D

3
= 1,

D
4
= 0, D

5
= 0, D

6
= 0 and D

7
= 0

 The BSR control word to reset bit PC
7
 is 0000 1110 = 0DH as D

0
= 0, D

1
= 1, D

2
= 1, D

3
= 1,

D
4
= 0, D

5
= 0, D

6
= 0 and D

7
= 0.

Solution of 2012 WBUT Paper S.55

Microprocessors and MicrocontrollersS.56

 The assembly-language program to set PC
4
 and reset PC

7
 lines using BSR mode in 8255 is

given below:

Mnemonics Operands Comments

MVI A,09H Load 09H, i.e. the BSR control word to set bit PC
4
 in accumulator.

OUT 03H Write the control word 09H in control word register and PC
4

will be set

MVI A,0DH Load 0DH, i.e. the BSR control word to reset bit PC
7
 in

accumulator.

OUT 03H Write the control word 0DH in control word register and PC
7

will be reset

 (c) Describe how 8255 is used as input port (both port A port B) in Mode 1 with handshake

signals.

 Refer Section 12.4.2, Fig.12.8 and Fig.12.9.

 (d) Design the I/O control word bit pattern to set port A in Mode 2 and port B in mode 0 as

input port.

 In Mode 2, the bi-directional operation of port, i.e. both input and output capability is possible.

Mode 2 operation is only feasible for Port A. Hence, Port A can be programmed to operate

as a bi-directional port. When Port A is programmed in Mode 2, Port B can be used in either

Mode 1 or Mode 0. In this mode of operation, PC
3
 to PC

7
 pins are used to control signals of

Port A. As Port C (upper) pins are treated as control lines, D
3
 will be in don’t care state. As

Port A is operated in Mode 0, PC
0
, PC

1
 , PC

2
 pins are free to be used as either input or output.

Hence D
0
 of control word is assumed as 0.

 When Port A of 8255 operates in Mode 2 and Port B operates in mode 0 as input Port, the

control word bits are as shown in Fig.1.

C 2

1 1 x x x 0 1 0

D7 D6 D5 D4 D3 D2 D1 D0 BIT

CONTROL

WORD

 Assume X = 0

 Fig.1

 Bit D
0
 is set to 0, as Port C

lower
 is an output port.

 Bit D
1
 is set to 1, as Port operates as an input port.

 Bit D
2
 is set to 0, as Port B has to operate in Mode 0.

 Bit D
3
 is set to X, as Port C

upper
 pins are treated as control lines.

 Bit D
4
 is set to X, as Port A is an input port or output port.

 Bit D
4
 is set to 0, as Port A is an output port.

 Bit D
6
 and D

5
are set to 0X as the Port A has to operate in Mode 2.

 Bit D
7
 is set to 1, as ports A, B and C are used as simple input/output port.

 Thus the control word for above operation is C2H when Port A of 8255 operates in Mode 2 and

Port B operates in Mode 0 as input Port.

 10. (a) Explain organization of a digital computer.

 Refer Sections 1.2, 1.2.1, 1.2.2, 1.2.3, and 1.2.4.

 (b) Differentiate between Harvard architecture and Von-Neumann architecture.

 Von Neumann Architecture
 Figure 2 shows the Von Neumann architecture of processors and this architecture is most

commonly used in processors. In this architecture, one memory chip is used to store both

instructions and data. The processor interacts with the memory through address and data

buses to fetch instructions as well as data.

CPU

Address Bus

Data Bus

Memory
(Instruction
and Data)

 Harvard Architecture
 Figure 3 shows the Harvard architecture of a processor. In this processor architecture, two

separate memory blocks, namely, program memory and data memory are used. The program

memory is used to store only instructions and data memory is used to store data. The program

memory address bus is used to locate the program memory and through program memory data

bus, the processor can write/read instructions to/from memory. Similarly, the data memory

address bus is used to locate data memory and the data memory data bus can be used to access

the data memory. Consequently, this architecture is efficient than Von Neumann architecture

as the instructions and data will be accessed very fast.

CPU

Address Bus

Data Bus

Address Bus

Data Bus

Data memory data bus

Program memory data bus

Program memory address bus Data memory address bus

Data Memory
(Data)Program Memory

(Instruction)

 (c) Describe the pipelining concept.

 Refer Section 9.2.3.

Solution of 2012 WBUT Paper S.57

Microprocessors and MicrocontrollersS.58

 (d) Differentiate between array processor and multiprocessor.

The difference between an array processor and multi-processor is given in Table 1.

Table 1 Difference between an array processor and multi-processor

Array processor Multi-processor

An array processor can handle multiple data elements

simultaneously in a parallel fashion.

A multiprocessor can handle multiple

processes simultaneously which may

include more than one data element in each

process.

An array processor can be used for array operations in

an optimized way, has its own set of instructions, large

memory block moves, logical operations on many array

elements, etc. and may itself be a multi-processor or

massively parallel.

An array processor has an interface where a host

loads memory locations with the array to be processed

(or perhaps a data file). The array processor uses its

specialized structure to do what was asked of it on the

array, then tell the host it is done and the result may

be found in memory locations or perhaps a data file.

Many of the jobs of supercomputers are done using

array operations.

Multiple processors per system have long

been used in systems that need a lot of

processing power, like high traffic servers

and when lots of computational power is

needed. However, these systems have been

expensive and are not needed by normal

home or office users.

An array processor can also be smaller; a graphics pro-

cessor handling the video display is an array processor.

Typical operations such as move the image to the right,

move all the pixels to the right, are done by an array

processor.

A general-purpose computer may be a

multi-processor or multi-core processor. In

recent years, one processor has 2, 3, 4 or

even 8 cores. One core can only do one task

at a time. Multiple cores can run multiple

processes at once in the real world.

 11. Write short notes on any three of the following:

 a. Synchronous mode of data transfer

 Refer Sections 16.1, 16.2, Fig.16.13, Fig.16.14.

 b. Interrupt service subroutine

 Refer Section 6.1.

 c. Handshaking mode of 8255

 Refer Section 12.4.2.

 d. Designing I/O ports

 Refer Solution of 2011 WBUT (EI502) Question 11(d).

 c. Pipeline hazards

 Refer Section 9.2.3.

Pipelining can be used efficiently to increase the performance of a processor by overlapping execution

of instructions. However, the efficiency of the pipelining depends upon how the problem encountered

during the implementation of pipelining is handled. These problems are known as pipeline hazards.

There are three types of pipeline hazards, namely

Structural Hazards During the pipelining of processors, the overlapped execution of instructions

requires pipelining of functional units and duplication of resources to allow all possible combinations of

instructions in the pipeline. When some combination of instructions cannot be accommodated because

of a resource conflict, the machine is said to have a structural hazard. The structural hazards occur when

two activities require the same resource simultaneously. The common instances of structural hazards

developed are

 (i) If some functional unit is not fully pipelined then a sequence of instructions using that un-pipelined

unit cannot proceed at the rate of one per clock cycle

 (ii) If some resource has not been duplicated enough to allow all combinations of instructions in the

pipeline to execute

For example, a processor has shared a single-memory pipeline for data and instructions. When an

instruction contains a data-memory reference (load-MEM), it will conflict with the instruction reference

for a later instruction (instruction 3-IF) as shown in Fig.1.

Clock cycle number

Instr 1 2 3 4 5 6 7 8

Load IF ID EX MEM* WB

Instr 1 IF ID EX MEM WB

Instr 2 IF ID EX MEM WB

Instr 3 IF* ID EX MEM WB

To resolve the pipeline hazards, the pipeline will stall for one clock cycle when a data-memory access

occurs. The effect of the stall is actually to occupy the resources for that instruction slot. Figure 2 shows

how the stalls are actually implemented. Instruction-1 is assumed not be a data memory, otherwise

instruction-3 cannot start execution because of structural hazard.

Clock cycle number

Instr 1 2 3 4 5 6 7 8 9

Load IF ID EX MEM WB

Instr 1 IF ID EX MEM WB

Instr 2 IF ID EX MEM WB

Instr 3 stall IF ID EX MEM WB

Solution of 2012 WBUT Paper S.59

Microprocessors and MicrocontrollersS.60

Control Hazard This type of hazard is developed due to uncertainty of execution path, branch taken

or not taken. The control hazard arises when an attempt is made to make a decision before condition is

evaluated. As a result, when processor branches to a new location in the program, invalidating everything,

the processor can load in the pipeline.

Data Hazards The data hazard occurs when the pipeline changes the order of read/write accesses to

operands so that the order differs from the order seen by sequentially executing instructions on the un-

pipelined processor. Data hazards are also called data dependency. The data dependency is the condition

in which the outcome of the current operation depends on the outcome of a previous instruction that has

not yet been executed to completion because of the effect of the pipeline. Actually, this type of hazard

arises because of the need to preserve the order of the execution of instructions.

Solution of 2012 WBUT Paper
(EC502)

GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following:

 (i) The instruction MOV A,B belongs to

 (a) immediate addressing (b) directing addressing

 (c) implied addressing (d) register addressing

 (ii) In 8085, TRAP is

 (a) always maskable (b) can’t interrupt a service sub-routine

 (c) use for temporary power failure (c) lowest priority interrupt

 (iii) How many hardware interrupt requests can a single interrupt controller IC 8259A process?

 (a) 8 (b) 15 (c) 16 (d) 64

 (iv) In DMA operation, data transfer takes place between

 (a) memory and CPU (b) CPU and I/O

 (c) I/O and Memory (d) different CPUs

 (v) The programmable interval timer is

 (a) 8253 (b) 8251 (c) 8250 (d) 8275

 (vi) How many flag registers are in 8051?

 (a) 9 (b) 8 (c) 6 (d) 5

 (vii) 8259 is a

 (a) programmable DMA controller (b) programmable interval timer

 (c) programmable interrupt controller (d) none of these

 (vii) The interrupt masks in 8085 can set or reset by the instruction

 (a) EI (b) DI (c) RIM (d) SIM

 (ix) The vector address corresponding to software interrupt command RST 7 in 8085 a

microprocessor is

 (a) 0017 H (b) 0027 H (c) 0038 H (d) 0700H

 (x) A microprocessor is said to be a 8-bit, 16-bit, etc. depending on its

 (a) data bus (b) address bus (c) ALU (d) control bus

 (xi) When a subroutine is called, the address of the instruction next to “CALL” is saved in

 (a) stack pointer register (b) program counter

 (c) stack (d) PSW

 (xii) The number of register pairs of 8085 microprocessor are

 (a) 3 (b) 4 (c) 2 (d) 5

Microprocessors and MicrocontrollersS.62

Solution

 (i) (d) register addressing (ii) (c) use for temporary (iii) (a) 8

 power failure

 (iv) (c) I/O and Memory (v) (a) 8253 (vi) (d) 5

 (vii) (c) programmable interrupt controller (viii) (d) SIM

 (ix) (c) 0038H (x) (a) data bus (xi) (c) stack

 (xii) (a) 3

GROUP–B

(Short-Answer Questions)

Answer any three of the following. (3 × 5 = 15)

 2. Draw the timing diagram of OUT instruction.

 Refer Section 3.7.5, Fig.3.14.

 3. What do you mean by conditional and unconditional jump? Give examples.

 Refer Section 3.5.4.

 4. What is the function of DAD instruction in 8085 processor?

 DAD Register pair (Add register pair to H and L registers)

 H-L ! H-L + Register pair.

 Machine cycles: 3, States: 10. Flags: CS. Register addressing one byte instruction.

 The 16-bit contents of the specified register pair can be added to the contents of the H-L register

pair and the sum is stored in the H and L registers. The contents of the source register pair cannot

be modified. When the result is greater than 16 bits, the CY flag will be set and no other flags are

affected. Example: DAD B. The instruction DAD B states that the contents of the B-C register pair

will be added with the content of the H-L register pair.

 Write the output if input is F0H.

 LXI H, 2050H

 MOV A, M

 CMA

 ADI 01H

 STA 2060H

 After execution of the LXI H, 2050H instruction, 2050H will be loaded in the HL register pair.

When the execution of MOV A,M instruction is completed, the content of the 2050H memory

location will be copied into accumulator. Since the input is F0H, the content of accumulator will

be F0H.

 When the CMA instruction is executed, the content of accumulator will be complemented.

Subsequently, the content of the accumulator is 0FH. 01H will be added with the accumulator

when the instruction ADI 01H is executed. Hence, the content of accumulator is 0FH + 01H=10H.

After completion of execution of instruction STA 2060H, the content of accumulator, i.e. 10H will

be stored in the 2060H memory location.

 5. What is the difference between SIM and RIM instructions?

 Refer Sections 6.5.1 and 6.5.2.

 6. Explain the memory segmentation scheme with reference to 8086 microprocessor.

 Refer Solution of 2009 WBUT Question 5.

GROUP–C

(Long-Answer Questions)

Answer any three of the following. (3 × 15 = 45)

 7. (a) What are the different addressing modes of the 8085 microprocessor? Explain with at

least two examples for each.

 There are five addressing modes of the 8085 microprocessor such as

 Refer Sections 3.2.1 and 3.2.2.

 (b) Explain the function of RIM instruction.

 Refer Section 6.5.2.

 (c) Write a program to enable RST 6.5 and disable RST 7. 5, RST 5.5.

 Initially determine the contents of the accumulator to enable RST 6.5 and disable

RST 7. 5, RST 5.5

 Disable RST 5.5 bit D
0
 = 1

 Enable RST 6.5 bit D
1
 = 0

 Disable RST 7.5 bit D
2
 = 1

 Allow setting the masks bit D
3
 = 1

 Don’t reset the flip-flop bit D
4
 = 0

 Bit 5 is not used bit D
5
 = 0

 Don’t use serial data bit D
6
 = 0

 Serial data is ignored bit D
7
 = 0

SOD SDE xxx R7.5 MSE M7.5 M6.5 M5.5

0 0 0 0 1 1 0 1

 Content of accumulator is 0DH. The program for the above operation is given below:

PROGRAM

Memory

address

Machine

Codes

Labels Mnemonics Operands Comments

8000 EB EI Enable all interrupts

8001 3E, 0D MVI A, 0DH mask to enable RST 5.5, and

disable RST 7.5, RST 5.5

8003 30 SIM Apply the settings RST masks

Solution of 2012 WBUT Paper S.63

Microprocessors and MicrocontrollersS.64

START

Initialise HL register pair

Load count in Register C

Load first number
in accumulator

Is
Number in

accumulator >
next number ?

Yes

No

Get larger number in
accumulator

Decrement counter

Is counter = 0?

Yes

No

Store the result

End

 8. a) With respect to 8237, explain the DMA operation.

 Refer Solution 2009 WBUT Question 9(c).

 b) What are the priorities of DMA request? Enumerate them.

 Refer Section 17.3.1, Fig.17.6.

 c) What are the major components of 8259A interrupt controller? Explain their functions.

 The major components of 8259A interrupt controller are

 Refer Section 14.3.

 9. (a) Draw and explain the timing diagram of the instruction IN 00H.

 Refer Section 3.7.3.

 (b) Write an ALP to find out the largest number from a given array of 10 numbers.

 The count value of numbers 0AH is stored in the C register directly and the numbers are

stored in the memory locations from 9001 to 900A. The largest number will be stored in the

900B location. Assume the program memory starts from 9100H. The flow chart to find out

the largest number from an array is depicted in Fig.1.

Algorithm

 1. Load count value of numbers 0AH in C register immediately.

 2. Load the first number in accumulator from memory location 9001H.

 3. Move the first number in accumulator.

 4. Decrement the count value by one.

 5. Move to next memory location for next data.

 6. Compare the content of memory with content of accumulator.

 7. If carry is generated, copy content of memory in accumulator.

 8. Decrement the count value by one.

 9. If count value does not equal to zero, repeat Step 5 to Step 8.

 10. Store result in 900BH location.

PROGRAM

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

9100 0E, 0A MVI C,0A Load count value in C register

9102 21, 01, 90 LXI H,9001 Load address of first data in HL

register pair

9105 7E MOV A,M Copy first data in accumulator

9106 0D DCR C Decrement C register

Solution of 2012 WBUT Paper S.65

Microprocessors and MicrocontrollersS.66

9107 23 LOOP INX H Increment HL register for address

of next data

9108 BE CMP M Compare next data with the content

of accumulator

9109 D2,0D,91 JNC LEVEL If carry is not generated, jump to

LEVEL

910C 7E MOV A,M Copy large number in accumulator

from memory

910D 0D LEVEL DCR C Decrement C register

910E C2, 07, 91 JNZ LOOP Jump not zero to LOOP

9111 32, 0B, 90 STA 900B Store largest number in 900BH

location

9114 76 HLT

Example

DATA RESULT

Memory location Data Memory location Data

9001 23H 900B FFH

9002 FFH

9003 47H

9004 92H

9005 10H

9006 25H

9007 67H

9008 35H

9009 98H

900A 24H

 c) Differentiate between peripheral mapped I/O and memory mapped I/O.

 Refer Section 5.8 and Table 5.6.

 10. a) What do you mean by Mode 0, Mode 1 and Mode 2?

 Refer Section 12.4.

 b) Write down the control word for the following in Mode 0:

 Port A = Input, Port B = Not used, Port C
U

= Input, Port C
L

= output

 When the ports of 8255 operate in Mode 0 and Port A = Input, Port B = Not used, Port

C
U

= Input, and Port C
L

= output, the control word bits are as shown in Fig.2.

9 A

1 0 0 1 1 0 1 0

D7 D6 D5 D4 D3 D2 D1 D0 BIT

CONTROL

WORD

 Bit D
0
 is set to 0, as Port C

lower
 is an output port.

 Bit D
1
 is set to 1, as Port B is not used. Assume Port B operates as an input port.

 Bit D
2
 is set to 0, as Port B has to operate in Mode 0.

 Bit D
3
 is set to 1, as Port C

upper
 is an input port.

 Bit D
4
 is set to 1, as Port A is an input port.

 Bit D
5
 and D

6
 are set to 00 as Port A has to operate in Mode 0.

 Bit D
7
 is set to 1, as Ports A, B and C are used as simple input/output port.

 Thus, the control word for above operation is 9A H.

 (c) Write a BSR control word subroutine to set bits PC
7
 and PC

3
 and reset them after 10 ms.

Assume that a delay subroutine is available and Hex address of Port A = 80H.

 Refer Solution 2008 WBUT Question 9(c).

 (d) Explain how bidirectional communication can be done between two computer, using

8255A.

 The bidirectional communication between two 8086 microprocessors using two 8255 PPI

is shown in Fig. 3 PC
3
 of 8255(1) is connected with INTR of 8086(1) and PC

3
 of 8255(2)is

also connected with INTR of 8086(2). Port A of 8255(1) and Port A of 8255(2) ar connected

together. The other PIN connections are depicted in Figure 3.

PA0 7–PA PA0 7–PA

D0 7–D D0 7–D

PA0 7–PA

IBFRD RD

WR WR

IBFACK

ACK

STB

CS CS

STBOBF

OBF

PC7 PC4

PC4 PC7A1 A0 A1

A2 A1 A2PC5 PC5

PC6 PC6

8255(1) 8255(2)

PC3 PC3

INTR INTR

To IRQ of
8086(1)

2 To IRQ of
8086(2)

2

A7 A7
A6 A6
A5 A5
A4 A4
A3 A3
A0 A0

Solution of 2012 WBUT Paper S.67

Microprocessors and MicrocontrollersS.68

 When the first processor is used as transmitter or recieve, other processor can be used as

receiver or transmitter. For bidirecitonal data flow between two microprocessors, 8086(1)

sends data on the data bus to Port A of 8255(1). After that 8086(2) can read data from Port A of

8255(2) through data bus. in the same way, data can be transmitted from 8086(2) to 8086(1).

For this bi-directional data flow, programming must be written in assembly language. The

complete program is divided into two parts such as transmitter part and receiver part. The

transmitter program part sends data to receiver while the reciever program accepts the data

from the transmitting 8086 microprocessor.

 11. (a) What do you mean by pipelined architecture? How is it implemented in 8086?

 Refer Section 9.2.2.

 (b) Explain how a 20-bit physical address is generated in the 8086 microprocessor.

 Refer Section 9.4.

 (c) Explain the operations of BIU and EU present in the 8086 microprocessor.

 Refer Sections 9.2.1 and 9.2.2.

 12. Write short notes on any three of the following:

 (a) Addressing modes of 8051 microcontroller

 Refer Section 8.2.

 (b) MAX mode and MIN mode

 Refer Sections 9.7.1, 9.7.2 and 9.7.3.

 (c) Memory organization of 8051 microcontroller

 Refer Section 7.3.

 (d) PIC microcontroller

 Refer Sections 19.1 and 19.2.

 (e) Stack memory

 Refer Section 4.5.

Solution of 2013 WBUT Paper
(EC502)

GROUP–A

(Multiple-Choice Questions)

 1. Choose the correct alternatives for any ten of the following: (10×1=10)

 (i) The address lines required for 16K byte memory chip are

 (a) 13 (b) 14 (c) 15 (d) 16

 (ii) The interrupt line having highest priority is

 (a) RST 7.5 (b) READY (c) TRAP (d) INTR

 (iii) How many interrupts are controlled by 8259A?

 (a) 8 (b) 6 (c) 9 (d) 5

 (iv) PSW in the 8085 microprocessor is a

 (a) 8-bit register (b) 16-bit register

 (c) 4-bit register (d) 32-bit register

 (v) The Intel 8086 processor is

 (a) 16-bit (b) 32-bit (c) 64-bit (d) none of these

 (vi) The 8085 microprocessor operates at a frequency of

 (a) 6 MHz (b) 3.2 MHz (c) 5 MHz (d) 3 MHz

 (vii) READY is used for

 (a) input (b) output (c) both (a) and (b) (d) none of these

 (vii) The memory map of a 4 kB memory chip begins at the location 3000 H. The last location of

the memory address and number of pages in the chip are

 (a) 3FFFH, 16 (b) 4000H, 16 (c) 3F00H, 8 (d) 300FH, 4

 (ix) The number of segment registers in 8086 microprocessor are

 (a) 8 (b) 4 (c) 16 (d) 32

 (x) On-chip ROM size of the 8051 microcontroller is

 (a) 1 kB (b) 16 kB (c) 4 kB (d) 8 kB

 (xi) In the 8255 programmable peripheral interface, bidirectional mode operation is supported in

 (a) Mode 1 (b) Mode 0 (c) Mode 0 and Mode 1 (d) Mode 2

 (xii) In the 8051 microcontroller, external ROM is selected using

 (a) EA (b) PSEN (c) RESET (d) ALE

Solution

 (i) (b) 14 (ii) (c) TRAP (iii) (a) 8 (iv) (a) 8-bit register

 (v) (a) 16-bit (vi) (d) 3 MHz (vii) (a) input (viii) (b) 4000 H, 16

 (ix) (b) 4 (x) (c) 4kB (xi) (d) Mode-2 (xii) (a) EA

Microprocessors and MicrocontrollersS.70

GROUP–B

(Short-Answer Questions)

Answer any three of the following. (3 × 5 = 15)

 2. Interface two 2K × 8 RAMs with the 8085 microprocessor by using the IC 74138 decoder

such that the starting addresses assigned to them are 8000H and 9000H respectively.

 Figure 1 shows the address decoding technique of the 8085 microprocessor. A
0
–A

10
 are used for

addressing the 2K × 8 RAM IC
1
. A

11
 – A

15
 address lines are used to generate the chip-select signal

CS. The memory map of 2K× 8 RAM IC
1
 which has the starting address 8000H is given below:

 A
15

 A
14

 A
13

 A
12

 A
11

 A
10

 A
9
 A

8
 A

7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 = 8000H

 h h

 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 = 87FFH

 Similarly, A
0
-A

10
 are used for addressing the 2K× 8 RAM IC

2
 and A

11
 – A

15
 address lines are used to

generate the chip-select signal CS. The memory map of 2K × 8 RAM IC
2
 which has the starting address

9000H is given below in Fig. 2:

 A
15

 A
14

 A
13

 A
12

 A
11

 A
10

 A
9
 A

8
 A

7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0

 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 = 9000H

 h h

 1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 = 97FFH

 Figure 3 shows the address decoder circuit with A
14

 = 0 and A
15

 = 1, and A
11

, A
12

, A
13

 are used as

decoder inputs. In this case, a 3-line to 8-line decoder can be used to select any one output. Based

on inputs at A
11

, A
12

, A
13

, any one output of O
0
 – O

7
 will be active low and other output lines remain

high. The output lines are connected to the chip select of memory ICs. It is depicted in Fig. 3 that

O
0
 is connected with the chip select of 2K × 8 RAM IC

1
 and O

2
 is connected with the 2K × 8 RAM

IC
2
. The output lines and corresponding memory address capability are given in Table 1.

Table 1 Memory address selected by the decoder

Output lines Memory address

O
0

8000H-87FFH

O
1

8800H-8FFFH

O
2

9000H-97FFH

O
3

9800H-9FFFH

O
4

A000H-A7FFH

O
5

A800H-AFFFH

O
6

B000H-B7FFH

O
7

B800H-BFFFH

 b) What are maskable interrupts? Give an example.

 Refer Sections 6.3 and 6.4.

 Maskable interrupts of the 8085 microprocessor are INTR, RST 5.5, RST 6.5 and RST 7.5.

 3. (a) What do the following instructions do?

 (i) XRA A

 XRA A (EXCLUSIVE-OR the content of accumulator with accumulator content)

 A ! A 5 A States 4; Flags: all. Register addressing: One-byte instructions

 The contents of the accumulator are Exclusive ORed with the contents of the accumulator register

and the result is placed in the accumulator. All status flags are affected. The CY and AC flags are

reset.

 (ii) LHLD 8000H

 LHLD 8000H (Load H and L registers direct)

 L [8000], H [8000+1]. States: 16; Flags: none; Direct addressing: three-byte instructions.

 The instruction copies the contents of the memory location located by the 16-bit address 8000H

into the register L and also copies the content of the next memory location 8001H into the register

H. The contents of source memory locations are not changed.

 (iii) RRC

 RRC (Rotate accumulator right)

 A
7

A
o
, CS A

0
, A

n
A

n+1

 States: 4; Flags: CS implicit; Addressing: One-byte instructions

0

1

2

3

4

5

6

7

3-Line

to

8-Line

Decoder

IC 74138 Decoder

G
2A

G
2B
G
1

A
11

A
12

A
13

GND GND +5V

A –A
0 10

A – A
0 10

R/W

CS

OE

D –D
70

CS

R / W OE

D – D
70

2K – RAM

2K – RAM

Solution of 2013 WBUT Paper S.71

Microprocessors and MicrocontrollersS.72

 Each binary bit of the accumulator is shifted right by one position. Bit D
0
 is placed in the position

of D
7
 as well as in the Carry flag. Therefore, CY is modified accordingly as depicted in Fig.1. S,

Z, P, AC are not affected.

CS A7

D7 D0

A0

ACCUMULATORCARRY

 (b) Discuss the ‘fetch’ and ‘execute’ operations of the 8086 microprocessor

 Refer Section 9.2.3.

 4. Write an assembly-language program to add two 16-bit numbers using the 8051 controller.

 Assume that the first number is 2498H and the second number is FE4CH. Here, after addition of

two 16-bit numbers, the sum is more than 16-bit. It is also assumed that after addition, the result

will be stored in R
2
, R

1
 and R

0
 registers.

PROGRAM

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

8000 C3 CLRC Clear carry C=0

8001 7A 00 MOV R2, #00H R
2
 register is initialized.

8003 74 98 MOV A, #98 Least significant byte of first

number in accumulator.

8005 24 4C ADD A, #4CH Add least significant byte of second

number with accumulator.

8007 F8 MOV R
0
, A Store result of lower byte in R

0

register.

8008 E5 24 MOV A, 24H Most significant byte of first number

in accumulator.

800A 35 FE ADDC A, FEH Add most significant byte of second

number with accumulator.

800C 50 01 JNC Level_1 Jump no carry to Level_1.

800E 0A INC R
2

Increment R
2
 register.

800F F9 Level_1 MOV R
1
, A Move the content of accumulator

into R
1
 register.

8010 02 00 00 LJMP 0000

 Result: After addition, the contents of R
2
, R

1
 and R

0
 registers are as follows: R

2
 = 01H, R

1
= 22H

and R
0
= E4H

 2 4 9 8 H first number

+F E 4 C H second number

Sum: 0 1 2 2 E 4 H

 5. Write an assembly-language program to load a block of data from the memory location

80XX H to the memory location 80XY H. Clearly mention the assumptions.

 Assume that a block of data is available from the memory location 80XX H to the memory location

80XY H. Transfer the block so that it can be stored from 90XX H to 90XY H. The number of

bytes in the block is stored in 80X0H. Assume that the program starts from 8000H, X = 1 and Y =

9. Then 80XX H = 8011H, 80XY H = 8019H, 90XX H = 9011H, 90XY H = 9019 H,

 Algorithm

Store the address of number of data in HL register pair.

Load number of data in C register from memory.

Store the starting address of the destination in DE register pair.

Increment HL register pair to get data from source.

Copy data from source to accumulator.

Exchange HL and DE register pairs, store the content of the accumulator in destination

address.

Exchange HL and DE register pairs.

Increment HL and DE registers.

Decrement C register.

If C register is not zero, repeat steps 5 to 9.

PROGRAM

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

8500 21, 10, 80 LXI H, 8010 Store the address of number of data,

8010H in HL register pair.

8503 46 MOV B,M Load number of data in B register

from memory.

7E MOV A,M Copy first data in accumulator

8504 21, 11, 90 LXI D,9011 Store the destination address in DE

register pair.

8507 23 INX H Increment H-L register pair.

8508 7E LOOP MOV A,M Move data from source to

accumulator.

8509 EB XCHG Exchange the content of HL and

DE.

850A 77 MOV M,A Store the content of accumulator,

data in destination address.

850B 23 INX H Increment source address.

850C 13 INX D Increment destination address.

850D 05 DCR B Decrement B register.

850E C2, 08, 85 JNZ LOOP If B is not zero, jump to LOOP.

8511 76 HLT

Solution of 2013 WBUT Paper S.73

Microprocessors and MicrocontrollersS.74

 Example

Input Result

ADDRESS DATA ADDRESS DATA

8011 48 H 9011 48 H

8012 1A H 9012 1A H

8013 F2 H 9013 F2 H

8014 06 H 9014 06 H

8015 33H 9015 33H

8016 01H 9016 01H

8017 72H 9017 72H

8018 44H 9018 44H

8019 67H 9019 67H

GROUP–C

(Long-Answer Questions)

Answer any three of the following. (3 × 15 = 45)

 6. (a) Briefly discuss the different transfer modes of 8237 DMA controller.

 Refer Sections 17.4, 17.4.1, 17.4.2, 17.4.3,and 17.4.4

 8237 is an advanced programmable DMA controller. It provides a better performance compared

to 8257. This is capable of transferring a byte or a bulk of data between system memory

and peripherals in either direction. Memory to memory data transfer is also possible in this

peripheral. The 8237 can support four independent DMA channels which can be expanded to

any number by cascading more units of 8237.

 The 8237 operates in two cycles: passive cycle and active cycle. Each cycle contains a fixed

number of states. The 8237 can assume six states when it is in active cycle. During idle cycle,

it is in idle state (SI).

 The 8237 is initially in a state SI, meaning an idle state where the 8237 does not have any valid

pending DMA request. During this time, although the 8237 may be idle, the CPU may program

it in this state. Once there is a DMA request, the 8237 enters the state S
0
, which is the first state

of the DMA operation. When the 8237 requests the CPU for a DMA operation and the CPU has

not acknowledged the request, the 8237 waits in S
0
 state. The acknowledge signal from the CPU

indicates that the data transfer may now begin. The S
1
, S

2
, S

3
 and S

4
 are the working states of DMA

operation, in which the actual data transfer is carried out. If more time is required to complete a

transfer than what is allowed, wait states may be inserted between S
2
 and S

3
 or S

3
and S

4
 using the

READY pin of 8237. So it is clear that a memory read or a memory write DMA operation actually

requires four states S
1
 to S

4
.

 (b) Draw a timing diagram for opcode ‘fetch’ machine cycles of the 8085 microprocessor.

 In the fetch cycle, the microprocessor fetches the opcode of an instruction from the memory.

Fig.1 shows the timing diagram for an opcode fetch cycle of an instruction MOV A,B. Assume

that the opcode of instruction MOV A,B is stored in 8000H and the content of register B is

4FH. To execute this instruction, four consecutive clock cycles T
1
, T

2
, T

3
 and T

4
 are required.

The sequence of operations is given below:

 First Clock Cycle

1
, the microprocessor places the content of program counter, address

of the memory location 8000H, where the opcode is available on the 16-bit address bus. The

8 MSBs of the memory address (80H) are placed on the high-order address bus, A
15

–A
8
 and

8 LSBs of the memory address (00H) are placed on the low-order address bus, AD
7
–AD

0
.

Since the AD bus is needed to transfer data during subsequent clock cycles, it is used in a

time-multiplexed mode.

LSBs of the memory address. Therefore, low-order address bus is demultiplexed and the

complete 16-bit memory address is available in the subsequent clock cycles to get the opcode

from the specified memory address, 8000H.

T1 T2 T3 T4

A A8 15–

Clock

AD –AD0 7

ALE

RD

WR

IO/M

STATUS

PCLLower

Lower Order
Address A – A0 7

S , S0 1

PCH (Higher Order Address Bus)

D –D0 7

Machine Cycle (M)1

Solution of 2013 WBUT Paper S.75

Microprocessors and MicrocontrollersS.76

M=0, S
0
 =1 and S

1
=1 to indicate opcode fetch

operation.

 Second Clock Cycle

2
, the low-order bus AD

7
-AD

0
 is ready to carry data from the memory location. The

microprocessor sends the control signal RD = 0 to enable memory and the program counter is

incremented by 1 to 8001H. Now the opcode from the specified memory location 8000H gets

placed on the data bus.

 Third Clock Cycle

3
, the microprocessor reads the opcode and places it in the instruction register, IR.

The memory is disabled when RD goes high during T
3
. The fetch cycle is completed by T

3
.

 Fourth Clock Cycle

4
. It also places the content B register

in the temporary register. After that it transfers to the accumulator.

 (c) How much time is required to execute the following instruction?

MVI B, 07 (07 T state)

 When the operating frequency of the microprocessor is 5 MHz, the time period of one T state

is equal to T
f

= =
¥

=
1 1

5 10

0 2
6

. ms .

 As 07 T states are required to execute the instruction MVI B, 07; the total time required is

equal to 7 T= 7 × 0.2 µs = 1.4 µs.

 (d) What are the different modes of operation of 8255 PPI?

 Refer Sections 12.4, 12.4.1, 12.4.2, 12.4.3 and 12.4.4.

 7. a) How does the 8086 microprocessor support memory segmentation?

 Refer Sections 9.3.2 and 9.6 and Solution of 2009 WBUT Paper Q.5, Page S.9.

 b) How is pipelining implemented in 8086?

 Refer Sections 9.2.1, 9.2.2 and 9.2.3.

 c) What is the relationship between logical address and physical address in 8086?

 Refer Section 9.4.

 d) Discuss the flag register of 8086.

 Refer Section 9.3.4.

 8. a) Write an assembly-language program using 8085 assembly language to arrange a string

of 10-byte length in ascending order.

 A series of ten numbers: F2H, 05H, 88H, 23H, 65H, 24H, 66H, 77H, 88H and 44H are stored

in memory locations from 9001H to 900AH. Arrange the above numbers in ascending order to

be stored in 9001H to 900AH locations. Assume the program memory starts from 9100H.

 Algorithm

Store 0AH, number of data to be arranged in C register from memory and store number of

comparisons in D register.

Initialise the memory location 9001H of first data.

Load the first data in the accumulator from the memory.

Increment HL register pair for addressing the next data.

Load the next data in B register from the memory.

Compare the next data with the accumulator. Store the largest number in the accumulator and

the smallest number in the memory.

Then the next number is compared with the accumulator and store the smallest number in the

memory and the largest number in the accumulator.

This process will continue, till comparison of all numbers has been completed. After

completion of comparison of all numbers, the largest number will be in the accumulator and

smallest in the memory. In this way, the first process will be completed.

At the starting of the second process, C register is decremented and store the number of

comparisons in D register. Then repeat step-2 to step-8. After completion of this process, the

largest number is in 900AH and the second largest number is in 9009H.

 10. C register is decremented and the next process starts, if the content of C register is not zero.

PROGRAM

Memory

address

Machine

codes

Labels Mnemonics Operands Comments

9100 0E, 05 MVI C,0AH Load count value of number of

data in C register.

9102 16, 05 START MVI D,0A Load count for number of

comparisons in D register.

9104 21, 01, 90 LXI H,9001H Load memory location of first

number.

9107 7E MOV A,M First number in accumulator.

9108 23 LOOP INX H Increment HL register pair for

addressing next number.

9109 46 MOV B,M Copy next number in B register

from memory.

910A B8 CMP B Compare next number with

accumulator.

910B D2, 27, 91 JNC LEVEL_1 If the content of accumulator >

next number, jump to LEVEL_1

910E 2B DCX H Increment HL register pair to

locate the addressing for storing

smallest number.

910F 77 MOV M,A Store smallest of the two numbers

in memory.

9120 78 MOV A,B Move largest of the two numbers

in accumulator from B register.

9121 C3, 2B, 91 JMP LEVEL_2 Jump to LEVEL_2

9124 2B DCX H

9125 77 MOV M,A Place greater of the two numbers

in the accumulator.

Solution of 2013 WBUT Paper S.77

Microprocessors and MicrocontrollersS.78

9126 C3, 2B, 91 JMP LEVEL_2 Jump to LEVEL_2

9129 2B LEVEL_1 DCX H Store smallest of the two

numbers in memory.

912A 70 MOV M,B

912B 23 LEVEL_2 INX H

912C 15 DCR D Decrement D register to count

for number of comparisons.

912D C2, 08, 91 JNZ LOOP Jump to zero.

9130 77 MOV M,A Place largest number in memory.

9131 0D DCR C Decrement count value.

9132 C2, 02, 91 JNZ START Jump to zero to START.

9135 76 HLT Halt.

Example

DATA RESULT

Memory

location

Data Memory

location

After

1st process

After

2nd process

After

3rd process

After

10th process

9001 F2H 9001 05H 05H 05H 05H

9002 05H 9002 88H 23H 23H 23H

9003 88H 9003 23H 65H 65H 24H

9004 23H 9004 65H 24H 24H 44H

9005 65H 9005 24H 66H 66H 65H

9006 24H 9006 66H 77H 77H 66H

9007 66H 9007 77H 82H 44H 77H

9008 77H 9008 82H 44H 82H 82H

9009 82H 9009 44H 88H 88H 88H

900A 44H 900A F2H F2H F2H F2H

 (b) Explain bidirectional data transfer using 8255 PPI.

 Refer Section 12.4.3.

 9. (a) What will be the contents of the accumulator and flag after the following instructions

from a program that are executed sequentially?

 MVI A, 01

 MVI B, 02

 ADD B

 XRA A

 HLT

 After execution of the instruction MVI A, 01; 01H will be loaded in the accumulator and flag

will not be affected. After that, instruction MVI B, 02 is executed. Just after execution of the

instruction MVI B, 02; 02H will be loaded in B register and no flag is affected. Subsequently,

instruction ADD B is executed. After completion of execution of instruction ADD B, the content

of the accumulator is 03H and flags are affected. Result is nonzero and flag Z=0. There are two

number of 1s and flag P is set to 1 (P=1). AC=0, CS=0, MSB of the Sum is zero and flag S is set

to 0 (S=0). When the instruction XRA A is executed, the content of Accumulator is A ! A 5 A

and all flags are affected. Therefore, the content of A is A ! 03 5 03 = 00. As result is zero, flag

Z=1. There is no 1s and flag P is set to 1 (P=1). AC=0, CS=0, MSB of the Sum is zero and flag S

is set to 0 (S=0). When the instruction HLT is executed, the microprocessor finishes executing the

current instruction and halts any further execution and no flag is affected.

 (b) Draw the block diagram of 8254 timer and briefly discuss its operation and organization.

 Refer Section 13.2.

 (c) Describe the priority scheme and EOI scheme of 8259A.

 Refer Section 14.6.3.

 10. Write short notes on any three of the following: 3×5

 (a) Function of 8251 USART

 Refer Section 16.1.

 (b) Serial mode operation using 8085 microprocessor

 Refer Solution of 2011 WBUT Paper Q.11 (e), Page S.48.

 (c) Subroutine organization (including calls) in 8086 microprocessor

 Refer Section 4.6, 4.6.1, 4.6.1 and 10.3.10.

 (d) BIU and EU of 8086 microprocessor

 Refer Section 9.2.1 and 9.2.2.

 (e) DMA

 Refer Section 17.1.

Solution of 2013 WBUT Paper S.79

	Title
	Contents
	1 Introduction to Microprocessors and Microcontrollers
	2 Architecture of 8085 Microprocessor
	3 Instruction Set of 8085 Microprocessor
	4 Assembly Language Programming Using 8085
	5 Memory and Interfacing with 8085 Microprocessor
	6 Interrupts of 8085 Microprocessor
	7 8051 Microcontroller Architecture
	8 Instruction Set and Programming of 8051 Microcontroller
	9 Architecture of 8086 and 8088 Microprocessors
	10 Instruction Set of 8086 Microprocessor
	11 Assembly-Language Program of the 8086 Microprocessor
	12 Mandal Microprocessors Final
	12 8255 Interfacing with 8085, 8086 and 8051 Microcontroller
	13 8253 Interfacing with 8085, 8086 and 8051 Microcontroller
	14 8259 Interfacing with 8085, 8086 and 8051 Microcontroller
	15 8279 Interfacing with 8085, 8086 and 8051 Microcontroller
	16 8251 Interfacing with 8085, 8086 and 8051 Microcontroller
	17 Direct Memory Access (DMA) Controller 8257
	18 ADC, DAC, Keyboard, Multiplex Display and LCD Interfacing with 8085, 8086 and 8051
	19 Introduction to PIC Microcontroller (16F877)
	Appendix A 8085 Instruction Set
	Model Question Paper 1

