
Microprocessor (8085)

And its

Applications

About the Author

A Nagoor Kani is a multifaceted personality with efficient technical expertise and management

skills. He obtained his BE degree in Electrical and Electronics Engineering from Thiagarajar College of

Engineering, Madurai, and MS (Electronics and Control) through Distance Learning program of BITS,

Pilani. He is a life member of ISTE and IETE.

He started his career as a self-employed industrialist (1986-1989) and then changed over to

teaching in 1989. He has worked as Lecturer in Dr MGR Engineering College (1989-1990) and as Asst.

Professor in Satyabhama Engineering College (1990-1997). In 1993, he started a teaching centre for BE

students named Institute of Electrical Engineering, which was renamed RBA Tutorials in 2005.

A Nagoor Kani launched his own organization in 1997. The ventures currently run by him are

RBA engineering (involved in manufacturing of lab equipments, microprocessor trainer kits and undertake

Electrical contracts and provide electrical consultancy), RBA Innovations (involved in developing projects

for engineering students and industries), RBA Tutorials (conducting tutorial classes for engineering

students and coaching for GATE, IES, IAS) and RBA Publications (publishing of engineering books),

RBA Software (involved in web-design and maintenance). His optimistic and innovative ideas have made

the RBA Group a very successful venture.

A Nagoor Kani is a well-known name in major engineering colleges in India. He is an eminent

writer and till now he has authored several engineering books (published by Tata McGraw Hill Education

and RBA Publications) which are very popular among engineering students. He has written books in the

areas of Control Systems, Signals and Systems, Microcontrollers, Digital Signal Processing, Electric

Circuits, Electrical Machines and Power Systems.

Microprocessor (8085)

And its

Applications

THIRD EDITION

A Nagoor Kani

Founder

RBA Group

Chennai

Tata McGraw Hill

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

Dedicated to my

Brother-in-law Mr. K. Abdul Rawoof, M.A.

Sister Mrs. A. Mumtaj Rawoof, B.Sc. and

Their Daughter Dr. A. Shafela Sherin, B.D.S. and

Son Dr. A. Mohammed Fazil, M.B.B.S.

CONTENTS

Preface ... xii

Acknowledgement s .. xiii

CHAPTER - 1 INTRODUCTION TO MICROPROCESSOR

1.1 Terms used in microprocessor literature 1. 1

1.2 Evolution of microprocessor 1. 3

1.3 Basic functional blocks of a microprocessor 1. 6

1.4 Microprocessor-based system 1. 7

(Organization of microcomputer)

1.5 Concept of multiplexing in microprocessor 1. 9

1.6 Micro, Mini and Large computers 1. 9

1.7 INTEL 8085 1.12

1.8 INTEL 8086 1.20

1. 9 ZILOG Z80 1.29

1.10 MOTOROLA 6800 1.33

1.11 Summary 1.36

1.12 Short questions and answers 1.38

CHAPTER - 2 INSTRUCTION SET OF 8085

2.1 Origin of software 2. 1

2.2 Processor cycles 2. 1

2.3 Machine cycles of 8085 2. 1

2.3.1 Timing diagram 2. 2

2.4 Instruction format of 8085 2.11

2.5 Addressing modes 2.11

2.6 Instruction set 2.12

viii

2.7 Data transfer instructions 2.21

2.8 Arithmetic instructions 2.29

2.9 Logical instructions 2.36

2.10 Branching instructions 2.43

2.11 Machine control instructions 2.46

2.12 Timing diagram of 8085 instructions 2.48

2.13 Summary 2.57

2.14 Short questions and answers 2.57

CHAPTER - 3 MEMORY AND IO INTERFACING

3.1 Introduction to memory 3. 1

3.2 Semiconductor memory 3. 1

3.3 ROM and PROM 3. 3

3.4 EPROM 3. 4

3.5 Static RAM 3. 7

3.6 DRAM and NVRAM 3.11

3.7 Interfacing static RAM and EPROM 3.12

3.8 Memory organization in 8085-based system 3.16

3.9 IO structure of a typical microcomputer 3.19

3.10 Interfacing IO and peripheral devices 3.20

3.11 Summary 3.37

3.12 Short questions and answers 3.38

CHAPTER - 4 INTERRUPTS

4.1 Interrupt and its need 4. 1

4.2 Classification of interrupts 4. 2

4.3 Interrupts of 8085 4. 3

4.3.1 Software interrupts of 8085 4. 3

4.3.2 Hardware interrupts of 8085 4. 4

4.3.3 Priorities of interrupts of 8085 4. 5

4.4 Enabling, disabling and masking of 8085 interrupts 4. 5

i x

4.5 Polling of interrupts 4. 7

4.6 INTR and its expansion 4.11

4.7 Programmable interrupt controller - INTEL 8259 4.12

4.7.1 Interfacing 8259 with 8085 microprocessor 4.13

4.7.2 Functional block diagram of 8259 4.15

4.7.3 Processing of interrupts by 8259 4.17

4.7.4 Programming 8259(or initializing 8259) 4.18

4.8 Summary 4.22

4.9 Short questions and answers 4.23

CHAPTER - 5 ASSEMBLY LANGUAGE PROGRAMMING

5.1 Levels of programming 5. 1

5.2 Flowchart 5. 2

5.3 Assembly language program development tools 5. 3

5.4 Variables and constants used in assemblers 5. 8

5.5 Assembler directives 5. 9

5.6 Procedure and Macro 5.11

5.7 Delay routine 5.12

5.8 List and array 5.15

5.9 Stack 5.16

5.10 Examples of 8085 assembly language programs 5.17

5.11 Summary 5.63

5.12 Short questions and answers 5.64

CHAPTER - 6 PERIPHERAL DEVICES AND INTERFACING 6. 1

6.1 Programmable peripheral devices 6. 1

6.2 Parallel data communication interface 6. 1

6.2.1 Parallel data transfer schemes 6.2

6.2.2 INTEL 8212 6.4

6.2.3 Programmable IO port and timer - INTEL 8155/8156 6.6

x

6.2.4 Programmable peripheral interface - INTEL 8255 6.12

6.2.5 Programmable IO port and memory - INTEL 8355 6.20

6.2.6 Programmable IO port and memory - INTEL 8755 6.21

6.2.7 DMA data transfer scheme 6.22

6.2.8 DMA controller - INTEL 8237 6.24

6.2.9 DMA controller - INTEL 8257 6.37

6.3 Serial data communication interface 6.45

6.3.1 Serial data communication 6.45

6.3.2 USART - INTEL 8251A 6.50

6.4 Keyboard and display interface 6.55

6.4.1 Keyboard interface using ports 6.55

6.4.2 Display interface using ports 6.58

6.4.3 Latches and buffers as IO devices 6.63

6.4.4 Keyboard/Display controller - INTEL 8279 6.65

6.4.5 Keyboard and display interface using 8279 6.69

6.5 Programmable timer - INTEL 8254 6.72

6.6 DAC interface 6.82

6.6.1 DAC0800 6.84

6.7 ADC interface 6.86

6.7.1 ADC0809 6.88

6.8 Summary 6.92

6.9 Short questions and answers 6.94

CHAPTER - 7 MICROCOMPUTER SYSTEM DESIGN AND APPLICATIONS

7.1 Designing a microprocessor-based system 7. 1

7.2 8085-based minimum system 7. 3

7.3 Temperature control system 7. 5

7.4 Motor speed control system 7. 7

x i

7.5 Traffic light control system 7. 9

7.6 Stepper motor control system 7.13

APPENDIX I 8085A instructions in hexadecimal order A. 1

APPENDIX II 8085A instructions in alphabetical order A. 3

APPENDIX III List of microprocessors released by INTEL A. 5

GENERAL INDEX I. 1

CHIP INDEX I. 5

Preface
The main objective of this book is to explore the basic concepts of most popular INTEL 8085

microprocessor and its programming and interfacing techniques in a simple and easy-to-understand

manner.

This text on 8085 microprocessor has been crafted and designed to meet student's requirements.

Considering the complex technical nature of this subject, equal emphasis has been given to programming

and design aspects. Considerable effort has been made to explain the assembly language programs with

step-by-step algorithm and flowchart. The peripheral interfacing techniques has been explained with

simple sketches clearly showing the necessary signals. Short questions and answers with varied difficulty

levels are given in the text to help students get an intuitive grasp on the subject.

This book with its lucid writing style and germane pedagogical features will prove to be a

master text for engineering students and practitioners.

The chapter-1 briefs about evolution of microprocessor and basics of microprocessor-based

system. An introductory discussion on popular microprocessors 8085, 8086, Z80 and 6800 are presented

in chapter-1.

The machine cycles of 8085 processor and their timing diagrams are discussed in chapter-2.

Also the instructions of 8085 microprocessor are explained with example in chapter-2.

The details of semiconductor memory and their interfacing with 8085 microprocessor are

presented in chapter-3. Design examples are also included for better understanding of the concept of the

memory and IO interfacing with 8085 microprocessor.

The importance of interrupts and their implementation in 8085 system are discussed in chapter-

4. Methods for expanding the interrupts of 8085 are also discussed in chapter-4.

The concepts of assembly language programming are discussed in chapter-5. A number of

assembly language example programs using 8085 microprocessor instructions are included in this chapter.

These example programs are assembled using X8085A assembler and verified in RBA-8085 trainer kit.

The concepts of port, keyboard and 7-segment display and their interfacing are discussed in

chapter-6. Simple discussions about USART, DMA controllers, Programmable timer,ADC and DAC, and

their interfacing with 8085 microprocessor are also presented in chapter-6.

Some of the 8085 microprocessor-based systems for specific applications are discussed in

chapter-7. The 8085 microprocessor instructions along with their opcodes are listed in Appendix-I and

Appendix-II as ready reference for assembly language programmers.

The author has taken care to present the concepts of microprocessor in a way easy to grasp by

students. The readers can feel free to convey their criticism and suggestions to kani@vsnl.com for

further improvement of the book.

A. Nagoor Kani

Acknowledgements

I express my heartful thanks to my wife Ms C Gnanaparanjothi Nagoor Kani and my sons N

Bharath Raj alias Chandrakani Allaudeen and N Vikram Raj for the support, encouragement and

cooperation they have extended to me throughout my career.

It is my pleasure to acknowledge the contributions to our technical editors,

Ms B Hemavathy, Ms S Pavithra, Ms K Thangaselvi for editing and proofreading of the manuscript, and

Ms A Selvi, Ms M Faritha for type setting and preparing the layout of the book.

My sincere thanks to all reviewers for their valuable suggestions and comments which helps

me to explore the subject to greater depth.

……

……

……

……

……

I am also grateful to Ms Vibha Mahajan, Mr Ebi John, Ms Smruti Snigha, Ms Nimisha Kapoor,

Ms Koyel Ghosh, Mr P L Pandita, Ms Sohini Mukherjee, …………………………… and

………………………….... of Tata McGraw Hill Education for their concern and care in publishing this

work.

My special thanks to Ms. Smruti Snigha of McGraw Hill Education for her care in bringing out

this work at the right time.

I thank all my office staff for their co-operation in carrying out my day-to-day activities.

Finally, a special note of appreciation is due to my sisters, brothers, relatives, friends, students

and the entire teaching community for their overwhelming support and encouragement to my writing.

A. Nagoor Kani

 CHAPTER 1

INTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION TOOOOO MICROPROCESSORICROPROCESSORICROPROCESSORICROPROCESSORICROPROCESSOR

1.1 TERMS USED IN MICROPROCESSOR LITERATURE

Bit : A digit of the binary number or code is called bit.

Nibble : The 4-bit (4-digit) binary number or code is called nibble.

Byte : The 8-bit (8-digit) binary number or code is called byte.

Word : The 16-bit (16-digit) binary number or code is called word.

Double Word : The 32-bit (32-digit) binary number or code is called double word.

Multiple Word : The 64, 128, ... bit/digit binary numbers or codes are called multiple words.

Data : The quantity (binary number/code) operated by an instruction of a program

is called data. The size of data is specified as bit, byte, word, etc.

Address : Address is an identification number in binary for memory locations.

The 8086 processor uses 20-bit address for memory.

Memory Word Size : The memory word size or addressability is the size of binary information

(or Addressability) that can be stored in a memory location. The memory word size for 8085

processor-based system is 8-bit.

[The address and program codes in microprocessor system are given in binary (i.e., as a combination

of "0" and "1"). With n-bit binary we can generate 2
n
 different binary codes or address.]

Microprocessor : The microprocessor is a program controlled semiconductor device(IC),

which fetches (from memory), decodes and executes instructions.

It is used as CPU (Central Processing Unit) in computers.

The basic functional blocks of a microprocessor are ALU (Arithmetic

Logic Unit), an array of registers and a control unit. The microprocessor is

identified with the size of data, and the ALU of the processor it can work

with at a time. The 8085 processor has 8-bit ALU, hence it is called

8-bit processor. The 8086 processor has 16-bit ALU, hence it is called

16-bit processor.

Bus : A bus is a group of conducting lines that carries data, addresses and control

signals. Buses can be classified into Data bus, Address bus and Control bus.

The group of conducting lines that carries data is called data bus.

The group of conducting lines that carries addresses is called address bus.

The group of conducting lines that carries control signals is called control bus.

�

1. 2 Chapter 1 Introduction to Microprocessor

CPU Bus : The group of conducting lines that are directly connected to microprocessor

is called CPU bus. In a CPU bus the signals are multiplexed, i.e., more

than one signal are passed through the same line but at different timings.

System Bus : The group of conducting lines that carries data, addresses and control

signals in a microcomputer system is called system bus. Multiplexing is

not allowed in system bus.

[In microprocessor-based systems, each bit of information (data/address/control signal) is

send through a separate conducting line. Due to practical limitations, the manufacturers of

microprocessors may provide multiplexed pins, i.e., one pin is used for more than one purpose. This

leads to multiplexed CPU bus. For example in 8085 processor the low byte of address and data are

send through same pins but at different timings. But when the system is formed, the multiplexed bus

lines should be demultiplexed by using latches, ports, transceivers, etc. The demultiplexed bus lines

are called system bus. In a system, separate conducting line will be provided for each bit of data,

address and control signals.]

Clock : A clock is a square wave, which is used to synchronize various devices in

the microprocessor and in the system. Every microprocessor system

requires a clock for its functioning. The time taken for the microprocessor

and the system to execute an instruction or program are measured only in

terms of the time period of its clock.

The clock has three edges. They are: rising edge (positive edge), level

edge and falling edge (negative edge). The devices are made sensitive to

any one of the edge for better functioning i.e., the device will recognize

the clock only when the edge is asserted or arrived).

Tristate Logic : Almost all the devices used in the microprocessor-based system uses

tristate logic. In devices with tristate logic, three logic levels will be available.

They are high state, low state and high impedance state.

The high and low are normal logic levels for data, address or control

signals. The high impedance state is electrical open circuit condition. The

high impedance state is provided to keep the device electrically isolated

from the system. The tristate devices will normally remain in high

impedance state and their pins are physically connected in the system bus

but electrically isolated. In high impedance state, they cannot receive or

send any signal or information. These devices are provided with chip enable/

chip select pins. When the signal at this pin is asserted to the right level,

they come out from high impedance state to normal levels.

Positive Edge

Level Edge Negative Edge

®®
® ®

®

Microprocessor (8085) And Its Applications 1. 3

1.2 EVOLUTION OF MICROPROCESSOR

History shows us that the ancient Babylonians first began using the abacus (a primitive

calculator made of beads) in about 500 BC. This simple calculating machine eventually sparked

human mind into the development of calculating machinery that uses gears and wheels (Blaise

Pascal in 1642). The giant computing machines of the 1940s and 1950s were constructed with

relays and vacuum tubes. Next, the transistor and solid-state electronics were used to build the

mighty computers of the 1960s. Finally, the advent of the Integrated Circuit (IC) led to the

development of the microprocessor and microprocessor-based computer system.

In 1971, INTEL corporation released the world's first microprocessor - the INTEL 4004, a

4-bit microprocessor. It addresses 4096 memory locations of word size 4-bit. The instruction set

consists of 45 different instructions. It is a monolithic IC employing large scale integration in

PMOS Technology. The INTEL 4004 was soon followed by a variety of microprocessors, with

most of the major semiconductor manufacturers producing one or more types.

First Generation Microprocessors

The microprocessors introduced between 1971 and 1973 were the first generation processors.

They were designed using PMOS technology. This technology provided low cost, slow speed and

low output currents and was not compatible with TTL (Transistor Transistor Logic) levels.

The first generation processors require a lot of additional support of ICs to form a system.

They may require as high as 30 ICs to form a system. The 4-bit processors are provided with only

16 pins, but 8-bit and 16-bit processors are provided with 40 pins. Due to limitations of pins, the

signals are multiplexed. A list of first generation microprocessors are given below:

� INTEL 4004

� INTEL 4040

� FAIR CHILD PPS - 25

� NATIONAL IMP - 4

� ROCKWELL PPP - 4

� MICRO SYSTEMS INTL. MC - 1

� INTEL 8008

� NATIONAL IMP - 8

� ROCKWELL PPS - 8

� AMI 7200

� MOSTEK 5065

� NATIONAL IMP/16

� NATIONAL PACE

Second Generation Microprocessors

The second generation microprocessors appeared in 1973 and were manufactured in

NMOS Technology. The NMOS technology offers faster speed and higher density than PMOS

and it is TTL compatible. Some of the second generation processors are given below:

� INTEL 8080

� INTEL 8085

� FAIRCHILD F - 8

4-bit processors

8-bit processors

16-bit processors

I
P
Q

I
P
Q

I
P
Q

8-bit processors

I

P

Q

1. 4 Chapter 1 Introduction to Microprocessor

� MOTOROLA M6800

� MOTOROLA M6809

� NATIONAL CMP -8

� RCA COSMAC

� MOS TECH. 6500

� SIGNETICS 2650

� ZILOG Z80

� INTERSIL 6100

� TOSHIBA TLCS - 12

� TI TMS 9900

� DEC - WD MCP - 1600

� GENERAL INSTRUMENT CP 1600

� DATA GENERAL μN601

Characteristics of second generation microprocessors

� Larger chip size (170 × 200 mils). [1mil = 10−3inch]

� 40 pins.

� More numbers of on-chip decoded timing signals.

� The ability to address large memory spaces.

� The ability to address more IO ports.

� Faster operation.

� More powerful instruction set.

� A greater number of levels of subroutine nesting.

� Better interrupt handling capabilities.

Third Generation Microprocessors

After 1978, the third generation microprocessors were introduced. These are 16-bit

processors and designed using HMOS (High density MOS) Technology. Some of the third generation

microprocessors are given below:

� INTEL 8086 � INTEL 80286 � ZILOG Z8000

� INTEL 8088 � MOTOROLA 68000 � NATIONAL NS 16016

� INTEL 80186 � MOTOROLA 68010 � TEXAS INSTRUMENTS TMS 99000

The HMOS technology offers better Speed Power Product (SPP) and higher packing density

than NMOS.

Speed Power Product = Speed × Power

 = Nanosecond × Milliwatt

 = Picojoules

� Speed Power Product of HMOS is four times better than NMOS.

SPP of NMOS = 4 picojoules (pJ)

SPP of HMOS = 1 picojoules (pJ)

� Circuit densities provided by HMOS are approximately twice than those of NMOS.

Packing density of NMOS = 1852.5 gates/mm2

Packing density of HMOS = 4128 gates/mm2 (1 mm = 10–6 meter)

8-bit processors

12-bit processors

16-bit processors

I

P

Q

I

P

Q

I

P

Q

Microprocessor (8085) And Its Applications 1. 5

Characteristics of third generation microprocessors

� Provided with 40/48/64 pins.

� High speed and very strong processing capability.

� Easier to program.

� Allow for dynamically relocatable programs.

� Size of internal registers are 8/16/32 bits.

� The processor has multiply/divide arithmetic hardware.

� Physical memory space is from 1 to 16 Mega bytes.

� The processor has segmented addresses and virtual memory features.

� More powerful interrupt handling capabilities.

� Flexible IO port addressing.

� Different modes of operations (e.g., user and supervisor modes of M68000).

Fourth Generation Microprocessors

The fourth generation microprocessors were introduced in the year 1980. The fourth generation

processors are 32-bit processors and are fabricated using the low-power version of the HMOS

technology called the HCMOS. These 32-bit microprocessors have increased sophistications that compete

strongly with the mainframes. Some of the fourth generation microprocessors are given below:

� INTEL 80386 � MOTOROLA M68020 � MOTOROLA MC88100

� INTEL 80486 � BELLMAC - 32

� NATIONAL NS16032 � MOTOROLA M68030

Characteristics of fourth generation microprocessors

� Physical memory space of 224 bytes = 16 Mb (Mega bytes).

� Virtual memory space of 240 bytes = 1 Tb (Tera bytes).

� Floating point hardware is incorporated.

� Supports increased number of addressing modes.

Fifth Generation Microprocessors

In microprocessor technology, INTEL has taken a leading edge and is developing more and

more new processors. The INTEL pentium processor released in the year 1993 is considered as a

fifth generation processor. The pentium is 32-bit processor with 64-bit data bus and available in wide

range of clock speeds from 60 MHz to 3.2 GHz. With the improvement in semiconductor technology,

the processing speed of microprocessors have been increased tremendously. The 8085 released in the

year 1976 executes 0.5 Million Instructions Per Second (0.5 MIPS). The 80486 executes 54 Million

Instructions Per Second. The pentium is optimized to execute two instructions in one clock period.

Therefore, a pentium processor working at 1GHz clock can execute 2000 Million Instructions Per

Second (2000 MIPS). The various processors released by INTEL are listed in Appendix-III.

Applications of Microprocessors of Different Generations

First generation processor

� Calculators � Accounting systems

� Game machines � Intelligent instrumentation

� Home appliances � Low and special purpose applications

1. 6 Chapter 1 Introduction to Microprocessor

ALU

Register Array
or

Internal Memory

Instruction
Decoding UnitFlag Register

Timing and
Control Unit PC/IP

Data Bus

Control Bus Address Bus

Fig. 1.1 : Block diagram showing basic functional blocks of a microprocessor.

®

®

®

®

®

Second generation processors

� Complex industrial controllers � Instrumentation

� Communication perprocessors � Intelligent terminals

� Process control systems � Military applications

� Data acquisition systems

Third generation processors

� Business and data processing applications

� Sophisticated real time control

� Advanced communications

� Distributed processing networks

Fourth generation processors

� General purpose computing in applications requiring mainframe type computing power.

� Multiuser, multifunction environments.

� Office information equipment.

1.3 BASIC FUNCTIONAL BLOCKS OF A MICROPROCESSOR

The microprocessor is a programmable IC which is capable of performing arithmetic and

logical operations. The basic functional block diagram of a microprocessor is shown in Fig. 1.1.

The basic functional blocks of a microprocessor are ALU, flag register, register array, Program

Counter (PC)/Instruction Pointer (IP), instruction decoding unit, timing and control unit.

ALU is the computational unit of the microprocessor which performs arithmetic and logical

operations on binary data. The various conditions of the result are stored as status bits called flags

in the flag register. For example, consider a sign flag, one of the bit position of flag register is called

sign flag and it is used to store the status of sign of the result of ALU operation (output data of

ALU). If the result is negative, then "1" is stored in the sign flag and if the result is positive, then "0"

is stored in the sign flag.

Microprocessor (8085) And Its Applications 1. 7

The register array is the internal storage device and so it is also called internal memory. The

input data for ALU, the output data of ALU (result of computations) and any other binary information

needed for processing are stored in the register array.

For any microprocessor, there will be a set of instructions given by the manufacturer of the

microprocessor. For doing any useful work with the microprocessor, we have to write a program

using these instructions, and store them in a memory device external to the microprocessor.

The program counter generates the address of the instructions to be fetched from the memory

and send through address bus to the memory. The memory will send the instruction codes and data

through the data bus. The instruction codes are decoded by the decoding unit and send information to

timing and control unit. The data is stored in the register array for processing by ALU.

The control unit will generate the necessary control signals for internal and external operations

of the microprocessor.

1.4 MICROPROCESSOR-BASED SYSTEM
(ORGANIZATION OF MICROCOMPUTER)

The microprocessor is a semiconductor device (or Integrated Circuit) manufactured by the

VLSI (Very Large Scale Integration) technique. It includes the ALU, register arrays and control

circuit on a single chip. To perform a function or useful task, we have to form a system by using

microprocessor as a CPU (Central Processing Unit) and interfacing memory, input and output

devices to it. A system designed using a microprocessor as its CPU is called a microcomputer or

single board microcomputer. The microprocessor-based system consists of microprocessor as

CPU, semiconductor memories like EPROM and RAM, input device, output device and interfacing

devices. The memories, input device, output device and interfacing devices are called peripherals.

The commonly used EPROM and static RAM in microcomputers are given below:

EPROM Static RAM

INTEL 2708 (1 kb) MOTOROLA 6208 (1 kb)

INTEL 2716 (2 kb) MOTOROLA 6216 (2 kb)

INTEL 2732 (4 kb) MOTOROLA 6232 (4 kb)

INTEL 2764 (8 kb) MOTOROLA 6264 (8 kb)

Note : kb refer to Kilo bytes.

The popular input devices are keyboard, floppy disk, etc., and the output devices are printer,

LED/LCD displays, CRT monitor, etc.

The block diagram of microprocessor-based system (organization of microcomputer) is

shown in Fig. 1.2. In this system, the microprocessor is the master and all other peripherals are

slaves. The master controls all the peripherals and initiates all operations.

The buses are group of lines that carry data, addresses or control signals. The CPU bus has

multiplexed lines, i.e., the same line is used to carry different signals. The CPU interface is provided

to demultiplex the multiplexed lines, to generate chip select signals and additional control signals.

The system bus has separate lines for each signal.

1. 8 Chapter 1 Introduction to Microprocessor

Fig. 1.2 : Microprocessor-based system (organization of microcomputer).

IPQ

IPQ

EPROM RAM

IO Interface

Input
Device

Output
DeviceMemory

Slaves

S
y
st
em

B
u
s

Address Bus

Data Bus

Control
Bus

CPU
Interface

mP
(CPU)

A/D - Address/Data Bus

A - Address Bus

C - Control Bus

CPU Bus
A/D

A

C

All the slaves in the system are connected to the same system bus. At any time instant

communication takes place between the master and one of the slaves. All the slaves have tristate

logic and hence normally remains in high impedance state. The processor selects a slave by

sending an address. When a slave is selected, it comes to the normal logic and communicates with

the processor.

The EPROM memory is used to store permanent programs and data. The RAM memory is

used to store temporary programs and data. The input device is used to enter the program, data and

to operate the system. The output device is also used for examining the results. Since the speed of

IO devices does not match with the speed of microprocessor, an interface device is provided

between system bus and IO devices. Generally, IO devices are slow devices.

The work done by the processor can be classified into the following three groups :

1. Work done internal to the processor.

2. Work done external to the processor.

3. Operations initiated by the slaves or peripherals.

The work done internal to the processor are addition, subtraction, logical operations,

data transfer within registers, etc. The work done external to the processor are reading /writing the

memory, and reading/writing the IO devices or the peripherals. If the peripheral requires the attention

of the master, then it can interrupt the master and initiate an operation.

The microprocessor is the master, which controls all the activities of the system. To perform

a specific job or task, the microprocessor has to execute a program stored in memory. The program

consists of a set of instructions stored in consecutive memory location. In order to execute the

program, the microprocessor issues address and control signals, to fetch the instruction and data

from memory one by one. After fetching each instruction it decodes the instruction and carries out

the task specified by the instruction.

Microprocessor (8085) And Its Applications 1. 9

8085 (CPU)

AD - AD0 7

ALE

74LS373
8-bit
D-latch

EN

D - D0 7

A - A0 7

Fig. 1.3 : Demultiplexing of address and data lines in an 8085 processor.

®

1.5 CONCEPT OF MULTIPLEXING IN MICROPROCESSOR

Multiplexing is transferring different information at different well-defined times through

same lines. A group of such lines are called multiplexed bus. The result of multiplexing is that fewer

pins are required for microprocessors to communicate with the outside world.

Due to the pin number limitations, most microprocessors cannot provide simultaneously similar

lines (such as address, data, status signals, etc.). Hence, multiplexing of one or more of these buses

is performed. Most often data lines are multiplexed with some or all address lines to form an address/

data bus. (For example, in 8085, the lower 8 address lines are multiplexed with data lines.) The status

signals emitted by the microprocessor are sometimes multiplexed either with the data lines (as done in

INTEL 8080A) or with some of the address lines (as done in the INTEL 8086).

Whenever multiplexing is used, the CPU interface of the system must include the necessary

hardware to demultiplex those lines to produce the separate address, data and control buses required

for the system. Demultiplexing of a multiplexed bus can be handled either at the CPU interface or

locally at appropriate points in the system. Besides a slower system operation, a multiplexed bus

also results in additional interface hardware requirements.

Demultiplexing of Address/Data Lines in 8085 Processor

In order to demultiplex the address/data lines (of the processor), the processor provides a

signal called ALE (Address Latch Enable). The ALE is asserted high and then low by the processor

at the beginning of every machine cycle. At the same time the low byte address is given out through

AD
0
 - AD

7
 lines. The demultiplexing of address/data lines using 8-bit D-latch 74LS373 is shown in

Fig. 1.3.

The ALE is connected to the Enable Pin (EN) of an external 8-bit latch. When ALE is

asserted high and then low, the addresses are latched into the output lines of the latch. It holds the

low byte of the address until the next machine cycle. After latching the address, the AD
0
 - AD

7
 lines

are free for data transfer. The first T-state of every machine cycle is used for address latching in

8085 and the remaining T states are used for reading or writing operation.

1.6 MICRO, MINI AND LARGE COMPUTERS

The computers are broadly classified into three categories : Main frame, Mini and Microcomputers.

In today’s technology, the distinction between these categories are fast vanishing. The

microcomputers have superceded the performance of minicomputers and now they are competing

with mainframes.

1. 10 Chapter 1 Introduction to Microprocessor

Mainframes (Large Computers)

The largest and most powerful computers are called mainframes. Mainframe computers

may occupy an entire room. They are designed to work at very high speed with large data words

and have massive amounts of memory. Computers of this type are used for military defence

control, business data processing and for creating computer graphics displays for science fiction

movies. Examples of this type of computers are IBM 4381, Honeywell DPS8 and CRAY X-MP/48.

Minicomputers

The scaled-down versions of mainframe computers are often called minicomputers. The

main unit of a minicomputer usually fits in a single rack or box. A minicomputer runs more slowly,

work directly with smaller data words and does not have as much memory as a mainframe.

Computers of this type are used for business data processing, industrial control and scientific

research. Examples of this type of computers are the Digital Equipment Corp.-VAX 11/730, the

Data General-MV/800011 and HCL's-MAGNUM.

The CPU of the minicomputers have more than one microprocessor and their coprocessors.

Microcomputers

As the name implies, microcomputers are small computers. They range from small controllers

that work directly with 4-bit words and can address a few thousand bytes of memory to large units

that work directly with 64-bit words and can address millions or billions of bytes of memory.

Some of the more powerful microcomputers have all or most of the features of earlier

minicomputers. Therefore, it has become very hard to draw a sharp line between these two types.

One distinguishing feature of a microcomputer is that the CPU is usually a single

microprocessor. The examples of microcomputer are IBM PC/80, AT286, AT386, AT486, etc.

Comparison of Large, Mini and Micro Computers

The computers can be compared based on the following features:

1. Speed of execution

2. Size of data

3. Memory capacity it can support

4. Types of data

5. IO devices and peripheral support devices

6. Applications

They are further listed in Table-1.1.

Advantages of Microprocessor-Based System

1. Computational or processing speed is high.

2. Intelligence has been brought to systems.

3. Automation of industrial processes and office administration.

4. Since the devices are programmable, there is flexibility to alter the system by changing the software alone.

5. Less number of components, compact in size and less cost. It is also more reliable.

6. Both operation and maintenance are easier.

Microprocessor (8085) And Its Applications 1. 11

T
A

B
L

E
 -
 1

.1
 :
 C

O
M

P
A

R
IS

O
N

 O
F

 M
A

IN
F

R
A

M
E

S
, M

IN
IC

O
M

P
U

T
E

R
S

 A
N

D
 M

IC
R

O
C

O
M

P
U

T
E

R
S

F
e
a

tu
r
e
s

M
a
in

fr
a
m

e
/

L
a
rg

e
co

m
p

u
te

rs

M
in

ic
o
m

p
u

te
rs

M

ic
ro

co
m

p
u

te
rs

1
.

S
p
e
e
d
 o

f
e
x
e
c
u
ti
o
n

E
x
e
c
u
te

s
 1

0
0
 t

o
 3

0
0
0
 M

ill
io

n
E

x
e
c
u
te

s
 u

p
 t

o
 1

0
0
 M

ill
io

n
R

a
n

g
e

s
 f

ro
m

 0
.5

 M
IP

S

In
s
tr

u
c
ti
o
n
s

P
e
r

S
e
c
o
n
d
 (

M
IP

S
).

In
s
tr

u
c
ti
o
n
s

P
e
r

S
e
c
o
n
d
 (

M
IP

S
).

(8
0
8
5
)

to
 5

4
 M

IP
S

 (
8
0
4
8
6
)

2
.

S
iz

e
 o

f
d

a
ta

6
4

 o
r

1
2

8
 b

it
s
.

3
2

 o
r

6
4

 b
it
s
.

4
 b

it
s
 t

o
 6

4
 b

it
s
.

3
.

M
e
m

o
ry

 c
a
p
a
c
it
y

T
h
o
u
s
a
n
d
s
 o

f
G

b
.

In
 t
h
e
 r

a
n
g
e
 o

f
fe

w
 G

b
.

R
a
n
g
e
s
 f

ro
m

 k
b
 t

o
 G

b

(k
b
-k

ilo
-b

y
te

,
G

b
-G

ig
a
-b

y
te

)

4
.

T
y
p

e
s
 o

f
d

a
ta

A
ll

ty
p

e
s
 (

B
in

a
ry

,A
S

C
II

,
d

e
c
im

a
l,

S
a

m
e

 a
s
 m

a
in

 f
ra

m
e

.
D

e
p

e
n

d
s
 o

n
 t

h
e

 m
ic

ro
-

fl
o
a
ti
n
g
 p

o
in

t
d
a
ta

,
c
o

m
p

le
x

p
ro

c
e

s
s
o

r
u

s
e

d
 a

s
 C

P
U

.

n
u

m
b

e
rs

,
e

tc
.)

.
8

0
8

5
 -

 o
p

e
ra

te
s

o
n

ly
 o

n
b

in
a

ry
8
0
8
6
 -

 B
in

a
ry

,
B

C
D

,
A

S
C

II
.

5
.

IO
 d

e
v
ic

e
s
 a

n
d

A
ll

ty
p
e
s
 o

f
IO

 d
e
v
ic

e
s
 a

n
d

C
o
m

m
o
n
 i

n
p
u
t

d
e
v
ic

e
s
 a

re
C

o
m

m
o

n

IO

d
e

v
ic

e
s

a

re

s
u

p
p

o
rt

 p
e

ri
p

h
e

ra
ls

p
e
ri
p
h
e
ra

l
d
e
v
ic

e
s
 w

ill
 b

e
ta

p
e
s
,

fl
o
p
p
ie

s
,

e
tc

.
T

y
p
e
s

k
e
y
b
o
a
rd

,
fl
o
p
p
ie

s
 a

n
d

in
te

rf
a
c
e
d
 i

n
 t

h
e
 s

y
s
te

m
.

o
f

o
u
tp

u
t

d
e
v
ic

e
 d

e
p
e
n
d
s
 o

n
o
u
tp

u
t

d
e
v
ic

e
s
 a

re
 C

R
T

 a
n
d

th
e

 u
s
e

r
n

e
e

d
s
.

p
ri
n

te
r.

T
h

e
 s

u
p

p
o

rt

p
e

ri
p

h
e

ra
l

d
e

v
ic

e
 d

e
p

e
n

d
s

o
n

 a
p

p
lic

a
ti
o

n
s
 o

f
th

e
 s

y
s
te

m
.

6
.

A
p

p
li
c
a

ti
o

n
s

S
c
ie

n
ti
fi
c
 c

a
lc

u
la

ti
o
n
,

w
e
a
th

e
r

d
a
ta

M
u

lt
iu

s
e

r
b

u
s
in

e
s
s
 s

y
s
te

m
s
,

P
e

rs
o

n
a

l
c
o

m
p

u
ti
n

g
,

p
ro

c
e

s
s
in

g
,

la
rg

e
 b

u
s
in

e
s
s
 d

a
ta

w
o

rd
 p

ro
c
e

s
s
in

g
,

c
a

lc
u

la
to

rs
,

s
m

a
ll
 b

u
s
in

e
s
s

p
ro

c
e

s
s
in

g
,

re
a

l
ti
m

e
 a

p
p

lic
a

ti
o

n
s
,

p
ro

c
e
s
s
 c

o
n
tr

o
l,
 o

ff
ic

e
s
y
s
te

m
s
,

c
o

n
tr

o
l

a
p

p
lic

a
ti
o

n
s
,

m
u

lt
iu

s
e

r
b

u
s
in

e
s
s
 s

y
s
te

m
s
,

a
u

to
m

a
ti
o

n
,

h
o

s
p

it
a

l
p

a
ti
e

n
t

in
s
tr

u
m

e
n

ta
ti
o

n
 s

y
s
te

m
s
.

in
s
tr

u
c
ti
o

n
a

l
s
y
s
te

m
 i

n
 c

o
lle

g
e

s
.

c
a

re
 s

y
s
te

m
s
.

1. 12 Chapter 1 Introduction to Microprocessor

Disadvantages of Microprocessor-Based System

1. It has limitations on the size of data.

2. The applications are limited by the physical address space.

3. The analog signals cannot be processed directly and digitizing the analog signals introduces errors.

4. The speed of execution is slow and so real time applications are not possible.

5. Most of the microprocessors do not support floating point operations.

Applications of Microprocessor-Based Systems

Typical applications for different systems, categorized by the data size of ALU of the

processor, include the following :

4-bit systems

� Accounting systems � Game Machines

� Home Appliances � Intelligent Instrumentation

� Calculators � Terminals (simple)

8-bit systems

� Control systems � Point of sale terminals

� Intelligent terminals and instruments � Traffic controllers

� Process control systems � Communication preprocessors (data concentrators)

16-bit systems

� Data acquisition system � Numerical control

� Intelligent terminals � Process control

� Automatic testing systems � Supervisory control (gas, power, water distribution)

and many more applications

1.7 INTEL 8085

The INTEL 8085 is an 8-bit microprocessor released in the year 1976. The 8085 is designed

using NMOS technology and now it is manufactured using HMOS technology and it contains

approximately 6500 transistors. The 8085 is packed in a 40-pin DIP (Dual In-line Package) and

requires a single 5-volt supply.

The 8085 has an internal clock oscillator. It generates a clock signal internally and divides

by two and then uses as internal clock. This internal clock is also given out through CLK pin for

the clock requirement of peripheral devices.

The NMOS 8085 is available in two versions : 8085A and 8085A-2 with maximum

internal clock frequency of 3.03MHz and 5MHz, respectively. The enhanced version of 8085

is designed with HMOS transistors. It is available in three versions: 8085AH, 8085AH-2 and

8085AH-1 with maximum internal clock of 3MHz, 5MHz and 6MHz, respectively.

The basic data size of 8085 is 8-bit. Therefore, the memory word size of the memories

interfaced with 8085 processor is also 8-bit or byte. The 8085 uses a 16-bit address to access

memory and hence it can address upto 216 = 65,536
10

 = 64 k memory locations. Since one-byte of

Microprocessor (8085) And Its Applications 1. 13

information can be stored in one memory location, the maximum memory capacity of 8085-based

system is 64 kilo bytes. For accessing IO-mapped devices, the 8085 uses a separate 8-bit address

and so it can generate 28 =256
10

 IO addresses.

The pin configuration of 8085 is shown in Fig. 1.4. The signals of 8085 are listed in

Table-1.2. The 8085 has 8 pins AD
0
 to AD

7
 for data transfer, which are multiplexed with low byte

of address. The 8085 provides a signal ALE (Address Latch Enable) to demultiplex the low byte

address and data using an external latch. The demultiplexing of address and data lines in 8085 is

shown in Fig. 1.3 in Section 1.5.

During memory access, the 16-bit memory address are output on AD
0
 to AD

7
 and A

8
 to A

15

lines. During IO access of IO-mapped devices, the 8-bit IO address are output on both AD
0
 to AD

7

and A
8
 to A

15
 lines. The 8085 processor differentiates the memory and IO address using the signal

IO/M. When the processor output gives a memory address, the IO/M is asserted low and when the

processor output gives an IO address, the IO/M is asserted high.

The RD signal is asserted low by the processor during a memory or IO read operation. The

WR signal is asserted low by the processor during a memory or IO write operation. The S
0
 and S

1

are bus status indicators. The output signals on these lines during various bus activity (or machine

cycles) are listed in Table-1.3.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

X1

X2

RESET OUT

SOD

SID

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

AD0

AD1

AD2

AD3

AD4

AD5

AD6

AD7

VSS(GND)

S0

A15

A14

A13

A12

A11

A10

A9

A8

ALE

WR

RD

S1

IO/M

READY

RESET IN

CLK (OUT)

HLDA

HOLD

VCC(+5-V)

8085A

X1

X2

SOD

SID

TRAP

RST 7.5

RST 6.5

RST 5.5

INTR

INTA

VSS(GND)

S0

ALE

WR

RD

S1

IO/M

READY

RESET IN

CLK

HLDA

HOLD

AD0 - AD7

A8 - A15

1
2
3

A
d

d
re

ss
/D

at
a

RESET OUT

Bus Status
Indicators

VCC(+5-V)Power
Supply

C
ry

st
al

C
o
n

n
ec

ti
o

n
an

d
P

er
ip

h
er

al
s

C
lo

ck

Serial Data
Transfer

Interrupts

DMA
Control

C
o

n
tr

o
l

S
ig

n
al

s

Fig. 1.4 : 8085 microprocessor signals and pin assignment.
→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

8085A

→

→

→

→

→

→

→

→

→

→

→

→
→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

1. 14 Chapter 1 Introduction to Microprocessor

TABLE - 1.2 : 8085 SIGNAL DESCRIPTION SUMMARY

 Pin name Description Type

AD
0
 - AD

7
Address/Data Bidirectional, Tristate

A
8
 - A

15
Address Output, Tristate

ALE Address latch enable Output, Tristate

RD Read control Output, Tristate

WR Write control Output, Tristate

IO/M IO or memory indicator Output, Tristate

S
0
, S

1
Bus state indicators Output

READY Wait state request Input

SID Serial input data Input

SOD Serial output data Output

HOLD Hold request Input

HLDA Hold acknowledge Output

INTR Interrupt request Input

TRAP Nonmaskable interrupt request Input

RST 5.5 Hardware vectored interrupt request Input

RST 6.5 Hardware vectored interrupt request Input

RST 7.5 Hardware vectored interrupt request Input

INTA Interrupt acknowledge Output

RESET IN System reset Input

RESET OUT Peripherals reset Output

X
1
, X

2
Crystal or RC connection Input

CLK (OUT) Clock signal Output

V
cc

+5-V Power supply

V
ss

Ground Power supply

Note : An overbar on the signal, indicates that it is active low (i.e., the signal is normally high and

when the signal is activated it is low).

TABLE - 1.3 : BUS STATUS SIGNALS

IO/M S
1

S
0

 Operation performed by 8085

0 0 1 Memory write

0 1 0 Memory read

1 0 1 IO write

1 1 0 IO read

0 1 1 Opcode fetch

1 1 1 Interrupt acknowledge

Microprocessor (8085) And Its Applications 1. 15

The READY is an input signal that can be used by slow peripherals to get extra time in order

to communicate with 8085. The 8085 will work only when READY is tied to logic high. Whenever

READY is tied to logic low, the 8085 will enter a wait state. When the system has slow peripheral

devices, additional hardware is provided in the system to make the READY input low during the

required extra time while executing a machine cycle, so that the processor can remain in wait state

during this extra time.

The HOLD and HLDA signals are used for the Direct Memory Access (DMA) type of data

transfer. This type of data transfers are achieved by employing a DMA controller in the system.

When DMA is required, the DMA controller will place a high signal on the HOLD pin of 8085.

When HOLD input is asserted high, the processor will enter a wait state and drive all its tristate

pins to high impedance state and send an acknowledge signal to DMA controller through HLDA

pin. Upon receiving the acknowledge signal, the DMA controller will take control of the bus and

perform DMA transfer, and at the end it asserts HOLD signal low. When HOLD is asserted low, the

processor will resume its execution.

The 8085 has five interrupt pins. The order of priority of the interrupts is TRAP, RST 7.5,

RST 6.5, RST 5.5 and INTR. The interrupts TRAP, RST 7.5, RST 6.5 and RST 5.5 are hardware

vectored interrupt and are enabled by appropriate signals at the appropriate pins of 8085. When a

vectored interrupt is enabled and if it is accepted, then the program execution branches to vector

addresses specified by INTEL. The interrupts RST 7.5, RST 6.5 and RST 5.5 are maskable

interrupts by software.

The INTR is enabled by appropriate signal at its pin. In order to service INTR, one of the

eight opcodes (RST 0 to RST 7) has to be provided on the AD
0
 - AD

7
 bus by external logic. The

8085 then executes this instruction and vectors to the appropriate address to service the interrupt.

The vector address for an interrupt RST n is given by (08 × n)
H
. The vector addresses of the

interrrupts of 8085 are listed in Table-1.4. (The interrupt TRAP is RST 4.5.)

TABLE - 1.4 : VECTOR ADDRESSES OF INTERRUPTS

Interrupt Vector address Interrupt Vector address

 RST 0 0000
H

 RST 5 0028
H

 RST 1 0008
H

 RST 5.5 002C
H

 RST 2 0010
H

 RST 6 0030
H

 RST 3 0018
H

 RST 6.5 0034
H

 RST 4 0020
H

 RST 7 0038
H

 TRAP 0024
H

 RST 7.5 003C
H

The 8085 has the clock generation circuit on the chip but an external quartz crystal or LC

circuit or RC circuit should be connected at the pins X
1
 and X

2
. The frequency at X

1
 and X

2
 is

divided by two internally, and are used as internal clock. The frequency of output clock signal at

CLK(OUT) pin is same as that of internal clock.

1. 16 Chapter 1 Introduction to Microprocessor

f
L C Cext ext

=
+

1

2p intb g

The RESET IN is the system reset input signal and it is used to bring the processor to a

known state. For proper reset, the RESET IN pin should be held low for at least three clock

periods. When RESET IN pin is asserted low, the program counter, instruction register, interrupt

mask bits and all internal registers are cleared or resetted. Also, the RESET OUT signal is asserted

high to clear or reset all the peripheral devices in the system. After a reset, the content of program

counter will be 0000
H
 and so the processor will start executing the program stored at 0000

H
.

The pins SID and SOD can be used for serial data communication between 8085 and any

serial device under software control.

Driving X
1
 and X

2
Inputs

The X
1
 and X

2
 pins of 8085 processor are provided to connect an external quartz crystal or

LC circuit. It can also be driven by RC circuit or an external clock source. This connection is

necessary for the internal oscillator to generate the clock signal for the processor. An oscillator

consists of an amplifier and a feedback circuit. The feedback circuit of an oscillator can be RC type,

LC type or quartz crystal (a quartz crystal is electrically equivalent to RLC circuit). The feedback

circuit also decides the frequency of the signal generated by the oscillator.

In 8085 processor, the oscillator circuit is provided internally except the feedback circuit.

This feature, facilitates the system designer to choose his own frequency for clock signals. But this

frequency should not exceed the maximum clock frequency specified by the manufacturer. Another

reason for keeping feedback circuit external to the processor is that the high Q circuits (quartz

crystal or large values of L) cannot be fabricated by IC technology.

In 8085, the frequency generated by the oscillator circuit will be double than that of internal

clock frequency. (The maximum clock frequencies specified by the manufacturer are internal

clock frequencies.) In other words, the frequency at X
1
 - X

2
 pins of 8085 is divided by two,

internally. This means that in order to obtain an internal clock of 3.03MHz, a clock source of

6.06 MHz must be connected to X
1
 - X

2
. (Crystal/LC/RC should be designed to double the internal

frequency.)

The quartz crystals are the best choice for connecting at X
1
 - X

2
, because they are less

expensive, highly stable, have large Q, occupy very small space and frequencies do not drift with

ageing. For crystals with less than 4MHz, a capacitor of 20 pF should be connected between X
2

and the ground to ensure the starting up of the crystal at the right frequency.

When LC circuit is used, the value of L
ext

 and C
ext

 can be chosen using the formula,

To minimize the variations in frequency, it is recommended that the value for C
ext

 should be

twice than that of C
int

 or 30 pF. The use of LC circuit is not recommended for external frequencies

higher than 5 MHz.

Microprocessor (8085) And Its Applications 1. 17

X1

X2

(2f)
Crystal

20 pF

Fig. 1.5a : Capacitor required for crystals
with frequency less than 4 Mhz.

X1

X2

C

= 15 pF
int

Cext

Lext

Fig. 1.5b : LC tuned
circuit clock driver.

X1

X2

C

=15 pF
int

R
=
1
0
k

C
15 pF

Fig. 1.5c : RC circuit
clock source.

Fig. 1.5 : Clock driver circuits for an 8085.

8085 8085 8085

An RC circuit may also be used as the clock source for the 8085A if an accurate clock

frequency is of no concern. Its advantage is its low component cost. The values shown in Fig. 1.5

are for generating an approximate external frequency of 3MHz. Note that the frequencies higher or

lower than 3MHz should not be attempted on this circuit.

Architecture of INTEL 8085

The architecture of 8085 is shown in Fig. 1.6. The 8085 includes the ALU, timing and

control unit, instruction register and decoder, register array, interrupt control and serial IO control.

The ALU performs the arithmetic and logical operations. The operations performed by ALU

of 8085 are addition, subtraction, increment, decrement, logical AND, OR, EXCLUSIVE-OR,

compare, complement and left /right shift. The accumulator and temporary register are used to

hold the data during an arithmetic/logical operation. After an operation, the result is stored in the

accumulator and the flags are set or reset according to the result of the operation. The accumulator

and flag register together are called Program Status Word (PSW).

There are five flags in 8085, they are: Sign Flag (SF), Zero Flag (ZF), Auxiliary Carry

Flag (AF), Parity Flag (PF) and Carry Flag (CF). The bit positions reserved for these flags in the

flag register are shown in Fig. 1.7.

After an ALU operation if the most significant bit of the result is 1, the sign flag is set. The

zero flag is set if the ALU operation results in zero and it is reset if the result is nonzero. In an

arithmetic operation, when a carry is generated by the lower nibble, the auxiliary carry flag is set.

After an arithmetic or logical operation if the result has an even number of 1's the parity flag is set,

otherwise it is reset.

If an arithmetic operation results in a carry, the carry flag is set, otherwise it is reset.

Among the five flags, the AF Flag is used internally for BCD arithmetic and other four flags can be

used by the programmer to check the conditions of the result of an operation.

1. 18 Chapter 1 Introduction to Microprocessor

A
cc

u
m

u
la

to
r

(8
)

(A
)

T
em

p
o

ra
ry

 (
8

)
R

eg
is

te
r

(T
M

P
)

A
L

U

(8
)

F
la

g
 R

eg
is

te
r

(8
)

In
st

ru
ct

io
n

R
eg

is
te

r

In
st

ru
ct

io
n

D
ec

o
d

in
g

 a
n
d

M
ac

h
in

e
C

y
cl

e
E

n
co

d
in

g
 C

ir
cu

it
ry

W

(8

)

 Z

(8

)

B

 (
8

)

 C

(8

)

D

 (

8
)

 E

(8

)

H

 (

8
)

 L

(8

)

S
ta

ck
 P

o
in

te
r

(S
P

)

(1
6
)

H
ig

h
 A

d
d

re
ss

B
u

ff
er

A
d

d
re

ss
/D

at
a

B
u

ff
er

In
te

rr
u

p
t

C
o

n
tr

o
l

S
er

ia
l

IO
C

o
n

tr
o

l

T
im

in
g

 a
n

d
 C

o
n
tr

o
l

C
ir

cu
it

ry

A
d

d
re

ss
 B

u
s

(A
 -

 A
)

8
1

5

A
d

d
re

ss
/D

at
a

B
u

s
(A

D
 -

 A
D

)
0

7

S1

S0

RESET IN

RESET OUT

ALE

WR

RD

IO/ M

READY

HLDA

HOLD

CLK (OUT)

X2

X1

V
C

C

G
N

D

INTR

INTA

RST 5.5

RST 6.5

RST 7.5

TRAP

SID

SOD

8
8

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

F
ig

.
1
.6

 :
A

rc
h
it
e
c
tu

re
 o

f
IN

T
E

L
 8

0
8
5

 m
ic

ro
p
ro

c
e
s
s
o
r.

Microprocessor (8085) And Its Applications 1. 19

SF ZF AF PF CF

B7 B6 B5 B4 B3 B2 B1 B0

Fig. 1.7 : Bit positions of various flags in the flag register of 8085.

The timing and control unit synchronizes all the microprocessor operations with the clock,

and generates the control signals necessary for communication between the microprocessor and

peripherals.

When an instruction is fetched from memory, it is placed in instruction register. It is then

decoded and encoded into various machine cycles. Apart from Accumulator (A-register), there

are six general purpose programmable registers B, C, D, E, H and L. They can be used as 8-bit

registers or paired to store 16-bit data. The allowed pairs are BC, DE and HL. The temporary

registers TMP, W and Z cannot be used by the programmer.

The Stack Pointer (SP), holds the address of the stack top. The stack is a sequence of

RAM memory locations defined by the programmer. The stack is used to save the content of

registers during the execution of a program.

The Program Counter (PC) keeps a track of program execution. To execute a program, the

starting address of the program is loaded in program counter. The PC sends out an address to

fetch a byte of instruction from memory and increment its content automatically. Hence, when a

byte of instruction is fetched, the PC holds the address of the next byte of the instruction or next

instruction.

Instruction Execution and Data Flow in 8085

The program instructions are stored in memory which is an external device. In order to

execute a program in 8085, the starting address of the program should be loaded in program

counter. The 8085 output is the content of program counter to address bus and asserts read control

signal low. Also, the program counter is incremented.

The address and the read control signal enables the memory to output the content of memory

location on the data bus. Now the content of data bus is the opcode of an instruction. The read

control signal is made high by timing and control unit after a specified time. At the rising edge of

read control signals, the opcode is latched into microprocessor internal bus and placed in instruction

register.

The instruction decoding unit, decodes the instruction and provides information to timing

and control unit to take further actions.

1. 20 Chapter 1 Introduction to Microprocessor

1.8 INTEL 8086

INTEL 8086 is the first 16-bit processor released by INTEL in the year 1978. The 8086 is

designed using the HMOS technology and now it is manufactured using HMOS III technology

and contains approximately 29,000 transistors. The 8086 is packed in a 40-pin DIP and requires

a single 5-volt supply.

The 8086 does not have internal clock circuit. The 8086 requires an external asymmetric

clock source with 33% duty cycle. The 8284 clock generator is used to generate the required

clock for 8086. The maximum internal clock of 8086 is 5 MHz. The other versions of 8086 with

different clock rates are 8086-1, 8086-2 and 8086-4 with maximum internal clock frequency of

10 MHz, 8 MHz and 4 MHz respectively.

The 8086 uses a 20-bit address to access memory and hence it can directly address up to

one mega-byte (220 = 1Mega) of memory space. The one mega-byte (1Mb) of addressable memory

space of 8086 is organized as two memory banks of 512 kilo bytes each (512 kb + 512 kb = 1Mb).

The memory banks are called even (or lower) bank and odd (or upper) bank. The address line A
0

is used to select even bank and the control signal BHE is used to select odd bank.

For accessing IO-mapped devices, the 8086 uses a separate 16-bit address, and so the

8086 can generate 64 k (216) IO addresses. The signal M/IO is used to differentiate the memory

and IO addresses. For memory address, the signal M/IO is asserted high and for IO address

the signal M/IO is asserted low by the processor.

The 8086 can operate in two modes, and they are minimum mode and maximum mode. The

mode is decided by a signal at MN/MX pin. When the MN/MX is tied high, it works in minimum

mode and the system is called uniprocessor system. When MN/MX is tied low, it works in maximum

mode and the system is called multiprocessor system. Usually, the pin MN/MX is permanently tied

to low or high so that the 8086 system can work in any one of the two modes. The 8086 can work

with 8087 coprocessor in maximum mode. In this mode, an external bus controller 8288 is required

to generate bus control signals.

The 8086 has two families of processors. They are 8086 and 8088. The 8088 uses

8-bit data bus externally but 8086 uses 16-bit data bus externally. The 8086 can access

memory in words but 8088 can access memory in bytes. The IBM designed its first Personal

Computer (PC) using INTEL 8088 microprocessor as CPU.

Pins and Signals of INTEL 8086

The 8086 pins and signals are shown in Fig. 1.8. The 8086 is a 40-pin IC and all the 8086

pins are TTL compatible. The signal assigned to pins 24 to 31 will be different for minimum and

maximum mode of operation. The signal assigned to all other pins are common for minimum and

maximum mode of operation.

Microprocessor (8085) And Its Applications 1. 21

18

19

20

23

22

21

GND
AD14

VCC

AD15

A /s19 6

BHE/S7

WR (LOCK)

AD13

NMI

INTR

CLK

GND

M/ IO

DT/ R

RESET

ALE

INTA

TEST

AD12

AD11

AD10

AD9

AD8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

READY

DEN

RD

MN/MX

HLDA (RQ / GT)1

HOLD (RQ / GT)0

A /s18 5

A /s17 4

A /s16 3

(S)2
(S)1
(S)0

(QS)0
(QS)1

Fig. a : 8086 pin assignments.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

8086

®
®®®®®®®®®®®®®®®®®®

®®

®®

®®®®®®®®
®

®

®®

® ®
®
®®

®
®
®
®
®

®®

®®
®

®®
®
®
®
®

®®

®

®

Note : Signals shown in parenthesis

are maximum mode signals.

Fig. 1.8 : 8086 pin and signals.

BHE, S7

INTR

NMI

AD0 15- AD

A16 19 3 6- A /S - S

CLK

GND

VCC

RESET

TEST

READY

RD

LOCK

RQ/GT0

Fig. c : 8086-Maximum mode.

S0

QS0

QS1

S1

S2

RQ/GT1

MN/MX = 0-V

8086
Maximum

Mode

BHE, S7

INTR

NMI

AD0 15- AD

A16 19 3 6- A /S - S

CLK

GND

VCC

WR

MN/MX = VCC

M/ IO

DT/ R

DEN

ALE

INTA

RESET

TEST

READY

RD

HLDA

HOLD

Fig. b : 8086-Minimum mode.

8086
Minimum

Mode

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→ →

→

→

→

→

→

→ →

→

→

→

→

→

→

→

→

→

→

→

→

→

1. 22 Chapter 1 Introduction to Microprocessor

TABLE - 1.5 : COMMON SIGNALS

 Name Description /Function Type

AD
15

 - AD
0

Address /Data Bidirectional, Tristate

A
19

/S
6
-A

16
/S

3
Address/Status Output, Tristate

BHE/S
7

Bus high enable/Status Output, Tristate

MN/MX Minimum/Maximum mode control Input

RD Read control Output, Tristate

TEST Wait on test control Input

READY Wait on state control Input

RESET System reset Input

NMI Nonmaskable interrupt request Input

INTR Interrupt request Input

CLK System clock Input

V
cc

+ 5-V Power supply input

GND Ground Power supply ground

TABLE - 1.6 : MINIMUM MODE SIGNALS [MN/MX=V
CC

(logic high)]

 Name Description / Function Type

HOLD Hold request Input

HLDA Hold acknowledge Output

WR Write control Output, Tristate

M/IO Memory / IO control Output, Tristate

DT/R Data transmit /Receive Output, Tristate

DEN Data enable Output, Tristate

ALE Address latch enable Output

INTA Interrupt acknowledge Output

TABLE - 1.7 : MAXIMUM MODE SIGNALS [MN/MX = Ground(Logic low)]

 Name Description /Function Type

RQ/GT
1
, RQ/GT

0
Request/Grant bus access control Bidirectional

LOCK Bus priority lock control Output, Tristate

S
2
, S

1,
S

0
 Bus cycle status Output, Tristate

QS
1
, QS

0
 Instruction queue status Output

Microprocessor (8085) And Its Applications 1. 23

Common signals

The signals common for minimum and maximum mode are listed in Table-1.5. The lower

sixteen lines of address are multiplexed with data and the upper four lines of address are multiplexed

with status signals. During the first clock period of a bus cycle, the entire 20-bit address is available

on these lines. During all other clock period of a bus cycle, the data and status signals will be

available on these lines.

The status signals on S
3
 and S

4
 specifies the segment register used for calculating physical

address. The output on the status lines S
3
 and S

4
 when the processor is accessing various segments

are listed in Table-1.8.

TABLE - 1.8 : STATUS SIGNAL DURING MEMORY SEGMENT ACCESS

Status signal
Segment register

S
4

S
3

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment

1 1 Data segment

The status lines S
3
 and S

4
 can be used to expand the memory upto 4 Mb. The status line S

5

indicates the status of 8086 interrupt enable flag. A low on the line S
6
 indicates that 8086 is on the

bus (i.e., it indicates that 8086 is the bus master) and during hold acknowledge this pin is driven to

high impedance state. The output signal BHE on the first T-state of a bus cycle is maintained as

status signal S
7
 on the same pin.

The 8086 outputs a low on BHE pin during read, write and interrupt acknowledge cycles

when the data is to be transferred to the high order data bus. The BHE can be used in conjunction

with AD
0
 to select memory banks.

When the processor reads from memory or an IO location, it asserts RD low. The TEST

input is tested by the WAIT instruction. The 8086 will enter a wait state after execution of the

WAIT instruction, and it will resume execution only when TEST is made low by an external

hardware. This is used to synchronize an external activity to the processor internal operation.

TEST input is synchronized internally during each clock cycle on the leading edge of the clock

signal.

INTR is the maskable interrupt and INTR must be held high until it is recognized to generate

an interrupt signal. NMI is the nonmaskable interrupt input activated by a leading edge signal.

RESET is the system reset input signal. For power-ON reset, it is held high for 50

microsecond. For reset while working, it is held high for at least four clock cycles. When the

processor is resetted, the DS, SS, ES, IP and flag register are cleared, Code Segment (CS)

register is initialized to FFFF
H
 and queue is emptied. After reset, the processor will start fetching

instruction from 20-bit physical address FFFF0
H

.

1. 24 Chapter 1 Introduction to Microprocessor

READY is an input signal to the processor, used by the memory or IO devices to get extra

time for data transfer or to introduce wait states in the bus cycles. Normally, READY is tied

high. If the READY is tied low, the 8086 introduces wait states after second T-state of a bus

cycle and it will complete the bus cycle only when READY is made high again.

CLK input is the clock signal that provides basic timing for the 8086 and bus controller.

The 8086 does not have on-chip clock generation circuit. Hence, the 8284 clock generator chip

is used to generate the required clock. A quartz crystal whose frequency is thrice that of internal

clock of 8086 must be connected to 8284. The 8284 generates the clock at crystal frequency.

The 8284 divides the generated clock by three and modifies the duty cycle to 33% and outputs

on CLK pin of 8284. This CLK output of 8284 must be connected to the 8086 CLK pin. The

8284 also provides the RESET and READY signal to 8086.

Minimum mode signals

The minimum mode signals of 8086 are listed in Table-1.6. For minimum mode of

operation the MN/MX pin is tied to V
cc

(logic high). In minimum mode, the 8086 itself generates

all bus control signals. The minimum mode signals are explained below.

DT/R - [Data Transmit / Receive] It is an output signal from the processor to control the

direction of data flow through the data transceivers.

DEN - (Data Enable) - It is an output signal from the processor used as output enable for

the data transceivers.

ALE - (Address Latch Enable) - It is used to demultiplex the address and data lines using

external latches.

M/IO - It is used to differentiate memory access and IO access. For IN and OUT instructions

it is low. For memory reference instructions it is high.

WR - It is write control signal and it is asserted low whenever the processor writes data to

memory or IO port.

INTA - (Interrupt Acknowledge) - The 8086 outputs low on this line to acknowledge when

the interrupt request is accepted by the processor.

HOLD - It is an input signal to the processor from other bus masters as a request to grant

the control of the bus. It is usually used by DMA controller to get the control of bus.

HLDA - (Hold Acknowledge) - It is an acknowledge signal by the processor to the master

requesting the control of the bus through HOLD. The acknowledge is asserted

high when the processor accepts the HOLD. [On accepting the hold the processor

drives all the tristate pins to high impedance state and sends an acknowledge to

the device which requested HOLD. On receiving the acknowledge, the other master

will take control of the bus.]

Maximum mode signals

The maximum mode signals of 8086 are listed in Table-1.7. The 8086-based system

can be made to work in maximum mode by grounding the MN/MX pin (i.e., MN/MX is tied to

logic low). In maximum mode, the pins 24 to 31 are redefined as follows :

Microprocessor (8085) And Its Applications 1. 25

S
0
, S

1
, S

2
- These are status signals and they are used by the 8288 bus controller to generate bus

timing and control signals. The status signals are decoded as shown in Table-1.9.

TABLE - 1.9 : STATUS SIGNALS DURING VARIOUS MACHINE CYCLES

RQ/GT
0
, - (Bus Request/Bus Grant) These requests are used by the other local bus masters to

RQ/GT
1

force the processor to release the local bus at the end of the processor's current bus

cycle. These pins are bidirectional. The request on GT
0
 will have higher priority

than GT
1
.

The bus request to 8086 work as follows :

(i) When a local bus master requires system bus control, it sends a low pulse to 8086.

(ii) At the end of current bus cycle, the processor (8086) drives its pins to high impedance state

and sends an acknowledge as a low pulse on the same pin to the device which request the bus

control.

(iii) On receiving the acknowledge, the local master will take control of system bus. After completing

its work, at the end, the local bus master sends a low signal on the same pin to 8086 to inform

the end of control. Now 8086 can regain the control of the bus.

LOCK - It is an output signal, activated by the LOCK prefix instruction and remains

active until the completion of the instruction prefixed by LOCK. The 8086

outputs low on the LOCK pin while executing an instruction prefixed by LOCK

to prevent other bus masters from gaining control of the system bus.

QS
1
, QS

0
- (Queue Status) : The processor provides the status of queue on these lines. The

queue status can be used by external device to track the internal status of the

queue in 8086. The QS
0
 and QS

1
 are valid during the clock period following any queue

operation. The output on QS
0
 and QS

1
 can be interpreted as shown in Table-1.10.

TABLE - 1.10 : QUEUE STATUS

Machine cycle
Status signal

S
2

S
1

S
0

0 0 0 Interrupt acknowledge

0 0 1 Read IO port

0 1 0 Write IO port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive /Inactive

Queue status

QS
1

QS
0

 Queue operation

0 0 No operation

0 1 First byte of an opcode from queue

1 0 Empty the queue

1 1 Subsequent byte from queue

1. 26 Chapter 1 Introduction to Microprocessor

Architecture of INTEL 8086

The 8086 has pipelined architecture. In pipelined architecture, the processor will have

number of functional units and the execution time of functional units are overlapped. Each functional

unit works independently most of the time. The simplified block diagram of the internal architecture

of 8086 is shown in Fig. 1.9. The architecture of 8086 can be internally divided into two separate

functional units : Bus Interface Unit (BIU) and Execution Unit (EU).

The BIU fetches instructions, reads data from memory and IO ports, writes data to memory

and IO ports. The BIU contains segment registers, instruction pointer, instruction queue, address

generation unit and bus control unit. The EU executes instructions that have already been fetched

by the BIU. The BIU and EU functions independently.

The instruction queue is a FIFO (First-In-First-Out) group of registers. The size of queue

is 6 bytes. The BIU fetches instruction code from memory and stores in queue. The EU fetches

instruction codes from the queue.

The BIU has four numbers of 16-bit segment registers. They are Code Segment (CS)

register, Data Segment (DS) register, Stack Segment (SS) register and Extra Segment (ES) register.

The 8086 memory space can be divided into segments of 64 kilo bytes (64kb). The 4 segment

Temporary
Registers

ALU

Flag Register

Internal
Control
System

AH AL

BH BL

CH CL

DH DL

SP

BP

DI

SI

AX

BX

CX

DX

General
Registers

ALU Data
Bus

(16-Bit)

Address
Generation

Address Bus

(20-Bit)

Data Bus

(16-Bit)
CS

DS

SS

ES

IS

Internal
Communications

Registers

Bus
Control
Logic

8086
Bus

Instruction Queue

Q Bus

(8-Bit)

1 2 3 4 5 6

Execution Unit (EU) Bus Interface Unit (BIU)

Fig. 1.9 : Internal architecture of 8086.

®

®

®

®®

®®

®®

®

®

®

®
®

®

®

®

® ® ® ®

®®

Microprocessor (8085) And Its Applications 1. 27

registers are used to hold four segment base addresses. Hence, 8086 can directly address 4 segments

of 64 kb at any time instant (4 × 64 = 256 kb within 1Mb memory space.) This feature of 8086

allows the system designer to allocate separate area for storing program codes and data.

The contents of segment registers are programmable. Hence, the processor can access the

code and data in any part of the memory by changing the contents of segment registers. The

memory segment can be continuous, partially overlapped, fully overlapped or disjointed.

Note : Since segment registers are programmable it is possible to design multitasking & multiuser

system using 8086. The program code and data for each task or user can be stored in

separate segments. The program execution can be switched from one task or user to another

by changing the content of segment registers.

The dedicated address generation unit generates 20-bit physical address from the segment

base and an offset or effective address. The segment base address is logically shifted left four

times and added to offset [logically shifting left four times is equal to multiplying by 16
10

.]

The address for fetching instruction codes is generated by logically shifting the content of

CS to left four times and then adding to the content of IP (Instruction Pointer). The IP holds the

offset address of the program codes. The content of IP gets incremented by two after every bus

cycle. [In one bus cycle the processor fetches two bytes of the instruction code.]

The data address is computed by using the content of DS or ES as base address and an offset

or effective address specified by the instruction. The stack address is computed by using the content

of SS as base address and the content of SP (Stack Pointer) as offset address or effective address.

The bus control logic of the BIU generates all the bus control signals such as read and write

signals for memory and IO. The EU consists of ALU, flag register and general purpose registers. The

EU decodes and executes the instructions. A decoder in the EU control system translates instructions.

TABLE - 1.11 : SPECIAL FUNCTIONS OF 8086 REGISTERS

Register Name of the register Special function

AX 16-bit Accumulator Stores the 16-bit result of certain arithmetic and logical

operations.

AL 8-bit Accumulator Stores the 8-bit result of certain arithmetic and logical operations.

 BX Base Register Used to hold the base value in base addressing mode to

access memory data.

 CX Count Register Used to hold the count value in SHIFT, ROTATE and

LOOP instructions.

 DX Data Register Used to hold data for multiplication and division operations.

 SP Stack Pointer Used to hold the offset address of top of stack memory.

 BP Base Pointer Used to hold the base value in base addressing using stack

segment register to access data from stack memory.

 SI Source Index Used to hold the index value of source operand (data) for

string instructions.

 DI Destination Index Used to hold the index value of destination operand (data)

for string instructions.

1. 28 Chapter 1 Introduction to Microprocessor

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFPFAFZFSFTFIFDFOF

CF - Carry Flag
PF - Parity Flag
AF - Auxiliary Carry Flag

ZF - Zero Flag
SF - Sign Flag
OF - Overflow Flag

TF - Trace Flag (or Single Step Trap)
IF - Interrupt Flag
DF - Direction Flag

IPQ

Flags for Arithmetic/Logical Operations

IPQ

Control Bits

Fig. 1.10 : Bit positions of various flags in the flag register of 8086.

The EU has 16-bit ALU to perform arithmetic and logical operations. The EU has eight

numbers of 16-bit general purpose registers. They are AX, BX, CX, DX, SP, BP, SI and DI.

Some of the 16-bit registers can also be used as two numbers of 8-bit registers as given below:

AX - can be used as AH and AL ; CX - can be used as CH and CL

BX - can be used as BH and BL ; DX - can be used as DH and DL

The general purpose registers can be used for data storage, when they are not involved in

special functions assigned to them. These registers are named after special functions carried out by

each one of them as given in Table-1.11.

8086 flag register

The size of 8086 flag register is 16-bit and in this, nine bits are defined as flags. The six flags

are used to indicate the status of the result of arithmetic or logical operations. Three flags are used

to control the processor operation and so they are also called as control bits. The various flags of

8086 processor and their bit positions in flag register are shown in Fig. 1.10.

Carry Flag (CF) is set if there is a carry from addition or borrow from subtraction. Auxiliary

carry Flag (AF) is set if there is a carry from lower nibble to higher nibble of the low order 8-bit of

a 16-bit number.

Overflow Flag (OF) is set to one if there is an arithmetic overflow, that is, if the size of the

result exceeds the capacity of destination location. Sign Flag (SF) is set to one if the most significant

bit of the result is one and SF is cleared to zero for non-negative result. Parity Flag (PF) is set to

one if the result has even parity and PF is cleared to zero for odd parity of the result. Zero Flag

(ZF) is set to one if the result is zero and ZF is cleared to zero for nonzero result.

The three control bits in the flag register can be set or reset by the programmer. The Direction

Flag (DF) is set to one for autodecrement and DF is reset to zero for autoincrement of SI and DI

registers during string data accessing. Setting Interrupt Flag (IF) to one causes the 8086 to recognize

external maskable interrupts and clearing IF to zero disables the interrupts.

Setting Trace Flag (TF) to one places the 8086 in the single step mode. In this mode, the

8086 generates an internal interrupt after execution of each instruction. The single stepping is used

for debugging a program.

Microprocessor (8085) And Its Applications 1. 29

Instruction and Data Flow in 8086

The 8086 microprocessor allows the user to define different memory areas for storing

program and data. The program memory can be accessed by using CS-register and the data memory

can be accessed by using DS, ES and SS registers.

The program instructions are stored in program memory which is an external device. To

execute a program in 8086, the base address and offset address of the first instruction of the

program should be loaded in CS-register and IP, respectively. The 8086 computes the 20-bit physical

address of the program instruction by multiplying the content of CS-register by 16
10

 and adding to

the content of IP. The 20-bit physical address is given out on the address bus. Then RD is asserted

low. Also other control signals necessary for program memory read operation are asserted. The IP

is incremented by two to point next instruction or next word of the same instruction.

The address and control signals enable the memory to output one word (two bytes) of

program memory on the data bus. After a predefined time, RD is asserted high and at this instant

the content of data bus is latched into two empty locations of instruction queue. Then BIU start

fetching the next word of the program code as explained above. The BIU keeps on fetching the

program codes, word by word from consecutive memory locations whenever two locations of

queue is empty. When a branch instruction is encountered, the queue is emptied and then filled with

program codes from new address loaded in CS and IP by the branch instruction.

The EU reads the program instructions from queue, decodes and executes them one by one.

If the execution of an instruction require data from memory (or to store data in memory) then BIU

is interrupted to read (or write) data in memory. When BIU is interrupted it completes the fetching

of current instruction word and then starts reading or writing the data by generating a 20-bit data

memory address. The 20-bit data memory address is obtained by multiplying the content of segment

base register specified by the instruction by 16
10

 and adding to an effective or offset address

specified by the instruction.

1.9 ZILOG Z80

The ZILOG Z80 is an 8-bit microprocessor, manufactured in NMOS technology. The Z80 is

available in a 40-pin DIP (Dual In-line Package). It requires a single external clock and a single

5-V power supply. The maximum internal clock of standard Z80 is 2.5 MHz and for Z80-A it is

4 MHz. The Z80 provides more registers, extra addressing modes and a much larger instruction set

than 8085. It also has built-in-logic to refresh dynamic RAM memories.

The signals of Z80 and its simplified functional block diagram (architecture) are shown in

Fig. 1.11 and Fig. 1.12, respectively. The Z80 communicates with other system modules via three

functionally separate buses : data, address and control buses.

The Z80 has separate pins for data and address. It operates on 8-bit data and uses 16-bit

memory address. The physical memory size of Z80 system is 64 kb. The IO devices can be

mapped by memory mapping or IO mapping similar to that of 8085. For IO-mapped devices, an

8-bit address is allotted. During memory refresh time, the seven lower-order bits of the address

bus (A
0
 - A

6
) contain a valid refresh address.

1. 30 Chapter 1 Introduction to Microprocessor

The control bus has three types of control signals. They are listed below:

1. System control signals

 M
1

 - First machine cycle of an instruction

 MREQ - Memory request

 IORQ - IO request

 RD - Read control

 WR - Write control

 RFSH - Refresh cycle

2. CPU control signals

 WAIT - Wait request

 HALT - Halt request

 INT - Interrupt request

 NMI - Non-maskable interrupt

3. Bus control signals

 BUSRQ - BUS request

 BUSAK - BUS acknowledge

 RESET - System reset

 CLK(f) - Clock input

The ALU is 8-bit wide and performs similar functions to those of the 8085 ALU. The Z80

has two independent 8-bit accumulators, A and A' and two independent flag registers, F and F'. The

ALU operation involving accumulator A affects the flag register F. The ALU operation involving

accumulator A' affects the flag register F'.

GND

Data Bus
()D - D0 7

Address Bus
()A - A0 15

B
u
s

C
o
n

tr
o
l

S
ig

n
al

s

VCCPower
Supply

C
o

n
tr

o
l

S
ig

n
al

s

Fig. 1.11 : Signals of Z80.

M1

MREQ

IORQ

WR

RD

RFSH

S
y

st
em

C
o

n
tr

o
l

WAIT

HALT

INT

NMI

BUSRQ

BUSAK

RESET

CLK ()φ

Z80

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

GND

A10

A9

A8

A7

A6

A5

A4

A3

WR

RD

Z80

A2

A1

A0

RFSH

M1

RESET

BUSRQ

WAIT

BUSAK

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

A11

A12

φ

D4

D3

D5

D6

+5-V

D2

A13

A14

A15

D7

D0

D1

INT

NMI

HALT

MREQ

IORQ

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→
→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

Microprocessor (8085) And Its Applications 1. 31

(A
)

A
cc

u
m

u
la

to
r

(8
)

T
em

p
o

ra
ry

R
eg

is
te

r
(T

M
P

)
(8

)

A
L

U

(8
)

F

F

la
g

 R
eg

is
te

r
 (

8
)

In
st

ru
ct

io
n

R
eg

is
te

r

 (
1
6

)

D
ec

o
d

in
g

C

ir
cu

it
ry

A
d

d
re

ss
 C

o
n
tr

o
l

(1

6
)

D
at

a
B

u
s

C
o
n

tr
o

l

T
im

in
g

 a
n

d
 C

o
n
tr

o
l

C
ir

cu
it

ry

A
d

d
re

ss
 B

u
s

(A
 -

 A
)

0
1

5

F
ig

.
1
.1

2
 :

A
rc

h
it
e
c
tu

re
 o

f
Z

8
0
 m

ic
ro

p
ro

c
e
s
s
o
r.

(A
)
’

A
cc

u
m

u
la

to
r

(8
)

F

F

la
g

 R
eg

is
te

r
(8

)
’

B

(8
)

C

(8
)

D

(8
)

E

(8
)

H

(8
)

L

(8
)

B

(8
)

’
C

(8

)
’

D

(8
)

’
E

(8

)
’

H

(8
)

’
L

(8

)
’

I
 (

8
)

R

(8
)

In
te

rr
u

p
t

V
ec

to
r

M
em

o
ry

R
ef

re
sh

IX
In

d
ex

 R
eg

is
te

r
(1

6
)

IY
In

d
ex

 R
eg

is
te

r
(1

6
)

S
P

S
ta

ck
 P

o
in

te
r

(1
6

)

(1
6
)

G
en

er
al

P
u
rp

o
se

R
eg

is
te

rs

S
p
ec

ia
l

P
u
rp

o
se

R
eg

is
te

rs

C
lo

ck
 a

n
d

 C
o
n

tr
o

l
S

ig
n

al
s

D
at

a
B

u
s

(D
 -

 D
)

0
7

In
te

rn
al

 D
at

a
B

u
s

(8
)

→

→

1. 32 Chapter 1 Introduction to Microprocessor

The flag registers has six flags and they are Sign (S and S'), Zero (Z and Z'), Carry (C and C'),

Parity or Over flow (P/O and P'/O'), Half carry (H and H'), and subtract (N and N').

The Z80 has two sets of 8-bit general purpose register. Each set has 6 registers. They are B,

C, D, E, H and L and B', C', D', E', H', and L'. They can be used individually as 8-bit registers or as

16-bit register pairs. The allowed pairs are BC, DE and HL and B'C', D'E' and H'L'.

At any time instant the programmer can select and work with either main register set or

alternate register set. To work in alternate register set, the programmer has to use a single Exchange

Instruction (EXI) for the entire set of instruction. This alternate set allows background mode of

operation or handling fast interrupt response requirements while servicing an interrupt or executing

a subroutine. While executing a program if one set of registers are not sufficient then we need not

push them to stack. Alternatively, we can deactivate them without destroying its contents and

switch to alternate set of registers through exchange instructions.

The 16-bit Program Counter (PC) and Stack Pointer (SP) registers are same as that of the

8085 microprocessor and operate in exactly the same way. The registers IX and IY allows two

independent indexed addressing mode.

The Z80 includes an 8-bit interrupt vector (I). It is used in one of the interrupt response

mode of the processor. It holds the upper eight bits of a memory pointer (or vector address). The

lower eight bits of this pointer are supplied (as a vector number) by the interrupting device that

requests service. The CPU then uses this 16-bit vector address to make an indirect call to the

memory location that holds the first instruction of the interrupt service routine. This feature allows

the vector table to be located anywhere in memory.

The Z80 also contains an 8-bit memory refresh register (R) that contains the current memory

refresh address, thus providing for automatic, totally transparent refresh of external dynamic RAM

memories. Although the programmer can load this register for testing purposes, the R register is

not normally used by the programmer.

The Z80 can execute 158 instruction types. The microprocessor includes all the instructions

of 8080A microprocessor with total software compatibility at the machine code level.

Note : The 8085 has the same instructions of 8080 except two new instructions, SIM and RIM.

Hence, 8085 is also software compatible with Z80.

The new instructions in Z80 include 1/4/8/16 bit operations, exchange instructions,

block transfer and block search instructions and a full set of rotate and shift instructions applicable

to any register, rather than just to the accumulator.

The size of Z80 instruction is 1 to 4 bytes. One byte instruction has 1-byte opcode alone.

The 2-byte instruction has 1 or 2 byte opcode plus data byte / device number / displacement.

In multibyte instructions, the opcode is 1-byte or 2 bytes. The remaining bytes are

data / device number / displacement / address.

The device number is 8-bit IO port address. The data byte is the immediate operand. The

displacement is a signed 2's complement number which is added to a 16-bit number residing in an

index register, during indexed addressing.

Microprocessor (8085) And Its Applications 1. 33

Every Z80 instruction consists of one to six machine cycles. All types of machine cycles

consist of either three or four states. Some Z80 instructions always insert wait states (T
w

) between

the states T
2
 and T

3
. The basic operation of the Z80 is analogous to that of the INTEL 8085. The

main difference is that instead of IO/M of 8085, the Z80 has MREQ and IORQ. They are activated

along with RD and WR for the memory or IO access.

1.10 MOTOROLA 6800

The Motorola 6800 product family was originally introduced in 1974. The 6800

microprocessor CPU is manufactured in NMOS technology on a 40-pin chip, has TTL compatible

pins and it is the first 8-bit single chip microprocessor to exploit a single 5-V power supply. The

6800 CPU can drive from seven to ten 6800 family devices without buffering. A two-phase external

clock (1MHz, maximum) must be externally supplied.

The simplified functional block diagram (architecture) of the 6800 processor and its signal

are shown in Figs. 1.13 and 1.14 respectively.

The 6800 CPU has three buses to communicate with the other system modules, they are

data, address and control buses. The data bus is bidirectional and has 8 lines, D
0
-D

7
. The address

bus has 16 lines, A
0
-A

15
. The processor operates on 8-bit data and uses 16-bit address for memory

and IO devices.

The microprocessor does not distinguish between memory and peripheral addresses. Therefore

some of the 64 k addresses must be reserved for peripheral addresses. The control bus carries two

types of signals called Control bus signals and CPU (microprocessor) supervisory signals.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

φ
1

D1

D2

D3

D4

D6

6800

GND

D - D

(Data Bus)
0 7

A - A

(Address Bus)
0 15

C
P

U
(M

ic
ro

p
ro

c e
ss

o
r)

S
u

p
er

v
i s

o
ry

S
ig

n
al

s

VCC Power
supply

Fig. 1.13 : Signals of Motorola 6800.

D7

D0

RESET

R/ W

C
o

n
tr

o
l

B
u

s
S

ig
n
al

s

HALT

(GND) VSS

HALT

IRQ

NMI

VMA

BA

(+5-V) VCC

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

TSC

NC

φ
2

DBE

NC

R/ W

D5

A15

A14

A13

A12

V (GND)SS

BA

TSC

DBE

NMI

RESET

φ
1

φ
2

IRQ

IRQ

φ
2

RESET

VMA

6800

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

Note : NC - No Connection.

1. 34 Chapter 1 Introduction to Microprocessor

Control bus signals : VMA - Valid memory address

R/W - Read/Write control

IRQ - Interrupt request

φ
2

- Phase-2 of clock

RESET - System reset

CPU supervisory signals : BA - Bus acknowledge

HALT - Halt request

TSC - Tristate control

DBE - Data bus enable

NMI - Nonmaskable interrupt

 φ
1

- Phase-1 of clock

IRQ - Interrupt request

RESET - System reset

The HALT pin is used for DMA data transfer in block transfer mode or cycle stealing mode.

When HALT is asserted low, the microprocessor halts all its activity at the completion of the

current instruction.

The Tristate Control (TSC) may be used to implement DMA on a cycle stealing basis. If

TSC is placed in a high state, the address bus and the R/W line get a high impedance state

500 ns later. The data bus is not affected by TSC and has its own enable (DBE). This approach

assures rapid response to the DMA request. Since the internal memory of the 6800 are dynamic,

however, the TSC terminal cannot be held in high state for longer than 5 μs if loss of data in the

microprocessor is to be avoided.

The architecture of 6800 includes the ALU, 16-bit Program Counter (PC), 16-bit stack pointer,

16-bit index or general purpose register, two 8-bit accumulators and a condition code register.

The stack pointer allows a LIFO (Last-In-First-Out) stack to be implemented at any address

in memory and to be limited in size only by the memory space. The index register may be used to

store data or a 16-bit memory address for use in the indexed mode of addressing. The Condition

Code Register (CCR) indicates the results of an ALU operation. The flags in CCR are Negative (N),

Zero (Z), Overflow (O), Carry(C), Half carry (H) and Interrupt enable/disable (I). The unused bits

of the CCR are 1's.

TheALU performs arithmetic and logical operations including AND, OR, EXCLUSIVE-OR,

NEGATE, COMPARE, ADD, SUBTRACT and DECIMALADJUST which allows BCD arithmetic

to be performed. Immediate, direct, indexed and relative addressing modes are used in 6800.

In the indexed addressing mode, the address contained in the second byte of the instruction

is added to the lowest eight bits of the index register. The carry is then added to the higher order

bits of the index register. The result is used to address memory.

In relative addressing, the address contained in the second byte of the instruction is added to

the lowest eight bits of the PC. To this result, a value of +2 is added, which allows the user to

address data within a range of −125 to +129 bytes of the present instruction.

The 6800 has a set of seventy two instructions. They are classified as data handling, arithmetic,

logic, control transfer, data test, condition codes, address maintenance and interrupt handling.

Microprocessor (8085) And Its Applications 1. 35

A
A

cc
u
m

u
la

to
r

(8
)

A
L

U
(8

)

F
la

g
s

In
st

ru
ct

io
n
 R

eg
is

te
r

D
ec

o
d

in
g

 C
ir

cu
it

 I

n
d

ex
 R

eg
is

te
r

 (

1
6

)

P
C

P
ro

g
ra

m
 C

o
u

n
te

r

(1

6
) A

d
d
re

ss
 B

u
ff

er

D
at

a
B

u
ff

er

T
im

in
g

 a
n

d
 C

o
n
tr

o
l

C
ir

cu
it

ry

A
d

d
re

ss
 B

u
s

(A
 -

 A
)

0
1

5

F
ig

.
1
.1

4
 :

A
rc

h
it
e
c
tu

re
 o

f
m

o
to

ro
la

 6
8

0
0
 m

ic
ro

p
ro

c
e
s
s
o

r.

8
8

B
A

cc
u
m

u
la

to
r

(8
)

(8
)

S
P

S
ta

ck
 P

o
in

te
r

(1

6
)

(1
6
)

C
lo

ck
 a

n
d

 C
o
n

tr
o

l
C

ir
cu

it

D
at

a
B

u
s

(D
 -

 D
)

0
7

In
te

rn
al

 D
at

a
B

u
s

(8
 b

it
s)

→

→

1. 36 Chapter 1 Introduction to Microprocessor

The data handling instructions include several instructions for moving data between two

accumulators, memory and the stack. Data may be altered with Clear, Increment, Decrement,

Complement (1's and 2's), Rotate and Shift instructions.

The arithmetic instructions include Add, Subtract and Decimal Adjust Accumulator. The

AND, OR and EXCLUSIVE-OR comprise the logical instructions.

The control transfer instructions include Unconditional Branch, Jump and Jump-to-subroutine.

The Branch instruction uses relative addressing while the Jump instruction uses direct or indirect

addressing. A number of conditional branches are available which test the condition of one or more

bits of the condition code register.

The data test instructions set the condition codes (alter the flags) without altering the data.

They include Bit Test (for comparing individual bits of accumulator A or B with a memory word),

Compare and Test (for determining the sign of a number).

Condition code instructions are provided which enable the programmer to set or reset directly

the Carry, Interrupt or Over flow flags. The entire contents of the condition code register may be

moved to or from the accumulator A with a single instruction. Eleven instructions are provided for

address maintenance. These instructions allow operations on the index register, e.g., Compare,

Increment, Decrement and Transfer to or from the memory or the stack pointer. Similar instructions

are available for operation on addresses stored in the stack pointer.

The interrupt handling instructions include a Software Interrupt (SWI) which stores the

status of the processor in the stack before processing the interrupt and a Return from Interrupt

(RTI) instruction which restores the status of the microprocessor after an interrupt is processed.

A Wait for Interrupt (WAI) instruction causes the status to be stored in the stack and places the

processor in a halt condition until a hardware interrupt occurs.

A 6800 instruction may be one, two or three bytes long, its length being closely related to the

addressing mode used.

Usually, every 6800 instruction cycle consists of two to eight machine cycles, all of which

are identical in length (except interrupt instructions which require longer instruction execution

cycles). In the 6800, a machine cycle is one and the same thing as a clock cycle (or state).

The operation of the 6800 is very simple, since it consists of only three types of machine

cycles, a read machine cycle (during which a byte of data is input into the CPU), a write machine

cycle (during which a byte of data is output by the CPU) and an interrupt operation machine cycle

(during which the CPU is busy and no activity occurs on system buses). The timing of any 6800

instruction is simply a concatenation of these three basic machine cycle types.

The control signals required to access a memory location are R/W, VMA and DBE. Under

normal circumstances, DBE is identical to φ
2
. The signal R/W controls the reading or writing

operation. For read operation R/W is asserted high and for write operation R/W is asserted low.

1.11 SUMMARY

� A microprocessor is a program controlled semiconductor device (IC) which fetches, decodes and executes instructions.

� The basic units or blocks of a microprocessor are ALU, an array of registers and a control unit.

� A bus is a group of conducting lines that carries data, address and control signals.

� With n-bit binary we can generate 2n different binary codes or address.

� The clock is a square wave, which is used to synchronize various devices in the microprocessor and in the system.

Microprocessor (8085) And Its Applications 1. 37

� The three logic levels of tristate logic are high, low and high impedance state.

� The world's first microprocessor INTEL 4004, was released by INTEL corporation in the year 1971.

� The NMOS process offers faster speed and higher density than PMOS and it is TTL compatible.

� The computing system designed using a microprocessor as its CPU is called a microcomputer.

� The EPROM memory is used to store permanent programs and data. RAM is used to store temporary programs and

data.

� The computers are classified into Micro, Mini and Large computers.

� Large computers work at high speeds with large data words and have massive amount of memory.

� Minicomputers are used for business data processing, industrial control and scientific research.

� Microprocessor-based system offers high speed, intelligence, automation, flexibility, compactness and flexibility.

� Microprocessor-based system has limitation on the size of data, less execution speed, limited address space, does

not support floating point operations.

� INTEL 8085 is an 8-bit microprocessor.

� INTEL 8085 operates on 8-bit data. It uses 16-bit address for memory and 8-bit address for IO devices.

� The physical memory address space of 8085 is 64 k (216 = 64 k) and IO address space is 256(28 = 256).

� The maximum internal clock of 8085A is 3.03 MHz.

� The operations performed by the ALU of 8085 are addition, subtraction, increment, decrement, logical AND, OR,

EXCLUSIVE-OR, compare, complement and left / right shift.

� The 8085 has five flags and they are sign, zero, auxiliary carry, parity and carry.

� The 8086 is designed using the HMOS technology and contains approximately 29000 transistors.

� INTEL 8086 is 16-bit processor, because it has a 16-bit ALU.

� The 8086 uses 20-bit address to access memory and hence it can directly address up to 1 mega-byte (220 = 1

Mega) of memory.

� The 8086 uses 16-bit address for IO devices.

� The 8284 clock generator is used to generate clock for 8086.

� The maximum internal clock of 8086 is 5 MHz.

� The 8086 can operate in maximum (multiprocessor) mode and minimum (uniprocessor) mode.

� The 8086 has pipelined architecture. In pipelined architecture the processor will have number of functional units.

� The 8086 has two functional units namely Bus Interface Unit (BIU) and Execution Unit (EU).

� The 8086 has 9 flags. They are carry, parity, auxiliary carry, zero, sign, overflow, trace (or single step trap),

interrupt and direction flag.

� The Z80 uses 16-bit address for memory and so it can directly address 64 k (2 16 = 64 k) memory locations.

� The maximum internal clock of standard Z80 is 2.5 MHz.

� The flags of Z80 are sign, zero, carry, parity/overflow, half carry and subtract flag.

� Motorola 6800 is an 8-bit processor because it has an 8-bit ALU.

� M6800 uses 16-bit address to access memory locations and so it can directly address 64 k (2 16 = 64 k) memory

locations.

� M6800 requires a two-phase external clock whose maximum frequency can be 1MHz.

� The flag register of M6800 is called Condition Code Register (CCR).

� The flags of M6800 are negative, zero, overflow, carry, half carry and interrupt enable/disable flag.

1. 38 Chapter 1 Introduction to Microprocessor

1.12 SHORT QUESTIONS AND ANSWERS

1.1 What is a microprocessor ?

A microprocessor is a program controlled semiconductor device (IC), which fetches, decodes and

executes instructions.

1.2 What are the basic functional blocks of a microprocessor ?

The basic functional blocks of a microprocessor are ALU, an array of registers and control unit.

1.3 What is a bus ?

Bus is a group of conducting lines that carries data, addresses and control signals.

1.4 Define bit, byte and word.

A digit of the binary number or code is called bit. The bit is also the fundamental storage unit of

computer memory.

The 8-bit (8-digit) binary number or code is called byte and 16-bit binary number or code is called

word. (Some microprocessor manufacturers refer to the basic data size operated by the processor

as word.)

1.5 State the relation between the number of address pins and physical memory space?

The size of the binary number used to address the memory decides the physical memory space.

If a microprocessor has n-address pins then it can directly address 2n memory locations. (The

memory locations that are directly addressed by the processor are called physical memory space.)

1.6 Why is data bus is bidirectional?

The microprocessor has to fetch (read) the data from memory or input device for processing and

after processing it has to store (write) the data in memory or output device. Hence, the data bus

is bidirectional.

1.7 Why is address bus unidirectional?

The address is an identification number used by the microprocessor to identify or access a memory

location or IO device. It is an output signal from the processor. Hence, the address bus is

unidirectional.

1.8 State the difference between CPU and ALU.

The ALU is the unit that performs the arithmetic or logical operations. The CPU is the unit that

includes ALU and control unit. Apart from processing the data, the CPU controls the entire

system functioning. Usually, a microprocessor will be the CPU of a system and it is called the

brain of the computer.

1.9 What is a tristate logic? Why it is needed in microprocessor system?

In a tristate logic, three logic levels are used high, low and high impedance state. The high and

low are normal logic levels and high impedance state is electrical open circuit condition.

In a microprocessor system, all the peripheral/slave devices are connected to a common bus. But

communication (data transfer) takes place between the master (microprocessor) and one slave

(peripheral) at any time instant. During this time instant, all other devices should be isolated from

the bus. Therefore, normally all the slaves (peripherals) will remain in high impedance state (i.e.,

in electrical isolation). The master will select a slave by sending address and chip select signal.

When the slave is selected, it comes to normal logic and it can communicate with the master.

Microprocessor (8085) And Its Applications 1. 39

8085 (CPU)

AD - AD0 7

ALE

74LS373
8-Bit
D-Latch

EN

D - D0 7

A - A0 7

Fig. Q1.18 : Demultiplexing of address and data lines in 8085 processor.

1.10 What is HMOS and HCMOS.

The HMOS is High density n-type Metal Oxide Silicon field effect transistors. The third generation
microprocessors are fabricated using HMOS transistors.

The HCMOS is High density n-type Complementary Metal Oxide Silicon field effect transistors. It
is the low power version of HMOS and the fourth generation microprocessors are fabricated using
HCMOS transistors.

1.11 What are the drawbacks of first generation microprocessors.

The first generation processors are fabricated using PMOS technology and it has the drawbacks
like slow speed, provides low output currents and was not compatible with TTL logic levels.

1.12 What is a microcomputer? Explain the difference between a microprocessor and a microcomputer.

A system designed using a microprocessor as its CPU is called microcomputer. The term
microcomputer refers to the whole system, whereas the microprocessor is the CPU of the system.

1.13 What is the function of microprocessor in a system?

The microprocessor is the master in the system, which controls all the activity of the system. It
issues address and control signals and fetches the instruction and data from memory. Then it
executes the instruction to take appropriate action.

1.14 List the components of microprocessor-based (single board microcomputer) system.

The microprocessor-based system consist of microprocessor as CPU, semiconductor memories
like EPROM and RAM, input device, output device and interfacing devices.

1.15 Why interfacing is needed for IO devices?

Generally IO devices are slow devices. Therefore, the speed of IO devices does not match with the
speed of microprocessor. And so an interface is provided between system bus and IO devices.

1.16 What is the difference between CPU bus and system bus?

The CPU bus has multiplexed lines but the system bus has separate lines for each signal. (The
multiplexed CPU lines are demultiplexed by the CPU interface circuit to form system bus.)

1.17 What is multiplexing and what is its advantage?

Multiplexing is transferring different information at different well-defined times through same
lines. A group of such lines is called multiplexed bus. The advantage of multiplexing is that fewer

pins are required for microprocessors to communicate with the outside world.

1.18 How the address and data lines are demultiplexed in 8085?

The low order address and data lines of 8085 are demultiplexed using an external 8-bit D-Latch
(74LS373) and the ALE signal of 8085, as shown in Fig. Q1.18.

At the beginning of every machine cycle, ALE is asserted high and then low. Also, the low byte of
address is given out through AD

0
 - AD

7
 lines. Since the ALE is connected to enable of latch,

whenever ALE is asserted high and then low, the addresses are latched into the output lines of the

latch then the lines AD
0
 - AD

7
 are free for data transfer.

1. 40 Chapter 1 Introduction to Microprocessor

1.19 On what basis the computers are classified into micro, mini and large/mainframe?

The classification of computers into micro, mini and mainframes are based on the following factors:

1. Speed of execution

2. Size and type of data

3. Memory capacity

4. IO devices and peripheral support devices

5. Application programs it can run.

1.20 What is the difference between micro and minicomputers?

The microcomputers are systems built using a single microprocessor and has single motherboard

as CPU. The minicomputers will have multiple microprocessors connected in a particular

configuration. The minicomputer can handle large data words, address more memory space, supports

a variety of IO devices and can be used for multiuser applications. In today's technology, the

features of microcomputers have exceeded the capability of minicomputers.

1.21 What is mainframe?

The largest and most powerful computers are called mainframes.

1.22 What is a supercomputer?

The computer built using very high speed devices (or devices with very low switching speeds)

and can execute instructions at very high speeds are called supercomputers. The speed of

supercomputers are measured in MIPS (Millions of Instructions Per Second) or Megaflops

(Millions of floating point operations per second). A typical supercomputer can execute 3000

MIPS. The speed of Cray X-MP2 supercomputer is 500 Megaflops.

1.23 List the applications of microcomputer.

1. Personal computing 4. Control applications

2. Calculators 5. Instrumentation systems

3. Small business system.

1.24 What are the advantages of microprocessor-based system?

The advantages of microprocessor-based system are the following:

1. Computational or Processing speed is high.

2. Intelligence has been brought to systems.

3. Automation of industrial processes and office administration.

4. Both operation and maintenance are easier.

1.25 What are the disadvantages of microprocessor-based system?

The following are the disadvantages of microprocessor-based system:

1. It has limitations on the size of data.

2. The applications are limited by the physical address space.

3. The analog signals cannot be processed directly and digitizing the analog signals introduces errors.

4. Most of the microprocessors do not support floating point operations.

1.26 What do you mean by 16 and 8-bit processors? Mention a few 8-bit and 16-bit processors.

The processors are classified into 8-bit or 16-bit depending on the basic data size handled by the

ALU of the processor.

8-bit microprocessors : 8085, Z80, Motorola 6800.

16-bit microprocessors : 8086, Z8000, MC68000.

Microprocessor (8085) And Its Applications 1. 41

1.27 What is the fabrication technology used for 8085?

The 8085A is fabricated used NMOS technology and 8085AH is fabricated using HMOS technology.

1.28 What is the physical memory space in 8085?

The 8085 uses 16-bit address to access memory locations. Hence, it can directly address 64 k memory

locations (216 = 65,536 = 64 k). Since 8085 has 8 data lines, it can read or write 8-data bits from a memory

address. Therefore, the physical memory space is 64 k × 1byte = 64 kilo bytes (64 kb).

1.29 What is ALE?

The ALE (Address Latch Enable) is a signal used to demultiplex the address and data lines using

an external latch. It is used as enable signal for the external latch.

1.30 Explain the function of IO/M in 8085.

The IO/M is used to differentiate memory access and IO access. For IN and OUT instruction it is

asserted high. For memory reference instructions it is asserted low.

1.31 How the READY signal is used in microprocessor system?

The READY is an input signal that can be used by slow peripherals to get extra time in order to

communicate with 8085. The 8085 will work only when READY is tied to logic high. Whenever

READY is tied to logic low, the 8085 will enter a wait state. When the system has slow peripheral

devices, additional hardware is provided in the system to make the READY input low during the

required extra time while executing a machine cycle, so that the processor will remain in wait state

during this extra time.

1.32 What is HOLD and HLDA? How is it used?

The HOLD and HLDA signals are used for the Direct Memory Access (DMA) type of data transfer.

These type of data transfers are achieved by employing a DMA controller in the system. When

DMA is required, the DMA controller will place a high signal on the HOLD pin of 8085. When

HOLD input is asserted high, the processor will enter a wait state and drive all its tristate pins to

high impedance state and send an acknowledge signal to DMA controller through HLDA pin.

Upon receiving the acknowledge signal, the DMA controller will take control of the bus and

perform DMA transfer and at the end it asserts HOLD signal low. When HOLD is asserted low, the

processor will resume its execution.

1.33 How clock signals are generated in 8085 and what is the frequency of the internal clock?

The 8085 has the clock generation circuit on the chip but an external quartz crystal or LC circuit or

RC circuit should be connected at the pins X
1
 and X

2
 in order to generate a clock signal. The 8085

clock generation circuit, generate a clock whose frequency is double as compared to that of

internal clock. The generated clock is divided by two and then used as internal clock. The maximum

internal clock frequency of 8085A is 3.03 MHz.

1.34 What happens to the 8085 processor when it is resetted?

When RESET IN pin is asserted low, the program counter, instruction register, interrupt mask

bits and all internal registers are cleared or resetted. Also the RESET OUT signal is asserted high

to clear or reset all the peripheral devices in the system. After a reset, the content of program

counter will be 0000
H
 and so the processor will start executing the program stored at 0000

H
.

1.35 What are the operations performed by ALU of 8085?

The operations performed by ALU of 8085 are addition, subtraction, logical AND, OR, Exclusive-

OR, compare, complement, increment, decrement and left/right shift.

1. 42 Chapter 1 Introduction to Microprocessor

SF ZF AF PF CF

B7 B6 B5 B4 B3 B2 B1 B0

Fig. Q1.39 : Bit positions of various flags in the flag register of 8085.

SF - Sign Flag
PF - Parity Flag
ZF - Zero Flag
AF - Auxiliary Carry Flag
CF - Carry Flag

1.36 Mention the names of various registers in 8085 along with its size.

 Register Size (bits) Register Size (bits)

Accumulator (A) - 8 Stack pointer - 16

Temporary register - 8 Program counter - 16

 Instruction register - 8

 General purpose register - 8

 (B, C, D, E, H and L)

1.37 What is a flag?

Flag is a flip- flop used to store the information about the status of the processor and the status of

the instruction executed most recently.

1.38 List the flags of 8085.

There are five flags in 8085. They are sign flag, zero flag, auxiliary carry flag, parity flag and carry flag.

1.39 Show the bit positions of various flags in 8085 flag register.

The bit positions of various flags in the flag register of 8085 is shown in Fig. Q1.39.

1.40 What are the Hardware interrupts of 8085?

The hardware interrupts in 8085 are TRAP, RST 7.5, RST 6.5 and RST 5.5.

1.41 Which interrupt has highest priority in 8085? What is the priority of other interrupts?

The TRAP has the highest priority, followed by RST 7.5, RST 6.5, RST 5.5 and INTR.

1.42 Define stack.

Stack is a sequence of RAM memory locations defined by the programmer.

1.43 What is program counter? How is it useful in program execution?

The program counter keeps a track of program execution. To execute a program, the starting

address of the program is loaded in program counter. The PC sends out an address to fetch a byte

of instruction from memory and increment its content automatically.

1.44 How is the microprocessor synchronized with peripherals ?

The timing and control unit synchronizes all the microprocessor operations with clock and generates

control signals necessary for communication between the microprocessor and peripherals.

1.45 What are the modes in which 8086 can operate?

The 8086 can operate in two modes and they are minimum (or uniprocessor) mode and maximum (or

multiprocessor) mode.

1.46 What is the data and address size in 8086?

The 8086 can operate on either 8-bit or 16-bit data. The 8086 uses 20-bit address to access memory

and 16-bit address to access IO devices.

Microprocessor (8085) And Its Applications 1. 43

1.47 What is the difference between 8086 and 8088?

The external data bus in 8086 is 16-bit and that of 8088 is 8-bit, i.e., the 8086 access memory in words

but 8088 access memory in bytes.

1.48 Explain the function of M/IO in 8086.

The signal M/IO is used to differentiate memory address and IO address. When the processor is

accessing memory locations M/IO is asserted high and when it is accessing IO-mapped devices

it is asserted low.

1.49 What are the hardware interrupts of 8086?

The hardware interrupts of 8086 are INTR and NMI. The INTR is general maskable interrupt and

NMI is nonmaskable interrupt.

1.50 How is clock signal generated in 8086? What is the maximum internal clock frequency of

8086?

The 8086 does not have on-chip clock generation circuit. Hence the clock generator chip, 8284 is

used to generate the required clock. The frequency of clock generated by 8284 is thrice that of

internal clock frequency of 8086. The 8284 divides the generated clock by three and modifies the

duty cycle to 33% and then supply as clock signal to 8086. The maximum internal clock frequency

of 8086 is 5 MHz.

1.51 What is pipelined architecture?

In pipelined architecture, the processor will have the number of functional units and the execution

time of functional units overlapped. Each functional unit works independently most of the time.

1.52 What are the functional units available in 8086 architecture?

The Bus Interface Unit (BIU) and Execution Unit (EU) are the two functional units available in 8086

architecture.

1.53 List the segment registers of 8086.

The segment registers of 8086 are Code Segment (CS), Data Segment (DS), Stack Segment (SS)

and Extra Segment (ES) registers.

1.54 What is the difference between segment register and general purpose register?

The segment registers are used to store 16-bit segment base address of the four memory segments.

The general purpose registers are used as the source or destination register during data transfer

and computation, as pointers to memory and as counters.

1.55 What is queue? How is queue implemented in 8086?

A data structure which can be accessed on the basis of first in first out is called queue. The 8086

has six numbers of 8-bit FIFO registers, which are used as instruction queue.

1.56 Write the flags of 8086.

The 8086 has nine flags. They are:

1. Carry Flag (CF) 6. Overflow Flag (OF)

2. Parity Flag (PF) 7. Trace Flag (TF) (or Single step trap)

3. Auxiliary carry Flag (AF) 8. Interrupt Flag (IF)

4. Zero Flag (ZF) 9. Direction Flag (DF)

5. Sign Flag (SF)

1. 44 Chapter 1 Introduction to Microprocessor

1.57 Write the special functions carried by the general purpose registers of 8086.

The special functions carried by the registers of 8086 are the following:

1.58 What are control bits?

The flags TF, IF and DF of 8086 are used to control the processor operation and so they are called

control bits.

1.59 What are the additional features in Z80, when compared to 8085?

The Z80 has separate pins for data and address. The Z80 provides more register, extra addressing

modes, a larger instruction set than 8085 and has a built-in-logic to refresh dynamic RAM memories.

The Z80 has indexed addressing mode.

1.60 What are shadow registers of Z80?

Each register of Z80 has an alternate register. The set of alternate registers are called shadow registers.

1.61 How are control signals classified in Z80?

The control signals of Z80 are classified into bus control, CPU control and system control signals.

1.62 List the register pairs of Z80.

The registers pairs of Z80 are BC, DE, HL, B'C', D'E' and H'L'.

1.63 List the flags of Z80.

The Z80 has six flags. They are as follows:

1. Sign flag (S and S') 4. Parity/Overflow flag (P/O and P'/O')

2. Zero flag (Z and Z') 5. Half carry flag (H and H')

3. Carry flag (C and C') 6. Subtract flag (N and N')

1.64 What are the common features of 8085 and Z80?

The common features of 8085 and Z80 are as follows:

1. It is fabricated using NMOS technology and has 40 pins.

2. Memory is accessed by 16-bit address and IO device by 8-bit address.

3. The 8085 is software compatible with Z80.

Register Name of the register Special function

AX 16-bit Accumulator Stores the 16-bit result of certain arithmetic and logical

operations.

AL 8-bit Accumulator Stores the 8-bit result of certain arithmetic and logical

operations.

 BX Base Register Used to hold the base value in base addressing mode

to access memory data.

 CX Count Register Used to hold the count value in SHIFT, ROTATE and

LOOP instructions.

 DX Data Register Used to hold data for multiplication and division operations.

 SP Stack Pointer Used to hold the offset address of top of stack memory.

 BP Base Pointer Used to hold the base value in base addressing using stack

segment register to access data from stack memory.

 SI Source Index Used to hold the index value of source operand (data) for

string instructions.

 DI Destination Index Used to hold the index value of destination operand (data)

for string instructions.

Microprocessor (8085) And Its Applications 1. 45

1.65 List the difference between 8085 and Z80.

The differences between 8085 and Z80 are tabulated in the following table.

8085 Z80

1. Low order address and data lines are 1. Separate lines are provided for address and data.

multiplexed.

2. A single signal IO/M is used to differentiate 2. Separate signals are used to differentiate memory

IO access and memory access. address and IO address.

3. The instruction size is one to three bytes. 3. The instruction size is one to four bytes.

4. The flag register has five flags. 4. The flag register has six flags.

5. It has five hardware interrupts. 5. The Z80 has two hardware interrupts.

6. It has 74 types of instruction 6. It has 156 types of instruction.

1.66 What is the data and address size in Motorola 6800?

In Motorola 6800, the data size is 8-bit and address size is 16-bit.

1.67 How IO devices are addressed in M6800?

The Motorola 6800 does not have separate address for memory and IO devices. Hence, some of

the memory addresses are used to address IO devices.

1.68 How the control signals of M6800 are classified?

The control signals of M6800 are classified into control bus signals and CPU (microprocessor)

supervisory signals.

1.69 What is the clock requirement of M6800?

The Motorola 6800 requires an external 2-phase clock whose maximum frequency can be 1MHz.

1.70 What is CCR? or What is the name of flag register in M6800?

The flag register in M6800 is called Condition Code Register (CCR).

1.71 What are the flags of M6800?

The M6800 has six flags and they are:

1. Negative (N)

2. Zero (Z)

3. Overflow (O)

4. Carry (C)

5. Half Carry (H)

6. Interrupt enable/disable (I).

1.72 What are the addressing modes available in Motorola 6800?

The addressing modes of Motorola 6800 are immediate, direct, indexed and relative addressing.

1.73 What are the different types of instructions available in Motorola 6800?

Data handling, arithmetic, logic, control transfer, data test, condition codes, address maintenance

and interrupt handling are the different types of instructions available in Motorola 6800.

1. 46 Chapter 1 Introduction to Microprocessor

1.74 List the differences between 8085 and M6800.

8085 M6800

1. Low order address and data lines are 1. Separate lines are provided for address and

multiplexed. data.

2. It has 16-bit address for memory and 2. It does not have separate address for memory

8-bit address for IO-mapped devices. and IO-mapped devices.

3. The flag register has five flags. 3. The flag register has six flags.

4. It has five hardware interrupts. 4. It has two hardware interrupts.

1.75 What is the type of stack in 8085?

The stack in 8085 is LIFO stack (Last-In-First-Out). In these type of stacks, the last stored

informations can be retrieved first.

 CHAPTER 2

INSTRUCTIONNSTRUCTIONNSTRUCTIONNSTRUCTIONNSTRUCTION SETETETETET OFFFFF 8085

2.1 ORIGIN OF SOFTWARE

The software is a set of instructions or commands needed for performing a specific task by

a programmable device. The instructions needed for a programmable device should be written

using the symbols 0 and 1. The software developed using 1s and 0 s are called machine language

programs. The machine language programs are the first programs developed for programmable

devices and machines. The machine can understand only machine level programs. But it is highly

tedious for a programmer to write a program in machine language.

Assembly level programs have been developed to simplify the programming task. The assembly

level programs are written using mnemonics. The mnemonics are given by the manufacturers of

the microprocessors. The assembly language programs are converted into machine language

programs by a conversion software called assembler. Both the machine language and assembly

language programs are machine dependent.

High level language programs have been developed to make the programming task independent

of hardware of the machines. The examples of high level languages are BASIC, FORTRAN, COBOL,

C, etc. The high level language programs are converted into machine language programs by a

conversion software called Compiler or Interpreter.

2.2 PROCESSOR CYCLES

The sequence of operations that a processor has to carry out while executing the instruction

is called instruction cycle. Each instruction cycle of a processor in turn consists of a number of

machine cycles. The machine cycles are the basic operations performed by the processor. To

execute an instruction, the processor executes one or more machine cycles in a particular sequence.

The machine cycles of a processor are also called processor cycles. The manufacturers of

microprocessors define the timings and status of various signals during the processor cycles.

In general, the instruction cycle of an instruction can be divided into two sub cycles : Fetch

cycle and Execute cycle. The fetch cycle is executed to fetch the opcode from memory and

the execute cycle is executed to decode the instruction and to perform the work specified by

the instruction.

2.3 MACHINE CYCLES OF 8085

The 8085 microprocessor has seven basic machine cycles. They are as follows:

1. Opcode fetch cycle (4T or 6T) 5. IO write cycle (3T)

2. Memory read cycle (3T) 6. Interrupt acknowledge cycle (6T or 12T)

3. Memory write cycle (3T) 7. Bus idle cycle (2T or 3T)

4. IO read cycle (3T)

�

2. 2 Chapter 2 Instruction Set Of 8085

Each instruction of the 8085 processor consists of one to five machine cycles, i.e., when

the 8085 processor executes an instruction, it will execute some of the machine cycles in a specific

order. The processor takes a definite time to

execute the machine cycles. The time taken by the

processor to execute a machine cycle is expressed

in T states. One T-state is equal to the time period

of the internal clock signal of the processor. The

T-state starts at the falling edge of a clock.

Note : Time period, T = 1/f ; where f = Internal clock frequency.

The T states required by the 8085 processor to execute each machine cycle are mentioned

within brackets in the list of machine cycles given above.

2.3.1 Timing Diagram

The timing diagram provides information about the various condition (high state or low

state or high impedance state) of the signals while a machine cycle is executed. The timing

diagrams are supplied by the manufacturer of the microprocessor. The timing diagrams are essential

for a system designer. Only from the knowledge of timing diagrams, the matched peripheral devices

like memories, ports, etc., can be selected to form a system with microprocessor as CPU.

Opcode Fetch Machine Cycle of 8085

Each instruction of the processor has one-byte opcode. The opcodes are stored in memory.

The opcode fetch machine cycle is executed by the processor to fetch the opcode from memory.

Hence, every instruction starts with opcode fetch machine cycle.

The time taken by the processor to execute the opcode fetch cycle is either 4T or 6T. In this

time, the first 3T states are used for fetching

the opcode from memory and the remaining

T states are used for internal operations by

the processor. The timings of various signals

during opcode fetch cycle are shown in

Fig. 2.2.

1. At the falling edge of first T-state (T
1
), the

microprocessor outputs the low byte address

on AD
0
-AD

7
 lines and high byte address on A

8

to A
15

 lines. ALE is asserted high to enable

the external address latch. The other control

signals are asserted as follows.

IO/M=0, S
0
 = 1, S

1
 = 1. (IO/M is asserted

low to indicate memory access.)

2. At the middle of T
1
, the ALE is asserted low

and this enables the external address latch to

take low byte of the address and keep on its

output lines.

Rising Edge or Positive Edge
Falling Edge or Negative Edge

1 T-state

Fig. 2.1 : Clock Signal.

T1 T2 T3 T4

Low byte
address

Opcode from
memory

High byte
address

CLK

AD - AD0 7

A - A8 15

ALE

RD

IO/M = 0 S = 10 S = 11

(WR will be ; READY is tied either
permanently or temporarily in the system.)

high high

Fig. 2.2 : Opcode fetch machine cycle of 8085.

IO/M, S , S0 1

Microprocessor (8085) And Its Applications 2. 3

3. In the second T-state (T
2
), the memory is requested for read by asserting read line low. When read is asserted

low, the memory is enabled for placing the opcode on the data bus. The time allowed for memory to output the

opcode is the time during which read remains low.

4. In the third T-state (T
3
), the read signal is asserted high. On the rising edge of read signal, the opcode is latched into

microprocessor. Other control signals remain in the same state until the next machine cycle.

5. The fourth T-state (T
4
) is used by the processor for internal operations to decode the instruction and encode into

various machine cycles, and also for completing

the task specified by 1-byte instruction. During

this state (T
4
) the address and data bus will be in

high impedance state.

Memory Read Machine Cycle of 8085

The memory read machine cycle is

executed by the processor to read a data byte

from memory. The processor takes 3T states to

execute this cycle. The timings of various signals

during memory read cycle are shown in Fig. 2.3.

1. At the falling edge of T
1
, the microprocessor

outputs the low byte address on AD
0
 - AD

7
 lines

and high byte address on A
8
 to A

15
 lines. ALE is

asserted high to enable the external address latch.

The other control signals are asserted as follows.

IO/M=0, S
0
 = 0, S

1
 = 1. (IO/M is asserted low

to indicate memory access.)

2. At the middle of T
1
, the ALE is asserted low and

this enables the external address latch to take

low byte of address and keep on its output lines.

3. In the second T-state (T
2
), the memory is

requested for read by asserting read line low.

When read is asserted low, the memory is enabled

for placing the data on the data bus. The time

allowed for memory to output the data is the time

during which read remains low.

4. At the end of T
3
, the read signal is asserted high.

On the rising edge of read signal, the data is latched

into microprocessor. Other control signals remain

in the same state until the next machine cycle.

Memory Write Machine Cycle of 8085

The memory write machine cycle is

executed by the processor to write a data byte

in a memory location. The processor takes

3T states to execute this machine cycle. The

timings of various signals during memory write

cycle are shown in Fig. 2.4.

T1 T2 T3

Low byte
address

Data from
memory

High byte
address

CLK

AD - AD0 7

A - A8 15

ALE

RD

IO/M = 0 S = 00 S = 11

Fig. 2.3 : Memory read machine cycle of 8085.

(WR will be ; READY is tied either
permanently or temporarily in the system.)

high high

IO/M, S , S0 1

T1 T2 T3

Low byte
address

High byte
address

CLK

ALE

IO/M = 0 S = 10 S = 01

WR

(RD will be ; READY is tied either
permanently or temporarily in the system.)

high high

Fig. 2.4 : Memory write machine cycle of 8085.

Data from
microprocessor

AD - AD0 7

A - A8 15

IO/M, S , S0 1

2. 4 Chapter 2 Instruction Set Of 8085

1. At the falling edge of T
1
, the microprocessor outputs the low byte address on AD

0
 - AD

7
 lines and high byte address

on A
8
 to A

15
 lines. ALE is asserted high to enable the external address latch. The other control signals are asserted

as follows.

IO/M=0, S
0
 = 1, S

1
 = 0. (IO/M is asserted low to indicate memory access.)

2. At the middle of T
1
, the ALE is asserted low and this enables the external address latch for latching the low byte

address into its output lines.

3. In the falling edge of T
2
, the processor output data on AD

0
 to AD

7
 lines and then request memory for write operation

by asserting the write control signal WR to low.

4. At the end of T
3
, the processor asserts WR high. This enables the memory to latch the data into it. The memory

should prepare itself to accept the data within the time duration in which write control signal remains low. Other

control signals remain in the same state until the next machine cycle.

IO Read Cycle of 8085

The IO read cycle is executed by the processor

to read a data byte from IO port or from the peripheral

which is IO-mapped in the system. The processor

takes 3T states to execute this machine cycle. The

timings of various signals during this machine cycle

are shown in Fig. 2.5.

1. At the falling edge of T
1
, the microprocessor output the 8-

bit port address on both the low order address lines (AD
0
 -

AD
7
) and high order address lines (A

8
 to A

15
). ALE is

asserted high to enable the external address latch. The

other control signals are asserted as follows.

IO/M=1, S
0
 = 0 and S

1
 = 1. (IO/M is asserted high to

indicate IO access.)

2. At the middle of T
1
, the ALE is asserted low and this

enables the external address latch to take the port address

and keep on its output lines.

3. In the second T-state (T
2
) the IO device is requested for

read by asserting read line low. When read is asserted low, the IO port is enabled for placing the data on the data bus.

The time allowed for IO port to output the data is the time during which read remains low.

 4. At the end of T
3
, the read signal is asserted high. On the rising edge of read signal the data is latched into

microprocessor. Other control signals remains in the same state until the next machine cycle.

IO Write Cycle of 8085

The IO write machine cycle is executed by the processor to write a data byte in an IO port

or to a peripheral which is IO-mapped in the system. The processor takes 3T states to execute this

machine cycle. The timings of the various signals of IO write cycle are shown in Fig. 2.6.

1. At the falling edge of T
1
, the microprocessor outputs the 8-bit port address on low order address line

(AD
0
 - AD

7
) and high order address lines (A

8
 to A

15
). ALE is asserted high to enable the external address latch. The

other control signals are asserted as follows :

IO/M=1, S
0
 = 1 and S

1
 = 0. (IO/M is asserted high to indicate IO access.)

T1 T2 T3

8-bit port
address

CLK

AD - AD0 7

A - A8 15

ALE

IO/M = 1 S = 00 S = 11

Data from
port

RD

(WR will be ; READY is tied either
permanently or temporarily in the system.)

high high

Fig. 2.5 : IO read machine cycle of 8085.

8-bit port
address

IO/M, S , S0 1

Microprocessor (8085) And Its Applications 2. 5

2. At the middle of T
1
, the ALE is asserted low and this

enables the external address latch for latching the port

address into its output lines.

3. In the falling edge of T
2
, the processor output data on

AD
0
 - AD

7
lines and then request IO port for write operation

by asserting the write control signal WR to low.

4. At the end of T
3
, the processor asserts WR high. This

enables the IO port to latch the data into it. The IO port

should prepare itself to accept the data within the time

duration in which write control signal remains low. Other

control signals remains in the same state until the next machine

cycle.

Interrupt Acknowledge Machine Cycle of 8085

The interrupt acknowledge machine cycle is

executed by the processor to service an interrupt when

an interrupt request is made through INTR pin of the

processor.

The 8085 processor checks for an interrupt at the second T-state of the last machine cycle

of every instruction. If there is a valid interrupt request and if INTR is enabled then the processor

completes the current instruction execution and then executes an interrupt acknowledge machine

cycle. The interrupt acknowledge machine cycle is executed to get either a RST n instruction from

the interrupting device or to get a CALL instruction with CALL address from the interrupting

device. It also stores the content of program counter (return address) in stack.

Interrupt acknowledge cycle of 8085 with RST n instruction

The timings of various signals during interrupt acknowledge cycle of 8085 when RST n

instruction is supplied by the interrupting device are shown in Fig. 2.7.

1. In the first T-state of interrupt acknowledge cycle, the address is placed on the AD
0
 - AD

7
 and A

8
- A

15

lines and ALE is asserted high. But the address is not used to read from memory. The other control signals are

asserted as follows.

IO/M=1, S
0
 = 1 and S

1
 = 1.

In the middle of T
1
, ALE is asserted low. The INTR signal can remain high or it can go low once the interrupt is

accepted.

2. In the second T-state (T
2
), INTA is asserted low, and this enables the interrupting device to place the opcode of

RST n instruction on the data bus.

3. At the end of T
3
, the INTA is asserted high and the RST n opcode is latched into the processor. The time allowed

for the external hardware to place the RST n opcode is the time during which INTA remains low.

4. The next three T states T
4
, T

5
 and T

6
 are used for internal operations. The internal operations performed are

decoding the instruction and encoding into various machine cycles and generation of vector address for the RST n

interrupt.

T1 T2 T3

8-bit port
address

CLK

AD AD0 7-

A A8 15-

ALE

IO/M = 1 S = 10 S = 01

Data from
processor

WR

(RD will be ; READY is tied either
permanently or temporarily in the system.)

high high

Fig. 2.6 : IO write machine cycle of 8085.

8-bit port
address

IO/M, S , S0 1

2. 6 Chapter 2 Instruction Set Of 8085

5. The T states T
7
, T

8
 and T

9
 are used to store the high byte of the Program Counter (PC) in stack (using the content

of Stack Pointer (SP) as address).

In T
7
, the content of SP is decremented by one and placed on AD

0
-AD

7
 and A

8
-A

15
 lines. ALE is asserted high and

then low, to latch the low byte of address into external latch. The status signals are asserted as IO/M=0,

S
0
 = 1 and S

1
 = 0.

In T
8
, the high byte of PC is placed on AD

0
 - AD

7
 lines and WR is asserted low to enable the stack memory for write

operation. At the end of T
9
, WR is asserted high.

6. The T states T
10

, T
11

 and T
12

 are used to store the low byte of the program counter into stack.

In T
10

, the content of SP is again decremented by one and placed on AD
0
-AD

7
 and A

8
 - A

15
 lines. ALE is asserted high

and then low, to latch the low byte of address into external latch. The status signals are asserted as IO/M=0, S
0

= 1 and S
1
 = 0.

In T
11

, the low byte of PC is placed on AD
0
 - AD

7
 lines and WR is asserted low to enable the stack memory for write

operation. At the end of T
12

 WR is asserted high.

T1 T3T2 T4 T5 T6 T7 T8 T9 T10 T11 T12

(PC)L
RST n
opcode

(SP) 1- L (PC)H (SP) 1- L
(PC)L

(PC)H (SP) 1- H
(SP) 1- H

CLK

AD AD0 7-

A A8 15-

ALE

WR

INTR

INTA

RD

IO/M = 1, S = 1,S = 10 1
IO/M = 0, S0 1= 1,S = 0

Interrupt Acknowledge Memory Write Memory Write

Fig. 2.7 : RST nInterrupt acknowledge cycle with opcode.

IO/M, S , S0 1

Microprocessor (8085) And Its Applications 2. 7

After the interrupt acknowledge machine cycle, the PC will have the vector address of RST

n instruction and so the processor starts servicing the interrupt by executing the interrupt service

subroutine stored at this address.

Interrupt acknowledge cycle of 8085 with CALL instruction

This cycle is executed by the machine to service an interrupt, when an interrupt request is

made through 8259 (Interrupt Controller) to the INTR pin of 8085. The INTEL 8259 can accept 8

interrupt request and allow one by one to the INTR pin of the 8085 processor. It also supplies

CALL opcode and CALL address, when it receives INTA signal from the processor.

The processor checks for an interrupt at the second T-state of the last machine cycle of

every instruction. If there is a valid interrupt request and if INTR is enabled then the processor

completes the current instruction execution and then executes an interrupt acknowledge machine

cycle.

The timings of various signals during interrupt acknowledge cycle when CALL instruction

is supplied by the interrupting device are shown in Fig. 2.8.

1. At the falling edge of T
1
 the address is placed on AD

0
- AD

7
and A

8
 - A

15

lines and ALE is asserted high. But the

address is not used to read from memory. The other control signals are asserted as IO/M=1, S
0
 = 1 and

S
1
 = 1.

In the middle of T
1
, ALE is asserted low. The INTR signal can remain high or it can go low once the interrupt is

accepted by executing acknowledge cycle.

2. In T
2
, INTA is asserted low and this enables the interrupt controller 8259 to place a CALL opcode on the data bus.

3. At the end of T
3
, the INTA is asserted high and the CALL opcode is latched into the processor.

4. The T states T
4
, T

5
 and T

6
 are used for internal operations. The internal operations performed are decoding the

opcode and encoding into various machine cycles.

5. The T states T
7
, T

8
 and T

9
 are used to fetch the low byte of call address from 8259. In T

7
, the content of Program

Counter (PC) is placed on address bus but not used for memory operation. In T
8
 the INTA is asserted low and this

enables the interrupt controller 8259 to place the low byte of call address on data bus. At the end of T
9
 the INTA

is asserted high and the low byte call address on the data bus is latched into the processor.

6. The T states T
10

, T
11

 and T
12

 are used to fetch the high byte of call address from 8259. In T
10

 the content of PC

is placed on address bus, but not used for memory operation. In T
11

the

INTA is asserted low and 8259 is enabled

for placing the high byte of call address on data bus. At the end of T
12

, the INTA is asserted high and the high byte

call address on the data bus is latched into the processor.

7. The T states T
13

, T
14

 and T
15

 are used to store the high byte of the program counter in stack memory.

In T
13

, the content of Stack Pointer (SP) is decremented by one and placed on address bus. ALE is asserted high

and then low, to latch the low byte of address into external latch. The other control signals are asserted as IO/M=0,

S
0
 = 1 and S

1
 = 0. In T

14
, the high byte of PC is placed on AD

0
 - AD

7
 lines and WR is asserted low to enable the

stack memory for write operation. At the end of T
15

, WR is asserted high.

2. 8 Chapter 2 Instruction Set Of 8085

F
ig
.
2
.8
:
In
te
rr
u
p
t
a
c
k
n
o
w
le
d
g
e
c
y
c
le
w
it
h
C
A
L
L
o
p
c
o
d
e
.

T
1

T
3

T
2

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
1
1

T
1
2

(P
C
) L

C
A
L
L

O
p
co
d
e

(S
P
)
1

-
L

(P
C
) H

(S
P
)
1

-
H

C
L
K

A
D

A
D

0
7

-

A
A

8
1
5

-

A
L
E

W
R

IN
T
R

IN
T
A

R
D

IO
/
M
=
1
,
S
=
1
,
S
=
1

0
1

IO
/
M
=
0
,
S
0

1
=
1
,
S
=
0

In
te
rr
u
p
t
A
ck
n
o
w
le
d
g
e
M
ac
h
in
e
C
y
cl
e

M
em
o
ry

W
ri
te

T
1
3

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

IO
/
M
,
S
,
S

0
1

M
em
o
ry

W
ri
te

L
o
w
b
y
te

ca
ll
ad
d
re
ss

(P
C
) L

H
ig
h
b
y
te

ca
ll
ad
d
re
ss

(P
C
) L

(S
P
)
1

-
L

(P
C
) L

(P
C
) L

(P
C
) H

(S
P
)
1

-
H

Microprocessor (8085) And Its Applications 2. 9

8. The T states T
16

, T
17

 and T
18

 are used to store the low byte of the program counter in stack memory.

In T
16

, the content of SP is again decremented by one and placed on address bus. ALE is asserted high and then low,

to latch the low byte of address into external latch. The other control signals are asserted as IO/M=0, S
0
 = 1 and

S
1
 = 0.

In T
17

 the low byte of PC is placed on AD
0
 - AD

7
 lines and WR is asserted low to enable the stack memory for write

operation. At the end of T
15

 WR is asserted high.

After the interrupt acknowledge machine cycle, the PC will have the call address and so the

processor starts servicing the interrupt by executing the interrupt service subroutine stored at this

address.

Bus Idle Machine Cycle

The bus idle machine cycle is executed, when extra time or more time is needed for an

internal operation of the processor. During this cycle, the status signals S
0
 and S

1
 are asserted

low. The data, address and control pins are driven to high impedance state. The READY signal

will not be sampled by the processor during this cycle.

Machine cycle with wait states

Wait states can be introduced in any machine cycle except bus idle cycle between T
2

and T
3
. The wait states are introduced in the machine cycle if READY pin is tied low at the

second T-state of a machine cycle. The processor samples (or check) the READY signal at the

second T-state of every machine cycle. If READY is tied low at this time, then the processor keeps

on introducing wait state until the READY is again tied high. This facility is used by the slow

memories, IO devices and peripherals to get extra time for read or write operations.

In the system when the peripheral timings are matched with processor timings, then the

READY pin is permanently tied high. If the system peripherals require more time for read or write

cycles, then using additional hardware the READY pin should be tied low for the required number

of T states.

The circuit shown in Fig. 2.9 can be used to introduce one wait state in the machine cycles.

The working of the circuit shown in Fig. 2.9 can be explained as follows :

(logic 1) + 5-V

ALE

Clock Out
From 8085

FF1
D-Flip Flop

FF2
D-Flip Flop

CLK1 CLK2

D1 Q1 D2
Q2

000

1 1
Q2Q1

RESET RESET

PRESETPRESET
To READY
Pin of 8085

(The values shown at the input and output of the flip-flops are initial conditions)

Fig. 2.9 : Circuit to introduce one wait state in 8085 machine cycle.

2. 10 Chapter 2 Instruction Set Of 8085

1. Initially Q
2
 = 0 and Q

2
=1. The input D

1
 is permanently tied high. The flip-flops are negative edge sensitive and so

they are clocked (recognizes the clock) at the falling edges.

2. In the beginning of every machine cycle (except bus idle), ALE is asserted high and then low. At the falling edge of

ALE, FF1 is clocked and its output Q
1
 changes to 1. Also the input to FF2, D

2
 changes to 1.

3. Now D
1
 =1, Q

1
 = 1, D

2
 = 1, Q

2
 = 0, Q

2
 = 1 and RESET = 1.

4. At the falling edge (beginning) of T
2
, FF2 is clocked and so its output Q

2
 changes to 1 and Q

2
 changes to 0.

5. Now, D
1
 =1, Q

1
 = 1, D

2
 = 1, Q

2
 =1 ,Q

2
= 0 and RESET = 0.

6. Since Q
2
 is connected to READY pin of 8085, the READY will be tied low. The Q

2
 is also used to reset FF1 and

so when Q
2
 goes to 0 the FF1 is resetted or cleared. Now Q

1
 = 0 and since Q

1
 = D

2
, the D

2
 is also equal to 0.

7. Now, D
1
 =1, Q

1
 = 0, D

2
 = 0, Q

2
= 1,Q

2
= 0 and RESET = 0.

8. At the falling edge of next T-state (i.e., in wait state) again FF2 is clocked and so the output of FF2 will change.

9. Now, D
1
 =1, Q

1
 = 0, D

2
 = 0, Q

2
= 0,Q

2
= 1 and RESET = 1.

10. Since Q
2
= 1, again READY is tied high. When the processor checks the READY at the

falling edge of next cycle (T
3
), it will be high and it will continue the machine cycle.

Thus, the hardware shown in Fig. 2.9 introduces one wait state in the machine cycles. A

machine cycle with one wait state is shown in Fig. 2.10.

PRESET RESET Q Q

0 1 1 0

1 0 0 1

1 1 Clock and D input

 decide the output

0 0 Should not occur

Preset and reset/clear facility in D-flip-flopTruth Table of D-flip-flop

Clock
 Input Output

 D Q

↓ 1 1 0

↓ 0 0 1

Time D Q D Q Q RESET1 1 2 2 2

t 1 0 0 0 1 1

t 1 1 1 0 1 1

t 1 1 1 1 0 0

1 0 0 1 0 0

t 1 0 0 0 1 1

t 1 0 0 0 1 1

t 1 0 0 0 1 1

1

2

3

4

5

6

Fig. 2.10 : Machine cycle with one wait state.

T1 T2 Tw T3CLK
(CLK out
of 8085)

ALE

READY

t1 t2 t3 t4 t5 t6

Note : T = wait state.
w

Microprocessor (8085) And Its Applications 2. 11

2.4 INSTRUCTION FORMAT OF 8085

The 8085 has 74 basic instructions and 246 total instructions. The instruction set of 8085 is

defined by the manufacturer INTEL Corporation. Each instruction of 8085 has one-byte opcode.

With 8-bit binary code, we can generate 256 different binary codes. In this, 246 codes have been

used for opcodes of 8085 instructions.

The size of 8085 instruction can be one-byte, two bytes or three bytes. The one-byte instruction

has an opcode alone and the two-byte instruction has an opcode followed by an eight bit address or

data. The three-byte instruction has an opcode followed by 16-bit address or data. While storing

the three-byte instruction in memory, the sequence of storage is, opcode first followed by low byte

of address or data and then high byte of address or data. The format of 8085 instructions are

shown in Fig. 2.11.

2.5 ADDRESSING MODES

Every instruction of a program has to operate on a data. The method of specifying the

data to be operated by the instruction is called Addressing. The 8085 supports the following five

addressing modes:

1. Immediate Addressing

2. Direct Addressing

3. Register Addressing

4. Register Indirect Addressing

5. Implied Addressing

Immediate Addressing

In immediate addressing mode, the data is specified in the instruction itself. The data will be a part of the program instruction .

Example : MVI B, 3E
H

Move the data 3E
H
 given in the instruction to B-register.

Direct Addressing

In direct addressing mode, the address of the data is specified in the instruction. The data will be in memory. In this

addressing mode, the program instructions and data can be stored in different memory blocks.

Example : LDA 1050
H

Load the data available in memory location 1050
H
 in accumulator.

One-byte instruction :

Two-byte instruction :

Three-byte instruction :

opcode

7 6 5 4 3 2 1 0

opcode

7 6 5 4 3 2 1 0

8-bit data/address

7 6 5 4 3 2 1 0

opcode

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Fig. 2.11 : Format of 8085 instructions.

low byte data/address high byte data/address

2. 12 Chapter 2 Instruction Set Of 8085

Register Addressing

In register addressing mode, the instruction specifies the name of the register in which the data is available.

Example : MOV A, B

Move the content of B-register to A-register.

Register Indirect Addressing

In register indirect addressing mode, the instruction specifies the name of the register in which the address of the

data is available. Here the data will be in memory and the address will be in a register pair.

Example : MOV A, M

The memory data addressed by HL pair is moved to A-register.

Implied Addressing

In implied addressing mode, the instruction itself specifies the data to be operated.

Example : CMA

Complement the content of accumulator.

2.6 INSTRUCTION SET

The 8085 instructions can be classified into the following five functional groups.

Group I - Data Transfer Instructions : Includes the instructions that moves (copies)

data between registers or between memory location and register. In all data

transfer operations, the content of source register or memory is not altered.

Hence the data transfer is copying operation.

Group II - Arithmetic Instructions : Includes the instructions which performs addition,

subtraction, increment or decrement operations. The flag conditions are altered

after execution of an instruction in this group.

Group III - Logical Instructions : The instructions which performs the logical operations

likeAND, OR, EXCLUSIVE-OR, complement, compare and rotate instructions

are grouped under this heading. The flag conditions are altered after execution

of an instruction in this group.

Group IV - Branching Instructions : The instructions that are used to transfer the

program control from one memory location to another memory location are

grouped under this heading.

Group V - Machine Control instructions : Includes the instructions related to interrupts

and the instruction used to halt program execution.

The 74 basic instructions of 8085 are listed in Table-2.1. The opcode of each instruction,

size, machine cycles, number of T-state and the total number of instructions in each type are also

shown in Table-2.1. The instructions affecting the status flag are listed in Table-2.2.

Microprocessor (8085) And Its Applications 2. 13

TABLE - 2.1 : SUMMARY OF 8085 INSTRUCTION SET

S.No. Mnemonic Opcode No.of Machine No.of Total no. of

 bytes cycles T states instructions

 Group I : Data transfer instructions

1. MOV Rd, Rs 0 1 D D D S S S 1 F 4T 49

2. MOV Rd, M 0 1 D D D 1 1 0 1 F, R 7T 7

3. MOV M, Rs 0 1 1 1 0 S S S 1 F, W 7T 7

4. MVI Rd, d8 0 0 D D D 1 1 0 2 F, R 7T 7

5. MVI M, d8 0 0 1 1 0 1 1 0 2 F, R, W 10T 1

6. LDA addr16 0 0 1 1 1 0 1 0 3 F, R, R, R 13T 1

7. LDAX rp 0 0 R P 1 0 1 0 1 F, R 7T 2

8. LXI rp, d16 0 0 R P 0 0 0 1 3 F, R, R 10T 4

9. LHLD addr16 0 0 1 0 1 0 1 0 3 F,R,R,R,R 16T 1

10. STA addr16 0 0 1 1 0 0 1 0 3 F, R, R,W 13T 1

11. STAX rp 0 0 R P 0 0 1 0 1 F, W 7T 2

12. SHLD addr16 0 0 1 0 0 0 1 0 3 F,R,R,W,W 16T 1

13. SPHL 1 1 1 1 1 0 0 1 1 S 6T 1

14. XCHG 1 1 1 0 1 0 1 1 1 F 4T 1

15. XTHL 1 1 1 0 0 0 1 1 1 F,R,R,W,W 16 T 1

16. PUSH rp 1 1 R P 0 1 0 1 1 S, W, W 12T 3

17. PUSH PSW 1 1 1 1 0 1 0 1 1 S, W, W 12T 1

18. POP rp 1 1 R P 0 0 0 1 1 F, R, R 10T 3

19. POP PSW 1 1 1 1 0 0 0 1 1 F, R, R 10T 1

20. IN addr8 1 1 0 1 1 0 1 1 2 F, R, I 10T 1

21. OUT addr8 1 1 0 1 0 0 1 1 2 F, R, O 10T 1

 Group II : Arithmetic instructions

22. ADD reg 1 0 0 0 0 S SS 1 F 4T 7

23. ADD M 1 0 0 0 0 1 1 0 1 F, R 7T 1

2. 14 Chapter 2 Instruction Set Of 8085

Table - 2.1 continued...

S.No. Mnemonic Opcode No.of Machine No.of Total no. of

 bytes cycles T states instructions

24. ADI d8 1 1 0 0 0 1 1 0 2 F, R 7T 1

25. ADC reg 1 0 0 0 1 S SS 1 F 4T 7

26. ADC M 1 0 0 0 1 1 1 0 1 F, R 7T 1

27. ACI d8 1 1 0 0 1 1 1 0 2 F, R 7T 1

28. DAA 0 0 1 0 0 1 1 1 1 F 4T 1

29. DAD rp 0 0 R P 1 0 0 1 1 F, B, B 10T 4

30. SUB reg 1 0 0 1 0 S SS 1 F 4T 7

31. SUB M 1 0 0 1 0 1 1 0 1 F, R 7T 1

32. SUI d8 1 1 0 1 0 1 1 0 2 F, R 7T 1

33. SBB reg 1 0 0 1 1 S SS 1 F 4T 7

34. SBB M 1 0 0 1 1 1 1 0 1 F, R 7T 1

35. SBI d8 1 1 0 1 1 1 1 0 2 F, R 7T 1

36. INR reg 0 0 S S S 1 0 0 1 F 4T 7

37. INR M 0 0 1 1 0 1 0 0 1 F, R, W 10T 1

38. INX rp 0 0 R P 0 0 1 1 1 S 6T 4

39. DCR reg 0 0 S S S 1 0 1 1 F 4 T 7

40. DCR M 0 0 1 1 0 1 0 1 1 F, R, W 10T 1

41. DCX rp 0 0 R P 1 0 1 1 1 S 6T 4

 Group III : Logical instructions

42. ANA reg 1 0 1 0 0 SS S 1 F 4T 7

43. ANA M 1 0 1 0 0 1 1 0 1 F, R 7T 1

44. ANI d8 1 1 1 0 0 1 1 0 2 F, R 7T 1

45. ORA reg 1 0 1 1 0 SS S 1 F 4T 7

46. ORA M 1 0 1 1 0 1 1 0 1 F, R 7T 1

47. ORI d8 1 1 1 1 0 1 1 0 2 F, R 7T 1

Microprocessor (8085) And Its Applications 2. 15

Table - 2.1 continued...

S.No. Mnemonic Opcode No.of Machine No.of Total no. of

 bytes cycles T states instructions

48. XRA reg 1 0 1 0 1 S S S 1 F 4T 7

49. XRA M 1 0 1 0 1 1 1 0 1 F,R 7T 1

50. XRI d8 1 1 1 0 1 1 1 0 2 F, R 7T 1

51. CMP reg 1 0 1 1 1 S S S 1 F 4T 7

52. CMP M 1 0 1 1 1 1 1 0 1 F, R 7T 1

53. CPI d8 1 1 1 1 1 1 1 0 2 F, R 7T 1

54. CMA 0 0 1 0 1 1 1 1 1 F 4T 1

55. CMC 0 0 1 1 1 1 1 1 1 F 4T 1

56. STC 0 0 1 1 0 1 1 1 1 F 4T 1

57. RLC 0 0 0 0 0 1 1 1 1 F 4T 1

58. RAL 0 0 0 1 0 1 1 1 1 F 4T 1

59. RRC 0 0 0 0 1 1 1 1 1 F 4T 1

60. RAR 0 0 0 1 1 1 1 1 1 F 4T 1

 Group IV : Branching instructions

61. JMP addr16 1 1 0 0 0 0 1 1 3 F,R,R 10T 1

62. J<condition>

 addr16 1 1 C C C 0 1 0 3 F,R/F,R,R 7T/10T 8

63. CALL addr16 1 1 0 0 1 1 0 1 3 S,R,R,W,W 18T 1

64. C<condition> S, R or

 addr16 1 1 C C C 1 0 0 3 S,R,R,W,W 9T/18T 8

65. RET 1 1 0 0 1 0 0 1 1 F,R,R 10T 1

66. R<condition> 1 1 C C C 0 0 0 1 S/S,R,R 6T/12T 8

67. RST n 1 1 N N N 1 1 1 1 S,W,W 12T 8

68. PCHL 1 1 1 0 1 0 0 1 1 S 6T 1

2. 16 Chapter 2 Instruction Set Of 8085

Table - 2.1 continued...

S.No. Mnemonic Opcode No.of Machine No.of Total no. of

 bytes cycles T states instructions

 Group V : Machine control instructions

69. SIM 0 0 1 1 0 0 0 0 1 F 4T 1

70. RIM 0 0 1 0 0 0 0 0 1 F 4T 1

71. DI 1 1 1 1 0 0 1 1 1 F 4T 1

72. EI 1 1 1 1 1 0 1 1 1 F 4T 1

73. HLT 0 1 1 1 0 1 1 0 1 F,B 5T 1

74. NOP 0 0 0 0 0 0 0 0 1 F 4T 1

246

Meanings of various symbols used in Table - 2.1.

Symbol Meaning

rp, RP Register pair

Rs, SSS Source register

Rd, DDD Destination register

M Memory

d8 8-bit data

d16 16-bit data

addr8 8-bit address

addr16 16-bit address

reg Register

PSW Program status word

n, NNN Type number of restart instruction

<condition>, CCC Flag condition

F 4T-Opcode fetch cycle

S 6T-Opcode fetch cycle

R Memory read cycle

W Memory write cycle

 I IO read cycle

O IO write cycle

B Bus idle cycle

Flag condition can be any one of the conditions given below:

Z → Zero flag = 1 M → Sign flag = 1

NZ → Zero flag = 0 P → Sign flag = 0

C → Carry flag = 1 PE → Parity flag = 1

NC → Carry flag = 0 PO → Parity flag = 0

Microprocessor (8085) And Its Applications 2. 17

The binary codes for the symbols used in opcode of 8085 instructions are given below:

Register DDD or SSS Register RP

B 0 0 0 BC 0 0

C 0 0 1 DE 0 1

D 0 1 0 HL 1 0

E 0 1 1 SP 1 1

H 1 0 0

L 1 0 1

A 1 1 1

 Flag condition C C C n N N N

NZ 0 0 0 0 0 0 0

Z 0 0 1 1 0 0 1

NC 0 1 0 2 0 1 0

C 0 1 1 3 0 1 1

PO 1 0 0 4 1 0 0

PE 1 0 1 5 1 0 1

P 1 1 0 6 1 1 0

M 1 1 1 7 1 1 1

TABLE - 2.2 : 8085 INSTRUCTIONS AFFECTING THE STATUS FLAGS

Status flags
Instructions

CF AF ZF SF PF

ACI d8 + + + + +

ADC reg + + + + +

ADC M + + + + +

ADD reg + + + + +

ADD M + + + + +

ADI d8 + + + + +

ANA reg 0 1 + + +

ANA M 0 1 + + +

ANI d8 0 1 + + +

CMC +

CMP reg + + + + +

CMP M + + + + +

CPI d8 + + + + +

DAA + + + + +

DAD rp +

DCR reg + + + +

DCR M + + + +

INR reg + + + +

INR M + + + +

ORA reg 0 0 + + +

ORA M 0 0 + + +

2. 18 Chapter 2 Instruction Set Of 8085

Table - 2.2 continued...

 Status flags
Instructions

CF AF ZF SF PF

ORI d8 0 0 + + +

RAL +

RAR +

RLC +

RRC +

SBB reg + + + + +

SBB M + + + + +

SBI d8 + + + + +

STC +

SUB reg + + + + +

SUB M + + + + +

SUI d8 + + + + +

XRA reg 0 0 + + +

XRA M 0 0 + + +

XRI d8 0 0 + + +

Note :

+ → Indicates that the particular flag is affected.

0 → Indicates that the particular flag is always zero.

1 → Indicates that the particular flag is always one.

TABLE - 2.3 : MEANING/EXPANSION OF MNEMONICS USED IN AN 8085 INSTRUCTION SET

S.No. Mnemonic Meaning 1. ACI Add the immediate data and the carry to the accumulator.

2. ADC Add the register/memory and the carry to the accumulator.

3. ADD Add the register/memory to the accumulator.

4. ADI Add the immediate data to the accumulator.

5. ANA AND register/memory with the accumulator.

6. ANI AND immediate data with the accumulator.

7. CALL Call a subroutine/procedure.

8. CC Call on carry.

9. CM Call on minus.

10. CMA Complement accumulator.

11. CMC Complement carry.

12. CMP Compare register/memory with accumulator.

13. CNC Call on no carry.

14. CNZ Call on not zero.

Microprocessor (8085) And Its Applications 2. 19

Table - 2.3 continued...

S.No. Mnemonic Meaning

15. CP Call on positive.

16. CPE Call on parity even.

17. CPI Compare immediate data with the accumulator.

18. CPO Call on parity odd.

19. CZ Call on zero.

20. DAA Decimal adjust accumulator after addition.

21. DAD Double addition.

22. DCR Decrement the register/memory.

23. DCX Decrement the register pair.

24. DI Disable interrupt.

25. EI Enable interrupt.

26. HLT Halt program execution.

27. IN Input data from specified port to accumulator.

28. INR Increment the register/memory.

29. INX Increment the register pair.

30. JC Jump on carry.

31. JM Jump on minus.

32. JMP Jump to specified address to get the next instruction.

33. JNC Jump on no carry.

34. JNZ Jump on not zero.

35. JP Jump on positive.

36. JPE Jump on parity even.

37. JPO Jump on parity odd.

38. JZ Jump on zero.

39. LDA Load the accumulator.

40. LDAX Load accumulator indirectly using the address in the specified

register pair.

41. LHLD Load HL direct.

42. LXI Load the immediate data in the register pair.

43. MOV Move (copy) the content of register/memory to another

register/memory.

44. MVI Move the immediate data to register/memory.

45. NOP No operation.

46. ORA OR register/memory with accumulator.

47. ORI OR immediate data with accumulator.

48. OUT Output the content of accumulator to specified port.

49. PCHL Move the content of HL to PC.

2. 20 Chapter 2 Instruction Set Of 8085

Table - 2.3 continued...

S.No. Mnemonic Meaning

50. POP Move the top of stack to the specified register pair.

51. PUSH Push the content of the specified register pair to top of stack.

52. RAL Rotate the accumulator left along with carry.

53. RAR Rotate the accumulator right along with carry.

54. RC Return on carry.

55. RET Return from subroutine/procedure to calling program.

56. RIM Read interrupt mask status.

57. RLC Rotate accumulator left to carry.

58. RM Return on minus.

59. RNC Return on no carry.

60. RNZ Return on not zero.

61. RP Return on positive.

62. RPE Return on parity even.

63. RPO Return on parity odd.

64. RRC Rotate accumulator right to carry.

65. RST Restart the program execution from the specified vector

address.

66. RZ Return on zero.

67. SBB Subtract register/memory and the carry (borrow) from

accumulator.

68. SBI Subtract the immediate data and the carry (borrow) from

accumulator.

69. SHLD Store HL direct.

70. SIM Set interrupt mask.

71. SPHL Move HL to SP.

72. STA Store accumulator.

73. STAX Store accumulator indirectly by using the address in specified

register pair.

74. STC Set carry.

75. SUB Subtract register/memory from accumulator.

76. SUI Subtract the immediate data from accumulator.

77. XCHG Exchange DE and HL.

78. XRA Exclusive-OR register/memory with accumulator.

79. XRI Exclusive-OR the immediate data with accumulator.

80. XTHL Exchange the top of stack and HL.

Microprocessor (8085) And Its Applications 2. 21

2.7 DATA TRANSFER INSTRUCTIONS

1. MOV Rd, Rs (Rd) ← (Rs)

The content of source register (Rs) is copied to the destination register (Rd). The registers Rd and Rs can be any one of the

general purpose registers A, B, C, D, E, H or L. No flags are affected.

Example : MOV B, C (B) ← (C)

The content of C-register is moved to the B-register.

Before execution After execution

One byte instruction One machine cycle : Opcode fetch - 4T

Register addressing

Total number of instructions = 49

MOV A, A MOV B, A MOV D, A MOV H, A

MOV A, B MOV B, B MOV D, B MOV H, B

MOV A, C MOV B, C MOV D, C MOV H, C

MOV A, D MOV B, D MOV D, D MOV H, D

MOV A, E MOV B, E MOV D, E MOV H, E

MOV A, H MOV B, H MOV D, H MOV H, H

MOV A, L MOV B, L MOV D, L MOV H, L

MOV C, A MOV E, A MOV L, A

MOV C, B MOV E, B MOV L, B

MOV C, C MOV E, C MOV L, C

MOV C, D MOV E, D MOV L, D

MOV C, E MOV E, E MOV L, E

MOV C, H MOV E, H MOV L, H

MOV C, L MOV E, L MOV L, L

2. MOV Rd, M (Rd) ← (M) or (Rd) ← ((HL))

The content of memory (M) addressed by the HL pair is moved to the destination register (Rd). The register Rd can

be any one of the general purpose registers A, B, C, D, E, H or L. No flags are affected.

Example : MOV A, M (A) ← (M) or (A) ← ((HL))

The content of memory addressed by HL pair is moved to the A-register .

 Before execution After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 7

MOV A, M MOV B, M MOV C, M MOV D, M MOV E, M MOV H, M MOV L, M

E 4

B C

C 2 E 4 E 4

B C

↑

→
1 2

3 5

C05A

C05B

54 C 0 5A

A H MemoryL

12

35

C05A

C05B

12 C 0 5 A

A H MemoryL

2. 22 Chapter 2 Instruction Set Of 8085

3. MOV M, Rs (M) ← (Rs) or ((HL)) ← (Rs)

The content of source register (Rs) is moved to the memory location addressed by HL pair. The register Rs can be any one

of the general purpose registers A, B, C, D, E, H or L. No flags are affected.

Example : MOV M, B (M) ← (B) or ((HL)) ← (B)

The content of B-register is moved to memory location addressed by the HL pair.

 Before execution After execution

One byte instruction Two machine cycles : Opcode fetch - 4T

Register indirect addressing Memory write - 3T

 7 T

Total number of instructions = 7

MOV M,A MOV M,B MOV M, C MOV M, D MOV M, E MOV M, H MOV M, L

4. MVI Rd, d8 (Rd) ← d8

The 8-bit data (d8) given in the instruction is moved to the destination register (Rd). The register Rd can be any one of the

general purpose registers A, B, C, D, E, H or L. No flags are affected.

Example : MVI D,09H (D) ← 09
H

The 8-bit data 09
H
 given in the instruction is moved to the D-register.

 Before execution After execution

 D D

 C2 09

Two byte instruction Two machine cycles: Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 7

MVI A, d8 MVI B, d8 MVI C, d8 MVI D, d8 MVI E, d8 MVI H, d8 MVI L, d8

5. MVI M, d8 (M) ← d8 or ((HL)) ← d8

The 8-bit data (d8) given in the instruction is moved to the memory location addressed by the HL pair. No flags are affected.

Example : MVI M, E7H (M) ← E7
H
 or ((HL)) ← E7

H

The 8-bit data E7
H
 given in the instruction is moved to the memory location addressed by the HL pair.

 Before execution After execution

→02

15

C250

C251

74 C 2 50

B H MemoryL

74

15

C250

C251

74 C 2 50

B H MemoryL

28

3A

205C

205D
20 5 C

H

Memory

L
E7

3A

205C

205D
20 5 C

H

Memory

L

Microprocessor (8085) And Its Applications 2. 23

Two byte instruction Three machine cycles : Opcode fetch - 4T

Register indirect addressing or Memory read - 3T

Immediate addressing Memory write - 3T

10T

Total number of instructions = 1

6. LDA addr16 (A) ← (M) or (A) ← (addr16)

The content of the memory location whose address is given in the instruction, is moved to accumulator. No flags are affected.

Example : LDA 205DH (A) ← (205D
H
)

The content of the memory location 205D
H
 is moved to the A-register.

Before execution After execution

Three byte instruction Four machine cycles : Opcode fetch - 4T

Direct addressing Memory read - 3T

Memory read - 3T

Memory read - 3T

 13T

Total number of instructions = 1

7. LHLD addr16 (L) ← (M)

or

 (L) ← (addr16)

(H) ← (M) (H) ← (addr16 + 01)

The content of the memory location whose address is given in the instruction, is moved to the L-register. The content of the

next memory location is moved to the H-register. No flags are affected.

Example : LHLD 1050H (L) ← (1050
H
)

(H) ← (1051
H
)

The content of the memory location 1050
H
 is moved to the L-register.

The content of the memory location 1051
H
 is moved to the H-register.

 Before execution After execution

Three byte instruction Five machine cycles: Opcode fetch - 4T

Direct addressing Memory read - 3T

Memory read - 3T

Memory read - 3T

Memory read - 3T

 16T

Total number of instructions = 1

15

7 F

205D

205E

Memory

15

7 F

205D

205E

Memory

15

A

←
C 2

A

6A

3 D

0 9

1050

1051

1052

Memory

05 72

H L

6A

3 D

0 9

1050

1051

1052

Memory

3 D 6A

H L

← ←

2. 24 Chapter 2 Instruction Set Of 8085

8. LXI rp, d16 (rp) ← d16

The 16-bit data given in the instruction is moved to the register pair (rp). The register pair can be BC, DE, HL or SP.

Example : LXI H, 1050H (L) ← 50
H

(H) ← 10
H

The 16-bit data 1050
H
 given in the instruction is moved to the HL register pair.

Before execution After execution

Three byte instruction Three machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

Memory read - 3T

 10T

Total number of instructions = 4

LXI B, d16 LXI D, d16 LXI H, d16 LXI SP, d16

9. LDAX rp (A) ← (M) or (A) ← ((rp))

The content of the memory addressed by the register pair (rp) is moved to the accumulator. (The content of the register pair

is the memory address). The register pair can be either BC or DE.

Example : LDAX B (A) ← (M) or (A) ← ((BC))

The content of the memory location addressed by the BC pair is moved to the A-register.

Before execution After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

 7T

Total number of instructions = 2

LDAX B LDAX D

10. STA addr16 (M) ← (A) or (addr16) ← (A)

The content of the accumulator is moved to the memory. The address of the memory location is given in the instruction. No

flags are affected.

Example : STA 2050H (2050
H
) ← (A)

The content of the accumulator is moved to memory location 2050
H
.

Before execution After execution

↑

205A

205B

02 20 5A

A B C

1 E

Memory

3 C

205A

205B

1E 20 5A

A B C

1 E

Memory

3 C

→0 6 2050

Memory

7A 2051

F4

A

F4 2050

Memory

7A 2051

F4

A

(some arbitrary value)

xx yy

H L

 10 50

H L

Microprocessor (8085) And Its Applications 2. 25

Three byte instruction Four machine cycles: Opcode fetch - 4T

Direct addressing Memory read - 3T

Memory read - 3T

Memory write - 3T

 13T

Total number of instructions = 1

11. STAX rp (M) ← (A) or ((rp)) ← (A)

The content of the accumulator is moved to the memory addressed by the register pair (rp). (The content of the register

pair is the memory address.) The register pair can be either BC or DE.

Example : STAX D (M) ← (A) or ((DE)) ← (A)

The content of the A-register is moved to the memory addressed by the DE pair.

Before execution After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory write - 3T

 7 T

Total number of instructions = 2

STAX B STAX D

12. SHLD addr16 (M) ← (L)

or

 (addr16) ← (L)

(M) ← (H) (addr16+1) ← (H)

The content of the L-register is stored in the memory location, whose address is given in the instruction. The content of the

H-register is stored in the next memory location. No flags are affected.

Example : SHLD 305AH (305A
H
) ← (L)

(305B
H
) ← (H)

The content of the L-register is stored in the memory location 305A
H
.

The content of the H-register is stored in the memory location 305B
H
.

Before execution After execution

Three byte instruction Five machine cycles: Opcode fetch - 4T

Direct addressing Memory read - 3T

Memory read - 3T

Memory write - 3T

Memory write - 3T

 16T

Total number of instructions = 1

→
→0 5

0 6

7 C

305A

305B

305C

Memory

C 2 4A

H L

4A

C 2

7 C

305A

305B

305C

Memory

C 2 4A

H L

→
2F C 0 0B

A D E

0 4 C00B

Memory

1 5 C00C

2F C 0 0B

A D E

2 F C00B

Memory

1 5 C00C

2. 26 Chapter 2 Instruction Set Of 8085

13. SPHL (SP) ← (HL)

The content of the HL pair is moved to the Stack Pointer (SP). No flags are affected.

Example : SPHL (SP) ← (HL)

The content of the HL pair is copied to the Stack Pointer (SP).

Before execution After execution

One byte instruction One machine cycle: Opcode fetch - 6T

Implied addressing

Total number of instructions = 1

14. XCHG (E) ↔ (L)

(D) ↔ (H)

The content of the HL pair is exchanged with the DE pair. No flags are affected.

Example : XCHG (E) ↔ (L) and (D) ↔ (H)

 The content of the E-register is exchanged with the L-register and the content of the D-register is exchanged with the H-register.

Before execution After execution

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

Total number of instructions = 1

15. XTHL (HL) ↔ (M) or (HL) ↔ ((SP))

The content of the top of stack is exchanged with the HL pair. Stack is a portion of memory (RAM memory). The content of

the Stack Pointer (SP) is the address of the top of the stack. No flags are affected.

Example : XTHL (L) ↔ ((SP)) and (H) ↔ ((SP) + 01)

The content of memory addressed by the stack pointer is exchanged with the L-register and the content of the next

memory location is exchanged with the H-register.

 Before execution After execution

C 0 15

H L

1016

S P

C015 C 0 15

H LS P

↑ ↑

↑ ↑ ↑ ↑

H LD E

24 C7 A3 49

D

A3

HE

49 24

L

C7

Stack

Memory

↑↑
↑

↑↑Top of Stack

Stack

Memory

2000 42 C4

H LS P

2000 67 15

H LS P

15

67

AD

D2

2000

2001

2002

2003

C4

42

AD

D2

2000

2001

2002

2003

Top of Stack
↑

Microprocessor (8085) And Its Applications 2. 27

One byte instruction Five machine cycles: Opcode fetch - 4T

Implied addressing Memory read - 3T

Memory read - 3T

Memory write - 3T

Memory write - 3T

 16T

Total number of instructions = 1

16. PUSH rp (SP) ← (SP) – 1 ; ((SP)) ← (rp)
H

(SP) ← (SP) – 1 ; ((SP)) ← (rp)
L

The content of the register pair (rp) is pushed to the stack. After execution of this instruction, the content of the Stack Pointer

(SP) will be 02 less than the earlier value. The register pairs can be BC, DE , HL and PSW. No flags are affected.

[PSW (Program Status Word) : Accumulator and Flag register together called PSW. Accumulator is high order register and

Flag register is low order register.]

The instruction is executed as follows:

 (i) The content of the SP is decremented by one.

 (ii) The content of the high order register is moved to memory addressed by SP.

 (iii) The content of the SP is decremented by one.

 (iv) The content of the low order register is moved to memory addressed by SP.

One byte instruction Three machine cycles: Opcode fetch - 6T

Register indirect addressing Memory write - 3T

Memory write - 3T

 12T

Total number of instructions = 4

PUSH PSW PUSH B PUSH D PUSH H

Example : PUSH B (SP) ← (SP) – 01

((SP)) ← (B)

(SP) ←(SP) – 01

((SP)) ←(C)

(i) The content of the SP is decremented by one.

(ii) The content of the B-register is moved to the memory addressed by the Stack Pointer (SP).

(iii) Again the content of SP is decremented by one.

(iv) The content of the C-register is moved to the memory addressed by SP.

 Before execution After execution

Top of stack

Stack Memory

2051

S P

F D 1A

CB

→
→

→

Top of stack→

Stack Memory

2053

S P

F D 1A

CB

2050

2051

2052

2053

E
m

p
ty

 s
ta

c
k

O
c
c
u
p
ie

d

s
ta

c
k

2054

204F

XX

XX

XX

4 3

XX

1 5

2050

2051

2052

2053

E
m

p
ty

 s
ta

c
k

O
c
c
u
p
ie

d

s
ta

c
k

2054

204F

XX

1A

FD

4 3

XX

1 5 I
P
Q

I
P
Q

I
P
Q

I
P
Q

2. 28 Chapter 2 Instruction Set Of 8085

17. POP r p (rp)
L
 ← ((SP)) ; (SP) ← (SP) + 1

(rp)
H
 ← ((SP)) ; (SP) ← (SP) + 1

The content of top of stack memory is moved to the register pair. After execution of this instruction the content of the Stack

Pointer (SP) will be 02 greater than the earlier value. The register pairs can be BC, DE , HL and PSW. No flags are affected. [PSW

(Program Status Word) : Accumulator and Flag register are together called PSW. The accumulator is a high order register and the flag

register is a low order register.]

The pop instruction is executed as follows:

 (i) The content of the memory addressed by the SP is moved to the low order register.

 (ii) The content of the SP is incremented by one.

 (iii) The content of the memory addressed by the SP is moved to the high order register.

 (iv) The content of the SP is incremented by one.

One byte instruction Three machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

Memory read - 3T

 10T

Total number of instructions = 4

POP PSW POP B POP D POP H

Example : POP D (E) ← ((SP))

(SP) ← (SP) + 01

(D) ← ((SP))

(SP) ← (SP) + 01

(i) The content of the memory addressed by the SP is moved to the E-register.

(ii) The content of the SP is incremented by one.

(iii) The content of the memory addressed by the SP is moved to the D-register.

(iv) The content of the SP is incremented by one.

 Before execution After execution

18. IN addr8 (A)← (addr8)

The content of the port is moved to the A-register. The 8-bit port address will be given in the instruction. No flags are affected.

Two byte instruction Three machine cycles: Opcode fetch - 4T

Direct addressing Memory read - 3T

IO read - 3T

 10T

Total number of instructions = 1

Top of stack

0FFF

1000

1001

1002

Top of stack→

Stack Memory

E
m

p
ty

 s
ta

c
k

O
c
c
u
p
ie

d

s
ta

c
k

1003

0FFF

1000

S P

20 1 D

ED

XX

5E

E2

C 0

XX

1 F

Stack Memory

1002

S P

E 2 5 E

ED

→

→

0FFF

1000

1001

1002

E
m

p
ty

 s
ta

c
k

O
c
c
u
p
ie

d

s
ta

c
k

1003

0FFF

XX

5 E

E 2

C 0

XX

1 F

→

I
P
Q

I
P
Q

I
P
Q

I
P
Q

Microprocessor (8085) And Its Applications 2. 29

19. OUT addr8 (addr8) ← (A)

The content of the A-register is moved to the port. The 8-bit port address will be given in the instruction. No flags are affected.

Two byte instruction Three machine cycles: Opcode fetch - 4T

Direct addressing Memory read - 3T

IO write - 3T

 10T

Total number of instructions = 1

Note : In an 8085 processor-based system when the IO devices are mapped by IO mapping then the processor can

communicate with these IO devices only by using IN and OUT instructions. The processor uses an 8-bit address to select

IO-mapped IO devices. With 8-bit address the processor can generate 28 = 256
10

 IO addresses.

2.8 ARITHMETIC INSTRUCTIONS

1. ADD reg (A) ← (A) + (reg)

The content of the register is added to the content of the accumulator (A-register). After addition the result is stored in the

accumulator. All flags are affected. The register can be any one of the general purpose register A, B, C, D, E, H or L.

Example : ADD E (A) ← (A) + (E)

The content of the E-register is added to the content of the A-register.

The result will be in the A-register. All flags are affected.

 Before execution Addition After execution

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

ADD A ADD B ADD C ADD D ADD E ADD H ADD L

2. ADI d8 (A) ← (A) + d8

The 8-bit data given in the instruction is added to the content of the A-register (Accumulator). After addition, the result is stored

in the accumulator. All flags are affected.

Two byte instruction Two machine cycles: Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

3. ADD M (A) ← (A) + (M) or (A) ← (A) + ((HL))

The content of memory addressed by HL pair is added to the content of the A-register. After addition, the result is stored

in the A-register. All flags are affected.

(Addition is performed in ALU)

C2
H
 = 1100 0010

B8
H
 = 1011 1000

 1 0111 1010

Sum = 0111 1010 =7A
H

Carry = 1

A E

C 2 B8

CF = 0

PF = 0

AF = 0

ZF = 0

SF = 0

A E

7A B8

CF = 1

PF = 0

AF = 0

ZF = 0

SF = 0

2. 30 Chapter 2 Instruction Set Of 8085

Example : ADD M (A) ← (A) + (M) or (A) ← (A) + ((HL))

Let the content of A be 44
H
.

Let the content of memory location C00A
H
 be 73

H
.

The content of the memory location C00A
H
 is added to the content of the A-register. The result is put back in the A-register.

 Before execution Addition After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 1

4. ACI d8 (A) ← (A) + d8 + CF

The 8-bit data given in the instruction and the carry flag (the value of carry flag before executing this instruction) are added

to the content of the A-register (Accumulator). After addition, the result is stored in the accumulator. All flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

 7T

Total number of instructions = 1

5. ADC reg (A) ← (A) + (reg) + CF

The content of the register and the carry flag are added to the content of the A-register. After addition, the result is stored in

the A-register. All flags are affected. The register can be any one of the general purpose register A, B, C, D, E, H or L.

Example : ADC H (A) ← (A) + (H) + CF

The content of the H-register and the value of the carry flag (before executing this instruction) are added to the

content of the A-register. After addition, the result will be in the A-register.

Before execution Addition After execution

A H

B E 7A

CF = 0

PF = 1

AF = 0

ZF = 0

SF = 1

(Addition is performed in the ALU)

43
H
 = 0100 0011

7A
H
 = 0111 1010

CF = 1

 1011 1110

Sum = BE
H

Carry = 0

A H

43 7A

CF = 1

P F = 0

AF = 0

ZF = 0

SF = 1

(Addition is performed in ALU)

44
H
 = 0100 0100

73
H
 = 0111 0011

 1011 0111

Sum = B7

Carry = 0

CF = 0

PF = 0

AF = 0

ZF = 0

SF = 0

A H L

44 C00A

Memory

73 C00A

14 C00B

27 C00C

Memory

73 C00A

14 C00B

27 C00C

A H L

B7 C00A

CF = 0

PF = 1

AF = 0

ZF = 0

SF = 1

Microprocessor (8085) And Its Applications 2. 31

One byte instruction One machine cycle : Opcode fetch - 4T

Register addressing

Total number of instructions = 7

ADC A ADC B ADC C ADC D ADC E ADC H ADC L

6. ADC M (A) ← (A) + (M) + CF or (A) ← (A) + ((HL)) + CF

The content of the memory addressed by the HL pair and the value of the carry flag (before executing this instruction) are

added to the content of A-register. After addition, the result is stored in the A-register. All flags are affected.

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3 T

7 T

Total number of instructions = 1

7. SUB reg (A) ← (A) – (reg)

The content of the register is subtracted from the content of the accumulator (A-register). After subtraction the result is

stored in the A-register. All flags are affected. The register can be any one of the general purpose register A, B, C, D, E, H or L.

Example: SUB C (A) ← (A) – (C)

The content of the C-register is subtracted from A-register. The result will be in the A-register.

Case i

Before execution Subtraction

 After execution

C4
H
 = 1100 0100

89
H
 = 1000 1001

1's complement of 89
H
 = 0111 0110

2's complement of 89
H

= 0111 0110 + 1

 = 0111 0111 = 77
H

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 1

A C

C 4 89

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

A C

3B 89

 C4
H
 = 1100 0100

+77
H

= 0111 0111

 1 0011 1011

0

 Result = 3B
H

 CF = 0

89
H
 = 1000 1001

C4
H
 = 1100 0100

1's complement of C4
H
 = 0011 1011

2's complement of C4
H

= 0011 1011 + 1

= 0011 1100 = 3C
H

Case ii

Before execution Subtraction

C F = 0

P F = 0

AF = 0

ZF = 1

SF = 1

A C

89 C 4

↓ 3 B
Complement
 Carry

2. 32 Chapter 2 Instruction Set Of 8085

Note : The 8085 microprocessor per forms 2's complement subtraction. But after subtraction, it will complement

the carry alone. In 2's complement subtraction, if CF =1, then the result is positive and if CF =0, then the result is

negative. Since, the 8085 processor complements the carry after subtraction, here if CF = 0, then the result is positive and

if CF = 1, then the result is negative. If the result is negative, then it will be in 2's complement form.

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

SUB A SUB B SUB C SUB D SUB E SUB H SUB L

8. SUI d8 (A) ← (A) – d8

The 8-bit data given in the instruction is subtracted from the A-register (accumulator). After subtraction, the result is stored

in the A-register. All flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

9. SUB M (A) ← (A) – (M) or (A) ← (A) – ((HL))

The content of the memory addressed by the HL pair is subtracted from the A-register. After subtraction, the result is stored

in the A-register. All flags are affected.

One byte instruction Two machine cycles : Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7 T

Total number of instructions = 1

10. SBB reg (A) ← (A) – (reg) – CF

The content of the register and the value of carry (before executing this instruction) are subtracted from the

accumulator (A-register). After subtraction, the result is stored in the accumulator. All flags are affected. The register can be

any one of the general purpose register A, B, C, D, E, H or L.

One byte instruction One machine cycle : Opcode fetch - 4T

Register addressing

Total number of instructions = 7

SBB A SBB B SBB C SBB D SBB E SBB H SBB L

Note : 2 's complement of C5
H
 = 3B

H

 89
H
 = 1000 1001

+3C
H
 = 0011 1100

 0 1100 0101

 1

Result = C5
H

CF = 1

↓
C 5

Case ii continued ...

After execution Subtraction

CF = 1

P F = 1

AF = 1

ZF = 0

SF = 1

A C

C 5 C 4

Complement
 Carry

Microprocessor (8085) And Its Applications 2. 33

11. SBI d8 (A) ← (A) – d8 – CF

The 8-bit data given in the instruction and the value of carry (before executing this instruction) are subtracted from

accumulator. After subtraction, the result is stored in the accumulator. All flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

12. SBB M (A) ← (A) – (M) – CF or (A) ← (A) – ((HL)) – CF

The content of the memory addressed by HL and the value of carry (before executing this instruction) are subtracted from

accumulator (A-register). After subtraction, the result is stored in the A-register. All flags are affected .

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 1

13. DAA

(DAA - Decimal Adjust Accumulator)

After BCD addition, the DAA instruction is executed to get the result in BCD. When DAA instruction is executed, the content

of the accumulator is altered or adjusted as explained below :

 i) If the sum of the lower nibbles exceeds 09
H
 or auxiliary carry is set, then a correction 06

H
 (0110) is added to sum

of lower nibbles.

 ii) If the sum of the upper nibbles exceeds 09
H
 or carry is set, then a correction 06

H
 (0110) is added to sum of upper nibble.

After executing this instruction all flags are modified to indicate the status of the result.

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

Total number of instructions = 1

14. DAD rp (HL) ← (HL) + (rp)

(DAD - Double Addition)

The content of the register pair is added to the content of the HL pair. After addition, the result is stored in the HL pair. Only

the carry flag is affected. The register pair can be BC, DE, HL or SP.

One byte instruction Three machine cycles: Opcode fetch - 4T

Register addressing Bus idle - 3T

Bus idle - 3T

 10T

Total number of instructions = 4

DAD B DAD D DAD H DAD SP

2. 34 Chapter 2 Instruction Set Of 8085

15. INR reg (reg) ← (reg) + 01

The content of the register is incremented by one. Except carry flag, all other flags are affected. The register can be any one

of the general purpose register A, B, C, D, E, H or L.

Example : INR B (B) ← (B) + 01

The content of the B-register is incremented by one. The increment opertation is performed by adding

01
H
 to the content of B-register.

Before execution Increment Operation After execution

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

INR A INR B INR C INR D INR E INR H INR L

16. INR M (M) ← (M) + 01 or ((HL)) ← ((HL)) + 01

The content of the memory addressed by the HL pair is incremented by one. Except carry, all other flags are affected.

Example : INR M (M) ← (M) + 01

Let the content of the HL pair be C00A
H
. Let the content of memory location C00A

H
 be C5

H
. The content of the memory

location C00A
H
is incremented by one. The increment operation is performed by adding 01

H
 to the content of the memory.

 Before execution Increment Operation After execution

One byte instruction Three machine cycles : Opcode fetch - 4T

Register indirect addressing Memory read - 3T

Memory write - 3T

 10T

Total number of instructions = 1

17. DCR reg (reg) ← (reg) – 01

The content of the register is decremented by one. Except carry, all other flags are affected. The register can be A, B, C,

D, E, H or L .

Example : DCR D (D) ← (D) – 01

The content of the D-register is decremented by one. The decrement operation is performed by subtracting 01
H
 from the

content of the D-register.

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

4 A

B
CF = 0

PF = 1

AF = 0

ZF = 0

SF = 0

4B

B4A
H
 = 0100 1010

 + 01
H
 = 0000 0001

 0100 1011

 4 B

C5
H
 = 1100 0101

+ 01
H
 = 0000 0001

 1100 0110

 C 6

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

0 7

C00A

Memory

C 5

C00B

C00C

H L

C00A

A2 CF = 0

PF = 1

AF = 0

ZF = 0

SF = 1

0 7

C00A

Memory

C 6

C00B

C00C

H L

C00A

A2

Microprocessor (8085) And Its Applications 2. 35

Before execution Decrement operation

 After execution

One byte instruction One machine cycle : Opcode fetch - 4T

Register addressing

Total number of instructions = 7

DCR A DCR B DCR C DCR D DCR E DCR H DCR L

18. DCR M (M) ← (M) – 01 or ((HL)) ← ((HL)) – 01

The content of memory addressed by the HL pair is decremented by one. Except carry, all other flags are affected.

Example: DCR M (M) ← (M) – 01

Let the content of the HL pair be 2010
H
. Let the content of memory location 2010

H
 be FA

H
. The content of

memory location 2010
H
 is decremented by one.

Before execution Decrement operation

After execution

One byte instruction Three machine cycles : Opcode fetch - 4T

Register indirect addressing Memory read - 3T

Memory write - 3T

 10T

Total number of instructions = 1

01
H
 = 0000 0001

1’s complement of 01
H
 = 1111 1110

2’s complement of 01
H
 = 1111 1110 + 1

 = 1111 1111 = FF
H

60
H

= 0110 0000

+ FF
H
 = 1111 1111

 1 0101 1111

 5 F

Carry is discarded

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

 D

60

CF = 0

P F = 1

AF = 0

ZF = 0

SF = 0

 D

5F

 FA
H
 = 1111 1010

+ FF
H
 = 1111 1111

 1 1111 1001

F 9

Carry is discarded

01
H
 = 0000 0001

1’s complement of 01
H
 = 1111 1110

2’s complement of 01
H
 = 1111 1110 + 1

 = 1111 1111 = FF
H

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

02

2010

Memory

FA

2011

H L

2010

CF = 0

P F = 1

AF = 1

ZF = 0

SF = 1

02

2010

Memory

F9

2011

H L

2010

2. 36 Chapter 2 Instruction Set Of 8085

19. INX rp (rp) ← (rp) + 01

The content of the register pair is incremented by one. The register pair can be BC, DE, HL or SP. No flags are affected.

Example : INX H (HL) ← (HL) + 01

The content of the HL pair is incremented by one.

Before execution After execution

One byte instruction One machine cycle : Opcode fetch - 6T

Register addressing

Total number of instructions = 4

INX B INX D INX H INX SP

20. DCX rp (rp) ← (rp) – 01

The content of the register pair is decremented by one. The register pair can be BC, DE, HL or SP. No flags are affected.

Example : DCX SP (SP) ← (SP) – 01

The content of the stack pointer is decremented by one.

Before execution After execution

One byte instruction One machine cycle : Opcode fetch - 6T

Register addressing

Total number of instructions = 4

DCX B DCX D DCX H DCX SP

2.9 LOGICAL INSTRUCTIONS

1. ANA reg (A) ← (A) & (reg)

(& is the symbol used for logical AND operation)

 The content of the register is logically ANDed bit by bit with the content of the accumulator. In bit by bit AND operation, the

bit D
0
 of register is ANDed with the bit D

0
 of A-register, the bit D

1
 of register is ANDed with bit D

1
 of A-register, and so on. The register

can be any one of the general purpose register A, B, C, D, E, H or L. After execution of the instruction, carry flag is always reset and

auxiliary carry flag is always set. Other flags are altered (according to the results). After AND operation, result is stored in accumulator.

Example : ANA E (A) ← (A) & (E)

The content of E-register is logically ANDed bit by bit with the content of accumulator.

 Before execution AND operation After execution

00FF

H L

0100

H L

1000

S P

0FFF

S P

15
H
 = 0001 0101

E2
H
 = 1110 0010

 0000 0000

CF = 0

PF = 1

AF = 1

ZF = 1

SF = 0

EA

E 200
CF = 0

PF = 0

AF = 0

ZF = 0

SF = 0

E

15

A

E 2

0 0

Microprocessor (8085) And Its Applications 2. 37

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

ANA A ANA B ANA C ANA D ANA E ANA H ANA L

2. ANI d8 (A) ← (A) & d8

The 8-bit data given in the instruction is logically ANDed bit by bit with the content of the accumulator. The result is stored

in the accumulator. After execution of this instruction, CF = 0 and AF = 1. Other flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

3. ANA M (A) ← (A) & (M) or (A) ← (A) & ((HL))

The content of the memory addressed by the HL pair is logically ANDed bit by bit with the content of the accumulator. The

result is stored in the accumulator. After execution, CF = 0 and AF = 1. Other flags are affected .

Example : ANA M (A) ← (A) & (M)

Let the content of HL be 105A
H
. Let the content of the memory location 105A

H
 be 4C

H
. The content of the memory location

105A
H
 is logically ANDed bit by bit with the content of the accumulator . The result is stored in the accumulator.

Before execution AND operation After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 1

4. ORA reg (A) ← (A) | (reg)

(| is the symbol used for logical OR operation)

The content of the register is logically ORed bit by bit with the content of the accumulator. In bit by bit OR operation, the bit

D
0
 of the register is ORed with bit D

0
 of the A-register, the bit D

1
 of the register is ORed with bit D

1
 of the A-register, and so on. The

register can be any one of the general purpose register A, B, C, D, E, H or L. After execution of the instruction, both the carry and

auxiliary flags are always reset (AF = 0, CF = 0). Other flags are modified (according to the result). After OR operation, the result is

stored in the accumulator.

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

HL

04

A

105A

CF = 0

PF = 0

AF = 1

ZF = 0

SF = 0

14

4C 105A

1059

Memory27
H

= 0010 0111

4C
H
 = 0100 1100

 0000 0100

 0 4

14

4C 105A

1059

MemoryHL

27

A

105A

CF = 0

PF = 0

AF = 0

ZF = 0

S F = 0

2. 38 Chapter 2 Instruction Set Of 8085

Example : ORA B (A) ← (A) | (B)

The content of the B-register is logically ORed bit by bit with the content of the accumulator.

 Before execution OR operation After execution

Total number of instructions = 7

ORA A ORA B ORA C ORA D ORA E ORA H ORA L

5. ORA M (A) ← (A) | (M) or (A) ← (A) | ((HL))

The content of the memory addressed by the HL pair is logically ORed bit by bit with the content of the accumulator. The

result is stored in the accumulator. After execution, CF = AF = 0. Other flags are affected .

Example : ORA M (A) ← (A) | (M)

Let the content of the HL pair be 2050
H
. Let the content of memory location 2050

H
 be 1B

H
. The content of the memory

location 2050
H
 is logically ORed bit by bit with the content of the accumulator. The result is stored in the accumulator .

Before execution OR operation After execution

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7 T

Total number of instructions = 1

6. ORI d8 (A) ← (A) | d8

The 8-bit data given in the instruction is logically ORed bit by bit with the content of the accumulator. The result is stored in

the accumulator. After execution of this instruction, CF = AF = 0. Other flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7 T

Total number of instructions = 1

7. XRA reg (A) ← (A) ^ (reg)

(^ is the symbol used for logical EXCLUSIVE-OR operation).

The content of the register is logically EXCLUSIVE-ORed bit by bit with the content of the accumulator . In bit by bit

EXCLUSIVE-OR operation, the bit D
0
 of register is EXCLUSIVE-ORed with bit D

0
 of A-register, the bit D

1
 of register is EXCLUSIVE-

ORed with bit D
1
 of A-register, and so on. The result is stored in the accumulator. The register can be any one of the general purpose

register A, B, C, D, E, H or L. After execution AF = CF = 0. Other flags are modified (according to the result).

04
H
 = 0000 0100

7A
H
 = 0111 1010

0111 1110

7 E

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

 B

7A04

A CF = 0

P F = 1

AF = 0

ZF = 0

SF = 0

 B

7A7 E

A

HL

5F

A

2050

CF = 0

PF = 1

AF = 0

ZF = 0

SF = 0

1B

07 2051

2050

Memory45
H
 = 0100 0101

1B
H
 = 0001 1011

 0101 1111

 5 F

1B

07 2051

2050

MemoryHL

45

A

2050

CF = 0

P F = 0

AF = 0

Z F = 0

SF = 0

Microprocessor (8085) And Its Applications 2. 39

Example : XRA A (A) ← (A) ^ (A)

The content of the A-register is EXCLUSIVE-ORed bit by bit with the content of the A-register itself.

Before execution EXCLUSIVE-OR After execution

operation

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

XRA A XRA B XRA C XRA D XRA E XRA H XRA L

8. XRI d8 (A) ← (A) ^ d8 or (A) ← (A) ^ d8

The 8-bit data given in the instruction is logically EXCLUSIVE-ORed bit by bit with the content of the accumulator . The result

is stored in the accumulator. After execution of this instruction, CF = AF = 0. Other flags are affected.

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

9. XRA M (A) ← (A) ^ (M) or (A) ← (A) ^ ((HL))

The content of the memory addressed by the HL pair is logically EXCLUSIVE-ORed bit by bit with the content of accumulator.

The result is stored in accumulator. After execution, CF = AF = 0. Other flags are affected.

Example : XRA M (A) ← (A) ^ (M)

Let the content of the HL pair be 805A
H
. Let the content of memory location 805A

H
 be C4

H
. The content of the memory location

805A
H
 is logically EXCLUSIVE-ORed bit by bit with the content of the accumulator. The result will be in the accumulator.

 Before execution EXCLUSIVE-OR After execution

 operation

One byte instruction Two machine cycles : Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 1

CF = 0

PF = 1

AF = 0

ZF = 1

SF = 0

74
H
 = 0111 0100

 74
H
 = 0111 0100

0000 0000

CF = 1

PF = 0

AF = 1

Z F = 0

SF = 1

A

74

A

00

B7
H
 = 1011 0111

C4
H
 = 1100 0100

 0111 0011

7 3

H L

805A

C F = 1

P F = 1

AF = 1

ZF = 0

SF = 1

B7

A Memory

1 C

C 4

2 0

51

8059

805A

805B

805C

H L

805A

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

73

A Memory

1 C

C 4

2 0

51

8059

805A

805B

805C

2. 40 Chapter 2 Instruction Set Of 8085

10. CMP reg (A) – (reg) ⇒ Modify flags

The content of the register is compared with the accumulator. The comparison is performed by subtracting the content of

register from the A-register. The subtraction is performed in the ALU, and the result is used to modify flags and then the result is

discarded (i.e., it is not stored in any register). After execution of this instruction, the content of accumulator and the register are not

altered. All flags are affected by this instruction. The register can be any one of the general purpose register A, B, C, D, E, H or L.

The status of carry and zero flag after comparison are given below :

i) If (A) < (reg) then the carry flag is set (i.e., CF = 1)

ii) If (A) > (reg) then the carry flag is reset or cleared (i.e., CF = 0)

iii) If (A) = (reg) then the zero flag is set (i.e., ZF = 1).

Example : CMP B (A) – (B) ⇒ Modify flags.

The content of the B-register is compared with the accumulator. The comparison is performed by subtracting the content

of the B-register from the content of the accumulator. The subtraction is performed in the ALU and the result is used to

modify the flags and then discarded. The content of the accumulator and the B-register are not altered.

 Before After

 execution
Comparison

 execution

 A B C2
H
 = 1100 0010 A B

 15 C2 1's complement of C2
H
 = 0011 1101 15 C2

2's complement of C2
H
 = 0011 1101+1

= 0011 1110 = 3E
H

15
H
 = 0001 0101

 +3E
H
 = 0011 1110

 0 0101 0011

↓ 5 3

One byte instruction One machine cycle: Opcode fetch - 4T

Register addressing

Total number of instructions = 7

CMP A CMP B CMP C CMP D CMP E CMP H CMP L

11. CPI d8 (A) – d8 ⇒ Modify flags.

The 8-bit data given in the instruction is compared with the accumulator. The comparison is performed by subtracting the

8-bit data from the A-register. The subtraction is performed in ALU and the result is used to modify flags and then discarded. After

execution of the instruction, the content of the accumulator is not altered. All flags are affected.

The status of carry and zero flag after comparision are given below :

i) If (A) < d8 then the carry flag is set (i.e., CF = 1)

ii) If (A) > d8 then the carry flag is reset or cleared (i.e., CF = 0)

iii) If (A) = d8 then the zero flag is set (i.e., ZF = 1).

Two byte instruction Two machine cycles : Opcode fetch - 4T

Immediate addressing Memory read - 3T

7T

Total number of instructions = 1

 1

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

CF = 1

P F = 1

AF = 1

ZF = 0

SF = 0

Complement
 Carry

Microprocessor (8085) And Its Applications 2. 41

12. CMP M (A) – (M) ⇒ Modify flags or (A) – ((HL)) ⇒ Modify flags.

The content of the memory addressed by HL pair is compared with the accumulator. The comparison is performed by subtracting the

content of memory from the A-register. The subtraction is performed in the ALU and the result is used to modify flags and then discarded. After

execution of the instruction, the content of the accumulator and the memory are not altered. All flags are affected by this instruction.

The status of carry and zero flag after comparison are given below:

i) If (A) < (M) then the carry flag is set (i.e., CF = 1).

ii) If (A) > (M) then the carry flag is reset or cleared (i.e., CF = 0).

iii) If (A) = (M) then the zero flag is set (i.e., ZF = 1).

Example : CMP M

Let the content of the HL pair be C050
H
. Let the content of the memory location C050

H
 be 7A

H
. The content of the memory

location C050
H
 is compared with the content of the accumulator. Only flags are altered. The content of the accumulator

and the memory remains the same.

One byte instruction Two machine cycles: Opcode fetch - 4T

Register indirect addressing Memory read - 3T

7T

Total number of instructions = 1

13. CMA (A) ← (A)

(CMA - Complement Accumulator)

The content of the accumulator is complemented. No flags are affected.

One byte Instruction One machine cycle: Opcode fetch - 4T

Implied addressing

14. STC (CF) ← 1

(STC - Set Carry)

The carry flag is set to 1. Only carry flag is affected by this instruction.

One byte instruction One machine cycle : Opcode fetch - 4T

Implied addressing

Before

execution
After

execution

 25
H
 = 0010 0101

7A
H
 = 0111 1010

1'complement of 7A
H
= 1000 0101

 2'complement of 7A
H

= 1000 0101 +1

= 1000 0110 =86
H

 25
H
 = 0010 0101

 +86
H
 = 1000 0110

0 1010 1011

↓ A B

1

Comparison

CF = 0

P F = 0

AF = 0

ZF = 0

SF = 0

Memory

7A C050

10 C051

A

25

HL

C050

CF = 1

P F = 0

AF = 0

ZF = 0

SF = 1

Memory

7A C050

10 C051

A

25

HL

C050

Complement
 Carry

2. 42 Chapter 2 Instruction Set Of 8085

15. CMC (CF) ← (CF)

(CMC - Complement Carry)

The carry flag is complemented. Only the carry flag is affected by this instruction.

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

16. RLC D
n + 1

 ← D
n

 ; D
0
 ← D

7
 and (CF) ← D

7

(RLC - Rotate Accumulator Left to carry)

The content of the A-register is rotated left by one bit and the left most bit of A-register is rotated to the carry. [The left

most bit is most significant bit.] Only the carry flag is affected.

Example : RLC

Before execution Rotation After execution

 CF A CF A

 1 32 0 64

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

17. RRC D
n
← D

n+1
 ; D

7
 ← D

0
 and (CF) ← D

0

(RRC - Rotate Accumulator Right to Carry)

The content of A-register is rotated right by one bit and the right most bit of A-register is rotated to carry. [The right most

bit is least significant bit.] Only carry flag is affected.

 Example : RRC

 Before execution Rotation After execution

 CF A CF A

 1 32 0 19

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

18. RAR D
n
← D

n+1
 ; D

7
 ← (CF) and (CF) ← D

0

(RAR - Rotate Accumulator Right through carry)

The content of the A-register along with the carry is rotated right by one bit. Here the carry is moved to the most significant

bit position (D
7
) and the least significant bit (D

0
) is moved to the carry. Only the carry flag is affected.

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0 0 1 1 0 0 1 0 00

ß
CF

46

0 0 1 1 0 0 1 0

CF

1

0 0 0 1 1 0 0 10

ß
CF

91

0 0 1 1 0 0 1 0

CF

1

Microprocessor (8085) And Its Applications 2. 43

Example : RAR

Before execution Rotation After execution

CF A CF A

 1 32 0 99

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

19. RAL D
n +1

 ← D
n
 ; D

0
 ← (CF) and (CF) ← D

7

(RAL - Rotate Accumulator Left through carry)

The content of the A-register along with the carry is rotated left by one bit. Here the carry is moved to the least significant bit

position (D
0
) and the most significant bit (D

7
) is moved to the carry. Only the carry flag is affected.

Example : RAL

Before execution Rotation After execution

CF A CF A

 1 32 0 65

One byte instruction One machine cycle: Opcode fetch - 4T

Implied addressing

2.10 BRANCHING INSTRUCTIONS

1. JMP addr16 (PC) ← addr16

It is unconditional jump instruction. When this instruction is executed, the address given in the instruction is moved to the

program counter. Now, the processor starts executing the instructions stored in this address.

Three byte instruction Three machine cycles: Opcode fetch - 4 T

Immediate addressing Memory read - 3 T

Memory read - 3 T

 10T

2. J <condition> addr16

If <condition> is TRUE then,

 (PC) ← addr16

It is conditional jump instruction. The conditional jump instruction will check a flag condition. If the flag condition is true,

then the address given in the instruction is moved to the program counter . Thus the program control is branched to the jump

address. If the flag condition is false, then the next instruction is executed.

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
00 1 1 0 0 1 0 10

ß
CF

56

0 0 1 1 0 0 1 0

CF

1

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

A

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0 1 0 0 1 1 0 0 10

ß
CF

99

0 0 1 1 0 0 1 0

CF

1

2. 44 Chapter 2 Instruction Set Of 8085

There are eight conditional jump instructions.

i) JZ addr16 ;Jump on Zero - Jump if zero flag = 1.

ii) JNZ addr16 ;Jump on Not Zero - Jump if zero flag = 0.

iii) JC addr16 ;Jump on Carry - Jump if carry flag = 1.

iv) JNC addr16 ;Jump on No Carry - Jump if carry flag = 0.

v) JM addr16 ;Jump on Minus - Jump if sign flag = 1.

vi) JP addr16 ;Jump on Positive - Jump if sign flag = 0.

vii) JPE addr16 ;Jump on Parity Even - Jump if parity flag = 1.

viii) JPO addr16 ;Jump on Parity Odd - Jump if parity flag = 0.

Three byte instruction Two or three machine cycles: Condition False Condition True

Immediate addressing Opcode fetch - 4T Opcode fetch - 4T

Memory read - 3T Memory read - 3T

Memory read - 3T

7T 10T

3. CALL addr16 (SP) ← (SP) – 1 ; ((SP)) ← (PC)
H

(SP) ← (SP) – 1 ; ((SP)) ← (PC)
L

(PC) ← addr16

It is unconditional CALL used to call a subroutine program. When this instruction is executed, the address of the next

instruction in the program counter is pushed to the stack. The 16-bit address (which is the address of the subroutine program) given

in the instruction is loaded in the program counter. Now, the processor will start executing the instructions stored in this call address .

Three byte instruction Five machine cycles: Opcode fetch - 6T

Immediate addressing Memory read - 3T

Memory read - 3T

Memory write - 3T

Memory write - 3T

 18T

4. C<condition> addr16

If <condition> is TRUE then,

(SP) ← (SP) – 1 ; ((SP)) ← (PC)
H

(SP) ← (SP) – 1 ; ((SP)) ← (PC)
L

(PC) ← addr16

It is conditional subroutine call instruction. The conditional CALL instruction will check for a flag condition. If the flag

condition is true, then the address of the next instruction is pushed to the stack and the call address (address given in the

instruction) is loaded in the program counter. Now, the processor will start executing the instructions stored in this address. If the

flag condition is false, then the next instruction is executed.

There are eight conditional CALL instructions. These are:

i) CZ addr16 ;Call on Zero - Call if zero flag = 1.

ii) CNZ addr16 ;Call on Not Zero - Call if zero flag = 0.

iii) CC addr16 ;Call on Carry - Call if carry flag = 1.

iv) CNC addr16 ;Call on No Carry - Call if carry flag = 0.

v) CM addr16 ;Call on Minus - Call if sign flag = 1.

vi) CP addr16 ;Call on Positive - Call if sign flag = 0.

vii) CPE addr16 ;Call on Parity Even - Call if parity flag = 1.

viii) CPO addr16 ;Call on Parity Odd - Call if parity flag = 0.

Microprocessor (8085) And Its Applications 2. 45

Three byte instruction Two or five machine cycles: Condition False Condition True

Immediate addressing Opcode fetch - 6T Opcode fetch - 6T

Memory read - 3T Memory read - 3T

9T Memory read - 3T

Memory write - 3T

Memory write - 3T

 18T

5. RET (PC)
L
 ← ((SP)) ; (SP) ← (SP) + 1

(PC)
H

 ← ((SP)) ; (SP) ← (SP) + 1

(RET - Return to the main program)

It is an unconditional return instruction. This instruction is placed at the end of the subroutine program, in order to return to

the main program. When this instruction is executed, the top of the stack is poped to (loaded in) the program counter .

Note : While calling the subroutine using CALL instruction, the return address of the main program is pushed

to the stack. The return instruction, (RET) pops that to the program counter. Thus the processor resumes the execution of

main program.

One byte instruction Three machine cycles: Opcode fetch - 4 T

Register indirect addressing Memory read - 3 T

Memory read - 3 T

 10 T

6. R<condition>

If <condition> is TRUE then,

(PC)
L
 ← ((SP)) ; (SP) ← (SP) + 1

(PC)
H
 ← ((SP)) ; (SP) ← (SP) + 1

It is conditional return instruction.

In a conditional return instruction a flag condition is tested. If the flag condition is true, then the program control return to

main program by poping the top of the stack to the program counter . If the flag condition is false, then the next instruction is

executed.

There are eight conditional return instructions:

i) RZ ;Return on Zero - Return if zero flag = 1.

ii) RNZ ;Return on Not Zero - Return if zero flag = 0.

iii) RC ;Return on Carry - Return if carry flag = 1.

iv) RNC ;Return on No Carry - Return if carry flag = 0.

v) RM ;Return on Minus - Return if sign flag = 1.

vi) RP ;Return on Positive - Return if sign flag = 0.

vii) RPE ;Return on Parity Even - Return if parity flag = 1.

viii) RPO ;Return on Parity Odd - Return if parity flag = 0.

One byte instruction One or three machine cycles: Condition False Condition True

Register indirect addressing Opcode fetch - 6T Opcode fetch - 6T

Memory read - 3T

Memory read - 3T

 12T

2. 46 Chapter 2 Instruction Set Of 8085

7. RST n

It is a restart instruction. The restart instructions are also called software interrupts. Each restart instruction has a vector

address. The vector address is fixed by the manufacturer (INTEL).

When a restart instruction is executed, the content of the program counter is pushed to the stack and the vector address

is loaded in the program counter. The vector address is internally generated (computed) by the processor. The vector address for

RST n is obtained by multiplying n by 8. Thus the program control is branched to a subroutine program stored in this vector address.

One byte instruction Three machine cycles: Opcode fetch - 6 T

Register indirect addressing Memory write - 3 T

Memory write - 3 T

 12T

There are eight restart instructions.

RST 0 RST 1 RST 2 RST 3 RST 4 RST 5 RST 6 RST 7

The vector addresses for the restart instructions are listed in the table given below :

Restart Vector Computation of

instruction address vector address

RST 0 0000
H

0 × 8 = 0
10

= 0
H

RST 1 0008
H

1 × 8 = 8
10

= 8
H

RST 2 0010
H

2 × 8 = 16
10

= 10
H

RST 3 0018
H

3 × 8 = 24
10

= 18
H

RST 4 0020
H

4 × 8 = 32
10

= 20
H

RST 5 0028
H

5 × 8 = 40
10

= 28
H

RST 6 0030
H

6 × 8 = 48
10

= 30
H

RST 7 0038
H

7 × 8 = 56
10

= 38
H

8. PCHL (PC) ← (HL)

The content of the HL register pair is moved to the program counter. Since this instruction alters the content of the program

counter, the program control is transferred to a new address. This instruction is used by the system designer to implement the

system subroutine to execute a program.

One byte instruction One machine cycle: Opcode fetch - 6T

Implied addressing

2.11 MACHINE CONTROL INSTRUCTIONS

1. DI

(DI - Disable Interrupts)

When this instruction is executed, all the interrupts except TRAP are disabled. [When the interrupts are disabled the

processor will not accept or recognize the interrupt request made by the external devices through the interrrupt pins. When the

processor is doing an emergency work, it can execute DI instruction to prevent the interrupts from interrupting the processor.]

One byte instruction One machine cycle: Opcode fetch - 4T

Microprocessor (8085) And Its Applications 2. 47

2. EI

(EI - Enable Interrupts)

This instruction is used (or executed) to allow the interrupts after disabling. (The interrupts except TRAP are disabled after

processor reset or after execution of DI instruction. When we want to allow the interrupts, we have to execute EI instructions.)

One byte instruction One machine cycle: Opcode fetch - 4T

3. SIM

(SIM - Set Interrupt Mask)

The SIM instruction is used to mask the hardware interrupts RST 7.5, RST 6.5 and RST 5.5. It is also used to send data

through the SOD line. (SOD: Serial Output Data pin of the 8085 processor.) The execution of SIM instruction uses the content of the

accumulator to perform the following functions:

 i) Program the interrupt mask for the hardware interrupts RST 5.5, RST 6.5 and RST 7.5.

 ii) Reset the edge-triggered RST 7.5 input latch.

 iii) Load the SOD output latch.

The bits in the accumulator before execution of the SIM instruction are defined as shown in the Fig. 2.12.

If the mask set enable bit is set to "1" then the interrupt mask bits for RST 7.5, RST 6.5 and RST 5.5 (D
0
, D

1
 and D

2
) are

recognized and if it is "0" then these bits are not recognized by the processor. The interrupt mask bits D
0
, D

1
 and D

2
 can be

independently set to "1" to mask the particular interrupt and reset to "0" to unmask the particular interrupt.

If the bit D
4
 is set to "1", then an internal flip-flop is reset to "0" in order to disable the RST 7.5 interrupt. If the serial output

enable is "1", the serial output data is sent to the SOD pin.

One byte Instruction One machine cycle: Opcode fetch - 4T

4. RIM

(RIM - Read Interrupt Mask)

The RIM instruction is used to check whether an interrupt is masked or not. It is also used to read data from the SID line.

(SID: Serial Input Data pin of 8085 processor).

When a RIM instruction is executed, the accumulator is loaded with 8-bit data. The 8-bit data in the accumulator (content

of accumulator) can be interpretted as shown in Fig. 2.13.

Bits D
0
, D

1
 and D

2
 provide the mask status of the RST 5.5, RST 6.5 and RST 7.5 interrupts respectively. If the mask bit

corresponding to a particular RST is "1", then the interrupt is masked and if the mask bit is "0" then the interrupt is unmasked.

If the interrupt enable bit (D
3
) is "0", the 8085's maskable interrupts are disabled. The interrupts are enabled if this bit is "1".

A "1" in a particular interrupt pending bit indicates that an interrupt is being requested on the identified RST line. When this

bit is "0", no interrupt is waiting to be serviced. The serial input data (bit D
7
) indicate the value of the signal at the SID pin.

One byte instruction One machine cycle: Opcode fetch - 4T

D D D D D D D D7 6 5 4 3 2 1 0

Serial Output Data

Serial Output Enable

Undefined

Reset RST 7.5

Interrupt Mask
for RST 5.5

Interrupt Mask
for RST 6.5

Interrupt Mask
for RST 7.5

Mask Set Enable

Fig. 2.12 : Accumulator content before execution of SIM instruction.

2. 48 Chapter 2 Instruction Set Of 8085

5. HLT

(HLT - Halt program Execution)

This instruction is placed at the end of the program. When this instruction is executed, the processor suspends program

execution and bus will be in idle state.

One byte instruction Two machine cycle: Opcode fetch - 3T

 Bus idle - 2T

5T

6. NOP

(NOP - No operation)

The NOP is a dummy instruction, it neither achieves any result nor affects any CPU registers. This is an useful instruction

for producing software delay and reserve memory spaces for future software modifications.

One byte instruction One machine cycle : Opcode fetch - 4T

2.12 TIMING DIAGRAM OF 8085 INSTRUCTIONS

The 8085 instructions is one to five machine cycles. (Refer Table-2.1 for the machine

cycles of instructions.) Actually the execution of an instruction is the execution of the machine

cycles of that instruction in a predefined order. Therefore, from the knowledge of the timing

diagrams of machine cycles, the timing diagram of an instruction can be obtained.

The machine cycles of an 8085 instuction can be divided into two parts as shown below:

Machine cycles of an instruction

Machine cycles to fetch instruction

bytes from memory.

One-byte instruction : Opcode fetch

Two-byte instruction : Opcode fetch
 + memory read

Three-byte instruction : Opcode fetch
+ memory read

+ memory read

Additional machine cycles for external

read/write with memory/IO in order to

complete instruction execution. These machine

cycles depend on instruction execution logic.

® ®

D D D D D D D D7 6 5 4 3 2 1 0

Serial Input Data Interrupt Mask
for RST 5.5

Interrupt Mask
for RST 6.5

Interrupt Mask
for RST 7.5

Interrupt Enable Flag

Fig. 2.13 : Accumulator.

Interrupt Pending
Flag for RST 7.5

Interrupt Pending
Flag for RST 6.5

Interrupt Pending
Flag for RST 5.5

Microprocessor (8085) And Its Applications 2. 49

Based on the execution of the machine cycles, the instructions can be classified as shown

below:

Case(i) : 1-byte, 1-cycle - Opcode fetch.

Case(ii) : 1-byte, 2-cycle - Opcode fetch+ memory read/write.

Case(iii) : 1-byte, 3-cycle - Opcode fetch + memory read/write (or Bus idle)

+ memory read/write (or Bus idle).

Case(iv) : 1-byte, 5-cycle - Opcode fetch + memory read + memory read

+ memory write + memory write.

Case(v) : 2-byte, 2-cycle - Opcode fetch + memory read (read second byte of instruction.)

Case(vi) : 2-byte, 3-cycle - Opcode fetch + memory read (read second byte of instruction)

+ memory read/write/or IO read/write.

Case(vii) : 3-byte, 3-cycle - Opcode fetch + memory read (read second byte of instruction)

+ memory read (read third byte of instruction.)

Case(viii) : 3-byte, 4-cycle - Opcode fetch + memory read (read second byte of instruction)

+ memory read (read third byte of instruction)

+ memory read/write.

Case(ix) : 3-byte, 5-cycle - Opcode fetch + memory read (read second byte of instruction)

+ memory read (read third byte of instruction)

+ memory read/write + memory read/write.

The timing diagram of an instruction is obtained by drawing the timing diagrams of the

machine cycles of that instruction one by one in the order of execution. The timing diagrams of

few instructions are presented from Figs. 2.14 to 2.20.

Timing Diagram of STA Instruction

The "STA addr16" instruction is used to store the content of the accumulator to a memory

location. This instruction employs direct addressing. Let the content of the accumulator be C7
H

and it is desired to store the content of the accumulator to a memory location 526A
H
.

The STA addr16 instruction is a three byte instruction. The first byte is the opcode of the

instruction 32
H
. The second byte is low byte address 6A

H
 and the third byte is high byte address 52

H
.

Let the three bytes of the instructions be stored in memory locations 41FF
H
, 4200

H
 and 4201

H
.

In order to execute this instruction, the 8085 microprocessor will first execute opcode

fetch machine cycle to get the opcode, followed by two memory read cycles to read the address

of data (i.e., to read second and third byte of instruction). Then, the processor executes the

memory write cycle to store the content of the accumulator in the memory. The status of various

signals during execution of this instruction are shown in Fig. 2.14. (Readers are advised to refer to

Section 2.2 for explanation of each machine cycle.)

2. 50 Chapter 2 Instruction Set Of 8085

Timing Diagram of PUSH Instruction

The "PUSH rp" instruction is used to store the content of a register pair in the stack

memory. This instruction employs register indirect addressing using Stack Pointer (SP). Let us

consider PUSH B instruction. On execution of this instruction, the content of the BC pair is pushed

to the stack. Let the content of the BC pair be E25D
H
 and the content of SP be A100

H
.

The PUSH rp is one-byte instruction and it is the opcode of the instruction. The opcode of

PUSH B instruction is C5
H
 and let it be stored in memory location C010

H
. In order to execute this

instruction, the processor will first execute the opcode fetch cycle to get the opcode C5
H
. Then the

processor executes two memory write cycles to store the content of the BC pair in the stack

memory. The status of various signals during execution of this instruction are shown in Fig. 2.15.

During the memory write cycles in PUSH rp instruction, the content of the SP is used as the

memory address. In the first write cycle, the content of the SP is decremented by one

(A100
H
− 1 = A0FF

H
) and output on the address lines and in this address, the content of B-register

(E2
H
) is stored. In the second write cycle, the content of the SP is again decremented by one

(A0FF
H
− 1 = A0FE

H
) and output on the address lines and in this address, the content of C-register

(5D
H
) is stored.

IO/M, S , S0 1

Fig. 2.14 : Timing diagram of STA 526AH instruction.

FFH

CLK

AD - AD0 7

A - A8 15

ALE

WR

RD

T1 T3T2 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13

Opcode Fetch Memory Read Memory Read Memory Write

0, 1, 1 0, 0, 1 0, 0, 1 0, 1, 0

32H 00H 6AH 01H 52H 6AH C7H

41H 42H 42H 52H

Microprocessor (8085) And Its Applications 2. 51

Timing Diagram of IN Instruction

The "IN addr8" instruction is used to read the content of an IO-mapped device/port and

store in the accumulator. For addressing IO-mapped devices the 8085 microprocessor employs

8-bit address. Let the 8-bit address of the IO port be C0
H
, and the content of IO port be 5E

H
.

The IN addr8 instruction, is a two-byte instruction. The first byte is the opcode of the

instruction DB
H
 and the second byte is the IO port address C0

H
. Let the two bytes of the instruction

be stored in memory locations 4125
H
 and 4126

H
.

In order to execute this instruction, the 8085 microprocessor will first execute the opcode

fetch machine cycle to get the opcode, followed by the memory read cycle to read the IO port

address (i.e., to read the second byte of the instruction.) Then, the processor executes IO read

cycle to read the content of the IO port. The status of various signals during execution of this

instruction are shown in Fig. 2.16.

CLK

AD - AD0 7

A - A8 15

ALE

IO/M, S , S0 1

WR

RD

Fig. 2.15 : Timing diagram of PUSH B instruction.

T1 T3T2 T4 T5 T6 T7 T8 T9 T10 T11 T12

10H

Opcode Fetch Memory Write Memory Write

C5H FFH E2H FEH 5DH

C0H A0H A0H

0, 1, 1 0, 1, 0 0, 1, 0

2. 52 Chapter 2 Instruction Set Of 8085

Timing Diagram of OUT Instruction

Fig. 2.16 : Timing diagram of IN C0H instruction.

CLK

AD - AD0 7

A - A8 15

ALE

IO/M, S , S0 1

WR

RD

T1 T3T2 T4 T5 T6 T7 T8 T9 T10

25H

Opcode Fetch Memory Read IO Read

DBH

41H 41H C0H

0, 1, 1 0, 0, 1 1, 0, 1

26H C0H C0H 5EH

Fig. 2.17 : Timing diagram of OUT 83H instruction.

CLK

AD - AD0 7

A - A8 15

ALE

IO/M, S , S0 1

WR

RD

T1 T3T2 T4 T5 T6 T7 T8 T9 T10

FFH

Opcode Fetch Memory Read IO Write

D3H

40H 41H 83H

0, 1, 1 0, 0, 1 1, 1, 0

00H 83H 83H 45H

Microprocessor (8085) And Its Applications 2. 53

The "OUT addr8" instruction is used to output the content of the accumulator to the

IO-mapped device/port. For addressing IO-mapped devices, the 8085 microprocessor employs

8-bit address. Let the 8-bit address of the IO port be 83
H
 and the content of the accumulator

be 45
H
.

The OUT addr8 instruction is a two-byte instruction. The first byte is the opcode of the

instruction D3
H
, and the second byte is the IO port address 83

H
. Let the two bytes of instruction

be stored in memory locations 40FF
H
 and 4100

H
.

In order to execute this instruction, the 8085 microprocessor will first execute the opcode

fetch machine cycle to get the opcode, followed by the memory read cycle to read the IO port

address. (i.e., to read the second byte of the instruction.) Then the processor executes the IO

write cycle to write the content of the accumulator to the IO port. The status of various signals

during execution of this instruction are shown in Fig. 2.17.

Timing Diagram of INR M Instruction

The "INR M" instruction is used to increment the content of a memory location. This

instruction employs register indirect addressing using an HL pair. Let the content of the HL pair be

4250
H
 and let the content of the memory location 4250

H
 be 12

H
.

Fig. 2.18 : Timing diagram of INR M instruction.

CLK

AD - AD0 7

A - A8 15

ALE

IO/M, S , S0 1

WR

RD

T1 T3T2 T4 T5 T6 T7 T8 T9 T10

05H

Opcode Fetch Memory Read Memory Write

34H

41H 42H 42H

0, 1, 1 0, 0, 1 0, 1, 0

50H 12H 50H 13H

2. 54 Chapter 2 Instruction Set Of 8085

The INR M is one-byte instruction and it is the opcode of instruction 34
H
. Let this instruction

be stored in the memory location 4105
H
. In order to execute the instruction, the 8085 microprocessor

will first execute the opcode fetch cycle to get the opcode 34
H
. Then, it executes the memory read

cycle to read the content of the memory location 4250
H
.

The content (12
H
) of the memory location is incremented by one in the ALU and then, the

processor executes the memory write cycle to store the result (13
H
) of the ALU operation in the

same memory location 4250
H
. The status of various signals during execution of this instruction

are shown in Fig. 2.18.

Timing Diagram of CALL Instruction

The "CALL addr16" instruction is used to execute a subroutine/procedure stored at addr16,

after saving the address of the next instruction in the stack memory. On execution of this instruction,

the addr16 is loaded in the Program Counter (PC) and the previous value of the PC is stored in the

stack memory pointed by the Stack Pointer (SP). Let the address of the subroutine be 4F50
H
 and

the content of SP be 4100
H
.

The CALL addr16 is a three-byte instruction. The first byte is the opcode of the instruction

CD
H
. The second byte is the low byte of address 50

H
 and the third byte is the high byte of address

4F
H
. Let the three bytes of the instructions be stored in memory locations 4200

H
, 4201

H

and 4202
H
.

In order to execute this instruction, the 8085 microprocessor will first execute the

opcode fetch machine cycle to get the opcode of the instruction CD
H
, followed by two

memory read cycles to get the address of the subroutine (i.e., to read the second and third byte of

instruction).

At the end of the second memory read cycle, the content of the PC will be 4203
H
. After the

read cycles, the processor executes two memory write cycles to store this content (4203
H
) of PC

in the stack. During the memory write cycles, the content of the SP is used as the memory address.

In the first write cycle, the content of the SP is decremented by one (4100
H
− 1 = 40FF

H
) and

output on the address lines and in this address, the high byte of PC (42
H
) is stored. In the second

write cycle, the content of the SP is again decremented by one (40FF
H
− 1 = 40FE

H
) and output on

the address lines and in this address the low byte of PC (03
H
) is stored. The status of various

signals during execution of this instruction are shown in Fig. 2.19.

Microprocessor (8085) And Its Applications 2. 55

F
ig
.
2
.1
9
:
T
im
in
g
d
ia
g
ra
m
o
f
C
A
L
L
4
F
5
0
H
in
s
tr
u
c
ti
o
n
.

T
1

T
3

T
2

T
4

T
5

T
6

T
7

T
8

T
9

T
1
0

T
1
1

T
1
2

0
1
H

C
L
K

A
D

A
D

0
7

-

A
A

8
1
5

-

A
L
E

W
R

R
D

O
p
co
d
e
F
et
ch

M
em
o
ry
R
ea
d

T
1
3

T
1
4

T
1
5

T
1
6

T
1
7

T
1
8

IO
/
M
,
S
,
S

0
1

M
em
o
ry
W
ri
te

0
2
H

0
0
H

M
em
o
ry
R
ea
d

M
em
o
ry
W
ri
te

C
D
H

5
0
H

4
F
H

F
F
H

4
2
H

F
E
H

0
3
H

4
2
H

4
2
H

4
2
H

4
0
H

4
0
H

0
,
1
,
1

0
,
0
,
1

0
,
0
,
1

0
,
1
,
0

0
,
1
,
0

2. 56 Chapter 2 Instruction Set Of 8085

Timing Diagram of RET Instruction

In a program while calling a subroutine/procedure using CALL instruction, the address of

next instruction of the program is stored in top of stack. The RET instruction is usually placed at

the end of subroutine/procedure. On execution of RET instruction, the top of stack is loaded in

Program Counter (PC). For stack operation, the content of Stack Pointer (SP) is used as address.

Let the content of SP be 40FE
H
 and the content of stack memory locations 40FE

H
 and 40FF

H
 be

03
H
 and 42

H
, respectively.

The RET instruction is one-byte instruction and it is the opcode of instruction C9
H
. Let this

instruction be stored in memory location 4F80
H
. In order to execute this instruction, the 8085

processor will first execute the opcode fetch machine cycle to get the opcode C9
H
. Then it executes

two memory read cycle to read the top of stack memory.

During the memory read cycles the content of SP is used as memory address. In the first

read cycle the content of SP (40FE
H
) is output on address lines and the memory content (03

H
) in

this address is read and stored as low byte of PC. In the second read cycle the content of SP is

incremented by one (40FE
H
 + 1 = 40FF

H
) and output on address lines and the memory content

(42
H
) in this address is read and stored as high byte of PC. The status of various signals during

execution of this instruction are shown in Fig. 2.20.

Fig. 2.20 : Timing diagram of RET instruction.

CLK

AD - AD0 7

A - A8 15

ALE

IO/M, S , S0 1

WR

RD

T1 T3T2 T4 T5 T6 T7 T8 T9 T10

80H

Opcode Fetch Memory Read Memory Read

C9H

4FH 40H 40H

0, 1, 1 0, 0, 1 0, 0, 1

FEH 03H FFH 42H

Microprocessor (8085) And Its Applications 2. 57

2.13 SUMMARY

� The software developed using 1s and 0s is called machine language program.

� The machine can understand only machine language programs.

� The software developed using mnemonics is called assembly language program.

� Assembler is a conversion software, which can convert assembly language programs to machine language programs.

� The machine language and assembly language programs are machine (processor) dependent.

� The language which can be used to develop software independent of the hardware (processor) in the machine are

called High Level Languages.

� The compiler or interpreter is a software which can convert high level language programs to machine language

programs.

� The sequence of operations that a processor has to carry out while executing the instruction is called Instruction

cycle.

� The basic operations performed by the processor are called machine cycles or processor cycles.

� The 8085 microprocessor has seven basic machine cycles.

� In 8085, one T-state is equal to the time period of the internal clock signal of the processor.

� Each instruction of the 8085 processor consists of one to five machine cycles.

� The timing diagram provides the status of various signals when a machine cycle is executed.

� The first T-state of every machine cycle in 8085 processor is used to demultiplex the low order address and data

lines.

� The 8085 processor checks for an interrupt at the second T-state of the last machine cycle of every instruction.

� In 8085, wait states can be introduced in any machine cycle except bus idle cycle between T
2
 and T

3
.

� The 8085 has 74 basic instructions and 246 total instructions.

� The method of specifying the data to be operated by the instruction is called addressing.

� In 8085, the flag register and the accumulator together are called PSW (Program Status Word).

� The flags are altered after execution of arithmetic and logical instructions.

� The 8-bit increment and decrement instructions does not affect carry flag.

� The 16-bit increment/decrement instructions will not affect any flag.

� The data transfer, branching and machine control instructions will not alter the flags.

� The memory address residing in SP (Stack Pointer) indicates the top of stack.

2.14 SHORT QUESTIONS AND ANSWERS

2.1 What is Software and Hardware?

The software is a set of instructions or commands needed for performing a specific task by a

programmable device or a computing machine.

The hardware refers to the components or devices used to form computing machine in which the

software can be run and tested. Without software the hardware is an idle machine.

2. 58 Chapter 2 Instruction Set Of 8085

2.2 What is machine language?

The language that can be understood by a programmable machine is called machine language. The

machine language program are developed using 1s and 0 s.

2.3 What is assembly language?

The language in which the mnemonics (short-hand form of instructions) are used to write a program

is called assembly language. The mnemonics are given by the manufacturers of microprocessor.

2.4 What are machine language and assembly language programs?

The software developed using 1s and 0 s are called machine language programs. The software

developed using mnemonics are called assembly language programs.

2.5 What is the drawback in machine language and assembly language programs?

The machine language and assembly language programs are machine dependent. The programs

developed using these languages for a particular machine cannot be directly run on another

machine. (But after conversion using suitable conversion software it can be run on another machine.)

2.6 Define mnemonics.

The short-hand form of describing the instructions are called mnemonics. The mnemonics are
given by the manufacturers of microprocessors and programmable devices.

2.7 What is processor cycle (machine cycle)?

The processor cycle or machine cycle is the basic external operation performed by the processor.
To execute an instruction, the processor will run one or more machine cycles in a particular order.

2.8 What is instruction cycle?

The sequence of operations that a processor has to carry out while executing an instruction is
called instruction cycle. Each instruction cycle of a processor in turn consists of a number of
machine cycles.

2.9 What is fetch and execute cycle?

In general, the instruction cycle of an instruction can be divided into fetch and execute
cycles. The fetch cycle is executed to fetch the opcode from memory. The execute cycle is
executed to decode the instruction and to perform the work instructed by the instruction.

2.10 List the various machine cycles of 8085.

The various machine cycles of 8085 are as follows:

(i) Opcode fetch cycle

(ii) Memory read cycle

(iii) Memory write cycle

(iv) IO read cycle

(v) IO write cycle

(vi) Interrupt acknowledge cycle

(vii) Bus idle cycle.

2.11 What is the need for timing diagram?

The timing diagram provides information regarding the status of various signals, when a
machine cycle is executed. The knowledge of timing diagram is essential for system designer
to select matched peripheral devices like memories, latches, ports, etc., to form a
microprocessor system.

Microprocessor (8085) And Its Applications 2. 59

2.12 What is T-state?

The T-state is the time period of the internal clock signal of the processor. The time taken by the
processor to execute a machine cycle is expressed in T-state.

2.13 How many machine cycles constitute one instruction cycle in 8085?

Each instruction of the 8085 processor consist of one to five machine cycles.

2.14 Define opcode and operand.

Opcode (Operation Code) is the part of an instruction/directive that identifies a specific operation.

Operand is a part of an instruction/directive that represents a value on which the instruction acts.

2.15 What is opcode fetch cycle?

The opcode fetch cycle is a machine cycle executed to fetch the opcode of an instruction stored
in memory. The first machine cycle of every instruction is opcode fetch machine cycle.

2.16 What operation is performed during first T-state of every machine cycle in 8085?

In 8085, during the first T-state of every machine cycle the low byte address is latched into an
external latch using ALE signal.

2.17 Why status signals are provided in microprocessor?

The status signals can be used by the system designer to track the internal operations of the
processor. Also, it can be used for memory expansion (by providing separate memory banks for
program and data, and selecting the banks using status signals).

2.18 How the 8085 processor differentiates memory access (read/write) and IO access (read/write)?

The memory access and IO access is differentiated using IO/M signal. The 8085 processor
asserts IO/M low for memory read/write operation and IO/M is asserted high for IO read/write
operation.

2.19 In which lines the 8085 processor gives the output of IO port address during IO read/write

operation?

When the processor executes an IO read or write cycle, 8-bit port address is sent out both on low
order address bus and high order address bus. This facility offers a flexibility for system designer
to use either low-order address lines or high-order address lines for addressing ports and
generating chip select signals for IO devices.

2.20 When the 8085 processor checks for an interrupt?

In the second T-state of the last machine cycle of every instruction, the 8085 processor checks
whether an interrupt request is made or not.

2.21 What is interrupt acknowledge cycle?

The interrupt acknowledge cycle is a machine cycle executed by 8085 processor after acceptance of the
interrupt to get the address of the interrupt service routine in-order to service the interrupting device.

2.22 What will be the status of the processor during bus idle cycle?

During bus idle cycle, the status signals S
0
 and S

1
 are both asserted low and data, address and

control pins are driven to high impedance state. Also, the processor will not sample the READY
signal.

2.23 How the slow peripherals are interfaced with 8085 processor?

The slow peripherals require longer read/write time than allowed by the processor. Hence to
interface slow peripherals, an extra hardware should be designed so that it introduces required
number of wait states in machine cycles between T

1
 and T

2
. An alternate solution is to interface

the slow peripherals using ports.

2. 60 Chapter 2 Instruction Set Of 8085

2.24 When is the READY signal sampled by the processor?

The 8085 processor samples or checks the READY signal at the second T-state of every machine
cycle.

2.25 What are wait states?

The T states introduced between T
2
 and T

3
 of a machine cycle by the slow peripherals (to get

extra time for read/write operation) are called wait states.

2.26 When the 8085 processor will enter wait state?

The 8085 processor will check the READY signal at the second T-state of a machine cycle. If the
READY is tied low at this time, then it will enter into wait state (i.e., after second T-state). The
processor will come out of wait state only when READY is again made high.

2.27 What is the difference between wait state and bus idle condition?

During bus idle condition, the tristate pins of the processor are driven to high impedance state,
but during wait state they are in normal states (either low or high). The READY is not sampled
during bus idle condition but it is sampled during wait state.

2.28 How many instructions are available in 8085 instruction set?

The 8085 instruction set consists of 74 basic instructions and 246 total instructions.

2.29 What is the instruction format of 8085?

The size of 8085 instruction is 1 to 3 bytes. Each instruction has one-byte opcode. The remaining
bytes are either data or address. The format of 8085 instructions are shown below :

2.30 What is addressing?

The method of specifying the data to be operated (operand) by the instruction is called addressing.

2.31 What are the addressing modes available in 8085?

The 8085 has the following five different modes of addressing.

i) Immediate addressing

ii) Direct addressing

iii) Register addressing

iv) Register indirect addressing

v) Implied addressing.

2.32 Explain the immediate addressing with an example.

In immediate addressing mode, the data is specified in the instruction itself. The data will be a part of the program

instruction.

Example : MVI B, 3EH - Move the data 3E
H
 given in the instruction to B-register.

One byte instruction :

Two byte instruction :

Three byte instruction :

opcode

7 6 5 4 3 2 1 0

opcode

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0

opcode

7 6 5 4 3 2 1 07 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

8-bit data/address

Low byte data/address High byte data/address

Microprocessor (8085) And Its Applications 2. 61

2.33 What is direct addressing? Give an example.

If the address of the data is directly specified in the instruction then the addressing mode is called direct addressing.

Example : LDA 1050H - Load the data available in memory location 1050
H
 in accumulator.

2.34 Explain register addressing with an example.

In register addressing mode, the instruction specifies the name of the register in which the data is available.

Example : MOV A, B - Move the content of B-register to A-register.

2.35 Explain register indirect addressing with an example.

In register indirect addressing mode, the instruction specifies the name of the register in which the address of the data is

available. Here the data will be in memory and the address will be in the register pai r.

Example : MOV A, M - The content of memory whose address is available in HL pair is moved to A-register.

2.36 What is implied or implicit addressing mode?

If the instruction operates on a data available in the register defined by the opcode then the addressing mode is called implied

or implicit addressing mode.

Example : CMA - Complement the content of accumulator.

2.37 What are the functions performed by data transfer instruction? Give an example and explain.

The data transfer instructions can copy the content of one register to another and copy the content of register to memory or

vice versa.

Example : MOV B, C - The content of C-register is moved (copied) to B-register.

2.38 What are the functions performed by arithmetic instructions? Give an example and explain.

The functions performed by arithmetic instructions are Addition, Subtraction, Increment and Decrement.

Example : ADD E - The content of E-register is added to accumulator.

2.39 What are the operations performed by logical instructions? Give an example and explain.

The operations performed by logical instructions are AND, OR, EXCLUSIVE-OR, Complement, Compare and Shift (Rotate).

Example : ANA D - The content of D-register is logically ANDed with accumulator.

2.40 In which unit the arithmetic and logical operations are performed. Which unit is the destination

of result.

The arithmetic and logical operations are performed in ALU. After the operation, the result will be
stored in accumulator.

2.41 Which group of instruction affects the flags?

The flags are altered after execution of arithmetic and logical instructions.

2.42 What are the arithmetic instructions that do not affect the flag?

The 16-bit increment and decrement instructions (INX rp and DCX rp) will not affect any flags.

2.43 What are the flags affected by 8-bit increment and decrement instructions?

Except carry, all other flags are affected by 8-bit increment and decrement instructions.

2.44 What will be condition of flags after logical AND and OR operations?

After logical AND operation the carry flag is RESET (0), auxiliary carry flag is SET (1) and depending
on the result of AND operation other flags are altered.

After logical OR operation the carry flag and auxiliary carry flag are RESET (0). Depending on the
result of OR operation other flags are altered.

2. 62 Chapter 2 Instruction Set Of 8085

2.45 List the instructions that affect only carry flag.

The instructions that affect only carry flag are the following :

CMC RAR STC

DAD rp RLC

RAL RRC

2.46 What is DAA ?

DAA - Decimal Adjust Accumulator.

After BCD addition, this instruction is executed to get the result in BCD. When DAA instruction
is executed, the content of the accumulator is altered or adjusted as explained below:

 (i) If the sum of lower nibbles exceeds 09
H
 or auxiliary carry is set, a correction 06

H
 (0110) is added to lower nibble.

 (ii) If the sum of upper nibbles exceeds 09
H
 or carry is set, a correction 06

H
 (0110) is added to upper nibble.

2.47 What is DAD and what are the flags affected by this instruction?

DAD refers to Double Addition. This instruction is used to perform addition of two 16-bit data.

Syntax : DAD rp

The content of register pair (rp) is added to the content of HL pair. After addition, the result will
be in HL pair. The register pair can be BC, DE, HL, or SP. On execution of this instruction, only
carry flag is affected.

2.48 List the various instructions that can be used to clear accumulator ?

The accumulator can be cleared by the following instructions:

1. MVI A,00
H

2. SUB A

3. ANI 00
H

4. XRA A.

2.49 What is the similarity and difference between subtract and compare instruction?

Similarity : Both the subtraction and comparison are performed by subtracting two data in ALU
and flags are altered depending upon the result.

Difference : After subtract instruction is executed, the result is stored in accumulator, but after the
execution of compare instruction the result is discarded (i.e., the subtract instruction alters the
content of destination register (accumulator), but the compare instruction will not alter the content
of any register or memory).

2.50 List the IO instruction in 8085.

 The IO instruction of 8085 are IN addr8 and OUT addr8.

 The IN instruction is used to input a data byte from the IO-mapped device or port. The OUT instruction used to output

 data byte to IO-mapped device or port.

2.51 State the difference between LDA and LDAX.

The LDA instruction uses direct addressing mode to load a data byte from memory to accumulator,
but LDAX instruction uses register indirect addressing for the same operation.

In LDA instruction, the content of memory location whose address is given in the instruction is
moved to accumulator.

In LDAX instruction, a register pair contains the address of memory location. The content of
memory location whose address is available in register pair is moved to accumulator.

Microprocessor (8085) And Its Applications 2. 63

2.52 Explain DI and EI.

DI - Disable Interrupt . When this instruction is executed all the interrupts except TRAP are
disabled. When the interrupts are disabled the processor will not accept or recognize the interrupt.

EI - Enable Interrupt. This instruction is used or executed to allow the interrupts after disabling.

2.53 What is the function performed by SIM instruction?

SIM-Set Interrupt Mask. The SIM instruction is used to mask the hardware interrupts RST 7.5,
RST 6.5 and RST 5.5. The execution of SIM instruction output and the content of the accumulator
to program interrupt mask bits are also used to output serial data on the SOD line.

2.54 What is the function performed by RIM instruction?

RIM - Read Interrupt Mask. The RIM instruction is used to check whether an interrupt is masked
or not. It is also used to read data from SID line.

2.55 What will be the state of the processor after executing HLT instruction?

When the HLT instruction is executed, the processor suspends program execution and the bus
will be in idle state (i.e., the processor keeps on executing bus idle cycle until a reset or interrupt).

2.56 What is NOP? State its importance.

The NOP is a dummy instruction, it neither achieves any result nor affects any CPU register. This
is used for producing software delay and reserve memory spaces for future software modifications.

2.57 What is PSW?

PSW - Program Status Word. The flag register and accumulator together is called PSW. Flag
register is low order register. Accumulator is high order register.

2.58 Explain RET instruction.

RET - Return to main program. This instruction is placed at the end of subroutine program in
order to return to the main program. When this instruction is executed, the top of stack is poped
to program counter.

2.59 Explain the difference between the conditional and unconditional return instructions.

In a conditional return instruction a flag condition is tested. If the flag condition is true, then the
program control returns to main program. If the flag condition is false, then the next instruction is
executed. In unconditional return instruction, the program control returns to the main program
irrespective of the condition of the flag.

2.60 State the difference between STA and STAX instructions.

The STA instruction uses direct addressing mode to store the content of accumulator to a memory
location, but the STAX instruction uses indirect addressing mode for the same operation.

2.61 What will be the content of SP (Stack Pointer) after execution of PUSH and POP instructions?

 After execution of PUSH instruction, the content of Stack Pointer (SP) will be 02 less than the earlier value.

 After execution of POP instruction, the content of Stack Pointer (SP) will be 02 greater than the earlier value.

2.62 What is the difference between ADD and ADC instruction?

The ADD instruction will not consider the value of carry flag for addition, but the ADC instruction
will consider the value of carry flag (before executing this instruction) for addition. In ADC instruction
the content of register or memory and the carry flag are added to the content of accumulator.

2. 64 Chapter 2 Instruction Set Of 8085

2.63 How is the subtraction performed in 8085?

The 8085 processor performs 2’s complement subtraction and after subtraction, it complements
the carry flag.

2.64 How the result of subtract operation can be interpreted?

 After subtract operation, if the carry flag is SET (1), then the result is negative will be in 2’s complement form.

 After subtract operation, if the carry flag is RESET (0), then the result is positive.

2.65 What is the difference in 2’s complement subtraction and 8085 subtraction?

In 2’s complement subtraction, the result is positive if carry is equal to one (1) and negative
if carry is equal to zero (0). But in 8085, the result is negative if carry is equal to one (1) and
positive if carry is equal to (0).

2.66 What is the difference between CALL and JUMP instruction?

In CALL instruction, the address of next instruction is pushed to stack (i.e., stored in stack
memory) before transferring the program control to call address. But in JUMP instruction,
the address of next instruction is not saved.

2.67 What is the difference between conditional and unconditional branch instructions?

In unconditional branch instructions, the program control is transferred to branch address
without checking any flag condition. But in conditional branch instructions, a flag condition
is checked and only if the flag condition is true, program control is transferred to branch
address, otherwise the next instruction is executed.

 CHAPTER 3

MEMORYEMORYEMORYEMORYEMORY ANDNDNDNDND IO INTERFNTERFNTERFNTERFNTERFACINGACINGACINGACINGACING

3.1 INTRODUCTION TO MEMORY

A memory unit is an integral part of any microcomputer system and its primary purpose is

to store programs and data. In a broad sense, a microcomputer memory system can be logically

divided into three groups. They are as follows:

� Processor memory

� Primary or main memory

� Secondary memory

Processor memory refers to registers inside the microprocessor. These registers are used

to hold data and results temporarily when computation is in progress. Since the registers of the

processor are fabricated using the same technology as that of a microprocessor, there is no speed

disparity between these registers and a microprocessor. However, the cost involved in this approach

forces a manufacturer to include only a few registers in the microprocessor.

Primary or main memory refers to the storage area which can be directly accessed by the

microprocessor. Therefore, all programs and data must be stored only in primary memory prior to

execution. In primary memory the access time should be compatible with the read/write time of

the processor. Therefore, only semiconductor memories are used as primary memories and they

(the latest versions) are fabricated using CMOS technology. Primary memory normally includes

ROM, EPROM, static RAM, DRAM and NVRAM.

Secondary memory refers to the storage medium which comprises of slow devices such

as magnetic tapes and disks (hard disk, floppy disc and Compact Disc (CD)). They are called as

auxiliary or backup storage devices. These devices are used to hold large data files and huge

programs such as operating systems, compilers, data bases, permanent programs, etc. The

microcomputer system copies the required programs and data from secondary memory to main

memory and work directly with main memory only.

3.2 SEMICONDUCTOR MEMORY

The main or primary memory elements are semiconductor devices, because the

semiconductor devices alone can work at high speeds and consume less power. Moreover, they

can be fabricated as ICs and also occupy less space.

A typical semiconductor memory IC will have n address pins (lines) and m data pins (lines).

The capacity of the memory will be 2n
× m bits. Figure 3.1 shows a simplified functional block

diagram of a semiconductor memory. The functional blocks of a semiconductor memory are row

address decoder, column address decoder, memory array, input buffer and output buffer.

�

3. 2 Chapter 3 Memory And IO Interfacing

Input Buffer

R
o
w
D
ec
o
d
er

q
to
2
q

Memory Array

2 m bits
n
´

O
u
tp
u
t
B
u
ff
er

q
In
p
u
ts
to

D
ec
o
d
er

2
In
p
u
ts
to

M
em
o
ry
A
rr
ay

q

m Data Lines

2 Inputs to
Memory Array

r

Column Decoder

r to 2
r

r Inputs to
Decoder

n Address Lines
(q + r = n)

Fig. 3.1 : Simplified functional block diagram of a typical semiconductor memory.

Input and output buffers are used to hold the data until a valid time and also takes care of

signal current level matching (or Impedance matching). The n address lines are split into 'q' lines

and 'r' lines, such that q + r = n. The 'q' address lines are applied as input to row decoder and 'r'

address lines are applied as input to column decoder.

The output lines of the row and column decoder are used to form a matrix array of size,

2q
× 2r consisting of 2n crossing points as shown in Fig. 3.2. Each crossing point is called

memory cell and can store one-bit of binary information. A typical memory array will consist of

m number of layers of matrix array as shown in Fig. 3.2 and all of them are wired parallely. When

an address is sent to memory IC, the row and column decoder will select one line each, which in

turn will select one memory cell in each layer. Thus m memory cells are selected by an address.

Then, using the read or write control signals, the data can be read or stored in the selected

memory cells.

I
P
Q

IPQ

2 Columns
r

Memory Cell

2 Rows
q

r Inputs

Column Decoder

R
o
w
D
ec
o
d
er

q Inputs

Fig. 3.2 : One layer of memory array.

Microprocessor (8085) And Its Applications 3. 3

In the first version of semiconductor memory, the memory cells were made of passive

elements like resistors and capacitors. Later, diodes were used instead of passive elements. With

advancement in semiconductor technology, Bipolar and MOS transistors were used to form memory

cells. The latest technology used for fabricating memory cells are CMOS and HMOS which offers

very low power and high speeds in operation.

The different types of semiconductor memories are ROM, PROM, EPROM, static RAM,

DRAM and NVRAM. These semiconductor memories can be classified into volatile and non-

volatile memories. If the information stored in a semiconductor memory is lost when the power

supply to that IC is switched OFF, then the memory is called volatile. On the other hand if the

stored information is retained even when the power supply is switched OFF, then the memory is

called non-volatile. ROM, PROM, EPROM and NVRAM are non-volatile memories. Static RAM

and DRAM are volatile memories.

Semiconductor memories can also be classified into read only and read/write memories. In

read only memories, information is stored permanently either during manufacturing or after

manufacturing and then interfaced to microcomputer system. The processor can only read the

stored informations from these memories and cannot write into it. But in read/write memory, the

processor can store (write) information as well as read from it. The ROM, PROM and EPROM

are read only memories. The NVRAM, static RAM and DRAM are read/write memories.

Semiconductor memories also have random access and non-destructive readout features.

In random access memory, the memory access time is independent of the memory location being

accessed (i.e., the access time will be same for the first or the last location). All semiconductor

memories are random access memories. In semiconductor memories, a read operation by the

processor will not destroy the stored information and for this reason the semiconductor memory is

also called NDRO memory (Non-Destructive Read-Out memory).

3.3 ROM AND PROM

ROM is a semiconductor memory which permits only a read access. The ROM functions

as a memory array whose contents, once programmed, are permanently fixed and cannot be

altered by the microprocessor to which the memory is interfaced. Other names for this type of

memory are dead memory, fixed memory, permanent memory and Read-Only Store (ROS). In

ROM, the memory cell (storage unit) will have a MOS transistor either with an open gate or a

closed gate. Transistors with closed gate represent 1's and the ones with open gate represent 0's.

Since the configuration is fixed, they permanently store 1's and 0's.

The ROM is non-volatile memory, i.e., loss of power or system malfunction does not

change the contents of the memory. Also, ROM memory has the feature of random access, which

means that the access time for a given memory location is same as that for all other locations. The

process of storing information in ROM is called programming. The technique employed for storing

information in the ROM provides a convenient method for classifying ROMs into one of the

following three categories. They are as follows:

� Custom programmed or Mask programmed ROM (ROM)

� Programmable or Field programmable ROM (PROM)

� Reprogrammable or Erasable-Programmable ROM (EPROM)

3. 4 Chapter 3 Memory And IO Interfacing

Custom programmed ROMs are programmed by the manufacturer as specified by the user

during fabrication and the contents cannot be changed after packaging. Programmable ROM's are

one time programmable by the user. Reprogrammable ROMs have facilities for programming as

well as for erasing its content and reprogramming the memory. They are erased either by passing

Electrical current or Ultraviolet light.

The programming of ROMs can be carried using ROM (EPROM) programmer. Usually the

ROM programmer is a digital system interfaced to a Personal Computer (PC). The information to be

programmed is first stored as a file in the PC and then converted in to the required binary format using

a conversion software. Then the information is transferred from the PC to a ROM programmer.

3.4 EPROM

The Read Only Memory (ROM) which has a reprogrammable feature is called EPROM

(Erasable-Programmable Read Only Memory). The EPROM memory is non-volatile and also

has the feature of random access. In an EPROM, the binary information is entered using

electrical impulses and the stored information is erased using ultraviolet rays. The typical erase

time varies between 10 to 30 minutes.

In EPROM the memory cell (storage location of a bit) consists of a MOS transistor with an

isolated gate. The isolated gate is located between the normal control gate and the source/drain region

of an MOS transistor. This gate may be charged with electrons during the programming operation

and when charged with electrons, the transistor is permanently turned OFF. The state of the floating

gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide.

The charge on the isolated gate may be removed if the device is irradiated with ultraviolet

light. The ultraviolet light allows the electrons to recombine and discharge through the control

gate. The process of charging and discharging are repeatable.

The EPROM is programmed by inserting the EPROM chip into the socket of a PROM

programmer and providing addresses and voltage pulses at the appropriate pins of the chip. Usually

the PROM programmer is interfaced to a Personal Computer (PC) and the information to be

programmed is downloaded from the PC.

EPROMs are manufactured by many semiconductor industries like INTEL, Hitachi, Toshiba,

Cypress, etc. The manufacturers follow a common industry standard, so that a product from a

different industry will be pin to pin compatible and differ slightly in electrical and switching

characteristics. The various features of the 2764 (8 kb EPROM) manufactured by CYPRESS

semiconductor Corporation are discussed in this section.

CY27C64 (Cypress Make CMOS 2764)

The CY27C64 is a high performance 8192 byte (8 kb) CMOS EPROM. It has power down

mode, in which the device will enter a low-power standby mode when it is not enabled (or deselected).

The logic block diagram of CY27C64 is shown in Fig. 3.3 and the pin configuration

during read mode is shown in Fig. 3.4. [The pin configuration of CY27C64 will be different to that

of the configuration shown in Fig. 3.4 during programming or write mode.] The chip has thirteen

Microprocessor (8085) And Its Applications 3. 5

address inputs denoted as A
0
-A

12
. The address is used to access any one of the 8 kilo (8192)

locations within the chip. The eight output lines, O
0
 to O

7
 are used to output data from the chip.

The chip will be in standby mode when CE is inactive. The CE is activated for selecting the chip

and OE is activated for enabling the output buffer during read operation.

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VCC

VCC

NC

A8

A9

A11

A10

27C64

O7

O6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

VCC

A12

A3

A2

A1

A0

O1

A7

A6

A5

O2

GND

®
®
®
®
®

®
®
® ®

®
®
®
®

A4

O0

O3

O4

O5

CE

OE

® Erasure
Window®

®
®
®
®

®

®
®
®
®
®
®

®
®

Fig. 3.4 : Pin configuration of a CY27C64 in read mode.

Pin Description

A - A Address

O - O Output/Data

CE Chip Enable

OE Output Enable

V Power supply, +5-V

GND Ground (0-Volt)

NC No Connection

0 12

0 7

CC

Top View

Fig. 3.3 : Logic block diagram of a CY27C64.

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

→

→

→

→

→

→

→

→

→

→

→→

A0

A12 →

64k

Programmable

Array

MultiplexerRow
Address

Address

Decoder

Column
Address

Power Down

CE

OE

O7

O6

O5

O4

O3

O2

O0

→

3. 6 Chapter 3 Memory And IO Interfacing

Address
A - A0 12

CE

OE

Data out
O0 - 7O

Active Mode

tCE

tOE

tAA

Standby Mde

tOH

Data Out Valid

Standby Mde

Fig. 3.5 : Timing diagram of CY27C64 for read operation.

¬ ®

¬

®¬

®
¬ ®

The CY27C64 EPROM is available with maximum access times of 70, 90, 120, 150 or

200 ns (nanosecond). The electrical characteristics or ratings of the EPROM are listed in Table-3.1.

TABLE - 3.1 : ELECTRICAL CHARACTERISTICS OF CY27C64

Description Rating
UnitMin Max

Operating current
Commercial 80 mA

Military 100 mA

Standby Current 15 mA

Output High Voltage 2.4 V

Output Low Voltage 0.4 V

Input High Voltage 2.0 V

Input Low Voltage 0.8 V

Output Capacitance 10 pF

Input Capacitance 10 pF

The timing diagram (or switching waveforms) of CY27C64 for read operation is shown in

Fig. 3.5. Only four important timings are shown in this diagram. For detailed discussions on timing

diagram refer to manufacturers data sheet. The switching timings of various signals of CY27C64

are listed in Table-3.2.

The read operation is carried out in the following steps.

1. Place the address of the location to be read, on the address pins A
0
-A

12
.

2. Enable the chip by asserting chip enable low (CE = 0).

3. Assert the output enable signal low (OE = 0).

4. The data can be read from the output lines (O
0
 to O

7
) after a delay time of t

OE
 (40 or 50 ns) after asserting OE

 signal low.

Microprocessor (8085) And Its Applications 3. 7

TABLE - 3.2 : SWITCHING CHARACTERISTICS OF CY27C64

Parameter Description
Time

Unit
 Min Max

t
AA

Address to output valid 70 to 200 ns

t
OE

Output enable active to

output valid 40 or 50 ns

t
CE

Chip enable active to

output valid 70 to 200 n s

t
OH

Data hold from address
3 n s

change

When the address is placed on the address lines, the memory will take a time of t
AA

 to place the

data on the output lines, provided the CE and OE are both asserted low, at the appropriate time.

The CY27C64 EPROM is equipped with an erasure window. When the window is exposed

to UV light, the contents of EPROM are erased and then it can be reprogrammed. Wavelengths of

light less than 4000 A° (Angstrom unit) begin to erase the EPROM. Hence, an opaque label should be

placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for very long time.

The recommended dose of UV light for erasure is a wavelength of 2537 A° for a

minimum dose (UV intensity multipled by exposure time) of 25 W-sec/cm2. For an UV lamp with

a 12 mW/cm2 power rating, the exposure time would be approximately 35 minutes. The EPROM

has to be placed within a distance of 1 inch from the lamp during erasure. Permanent damage may

result if EPROM is exposed to high-intensity UV light for very long time. (Maximum dosage is

7258 W-sec/cm2.)

3.5 STATIC RAM

The static RAM (Random Access Memory) is a read/write memory which consists of an

array of flip-flops or similar storage devices. [Eventhough ROM memories are also technically

random access memories, the read/write memories are called RAM.] Besides random access

feature, the static RAMs are volatile in nature. In static RAM, the memory cell (storage location

for each bit of information) consists of a flip-flop or a similar device. The stored information is

retained in the memory cell as long as power is supplied to the circuit. Each memory cell typically

consists of six to eight MOS transistors.

The static RAMs are manufactured by many semiconductor industries like Motorola, Hitachi,

Toshiba, Cypress, etc. The manufacturers follow a common industry standard, so that a product

from a different industry will be pin to pin compatible and differ slightly in electrical and switching

characteristics. The various features of the 6264 (8 kb RAM) manufactured by CYPRESS

Semiconductors Corporation are discussed in this section.

CY6264 (Cypress Make CMOS 6264)

The CY6264 is a high performance 8192 byte (8 kb) CMOS static RAM. The device has

a power down mode. When CY6264 is not enabled (deselected), it will enter the power down

mode and in this mode the power consumed is reduced to 30% of active mode power.

3. 8 Chapter 3 Memory And IO Interfacing

The logic block diagram and the pin configuration of CY6264 are shown in Fig. 3.6

and Fig. 3.7. The chip has 13 address inputs denoted as A
0
-A

12
. The address is used to access any

one of the 8 kilo (8192) locations within the chip. It has eight IO pins for reading/writing the data

and they are denoted as IO
0
 to IO

7
.

Input Buffer

R
o

w
 D

e
c
o
d

e
r

Programmable

 Array

256 32 8 = 64 k× ×

S
en

se
 A

m
p

li
fi

er
s

Column Decoder
Power

Down

Fig. 3.6 : Logic block diagram of a CY6264.

A1

A2

A3

A4

A5

A6

A7

A8

→

→

→

→

→

→

→

→

A
0

A
9

A
1
0

A
1
1

→ →→→

A
1
2
→

WE

CE2

OE

→

CE1

IO0

IO
1

IO2

IO3

IO4

IO5

IO6

IO7

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VCC

A3

A2

A1

A0

6264

IO7

IO6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

NC

A4

A9

A10

A11

A12

IO1

A5

A6

A7

IO2

GND

®
®
®
®
®
®
®®

®®® ®
®
®
®
®

A8

IO0

IO3

IO4

IO5

CE1

OE

Fig. 3.7 : Pin configuration of a CY6264.

Top View

®
®
®
® WE

CE2

®
®
®
®
®
®
®
®
®
®
®
®
®
®

Pin Description

A - A Address

IO - IO Input/Output Data

CE Active Chip Enable

CE Active Chip Enable

WE Active Write Enable

OE Active Output Enable

V Power supply, +5-V

GND Ground (0-Volt)

NC No Connection

0 12

0 7

1

2

CC

low

high

low

low

®

Microprocessor (8085) And Its Applications 3. 9

The chip has four control signals CE
1
, CE

2
, WE and OE. When CE

1
 and WE inputs are both

low and CE
2
 is high, data on the eight data pins (IO

0
 through IO

7
) is written into the memory

location addressed by the address pins (A
0
 through A

12
).

When CE
1
 and OE are both low and CE

2
 is high, the content of the memory location

addressed by the address pins will be loaded on the eight data pins, IO
0
 to IO

7
.

The CY6264 RAM is available with maximum access time of 55 or 70 ns

(nanosecond). The electrical characteristics or ratings of the RAM are listed in Table-3.3.

TABLE - 3.3 : ELECTRICAL CHARACTERISTICS OF CY6264

 Description
Value

 Unit
Min Max

Operating current 100 mA

Standby current 15 or 20 mA

Output high voltage 2.4 V

Output low voltage 0.4 V

Input high voltage 2.2 V
cc

V

Input low voltage −0.5 0.8 V

Output capacitance 7 pF

Input capacitance 7 pF

Address
A - A0 12

CE1

OE

Data out
IO0 7- IO

tDOE

tRC

CE2

tACE

tAA

tOHA

Fig. 3.8 : Read cycle timings of a CY6264.

High Impedance State

Data Valid

¬ ®

¬ ®

®¬

®¬

¬ ®

3. 10 Chapter 3 Memory And IO Interfacing

TABLE - 3.4 : READ CYCLE TIMINGS OF CY6264

 Parameter Description
Time

Unit
 Min Max

t
RC

Read cycle time 70 ns

 t
AA

Address to data valid 70 ns

 t
OHA

Data hold from address change 5 ns

 t
ACE

CE low/high to data valid 70 ns

 t
DOE

OE low to data valid 35 ns

The timing diagram (or switching waveforms) of CY6264 for read operation is shown in

Fig. 3.8. Only five important timings are shown in this diagram. For further information of timing

diagram, please refer to manufacturers data sheet. Timings of various signals of CY6264 are listed

in Table-3.4.

The read operation is carried out in the following steps:

1. Place the address of the location to be read, on the address pins A
0
-A

12
.

2. Enable the chip by asserting chip enable-1 (CE
1
) as low and chip enable-2 (CE

2
) as high.

3. Assert the Output Enable (OE) signal low.

4. When OE signal is asserted low, the data can be read from the Input/Output lines (IO
0
 to IO

7
) after a delay

time of t
DOE

 (35 ns).

When the address is placed on the address line, the memory will take a time of t
AA

 to place

the data on the output lines, provided the CE
1
 and OE are asserted low and CE

2
 is asserted high at

the appropriate time.

The timing diagram (or switching waveform) of CY6264 for write operation is shown in

Fig. 3.9. The diagram shows some important timings of write cycle. For detailed discussions on

timing diagram, refer to manufacturers data sheet. The timings of various signals are listed in

Table-3.5.

The write operation is carried in the following steps:

1. Place the address of the location to be written, on the address pins A
0
 - A

12
.

2. Enable the chip by asserting CE
1
 signal as low and after a small delay assert CE

2
 signal as high.

3. Assert the write enable WE signal as low.

4. Place the data to be written on the IO
0
 to IO

7
 lines immediately after WE is asserted low.

After the address is placed on the address lines and CE
1
,CE

2
 and WE are asserted appropriately,

the data has to be placed on the data lines within the time t
SD

 (data set-up to write end).

Microprocessor (8085) And Its Applications 3. 11

Address
A - A0 12

CE1

WE

Data out
IO0 7- IO

tWC

CE2

Fig. 3.9 :Write cycle timings of CY6264.

tSCE1

tSCE2

tAW

tPWE

tSD

Data Undefined Data Valid

¬ ®

¬ ®

¬ ®

¬ ®
¬ ®

¬ ®

TABLE - 3.5 : WRITE CYCLE TIMINGS OF CY6264

Parameter Description Minimum time Unit

t
WC

Write cycle time 50 ns

t
SCE1

CE
1

low to write end 40 ns

t
SCE2

CE
2

high to write end 30 ns

t
AW

Address setup to write end 40 ns

t
PWE

WE pulse width 25 ns

t
SD

Data set-up to write end 25 ns

3.6 DRAM AND NVRAM

DRAM

DRAM (Dynamic RAM) is a read/write memory in which information is stored in the form

of electric charge on the gate-to-substrate capacitance of a MOS transistor. This charge dissipates

in a few milliseconds and the element must be refreshed periodically. DRAMs are volatile and have

random access feature.

Dynamic RAMs are important because fewer elements are required to store a bit (typically

each memory cell will have three to four transistors as opposed to six to eight in static RAM), so

that more bits can be packed into an IC of a given physical area. They are also faster than the

static RAM and consume less power in the quiescent state.

3. 12 Chapter 3 Memory And IO Interfacing

Refreshing of DRAMs need extra circuitry. So, the interfacing of DRAMs to microprocessor

are more complex than the interfacing of static RAMs, the recent versions of DRAMs internal

refreshing circuit. Manufacturing of DRAMs will be cheaper only for very large capacity memories.

Therefore, small memories are generally static elements (upto 256 kb) and large memories

(> 1Mb) are typically dynamic.

NVRAM

The NVRAMs are non-volatile read/write memories. They are also called flash memory.

These memory devices are electrically erasable in the system, but require more time to be erased

than a static RAM. Therefore they are also called EEPROM (Electrically Erasable Programmable

ROM). The drawback in EEPROMs is that it takes a long time for the system to erase and write.

The maximum number of write operations that can be performed in most of the EEPROMs is

about 10,000 operations.

The INTEL and XYCOR have released their versions of non-volatile RAM, which does not have

the drawbacks of EEPROMs. (The drawbacks of EEPROM are high write time and limited number

of write cycles.) This type of NVRAM consists of a high speed static RAM and a corresponding

EEPROM on a single chip. For this reason it is also called shadow RAM . In these devices, for each

cell of static RAM, there is one EEPROM cell. A typical example of shadow RAM is INTEL 2004 and

XYCOR's X2004. The 2004 edition has a special pin called Non-volatile Enable (NE). Normally this

pin is high and read or write operation is performed with static RAM. When NE is asserted low, the

data in the static RAM cells are written into the corresponding EEPROM cells.

3.7 INTERFACING STATIC RAM AND EPROM

The primary function of memory interfacing is that the microprocessor should be able to

read from and write into a set of semiconductor memory IC chips. Generally EPROM is interfaced

for read operations and RAM is interfaced for read and write operations. The procedure for

interfacing SRAM for read/write operation and EPROM for read operation are similar. So, they are

dealt commonly in this section.

In order to perform the read/write operation the memory access time should be less than the

read/write time of processor, chip select signals should be generated for selecting a particular

memory IC, suitable control signals have to be generated for read/write operation and a specific

address should be allotted to each memory location.

Hence memory interfacing deals with choosing memories with suitable access time, designing

address decoding circuit to generate chip select signals, generating control signals for read/write

operation and allocation of addresses to various memory ICs and their locations.

Typical EPROM and Static RAM

A typical semiconductor memory IC will have n address pins, m data pins (or output pins)

and a minimum of two power supply pins (one for connecting required supply voltage (V
CC

) and

the other for connecting ground). The control signals needed for static RAM are chip select (chip

enable), read control (output enable) and write control (write enable). The control signals needed

for read operation in EPROM are chip select (chip enable) and read control (output enable). A

typical static RAM and EPROM are shown in Fig. 3.10 and Fig. 3.11 respectively.

Microprocessor (8085) And Its Applications 3. 13

Note : The pins of EPROM are redefined for write operation. An EPROM requires a different

hardware setup and high supply voltage for write operation.

Memory Capacity

A semiconductor memory IC will have n address pins and m data pins. Such a memory

has 2n locations and each location can store m-bit data. The size of data stored in each memory

location is called memory word size. In INTEL 8085-based systems normally memories with

word size of 1-byte are used. (But we can even interface memories with word size 1-bit, 2-bit

and 4-bit.)

The memory capacity is specified in kilo bytes. If the memory IC has m data pins and n

address pins, then the memory IC will have a capacity of 2n
× m bits. When m = 8, the memory

capacity is 2n bytes. One kilo-byte is 1024
10

(= 400
H
) bytes. The relation between address pins and

capacity of memory ICs are listed in Table-3.6.

TABLE - 3.6 : RELATION BETWEEN NUMBER OF ADDRESS PINS AND MEMORY CAPACITY

 Number Memory capacity Range of
 of address in in address in
 pins in decimal kilo hexa hexa

10 210 = 1024 1k 400 000 to 3FF

11 211 = 2 × 210 = 2048 2k 800 000 to 7FF

12 212 = 22
× 210 = 4 × 210 = 4096 4k 1000 000 to FFF

13 213 = 23
× 210 = 8 × 210 = 8192 8k 2000 0000 to 1FFF

14 214 = 24
× 210 = 16 × 210 = 16384 16k 4000 0000 to 3FFF

15 215 = 25
× 210 = 32 × 210 = 32768 32k 8000 0000 to 7FFF

16 216 = 26
× 210 = 64 × 210 = 65536 64k 10000 0000 to FFFF

Choice of Memory ICs and Address Allocation

The memory requirement of a system depends on the application for which it is designed.

A system designer has a variety of choices for choosing memory ICs. The total memory requirement

can be realized in a single IC or in multiple ICs.

Fig. 3.10 : A typical static RAM IC.

®
®
®®

®VCC

GND

n

Address Bus

m

Data Bus

CS/CE

OE/RD

WE/WR

CS/CE - Chip Select (or Chip Enable) ;

WE/WR - Write Enable (or Write Control)

Static
RAM

®
®®

®VCC

GND

n

Address Bus

m

Data Bus

CS/CE

EPROM

OE/RD

OE/RD - Output Enable (or Read Control)

Fig. 3.11 : A typical EPROM IC in read mode.

3. 14 Chapter 3 Memory And IO Interfacing

The total memory requirement of the system will be split between EPROM and RAM memories.

The EPROM memories are used for storing monitor programs, other permanent programs and data.

The RAM memories are used for stack operations, temporary program and data storage.

Popular EPROM and static RAM ICs with 8085 systems and their capacity are listed here.

Table-3.7 shows the number of address pins and data pins available on these ICs.

EPROM Static RAM

2708 (1k × 8 = 8 kilo bits/1kb) 6208 (1k × 8 = 8 kilo bits/1kb)

2716 (2 k × 8 = 16 kilo bits/2 kb) 6216 (2 k × 8 = 16 kilo bits/2 kb)

2732 (4 k × 8 = 32 kilo bits/4 kb) 6232 (4 k × 8 = 32 kilo bits/4 kb)

2764 (8 k × 8 = 64 kilo bits/8 kb) 6264 (8 k × 8 = 64 kilo bits/8 kb)

27256 (32 k × 8 = 256 kilo bits/32 kb) 62256 (32 k × 8 = 256 kilo bits/32 kb)

27512 (64 k × 8 = 512 kilo bits/64 kb) 62512 (64 k × 8 = 512 kilo bits/64 kb)

Note : In this book kb refers to kilobytes.

TABLE - 3.7 : NUMBER OF ADDRESS AND DATA PINS IN MEMORY ICs

Memory IC Number of Number of

EPROM/RAM
 Capacity

address pins data pins

2708/6208 1 kb 10 8

2716/6216 2 kb 11 8

2732/6232 4 kb 12 8

2764/6264 8 kb 13 8

27256/62256 32 kb 15 8

27512/62512 64 kb 16 8

Note : 16kb memory is not available as a standard product.

In 8085 system, the EPROM is mapped at the beginning of memory space. (i.e., 0000
H

address is allotted to EPROM memory location). Whenever the power supply is switched ON, the

microprocessor chip will be reset. This power-on reset will be implemented by the system designer.

When the processor is reset all the internal registers, flag register and program counter will be

cleared. Hence, after a reset, the program counter will have an address 0000
H

and so the processor

starts fetching and executing the instruction stored at 0000
H
.

The system designer will store the monitor program starting from the address 0000
H
. The

monitor program should be executed to initialize system peripherals whenever the system is switched

ON. To enable automatic execution of monitor program, whenever the system is switched ON,

the EPROM should be mapped from 0000
H
 location in 8085-based system. Monitor program is a

permanent program written by the system designer to take care of system initializations. System

initializations includes the following :

(a) Programming 8279 for keyboard scanning and display refreshing.

(b) Programming peripheral ICs 8259, 8257, 8255, 8251, 8254, etc.

(c) Initializing stack.

(d) Display a message on display (output) device.

(e) Initializing interrupt vector table.

Microprocessor (8085) And Its Applications 3. 15

Note : 8279 - Programmable keyboard/display controller. 8257 - DMA controller.

8259 - Programmable interrupt controller. 8251 - USART.

8255 - Programmable peripheral interface. 8254 - Programmable timer.

Generation of Chip Select Signals

Decoders are used to generate chip select signals. The 2-to-4 decoder will give four chip

select signals. The 3-to-8 decoder will give eight chip select signals. The 4-to-16 decoder will give

sixteen chip select signals.

Decoder is a logic circuit that identifies each combination of the signals present at its input.

Decoders have n input lines and 2n output lines. In logic low decoder, at any one time one of the 2n

outputs will remain low and all other outputs will remain high.

The output which remains low depends on the input signal. Hence if the decoder outputs are

connected to chip select pins of ICs in the microprocessor system at any one time, only one chip

will be selected. The input to the decoders are unused address lines or high order address lines.

While interfacing memories, low order address lines are connected to memory ICs. The

remaining unused address lines (or high order address lines) are connected to the input of the

decoder. The outputs of the decoder are connected to CS or CE pins of memory ICs.

In a microprocessor-based system, all the memory ICs and peripheral ICs are connected to

a common system bus. Therefore, the data, address and control lines are connected to all the

slaves (memory/peripheral ICs). But all the slaves remain in high impedance state. So, they cannot

communicate with the master (processor) through bus (i.e., they are physically connected but

electrically isolated).

When the address is given out by the processor for read/write operation, only one of the

memory ICs is selected and the selected memory IC will come to normal logic. The selection logic

depends on address decoding logic. All other memory ICs will remain in high impedance state.

So, they are electrically isolated from the system. The read/write operation is performed by the

processor with the selected memory IC.

Decoder

Popular decoders used in the microprocessor-based system are 74LS138 and 74LS139.

The 74LS138 is a 3-to-8 decoder and 74LS139 is dual 2-to-4 decoder.

The 74LS138 decoder consists of 3-input lines, 8-output lines (logic low) and three enables or

ground. In the three enables, two are logic low and one is a logic high enable. The pin configuration of

3-to-8 decoder (74LS138) is shown in Fig. 3.12. The truth table of the decoder is given in Table-3.8.

The 74LS139 decoder consists of two numbers of 2-to-4 decoder packed in a single IC package.

Each decoder has two input pins, four output lines and a logic low enable. The pin configuration of

74LS139 is shown in Fig. 3.13. The truth table of 2-to-4 decoder is given in Table-3.9. In the

74LS139 each decoder can work independently.

3. 16 Chapter 3 Memory And IO Interfacing

Fig. 3.13 : Signals of 74LS139.

®

®1A

Decoder-1

®
®
®

®
®
®
®

®1B

®

®
IPQ

I
P
Q

I
P
Q

2

3

1

16 8

VCC

9

10

11

12

7

5

6

4

In
p
u
t

O
u
tp
u
t

Power Supply

I
P
Q

O
u
tp
u
t

®2A

®2B

®
I
P
Q

14

13

15

In
p
u
t

1E

®

GND

Decoder-2

74LS139
2-to-4
Decoder

1E

1Y0

1Y1

1Y2

1Y3

2Y0

2Y1

2Y2

2Y3

Fig. 3.12 : Signals of 74LS138.

®

®A
3-to-8
Decoder
74LS138

®
®
®
®
®
®
®

®
®

®B
®C

®®®
IPQ

I
P
Q

I
P
Q

1

2

3

6 4 5

G1 G2A G2B

15

14

13

12

11

9

10

7

IPQ

VCC
GND

16 8

Power Supply

In
p
u
t

O
u
tp
u
t

Enables

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

3.8 MEMORY ORGANIZATION IN 8085-BASED SYSTEM

A microprocessor-based system requires both EPROM and RAM. Hence the available memory

space has to be divided between EPROM and RAM. The 8085 has 64kb of addressable memory

space and allotting this address space for EPROM and RAM depends on the system designer as

well as the application for which the system is designed.

Some systems may require large memory space. So, the full memory space is utilized. But

in some systems the memory requirement may be less and in this case the full memory space will

not be utilized. When the full memory space is not utilized, the unused memory addresses can be

used for addressing IO devices. Such IO devices are called memory-mapped IO devices and they

can be accessed similar to that of a memory device.

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

1 0 0

0 1 1

TABLE - 3.8 : TRUTH TABLE OF 3-TO-8 DECODER

Input Output

C B A

0 0 0 1 1 1 1 1 1 1 0

0 0 1 1 1 1 1 1 1 0 1

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 1 1 1 0 1 1 1

1 0 0 1 1 1 0 1 1 1 1

1 0 1 1 1 0 1 1 1 1 1

1 1 0 1 0 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1 1

 X X X H H H H H H H H

Y6

Enables

G
1

 G
2A

G
2B

Y
7 Y5 Y4 Y3 Y2 Y1 Y0

TABLE - 3.9 : TRUTH TABLE OF THE

2-TO- 4 DECODER

 Input Output

B A

0 0 1 1 1 0

0 1 1 1 0 1

1 0 1 0 1 1

1 1 0 1 1 1

X X H H H H

Enable

E

0

0

0

0

1

Y3 Y2 Y1 Y0

Microprocessor (8085) And Its Applications 3. 17

A0 - A15

®

®

®®

®

®

®

®

A
0
-
A

1
5

O
0
-
O

7

O
E

CS

64 kb
EPROM
27512

8-bit
Latch

8085

AD0 - AD7

ALE

8

8 8

8

8

16

D0 - D7

A0 - A7

EN

D0 - D7

A8 - A15

RD

A8 - A15

Fig. 3.14 : Example of implementing 64 kb EPROM in the 8085 system.

8

16

The required EPROM memory capacity of the system can be implemented in one IC or in

multiple ICs. Similarly the RAM capacity of the system can be implemented in one IC or in multiple

ICs. This choice depends on the availability of memory IC and the system designer. Some examples

of memory organizations for 8085 microprocessor-based system are discussed in this section.

Consider a system in which the full memory space 64kb is utilized for EPROM memory. In

this system the entire 16 address lines of the processor are connected to address input pins of

memory IC in order to address the internal locations of memory and Chip Select (CS) pin of

EPROM is permanently tied to logic low (i.e., tied to ground) as shown in Fig. 3.14. Now the

range of address for EPROM is 0000
H
 to FFFF

H
.

Consider a system in which the available 64 kb memory space is equally divided between

EPROM and RAM. Let us implement 32 kb memory capacity of EPROM using single IC 27256.

Similarly, 32 kb RAM capacity is implemented using single IC 62256. The 32 kb memory requires

15 address lines and so the address lines A
0
 - A

14
 of the processor are connected to 15 address pins

of both EPROM and RAM as shown in Fig. 3.15. The unused address line A
15

 is used as a chip

select signal for selecting either EPROM or RAM. The A
15

 line is directly connected to the CS pin

of EPROM and it is inverted and connected to CS pin of RAM. Therefore, the EPROM is selected

when A
15

 = 0 and RAM is selected when A
15

 = 1. The address range of EPROM will be 0000
H
 to

7FFF
H
 and that of RAM will be 8000

H
 to FFFF

H
.

Consider a system in which 32kb memory space is implemented using four 8 kb memory.

Let two 8 kb memory be EPROM and the remaining two be RAM. Each 8kb memory requires 13

address lines. So, the address lines A
0
- A

12
 of the processor are connected to 13 address pins of all

the memory ICs. The address lines A
13

 and A
14

 can be decoded using a 2-to-4 decoder to generate

four chip select signals. These four chip select signals can be used to select one of the four

memory IC at any one time. The address line A
15

 is used as an enable for the decoder. The

simplified schematic of this memory organization is shown in Fig. 3.16 and address allotted to

each memory IC is shown in Table-3.10.

3. 18 Chapter 3 Memory And IO Interfacing

A0 - A15

®

®

®®

®

®

®

®

A
0
-
A

1
4

O
0
-
O

7

O
E

CS

27256

8-Bit
Latch

8085

AD0 - AD7

ALE

8

8 8

8

8

15

D0 - D7

A0 - A7

EN

D0 - D7

A8 - A15

RD

A8 - A15

Fig. 3.15 : Example of implementing 32 kb EPROM and 32 kb RAM in an 8085 system.

RD

®
WR ®

RD

WR

®

®

®

A
0
-
A

1
4

IO
0
-
IO

7

O
E

CS

62256

RD

®®

®15
8

WR

W
E

A15

8

16

TABLE - 3.10 : ADDRESS ALLOCATION FOR MEMORY ICs SHOWN IN FIG. 3.16 Binary address
 Hexa

Device

 Decoder
Input to address pins of memory IC

 address enable/input

A
15

A
14

A
13

 A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

8 kb

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000

EPROM - I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0002
.
.
.
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFF

8kb

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2000

EPROM - II

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2001
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2002
.
.
.
.
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3FFF

8 kb

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000

RAM - I

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4001
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4002
.
.
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 5FFF

8 kb

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6000

RAM -II

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 6001
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 6002

.
.
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7FFF

Microprocessor (8085) And Its Applications 3. 19

Consider a system in which the 64kb memory space is implemented using eight numbers

of 8kb memory. Each 8kb memory requires 13 address lines and so the address line A
0
-A

12
 of the

processor are connected to 13 address pins of all the memory ICs. The address lines A
13

, A
14

 and

A
15

 are decoded using a 3-to-8 decoder to generate eight chip select signals. These eight chip

select signals can be used to select one of the eight memory IC at any one time. Design

example-2 given at the end of this chapter is an example of implementing 64kb address space

using 8 numbers of 8kb memory.

3.9 IO STRUCTURE OF A TYPICAL MICROCOMPUTER

The IO devices connected to a microcomputer system provides an efficient means of

communication between the microcomputer system and the outside world. These IO devices are

commonly called peripherals and include keyboards, CRT displays, printers and disks (floppy disk,

hard disk and Compact Disc (CD)).

The characteristics of the IO devices are normally different from the characteristics of the

microprocessor. Since the characteristics of the IO devices are not compatible with that of the

microprocessor, interface hardware circuitry between the microprocessor and IO device are necessary.

There are three major types of data transfer between the microcomputer and an IO device.

They are as follows:

� Programmed IO

� Interrrupt driven IO

� Direct memory access (DMA)

In programmed IO the data transfer is accomplished through an IO port and controlled by

software. In interrupt driven IO, the IO device will interrupt the processor and initiate data transfer.

In DMA, the data transfer between memory and IO can be performed by bypassing the

A0 - A15

A
0
-

A
1
2

O
0
-

O
7

O
E

CS

8 kb
EPROM-I

2764

8-Bit

Latch

8085

AD0 - AD7

ALE

8 13

D
0
 -

D
7

EN

D0 - D7

RD

A8 - A15

Fig. 3.16 : Example of implementing 16 kb EPROM and 16 kb RAM in an 8085 system.

R
D

WR

RD

WR
A

0
-

A
1
2

O
0
-

O
7

O
E

CS

8 kb

EPROM-II

2764

R
D

138

A15
A

0
-

A
1
2

IO
0
-

IO
7

O
E

CS

8 kb

RAM-I

6264

R
D

13

W
E

A
0
-

A
1
2

IO
0
-

IO
7

O
E

CS

8 kb

RAM-II

6264

R
D

13

W
R

W
E

A
0
-

A
1
2

A
0
-

A
1

2

D
0
-

D
7

A

B

C

2
-t

o
-4

D
e
c
o

d
e
r

8

W
R

A
0
-

A
1
2

D
0
-

D
7

8

A
0
-

A
1
2

D
0
-

D
7

8

A14

A13

Y0

Y1

Y2

Y3

16

8

3. 20 Chapter 3 Memory And IO Interfacing

® ®®

Programmed IO Interrupt IO Direct Memory Access

Standard IO
or

Isolated IO
or

Port IO

Memory-
Mapped IO

® ® ® ®

Block
Transfer
DMA

Cycle
Stealing
DMA

Demand
Transfer
DMA

®

® ®
External Internal

Maskable Non-Maskable Due to
Exceptional
Conditions

Software
Interrupts

®®®®

IO

Fig. 3.17 : IO structure of a typical microcomputer.

microprocessor. Each type of data transfer scheme mentioned above, includes different methods

of data transfer schemes. Figure 3.17 shows all the types of data transfer schemes in a

microcomputer and it can also be called IO structure of a microcomputer.

3.10 INTERFACING IO AND PERIPHERAL DEVICES

The IO devices are generally slow devices. So, they are connected to the system bus

through ports. The ports are buffer IC which is used to temporarily hold the data transmitted from

the microprocessor to IO device or to hold the data transmitted from IO device to the microprocessor.

To data transfer from the input device to the processor the following operations are performed:

� The input device will load the data to the port.

� When the port receives the data, it sends message to the processor to read the data.

� The processor will read the data from the port.

� After the data has been read by the processor the input device will load the next data into the port.

To data transfer from the processor to the output device the following operations are performed:

� The processor will load the data to the port.

� The port will send a message to the output device to read the data.

� The output device will read the data from the port.

� After the data has been read by the output device the processor can load the next data to the port.

INTEL IO Port Devices

The various INTEL IO port devices are 8212, 8155 /8156, 8255, 8355 and 8755.

INTEL 8212

The 8212 is a 24-pin IC. It consists of eight number of D-type latches, each followed by a

tristate buffer. It has 8-input lines DI
1
 to DI

8
 and 8-output lines DO

1
 to DO

8
. The 8212 can be used

as an input or output device and the function is determined by the mode pin. However, it cannot be

used simultaneously for input and output in the same circuit, since its mode pin is hardwired. It has

2-device select signals DS
1
 and DS

2
. The port is selected by the processor by sending appropriate

address to device select pins.

Microprocessor (8085) And Its Applications 3. 21

Output Port : When MD = 1, DS
1
 = 0 and DS

2
 = 1

Input Port : When MD = 0, DS
1
 = 0 and DS

2
 = 1

INTEL 8155

INTEL 8155 has 256 × 8 static RAM, two numbers

of 8-bit parallel IO port (ports A and B), one number of

6-bit parallel IO port (port-C) and 14-bit timer. The ports A

and B can be programmed to work as simple or handshake

input or output port. If port-A and port-B are simple ports

then port-C can be used as input or output port. The timer

can be programmed to operate in four different modes.

INTEL 8155 requires six internal addresses and has one

logic low Chip Select pin (CS). The addresses of internal

devices of 8155 are listed in Table-3.11.

INTEL 8156

INTEL 8156 is same as 8155, but it has logic high Chip Select (CS), i.e., the chip is

selected when CS = 1.

INTEL 8255

It has 3 numbers of 8-bit parallel IO ports (ports A, B and C).

Port-A can be programmed in mode-0, mode-1

or mode-2 as input or output port. Port-B can be

programmed in mode-1 and mode-2 as IO port. When

ports A and B are in mode-0, port-C can be used as

IO port. The individual pins of port-C can be set or reset.

INTEL 8255 requires four internal addresses and has one

logic low Chip Select (CS) pin. The address of internal

devices of 8255 are listed in Table-3.12.

INTEL 8355

It has 2 k × 8 ROM and two numbers of 8-bit port (Ports A and B). The individual pins of

ports A and B can be programmed as input or output lines by sending a control word to DDR (Data

Direction Register). The address of internal devices of 8355 are listed in Table-3.13. The 8355

requires four internal addresses and has one logic low Chip Select (CS) pin.

INTEL 8755

Same as 8355 but has 2 k × 8 EPROM.

INTEL peripheral devices

Apart from port ICs, dedicated programmable

controller/peripheral ICs are used in the system for various

activities. Some of the controller/peripheral devices used

in the 8085 system and their functions and internal

addresses are listed in Table-3.14.

TABLE - 3.11 : INTERNALADDRESS

 OF 8155/8156

Internal device A
2

A
1

A
0

Control Register/
0 0 0Status Register

Port-A 0 0 1

Port-B 0 1 0

Port-C 0 1 1

LSB of Timer 1 0 0

MSB of Timer 1 0 1

TABLE - 3.12 : INTERNAL ADDRESS

 OF 8255

Internal device A
1

A
0

Port-A 0 0

Port-B 0 1

Port-C 1 0

 Control Register 1 1

TABLE - 3.13 : INTERNAL ADDRESS

OF 8355/8755

Internal device A
1

A
0

Port-A 0 0

Port-B 0 1

DDR A 1 0

DDR B 1 1

3. 22 Chapter 3 Memory And IO Interfacing

TABLE - 3.14 : FUNCTIONS AND INTERNAL ADDRESSES OF PERIPHERAL DEVICES

Device Function Internal addresses

INTEL Keyboard/display controller. Two-internal addresses

8279 Used for keyboard scanning A
0
 = 0 → Data register

and display refreshing. A
0
 = 1 → Control register

INTEL DMA controller. Used for supporting Sixteen-internal addresses

8257 DMA access to the IO device. It acts A
3

A
2

A
1

A
0

or as a master during the DMA mode. It 0 0 0 0

INTEL is a slave device during programming 0 0 0 1

8237 mode.

1 1 1 1

INTEL Interrupt controller. Used to expand Two-internal addresses

8259 the hardware interrupt INTR to eight A
0
 = 0

interrupts in an 8085-based system and A
0
 = 1

256 interrupts in an 8086-based system.

INTEL Programmable timer. Four-internal addresses

8253/ Used in the system to produce A
1

A
0

8254 various timing signals. It has three Counter-0 0 0

independent counters and can be Counter-1 0 1

programmed in six operating modes. Counter-2 1 0

Control Register 1 1

INTEL Universal Synchronous/Asynchronous Two-internal addresses

8251 Receiver Transmitter. C/D = 0 → Data register

(USART) Used for serial data communication. C/D = 1 → Control register

IO Mapping

The port and peripheral devices will have one logic low/high chip select pin. The processor

can access the port/peripheral device by supplying internal address and chip select signals. Therefore,

the port and peripheral device interfacing (IO interfacing) deals with allocation of various internal

addresses and generation of chip select signals.

There are two ways of interfacing IO devices in 8085-based system.

� Memory-mapped IO device.

� Standard IO-mapped IO device or Isolated IO mapping.

Note : The interfacing of IO ports and controller/peripheral ICs are commonly referred as IO

device mapping.

In memory mapping of IO devices the ports are allotted a 16-bit address like that of the

memory location. Some of the chip select signals generated to select memory ICs are used for

selecting the IO port devices. Hence, the processor treats the IO ports as memory locations for

reading and writing (i.e., the devices which are mapped by memory mapping are accessed by

executing memory read cycle or memory write cycle).

In standard IO mapping or isolated IO mapping, a separate 8-bit address is allotted for the

IO ports and the peripheral ICs. The processor differentiates the IO-mapped devices, from the

memory-mapped devices in the following ways:

Microprocessor (8085) And Its Applications 3. 23

MEMW

RD

IO/M

WR

MEMR

IOR

IOW

Fig. 3.18 : Circuit to generate separate read and write signals for memory
and IO devices in an 8085-based system.

1. For accessing the IO-mapped devices the processor executes IO read or write cycle.

2. During IO read or write cycle, the 8-bit address is placed on both low order address lines and the high order

address lines.

3. IO/M is asserted high to indicate the IO operation (for read as well as write).

A 8085 processor does not provide separate read (RD) and write (WR)signals for memory

and IO devices. But it differentiates the memory and IO device accessed by IO/M signal. The

three signals RD, WR and IO/M can be decoded as shown in Fig. 3.18 to provide separate read

and write control signals for IO devices and memory devices.

When the devices are IO-mapped, then only IN and OUT instructions have to be used for

data transfer between the device and the processor. For the IO-mapped devices a separate decoder

should be used to generate the required chip select signals.

TABLE - 3.15 : COMPARISON OF MEMORY MAPPING AND IO MAPPING OF IO DEVICE

Memory mapping of IO device

1.16-bit addresses are provided for IO devices.

2.The devices are accessed by memory read or

memory write cycles.

3.The IO ports or peripherals can be treated like

memory locations and so all instructions related

to memory can be used for data transfer between

the IO device and the processor.

4. In memory-mapped ports, the data can be moved

from any register to the ports and vice versa.

5.When memory mapping is used for IO devices,

the full memory address space cannot be used

for addressing memory. Hence memory mapping

is useful only for small systems, where the

memory requirement is less.

6. In memory-mapped IO devices, a large number

of IO ports can be interfaced.

7.For accessing memory-mapped devices, the

processor executes the memory read or write cycle.

During this cycle, IO/M is asserted low (IO/M= 0).

IO mapping of IO device

1. 8-bit addresses are provided for IO devices.

2. The devices are accessed by IO read or IO write

cycle. During these cycles, the 8-bit address is

available on both low order address lines and

high order address lines.

3. Only IN and OUT instructions can be used for

data transfer between the IO device and the

processor.

4. In IO-mapped ports, the data transfer can take

place only between the accumulator and the ports.

5. When IO mapping is used for IO devices, then the

full memory address space can be used for

addressing the memory. Hence it is suitable for

systems which requires a large memory capacity.

6. In IO mapping, only 256 ports (28 = 256) can be

interfaced.

7. For accessing the IO-mapped devices, the

processor executes the IO read or write cycle.

During this cycle, IO/M is asserted high (IO/M=1).

3. 24 Chapter 3 Memory And IO Interfacing

DESIGN EXAMPLE - 1

Interface two numbers of 4 kb EPROM and one number of 8 kb RAM with 8085 processor. Explain the interface

diagram and allocate binary addresses to memory ICs.

Solution

The IC 2732 is selected for EPROM memory and the IC 6264 is selected for RAM memory. Both the

memory IC's have time compatibility with 8085 processor.

The 4 kb EPROM IC requires 12 address lines (212 = 4 k). The 8 kb RAM IC requires 13 address lines

(213 = 8 k). The address lines A
0
 - A

11
 are connected to both EPROM and RAM address input pins. The

address lines A
13

, A
14

 and A
15

 are not used for memory address. Hence by decoding these address lines we

can generate chip select signals.

The 3-to-8 decoder, 74LS138 is employed to produce the chip select signals for the system. The

decoder has 8-output lines which can be used as 8-chip select signals. In this, three chip select signals are

used for selecting memory ICs and the remaining five can be used for selecting other peripheral ICs in the

system or for future expansion of the memory capacity. The interface diagram is shown in Fig. DE1.

Addresss allotted to memory ICs are shown in Table-DE1.

The EPROM's are mapped in the beginning of memory space. The remaining addresses can be

allotted to RAM's. The EPROM memory is mapped from 0000
H
 to 0FFF

H
 and 2000

H
 to 2FFF

H
. The RAM

memory is mapped from 4000
H
 to 5FFF

H
.

A
0
-

A
1
1

O
0
-

O
7

R
D

CS

2732

4 k 8

EPROM I

×

D-Latch

74LS373

(8-Bit)

8085

AD0 - AD7

ALE

8

8

12

D0 - D7

A0 - A7

EN

D0 - D7

A8 - A15

RD

A8 - A15

Fig. DE1 : Memory interface diagram for Design Example - 1.

WR

RD

WR

CS

12

8

A
0
-

A
1
1

O
E

R
D

A
0
-

A
1
1

D0 - D7

8

A
0
-

A
1
5

IO
0
-

IO
7

O
E

CS

13

W
E

R
D

A
0
-

A
1
2

D0 - D7

8

A
0
-

A
11

O
0
-

O
7

O
E

16

A0 - A15

W
R

2732

4 k 8

EPROM II

×

6264

8 k 8

RAM

×

A13

A14

A15

+5-V

G2A

A

B

C

G2B

G1 3
-t

o
-8

 D
ec

o
d

e
r

7
4

L
S

1
3
8

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Data Bus

Microprocessor (8085) And Its Applications 3. 25

DESIGN EXAMPLE - 2

Interface three numbers of 8 kb EPROM and 5 numbers of 8 kb static RAM to microprocessor 8085 to have a total

memory capacity of 64kb.

Solution

The IC 2764 is selected for EPROM memory and the IC 6264 is selected for RAM memory. Both the

memory ICs have time compatibility with the 8085 processor.

The 8 kb EPROM IC requires 13 address lines (213 = 8 k). The 8 kb RAM IC also requires 13 address

lines (213 = 8 k). The address lines A
0
- A

12
 are connected to all the EPROM's and RAMs. Hence A

0
- A

12
 will

select the required memory location.The address lines A
13

, A
14

 and A
15

 are not used for memory address.

Hence by decoding these address lines we can generate chip select signals.

The 3-to-8 decoder, 74LS138 is employed to produce the chip select signals for the system. The

decoder has 8-output lines which can be used as 8-chip select signals. All the 8-chip select signals are

used to select memory ICs. EPROM's are mapped at the beginning of memory space. The decoder will

select a memory IC by decoding the address lines A
13

, A
14

 and A
15

. The address lines A
0
- A

12
 will select a

particular memory location in the selected IC. The interface diagram is shown in Fig. DE2 and address

allocation table is shown in Table-DE2.

TABLE - DE1 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE - 1 Binary address

Memory Hexa
IC

 Decoder
 Input to memory address pins

 address input

A
15

A
14

A
13

 A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

EPROM I 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0000
2732 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 1 0001

.

.

.
0 0 0 X 1 1 1 1 1 1 1 1 1 1 1 1 0FFF

EPROM II 0 0 1 X 0 0 0 0 0 0 0 0 0 0 0 0 2000
2732 0 0 1 X 0 0 0 0 0 0 0 0 0 0 0 1 2001

.

.

.
0 0 1 X 1 1 1 1 1 1 1 1 1 1 1 1 2FFF

RAM 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000
6264 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4001

.

.

.
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 5FFF

Note : X indicates the unused address line for the particular memory IC and they are

considered as zero.

3. 26 Chapter 3 Memory And IO Interfacing

A-A 012

8
0
8
5

 D

 -
 L

a
tc

h

 7

4
L

S
3

7
3

 (

8
-B

it
)

↓ F
ig

.
D

E
2
 :

 M
e

m
o
ry

 i
n
te

rf
a

c
e

 d
ia

g
ra

m
 f
o
r

D
e
s
ig

n
 E

x
a
m

p
le

 -
 2

.

→
←

A
D

 -
 A

D
0

7

↑

→ →

↓

↑

OE

A-A 012

O-O 07

2
7
6

4

8
 k

 ×
 8

E
P

R
O

M
-I

C
S

↓
↓

↑

OE

A-A 012

O-O 07

2
7
6

4

8
 k

 ×
 8

E
P

R
O

M
-I

I

C
S

↓
↓

↑

OE

A-A 012

O-O 07

2
7
6

4

8
 k

 ×
 8

E
P

R
O

M
-I

II

C
S

↓
↓

↑

OE

A-A 012

6
2
6

4

8
 k

 ×
 8

R
A

M
 I

C
S

↓
↓

↓

↑

OE

A-A 012

IO-IO 07

6
2
6

4

8
 k

 ×
 8

R
A

M
 I

I

C
S

↓
↓

↓

↑

OE

A-A 012

6
2
6

4

8
 k

 ×
 8

R
A

M
 I

II

C
S

↓
↓

↓

↑

OE

A-A 012

6
2
6

4

8
 k

 ×
 8

R
A

M
 I

V

C
S

↓
↓

↓

↑

OE

A-A 012

6
2
6

4

8
 k

 ×
 8

R
A

M
 V

C
S

↓
A

L
E

A
 -

 A
8

1
5

R
D

W
R

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

→ → →

A B C G
1

G
2
A

G
2
B

A
1
3

A
1
4

A
1
5

+
5
-V

3-to-8 Decoder

74LS138

R
D

W
R

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

→ →

↓
↓

↓
↓

↓

A
 -

 A
0

7
A

 -
 A

0
1
5

D
 -

 D
0

7

8

8
8

8
8

8
8

8
8

8
1

6

8

8

3

A
 -

 A
8

1
5

WE

WE

WE

WE

IO-IO 07

IO-IO 07

WE

IO-IO 07

↑
↑

↑
↑

↑
↑

↑
↑

A-A 012

A-A 012

A-A 012

A-A 012

A-A 012

A-A 012

RD

R
D

R
D

R
D

WR

WR

RD

A-A 012

WR

RD

WR

RD

WR

RD

E
N

IO- IO 0 7

→

Microprocessor (8085) And Its Applications 3. 27

TABLE - DE2 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE- 2

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

EPROM I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0002
.
.
.
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFF

EPROM II 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2000
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2001
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 2002
.
.
.
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3FFF

EPROM III 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4000
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4001
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4002
.
.
.
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 5FFF

RAM I 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 6000
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 6001
0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 6002
.
.
.
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7FFF

RAM II 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8000
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8001
1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 8002
.
.
.
1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 9FFF

RAM III 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 A000
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 A001
1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 A002
.
.
.
1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 BFFF

RAM IV 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C000
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 C001
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 C002
.
.
.
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 DFFF

RAM V 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E000
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 E001
1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 E002
.
.
.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FFFF

Decoder
input Input to memory address pins

 Hexa

address

 Memory

 IC chip

Binary address

3. 28 Chapter 3 Memory And IO Interfacing

In this system the full memory capacity of 64 kb is utilized for memory. Hence the peripheral ICs and

the IO ports should be IO-mapped in the system. The EPROM is mapped from 0000
H
 to 5FFF

H
. The RAM

is mapped from 6000
H
 to FFFF

H
. The EPROM capacity is 24 kb. The RAM capacity is 40 kb.

DESIGN EXAMPLE - 3

In a microprocessor system using 8085, the memory requirement is 8 kb EPROM and 8 kb RAM. For interfacing IO
devices, three numbers of 8255 are required. Select suitable memories and explain how they are interfaced to the system.
Interface the 8255 by memory mapping.

Solution

The IC 2764 is selected for EPROM memory and the IC 6264 is selected for RAM memory. Both the
memory IC's have time compatibility with 8085 processor.

The 8 kb EPROM, 2764 requires 13 address lines (213 = 8 k). The 8 kb RAM, 6264 also requires 13
address lines (213 = 8 k). The address lines A

0
 to A

12
 are connected to both EPROM and RAM memory ICs.

The 8255 requires four internal addresses. Let us connect A
1
 of 8085 to A

0
 of 8255 and A

2
 of 8085 to A

1
 of

8255. The 8255 is memory-mapped in the system.

Note : The internal devices of 8255 can be selected by connecting any two address lines of the

processor to A
0
 and A

1
 of 8255.

For the memories and 8255's we require 5 chip select signals. Hence we can use a 3-to-8 decoder

74LS138 for generating eight chip select signals by decoding the unused address lines A
13

, A
14

 and A
15

.

The decoder enabled pins are permanently tied to appropriate levels. In the eight chip select signals, five

are used for selecting memory ICs and 8255 and the remaining three can be used for future expansion. The

memory/8255 interface diagram is shown in Fig. DE3.

8085

 D - Latch

 74LS373
 (8-Bit)

↓

Fig. DE3 : Memory interface diagram for Design Example - 3.

→

←AD - AD0 7

↑

→
→

↓

↑

O
E

A
-

A
0

1
2

O
-

O
0

7

2764

8 k × 8
EPROM

CS

ALE

A - A8 15

RD

WR

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A

B

C

G1

G2A

G2B

+5-V

RD

WR

A - A0 7

D - D0 7

8

8

8

8

8

3

A - A8 15

↑

EN

O
E

A
-

A
0

1
2

IO
-

IO
0

7

6264

8 k × 8
RAM

O
E

A
,A

0
1

D
-

D
0

7

8255 I

O
E

O
E

R
D

W
R

↓ ↓

↑
8

↓ ↓ ↓ ↓

↑
8

↓ ↓ ↓ ↓

↑
8

↓ ↓ ↓ ↓

↑
8

↓ ↓

R
D

R
D

R
D

R
D

W
R

W
R

W
R

W
E

W
E

W
E

W
E

D
-

D
0

7

D
-

D
0

7

CS CS CS CS

→
→
→
→
→
→
→
→

→

→

→

3
-t

o
-8

 d
e
co

d
er

7
4

L
S

1
3
8

To EPROM

To 8255 I

To 8255 II

To 8255 III

To RAM

A13

A14

A15

8

↑ ↑ ↑ ↑
Y0 Y7 Y2 Y3 Y4

8255 II 8255 III

A
, A

0
1

A
, A

0
1

A
-

A
0

1
2

13 13 2 2 2

A
-

A
0

1
2

A
,A

1
2

A
,A

1
2

A
,A

1
2

→→

→

Microprocessor (8085) And Its Applications 3. 29

TABLE - DE3 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE - 3 Device Hexa address

A
15

 A
14

 A
13

A
12

 A
11

 A
10

 A
9

A
8

A
7

A
6

 A
5

 A
4

A
3

A
2

A
1

A
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000

2764

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001

EPROM

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0002

.

.

.

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFF

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E000

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 E001

 6264 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 E002

 RAM

.

.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FFFF

 8255 I

 Port-A 0 1 0 X X X X X X X X X X 0 0 X 4000

 Port-B 0 1 0 X X X X X X X X X X 0 1 X 4002

 Port-C 0 1 0 X X X X X X X X X X 1 0 X 4004

 Control register 0 1 0 X X X X X X X X X X 1 1 X 4006

8255 II

 Port-A 0 1 1 X X X X X X X X X X 0 0 X 6000

 Port-B 0 1 1 X X X X X X X X X X 0 1 X 6002

 Port-C 0 1 1 X X X X X X X X X X 1 0 X 6004

 Control register 0 1 1 X X X X X X X X X X 1 1 X 6006

8255 III

 Port-A 1 0 0 X X X X X X X X X X 0 0 X 8000

 Port-B 1 0 0 X X X X X X X X X X 0 1 X 8002

 Port-C 1 0 0 X X X X X X X X X X 1 0 X 8004

 Control register 1 0 0 X X X X X X X X X X 1 1 X 8006

The EPROM is mapped at the starting of memory space. The RAM is mapped at the end of memory
space. The EPROM is mapped from 0000

H
 to 1FFF

H
. The RAM is mapped from E000

H
 to FFFF

H
. The four

internal devices of 8255 are control register, port-A, port-B and port-C. A 16-bit address is allotted to each

internal device of 8255 as shown in Table-DE3.

DESIGN EXAMPLE - 4

Interface 2 kb RAM and 256 × 8 ROM with 8085 processor to satisfy the total memory requirement of 8 kb RAM and

1 kb ROM.

Solution
The memory requirement of 8 kb RAM can be achieved with 4 numbers of 2 kb RAM. The memory

requirement of 1kb ROM can be achieved with 4 numbers of 256 × 8 ROM. (4 × 256 = 1024 = 1k). The 2 kb

RAM requires 11 address lines (211 = 2 k). The 256 × 8 ROM requires 8 address lines (28 = 256). The address

Note : The X indicates that the address line is not used for the particular device and they are

considered as zero.

Binary address

Decoder
input

Input to address pins of memory/8255

3. 30 Chapter 3 Memory And IO Interfacing

A-A 07

8
0
8
5

 D

 -
 L

a
tc

h

 7

4
L

S
3

7
3

 (

8
-B

it
)

↓

F
ig

.
D

E
4
 :

 M
e

m
o
ry

 i
n
te

rf
a

c
e

 d
ia

g
ra

m
 f
o
r

D
e
s
ig

n
 E

x
a
m

p
le

 -
 4

.

→
←

A
D

 -
 A

D
0

7

↑

→ →

↓

↑

OE

A-A 07

O-O 07

2

5
6
×

 8
R

O
M

 I

C
S

↓
↓

↑

OE

O-O 07

2
5
6

 ×
 8

R
O

M
 I

I

C
S

↓
↓

↑

OE

O-O 07

2
5
6

 ×
 8

R
O

M
 I

II

C
S

↓
↓

↑

OE

O-O 07

2
5
6

 ×
 8

R
O

M
 I

V

C
S

↓
↓

↑

OE

A-A 010

IO-IO 07

2
 k

 ×
 8

R
A

M
 I

C
S

↓
↓

↓

↑

OE 2
 k

 ×
 8

R
A

M
 I

I

C
S

↓
↓

↓

↑

OE 2
 k

 ×
 8

R
A

M
 I

II

C
S

↓
↓

↓

↑

OE 2
 k

 ×
 8

R
A

M
 I

V

C
S

↓
A

L
E

A
 -

 A
8

1
5

R
D

W
R

1
Y

0

1
Y

1

1
Y

2

1
Y

3

2
Y

0

2
Y

1

2
Y

2

2
Y

3

→ → →

1
A

1
B

1
E 2
A

A
8

A
9

A
1
1

R
D

W
R

8
8

8
8

11
11

11
11

→ →

↓
↓

↓
↓

A
 -

 A
0

7
A

 -
 A

0
1
5

D
 -

 D
0

7

8

8
8

8
8

8
8

8
8

8
1

6

8

8

A
 -

 A
8

1
5

WE

WE

WE

IO-IO 07

IO-IO 07

WE

IO-IO 07

↑
↑

↑
↑

↑
↑

↑
↑

WR
A-A 010

A
 -

 A
1
0

1
5

→ → →
A

 -
 A

1
3

1
5

A
1
2

36

2
B

2
E

7
4
L

S
1

3
9

D
u

a
l

2
-t

o
-4

D
e
c
o
d

e
r

E
N

RD

RD

RD

RD

RD

RD

RD

RD

WR

WR

WR

A-A 07

A-A 07

A-A 07

A-A 010

A-A 010

A-A 010

A-A 07

A-A 07

A-A 07

A-A 010

A-A 010

A-A 010

Microprocessor (8085) And Its Applications 3. 31

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000
 256 × 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001
 ROM I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0002

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 00FF
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0100

256 × 8 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0101
ROM II 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0102

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 01FF

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0200
 256 × 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0201

ROM III 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0202

0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 02FF

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0300
256 × 8 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0301
ROM IV 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0302

0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 03FF

A
15

A
14

A
13

A
12

 A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 2 k × 8 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E000

RAM I 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 E001
1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 E002
.
.
1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 E7FF

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 E800

 2 k × 8 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1 E801
 RAM II 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 E802

.

.
1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 EFFF

1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 F000
2 k × 8 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 F001
RAM III 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 F002

.

.
1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 F7FF

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 F800
2 k × 8 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 F801
RAM IV 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 0 F802

.

.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FFFF

 Device
ROM decoder enable Input to ROM memory

address pins

 Hexa

 address
Decoder

input

 Device RAM decoder
enable

Input to RAM memory address pins

 Hexa
addressDecoder

input

Binary address

Binary address

TABLE - DE4 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE-4

3. 32 Chapter 3 Memory And IO Interfacing

lines A
0
 - A

10
 are connected to RAM ICs. Hence, they will select the required memory location in that ICs.

The address lines A
0
 - A

7
 are connected to ROM ICs. Hence, they will select the required memory location

in those ICs.

Totally there are 8-memory ICs hence we require 8-chip select signals. The 8-chip select signals

can be generated by using a dual 2-to-4 decoder 74LS139. One of the 2-to-4 decoder is used to generate

chip select signals for ROM memory ICs and the other decoder is used to generate chip select signals for

RAM memory ICs. The address lines A
8
 and A

9
 are used to generate chip select signals for ROM memory.

The address lines A
10

 to A
15

 are logically ORed and used as enable for ROM decoder. The address lines

A
11

 and A
12

 are used to generate chip select signals for RAM memory. The address lines A
13

 to A
15

 are

logically NANDed and used as enable for RAM decoder.

ROM memories are mapped in the beginning of memory space. The RAM memories are mapped at

the end of memory space. The ROM memories are mapped from 0000
H
 to 03FF

H
. The RAM memories are

mapped from E000
H
 to FFFF

H
.

DESIGN EXAMPLE - 5

A system requires 16 kb EPROM and 16 kb RAM. Also the system has 2 numbers of 8255, one number of 8279, one

number of 8251 and one number of 8254.

(8255 - Programmable peripheral interface, 8279-Keyboard/display controller, 8251 - USART and 8254 - Timer)

Draw the Interface diagram. Allocate addresses to all the devices. The peripheral IC's should be IO-mapped.

Solution

The IO devices in the system should be mapped by standard IO mapping. Hence separate decoders

can be used to generate chip select signals for memory IC's and peripheral IC's.

For 16 kb EPROM, we can provide 2 numbers of 2764 (8 k × 8) EPROM. For 16 kb RAM we can

provide 2 numbers of 6264 (8 k × 8) RAM.

The 8 kb memory requires 13 address lines (213 = 8 k). Hence the address lines A
0
 - A

12
 are used for

selecting the memory locations. The unused address lines A
13

, A
14

 and A
15

 are used as input to decoder

74LS138 (3-to-8-decoder) of memory IC. The logic low enables of this decoder are tied to IO/M of 8085, so

that this decoder is enabled for memory read/write operation. The other enable pins of decoder are tied to

appropriate logic levels permanently. The 4 outputs of the decoder are used to select memory IC's and the

remaining 4 are kept for future expansion.

The EPROM is mapped in the beginning of memory space from 0000
H
 to 3FFF

H
. The RAM is

mapped at the end of memory space from C000
H
 to FFFF

H.

There are five peripheral IC's to be interfaced to the system. The chip select signals for these IC's are

given through another 3-to-8 decoder 74LS138 (IO decoder). The input to this decoder is A
10

, A
11

 and A
12

. The

address lines A
13

, A
14

 and A
15

 are logically ORed and applied to low enable of IO decoder. The logic high enable

of IO decoder is tied to IO/M signal of 8085, so that this decoder is enabled for IO read/write operation.

Here, the high order address lines can be used for decoding because the processor outputs the

8-bit port address both on AD
0
 to AD

7
 and A

8
 to A

15
. The address lines A

0
 and A

1
 are used to select the

internal devices of the peripheral ICs. The output of the decoder are used to select the ICs. Three outputs

of the decoder will be spare for future expansion.

 Note : Since the IO devices are IO-mapped in the system, 8-bit addresses have been allotted to them.

Microprocessor (8085) And Its Applications 3. 33

8085

D - Latch
74LS373
(8-bit)

¯

Fig. DE5 : Interface diagram for Design Example - 5.

¬AD - AD0 7

®
®

¯

O
E

A
-
A

0
1
2

O
-
O

0
7

2764

8k ´ 8
EPROM I

CS

ALE

A - A8 15

RD

WR

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A

B

C

G1

G2A

G2B

+5-V

RD

WR

A - A0 7

D - D0 7

8

8

8

8

8

5

A - A8 15

EN

O
E

A
-
A

0
1
2

O
-
O

0
7

2764

8k ´ 8
EPROM II

O
E

O
E

R
D

¯

8

¯ ¯ ¯

8

¯ ¯ ¯ ¯

8

¯ ¯
R
D

R
D

R
D

W
R

W
R

W
E

W
E

CS CS CS

®
®
®
®
®
®
®
®

®
®
®

3
-t
o
-8
d
ec
o
d
er

7
4
L
S
1
3
8

To EPROM I

To RAM I

A13

A14

A15

Y0 Y1 Y6 Y7

A
-
A

0
1
2

13 13 13 13

®

®
®

To EPROM II

To RAM II

Z0
A

B

C

G1

G2A

G2B

®
®
®
®
®
®
®
®

®
®
®

3
-t
o
-8
d
ec
o
d
er

7
4
L
S
1
3
8

8255 IA10

A11

A12

®
®

Z1

Z2

Z3

Z4

Z5

Z6

Z7

8255 II

8279

8251

8254

®
3

A - A13 15

®
IO/M

IO/M ¬
¬

¯ ¯

A
,A
0

1

8255 I

CS

¯

8

¯

W
R

A
,A
0

1

R
D

D
-
D

0
7

R
D

W
R

¯ ¯

A
,A
0

1

8255 II

CS

¯

8

¯

W
R

A
,A
0

1

R
D

D
-
D

0
7

R
D

W
R

¯ ¯

A
0

8279

CS

¯

8

¯

W
R

A
0

R
D

D
-
D

0
7

R
D

W
R

¯ ¯

C
/D

8251

CS

¯

8

¯

W
R

A
0

R
D

D
-
D

0
7

R
D

W
R

¯ ¯

A
,A
0

1

8254

CS

¯

8

¯

W
R

R
D

D
-
D

0
7

R
D

W
R

Z0 Z1 Z2 Z3 Z4

®IO/M IO/M

6264

8k ´ 8
RAM I

6264

8k ´ 8
RAM II

A
-
A

0
1
2

A
-
A

0
1
2

A - A0 15

16

A
-
A

0
1
2

A
-
A

0
1
2

D
-
D

0
7

A
-
A

0
1
2

D
-
D

0
7

A
-
A

0
1
2

IO
-
IO

0
7

IO
-
IO

0
7

A
-
A

0
1
2

A
,A
0

1

®

3. 34 Chapter 3 Memory And IO Interfacing

TABLE - DE5 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE- 5

Device Hexa address
A

15
A

14
A

13
A

12
A

11
A

10
A

9
A

8
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000
.
.
.
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFF

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2000

.

.

.
0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 3FFF

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C000
.
.
.
1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 DFFF

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 E000

.

.

.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 FFFF

A
15

A
14

A
13

A
12

A
11

A
10

A
9

 A
8

A
7

A
6

A
5

A
4

A
3

 A
2

A
1

A
0

8255 I

 Port-A 0 0 0 0 0 0 0 0 00

 Port-B 0 0 0 0 0 0 0 1 01

 Port-C 0 0 0 0 0 0 1 0 02

 Control register 0 0 0 0 0 0 1 1 03

 8255 II
 Port-A 0 0 0 0 0 1 0 0 04
 Port-B 0 0 0 0 0 1 0 1 05
 Port-C 0 0 0 0 0 1 1 0 06
 Control register 0 0 0 0 0 1 1 1 07

 8279
Data register 0 0 0 0 1 0 X 0 08
Control register 0 0 0 0 1 0 X 1 09

 8251
 Data register 0 0 0 0 1 1 X 0 0C
 Control register 0 0 0 0 1 1 X 1 0D

 8254
 Counter-0 0 0 0 1 0 0 0 0 10
 Counter-1 0 0 0 1 0 0 0 1 11
 Counter-2 0 0 0 1 0 0 1 0 12

 Control register 0 0 0 1 0 0 1 1 13

Binary address

Input to memory
decoder Input to memory address pins

2764 I

8 k × 8

2764 II

8 k × 8

6264 II

8 k × 8

6264 I

8 k × 8

Note : Don't care (X) is considered as zero.

Binary address

IO decoder
enable

IO decoder
input

Input to IO device
address pinsDevice

Hexa

 address

Microprocessor (8085) And Its Applications 3. 35

DESIGN EXAMPLE - 6

In a microprocessor-based system 8085, 8 kb EPROM and 8 kb RAM are needed. For interfacing IO devices two numbers of 8155

are required. Select suitable memories and explain how they are interfaced in the system. Interface the 8155 ports by IO mapping.

Solution

The IC 2764 (8 k × 8) is selected for EPROM memory and IC 6264 (8 k × 8) is selected for RAM

memory. Both the memory IC's have time compatibility with 8085 processor.

The 8kb memories require 13 address lines (213 = 8 k). Hence, the address lines A
0
 - A

12
 are used to

select memory locations.

In addition to 6264, each one of the 8155 chip provides a static RAM capacity of 256 bytes. The

RAM locations of 8155 are selected by address lines A
0
-A

6
.

A 3-to-8 decoder, 74LS138 is used for generating chip select signals by decoding the address lines

A
13

, A
14

 and A
15

.

The 8155 has internal address latch and decoder to differentiate memory operation and IO operation.

To utilize this facility, the control signals ALE and IO/M are connected to 8155.

The 8155 ports and memory locations can be selected from the decoder used for memory

devices. It differentiates the memory and IO operation from IO/M signal. Eight bit addresses are allotted

to ports of 8155 and sixteen bit addresses are allotted to RAM memory locations of 8155.

Fig. DE6 : Interface diagram for Design Example - 6.

8085

D - Latch
74LS373
(8-Bit)

¯

¬AD - AD0 7

®
®

¯

O
E

A
-
A

0
1
2

O
-
O

0
7

2764

8 k ´ 8
EPROM

CS

ALE

A - A8 15

RD

WR

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

A

B

C

G1

G
2
A

G
2
B

+5-V

A - A0 7

AD - AD /D - D0 7 0 7

8
8

8

8

3

A - A8 15

EN

R
D

®

®

®

3
-t
o
-8
D
ec
o
d
er

7
4
L
S
1
3
8

A13

A14

A15

A
-
A

0
1
2

13

®

¯

®

¯ ¯

A
-
A

0
1
2

IO
-
IO

0
7

6264

8 k ´ 8
RAM

CS

8

R
D

A
-
A

0
1
2

13

¯ ¯

W
R

¯ ¯

8155 - I

CS

8
A
D
-A
D

0
7

¯¯̄¯

R
D

¯ ¯

CS

8

¯¯̄¯

R
D

¯

8155 - II

IO/M W
R

IO
/M

W
R

IO
/M

A
D
-A
D

0
7

¯ ¯ ¯

A
D
-
A
D

0
7

A
D
-
A
D

0
7

A
L
E

A
L
E

R
D

W
E

R
D

W
R

IO
/M

A
L
E

A
D
-
A
D

0
7

R
D

W
R

IO
/M

A
L
E

A
D
-
A
D

0
7

16

®

®
A - A0 15

®

®

3. 36 Chapter 3 Memory And IO Interfacing

TABLE - DE6 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE - 6

Note : Don't care (X) is considered as zero.

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0000

 2764 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001

8 k × 8

 EPROM

.

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1FFF

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2000

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2001

 6264

8k × 8

 RAM

0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3FFF

RAM

1 1 0 X X X X X 0 0 0 0 0 0 0 0 C000

.

 256 × 8
.

1 1 0 X X X X X 1 1 1 1 1 1 1 1 C0FF

 Control register 1 1 0 X X 0 0 0 C0

 Port-A 1 1 0 X X 0 0 1 C1

 Port-B 1 1 0 X X 0 1 0 C2

 Port-C 1 1 0 X X 0 1 1 C3

 LSB timer 1 1 0 X X 1 0 0 C4

 MSB timer 1 1 0 X X 1 0 1 C5

RAM

1 1 1 X X X X X 0 0 0 0 0 0 0 0 E000

.

 256 × 8
.

1 1 1 X X X X X 1 1 1 1 1 1 1 1 E0FF

 Control register 1 1 1 X X 0 0 0 E0

 Port-A 1 1 1 X X 0 0 1 E1

 Port-B 1 1 1 X X 0 1 0 E2

 Port-C 1 1 1 X X 0 1 1 E3

 LSB timer 1 1 1 X X 1 0 0 E4

 MSB timer 1 1 1 X X 1 0 1 E5

Decoder

 input
Input to address pins of memory/8155

Binary address

Device
Hexa

address

 8155 I

8155 II

Microprocessor (8085) And Its Applications 3. 37

3.11 SUMMARY

� The function of the memory is to store programs and data.

� The memories of a microcomputer system can be classified into processor memory, primary or main memory and

secondary memory.

� The processor memory are a set of microprocessor registers.

� Primary or main memory is the storage area that is directly accessed by the microprocessor.

� The primary memories are semiconductor devices.

� The semiconductor memories are ROM, EPROM, EEPROM, static RAM, DRAM and NVRAM.

� The typical semiconductor memory IC will have n address pins and m data pin. The capacity of such a memory will be

2n x m bits.

� The common features of semiconductor memories are random access and non-destructive readout.

� The ROM is read only memory and it is non-volatile.

� The memory cell of ROM memory will have a MOS transistor either with open gate (representing 0) or closed gate

(representing 1).

� The EPROM is a semiconductor read only memory capable of reprogramming.

� The EPROM is non-volatile and has random access feature.

� The EPROM can be erased by passing UV light.

� The memory cell of EPROM consist of a MOS transistor with isolated gate.

� Read/write semiconductor memories are called RAM.

� The RAM memories are volatile and have random access feature.

� The memory cell in static RAM is a flip-flop made of 6 to 8 MOS transistors.

� The DRAM’s are read/write memories in which the information is stored in the form of electric charge on the gate to

substrate capacitance of a MOS transistor.

� The contents of DRAM’s has to be refreshed periodically by the refreshing circuit.

� Large capacity DRAM’s are cheaper than static RAM.

� The various types of non-volatile RAM are flash memory, EEPROM and shadow RAM.

� The primary function of memory interfacing is that the microprocessor should be able to read and write into a set of

semiconductor memory IC chip.

� Memory interfacing deals with choosing memories with suitable access time, generating chip select signal and control

signals for read/write operation.

� A memory IC with n address pins will have 2n memory location.

� The EPROM is used for storing monitor program, other permanent programs and data.

� The RAM memory is used for stack, temporary program and data storage.

� In 8085 system, the EPROM is mapped at the beginning of memory space in order to achieve automatic execution of

monitor program after reset.

� Monitor program is a permanent program written by system designer for initializing system parameters.

� The decoders are used for generating chip select signals.

� The decoders will have n input lines and 2n output lines. In logic low decoder, at anyone time one of the 2n output will

remain low and all other output will remain high.

� The three major types of data transfer between the microprocessor and IO device are programmed IO, interrupt driven

IO and direct memory access.

� The IO devices are slow devices and so they are connected to the system bus through ports.

� The various INTEL IO port devices are 8212, 8155/8156, 8255, 8355 and 8755.

� The 8212 can be used as input or output device and the function is determined by the mode pin.

3. 38 Chapter 3 Memory And IO Interfacing

� INTEL 8155 has 256 × 8 static RAM, 2 numbers of 8-bit parallel IO port, 1 number of 6-bit parallel IO port and

14-bit timer.

� INTEL 8255 consists of 3 numbers of 8-bit parallel IO port.

� INTEL 8255 requires 4 internal addresses and has logic low chip select pin.

� The two ways of interfacing IO devices to 8085 processor are memory mapping of IO device or standard IO mapping.

� In memory mapping of IO devices a 16-bit address is allotted to an IO device.

� In standard IO mapping an 8-bit address is allotted to each IO device.

� When a device is memory-mapped in the system, the processor will access the device like a memory location.

� The 8085 processor differentiates the memory address and IO address using the signal IO/M.

3.12 SHORT QUESTIONS AND ANSWERS

3.1 What is memory ?

A memory is a storage device in a microprocessor-based system and its primary function is to

store programs and data.

3.2 Why are semiconductor memories used as main memory in microprocessor system ?

Semiconductor memories have processor compatible access time for read and write operations,

they are used as main memories.

3.3 What are the different types of semiconductor memory ?

The different types of semiconductor memory are RAM, PROM, EPROM, static RAM, DRAM

and NVRAM.

3.4 List the features of semiconductor memories.

1. Semiconductor memories are random access memories.

2. In semiconductor memories, a read operation by the processor will not destroy the stored information.

3. The read and write time of the semiconductor memory is compatible for the microprocessor.

3.5 What is meant by volatile and non-volatile memories ?

If the information stored in the memory is lost when the power supply is switched OFF, then the

memory is called volatile.

If the content of memory is preserved even after the power supply is switched OFF, then the

memory is called non-volatile.

3.6 List the volatile and non-volatile semiconductor memories.

The volatile semiconductor memories are static RAM and DRAM. The non-volatile semiconductor

memories are ROM, PROM, EPROM and NVRAM.

3.7 What are the characteristics of ROM memory ?

The characteristics of ROM are as follows:

 1. It is non-volatile memory.

 2. The contents of ROM can be read by the processor but it cannot write into it.

 3. The ROM has the feature of random access.

 4. The memory cell has a MOS transistor either with an open gate or a closed gate.

Microprocessor (8085) And Its Applications 3. 39

3.8 How are ROMs classified?

ROMs can be classified into the following three categories based on the method of programming.

 1. Custom programmed or Mask programmed ROM

 2. Programmable or Field programmable ROM

 3. Reprogrammable or Erasable - programmable ROM.

3.9 List the characteristics of EPROM.

1. The EPROM is non-volatile.

2. It has random-access feature.

3. The contents of EPROM can be erased by passing UV light and then the device can be reprogrammed.

4. The EPROM is read only memory and for writing into EPROM, a separate hardware set up is required.

3.10 Write a short note on the memory cell of EPROM.

The memory cell of EPROM contains a MOS transistor with isolated gate. The isolated gate is

located between the normal control gate and the source/drain region of transistor. The information

is stored as a charge or no charge in the floating gate.

3.11 What is NVRAM?

The non-volatile read/write memories are called NVRAM. The various types of NVRAMs are

flash memory, EEPROM and Shadow RAM.

3.12 List the features of static RAM.

1. Static RAMs are read/write memories.

 2. They are volatile and have random access feature.

 3. The memory cell is a flip-flop constructed using 6 to 8 MOS transistors.

3.13 What is DRAM ?

DRAMs are read/write semiconductor memories in which the information is stored in the form of

electric charge on the gate to substrate capacitance of a MOS transistor.

3.14 List the characteristics of DRAM.

1. The DRAMs are volatile and have random access feature.

2. They are read/write memories.

3. The contents of DRAM have to be refreshed periodically using refreshing circuits.

4. The memory cell of DRAM will have 3 to 4 MOS transistor.

3.15 Compare the Static RAM with DRAM.

Static RAM DRAM

1. Information is stored as voltage level 1. Information is stored as a charge

in a flip-flop. in the gate to substrate capacitance.

2. Six to eight transistors are required 2. Three to four transistors are required

to form one memory cell. to form one memory cell.

3. Packing density is low. 3. Packing density is high.

4. The contents of memory need not be 4. The contents of memory has to be

refreshed. refreshed periodically.

3. 40 Chapter 3 Memory And IO Interfacing

3.16 What is physical memory space?

The memory locations that are directly addressed by the microprocessor is called physical memory

space.

3.17 What is memory word size?

The size of data that can be stored in memory location is called memory word size.

3.18 What is meant by memory mapping?

Memory mapping is the process of interfacing memories to microprocessor and allocating

addresses to each memory location.

3.19 What is memory access time?

Memory access time is the time taken by the processor to read or write a memory location. Read

operation is the time between a valid address on the bus and the end of read control signal. Write

operation is the time between a valid address on the bus and the end of write control signal.

3.20 What are the factors to be considered while selecting a semiconductor memory for a

microprocessor system ?

The following are the factors to be considered while selecting a semiconductor memory IC:

� Capacity and organization (Memory word size).

� Timings of various signals.

� Power consumption and bus loading (Current levels).

� Physical dimensions and packaging.

� Cost, reliability and availability.

3.21 What is bus contention?

If two devices drive the data bus simultaneously then it is called bus contention. It may lead to

following undesirable events:

 1. Damaging one or both the IC chip.

 2. The high current may cause a voltage spike in the supply system leading to data loss.

3.22 Why is EPROM mapped at the beginning of memory space in 8085 ?

When EPROM is mapped at the beginning of memory space, then 0000
H
 address will be allotted

to EPROM. The monitor program can be stored from 0000
H
 address. Whenever the processor is

reset, the program counter will be cleared (i.e it will have 0000
H
 address) and the monitor program

will be executed automatically.

3.23 What is chip select and how it is generated?

Chip select is the control signal that has to be asserted TRUE to bring an IC from high impedance

state to normal state. Generally the chip select signals are generated in a system by decoding the

unused address lines with the help of decoders.

3.24 What are the typical control signals involved in EPROM interfacing ?

The control signals needed for EPROM are chip select and output enable.

3.25 What are the typical control signals involved in RAM interfacing ?

The control signals needed for RAM interfacing are chip enable, output enable and write enable.

Microprocessor (8085) And Its Applications 3. 41

3. 26 What is programmed IO ?

If the data transfer between an IO device and the processor is accomplished through an IO port

and controlled by a program then the IO device is called programmed IO.

3.27 What is interrupt IO?

If the IO device initiates the data transfer through interrupt, then the IO is called interrupt

driven IO.

3.28 What is DMA?

The direct data transfer between the IO device and the memory is called DMA.

3.29 What is the need for Port?

IO devices are generally slow devices and their timing characteristics do not match with

processor timings. Hence, the IO devices are connected to a system bus through the ports.

3.30 What is a port?

A port is a buffered I/C which is used to hold the data transmitted from the microprocessor to IO

device or vice versa.

3.31 Give some examples of port devices used in a 8085 microprocessor-based system.

The various INTEL IO port devices used in 8085 microprocessor-based system are 8212, 8155,

8156, 8255, 8355 and 8755.

3.32 Write a short note on INTEL 8255?

The INTEL 8255 is a IO port device consisting of 3 numbers of 8-bit parallel IO ports. The ports can

be programmed to function either as an input port or as an output port in different operating modes.

It requires 4 internal addresses and has one logic low chip select pin.

3.33 What are the different methods of interfacing IO devices to 8085-based system.

There are two methods of interfacing IO devices to 8085 system. They are memory mapping of

IO device and standard IO mapping.

3.34 Draw a simple circuit to decode the three control signals RD,WR and IO/M and to produce

separate read/write control signals for memory and IO devices.

MEMW

RD

IO/M

WR

MEMR

IOR

IOW

Fig. Q3.34 : Circuit to generate separate read and write
signals for memory and IO devices.

3. 42 Chapter 3 Memory And IO Interfacing

3.35 Compare the memory-mapped IO with the standard IO-mapped IO.

 Memory-mapped IO Standard IO-mapped IO

1. Sixteen bit address is allotted to an 1. Eight bit address is allotted to an IO device.

IO device.

2. The devices are accessed by memory 2. The devices are accessed by IO read or IO

read or memory write cycle. write cycle.

3. All instructions related to memory 3. Only IN and OUT instructions can be used for

can be used for data. data transfer.

4. A large number of IO ports can be 4. Only 256 ports can be interfaced.

interfaced.

3.36 What is the drawback in memory-mapped IO?

When IO devices are memory-mapped, some of the addresses are allotted to IO devices. So the

full address space cannot be used for addressing memory (i.e., physical memory address space

will be reduced). Hence, memory mapping is useful only for small systems, where the memory

requirement is less.

 CHAPTER 4

INTERRUPTNTERRUPTNTERRUPTNTERRUPTNTERRUPT STRUCTURETRUCTURETRUCTURETRUCTURETRUCTURE

4.1 INTERRUPT AND ITS NEED

Microprocessors allow normal program execution to be interrupted in order to carry out a

specific task/work. A processor can be interrupted in the following ways :

(i) by an external signal generated by a peripheral,

(ii) by an internal signal generated by a special instruction in the program,

(iii) by an internal signal generated due to an exceptional condition which occurs while executing an instruction.

(For example, in 8086 processor, 'divide by zero' is an exceptional condition which initiates type-0

interrupt and such an interrupt is also called exception.)

In general, the process of interrupting the normal program execution to carry out a specific

task/work is referred to as interrupt.

The interrupt is initiated by a signal generated by an external device or by a signal generated

internal to the processor. When a microprocessor receives an interrupt signal, it stops executing

the current normal program, saves the status (or content) of various registers (PC in case of 8085)

in stack and then executes a subroutine/procedure in order to perform the specific task/work

requested by the interrupt. The subroutine/procedure that is executed in response to an interrupt is

also called Interrupt Service Routine (ISR). At the end of ISR, the stored status of registers in

stack are restored to respective registers and the processor resumes the normal program execution

from the point (instruction) where it was interrupted.

The external interrupts are used to implement interrupt driven data transfer scheme. The

interrupts generated by special instructions are called software interrupts and they are used to

implement system services/calls (or monitor services/calls). The system /monitor services are

procedures developed by the system designer for various operations and stored in memory. The

user can call these services through software interrupts. The interrupts generated by exceptional

conditions are used to implement error conditions in the system.

Interrupt Driven Data Transfer Scheme

Interrupts are useful for efficient data transfer between the processor and the peripheral.

When a peripheral is ready for data transfer, it interrupts the processor by sending an appropriate

signal. Upon receiving an interrupt signal, the processor suspends the current program execution,

saves the status in a stack and executes an ISR to perform the data transfer between the peripheral

and the processor. At the end of ISR the processor status is restored from stack and the processor

resumes its normal program execution. This type of data transfer scheme is called interrupt driven

data transfer scheme.

�

4. 2 Chapter 4 Interrupt Structure

The data transfer between the processor and peripheral devices can be implemented either

by polling technique or by interrupt method. In polling technique, the processor has to periodically

poll or check the status/readiness of the device and can perform data transfer only when the device

is ready. In polling technique the processor time is wasted, because the processor has to suspend

its work and check the status of the device in predefined intervals.

Alternatively, if the device interrupts the processor to initiate a data transfer whenever it is

ready then the processor time is effectively utilized because the processor need not suspend its

work and check the status of the device in predefined intervals.

For example, consider the data transfer from a keyboard to the processor. Normally a

keyboard has to be checked by the processor once in every 10 millisecond for a key press. Therefore,

once in every 10 milliseconds the processor has to suspend its work and then check the keyboard

for a valid key code. Alternatively, the keyboard can interrupt the processor, whenever a key is

pressed and a valid key code is generated. In this way the processor need not waste its time to

check the keyboard once in every 10 milliseconds.

4.2 CLASSIFICATION OF INTERRUPTS

In general interrupts can be classified in the following three ways:

� Hardware and software interrupts.

� Vectored and non-vectored interrupts.

� Maskable and non-maskable interrupts.

Interrupts initiated by external hardware by sending an appropriate signal to the interrupt pin

of the processor is called hardware interrupt. The 8085 processor has five interrupt pins TRAP,

RST 7.5, RST 6.5, RST 5.5 and INTR and the interrupts initiated by applying appropriate signal

to these pins are called hardware interrupts of 8085.

Software interrupts are program instructions. These instructions are inserted at desired

locations in a program. While running a program, if a software interrupt instruction is encountered

then the processor initiates an interrupt. The 8085 processor has 8 types of software interrupts.

The software interrupt instruction is INT n, where n is the type number in the range 0 to 7.

When an interrupt signal is accepted by the processor, and the program control automatically

branches to a specific address (called vector address) then the interrupt is called vectored interrupt.

The automatic branching to a vector address is predefined by the manufacturer of the processor.

(In these vector addresses the interrupt service subroutines(ISR) are stored.) In non-vectored

interrupts the interrupting device should supply the address of the ISR to be executed in response

to the interrupt. All the 8085 interrupts excepts INTR are vectored interrupts.

The processors have the facility for accepting or rejecting hardware interrupts. Programming

the processor to reject an interrupt is referred to as masking or disabling and programming the

processor to accept an interrupt is referred to as unmasking or enabling. In 8085 the hardware

Microprocessor (8085) And Its Applications 4. 3

interrupts RST 7.5, RST 6.5, and RST 5.5 can be masked/unmasked using SIM instruction. All the

hardware interrupts except TRAP are disabled by executing DI instruction and they are enabled by

executing EI instruction.

The interrupts whose request can be either accepted or rejected by the processor are called

maskable interrupts. The interrupts whose request has to be definitely accepted (i.e., it cannot be

rejected) by the processor are called non-maskable interrupts. Whenever a request is made by a

non-maskable interrupt, the processor has to definitely accept that request and service that interrupt

by suspending its current program and executing an ISR. In 8085 processor all the hardware

interrupts except TRAP are maskable. The interrupt initiated through TRAP pin and all software

interrupts are non-maskable.

4.3 INTERRUPTS OF 8085

The interrupt in 8085 can come from one of the following two sources:

1. One source is from an external signal applied to TRAP, RST7.5, RST6.5, RST5.5 or INTR pin of the processor. The

interrupts initiated by applying appropriate signals to these pins are called hardware interrupts.

2. The second source of an interrupt is the execution of the interrupt instruction "RST n" where n can take values from

0 to 7. The interrupts initiated by "RST n" instructions are called software interrupts.

4.3.1 Software Interrupts Of 8085

Software interrupts are program instructions. When a software interrupt instruction is

executed, the processor executes an Interrupt Service Routine(ISR) stored in the vector address

of that software interrupt instruction. The software interrupts of 8085 are RST0, RST1, RST2,

RST3, RST4, RST5, RST6 and RST7. The software

interrupts of 8085 are vectored interrupts. Software

interrupts cannot be masked or be disabled. The Vector

addresses of software interrupts are given in Table-4.1.

Software interrupt instructions are included at the

appropriate (or required) place in the main program. When

the processor encounters the software instruction, it pushes

the content of PC (Program Counter) to stack. Then, it

loads the vector address in to the PC and starts executing

an ISR stored in this address. The last instruction of the

ISR will be RET instruction. When the RET instruction is

executed, the processor POPs the content of top of stack

to PC. Hence, the processor control returns to main program

after servicing the interrupt. [Execution of ISR is referred

to as servicing of interrupt.]

TABLE- 4.1

Interrupt Vector address

RST 0 0000
H

RST 1 0008
H

RST 2 0010
H

RST 3 0018
H

RST 4 0020
H

RST 5 0028
H

RST 6 0030
H

RST 7 0038
H

4. 4 Chapter 4 Interrupt Structure

4.3.2 Hardware Interrupts of 8085

The hardware interrupts of 8085 are initiated by an external device by placing an appropriate

signal at the interrupt pin of the processor. The processor keeps on checking the interrupt pins at

the second T-state of the last machine cycle of every instruction. If the processor finds a valid

interrupt signal and if the interrupt is unmasked and enabled, then the processor accepts the interrupt.

The acceptance of the hardware interrupt is acknowledged by sending an INTA signal to the

interrupting device.

When the interrupt is accepted, the processor saves the content of the PC (Program Counter)

in stack and then loads the vector address of the interrupt to the PC. (If the interrupt is non-

vectored, then the interrupting device has to supply the address of ISR when it receives INTA

signal.) Then the processor starts executing ISR in this address. The last instruction of ISR will be

an RET instruction. When the processor executes the RET instruction, it POP the content of top of

stack to PC. Thus the processor control returns to the main program after servicing the interrupt.

The hardware interrupts of 8085 are TRAP, RST7.5,

RST6.5, RST5.5 and INTR. TRAP, RST7.5, RST6.5 and

RST 5.5 are vectored interrupts. In vectored interrupts the

address to which the program control is transferred (when the

interrupt is accepted) is fixed by the manufacturer. The vector

addresses of hardware interrupts are given in Table-4.2. The

INTR is a non-vectored interrupt. Hence when a device

interrupts through INTR, it has to supply the address of ISR

after receiving interrupt acknowledge signal.

The type of signal that has to be placed on the interrupt pin of hardware interrupts of 8085

are defined by INTEL. The TRAP interrupt is edge and level sensitive. Hence, to initiate TRAP, the

interrupt signal has to make a low to high transition and then it has to remain high until the interrupt

is recognized. The RST7.5 interrupt is edge sensitive (positive edge). In order to initiate the RST7.5,

the interrupt signal has to make a low to high transition and it need not remain high until it is

recognized. The RST6.5, RST5.5 and INTR are level sensitive interrupts. Hence, for these interrupts

the interrupt signal should remain high, until it is recognized.

TRAP is a non-maskable interrupt and RST7.5, RST6.5 and RST5.5 are maskable interrupts,

which use the SIM (Set Interrupt Mask) instruction. Interrupts can be masked by moving an

appropriate data (or code) to the accumulator and then executing the SIM instruction. The status

of maskable interrupts can be read into the accumulator by executing the RIM instruction

(RIM - Read Interrupt Mask).

All the hardware interrupts, except TRAP are disabled when the processor is reset and they

can also be disabled by executing the DI instruction. (DI - Disable Interrupt). When an interrupt is

disabled, it will not be accepted by the processor (i.e., INTR, RST5.5, RST6.5 and RST7.5 are

disabled by the DI instruction and upon hardware reset). In order to enable (or to allow) the

disabled interrupts, the processor has to execute the EI instruction (EI - Enable Interrupt).

TABLE- 4.2

Interrupt Vector address

RST 7.5 003C
H

RST 6.5 0034
H

RST 5.5 002C
H

TRAP 0024
H

Microprocessor (8085) And Its Applications 4. 5

4.3.3 Priorities of Interrupts of 8085

When all the interrupts are enabled, the priority sequence of hardware interrupts from highest to

lowest is TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR. When the 8085 processor accepts an interrupt

it will disable all the hardware interrupts except TRAP. Hence in order to allow the higher priority

interrupt while executing Interrupt Service Subroutine (ISR) for lower priority interrupt, enable the

interrupt system in the beginning of ISR of lower priority interrupt, by executing EI instruction.

For example, if the processor accepts RST 5.5 interrupt, then it will disable RST 7.5, RST 6.5

and INTR interrupts. In order to allow the higher priority interrupt RST 7.5 and RST 6.5 while

executing ISR of RST 5.5, the EI instruction should be executed in the beginning of ISR of RST 5.5.

The execution of software interrupt will not disable any hardware interrupt. Therefore while

executing ISR of software interrupts, the processor will recognize or allow the hardware interrupts.

4.4 ENABLING, DISABLING AND MASKING OF 8085 INTERRUPTS

TRAP

The interrupt TRAP is non-maskable and it cannot be disabled by DI instruction. Also the

TRAP is not disabled by system (processor) reset or after recognition of another interrupt. The

only signal which can override TRAP is HOLD signal. (i.e., If the processor receives HOLD and

TRAP at the same time then HOLD is recognized first and only then is TRAP recognized.)

INTR

The interrupt INTR is disabled by any one of the following operations:

� Executing DI instruction.

� System or processor reset.

� After recognition (acceptance) of an interrupt.

The interrupt INTR can be enabled by executing EI instruction.

RST 7.5, RST 6.5 and RST 5.5

The interrupt RST 7.5, RST 6.5 and RST 5.5 are disabled by any one of the following

operations.

� Executing DI instruction.

� System or processor reset.

� After recognition (acceptance) of an interrupt.

These hardware interrupts can be enabled by executing EI instruction.

The 8085 provides additional masking facility for RST 7.5, RST 6.5 and RST 5.5 using SIM

instruction. The status of these interrupts can be read by executing RIM instruction.

The masking or unmasking of RST 7.5, RST 6.5 and RST 5.5 interrupts can be performed

by moving an 8-bit data to accumulator and then executing SIM instruction. The format of the

8-bit data is shown in Fig. 4.1.

The status of pending interrupts can be read from accumulator after executing RIM

instruction. When RIM instruction is executed, an 8-bit data is loaded to the accumulator, which

can be interpreted as shown in Fig. 4.2.

4. 6 Chapter 4 Interrupt Structure

EXAMPLE 1

Write a program segment to mask RST 6.5 and RST 5.5 interrupts and enable RST 7.5 interrupt.

Solution

The 8-bit data format to be loaded in the accumulator for enabling RST 7.5 and masking RST 6.5

and RST 5.5 is shown below. The data to be loaded in accumulator is 0B
H
.

B7 B6 B5 B4
B3 B2 B1 B0

SOD SDE X R7.5 M7.5 M6.5 M5.5MSE

RST 5.5 Mask

RST 6.5 Mask

RST 7.5 Mask

Mask Set Enable.
If MSE = 0, then B , B and

B are ignored. If MSE = 1,

then B , B and B are recognized.

0 1

2

0 1 2

Serial Output Data

Serial Data Enable

If SDE = 1, bit B is

send to SOD line. If
SDE = 0, bit B is

ignored.

7

7

Fig. 4.1 : Format of 8-bit data to be loaded in the accumulator
before executing a SIM instruction.

¬ ®
®
®

®

¬ ¬

I
P
Q

® Reset RST 7.5.
If R7.5 = 1, then RST 7.5
is not allowed. If R7.5 = 0, then
RST 7.5 is allowed.

0
=
A
v
ai
la
b
le

1
=
M
as
k
ed

Undefined

B7 B6 B5 B4
B3 B2 B1 B0

SID I7.5 I6.5 IE M6.5 M5.5M7.5

Mask Status of RST 5.5

Mask Status of RST 6.5

Mask Status of RST 7.5

Interrupt
Enable Flag

Serial Input Data

Interrupt Pending
Status of RST 7.5

Fig. 4.2 : Interpretation of the content of the accumulator
after executing a RIM instruction.

¬ ®
®
®

®

¬

I
P
Q

I5.5

¬Interrupt pending
Status of RST 6.5

¬Interrupt pending
Status of RST 5.5

I
P
Q

1
=
In
te
rr
u
p
t
P
en
d
in
g

0
=
In
te
rr
u
p
t
is
N
o
t
P
en
d
in
g

1
=
M
as
k
ed

0
=
U
n
m
as
k
ed

I
P
Q 1 = Enable Interrupts

0 = Disable Interrupts

B7 B6 B5 B4 B3 B2 B1
B0

X X X 0 1 0 1 1

IPQ

Don’t Care Mask RST 5.5

Mask RST 6.5

Unmask RST 7.5

Mask Set flag is enabled

RST 7.5 Interrupt is enabled

®
®
®
®
®

= 0BH

Microprocessor (8085) And Its Applications 4. 7

Program segment

EI ; Enable all interrupts of 8085

MVI A,0BH ; Move 0B
H
 to A-register

SIM ; Mask 6.5 and 5.5, Enable 7.5

EXAMPLE 2

Assume that the 8085 microprocessor returns to the main program after servicing RST 6.5. (Remember that while

servicing an interrupt all other interrupts are disabled.)

Write a program segment to check whether RST 5.5 interrupt is pending. If it is pending then the program has to enable

RST 5.5 without affecting any other interrupts. Otherwise the program has to enable all interrupts and return to main program.

Solution

The status of pending interrupts can be read by executing RIM instruction. This will load an 8-bit

data in accumulator. If RST 5.5 is pending then the bit D
4
 in accumulator will be 1 and if it is not pending

then bit D
4
 will be 0. The following program segment have been written to check whether bit D

4
 is 1 or 0.

If it is 1 then the program control jumps to another part of program to enable RST 5.5 and mask other

interrupts.

Program segment

RIM ;Read the status of interrupts.

MOV C,A ;Save the status in C-register.
ANI 10H ;Check whether RST 5.5 is pending.
JNZ NEXT ;If RST 5.5 is pending, go to NEXT.
EI ;If RST 5.5 is not pending, enable
RET ;all interrupts and return to main program.

NEXT: MOV A,C ;Get the interrupt status in A-register.
ANI FEH ;Set D

0
 = 0, for enabling RST 5.5

ORI 08H ;Set D
3
 =1, for enabling interrupt enable flag.

SIM ;Enable RST 5.5

JMP ISR55 ;Jump to Interrupt Service Routine of RST 5.5

4.5 POLLING OF INTERRUPTS

Polling

When multiple devices interrupt the processor through one interrupt pin then a scheme or

method is necessary to identify the interrupting device. The method of identifying the interrupting

device is called polling. In the polling technique, each interrupting device will have an interrupt or

status flag which is checked by the processor one by one. When a device want to interrupt the

processor, it asserts the status flag high.

In the polling scheme, the processor has to execute the following steps in order to process

the interrupts. The flowchart for interrupt polling routine is shown in Fig. 4.3.

1. Branch to interrupt polling routine.

2. Identify the device that caused the interrupt.

3. Branch to ISR associated with this device and execute ISR.

4. Enable the interrupt system.

5. Return to main program.

4. 8 Chapter 4 Interrupt Structure

Polling can be performed either by software or by hardware. In software polling, the entire

polling process is governed by processor instructions (program). In hardware polling, the hardware

takes care of checking the status of interrupting devices and allowing then one by one to the

processor.

Software polling

The hardware setup necessary for software polling is shown in Fig. 4.4. In this system,

each interrupting device has an interrupt status flag associated with it. This flag is the output

of a Flip-Flop (FF). The status flip-flop is connected to the data bus of the processor through

a tristate buffer. Whenever the device needs to interrupt the processor, it sets the flag as high.

↓

Check

Whether All

Devices Have

Been Polled

←
No

↓

Check

Whether the

Device has

Interrupted

↓

Call ISR Associated

with Device Number

Increment Device Number.

Decrement the Count

←

Yes

No

↓

Set Count for Number of Devices. Set

Device Number =1

Save Processor Status

Start

↓
Restore Processor

Status

↓
Enable Interrupt

System

↓
Return

Fig. 4.3 : Flowchart of interrupt polling routine.

↓Yes

↓

↓

↓
↓

Microprocessor (8085) And Its Applications 4. 9

A decoder has been used to generate n-numbers of logic low device select signals (d
1
 to d

n
),

by using n-address lines of the processor. The read control signal (RD) of the processor is logically

ORed with device select signals and then used to enable the tristate buffer.

The processor checks the status of the interrupting device by executing a read cycle. In the

read cycle, the processor sends an appropriate address on the address bus and then RD is

asserted low. Using this address, the decoder generates the device select signal, which is

logically ORed with RD to produce enable signal for tristate buffer. When the tristate buffer is

enabled, the status bit on the flip-flop is placed on the data bus. Now, the processor reads the

status bit and checks whether it is 1 or 0. If it is 1 then the processor executes the ISR (Interrupt

Service Routine) corresponding to the device (whose status is checked). If it is 0 then the processor

continues polling. The polling stops only after all the devices have been scanned for pending interrupt.

Hardware polling

In hardware polling, the processor need not check the status of interrupting device. The

hardware setup will be such that it allows the interrupts one by one to the processor. The commonly

used mechanism for hardware polling is "daisy chaining" as shown in Fig. 4.5.

Each device in the hardware setup shown in Fig. 4.5 requires a minimum of two input

control signals and two output control signals. The input control signals are INTA and IEI. The

output control signals are IEO and INT.

Device -1

Flag

FF Q

RD

d 1

Device -n
RD

dn

1-of-n

Decoder

or

n-to-2n

Decoder

←

d n

d1

←d2

←

R

S

|
|

T

|
|

2n Outputs

←

←

A
0

A
n

n-inputs

Fig. 4.4 : Circuit for software polling.

D
a

t
a

B

u
s

A
d

d
r

e
s

s

B
u

s

Flag

FF Q

Tristate buffer

Tristate buffer

→

→

→→

→
→

→

→

EN

Enable/Chip

Select For

Tristate Buffer

→

→

EN

4. 10 Chapter 4 Interrupt Structure

INTA : Interrupt Acknowledge Signal: This signal is similar to interrupt

acknowledge signal of the processor. This signal informs the interrupting

device that the processor is running interrupt acknowledge machine cycle.

(In response, the interrupting device can place 8-bit RST opcode on the

data bus in case of 8085 or 8-bit vector address in case of Z80.)

IEI : Interrupt Enable Input: If this input signal is high then the device will

place an 8-bit binary code on the data bus. If this input signal is low, then

the device will wait.

IEO : Interrupt Enable Output: This is an output signal generated by the

device. Normally this signal is high. If the device has to interrupt the

processor then it asserts IEO low. The signal IEO is also asserted low if

the input signal IEI of the concerned device is low. After servicing the

interrupt, this signal is asserted high.

INT : Interrupt Signal: This is an output signal of the device and asserted

high to interrupt the processor.

In the hardware setup of Fig. 4.5, device-1 has the highest priority and device-n has the lowest

priority. Also, a device can load an 8-bit code on the data bus only if IEI is high and IEO is low.

Let us assume that all the devices are interrupting the processor simultaneously. Now, each

device will assert its INT high and IEO low. Since IEO of one device is connected to IEI of the

next device, all the devices will wait, except device-1 because IEI of device-1 is permanently tied

to high.

All the INT signals of the devices are ORed and applied as interrupt signal to the processor.

When the processor accepts the interrupts, it asserts INTA low. On receiving INTA low, the

device-1 will load an 8-bit code data bus and then assert IEO high (because, device-1 alone has its

IEI signal as high and IEO signal as low). Now the processor disables all other interrupts and starts

servicing the device-1. At the end of service, the interrupts are enabled.

↓
Device-1

IEI

+5-V

(high)

INT

↓
Device-2

IEI

INT
↓

↓
Device-n

INT

↓

↓
Device-3

IEI

INT

↓ ↓

↓

To INTR of 8085 (In case of Z80 the output

of OR gate is inverted and applied to)

Fig. 4.5 : A daisy chain for hardware polling.

D a t a B u s

IEIIEO

INTA INTA INTA INTA

IEO IEO IEO

INT

Microprocessor (8085) And Its Applications 4. 11

Now, the device-2 is allowed to interrupt the processor. After recognizing (accepting) the

interrupt of device-2, its IEO will be high which allows the interrupt of device-3 and so on. Thus

in hardware polling the devices are allowed one by one to interrupt the processor.

4.6 INTR AND ITS EXPANSION

The INTR is general interrupt request. An external device can interrupt the processor by

placing a high signal on INTR pin of 8085. If the processor accepts the interrupt, then it will send

an acknowledge signal INTA to the interrupting device. On receiving the acknowledge signal, the

interrupting device has to place either an RST n opcode (or CALL opcode followed by 16-bit

address) on the data bus.

On receiving the RST n opcode, the 8085 processor generates the vector address of RST

n instruction. It saves the content of Program Counter (PC) in stack. Then it loads the vector

address in PC and executes an Interrupt Service Routine (ISR) stored at this address. (when it

receives CALL opcode it executes an interrupt service routine stored at CALL address.)

The INTR interrupt can be expanded to accept 8-interrupt inputs using 8-to-3 priority

encoder as shown in Fig. 4.6. (Other expansion schemes are shown in Fig. 4.8 and Fig. 4.10.)

The priority encoder has 8 inputs I
0
 to I

7
 and three outputs A

0
 to A

2
. It also has an output

control signal, E
0
. If the priority encoder receives a logic low at one of the inputs, for example I

n
,

then it asserts E
0

high and outputs the binary value of n on the output lines A
0
, A

1
 and A

2
 lines

(i.e., if input I
0
 is low then output is 000; if input I

1
 is low then output is 001 and so on). In this

scheme I
7
 has the highest priority and I

0
 has the lowest priority.

®

A0

D0

D1

D2

D3

D4

D5

D6

D7

I7

I6

I5

I4

I3

I2

I1

I0

®
®
®
®
®
®
®

®

A1

A2

8-to-3
Priority
Encoder

®
®
®

®INTA from 8085

+5-V

E0 E1

8-Bit
Latch
74LS373

To Data
Bus of
Processor

G1 G2

+5-V

To INTR
of 8085

Fig. 4.6 : Expanding an INTR of the 8085 using an 8-to-3 priority encoder.

4. 12 Chapter 4 Interrupt Structure

Eight external devices can interrupt the processor through I
0
 to I

7
 lines, by placing a logic

low on these pins. On receiving a valid interrupt signal the priority encoder allows the highest

priority interrupt by asserting E
0

high and sending the corresponding binary value on A
0
, A

1
 and A

2

lines. The E
0
 is connected to INTR of 8085 and A

0
, A

1
 and A

2
 are connected to the inputs D

3
, D

4

and D
5
 of an 8-bit latch. All other inputs of the latch are tied to +5-V (logic 1) permanently.

The opcodes and vector addresses of RST n instructions are shown in Table-4.3. If we

carefully look at the opcode of RST instruction, the binary bits D
3
, D

4
, D

5
 constitutes the binary

value of n in RST n instruction and all other bits are 1's. The priority encoder helps in placing the

RST opcodes at the input of latch (74LS373). [The priority encoder places the RST n opcode

for the interrupt I
n

.]

When the processor accepts the interrupt, it sends INTA signal to the interrupting device.

This signal is used to enable the latch. When the latch is enabled, the RST opcode available at the

input is latched into output lines. The output of latch is connected to data bus of the processor.

Hence, the opcode will be placed on the data bus.

This opcode is read by the processor and then it generates the vector address of the RST

instruction internally. The processor saves the current value of Program Counter (PC) in stack

and loads the vector address in PC. Now the processor starts servicing the interrupt.

4.7 PROGRAMMABLE INTERRUPT CONTROLLER - INTEL 8259

The 8259 is a programmable interrupt controller. It is used to expand the interrupts of 8085 or

8086 processor. One 8259 can accept eight interrupt requests and allows one by one to the processor

INTR pin. The interrupt controller can be used in cascaded mode to expand the interrupts upto 64.

Features of 8259

1. It is programmed to work with either 8085 or 8086 processor.

2. It manages 8 interrupts according to the instructions written into its control registers.

3. The 8086 processor-based system, supplies the type number of the interrupt and the type number is programmable.

In 8085 processor-based system, it vectors an interrupt request anywhere in the memory map and the interrupt

vector address is programmable.

TABLE - 4.3 : OPCODES OF RST INSTRUCTIONS

RST instruction

Opcode in binary Opcode Vector

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

in hexa address

RST 0 1 1 0 0 0 1 1 1 C7 0000
H

RST 1 1 1 0 0 1 1 1 1 CF 0008
H

RST 2 1 1 0 1 0 1 1 1 D7 0010
H

RST 3 1 1 0 1 1 1 1 1 DF 0018
H

RST 4 1 1 1 0 0 1 1 1 E7 0020
H

RST 5 1 1 1 0 1 1 1 1 EF 0028
H

RST 6 1 1 1 1 0 1 1 1 F7 0030
H

RST 7 1 1 1 1 1 1 1 1 FF 0038
H

Microprocessor (8085) And Its Applications 4. 13

4. The priorities of the interrupts are programmable. The different operating modes which decides the priorites are

automatic rotation mode, specific rotation mode and fully nested mode.

5. Interrupts can be masked or unmasked individually.

6. The 8259 is programmed to accept either level triggered interrupt signal or edge triggered interrupt signal.

7. The 8259 provides the status of pending interrupts, masked interrupts and interrupt being serviced.

8. The 8259s can be cascaded to accept a maximum of 64 interrupts.

4.7.1 Interfacing 8259 With 8085 Microprocessor

The 8259 is a 28-pin IC packed in DIP. The various pins of 8259 are shown in Fig. 4.7. It

requires two internal addresses and they are A
0
 = 0 or A

0
 = 1. It can be either memory-mapped or

IO-mapped in the system. The interfacing of 8259 to 8085 is shown in Fig. 4.8. In Fig. 4.8, the

8259 is IO-mapped in the system. The low order data bus lines D
0
-D

7
 are connected to D

0
-D

7
 of

8259. The address line A
0
 of the 8085 processor is connected to A

0
 of 8259 to provide the internal

address. The 8259 requires one chip select signal. The chip select signal for 8259 is generated by

using 3-to-8 decoder. The address lines A
4
, A

5
 and A

6
 are used as input to decoder. The control

signal IO/M is used as logic high enables for decoder and the address line A
7
 is used as logic low

enable for decoder. The IO addresses of 8259 are shown in Table-4.4. The signals CAS
0
-CAS

2
 are

used only in cascade operation of 8259s.

The SP/EN pin can be used as input or output signal. In non-buffered mode it is used as

input signal and tied to logic-1 in master 8259 and logic-0 in slave 8259. In buffered mode it is used

as output signal to disable the data buffers while data is transferred from 8259A to the CPU.

 Pins Description

D
0
- D

7
 Bidirectional

datalines

Read control

Write control

A
0

 Internal address

 Chip select

CAS
0
- CAS

2
 Cascade lines

 Slave program

 /Enable buffer

INT Interrupt output

 Interrupt

 acknowledge

 input

IR
0
- IR

7
 Interrupt

 request inputs

SP/EN

RD

WR

CS

INTA

®
®
®

®®®®

®®

®®

®®®®

®®

®®

®®

®®

® ®®

®®

®

®

®
®
®
®
®
®
®
®
®
®

CS

WR

RD

D7

D6

D5

D4

D3

D2

D1

D0

CAS0

CAS1

GND

V (+5-V)CC

A0

INTA

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

INT

SP/EN

CAS2

®®

®

®

®

®

®®

®® ®

®

®

®

®

D0 - D7

8

RD

WR

CS

A0

CAS0 - CAS2

3

SP/EN GND

VCC

INTA

INT

8

IR0 - IR7

INTEL
8259

INTEL
8259

Fig. 4.7 : Pin details of 8259.

4. 14 Chapter 4 Interrupt Structure

Working of 8259 With 8085 Processor

First the 8259 should be programmed by sending Initialization Command Word (ICW) and

Operational Command Word (OCW). These command words will inform 8259 about the following:

� Type of interrupt signal (Level triggered/Edge trigerred).

� Type of processor (8085/8086).

� Call address and its interval (4 or 8) in the case of 8085 and interrupt type number in case of 8086.

� Masking of interrupts.

� Priority of interrupts.

� Type of end of interrupt.

Once the 8259 is programmed it is ready for accepting the interrupt signal. When it receives

an interrupt through any one of the interrupt lines IR
0
-IR

7
, it checks for its priority and also

checks whether it is masked or not. If the previous interrupt is completed and if the current

request has the highest priority and unmasked, then it is serviced.

TABLE - 4.4 : IO ADDRESS OF 8259

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

For A
0
 of 8259 to be zero 0 0 0 0 x x x 0 00

For A
0
 of 8259 to be one 0 0 0 0 x x x 1 01

Note : Don't care "x" is considered as zero.

Binary address

Decoder input/
enable

Input to address
pin of 8259 Hexa address

D0 - D7

AD0 - AD7

® ®

®

®®

®
®

®
®
®
®
®

®
®

®
®

®

®

®

®
®

®

®

®
®

®

®

®8

A0 - A7

8
A0

A0D0 - D7

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

®

ALE

8085

RD

WR

IO/M

INTR

INTA

RD

WR

A4

A5

A6

A7

A

B

C

G2A

8-Bit
Latch

EN

G2B

G1

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-2

IOCS-3

IOCS-4

IOCS-5

IOCS-6

IOCS-7

RD

WR

INTA

INT

RD

WR

CS

INTEL
8259

Fig. 4.8 : Interfacing 8259 to 8085 microprocessor.

8

Microprocessor (8085) And Its Applications 4. 15

For servicing this interrupt the 8259 will send INT signal to INTR pin of 8085. In response

it expects an acknowledgement INTA from the processor. When the processor accepts the interrupt,

it sends three INTA one by one. In response to first, second and third INTA signals, the 8259 will

supply CALL opcode, low byte of call address and high byte of call address respectively. Once the

processor receives the call opcode and its address, it saves the content of Program Counter (PC)

in stack and load the CALL address in PC and starts executing the interrupt service routine stored

in this call address.

4.7.2 Functional Block Diagram Of 8259

The functional block diagram of 8259 is shown in Fig. 4.9. It shows eight functional blocks.

They are: Control logic, Read/Write logic, Data bus buffer, Interrupt Request Register(IRR), In-

Service Register(ISR), Interrupt Mask Register(IMR), Priority Resolver(PR) and Cascade buffer.

The data bus and its buffer are used for the following activities:

1. The processor sends control word to data bus buffer through D
0
-D

7
.

2. The processor reads status word from data bus buffer through D
0
-D

7
.

3. From the data bus buffer the 8259 sends type number (in case of 8086) or the call opcode and address (in case of

8085) through D
0
-D

7
 to the processor.

Data
Bus
Buffer

Control Logic

®

®

®

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

®
®
®
®
®
®
®

® ® ®

Read/
Write
Logic

®

®
®
®

®

Cascade
Buffer/

Comparator

®

®
®
®

®
®
®
®

®

In
te
rn
a
l
B
u
s

Interrupt Mask Register
(IMR)

In-Service
Register

Priority
Resolver

(ISR) (PR) (IRR)

Interrupt
Request
Register

INTINTA

D0 - D7

A0

RD

WR

CS

CAS0

CAS1

CAS2

SP/EN

Fig. 4.9 : Functional block diagram of an 8259.

® ®

®

®

®

4. 16 Chapter 4 Interrupt Structure

A
D

0
-
A
D

7

®

® ®

® ®

®

®

A
L
E

8
0
8
5
/8
0
8
6 R
D

W
R

IN
T
R

IN
T
A

R
D

W
R

8
-b
it

L
a
tc
h

E
N

F
ig
.
4
.1
0
:
E
x
a
m
p
le
o
f
c
a
s
c
a
d
e
c
o
n
n
e
c
ti
o
n
o
f
p
ro
g
ra
m
m
a
b
le
in
te
rr
u
p
t
c
o
n
tr
o
lle
rs
-8
2
5
9
.

®® ®
®

® ® ® ® ® ® ® ®IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

8 D0-D7

A0

8
2
5
9

M
a
st
er

C
S

R
D

W
R Y
0

V
C
C

(+
5
-V
)

® ® ® ®
S
P
/E
N

CAS0

CAS1

CAS2

®® ®
®

® ® ® ® ® ® ® ®IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

8 D0-D7

A0

8
2
5
9

S
la
v
e
0

C
S

R
D

W
R Y
1

® ® ®
S
P
/E
N

CAS0

CAS1

CAS2

®® ®
®

® ®

8
D
0
-
D

7

D0-D7

A0

INTA

8
2
5
9

S
la
v
e
7 C
S

R
D

W
R

®

S
P
/E
N

CAS0

CAS0

CAS0

®
®
®

IN
T

IN
T

®
®
®

INTA

INTA

IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

® ® ® ®®® ® ® ®

®
®
®

Y
2®

®

A
0

D
0
-
D

7
D

0
-
D

7

A
0

A
0

A
0
-
A

7

D
0
-
D

7

® ® ®

Y
0

Y
1

Y
2

®

U
n
u
se
d

A
d
d
re
ss
L
in
es

IO
/M

IN
T

A
d
d
re
ss

D
ec
o
d
er

Microprocessor (8085) And Its Applications 4. 17

The processor uses the RD, WR and A
0
 to read or write 8259. The 8259 is selected by CS.

The IRR has eight input lines (IR
0
-IR

7
) for interrupts. When these lines go high, the requests are

stored in IRR. It registers a request only if the interrupt is unmasked. Normally IR
0
 has highest

priority and IR
7
 has the lowest priority. The priorities of the interrupt request input are also

programmable.

The interrupt mask register stores the masking bits of the interrupt lines to be masked. The

relevant information is sent by the processor through OCW1. The in-service register keeps track

of the interrupt input currently being serviced. For each input that is currently being serviced, the

corresponding bit will be set in the in-service register. The priority resolver examines the interrupt

request, mask and the in-service registers and determines whether the INT signal should be sent to

the processor or not.

The cascade buffer/comparator is used to expand the interrupts of 8259. Figure 4.10 is an

example of 8259s in cascade connection. In this configuration, one 8259 will be directly interrupting

8085 and it is called master 8259. To each interrupt request input of master 8259 (IR
0
-IR

7
) one

slave 8259 can be connected. The 8259s interrupting the master 8259 are called slave 8259s.

Each 8259 has its own address so that each 8259 can be programmed independently by

sending command words and status the independently bytes can be read from it.

The cascade pins (CAS
0
, CAS

1
 and CAS

2
) from the master are connected to the corresponding

pins of the slave. For the master, these pins function as output and for the slave device they function

as input. For the slave 8259, the SP/EN pin is tied low to let the device know that it is a slave.

4.7.3 Processing of Interrupts By 8259

To implement interrupts, the processor interrupt should be enabled and 8259 initialized. The

8259 is initialized by sending ICWs and OCWs. The ICWs are used to set up the proper conditions

and specify CALL vector addresses. The OCWs are used to perform functions such as masking

interrupts, setting up status, read operations, etc. After the 8259 is initialized, the following sequence

of events occur when one or more interrupt request lines go high.

1. The IRR stores the request.

2. The priority resolver checks three register(IRR, IMR, ISR). The IRR is checked for interrupt request. The IMR is

checked for masking bits and the ISR for the interrupt request being served. It resolves the priority and sets the

INT high when appropriate.

3. The processor acknowledges the interrupt by sending INTA signal.

4. When the INTA is received, the appropriate priority bit in the ISR is set to indicate which interrupt level is being

served and the corresponding bit in the IRR is reset to indicate that the request is accepted. Then, the opcode for

the CALL instruction is placed on the data bus.

5. When the processor decodes the CALL instruction, it places two more INTA signals on the data bus.

6. When the 8259 receives the second INTA, it outputs the low-order byte of CALL address on the data bus. When

the third INTA signal is received the 8259 outputs high-order byte of CALL address on the data bus. The CALL

address is the vector memory location for the interrupt (this address is programmed by sending ICW1 and ICW2

to the control register during the initialization).

4. 18 Chapter 4 Interrupt Structure

7. Once the processor reads the CALL opcode and address from 8259 the bit corresponds to the current interrupt

being serviced in the in-service register should be resetted to allow next interrupt. This is done automatically if

8259 is programmed for Automatic End Of Interrupt (AEOI). Alternatively the processor can send command word

at the end of interrupt service routine to inform 8259 about the end of interrupt.

8. After receiving the CALL opcode and address, the processor save the content of Program Counter (PC) in stack and

load the call address in PC. Thus the program control is transferred to the memory location specified by the CALL

instruction.

4.7.4 Programming 8259 (or Initializing 8259)

The 8259 has four numbers of Initialization Command

Word (ICW) and three numbers of Operational Command Word

(OCW). The command words are sent to 8259 by selecting it by

CS= 0 and A
0
 = 0 or 1. Certain command words are sent to the

internal address, A
0
 = 0 and others with A

0
 = 1.

The OCW1 should be sent to 8259 after sending ICWs.

The OCW2 can be sent any time (either before servicing interrupt

or at the end of interrupt service routine). The order of sending

ICWs and OCWs are shown as a flowchart in Fig. 4.11. The

format of ICWs and OCWs are shown in Fig. 4.12 and Fig. 4.13.

The ICWs are used to program the following features of

8259.

� Call address interval.

� Level or Edge triggered.

� Cascade mode or single.

� Vector addresses or Type number.

� 8085 or 8086 mode.

� Auto or Normal end of interrupt.

� Special fully nested mode.

The OCWs are used to read the status of interrupts and

also to program the following features of 8259.

� Masking or Unmasking of individual interrupts.

� Specific or Non-specific end of interrupt.

� Priority modes.

A brief discussion about ICWs and OCWs are presented in the following sections.

Initialization Command Words (ICW)

The 8259A has four ICWs and they are named as ICW1, ICW2, ICW3 and ICW4. When

only one 8259 is used in the system, we have to program 8259 by sending ICW1, ICW2 and

ICW4. When a number of 8259s are used in the system then we have to program each 8259 by

sending all the four ICWs. The format of ICW3 for master and slave 8259 are different.

®
®

®
®

®
®

®
®

®

®

®
®

®

Start

Send ICW1

Send ICW2

In
Cascade
Mode
?

No

(SNGL=1)

Yes
(SNGL=0)

Send ICW3
Master/Slave

No

(IC4=0)

Is ICW4
Needed
? Yes

(IC4=1)

Send ICW4

Send OCW1

Send OCW2
(The 8259 is

Ready to Accept
Interrupts)Return

Fig. 4.11 : Sending order
of ICWs and OCWs.

Microprocessor (8085) And Its Applications 4. 19

ICW1 : The IC4 bit is set to one if we decide to send ICW4. The single or cascade mode of operation is selected by

programming the "SNGL" bit. The LTIM bit determines whether the interrupt request input are positive edge-

triggered or level triggered. The bit ADI is used to program a call address interval of 4 or 8 in case of 8085

system. The upper three bits (D
5
, D

6
 and D

7
) of ICW1 are used to program the upper three bits of low byte of

call address. The lower five bits of low byte of call address are automatically inserted by 8259 as shown in Table-4.5.

ICW2 : This command word is used to program the high byte of call address.

ICW3 : The ICW3 should be sent to 8259s in cascade operation. Separate formats are provided for master and slave

8259s. In cascade mode, slave 8259s are connected to one or more IR inputs of master 8259 and each slave is

provided with a slave ID number. The connection of slave 8259s to the IR inputs of master are informed to master

through ICW3. For slave 8259s, the ID numbers are informed through ICW3.

ICW4 : The ICW4 is used to inform 8259 whether it is connected to 8085 or 8086-based system. For 8085-based

system the right most bit is programmed as zero. The AEOI bit is used to program the method of terminating the

interrupt. If AEOI is set to one, then the 8259 will automatically reset the interrupt request bit in in-service

register after supplying the call instruction to the processor. If AEOI bit is programmed as zero then the processor

has to send OCW2 to terminate the interrupt.

The BUF and M/S bits are used to select the buffered or non-buffered operation of master/slave 8259. The SFNM

bit is used to nest or include the priorities of the slave IR input with the master IR input. For example, if IR
4
 of a

master 8259 has a slave 8259 connected to it and they are programmed for SFNM operation, the priorities of IR
0

to IR
7
 of slave 8259 will be higher than IR

5
 to IR

7
 of master 8259.

Operation Command Words (OCWs)

The 8259 has three Operation Command Words (OCWs) and they are named as OCW1,

OCW2 and OCW3.

OCW1 : The OCW1 is sent to 8259 to mask or unmask the IR inputs of 8259. At any time the mask status of interrupts

can be read by the processor by using the same address of OCW1.

 Low byte call address

Interval = 4 Interval = 8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

IR0 A
7

A
6

A
5

0 0 0 0 0 A
7

A
6

0 0 0 0 0 0

IR1 A
7

A
6

A
5

0 0 1 0 0 A
7

A
6

0 0 1 0 0 0

IR2 A
7

A
6

A
5

0 1 0 0 0 A
7

A
6

0 1 0 0 0 0

IR3 A
7

A
6

A
5

0 1 1 0 0 A
7

A
6

0 1 1 0 0 0

IR4 A
7

A
6

A
5

1 0 0 0 0 A
7

A
6

1 0 0 0 0 0

IR5 A
7

A
6

A
5

1 0 1 0 0 A
7

A
6

1 0 1 0 0 0

IR6 A
7

A
6

A
5

1 1 0 0 0 A
7

A
6

1 1 0 0 0 0

IR7 A
7

A
6

A
5

1 1 1 0 0 A
7

A
6

1 1 1 0 0 0

Interrupt
input

TABLE - 4.5 : LOW BYTE CALL ADDRESS

4. 20 Chapter 4 Interrupt Structure

01

A0

ICW3 (Slave Device)

®

0 0 0 0 ID2 ID1 ID0

B7
B6 B5

B4
B3 B2

B1 B0

Slave ID Number
0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

®
®

Note : Slave ID number is equal to the

binary number of corresponding

master IR input to which the

slave is connected.

01

A0

ICW4

®

0 0 SFNM BUF M/S AEOI mPM

B7
B6 B5

B4
B3 B2

B1 B0

®®

1 = Special Fully Nested Mode
0 = Not Special Fully Nested Mode

® ®

0 X Non Buffered Mode
1 0 Buffered Mode/Slave
1 1 Buffered Mode/Master

1 = 8086/8088 Mode
0 = 8085 Mode

1 = Auto EOI
0 = Normal EOI

Fig. 4.12 : Format of ICWs.

B7 B6 B5
B4

B3 B2 B1 B0

A7 LTIM ADI SNGL IC4

1 = ICW4 Needed
0 = ICW4 is Not Needed®

®

®

®

¯

A6 A5 10

A0

A - A of Interrupt

Vector Address
(8085 Mode Only)

7 5 1 = Single
0 = Cascade Mode

Call Address Interval (8085 Mode Only)
1 = Interval of 4
0 = Interval of 8

1 = Level Triggered Mode
0 = Edge Triggered Mode

ICW1

B7 B6 B5
B4 B3 B2

B1 B0

A15/T7 A9
A81

A0

ICW2

A14/T6 A13/T5 A12/T4 A11/T3 A10

®

A - A of Interrupt Vector

Address (8085 Mode).
T - T of Interrupt Type Number

(8086/8088 Mode)

15 8

7 3

B7
B6 B5

B4
B3 B2

B1 B0

S71

A0

ICW3 (Master Device)

® 1 = IR Input Has a Slave
0 = IR Input Does Not Have a Slave

S6 S5 S4 S3 S2 S1 S0

Microprocessor (8085) And Its Applications 4. 21

OCW1

B7
B6 B5

B4
B3 B2

B1 B0

M71

A0

®
Interrupt Mask
1 = Mask Set
0 = Mask Reset

M6 M5 M4 M3 M2 M1 M0

OCW2

B7
B6 B5

B4
B3 B2

B1 B0

R0

A0

®

SL EOI 0 0 L2 L1 L0
IR Level to be Acted Upon
0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

®
®

0 0 1 Non-Specific EOI Command

0 1 1 Specific EOI Command

1 0 1 Rotate on Non-Specific EOI Command

1 0 0 Rotate in Automatic EOI Mode (SET)

0 0 0 Rotate in Automatic EOI Mode (CLEAR)

1 1 1 *Rotate on Specific EOI Command

1 1 0 *Set Priority Command

0 1 0 No Operation

I
P
Q

I
P
Q

I
P
Q

End of Interrupt

Automatic Rotation

Specific Rotation

*L - L are used0 2
® ® ®

OCW3

B7 B6 B5
B4

B3 B2
B1 B0

00

A0

®

ESMM SMM 0 1 P RR RIS

®

®

Read Register Command

0 1 0 1

0 0 1 1

No Action Read IRR on Next Read ISR on

RD Pulse Next RD Pulse

1 = Poll Command ; 0 = No Poll Command

Special Mask Mode

0 1 0 1

0 0 1 1

No Action Reset Set

Special Mask Special Mask

®
®

Fig. 4.13 : Format of OCWs.

4. 22 Chapter 4 Interrupt Structure

OCW2 : The OCW2 is sent to 8259A only when the AEOI mode (in ICW4) is not selected. The OCW2 is sent by the

processor to decide on the type of End-of-Interrupt (EOI) and to program the priorities of the interrupt (i.e. IR

inputs of 8259A). The different methods of EOI are discussed here.

(i) Non-specific End-of-Interrupt : This command is sent by processor to 8259 to terminate the current

interrupt being serviced by 8259. This resets the corresponding bit in in-service register of 8259 and allows

the next higher priority interrupt.

(ii) Specific End-of-Interrupt : This command is sent by the processor to reset or terminate a specific

interrupt request, decided by the lower three bits of OCW2.

(iii) Rotate on Non-specific EOI : This command will take action same as that of non-specific EOI except that

it rotates the priorities after resetting the bit in in-service register. In this case the interrupts will have

rotating priority, in which the priority of the currently serviced interrupt becomes the least.

(iv) Rotate on Automatic EOI : This command is sent to 8259 to select automatic EOI with rotating priority.

(v) Rotate on Specific EOI : This command will take action similar to that of specific EOI except that it rotates

the priorities of the interrupts after they are serviced.

(vi) Set priority : The command is sent to set the priority of the interrupt level specified by lower three bits of

OCW2 as the least.

OCW3 : The OCW3 is used to set special mask mode, poll the active interrupt request and read the in-service and

interrupt request registers. In special mask mode, the mask status are negated to allow the interrupts masked by

interrupt mask register.

4.8 SUMMARY

� Interrupt is a signal sent by an external device to the processor, to request the processor to perform a particular
task or work.

� Interrupts are used for data transfer between the peripheral and the microprocessor.

� The execution of interrupt service routine is called servicing of interrupt.

� There are two types of interrupts namely, hardware and software interrupts.

� Software interrupts are program instructions.

� The software interrupts of 8085 are RST 0, RST 1, RST 2, RST 3, RST 4, RST 5, RST 6 and RST 7.

� The hardware interrupts are initiated by an external device by placing an appropriate signal at the interrupt pin of
the processor.

� The hardware interrupts of 8085 are TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

� The TRAP, RST 7.5, RST 6.5 and RST 5.5 are vectored interrupts.

� The TRAP interrupt is edge and level sensitive.

� The RST 7.5 interrupt is edge sensitive (positive edge).

� The RST 6.5, RST 5.5 and INTR are level sensitive.

� In vectored interrupts the address to which the program control is transferred is fixed by the manufacturer of the
microprocessor.

� Masking is preventing the interrupt from disturbing the main program.

� The interrupts RST 7.5, RST 6.5, RST 5.5 and INTR are maskable interrupts.

� All the hardware interrupts except TRAP are disabled when the processor is resetted.

� INTR is a general interrupt request which can support eight interrupting devices with the help of external
hardware circuits.

� The TRAP interrupt cannot be disabled by DI instruction or by system reset.

Microprocessor (8085) And Its Applications 4. 23

� The INTR, RST7.5, RST6.5 and RST5.5 interrupts are disabled after execution of DI instruction or after system
reset or after recognition of one of the interrupts.

� The programmable interrupt controller is used to expand the INTR interrupt of 8085 or 8086 processor .

� The 8259 consists of control logic, read/write logic, data bus buffer, priority resolver, interrupt request register,
interrupt mask register, in-service register and cascade buffer.

� The automatic rotation mode, specific rotation mode and fully nested mode are the different operating modes that
decides priority of the interrupts input to 8259.

� The 8259 provides the status of pending interrupts, masked interrupts and interrupt being serviced.

� The 8259 is initialized by sending ICWs and OCWs.

� The ICWs are used to set up the proper conditions and specify CALL vector addresses.

� The OCWs are used to perform function such as masking interrupts, setting up status, read operations, etc.

� The interrupts input to 8259 can be masked or unmasked individually.

� The 8259 that is directly interrupting the processor is called master 8259.

4.9 SHORT QUESTIONS AND ANSWERS

4.1 What is an Interrupt ?

Interrupt is a signal sent by an external device to the processor so as to request the processor to

perform a particular task or work.

4.2 How are interrupts classified ?

There are three methods of classifying interrupts.

Method I : The interrupts are classified into Hardware and Software interrupts.

Method II : The interrupts are classified into Vectored and Non-vectored interrupt.

Method III : The interrupts are classified into Maskable and Non-maskable interrupts.

4.3 How does a microprocessor service an interrupt request ?

When the processor recognizes an interrupt, it saves the processor status in stack. Then it calls

and executes an Interrupt Service Routine (ISR). At the end of ISR, it restores the processor status

and the program control is transferred to the main program.

4.4 What is the function of interrupt service routine?

For each interrupt the processor has to perform a specific job. An interrupt service routine has been

developed in order to perform the operations required for a device that is interrupting the processor.

4.5 How are interrupts affected by system reset?

Whenever the processor or system is reset, all the interrupts except TRAP are disabled. In order to

enable the interrupts, EI instruction has to be executed after a reset.

4.6 What are Software interrupts?

Software interrupts are program instructions. These instructions are inserted at desired locations
in a program. While running a program, if a software interrupt instruction is encountered then the

processor executes an interrupt service routine.

4.7 What is Hardware interrupt?

If an interrupt is initiated in a processor by applying an appropriate signal to an interrupt pin, then

the interrupt is called Hardware interrupt.

4. 24 Chapter 4 Interrupt Structure

4.8 What is the difference between Software and hardware interrupts?

Software interrupt is initiated by the main program, but a hardware interrupt is initiated by an

external device.

In 8085, the software interrupt cannot be disabled or masked but the hardware interrupt except

TRAP can be disabled or masked.

4.9 What are vectored and non-vectored interrupt?

When an interrupt is accepted, if the processor control branches to a specific address defined by

the manufacturer, then the interrupt is called vectored interrupt.

In non-vectored interrupt, there is no specific address for storing the interrupt service routine.

Hence, the interrupting device should give the address of the interrupt service routine.

4.10 List the software and hardware interrupts of 8085.

Software interrupts : RST 0, RST1, RST 2, RST 3, RST 4, RST 5, RST 6 and RST 7.

Hardware interrupts : TRAP, RST 7.5, RST 6.5, RST 5.5 and INTR.

4.11 What is TRAP?

TRAP is a non-maskable interrupt of 8085. It is not disabled by processor reset or after recognition

of interrupt.

4.12 Does HOLD has higher priority than TRAP or not?

The interrupts including TRAP are recognized only if the HOLD is not valid, hence TRAP has

lower priority than HOLD.

4.13 What is masking and why it is required?

Masking is preventing the interrupt from disturbing the current program execution. When the

processor is performing an important job (process) and if the process should not be interrupted

then all the interrupts should be masked or disabled.

In processor with multiple interrupts, the lower priority interrupt can be masked so as to prevent it

from interrupting, the execution of interrupt service routine of higher priority interrupt.

4.14 When does the 8085 processor accept a hardware interrupt?

The processor keeps on checking the interrupt pins at the second T-state of the last machine cycle

of every instruction. If the processor finds a valid interrupt signal and if the interrupt is unmasked

and enabled then the processor accepts the interrupt. The acceptance of the interrupt is

acknowledged by sending an INTA signal to the interrupting device.

4.15 List the type of signals that have to be applied to initiate a hardware interrupt in 8085.

The TRAP is level and edge-sensitive and so the interrupt signal has to take a low to high

transition and then remain high until it is recognized. The RST 7.5 is edge-sensitive and so the

interrupt signal has to take a low to high transition and need not remain high until it is recognized.

The RST 6.5, RST 5.5 and INTR are level-senstive and so the interrupt signal should be high until

the interrupt is recognized.

4.16 What are maskable and non-maskable interrupts of 8085?

The TRAP is non-maskable interrupt. The RST 7.5, RST 6.5 and RST 5.5 are maskable interrupts.

The INTR of 8085 can also be disabled by DI instruction.

Microprocessor (8085) And Its Applications 4. 25

4.17 When will the 8085 processor disable the interrupt system ?

The interrupts of 8085 except TRAP are disabled after any one of the following operations.

� Executing EI instruction.

� System or processor reset.

� After recognition (acceptance) of an interrupt.

4.18 What is the function performed by DI instruction?

The function of DI instruction is to disable the entire interrupt system.

4.19 What is the function performed by EI instruction?

The EI instruction can be used to enable all the interrupts after disabling.

4.20 How can the interrupt INTR of 8085 be expanded?

The interrupt INTR of 8085 can be expanded upto eight interrupts using 8-to-3 priority encoder.

It can also be expanded to eight interrupts using one number of 8259 (Programmable interrupt

controller) or upto 64 interrupts using 8259’s in cascaded mode.

4.21 How can the hardware interrupt of 8085 be masked or unmasked?

The masking or unmasking of RST 7.5, RST 6.5 and RST 5.5 interrupts can be performed by moving

an 8-bit data to accumulator and then executing SIM instruction. The format of the 8-bit data is

shown in Fig. Q4.21.

4.22 How can we check whether an 8085 interrupt is masked or not?

The masking status of an 8085 interrupt can be obtained by executing RIM instruction. When RIM

instruction is executed, a 8-bit data is loaded in the accumulator. The bits B
0
, B

1
 and B

2
 will give the

masking status of RST 5.5, RST 6.5 and RST 7.5 respectively. If this bit is 1, then the corresponding

interrupt is masked, otherwise it is unmasked.

4.23 How can we check the interrupt request pending status of 8085 interrupt?

The pending status of an 8085 interrupt can be obtained by executing RIM instruction. When the

RIM instruction is executed an 8-bit data is loaded in accumulator. The bits B
4
, B

5
 and B

6
 will give

the pending status of RST 5.5, RST 6.5 and RST 7.5 respectively. If this bit is 1, then the interrupt

is pending, otherwise it is not pending.

B7
B6 B5

B4
B3 B2

B1 B0

SDESOD

®

X R7.5 MSE M7.5 M6.5 M5.5

®

RST 5.5 Mask

RST 6.5 Mask

RST 7.5 Mask®
Mask Set Enable.
If, MSE = 0, Then

and B are Ignored. If,

MDE = 1 Then B , B

and B are Recognized

B B0 1

2

0 1

2

®

® Reset RST 7.5. If R 7.5 = 1,
Then RST 7.5 is Not Allowed.
If R7.5 = 0, Then RST 7.5 is Allowed

®
® ®

Serial Output Data

Serial Data Enable.
If SDE = 1, Bit B

is Send to SOD Line.
If SDE = 0, Bit B is

Ignored.

7

7

Undefined

Fig. Q4.21 : Format of an 8-bit data to be loaded in the accumulator
before executing a SIM instruction.

I
P
Q

0
=
A
v
ai
la
b
le

1
=
M
as
k
ed

4. 26 Chapter 4 Interrupt Structure

4.24 What is vectoring?

Vectoring is the process of generating the address of interrupt service routine to be loaded in

program counter.

4.25 How can the status of maskable interrupts be read in 8085 processor?

The status of hardware interrupts like interrupt request pending or not, interrupts enabled or not, and

masked or unmasked can read from accumulator after executing RIM instruction. When RIM instruction

is executed an 8-bit data is loaded in accumulator which can be interpreted as shown in Fig. Q4.25.

4.26 How are vector addresses generated for hardware interrupts of 8085?

For the hardware interrupts TRAP, RST 7.5, RST 6.5 and RST 5.5 the vector addresses are generated

by the processor itself. These addresses are fixed by the manufacturer.

4.27 How is a vector address generated for the INTR interrupt of 8085?

For the INTR interrupt, the interrupting device has to place either RST opcode or CALL opcode

followed by a 16-bit address. If RST opcode is placed, then the corresponding vector address is

generated by the processor. In case of CALL opcode the given 16-bit address will be the vector address.

4.28 How are vector addresses generated for software interrupts of 8085?

For the software interrupts RST 0 to RST 7, the vector addresses are generated internal to the

processor. These vector addresses are fixed by the manufacturer.

4.29 What is polling ?

Polling is a scheme or an algorithm to identify the devices interrupting the processor. Polling is

employed when multiple devices interrupt the processor through one interrupt pin of the processor.

4.30 What are the different types of polling?

Polling can be classified into software and hardware polling. In software polling the entire polling

process is governed by a program. In hardware polling, the hardware takes care of checking

the status of interrupting devices and allowing the requests one by one to the processor.

4.31 What is the need for interrupt controller?

An interrupt controller is employed to expand the interrupt input. It can handle the interrupt

request from various devices and allow the requests one by one to the processor.

B7
B6 B5

B4
B3 B2

B1 B0

I7.5SID

®

I6.5 I5.5 IE M7.5 M6.5 M5.5

®

Mask Status
of RST 5.5

®

Interrupt
Enable Flag

®

®

®

Serial Input Data

Interrupt Pending
Status of RST 7.5

Fig. Q4.25 : Interpretation of the content of accumulator after
executing RIM instruction.

®

®

Interrupt Pending
Status of RST 6.5

Interrupt Pending
Status of RST 5.5

I
P
Q

0
=
In
te
rr
u
p
t
P
en
d
in
g

1
=
In
te
rr
u
p
t
is
N
o
t
P
en
d
in
g

Mask Status
of RST 6.5

Mask Status
of RST 7.5 I

P
Q

1
=
M
as
k
ed

0
=
U
n
m
as
k
ed

I
P
Q 1 = Interrupt are Enabled

0 = Interrupts are Disabled

Microprocessor (8085) And Its Applications 4. 27

4.32 List some of the features of INTEL 8259 (Programmable Interrupt Controller).

� It manages eight interrupt requests. � The priorities of interrupts are programmable.

� Interrupt vector addresses are programmable. � Interrupts can be masked or unmasked individually.

4.33 Write the various functional blocks of INTEL 8259 ?

The various functional blocks of 8259 are Control logic, Read/ Write logic, Data bus buffer, Interrupt

Request Register (IRR), Interrupt Mask Register (IMR) and In-Service Register (ISR), Priority

Resolver (PR) and Cascade buffer.

4.34 What is master and slave 8259 ?

When 8259’s are connected in cascade, one 8259 will be directly interrupting 8085 and it is called

master 8259. To each interrupt request input of master 8259, one slave 8259 can be connected. The

8259’s interrupting the master 8259 are called slave 8259.

4.35 How is 8259 programmed?

The 8259 is programmed by sending Initialization Command Words (ICWs) and Operational

Command Words (OCWs).

4.36 Write the format of ICW1?

4.37 What are the features of 8259 that are programmed using ICW’s?

The ICW’s are used to program the following features of 8259:

� Call address interval (in case of 8085). � 8085 or 8086 mode.

� Cascade mode or single. � Auto or Normal end of interrupt.

� Level or Edge triggered. � Special fully nested mode.

� Vector address / Type number.

4.38 What are the features of 8259 that can be programmed using OCW’s?

The OCW’s are used to program the following features of 8259 :

� Masking of individual interrupts.

� Specific or Non-specific end of the interrupt.

� Priority modes.

B7
B6 B5

B4
B3 B2

B1 B0

®

1 LTIM ADI SNGL IC4

®

®

®

®

0

A0

A7
A6 A5

1 = ICW4 Needed
0 = ICW4 is Not Needed

1 = Single
0 = Cascade Mode

Call Address Interval
1 = Interval of 4
0 = interval of 8

1 = Level Triggered Mode
0 = Edge Triggered Mode

A7 - A5 of Interrupt
Vector Address

(MCS-8080/8085 Mode Only)

4. 28 Chapter 4 Interrupt Structure

4.39 What is the difference between programming master 8259 and slave 8259 ?

The ICW 3 will be different for master 8259 and slave 8259. For master, the ICW3 will inform the IR

input that are having slaves. For slave, the ICW3 will inform its slave ID number.

4.40 When is ICW4 sent to 8259 ?

The ICW4 is send to 8259 to perform anyone of the following features :

� 8085 or 8086 mode. � Special fully nested mode.

� Auto or Normal end of interrupt. � Buffered or Non-buffered mode.

4.41 Write a program segment to initialize a single 8259 connected to 8085 processor.

Let us assume that 8259 is IO-mapped in the system. The 8259 can be initialized by sending

ICW1, ICW2 and OCW1. Let the 8-bit address when A
0
 = 0 be 00

H
 and when A

0
= 1 be 01

H
.

MVI A,ICW1 ; Move ICW1 to A-register.

OUT 00H ; Send ICW1 to 8259.

MVI A,ICW2 ; Move ICW2 to A-register.

OUT 01H ; Send ICW2 to 8259.

MVI A,OCW1 ; Move OCW1 to A-register.

OUT 01H ; Send OCW1 to 8259.

HLT ; Halt program execution.

4.42 Frame the Command words ICW1, ICW2 and OCW1 for initializing single 8259 with call

address interval of 8 and for level triggered interrupt. Also, unmask all the interrupt inputs.

The desired vector address is 5000
H
.

ICW1

B7
B6 B5

B4
B3 B2

B1 B0

00

®

0 1 1 0 1 0

®
ICW4 is Not Needed

®

Single 8259

Call Address Interval of 8

= 1AH

IPQ

A , A and A

of CALLAddress
5 6 7

®Level Triggered Interrupt

ICW2

B7
B6 B5

B4
B3 B2

B1 B0

10 0 1 0 0 0 0 = 50H

IPQ

A to A of CALLAddress8 15

OCW1

B7
B6 B5

B4
B3 B2

B1 B0

00 0 0 0 0 0 0 = 00H

IPQ

All the Interrupt Mask are Reset

 CHAPTER 5

ASSEMBLSSEMBLSSEMBLSSEMBLSSEMBLYYYYY LANGUANGUANGUANGUANGUAGEAGEAGEAGEAGE PROGRAMMINGROGRAMMINGROGRAMMINGROGRAMMINGROGRAMMING

5.1 LEVELS OF PROGRAMMING

Programs are a set of instructions or commands needed to perform a specific task by a

programmable device such as a microprocessor. The programs needed for a programmable device

can be developed at three different levels and they are as follows :

1. Machine level programming

2. Assembly level programming

3. High level programming

Machine Level Programming

In machine level programming, instructions are written using binary codes which uses

only two symbols '0' and '1'. The manufacturer of microprocessors will give a set of instructions

for each microprocessor in binary codes, i.e., one binary code will represent one operation

performed by the microprocessor. The language in which the instructions are represented

by binary codes is called machine language. A microprocessor can understand and execute

the machine language programs directly.

The binary instructions of one microprocessor will not be same as that of another

microprocessor. Therefore, the machine language programs developed for one microprocessor

cannot be used for another microprocessor i.e., the machine level programs are machine dependent.

Moreover, it is highly tedious for a programmer to write programs in the machine language.

Assembly Level Programming

In assembly level programming, instructions are written using mnemonics. A mnemonic

comprises of a few letters of the English language which represent the operation performed

by the instruction. For example, the mnemonic for the instruction which performs addition

operation is ADD. The manufacturer of the microprocessors will provide a set of instructions in

the form of a mnemonic for each microprocessor. Also, for each mnemonic a binary code will be

specified by the manufacturer. If the program is developed using binary codes then it is called

machine level programming and if the program is developed using mnemonics then it is called

assembly level programming.

The language in which the instructions are represented by mnemonics is called assembly

language. Microprocessors cannot execute the assembly language programs directly. The assembly

language programs have to be converted to machine language for execution. This conversion is

performed using a software tool called assembler.

�

5. 2 Chapter 5 Assembly Language Programming

The mnemonics of one microprocessor will not be same as that of another microprocessor.

Therefore, the assembly language programs developed for one microprocessor cannot be used

for another microprocessor directly i.e. the assembly language programs are machine dependent.

But certain manufacturers provide upward compatability for the same family of microprocessors.

(i.e., the program developed for a the lower version of a microprocessor of a family can be run on

the higher version without modifications.) For example, consider the INTEL 80x86 family of

microprocessors. The program developed for 8086 microprocessor can be run on 80186, 80286,

80386 or 80486 microprocessor-based system without any modifications.

High Level Programming

In high level programming the instructions will be in the form of statements written using

symbols, English words and phrases. Each high level language will have its own vocabulary of

words, symbols, phrases and sentences. Examples of high level languages are BASIC, C, C++,

etc. The programs written in high level languages are easy to understand and machine independent.

So they are known as portable programs. A high level language program has to be converted into

machine language programs in order to be executed by the microprocessor. This conversion is

performed by a software tool called compiler.

5.2 FLOWCHART

Flowchart is a graphical representation of the operation flow of a program. It is also the

graphical form of an algorithm. Flowcharts can be a valuable aid in visualizing programs. The

various symbols used for drawing flowcharts are shown in Fig. 5.1. The operations represented by

various symbols of flowchart are explained in Table-5.1. A sample flowchart is shown in Fig. 5.2.

Process
Connector

Subroutine

Off-Page
Connector

Decision

Line

Input/Output

Start/End ®
Arrow

Fig. 5.1 : Symbols used in a flowchart.

Start

Read Input

Process-1

Decision

Process-2

Send Output

End

¯

¯

¯

¯¯

¯

¯

¯

®1

1

No Yes

Fig. 5.2 : A sample flowchart.

Read Input

CALL
Subroutine

Send Output

Microprocessor (8085) And Its Applications 5. 3

Symbol Operation

Racetrack shape box A racetrack shaped symbol is used to indicate the beginning

(start) or end of a program.

Parallelogram A parallelogram is used to represent input or output operation.

Rectangular box

A rectangular box is used to represent simple operations other

than input and output operations.

A rectangular box with A rectangular box with double lines on vertical sides is used to

represent a subroutine or procedure.double lines on vertical
sides

Diamond shaped box

A diamond shaped box is used to represent a decision point or

cross road in the programs

Small circle A small circle is used as a connector to show the connections

between various parts of a flowchart within a page. Identical

numbers are entered inside the circles that represent the same

connecting points.

Five-sided box A five-sided box symbol is used as an off-page connector to show

the connections between various sections of a flowchart in

different pages. Identical numbers are entered inside the boxes

that represent the same connecting point.

Llines are drawn between boxes and diamonds to indicate the

program flow.

Arrow Arrows are placed on the lines to indicate the direction of program

flow.

5.3 ASSEMBLY LANGUAGE PROGRAM DEVELOPMENT TOOLS

Development system is used by system designers to design and test the software and hardware

of a microprocessor-based system before going for practical implementation (or fabrication). The

microprocessor development system consists of a set of hardware and software tools. The hardware

of a development system usually contain a standard PC (Personal Computer), printer and an emulator.

The software tools are also called program development tools and they are editor, assembler,

library builder, linker, debugger and simulator. These software tools can be run on a PC in order to

write, assemble, debug, modify and test the assembly language programs.

Line

→

TABLE - 5.1 : OPERATIONS REPRESENTED BY THE SYMBOLS USED IN FLOWCHART

5. 4 Chapter 5 Assembly Language Programming

Editor (Text Editor)

Editor is a software tool which, when run on a PC, allows the user to type/enter and

modify the assembly language program. The editor provides a set of commands for insertion,

deletion and modification of letters, characters, statements, etc. The main function of an

editor is to help the user to construct the assembly language program in the right format. The

program created using editor is known as source program and it is usually saved with the file

extension ".ASM". For example, if a program for addition is developed using editor then it

can be saved as "ADDITION.ASM". Some examples of editors are NE (Norton Editor), EDIT

(DOS Editor), etc.

Assembler

The assembler is a software tool which, when run on a PC, converts the assembly language

program to a machine language program. Several types of assemblers are available and they are

one-pass assembler, two-pass assembler, macro assembler, cross assembler, resident assembler

and meta assembler.

In one-pass assembler the source code is processed only once and we can use only backward

reference. In a one-pass assembler as the source code is processed, any labels encountered are

given an address and stored in a table. Whenever a label in encountered, the assembler may look

backward to find the address of the label. If the label is not yet defined then it issues an error

message (because the assembler will not look forward). Since only one pass is used to translate

the source code, a one-pass assembler is very fast, but because of the forward reference problem,

the one-pass assembler is not used often.

Most of the popularly used assemblers are the two-pass assemblers. In a two-pass assembler,

the first pass is made through source code for the purpose of assigning an address to all the labels

and to store this information in a symbol table. The second pass is made to actually translate the

source code into machine code.

The input for the assembler is the source program which is saved with file extension

".ASM". The assembler usually generates two output files called object file and list file. The object

file consist of relocatable machine codes of the program and it is saved with file extension ".OBJ".

The list file contains the assembly language statements, the binary codes for each instruction and

address of each instruction. The list file is saved with file extension ".LST".

The list file also indicates any syntax errors in the source program. The assembler will not

identify the logical errors in the source program. In order to correct the errors indicated on the list

file, the user have to use the editor again. The corrected source program is saved again and then

reassembled. Usually, it may take several times through edit-assemble loop to eliminate the syntax

errors from the source program.

Some examples of assemblers are TASM (Borland's TurboAssembler), MASM (Microsoft's

Macro Assembler), ASM86 (INTEL'S 8086 Assembler), ASM85 (INTEL'S 8085 Assembler), etc.

Microprocessor (8085) And Its Applications 5. 5

Advantages of the assembler

1. The assembler translates mnemonics into binary code with speed and accuracy, thus eliminating human errors in

looking up the codes.

2. The assembler assigns appropriate values to the variables used in a program. This feature offers flexibility in

specifying jump locations.

3. It is easy to insert or delete instructions in a program and reassemble the entire program quickly with new memory

locations and modified addresses for jump locations. This avoids rewriting the program manually.

4. The assembler checks syntax errors, such as wrong labels, opcodes, expressions, etc., and provides error

messages. However, it cannot check logic errors in a program.

5. The assembler can reserve memory locations for data or results.

6. The assembler provides list file for documentation.

Library Builder

The library builder is used to create library files which are a collection of procedures of

frequently used functions. Actually a library file is a collection of assembled object files. While

developing a software for a particular application, the programmers can link the library files in

their programs. When the library file is linked with a program, only the procedure required by the

program are copied from library file and added to the program.

The input to library builder is a set of assembled object files of program modules/procedures.

The library builder combines the program modules/procedures into a single file known as library

file and it is saved with file extension ".LIB". Some examples of library builder are microsoft's LIB,

Borlands TLIB, etc.

Linker

The linker is a software tool which is used to combine relocatable object files of program

modules and library functions into a single executable file.

While developing program for a particular application it is much more efficient to develop

the program in modules. The entire task of the program can be divided into smaller tasks and

procedures for each task can be developed individually. These procedures are called program

modules. For certain tasks we can use library files if they are available. Each module can be

individually assembled, tested and debugged. Then the object files of program modules and the

library files can be linked to get an executable file.

The linker also generates a link map file which contains the address information about

the linked files. Some examples of linkers are microsoft's linker LINK, Borland's Turbo linker

TLINK, etc.

Debugger

Debugger is a software tool that allows the execution of a program in a single step or

break-point mode under the control of user. The process of locating and correcting the errors in

a program using a debugger is known as debugging.

5. 6 Chapter 5 Assembly Language Programming

The debugger allows the designer to load the object code program into the memory of the

PC, execute the program and troubleshoot or debug it. The debugger allows the designer to look

at the contents of registers and memory locations after running the program. It allows the system

designer to change the contents of registers and memory locations and return the program.

Some debuggers allow the user to stop execution after each instruction so that the

memory/register content can be checked or altered. A debugger also allows the user to set a

breakpoint at any point in user program. When the user runs the program, the PC will execute

instructions up to this breakpoint and stop. The user can then examine register and memory

contents to see whether the results are correct upto that point. If the results are correct, the

user can move the breakpoint to a later point in the program. If the results are not correct, the user

can check the program up to that point to find out why they are not correct.

Debugger tools can help the user to isolate a problem in the program. Once the problem/

errors are identified, the algorithm can be modified. Then the user can use the editor to correct the

source program, reassemble the corrected source program, relink and run the program again.

Simulator

The simulator is a program which can be run on the development system (Personal computer)

to simulate the operations of the newly designed system. Some of the operations that can be

simulated are given below:

� Execute a program and display result.

� Single step execution of a program.

� Break-point execution of a program.

� Display the contents of register/memory.

Simulator usually shows the contents of registers and memory locations on the screen of

the computer and allows the system designer to perform all of the operations listed above, with the

added advantage of watching the data change as the program operates. This feature saves

considerable time because the register/memory contents do not have to be displayed using separate

commands. The visual representation also gives the programmer a better feel for what is taking

place in the program.

The simulators do not have the ability to perform actual IO or internal hardware operations

such as timing or data transmission and reception.

Emulator

An emulator is a mixture of hardware and software. It is usually used to test and debug the

hardware and software of a newly designed microprocessor-based system. The emulator has a

multicore cable which connects the PC of the development system and the newly designed hardware

of the microprocessor system. A connector/plug at one end of the cable is plugged into new

hardware in place of its microprocessor. The other end of cable is connected to parallel port of

PC. Through this connection the software of the emulator allows the designer to download the

object code program into RAM in the system being tested and run it.

Like a debugger, an emulator allows the system designer to load and run programs, examine

and change the contents of registers, examine and change the contents of memory locations and

insert breakpoints in the program.

Microprocessor (8085) And Its Applications 5. 7

Start

¯
Define Problem

Develop or Modify Algorithm

Create or Modify Source File with Editor

Assembler

Assembler
Errors
?

Link

Link
Errors
?

External
System
?

Load Emulator

Load Program

Run and Test Program

Errors
?

Use Emulator Tools to
Find Errors

Load Debugger

Load Program

Run and Test Program

Errors
?

Use Debugger Tools to
Find Errors

Stop

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

®¬® ¬

¬ ®

®

®¬

¬
Yes

Yes
¬

No

No

No Yes

No

Yes Yes

No

Fig. 5.3 : Development process of an assembly language program.

¯

5. 8 Chapter 5 Assembly Language Programming

The emulator also takes a snapshot of the contents of registers, activity on the address and

data bus and the state of the flags as each instruction executes. Also, the emulator stores this trace

data. The user can have a printout of the trace data to see the results that the program produced on

a step-by-step basis. Another powerful feature of an emulator is the ability to use either development

system memory or the memory on the hardware under test for the program that is being debugged.

Summary of the use of program Development Tools

The various steps in the development of an assembly language program are given below

and also as a flowchart in Fig. 5.3.

1. Define the problem carefully.

2. Use an editor to create the source file for assembly language program.

3. Assemble the source file with the assembler.

4. If assembler list file indicates errors then use editor and correct the errors.

5. Cycle through the edit -assemble loop until all errors indicated by assembler are cleared.

6. Use linker to link all object files of program modules and library files into a single executable file.

7. If the linker indicates any error then modify the source program, reassemble and relink to correct the errors.

8. If the developed program does not interact with any external hardware other than that directly connected to the

system, then you can use the system debugger to run and debug your program.

9. If the designed program is intended to work with external hardware then use an emulator to run and debug the program.

5.4 VARIABLES AND CONSTANTS USED IN ASSEMBLERS

The various characters used to construct assembler variables, constants and directives are

the following :

Upper case English alphabets : A to Z

Lower case English alphabets : a to z

Numbers : 0 to 9

Special characters : @, $, ?, _ (Underscore)

Variables

Variables are symbols (or terms) used in assembly language program statements in order to

represent the variable data and address. While running a program, a value has to be attached to

each variable in the program. The advantage of using variables is that the value of the variable can

be dynamically varied while running the program.

Usually a variable name is constructed such that it reflects the meaning of the value it holds. A

variable name selected to represent the temperature of a device can be TEMP, a variable name selected

to represent the speed of a motor can be M_SPEED, etc. While construcing variable names, the

numeric characters (0 to 9) should not be used as first character and the special characters $ and ?

should not be used.

Rules for framing variable names

1. The variable name can have any of the following characters. A to Z, a to z, 0 to 9, @, _(underscore).

2. The first character in the variable name should be an alphabet (A to Z or a to z) or an underscore.

3. The length of a variable name depends on the assembler and normally the maximum length of variable name is 32 characters.

4. Variable names are case insensitive. Therefore, the assembler does not distinguish between the upper and lower case

letters/alphabets.

Microprocessor (8085) And Its Applications 5. 9

Constants

The decimal, binary or hexadecimal number used to represent the data or address in assembly

language program statement are called constants or numerical constants. When constants are

used to represent the address/data then their values are fixed and cannot be changed while running

a program. The binary, hexadecimal and decimal constants can be differentiated by placing a

specific alphabet at the end of the constant.

A valid binary constant/number is framed using numeric characters 0 and 1 and the alphabet

B is placed at the end.

A valid decimal (BCD) constant/number is framed using numeric characters 0 to 9 and the

alphabet D is placed at the end. However, a constant/number which does not end with any alphabet

is also treated as a decimal constant.

A valid hexadecimal constant/number is framed using numeric characters 0 to 9 and alphabets

A to F and the alphabet H is placed at the end. A zero should be placed/inserted at the beginning of

a hexadecimal number if the first digit is an alphabet character from A to F, otherwise the assembler

will consider the constant starting with A to F as a variable.

Examples of valid constants

1011 - Decimal (BCD) constant

1060D - Decimal constant

1101B - Binary constant

92ACH - Hexadecimal constant

0E2H - Hexadecimal constant

Examples of invalid constants

1131B - The character 3 should not be used in binary constant.

0E2 - The character H at the end of hexadecimal number is missing.

C42AH - Zero is not inserted in the beginning of hexadecimal number and so it is treated as a variable.

1A65 D - The character A should not be used in decimal constant.

5.5 ASSEMBLER DIRECTIVES

The assembler directives are the instructions to the assembler regarding the program being

assembled. They are also called pseudo instructions or pseudo opcodes. The assembler directives

are used to specify start and end of a program, attach value to variables, allocate storage locations

for input/output data, to define start and end of segments, procedures, macros, etc.

The assembler directives control the generation of machine code and organization of

the program. But no machine codes are generated for assembler directives. Some of the

assembler directives that can be used for 8085 assembly language program development are

listed in Table -5.2.

5. 10 Chapter 5 Assembly Language Programming

TABLE - 5.2 : ASSEMBLER DIRECTIVES

S.No
Assembler

Functions
directives

1. DB Define Byte. Used to define byte type variable.

2. DW Define word. Used to define 16-bit variable.

3. END Indicates the end of the program.

4. ENDM End of macro. Indicates the end of a macro sequence.

5. EQU Equate. Used to equate numeric value or constant to a variable.

6. MACRO Defines the name, parameters and start of a macro.

7. ORG Origin. Used to assign the starting address for a program.

DB (DEFINE BYTE)

The directive DB is used to define a byte type variable. It reserves specific amount of memory to variables and stores the

values specified in the statement as initial values in the allotted memory locations. The range of value that can be stored in a byte type

variable is 0 to 255
10

 (00
H
 to FF

H
) for unsigned value and -128

10
 to 127

10
 for signed value (00

H
 to 7F

H
 for positive values and 80

H
 to FF

H

for negative values).

The general form of the statement to define the byte variable is,

variable DB value/values

Examples :

AREA DB 45 One memory location is reserved for the variable AREA and 45
10

 is stored as initial value in that

memory location.

LIST DB 7FH, 42H, 35H Three consecutive memory locations are reserved for the variable LIST and 7F
H
, 42

H
, and 35

H

are stored as initial value in the reserved memory location.

DW (DEFINE WORD)

The directive DW is used to define a word type (16-bit) variable. It reserves two consecutive memory locations to each

variable and stores the 16-bit values specified in the statement as the initial value in the allotted memory locations. The range of

values that can be stored in word type variable is 0 to 65535
10

 (0000
H
 to FFFF

H
) for unsigned value, and -32768 to +32767 for signed

value (0000
H
 to 7FFF

H
 for positive value and 8000

H
 to FFFF

H
 for negative value).

The general form of the statement to define the word type variable is,

variable DW value/values

Examples :

WEIGHT DW 1250 Two consecutive memory locations are reserved for the variable WEIGHT and initialized

with value 1250
10

.

ALIST DW 6512H, 0F251H, 0CDE2H Six consecutive memory locations are reserved for the variable ALIST and each 16-bit

data specified in the instruction is stored in two consecutive memory locations.

ORG, END AND EQU

The directive ORG (Origin) is used to assign the starting address for a program. The directive END is used to terminate a

program. The statements after the directive END will be ignored by the assembler.

The directive EQU (Equate) is used to attach a value to a variable.

Examples :

ORG 1000H This directive informs the assembler that the statements following ORG 1000H should be stored in

memory starting with address 1000
H
.

PORT1 EQU 0F2H The value of variable PORT1 is F2
H
.

LOOP EQU 10FEH The value of variable LOOP is 10FE
H
.

Microprocessor (8085) And Its Applications 5. 11

5.6 PROCEDURE AND MACRO

Procedure or Subroutine

When a group of instructions are to be used several times to perform a same function in a

program, then we can write them as a separate subprogram called procedure or subroutine. Whenever

required the procedures can be called in a program using CALL instructions.

Procedures are written and assembled as separate program modules and stored in memory.

When a procedure is called in the main program, the program control is transferred to the procedure

and after executing the procedure the program control is transferred back to the main program. In

8085 processor, the instruction CALL is used to call a procedure in the main program and the

instruction RET is used to return the control to the main program.

The main advantage of using a procedure is that the machine codes for the group of instructions

in the procedure has to be put in memory only once. The disadvantages of using the procedure are the

need for a stack and the overhead time required to call the procedure and return to the calling program.

Handling procedure

While executing a program, if the 8085 processor encounters a CALL the instruction, then it

saves the content of the program counter in a stack and loads the subroutine address in the program

counter. (The content of program counter that is saved in stack is the address of the instruction next

to CALL in the main program. The subroutine address is the address given in the CALL instruction.)

When the subroutine address is loaded in the program counter, the processor starts executing

the subroutine. The last instruction of the subroutine will be RET instruction and when it is executed,

the processor moves the top of the stack memory to the program counter. (The top of stack

memory is the address which is saved in stack before executing subroutine.) Now the program

control (execution) is returned to main program.

The subroutine program may use the registers that are used by the main program. If in the

main program the content of these registers are to be preserved then they have to be saved (PUSHed)

in stack before calling the subroutine. After returning from subroutine, they can be retrieved (POPed)

from the stack back to the respective register. In 8085 the type of stack is LIFO(Last-In-First-

Out). Hence, the order of retrieving (POPing) should be opposite to that of storing (PUSHing). For

example, if the content of register pair HL is stored first followed by DE then while retrieving the

DE pair should be poped first followed by HL pair.

Macro

When a group of instructions are to be used several times to perform a same function in a

program and they are too small to be written as a procedure, then they can be defined as a macro.

A macro is a small group of instructions enclosed by the assembler directives MACRO and ENDM.

Macros are identified by their names and usually defined at the start of a program.

A macro is called by its name in the program. Whenever a macro is called in the program,

the assembler will insert the defined group of instructions in place of the macro. In otherwords the

macro call is like short hand expression which tells the assembler, "Every time you see a macro

name in the program, replace it with the group of instructions defined as macro". Actually the

assembler generates machine codes for the group of instructions defined as macro, whenever it is

called in the program. The process of replacing the macro with the instructions it represents is

called expanding the macro. Hence macros are also known as open subroutines because, they get

expanded at the point of macro invocation.

5. 12 Chapter 5 Assembly Language Programming

When macros are used, the generated machine codes are right-in-line with the rest of the program

and so the processor does not have to go off to a procedure call and return. This results in avoiding the

overhead time involved in calling and returning from a procedure. The disadvantage of using macro is

that the program may take up more memory due to insertion of the machine codes in the program at the

place of macros. Hence the macros should be used only when its body has a few program statements.

TABLE - 5.3 : COMPARISON OF PROCEDURE AND MACRO

 Procedure Macro

5.7 DELAY ROUTINE

Delay routines are the subroutines used for maintaining the timings of various operations in a

microprocessor. In control applications, certain equipment need to be ON/OFF after a specified time

delay. In some applications, a certain operation has to be repeated after a specified time interval. In

such cases simple time delay routines can be used to maintain the timings of the operations.

A delay routine is generally written as a subroutine (It need not be a subroutine always. It

can even be a part of the main program.) In a delay routine a count (number) is loaded in a register

of microprocessor. Then it is decremented by one and the zero flag is checked to verify whether

the content of register is zero or not. This process is continued until the content of the register is

zero. When it is zero the time delay is over and the control is transferred to the main program to

carry out the desired operation.

The delay time is given by the total time taken to execute the delay routine. It can be computed

by multiplying the total number of T states required to execute the subroutine and the time for one

T-state of the processor. The total of number of T states can be computed from the knowledge of

T states required for each instruction. The time for one T-state of the processor is given by the

inverse of the internal clock frequency of the processor. For example, if the 8085 microprocessor

has 5 MHz quartz crystal then,

The internal clock frequency =
5

2
2.5 MHz=

Time for one T-state =
1

2.5 10
0.4 msec

6
×

=

Two example delay routines that can be used in 8085 assembly language programs are

presented in this section with details of timing calculations. For small time delays (< 0.5 millisecond)

an 8-bit register can be used as counter, but for large time delays (< 0.5 second) 16-bit register

should be used as counter. For very large time delays (>0.5 second), a delay routine can be repeatedly

called in the main program. The disadvantage in delay routines is that the processor time is wasted.

An alternate solution is to use a dedicated timer like 8253/8254 to produce time delays or to maintain

timings of various operations.

1. Accessed by CALL and RET mechanism during

program execution.

2. Machine code for instructions are stored in

memory once.

3. Parameters are passed in registers, memory

locations or stack.

1. Accessed during assembly with name given to macro

when defined.

2. Machine codes are generated for instructions in the macro

each time it is called.

3. Parameters are passed as part of statement which calls

macro.

Microprocessor (8085) And Its Applications 5. 13

EXAMPLE DELAY ROUTINE - 1

Write a delay routine to produce a time delay of 0.5 millisecond in 8085 processor-based system whose clock source is

6 MHz quartz crystal.

Solution

The delay required is 0.5 millisecond, hence an 8-bit register of 8085 can be used to store a count

value. The count is decremented by one and the zero flag is verified. If zero flag is set then decrement

operation is terminated. The delay routine is written as a subroutine as shown below:

Delay routine

MVI D,N ; Load the count value, N in D-register.

LOOP: DCR D ; Decrement the count.
JNZ LOOP ; If count is not zero go to LOOP.

RET ; If count is zero return to main program.

The following table shows the T-state required for execution of the instructions in the

subroutine.

 Instruction

T-state required Number of times

Total T statesfor execution of the instruction

an instruction is executed

CALL addr16 18 1 18 × 1 = 18

MVI D,N 7 1 7 × 1 = 7

DCR D 4 N times 4 × N = 4 N

JNZ LOOP 10 (N−1) times 10× (N−1) = 10 N − 10

 or 7 1 7 × 1 = 7

RET 10 1 10 × 1 = 10

Total T-state required for subroutine = 14 N + 32

Calculation to find the count value, N

External Clock frequency = 6 MHz

Internal Clock frequency = MHz
External Clock

2

6

2
= = 3

Time period of one T - state = s
1

Internal Clock frequency
=

×
=

1

3 10
0 3333

6
. μ

Number of T states

required for 0.5 ms

Required time delay

Time for one T-state

U
V
W
= =

×

×

= =

−

−

05 10

0 3333 10
150015 1500

3

6 10

.

.
.

On equating the total T states required for the subroutine and the number of T states for the

required time delay, the count value, N can be calculated.

5. 14 Chapter 5 Assembly Language Programming

∴ + =

=

−

= ≈ =

14N 32 1500

 N
1500 32

14
104.857 105 69

10

10 10 H

∴ =Count value N H, 69

If the above delay routine is called by a program and executed with count value of 69
H
 then

the delay produced will be 0.5 millisecond.

Note : The register used in the delay routine is D-register. Also the execution of delay routine will alter the

flags. Hence, if the contents of these registers are to be preserved, the main program has to save them

in the stack before calling the delay routine.

EXAMPLE DELAY ROUTINE - 2

Write a delay routine to produce a time delay of 0.5 second in 8085 processor-based system whose internal clock

frequency is 3 MHz.

Solution

The delay required is large, hence a 16-bit register can be used for storing the count value. The

count is decremented one by one until it is zero. After each decrement operation we have to verify whether

the content of register pair is zero or not. This can be performed by logically ORing the content of low

order and high order register and then checking the zero flag. (Because the 16-bit increment/decrement

instruction will not modify any flag.) The delay routine is written as a subroutine as shown below:

Delay Routine

LXI D,N ; Load the count value, N in DE-register pair.

LOOP: DCX D ; Decrement the count.
MOV A,E ; Logically OR the content of
ORA D ; E-register with D-register.
JNZ LOOP ; If count is not zero, go to LOOP.

RET ; If count is zero, return to main program.

The following table shows the T states required for execution of the instructions in the

subroutine.

Instructions

T-state required Number of times

Total T statesfor the execution the instruction

of an instruction is executed

CALL addr16 18 1 18 × 1 = 18

LXI D,N 10 1 10 × 1 = 10

DCX D 6 N times 6 × N = 6 N

MOV A,E 4 N times 4 × N = 4 N

ORA D 4 N times 4 × N = 4 N

JNZ LOOP 10 (N− 1) times 10 × (N−1) = 10 N − 10

 or 7 1 7 × 1 = 7

RET 10 1 10 × 1 = 10

Total T states required for subroutine = 24 N + 35

Microprocessor (8085) And Its Applications 5. 15

Calculation to find the count value, N

Internal Clock frequency = 3 MHz

Time period of one T-state =

1

Internal Clock frequency
=

×

=
1

3 106
0.3333 sμ

Number of Tstates required
for 0.5 second

Required time delay

Time for one T-state

U
V
W
=

=

×
−

0.5 sec

0.3333 10 6

= =1500150.015 150015010 10

On equating the total T states required for the subroutine and the number of T states for the

required time delay, the count value, N can be calculated.

∴ + =

=

−

= ≈ =

24N 35 1500150

 N
1500150 35

24
62504.79 62505 F429

10

10 10 H

∴ =Count value, N F429 H

If the above delay routine is called by a program and executed with count value of F429
H

then the delay produced will be 0.5 second.

Note : The registers used in the delay routine are A, D and E. Also the execution of delay routine will alter

the flags. Hence if the contents of these register are to be preserved, then the main program has to

save them in stack before calling the delay routine.

5.8 LIST AND ARRAY

List

List is a linked data structure used in programming techniques. The linked data structure will

have a number of components linked in a particular fashion. Each component will consist of a

string data and a pointer to the next component. The basic idea of a linked data structure is that

each component within the structure includes a pointer indicating where the next component can

be found. Therefore, the relative order of the components can be changed by altering the pointers.

In addition, individual components can be easily added or deleted, again by altering the pointer. As

a result, a linked data structure is not confined to some maximum number of components, but

whenever required the data structure can be expanded or contracted in size.

The different types of linked data structures are linear linked lists, linked lists with multiple

pointers, circular linked lists and trees.

5. 16 Chapter 5 Assembly Language Programming

Array

An array is a series of data of the same type stored in successive memory locations. Each

value in the array is referred to as an element of the array. In programming techniques, array is

created when we want to perform some operation on a series of data items.

5.9 STACK

The stack is a portion of RAM memory defined by the user for temporary storage

and retrieval of data while executing a program. The microprocessor will have a dedicated

internal register called Stack Pointer (SP) to hold the address of the stack. Also, the processor

will have a facility to automatically decrement/increment the content of SP after every write/read

operation into stack.

The user can initialize or create a stack by loading a RAM address in the Stack Pointer (SP).

Once an address is loaded in SP, the RAM memory locations below the address pointed by SP are

reserved for stack. Typically 25 to 100 RAM memory locations are sufficient for stack. The user

should take care that the reserved RAM memory locations for stack are not used for any other

purpose.

The user has to create/implement a stack whenever the program consists of PUSH, POP,

RST n, CALL and RET instructions. Also, the stack is needed whenever the system uses interrupt

facility.

In a program, when the number of the available registers are not sufficient for storing

intermediate result and data, then some of intermediate result and data can be stored in a stack

using PUSH instruction and retrieved whenever required using POP instruction.

The CALL instruction and the interrupts store the return

address (content of program counter) in the stack before

executing the subroutine. Usually the subroutines are terminated

with RET instruction. When RET instruction is executed, the

top of stack is poped to program counter and the program control

returns to the main program after the execution of subroutine.

5.9.1 Stack in 8085 Microprocessor

In an 8085 processor, the stack is created by loading a

16-bit address in the stack pointer. Upon reset, the stack pointer

is cleared to zero.

In an 8085 processor, for every write operation into stack,

the SP is automatically decremented by two and for every read

operation from stack, the SP is automatically incremented by two.

Hence, data can be stored only in lower addresses from the address

pointed by SP. Therefore, we can say that the SP holds the address

of the top of stack. All the RAM addresses higher

xx

xx

xx

xx

xx

xx

400F

¬
¬

SP

Top of Stack

4009

400A

400B

400C

400D

400E

400F

4010

4011

4012

4013

4014I

P

Q

I

P

Q

¯ ¯

Memory
Address

Memory
Location

Empty
Stack

Occupied
Stack

Fig. 5.4 : Example of
stack in an 8085.

Microprocessor (8085) And Its Applications 5. 17

than that pointed by the SP can be considered as occupied stack and all the RAM addresses lower

than that pointed by the SP can be considered as empty stack as shown in Fig. 5.4. However, in

practice only few memory locations are needed for stack.

In 8085 processor the content of register pairs can be stored in stack using PUSH instruction

and the stored information can be retrieved back to register pair using POP instruction. When a

number of register pairs have to be stored and retrieved in the stack, the order of retrieval should be

reverse of that of the order of storage. For example, let BC pair be pushed to stack first and DE pair

next. When the stored information has to be retrieved to appropriate registers, the top of stack

should be poped to the DE pair first and then to the BC pair next. The storage and retrieval in stack

are in reverse order, because the SP is decremented for every write operation into stack and SP

is incremented for every read operation from stack. Therefore, the stack in 8085 is called

Last-In-First-Out (LIFO) stack, i.e., the last stored information can be read first.

5.10 EXAMPLES OF 8085 ASSEMBLY LANGUAGE PROGRAMS

EXAMPLE PROGRAM - 1 : 8-Bit Addition

Write an assembly language program to add two numbers of 8-bit data stored in memory locations 4200
H
 and 4201

H
 and

store the result in 4202
H
 and 4203

H
.

Problem Analysis

In order to perform addition in 8085, one of the data should be in accumulator and another data can

be in any one of the general purpose register or in the memory. After addition, the sum is stored in the

accumulator. The sum of two 8-bit data can be either 8 bits (sum only) or 9 bits (sum and carry). The

accumulator can accommodate only the sum and if there is a carry, the 8085 will indicate by setting the

carry flag. Hence, one of the registers is used to account for carry.

In method-1, direct addressing is used to address the data. But in method-2, register indirect

addressing is used to the address data. Here, HL-register is used to hold the address of the data and it is

called pointer.

Algorithm (Method-1)

1. Load the first data from memory to accumulator and move it to B-register.

2. Load the second data from memory to accumulator.

3. Clear C-register.

4. Add the content of B-register to accumulator.

5. Check for carry. If carry = 1, go to step 6 or if carry = 0, go to step 7.

6. Increment the C-register.

7. Store the sum in memory.

8. Move the carry to accumulator and store in memory.

9. Stop.

5. 18 Chapter 5 Assembly Language Programming

Algorithm (Method-2)

1. Load the address of the data memory in HL pair (i.e., set HL pair as pointer for data).

2. Clear C-register.

3. Move the first data from memory to accumulator.

4. Increment the pointer (HL pair).

Flowchart for example program 1

Method 2Method 1

Start

Get First Data in A-register

Save the Content of
A-register in B-register

Get Second Data in A-register

¯

Clear C-register

Add the Content of
B-register to A-register

Check
Whether
CF = 0

Store the Sum
(A-register) in Memory

Move the Content of
C-register (Carry) to A-register

and Store in Memory

Stop

Increment
C-register

¯
®

¯

¯

¯

¯

¯

¯

¯
¬

¯

¯

Yes

No

Start

Load Address of Data in HL Pair

Get the First Data in A-register

¯

Add the Content of
Memory to A-register

Check
Whether
CF = 0

Increment HL Pair and
Store the Sum (A-register)

in Memory

Increment HL Pair and Store the
Carry (C-register) in Memory

Stop

Increment
C-register

¯
®

¯

¯

¯

¯

¯

¯

¯
¬

¯

¯

Yes

No

Clear C-register

Increment HL Pair

Microprocessor (8085) And Its Applications 5. 19

5. Add the content of memory addressed by HL with accumulator.

6. Check for carry. If carry = 1, go to step 7 or if carry = 0, go to step 8.

7. Increment the C-register.

8. Increment the pointer and store the sum.

9. Increment the pointer and store the carry.

10. Stop.

Assembly language program (Method 1)

;PROGRAM TO ADD TWO 8-BIT DATA
;METHOD-1

ORG 4100H ;specify program starting address.

LDA 4200H ;Get 1st data in A and save in B.
MOV B,A
LDA 4201H ;Get 2nd data in A-register.
MVI C,00H ;Clear C-register to account for carry.
ADD B ;Get the sum in A-register.
JNC AHEAD ;If CF=0, go to AHEAD.
INR C ;If CF=1, increment C-register.

AHEAD: STA 4202H ;Store the sum in memory.
MOV A,C
STA 4203H ;Store the carry in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 1 (Method 1)

1 ;PROGRAM TO ADD TWO 8-BIT DATA
2 ;METHOD-1
3 0000
4 4100 ORG 4100H ;specify program starting address.
5
6 4100 3A 00 42 LDA 4200H ;Get 1st data in A and save in B.
7 4103 47 MOV B,A
8 4104 3A 01 42 LDA 4201H ;Get 2nd data in A-register.
9 4107 0E 00 MVI C,00H ;Clear C-register to account for carry.
10 4109 80 ADD B ;Get the sum in A-register.
11 410A D2 0E 41 JNC AHEAD ;If CF=0, go to AHEAD.
12 410D 0C INR C ;If CF=1, increment C-register.
13 410E 32 02 42 AHEAD: STA 4202H ;Store the sum in memory.
14 4111 79 MOV A,C
15 4112 32 03 42 STA 4203H ;Store the carry in memory.
16 4115 76 HLT ;Halt program execution.
17
18 4116 END ;Assembly end.

Assembly language program (Method 2)

;PROGRAM TO ADD TWO 8-BIT DATA
;METHOD-2

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for data.
MVI C,00H ;Clear C-register to account for carry.
MOV A,M ;Get 1st data in A-register.
INX H ;Add 2nd data which is available
ADD M ;in memory to A. Sum in A-register.
JNC AHEAD ;If CF=0, go to AHEAD.
INR C ;If CF=1, increment C-register.

AHEAD: INX H
MOV M,A ;Save the sum in memory.

5. 20 Chapter 5 Assembly Language Programming

INX H
MOV M,C ;Save the carry in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 1 (Method 2)

1 ;PROGRAM TO ADD TWO 8-BIT DATA
 2 ;METHOD-2
3
4 4100 ORG 4100H ;specify program starting address.
5
6 4100 21 00 42 LXI H,4200H ;Set pointer for data.
7 4103 0E 00 MVI C,00H ;Clear C-register to account for carry.
8 4105 7E MOV A,M ;Get 1st data in A-register.
9 4106 23 INX H ;Add 2nd data which is available
10 4107 86 ADD M ;in memory to A. Sum in A-register.
11 4108 D2 0C 41 JNC AHEAD ;If CF=0, go to AHEAD.
12 410B 0C INR C ;If CF=1, increment C-register.
13 410C 23 AHEAD: INX H
14 410D 77 MOV M, A ;Save the sum in memory.
15 410E 23 INX H
16 410F 71 MOV M,C ;Save the carry in memory.
17 4110 76 HLT ;Halt program execution.
18
19 4111 END ;Assembly end.

Sample data

Input Data : Data-1 = E2
H

 Memory
Data-2 = 45

H
 address
 4200 E2

Output data : Sum = 27
H

4201 45

Carry = 01
H

4202 27

4203 01

EXAMPLE PROGRAM - 2 : 16-Bit Addition

Write an assembly language program to add two numbers of 16-bit data stored in memory locations from 4200
H
 to 4203

H
.

The data are stored such that the low byte first and then the high byte is stored. Store the result from 4204
H
 to 4206

H
.

Problem Analysis

The 16-bit addition can be performed in 8085 either in terms of 8-bit addition or by using DAD

instruction. In addition using DAD instruction, one of the data should be in HL pair and another data

can be in another register pair. After addition the sum is stored in HL pair. If there is a carry in addition

then that is indicated by setting a carry flag. Hence, one of the registers is used to account for carry.

Algorithm

1. Load the first data in HL-register pair.

2. Move the first data to DE- register pair.

3. Load the second data in HL-register pair.

4. Clear A-register for carry.

5. Add the content of DE pair to HL pair.

6. Check for carry. If carry = 1, go to step 7 or If carry = 0, go to step 8.

7. Increment A-register to account for carry.

8. Store the sum and carry in memory.

9. Stop.

Content

Microprocessor (8085) And Its Applications 5. 21

Assembly language program

;PROGRAM TO ADD TWO 16-BIT DATA

ORG 4100H ;specify program starting address.

LHLD 4200H ;Get 1st data in HL pair.
XCHG ;Save 1st data in DE pair.
LHLD 4202H ;Get 2nd data in HL pair.
XRA A ;Clear A-register for carry.
DAD D ;Get the sum in HL pair.
JNC AHEAD ;If CF=0, go to AHEAD.
INR A ;If CF=1, increment A-register.

AHEAD: SHLD 4204H ;Store the sum in memory.
STA 4206H ;Store the carry in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 2

1 ;PROGRAM TO ADD TWO 16-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 2A 00 42 LHLD 4200H ;Get 1st data in HL pair.
6 4103 EB XCHG ;Save 1st data in DE pair.
7 4104 2A 02 42 LHLD 4202H ;Get 2nd data in HL pair.
8 4107 AF XRA A ;Clear A-register for carry.
9 4108 19 DAD D ;Get the sum in HL pair.
10 4109 D2 0D 41 JNC AHEAD ;If CF=0, go to AHEAD.
11 410C 3C INR A ;If CF=1, increment A-register.
12 410D 22 04 42 AHEAD: SHLD 4204H ;Store the sum in memory.
13 4110 32 06 42 STA 4206H ;Store the carry in memory.
14 4113 76 HLT ;Halt program execution.
15
16 4114 END ;Assembly end.

Flowchart for example program 2

Start

Load First Data in HL Pair
and Save in DE Pair

Get Second Data
in HL Pair

Stop

Increment
A-register

¯
®

¯

¯

¯

¯

¯

¯
¬

¯

¯

Yes

No

Clear A-register

Add the Content of
DE Pair to HL Pair

¯
C

Check
Whether
CF = 0

Store the Sum
(HL Pair) in Memory

Store the Carry (A-register)
in Memory

C

¯

5. 22 Chapter 5 Assembly Language Programming

Sample data

Input Data : Data-1 = C254
H

 Data-2 = 8A92
H

Output Data : Sum = 4CE6
H

 Carry = 01

EXAMPLE PROGRAM - 3 : 8-Bit Subtraction

Write an assembly language program to subtract two numbers of 8-bit data stored in memory locations 4200
H
 and 4201

H
.

Store the magnitude of the result in 4202
H
. If the result is positive store 00 in 4203

H
 or if the result is negative store 01 in 4203

H
.

Problem Analysis

In order to perform subtraction in 8085, one of the data should be in accumulator and another data

can be in any one of the general purpose register or in the memory. After subtraction the result is stored

in the accumulator. The 8085 perform 2's complement subtraction and then complement the carry.

Therefore, if the result is negative then the carry flag is set and the accumulator will have 2's complement

of the result. One of the register is used to account for sign of the result. In order to get the magnitude

of the result again take 2's complement of the result.

Flowchart for example program 3

Algorithm

1. Load the subtrahend (the data to be subtracted) from memory to accumulator and move it to B-register.

2. Load the minuend from memory to accumulator.

3. Clear C-register to account for sign of the result.

4. Subtract the content of B-register (subtrahend) from the content of accumulator (minuend).

5. Check for carry. If carry = 1, go to step 6 or if carry = 0, go to step 7.

6. Increment C-register. Complement the accumulator and add 01
H
.

7. Store the difference (accumulator) in memory.

8. Move the content of C-register (sign bit) to accumulator and store in memory.

9. Stop.

 Memory
Content address

 4200 54
 4201 C2
 4202 92
 4203 8A

 Memory
Content

 address

 4204 E6
 4205 4C
 4206 01

Start

Subtract the Content of
B-register fromA-register

Stop

Complement
A-register and Add 01

¯

®

¯

¯

¯

¯

¬

¯

¯

Yes

No

C

Check
Whether
CF = 0

Store the Result in Memory

Move the Sign Bit to A-register and Store in Memory

C

¯
Get the Subtrahend in A-register

¯
Save the Content of A-register in B-register

¯
Get the Minuend in A-register

¯
Clear C-register to Account for Sign

Increment C-register

¯

¯

Microprocessor (8085) And Its Applications 5. 23

Assembly language program

;PROGRAM TO SUBTRACT TWO 8-BIT DATA

ORG 4100H ;specify program starting address.

LDA 4201H ;Get the subtrahend in B-register.
MOV B,A
LDA 4200H ;Get the minuend in A-register.
MVI C,00H ;Clear C-register to account for sign.
SUB B ;Get the difference in A-register.
JNC AHEAD ;If CF=0, then go to AHEAD.
INR C ;If CF=1, then increment C-register.
CMA ;Get 2’s complement of difference
ADI 01H ;(result) in A-register.

AHEAD: STA 4202H ;Store the result in memory.
MOV A,C
STA 4203H ;Store the sign bit in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 3

1 ;PROGRAM TO SUBTRACT TWO 8-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
 4
5 4100 3A 01 42 LDA 4201H ;Get the subtrahend in B-register.
6 4103 47 MOV B,A
7 4104 3A 00 42 LDA 4200H ;Get the minuend in A-register.
8 4107 0E 00 MVI C,00H ;Clear C-register to account for sign.
9 4109 90 SUB B ;Get the difference in A-register.
10 410A D2 11 41 JNC AHEAD ;If CF=0, then go to AHEAD.
11 410D 0C INR C ;If CF=1, then increment C-register.
12 410E 2F CMA ;Get 2’s complement of difference
13 410F C6 01 ADI 01H ;(result) in A-register.
14 4111 32 02 42 AHEAD: STA 4202H ;Store the result in memory.
15 4114 79 MOV A,C
16 4115 32 03 42 STA 4203H ;Store the sign bit in memory.
17 4118 76 HLT ;Halt program execution.
18
19 4119 END ;Assembly end.

Sample data

Input Data : Minuend = 5E
H

Subtrahend = 34
H

Output Data : Difference = 2A
H

Sign bit = 00
H

EXAMPLE PROGRAM - 4: 16-Bit Subtraction

Write an assembly language program to subtract two numbers of 16-bit data stored in memory location s from 4200
H
 to

4203
H

. The data are stored such that the low byte is stored first and then the high byte is stored. Store the result in 4204
H
 and 4205

H
.

Problem Analysis

The 16-bit subtraction is performed in terms of 8-bit subtraction. First low bytes of the data are

subtracted and the result is stored in memory. Then high bytes of the data are subtracted along with

borrow (carry) in the previous subtraction and the result is stored in memory.

Algorithm

1. Load the low byte of subtrahend (the data to be subtracted) in accumulator from memoryand move it to B-register.

2. Load the low byte of minuend in accumulator from memory.

 Memory
 address

Content

 4200 5E
 4201 34
 4202 2A
 4203 00

5. 24 Chapter 5 Assembly Language Programming

3. Subtract the content of B-register (subtrahend) from the content of accumulator (minuend).

4. Store the low byte of result in memory.

5. Load the high byte of subtrahend in accumulator from memory and move it to B-register.

6. Load the high byte of minuend in accumulator from memory.

7. Subtract the content of B-register and the carry (borrow) from the content of accumulator.

8. Store the high byte of the result in memory.

9. Stop.

Assembly language program

;PROGRAM TO SUBTRACT TWO 16-BIT DATA

ORG 4100H ;specify program starting address.

LDA 4202H
MOV B,A ;Get low byte of subtrahend in B-register.
LDA 4200H ;Get low byte of minuend in A-register.
SUB B ;Get difference of low bytes in A-register.
STA 4204H ;Store the result in memory.
LDA 4203H
MOV B,A ;Get high byte of subtrahend in B-register.
LDA 4201H ;Get high byte of minuend in A-register.
SBB B ;Get difference of high bytes in A-register.
STA 4205H ;Store the result.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 4

1 ;PROGRAM TO SUBTRACT TWO 16-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 02 42 LDA 4202H
6 4103 47 MOV B,A ;Get low byte of subtrahend in B-register.
7 4104 3A 00 42 LDA 4200H ;Get low byte of minuend in A-register.
8 4107 90 SUB B ;Get difference of low bytes in A-register.
9 4108 32 04 42 STA 4204H ;Store the result in memory.
10 410B 3A 03 42 LDA 4203H
11 410E 47 MOV B,A ;Get high byte of subtrahend in B-register.
12 410F 3A 01 42 LDA 4201H ;Get high byte of minuend in A-register.
13 4112 98 SBB B ;Get difference of high bytes in A-register.
14 4113 32 05 42 STA 4205H ;Store the result.
15 4116 76 HLT ;Halt program execution.
16
17 4117 END ;Assembly end.

Flowchart for example program 4

Start

¯

¯
C

Get the Low Byte of Subtrahend in A and Move to B

¯
Get the Low Byte of Minuend in A

¯
Perform Subtraction of Low Bytes and Store the Result in Memory

¯
Get the High Byte of Subtrahend in A and Move to B

Stop

Subtract the Content of B-register
and Carry fromA-register

¯

¯
Get the High Byte of Minuend in A

¯

¯
Store the Result in Memory

C

Microprocessor (8085) And Its Applications 5. 25

Sample data

Input Data : Minuend = B2AB
H

 Subtrahend = 922C
H

Output Data : Difference = 207F
H

EXAMPLE PROGRAM - 5 : 2-Digit BCD Addition

Write an assembly language program to add two numbers of 2-digit (8-bit) BCD data stored in memory locations 4200
H

and 4201
H
. Store the result in 4202

H
 and 4203

H
.

Problem Analysis

The 8085 will perform only binary addition. Hence for BCD addition, the binary addition of BCD

data is performed and then the sum is corrected to get the result in BCD. After binary addition the

following correction should be made to get the result in BCD.

1. If the sum of lower nibbles exceeds 9 or if there is auxiliary carry then 6 is added to lower nibble.

2. If the sum of upper nibbles exceeds 9 or if there is carry then 6 is added to upper nibble.

The above correction is taken care by DAA (Decimal Adjust Accumulator) instruction. Therefore

after binary addition, execute DAA instruction to do the above correction in the sum.

Algorithm

1. Load the first data in accumulator and move it to B-register.

2. Load the second data in accumulator.

3. Clear C-register for storing carry.

4. Add the content of B-register to accumulator.

5. Execute DAA instruction.

6. Check for carry. If carry = 1, go to step 7 or if carry = 0, go to step 8.

7. Increment C-register to account for carry.

8. Store the sum (content of accumulator) in memory.

9. Move the carry (content of C-register) to accumulator and store in memory.

10. Stop.

 Memory
 address

Content

4200 AB
4201 B2
4202 2C
4203 92
4204 7F
4205 20

Flowchart for example program 5

Stop

®

¯
¬

¯

Yes

NoCheck
Whether
CF = 0

Store the Sum (A-register) in Memory

C

¯

Increment
C-register for Carry

¯

Start

Add the Content of B-register
to A-register and Perform Decimal

Adjust After Addition

¯

¯

Get the First Data in
A-register and Move to B-register

¯
Get Second Data in A-register

¯
Clear C-register for Carry

¯

C

Move the Content of C-register (Carry)
to A-register and Store in Memory

¯

¯

5. 26 Chapter 5 Assembly Language Programming

Assembly language program

;PROGRAM TO ADD TWO 2-DIGIT BCD DATA

ORG 4100H ;specify program starting address.

LDA 4200H
MOV B,A ;Get 1st data in B-register.
LDA 4201H ;Get 2nd data in A-register.
MVI C,00H ;Clear C-register for accounting carry.
ADD B
DAA ;Get the sum of BCD data in A-register.
JNC AHEAD ;If CF=0, go to AHEAD.
INR C ;If CF=1, increment C-register.

AHEAD: STA 4202H ;Store the sum in memory.
MOV A,C
STA 4203H ;Store the carry in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 5

1 ;PROGRAM TO ADD TWO 2-DIGIT BCD DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H
6 4103 47 MOV B,A ;Get 1st data in B-register.
7 4104 3A 01 42 LDA 4201H ;Get 2nd data in A-register.
8 4107 0E 00 MVI C,00H ;Clear C-register for accounting carry.
9 4109 80 ADD B
10 410A 27 DAA ;Get the sum of BCD data in A-register.
11 410B D2 0F 41 JNC AHEAD ;If CF=0, go to AHEAD.
12 410E 0C INR C ;If CF=1, increment C-register.
13 410F 32 02 42 AHEAD: STA 4202H ;Store the sum in memory.
14 4112 79 MOV A,C
15 4113 32 03 42 STA 4203H ;Store the carry in memory.
16 4116 76 HLT ;Halt program execution.
17
18 4117 END ;Assembly end.

Sample data

Input Data : Data-1 = 72
10

Memory
 Data-2 = 99

10
address

Content

Output Data : Sum = 7110 4200 72
 Carry = 01

10
4201 99
4202 71
4203 01

EXAMPLE PROGRAM - 6 : 4-Digit BCD Addition

Write an assembly language program to add two numbers of 4-digit BCD data stored in memory locations from 4200
H
 to

4203
H
 and store the result from 4204

H
 to 4206

H
.

Problem Analysis

The 4-digit BCD addition is performed in terms of 2-digit BCD addition. First lower order two digits

are added and the sum is stored in the memory. Then the higher order two digits are added along with

previous carry and the sum and final carry are stored in the memory.

Algorithm

1. Load the low order two digits of first data in accumulator and move it to B-register.

2. Load the low order two digits of second data in accumulator.

3. Clear C-register for storing carry.

4. Add the content of B-register to accumulator.

Microprocessor (8085) And Its Applications 5. 27

5. Execute DAA instruction.

6. Store the low order two digits of the result in memory.

7. Load the high order two digits of first data in accumulator and move it to B-register.

8. Load the high order two digits of second data in accumulator.

9. Add the content of B-register and carry (from previous addition) to accumulator.

10. Execute DAA instruction.

11. Check for carry. If carry = 1, go to step 12 or if carry = 0, go to step 13.

12. Increment C-register to account for final carry.

13. Store the high order two digits of the result in memory.

14. Move the carry (content of C-register) to accumulator and store in memory.

15. Stop.

Assembly language program

;PROGRAM TO ADD TWO 4-DIGIT BCD DATA

ORG 4100H ;specify program starting address.

LDA 4200H

MOV B,A ;Get low order 2 digits of 1 st data in B.

LDA 4202H ;Get low order 2 digits of 2 nd data in A.

MVI C,00H ;Clear C-register to account for carry.

ADD B

DAA ;Get the sum of low order two digits in A

STA 4204H ;and store it in memory.

LDA 4201H

MOV B,A ;Get high order 2 digits of 1 st data in B.

LDA 4203H ;Get high order 2 digits of 2 nd data in A.

ADC B

DAA ;Get the sum of high order two digits in A

STA 4205H ;and store the same in memory.

JNC AHEAD

INR C ;If CF=1, increment C-register.

Flowchart for example program 6

Stop

®

¯
¬

¯

Yes

NoIf
CF = 0

Store the Sum (A-register) in Memory

Increment C-register
¯

Start

Add the Content of B to A and Perform
DAA. Store the Result in Memory

¯

¯

Get the Low Order 2 Digits of First
Data in A and Move to B

¯
Get the Low Order 2 Digits of Second Data in A

¯
Clear C-register for Carry

¯

C

Move the Content of C-register (Carry)
to A-register and Store in Memory

¯

¯¯
Get the High Order 2 Digits of
First Data in A and Move to B

¯

¯
Add the Content of B and Carry to A. Perform DAA.

¯
Get the High Order 2 Digits of Second Data in A

C

5. 28 Chapter 5 Assembly Language Programming

AHEAD: MOV A,C

STA 4206H ;Store the carry in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 6

1 ;PROGRAM TO ADD TWO 4-DIGIT BCD DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H
6 4103 47 MOV B,A ;Get low order 2 digits of 1 st data in B.
7 4104 3A 02 42 LDA 4202H ;Get low order 2 digits of 2 nd data in A.
8 4107 0E 00 MVI C,00H ;Clear C-register to account for carry.
9 4109 80 ADD B

10 410A 27 DAA ;Get the sum of low order 2 digits in A
11 410B 32 04 42 STA 4204H ;and store it in memory.
12 410E 3A 01 42 LDA 4201H
13 4111 47 MOV B,A ;Get high order 2 digits of 1 st data in B.
14 4112 3A 03 42 LDA 4203H ;Get high order 2 digits of 2 nd data in A.
15 4115 88 ADC B
16 4116 27 DAA ;Get the sum of high order 2 digits in A
17 4117 32 05 42 STA 4205H ;and store the same in memory.
18 411A D2 1E 41 JNC AHEAD
19 411D 0C INR C ;If CF=1, increment C-register.
20 411E 79 AHEAD: MOV A,C
21 411F 32 06 42 STA 4206H ;Store the carry in memory.
22 4122 76 HLT ;Halt program execution.
23
24 4123 END ;Assembly end.

Sample data

Input Data : Data-1 = 8067
10

 Data-2 = 2892
10

Output Data : Sum = 0959
10

 Carry = 0110

EXAMPLE PROGRAM - 7 : BCD Subtraction

Write an assembly language program to subtract two numbers of 2-digit BCD data stored in memory locations 4200
H

and 4201
H
 and store the result in 4202

H
.

Problem Analysis

The 8085 will perform only binary subtraction. Hence for BCD subtraction, 10's complement

subtraction is performed. First the 10's complement of the subtrahend is obtained and then added to the

minuend. The DAA instruction is executed to get the result in BCD.

Algorithm

1. Load the subtrahend in accumulator and move it to B-register.

2. Move 99 to accumulator and subtract the content of B-register from accumulator.

3. Increment the accumulator.

4. Move the content of accumulator to B-register.

5. Load the minuend in accumulator.

6. Add the content of B-register to accumulator.

7. Execute DAA instruction.

8. Store the result in memory.

9. Stop.

Memory
address

Content

4200 67
4201 80
4202 92
4203 28

Memory
address

Content

4204 59
4205 09
4206 01

Microprocessor (8085) And Its Applications 5. 29

Assembly language program

;PROGRAM TO SUBTRACT TWO BCD (2-DIGIT) DATA

ORG 4100H ;specify program starting address.

LDA 4201H
MOV B,A ;Get the subtrahend in B-register.
MVI A,99H ;Get 10’s complement of
SUB B ;subtrahend in A.
INR A
MOV B,A ;Save 10’s complement in B.
LDA 4200H ;Get the minuend in A-register.
ADD B ;Get BCD sum of minuend and 10’s
DAA ;complement of subtrahend. This sum

;is the difference between BCD data.
STA 4202H ;Store the result in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 7

1 ;PROGRAM TO SUBTRACT TWO BCD (2-DIGIT) DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 01 42 LDA 4201H
6 4103 47 MOV B,A ;Get the subtrahend in B-register.
7 4104 3E 99 MVI A, 99H ;Get 10’s complement of
8 4106 90 SUB B ;subtrahend in A.
9 4107 3C INR A
10 4108 47 MOV B,A ;Save 10’s complement in B.
11 4109 3A 00 42 LDA 4200H ;Get the minuend in A-register.
12 410C 80 ADD B ;Get BCD sum of minuend and 10’s
13 410D 27 DAA ;complement of subtrahend. This sum
14 ;is the difference between BCD data.
15 410E 32 02 42 STA 4202H ;Store the result in memory.
16 4111 76 HLT ;Halt program execution.
17
18 4112 END ;Assembly end.

Sample data

Input Data : Minuend = 95
10

 Memory address Content

 Subtrahend = 32
10

4200 95
4201 32

Output Data: Difference = 63
10

4202 63

Flowchart for example program 7

Start

Increment A-register and Save in
B-register

¯
Get the Subtrahend in A-register

and Move to B-register

¯

¯
C

Move 99 to A-register and
Subtract B-register from it

¯

Stop

Store the Result in Memory

¯
Get the Minuend in A-register

¯

¯

C

Add the Content of B to A and
Perform DAA

¯

5. 30 Chapter 5 Assembly Language Programming

EXAMPLE PROGRAM - 8 : 8-Bit Multiplication

Write an assembly language program to multiply two numbers of 8-bit data stored in memory locations 4200
H
 and 4201

H

and store the product in 4202
H
 and 4203

H
.

Problem Analysis

In 8085, the multiplication is performed as repeated additions. The initial value of sum is assumed

as zero. One of the data is used as count (N) for the number of additions to be performed. Another data

is added to the sum N times, where N is the count. The result of the product of two 8-bit data will be 16

bits. Hence, another register is used to account for the overflow.

Algorithm

1. Load the address of the first data in HL pair (pointer).

2. Clear C-register for overflow (carry).

3. Clear the accumulator.

4. Move the first data to B-register (count).

5. Increment the pointer.

6. Move the second data to D-register (multiplicand).

7. Add the content of D-register to accumulator.

8. Check for carry. If carry = 1, go to step 9 or If carry = 0, go to step 10.

9. Increment C-register.

10. Decrement B-register (count).

11. Check whether count has reached zero. If ZF = 0 repeat steps 7 through 11, or if ZF = 1 go to next step.

Flowchart for example program 8

Stop

¯

Yes

No

Check
Whether
ZF = 0

C

¯

Start

¯
Load the Address of Data

in HL Pair

¯
Clear C-register and A-register

¯
Using HL as Address Pointer Get
the First Data in B-register and
Second Data in D-register

C

Increment HL Pair and
Store the Low Byte of
Product in Memory

¯
Add the Content of D-register

to A-register

®

¯
¬

Yes

NoCheck
Whether
CF = 0

¯

Increment
C-register

¯

Decrement B-register

¯

¬

¬

¯

Increment HL Pair and
Store the High Byte of
Product in Memory

¯

¯

¯

Microprocessor (8085) And Its Applications 5. 31

12. Increment the pointer and store low byte of the product in memory.

13. Increment the pointer and store high byte of the product in memory.

14. Stop.

Assembly language program

;PROGRAM TO MULTIPLY TWO NUMBERS OF 8-BIT DATA

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for data.
MVI C,00H ;Clear C to account for overflow (Carry).
XRA A ;Clear accumulator(Initial sum = 0).
MOV B,M ;Get 1st data in B-register.
INX H
MOV D,M ;Get 2nd data in D-register.

REPT: ADD D ;Add D-register to accumulator.
JNC AHEAD
INR C ;If CF=1, increment C-register.

AHEAD: DCR B
JNZ REPT ;Repeat addition until ZF=1.
INX H
MOV M,A ;Store low byte of product in memory.
INX H
MOV M,C ;Store high byte of product in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 8

1 ;PROGRAM TO MULTIPLY TWO NUMBERS OF 8-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for data.
6 4103 0E 00 MVI C,00H ;Clear C to account for overflow (Carry).
7 4105 AF XRA A ;Clear accumulator(Initial sum = 0).
8 4106 46 MOV B,M ;Get 1st data in B-register.
9 4107 23 INX H
10 4108 56 MOV D,M ;Get 2nd data in D-register.
11 4109 82 REPT: ADD D ;Add D-register to accumulator.
12 410A D2 0E 41 JNC AHEAD
13 410D 0C INR C ;If CF=1, increment C-register.
14 410E 05 AHEAD: DCR B
15 410F C2 09 41 JNZ REPT ;Repeat addition until ZF=1.
16 4112 23 INX H
17 4113 77 MOV M,A ;Store low byte of product in memory.
18 4114 23 INX H
19 4115 71 MOV M,C ;Store high byte of product in memory.
20 4116 76 HLT ;Halt program execution.
21
22 4117 END ;Assembly end.

Sample data

Input Data : Data-1 = C7
H

Data-2 = 4A
H

Output Data : Product = 3986
H

EXAMPLE PROGRAM - 9 : 16-Bit Multiplication

Write an assembly language program to multiply two numbers of 16-bit data stored in memory locations from 4200
H
 to

4203
H
. Store the product in memory locations from 4204

H
 to 4207

H
.

Memory address Content

4200 C7
4201 4A
4202 86
4203 39

5. 32 Chapter 5 Assembly Language Programming

Problem Analysis

The 16-bit multiplication is performed as repeated 16-bit additions. The initial sum is assumed as

zero. One of the data is stored in SP (Stack Pointer) and another data is stored in DE pair. The

content of DE pair is used as count for number of additions. The content of SP is added to the sum N

times, where N is the count. The maximum size of product will be 32-bit. Hence BC pair is used to account

for overflow. In 16-bit decrement no flags are affected. Hence, to check zero of the count (DE pair), move

E-register to A-register and logically ORed with D-register.

Algorithm

1. Load the first data in HL pair and move to SP.

2. Load the second data in HL and move to DE (count).

3. Clear HL pair (Initial sum).

4. Clear BC pair for overflow (carry).

5. Add the content of SP to HL.

6. Check for carry. If carry=1, go to step 7 or If carry=0, go to step 8.

7. Increment BC pair.

8. Decrement the count.

9. Check whether count has reached zero.

10. To check for zero of the count, move the content of E-register to A-register and logically OR with D-register.

11. Check the zero flag. If ZF=0, repeat steps 5 through 11 or If ZF=1, go to next step.

Flowchart for example program 9

Stop

¯
No

Check
Whether
ZF = 0

C

¯

Start

¯
Get the First Data in HL
Pair and Save in SP

¯
Get the Second Data in HL
Pair and Save in DE Pair

¯

C

Store the Least Significant
16-bit of Product

(HL Pair) in Memory

®

¯
¬

Yes

NoCheck
Whether
CF = 0

¯

Increment
BC Pair

¯

Decrement DE Pair

¯

Move the Content of BC
Pair (Most Significant 16-bit
of Product) to HL Pair and

Save in Memory

¯

¯

¯
Clear HL and BC-register

Pairs

Add the Content of SP to HL

Move the Content of E-register to
A-register and Logically OR with

D-register

¯

¬
¬
Yes

¯

Microprocessor (8085) And Its Applications 5. 33

12. Store the content of HL in memory. (Least significant 16 bits of the product).

13. Move the content of C to L and B to H and store HL in memory. (Most significant 16 bits of the product).

14. Stop.

Assembly language program

;PROGRAM TO MULTIPLY TWO NUMBERS OF 16-BIT DATA

ORG 4100H ;specify program starting address.

LHLD 4200H ;Get 1st data in HL pair.
SPHL ;Save 1st data in SP.
LHLD 4202H ;Get 2nd data in HL pair.
XCHG ;Save 2nd data in DE pair.
LXI H,0000H ;Clear HL pair(initial sum=0).
LXI B,0000H ;Clear BC pair to account overflow.

NEXT: DAD SP ;Add the content of SP to sum(HL).
JNC AHEAD
INX B ;If CF=1, increment BC pair.

AHEAD: DCX D
MOV A,E ;Check for zero in DE pair. This is done
ORA D ;by logically ORing D and E.
JNZ NEXT ;Repeat addition until count is zero.
SHLD 4204H ;Store lower 16-bit of product in memory.
MOV L,C
MOV H,B
SHLD 4206H ;Store upper 16-bit of product in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 9

1 ;PROGRAM TO MULTIPLY TWO NUMBERS OF 16-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 2A 00 42 LHLD 4200H ;Get 1st data in HL pair.
6 4103 F9 SPHL ;Save 1st data in SP.
7 4104 2A 02 42 LHLD 4202H ;Get 2nd data in HL pair.
8 4107 EB XCHG ;Save 2nd data in DE pair.
9 4108 21 00 00 LXI H,0000H ;Clear HL pair(initial sum=0).
10 410B 01 00 00 LXI B,0000H ;Clear BC pair to account overflow.
11 410E 39 NEXT: DAD SP ;Add the content of SP to sum(HL).
12 410F D2 13 41 JNC AHEAD
13 4112 03 INX B ;If CF=1, increment BC pair.
14 4113 1B AHEAD: DCX D
15 4114 7B MOV A,E ;Check for zero in DE pair. This is done
16 4115 B2 ORA D ;by logically ORing D and E.
17 4116 C2 0E 41 JNZ NEXT ;Repeat addition until count is zero.
18 4119 22 04 42 SHLD 4204H ;Store lower 16-bit of product in memory.
19 411C 69 MOV L,C
20 411D 60 MOV H,B
21 411E 22 06 42 SHLD 4206H ;Store upper 16-bit of product in memory.
22 4121 76 HLT ;Halt program execution.
23
24 4122 END ;Assembly end.

Sample data

Input Data : Data-1 = 5A 24
H

Data-2 = 47C2
H

Output Data : Product = 19444B48
H

Memory
address

Content

 4200 24
 4201 5A
 4202 C2
 4203 47

Memory
address

Content

 4204 48
 4205 4B
 4206 44
 4207 19

5. 34 Chapter 5 Assembly Language Programming

EXAMPLE PROGRAM - 10 : 8-Bit Division

Write an assembly language program to divide two numbers of 8-bit data stored in memory locations 4200
H
 and 4201

H
.

Store the quotient in 4202
H
 and the remainder in 4203

H
.

Problem Analysis

The division in 8085 is performed as repeated subtraction. The dividend is stored in A-register

and divisor in B-register. The initial value of quotient is assumed as zero. Subtraction should be performed

only when dividend is greater than divisor. So repeated subtraction is performed until dividend is lesser

than the divisor. For each subtraction, the quotient is incremented by one. Then store the quotient and

remainder in the memory.

Algorithm

1. Load the divisor in accumulator and move it to B-register.

2. Load the dividend in accumulator.

3. Clear C-register to account for quotient.

4. Check whether divisor is less than dividend. If divisor is less than dividend, go to step 8, otherwise go to next step.

5. Subtract the content of B-register from accumulator.

6. Increment the content of C-register (quotient).

7. Go to step 4.

8. Store the content of accumulator (remainder) in memory.

9. Move the content of C-register (quotient) to accumulator and store in memory.

10. Stop.

Flowchart for example program 10

Start

¯
Get the Divisor in A-register and Move to B-register

¯
Increment Quotient (C-register)

¯
Get the Dividend in A-register

¯
Clear C-register (Quotient)

¯
Compare B-register and A-register

Check
Whether
CF = 1

¯

¯
¯

Subtract the Content of B fromA

®

¯
Store the Remainder
(A-register) in Memory

¯
Move the Content of

C-register to A-register and
Store it (Quotient) in Memory

¯
Stop

No

®
Yes

Microprocessor (8085) And Its Applications 5. 35

Assembly language program

;PROGRAM TO DIVIDE TWO NUMBERS OF 8-BIT DATA

ORG 4100H ;specify program starting address.

LDA 4201H
MOV B,A ;Get the divisor in B-register.
LDA 4200H ;Get the dividend in A-register.
MVI C,00H ;Clear C-register for quotient.

AGAIN: CMP B
JC STORE ;If divisor is less than dividend go to store.
SUB B ;Subtract divisor from dividend.
INR C ;Increment quotient by one for each subtraction.
JMP AGAIN

STORE: STA 4203H ;Store the remainder in memory.
MOV A,C
STA 4202H ;Store the quotient in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 10

1 ;PROGRAM TO DIVIDE TWO NUMBERS OF 8-BIT DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 01 42 LDA 4201H
6 4103 47 MOV B,A ;Get the divisor in B-register.
7 4104 3A 00 42 LDA 4200H ;Get the dividend in A-register.
8 4107 0E 00 MVI C,00H ;Clear C-register for quotient.
9 4109 B8 AGAIN: CMP B
10 410A DA 12 41 JC STORE ;If divisor is less than dividend go to store.
11 410D 90 SUB B ;Subtract divisor from dividend.
12 410E 0C INR C ;Increment quotient by one for each subtraction.
13 410F C3 09 41 JMP AGAIN
14 4112 32 03 42 STORE: STA 4203H ;Store the remainder in memory.
15 4115 79 MOV A,C
16 4116 32 02 42 STA 4202H ;Store the quotient in memory.
17 4119 76 HLT ;Halt program execution.
18
19 411A END ;Assembly end.

Sample data

Input Data : Dividend = C9
H

 Divisor = 0A
H

Output Data : Quotient = 14
H

 Remainder = 01
H

EXAMPLE PROGRAM - 11 : Sum of an Array

Write an assembly language program to add an array of data stored in memory from 4200
H
 to 4200

H
 + N. The first element

of the array, gives the number of elements in the array. Store the result in 4300
H
 and 4301

H
. Assume that the sum does not exceed

16-bit.

Problem Analysis

The number of bytes (data) N, is used as count for number of additions. The initial sum is

assumed as zero. The HL register pair is used as pointer for data. Each element of the array is added to

sum and for accounting the overflow one of the registers is used.

Memory address Content

4200 C9

4201 0A

4202 14

4203 01

5. 36 Chapter 5 Assembly Language Programming

Algorithm

1. Load the address of the first element of the array in HL pair (pointer).

2. Move the count to B-register.

3. Clear C-register for carry.

4. Clear accumulator for sum.

5. Increment the pointer (HL pair).

6. Add the content of memory addressed by HL to accumulator.

7. Check for carry. If carry = 1, go to step 8, or If carry = 0, go to step 8.

8. Increment C-register.

9. Decrement the count.

10. Check for zero of the count. If ZF = 0 go to step 5 or If ZF = 1, go to next step.

11. Store the content of accumulator (low byte of sum).

12. Move the content of C-register (high byte of sum) to accumulator. Store the content of accumulator in memory.

13. Stop.

Assembly language program

; PROGRAM TO ADD AN ARRAY OF DATA

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for data.
MOV B,M ;Set count for number of data.
MVI C,00H ;Clear C-register to account for carry.
XRA A ;Clear accumulator. Initial sum=0.

Flowchart for example program 11

Start

¯
Load the Address of Data Array
in HL Pair (Data Pointer)

¯
Using the Content of HL as Address, Load
the Count Value from Memory to B-register

C

®

¯
¬

Yes

NoCheck
Whether
CF = 0

¯

¯
Stop

¯
No

Check
Whether
ZF = 0

Store the Low Byte of Sum
(A-register) in Memory

¯

Move the Content of C-register
to A-register and Store it (High
Byte of Sum) in Memory

¯

¯

¯
Clear A and C registers

¬
Yes

Increment the Data Pointer (HL Pair)

¯
Add the Content of Memory Pointed

by HL to A-register

Increment
C-register

¯

¬̄

¯
Decrement the Count (B-register)

C

Microprocessor (8085) And Its Applications 5. 37

REPT: INX H
ADD M ;Add an element of the array to sum.
JNC AHEAD
INR C ;If CF=1, increment C-register.

AHEAD: DCR B
JNZ REPT ;Repeat addition until count is zero.
STA 4300H ;Store low byte of sum in memory.
MOV A,C
STA 4301H ;Store high byte of sum in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 11

1 ;PROGRAM TO ADD AN ARRAY OF DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for data.
6 4103 46 MOV B,M ;Set count for number of data.
7 4104 0E 00 MVI C,00H ;Clear C-register to account for carry.
8 4106 AF XRA A ;Clear accumulator. Initial sum=0.
9 4107 23 REPT: INX H
10 4108 86 ADD M ;Add an element of the array to sum.
11 4109 D2 0D 41 JNC AHEAD
12 410C 0C INR C ;If CF=1, increment C-register.
13 410D 05 AHEAD: DCR B
14 410E C2 07 41 JNZ REPT ;Repeat addition until count is zero.
15 4111 32 00 43 STA 4300H ;Store low byte of sum in memory.
16 4114 79 MOV A,C
17 4115 32 01 43 STA 4301H ;Store high byte of sum in memory.
18 4118 76 HLT ;Halt program execution.
19
20 4119 END ;Assembly end.

Sample data

Input Data : Count = 07
H

 Array = C2
H

 45
H

 B3
H

 F4
H

 7C
H

 ED
H

 16
H

Output Data : Sum = 042D
H

EXAMPLE PROGRAM - 12 : Search for Smallest Data in an Array

Write an assembly language program to search the smallest data in an array of N data stored in memory locations from

4200
H
 to (4200

H
 + N). The first element of the array gives the number of data in the array. Store the smallest data in 4300

H
.

Problem Analysis

The HL register pair is used as pointer for the array. One of the general purpose register is used as

count. A data in the array is moved to A-register and compared with next data. After each comparison, the

smallest data is brought to accumulator. The comparisons are carried N−1 times. After N−1 comparisons,

the smallest data will be in A-register and store it in memory.

 Memory address Content

4200 07
4201 C2
4202 45
4203 B3
4204 F4
4205 7C
4206 ED
4207 16
4300 2D
4301 04

Count

Array

Sum

I
P
Q

I
P
Q

5. 38 Chapter 5 Assembly Language Programming

Algorithm

1. Load the address of the first element of the array in HL register pair (pointer).

2. Move the count to B-register.

3. Increment the pointer.

4. Get the first data in accumulator.

5. Decrement the count.

6. Increment the pointer.

7. Compare the content of memory addressed by HL pair with that of accumulator.

8. If carry = 1, go to step 10 or If carry = 0, go to step 8.

9. Move the content of memory addressed HL to accumulator.

10. Decrement the count.

11. Check for zero of the count. If ZF = 0, go to step 6, or If ZF = 1 go to next step.

12. Store the smallest data in memory.

13. Stop.

Assembly language program

;PROGRAM TO SEARCH SMALLEST DATA IN AN ARRAY

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for array.
MOV B,M ;Set count for number of elements in array.
INX H
MOV A,M ;Set 1st element of array as smallest data.
DCR B ;Decrement the count.

Flowchart for example program 12

Start

¯
Load the Address of Data Array
in HL Pair (Data Pointer)

¯
Using Data Pointer, Load the
Count Value from Memory

to B-register

Stop

NoCheck
Whether
CF = 1

¯

¯

Yes

C

¯
Increment the Data Pointer and
Move the First Data to A-register.
Decrement the Count (B-register)

¯
Increment the Data Pointer

¯
Compare the Content of Memory
Pointed by HL with A-register

¯
C

Move the Content of Memory
Addressed by HL to A-register

¯

¯
Decrement the Count

¯
¬

Check
Whether
ZF = 0

¯

¬

¯
¯

Store the Smallest Data (A-register) in Memory

®

¬
Yes

No

Microprocessor (8085) And Its Applications 5. 39

LOOP: INX H ;Compare an element of array
CMP M ;with current smallest data.
JC AHEAD ;If CF=1, go to AHEAD.
MOV A,M ;If CF=0, then content of memory

;is smaller than A, hence if CF=0, make
;memory as smallest by moving to A.

AHEAD: DCR B
JNZ LOOP ;Repeat comparison until count is zero.
STA 4300H ;Store the smallest data in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 12

1 ;PROGRAM TO SEARCH SMALLEST DATA IN AN ARRAY
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for array.
6 4103 46 MOV B,M ;Set count for number of elements in array.
7 4104 23 INX H
8 4105 7E MOV A,M ;Set 1st element of array as smallest data.
9 4106 05 DCR B ;Decrement the count.
10 4107 23 LOOP: INX H ;Compare an element of array
11 4108 BE CMP M ;with current smallest data.
12 4109 DA 0D 41 JC AHEAD ;If CF=1, go to AHEAD.
13 410C 7E MOV A,M ;If CF=0, then content of memory
14 ;is smaller than A, hence if CF=0, make
15 ;memory as smallest by moving to A.
16 410D 05 AHEAD: DCR B
17 410E C2 07 41 JNZ LOOP ;Repeat comparison until count is zero.
18 4111 32 00 43 STA 4300H ;Store the smallest data in memory.
19 4114 76 HLT ;Halt program execution.
20
21 4115 END ;Assembly end.

Sample data

Input Data : Count = 07
H

 Array = 42
H

3A
H

1C
H

24
H

B4
H

25
H

4F
H

Output Data : Smallest

data = 1C

H

EXAMPLE PROGRAM - 13 : Search for Largest Data in an Array

Write an assembly language program to search the largest data in an array of N data stored in memory locations from

4200
H
 to 4200

H
+ N. The first element of the array is the number of data (N) in the array. Store the largest data in 4300

H
.

Problem Analysis

The HL register pair is used as pointer for the array. One of the general purpose register is used as

count. A data in the array is moved to A-register and compared with next data. After each comparison, the

largest data is brought to A-register. The comparisons are performed N−1 times. After N−1 comparisons

the largest data will be in A-register and store it in memory.

Memory address Content

4200 07
4201 42
4202 3A
4203 1C
4204 24
4205 B4
4206 25
4207 4F

4300 1C

Count

Array

Smallest data

1
2
3

I
P
Q

5. 40 Chapter 5 Assembly Language Programming

Algorithm

1. Load the address of the first element of the array in HL register pair (pointer).

2. Move the count to B-register.

3. Increment the pointer.

4. Get the first data in accumulator.

5. Decrement the count.

6. Increment the pointer.

7. Compare the content of memory addressed by HL pair with that of accumulator.

8. If carry = 0, go to step 10 or If carry = 1, go to step 8.

9. Move the content of memory addressed HL to accumulator.

10. Decrement the count.

11. Check for zero of the count. If ZF = 0, go to step 6, or If ZF = 1 go to next step.

12. Store the largest data in memory.

13. Stop.

Assembly language program

;PROGRAM TO SEARCH LARGEST DATA IN AN ARRAY

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for array.
MOV B,M ;Set count for number of elements in array.
INX H
MOV A,M ;Set 1st element of array as largest data.
DCR B ;Decrement the count.

LOOP: INX H ;Compare an element of array with
CMP M ;current largest data.
JNC AHEAD ;If CF=0, go to AHEAD.

Flowchart for example program 13

Start

¯
Load the Address of Data

Array in HL Pair (Data Pointer)

¯
Using Data Pointer, Load the
Count Value from Memory

to B-register

¯
Increment the Data Pointer and
Move the First Data to A-register.
Decrement the Count (B-register)

¯
Increment the Data Pointer

¯
Compare the Content of Memory
Pointed by HL with A-register

¯
A

Stop

NoCheck
Whether
CF = 0

¯

¯

Yes

A

Move the Content of
Memory Addressed by
HL to A-register

¯

¯
Decrement the Count

¯
¬

Check
Whether
ZF = 1

¯

¯
Store the Largest Data (A-register) in Memory

®

¬
Yes

No

¬

Microprocessor (8085) And Its Applications 5. 41

MOV A,M ;If CF=1,then content of memory is larger
;than accumulator.Hence if CF=1,
;make memory content as current
;largest by moving it to A-register.

AHEAD: DCR B
JNZ LOOP ;Repeat comparison until count is zero.
STA 4300H ;Store the largest data in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 13

1 ;PROGRAM TO SEARCH LARGEST DATA IN AN ARRAY
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for array.
6 4103 46 MOV B,M ;Set count for number of elements in array.
7 4104 23 INX H
8 4105 7E MOV A,M ;Set 1st element of array as largest data.
9 4106 05 DCR B ;Decrement the count.
10 4107 23 LOOP: INX H ;Compare an element of array with
11 4108 BE CMP M ;current largest data.
12 4109 D2 0D 41 JNC AHEAD ;If CF=0, go to AHEAD.
13 410C 7E MOV A,M ;If CF=1,then content of memory is larger
14 ;than accumulator. Hence if CF=1,
15 ;make memory content as current
16 ;largest by moving it to A-register.
17 410D 05 AHEAD: DCR B
18 410E C2 07 41 JNZ LOOP ;Repeat comparison until count is zero.
19 4111 32 00 43 STA 4300H ;Store the largest data in memory.
20 4114 76 HLT ;Halt program execution.
21
22 4115 END ;Assembly end.

Sample data

Input Data : Count = 07
H

Array = 62
H

7D
H

FC
H

24
H

C2
H

0F
H

92
H

Output Data : Largest

data = FC

H

EXAMPLE PROGRAM - 14 : Search for a Given Data in an Array

Write an assembly language program to search for a given data (stored in 4250
H
) in an array of data stored from 4200

H
.

The end of the array is marked by 20
H
.

If the data is available store FF
H
 in 4251

H
. Store the position of the data and its address in 4252

H
, 4253

H
 and 4254

H

respectively. If the data is not available store 00
H
 in memory locations from 4251

H
 to 4254

H
.

Problem Analysis

The HL pair is used as pointer for given data. B-register is used as pointer for position of the data.

C-register is used to record the availability of given data. The given data is moved to A-register and

compared with each element of the array one-by-one. If the data is available, terminate the comparison

and store the position, address and FF
H
 (for availability) in memory.

Memory address Content

4200 07
4201 62
4202 7D
4203 FC
4204 24
4205 C2
4206 0F
4207 92

4300 FC

Count

Array

Laragest data1
2
3

I
P
Q

5. 42 Chapter 5 Assembly Language Programming

Algorithm

1. Load the address of the data array in HL register pair.

2. Load the given data in accumulator.

3. Clear B-register.

4. Increment B-register.

5. Compare the content of memory addressed by HL pair with that of accumulator.

6. If ZF = 0, go to next step or if ZF = 1, go to step 8.

7. Check for end of array by comparing the data with 20
H
. If ZF = 0, go to step 4, or If ZF = 1, go to next step.

8. Clear B, C, H, L registers and jump to step 10.

9. Move FF
H
 to C-register.

10. Store the content of H and L registers in memory.

11. Move C to L and B to H and store HL in memory.

12. Stop.

Flowchart for example program 14

Start

Load the Starting Address of Data Array in HL Pair

Increment B-register
(Position of Data in the Array)

¯

Compare the Content of Memory
Pointed by HL with A-register

Check
Whether
ZF = 1

®

¯

¯

¯

¯

¯
¯

No

Yes

Get the Given Data in A-register and Clear B-register

Compare the Content of A with 20H

Check
Whether
ZF = 0

¯

®

Move FF to C-registerH

Clear BC
Pair and
HL Pair

Store the Content of
HL (Address of the
Data) in Memory

Move the Content of BC Pair
to HL Pair and Store them
(Position and Indication for
Availability) in Memory

¯

¯

¯

Stop

¯

®

®¬
NoYes

Microprocessor (8085) And Its Applications 5. 43

Assembly language program

;PROGRAM TO SEARCH A GIVEN DATA IN AN ARRAY

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for the data array.
LDA 4250H ;Load the given data in accumulator.
MVI B,00H ;Clear B-register to store the position.

LOOP: INR B ;Increment the position count.
CMP M ;Compare an element with given data.
JZ AHEAD ;If data is available,then ZF=1.
MOV C,A ;Save the given data in C-register.
INX H
MOV A,M ;Get the next element of the array in A and
CPI 20H ;check for end of array.
MOV A,C ;Get the given data in A-register.
JNZ LOOP ;Repeat comparison until end of the array.
LXI B,0000H ;Clear B,C,H and L if given data
LXI H,0000H ;is not available in the array.
JMP STORE

AHEAD: MVI C,FFH ;Move FFH to C, to indicate the
;availability of data.

STORE: SHLD 4253H ;Store the address of the data.
MOV L,C
MOV H,B
SHLD 4251H ;Store the position and indication

;for availability.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 14

1 ;PROGRAM TO SEARCH A GIVEN DATA IN AN ARRAY
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for the data array.
6 4103 3A 50 42 LDA 4250H ;Load the given data in accumulator.
7 4106 06 00 MVI B,00H ;Clear B-register to store the position.
8 4108 04 LOOP: INR B ;Increment the position count.
9 4109 BE CMP M ;Compare an element with given data.
10 410A CA 1F 41 JZ AHEAD ;If data is available,then ZF=1.
11 410D 4F MOV C,A ;Save the given data in C-register.
12 410E 23 INX H
13 410F 7E MOV A,M ;Get the next element of the array in A and
14 4110 FE 20 CPI 20H ;check for end of array.
15 4112 79 MOV A,C ;Get the given data in A-register.
16 4113 C2 08 41 JNZ LOOP ;Repeat comparison until end of the array.
17 4116 01 00 00 LXI B,0000H ;Clear B,C,H and L if given data
18 4119 21 00 00 LXI H,0000H ;is not available in the array.
19 411C C3 21 41 JMP STORE
20 411F 0E FF AHEAD: MVI C,FFH ;Move FFH to C, to indicate the
21 ;availability of data.
22 4121 22 53 42 STORE: SHLD 4253H ;Store the address of the data.
23 4124 69 MOV L,C
24 4125 60 MOV H,B
25 4126 22 51 42 SHLD 4251H ;Store the position and indication
26 ;for availability.
27 4129 76 HLT ;Halt program execution.
28
29 412A END ;Assembly end.

5. 44 Chapter 5 Assembly Language Programming

Start

Load the Count Value from Memory to A-register and Save it in B-register

Check
Whether CF = 1

¯

¯

¯

¯

Decrement B-register (Set Count for N – 1 Repetitions)

¯
Load the Starting Address of Data Array in HL Pair

Using Data Pointer, Load the Count Value from Memory to C-register

¯

¯
Decrement C-register. (Set Counter for N – 1 Comparisons)

¯
Increment the Data Pointer (HL Pair)

¯
Compare the Data Pointed by HL with Accumulator

®

®

Check
Whether ZF = 0

¯
Decrement B-register

Check
Whether ZF = 0

¯ Decrement C-register

Exchange the Content
of Memory Pointed by
HL and Previous
Memory Location

Stop

®

¬

¬

¬

¬

¯

®

Yes

No

No

No

Yes

Yes

Sample data

Input Data :
 Array = 45

H

72
H

CA
H

2F
H

C2
H

D1
H

4F
H

20
H

Given Data = 2F
H

EXAMPLE PROGRAM - 15 : Sorting an Array in Ascending Order

Write an assembly language program to sort an array of data in ascending order. The array is stored in memory starting

from 4200
H
. The first element of the array gives the count value for the number of elements in the array.

Problem Analysis

The algorithm for bubble sorting is given below. In bubble sorting of N-data, N−1 comparisons are

carried by taking two consecutive data at a time. After each comparison, the data is rearranged such that

smallest among the two is in the first memory location and the largest in the next memory location. (Here

the data is rearranged within the two memory locations whose contents are compared). When we perform

N−1 comparisons as mentioned above for N−1, times then the array consisting of N-data will be sorted in

the ascending order.

Flowchart for example program 15

Output Data :

 Availability = FF
H

 Position = 04
H

 Address = 4203
H

Memory
address

 Content

4200 45
4201 72
4202 CA
4203 2F
4204 C2
4205 D1
4206 4F
4207 20

Memory

Contentaddress

 4250 2F
 4251 FF
 4252 04
 4253 03
 4254 42

Microprocessor (8085) And Its Applications 5. 45

Algorithm

1. Load the count value from memory to A-register and save it in B-register.

2. Decrement B-register (B is counter for N–1 repetitions).

3. Set HL pair as data array address pointer.

4. Set C-register as counter for N–1 comparisons.

5. Load a data of the array in accumulator using the data address pointer.

6. Increment the HL pair (data address pointer).

7. Compare the data pointed by HL with accumulator.

8. If carry flag is set (If the content of accumulator is smaller than memory) then go to step 10, otherwise go to next step.

9. Exchange the content of memory pointed by HL and the accumulator.

10. Decrement C-register. If zero flag is reset go to step 6 otherwise go to next step.

11. Decrement B-register. If zero flag is reset go the step 3 otherwise go to next step.

12. Stop.

Assembly language program

;PROGRAM TO SORT AN ARRAY OF DATA IN ASCENDING ORDER

ORG 4100H ;specify program starting address.

LDA 4200H ;Load the count value in A-register.
MOV B,A ;Set count for N-1 repetitions
DCR B ;of N-1 comparisons.

LOOP2: LXI H,4200H ;Set pointer for array.
MOV C,M ;Set count for N-1 comparisons.
DCR C
INX H ;Increment pointer.

LOOP1: MOV A,M ;Get one data of array in A.
INX H
CMP M ;Compare next data with A-register.
JC AHEAD ;If content of A is less than

;memory then go to AHEAD.
MOV D,M ;If the content of A is greater than
MOV M,A ;the content of memory,
DCX H ;then exchange the content of memory
MOV M,D ;pointed by HL and previous location.
INX H

AHEAD: DCR C
JNZ LOOP1 ;Repeat comparisons until C count is zero.
DCR B
JNZ LOOP2 ;Repeat N-1 comparisons until B count is zero.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 15

1 ;PROGRAM TO SORT AN ARRAY OF DATA IN ASCENDING ORDER
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Load the count value in A-register.
6 4103 47 MOV B,A ;Set count for N-1 repetitions
7 4104 05 DCR B ;of N-1 comparisons.
8 4105 21 00 42 LOOP2: LXI H,4200H ;Set pointer for array.
9 4108 4E MOV C,M ;Set count for N-1 comparisons.

10 4109 0D DCR C
11 410A 23 INX H ;Increment pointer.
12 410B 7E LOOP1: MOV A,M ;Get one data of array in A.
13 410C 23 INX H
14 410D BE CMP M ;Compare next data with A-register.
15 410E DA 16 41 JC AHEAD ;If content of A is less than
16 ;memory then go to AHEAD.

5. 46 Chapter 5 Assembly Language Programming

17 4111 56 MOV D,M ;If the content of A is greater than

18 4112 77 MOV M,A ;the content of memory,

19 4113 2B DCX H ;then exchange the content of memory

20 4114 72 MOV M,D ;pointed by HL and previous location.

21 4115 23 INX H

22 4116 0D AHEAD: DCR C

23 4117 C2 0B 41 JNZ LOOP1 ;Repeat comparisons until C count is zero.

24 411A 05 DCR B

25 411B C2 05 41 JNZ LOOP2 ;Repeat N-1 comparisons until B count is zero.

26 411E 76 HLT ;Halt program execution.

27

28 411F END ;Assembly end.

Sample data

 Memory
Content

Memory
Content

 address address

 4200 07 4200 07
 4201 AB 4201 34
 4202 92 4202 4F
 4203 84 4203 69
 4204 4F 4204 84
 4205 69 4205 92
 4206 F2 4206 AB
 4207 34 4207 F2

EXAMPLE PROGRAM - 16 : Sorting an Array in Descending Order

Write an assembly language program to sort an array of data in descending order. The array is stored in the memory

location starting from 4200
H
. The first element of the array gives the count value for the number of elements in the array.

Problem Analysis

The algorithm for bubble sorting is given below. In bubble sorting of N-data, N−1 comparisons are

carried by taking two consecutive data at a time. After each comparison, the data is rearranged such that

largest among the two is in first memory location and the smallest in the next memory location. (Here the

data is rearranged within the two memory locations whose contents are compared). When we perform

N −1 comparisons as mentioned above for N−1 times, then the array consisting of N-data will be sorted

in descending order.

Algorithm

1. Load the count value from memory to A-register and save it in B-register.

2. Decrement B-register (B is counter for N–1 repetitions).

3. Set HL pair as data array address pointer.

4. Set C-register as counter for N–1 comparisons.

5. Load a data of the array in accumulator using the data address pointer.

6. Increment the HL pair (data address pointer).

7. Compare the data pointed by HL with accumulator.

8. If carry flag is reset (If the content of accumulator is larger than memory) then go to step 10, otherwise go to next step.

9. Exchange the content of memory pointed by HL and the accumulator.

10. Decrement C-register. If zero flag is reset go to step 6 otherwise go to next step.

11. Decrement B-register. If zero flag is reset go the step 3 otherwise go to next step.

12. Stop.

Output data: 07
34
4F
69
84
92
AB
F2

(After sorting)

Input Data: 07
AB
92
84
4F
69
F2
34

(Before sorting)

Microprocessor (8085) And Its Applications 5. 47

Assembly language program

;PROGRAM TO SORT AN ARRAY OF DATA IN DESCENDING ORDER

ORG 4100H ;specify program starting address.

LDA 4200H ;Load the count value in A-register.
MOV B,A ;Set count for N-1 repetitions
DCR B ;of N-1 comparisons.

LOOP2: LXI H,4200H ;Set pointer for array.
MOV C,M ;Set count for N-1 comparisons.
DCR C
INX H ;Increment the pointer.

LOOP1: MOV A,M ;Get one data of array in A.
INX H ;Compare the next data of array with
CMP M ;the content of A-register.
JNC AHEAD ;If content of A is greater than content

;of memory addressed by HL pair,
;then go to AHEAD.

Flowchart for example program 16

Start

Load the Count Value from Memory to A-register and Save it in B-register

Check
Whether CF = 0

¯

¯

¯

¯

Decrement B-register (Set Count for N – 1 Repetitions)

¯
Load the Starting Address of Data Array in HL Pair

Using Data Pointer, Load the Count Value from Memory to C-register

¯

¯
Decrement C-register. (Set Counter for N – 1 Comparisons)

¯
Increment the Data Pointer (HL Pair)

¯
Compare the Data Pointed by HL with Accumulator

®

®

Decrement C-register

Exchange the Content
of Memory Pointed by
HL and Previous
Memory Location

®

¬

¯
Yes

No

Check
Whether ZF = 0

¯
Decrement B-register

Check
Whether ZF = 0

¯

Stop

¬ ¬

¬ ®
No

No

Yes

Yes

5. 48 Chapter 5 Assembly Language Programming

MOV D,M ;If the content of A is less than content
MOV M,A ;of memory addressed by HL pair,
DCX H ;then exchange content of memory pointed
MOV M,D ;by HL and previous memory location.
INX H

AHEAD: DCR C
JNZ LOOP1 ;Repeat comparisons until C count is zero.
DCR B
JNZ LOOP2 ;Repeat N-1 comparisons until B count is zero.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 16

1 ;PROGRAM TO SORT AN ARRAY OF DATA IN DESCENDING ORDER
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Load the count value in A-register.
6 4103 47 MOV B,A ;Set counter for N-1 repetitions
7 4104 05 DCR B ;of N-1 comparisons.
8 4105 21 00 42 LOOP2: LXI H,4200H ;Set pointer for array.
9 4108 4E MOV C,M ;Set count for N-1 comparisons.

10 4109 0D DCR C
11 410A 23 INX H ;Increment the pointer.
12 410B 7E LOOP1: MOV A,M ;Get one data of array in A.
13 410C 23 INX H ;Compare the next data of array with
14 410D BE CMP M ;the content of A-register.
15 410E D2 16 41 JNC AHEAD ;If content of A is greater than content
16 ;of memory addressed by HL pair,
17 ;then go to AHEAD.
18 4111 56 MOV D,M ;If the content of A is less than content
19 4112 77 MOV M,A ;of memory addressed by HL pair,
20 4113 2B DCX H ;then exchange content of memory pointed
21 4114 72 MOV M,D ;by HL and previous memory location.
22 4115 23 INX H
23 4116 0D AHEAD: DCR C
24 4117 C2 0B 41 JNZ LOOP1 ;Repeat comparisons until C count is zero.
25 411A 05 DCR B
26 411B C2 05 41 JNZ LOOP2 ;Repeat N-1 comparison until B count is zero.
27 411E 76 HLT ;Halt program execution.
28
29 411F END ;Assembly end.

Sample data

 Memory
Content

 Memory
Content

 address address

4200 07 4200 07

4201 C4 4201 F4

4202 84 4202 E2

4203 9A 4203 C4

4204 7B 4204 B2

4205 E2 4205 9A

4206 F4 4206 84

4207 B2 4207 7B

Input Data :
07
C4
84
9A
7B
E2
F4
B2

Output Data :
07
F4
E2
C4
B2
9A
84
7B

(Before sorting) (After sorting)

Microprocessor (8085) And Its Applications 5. 49

EXAMPLE PROGRAM - 17 : Square Root of 8-Bit Binary Number

Write an assembly language program to find the square root of an 8-bit binary number. The binary number is stored

in memory location 4200
H
 and store the square root in 4201

H
.

Problem Analysis

Square root can be computed by an iterative technique. First an initial value is assumed. Here the

initial value of square root is taken as half the value of given number. The new value of square root is

computed by using an expression, XNEW = (X + Y/X)/2 where X is the initial value of square root and Y

is the given number. Then XNEW is compared with initial value. If they are not equal then the above

process is repeated until X is equal to XNEW after taking XNEW as initial value, (i.e., X ← XNEW).

Algorithm

1. Load the given data (Y) in A-register.

2. Save the content of A-register in B-register.

3. Move 02
H
 (divisor) to C-register.

4. Call DIV subroutine to get initial value of square root (X) in D-register.

5. Save the content of D-register (initial value X) in E-register.

6. Move the given data (Y) from B-register to A-register.

7. Move the initial value (X) from D-register to C-register.

8. Call DIV subroutine to get Y/X in D-register.

9. Move the Y/X available in D-register to A-register.

10. Add the value of X in E-register to A-register to get X+Y/X in A-register.

11. Move 02
H
 to C-register.

12. Call DIV subroutine to get new value of square root (XNEW) in D-register.

13. Compare X and XNEW.

14. If ZF = 1, go to next step. If ZF = 0, go to step 5.

15. Store the value of square root (A-register) in memory.

16. Stop.

Algorithm for subroutine DIV

1. Clear D-register.

2. Subtract the content of C-register (divisor) from the content of A-register (dividend).

3. Increment quotient (D-register).

4. Compare A-register and C-register.

5. If CF = 1, go to next step. If CF = 0 go to step 2.

6. Return to main program.

5. 50 Chapter 5 Assembly Language Programming

Flowchart for example program 17

Start

Load the Given Data (Y) from
Memory to A-register and Save

it in B-register

¯

No

Move 02 to C-registerH

¯

Call DIV Subroutine to Get Initial Value
of Square Root (X) in D-register

¯

Save the Content of D-register in E-register
¯

Get the Given Data (Y) in A-register
and Initial Value (X) in C-register

¯

Call DIV Subroutine to Get Y/X in D-register
¯

Move the Content of D-register Y/X in A-register
¯

Add the Content of E-register to Get
X + Y/X in A-register

¯

Move the Divisor 02 to C-registerH

¯

Call DIV Subroutine to Get a New
Value of Square Root (XNEW)

in D-register

¯

Get the Value of (X) in A-register and
Compare with XNEWAvailable in

D-register

¯

¯
Check

Whether ZF = 0
Store the Value of Square Root

(A-register) in Memory®®

Stop

¯

¬
Yes

Start

Subtract the Content of C-register
(Divisor) from the Content of

A-register (Dividend)

¯

Return to Main Program

¯

¯

¯

Clear D-register

Increment D-register (Quotient)

Compare the Content of A-register
(Remainder) with the Content of

C-register (Divisor)

¯

¯
Check

Whether CF = 0

¯

®

¬

No

Yes

®

Flowchart for subroutine DIV

Microprocessor (8085) And Its Applications 5. 51

Assembly language program

;PROGRAM TO FIND THE SQUARE ROOT OF 8-BIT BINARY NUMBER

ORG 4100H ;specify program starting address.

LDA 4200H ;Get the given data(Y) in A-register.
MOV B,A ;Save the data in B-register.
MVI C,02H ;Get the divisor(02

H
) in C-register.

CALL DIV ;Call division subroutine to get initial
;value(X) in the D-register.

REP: MOV E,D ;Save the initial value in E-register.
MOV A,B ;Get the dividend(Y) in A-register.
MOV C,D ;Get the divisor(X) in C-register.
CALL DIV ;Call division subroutine to get Y/X in D.
MOV A,D ;Move Y/X in A-register.
ADD E ;Get((Y/X)+X) in A-register.
MVI C,02H ;Get the divisor (02H) in C-register.
CALL DIV ;Call division subroutine to get

;XNEW in D-register.
MOV A,E ;Get X in A-register.
CMP D ;Compare X and XNEW.
JNZ REP ;If XNEW is not equal to X, then repeat.
STA 4201H ;Save the square root in memory.
HLT ;Halt program execution.

;DIVISION SUBROUTINE
DIV: MVI D,00H ;Clear D-register for quotient.
NEXT: SUB C ;Subtract the divisor from dividend.

INR D ;Increment the quotient.
CMP C ;Repeat subtraction until the divisor
JNC NEXT ;is less than dividend.
RET ;Return to main program.

END ;Assembly end.

Assembler listing for example program 17

1 ;PROGRAM TO FIND THE SQUARE ROOT OF 8-BIT BINARY NUMBER
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Get the given data(Y) in A-register.
6 4103 47 MOV B,A ;Save the data in B-register.
7 4104 0E 02 MVI C,02H ;Get the divisor(02H) in C-register.
8 4106 CD 1F 41 CALL DIV ;Call division subroutine to get initial
9 ;value(X) in the D-register.
10 4109 5A REP: MOV E,D ;Save the initial value in E-register.
11 410A 78 MOV A,B ;Get the dividend(Y) in A-register.
12 410B 4A MOV C,D ;Get the divisor(X) in C-register.
13 410C CD 1F 41 CALL DIV ;Call division subroutine to get Y/X in D.
14 410F 7A MOV A,D ;Move Y/X in A-register.
15 4110 83 ADD E ;Get((Y/X)+X) in A-register.
16 4111 0E 02 MVI C,02H ;Get the divisor (02H) in C-register.
17 4113 CD 1F 41 CALL DIV ;Call division subroutine to get
18 ;XNEW in D-register
19 4116 7B MOV A,E ;Get X in A-register.
20 4117 BA CMP D ;Compare X and XNEW.
21 4118 C2 09 41 JNZ REP ;If XNEW is not equal to X, then repeat.
22 411B 32 01 42 STA 4201H ;Save the square root in memory.
23 411E 76 HLT ;Halt program execution.
24
25
26 ;DIVISION SUBROUTINE
27
28 411F 16 00 DIV: MVI D,00H ;Clear D-register for quotient.
29 4121 91 NEXT: SUB C ;Subtract the divisor from dividend.

5. 52 Chapter 5 Assembly Language Programming

30 4122 14 INR D ;Increment the quotient.
31 4123 B9 CMP C ;Repeat subtraction until the divisor
32 4124 D2 21 41 JNC NEXT ;is less than dividend.
33 4127 C9 RET ;Return to main program.
34
35 4128 END ;Assembly end.

Sample data

Input Data : 64
H

Output Data : 0A
H

EXAMPLE PROGRAM - 18 : BCD to Binary Conversion

Write an assembly language program to convert a two-digit BCD (8-bit) data to binary data. The BCD data is stored in

4200
H
 and store the binary data in 4201

H
.

Problem Analysis

The 2-digit BCD data will have units digit and tens digit. When the tens digit (upper nibble) is

multiplied by 0A
H
 and the product is added to units digit (lower nibble), the result will be in binary,

because the microprocessor performs binary arithmetic.

Algorithm

1. Get the BCD data in A-register and save in E-register.

2. Mask the lower nibble (units) of the BCD data in A-register.

3. Rotate the upper nibble to lower nibble position and save in B-register.

4. Clear the accumulator.

5. Move 0A
H
 to C-register.

6. Add B-register to A-register.

7. Decrement C-register. If ZF = 0 go to step 6. If ZF = 1, go to next step.

8. Save the product in B-register.

 Memory address Content

4200 64
4201 0A

Flowchart for example program 18

Start

Get the BCD Data in A-register
and Save it in E-register

¯

¯
Decrement C-register

No

Yes

Mask the Lower Nibble (Unit’s Digit)
of the BCD Data in A-register

¯

Rotate the Content of A-register Four
Times Right and Save it in B-register

¯

Clear A-register and
Move 0A to C-registerH

¯

Add the Content of B-register
to A-register

¯

Check
Whether ZF = 0

Move the Content of
A-register to B-register

¯

Move the BCD Data from
E-register to A-register and Mask
the Upper Nibble (Ten’s Digit)

¯

Add the Content of
B-register to A-register

¯

Store the Binary Value (A-register)
in Memory

¯

Stop

¯

¬

® ®

Microprocessor (8085) And Its Applications 5. 53

9. Get the BCD data in A-register from E-register and mask the upper nibble (tens).

10. Add the units (A-register) to product (B-register).

11. Store the binary value (A-register).

12. Stop.

Assembly language program

;PROGRAM TO CONVERT 2-DIGIT BCD TO BINARY NUMBER

ORG 4100H ;specify program starting address.

LDA 4200H ;Get the data in A-register,
MOV E,A ;and save in E-register.
ANI F0H ;Mask the lower nibble (units digit).
RLC ;Rotate the upper nibble (tens digit)
RLC ;to lower nibble position and save in B.
RLC
RLC
MOV B,A
XRA A ;Clear accumulator.
MVI C,0AH ;Multiply tens digit by 0AH and

REP: ADD B ;get the product in A-register.
DCR C
JNZ REP
MOV B,A ;Save the product in B-register.
MOV A,E ;Get the BCD data in A-register.
ANI 0FH ;Mask the upper nibble (tens digit).
ADD B ;Get the binary data in A-register.
STA 4201H ;Save the binary data in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example 18

1 ;PROGRAM TO CONVERT 2-DIGIT BCD TO BINARY NUMBER
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Get the data in A-register,
6 4103 5F MOV E,A ;and save in E-register.
7 4104 E6 F0 ANI F0H ;Mask the lower nibble (units digit).
8 4106 07 RLC ;Rotate the upper nibble (tens digit)
9 4107 07 RLC ;to lower nibble position and save in B.
10 4108 07 RLC
11 4109 07 RLC
12 410A 47 MOV B,A
13 410B AF XRA A ;Clear accumulator.
14 410C 0E 0A MVI C,0AH ;Multiply tens digit by 0AH and
15 410E 80 REP: ADD B ;get the product in A-register.
16 410F 0D DCR C
17 4110 C2 0E 41 JNZ REP
18 4113 47 MOV B,A ;Save the product in B-register.
19 4114 7B MOV A,E ;Get the BCD data in A-register.
20 4115 E6 0F ANI 0FH ;Mask the upper nibble (tens digit).
21 4117 80 ADD B ;Get the binary data in A-register.
22 4118 32 01 42 STA 4201H ;Save the binary data in memory.
23 411B 76 HLT ;Halt program execution.
24
25 411C END ;Assembly end.

Sample data

Input Data : 45
10

Output Data : 2D
H

Memory address Content

 4200 45
 4201 2D

5. 54 Chapter 5 Assembly Language Programming

EXAMPLE PROGRAM - 19 : Binary to BCD Conversion

Write an assembly language program to convert an 8-bit binary data to BCD. The binary data is stored in 4200
H
. Store

the hundred's digit in 4251
H
. Store the ten's and unit's digits in 4250

H
.

Problem Analysis

The maximum value of 8-bit binary is FF
H
= 256

10
. Hence the maximum size of the data will have

hundreds, tens and units. The algorithm given below uses two counters to count hundreds and tens. Initially

counters are cleared. First let us subtract all hundreds from the binary data. For each subtraction, hundred's

register is incremented by one. Then, let us subtract all tens. For each subtraction, ten's register is incremented

by one. The remaining will be units. The tens and units are combined to form 2-digit BCD (8-bit binary).

Algorithm

1. Clear D and E registers to account for hundreds and tens.

2. Load the binary data in A-register.

3. Compare A-register with 64
H
. If carry flag is set, go to step 7 otherwise go to next step.

4. Subtract 64
H
 from A-register.

5. Increment E-register (Hundred's register).

Flowchart for example program 19

Start

Clear D and E registers

Check
Whether CF = 1

¯

¯

¯

From Memory Load the Binary Data in A-register

¯
Compare the Content of A-register with 64H

¬

Subtract 64 from

A-register. Increment
E-register

H

¯
Compare the Content of A-register with 0AH

Check
Whether CF = 1

¯

¯
Save the Content of A-register in C-register

¯
Move the Ten’s Digit (D-register) to A-register

®

Subtract 0A from

A-register. Increment
D-register

H

¬

®

No

No

Yes

Yes

¯
Rotate the Content of A-register, 4 Times Left and Then Add with C-register

¯
Store A-register (Ten’s and
Unit’s Digit) in Memory

Move the Content of E-register
(Hundred’s Digit) to A-register

and Save it in Memory

Stop®®

®

®

Microprocessor (8085) And Its Applications 5. 55

6. Go to step 3.

7. Compare the A-register with 0A
H
. If carry flag is set, go to step 11, otherwise go to next step.

8. Subtract 0A
H
 from A-register.

9. Increment D-register (ten's register).

10. Go to step 7.

11. Combine the units and tens to form 8-bit result.

12. Save the units, tens and hundreds in memory.

Assembly language program

;PROGRAM TO CONVERT 8-BIT BINARY NUMBER TO BCD

ORG 4100H ;specify program starting address.

MVI E,00H ;Clear E-register for hundreds and
MOV D,E ;D-register for tens.
LDA 4200H ;Get the binary data in A-register.

HUND: CPI 64H ;Compare, whether data is less than 64H(100).
JC TEN ;If the content of A is less than

;100 or 64H then go to TEN.
SUI 64H ;Subtract all hundreds from the data and
INR E ;for each subtraction increment E-register.
JMP HUND

TEN: CPI 0AH ;Compare whether the content of A
JC UNIT ;is less than 0AH or 10.If CF=1 go to UNIT.
SUI 0AH ;Subtract all tens from the data and for
INR D ;each subtraction increment D-register.
JMP TEN

UNIT: MOV C,A ;Save the units in C-register.
MOV A,D ;Get tens in A-register.
RLC ;Rotate ten’s digit to upper nibble position.
RLC
RLC
RLC
ADD C ;Combine ten’s and unit’s digits.
STA 4250H ;Save tens and units in memory.
MOV A,E
STA 4251H ;Save hundreds in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 19

1 ;PROGRAM TO CONVERT 8-BIT BINARY NUMBER TO BCD
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 1E 00 MVI E,00H ;Clear E-register for hundreds and
6 4102 53 MOV D,E ;D-register for tens.
7 4103 3A 00 42 LDA 4200H ;Get the binary data in A-register.
8 4106 FE 64 HUND: CPI 64H ;Compare, whether data is less than 64H(100).
9 4108 DA 11 41 JC TEN ;If the content of A is less than
10 ;100 or 64H then go to TEN.
11 410B D6 64 SUI 64H ;Subtract all hundreds from the data and
12 410D 1C INR E ;for each subtraction increment E-register.
13 410E C3 06 41 JMP HUND
14 4111 FE 0A TEN: CPI 0AH ;Compare whether the content of A
15 4113 DA 1C 41 JC UNIT ;is less than 0AH or 10.If CF=1 go to UNIT.
16 4116 D6 0A SUI 0AH ;Subtract all tens from the data and for
17 4118 14 INR D ;each subtraction increment D-register.
18 4119 C3 11 41 JMP TEN
19 411C 4F UNIT: MOV C,A ;Save the units in C-register.
20 411D 7A MOV A,D ;Get tens in A-register.
21 411E 07 RLC ;Rotate ten’s digit to upper nibble position.

5. 56 Chapter 5 Assembly Language Programming

22 411F 07 RLC
23 4120 07 RLC
24 4121 07 RLC
25 4122 81 ADD C ;Combine ten’s and unit’s digits.
26 4123 32 50 42 STA 4250H ;Save tens and units in memory.
27 4126 7B MOV A,E
28 4127 32 51 42 STA 4251H ;Save hundreds in memory.
29 412A 76 HLT ;Halt program execution.
30
31 412B END ;Assembly end.

Sample Data

Input Data : B9
H

Output Data : 0185
10

EXAMPLE PROGRAM - 20 : BCD to 7-Segment LED Code

Write an assembly language program to find the 7-segment LED code for a 2-digit BCD data, by using the look up table.

The BCD data is stored in 4200
H
. Store the 7-segment code in 4201

H
 and 4202

H
.

Problem Analysis

The 7-segment LED codes for decimal digit 0 to 9 are determined and stored in memory locations

from 5000
H
 to 5009

H
 respectively. The look-up table is created such that the low order address is same as

that of decimal digit. Hence, by this method the high order address is fixed (50) and the low order address

is the decimal digit itself.

In order to find the 7-segment code, the BCD data is split into lower nibble and upper nibble. The

code is determined by taking each nibble as low order address of the look up table.

Memory address Content

4200 B9

4250 85

4251 01
BCD data

Binary data

I
P
Q

Flowchart for example program 20

Start

Get the BCD Data in A-register
and Save it in B-register

¯

Logically AND the Content
of A-register with 0FH

¯

Save the Content of
A-register in L-register

¯

Move 50 to H-registerH

¯

Using the Content of HL Pairs as
Address, Load the 7-segment LED
Code for Unit’s Digit from Memory

to A-register

¯

Store the Content of
A-register in Memory

¯

Get the BCD Data in A-register
and Logically AND with F0H

¯

¯
Rotate the Content of A-register Four
Times Left and Save it in L-register

Using the Content of HL Pairs as
Address, Load the 7-segment LED
Code for Ten’s Digit from Memory

to A-register

¯

Store the Content of
A-register in Memory

¯

Stop
¯

Microprocessor (8085) And Its Applications 5. 57

Algorithm

1. Load the BCD data in A-register and save in B-register.

2. Logically AND A-register with 0F
H
 to mask upper nibble (ten's digit).

3. Move A-register to L-register and move 50
H
 to H-register.

4. Get the LED code for lower nibble (unit's digit) in A-register and store in memory.

5. Move the BCD data from B-register to A-register and mask the lower nibble (unit's digit).

6. Rotate the upper nibble to lower nibble position.

7. Move A-register to L-register.

8. Get the LED code for ten's digit in A-register and store in memory.

9. Stop.

Assembly language program

;PROGRAM TO FIND THE 7-SEGMENT LED CODE FOR A BCD DATA

ORG 4100H ;specify program starting address.

LDA 4200H ;Get BCD data in A and save in B.
MOV B,A
ANI 0FH ;Mask the upper nibble (ten’s digit).
MOV L,A ;Get memory address of LED code
MVI H,50H ;for unit’s digit, in HL pair.
MOV A,M ;Get LED code for unit’s digit in A
STA 4201H ;and store in memory.
MOV A,B ;Get the BCD data in A-register and
ANI F0H ;mask the lower nibble (unit’s digit).
RLC ;Rotate upper nibble to
RLC ;lower nibble position.
RLC
RLC
MOV L,A ;Get memory address of LED code

;for ten’s digit in HL pair.
MOV A,M ;Get LED code for ten’s digit in A
STA 4202H ;and store in memory.
HLT ;Halt program execution.

END ;Assembly end.

Assembler listing for example program 20

1 ;PROGRAM TO FIND THE 7-SEGMENT LED CODE FOR A BCD DATA
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Get BCD data in A and save in B.
6 4103 47 MOV B,A
7 4104 E6 0F ANI 0FH ;Mask the upper nibble (ten’s digit).
8 4106 6F MOV L,A ;Get memory address of LED code
9 4107 26 50 MVI H,50H ;for unit’s digit, in HL pair.
10 4109 7E MOV A,M ;Get LED code for unit’s digit in A
11 410A 32 01 42 STA 4201H ;and store in memory.
12 410D 78 MOV A,B ;Get the BCD data in A-register and
13 410E E6 F0 ANI F0H ;mask the lower nibble (unit’s digit).
14 4110 07 RLC ;Rotate upper nibble to
15 4111 07 RLC ;lower nibble position.
16 4112 07 RLC
17 4113 07 RLC
18 4114 6F MOV L,A ;Get memory address of LED code
19 ;for ten’s digit in HL pair.
20 4115 7E MOV A,M ;Get LED code for ten’s digit in A
21 4116 32 02 42 STA 4202H ;and store in memory.
22 4119 76 HLT ;Halt program execution.
23
24 411A END ;Assembly end.

5. 58 Chapter 5 Assembly Language Programming

Sample data 1 :

Loop-up table for Common cathode 7-segment LED

Sample data 2 :

Loop-up table for Common anode 7-segment LED

Note : For 7-segment display code please refer Chapter-9 section 9.4.

EXAMPLE PROGRAM - 21 : Binary to ASCII Conversion

Write an assembly language program to convert an 8-bit binary (2-digit hexa) to ASCII code. The binary data is stored

in 4200
H
 and store the ASCII code in 4201

H
 and 4202

H
.

Problem Analysis

Each Hexa digit (4-bit binary) is represented by an 8-bit ASCII. The Hexa digit 0 through 9 are

represented by 30
H
 to 39

H
 in ASCII. Hence, for Hexa 0 to 9, if we add 30

H
, we will get the corresponding

ASCII. The Hexa digit A through F are represented by 41
H
 to 46

H
 in ASCII. Hence, for Hexa digit A to F if

we add 37
H
 we will get the corresponding ASCII.

In the following algorithm the given 8-bit data is split into two nibbles. The ASCII code for each

nibble is found by calling a subroutine, which takes care of adding 30
H
 to the nibble if it is less than 0A

H
,

or adding 37
H
 if the nibble is greater than 09

H
.

Algorithm

1. Load the given data in A-register and move to B-register.

2. Mask the upper nibble of the binary (hexa) data in A-register.

3. Call subroutine ACODE to get ASCII code of the lower nibble and store in memory.

4. Move B-register to A-register and mask the lower nibble.

5. Rotate the upper nibble to lower nibble position.

6. Call subroutine ACODE to get the ASCII code of upper nibble and store in memory.

7. Stop.

Algorithm for subroutine code

1. Compare the content of A-register with 0A
H
.

2. If CF = 1, go to step 4. If CF = 0, go to next step.

3. Add 07
H
 to A-register.

4. Add 30
H
 to A-register.

5. Return to main program.

 Memory
Content

 address

5000 3F
5001 06
5002 5B
5003 4F
5004 66

 Memory
Content

 address

5005 6D
5006 7D
5007 07
5008 7F
5009 6F

Input Data : 45
10

Output Data : 6D
H

 66
H

Memory address Content

4200 45
4201 6D
4202 66

 Memory
Content

 address

5000 C0
5001 F9
5002 A4
5003 B0
5004 99

 Memory
Content

 address

5005 92
5006 82
5007 F8
5008 80
5009 90

Input Data : 45
10

Output Data : 92
H

 99
H

Memory address Content

4200 45
4201 92
4202 99

Microprocessor (8085) And Its Applications 5. 59

Start

Get the Hexa Data in A-register
and Save it in B-register

¯

Mask the Upper Nibble of the Data

¯

Call the Subroutine ACODE to
Get the ASCII Code for
Lower Nibble in A-register

¯

Rotate the Content of
A-register, 4 times Left

¯

Start

¯
Return to Main Program

¯
Compare the Content
of A-register with 0AH

¯
Check

Whether CF = 1

¬

Store the ASCII Code (A-register) in Memory

¯

Move the Hexa Data from B-register
to A-register and Mask the

Lower Nibble

¯

Call Subroutine ACODE to
Get the ASCII Code for
Upper Nibble in A-register

¯

Store the ASCII Code
(A-register) in Memory

¯
Stop®

¯
Add 07 to A-registerH

¯

¯
Add 30 to A-registerH

®

Yes

No

Assembly language program

;PROGRAM TO CONVERT 8-BIT BINARY TO ASCII CODE

ORG 4100H ;specify program starting address.

LDA 4200H ;Get binary data in A.
MOV B,A ;Save the binary data in B-register.
ANI 0FH ;Mask the upper nibble.
CALL ACODE ;Call subroutine to get ASCII code for
STA 4201H ;lower nibble in A and store in memory.
MOV A,B ;Get data in A-register.
ANI F0H ;Mask the lower nibble.
RLC ;Rotate upper nibble to
RLC ;lower nibble position.
RLC
RLC
CALL ACODE ;Call subroutine to get ASCII code for
STA 4202H ;upper nibble in A and store in memory.
HLT ;Halt program execution.

Flowchart for example program 21

Flowchart for subroutine ACODE

5. 60 Chapter 5 Assembly Language Programming

;SUBROUTINE ACODE
ACODE: CPI 0AH ;If the content of A is less than 0AH,

JC SKIP ;then add 30H to A otherwise
ADI 07H ;add 37H to A-register.

SKIP: ADI 30H
RET ;Return to main program.

END ;Assembly end.

Assembler listing for example program 21

1 ;PROGRAM TO CONVERT 8-BIT BINARY TO ASCII CODE
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 3A 00 42 LDA 4200H ;Get binary data in A.
6 4103 47 MOV B,A ;Save the binary data in B-register.
7 4104 E6 0F ANI 0FH ;Mask the upper nibble.
8 4106 CD 1A 41 CALL ACODE ;Call subroutine to get ASCII code for
9 4109 32 01 42 STA 4201H ;lower nibble in A and store in memory.
10 410C 78 MOV A,B ;Get data in A-register.
11 410D E6 F0 ANI F0H ;Mask the lower nibble.
12 410F 07 RLC ;Rotate upper nibble to
13 4110 07 RLC ;lower nibble position.
14 4111 07 RLC
15 4112 07 RLC
16 4113 CD 1A 41 CALL ACODE ;Call subroutine to get ASCII code for
17 4116 32 02 42 STA 4202H ;upper nibble in A and store in memory.
18 4119 76 HLT ;Halt program execution.
19
20
21 ;SUBROUTINE ACODE
22 411A
23 411A FE 09 ACODE: CPI 0AH ;If the content of A is less than 0AH,
24 411C DA 21 41 JC SKIP ;then add 30H to A otherwise
25 411F C6 07 ADI 07H ;add 37H to A-register.
26 4121 C6 30 SKIP: ADI 30H
27 4123 C9 RET ;Return to main program.
28
29 4124 END ;Assembly end.

Sample data

Input Data : E4
H

Output Data : 34 (ASCII code for 4)

45 (ASCII code for E)

EXAMPLE PROGRAM - 22 : ASCII to Binary Conversion

Write an assembly language program to convert an array of ASCII codes to corresponding binary (hexa) value. The

ASCII array is stored starting from 4200
H
. The first element of the array gives the number of elements in the array.

Problem Analysis

The hexa digit 0 through 9 are represented by 30
H
 to 39

H
 in ASCII. Hence, for ASCII code 30

H
 to 39

H

if we subtract 30
H
 then we will get the corresponding binary (hexa) value. The hexa digit A through F are

represented by 41
H
 to 46

H
 in ASCII. Hence for ASCII code 41

H
 to 46

H
 we have to subtract 37

H
 to get

corresponding binary (hexa) value. In the following algorithm, a subroutine has been written to subtract

either 30
H
 or 37

H
 from the given data.

Memory address Content

4200 E4
4201 34
4202 45

Microprocessor (8085) And Its Applications 5. 61

Flowchart for subroutine BIN

Flowchart for example program 22

Start

Load the Starting Address of ASCII Array (Source Array) in HL Pair

Check
Whether ZF = 0

¯

¯

¯

Using the Address Pointer (HL Pair) Load the Count Value in D-register

¯
Load the Starting Address of Destination Array (Hexa Array) in BC Pair

No

Yes

Stop

¯
Increment the HL Pair and Get One

ASCII Data in A-register

¯
Call Subroutine BIN to Convert

the ASCII Data to Hexa

¯
Store the Hexa Data (A-register) in Memory

¯
Increment the BC Pair and
Decrement the Count

®

¯
¯

¬

Start

¯
Return to Main Program

¯
Subtract 30 fromA-registerH

¯
Check

Whether CF = 1

¬

¯
Subtract 07 from

A-register
H

¯

®

Yes

No

¯
Compare the Content of
A-register with 0AH

5. 62 Chapter 5 Assembly Language Programming

Algorithm

1. Set HL pair as pointer for ASCII array.

2. Set D-register as count for number of data in the array.

3. Set BC pair as pointer for binary (hexa) array.

4. Increment HL pair and move a data of ASCII array to A-register.

5. Call subroutine BIN to find the binary (hexa) value.

6. The binary (hexa) value available in A-register is stored in memory.

7. Increment BC pair.

8. Decrement D-register. If ZF = 0, then go to step 4. If ZF = 1, then stop.

Algorithm for subroutine BIN

1. Subtract 30
H
 from A-register.

2. Compare the content of A-register with 0A
H
.

3. If CF = 1, go to step 5. If CF = 0, go to next step.

4. Subtract 07
H
 from A-register.

5. Return to main program.

Assembly language program

;PROGRAM TO CONVERT ASCII CODE TO BINARY VALUE

ORG 4100H ;specify program starting address.

LXI H,4200H ;Set pointer for ASCII array.
MOV D,M ;Set count for number of data.
LXI B,4300H ;Set pointer for binary(hexa) array.

LOOP: INX H
MOV A,M ;Get an ASCII data in A-register.
CALL BIN ;Call subroutine to get binary
STAX B ;value in A and store in memory.
INX B ;Increment the binary array pointer.
DCR D
JNZ LOOP ;Repeat conversion until count is zero.
HLT ;Halt program execution.

;SUBROUTINE BIN
BIN: SUI 30H ;Subtract 30H from the data.

CPI 0AH
RC ;If CF=1, Return to main program.
SUI 07H ;If data is greater than 0AH, then subtract
RET ;07H and return to main program.

END ;Assembly end.

Assembler listing for example program 22

1 ;PROGRAM TO CONVERT ASCII CODE TO BINARY VALUE
2
3 4100 ORG 4100H ;specify program starting address.
4
5 4100 21 00 42 LXI H,4200H ;Set pointer for ASCII array.
6 4103 56 MOV D,M ;Set count for number of data.
7 4104 01 00 43 LXI B,4300H ;Set pointer for binary(hexa) array.
8 4107 23 LOOP: INX H
9 4108 7E MOV A,M ;Get an ASCII data in A-register.
10 4109 CD 13 41 CALL BIN ;Call subroutine to get binary
11 410C 02 STAX B ;value in A and store in memory.
12 410D 03 INX B ;Increment the binary array pointer.
13 410E 15 DCR D
14 410F C2 07 41 JNZ LOOP ;Repeat conversion until count is zero.
15 4112 76 HLT ;Halt program execution.

Microprocessor (8085) And Its Applications 5. 63

16 4113
17
18 ;SUBROUTINE BIN
19
20 4113 D6 30 BIN: SUI 30H ;Subtract 30H from the data.
21 4115 FE 0A CPI 0AH
22 4117 D8 RC ;If CF = 1, Return to main program.
23 4118 D6 07 SUI 07H ;If data is greater than 0AH then subtract
24 411A C9 RET ;07H and return to main program.
25
26 411B END ;Assembly end.

Sample data

5.11 SUMMARY

� A macro is a group of instructions written within brackets and identified by a name.

� A subroutine is defined as a group of instructions written separately from the main program to perform a function that

occurs repeatedly in the main program.

� The instructions CALL addr16 and RET are used to implement a subroutine in 8085.

� Delay routines are subroutines used for maintaining the timings of various operations in a microprocessor.

� In a delay routine a count value is loaded in a register and it is decremented one by one until it becomes zero.

� List is a linked data structure used in programming techniques. The linked data structure will have a number of

components linked in a particular fashion.

� The different types of linked data structures are linear linked lists, linked lists with multiple pointers, circular linked

lists and trees.

� An array is a series of data of the same type stored in successive memory locations.

� Flowchart is graphical representation of the operation flow of the program.

� The microprocessor development system usually contains a microcomputer (PC), emulator and software tools like

editor, assembler, linker, locator, debugger and simulator.

� An editor is a software which, when run on a microcomputer, allows the user to type and modify the assembly

language program statements.

� An assembler is a software used to translate the assembly language program to machine language program.

� The assembler generates two output files. They are object file and list file.

� The different types of assembler are One-pass assembler, Two-pass assembler, Macro assembler, Cross assembler,

Resident assembler and Meta assembler.

� The assembler directive are the instructions to the assembler regarding the program being assembled.

� An assembler identifies syntax errors but it cannot identify the logical errors.

� In one-pass assemblers, the source code is processed only once.

� In two-pass assembler labels are assigned addresses in the first pass. In the second pass the source codes are

translated to machine codes.

Input Data :

Count : 07

ASCII Array: 31
42
35
46
43
39
38

Output Data :

Binary array= 01
0B
05
0F
0C
09
08

Memory
Contentaddress

 4200 07
 4201 31
 4202 42
 4203 35
 4204 46
 4205 43
 4206 39
 4207 38

Memory
 Contentaddress

 4300 01
 4301 0B
 4302 05
 4303 0F
 4304 0C
 4305 09
 4306 08

5. 64 Chapter 5 Assembly Language Programming

� A macro assembler is a type of two-pass assembler that allows the programmer to write the source code in macros.

� Cross assemblers are assemblers developed in high-level languages and they are machine independent.

� A resident assembler is an assembler that can be run on a machine, which can execute the source code. For example,

an 8085 assembler that is written in 8085 assembly language is a resident assembler.

� A meta assembler is an assembler that supports many different microprocessors.

� A linker is a program used to join together several object files into one large object file.

� A locator is a program used to assign the specific addresses to object codes which have to be loaded into memory.

� A debugger is a program which allows the user to troubleshoot or to identify and correct the errors in a program.

� The simulator is a program which can be run on the development system to simulate the operations of the newly

designed systems.

� An emulator is usually used to test and debug the hardware and software of a newly designed system.

5.12 SHORT QUESTIONS AND ANSWERS

5.1 What is meant by a program?

A program is a set of instructions written to perform a certain task.

5.2 What is assembler, interpreter and compiler?

(a) Assembler : It is a software that converts assembly language program codes to machine

language codes.

(b) Compiler : It is a software that converts the programs written in high level language to

machine language.

(c) Interpreter: It is similar to a compiler but it converts the instructions one by one.

5.3 What is the need for a assembler?

An assembler is used to translate assembly language programs to machine language programs

(i.e., in the executable format). Without the assembler it is very difficult to convert very large

assembly language programs to machine codes.

5.4 What are the advantages of an assembler?

The advantages of an assembler are:

1. The assembler translates mnemonics into binary code with speed and accuracy.

2. It allows the programmer to use variables in the program.

3. It is easy to alter the program and reassemble.

4. The assembler identifies the syntax errors.

 5. The assembler can reserve memory locations for data or result.

 6. The assembler provides list file for documentation.

5.5 What are assembler directives or pseudo instructions?

A assembler directives are the instructions to the assembler regarding the program being

assembled. They are also called pseudo instructions or pseudo opcodes.

The assembler directives will give information like start and end of a program, values of

variables used in the program, storage locations for input and output data, etc.

Microprocessor (8085) And Its Applications 5. 65

5.6 List the assembler directives of a typical 8085 assembler.

The assembler directives of a typical 8085 assembler are the following :

Assembler directive Function

 DB Define Byte. Used to define byte type variable.

 DW Define word. Used to define 16-bit variable.

 END Indicates the end of the program.

 ENDM End of macro. Indicates the end of a macro sequence.

 EQU Equate. Used to equate numeric value or constant to a variable.

 MACRO Defines the name, parameters and start of a macro.

 ORG Origin. Used to assign the starting address for a program.

5.7 What is a macro and when is it used?

A macro is a group of instructions written within brackets and identified by a name. A macro is

written when a repeated group of instructions is too short or not appropriate to be written as a

subroutine.

5.8 What is the meaning of expanding the macro?

While assembling a program, the assembler replaces the instructions represented by a macro in

the place where macro is called. This is called expanding the macro.

5.9 What is the disadvantage in a macro?

The disadvantage in a macro is that, if it is expanded or used a number of times in a program

then the program may occupy more memory.

5.10 What is a subroutine (or procedure)?

A subroutine (or procedure) is a group of instructions written separately from the main

program to perform a function that occurs repeatedly in the main program.

5.11 What are the advantages of a subroutine?

1. Modular programming : The various tasks in a program can be developed as separate modules and called in the main

 program.

2. Reduction in the amount of work and program development time.

3. Reduces memory requirement for program storage.

5.12. How is a subroutine implemented in 8085?

A subroutine is written as a separate program (Procedure) and stored in a separate memory location.

The subroutine program should be terminated by an RET instruction. It is called in the main

program using CALL addr16 instruction. The addr16 should be the starting address of the

subroutine program.

When the CALL instruction is executed, the processor saves the return address (address of next

instruction) in stack, load the subroutine address in Program Counter(PC) and starts executing the

subroutine. At the end of subroutine when the RET instruction is executed, the return address is

retrieved from the stack and loaded to the PC.

5. 66 Chapter 5 Assembly Language Programming

5.13. What is a Delay routine?

A delay routine is a subroutine used for maintaining the timings of various operations in

microprocessor.

5.14. Write a simple delay subroutine involving a single 8-bit register of 8085.

Delay subroutine

MVI C,d8 ;Load the count value (d8) in C-register.

LOOP: DCR C ;Decrement the count

NOP

NOP

JNZ LOOP ;If ZF = 0, go to LOOP.

RET ;Return to main program.

5.15. Write a simple delay subroutine involving a register pair of 8085.

Delay subroutine

LXI D,d16 ;Load the count value (d16) in DE register pair.

LOOP: DCX D ;Decrement the count.

MOV A,E ;Logically OR the content of

ORA D ;E-register with D-register.

JNZ LOOP ;If ZF = 0, go to LOOP.

RET ;Return to main program.

5.16. What is a list?

List is a linked data structure used in programming techniques. The linked data structure will have

a number of components linked in a particular fashion. Each component will consist of a string

data and a pointer next to the component.

5.17. What are the types of linked data structures?

The different types of linked data structures are linear linked lists, linked lists with multiple

pointers, circular linked lists and trees.

5.18. What is an array?

An array is a series of data of the same type stored in successive memory locations. Each value

in the array is referred to as an element of the array.

5.19 What is a flowchart?

A flowchart is graphical representation of the operation flow of a program. It is the graphical

(pictorial) form of an algorithm.

5.20 List the symbols used for drawing a flowchart.

The following are the symbols used for drawing flowchart:

Process Decision Input/Output Start/End

Subroutine

Connector Off-Page Connector Line

®
Arrow

Fig. Q5.20 : Symbols used in flowcharts.

Microprocessor (8085) And Its Applications 5. 67

5.21 What is a development system? What are its components?

A development system is a system used by the microprocessor-based system designer to design

and test the software and hardware aspects of a new system under development.

The components of a development system are a microcomputer with standard accessories, emulator

and program development tools like editor, assembler, linker, locator, debugger, simulator, etc.

5.22 Write a short note on assembly language program development tools.

The program development tools for an assembly language program are editor, assembler, linker,

locator, debugger and simulator. These tools are softwares that can be run on the development

system in order to write, assemble, debug, modify and test the assembly language programs.

5.23 What is an Editor?

An editor is a program which when run on a microcomputer system, allows the user to type and

modify the assembly language program statements. The main function of an editor is to help the

user to construct the assembly language program in the right format and save as a file.

5.24 What is a one-pass assembler?

A one-pass assembler is an assembler in which the source codes are processed only once. A one-

pass assembler is very fast and in one-pass assembler only backward reference may be used.

5.25 What is a two-pass assembler?

The two-pass assembler is an assembler in which the source codes are processed two times. In

the first pass, the assembler assigns addresses to all the labels and attach values to all the

variables used in the program. In the second pass it converts the source code into machine code.

5.26 What is the drawback of a one-pass assembler?

The drawback of a one-pass assembler is that the program cannot have forward reference,

because, a one-pass assembler issues an error message if it encounters a label or variable

that is defined at a later part of a program.

5.27 What is linker and locator?

(a) A linker is a program used to join together several object files into one large object file.

(b) A locator is a program used to assign specific addresses to the object codes to be loaded into

memory.

5.28 What is debugging?

The process of locating and correcting an error using a debugger is known as debugging.

5.29 What is a debugger?

A debugger is a software used to locate and troubleshoot errors in a program.

5.30 What is a simulator?

A simulator is a program which can be run on the development system to simulate the operations

of the newly designed system. Some operations that can be simulated are given below:

� Execute a program and display the result. � Single step execution of a program.

� Break-point execution of a program. � Display the content of register/memory.

5. 68 Chapter 5 Assembly Language Programming

5.31 What is an emulator?

An emulator is a system that can be used to test the hardware and software of a newly

developed microprocessor-based system.

5.32 What is the difference between an emulator and a simulator?

A simulator can be used to run and check the software of a newly developed microprocessor -

based system but an emulator can be used to run and check both the hardware and software

of a newly developed microprocessor-based system.

5.33 Write a subroutine to output the content of flag register to LED's connected to the port of

a 8085 microprocessor-based system.

Subroutine to display the content of flag register

PUSH PSW ;Push the A-register and flag register to stack.

POP B ;POP the top of stack to BC pair.

MOV A,C ;Get the content of flag register in A-register.

OUT PORT ;Output the content of A-register to PORT.

RET ;Return to main program.

Note : The A-register and Flag register are together called PSW (Program Status Word). In this, the

A-register is high order register and Flag register is low order register.

5.34 Write a simple program to find the smallest among the two data stored in memory.

(Assume that data are stored in 4200
H
 and 4201

H
. Store the result in 5000

H
)

LDA 4200H ;Get first data in A-register.

MOV B,A ;Save first data in B-register.

LDA 4201H ;Get second data in A-register.

CMP B ;Compare the two data.

JC AHEAD ;If CF = 1, go to AHEAD.

MOV A,B ;If CF = 0, move B-register to A-register.

AHEAD: STA 5000H ;Store the smallest data in memory

HLT ;Stop

5.35 Write a simple program to multiply an 8-bit data stored at 4200
H
 by 02

H
 and store the result at

4300
H
 and 4301

H
.

MVI B,00H ;Clear B-register.

XRA A ;Clear A-register and carry

LDA 4200H ;Get the data in A-register.

RAL ;Multiply the content of A by 02.

JNC AHEAD ;If CF = 0, go to AHEAD.

INR B ;If CF = 1, increment B-register.

AHEAD: STA 4300H ;Store the product in memory.

MOV A,B

STA 4301H ;Store the carry in memory.

HLT ;Halt program execution.

5.36 Write a simple program to divide an 8-bit data stored at 4200
H
 by 02

H
 and store the result at

4300
H
 and 4301

H
.

MVI B,00H ;Clear B-register.

XRA A ;Clear A-register and carry

LDA 4200H ;Get the data in A-register.

Microprocessor (8085) And Its Applications 5. 69

RAR ;Divide the content of A by 02.

JNC AHEAD ;If CF = 0, go to AHEAD.

INR B ;If CF = 1, increment B-register.

AHEAD: STA 4300H ;Store the quotient in memory.

MOV A,B

STA 4301H ;Store the remainder in memory.

HLT ;Halt program execution.

5.37 Write a simple program to split a hexa data into two nibbles and store in memory.

LXI H,4200H ;Set pointer for data array.

MOV B,M ;Get the data in B-register.

MOV A,B ;Copy the data to A-register.

ANI 0FH ;Mask the upper nibble.

INX H

MOV M,A ;Store the lower nibble in memory.

MOV A,B ;Get the data in A-register

ANI F0H ;Mask the lower nibble.

RRC ;Bring the upper nibble to lower nibble position.

RRC

RRC

RRC

INX H

MOV M,A ;Store the upper nibble in memory.

HLT ;Halt program execution.

5.38 Explain the mathematical functions performed by the following instructions.

MVI A,07H

RLC

MOV B,A

RLC

RLC

ADD B

The operations performed by each of the above given mathematical instruction are as follows:

1. An 8-bit data 07
H
 is moved to A-register.

2. The content of A-register is multiplied by 02.

3. The content of A-register (07 × 02 = 0E
H
) is copied to B-register.

4. The content of A-register is multiplied by 02.

5. The content of A-register is multiplied by 02.

6. The content of B-register is added to B-register.

The result of the above operations is that the content of A-register is multiplied by 0A
H
.

Therefore, after executing the above instructions, the content of A-register will be 46
H
.

5. 70 Chapter 5 Assembly Language Programming

5.39 Write a subroutine to clear a flag register and an accumulator.

Subroutine to clear flag register

LXI SP,4200H ;Initialize stack.

LXI B,0000H ;Clear BC register pair.

PUSH B ;Push the content of BC pair to stack.

POP PSW ;Pop the top of stack to A-register and flag register (PSW).

RET ;Return to main program.

Note : The A-register and Flag register are together called PSW (Program Status Word). The

A-register is a high order register and the flag register is a low order register.

5.40 Write a subroutine program to exchange the content of BC pair and DE pair?

Subroutine to exchange BC pair and DE pair

LXI SP,4200H ;Initialize stack.

PUSH B ;Store the content of BC pair in stack.

PUSH D ;Store the content of DE pair in stack.

POP B ;Move the content of DE pair stored in stack to BC pair.

POP D ;Move the content of BC pair stored in stack to DE pair.

RET ;Return to main program.

 CHAPTER 6

PERIPHERALERIPHERALERIPHERALERIPHERALERIPHERAL DEVICESEVICESEVICESEVICESEVICES ANDNDNDNDND INTERFNTERFNTERFNTERFNTERFACINGACINGACINGACINGACING

6.1 PROGRAMMABLE PERIPHERAL DEVICES

Programmable peripheral devices are designed to perform various input/output functions

and specific routine activities. Every programmable device will have one or more control registers.

The programmable devices can be set up to perform specific functions by writing control words

into the control registers. The control word is an instruction which informs the peripheral about

the various functions it has to perform. The format of the control word will be specified by the

manufacturer of the peripheral devices.

INTEL has developed a number of peripheral devices that can be used with 8085/8086/8088-

based systems. Some of the peripheral devices developed by INTEL for 8085/8086/8088-based system

are Parallel peripheral interface-8255, Serial communication interface-8251, Keyboard/Display controller-

8279, Programmable Timer-8253/8254 and DMA controllers-8237 and 8257. A brief discussion about

these devices and their interfacing with 8085 processor is presented in this chapter.

Parallel peripheral interface-8255 is used to interface a slow IO device to the fast processor

and to achieve an efficient data transfer between them. The USART is used to provide serial

communication between the processor and another system. The 8279 is used to relieve the processor

from time consuming routine activities like keyboard scanning and display refreshing. Programmable

timers are used to maintain various timings and to initiate time-based activities. DMA controllers are

used to achieve very fast data transfer between memory and IO devices by bypassing the processor.

6.2 PARALLEL DATA COMMUNICATION INTERFACE

In microprocessor-based systems, digital information can be transmitted from one system

to another system either by parallel or serial data transfer scheme.

In parallel data transfer, a group of bits(for eg., 8 bits) is transmitted from one device to

another at any one time. To achieve parallel data transfer scheme, a group of data lines will be

connecting the processor and peripheral devices. Normally in microprocessor-based systems the

parallel data transfer schemes are adopted to transfer data between various devices inside the system.

Basically the microprocessor-based system has been fabricated on a PCB (Printed Circuit

Board) in which a bus is formed with the required number of data lines and the bus connects all

the devices in the system. The data transmitted over the bus in a PCB are highly reliable. In a well

designed board, there will not be any loss of data and the data will not be corrupted.

When data has to be transmitted over longer distances (i.e., greater than 0.5m), we require

high current signals to drive the data for longer distance. In such cases data is transmitted bit by bit

through a single data line.

�

6. 2 Chapter 6 Peripheral Devices And Interfacing

6.2.1 Parallel Data Transfer Schemes

Data transfer schemes refer to the method of data transfer between the processor and

peripheral devices. In a typical microcomputer, data transfer takes place between any two devices:

microprocessor and memory, microprocessor and IO devices, or memory and IO devices. For

effective data transfer between these devices, the timing parameters of the devices should be

matched. But most of the devices have incompatible timings. For example, an IO device may be

slower than the processor due to which it cannot send data to the processor at the expected time.

Semiconductor memories are available with compatible timings. Moreover, slow memories

can be interfaced using additional hardware to introduce wait states in machine cycles. The

microprocessor system designer often faces difficulties while interfacing IO devices and magnetic

memories (like floppy or hard disk) to achieve efficient data transfer to or from the microprocessor.

Several data transfer schemes have been developed to solve the interfacing problems with IO

devices.

The data transfer schemes have been broadly classified into the following two categories :

1. Programmed data transfer.

2. Direct memory access (DMA) data transfer.

In programmed data transfer, a memory resident routine (subroutine) requests the device

for data transfer to or from one of the processor register.

Programmed data transfer scheme is used when relatively small amount of data is to be

transferred. In these schemes, usually one byte or word of data is transferred at a time. Examples

of devices using programmed data transfer are ADC, DAC, Hex-keyboard, 7-segment LEDs, etc.

Programmed data transfer scheme can be further classified into the following three types :

a) Synchronous data transfer scheme.

b) Asynchronous data transfer scheme.

c) Interrupt driven data transfer scheme.

In DMA data transfer, the processor is forced to HOLD state (high impedance state) by

an IO device until the data transfer between the device and the memory is complete. The processor

does not execute any instruction during the HOLD period.

The DMA data transfer is used for large block of data transfer between IO device and

memory. Typical examples of devices using DMA are CRT controller, floppy disk, hard disk, high

speed line printer, etc.

The different types of DMA data transfer schemes are as follows :

a) Cycle stealing DMA or Single transfer mode DMA.

b) Block or Burst mode DMA.

c) Demand transfer mode DMA.

Figure 6.1 shows the various types of data transfer schemes. All the data transfer schemes

discussed above requires both software and hardware for their implementation. Within a microcomputer,

more than one scheme can be used for interfacing different IO devices. However, some of these

schemes require specific hardware features in the microprocessor for implementing the scheme.

Microprocessor (8085) And Its Applications 6. 3

Synchronous Data Transfer Scheme

The synchronous data transfer scheme is the simplest of all data transfer schemes. In this

scheme the processor does not check the readiness of the device. The IO device or peripheral

should have matched timing parameters. Whenever data is to be obtained from the device or

transferred to the device, the user program can issue a suitable instruction for the device. At the

end of the execution of this instruction, the transfer would have been completed.

The synchronous data transfer scheme can also be implemented with a small delay (if the

delay is tolerable) after the request has been made. The sequence of operations for synchronous

data transfer scheme is shown in Fig. 6.2. The mode-0 input/output in 8255 is an example of

synchronous data transfer.

® ®

Programmed Data Transfer Direct Memory Access (DMA)

Synchronous

Interrupt Driven

®

®

® ®

Cycle
Stealing
DMA

Block
Transfer Mode

DMA

Demand Transfer
Mode DMA

®

® ®
Polled Interrupts Vectored Interrupts

Software
Polling

Hardware
Polling

Fixed
Priority

Variable
Priority

®®®®

Data Transfer

Fig. 6.1 : Types of data transfer schemes.

®

Asynchronous

Request Device
to Get Ready

®

PerformAny Other
Task Until the Device

is Ready

®

Execute Input/Output
Instruction

®

®

Fig. 6.2 : Synchronous data
transfer scheme.

Request Device to
Get Ready

®

®

Execute Input/Output
Instruction

®

Fig. 6.3 : Asynchronous data transfer scheme.

Wait (Execute a Delay
Routine) or Perform
Another Task

®

Yes

NoCheck Whether
the Device is
Ready

®

6. 4 Chapter 6 Peripheral Devices And Interfacing

Request Device
to Get Ready

®

Fetch Next Instruction
and Execute

®

Call ISR Associated
With This Interrupt

®

®

Fig. a : Main program
execution sequence.

Check for
Interrupt

®

®
No

®

Save Processor Status

®

Execute Data Transfer
Instructions

®

®

®

Fig. b : ISR execution
sequence.

Start ISR

Restore Processor Status®

Enable Interrupt System

Return to Main Program

Fig. 6.4 : Interrupt driven data transfer scheme.

Yes

Asynchronous Data Transfer Scheme

The asynchronous data transfer scheme is employed when the speed of the processor and

IO device does not match. In this scheme the processor sends a request to the device for read/

write operation. Then the processor keeps on polling the status of the device. Once the device is

ready, the processor executes a data transfer instruction to complete the process. To implement

this scheme, the device should provide a signal which may be tested by the processor to ascertain

whether it is ready or not.

The sequence of operations for asynchronous data transfer is shown in Fig. 6.3. The mode-1 and

mode-2 handshake data transfer of 8255 without interrupt is an example of asynchronous data transfer.

Interrupt Driven Data Transfer Scheme

The interrupt driven data transfer scheme is the best method of data transfer for efficient

utilization of processor time. In this scheme, the processor first initiates the IO device for data

transfer. After initiating the device, the processor will continue the execution of instructions in the

program. Also, at the end of every instruction the processor will check for a valid interrupt signal.

If there is no interrupt then the processor will continue the execution.

Note : The user/system designer need not write any subroutine/procedure to check

for an interrupt. The logic of checking interrupt signals while executing each instruction

is incorporated in the processor itself by the manufacturer of the processor.

When the IO device is ready, it will

interrupt the processor. On receiving an interrupt

signal the processor will complete the current

instruction execution and save the processor

status in stack. Then the processor calls an

Interrupt Service Routine (ISR) to service the

interrupting device. At the end of ISR, the

processor status is retrieved from the stack and

the processor starts executing its main program.

The sequence of operations for an interrupt driven

data transfer scheme is shown in Fig. 6.4.

6.2.2 INTEL 8212

INTEL 8212 is a 24-pin IO device with

eight number of D-type latches, each followed

by a tristate buffer. It has eight input lines (DI
1
 to

DI
8
) and eight output lines (DO

1
 to DO

8
). The

8212 can be used either as a latch or as a tristate buffer and the function is determined by pin MD

(mode). The INTEL 8212 can be used either as input port or output port. When 8212 is used as output

port, the MD pin is tied high and it will work as a latch. When 8212 is used as input port, the MD pin is

tied low and it will work as a tristate buffer. In a system the 8212 is permanently connected to work

either as input or as output and the function cannot be reversed. It has two device select signals DS
1

(active low) and DS
2
 (active high) and three control pins CLR (clear), STB (strobe) and INT (Interrupt).

The pin description of 8212 and its internal block diagram are shown in Fig. 6.5.

Microprocessor (8085) And Its Applications 6. 5

24

23

22

21

20

19

18

17

16

15

14

13

VCC

8212

1

2

3

4

5

6

7

8

9

10

11

12

DS1

MD

DI3

GND

DI1

DO1

®

®

®®

®

DO2

STB

DS2

®

®
INT

®
®

®

®

®

®

®

DI2

DO3

DI4
DO4

®

®

®

®

®
®

DI8

DI7

DI6

DI5

DO8

DO7

DO6

DO5

CLR

®

®

®

®

Fig. 6.5 : 8212 pin description and internal (functional) block diagram.

®
®
®
®
® ® ®

Eight
D-Flip
Flops

Eight
Buffers

Control
Logic

®

®

®

MD

STB

DS2

DS1

CLR

VCC

GND

INT

DI -DI1 8 DO -DO1 8

Pin Description

DI Data In

DO Data Out

DS Device Select

MD Mode

STB Strobe

INT Interrupt

CLR Clear

Note : In microprocessor-based systems, the input port should be a tristate buffer and the output

port should be a latch.

The INTEL 8212 can be used for simple data transfer or data transfer with handshake

signals. The strobe and interrupt signals are used for handshake data transfer. For simple data

transfer, the STB is permanently tied high and INT is not connected (not used) in the system.

The output logic of 8212 is shown in simplified form in the Fig. 6.6. The input lines DI
1
 to

DI
8
 are connected to data bus of microprocessor system and the output lines DO

1
 to DO

8
 are

connected to the output device. In the output mode, MD, STB and CLR are high. When MD is

high, the output of gate G
2
 is high, which enables the tristate buffer. The D-flip-flop functions as

a latch. Now, the output of gate G
4
 is low, which makes the STB signal non-functional. When the

the device is selected by chip select circuit by making DS
1
 = 0 and DS

2
 = 1, the output signals of

gates G
1
, G

3
 and G

5
 goes high and the clock signal of the flip-flop goes high. The data on pins DI

flow to the output of the flip-flops and are latched when the clock pulse goes low.

The INTEL 8212 functions as an input device when the mode signal is low. Figure 6.7

shows the simplified logic of the 8212 in the input mode. The input lines DI
1
 to DI

8
 are connected

to input device and the output lines DO
1
 to DO

8
 are connected to data bus of microprocessor

system. When the mode pin is low, all tristate buffers are disabled until the device is selected.

However, when the STB is high, the output of G
4
 and G

5
 goes high and external data can be

loaded into the flip-flops even if the 8212 is not selected. When the microprocessor selects the

8212, the tristate buffers are enabled and the data flow from output of D-latch (Q) to the data bus.

DS1

Fig. 6.6 : 8212 Output control logic.

®

®

D

Q

R

DO

G4

G3

G1 G2

G5

DI
Input From
Data Bus

CLR
(+5-V)

DS2

MD
(+5-V)

STB
(+5-V)

To output device

6. 6 Chapter 6 Peripheral Devices And Interfacing

6.2.3 Programmable IO Port and Timer - INTEL 8155/8156

The INTEL 8155 includes 256 bytes of RAM memory, three IO ports and a timer. The

8156 is identical with the 8155 except that the 8156 requires active high Chip Enable (CE).

Functionally 8155 can be viewed as two independent chips, one having static RAM and the

other having IO ports and a timer. The IO section of 8155 includes 2 numbers of 8-bit parallel IO

ports called port-A and port-B, one number of 6-bit port called port-C and a programmable timer.

All the ports can be configured as simple input or output ports. Ports A and B can be

programmed in the handshake mode. In the handshake mode, each port uses three signals as

handshake signals and the port-C pins are used for handshake signals. When some of the port-C

pins are used for handshake signals, the remaining pins can be used as simple input or output lines.

The timer has a 14-bit counter which can be programmed to work in four operating modes.

The internal block diagram of 8155 and its internal decoding logic are shown in Fig. 6.8.

The control logic of the 8155 is specifically designed to eliminate the need for external

demultiplexing of AD
0
 - AD

7
 and generating separate

control signals for memory and IO. The ALE, IO/M,

RD and WR signals from the 8085 can be connected

directly to 8155.

The ports and the timer of 8155 are IO-mapped

in the system. Hence an 8-bit address is used to select

the internal devices. Actually the internal devices require

a 3-bit address to select any one of the five internal

devices as shown in Table-6.1. The remaining address

lines are decoded to produce the chip select signal.

(For interfacing of 8155 with 8085, please refer to

Chapter-3, Design Example-6.)

Internal device Internal address

A
2

A
1

A
0

Control register/ 0 0 0

Status register

Port-A 0 0 1

Port-B 0 1 0

Port-C 0 1 1

LSB timer 1 0 0

MSB timer 1 0 1

TABLE - 6.1 : INTERNAL ADDRESS

OF 8155

DS1

Fig. 6.7 : 8212 Input control logic.

®

®

D

Q

R

DO

G4

G3

G1 G2

G5

DI
From Input
Device

CLR
(+5-V)

DS2

MD
(GND or
0-Volt)

STB
(+5-V)

To Data Bus
of Processor

C

Microprocessor (8085) And Its Applications 6. 7

Ports are programmed to work as input or output port in simple or handshake modes. The

timer is also programmed to work in any one of the four operating modes. The programming of

the ports and the timer is accomplished by writing a control word in the control register. The

control word is framed in the specified format as shown in Fig. 6.9 and then loaded in the control

register. Each bit of control word defines a function as given in Table-6.2.

256 ´ 8
Static
RAM

Port-A

®®
PA - PA0 7

Port-B

Port-C

®®
PB - PB0 7

8

8

®®
PC - PC0 5

6

Timer

®®AD - AD0 7

8

®

®

®

®

®

®

IO/M

CE

ALE

RD

WR

TIMER CLK

TIMER OUT

INTEL
8155

® ®

®

V (+5-V)CC

GND(0-V)

®

®

®

®

®

®

®

To Select
Timer(MSB)

To Select
Timer(LSB)

To Select
Port-C

To Select
Port-B

To Select
Port-A

To Select
Control
Register

®
®
®

A0

A1

A2

5

4

3

2

1

0

Internal
Decoder

Internal
Latch

®

®®
8

AD - AD0 7

Fig. b : Internal block diagram of 8155. Fig. c : Internal decoding logic of 8155.

Fig. 6.8 : Internal block diagram of 8155 and its internal decoding logic.

®RESET

CEALE

40

39

38

37

36

35

34

33

32

31

30

29

VCC

INTEL
8155

1

2

3

4

5

6

7

8

9

10

11

12

PC3

IO/M

AD0

TIMER CLK

RESET

®

®

®ALE

®

®

®

PC2

13AD1

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®®

®®

®
®®

®

®

®®®®®®®®®®®®®®®®® ®®
®®

®®

®®

®®

®®

®®

®®

®®

®®

®®

®®

®®®®

®®

®®

®®

®®

®®PC4

PC5

TIMER OUT

CE

RD

WR

AD2

AD3

AD4

AD5

AD6

AD7

GND

PC1

PC0

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

Fig. a : Pin description of 8155.

Pin Description

AD - AD Address/Data

PA - PA Port-A IO Pins

PB - PB Port-B IO Pins

PC - PC Port-C IO Pins

IO/M IO or Memory Select

ALE Address Latch Enable

RD Read Control

WR Write Control

CE Chip Enable

TIMER CLK Timer Clock

TIMER OUT Timer Output

RESET Chip Reset Input

0 7

0 7

0 7

0 5

6. 8 Chapter 6 Peripheral Devices And Interfacing

TABLE - 6.2 : FUNCTIONS DEFINED BY CONTROL WORD

Bit Function defined

D
0

Determine input or output function of port-A.

D
1

Determine input or output function of port-B.

D
2
 and D

3
Determine the functions of port-C.

D
4
 and D

5
Used to enable or disable the internal flip-flop of 8155. If this internal flip-flop

is enabled, then it generates an interrupt signal during handshake mode of IO.

D
6
 and D

7
Used for timer control.

B B B B B B B B7 6 5 4 3 2 1 0

Port-A

Port-C Pin Assignments
(ALT - Alternations)

®
®Port-B

I
P
Q 0 = Input

1 = Output

0 0 ALT1

1 1 ALT2

0 1 ALT3

1 0 ALT4

¯¯

®

®

IEA = Interrupt Enable of Port-A

IEB = Interrupt Enable of Port-B

I
P
Q 1 = Enable

0 = Disable

¯ ¯
0 0 NOP (No Effect on Timer)

0 1 Stop (Stop Counting if Timer is Running, Otherwise no Effect on Timer).

1 0 Stop After Terminal Count.

1 1 Start (Start Timer if it is not Running).

ALT D D PC PC PC PC PC PC

ALT1 0 0 I I I I I I

ALT2 1 1 O O O O O O

ALT3 0 1 O O O STB BF INTR

ALT4 1 0 STB BF INTR STB BF INTR

3 2 5 4 3 2 1 0

A A A

B B B A A A

I = Input STB = Strobe

O = Output INTR = Interrupt Request

BF = Buffer Full

(The Subscript B denotes Port-B and the Subscript A denotes Port-A Signal).

Fig. 6.9 : Control word format of 8155.

Microprocessor (8085) And Its Applications 6. 9

The timer section of the 8155 has two 8-bit registers as shown in Fig. 6.10 and in this

register a 14-bit count value and a two bit mode code should be loaded. The timer requires an input

clock signal and for every clock pulse, the timer decrements the count value by one. An appropriate

control word starts the counter which decrements the count at each clock pulse. The timer output

will vary according to the mode specified. The timer can be stopped either during counting or at

the end of the count. In addition, the actual count at a given moment can be obtained by reading

the status register.

The timer output normally remains high (while the timer is not running). When the timer

starts running the output changes according to the mode of operation. The timer output for different

operating modes are shown in Fig. 6.11.

M M T T T T T T2 1 13 12 11 10 9 8 T T T T T T T T7 6 5 4 3 2 1 0

¯ ¯
0 0 Mode - 0 ; Single Square Wave Mode

0 1 Mode - 1 ; Square Wave Mode

1 0 Mode - 2 ; Single Pulse upon Terminal Count

1 1 Mode - 3 ; Pulse at Every Terminal Count

T - T = 14-bit Count Value

M and M = 2-bit Mode Code

0 13

1 2

Fig. 6.10 : Timer count value format.

¬ ¬N

2
¬ ¬N

2

End

End End

End

End End EndStart

Start

Start

Start

N

2

N

2

N

N

2

N N N

Mode-0

Mode-1

Mode-2

Mode-3

Fig. 6.11 : Output waveforms of the timer in 8155.

N

2

Note : N = Count value in timer register.

6. 10 Chapter 6 Peripheral Devices And Interfacing

TimerX INTEB BFB INTRB INTEA BFA INTRA

B7 B6 B5 B4 B3 B2 B1 B0

¯
Port-A
Interrupt Request

¯
Port-A
Buffer Full

¯
Port-A
Interrupt Enabled¯

Port-B
Interrupt Request¯

Port-B
Buffer Full¯

Port-B
Interrupt Enabled¯

Timer Status

¯
Undefined

(This bit is latched when terminal count is reached and is reset
to upon reading of the status register and by hardware reset.)

high
low

Fig. 6.12 : Format of an 8155 status register.

Mode-0 : In this mode the timer output remains high for half the count and goes low for

the remaining count, thus providing a single square wave.

Mode-1 : In this mode, the timer output is a square wave. The initial timer count is

automatically reloaded at the end of each count. The timer output remains

high for half the count and remains low for the other count.

Mode-2 : In this mode a single clock pulse is provided at the end of the count. The width

of the pulse is equal to the time period of the input clock pulse.

Mode-3 : This is similar to mode-2, except that the initial count is reloaded to provide a

continuous waveform.

The INTEL 8155 has a status register which can be read by the processor by using the

control register address. The control register and the status register have the same port address and

they are differentiated by only RD and WR signals. (The processor can only write to control

register and it can only read the status register.)

The processor can read the status register to check the status of the ports or the timer. The

status register format is shown in Fig. 6.12.

The 8155 ports can be configured as simple IO ports or handshake IO ports. In simple

IO port no handshake signals are exchanged between the IO port and the IO device.

When a port is configured as a simple input port then the input device will load the data into

the port without checking whether the previous data has been read by the processor or not.

When a port is configured as a simple output port, then the processor loads the data to the

output port without checking whether the previous data is accepted by the output device or not.

Microprocessor (8085) And Its Applications 6. 11

ALE

IO/M

RST 7.5

8085

AD - AD0 7

RD

8155
Input
Device

®
®
®

¬

¬

®

INTRA

STBA

BFA
PC1

PC2

PC0

PA - PA0 7

Fig. 6.13 : Port-A of 8155 as handshake input port.

When a port is programmed as a handshake input port then handshake signals are used to

transfer the data from input device to the port. When the port receives a data, it interrupts the

processor for executing a subroutine for reading the data from the port and storing in appropriate

place. Alternatively, the processor can check the status register of 8155 to know any data is

available on the port, if a data is available on the port then the processor executes a subroutine to

read the data and store it in appropriate place.

When a port is programmed as a handshake output port then the handshake signals are used

to transfer the data from the port to output device. The processor first loads a data to the port.

When the data is accepted by the output device the port will send an interrupt signal to the processor.

Now the processor can load the next data to the port. Alternatively the processor can check the

status register of 8155 before loading the next data.

8155 Handshake Input Port

The signals used for data transfer between input device and microprocessor using port-A

of 8155 as handshake input port are shown in Fig. 6.13.

1. The input device checks the Buffer Full (BF
A
) signal. If BF

A
 is low then it places the data on port lines and asserts strobe

(STB
A
) low, to inform the port.

2. At the falling edge of STB
A
, the BF signal is asserted high to inform the input device that the port is full and it has to wait.

3. The input device asserts STB
A
 signal as high after a predefined time and when it is asserted high, the 8155 generates

an interrupt signal to the processor (INTR
A
).

4. On receiving an interrupt request the processor executes a subroutine to read the data from the port.

5. The data is read by the processor using RD signal. At the rising edge of RD the BF
A
 and INTR

A
 signal are asserted low,

and now the input device can send the next data to the port.

Note : Instead of interrupting the processor, the system can be designed to have data

transfer by polling technique. In this method the processor polls the status register

at regular intervals.

8155 Handshake Output Port

The signals used for data transfer between the output device and microprocessor using

port-A of 8155 as handshake output port are shown in Fig. 6.14.

1. When the port is empty the processor writes a byte into the port.

2. For writing a data to the port, the processor asserts WR signal as low and then high. At the falling edge of WR the INTR
A

is reset (asserted low) and at the rising edge of WR the BF
A
 is asserted high.

6. 12 Chapter 6 Peripheral Devices And Interfacing

ALE

IO/M

RST 7.5

8085

AD - AD0 7

WR

8155
Output
Device

®
®
®

¬

¬

®

INTRA

STBA

BFA
PC1

PC2

PC0

PA - PA0 7

Fig. 6.14 : Port-A of 8155 as handshake output port.

3. The BF
A
 signal informs the output device that the data is ready for it. If the output device accepts the data byte, then

it asserts STB
A
 low and then high.

4. When strobe is low, the BF
A
 is reset to low and at the rising edge of the strobe the INTR

A
 goes high to interrupt the processor.

5. When the processor is interrupted, it executes an interrupt service routine to load the next data in the output port.

Note : The data transfer between the port and the processor can also be achieved by status check

technique instead of using interrupt.

6.2.4 Programmable Peripheral Interface - INTEL 8255

The INTEL 8255 is a device used to implement parallel data transfer between processor and

slow peripheral devices like ADC, DAC, keyboard, 7-segment display, LCD, etc.

The 8255 has three ports: Port-A, Port-B and Port-C. The ports A and B are 8-bit parallel

ports. Port-A can be programmed to work in any one of the three operating modes as input or

output port. The three operating modes are :

Mode-0 → Simple IO port.

Mode-1 → Handshake IO port.

Mode-2 → Bidirectional IO port.

Port-B can be programmed to work either in mode-0 or mode-1 as input or output port.

Port-C pins (8 pins) have different assignments depending on the mode of ports A and B. If ports A and

B are programmed in mode-0, then port-C can perform any one of the following function :

1. As 8-bit parallel port in mode-0 for input or output.

2. As two numbers of 4-bit parallel port in mode-0 for input or output.

3. The individual pins of port-C can be set or reset for various control applications.

If port-A is programmed in mode-1/mode-2 and port-2 is programmed in mode-1 then some

of the pins of port-C are used for handshake signals and the remaining pins can be used as input/

output lines or individually set/reset for control applications.

IO Modes of 8255

Mode-0 : In this mode, all the three ports can be programmed either as input or output port. In

mode-0, the outputs are latched and the inputs are not latched. The ports do not have

handshake or interrupt capability. The ports in mode-0 can be used to interface DIP

switches, Hexa-keypad, LEDs and 7-segment LEDs to the processor.

Microprocessor (8085) And Its Applications 6. 13

Fig. 6.15 : Pin description of 8255.

Pin Description

D - D Data Lines

RESET Reset Input

CS Chip Select

RD Read Control

WR Write Control

A , A Internal Address

PA - PA Port-A Pins

PB - PB Port-B Pins

PC - PC Port-C Pins

V +5-V

V 0-V (GND)

0 7

0 1

7 0

7 0

7 0

CC

SS

8255A

®®
PA - PA7 0

8

®®
D - D0 7

8

®

®

®

®
®®

PC - PC7 4

4

®

®

®

®

®®
PC - PC3 0

4

®®
PB - PB7 0

8

RD

WR

A1

A0

RESET

CS

(+5-V)VCC

(0-V)VSS

40

39

38

37

36

35

34

33

32

31

30

29

PA4

8255A

1

2

3

4

5

6

7

8

9

10

11

12

PA3

®

®

®

®

PA5

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®®

®®

®
®

®

®

®®®®®®®®®®®®®®®®® ®®

®®

®®

®®

®®

®®

®®

®®

®®

®®

®®
®®®®

®®

®®

®®PA2

RD

PA6

PA7

D0

D1

D2

D3

D4

D5

D6

D7

VCC

PB7

PB6

PB5

PB4

PB3

RESET

PA1

PA0

CS

VSS

A1

A0

PC7

PC6

PC5

PC4

PC0

PC1

PC2

PC3

PB0

PB1

PB2

®
®

®®

®
®

®

®

WR

®
®

®

Mode-1 : In this mode, only ports A and B can be programmed either as input or output port.

In mode-1, handshake signals are exchanged between the processor and the peripherals

prior to data transfer. The port-C pins are used for handshake signals. Input and

output data are latched. Interrupt driven data transfer scheme is possible.

Mode-2 : In this mode the port will be a bidirectional port (i.e., the processor can perform both

read and write operations with an IO device connected to a port in mode-2).Only

port-A can be programmed to work in mode-2. Five pins of port-C are used for

handshake signals. This mode is used primarily in applications such as data transfer

between two computers or floppy disk controller interface.

Pins, Signals and Internal Block Diagram of 8255

The pin description of 8255 is shown in Fig. 6.15. It has 40 pins and requires a single +5-V

supply. The internal block diagram of 8255 is shown in Fig. 6.16.

The ports are grouped as Group A and Group B. The group A has port-A, port-C upper and

its control circuit. The group B comprises of port-B, port-C lower and its control circuit. The

read/write control logic requires six control signals. These signals are given below :

RD (Read) : This control signal enables the read operation. When this signal is low, the

microprocessor reads data from a selected IO port of the 8255A.

WR (Write) : This control signal enables the write operation. When this signal goes

low, the microprocessor writes into a selected IO port or the control

register.

6. 14 Chapter 6 Peripheral Devices And Interfacing

Read
Write
Control
Logic

®
®
®
®
®
®

RD

A1

A0

WR

RESET

CS

Data
Bus
Buffer

Group A
Port-C
Upper
(4)

Group B
Port-C
Lower
(4)

Group B
Port-B
(8)

®

® Group A
Control

¯

¯

Group B
Control

Group A
Port-A
(8) ¬

¬

¬

¬

PA - PA7 0

PC - PC7 4

PC - PC3 0

PB - PB7 0

D - D7 0 8-Bit Internal
Data Bus

I
P
Q

®

¬

+ 5-V

GND
Power Supply

Fig. 6.16 : Internal block diagram of 8255.

RESET : This is an active high signal. It clears the control register and set all

ports in the input mode.

 CS, A
0
 and A

1
: These are device select signals. The address

lines A
0
 and A

1
 of 8255 can be connected to

any two address lines of the processor to

provide internal addresses.The A
0
 and A

1

selects any one of the 4 internal devices as

shown in Table-6.3. The 8255 will remain

in high impedance state if the signal input

to CS is high and the device can be brought

to normal logic by making the signal input to CS as logic low.

Interfacing of 8255 with 8085 Processor

A simple schematic for interfacing the 8255 with 8085 processor is shown in Fig. 6.17.

The 8255 can be either memory-mapped or IO-mapped in the system. In the schematic shown

in Fig. 6.17, the 8255 is IO-mapped in the system. The chip select signals for IO-mapped

devices are generated by using a 3-to-8 decoder. The address lines A
4
, A

5
 and A

6
 are decoded to

generate eight chip select signals (IOCS-0 to IOCS-7) and in this, the chip select IOCS-1 is

used to select 8255. The address line A
7
 and the control signal IO/M are used as enable for the

decoder.

Internal
Deviceaddress

 selected
 A

1
A

0

0 0 Port-A

 0 1 Port-B

 1 0 Port-C

 1 1 Control Register

TABLE - 6.3

Microprocessor (8085) And Its Applications 6. 15

8085

RESET

IO/M

8-Bit
Latch

8255

D - D0 7

CS

PA -PA0 7

RESET

RD

WR

D - D0 7

A - A0 7

G2A

G2B

G1

A4

A5

A6

A7

A ,0 A1ALE EN

8

WR WR

RD RD

RD

WR

AD -AD0 7

RESET

3
-t
o
-8
D
ec
o
d
er

7
4
L
S
1
3
8

RESET

A ,0 A1

8

PB -PB0 7

8

PC -PC0 7

8

IOCS-0

IOCS-1

IOCS-2

IOCS-3

IOCS-4

IOCS-5

IOCS-6

IOCS-7

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

®

®

®®

®®

®
®

®

®
®
®

®

¯ ¯

®
®
®
®

®
®

®

® ®

®

Fig. 6.17 : Interfacing 8255 with 8085 processor.

®

The address line A
0
 of 8085 is connected to A

0
 of 8255 and A

1
 of 8085 is connected to A

1
 of

8255 to provide the internal addresses. The IO addresses allotted to the internal devices of 8255 are

listed in Table-6.4. The data lines D
0
-D

7
 are connected to D

0
-D

7
 of the processor to achieve parallel

data transfer.

In the schematic shown in Fig. 6.17, the interrupt scheme is not included and so the data

transfer can be performed only by checking the status of 8255 and not by interrupt method. For

interrupt driven data transfer scheme, the interrupt controller 8259 has to be interfaced to system

and the interrupts of port-A (PC
3
) and port-B (PC

0
) should be connected to two IR inputs of 8259.

TABLE - 6.4 : IO ADDRESSES OF 8255

Note : Don't care "x" is considered as zero.

 Binary address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Port-A 0 0 0 1 x x 0 0 10

Port-B 0 0 0 1 x x 0 1 11

Port-C 0 0 0 1 x x 1 0 12

Control 0 0 0 1 x x 1 1 13

Register

Internal

device

Hexa

address

Decoder input

and enable

Input to address

pins of 8255

6. 16 Chapter 6 Peripheral Devices And Interfacing

B7 B6 B5 B4 B3 B2 B1 B0

Fig. 6.19 : Format of Bit Set/Reset control word of 8255.

®
IPQ

1 = Set

0 = Reset

I
P
Q

¯¯¯
0 0 0 Set/Reset PC

0 0 1 Set/Reset PC

0 1 0 Set/Reset PC

0 1 1 Set/Reset PC

1 0 0 Set/Reset PC

1 0 1 Set/Reset PC

1 1 0 Set/Reset PC

1 1 1 Set/Reset PC

0

1

2

3

4

5

6

7

I
P
Q

S
el
ec
t
P
o
rt
-C
P
in
to
S
et
/R
es
et

D
ep
en
d
in
g
o
n
B
it
B
0

¯
0 = BSR Mode

Don’t Care

Programming (or Initializing) 8255

The 8255 has two control words: IO Mode Set control Word (MSW) and Bit Set/Reset

(BSR) control word. The MSW is used to specify IO functions and BSR word is used to set/reset

individual pins of port-C. Both the control words are written in the same control register. The

control register differentiates them by the value of bit B
7
.The BSR control word does not affect the

functions of ports A and B.

Bit B
7
 of the control register specifies either the IO function or the bit set/reset function. If

B
7
 = 1, then the bits B

6
-B

0
 determine IO functions in various modes. If bit B

7
 = 0, then the bits

B
6
-B

0
 determine the pin of port-C to be set or reset.

B7 B6 B5 B4 B3 B2 B1 B0

Fig. 6.18 : Format of IO mode set control word of 8255.

®

GROUP - B

Port-C Lower (PC - PC)

1 = Input ; 0 = Output

Port-B

1 = Input ; 0 = Output

Port-B Mode Selection

0 = Mode-0 ; 1 = Mode-1

GROUP - A

Port-C Upper (PC - PC)

1 = Input ; 0 = Output

Port-A

1 = Input ; 0 = Output

Port-AMode Selection

00 = Mode-0 ; 01 = Mode-1

1X = Mode-2

3 0

4 7

®

®

®

®

IPQ

®

®

Microprocessor (8085) And Its Applications 6. 17

The 8255 ports are programmed (or initialized) by writing a control word in the control

register. For setting IO functions and mode of operation the IO mode set control word is sent to

control register. For setting/resetting a pin of port-C, the bit set/reset control word is sent to

control register. The format of the IO mode set control word is shown in Fig. 6.18 and the format

of bit set/reset control word is shown in Fig. 6.19. The various functions (assignments) of port-

C pins during the different operating modes of ports A and B are listed in Table -6.5.

TABLE - 6.5 : PORT-C PIN ASSIGNMENTS

In handshake mode (i.e., in mode-1 and mode-2) the data transfer between the processor

and the port can be implemented either by interrupt method or by checking the status of 8255

ports. In interrupt driven data transfer scheme when the port is ready it interrupts the 8085 processor

through any one of the interrupt pin for a read/write operation. In status check technique, the 8085

processor can check the status of ports A and B by reading port-C. When the port is ready for data

transfer, the processor executes a read/write cycle.

The 8255 has two internal flip-flops as interrupt enables (INTE
A
 and INTE

B
) for port-A and

port-B interrupt signals. In interrupt driven data transfer scheme the 8255 generates an interrupt

signal only if these flip-flops are enabled by using BSR control word. The INTE
A
 is enabled by

setting PC
4
 to high and INTE

B
 is enabled by setting PC

2
 to high using BSR control word. The

interrupt signal can be disabled by resetting these two bits to zero using BSR control word.

When port-A and port-B are programmed in handshake mode (i.e., in mode-1 and mode-2),

port-C can be read to know the readiness of the ports for data transfer. The format of the status

word read from port-C is shown in Fig. 6.20.

Functions of Ports A and B PC
7

PC
6

PC
5

PC
4

PC
3

PC
2

PC
1

PC
0

Ports A and B in mode-0 IO IO IO IO IO IO IO IO
Input/Output

Ports A and B in mode-1 IO IO IBF
A

STB
A

INTR
A

STB
B

IBF
B

INTR
B

Input ports

Ports A and B in mode-1 OBF
A

ACK
A

IO IO INTR
A

ACK
B

OBF
B

INTR
B

Output ports

Port-A in mode-2 OBF
B

ACK
A

IBF
A

STB
A

INTR
A

IO IO IO

Port-B in mode-0

IO - Input /Output line OBF - Output Buffer Full

STB - Strobe ACK - Acknowledge

IBF - Input Buffer Full The subscript A denotes port-A signal.

INTR - Interrupt Request The subscript B denotes port-B signal.

6. 18 Chapter 6 Peripheral Devices And Interfacing

IPQIPQ

IPQ IPQ

IPQ IPQ

B7 B6 B5 B4
B3 B2 B1 B0

B7 B6 B5 B4 B3

IO IO IBFA INTEA INTRA

¯

B7 B6 B5 B4 B3

OBFA INTEA IO INTRAIO

¯ ¯

¯

B2 B1 B0

IBFBINTEB INTRB

B2 B1 B0

OBFBINTEB INTRB

Port-C Bits

Port-A
Status

Port-B
Status

Status of Port-AWhen
Used as Input Port

Status of Port-B When
Used as Input Port

Status of Port-B When
Used as Output Port

Status of Port-AWhen
Used as Output Port

Fig. 6.20 : Format of status word of 8255 for handshake input and output operation.

8255 Handshake Input Port (Mode-1)

The signals used for data transfer between input device and 8085 microprocessor using

port-A of 8255 as handshake input port (Mode-1) are shown in Fig. 6.21.

1. The input device checks IBF
A
 signal, if it is low then the input device places the data on the port lines PA

0
-PA

7
 and asserts

STB
A
 low and after a delay time STB

A
 is asserted high.

2. When STB
A
 is low the 8255 asserts IBF signal high and at the rising edge of STB

A
 the data is latched to the port and

INTR
A
is set high.

3. When INTR
A
 goes high the processor is interrupted through RST 5.5 input pin to execute a subroutine for reading the

data from the port. For a read operation, the processor asserts RD low and then high.

4. When RD is low, INTR
A
 is reset (asserted low) by 8255 and at the rising edge of RD, IBF is asserted low and the input

device can send the next data.

Note : For port-B as input port in mode-1, same operations are performed, but for handshake

signals PC
0
, PC

1
 and PC

2
 are used.

8085-
Based
System

RD

8255 Input
Device

®
®
®

¬ ¬
®

INTRA STBA

IBFA

A0

Fig. 6.21 : Port-A of 8255 as handshake input port (Mode-1).

®
®

D - D0 7

RESET

NMI

D - D0 7

PA - PA0 7

A1

RD

CS

RESET PC5

PC4PC3

Microprocessor (8085) And Its Applications 6. 19

8085-
Based
System

8
2
5
5

Input/
Output
Device

®
®
®

¬ ¬
INTRA ACKA

A0

Fig. 6.23 : Port-A of 8255 as bidirectional port (Mode-2).

®
®

D - D0 7

NMI

D - D0 7

PA - PA0 7

A1

CS

PC7

PC6PC3

WR WR ®
OBFA

RD

®

¬
STBA

IBFA

PC4

PC5

RD

8085-
Based
System 8255 Output

Device

®
®
®

¬ ¬
®

INTRA ACKA

OBFA

A0

Fig. 6.22 : Port-A of 8255 as handshake output port (Mode-1).

®
®

D - D0 7

RESET

NMI

D - D0 7

PA - PA0 7

A1

CS

RESET PC7

PC6PC3

WR WR

8255 Handshake Output Port (Mode-1)

The signals used for data transfer between output device and 8085 microprocessor using

port-A of 8255 as handshake output port (Mode-1) are shown in Fig. 6.22.

1. When the port is empty, the processor writes a byte in the port.

2. For writing a data to port, the processor asserts WR low and then high. At the rising edge of WR, both the INTR
A
 and

OBF
A
 are asserted low by the 8255.

3. The OBF
A
 signal informs the output device that the data is ready. If the output device accepts the data then it sends an

acknowledge signal by asserting ACK
A
 low and then high.

4. When ACK
A
 is low, the OBF

A
 is asserted high by the 8255. When ACK

A
 is high the INTR

A
 is set (asserted high), to

interrupt the processor.

5. When INTR
A
 goes high, the processor is interrupted through RST 5.5 input pin to execute an interrupt service routine

to load next data in the output port.

Note : For port-B as output port in mode-1, same operations are performed, but for handshake

signals PC
0
, PC

1
 and PC

2
 are used.

8255 Bidirectional Port (Mode-2)

The signals used for data transfer between the IO device and 8085 microprocessor using

port-A of 8255 as bidirectional port (Mode-2) are shown in Fig. 6.23.

Note : Only port-A can work in mode-2.

In mode-2 the port can be used either as an input port or as an output port. At any one time

the processor will perform either read or write operation. In mode-2 the read operation can be

followed by write or write operation can be followed by read. The signals involved and the operations

performed for read operation are similar to mode-1 input port. The signals involved and the operations

performed for write operation are similar to mode-1 output port.

6. 20 Chapter 6 Peripheral Devices And Interfacing

6.2.5 Programmable IO Port and Memory - INTEL 8355

The INTEL 8355 is a ROM and IO port chip that can be used in the 8085A and 8088

microprocessor systems. The ROM portion has 2048 (2 k) locations with a word size of 8 bits. It

has a maximum access time of 400 ns so that the device can be used without wait states in the

8085A CPU. The 8355-2 has 300 ns access time for compatibility with the 8085A-2 and full speed

5 MHz 8088 microprocessors. The internal block diagram and the pin description of 8355 are

shown in Fig. 6.24.

The 8355 is a 40-pin IC available in DIP. It has multiplexed address and data lines. It has an

internal address latch to demultiplex the address and data lines using the signal ALE. The IO portion

consists of two general purpose IO ports. Each IO port has eight port lines and each IO port line is

individually programmable as input or output.

40

39

38

37

36

35

34

33

32

31

30

29

VCC

8355

1

2

3

4

5

6

7

8

9

10

11

12AD0

CLK

RESET

®

®

®ALE

®

®

®

13AD1

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®

®

®
®®®®®®®®®®®®®®®®® ®

®
®
®®

®®

®®

®®

®®

®®

®®
®®

®®

®®®®

®®

®®

®®

®®

®®

READY

NC

IO/M

CE1

RD

AD2

AD3

AD4

AD5

AD6

AD7

VSS

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

Fig. a : Pin description.

CE2

IOR

IOW

A10

A9

A8

Fig. 6.24 : Pin description and internal block
diagram of 8355.

Port-A PA - PA0 7

PB - PB0 7

8

AD - AD0 7

®

®
®
®

®

IO/M

ALE

RD

8355

V (+5-V)CC

Fig. b : Internal block diagram of 8355.

®

RESET

®

2 k ´ 8
ROM

Port-B

CLK

READY

CE1

CE2

IOR

IOW ®
®
® ®

®
V (0-V)SS

A - A8 10

8

Pin Description

AD
0
 - AD

7
Bidirectional address/data

A
8
 - A

10
High order bits of ROM address

ALE Address latch enable

CE
1

Active low chip enable

CE
2

Active high chip enable

IO/M IO or memory select

RD Memory read control

IOW IO write control

IOR IO read control

RESET RESET input

READY Wait state request

CLK Clock input

V
CC

Power supply (+5-V)

V
SS

Ground (0-V)

PA
0
 - PA

7
Port-A IO lines

PB
0
 - PB

7
Port-B IO lines

Internal
Deviceaddress

selected
A

1
A

0

0 0 Port-A

0 1 Port-B

1 0 DDR A

1 1 DDR B

TABLE - 6.6

Microprocessor (8085) And Its Applications 6. 21

Fig. 6.25 : Pin description and block diagram of 8755.

Port-A PA - PA0 7

PB - PB0 7

8

AD - AD0 7

®

®
®
®

®

IO/M

ALE

RD

8755

V (+5-V)CC

Fig. b : Internal block diagram of 8755.

®

RESET

®

2 k ´ 8
EPROM

Port-B

CLK

READY

PROG/CE1

CE2

IOR

IOW

®
®
® ®

®

8

V (0-V)SS

A - A8 10

®VDD

40

39

38

37

36

35

34

33

32

31

30

29

VCC

8755

1

2

3

4

5

6

7

8

9

10

11

12AD0

CLK

RESET

®

®

®ALE

®

®

®

13AD1

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®

®

®

®®®®®®®®®®®®®®®®® ®
®
®
®®

®®

®®

®®

®®

®®

®®

®®

®®

®®®®

®®

®®

®®

®®

®®

READY

VDD

IO/M

PROG/CE1

RD

AD2

AD3

AD4

AD5

AD6

AD7

VSS

PB7

PB6

PB5

PB4

PB3

PB2

PB1

PB0

PA7

PA6

PA5

PA4

PA3

PA2

PA1

PA0

Fig. a : Pin description.

CE2

IOR

IOW

A10

A9

A8

®

The ports are programmed as input or output port by loading an 8-bit word in the Data

Direction Register (DDR) of the concerned port. Each line of the port can be individually used as

input or output line. Azero loaded in the DDR register makes the corresponding line of port as input

line. A one loaded in the DDR register makes the corresponding line of port as output line.

The ports and data direction registers are selected by two bit internal address, A
0
 and A

1
 as

shown in Table-6.6. When the device is reset by applying a high signal at RESET pin, the DDRs

are cleared and the ports are initialized to input mode.

6.2.6 Programmable IO Port and Memory - INTEL 8755

The INTEL 8755 is an EPROM and IO chip that

can be used in the 8085A and 8088 microprocessor

systems. The EPROM portion has 2048 (2 k) locations

with a word size of 8 bits. It has a maximum access

time of 450 ns so that the device can be used without

wait states in an 8085A CPU.

The pin description and internal block diagram

of 8755 are shown in Fig. 6.25. The 8255 is a 40-pin

IC available in DIP. It has multiplexed address and data

lines. It has an internal latch to demultiplex the address

and data lines using the signal ALE. The IO portion

consists of two general purpose IO ports. Each IO port

has eight port lines and each IO port line is individually

programmable as input or output.

Pin Description

AD
0
 - AD

7
Bidirectional address/data

A
8
 - A

10
High order bits of

EPROM address

ALE Address latch enable

CE
2

Active high chip enable

IO/M IO or memory select

RD Memory read control

IOW IO write control

IOR IO read control

RESET RESET input

READY Wait state request

CLK Clock input

V
CC

Power supply (+5-V)

V
SS

Ground (0-V)

PA
0
 - PA

7
Port-A IO lines

PB
0
 - PB

7
Port-B IO lines

PROG/CE
1

EPROM programming /

Active low chip enable

6. 22 Chapter 6 Peripheral Devices And Interfacing

The ports are programmed as input or output port by loading an 8-bit word in the Data

Direction Register (DDR) of the concerned port. Each line of the port can be individually used as

input or output lines. A zero loaded in the DDR register makes the corresponding line of the port as

input line. A one loaded in the DDR register makes the

corresponding line of the port as output line.

The ports and data direction registers are selected

by two bit internal address, A
0
 and A

1
 as shown in

Table-6.7. When the device is reset by applying a high

signal at RESET pin, the DDRs are cleared and the ports

are initialized in the input mode. The pin PROG/CE
1
 is

used to program the EPROM.

6.2.7 DMA Data Transfer Scheme

Normally the data transfer from memory to IO device or IO device to memory can be achieved

only through microprocessor. When data has to be transferred from memory to IO device, first the

processor sends address and control signals to memory to read the data from memory. Then the

processor sends address and control signals to IO device to write data to IO device.

Similarly, when the data has to be transferred from IO device to memory, first the processor

sends address and control signals to IO device to read data from IO device. Then the processor

sends address and control signals to memory device to write data to memory.

In the data transfer method described above, data cannot be directly transferred between

memory and IO device, even though they are connected to common bus. The above process is

inevitable, because the processor cannot simultaneously select two devices. Hence, a scheme

called Direct Memory Access (DMA) has been developed in which the IO device can access the

memory directly for data transfer. The DMA data transfer will be useful to transfer large amount of

data between memory and IO device in a short time.

For direct data transfer between IO device and memory a dedicated hardware device called

Direct Memory Access controller (DMA controller) is used. A DMA controller temporarily borrows

the address bus, data bus and control bus from the microprocessor, and transfers the data bytes

directly from the IO ports to a series of memory locations or vice versa. Some DMA controllers

can also perform memory-to-memory transfer.

A Microcomputer System with a DMA Controller

The simplified diagram of a microcomputer system with a DMA controller is shown in

Fig. 6.26. In the system shown in Fig. 6.26 the DMA controller has one channel, which serves for

one IO device. In actual DMA controller we may have more than one channel and each channel

may service an IO device independently. Each channel contains an address register, a control

register and a count register. For the sake of simplicity let us consider one channel DMA controller.

The DMA controller can work as a slave or as a master. In the slave mode, the microprocessor

loads the address register with starting address of the memory, loads the count register with number

of bytes to be transferred and loads the control register with control information.

Internal address
Device selected

A
1

A
0

0 0 Port-A

0 1 Port-B

1 0 DDR A

1 1 DDR B

TABLE - 6.7

Microprocessor (8085) And Its Applications 6. 23

¯

¯

¯ ¯ ¯

¯

DMA

Controller

8237 or 8257

External
Device

IO Port

IOMemory
Microprocessor

8086

Latches

and

Buffers

¯ ¯ ¯ ¯ ¯ ¯

System Bus

H
O
L
D

¯

¯

¯

A
d
d
re
ss
B
u
s

M
E
M
R

M
E
M
W

H
O
L
D

H
L
D
A

A
d
d
re
ss

D
at
a

C
o
n
tr
o
l

A
d
d
re
ss

D
at
a

C
o
n
tr
o
l

H
L
D
A

D
R
E
Q

D
A
C
K

IO
R

IO
W

S
y
st
em

B
u
s

Enable

¬ ®®

(Such as Floppy Disk

or Disk Controller)

Fig. 6.26 : Block diagram of a microcomputer
system with DMA controller.

C
P
U

B
u
s

For performing DMA operation the processor has to initialize or program the IO device and

DMA controller. Consider an example of transferring bulk data from floppy to memory by DMA.

In this case the processor initializes both DMA controller and floppy controller, so that DMA

controller is informed about address, type of DMA and number of bytes to be transferred and the

floppy controller is informed to go for a DMA.

When the IO device needs a DMA transfer it sends a DMA request signal (DREQ) to the

DMA controller. When the DMA controller receives a DMA request, it sends a HOLD request to the

processor. At the end of the current instruction execution, the processor relieves the bus by asserting

all its data, address and control pins to high impedance state. Then the processor sends an

acknowledge (HLDA) signal to the DMA controller.

When the controller receives an acknowledge signal it takes control of the system bus and

begins to work as a master. The DMA controller sends a DMA acknowledge signal (DACK) to IO

device. The DACK signal will inform the device to get ready for DMA transfer.

For a read operation, the DMA controller outputs the memory address on the address bus and

asserts MEMR and IOW signals. The DMA read refers to read data from memory. Hence for a read

operation, the memory outputs the data on the data bus and this data will be written into IO port.

For a write operation, the DMA controller outputs the memory address on the address bus
and asserts MEMW and IOR signals. The DMA write refers to write data to memory. Hence for a
write operation, the IO device outputs the data on the data bus and this data will be written into
memory. When the data transfer is complete the DMA controller unasserts its HOLD request signal

to the processor and the processor takes control of the system bus.

6. 24 Chapter 6 Peripheral Devices And Interfacing

Fig. 6.27 : Pin configuration of 8237.

40

39

38

37

36

35

34

33

32

31

30

29

A7

8
2
3
7

D
M
A
C
o
n
tr
o
ll
er

1

2

3

4

5

6

7

8

9

10

11

12CLK

RESET

®

®
HRQ

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®
®®

®

®
®
®
®® ®

®
®®

®

®®

®®

®®

®®

®®

®
®®

®®®®

®®

®®
®
®
®

READY

NC

HLDA

IOR

(GND)VSS

A6

A5

A4

EOP

A3

A2

A1

A0

V (+5-V)CC

DB0

DB1

DB2

DB3

DB4

DACK0

DB5

DB6

DB7

®
®
®
®

®®
®
®

®

®
®

IOW

MEMR

MEMW

ADSTB

AEN

CS

DACK2

DACK3

DREQ3

DREQ2

DREQ1

DREQ0

DACK1®

A -A0 3

8
2
3
7

D
M
A
C
o
n
tr
o
ll
er

CLK

RESET

®

®®

IOR

(GND)VSS

EOP

IOW

MEMR

MEMW

ADSTB

AEN

CS

READY

(+5-V)VCC

®

A -A4 7

DB -DB0 7

DREQ0
-DREQ3

DACK0
-DACK3

®®

®
®
®
®

®
®
®
®®

®®

®

HRQ

HLDA

The DMA transfer may be performed to transfer a byte at a time or in blocks. In cycle stealing

DMA or single transfer mode, the DMA controller will perform one byte transfer in between instruction

cycles. In burst mode or block transfer mode, the DMA controller will transfer a block of data.

6.2.8 DMA Controller - INTEL 8237

The DMA controller-8237 has been developed for 8085/8086/8088 microprocessor-based

system. It is a device dedicated to perform a high speed data transfer between the memory and the

IO device. The 8237 has four channels. So, it can be used to provide DMA to four IO devices.

When more than four devices require DMA, a number of 8237 can be connected in cascade to

increase the DMA channels.

For each DMA channel, a set of registers has been dedicated to store the memory address and

the count value for number of bytes to be read/write by DMA. These registers are base address,

current address, base word count, current word count and mode registers. Apart from these dedicated

registers, the 8237 has temporary registers, status, command, mask and request registers.

The 8237 is a 40-pin IC and is available in a Dual In-line Package (DIP). The pin configuration

of 8237 is shown in Fig. 6.27. A brief description about the pins and signals of 8237 are listed in

Table-6.8. The functional block diagram of 8237 is shown in Fig. 6.28.

Features of 8237

� It has four independent DMA channels to service four IO devices.

� Number of channels can be increased by cascading any number of 8237.

� Each channel can be independently programmable to transfer upto 64 kb of data by DMA.

� Each channel can independently perform read transfer, write transfer and verify transfer.

� Channel-0 and channel-1 are used to perform memory-to-memory transfer.

� Each channel can be independently programmable to perform demand transfer DMA, single transfer DMA and block

transfer DMA.

Microprocessor (8085) And Its Applications 6. 25

R
E
A
D
B
U
F
F
E
R

¬
® ® ® ®

¬
®

¬¬ ¬ ¬ ¬

® ® ® ®

¬ ¬

¬ ¬ ¬

In
te
rn
a
l
D
a
ta
B
u
s

¯

¯

¯

¯
¯

® ®

¯

E
O
P

R
E
S
E
T

C
S

R
E
A
D
Y

C
L
K

A
E
N

A
D
S
T
B

M
E
M
R

M
E
M
W

IO
R

IO
W

D
R
E
Q
0
-

D
R
E
Q
3

H
L
D
A

H
R
Q

D
A
C
K
0
-

D
A
C
K
3

4 4

T
im
in
g

a
n
d

C
o
n
tr
o
l

B
a
se

A
d
d
re
ss

(1
6
)

B
a
se

W
o
rd

C
o
u
n
t

(1
6
)

R
ea
d
B
u
ff
er

P
ri
o
ri
ty

E
n
co
d
er

a
n
d

R
o
ta
ti
n
g

P
ri
o
ri
ty

L
o
g
ic

C
o
m
m
a
n
d
(8
)

M
a
sk
(4
)

R
eq
u
es
t
(4
)

R
ea
d
/W
ri
te

M
o
d
e

(4
)

´
8

S
ta
tu
s
(8
)

T
em
p
o
ra
ry
(8
)

W
ri
te
B
u
ff
er

R
ea
d
B
u
ff
er

R
ea
d
/W
ri
te

B
u
ff
er

C
u
rr
en
t

A
d
d
re
ss

(1
6
)

C
u
rr
en
t

W
o
rd

C
o
u
n
t

(1
6
)

D
ec
re
m
en
to
r

T
em
p
W
o
rd

C
o
u
n
t
R
eg
(1
6
)

In
cr
em
en
to
r/
D
ec
re
m
en
to
r

T
em
p
A
d
d
re
ss

R
eg
(1
6
)

IO
B
u
ff
er

O
u
tp
u
t

B
u
ff
er

C
o
m
m
a
n
d

C
o
n
tr
o
l

IO
B
u
ff
er

1
6
-B
it
B
u
s

1
6
-B
it
B
u
s

A
-A
0

3

A
-A
4

7

A-A815

D
-D
0

1

D
B
-D
B

0
7

F
ig
.
6
.2
8
:
F
u
n
c
ti
o
n
a
l
b
lo
c
k
d
ia
g
ra
m
o
f
a
n
8
2
3
7
.

6. 26 Chapter 6 Peripheral Devices And Interfacing

TABLE - 6.8 : PIN DESCRIPTION OF 8237

 Pin Description

CLK Clock input to 8237. Maximum clock frequency is 5 MHz. In 8085 system, the processor

clock is inverted and applied to CLK of 8237.

 CS Logic low chip select signal. It is input signal to select 8237 during programming

mode.

 RESET Reset input to 8237. Connected to system reset, when the RESET signal goes high

the command, status, request and temporary registers are cleared. It also clears

first-last flip-flop and sets the mask register.

 READY Ready input signal and it is tied to V
CC

 for normal timings. When READY input is tied

low, the 8237 enters a wait state. This is used to get extra time in DMA machine cycles

to transfer data between slow memory and IO devices.

 HRQ Hold request output signal. It is the hold request signal sent by 8237 to the processor

HOLD pin, to make a request for bus to perform DMA transfer.

 HLDA Hold acknowledge input signal. It is the hold acknowledge signal to be sent by the

processor to inform the acceptance of hold request.

 DREQ3 DMA request inputs (Four channel inputs). Used by IO devices to request for DMA

 to transfer.

 DREQ0

 DACK3 DMA acknowledge output signals. These are output signals from 8237 to the IO devices

 to to inform the acceptance of DMA request. These outputs are programmable as either

 DACK0 active high or active low signals.

 DB
7
 to Data bus lines. These pins are used for data transfer between processor and DMA

 DB
0

controller during programming mode. During DMA mode, these lines are used as

multiplexed high order address and data lines.

 IOR Bidirectional IO read control signal. It is input control signal for reading DMA controller

during programming mode and output control signal for reading IO device during DMA

(memory) write cycle.

 IOW Bidirectional IO write control signal. It is input control signal for writing DMA controller

during programming mode and output control signal for writing IO device during DMA

(memory) read cycle.

 EOP End of process. It is a bidirectional low active signal. It is used either as an input to

terminate a DMA process or as an output to inform the end of the DMA transfer to the

processor. This output can be used as interrupt to terminate DMA.

Microprocessor (8085) And Its Applications 6. 27

Table - 6.8 continued...

 Pin Description

A
3
 to A

0
Four bidirectional address lines. Used as input address during programming mode to

select internal registers. During DMA mode the low order four bits of memory address

are output by 8237 on these lines.

A
7
 to A

4
Four unidirectional address lines. Used to output the memory address bits A

7
 to A

4

during DMA mode.

AEN Address enable output signal. It is used to enable the address latch connected to

DB
7
 - DB

0
 pins of 8237. It is also used to disable any buffers in the system connected

to the processor.

ADSTB Address strobe output signal. It is used to latch the high byte memory address

issued through DB
7
 to DB

0
 lines by 8237 during DMA mode into an external latch.

 MEMR Memory read control signal. It is an output control signal issued during DMA read

operation.

 MEMW Memory write control signal. It is an output control signal issued during DMA write

peration.

The various internal registers of 8237 are listed in Table-6.9. The processor can read or

write into these registers. But with certain registers the processor can perform only the read

operation and with certain registers the processor can perform only the write operation. The

internal registers are selected by a 4-bit address supplied through A
0
-A

3
 lines of 8237. The addresses

of internal registers and the operations (read/write) that can be performed on these registers are

listed in Table-6.10.

TABLE - 6.9 : INTERNAL REGISTERS OF 8237

Name of the register
Size of register Number of

 in bits registers available

Base address register 16 4

Base word count register 16 4

Current address register 16 4

Current word count register 16 4

Temporary address register 16 1

Temporary word count register 16 1

Status register 8 1

Command register 8 1

Temporary register 8 1

Mode register 8 4

Mask register 4 1

Request register 3 1

6. 28 Chapter 6 Peripheral Devices And Interfacing

The 16-bit internal registers of 8237 are read/write through 8-bit data bus. The 8237 has an

internal first-last flip-flop which has to be cleared to zero for reading/writing low byte first and

then high byte. The first last flip-flop can be set to one for reading/writing high byte first and then

low byte. (However the 8237 does not have facility to directly set the first-last flip-flop, but it has

the facility to directly clear the first-last flip-flop.) After each read or write operation, the state of

flip-flop automatically toggles.

Operation

performed

Binary

address

Channel-0 Base and Current address Write 0 0 0 0

Channel-0 Current address Read 0 0 0 0

Channel-0 Base and Current word count Write 0 0 0 1

Channel-0 Current word count Read 0 0 0 1

Channel-1 Base and Current address Write 0 0 1 0

Channel-1 Current address Read 0 0 1 0

Channel-1 Base and Current word count Write 0 0 1 1

Channel-1 Current word count Read 0 0 1 1

Channel-2 Base and Current address Write 0 1 0 0

Channel-2 Current address Read 0 1 0 0

Channel-2 Base and Current word count Write 0 1 0 1

Channel-2 Current word count Read 0 1 0 1

Channel-3 Base and Current address Write 0 1 1 0

Channel-3 Current address Read 0 1 1 0

Channel-3 Base and Current word count Write 0 1 1 1

Channel-3 Current word count Read 0 1 1 1

Command register Write 1 0 0 0

Status register Read 1 0 0 0

Request register Write 1 0 0 1

Write single mask register bit Write 1 0 1 0

Mode register Write 1 0 1 1

Clear byte pointer flip-flop Write 1 1 0 0

Temporary register Read 1 1 0 1

Master clear Write 1 1 0 1

Clear mask register Write 1 1 1 0

Write all mask register bits Write 1 1 1 1

Name of the register

A
3

A
2

A
1

A
0

TABLE - 6.10 : ADDRESS OF INTERNAL REGISTERS OF 8237

Microprocessor (8085) And Its Applications 6. 29

Internal Registers Of 8237

Current address (CA) register

It is used to hold the 16-bit memory address of the next memory location to be accessed by

DMA. The 8237 outputs the content of the CA-register as memory address and increments/

decrements it by one. Each channel has its own CA-register. Initially the starting address of memory

is loaded in CA-register from the base address register.

Current word count (CWC) register

It holds the count value of the number of bytes to be transferred by DMA. Initially the count

value is loaded to the CWC register from the base count register. After each byte transfer by DMA,

the count value is decremented by one. Therefore at any one time it holds the count value for the

number of bytes (pending) to be transferred by the DMA.

Base address (BA) register

It is used to hold the starting address of the memory block to be accessed by the DMA.

During the start of the DMA process the content of the BA-register is loaded in the CA-register. If

autoinitialization is enabled in mode register then the content of BA-register is reloaded in the

CA-register at the end of DMA process.

Base word count (BWC) register

It is used to hold the count value for the number of bytes to be transferred by the DMA.

During the start of DMA process the content of BWC register is loaded in CWC register. If

autoinitialization is enabled in mode register then the content of BWC register is reloaded in CWC

register at the end of the DMA process.

Command register

The command register is used to program the following features of 8237 :

� Enable/Disable memory-to-memory transfer.

� Enable/Disable the DMA controller.

� Normal/Compressed timing.

� Fixed/Rotating priority.

� Type of (active low/high) DMA request and acknowledge signal.

The format of the control word to be loaded in the command register to program the above

features is shown in Fig. 6.29. During memory-to-memory DMA transfer, the channel-0 registers

are used to hold source address and the channel-1 registers are used to hold destination address.

Data transfer takes place via the temporary register in 8237. The number of bytes transferred is

determined by the channel-1 count register.

The bit B
2
 is used to turn ON/OFF the entire controller by software. The bit B

3
 is used to

program the normal/compressed timing. In normal timing, the time taken to perform one DMA

transfer will be four clock periods. In compressed timing, the time taken to perform one DMA

transfer will be two clock periods.

6. 30 Chapter 6 Peripheral Devices And Interfacing

The bit B
4
 is used to select fixed/rotating priority for DMA channels. In fixed priority

channel-0 has the highest priority and channel-3 has the lowest priority. In rotating priority,

after servicing a channel it priority, is made as lowest. For example, if DMA request is made to

channel-2 and there is no DMA request in other channels. Now after servicing channel-2 in rotating

priority scheme the priorities of the channels from highest to lowest will be channel-0, channel-1,

channel-3 and channel-2. Alternately if 8237 is programmed for fixed priority, then for the same

situation after servicing the channel-2, the priorities of DMA channels from highest to lowest will

be channel-0, channel-1, channel-2 and channel-3.

The bit B
5
 is used to extend the timing of write pulse when the IO devices require wider

write pulse. This is possible only in normal timing. The bit B
6
 and B

7
 are used to program the

polarities (logic low/high) of the DMA request input and DMA acknowledge output.

Mode register

Each channel has its own mode register and it is used to program the following features of

each channel of 8237:

� Read/Write/Verify transfer.

� Demand/Single/Block transfer mode.

� Single/Cascaded operation of 8237.

� Enable/Disable autoinitialization.

The format of control word to be loaded in mode register is shown in Fig. 6.30. The

control word of all the four mode registers are sent to same internal address, but the 8237 identifies

the control word of a channel from the bits B
0
 and B

1
. The bits B

2
 and B

3
 are used to program the

read/write/verify transfer. In read transfer the data is transferred from memory to IO device. In

write transfer the data is transferred from IO device to memory. Verification operations generate

the DMA addresses without generating the DMA memory and IO control signals.

The bit B
4
 is used to enable/disable autoinitialization of DMA channels. When it is enabled,

the memory address and count value from base registers are loaded in current registers after

completion of DMA process, which are used to repeat the DMA process between IO device and

same block of memory.

B7 B6 B5 B4 B3 B2 B1 B0

¬

¬

¬

¬

®

®

®

®

I
P
QDACK Sense Active Low = 0

DACK Sense Active High = 1

I
P
QDREQ Sense Active Low = 0

DREQ Sense Active High = 1

I
P
QLate Write Selection = 0

Extended Write Selection = 1
If B = 1, then B is Don’t Care3 5

I
P
QFixed Priority = 0

Rotating Priority = 1

I

P

Q 0 = Memory-to-Memory Disable
1 = Memory-to-Memory Enable

I

P

Q 0 = Channel-0 Address Hold Disable
1 = Channel-0 Address Hold Enable
If B = 0, then B is Don’t Care0 1

I

P

Q 0 = Controller Enable
1 = Controller Disable

I

P

Q 0 = Normal Timing
1 = Compressed Timing
If B = 1, then B is Don’t Care0 3

Fig. 6.29 : Format of control word to be loaded in command register.

Microprocessor (8085) And Its Applications 6. 31

The bits B
6
 and B

7
 are used to program various modes of operation like demand transfer

mode, single transfer mode, block transfer mode and cascade mode. In demand transfer mode, the

DMA transfer is performed until an external signal is applied to EOP pin of 8237 or until the DREQ

input becomes inactive.

In single transfer mode, the 8237 releases the bus to processor by deactivating the HOLD

signal after transfer of each byte by DMA. If the DREQ pin is held active, then 8237 will make a

request for DMA to the processor through HOLD pin again after a small delay. This will allow the

processor to execute one instruction and the 8237 to perform one DMA transfer alternatively.

In block transfer mode, the 8237 will transfer an entire block of data specified by count

register and then release the bus to processor by deactivating HOLD signal. In a cascaded operation,

the hold request pin (HRQ) of one 8237 will be connected to HOLD pin of the processor and to

each DREQ pin of this 8237, the HRQ pin of another 8237 can be connected. This connection can

be extended until we get the required number of DMA channels.

When DMA request is made to a channel by another 8237, this channel cannot perform

read/write/verify transfer.

Request register

It is used to request a DMA transfer via software. The format of control word to be loaded

in request register is shown in Fig. 6.31. The bit B
0
 and B

1
 select the channel in which DMA

transfer is required and the bit B
2
 is used to set/reset DMA request.

00 = Demand Mode Select
01 = Single Mode Select
10 = Block Mode Select
11 = Cascade Mode Select

0 = Address Increment Select
1 = Address Decrement Select

0 = Autoinitialization Disable
1 = Autoinitialization Enable

00 = Channel-0 Select
01 = Channel-1 Select
10 = Channel-2 Select
11 = Channel-3 Select

00 = Verify Transfer
01 = Write Transfer
10 = Read Transfer
11 = Illegal
If Bits B and B are One, Then

B and B are Don’t Care
6 7

3 2

B7 B6 B5 B4 B3 B2 B1 B0

I

P

Q

I

P

Q

I

P

Q

I

P

Q

I

P

Q

®

®

®

®

®

IPQ IPQIPQ

Fig. 6.30 : Format of control word to be loaded in the mode register.

Don’t Care 00 = Select Channel-0

1
11

01 = Select Channel-1
0 = Select Channel-2
= Select Channel-3

0 = Reset DMARequest
1 = Set DMARequest

B7 B6 B5 B4 B3 B2 B1 B0

IPQ

I

P

Q

I

P

Q

IPQ

®

®

Fig. 6.31 : Format of control word to be loaded in a request register.

6. 32 Chapter 6 Peripheral Devices And Interfacing

Mask register

This register is used to mask (or disallow) the DMA request made through channels and to

unmask (or enable) the DMA request made through channels. Please remember that, after a RESET

all the channels are masked and so after a RESET the channels has to be unmasked by sending a

control word to mask register.

The mask register has two internal address. One address is used to set/reset single mask bit

(i.e., to mask/unmask one channel at a time) and another address is used to set/reset all the mask

bits (i.e., to mask/unmask all the channels). The format of two control words for mask register are

shown in Fig. 6.32.

Status register

The status register can be read to know whether the channels have reached their Terminal

Count (TC) or not and also to know whether the DMA request on the DREQ pins are active or

not. The format of status register is shown in Fig. 6.33.

Don’t Care

0 = Clear Mask Bit
1 = Set Mask Bit

00 = Select Channel-0

0 = Select Channel-2
11 = Select Channel-3

01 = Select Channel-1
1

Don’t Care

0 = Clear Channel-0 Mask Bit
1 = Set Channel-0 Mask Bit

0 = Clear Channel-1 Mask Bit
1 = Set Channel-1 Mask Bit

0 = Clear Channel-2 Mask Bit
1 = Set Channel-2 Mask Bit

0 = Clear Channel-3 Mask Bit
1 = Set Channel-3 Mask Bit

B7 B6 B5 B4 B3 B2 B1 B0

IPQ IPQ

I

P

Q

I

P

Q

B7 B6 B5 B4 B3 B2 B1 B0

IPQ

®

®

®
I

P

Q

I

P

Q

I

P

Q

I

P

Q

®

®

®

Fig. a : Format of the control word to
mask/unmask one channel.

Fig. b : Format of the control word to
mask/unmask all channel.

Fig. 6.32 : Format of the control word to be loaded in the mask register.

1 = Channel-0 DMARequest is Active

1 = Channel-1 DMARequest is Active

1 = Channel-2 DMARequest is Active

1 = Channel-3 DMARequest is Active

1 = Channel-0 has Reached TC.

1 = Channel-1 has Reached TC.

1 = Channel-2 has Reached TC.

1 = Channel-3 has Reached TC.

B7 B6 B5 B4 B3 B2 B1 B0

®
®
®
®

®
®
®
®

Fig. 6.33 : Format of a status register.

Microprocessor (8085) And Its Applications 6. 33

Software Commands of 8237

The 8237 has three software commands to control its operation and they are Clear first-last

flip-flop, Master clear and Clear mask register. These software commands can be enabled by

executing a write operation to the internal address allotted to these commands. (Please refer to

Table-6.10 for internal addresses of these commands.) We need not worry about the data sent to

these ports during the write operation because the 8237 will ignore the data. The functions of the

software commands are given below.

Clear first-last flip-flop

This command resets the first-last flip-flop in 8237 to zero. The first-last flip-flop selects the

low or high byte during read/write operation of address and count registers of the channels. If first-

last flip-flop is zero (i.e., reset) then the low byte can be read/write. If it is one (i.e., set) then the high

byte can be read/write. After every read/write operation the first-last flip-flop automatically toggles.

Master clear

This command is used as software RESET. The functions performed by this command is

same as that of hardware RESET. During RESET all internal registers and first-last flip-flop are

cleared and all the mask bits of the channels are set.

Clear mask register

This command is used to clear the mask bits of the DMA channels in order to enable all the

four DMA channels.

Programming 8237

The 8237 can work as a slave or as a temporary master in a microprocessor system.

Normally the 8237 is interfaced to a system as a slave device. During the DMA operation it works

as a temporary master. For proper DMA operation the 8237 has to be programmed, when it is

working as a slave. The programming of 8237 refers to sending software commands and various

control words to 8237, in order to inform the types of DMA, memory address, count value, etc.,

for each channel. At the start of programming all the DMA channels have to be disabled and then

they are enabled at the end of programming. Also, the first-last flip-flop has to be cleared before

sending 16-bit address/count value to 8237 in order to load low byte first and then high byte in

address/count registers. The various steps in programming 8237 are given below:

1. First send a "master clear" software command to 8237, which mask/disable all DMA channels, clear first-last flip-flop

and clear all internal register, except mask register.

2. Send a control word to command register to inform priority of DMA channels, normal/ compressed timings, polarity of

DREQ and polarity of DACK signals.

3. Write a mode word to mode register of each channel to inform DMA mode and type of DMA transfer.

4. Send a "clear first-last flip-flop" software command to reset it to zero.

6. 34 Chapter 6 Peripheral Devices And Interfacing

5. After ensuring that first-last flip-flop is zero, write the 16-bit address in the address register of each channel, by sending

the low byte first and then the high byte.

6. Then write the 16-bit count value in the count register of each channel, by sending low byte first and then high byte. It

is sufficient, if the first-last flip-flop is cleared at the beginning of sending a series of 16-bit address/count value, because

after each write operation it automatically toggles to keep track of low byte and high byte.

7. Finally send "clear mask register" software command to enable all DMA channels. Now 8237 is ready to perform DMA

process.

Interfacing 8237 with 8085 Processor

A simple schematic for interfacing the 8237 with 8085 processor is shown in Fig. 6.34.

The 8237 can be either memory-mapped or IO-mapped in the system. In the schematic shown

in Fig. 6.34, the 8237 is IO-mapped in the system. The chip select signals for IO-mapped devices

are generated by using a 3-to-8 decoder. The address lines A
4
, A

5
and A

6
 are decoded to generate

eight chip select signals (IOCS-0 to IOCS-7) and in this, the chip select signal IOCS-6 is used to

select 8237. The address line A
7
 and the control signal IO/M are used as enable for decoder. The

IO addresses of the internal register of 8237 are listed in Table-6.11.

The DB
0
-DB

7
 lines of 8237 are connected to data bus lines D

0
-D

7
 for data transfer with

processor during programming mode. These lines (DB
0
-DB

7
) are also used by 8237 to supply the

memory address A
8
-A

15
 during the DMA mode. The 8237 also supplies two control signals ADSTB

and AEN to latch the address supplied by it during DMA mode on external latches. In the schematic

shown in Fig. 6.34, two 8-bit latches are provided to hold the 16-bit memory address during DMA

mode. During DMA mode, the AEN signal is also used to disable the buffers and latches used for

address, data and control signals of the processor.

The 8237 provides separate read and write control signals for memory and IO devices

during DMA. Therefore, the RD, WR and IO/M of the 8085 processor are decoded by a suitable

logic circuit to generate separate read and write control signals for memory and IO devices.

(Please refer to Chapter-3, Fig. 3.18 for the logic circuit to generate separate read and write

signals for memory and IO devices.)

The output clock of the 8085 processor should be inverted and supplied to the 8237 clock

input for proper operation. The HRQ output of the 8237 is connected to HOLD input of the 8085

in order to make a HOLD request to the processor. The HLDA output of 8085 is connected to

HLDA input of 8237, in order to receive the acknowledge signal from the processor once the

HOLD request is accepted. The RESET OUT of the 8085 processor is connected to RESET of the

8237 processor.

Microprocessor (8085) And Its Applications 6. 35

8
-B
it

L
a
tc
h

M
em
o
ry

a
n
d
IO

R
ea
d
/W
ri
te

S
ig
n
a
l

D
ec
o
d
in
g

A
E
N

D
-D
0

7

A
D
-A
D

0
7

8
0
8
5

H
O
L
D

H
L
D
A

A
L
E

A
-A
8

1
5

R
D

W
R

IO
/M

A
E
N

A-A03

8
2
3
7

R
E
A
D
Y

A
E
N

A
Y
0

A
4

IO
C
S
-
0

IO
C
S
-
1

IO
A
d
d
re
ss
D
ec
o
d
er

B

3-to-8Decoder

G
2
A

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

C G
2
B

G
1

A
5

A
6

IO
C
S
-
2

IO
C
S
-
3

IO
C
S
-
4

IO
C
S
-
5

IO
C
S
-
6

IO
C
S
-
7

IO
R

IO
W

M
E
M
R

M
E
M
W

IO
/M

A
7

 ¯
¯

DB-DB 07

ADSTB

A-A47

+
5
-V

¯
¯

A
-A

D
M
A

A
d
d
re
ss

L
a
tc
h

7
0

E
N

A
-A

D
M
A

A
d
d
re
ss

L
a
tc
h

1
5

8

E
N

IO

D
ev
ic
e

A
E
N

A
E
N

A
E
N

¯

M
em
o
ry

¯
¯
¯
¯

3 3

D
R
E
Q
1
to
D
R
E
Q
3

D
A
C
K
1
to
D
A
C
K
3

D
R
E
Q
0

D
A
C
K
0

RESET

CLK

HLDA

HOLD

R
D
,
W
R

D
-D
0

7

8 2

IO
R
,
IO
W

A
-A
0

7

A
-A
8

1
5

CLOCK

RESETOUT

A
E
N

C
o
n
tr
o
l
B
u
s

C
S

IO
R

IO
W

M
E
M
R

M
E
M
W

F
ig
.
6
.3
4
:
In
te
rf
a
c
in
g
o
f
8
2
3
7
w
it
h
8
0
8
5
p
ro
c
e
s
s
o
r.

6. 36 Chapter 6 Peripheral Devices And Interfacing

DMA Operation in 8085 using 8237

After programming the 8237 in the slave mode, it will be ready to perform DMA. Once the

8237 is programmed it keeps on checking DMA request input from IO devices. When the 8237

detects a valid DMA request then it performs the following activity:

1) When the 8237 receives a DMA request from a peripheral it sends a hold request to the 8085 processor (provided

the channel should be enabled and there should not be any pending higher priority DMA request).

2) When the 8085 processor receives a hold request, it will complete the current instruction execution and drive all its

tristate (address, data and control) pins to high impedance state. Then, the 8085 sends an acknowledge signal

to 8237.

3) On receiving an acknowledge from 8085, the 8237 will send an acknowledge to the peripheral device which

requested DMA.

4) The 8237 asserts AEN high, which enables DMA memory address latches and disables the processor address latch.

5) Then the 8237 outputs the low byte address on A
0
-A

7
 lines and high byte address on DB

0
 to DB

7
 lines. Also, the

control signal ADSTB is asserted high to latch this address into external latches.

Binary address

 Hexa

address

Channel-0 Base and Current address register 0 1 1 0 0 0 0 0 60

 Channel-0 Base and Current word count register 0 1 1 0 0 0 0 1 61

 Channel-1 Base and Current address register 0 1 1 0 0 0 1 0 62

 Channel-1 Base and Current word count register 0 1 1 0 0 0 1 1 63

 Channel-2 Base and Current address register 0 1 1 0 0 1 0 0 64

 Channel-2 Base and Current word count register 0 1 1 0 0 1 0 1 65

 Channel-3 Base and Current address register 0 1 1 0 0 1 1 0 66

 Channel-3 Base and Current word count register 0 1 1 0 0 1 1 1 67

 Status/Command register 0 1 1 0 1 0 0 0 68

 Request register 0 1 1 0 1 0 0 1 69

 Write single mask register bit 0 1 1 0 1 0 1 0 6A

 Mode register 0 1 1 0 1 0 1 1 6B

 Clear first-last flip-flop 0 1 1 0 1 1 0 0 6C

 Temporary register/Master clear 0 1 1 0 1 1 0 1 6D

 Clear mask register 0 1 1 0 1 1 1 0 6E

 Write all mask register bits 0 1 1 0 1 1 1 1 6F

TABLE - 6.11 : IO ADDRESSES OF 8237

A
7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0

Decoder input

and enable

Input to address

pins of 8237
Name of the internal register of 8237

Microprocessor (8085) And Its Applications 6. 37

6) Also the DMA controller asserts appropriate read and write control signals to perform DMA transfer.

7) In block transfer mode, after performing one byte transfer the steps 4,5 and 6 are repeated again and again until the

count is zero. In demand transfer mode the steps 4, 5 and 6 are repeated until an external end of process signal is

applied or till the DMA request is deactivated. In single transfer mode the 8237 deactivate the hold request to the

processor after one byte transfer by DMA.

6.2.9 DMA Controller - INTEL 8257

The DMA controller-8257 has been developed for 8085/8086/8088 microprocessor-based

system. It is a device dedicated to perform a high speed data transfer between memory and IO

device. The 8257 has four channels. So, it can be used to provide DMA to four IO devices. It

cannot be connected in cascade like 8237 and it has less features than 8237.

For each DMA channel an address register and a count register has been dedicated to store

the memory address and the count value for number of bytes to be read/written by DMA respectively.

Apart from these dedicated registers, the 8257 has mode set and status registers.

The 8237 is a 40-pin IC and available in Dual In-line Package (DIP). The pin configuration

of 8257 is shown in Fig. 6.35. A brief description about the pins and signals of 8257 are listed

in Table -6.12.

Features of 8257

� It has four independent DMA channels to service four IO devices.

� Each channel can be independently programmable to transfer upto 64 kb of data by DMA.

� Each channel can independently perform read transfer, write transfer and verify transfer.

Fig. 6.35 : Pin configuration of an 8257.

40

39

38

37

36

35

34

33

32

31

30

29

A7

8
2
5
7

D
M
A
C
o
n
tr
o
ll
er

1

2

3

4

5

6

7

8

9

10

11

12CLK

RESET

®

®
HRQ

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®
®®

®

®
®
®
®® ®

®
®®

®

®®

®®

®®

®®

®®

®
®®

®®®®

®®
®
®
®
®

READY

MARK

HLDA

IOR

GND

A6

A5

A4

TC

A3

A2

A1

A0

VCC

D0

D1

D2

D3

D4

DACK0

D5

D6

D7

®
®
®
®

®®
®
®

®

®
®

IOW

MEMR

MEMW

ADSTB

AEN

CS

DACK2

DACK3

DRQ3

DRQ2

DRQ1

DRQ0

DACK1®

A -A0 3

8
2
5
7

D
M
A
C
o
n
tr
o
ll
er

CLK

RESET

®

®®

IOR

(0-V) GND TC

IOW

MEMR

MEMW

ADSTB

AEN

CS

READY

(+5-V)VCC

A -A4 7

D -D0 7

DRQ0 - DRQ3

DACK0 - DACK3

®®

®
®
®
®

®
®
®
®®

®

®®

HRQ

HLDA

®

®
MARK

6. 38 Chapter 6 Peripheral Devices And Interfacing

TABLE - 6.12 : PIN DESCRIPTION OF 8257

 Pin Description

CLK Clock input to 8257. Maximum clock frequency is 5 MHz. In 8085 system, the

processor clock signal is inverted and applied to CLK of 8257.

 CS Logic low chip select signal. It is input signal to select 8257 during programming mode.

 RESET Reset input to 8257. Connected to system reset, when the RESET signal goes high all

the internal registers are cleared.

 READY Ready input signal and it is tied to V
CC

 for normal timings. When READY input is tied

low, the 8257 enter a wait state. This is used to get extra time in DMA machine cycles

to transfer data between slow memory and IO devices.

 HRQ Hold request output signal. It is the hold request signal sent by 8257 to the processor

HOLD pin, to make a request for bus to perform DMA transfer.

 HLDA Hold acknowledge input signal. It is the hold acknowledge signal to be send by the

processor to inform the acceptance of hold request.

 DREQ3 DMA request inputs (Four channel inputs). Used by IO devices to request for DMA

 to transfer.

 DREQ0

 DACK3 DMA acknowledge output signals. These are active low output signals from 8257 to

 to the IO devices to inform the acceptance of DMA request.

 DACK0

D
0
 - D

7
Data bus lines. These pins are used for data transfer between processor and DMA

controller during programming mode. During DMA mode, these lines are used as

multiplexed high order address and data lines.

 IOR Bidirectional IO read control signal. It is input control signal for reading DMA controller

during programming mode and output control signal for reading IO device during

DMA (memory) write cycle.

 IOW Bidirectional IO write control signal. It is input control signal for writing DMA controller

during programming mode and output control signal for writing IO device during

DMA (memory) read cycle.

 TC Terminal count.

 MARK Modulo-128 mark.

A
3
 to A

0
Four bidirectional address lines. Used as input address during programming mode to

select internal registers. During DMA mode the low order four bits of memory address

are output by 8257 on these lines.

A
7
 to A

4
Four unidirectional address lines. Used to output the memory address bits A

7
 to A

3

during DMA mode.

Microprocessor (8085) And Its Applications 6. 39

Table - 6.12 : continued

 Pin Description

AEN Address enable output signal. It is used to enable the address latch connected to D
7
 - D

0

pins of 8257. It is also used to disable any buffers in the system connected to the

processor.

ADSTB Address strobe output signal. It is used to latch the high byte memory address issued

through D
7
 to D

0
 lines by 8257 during DMA mode into an external latch.

 MEMR Memory read control signal. It is an output control signal issued during DMA read

operation.

 MEMW Memory write control signal. It is an output control signal issued during DMA write

operation.

Functional Block Diagram of 8257

The functional block diagram of 8257 is shown in Fig. 6.36. The functional blocks of 8257

are data bus buffer, read/write logic, control logic and four numbers of DMA channels.

Each channel has two programmable 16-bit registers. One register is used to program the

starting address of memory location for DMA data transfer and another register is used to program

a 14-bit count value and a 2-bit code for type of DMA transfer (Read/Write/Verify transfer). The

address in the address register is automatically incremented after every read/write/verify transfer.

The format of count register is shown in Fig. 6.37(a).

In read transfer the data is transferred from memory to IO device. In write transfer the data

is transferred from IO device to memory. Verification operations generate the DMA addresses

without generating the DMA memory and IO control signals.

Apart from the address and count registers of each channel, the 8257 has a mode set register

and status register. The mode set register is used to program various features of 8257 and the status

register can be read to know the terminal count status of the channels. The registers of 8257 are

selected for read/write operation during slave/programming mode by sending a 4-bit address to 8257

through A
0
 to A

3
 lines. The internal addresses of the registers of 8257 are listed in Table-6.13.

TABLE - 6.13 : INTERNAL ADDRESS OF 8257 REGISTERS

A
3

 A
2

 A
1
 A

0

Channel-0 DMA address register 0 0 0 0

Channel-0 Count register 0 0 0 1

Channel-1 DMA address register 0 0 1 0

Channel-1 Count register 0 0 1 1

Channel-2 DMA address register 0 1 0 0

Channel-2 Count register 0 1 0 1

Channel-3 DMA address register 0 1 1 0

Channel-3 Count register 0 1 1 1

Mode set register (Write only) 1 0 0 0

Status register (Read only) 1 0 0 0

Address
Register

6. 40 Chapter 6 Peripheral Devices And Interfacing

While programming 16-bit registers the low byte has to be sent first and then high byte.

Internally, the loading of low byte and high byte into 16-bit registers are taken care of by a first/

last flip-flop.

The mode set register is used to program the following features of 8257:

� Enable/disable a channel.

� Fixed/rotating priority

� Stop DMA on terminal count.

� Extended/normal write time.

� Auto reloading of channel-2.

The format of the control word to be loaded in mode set register of 8257 is shown in

Fig. 6.37(b). The bits B
0
, B

1
, B

2
 and B

3
 of mode set register are used to enable/disable channel - 0, 1,

2 and 3 respectively.A one in this bit position will enable a particular channel and a zero will disable it.

Channel-0

16-bit

Address and

Count

Registers

MARK

Channel-1

16-bit

Address and

Count

Registers

Channel-2

16-bit

Address and

Count

Registers

Channel-3

16-bit

Address and

Count

Registers

®

®

®

®

®

®
Control

Logic and

Mode Set

Register

¬
¬
¬
¬
¬
¬

¬

¬
¬
¬
¬

CLK

RESET

HRQ

READY

HLDA

IOR

TC

IOW

MEMR

MEMW

AEN

ADSTB

®

®

Priority
Resolver

®

A7

A6

A5

A4

Read/

Write

Logic

¬A3

A2

A1

A0

®
¬®
¬®
¬®
®
®
¬®
¬®

Data Bus

Buffer

D -D7 0

¯

¬

¬

¬

¬

DACK0

DRQ0

DACK1

DRQ1

DACK2

DRQ2

DACK3

DRQ3

In
te
rn
a
l
B
u
s

Fig. 6.36 : Functional block diagram of DMA controller 8257.

¯ ¯ ¯

®

CS

®

®

®

®

Microprocessor (8085) And Its Applications 6. 41

0 0 = Verify Transfer

1
1 1

0 1 = Write Transfer
0 = Read Transfer
= Illegal

B15 B14 B13 B12 B11 B10 B9 B8

IPQ

Fig. a : Format of count to be loaded in the count register of 8257.

B7 B6 B5 B4 B3 B2 B1 B0

¯ ¯ 14-bit Count

AL TCS EW RP EN3

®

Fig. b : Format of control word to be loaded in mode set register of 8257.

EN2 EN1 EN0

® 1 = Enable Channel - 0

0 = Disable Channel - 0

®
® 1 = Enable Channel - 1

0 = Disable Channel - 1

®
® 1 = Enable Channel - 2

0 = Disable Channel - 2

®
® 1 = Enable Channel - 3

0 = Disable Channel - 3

® 1 = Rotating Priority

0 = Fixed Priority

® 1 = Extended Write Selection

0 = Normal Write Selection

1 = Stop DMA on Terminal Count®

® 1 = Enable Auto Reload

0 = Disable Auto Reload

B7 B6 B5 B4 B3 B2 B1 B0

1 = Channel-0 has Reached Terminal Count

1 = Channel-1 has Reached Terminal Count

1 = Channel-2 has Reached Terminal Count

1 = Channel-3 has Reached Terminal Count

B7 B6 B5 B4 B3 B2 B1 B0

®
®
®
®

Fig. c : Status register of 8257.

0 0 0 UP TC3 TC2 TC1 TC0

® 1 = Channel-2 is Reloaded from Channel-3

Fig. 6.37 : Format of registers of 8257.

6. 42 Chapter 6 Peripheral Devices And Interfacing

In the mode set register, if the bit B
4
 is set to one, then the channels will have rotating priority

and if it zero then the channels will have fixed priority. In rotating priority, after servicing a channel

its priority is made as lowest. In fixed priority the channel-0 has highest priority and channel-2 has

lowest priority.

In mode set register, if the bit B
5
 is set to one, then the timing of write signals (MEMW and

IOW) will be extended and if the bit B
6
 is set to one then the DMA operation is stopped at the terminal

count. The bit B
7
 is used to select the auto load feature for DMA channel-2. When bit B

7
 is set to one,

then the content of channel-3 count and address registers are loaded to channel-2 count and address

registers respectively whenever the channel-2 reaches terminal count. Therefore, when this mode is

activated the number of channels available for DMA reduces from four to three.

The format of status register of 8257 is shown in Fig. 6.37(c). The processor can read the

status of 8257 during slave mode to know the terminal count status of the channels. The bits B
0
, B

1
,

B
2
 and B

3
 of status register indicates the terminal count status of channel-0, 1, 2 and 3 respectively.

A one in these bit positions indicate that the particular channel has reached terminal count. These

status bits are cleared after a read operation by microprocessor. The bit B
4
 of status register is

called update flag and a one in this bit position indicates that the channel-2 registers has been

reloaded from channel-3 registers in the auto load mode of operation.

Interfacing of 8257 with 8085 Processor

A simple schematic for interfacing the 8257 with 8085 processor is shown in Fig. 6.38.

The 8257 can be either memory-mapped or IO-mapped in the system. In the schematic shown

in Fig. 6.38, the 8257 is IO-mapped in the system. The chip select signals for IO-mapped devices

are generated by using a 3-to-8 decoder. The address lines A
4
, A

5
and A

6
 are decoded to generate

eight chip select signals (IOCS-0 to IOCS-7) and in this the chip select signal IOCS-6 is used to

select 8257. The address line A
7
 and the control signal IO/M are used as enable for decoder. The

IO addresses of the internal registers of 8257 are listed in Table-6.14.

TABLE - 6.14 : IO ADDRESSES OF 8257 REGISTERS

Binary address

Register
Decoder input Input to address Hexa

and enable pins of 8257 address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Channel-0 DMA address register 0 1 1 0 0 0 0 0 60

 Channel-0 count register 0 1 1 0 0 0 0 1 61

 Channel-1 DMA address register 0 1 1 0 0 0 1 0 62

 Channel-1 count register 0 1 1 0 0 0 1 1 63

 Channel-2 DMA address register 0 1 1 0 0 1 0 0 64

 Channel-2 count register 0 1 1 0 0 1 0 1 65

 Channel-3 DMA address register 0 1 1 0 0 1 1 0 66

 Channel-3 count register 0 1 1 0 0 1 1 1 67

 Mode set register (Write only) 0 1 1 0 1 0 0 0 68

 Status register (Read only) 0 1 1 0 1 0 0 0 68

Microprocessor (8085) And Its Applications 6. 43

A
Y
0

A
4

B G
2
A

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

C G
2
B

G
1

A
5

A
6

IO
/M

A
7

74LS138

3-to-8Decoder

8
-B
it

L
a
tc
h

A
E
N

E
N

¬
®

® ® ® ®

® ® ®®

®

A
D
-A
D

0
7

H
O
L
D

H
L
D
A8
0
8
5

A
L
E

A
-A
8

1
5

W
R

R
D

IO
/M

RESET

CLKOUT

D
-
D

0
7

A
-
A

0
7

A
-
A

8
1
5

C
o
n
tr
o
l
B
u
s

L
o
g
ic
C
ir
cu
it

to
G
en
er
a
te

S
ep
a
ra
te

C
o
n
tr
o
l

S
ig
n
a
ls
fo
r

M
em
o
ry
a
n
d

IO
D
ev
ic
e

IO
R

IO
W

M
E
M
R

M
E
M
W

 ¬

IO
R

IO
W

M
E
M
R

M
E
M
W

4

A
E
N

A-A 03

D-D 07

¯
¯

8

A
D
S
T
B

A
E
N

A
-A
4

7

8
2
5
7

C
S

+
5
-V

R
E
S
E
T

C
L
K

H
L
D
A

H
R
Q

R
E
A
D
Y

IO
C
S
-
0

IO
C
S
-
1

IO
C
S
-
2

IO
C
S
-
3

IO
C
S
-
4

IO
C
S
-
5

IO
C
S
-
6

IO
C
S
-
7

®

®

E
N

¯
¯

C
L
K

E
N
C
L
K

A
-A
8

1
5

H
ig
h
B
y
te
D
M
A

A
d
d
re
ss

L
a
tc
h

¯
¯
¯
¯

M
em
o
ry

L
o
w
B
y
te

D
M
A

A
d
d
re
ss

L
a
tc
h

A
E
N

¬ ¬
¬ ¬

¬

D
R
E
Q
1
-
D
R
E
Q
3

D
A
C
K
1
-
D
A
C
K
3

D
R
E
Q
0

D
A
C
K
0
IO
D
ev
ic
e

R
D
,
W
R

D
-D
0

7

IO
R
,
IO
W

®®®®

F
ig
.
6
.3
8
:
In
te
rf
a
c
in
g
D
M
A
c
o
n
tr
o
lle
r
8
2
5
7
w
it
h
8
0
8
5
m
ic
ro
p
ro
c
e
s
s
o
r.

A-A 03

6. 44 Chapter 6 Peripheral Devices And Interfacing

The D
0
-D

7
 lines of 8257 are connected to data bus lines D

0
-D

7
 for data transfer with processor

during programming mode. These lines (D
0
-D

7
) are also used by 8257 to supply the memory

addressA
8
-A

15
 during the DMA mode. The 8257 also supply two control signal ADSTB and AEN to

latch the address supplied by it during DMA mode on external latches. In the schematic shown in

Fig. 6.38, two 8-bit latches are provided to hold the 16-bit memory address during DMA mode.

During DMA mode, the AEN signal is also used to disable the buffers and latches used for address,

data and control signals of the processor.

The 8257 provides separate read and write control signals for memory and IO devices

during DMA. Therefore the RD, WR and IO/M of the 8085 processor are decoded by a suitable

logic circuit to generate separate read and write control signals for memory and IO devices. (Please

refer to Chapter-3, Fig. 3.18 for the logic circuit to generate separate read and write signals for

memory and IO devices.)

The output clock of 8085 processor should be inverted and supplied to 8257 clock input for

proper operation. The HRQ output of 8257 is connected to HOLD input of 8085 in order to make

a HOLD request to the processor. The HLDA output of 8085 is connected to HLDA input of 8257,

in order to receive the acknowledge signal from the processor once the HOLD request is accepted.

The RESET OUT of 8085 processor is connected to RESET of 8257.

DMA Operation in 8085 using 8257

In the slave mode the microprocessor sends control word to mode register, and programs the

count and address registers of the required DMA channels. Once the 8257 is programmed it will

keep on checking DMA request input from IO devices. Whenever a DMA request is made by an IO

device the DMA operation is performed and the various steps of DMA operation are as follows :

1) When a peripheral device requires a DMA, it will assert DRQ signal high.

2) When the DRQ of a channel is asserted high and if the channel is enabled then the 8257 will assert HRQ (HOLD

Request) as high.

3) When the 8085 processor receives a high signal on its HOLD pin, it will complete the current instruction execution

and then drive all its tristate (address, data and control) pins to high impedance state and send an acknowledge

signal to 8257 by asserting HLDA signal as high.

4) When the 8257 receive an acknowledge signal from 8085, the 8257 will send an acknowledge signal to the

peripheral which requested DMA, by asserting DACK signal as low.

5) The 8257 asserts AEN high, which enable the DMA memory address latches and disables the processor address

latch. Then the 8257 outputs low byte DMA address on A
0
-A

7
 lines and high byte DMA address on D

0
- D

7
 lines.

Also the ADSTB signal is asserted high to latch this address into external latches. Once the address is output on

the address lines the content of address register is incremented by one and the count register is decremented by

one.

6) Also the 8257 asserts appropriate read and write control signal to perform DMA transfer from peripheral to

memory.

7) After performing one byte transfer the steps 5 and 6 are repeated again and again, until the terminal count (i.e.,

until the count reaches zero).

Microprocessor (8085) And Its Applications 6. 45

D0 D1 D2 D3 D4 D5 D6

P
ar
it
y

S
to
p

S
to
p

One Character

¯
Always Low Always High

Fig. 6.39 : Bit format used for sending asynchronous serial data.

¯ ¯

S
ta
rt

6.3 SERIAL DATA COMMUNICATION INTERFACE

6.3.1 Serial Data Communication

The fastest way of transmitting data, within a microcomputer is parallel data transfer. For

transferring data over long distances, however, parallel data transmission requires too many wires.

Therefore, for long distance transmission, data is usually converted from parallel form to serial form

so that it can be sent on a single wire or a pair of wires. Serial data received from a distant source is

converted to parallel form so that it can be easily transferred on the microcomputer buses.

The three terms often encountered in literature on communication systems are simplex,

half-duplex and full-duplex. A simplex data line can transmit data only in one direction. Data from

sensors to processor and commercial radio stations are examples of simplex transmission.

Half-duplex transmission means that communication can take place in either direction between

two systems, but can occur only in one direction at a time. An example of half duplex transmission

is a two-way radio system, where one user always listens while the other talks because the receiver

circuitry is turned off during transmit.

The term full-duplex means that each system can send and receive data at the same time. A

normal phone conversation is an example of a full-duplex operation.

Serial data can be sent synchronously or asynchronously. In synchronous transmission,

data are transmitted in block at a constant rate. The start and end of a block are identified with

specific bytes or bit patterns. In asynchronous transmission, data is transmitted one by one. Each

data has a bit which identifies its start and 1 or 2 bits which identify its end. Since each data is

individually identified, data can be sent at any time. Figure 6.39 shows the bit format often used for

transmitting asynchronous serial data.

When no data is being sent, the signal line will be at constant high or marking state. The

beginning of a data character is indicated by the line going low for 1 bit time. This bit is called a start

bit. The data bits are then sent out on the line one after the other. Note that the least-significant bit

is sent out first. Depending on the system, the data word may consist of 5,6,7 or 8 bits. Following

the data bits is a parity bit, which is used to check for errors in received data. Some system do not

insert or look for a parity bit. After the data bits and the parity bit, the signal line is returned high for

at least 1-bit time to identify the end of the character. This always-high bit is referred to as a stop

bit. Some systems may use 2 stop bits.

6. 46 Chapter 6 Peripheral Devices And Interfacing

The term baud rate is used to indicate the rate at which serial data is being transferred. Baud

rate is defined as . In some systems one bit cell has one data bit, then the

baud rate and bits/second are same. In other cases, 2 to 4 actual data bits are encoded within one

transmitted bit time, so data bits per second and baud do not correspond. Commonly used baud

rates are 110, 300, 1200, 2400, 4800, 9600 and 19,200 bauds.

In order to interface a microcomputer with serial data lines the data must be converted to

and from serial form. A parallel-in-serial-out shift register and a serial-in-parallel-out shift register

can be used to do this. In some cases of serial data transfer, handshake signals are needed to make

sure that a transmitter does not send data faster than it can be read in by the receiving system. The

programmable devices INTEL 8251A, National INS8250, etc., can be interfaced to microprocessors

to perform such functions.

A device such as INTEL 8251A which can be programmed to do either asynchronous or

synchronous communication is often called USART (Universal Synchronous Asynchronous

Receiver Transmitter). A device such as the National INS8250 which can only do asynchronous

communication is often referred to as a Universal Asynchronous Receiver Transmitter (UART).

Once the data is converted to the serial form it must be in some way sent from the transmitting

UART to the receiving UART. There are several ways in which serial data is commonly sent. One

method is to use a current to represent a "1" in the signal line and no current to represent a "0".

Another approach is to add line drivers at the output of the UART to produce a sturdy voltage

signal. The range of each of these methods, however is limited to a few thousand feet.

For sending serial data over long distances the standard telephone system is a convenient

path, because the wiring and connections are already in place. Standard phone lines, often referred

to as switched lines because any two points can be connected together through a series of switches

and have a bandwidth of about 300 to 3000 Hz. But, digital signals require very large bandwidth

(typically 5 MHz). Therefore, for several reasons, digital signals cannot be sent directly over

standard phone lines.

The solution to this problem is to convert the digital signals in to audio-frequency tones,

which are in the frequency range that the phone lines can transmit. The device used to do this

conversion and to convert transmitted tones back to digital information is called a MODEM. The

term is a contraction of modulator-demodulator.

Modems and other equipment used to send serial data over long distances are known as data

communication equipment or DCE. The terminals and computers that are sending or receiving the

serial data are referred to as data terminal equipment or DTE.

1
(The time for a bit cell)

Microprocessor (8085) And Its Applications 6. 47

1 2 3 4 5

6 7 8 9

1 2 3 4 5

14 15 16 17

6 7 8 9 10 11 12 13

18 19 20 21 22 23 24 25

Fig. a : 9-pin D-type connector. Fig. b : 25-pin D-type connector.

Fig. 6.40 : Connectors used for terminating RS-232C bus.

RS-232C Serial Data Standard

In serial IO, data can be transmitted as either current or voltage. Several standards have

been developed for serial communication. When data is transmitted as voltage, the commonly

used standard is known as RS-232C. It was developed by Electronics Industries Association(EIA),

USA and adopted by IEEE. This standard, proposes a maximum of 25 signals for the bus used for

serial data transfer. The 25 signals of RS-232C are listed in Table-6.15. In practice the first

9 signals are sufficient for most of the serial data transmission scheme and so the RS-232C bus

signals are terminated on a D-type 9-pin connector. (When all the 25 signals are used, then

RS232C serial bus is terminated on a 25-pin connector.)

The voltage levels for all RS-232C signals are :

Logic low = −3-V to −15-V under load (−25-V on no load)

Logic high = +3-V to +15-V under load (+25-V on no load)

Commonly used voltage levels are :

+12-V (logic high) and −12-V(logic low).

The RS-232C signal levels are not compatible with TTL logic levels. Hence for interfacing

TTL devices, level converters or RS-232C line drivers are employed. The popularly used level

converters are,

MC1488 - TTL to RS-232C level converter.

MC1489 - RS-232C to TTL level converter.

MAX 232 - Bidirectional level converter.

(Max 232 is equivalent to a combination of MC1488 and MC1489 in single IC.)

The signal level conversion using the above converters are shown in Fig. 6.41.

6. 48 Chapter 6 Peripheral Devices And Interfacing

TABLE - 6.15 : RS-232C PIN NAMES AND SIGNAL DESCRIPTION

Pin Common RS-232 C
Description

 Signal

number name name
direction

 on DCE

1 – AA Protective Ground –

2 TxD BA Transmitted Data IN

3 RxD BB Received Data OUT

4 RTS CA Request to send IN

5 CTS CB Clear to send OUT

6 DSR CC Data Set ready OUT

7 GND AB Signal ground (Common return) –

8 CD CF Received line signal detector OUT

9 – Reserved for Data set testing –

10 – Reserved for Data set testing –

11 – Unassigned –

12 SCF Secondary Received Line

signal Detector OUT

13 SCB Secondary clear to send OUT

14 SBA Secondary Transmitted Data IN

15 DB Transmission signal OUT

element timing (DCE source)

16 SBF Secondary Received data OUT

17 DD Receiver signal element

timing (DCE source) OUT

18 – Unassigned –

19 SCA Secondary request to send IN

20 DTR CD Data terminal ready IN

21 CG Signal quality detector OUT

22 CE Ring indicator OUT

23 CH/CI Data signal rate selector

(DTE/DCE Source) IN/OUT

24 DA Transmit signal element

timing (DTE source) IN

25 – Unassigned –

Microprocessor (8085) And Its Applications 6. 49

®

®

®2 3

4 6

5

10

9

13

12

8

11

MC1488

RS-232CTTL

TxD

RTS

DTR

330 pF

330 pF

330 pF

Pin 14 = +12-V

Pin 1 = 12-V

Pin 7 = GND

-

®

®

®
1 3

4 6

10

13 11

8

MC1489

RS-232C TTL

To RxD

Pin 14 = +5-V

Pin 7 = GND

®

To CTS

To DSR

To CD

C1+

C1
−

+5-V TO +10-V

Voltage Doubler

VCC V+

C2+

C2
−

+10-V TO 10-V
Voltage Inverter

−

V−
−

+

−10-V

+10-V
1

6

3

4

5 0.1 Fμ

T1

+5-V
400k

T1IN

→
T1OUT

11 14
→

7
→T2

+5-V
400k

T2IN

→
T2OUT

10

12 13
← R1

R1OUT R1IN

9
R2

15

←

←
R2OUT

5 k

5 k

R2IN

←

8

GND

0.1 Fμ
+

−

16

− +

0.1 Fμ

+5-V
Input

2

+

+

T
T

L
/C

M
O

S
In

p
u

t

T
T

L
/C

M
O

S
O

u
tp

u
t

R
S

-2
3
2

O
u

tp
u
t

R
S

-2
3
2

I n
p

u
t

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

M
A

X
2
3
2
A

C1+

V+

C1
−

C2
+

C2
−

V
−

T2OUT

R2IN

VCC

GND

T1OUT

R1
ΙΝ

R1OUT

T1IN

T2IN

R2OUT

Typical circuit connection of MAX 232A

Fig. 6.41 : TTL to RS-232C and RS-232C to TTL signal conversion.

0.1 Fμ

0.1 Fμ

Note : 1. For MAX 232 all capacitors should be 1 μF.

2. The voltage rating of all capacitors should be above 10-V.

6. 50 Chapter 6 Peripheral Devices And Interfacing

6.3.2 USART - INTEL 8251A

The 8251A is a programmable serial communication interface chip designed for synchronous

and asynchronous serial data communication. It is packed in a 28-pin DIP. The 8251A is the

enhanced version of its predecessor, 8251 and it is compatible with 8251. The pin description of

8251A is shown in Fig. 6.42.

The functional block diagram of 8251A is shown in Fig. 6.43. The block diagram shows

five sections, they are Read/Write control logic, Transmitter, Receiver, Data bus buffer and

Modem control.

Read/Write Control Logic

The Read/Write Control logic interfaces the 8251A with CPU, determines the functions of

the 8251A according to the control word written into its control register and monitors the data

flow. This section has three registers and they are control register, status register and data buffer.

28

27

26

25

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

9

10

11

12

®

®

13

14 15

16

®
®

®
®®

®

®®

®®

®

®
®

®
®

®

®
®

®

®®

®

®

®

®®
®

®
®
®

®
®
®
®

®

D2

D3

RxD

GND

D4

D5

D6

D7

TxC

WR

RD

CS

C/D

RxRDY

D1

D0

VCC

RxC

DTR

RTS

DSR

RESET

CLK

TxD

TxEMPTY

CTS

SYNDET/BRKDET

TxRDY

8251A

Fig. 6.42 : Pin description of 8251A.

®

®

®

®

®

®
®

RESET

CLK

C/D TxC

WR

RD

CS

RxRDY

VCC

RxCDTR

RTS

DSR

TxD

TxEMPTY

CTS
SYNDET/
BRKDET

TxRDY

8251A

D - D0 7

®

®

®

®
®

®

®

®

®

®

®

®

®

®

GND

RxD

Pin Description

D
0
-D

7
Parallel data

C/D Control register or

Data buffer select

RD Read control

WR Write control

CS Chip Select

CLK Clock pulse (TTL)

RESET Reset

TxC Transmitter Clock

TxD Transmitter Data

RxC Receiver Clock

RxD Receiver Data

RxRDY Receiver Ready

TxRDY Transmitter Ready

DSR Data Set Ready

DTR Data Terminal Ready

SYNDET/ Synchronous Detect /

BRKDET Break Detect

RTS Request To Send Data

CTS Clear To Send Data

TxEMPTY Transmitter Empty

V
CC

Supply (+5-V)

GND Ground (0-V)

Microprocessor (8085) And Its Applications 6. 51

Transmit
Buffer

(P)® S

Transmit
Control

Receive
Control

¯

¯

®

®
®

®

Data
Bus
Buffer

Modem
Control

Receive
Buffer

(P)¬ S

Read/
Write
Control
Logic

®
®
®

®

®

®
®

®

®

RESET

CLK

RD

CS

DTR

RTS

DSR

CTS

C/D
TxC

RxRDY

RxC

TxD

TxEMPTY

SYNDET/
BRKDET

TxRDY

RxD

D - D7 0

WR

Fig. 6.43 : The functional block diagram of 8251A - USART.

¬

¬

¬

¬®

¬¬

¬
In
te
rn
al
D
at
a
B
u
s

The signals RD, WR,C/D and CS are used for read/write operations with these registers.

When C/D is high, the control register is selected for writing control word or reading status

word. When C/D is low, the data buffer is selected for read/write operation.

A high on the reset input forces 8251A into the idle mode. The clock input is necessary for

8251A for communication with CPU and this clock does not control either the serial transmission

or the reception rate.

Transmitter Section

The transmitter section accepts parallel data from the CPU and converts them into serial data.

The transmitter section is double buffered, i.e., it has a buffer register to hold an 8-bit parallel data

and another register called output register to convert the previous data into a stream of serial bits.

The processor loads a data into buffer register. When output register is empty, the data

is transferred from buffer to output register. Now the processor can again load another data

in buffer register. If buffer register is empty, then TxRDY is asserted high and if output

register is empty then TxEMPTY is asserted high. These signals can also be used as interrupt

or status for data transmission.

The clock signal, TxC controls the rate at which the bits are transmitted by the USART.

The clock frequency can be 1,16 or 64 times the baud rate.

6. 52 Chapter 6 Peripheral Devices And Interfacing

Receiver Section

The receiver section accepts serial data and converts them into parallel data. The receiver

section is double buffered, i.e., it has an input register to receive serial data and convert to parallel

and a buffer register to hold the previous converted data.

Normally RxD line is high, when the RxD line goes low, the control logic assumes it as a

START bit, waits for half a bit time and samples the line again. If the line is still low, then the input

register accepts the following bits, forms a character and loads it into the buffer register. The CPU

reads the parallel data from the buffer register.

When the input register loads a parallel data to buffer register, the RxRDY line goes high.

This signal can be used as an interrupt or status to indicate the readiness of the receiver section to

CPU. The clock signal RxC controls the rate at which bits are received by the USART. In the

asynchronous mode, the clock frequency can be set to 1,16 or 64 times the baud rate.

During asynchronous mode, the signal SYNDET/BRKDET will indicate the intentional break

in the data transmission. If the RxD line remains low for more than 2 character time then this

signal is asserted high to indicate the break in the transmission.

During synchronous mode, the signal SYNDET/BRKDET will indicate the reception of

synchronous character. If the 8251A finds a synchronous character in the incoming string of data

bits then it asserts SYNDET signal as high.

MODEM Control

The MODEM control unit allows to interface a MODEM to 8251A and to establish data

communication through MODEM over telephone lines. This unit takes care of handshake signals

for MODEM interface.

Programming the 8251A

The 8251A is programmed by sending mode word and command word. First reset the

8251A and then send a mode word to control register address. Next, the command word is sent to

the same address. The CPU can check the readiness of the 8251A for data transfer by reading the

status register. The format of control and status words are shown in Fig. 6.44.

The mode word informs 8251 about the baud rate, character length, parity and stop bits.

The command word can be sent to enable the data transmission and/or reception. The information

regarding the readiness of transmitter/receiver and the transmission errors can be obtained from

status word.

If 8251A is programmed for a baud rate factor of 64x through mode word then the baud

rate is clock frequency divided by 64. If baud rate factor is 16x, then baud rate is clock frequency

divided by 16. If baud rate factor is 1x, then the baud rate is given by clock frequency.

Microprocessor (8085) And Its Applications 6. 53

B7 B6 B5 B4 B3 B2 B1 B0

SYNDETSYNDETDSR FE OE PE TxE RxRDY TxRDY

¯
TRANSMITTERREADY
IndicateUSARTis ready to accept
a data character or command

RECEIVERREADY
Indicates USART has received a
character on its serial input and is ready
to transfer it to theCPU.

TRANSMITTEREMPTY
Indicates that parallel to serial
converter in transmitter is empty.

PARITYERROR
PE flag is set when a parity error is
detected. It is reset by ER bit of
Command instruction. PE does not
inhibit operation of 8251.

OVERRUNERROR
The OE flag is set when the CPU does not
read a character before the next one
becomes available. It is reset by the ER bit
of the command instruction. OE does not
inhibit operation of the 8251; however,
the previously overrun character is lost.

DATASETREADY
DSR is general purpose. Normally
used to test modem conditions such
asData setReady

SYNCDETECT
When set for internal sync detect
indicates that character sync has been
achieved and 8251 is ready for data.

FRAMINGERROR(ASYNCONLY)
FE flag is set when a valid stop bit is not
detected at end of every character. It is
reset byERbit of command instruction.
FEdoes not inhibit operation of 8251.

¬

¯̄

¬

¬

Fig. c : Status word.

Fig. 6.44 : Format of 8251A mode, command and status words.

®

®

®

S2

B7 B6 B5 B4 B3 B2 B1 B0

S1 EP PEN L2 L1 B2 B1

 0 1 0 1

 0 0 1 1

Sync (1x) (16x) (64x)

Mode

→
→

Baud Rate Factor

 0 1 0 1

 0 0 1 1

 5 6 7 8

 Bits Bits Bits Bits

→
→

Character Length

Parity Enable
1 = Enable ; 0 = Disable→

Even Parity
Generation/Check
1 = Even ; 0 = Odd

→

→
→

 0 1 0 1

 0 0 1 1

Invalid 1 1 2

 Bit Bits Bits

½

Number of Stop Bits

(Only Effects Tx ; Rx Never Requires
More than One Stop Bit)

Fig. a : Mode word.

EH

B7 B6 B5 B4 B3 B2 B1 B0

IR RTS ER SBRK RxE DTR TxEN

→

→

Transmit Enable
1 = Enable
0 = Disable

↓

Data Terminal Ready
High will Force DTR
Output to Zero

Receiver Enable
1 = Enable RxRDY
0 = Disable RxRDY

Send Break Character
1 = Forces TxD Low
0 = Normal Operation

Error Reset
1 = Reset All Error
Flags (PE, OE, FE)

Request to Send
High will Force rts
Output to Zero

Internal Reset
High Returns 8251
to Mode Instruction
Format

Enter Hunt Mode
1 = Enable Search for
Syn Characters

→

→

→

→

→

Fig. b : Command word.

6. 54 Chapter 6 Peripheral Devices And Interfacing

Interfacing 8251A with 8085

A simple schematic for interfacing the 8251A with 8085 processor is shown in Fig. 6.45. The

8251A can be either memory-mapped or IO-mapped in the system. In the schematic shown in

Fig. 6.45, the 8251A is IO-mapped in the system. The chip select signals for IO-mapped devices are

generated by using a 3-to-8 decoder. The address lines A
4
, A

5
 and A

6
 are decoded to generate eight

chip select signals (IOCS-0 to IOCS-7) and in this, the chip select signal IOCS-2 is used to select

8251A. The address line A
7
 and the control signal IO/M are used as enable for decoder.

8085

 8-Bit

Latch

8251A

ALE

C
L

K
 O

U
T

R
E

S
E

T

IOCS - 1

IOCS - 2

IOCS - 3

IOCS - 4

IOCS - 5

IOCS - 6

IOCS - 7

→

Clock Divider

Clock Divider

→

→

→
→

→

→

→

→

→

→ → → →

→

IOCS - 0 →

→

→

→

→

→←

←

←

→

1 2 4 5

6 7 8 9

→

→

RD

WR

AD - AD0 7

EN

→

→

A

B

G2A

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

C

G2B

G1

3
-t

o
-8

D
e
c
o

d
e
r

IO/M

RD

WR

CS

DSR

TxD

RxD

RTS

CTS

R
E

S
E

T

C
L

K

T
x
C

R
x

C
→

→

→

→

→←

DTR

RxRDY

TxRDY

TxEMPTY

SYNDET/
BRKDET

MAX232A

→

→

TTL
Serial Bus

R
2

O
U

T

T
2

I N

T
1

IN

R
1

O
U

T

T
1

O
U

T

R
1

IN

R
2

IN

T
2

O
U

T

→

→

→

T
x
D

R
x

D

R
T

S

C
T

S
RS-232

Serial Bus

9-pin D-type
Connector

C/D

D
-

D
0

7

D - D0 7

→

→
A - A0 7

RD

WR
A4

A5

A6

A7

A0

Fig. 6.45 : Interfacing of 8251A to 8085 microprocessor.

Internal device Hexa

of 8251A
A

7
A

6
A

5
A

4
A

3
A

2
A

1
A

0

address

Data buffer 0 0 1 0 x x x 0 20

Control register 0 0 1 0 x x x 1 21

TABLE - 6.16 : IO ADDRESSES OF 8251A

Note : The don't care "x" is considered as zero.

Decoder input and enable Input to address pin of 8251

Binary address

Microprocessor (8085) And Its Applications 6. 55

Connecting
Leads

Metal
Plate

Metal
Contact

Metal
Contact

Press

Fig. 6.46 : A representation of
keyboard switch.

The address line A
0
 of 8085 is connected to C/D of 8251A to provide the internal addresses.

The IO addresses allotted to the internal devices of 8251A are listed in Table-6.16. The data lines

D
0
-D

7
 are connected to D

0
-D

7
 of the processor to achieve parallel data transfer. The RESET and

clock signals are supplied by the processor. Here the processor clock is directly connected to

8251A. This clock controls the parallel data transfer between the processor and 8251A.

The output clock signal of 8085, is divided by suitable clock dividers and then used as clock

for serial transmission and reception (TxC and RxC). In 8251A the transmission and reception

baud rates can be different or same. Usually a programmable timer, 8254 (which is discussed in

Section 6.5) is used to divide the processor output clock and supply to TxC and RxC at the

required rate.

The TTL logic levels of the serial data lines (RxD and TxD) and the control signals necessary

for serial transmission and reception are converted to RS232 logic levels using MAX232 and then

terminated on a standard 9-pin D-type connector. The device which requires serial communication

with processor can be connected to this 9-pin D-type connector using 9-core cable.

The signals TxEMPTY, TxRDY and RxRDY can be used as interrupt signals to initiate

interrupt driven data transfer scheme between processor and 8251A.

6.4 KEYBOARD AND DISPLAY INTERFACE

6.4.1 Keyboard Interface Using Ports

A common method of entering programs into a microcomputer is through a keyboard

which consists of a set of switches. Basically each switch will have two normally open metal

contacts. These two contacts can be shorted by a metal plate

supported by a spring as shown in Fig. 6.46. On pressing the

key, the metal plate will short the contacts and on releasing the

key, again the contacts will be open. The processor has to

perform the following three major task to get a meaningful data

from a keyboard.

1. Sense a key actuation.

2. Debounce the key.

3. Decode the key.

The three major tasks mentioned above can be performed by the software, when a keyboard

is connected through ports to 8085 processor. Consider a simple keyboard in which the keys are

arranged in rows and columns as shown in Fig. 6.47. The rows are connected to port-A lines of

8255 and columns are connected to port-B lines, of the same chip. The rows and columns are

normally tied high. At the intersection of a row and column, a key is placed such that pressing a

key will short the row and the column.

A key actuation is sensed by sending a low to all the rows through port-A. Pressing a key

will short the row and column to which it is connected. So, the column to which the key is

connected will be pulled low. Therefore, the columns are read through port-B to see whether any

6. 56 Chapter 6 Peripheral Devices And Interfacing

of the normally high columns are pulled low by a key actuation. If they are, then rows can be

checked individually to determine the row in which the key is down. For checking each row, the

scan code of the type shown in Table - 6.17 are output to port-A one by one. This process of

sensing a key actuation is called keyboard scanning.

A key press has to be accepted only after debouncing. Normally, the key bounces for 10 to

20 milliseconds when it is pressed and released. The bouncing time depends on the type of the

key. When this bounce occurs, it may appear to the microcomputer that the same key has been

actuated several times instead of just one time. This problem can be eliminated by scanning the

row in which the key press is deducted after 10 to 20 millisecond and then verifying to see if the

same key is still down. If it is, then the key actuation is valid. This process is called key debouncing.

After debouncing, the code for the key has to be generated. Each key can be individually

identified by the port-A output value (row code) and port-B input value (column code). The next

step is to translate the row and column code into a more popular code such as hexadecimal or

ASCII. This can easily be accomplished by a program. The flowchart for the keyboard scanning

when the keyboard is interfaced using ports is shown in Fig. 6.48.

In keyboard interfacing there are two methods of handling multiple key press and they are

two-key lockout and N-key rollover. The two-key lockout takes into account only one key pressed.

An additional key pressed and released does not generate any codes. The system is simple to

PA
3

PA
2

PA
1

PA
0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

TABLE - 6.17 : SCAN CODE FOR

KEYBOARD SCANNING

8085
System

8255

PA0

PA1

PA2

PA3

PB0

PB1

PB2

PB3

1kΩ

+5-V

+5-V

1kΩ

C
o
lu

m
n

0

C
o
lu

m
n

1

0 1 2 3

4 5 6 7

8 9 A B

C D E F

C
o
lu

m
n

2

C
o
lu

m
n

3

Row 0

Row 1

Row 2

Row 3

Port-A is Initialized as Output Port
Port-B is Initialized as Input Port

Fig. 6.47 : Keyboard interfacing using ports.

Microprocessor (8085) And Its Applications 6. 57

↓

Start

↓
Send Zero to All Rows

↓
Read Columns

Set Count for Rows.
Initialize Row
Count as Zero

Determine the
Key Code

→

↓

Yes

No

All
Keys

Open?

↓

Wait 20 ms

↓

Return

↓

Output Low to the
Row Specified
by Row Count

↓

↓
Read Columns

All
Rows

Scanned
→←

Return

↓

NoYes

Key
Pressed?

↓

↓
Output Zero to Same Row

↓
Read Columns

Key
Found?

↓

Increment
Row Count

←

↑

↑

←

No

No

↓
Convert to HEX

Return

↓

Yes

Yes

Fig. 6.48 : Flowchart for keyboard scanning subroutine.

→

6. 58 Chapter 6 Peripheral Devices And Interfacing

implement and more often used. However, it might slow down the typing since each key must be

fully released before the next one is pressed down. On the other hand, the N-key rollover will

detect all the keys pressed in the order of entry and generates corresponding keycode.

The disadvantage in keyboard interfacing using ports is that, most of the processor time is

utilized (or wasted) in keyboard scanning and debouncing.

6.4.2 Display Interface Using Ports

The 7-segment LEDs are the most popular display devices used for single board

microcomputers (microprocessor trainer kits). The 7-segment LEDs can be either common anode

type or common cathode type.

Each 7-segment LED will have seven Light Emitting Diodes (LEDs) arranged in the form

of small rectangular segments and another LED as a dot point in a single package. In common

cathode type, all the cathode terminals of LEDs are internally shorted and one/two pins are provided

for external connection. The anode of the LEDs are terminated on separate pins for external

connection. The pin configuration and the internal connection of common cathode 7-segment

LED are shown in Fig. 6.49.

In common anode type all the anode terminals of LEDs are internally shorted and one /two

pins are provided for external connection. The cathode of LEDs are terminated on separate

pins for external connection. The pin configuration and the internal connection of common anode

7-segment LED are shown in Fig. 6.50.

In the 7-segment LED a segment will glow or emit light when it is forward biased. Therefore,

a segment can be made to glow, by applying a high (logic-1/+5-V) to anode and a low(logic-0/0-V)

to the cathode. The alphabetic/numeric characters can be displayed on the 7-segment LED by

forward biasing the appropriate segments.

In common cathode 7-segment LED the common point is tied to logic-0. To display a

character, logic-1 is applied to anode of segments which has to emit light and logic-0 is applied to

anode of segments which should not emit light. The binary and hex codes for displaying the

decimal digits 0 to 9 in common cathode 7-segment LED are listed in Table -6.18.

In common anode 7-segment LED the common point is tied to logic-1. To display a character,

logic-0 is applied to cathode of segments which has to emit light and logic-1 is applied to cathode

of segments which should not emit light. The binary and hex codes for displaying the decimal

digits 0 to 9 in common anode 7-segment LED are listed in Table-6.19.

The display codes for LEDs can be generated by using the BCD to 7-segment decoder, IC

7447. When a BCD code is sent to the input of the 7447, it outputs low on the segments required

to display the number represented by the BCD code. A simple schematic is shown in Fig. 6.51, to

interface a common anode 7-segment LED to 8085 system using a port device. This circuit

connection is referred to as static display, because current is being passed through the display at

all times.

Microprocessor (8085) And Its Applications 6. 59

BCD digit
Binary code

Hexa code
dp g f e d c b a

0 0 1 1 1 1 1 1 3F

0 0 0 0 0 1 1 0 06

0 1 0 1 1 0 1 1 5B

0 1 0 0 1 1 1 1 4F

0 1 1 0 0 1 1 0 66

0 1 1 0 1 1 0 1 6D

0 1 1 1 1 1 0 1 7D

0 0 0 0 0 1 1 1 07

0 1 1 1 1 1 1 1 7F

0 1 1 0 1 1 1 1 6F

TABLE - 6.18 : 7-SEGMENT DISPLAY CODE FOR COMMON CATHODE LED

e d co c dp

10 9 8 7 6

1 2 3 4 5

g f co a b

a

d

f b

e c

g

dp

Fig. a : Pin configuration.

gf

co

a b edc dp

Fig. b : Internal connection.

co - common cathode

dp - anode of dot point

a, b, c, d, e, f, g - anodes of segments

Fig. 6.49 : Common cathode 7-segment LED.

6. 60 Chapter 6 Peripheral Devices And Interfacing

e d co c dp

10 9 8 7 6

1 2 3 4 5

g f co a b

a

d

f b

e c

g

dp

Fig. a : Pin configuration.

gf

co

a b edc dp

Fig. b : Internal connection.

co - common anode

dp - cathode of dot point

a, b, c, d, e, f, g - cathodes of segments

Fig. 6.50 : Common anode 7-segment LED.

TABLE - 6.19 : 7-SEGMENT DISPLAY CODE FOR COMMON ANODE LED

BCD digit
Binary code

Hexa code
dp g f e d c b a

1 1 0 0 0 0 0 0 C0

1 1 1 1 1 0 0 1 F9

1 0 1 0 0 1 0 0 A4

1 0 1 1 0 0 0 0 B0

1 0 0 1 1 0 0 1 99

1 0 0 1 0 0 1 0 92

1 0 0 0 0 0 1 0 82

1 1 1 1 1 0 0 0 F8

1 0 0 0 0 0 0 0 80

1 0 0 1 0 0 0 0 90

Microprocessor (8085) And Its Applications 6. 61

A typical microprocessor system normally requires 6 to 8 numbers of 7-segment LEDs.

The current requirement of each 7-segment LED is 140 mA to 200 mA. Hence, the total current

requirement for 6 numbers of 7-segment LEDs will be 1200 mA. Also, each 7-segment LED

requires a 7447 decoder and 4 lines of a port. The current required by the decoder and the LED

displays might be several times the current required by the rest of the circuit in the microprocessor

system.

The heavy current requirement in static display can be reduced drastically by using

multiplexed display scheme. In multiplexed display only one 7-segment display is made to glow at

a time. Each 7-segment LED is turned ON at definite intervals. Due to persistence of vision the

display appears to be continuous to a human eye. (Actually LEDs are turned ON and OFF.)

Note : A human eye can retain an image for 125 milliseconds.

Following are the advantages of multiplexed display :

1. Only one 7447 is needed for all the 7-segment LEDs.

2. In a current requirement of one-7-segment LED, 6 to 8 LEDs can be interfaced .

Figure 6.52 shows a multiplexed display of 6 numbers of 7-segment common anode LEDs.

The segment pins (cathodes) of 7-segment LEDs are connected to a common bus. The

output of the decoder (7447) is connected to this common bus. The BCD code for the character

to be displayed is sent to 7447 through port-A lines. The common anode of each 7-segment

LED has a driver transistor (PNP type). A driver transistor can be turned ON by sending low to

the base of the transistor through port-B lines.

The trick of multiplexed display is that the segment information is sent out to all of the

digits on the common bus, but only one display digit is turned on at a time. The PNP transistors

in series with the common-anode of each digit acts as an ON and OFF switch for that digit.

The BCD code for digit-1 is first output from port-A to the 7447. The 7447 outputs the

corresponding seven-segment code on the segment bus lines. The transistor connected to

digit-1 is then turned ON by outputting a low on the corresponding bit of port-B (Remember, a

low turn ON a PNP transistor). All of the rest of the bits of port-B should be high to make sure

no other digits are turned ON. After a few milliseconds, digit-1 is turned OFF by outputting all

high to port-B.

8085-Based
System

Fig. 6.51 : 7-Segment LED display using port.

8255

PA0

PA1

PA2

PA3

7447

BCD to

7-segment

Decoder

+5-V

Common Anode

6. 62 Chapter 6 Peripheral Devices And Interfacing

Start

¯

¯

Initialize a Counter for
Number of Digits

Send BCD Code of a Digit to Decoder

¯
Is

Count Zero?

®

NoYes

¯
Turn ON Corresponding Digit Driver

¯
Wait for 5 Millisecond

¯
Decrement the Count

®¬

Fig. 6.53 : Flowchart for multiplexed display.

¬

Next the BCD code for digit-2 is output to

the 7447 on port-A and a data to turn ON the driver

transistor of digit-2 is output on port-B. After a few

milliseconds, digit-2 is turned OFF and the process

is repeated for digit-3. This process is continued

until all of the digits have had a turn. Then digit-1

and the following digits are turned ON again in turn.

This process is also called display refreshing.

With 6 digits and 5 ms per digit, we can get

back to digit-1 every 25 ms or about 40 times a

second. This refresh rate is fast enough so that, all

digits appear to be turned ON all the time. Refresh

rates of 40 to 200 times a second are acceptable. A

flowchart for the operational flow in multiplexed

display is shown in Fig. 6.53.

7447
BCD to 7-Segment Decoder

¬ ¬ ¬ ¬ ¬ ¬

Common Anode
7-Segment LEDs

Anode
Driver
Transistor

Q6 Q5 Q4 Q3 Q2 Q1

1
k
W

1
k
W

1
k
W

1
k
W

1
k
W

1
k
W

+5-V

Q to Q = 2N39061 6

Port-B

Port-A

8255

Fig. 6.52 : A schematic diagram of a multiplexed display using ports.

1
5
0
W

¯ ¯ ¯ ¯

Microprocessor (8085) And Its Applications 6. 63

The great advantages of multiplexing the displays are that only one 7447 is required and only

one digit is ON at a time. Hence it results in large saving in power and parts.

6.4.3 Latches and Buffers as IO Devices

The Latches and Buffers can be used as IO ports. Basically in programmable IO ports of

8155/8255/8355/8755 the ports are made of latches and buffers. Latches can be used as output

ports and buffers can be used as input ports. Examples of 8-bit latches are 74LS373, 74LS273,

74LS573, 74LS574, etc. Examples of 8-bit buffers are 74LS245, 74LS244, 74LS240, INTEL

8286, etc.

The 8-bit latch can be used as an output device to interface LEDs or seven segment LEDs

as shown in Fig. 6.54. A Latch is selected by a chip select signal. If can be mapped in the system

either by IO mapping or memory mapping. The processor has to send an address to select the

latch. A decoder in the system produces Chip Select signal (CS) which enables the latch. Then the

processor loads the display code on the data bus. The latch will hold the display code, until it is

loaded with another display code.

In Fig. 6.54, a segment is turned ON if a one is sent to anode through the latch. The

cathode is permanently tied to ground.

Using latches and decoders multiplexed display is also possible as shown in Fig. 6.55.

In this scheme two latches are used. One for turning ON the segment driver transistor and

another for turning ON the digit driver transistor. The segments (Anodes in case of common

cathode LEDs) are connected to a common bus. Driver transistors are provided to satisfy the

current requirement of LEDs. The segment transistors can be turned ON by sending

appropriate code through Latch-1.

The common point (Cathode in case of common cathode LEDs) of each 7-segment LED is

connected to a driver transistor (digit driver). The digit driver transistors can be turned ON, one at

a time by the decoder.

EN

CS from

 Decoder

D
0
 - D

7

from the

Processor

↑

8-bit

Latch

(74LS373/

74LS573)

Common Cathode

7-Segment LED

Fig. 6.54 : An 8-bit latch as output port.

6. 64 Chapter 6 Peripheral Devices And Interfacing

The processor selects Latch-1 and sends the display code (7-segment code) to it. Then

the processor selects Latch-2 and send an appropriate binary count to turn on a particular

digit. The input to the decoder 74LS138 is a binary count and the output of the decoder will

turn ON only one digit transistor. After a delay time (typically 3 to 10 ms) all the segments are

turned OFF by sending appropriate code to segment drivers. Then the display code for next

digit is sent to segment drivers and the corresponding digit driver is turned ON, by sending an

appropriate count to decoder.

The disadvantage in using ports and latches as output devices is that a considerable

processor time is consumed for display refreshing.

Similarly an input device such as a keyboard can also be interfaced using buffers. The

interfacing of keyboard using buffers will be similar to that of keyboard interface using ports of

8255 discussed in Section 6.4.1. The disadvantage in using buffers for keyboard interfacing is that

most of the processor time is consumed for keyboard scanning and debouncing.

Latch 1

D
0
 - D

7

EN

↑

Latch 2

D
0
 - D

7

EN

↑

Segment

Driver

Transistor

Decoder

74LS138

Digit

Driver

Transistor

S
y

st
e
m

D
a

ta
B

u
s

Fig. 6.55 : Multiplexed 7-segment LED display using latches.

 CS from

Decoder

 CS from

Decoder

Microprocessor (8085) And Its Applications 6. 65

6.4.4 Keyboard /Display Controller - INTEL 8279

The INTEL 8279 is a dedicated controller specially developed for interfacing keyboard and

display devices to 8085/8086/8088 microprocessor-based system. It relieves the processor from

the time consuming task like keyboard scanning and display refreshing.

The important features of 8279 are :

� Simultaneous keyboard and display operations.

� 2-key lockout or N-key rollover with contact debounce.

� Scanned keyboard mode.

� Scanned sensor mode.

� Strobed input entry mode.

� 8-character keyboard FIFO.

� 16-character display.

� Right or left entry 16-byte display RAM.

� Mode programmable from CPU.

� Programmable scan timing.

� Interrupt output on key entry.

The 8279 provides an interface for a maximum of 64-contact key matrix (arranged as 8 × 8

matrix array of key switches). Keyboard entries are debounced and stored in the internal FIFO

RAM. It generates an interrupt signal for each key entry, to inform the processor to read the

keycode from FIFO.

Fig. 6.56 : Pin description of 8279.

40

39

38

37

36

35

34

33

32

31

30

29

VCC1

2

3

4

5

6

7

8

9

10

11

12

®

®

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®
®®

®

®
®
®
®® ®

®®

®
®
®
®
®
®

®

®
®

®

®

®

®
®

®

®

®®

®

®

®

®
®
®

®
®

®
®®

®
®
®

®
®
®
®
®

®

RL2
RL3

CLK

IRQ

RL4

RL5
RL6
RL7

RESET

RD

DB0

WR

CS

DB1

DB2

DB3

DB4

DB5

DB6

DB7

VSS

8279

RL1

RL0

CNTL/STB

SHIFT

SL3

SL2

SL1
SL0

OUT B0

OUT B1

OUT B2

OUT B3

OUTA0

OUTA1

OUTA2

OUTA3

BD

A0

®

®

®

®

®

IRQ
RL0 - 7

RD

WR

CS

A0

RESET

CLK

VCC

VSS

8279

SHIFT

CNTL/STB

SL0 - 3

OUTA0 - 3

OUT B0 - 3

BD

8

8

4

4

4

DB0 - 7

®
®

®

®

®

®

®

Pin Description

DB
0 - 7

Data Bus

(Bidirectional)

CLK Clock Input

RESET Reset Input

CS Chip Select

RD Read Control

WR Write Control

A
0

Internal Address

IRQ Interrupt Request

Output

SL
0-3

Scan Lines

RL
0-7

Return Lines

SHIFT Shift Input

CNTL/STB Control/Strobe Input

OUTA
0-3

Display (A) Output

OUT B
0-3

Display (B) Output

 BD Blank Display Output

6. 66 Chapter 6 Peripheral Devices And Interfacing

The 8279 provides a multiplexed interface for 7-segment LEDs and other popular display

devices. It consists of 16 × 8 display RAM which can also be organized into dual 16 × 4 RAM. The

CPU has to load the display codes in this RAM. Once the data is loaded, the 8279 takes care of display

and refreshing. A maximum of 16 numbers of 7-segment LEDs can be interfaced using 8276.

The 8279 is a 40-pin IC available in DIP (Dual In-Line Package). The pin configuration of

8279 is shown in Fig. 6.56. The 8279 has two internal addresses decided by the logic level of A
0
.

If A
0
 is low then the processor can read or write to data register of 8279. If A

0
 is high then the

processor can write to control register or read status register. The 8279 can be either IO-mapped

or memory-mapped in the system.

Block Diagram of 8279

The functional block diagram of 8279 is shown in Fig. 6.57. The four major sections of

8279 are keyboard, scan, display and CPU interface.

Keyboard section

The keyboard section consists of eight return lines RL
0
 - RL

7
 that can be used to form the

columns of a keyboard matrix. It has two additional input : shift and control/strobe. The keys are

automatically debounced. The two operating modes of keyboard section are 2-key lockout and

Data

Buffers
IO Control

←

RD WR CS A
0

8×8

FIFO/Sensor

RAM

Control and

Timing

Registers

16×8

Display

RAM

Display

Address

Registers

CLK
RESET DB

0
- DB

7

Internal Data Bus (8)

Timing

and

ControlDisplay

Registers

8

OUT A
0
- A

3
, OUT B

0
-B

3

BD

Scan

Counter

SL
0
- SL

3

Return

RL
0
- RL

7

← ← ←

← ←

←

←

←

←

←

←

←

←

←

←

←

FIFO/Sensor

RAM Status

IRQ

Keyboard

Debounce

and Control

CNTL/STB

SHIFT

←

←

←

←

← ←

Fig. 6.57 : Block diagram of 8279.

Microprocessor (8085) And Its Applications 6. 67

N-key rollover. In the 2-key lockout mode, if two keys are pressed simultaneously, only the first

key is recognized. In the N-key rollover mode simultaneous keys are recognized and their codes

are stored in FIFO.

The keyboard section also has a 8×8 FIFO (First-In-First-Out) RAM. The FIFO can store

eight keycodes in the scan keyboard mode. The status of the shift key and control key are also

stored along with keycode. The 8279 generates an interrupt signal when there is an entry in FIFO.

The format of keycode entry in FIFO for scan keyboard mode is shown in Fig. 6.58.

In sensor matrix mode the condition (i.e., open/close status) of 64 switches is stored in

FIFO RAM. If the condition of any of the switches change then the 8279 asserts IRQ as high to

interrupt the processor.

Display section

The display section has eight output lines divided into two groups A
0
-A

3
 and B

0
-B

3
. The

output lines can be used either as a single group of eight lines or as two groups of four lines, in

conjunction with the scan lines for a multiplexed display. The output lines are connected to the

anodes through driver transistor in case of common cathode 7-segment LEDs. The cathodes are

connected to scan lines through driver transistors. The display can be blanked by BD line. The

display section consists of 16×8 display RAM. The CPU can read from or write into any location

of the display RAM.

Scan section

The scan section has a scan counter and four scan lines, SL
0
 to SL

3
. In decoded scan

mode, the output of scan lines will be similar to a 2-to-4 decoder. In encoded scan mode, the

output of scan lines will be binary count, and so an external decoder should be used to convert the

binary count to decoded output. The scan lines are common for keyboard and display. The scan

lines are used to form the rows of a matrix keyboard and are also connected to digit drivers of a

multiplexed display to turn ON/OFF.

CPU interface section

The CPU interface section takes care of data transfer between 8279 and the processor.

This section has eight bidirectional data lines DB
0
-DB

7
 for data transfer between 8279 and CPU.

It requires two internal address A
0
 = 0 or 1, for selecting either data buffer or control register of

8279. The control signals WR, RD, CS and A
0
 are used for read/write to 8279. It has an interrupt

request line IRQ, for interrupt driven data transfer with processor.

Fig. 6.58 : Keycode entry in FIFO for scan keyboard mode.

Status of

Control Key

Status of

Shift Key

Binary Value of

the Row in which

Key Closure is

Detected

Binary Value of

the Column in

which Key Closure

is Detected

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

→

→

6. 68 Chapter 6 Peripheral Devices And Interfacing

Write Display RAM

Code :

The CPU sets up the 8279 for a write to the
Display RAM by first writing this command. After

writing the command with A
0
=1, all subsequent

writes with A
0
 = 0 will be to the Display RAM. The

addressing and Auto increment functions are
identical to those for the Read Display RAM.

1 0 0 AI A A A A

Display Write Inhibit/Blanking

Code :

The IW Bits can be used to mask nibble A and
nibble B in application requiring separate 4-bit
display ports. By setting the IW flag (IW=1) for one
of the ports, the port becomes masked.

The BL flags are available for each nibble. The
last Clear command issued determined the code
to be used as a blank.

1 0 1 X IW IW BL BL

A B A B

Clear

Code :

The CD bits are available in this command to
clear all rows of the Display RAM to a selectable
blanking code as follows.

CD CD CD

0 X All Zeros (X = Don't Care)
1 0 AB = Hex 20 (0010 0000)
1 1 All Ones

Enable clear display if this bit is 1

If the C
F
 bit is asserted (C

F
 = 1), the FIFO status

is cleared and the interrupt output line is reset.

C
A
, the clear all bit, has the combined effect of

C
D
 and C

F
; it uses the C

D
clearing code on the Display

RAM and also clears FIFO status. Furthermore, it
resynchronizes the internal timing chain.

1 1 0 C
D

C
D

C
D

C
F

C
A

↑

End Interrupt/Error Mode Set

Code :

For the sensor matrix modes this command
lowers the IRQ line and enables further writing
into RAM. For the N-Key rollover mode , if the E
bit is programmed to 1 the chip will operate in
the special Error mode.

1 1 1 E X X X X

X = Don't care

Keyboard/Display Mode Set

 Code :

D D

0 0 Eight No.of 8-bit character display -Left entry
0 1 Sixteen No.of 8-bit character display -Left entry
1 0 Eight No.of 8-bit character display -Right entry
1 1 Sixteen No.of 8-bit character display -Right entry

K K K

0 0 0 Encoded Scan Keyboard - 2-Key Lockout
0 0 1 Decoded Scan Keyboard- 2-Key Lockout
0 1 0 Encoded Scan Keyboard - N-Key Rollover
0 1 1 Decoded Scan Keyboard - N-Key Rollover
1 0 0 Encoded Scan Sensor Matrix
1 0 1 Decoded Scan Sensor Matrix
1 1 0 Strobed Input, Encoded Display Scan
1 1 1 Strobed Input, Decoded Display Scan.

0 0 0 D D K K K

Program Clock

Code :

All timing and multiplexing signals for the
8279 are generated by an internal prescaler. This
prescaler divides the external clock (pin 3) by a
programmable integer. Bits PPPPP determine the
value of this integer which ranges from 2 to 31.
Choosing a divisor that yields 100 kHz will give
the specified scan and debounce times.

0 0 1 P P P P P

Read Display RAM

 Code :

The CPU sets up the 8279 for a read of the
Display RAM by first writing this command. The
address bits AAAA select one of the 16 rows of
the Display RAM. If the AI flag is set (AI=1), this
row address will be incremented after each read
or write to the Display RAM.

0 1 1 AI A A A A

Fig. 6.59 : 8279 Command word formats.

Read FIFO/Sensor RAM

Code :

The CPU sets up the 8279 for a read of the
FIFO/Sensor RAM by first writing this command. In
the Scan keyboard Mode, the Auto-Increment flag
(AI) and the Ram address bits (AAA) are irrelevant.

In the Sensor Matrix Mode, the RAM address bits
AAA select one of the 8 rows of the Sensor RAM. If the
AI flag is set (AI = 1), each successive read will be
from the subsequent row of the sensor RAM.

0 1 0 AI X A A A

X = Don't care

Microprocessor (8085) And Its Applications 6. 69

The 8279 requires an internal clock frequency of 100 kHz. This can be obtained by dividing

the input clock by an internal prescaler. The prescaler can take a value from 2 to 31, which is

programmable. The RESET signal sets the 8279 in 16-character display with two-key lockout

keyboard mode. Also the reset will set the clock prescaler to 31.

Programming the 8279

The 8279 can be programmed to perform various functions through eight command words.

The formats of the command words and a brief explanation are presented in Fig. 6.64.

6.4.5 Keyboard and Display Interface Using 8279

In a microprocessor-based system, when keyboard and 7-segment LED display are interfaced

using ports or latches then the processor has to carry out the following tasks :

� Keyboard scanning � Sending display code to LED

� Key debouncing � Display refreshing

� Keycode generation

The above functions have to be performed continuously in specified time intervals. Hence

most of the processor time will be utilized for the above task. To overcome this problem, the dedicated

Keyboard/Display controller such as INTEL 8279 can be employed in the system. The 8279 provides

a hardware solution for keyboard and display interfacing in microprocessor-based system.

When 8279 is employed, the task of the processor is to program the 8279 by sending

control words and load the display code in display RAM of 8279. Once 8279 is programmed it

takes care of keyboard scanning, debouncing, keycode generation and display refreshing. Whenever

8279 detects a key press, it informs the processor through interrupt so that the processor can read

the keycode from FIFO of 8279.

Interfacing 8279 with 8085 Processor

A typical Hexa keyboard and 7-segment LED display interfacing circuit using 8279 is shown

in Fig. 6.60. The circuit can be used in 8085 microprocessor system and consists of 16 numbers

of hexa-keys and 6 numbers of 7-segment LEDs. The 7-segment LEDs can be used to display six

digit alphanumeric character.

The 8279 can be either memory-mapped or IO-mapped in the system. In the circuit of

Fig. 6.60, the 8279 is IO-mapped. The address line A
0
 of the system is used as A

0
 of 8279. The clock

signal for 8279 is obtained by dividing the output clock signal of 8085 by a clock divider circuit.

The chip select signal CS, is obtained from the IO address decoder of the 8085 system. The

chip select signals for IO-mapped devices are generated by using a 3-to-8 decoder. Address lines

A
4
, A

5
 and A

6
 are used as input to decoder. The address line A

7
 and the control signal IO/ M are

used as enable for decoder. The chip select signal IOCS-3 is used to select 8279. The IO address

of the internal devices of 8279 are shown in Table-6.24.

The circuit has 6 numbers of 7-segment LEDs and so the 8279 has to be programmed in

encoded scan. (Because in decoded scan, only 4 numbers of 7-segment LEDs can be interfaced.)

In encoded scan the output of scan lines will be binary count. Therefore an external, 3-to-8 decoder

is used to decode the scan lines SL
0
, SL

1
 and SL

2
 of 8279 to produce eight scan lines S

0
 to S

7
. The

decoded scan lines S
0
 and S

1
 are common for keyboard and display. The decoded scan lines S

2
 to

S
5
 are used only for display and the decoded scan lines S

6
 and S

7
 are not used in the system.

6. 70 Chapter 6 Peripheral Devices And Interfacing

F
ig

.
6

.6
0

 :

K

e
y
b

o
a

rd
 a

n
d

 d
is

p
la

y
 i
n

te
rf

a
c
e

 w
it
h

 8
0

8
5

 u
s
in

g
 8

2
7

9
.

R
E

S
E

T

C
L

K
8

2
7

9

O
U

T
B

2

O
U

T
 B

3

A
n

o
d

e
D

ri
v

er
s

(B
C

1
5

8
)

S
H

IF
T

C
N

T
L

C
o

m
m

o
n

 C
a
th

o
d

e
 L

E
D

s
(L

T
5

4
3

)

S
5

S
4

S
3

S
2

S
1

S
0

A

B

C

7
4

L
S

1
3

8
3

-t
o

-8
 D

e
c
o

d
e
r

S
c
a

n
 L

in
e
 D

e
c
o

d
e
r

H
ex

a
K

ey
b

o
ar

d
 M

at
ri

x

→

→

→
3

3
0
Ω

SL0

SL1

SL2

C
at

h
o

d
e

D
ri

v
er

s
(B

C
1

5
8

)

→ →

8
0

8
5

→

8
-B

it

L
a

tc
h

→

A
L

E

A
D

0
-

A
D

7
CLK OUT

R
S

T
5

.5 R
E

S
E

T

C
lo

c
k

D
iv

id
e

r
C

S

W
R

R
D

→ → → →→ →

→ →

 3-to 8-Decoder

→

IO
C

S
-0

→ → →

D
0
-
D

7

8

A
1

IO
C

S
-2

IO
C

S
-3

IO
C

S
-1

IO
C

S
-4

IO
C

S
-6

IO
C

S
-7

IO
C

S
-5

A C G
1

B

→

G
2

A

G
2

B

A
5

A
4

A
6

A
7

→

IR
Q

IR
Q

R
L

0
-
R

L
7

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

R
L

0
R

L
3

R
L

2
R

L
1

R
L

4
R

L
7

R
L

6
R

L
5

S
7

S
6

D
B

0
-D

B
7

A
0

O
U

T
A

0
2

2
k
Ω

O
U

T
A

1

O
U

T
A

2

O
U

T
A

3

O
U

T
B

0

O
U

T
B

1

+
5

-V a

b

c

d

e

g

f

d
p

SL3

→

Y
7

Y
6

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

→

→→
IO

/M

→
W

R

R
D
→

E
N

→
IR

Q
↑

IO
/M

W
R

R
D

→

IO
/M

D
0
-
D

7

A
0
-
A

7

←

Microprocessor (8085) And Its Applications 6. 71

The common cathode LEDs, LT543 are used in circuit shown in Fig. 6.60. The corresponding

segments of anodes are connected to a common line to form a bus and this bus can be called as

segment bus (i.e., segment "a" of all 7-segment LEDs are connected to a common line, similiarly

segment "b" and so on).

Anode and Cathode drivers are provided to take care of the current requirement of LEDs.

The pnp transistors, BC158 are used as driver transistors. The anode drivers are called segment

drivers and cathode drivers are called digit drivers.

The 8279 outputs the display code for one digit through its output lines (OUT A
0
 to OUT A

3

and OUT B
0
 to OUT B

3
) and sends a scan code through, SL

0
-SL

3
. The display code is inverted by

segment drivers and sent to segment bus. The scan code is decoded by the decoder and turns ON

the corresponding digit driver. Now one digit of the display character is displayed. After a small

interval (10 millisecond, typical), the display is turned OFF (i.e., display is blanked) and the above

process is repeated for the next digit. Thus, multiplexed display is performed by 8279.

Note : Since anode drivers invert the display code, the complement of the data

required to turn ON a common cathode LED should be loaded in display RAM

of 8279.

The keyboard matrix is formed using the return lines, RL
0
 to RL

7
 of 8279 as columns and

decoded scan lines S
0
 and S

1
 as rows. A hexa key is placed at the crossing point of each row and

column. A key press will short the row and column. Normally the column and row line will be

high (i.e., the 8279 will tie the return line as high and decoder will tie the scan line as high).

During scanning the 8279 will output binary count on SL
0
 to SL

3
, which is decoded by decoder to

make a row as zero. When a row is zero the 8279 reads the columns. If there is a key press then

the corresponding column will be zero.

If 8279 detects a key press then it waits for debounce time and again read the columns to

generate keycode. In encoded scan keyboard mode, the 8279 stores an 8-bit code for each valid

key press. The keycode consist of the binary value of the column and row in which the key is

found and the status of shift and control key. The format of the code entered in FIFO RAM is

shown in Fig. 6.58. After a scan time, the next row is made zero and the above process is repeated

and so on. Thus 8279 continuously scans the keyboard.

TABLE - 6.20 : IO ADDRESSES OF 8279

 Internal

 Binary address

Hexa
device address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Data register 0 0 1 1 x x x 0 30

Control register 0 0 1 1 x x x 1 31

Note : Don't care "x" is considered as zero.

Decoder input and enable Input to address line
of 8279

6. 72 Chapter 6 Peripheral Devices And Interfacing

6.5 PROGRAMMABLE TIMER - INTEL 8254

When a processor has to perform time-based activities, there are two methods to maintain

the timings of operations. In the first method the processor can execute a delay subroutine. In this

method, the delay subroutine will load a count value in one of the register of the processor and

starts decrementing the count value. After every decrement operation, the zero flag is checked to

verify whether the count has reached zero or not. If the count has reached zero the delay subroutine

is terminated. Now the desired time will be elapsed and the processor can perform the desired

time-based task. In this method the time is estimated in terms of processor clock periods needed

to execute the delay subroutine.

In the second method, an external timer can maintain the timings and interrupt the processor

at periodical intervals. In the first method, the processor time is wasted by simply decrementing a

register. But in the second method, the processor time can be efficiently utilized, because the

processor can perform other tasks in between timer interrupts. One of the programmable external

timer device is 8254 developed by INTEL. The INTEL 8254 timer has three independent counters.

In each counter a count value can be loaded and the count value can be decremented by applying

a clock signal. At the end of count, each counter will generate an output which can be used as

interrupt to processor to initiate the time-based activity. Some of the applications of programmable

timer are given below :

1. The timer can interrupt a time-sharing operating system at specified intervals so that it can switch programs.

2. The timer can send timing signals at periodic intervals to IO devices. (For eg., start of conversion signal to ADC)

3. The timer can be used as baud rate generator. (For example, the timer can be used as a clock divider to divide the

processor clock to desired frequency for TxC and RxC of USART-8251A.)

4. The timer can be used to measure the time between external events.

5. The timer can be used as an external event counter to count repetitive external operations and inform the count value to

the processor.

6. The timer can be used to initiate an activity through interrupt after a programmed number of external events have

occured.

The 8254 is a 24-pin IC packed in DIP and requires a single +5-V supply. The pin configuration

of 8254 is shown in Fig. 6.61. The functional block diagram of 8254 is shown in Fig. 6.62.

The 8254 has three independent 16-bit counters, which can be programmed to work in any

one of the possible six modes. Each counter has a clock input, gate input and counter output. To

operate a counter, a count value has to be loaded in count register, gate should be tied high and a

clock signal should be applied through clock input. The counter counts by decrementing the count

value by one in each cycle of clock signal and generates an output depending on the mode of

operation. The maximum input clock frequency for 8254 is 10 MHz.

Note : Another timer released by INTEL is 8253 which is the low clock version of 8254.

The maximum input clock frequency to 8253 is 2.6 MHz. The 8253 and 8254 are pin

to pin compatible and functionally same except the clock frequency.

Microprocessor (8085) And Its Applications 6. 73

The 8254 has eight data lines which can be used to communicate with the processor. The control

words and count values are written into 8254 registers through data bus buffer. The CS is used to select

the chip. The address lines A
0
 and A

1
 are used to select any one of the four internal devices as shown in

Table-6.21. The control signals RD and WR are used by the processor to perform read/write operation.

The processor can read the count value in the count register with/without stopping the counter any time.

TABLE - 6.21 : INTERNAL

ADDRESSES OF 8254

Internal

address Device

A
1

A
0

selected

0 0 Counter-0

0 1 Counter-1

1 0 Counter-2

1 1 Control Register

Data

Bus

Buffer

Read/

Write

Logic

Control

Word

Register

In
te

rn
al

 B
u

s

C
o

u
n

te
r

-
1

C
o

u
n

te
r

-
2

C
o

u
n

te
r

-
0

←

D
7
- D

0

←

←

←

←

CLK-2←

GATE-2←

←OUT-2

CLK-1←

GATE-1←

←OUT-1

CS

Fig. 6.62 : Functional block diagram of an 8254 timer.

CLK-0←

GATE-0←

←OUT-0

←

←

←

←

RD

WR

A
0

A
1

Fig. 6.61 : Pin configuration of an 8254 timer.

Pin Description

D
0
 - D

7
Bidirectional data lines

CS Chip select

RD Read control

WR Write control

A
0
,A

1
Internal address

CLK-0 to CLK-2 Clock input to counters

GATE-0 to GATE-2 Gate control input to counters

OUT-0 to OUT-2 Output of counters

Timer

8254

1

2

3

4

5

6

7

8

9

10

11

12

↔

↔

↔

↔

↔

↔

↔

↔

←

←GATE-0

←

←

←

←

←

←

←

←

←

←

←

24

23

22

21

20

19

18

17

16

15

14

13

V
CC

A
1

A
0

CLK-2

OUT-2

CLK-1

GATE-2

OUT-1

GATE-1

←

←

←

WR

RD

CS

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

CLK-0

OUT-0

GND

Timer

8254

D
0
-D

7

←

←

←

←

←

←

←

OUT-0

t o

OUT-2

CLK-0

t o

CLK-2

GATE-0

t o

GATE-2GND

A
1

A
0

V
CC

WR

RD

CS

6. 74 Chapter 6 Peripheral Devices And Interfacing

Interfacing 8254 with 8085 Processor

A simple schematic for interfacing the 8254 with 8085 processor is shown in Fig. 6.63. The

8254 can be either memory-mapped or IO-mapped in the system. In the schematic shown in

Fig. 6.63, the 8254 is IO-mapped in the system. The chip select signals for IO-mapped devices are

generated by using a 3-to-8 decoder. The address lines A
4
, A

5
 and A

6
 are decoded to generate eight

chip select signals (IOCS-0 to IOCS-7) and in this, the chip select IOCS-5 is used to select 8254.

The address line A
7
 and the control signal IO/M are used to enable the decoder.

The address lines A
0
 and A

1
 of 8085 are connected to A

0
 and A

1
 of 8254 to provide the

internal addresses. The IO addresses allotted to the internal devices of 8254 are listed in Table-6.22.

The data lines D
0
-D

7
, RD and WR signals of 8254 are connected to D

0
-D

7
, RD and WR of the

processor respectively to achieve parallel data transfer.

The clock signals required for the counters can be obtained either from processor clock

output or from an external clock source. The clock signal from 8085 can also be divided to lower

values by using clock divider circuits and then applied to clock input of counters.

TABLE- 6.22 : IO ADDRESSES OF 8254

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Counter - 0 0 1 0 1 x x 0 0 50

Counter - 1 0 1 0 1 x x 0 1 51

Counter - 2 0 1 0 1 x x 1 0 52

Control 0 1 0 1 x x 1 1 53
Register

Internal

device

Binary address

Note : Don't care "x" is considered as zero.

Decoder input

and enable

Input to address

pins of 8254
Hexa

address

D
B

0
-D

B
7

8254

8085
8-Bit

Latch

C
L

K
O

U
T

D
0
- D

7
8

3

-t
o

-8
 D

e
c

o
d

e
r

G
1

G
2A

A
5

A
4

A
6

A
7Clock

Divider

Circuits

 CLK-0

 CLK-1

 CLK-2

D
0
- D

7

A
0
- A

7

RD

WR

CS

A
1

A
1

A
0

A
0

CLK-0

GATE-0

OUT-0

CLK-1

GATE-1

OUT-1

CLK-2

GATE-2

OUT-2

RD

WR

Y0

Y1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

G
2B

Fig. 6.63 : Interfacing of 8254 with 8085 processor.

IOCS-0

IOCS-1

IOCS-2

IOCS-3

IOCS-4

IOCS-5

IOCS-6

IOCS-7

A

B

C

 IO/ M

EN

AD
0
-AD

7

ALE

←→

←

←
←

←

←

←

←

←

←

←

←

←

←

←

←

←

↓

↑

↓ ↓

←

←

←

←

→
→

→
→

→
→

←

←

 IO/M

 WR

 RD

 WR

 RD

 IO/M

Microprocessor (8085) And Its Applications 6. 75

Programming 8254

Each counter of 8254 can be individually programmed by writing a control word followed

by the count value. The format of control word is shown in Fig. 6.64.

The bit B
0
 (BCD) of control word is used to select BCD or binary count and the bits B

1
 to B

3

(M0, M1 and M2) are used to select the mode of operation for the counter specified by bits B
6
 and

B
7
 of control word. Please remember that for each counter a separate control word has to be sent

to same control register address. The 8254 identifies the control word for a particular counter from

bits B
6
 and B

7
 of control word.

The bits B
4
 and B

5
 are used for read/write command. These bits are programmed for

reading/writing the 16-bit count value in proper order. If the count value is read without stopping

the counter, then the count value may change between reading the LSB and MSB. To avoid this,

the counter latch command can be used to latch the count value to an internal latch available at the

output of each counter before the read operation.

Alternatively, a separate read-back control word is available for latching the count value in

8254. (This control word is not available in 8253.) The format of read-back control word of 8254

is shown in Fig. 6.65. This control word has to be sent to the same control register address before

read operation to latch the count value. The control register identifies this control word from the

value of bits B
6
 and B

7
.

The read-back control word can be used to latch one or all the counters by sending a single

control word. This control word is also used to latch the status register to the output latch of the

counters, so that the status registers can be read by using the respective counter address. At any

one time we can latch either the count value by programming the bit B
5
 as zero or latch the status

register by programming the bit B
4
 as zero.

The format of status register of each counter is shown in Fig. 6.66. The status word of a

counter can be read to check the programmed status of the counter and also to verify whether the

count value has reached terminal count i.e., zero or not.

Fig. 6.64 : Format of control word for timer 8254.

B
7

 B
6

 B
5

B
4

B
3

 B
2

B
1

B
0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

00 = Counter Latch Command.

01 = Read/Write LSB only.

10 = Read/Write MSB only.

11 = Read/Write LSB First and

 then MSB next.

00 = Select Counter - 0

01 = Select Counter - 1

10 = Select Counter - 2

11 = Ilegal

1 = BCD Count

0 = Binary Count

0 0 0 → Mode - 0

0 0 1 → Mode - 1

x 1 0 → Mode - 2

x 1 1 → Mode - 3

1 0 0 → Mode - 4

1 0 1 → Mode - 5

LSB - Least Significant Byte

MSB - Most Significant Byte

←

←

←

↓

IPQIPQIPQ

IPQ

I

P

Q

I

P

Q

I

P

Q

I

P

Q

6. 76 Chapter 6 Peripheral Devices And Interfacing

Operating Modes of 8254

The 8254 has six modes of operation. Each counter of 8254 can be independently

programmed to work in one of the possible six operating modes. The six modes are as follows :

Mode -0 → Interrupt on terminal count.

Mode -1→ Hardware retriggerable one shot.

Mode -2 → Rate generator or Timed interrupt generator.

Mode -3 → Square wave mode.

Mode -4 → Software triggered strobe.

Mode -5→ Hardware triggered strobe.

The initialization procedure for each mode is almost same, but the output of each mode will

be different. To initialize a counter, the following steps are necessary :

1. Write a control word into control register.

2. Write a count value in count register.

The writing of count value depends on the control word. There may be three possible choices.

Fig. 6.65 : Format of read-back control word of 8254.

Always One

for Read-Back

Command

1 = Select Counter-2

0 = Latch Status Register

 of Selected Counters

0 = Latch Count Register

 of Selected Counters

B
7

 B
6

 B
5

 B
4

 B
3

 B
2

 B
1

 B
0

1 CNT 0 01 CNT 1CNT 2CNT ST

Always Zero, Reserved

for Future Expansion

1 = Select Counter-0

1 = Select Counter-1

←

←

←

←

←

←

→

IPQ

Fig. 6.66 : Format of status word of each counter of 8254.

Level of the

Output Pin

B
7

 B
6

 B
5

 B
4

 B
3

 B
2

 B
1

 B
0

OUT BCDNULL M2

1 = Programmed for

BCD Counting

0 = Programmed for

Binary Counting

RW1 RW0 M1 M0

R S| T| R S| | T| | R

S
|

T|A One on this Bit

Position Indicates

that the Counter

Value is Zero

Programmed Status of

Read /Write Operation

01 = Read/Write LSB

only

10 = Read/Write MSB

 only

11 = Read/Write LSB

 First and then

 MSB Next

Programmed Mode

of Operation.

000 = Mode-0

001 = Mode-1

010 = Mode-2

011 = Mode-3

100 = Mode-4

101 = Mode-5

→

→

↓

←

←

Microprocessor (8085) And Its Applications 6. 77

They are as follows :

1. If the control word is framed for writing LSB only then write LSB alone.

2. If the control word is framed for writing MSB only then write MSB alone.

3. If the control word is framed for writing LSB first and MSB next, then write LSB first and write MSB next.

Note : LSB - Least Significant Byte (Low order byte).

MSB - Most Significant Byte (High order byte).

In all the modes the GATE signal acts as a control signal to start, stop or maintain the

counting process. In modes 0, 2, 3 and 4 once the count value is loaded in the counter, the timer

starts decrementing the count value if the GATE is high. Whenever the GATE signal goes low, the

counter stops counting and will resume counting only when the GATE is made high again.

In modes 1 and 5 the GATE acts as a triggering pulse. In these modes, the count value is loaded

in the counter and it starts the decrementing process only when the GATE signal makes a low-to-high

transition (i.e. the count process is initiated only on the rising edge of the GATE signal). In modes 1 and

5 the GATE signal need not remain high (after initiation), to maintain the counting process.

A brief description about each mode of operation is presented here. In the following discussions

it is assumed that the counter is initialized for binary count, by writing only LSB of the count.

Mode-0 : Interrupt on terminal count

In Mode-0 operation when a count value is loaded in a counter it starts decrementing the

count value by one for each input clock pulse (provided the GATE is high) and asserts the output

as high when the count value is zero. (i.e. on terminal count). This low-to-high transition of the

counter output can be used as an interrupt to the processor to initiate any activity. In mode-0 the

8254 will count as long as GATE is high. Whenever the GATE signal goes low the counter stops

counting and will resume counting only when the GATE is made high again.

The timing diagram for mode-0 operation is shown in Fig. 6.67. In the timing diagram of

Fig. 6.67(a) initially the counter output remains high and it is assumed that the GATE is always

high. The processor writes the control word and count value using write control signal (WR).

Once the control word is written into control register the output goes low. After the write operation

of count value by the processor, the 8254 requires one clock pulse to load the count value in the

respective count register. Therefore, in the first clock pulse after WR goes high, the 8254 loads the

count value in the count register and in each subsequent clock pulse, the count value is decremented

by one. When the count value becomes zero, the output of the counter is asserted high.

Figure 6.67 shows the timing diagram for a count value of 05H initially loaded in the count

register. Here, the output goes high after 6 (5+1 = 6) clock pulse. In general, if a count value of N

is loaded in the count register then the output goes high after N+1 clock pulses. Please remember

that the counter continues to decrement the count value even after zero (00 → FF ; FF → FE

and so on) as long as GATE is high and clock signal is supplied. The output of the counter remains

high until a new count or command is send to the counter.

In the timing diagram shown in Fig. 6.67(b), the GATE is made low for a small period before the

terminal count value. It is observed that, in this period, the count value is not decremented and previous

value is maintained as such. The counter resumes operation only when the GATE is made high again.

6. 78 Chapter 6 Peripheral Devices And Interfacing

Mode-1 : Hardware retriggerable one shot

In mode-1 the counter functions as a retriggerable monostable multivibrator (one shot). In

this mode the output will be high once the control word is sent to control register. The GATE acts

as a trigger pulse to start the count process. When a low-to-high transition of GATE signal occurs,

the count value is loaded in the counter and the count is decremented by one for each clock pulse.

When the count value is loaded in the counter the OUTPUT goes low and it becomes high when

the count value is zero. Therefore the mode-1 produces a logic low pulse output whose width is

equal to the duration of the count.

The timing diagram of mode -1 operation is shown in Fig. 6.68. The processor writes the

control word and count value using WR control signal. Initially the output is assumed to be high.

Even if it is low, it is asserted high, once the control word is written into control register. Initially

the GATE can be high or low. If the GATE is low then it is made high to initiate the count process.

If it is high then it is made low and after a small delay it is made again high, because the

count process is initiated only after a low-to-high transition of GATE. After the trigger pulse

(i.e., low-to-high transition) the gate can remain either in high state or in low state.

The first clock pulse after a low-to-high transition of gate is used to load the count value in

the counter and for each subsequent clock the count value is decremented by one. Once the count

value is loaded to the counter the output is asserted low and at the end of count, when the count

WR

Write Control

Word Write LSB of Count (05H)

Number

of Clock

 Pulses

Loaded Count Value End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

OUT

xx xx xx xx 05 04 03 02 01 00 FF FE

1 2 3 4 5 6 7 8

Fig. a : Timing diagram of Mode-0 with GATE always high.

↓ ↓

←

←
↑↑

Note : "xx" represents undefined count value.

Fig. b : Example diagram of mode-0 when the GATE is made

low for small duration before the terminal count.

WR

CLK

GATE

OUT

1 2 3 4 5 6 7 8 9 10 11

xx xx xx xx 05 04 03 02 01 00 FF FE0303 03

Loaded Count Value
Count Value

after Each

Clock Pulse

End of Count

Number

of Clock

Pulses

R S| | T| |

No Decrement

Write LSB of Count (05H)

Write Control

Word

Fig. 6.67 : Timing diagram of mode-0 of 8254.

↓ ↓

←

←

↑↑

Microprocessor (8085) And Its Applications 6. 79

value is zero, the output is asserted high. In the timing diagram shown in Fig. 6.68(a), a count

value of 05H is loaded and so the output remains low for 5 clock periods. In general if a count

value of N is loaded in the counter then the output will remain low for N clock periods. Therefore

the output low pulse width will be N times the clock period.

In the timing diagram of Fig. 6.68(b), the GATE is retriggered before the end of count.

In this case, the original count value is reloaded again in the clock pulse after gate retriggering

and the count value is decremented by one in each subsequent clock pulse.

Mode-2 : Rate generator or timed interrupt generator

Mode-2 is used to generate a periodic low pulse of width equal to one clock period. If a

count value of N is loaded in the counter then the output will go low once in N clock periods.

Therefore, the frequency of low pulse generated will be equal to the input clock frequency divided

by N. For Mode-2 operation GATE should be always high.

The timing diagram of mode-2 operation is shown in Fig. 6.69. The processor writes the control

word and count value using WR control signal. Initially the output is assumed to be high. Even if it low,

it is asserted high, once the control word is written into control register. The GATE input is permanently

tied to logic high. In the first clock pulse, after the WR signal goes high, the count value is loaded to the

counter and the count value is decremented by one for each subsequent clock pulse.

Write Control Word

Fig. a : Timing diagram of mode-1.

WR

CLK

GATE

OUT

Loaded Count Value End of Count

02 01 FF FE

Write LSB of Count (05H)

Number

of Clock

Pulses

1 2 3 4 5 6 7 8

xx xx xx xx 05 04 03 00xx xx Count Value

after Each

Clock Pulse

↓ ↓
←

←
↑↑

Fig. b : Timing diagram of mode-1 with GATE retriggering before end of count.

Fig. 6.68 : Timing diagram of mode-1 of 8254.

WR

CLK

GATE

OUT

Write Control

Word Write LSB of Count (05H)

Number

of Clock

 Pulses

Count Value after

Each Clock Pulse
Loaded Count Value End of Count

02 01 FF FExx xx xx 05 04 03 00xx xx xx 05 04 03

 Count Reloaded

1 2 3 4 5 7 8 9 10 11

Note : "xx" represents undefined count value.

↓ ↓ ←

←

↑↑↑

6. 80 Chapter 6 Peripheral Devices And Interfacing

Initially the output is high. When the count reaches one, the output is asserted low. In the

next clock pulse the output is asserted high and the original count value is reloaded. In the subsequent

clock pulses the count value is decremented. The above process is repeated again and again until

a next command by the processor. In the timing diagram shown in Fig. 6.69, a count value of 03H

is loaded in the counter. In a total period of 3 clock periods, the output goes low for one clock

period. If the gate is made low at any time during the count process, the counter will stop the

operation and resumes the counting only when the gate is made high again.

Mode-3 : Square wave mode

In mode-3, the counter generates a square wave at the output pin. The frequency of the

square wave will be given by the frequency of input clock signal divided by the count value

loaded in the count register. If the count value N is even number then the output will be alternatively

high for N
2

 clock periods and low for N
2

 clock periods. If the count value is odd number then

the output will be alternatively high for
N 1

2

+
 clock periods and low for N 1

2

−
 clock periods

(i.e., when the count value is odd, then the output high period will be more than low period by one

clock period). The timing diagram of Mode-3 is shown in Fig. 6.70.

Fig. 6.69 : Timing diagram of mode-2 of 8254.

WR

CLK

GATE

OUT

Loaded Count

Value

Write Count Value (03H)Write Control Word

 Count

Reloaded

 Count

Reloaded

 Count

Reloaded

Number

of Clock

Pulses

1 2 3 4 5 6 7 8 9 10

01 03 01 03xx xx 03 02 01 03 02 02xx xx

Count Value

after Each

Clock Pulse

↓ ↓
↓

←
↑↑↑↑

Fig. 6.70 : Timing diagram of mode-3 of 8254.

WR

CLK

GATE

OUT

Loaded Count

Value

Write Count Value (06H)Write Control Word

 Count

Reloaded

 Count

Reloaded

 Count

Reloaded

Number

of Clock

Pulses

1 2 3 4 5 6 7 8 9 10

02 06 02 06xx xx 06 04 02 06 04 04xx xx

Count Value

after Each

Clock Pulse

02 0604

 Count

Reloaded

11 12 13

↑ ↑ ↑ ↑ ↑

←

←
↓↓

Microprocessor (8085) And Its Applications 6. 81

In the timing diagram shown in Fig. 6.70, a count value of 06H is loaded in the counter. The

count value is loaded in the counter in the first clock pulse after WR signal goes high. Then for

each subsequent clock pulse the count is decremented by two. When the count value reaches

two, then in the next clock pulse, the output is asserted low and original/initial count is reloaded in

the counter and for each subsequent clock pulse the count is decremented by two. When the count

value reaches two then in the next clock pulse the output is asserted high and the original/initial

count is reloaded and the above process is repeated again and again.

In the output waveform generated on the output pin of the counter, the high period and low

period are equal to three clock periods. The frequency of waveform generated is given by the clock

signal divided by six, because six clock periods are required to generate one cycle of output wave.

Throughout the mode-3 operation the GATE input signal should be maintained as high. If it is made

low during count process then the counter stops counting and resumes the operation only after the

GATE is made high.

Mode-4 : Software triggered strobe

Mode-4 is used to generate a single logic low pulse after a delay. In this mode when a count

value, N is loaded in the counter, a logic low pulse of width equal to one clock period is generated in

the (N+1)th clock pulse. Here, the delay time is N clock periods. This signal is often used as strobe

signal in parallel data transfer scheme. The mode-4 is called software triggered strobe because the

counter starts its operation once the count value is written into count register by a software instruction.

However, the GATE input signal should remain high throughout the mode-4 operation.

The timing diagram of mode-4 operation is shown in Fig. 6.71. The GATE is permanently

tied to high. The processor writes the control word and count value using write control signal. In

the first clock pulse after WR signal goes high, the count value is loaded in the counter and in each

subsequent clock pulse the count value is decremented by one. When the count value reaches zero

the output is asserted low for one clock period and then it is made high.

Here a count value of 04H is loaded in the counter. Initially the output remains high and in

the fifth clock pulse the output goes low for one clock period. In mode-4 operation if the GATE is

made low during count process then the counter stops counting and resumes the operation only

when the GATE is made high.

Fig. 6.71 : Timing diagram of mode-4 operation of 8254.

WR

Write Control Word Write LSB of Count (04H)
Number

of Clock

 Pulses

Loaded Count Value Low Pulse at the End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

04 03 02 01 00 FF FE

1 2 3 4 5 6 7

xx xx xx xx

←

←

↑↑

↓↓

OUT

6. 82 Chapter 6 Peripheral Devices And Interfacing

Mode-5 : Hardware triggered strobe

Mode-5 is the same as that of mode-4, except that the counter is initiated by a low-to-high

transition of the GATE signal. In mode-4 the counter will start decrementing the count value immediately

after the write operation of count value by the processor. But in mode-5, the counter will wait for a

low-to-high transition of GATE signal after the write operation of count value by the processor.

The timing diagram of mode-5 operation is shown in Fig. 6.72. In the first clock pulse after

a low-to-high transition of GATE, the count value is loaded in the counter and for each subsequent

clock pulse the count value is decremented by one. When the count value reaches zero the output

is asserted low for one clock period and then it is made high. Here, a count value of 04H is loaded

in the counter. Initially the output remains high and the counter waits for a low-to-high transition

of the GATE signal. In the fifth clock pulse after a low-to-high trasition of GATE signal, the output

goes low for one clock period.

In mode-5 operation if the gate signal makes another low-to-high transition (i.e., retriggered)

before the end of count. Then the original count value is reloaded in the clock pulse after gate

retriggering and count value is decremented by one in each subsequent clock pulse.

6.6 DAC INTERFACE

In many applications, the microprocessor has to produce analog signals for controlling certain

analog devices. Basically the microprocessor system can produce only digital signals. In order to

convert the digital signal to analog signal a Digital-to-Analog Converter (DAC) has to be employed.

The DAC will accept a digital (binary) input and convert to analog voltage or current. Every

DAC will have "n" input lines and an analog output. The DAC requires a reference analog voltage

(V
ref

) or current (I
ref

) source. The smallest possible analog value that can be represented by the

n-bit binary code is called resolution. The resolution of DAC with n-bit binary input is
1

2n of

reference analog value. Every analog output will be a multiple of the resolution. In some converters

the input reference analog signal will be multiplied or divided by a constant to get full scale value. In

this case the resolution will be
1

2 n of full scale value.

Fig. 6.72 : Timing diagram of mode-5 operation of 8254.

WR
Number

of Clock

 Pulses

Loaded

Count Value

Low Pulse at the

End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

04 03 02 01 00 FF FExxxxxxxxxx

1 2 3 4 5 6 7

Write Control Word Write LSB of Count (04H)

↓ ↓

←

←
↑↑

OUT

Microprocessor (8085) And Its Applications 6. 83

For example, consider an 8-bit DAC with reference analog voltage of 5 volts. Now the

resolution of the DAC is (1/28) × 5 volts. The 8-bit digital input can take, 28 = 256 different values.

The analog values for all possible digital input are

as shown in Table-6.23.

The maximum input digital signal will have

an analog value which is equal to reference analog

value minus resolution. The digital-to-analog

converters can be broadly classified into three

categories, and they are current output, voltage

output and multiplying type DAC. The current

output DAC provides an analog current as output

signal. In voltage output DAC, the analog current

signal is internally converted to voltage signal.

In multiplying type DAC the output is given

by the product of the input signal and the

reference source and the product is linear over a

broad range. Basically, there is not much

difference between these three types and any DAC

can be viewed as multiplying DAC.

The basic components of a DAC are resistive network with appropriate values, switches, a

reference source and a current to voltage converter as shown in Fig. 6.73.

The switches in the circuit of Fig. 6.73 can be transistors which connect the resistance

either to ground or V
ref

. The resistors are connected in such a way that for any possible binary

input, the total current I
T
 is in binary proportion. The operational amplifier converts the current I

T

to a voltage signal V
0
, which can be calculated from the following equation :

V V
R

R

D D D
ref

f
0

2
1

1
2

0
32 2 2

= + +
F
HG

I
KJ

The circuit of Fig. 6.73 can be modified as 8-bit DAC by increasing the number of R/2R

ladder. For an 8-bit DAC the output voltage is given by,

V V
R

R

D D D D D D D D
ref

f
0

7
1

6
2

5
3

4
4

3
5

2
6

1
7

0
82 2 2 2 2 2 2 2

= + + + + + + +
F
HG

I
KJ

TABLE - 6.23

Digital input Analog output

0000 0000 0

2
5

8
× Volts

0000 0001
1

2
5

8
× Volts

0000 0010
2

2
5

8
× Volts

0000 0011
3

2
5

8
× Volts

1111 1111
255

2
5

8
× Volts

6. 84 Chapter 6 Peripheral Devices And Interfacing

The time required for converting the digital signal to analog signal is called conversion time.

It depends on the response time of the switching transistors and the output amplifier. If the DAC is

interfaced to microprocessor then the digital data (signal) should remain at the input of DAC, until

the conversion is complete. Hence, to hold the data a latch is provided at the input of DAC.

The Digital-to-Analog converters compatible to microprocessors are available with or without

internal latch and I to V converting amplifier. The AD558 of Analog Device is an example of 8-bit DAC

with an internal latch and I to V converting amplifier. The output of AD558 is an analog voltage signal.

The AD558 can be directly interfaced to 8085 microprocessor bus and it requires only two

control signals : Chip Select (CS) and Chip Enable (CE). [No handshake signals are necessary for

interfacing a DAC. The time between loading two digital data to DAC is controlled by software

time delay.]

The DAC0800 of National Semiconductor Corporation is an example of 8-bit DAC without
internal latch and I to V converting amplifier. The DAC0800 can be interfaced to microprocessor
using either a port device or a latch.

6.6.1 DAC0800

The DAC0800 is an 8-bit, high speed, current output DAC with a typical settling time

(conversion time) of 100 ns. It produces complementary current output which can be converted to

voltage by using simple resistor load.

The DAC0800 is available as a 16-pin IC in DIP. The pin configuration of DAC0800 is

shown in Fig. 6.74 and the internal block diagram of DAC0800 is shown in Fig. 6.75.

The DAC0800 requires a positive and a negative supply voltage in the range of ± 5-V

to ±18-V. It can be directly interfaced with TTL, CMOS, PMOS and other logic families. For

TTL input, the threshold pin should be tied to ground (V
LC

 = 0-V). The reference voltage and

the digital input will decide the analog output current, which can be converted to a voltage by

simply connecting a resistor to output terminal or by using an op-amp I to V converter. A

typical example of generating a positive voltage output using DAC0800 is shown in Fig. 6.76.

 Pin Description

D
0
-D

7
Digital input data

IOUT Current output

IOUT Complement of output current

V− Negative supply voltage

V+ Positive supply voltage

COMP Compensation voltage

V
LC

Threshold control

V
REF

(+) Positive reference voltage

V
REF

(–) Negative reference voltage

Fig. 6.74 : Pin description of DAC0800.

MSD - Most Significant Digit

LSD - Least Significant Digit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

→

←

→

←

→

→

→

→

←

←

←

←

←

←

←

←

V
LC

I
OUT

V
−

I
OUT

(MSD)D
7

D
6

D
5

D
4

COMP

V
REF

(−)

V
REF

(+)

V+

D
0
(LSD)

D
1

D
2

D
3

D
A

C
0
8
0
0

→

→

→

→

→

→

←

←

V
REF

(+)

V
REF

(−)

 V
LC

COMP

D
0
-D

7
I

OUT

I
OUT

V
+

V
−

D
A

C
0
8
0
0

Microprocessor (8085) And Its Applications 6. 85

Interfacing DAC0800 with 8085

The DAC0800 can be interfaced to 8085 system bus by using an 8-bit latch and the latch

can be enabled by using one of the chip select signal generated for IO devices. A simple schematic

for interfacing DAC0800 with 8085 is shown in Fig. 6.77. In this schematic the DAC0800 is

interfaced using an 8-bit latch 74LS273 to the system bus. The 3-to-8 decoder 74LS138 is used to

generate chip select signals for IO devices. The address lines A
4
, A

5
 and A

6
 are used as input to

decoder. The address line A
7
 and the control signal IO/M are used as enable for decoder. The

decoder will generate eight chip select signals and in this the signal IOCS-7 is used as enable for

latch of DAC. The IO address of the DAC is shown in Table-6.24.

In order to convert a digital data to analog value, the processor has to load the data to a latch. The

latch will hold the previous data until the next data is loaded. The DAC will take definite time to convert

the data. The software should take care of loading successive data only after the conversion time. The

DAC 0800 produces a current output, which is converted to voltage output using I to V converter.

Device

Binary address

Decoder input and enable Unused address lines Hexa address

A
7

A
6

A
5

A
4

0 1 1 1

A
3

A
2

A
1

A
0

x x x xDAC Latch 74LS273 70

TABLE - 6.24 : IO ADDRESS OF DAC LATCH

V
REF

(−)

V
REF

(+)V
REF

+

−I
OUT

I
OUT

I
OUT
←

I
OUT

←

14

15

4

2

DIN

E
o

I to V Converter
using op-amp

E
o
 = V

REF ×

DIN

256

where, DIN = Decimal Equivalent of Binary Input

Fig. 6.76 : DAC 0800 with V to I converter to produce positive output voltage.

5k

5k

5k

DAC 0800

V+ V
LC D

7
D

6 D
5

D
4 D

3
D

2
D

1
D

0

LSDMSD

13 1 5 6 7 8 9 10 11 12

14

15

16 3

4

2

Bias
Network

Current
Switches

V
REF

(+)

V
REF

(−)

COMP V−

←I
OUT

Fig. 6.75 : Block diagram of DAC0800.

+

−

REF
AMP

←I
OUT

6. 86 Chapter 6 Peripheral Devices And Interfacing

6.7 ADC INTERFACE

In many applications, an analog device has to be interfaced to digital system. But, the digital

devices cannot accept the analog signals directly. So, the analog signals are converted to equivalent

digital signal (data) using Analog-to-Digital Converter (ADC).

The Analog to Digital (A/D) conversion is the reverse process of Digital to Analog (D/A)

conversion. TheA/D conversion is also called quantization, in which the analog signal is represented

by an equivalent binary data. The analog signals vary continuously and defined for any interval of

time. The digital signals (or data) can take only finite values and are defined only for discrete

instant of time. If the digital data is represented by n-bit binary then it can have 2n different values.

In A/D conversion the given analog signal has to be divided into steps of 2n values, and each step

is represented by one of the 2n values.

The Analog to Digital Converters can be classified into two groups based on the technique

involved for conversion. The first group includes successive-approximation, counter and flash-

type converters. The technique involved in these devices is that the given analog signal is compared

with internally generated analog signal. The second group includes integrator converters and voltage

to frequency converters. In the devices of second group, the given analog signal is converted to

time or frequency and the new parameters (time or frequency) is compared with known values to

produce digital signal.

→

→
→←

↑

8-Bit

Address

Latch

EN

AD
0
-AD

7

8085

ALE

IO/M

A
0
-A

7

D
0
-D

7

8
D

0
-D

7

→
→
→
→
→

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-7

IOCS-6

IOCS-5
IOCS-4

IOCS-3

IOCS-2

A

B

C

G
1→

G
2A

G
2B

↓

→

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

8-Bit Latch

74LS273
EN

V
REF

(+)

V
REF

(−)

V
LC

DAC0800

I
OUT

I
OUT

V
REF

5k

5k

+ −

Fig. 6.77 : Interfacing DAC0800 with an 8085 microprocessor.

3
-t

o
-8

 D
e
c
o

d
e
r

A
4

A
5

A
6

A
7

↓
Analog Output

Voltage

E
o

I to V

Converter
741

D
A

C
 L

a
tc

h

Microprocessor (8085) And Its Applications 6. 87

The trade-off between the two techniques is based on accuracy vs speed. The successive-

approximation and the flash type are fast but generally less accurate than the integrator and the

voltage-to-frequency type converters. Also, the flash type is costlier. The successive-approximation

type converters are used for high speed conversion and the integrating type converters are used for

high accuracy.

The resolution of the converter is the minimum analog value that can be represented by the

digital data. If the ADC gives n-bit digital output and the full scale analog input is X volts, then the

resolution is
1

2n
× X volts. In ADC, another critical parameter is conversion time. The conversion

time is defined as the total time required to convert an analog signal into its digital equivalent. It

depends on the conversion technique and the propagation delay in various circuits.

Successive-Approximation ADC

A successive approximation ADC consists of D/A converter, successive-approximation

register and comparator. Figure 6.78 shows the functional blocks of a typical successive-

approximation A/D converter.

The conversion process is initiated by a Start Of Conversion (SOC) signal from the processor

to ADC. On receiving the SOC, the control unit of ADC will give a start command to successive-

approximation register and it starts generating digital signal by successive-approximation method.

The generated digital data is converted to analog signal by D/A converter and then compared with

the given analog signal. When the analog signals are equal the comparator output informs the

control unit to stop generation of the digital signal. The digital data available at this instant is given

as output through output register. Also, the control unit generates a signal to indicate the End Of

Conversion (EOC) process to the processor.

Successive-approximation method of conversion

In this method the MSD (Most Significant Digit) is first set to "1" and all other digits are

reset to "0". The analog signal generated for this digital data is compared with given analog signal.

(Initially the comparator output will be high. After comparison the output of comparator remains

in high state if the given analog signal is higher than the generated analog signal. Otherwise, if the

↓ +

−↓

Analog

Voltage Input

Comparator

D/A

Converter

(DAC)↓

Analog Reference

Voltage

Successive

Approximation

Register

6. 88 Chapter 6 Peripheral Devices And Interfacing

given signal is less than the generated signal, then the output of comparator changes from high to

low state.) If the output state of comparator changes, then the MSD is reset to "0" otherwise it is

retained as "1". Then the above process is repeated by setting the next higher order bit to "1".

The process is continued for each bit starting from MSD to LSD. (During a process, the higher

order bits are the bits determined in earlier steps and the lower order bits are reset to "0".) After

one complete cycle through MSD to LSD, the data available on the successive-approximation

register will be the digital equivalent of the given analog signal.

6.7.1 ADC0809

The ADC0809 is an 8-bit successive-approximation type ADC with an inbuilt 8-channel

multiplexer. The ADC0809 is suitable for interface with the 8086 microprocessor. The ADC0809 is

available as a 28-pin IC in DIP (Dual In-line Package). The ADC0809 has a total unadjusted error

of ±1 LSD (Least Significant Digit). The ADC0808 is also same as ADC0809 except the error. The

total unadjusted error in ADC0808 is ±
1

2
 LSD. The pin configuration of ADC0809/ADC0808 is

shown in Fig. 6.79.

 Signals Description

IN0-IN7 Eight single ended analog input to ADC.

A, B, C 3-bit binary input to select one of the eight analog signals for conversion at any

one time.

ALE Address latch enable. Used to latch the 3-bit address input to an internal latch.

START Start of conversion pulse input. To start ADC process this signal should be asserted

high and then low. This signal should remain high for atleast 100 ns.

CLOCK Clock input and the frequency of clock can be in the range of 10 kHz to 1280 kHz.

Typical clock input is 640 kHz.

TABLE - 6.25 : SIGNAL DESCRIPTION OF ADC0809/ADC0808

Fig. 6.79 : Pin configuration of ADC0809/ADC0808.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

→
→
→
→
→
→
←
←
→
→
→
→
←
←

←
←
←
←
←
←
←
→
→
→
→
→
←
→

IN3

IN4

IN5

IN6

IN7

START

EOC

D
3

OE

CLOCK

V
CC

V
REF

(+)

GND

D
1

IN2

IN1

IN0

A

B

C

ALE

D
7
 (MSD)

D
6

D
5

D
4

D
0
 (LSD)

V
REF

(−)

D
2

A
D

C
0

8
0

9
/A

D
C

0
8

0
8

→

→

→

→

→

→

→

←
←

IN0-IN7

A, B, C

ALE

START

CLOCK

V
REF

(+)

V
REF

(−)

D
0
-D

7

EOC

OE

V
CC

GND

A
D

C
0

8
0

9
/A

D
C

0
8

0
8 Digital

Output
Channel
Selection

Analog
Input

LSD = Least Significant Digit, MSD = Most Significant Digit

Microprocessor (8085) And Its Applications 6. 89

 Signals Description

V
REF

(+),V
REF

(-) Reference voltage input. The positive reference voltage can be less than or

equal to V
cc

 and the negative reference voltage can be greater than or equal to

ground.

D
0
-D

7
The 8-bit digital output. The reference voltages will decide the mapping of analog

input to digital data.

EOC End of conversion. This signal is asserted high by the ADC to indicate the end of

conversion process and it can be used as interrupt signal to processor.

OE Output buffer Enable. This signal is used to read the digital data from output buffer

after a valid EOC.

V
cc

Power supply, +5-V

GND Power supply ground, 0-V

The internal block diagram of ADC0809/ADC0808 is shown in Fig. 6.80. The various

functional blocks of ADC are 8-channel multiplexer, comparator, 256R resistor ladder, switch tree,

successive-approximation register, output buffer, address latch and decoder.

The 8-channel multiplexer can accept eight analog inputs in the range of 0 to 5-V and allow

one by one for conversion depending on the 3-bit address input. The channel selection logic is

shown in Table-6.26.

Table - 6.25 : continued

8 Channel

Multiplexing

Analog

Switches

Successive-

Approximation

Register

Control and Timing

Switch Tree

256R Resistor

Ladder

Tristate

Output

Buffer

Address

Latch and

Decoder

↓

→
→
→
→
→
→
→
→

→
→
→
→
→
→
→
→

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

D
7
 (MSD)

D
6

D
5

D
4

D
3

D
2

D
1

D
0
 (LSD)

Comparator

⇔

↓

↓ ↓

↓

→ →

↑
↑

↑

→

→
→
→

→

A

B

C

ALE

V
CC

GND V
REF

(+) V
REF

(−)

OE

EOC

CLKSOC

Fig. 6.80 : Functional block diagram of ADC0809/ADC0808.

↓
↓

Input Analog

Signal

G
e

n
e

r
a

te
d

A
n

a
lo

g

S
ig

n
a

l

DAC

6. 90 Chapter 6 Peripheral Devices And Interfacing

The Successive-Approximation Register (SAR) performs

eight iterations to determine the digital code for input value. The

SAR is reset on the positive edge of START pulse and start the

conversion process on the falling edge of START pulse. A

conversion processs will be interrupted on receipt of new START

pulse. The End-Of-Conversion (EOC) will go low between 0 and

8 clock pulses after the positive edge of START pulse. The ADC

can be used in continuous conversion mode by tying the EOC

output to START input. In this mode an external START pulse

should be applied whenever power is switched ON.

The 256R resistor network and the switch tree is shown

in Fig. 6.81. The 256R ladder network has been provided instead

of conventional R/2R ladder because of its inherent monotonicity,

which guarantees no missing digital codes. Also,

the 256R resistor network does not cause load

variations on the reference voltage.

The comparator in ADC0809/ADC0808 is a

chopper-stabilized comparator. It converts the DC

input signal into an AC signal and amplifies the AC

signal using high gain AC amplifier. Then it converts

the AC signal to DC signal. This technique limits

the drift component of the amplifier, because the

drift is a DC component and it is not amplified/

passed by the AC amplifier. This makes the ADC

extremely insensitive to temperature, long term drift

and input offset errors.

In ADC conversion process the input analog

value is quantized and each quantized analog value

will have a unique binary equivalent. The

quantization step in ADC0809/ADC0808 is

given by,

Q
V V V

step
REF REF REF

= =

+ − −

2 2568
10

() ()

The digital data corresponding to an analog input (V
in
) is given by,

Digital data =
V

Q

in

step

−

F

H
G

I

K
J1

10

Address input Selected

C B A channel

0 0 0 IN0

0 0 1 IN1

0 1 0 IN2

0 1 1 IN3

1 0 0 IN4

1 0 1 IN5

1 1 0 IN6

1 1 1 IN7

TABLE - 6.26

→

↓ ↓
..............

↓ ↓
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.............

RS |||T |||

V
REF

(+)

V
REF

(−)

T
o

 C
o

m
p

a
ra

to
r

In
p

u
t

Control Signal from SAR

1
1

2 R

R

R

R

R

1
1

2 R

Fig. 6.81 : 256R resistor network

and switch tree.

Microprocessor (8085) And Its Applications 6. 91

EXAMPLE 1

Let, V
REF

 (+) = 3.84-V, V
REF

 (−) = 0-V

∴ Q
V () V ()

256

3.84

256
step

REF REF

10

=
+ − −

= = 0.015-V = 15 -mV

Let the input analog voltage be 2.56-V. Now the digital data corresponding to 2.56-V is given by,

Digital data = − = −

V

Q

in

step

1
2 56

0 015
1

.

.
 = 169

10
 = A9

H
 = 1010 1001

2

EXAMPLE 2

Let V
REF

 (+) = 5-V, V
REF

(−) = 0-V

∴ Q
V V

step
REF REF

=

+ − −

=

() ()

256

5

25610

 = 0.01953125

Let the input analog voltage be 1.25-V. Now the digital data corresponding to 1.25-V is given by,

Digital data = − = −

V

Q
1in

step

125

0 01953125
1

.

.
 = 63

10
 = 3F

H
 = 0011 1111

2

Interfacing ADC0809 with 8085

A simple schematic for interfacing ADC0809/ADC0808 with 8085 microprocessor is shown

in Fig. 6.82. The ADC can be either memory-mapped or IO-mapped in the system. Here, the ADC

is IO-mapped in the system. The chip select signals for IO-mapped devices are generated by using

a 3-to-8 decoder. The address lines A
4
, A

5
 and A

6
 are used as input to decoder. The address line A

7

and the control signal IO/M are used as enable for decoder. The decoder generates eight chip select

signals (IOCS-0 to IOCS-7) and in this, three chip select signals are used for ADC interface.

→

→
→←

8085

A
0
-A

7

D
0
-D

7

8D
0

→
→
→
→

→

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-7

IOCS-6

IOCS-5
IOCS-4

IOCS-3
IOCS-2

A

B

C

G
1→

G
2A

G
2B

3
-t

o
-8

 D
e
c
o

d
e
r

Reference

Voltage

Source

→

→

→

→

→

↑ ↑

↑ ↑

↑

←

←

←

←

←

←

←

←

CLOCK

ALE

OE

SOC

EOC

V
R

E
F
(+

)

V
R

E
F
(−

)

D
7
-D

0

A
,B

,C

ADC0809/

ADC0808

31 A
0
-A

2

Fig. 6.82 : Interfacing ADC0809/ADC0808 with 8085 microprocessor.

A
4

A
5

A
6

A
7

Inverter

T
ri

st
a

te
B

u
ff

er
 (

7
4

L
S

1
2

5
)

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

8-bit

Address

Latch

C
L

K
O

U
T

Clock Divider

Circuit

↑

IO / M

ALE

AD
0
-AD

7

↑

ADC Clock

6. 92 Chapter 6 Peripheral Devices And Interfacing

The chip select signal IOCS-6 is used to give Start Of Conversion (SOC) signal to ADC

along with a channel address. The chip select IOCS-5 is used to enable the tristate buffer provided

for interfacing EOC with data bus. The chip select signal IOCS-7 is inverted and used to enable the

output buffer of ADC whenever the digital data has to read from ADC.

The output clock signal of 8085 microprocessor is divided by suitable clock divider circuit

and used as clock signal for ADC. A separate voltage source has to be provided to give an accurate

reference voltage levels. The End Of Conversion (EOC) signal of ADC is connected to the bus line

D
0
 of the system through a tristate buffer, so that the processor can check for a valid EOC before

reading the output buffer of ADC.

The working of ADC 0809 with 8085 will be as follows :

(i) First the processor selects a channel by sending an address and SOC pulse is asserted high and low.

(ii) Once address of channel and SOC pulse are applied, the ADC will start converting the signal at the selected channel.

(iii) Then the processor keeps on polling the status of EOC to verify whether it is set to one. (when the conversion is

completed by ADC0809 the EOC is set to one.)

(iv) When the processor finds a valid EOC, it will read the digital value from output buffer of ADC.

6.8 SUMMARY

� The programmable devices can be set up to perform specific functions by writing control words into the control

registers.

� The data transfer schemes refer to the method of data transfer between the processor and peripheral devices.

� The data transfer schemes have been broadly classified into programmed data transfer scheme and DMA data

transfer scheme.

� In programmed data transfer, a subroutine requests the device for data transfer to or from one of the processor

register.

� The different types of programmed data transfer scheme are Synchronous, Asynchronous and Interrupt driven

data transfer scheme.

� The direct data transfer between IO device and memory is called DMA.

� The DMA data transfer can be performed in a microcomputer system using DMA controller.

TABLE - 6.27 : IO ADDRESS OF ADC0809/ADC0808

Operation

performed

Binary address
Hexa

address
Decoder input/enable Address input to ADC

A
3

A
2

A
1

A
0

A
7

A
6

A
5

A
4

SOC channel-0 0 1 1 0 x 0 0 0 60

SOC channel-1 0 1 1 0 x 0 0 1 61

SOC channel-2 0 1 1 0 x 0 1 0 62

SOC channel-3 0 1 1 0 x 0 1 1 63

SOC channel-4 0 1 1 0 x 1 0 0 64

SOC channel-5 0 1 1 0 x 1 0 1 65

SOC channel-6 0 1 1 0 x 1 1 0 66

SOC channel-7 0 1 1 0 x 1 1 1 67

Read EOC 0 1 0 1 x x x x 50

Read ADC output 0 1 1 1 x x x x 70

Microprocessor (8085) And Its Applications 6. 93

� The DMA controller works as a slave during the programming mode and works as a master during the DMA mode.

� In DMA data transfer, the processor is forced to hold state by an IO device through DMA controller until the data

transfer between the device and the memory is complete.

� The different types of DMA are Cycle stealing, Block mode and Demand transfer mode.

� In cycle stealing DMA, one DMA data transfer is performed in between instruction cycle.

� The INTEL 8212 is an 8 - bit IO port device. It is hardwired in the system as either an input or output port.

� The IO function of 8212 is determined by mode (MD) pin. If MD = 1, then 8212 can be used as output port and if

MD = 0, then it can be used as input port.

� The 8155 consists of 256 bytes of R/W memory, three programmable IO ports and a programmable timer.

� In 8155, the ports A and B can be programmed to work either as simple or handshake IO port.

� In 8155, the timer has a 14-bit counter which can be programmed to work in 4 modes.

� In 8155, the signals used for handshake data transfer are Strobe (STB), Buffer Full (BF) and Interrupt (INTR).

� The INTEL 8255 consists of three programmable ports A,B and C.

� The port-A of 8255 can be programmed to work in three operating modes. They are Simple (Mode-0), Handshake

(Mode-1) or Bidirectional (Mode-2) IO port.

� The port-B of 8255 can be programmed to work either as Simple (Mode-0) or Handshake (Mode-1) IO port.

� The port-C pins of 8255 can be individually set/reset to generate control signals.

� The two control words of 8255 are Mode set and Bit set/reset control words.

� In 8255, the handshake signals used for input operation are Input Buffer Full (IBF, Strobe(STB) and Interrupt

(INTR).

� In 8255, the handshake signals used for output operation are Output Buffer Full (OBF), Acknowledge (ACK) and

Interrupt (INTR).

� The INTEL 8355 consists of 2 kb ROM and two numbers of 8-bit programmable IO ports.

� In 8355, each IO port line is individually programmable as input or output.

� The INTEL 8755 consists of 2 kb EPROM and two numbers of 8-bit programmable IO ports.

� The individual pins of the ports of 8755 can be programmed as input or output by loading an 8-bit data in DDR of the

concerned port.

� The INTEL 8279 is a dedicated controller specially developed for keyboard/display interfacing in 8085/8086

microprocessor-based system.

� The 8279 can generate 256 keycodes with 64 keys arranged as 8×8 matrix, shift and control.

� The 8279 can provide a multiplexed interface for a maximum of 16 numbers of 7-segment LED’s.

� The 8279 has a 8 x 8 RAM for storing key codes and 16 x 8 RAM for storing display codes.

� The 8279 requires an internal clock frequency of 100 kHz.

� The various tasks involved in keyboard interfacing are sensing a key actuation, debouncing the key and generating

the keycode.

� The process of eliminating multiple keycode generation due to bouncing of key is called debouncing.

� The disadvantage in keyboard interfacing using ports is that most of the processor time is utilized in keyboard

scanning and debouncing.

� The current requirement of a 7-segment LED is 140 mA to 200 mA.

� In multiplexed display, only one 7-segment LED is turned ON at a time. Due to persistence of vision the display

appears to be continuous to a human eye.

� The disadvantage in using the ports and latches for LED display interfacing is that a considerable processor time is

utilized for display refreshing.

� The 8279 provides a hardware solution for keyboard and display interfacing in microprocesso- based system.

� The serial data can be sent synchronously or asynchronously.

� In synchronous serial transmission, the data is sent in block at a constant rate. The start and end of a block are

identified with specific bytes or bit patterns.

6. 94 Chapter 6 Peripheral Devices And Interfacing

� In asynchronous transmission, data is transmitted one by one and each data has a bit which identifies its start and

1 or 2 bits which identify its end.

� The term baud rate is used to indicate the rate at which serial data is being transferred. Baud rate is defined

as .

� The device which can be programmed to perform synchronous or Asynchronous serial communication is called

USART (Universal Synchronous Asynchronous Receiver Transmitter). The INTEL 8251A is an example of USART.

� The RS-232C is a serial bus whose signals are standardized by Electronics Industries Association (EIA), USA and

adapted by IEEE.

� The RS-232C proposes a maximum of 25 signals for serial data transfer, but the first 9 signals are sufficient for

most of the serial data transmission scheme.

� In RS-232C, the commonly used voltage levels are +12-V (logic high) and -12-V (logic low).

� The RS-232C signal levels are not compatible with TTL logic levels. Hence for interfacing TTL devices to RS-232C

serial bus, level converters are employed.

� The INTEL 8251A is a programmable serial communication interface chip designed for synchronous and asynchronous

serial data communication.

� The transmitter and receiver sections of 8251A are double buffered.

� The 8251A provides control signals necessary for MODEM interface.

� The control words of 8251A are Mode word and Command word.

� The resolution of n-bit DAC or ADC is 1/2n of full scale value (or 1/2n of reference value)

� The conversion or settling time is the time taken to convert a digital data to analog signal in DAC and vice versa in

ADC.

6.9 SHORT QUESTIONS AND ANSWERS

6.1 What is a programmable peripheral device?

If the functions performed by a peripheral device can be altered or changed by a program
instruction then the peripheral device is called programmable device. Usually the programmable
devices will have control registers. The device can be programmed by sending control word in
the prescribed format to the control register.

6.2 What is data transfer scheme and what are its types ?

The data transfer scheme refers to the method of data transfer between the processor and peripheral
devices.

The different types of data transfer schemes are shown below :

6.3 What is synchronous data transfer scheme?

In synchronous data transfer scheme, the processor does not check the readiness of the device
after a command has been issued for read/write operation. In this scheme the processor will
request the device to get ready and then read/write to the device immediately after the request. In
some synchronous schemes a small delay is allowed after the request.

1

The time for a bit cell

Synchronous

→ →

Data Transfer

Programmed Data Transfer Direct Memory Access

→ →

→

Asynchronous

Interrupt Driven

→

→

Cycle Stealing

Block Transfer

Demand Transfer

→

Microprocessor (8085) And Its Applications 6. 95

6.4 What is asynchronous data transfer scheme ?

In asynchronous data transfer scheme, first the processor sends a request to the device for read/
write operation. Then the processor keeps on polling the status of the device. Once the device is
ready, the processor executes a data transfer instruction to complete the process.

6.5 How is DMA initiated?

When the IO device needs a DMA transfer, it will send a DMA request signal to the DMA
controller. The DMA controller inturn sends a HOLD request to the processor. When the processor
receives a HOLD request, it will drive its tristate pins to high impedance state at the end of current
instruction execution and sends an acknowledge signal to the DMA controller. Now the DMA

controller will perform DMA transfer.

6.6 What are the different types of DMA?

The different types of DMA data transfer are cycle stealing (or single transfer) DMA, Block
transfer (or Burst mode) DMA and Demand transfer DMA.

6.7 What is cycle stealing DMA?

In cycle stealing DMA (or single transfer mode) the DMA controller will perform one DMA transfer
in between the instruction cycles (i.e., In this mode the execution of one processor instruction and
one DMA data transfer will take place alternatively).

6.8 What are block and demand transfer modes DMA?

In block transfer mode, the DMA controller will transfer a block of data and relieve the bus to the
processor. After sometime another block of data is transferred by the DMA and so on.

In demand transfer mode the DMA controller will complete the entire data transfer at a stretch and
then relieve the bus to the processor.

6.9 What are the operating modes of 8212 ?

8212 can be hardwired to work either as a latch or tristate buffer. If mode (MD) pin is tied high then
it will work as a latch and it can be used as the output port. If mode (MD) pin is tied low then it
works as a tristate buffer and it can be used as the input port.

6.10 What are the various internal devices of INTEL 8155?

The INTEL 8155 is an IC consisting of static RAM, IO ports and timer. The internal devices of 8155 are
256 bytes of static RAM, three numbers of programmable IO ports and a 14-bit programmable timer.

6.11 What is handshake port ?

In handshake port, signals are exchanged between IO device and port or between port and processor
for checking/informing various conditions of the device.

6.12 Explain the working of a handshake input port.

In handshake input operation, the input device will check whether the port is empty or not. If the
port is empty then it will load data to port. When the port receives the data, it will inform the
processor for read operation. Once the data has been read by the processor, the port will signal the
input device that it is empty. Now, the input device can load another data to the port and the above
process will be repeated.

6.13 Explain the working of a handshake output port.

In handshake output operation, the processor will load a data to port. When the port receives the
data, it will inform the output device to collect the data. Once the output device accepts the data,
the port will inform the processor that it is empty. Now the processor can load another data to the
port and the above process will be repeated.

6.14 What are the internal devices of 8255 ?

The internal devices of 8255 are Port-A, Port-B and Port-C. The ports can be programmed for
either input or output function in different operating modes.

6. 96 Chapter 6 Peripheral Devices And Interfacing

D0 D1 D2 D3 D4 D5 D6

P
ar
it
y

S
to
p

S
to
p

One Character

¯
Always Low Always High

Fig. Q6.17 : Bit format used for
sending asynchronous

serial data.

¯ ¯

S
ta
rt

6.15 What are the operating modes of port-A of 8255?

The port-A of 8255 can be programmed to work in any one of the following operating modes as
input or output port.

Mode-0 : Simple IO port.

 Mode-1 : Handshake IO port.

 Mode-2 : Bidirectional IO port.

6.16 What are the functions performed by port-C of 8255?

1. Port-C pins are used for handshake signals.

2. Port-C can be used as an 8-bit parallel IO port in Mode-0.

3. It can be used as two numbers of 4-bit parallel ports in Mode-0.

4. The individual pins of port-C can be set or reset for various control applications.

6.17 What is the bit format used for sending asynchronous serial data?

In asynchronous transmission, each data character has a bit which identifies its start and 1 or 2
bits which identify its end. A typical bit format is shown in Fig. Q6.17.

6.18 What is baud rate ?

The baud rate is the rate at which the serial data is transmitted. Baud rate is defined as

. In some systems one bit cell has one data bit, then the baud rate and bits

per second are same.

6.19 What is RS-232C standard ?

RS-232C is a serial bus consisting of a maximum of 25 signals. These bus signals are standardized
by EIA (Electronics Industries Association), USA and adopted by IEEE. Usually the first 9 signals
are sufficient for most of the serial data transmission. The RS-232C serial bus is usually terminated
using either a 9-pin connector or a 25-pin connector.

6.20 What voltage levels are used in RS-232C serial communication standard?

The voltage levels for all RS-232C signals are as follows.

Logic low = −3-V to −15-V under load (−25-V on no load)
Logic high = +3-V to +15-V under load (+25-V on no load)

Commonly used voltage levels are +12-V (logic high) and −12-V (logic low).

6.21 How is the RS-232C serial bus interfaced to TTL logic device ?

The RS-232C signal voltage levels are not compatible with TTL logic levels. Hence, for interfacing
TTL devices to RS-232C serial bus, level converters are used. The popularly used level converters
are MC 1488 and MC 1489 or MAX 232.

6.22 What is USART ?

The device which can be programmed to perform synchronous or asynchronous serial
communication is called USART (Universal Synchronous Asynchronous Receiver Transmitter).
INTEL 8251A is an example of USART.

1
(The time for a bit cell)

Microprocessor (8085) And Its Applications 6. 97

6.23 What are the functions performed by INTEL 8251A?

The INTEL 8251A is used for converting parallel data to serial or vice versa. The data transmission
or reception can be either asynchronous or synchronous. The 8251A can be used to interface
MODEM and establish serial communication through MODEM over telephone lines.

6.24 What are the control words of 8251A and what are its functions?

The control words of 8251A are Mode word and Command word. The mode word informs 8251
about the baud rate, character length, parity and stop bits. The command word can be sent to
enable the data transmission and/or reception.

6.25 What is the information that can be obtained from the status word of 8251?

The status word can be read by the CPU to check the readiness of the transmitter or receiver and
to check the character synchronization in synchronous reception. It also provides information
regarding various errors in the data received. The various error conditions that can be checked
from the status word are parity error, overrun error and framing error.

6.26 List the functions performed by 8279.

The functions performed by 8279 are :
• Keyboard scanning • Key debouncing • Keycode generation

• Informing the key entry to CPU • Storing display codes • Output display codes to LEDs

• Display refreshing

6.27 What is the maximum number of keycodes that can be generated by 8279?

In scanned keyboard mode the maximum size of keyboard matrix array that can be interfaced to
8279 is 8 x 8, which consists of 64 keys. In addition, the 8279 has two control keys called shift and
control. For each key press, an 8-bit code is generated and stored in FIFO (keyboard RAM of
8279). The keycode consists of row and column number of the key in binary along with the status
of shift and control key. Hence with 64 contact keys, shift and control key, a maximum of 256
keycodes can be generated by 8279.

6.28 What are the programmable display features of 8279 ?

The 8279 can be used for interfacing LEDs or 7 segment LEDs. In decoded scan, 4 numbers of
7-segment LEDs can be interfaced and in encoded scan, a maximum of 16 numbers of 7-segment
LEDs can be interfaced. The 8279 can be programmed for left entry or right entry.

6.29 What are the different scan modes of of 8279?

The different scan modes of 8279 are decoded scan and encoded scan. In decoded scan mode,
the output of scan lines will be similar to a 2-to-4 decoder. In encoded scan mode, the output of
scan lines will be binary count. So, an external decoder should be used to convert the binary
count to decoded output.

6.30 What are the tasks involved in keyboard interface ?

The tasks involved in keyboard interfacing are sensing a key actuation, debouncing the key and
generating keycodes (Decoding the key). These tasks are performed by software if the keyboard
is interfaced through ports and they are performed by hardware if the keyboard is interfaced
through 8279.

6.31 What is debouncing ?

When a key is pressed it bounces for a short time. If a key code is generated immediately after
sensing a key actuation, then the processor will generate the same keycode a number of times. (A
key typically bounces for 10 to 20 millisecond.) Hence, the processor has to wait for the key
bounces to settle before reading the keycode. This process is called keyboard debouncing.

6.32 What is the disadvantage in keyboard interfacing using ports?

The disadvantage in keyboard interfacing using ports is that most of the processor time is utilized
in keyboard scanning and debouncing. As a result the computational speed/efficiency of the
processor will be reduced.

6. 98 Chapter 6 Peripheral Devices And Interfacing

6.33 What is multiplexed display? What is its advantage?

The process of switching ON the display devices one by one for a specified time interval is called
multiplexed display. In microprocessor-based systems, six to eight 7-segment LEDs are interfaced
to provide multiplexed display.At any one time only one 7-segment LED is made to glow at a time.
After a few milliseconds, the next 7-segment LED is made to glow and so on. Due to persistence of
vision, it will appear as if the LEDs are glowing continuously. The advantage in multiplexed
display is that the power requirement of the display devices are reduced to a very large extent.

6.34 What is the disadvantage in 7-segment LED interfacing using ports?

The disadvantage in using ports for 7-segment LED interfacing is that most of the processor time
is utilized for display refreshing.

6.35 What is the advantage in using INTEL 8279 for keyboard and display interfacing?

When 8279 is used for keyboard and display interfacing, it takes care of all the tasks involved in
keyboard scanning and display refreshing. Hence the processor is relieved from the task of
keyboard scanning, debouncing, keycode generation and display refreshing. So, the processor
time can be more efficiently used for computing.

6.36 What is the difference in programming the 8279 for encoded scan and decoded scan?

If the 8279 is programmed for decoded scan then the output of scan lines will be decoded output
and if it is programmed for encoded scan then the output of scan lines will be binary count. In
encoded mode, an external decoder should be used to decode the scan lines.

6.37 How is a keyboard matrix is formed in a keyboard interface using 8279?

The return lines, RL
0
 to RL

7
 of 8279 are used to form the columns of keyboard matrix. In decoded

scan the scan lines SL
0
 to SL

3
 of 8279 are used to form the rows of keyboard matrix. In encoded

scan mode, the scan line SL
0
 to SL

3
are connected to input of a decoder and the output lines of

decoder are used as rows of keyboard matrix.

6.38 What is scanning in keyboard and what is scan time?

The process of sending a zero to each row of a keyboard matrix and reading the columns for key
actuation is called scanning. The scan time is the time taken by the device/processor to scan all
the rows one by one starting from first row and coming back to the first row again.

6.39 What is scanning in display and what is the scan time?

In display devices, the process of sending display codes to 7-segment LEDs to display the LEDs
one by one is called scanning (or multiplexed display). The scan time is the time taken to display
all the 7-segment LEDs one by one, starting from first LED and coming back to the first LED again.

6.40 What is resolution in DAC?

The resolution in DAC is the smallest possible analog value that can be generated by the n-bit
binary input. If the reference voltage in n-bit DAC is V

REF
, then the resolution is (1/2n) ×V

REF
volts.

6.41 What are the internal devices of a typical DAC?

The internal devices of a DAC are R/2R resistive network, an internal latch and current to voltage
converting amplifier.

6.42 What is settling or conversion time in DAC?

The time taken by the DAC to convert a given digital data to corresponding analog signal is
called conversion time.

6.43 What are the different types of ADC?

The different types of ADC are successive-approximation ADC, counter type ADC, flash type
ADC, integrator converters and voltage-to-frequency converters.

6.44 What is resolution and conversion time in ADC?

The resolution in ADC is the minimum analog value that can be represented by the digital data. If
the ADC gives n-bit digital output and the analog reference voltage is V

REF
, then the resolution is

(1/2n) × V
REF

Volts. The conversion time in ADC is defined as the total time required to convert an
analog signal into its digital equivalent.

 CHAPTER 7

MICROCOMPUTERICROCOMPUTERICROCOMPUTERICROCOMPUTERICROCOMPUTER SYSTEMYSTEMYSTEMYSTEMYSTEM DESIGNESIGNESIGNESIGNESIGN

ANDNDNDNDND APPLICAPPLICAPPLICAPPLICAPPLICATIONSTIONSTIONSTIONSTIONS

7.1 DESIGNING A MICROPROCESSOR-BASED SYSTEM

Design of microcomputer system starts with specifications. The specification of the system

includes the following :

1. Input device

2. Output device

3. Memory requirement

4. System clock frequency

5. Peripheral devices required

6. Type of CPU (Microprocessor)

7. Applications or Nature of work.

Input Devices

The popular input device in single board microcomputer system (microprocessor trainer

kit) is the Hex-keyboard. Other forms of input devices are DIP switches, ADC interfaced through

port and floppy disk interfaced through floppy disk controller - INTEL 8272. The Hex-keyboard

is normally interfaced to 8085/8086 system using INTEL 8279 keyboard and display controller. A

maximum of 64 keys can be interfaced using 8279. Along with shift and control, 256 key-codes

can be generated using 8279.

Output Devices

The popular output device used in single board microcomputer (microprocessor trainer

kit) is the 7-segment LED. The seven segment LEDs are interfaced to 8086 processor using

INTEL 8279 keyboard and display controller. The 8279 is a dedicated controller which takes care

of key-board scanning and display refreshing. A maximum of 16 number of 7-segment LEDs can

be interfaced using one 8279 in 8085/8086-based system as multiplexed display.

Other output devices are LCD (Liquid Crystal Display), printer, floppy disk and CRT terminal.

The LCD and printer can be interfaced using ports. Special dedicated controllers are required for

interfacing floppy disk and CRT terminal. The INTEL 8272 or INTEL 82072 floppy disk controller

and INTEL 8275 CRT controller are popularly used with 8085/8086/8088 systems.

�

7. 2 Chapter 7 Microcomputer System Design And Applications

Memory Requirement

The memory requirement of the system is splitted between EPROM and RAM. The memory

capacity of EPROM and RAM are estimated based on the applications and work to be performed

by the processor. Most of the microprocessors use memory with word size of 1-byte. Hence the

memory capacity of the system is specified in kilo bytes.

The popular EPROM used in the 8085-based system are 2708 (1k × 8), 2716 (2 k × 8), 2732

(4 k × 8), 2764 (8 k × 8) and 27256 (32 k × 8). The popular static RAM used in the 8085-based

system are 6208 (1k × 8), 6216 (2 k × 8), 6232 (4 k × 8), 6264 (8 k × 8), and 62256 (32 k × 8).

The memories are chosen with compatible access time, i.e., the access time of memories should be

less than the read time and write time of the processor.

The total memory requirement of the system is implemented by using more than one memory

IC. But the processor, at any one time can communicate with (or access) only one memory IC. To

select a memory IC, chip select signals has to be generated using decoders. The input to the

decoders are the unused address lines. Also, to each memory location, specific addresses should

be allotted. [These techniques are discussed in memory interfacing.]

The EPROMs are mapped at the beginning of memory space in order to store the monitor

program in EPROM and to execute the monitor program upon power-on-reset. [Every system will

be resetted when power supply is switched ON.]

In 8085-based system, the interrupt vector addresses belong to EPROM locations. Normally,

a jump instruction with an address of RAM location is stored in the vector locations. Hence, the

user can store the interrupt subroutines in these jump addresses.

Apart from allocating addresses to memory devices, the peripherals and IO devices should

also be allotted specific addresses. The peripherals and IO devices can be either memory-mapped

or IO-mapped in the system. If the memory requirement of the system is very large and in future

if memory expansion is required, then the peripherals and IO devices are IO-mapped in the system.

If memory requirement of the system is less, then the peripherals and IO devices are memory

mapped in the system.

System Clock Frequency

The microprocessor and the peripheral devices require a clock signal for synchronizing

various internal operations or devices. An oscillator is needed for generating the clock signal. The

oscillator consists of an amplifier and a feedback network. The feedback network has R, L, C or

Quartz crystal.

In 8085 processor, the oscillator circuit (except the Quartz crystal and L-C component) is

fabricated in the processor itself. Hence, it is necessary to connect a quartz crystal external to the

processor. The oscillator generates a clock whose frequency is double to that of internal clock.

The processor divides the generated clock by two for internal operations.

Microprocessor (8085) And Its Applications 7. 3

For each system a maximum clock speed is specified. Driving a system at the maximum

clock is advantageous, because the execution time will be minimum if the clock is maximum.

When the system is driven at maximum clock, then the peripherals chosen should have speed

compatibility with the processor.

Peripheral Devices

The peripheral devices required for a system depends on its applications. Some of the

peripheral devices that can be interfaced to 8086-based system are:

� Programmable Interval Timer – INTEL 8253/8254

� USART – INTEL 8251

� Programmable Peripheral Interface – INTEL 8255

� Keyboard /Display Controller – INTEL 8279

� Programmable Interrupt Controller – INTEL 8259

� DMA Controller – INTEL 8237/8257

� ADC

� DAC, etc.

When the system has to monitor an analog signal from a sensor, then an ADC can be

interfaced using 8255 ports. If the processor has to control an analog device, then it has to

convert the digital signal to analog signal using DAC.

When the system requires large number of interrupt inputs, the interrupt structure of the

system has to be expanded by using interrupt controller 8259. One 8259 supports 8-interrupt request.

The USART-8251 can be used for serial data communication and the programmable

timer-8253/8254 can be employed for various timing operations.

Type of CPU

The CPU of the system is a microprocessor. The microprocessor is chosen based on clock

speed, instruction execution time, memory capacity, size of data and address, addressing modes,

the operations it can perform and the number of additional devices required to form a system.

Application or Nature of Work

The specifications of the microprocessor itself depends on the applications for the proposed

system and the nature of work it is going to perform. The input device, output device, memory

requirement, peripheral requirement, and the choice of CPU, all depends on the nature of work to

be performed by the system.

7.2 8085-BASED MINIMUM SYSTEM

A minimum system is one which is formed using minimum number of IC chips. The minimum

system in 8085 is formed using 8155, 8355, and 8755. In this, the 8085 is the CPU and the 8155,

8355, 8755 are memory and port devices. The 8155, 8355 and 8755 are called Programmable

Peripheral Interface (PPI). The 8155 has ports and 256 × 8 static RAM, the 8355 has ports and

7. 4 Chapter 7 Microcomputer System Design And Applications

↓

A
D

0
 -

 A
D

7

A
8
 -

 A
1

5

A
L

E

R
E

S
E

T

C
L

K
 O

U
T

R
E

A
D

Y
+

5
-V

8
0

8
5

X
1

X
2

C
R

S
TA

L

8 A
11

→ → TIMER OUT

→← PA
0
 - PA

7

8

→← PB
0
 - PB

7

8
→← PC

0
 - PC

5

6

8155

→
→
→
→
→
→
→

1

8
A

12

TIMER CLK
RESET

ALE

AD
0
 - AD

7

→ → TIMER OUT

→← PA
0
 - PA

7

8

→← PB
0
 - PB

7

8

→← PC
0
 - PC

5

6

8155

→
→
→
→
→
→
→

1

8

A
13

CLK
RESET

A8 - A10

→
→← PA

0
 - PA

7

8

→← PB
0
 - PB

7

8

8355

→
→
→
→
→
→
→

1

8

→

AD
0
 - AD

7

→
→

3

A
14

→ →← PA
0
 - PA

7

8

→← PB
0
 - PB

7

8

8755

→
→
→
→
→
→
→

1

8

→

→
→

3

A
15

→ →← PA
0
 - PA

7

8

→← PB
0
 - PB

7

8

8755

→
→
→
→
→
→
→

1

8

→

→
→

3

↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

F
ig

.
7

.1
 :

 8
0
8
5
-b

a
s
e
d
 m

in
im

u
m

 s
y
s
te

m
.

TIMER CLK
RESET

ALE

AD
0
 - AD

7

CE2

ALE

RESET

A
8
 - A

10

AD
0
 - AD

7

CE2

ALE

CLK

RESET

A
8
 - A

10

AD
0
 - AD

7

CE2

ALE

CLK

IO
/M R

D

W
R

IO/M

IOR

IOW

IO/M

RD

RD
IOR

IOW

CE1

CE1

IO/M

IOR
RD

IOW

CE1

IO/M

RD
WR

CE

IO/M

RD

WR

CE

Microprocessor (8085) And Its Applications 7. 5

2 k × 8 ROM and the 8755 has ports and 2 k × 8 EPROM. The port and memory requirement

of the system are provided by PPI. The input and output devices like key-board and display LEDs

are interfaced via ports of PPI to the system.

In minimum system, the monitor program and system program are usually stored in permanent

memories like ROM and EPROM of 8355 and 8755. For stack operations we require RAM memory.

The RAM memory requirement is provided by 8155 .

The PPIs (8155, 8355 and 8755) have internal address latches, hence there is no need to

demultiplex the AD
0
-AD

7
 lines of the processor. The demultiplexing is done by these devices,

internally. These devices are mapped in the system by linear address selection method. In this

method, the unused address lines are directly connected to chip select pins of the peripheral ICs.

The memories of the PPI are interfaced by memory mapping and the ports of the PPIs are mapped

by IO mapping. The PPIs accept IO/M signals and differentiate between memory and port addresses.

A 16-bit address is allotted to memory locations and 8-bit IO address is allotted to ports. An

example of minimum system is shown in Fig. 7.1.

7.3 TEMPERATURE CONTROL SYSTEM

The microprocessor-based temperature control system can be used for automatic control

of the temperature of a plant. A simplified block diagram of 8085 microprocessor-based temperature

control system is shown in Fig. 7.2.

The system consist of 8085 microprocessor as CPU, EPROM memory for program storage,

RAM memory for stack and data storage, INTEL 8279 for keyboard and display interface, ADC,

DAC, INTEL 8255 for IO ports, amplifiers, signal conditioning circuit, temperature sensor and

supply control circuit. In this system, the temperature is controlled by controlling the power input

to the heating element.

The EPROM memory is provided for storing system program, and RAM memory for

temporary data storage and stack operation. Using INTEL 8279, a keyboard and six numbers of

7-segment LEDs are interfaced to the system. The system has been designed to accept the desired

temperature and various control commands through keyboard. The 7-segment display has been

provided to display the temperature of the plant at any time instant.

The temperature of the plant is measured using a temperature sensor. The different types of

temperature sensors that can be used for temperature measurement are thermo-couples, Thermistors,

PN-junctions, IC sensors like AD590, etc. These sensors will convert the input temperature to

proportional analog voltage or current. The output signal of the sensor will be a weak signal and so

it has to be amplified using high input impedance operational amplifier. Then the analog signal is

scaled to suitable level by the signal conditioning circuit.

The microprocessor can process only digital signals and so the analog signal from signal

conditioning circuit cannot be read by the processor directly. The system has an Analog-to-Digital

Converter (ADC) to convert the analog signal to proportional digital data. In this system, the ADC

is interfaced to 8085 processor through port-A and port-C of 8255. The 8085 processor send

signal to ADC through port-C to start conversion and at the end of conversion it reads the digital

data from the port-A of 8255.

7. 6 Chapter 7 Microcomputer System Design And Applications

↓

S
ig

n
al

C
o

n
d

it
io

n
in

g

C
ir

cu
it

↓

S
u

p
p

ly
V

o
lt

ag
e

C
o

n
tr

o
l

C
ir

c
u

it

↓

↓

↓

A
D

C

0
8

0
9

D
A

C

0
8

0
0

↓

↓

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

↓

↓ System Bus

↓

↓

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

↓

A
n

o
d

e
D

ri
v

er
s

↓

↓
↓

K
ey

b
o

ar
d

an

d

C
o

n
tr

o
l

P
a
n

e
l

D
e
c
o

d
e
r

↓

↓
C

at
h

o
d

e
D

ri
v

er
s

←

7
-S

e
g

m
e
n

t
L

E
D

D
is

p
la

y

↓↓ ↓

A
d

d
re

ss

L
at

ch

7
4
L

S
3
7
3

8
0

8
5

C
P

U

↓

↓

R
A

M

6
2

6
4

8
 k

b

↓ ↓

↓

E
P

R
O

M

2
7

6
4

8
 k

b

6.144 MHz

F
ig

.
7

.2
 :

A
n

 8
0

8
5

 m
ic

ro
p

ro
c
e

s
s
o

r-
b

a
s
e

d
 t
e

m
p

e
ra

tu
re

 c
o

n
tr

o
l
s
y
s
te

m
.

A
m

p
li

fi
e
r

A
m

p
li

fi
e
r

S
u

p
p

ly
 t

o
 H

ea
ti

n
g

E
le

m
e
n

t

H
e
a
ti

n
g

 E
le

m
e
n

t

P
o

rt
-C

↓
↓

E
O

C

S
O

C

T
h

e
P

la
n

t

W
h

o
se

T
e
m

p
e
ra

tu
re

H
as

 t
o
 b

e

C
o

n
tr

o
ll

e
d

Temperature

Sensor

Microprocessor (8085) And Its Applications 7. 7

The 8085 processor calculates the actual

temperature using the input data and displays it on

the 7-segment LED. Also, the processor compares

the desired temperature with actual temperature (The

operator can enter the desired temperature through

keyboard) and calculate the error (the difference

between the actual temperature and the desired

temperature).

The error is used to compute a digital control

signal, which is converted to analog control signal by

DAC. The DAC is interfaced to the system through

port-B of 8255. The analog control signal produced

by DAC is used to control the power supply of the

heating element of the plant.

The digital control signal can be computed by

the 8085 processor using different digital control

algorithms (P/PI/PID/FUZZY logic control

algorithms).

The control circuit for power supply can be

either thyristor-based circuit or relay. In case of

thyristor control circuits, the firing angle can be varied

by the control signal to control the power input to the

heater. In case of relay, the control signal can switch

ON/OFF the relay to control the power input to the

heater.

The sequence of operations performed by the

microprocessor-based system are shown in the

flowchart of Fig. 7.3.

7.4 MOTOR SPEED CONTROL SYSTEM

The microprocessor-based speed control system can be used to automatically control the

speed of a motor. A typical 8085 microprocessor-based dc motor speed control system is shown in

Fig. 7.4. In this system, the speed of the dc motor is varied by varying the armature voltage and the

field voltage is kept constant. A controlled rectifier using SCR develops the required armature

voltage and the uncontrolled rectifier generates the required field voltage. The microprocessor

controls the speed of the motor by varying the firing angle of SCRs in the controlled rectifier.

The speed control system has been developed using 8085 microprocessor as CPU. The

system has EPROM for system program storage, and RAM for temporary data storage and stack.

↓

Get Desired

Temperature (T
d
)

↓
Send SOC to ADC

↓

↓
Read the Actual

Temperature (T
a
)

↓
Display the Actual

Temperature (T
a
)

↓

Is

T
d
 = T

a

↓
↓

Yes

No

Calculate Error

↓
Generate Control Signal

↓
Send Control Signal to DAC

↓

Initialize Ports and 8279

↓

Fig. 7.3 : Flowchart for temperature

control system.

Start

←

←

7. 8 Chapter 7 Microcomputer System Design And Applications

F
ir

in
g

C
ir

cu
it

fo
r

S
C

R
s

S
ig

n
al

C
o

n
d

it
io

n
in

g

C
ir

cu
it

↓

↓

D
A

C

0
8

0
0

A
D

C

0
8

0
9

↓

↓

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

↓

↓ System Bus

↓

↓

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

↓

A
n

o
d

e
D

ri
v

er
s

↓

↓
↓

K
ey

b
o

ar
d

an

d

C
o

n
tr

o
l

P
a
n

e
l

D
e
c
o

d
e
r

↓

↓
C

at
h

o
d

e
D

ri
v

er
s

7
-S

e
g

m
e
n

t
L

E
D

D
is

p
la

y

↓↓ ↓

A
d

d
re

ss

L
at

ch

7
4
L

S
3
7
3

8
0

8
5

C
P

U

↓

↓

R
A

M

6
2

6
4

8
 k

b

↓ ↓

↓

E
P

R
O

M

2
7

6
4

8
 k

b

6.144 MHz

F
ig

.
7

.4
 :

A
n

 8
0

8
5

 m
ic

ro
p

ro
c
e

s
s
o

r-
b

a
s
e

d
 d

c
 m

o
to

r
s
p

e
e

d
 c

o
n

tr
o

l
s
y
s
te

m
.

↓

U
n

c
o

n
tr

o
ll

e
d

R
e
c
ti

fi
e
r

U
si

n
g

 D
io

d
es

↓

M

↓
↓ C

o
n

tr
o

ll
e
d

R
e
c
ti

fi
e
r

U
si

n
g
 S

C
R

s

↓
↓

A
C

 S
u

p
p

ly

T
a

c
h

o
-

G
e
n

e
ra

to
r

D
C

 M
o

to
r

Motor

Field

A
rm

a
tu

re

D
C

M
O

T
O

R

P
o

rt
-C←

E
O

C

S
O

C

↓

Microprocessor (8085) And Its Applications 7. 9

A keyboard has been provided to input the desired speed

and other commands to operate the system. In order

to display the speed of the motor, 7-segment LED

display has been provided. The keyboard and 7-segment

LED display have been interfaced to 8085-based system

using Keyboard/Display controller INTEL 8279.

The speed of the dc motor is measured using a

tachogenerator. It produces an analog voltage

proportional to the speed of the motor. Then the analog

signal is scaled to desired level by the signal conditioning

circuit and digitized using ADC. (The processor cannot

process the analog signal directly, hence the analog

signal is digitized using ADC.)

The ADC is interfaced to 8085 processor

through the port-B and port-C of 8255. The processor

can send a start of conversion to ADC through port-C

pin and at the end of conversion it can read the digital

data from port-B of 8255. This digital data is

proportional to actual speed.

The processor calculates the actual speed and

displays it on LEDs. Also, the processor compares the

actual speed with the desired speed entered by the

operator through the keyboard. If there is a difference

then an error is estimated. The error can be modified

by a digital control algorithm, (P/PI/PID/FUZZY logic

control algorithm) to produce a digital control signal.

The digital control signal is converted to analog

signal by the DAC. The analog control signal is used

to alter the firing angle of SCRs in the controlled

rectifiers. The operational flow of the speed control

system is shown in the flowchart of Fig. 7.5.

7.5 TRAFFIC LIGHT CONTROL SYSTEM

The traffic lights placed at the road crossings can be automatically switched ON/OFF in

the desired sequence using the microprocessor system. The system can also have a manual control

option, so that during heavy traffic (or during traffic jam) the duration of ON/OFF time can be

varied by the operator.

Fig. 7.5 : Flowchart for a dc motor

speed control system.

Start

↓
Initialize Ports and

8279

↓

Send SOC to ADC

↓

↓
Read the Data From

ADC

↓
Calculate the Actual

Speed (N
a
)

↓

Is

N
a
 = N

d

↓
↓

Yes

No

←

Calculate Error and Generate

Control Signal

↓
Output Control Signal to DAC

↓

Get the Desired Speed

(N
d
)

↓

Is
Conversion
Complete ?

No

↓

↓

Yes

↓
Display the Actual

Speed

←

←

7. 10 Chapter 7 Microcomputer System Design And Applications

↓ ↓

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

↓

↓ System Bus ↓

A
n

o
d

e
D

ri
v

er
s

↓

↓
K

e
y

b
o

a
rd

a
n

d
 C

o
n

tr
o

l

P
a
n

e
l

↓
C

at
h

o
d

e
D

ri
v

er
s

↓↓ ↓

A
d
d
re

ss

L
a

tc
h

7
4

L
S

3
7

3
8

0
8

5

C
P

U
↓

↓

R
A

M

6
2

6
4

8
 k

b

↓
E

P
R

O
M

2
7

6
4

8
 k

b

↓

6.144 MHz

F
ig

.
7

.6
 :

A
n

 8
0

8
5

 m
ic

ro
p

ro
c
e

s
s
o

r-
b

a
s
e

d
 t
ra

ff
ic

 l
ig

h
t
c
o

n
tr

o
l
d

e
m

o
n

s
tr

a
ti
o

n
 s

y
s
te

m
.

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

↓

D
e
c
o

d
e
r

↓

↓

↓

↓

P o r t - C

B
u

ff
e
r

7
4

L
S

2
4

5

↓

B
u

ff
e
r

7
4

L
S

2
4

5

B
u

ff
e
r

7
4

L
S

2
4

5

N
R

N
Y

N
G

N
F
R

N
F

L
S R

S
Y

S
G

S
F
R

S
F

L
E

R
E

Y
E

G
E

F
R

E
F

L
W

R

W
Y

W
G

W
F

R
W

F
L

L
E

D

L
E

D

L
E

D

N
-

N
o

rt
h

S
-

S
o

u
th

E
-

E
a
st

W
-

W
e

st

S
u

ff
ix

 R
-

R
ed

S
u

ff
ix

 G
-

G
re

en

S
u

ff
ix

 Y
-

Y
el

lo
w

S
u
ff

ix
 F

R
-

F
re

e
R

ig
h
t

S
u
ff

ix
 F

L
-

F
re

e
 L

e
ft

↑

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓ ↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

Microprocessor (8085) And Its Applications 7. 11

T
A

B
L

E
 -
7
.1

 :
 S

W
IT

C
H

IN
G

 S
C

H
E

D
U

L
E

 F
O

R
 T

R
A

F
F

IC
 L

IG
H

T
S

N
o
te

 :
 "

1
"

re
p
re

se
n

ts
 O

N
 a

n
d
 "

0
"

re
p
re

se
n

ts
 O

F
F.

O
N

/O
F

F
 s

ta
tu

s
o
f

tr
a
ff

ic
 l

ig
h

ts

S
w

it
c
h

in
g

P
C

3
P

C
2

P
C

1
P

C
0

P
B

7
P

B
6

P
B

5
P

B
4

P
B

3
P

B
2

P
B

1

 P

B
0

P
A

7
P

A
6

P
A

5

P
A

4
 P

A
3

P
A

2
P

A
1

P
A

0

s
c
h

e
d

u
le

W
F

L
W

F
R

W
G

W
Y

W
R

E
F

L
E

F
R

E
G

E
Y

E
R

S
F

L
S

F
R

S
G

S
Y

S
R

N
F

L
N

F
R

N
G

N
Y

N
R

S
c
h
e
d
u
le

 I
0

0
0

1
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1

S
c
h

e
d

u
le

 I
I

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

S
c
h
e
d
u
le

 I
II

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
1

1
1

0
0

S
c
h
e
d
u
le

 I
V

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

S
c
h

e
d

u
le

 V
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

0
0

0
0

1

S
c
h
e
d
u
le

 V
I

0
0

0
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

0
1

S
c
h
e
d
u
le

 V
II

0
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

S
c
h

e
d

u
le

 V
II

I
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1

S
c
h
e
d
u
le

 I
X

0
0

0
0

1
1

1
1

0
0

0
0

0
0

1
0

0
0

0
1

S
c
h
e
d
u
le

 X
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1

S
c
h
e
d
u
le

 X
I

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

S
c
h
e
d
u
le

 X
II

1
1

1
0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

7. 12 Chapter 7 Microcomputer System Design And Applications

A typical traffic light control system (demonstration type) is shown in Fig. 7.6. The system

has been developed using 8085 as CPU. The system has EPROM memory for system program

storage and RAM memory for stack operation. For manual control, a keyboard has been provided.

It will be helpful for the operator if the direction of traffic flow is displayed during manual control.

Hence 7-segment LEDs are interfaced to display the direction of traffic flow both during manual

and automatic mode.

The primary function of the microprocessor in the system is to switch ON/OFF the

Red/Yellow/Green lights in the specified sequence. In the demonstration system of Fig. 7.6, Red/

Yellow/Green LEDs are provided instead of lights (lamps). The LEDs are interfaced to the system

through buffer (74LS245) and ports of 8255.

↓
Call Subroutine

NORTH

↓
Call Subroutine

SOUTH

↓
Call Subroutine

EAST

↓
Call Subroutine

WEST

↓

↓
Output Code for

Schedule-IV

↓
Delay-I

↓
Output Code for

Schedule-V

↓
Delay-II

↓
Output Code for

Schedule-VI

↓
Delay-III

Return

↓
Output Code for

Schedule-I

↓
Delay-I

↓
Output Code for

Schedule-II

↓
Delay-II

↓
Output Code for

Schedule-III

↓
Delay-III

Return
↓

Start
NORTH SOUTH

↓

EAST

↓
Output Code for

Schedule-VII

↓
Delay-I

↓
Output Code for

Schedule-VIII

↓
Delay-II

↓
Output Code for

Schedule-IX

↓
Delay-III

Return
↓

WEST

↓
Output Code for

Schedule-X

↓
Delay-I

↓
Output Code for

Schedule-XI

↓
Delay-II

↓
Output Code for

Schedule-XII

↓
Delay-III

Return
↓

Fig. 7.7 : Flowchart for traffic light control program.

Microprocessor (8085) And Its Applications 7. 13

In the practical implementation scheme, the lights can be turned ON/OFF using driver

transistors and relays. In practical implementation, the output of buffer (74LS245) can be connected

to the driver transistor. A relay placed at the collector of the transistor can be used to switch ON/

OFF the light as shown in Fig. 7.8. A reverse biased diode is connected across relay coil to prevent

relay chattering (for free-wheeling action).

The microprocessor sends high through a port line to switch ON the light and low to switch

OFF the light. A switching schedule (or sequence) can be developed as shown in Table-7.1. In this

switching sequence, it is assumed that the traffic is allowed only in one direction at a time. In

Table-7.1, "1" represents ON condition and "0" represents OFF condition. These 1s and 0s can be

directly output to 8255 ports to switch ON/OFF the light. A flowchart for traffic light control

program is shown in Fig. 7.7.

The processor can output the codes for switching the lights for schedule-I and then waits.

After a specified time delay, the processor output the codes for schedule-II and so on. For each

schedule the processor can wait for a specified time. After schedule-XII, the processor can again

return to schedule-I. On observing the schedules, we can conclude that three different delay

routines are sufficient for implementing the twelve switching schedules.

7.6 STEPPER MOTOR CONTROL SYSTEM

The stepper motors are popularly used in computer peripherals, plotters, robots and machine

tools for precise incremental rotation. In stepper motor, the stator windings are excited by electrical

pulses and for each pulse the motor shaft advances by one angular step. (Since the stepper motor

can be driven by digital pulses, it is also called digital motor.) The step size in the motor is determined

by the number of poles in the rotor and the number of pairs of stator windings (one pair of stator

winding is called one phase). The stator windings are also called control windings.

The motor is controlled by switching ON/OFF the control winding. The popular stepper

motor used for demonstration in laboratories has a step size of 1.8° (i.e., 200 steps per revolution).

This motor consist of four stator winding and require four switching sequence as shown in

74LS245

Buffer

Light

Relay

+ 12-V

Fig. 7.8 : Switching circuit for traffic light.

NO

NC

Common

AC supply, 230-V

↓

7. 14 Chapter 7 Microcomputer System Design And Applications

Table-7.2. The basic step size of the motor is called full-step. By altering the switching sequence,

the motor can be made to run with incremental motion of half the full-step value. The switching

sequence for half step rotation is shown in Table-7.3.

A typical stepper motor control system is shown in Fig. 7.9 a two-phase or four winding

stepper motor is shown in Fig. 7.9. The system consists of 8085 microprocessor as CPU, EPROM

and RAM memory for program and data storage and for stack. Using INTEL 8279, a keyboard

and six number of 7-segment LED display have been interfaced in the system. Through the

keyboard the operator can issue commands to control the system. The LED display has been

provided to display messages to the operator.

TABLE-7.2 : SWITCHING SEQUENCE FOR FULL-STEP ROTATION

Switching Clockwise Anticlockwise

sequence rotation rotation

PA
3

PA
2

PA
1
PA

0
PA

3
PA

2
PA

1
PA

0

Sequence-1 1 1 0 0 0 0 1 1

Sequence-2 0 1 1 0 0 1 1 0

Sequence-3 0 0 1 1 1 1 0 0

Sequence-4 1 0 0 1 1 0 0 1

TABLE-7.3 : SWITCHING SEQUENCE FOR HALF-STEP ROTATION

Clockwise Anticlockwise

 rotation rotation

PA
3

PA
2

PA
1

PA
0

PA
3

PA
2
PA

1
PA

0

1 1 0 0 0 0 1 1

0 1 0 0 0 0 1 0

0 1 1 0 0 1 1 0

0 0 1 0 0 1 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0

1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 1

Microprocessor (8085) And Its Applications 7. 15

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A

↓

↓ System Bus ↓

A
n

o
d

e
D

ri
v

er
s

↓

↓
K

e
y

b
o

a
rd

a
n

d
 C

o
n

tr
o

l

P
a
n

e
l

↓
C

at
h

o
d

e
D

ri
v

er
s

←

↓↓

A
d
d
re

ss

L
a

tc
h

7
4

L
S

3
7

3

8
0

8
5

C
P

U

↓

↓

R
A

M

6
2

6
4

8
 k

b

↓ ↓

↓

E
P

R
O

M

2
7

6
4

8
 k

b

↓

6
.1

4
4

M
H

z

F
ig

.
7

.9
 :

A
n

 8
0

8
5

 m
ic

ro
p

ro
c
e

s
s
o

r-
b

a
s
e

d
 s

te
p

p
e

r
m

o
to

r
c
o

n
tr

o
l
s
y
s
te

m
.

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

↓

D
e
c
o

d
e
r

↓

↓

↓

↓

B
u

ff
e
r

7
4

L
S

2
4

5

→ → → →

P
A

0

P
A

1

P
A

2

P
A

3

B
1

B
2

B
3

B
4

1
k
Ω

Windings of

Stepper Motor

Darlington Pair

Transistor

2N3055

↓

+
1

2
-V

→

→

→

→

→

→

→

→

7. 16 Chapter 7 Microcomputer System Design And Applications

The windings of stepper motor are connected

to the collector of darlington pair transistors. The

transistors are switched ON/OFF by the

microprocessor through the ports of 8255 and buffer

(74LS245). A free-wheeling diode is connected across

each winding for fast switching. The flowchart for

the operational flow of the stepper motor control system

is shown in Fig. 7.10. The processor has to output a

switching sequence and wait for 1 to 5 milliseconds

before sending next switching sequence. (The delay is

necessary to allow the motor transients to die-out.)

Start

↓
Initialize Ports and 8279

↓

Output Data for a Sequence

↓

Set Count for

4-Stepping Sequence

↓

↓

←

Wait for One Millisecond
↓

Decrement the Count
↓

↓Yes

Fig. 7.10 : Flowchart for stepper

motor control program.

Is
count = 0 ?

No

↓

APPENDIX I :8085A Instructions in Hexadecimal Order

OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC

IN HEX IN HEX IN HEX

00 NOP 2B DCX H 56 MOV D, M

01 LXI B, d16 2C INR L 57 MOV D, A

02 STAX B 2D DCR L 58 MOV E, B

03 INX B 2E MVI L, d8 59 MOV E, C

04 INR B 2F CMA 5A MOV E, D

05 DCR B 30 SIM 5B MOV E, E

06 MVI B, d8 31 LXI SP, d16 5C MOV E, H

07 RLC 32 STA addr16 5D MOV E, L

08 --- 33 INX SP 5E MOV E, M

09 DAD B 34 INR M 5F MOV E, A

0A LDAX B 35 DCR M 60 MOV H, B

0B DCX B 36 MVI M, d8 61 MOV H, C

0C INR C 37 STC 62 MOV H, D

0D DCR C 38 --- 63 MOV H, E

0E MVI C, d8 39 DAD SP 64 MOV H, H

0F RRC 3A LDA addr16 65 MOV H, L

10 --- 3B DCX SP 66 MOV H, M

11 LXI D, d16 3C INR A 67 MOV H, A

12 STAX D 3D DCR A 68 MOV L, B

13 INX D 3E MVI A, d8 69 MOV L, C

14 INR D 3F CMC 6A MOV L, D

15 DCR D 40 MOV B, B 6B MOV L, E

16 MVI D, d8 41 MOV B, C 6C MOV L, H

17 RAL 42 MOV B, D 6D MOV L, L

18 --- 43 MOV B, E 6E MOV L, M

19 DAD D 44 MOV B, H 6F MOV L, A

1A LDAX D 45 MOV B, L 70 MOV M, B

1B DCX D 46 MOV B, M 71 MOV M, C

1C INR E 47 MOV B, A 72 MOV M, D

1D DCR E 48 MOV C, B 73 MOV M, E

1E MVI E, d8 49 MOV C, C 74 MOV M, H

1F RAR 4A MOV C, D 75 MOV M, L

20 RIM 4B MOV C, E 76 HLT

21 LXI H, d16 4C MOV C, H 77 MOV M, A

22 SHLD addr16 4D MOV C, L 78 MOV A, B

23 INX H 4E MOV C, M 79 MOV A, C

24 INR H 4F MOV C, A 7A MOV A, D

25 DCR H 50 MOV D, B 7B MOV A, E

26 MVI H, d8 51 MOV D, C 7C MOV A, H

27 DAA 52 MOV D, D 7D MOV A, L

28 --- 53 MOV D, E 7E MOV A, M

29 DAD H 54 MOV D, H 7F MOV A, A

2A LHLD addr16 55 MOV D, L 80 ADD B

A. 2 Appendix

OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC

IN HEX IN HEX IN HEX

81 ADD C AC XRA H D7 RST 2
82 ADD D AD XRA L D8 RC
83 ADD E AE XRA M D9 ---
84 ADD H AF XRA A DA JC addr16
85 ADD L B0 ORA B DB IN addr8
86 ADD M B1 ORA C DC CC addr16
87 ADD A B2 ORA D DD ---
88 ADC B B3 ORA E DE SBI d8
89 ADC C B4 ORA H DF RST 3
8A ADC D B5 ORA L E0 RPO
8B ADC E B6 ORA M E1 POP H
8C ADC H B7 ORA A E2 JPO addr16
8D ADC L B8 CMP B E3 XTHL
8E ADC M B9 CMP C E4 CPO addr16
8F ADC A BA CMP D E5 PUSH H
90 SUB B BB CMP E E6 ANI d8
91 SUB C BC CMP H E7 RST 4
92 SUB D BD CMP L E8 RPE
93 SUB E BE CMP M E9 PCHL
94 SUB H BF CMP A EA JPE addr16
95 SUB L C0 RNZ EB XCHG
96 SUB M C1 POP B EC CPE addr16
97 SUB A C2 JNZ addr16 ED ---
98 SBB B C3 JMP addr16 EE XRI d8
99 SBB C C4 CNZ addr16 EF RST 5
9A SBB D C5 PUSH B F0 RP
9B SBB E C6 ADI d8 F1 POP PSW
9C SBB H C7 RST 0 F2 JP addr16
9D SBB L C8 RZ F3 DI
9E SBB M C9 RET F4 CP addr16
9F SBB A CA JZ addr16 F5 PUSH PSW
A0 ANA B CB --- F6 ORI d8
A1 ANA C CC CZ addr16 F7 RST 6
A2 ANA D CD CALL addr16 F8 RM
A3 ANA E CE ACI d8 F9 SPHL
A4 ANA H CF RST 1 FA JM addr16
A5 ANA L D0 RNC FB EI
A6 ANA M D1 POP D FC CM addr16
A7 ANA A D2 JNC addr16 FD ---
A8 XRA B D3 OUT addr8 FE CPI d8
A9 XRA C D4 CNC addr16 FF RST 7
AA XRA D D5 PUSH D -- ---
AB XRA E D6 SUI d8 -- ---

d8 → 8-bit data
d16 → 16-bit data
addr8 → 8-bit address

addr16 → 16-bit address
M → Memory
PSW → Program Status Word

Appendix I continued...

APPENDIX II : 8085 Instructions in Alphabetical Order

 OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC

IN HEX IN HEX IN HEX

CE ACI d8 E4 CPO addr16 0A LDAX B

8F ADC A CC CZ addr16 1A LDAX D

88 ADC B 27 DAA 2A LHLD addr16

89 ADC C 09 DAD B 01 LXI B,addr16

8A ADC D 19 DAD D 11 LXI D,addr16

8B ADC E 29 DAD H 21 LXI H,addr16

8C ADC H 39 DAD SP 31 LXI SP,addr16

8D ADC L 3D DCR A 7F MOV A,A

8E ADC M 05 DCR B 78 MOV A,B

87 ADD A 0D DCR C 79 MOV A,C

80 ADD B 15 DCR D 7A MOV A,D

81 ADD C 1D DCR E 7B MOV A,E

82 ADD D 25 DCR H 7C MOV A,H

83 ADD E 2D DCR L 7D MOV A,L

84 ADD H 35 DCR M 7E MOV A,M

85 ADD L 0B DCX B 47 MOV B,A

86 ADD M 1B DCX D 40 MOV B,B

C6 ADI d8 2B DCX H 41 MOV B,C

A7 ANA A 3B DCX SP 42 MOV B,D

A0 ANA B F3 DI 43 MOV B,E

A1 ANA C FB EI 44 MOV B,H

A2 ANA D 76 HLT 45 MOV B,L

A3 ANA E DB IN addr8 46 MOV B,M

A4 ANA H 3C INR A 4F MOV C,A

A5 ANA L 04 INR B 48 MOV C,B

A6 ANA M 0C INR C 49 MOV C,C

E6 ANI d8 14 INR D 4A MOV C,D

CD CALL addr16 1C INR E 4B MOV C,E

DC CC addr16 24 INR H 4C MOV C,H

FC CM addr16 2C INR L 4D MOV C,L

2F CMA 34 INR M 4E MOV C,M

3F CMC 03 INX B 57 MOV D,A

BF CMP A 13 INX D 50 MOV D,B

B8 CMP B 23 INX H 51 MOV D,C

B9 CMP C 33 INX SP 52 MOV D,D

BA CMP D DA JC addr16 53 MOV D,E

BB CMP E FA JM addr16 54 MOV D,H

BC CMP H C3 JMP addr16 55 MOV D,L

BD CMP L D2 JNC addr16 56 MOV D,M

BE CMP M C2 JNZ addr16 5F MOV E,A

D4 CNC addr16 F2 JP addr16 58 MOV E,B

C4 CNZ addr16 EA JPE addr16 59 MOV E,C

F4 CP addr16 E2 JPO addr16 5A MOV E,D

EC CPE addr16 CA JZ addr16 5B MOV E,E

FE CPI d8 3A LDA d16 5C MOV E,H

A. 4 Appendix

OPCODE MNEMONIC OPCODE MNEMONIC OPCODE MNEMONIC

IN HEX IN HEX IN HEX

5D MOV E,L C1 POP B 97 SUB A

5E MOV E,M D1 POP D 90 SUB B
67 MOV H,A E1 POP H 91 SUB C
60 MOV H,B F1 POP PSW 92 SUB D
61 MOV H,C C5 PUSH B 93 SUB E
62 MOV H,D D5 PUSH D 94 SUB H
63 MOV H,E E5 PUSH H 95 SUB L
64 MOV H,H F5 PUSH PSW 96 SUB M
65 MOV H,L 17 RAL D6 SUI d8
66 MOV H,M 1F RAR EB XCHG
6F MOV L,A D8 RC AF XRA A
68 MOV L,B C9 RET A8 XRA B
69 MOV L,C 20 RIM A9 XRA C
6A MOV L,D 07 RLC AA XRA D
6B MOV L,E F8 RM AB XRA E
6C MOV L,H D0 RNC AC XRA H
6D MOV L,L C0 RNZ AD XRA L
6E MOV L,M F0 RP AE XRA M
77 MOV M,A E8 RPE EE XRI d8
70 MOV M,B E0 RPO E3 XTHL
71 MOV M,C 0F RRC
72 MOV M,D C7 RST 0
73 MOV M,E CF RST 1
74 MOV M,H D7 RST 2
75 MOV M,L DF RST 3
3E MVI A, d8 E7 RST 4
06 MVI B, d8 EF RST 5
0E MVI C, d8 F7 RST 6
16 MVI D, d8 FF RST 7
1E MVI E, d8 C8 RZ
26 MVI H, d8 98 SBB B
2E MVI L, d8 99 SBB C
36 MVI M, d8 9A SBB D
00 NOP 9B SBB E
B7 ORA A 9C SBB H
B0 ORA B 9D SBB L
B1 ORA C 9E SBB M
B2 ORA D DE SBI d8
B3 ORA E 22 SHLD addr16
B4 ORA H 30 SIM
B5 ORA L F9 SPHL
B6 ORA M 32 STA addr16
F6 ORI d8 02 STAX B
D3 OUT addr8 12 STAX D
E9 PCHL 37 STC

d8 → 8-bit data
d16 → 16-bit data
addr8 → 8-bit address

addr16 → 16-bit address
M → Memory
PSW → Program Status Word

Appendix II continued...

APPENDIX III : List of Microprocessors Released By INTEL

MICROPROCESSOR DATE OF NUMBER OF CLOCK SPEED

INTRODUCTION TRANSISTORS

4004 15th Nov, 1971 2,300 400 kHz

8008 Apr, 1972 3,500 500-800 kHz

8080 Apr, 1974 4,500 2 MHz

8085 Mar, 1976 6,500 5 MHz

8086 8th Jun, 1978 29,000 5/8/10 MHz

8088 Jun, 1979 29,000 5/8 MHz

80186 1982 10/12 MHz

80286 Feb, 1982 134,000 6/10/12 MHz

INTEL386 DX 17th Oct, 1985 275,000 16/20/25/33 MHz

INTEL386 SX 16th Jun, 1988 275,000 16/20/25/33 MHz

INTEL386 SL 15th Oct, 1990 855,000 20/25 MHz

INTEL486 DX 10th Apr, 1989 1.2 million 25/33/50 MHz

INTEL486 SX 16th Sep, 1991 900,000 16/20/25 MHz

INTEL486 SX 21st Sep, 1992 1.185 million 33 MHz

INTEL486 SL 4th Nov, 1992 1.4 million 20/25/33 MHz

INTELDX 2 3rd Mar, 1992 1.2 million 50/66 MHz

INTELDX 4 7th Mar, 1994 3.2 million 75/100 MHz

Pentium 22nd Mar, 1993 3.1 million 60/66 MHz

Pentium 7th Mar, 1994 3.2 million 75/90/100/120 MHz

Pentium Jun, 1995 3.3 million 133/150/166/200 MHz

Pentium Pro 1st Nov, 1995 5.5 million 150/166/180/200 MHz

Pentium (MMX) 8th Jan, 1997 4.5 million 166/200/233 MHz

Mobile Pentium (MMX) 9th Sep, 1997 4.5 million 200/233/266/300 MHz

Pentium II 7th May, 1997 7.5 million 233/266/300/333/350/400/
450 MHz

Mobile Pentium II 2nd Apr, 1998 7.5 million 233/266/300 MHz

Mobile Pentium II 25th Jan, 1999 27.4 million 333/366/400 MHz

Pentium II Xeon 29th Jun, 1998 7.5 million 400/450 MHz

Celeron 15th Apr, 1998 7.5 million 266/300 MHz

Celeron 24th Aug, 1998 19 million 333 MHZ to 2.7 GHz

Mobile Celeron 25th Jan, 1999 18.9 million 266 MHz to 2.4 GHz

Pentium III 26th Feb, 1999 9.5 million 450/500/550/600 MHZ

A. 6 Appendix

MICROPROCESSOR DATE OF NUMBER OF CLOCK SPEED

INTRODUCTION TRANSISTORS

Pentium III 25th Oct, 1999 28 million 500 MHz to 1 GHz

Pentium III Xeon 17th Mar, 1999 9.5 million 500/550 MHz

Pentium III Xeon 25th Oct, 1999 28 million 600 to 900 MHz

Mobile Pentium III 25th Oct, 1999 28 million 400 MHz to 1 GHz

Mobile Pentium III 30th Jul, 2001 44 million 1/1.06/1.13/1.2/1.33 GHz

Pentium 4 20th Nov, 2000 42 million 1.4/1.5/1.6/1.7/1.8/1.9/2 GHz

Pentium 4 27th Aug, 2001 55 million 2 to 2.8 GHz

Pentium 4 (HT Technology) 14th Nov, 2002 55 million 2.4 to 3.3 GHz

Mobile Pentium 4 4th Mar, 2002 55 million 1.5 to 3.2 GHz

INTEL Xeon 21st May, 2001 42 million 1.4/1.5/1.7/2 GHz

INTEL Xeon 9th Jan, 2002 52 million 1.8/2/2.2/2.4/2.6/2.8 GHz

INTEL Xeon 18th Nov, 2002 108 million 1.4 to 3.2 GHz

INTEL Itanium May, 2001 25 million 733/800 MHz

INTEL Itanium 2 8th Jul, 2002 220 million 900 MHz/1 GHz

INTEL Itanium 2 30th Jun, 2003 410 million 1/1.4/1.5 GHz

INTEL Pentium-M 12th Mar, 2003 77 million 900 MHz to 1.7 GHz

Note : The date mentioned here is the date of introduction of the lowest clock version of the

processor. For the date of introduction of higher clock version of a processor please refer

to INTEL website www.intel.com.

Appendix III continued...

GENERAL INDEX

A

Access time 3.40

Accumulator 1.17

ACI 2.18

ADC 2.18

ADC0809

- Functional block diagram 6.89

- Interfacing with 8085 6.91

- Pin description 6.88

ADD 2.18

Address 1.1

Address bus 1.1

Addressing 2.11

Addressing modes 2.11

ADI 2.18

ALE 1.9

ALU 1.1

ANA 2.18

Analog to digital converter

- Conversion time of ADC 6.87

- Resolution of ADC 6.87

ANI 2.18

Architecture

- of 6800 1.35

- of 8085 1.17

- of 8086 1.26

- of Z80 1.31

Arithmetic instructions 2.12

Array 5.16

Assembler

- One pass assembler 5.4

- Two pass assember 5.4

Assembler directive 5.9

Assembly language 5.1

Asynchronous data transfer 6.3

Auxiliary carry flag 1.17, 1.28

B

Baud rate 6.46

Bit 1.1

Branching instructions 2.12

Buffers 3.12

Bus

- CPU bus 1.2

- System bus 1.2

Bus contention 3.40

Bus idle cycle 2.9

Bus interface unit 1.26

Byte 1.1

C

CALL 2.18

Carry flag 1.17, 2.18

CC 2.18

Chip select signal 3.12

Clock 7.3, 1.2

CM 2.18

CMA 2.18

CMC 2.18

CMP 2.18

CNC 2.18

CNZ 2.18

Common anode 7-segment LED 6.58

Common cathode 7-segment LED 6.58

Compiler 5.2

Condition code register 1.34

Constants 5.9

Control bits 1.28

Control bus 1.1

Conversion time of ADC 6.87

Conversion time of DAC 6.87

CP 2.19

CPE 2.19

CPI 2.19

CPO 2.19

CPU 1.1

CPU bus 1.2

Cycle stealing DMA 6.95

CZ 2.19

I. 2 General Index

D

DAA 2.19

DAC0800

- Block diagram 6.85

- Interfacing with 8085 6.85

- Pin description 6.84

DAD 2.19

Data bus 1.1

Data direction register 6.21

Data transfer

- Asynchronous data transfer 6.3

- DMA data transfer 3.19, 6.2

- Interrupt driven data transfer 3.19, 6.4

- Programmed data transfer 3.19, 6.2

- Synchronous data transfer 6.4

Data transfer instructions 2.12

DB [Define Byte] 5.10

DCR 2.19

DCX 2.19

Debouncing 6.56

Debugger 5.5

Decoder

- 2-to-4 decoder 3.16

- 3-to-8 decoder 3.16

Delay routine 5.12

Demultiplexing 1.9

Development system 5.3

DI 4.4, 2.19

Digital to analog converter

- Conversion time of DAC 6.84

- Resolution of DAC 6.82

Direct addressing 2.11

Direction flag 1.28

Display interface using ports 6.58

Display refreshing 6.62

DMA controller [8237]

- Command register 6.29

- Control words 6.30

- Functional block diagram 6.25

- Interfacing with 8085 6.34

- Internal addresses 6.28

- Internal registers 6.27

- Mask register 6.32

- Mode register 6.30

- Request register 6.31

- Pin description 6.24, 6.26

- Software commands 6.33

- Status register 6.32

DMA controller [8257]

- Control word 6.41

- Count register 6.41

- Functional block diagram 6.39

- Interfacing with 8085 6.42

- Internal addresses 6.39

- Mode set register 6.41

- Pin description 6.38

- Status register 6.41

DMA data transfer

- Block transfer DMA 3.20, 6.2

- Burst transfer DMA 6.2

- Cycle stealing DMA 3.20, 6.2

- Demand transfer DMA 3.20

- Single transfer DMA 6.24

- Verify transfer 6.30

Double word 1.1

DRAM 3.11

DW [Define Word] 5.10

E

Editor 5.4

EEPROM 3.12

EI 4.4

Emulator 5.6

END 5.10

EPROM 3.4

EQU 5.10

Execute cycle 2.1

Execution unit 1.26

F

Fetch cycle 2.1

FIFO RAM 6.65

First-last flip-flop 6.28

Microprocessor (8085) And Its Applications I. 3

Flag 1.42

Flag register

- of 8085 1.17

- of 8086 1.28

- of Z80 1.32

Flowchart 5.2

Full duplex transmission 6.45

H

Half duplex transmission 6.45

Hardware 2.57

Hardware interrupts 4.2, 4.23

Hardware polling 4.9

HCMOS 1.5

High impedance state 3.15, 1.2

High level language 2.1

HLT 2.19

HMOS 1.4

I

IO device 3.19

IO mapping 3.22, 3.23

IO read cycle 2.4

IO structure 3.19

IO write cycle 2.4

Immediate addressing 2.11

Implied addressing 2.12

IN 2.19

INR 2.19

Instruction cycle 2.1

Instruction format 2.11

Instruction pointer 1.28

Instruction queue 1.26

Interpreter 5.64

Interrupt 4.1

Interrupt acknowledge cycle

- with CALL instruction 2.7

- with RST n instruction 2.5

Interrupt controller [8259]

- Functional block diagram 4.15

- Interfacing with 8085 4.13

- Initialization command word 4.18

- Master 8259 4.17

- Operation comand word 4.19

- Pin description 4.13

- Slave 8259 4.17

Interrupt driven data transfer 3.19, 4.1

Interrupt flag 1.28

INTR

- Expanding INTR 4.11

INX 2.19

Isolated IO mapping 3.22

ISR (Interrupt Service Routine) 6.4

J

JC 2.19

JM 2.19

JMP 2.19

JNC 2.19

JNZ 2.19

JP 2.19

JPE 2.19

JPO 2.19

JZ 2.19

K

Keyboard/Display controller [8279]

- Block diagram 6.66

- Command words 6.68

- Interfacing with 8085 6.70

- Keycode entry in FIFO 6.67

- Pin description 6.65

Keyboard interface using ports 6.56

Keyboard scanning 7.1, 6.56

Keyboard switch 6.55

Key debouncing 6.56

L

Latches 6.63

LDA 2.19

LDAX 2.19

LHLD 2.19

Library builder 5.5

I. 4 General Index

LIFO 5.17

Linker 5.5

List 5.15

Locator 5.67

Logical instructions 2.12

LXI 2.19

M

Machine control instructions 2.12

Machine cycle

- with wait state 2.9

Machine language 5.1

Macro 5.11

Mainframes 1.10

Main memory 3.1

Maskable interrupt 4.3

Master 8259 4.17

MAX232

- Pin description 6.49

- Typical circuit connection 6.49

Mega flops 1.40

Memory 3.38

Memory access time 3.40

Memory mapping 3.23

Memory mapping of IO device 3.22

Memory organization 3.16

Memory read cycle 2.3

Memory word size 3.13, 1.1

Memory write cycle 2.3

Microcomputers 1.7, 1.10

Microprocessor 1.6

Minicomputers 1.10

Minimum system 7.3

MIPS 1.5

Mnemonics 5.1

MODEM 6.46

MOV 2.19

Multiple word 1.1

Multiplexed display 7.1

Multiplexing 1.9

MVI 2.19

N

NDRO 3.3

Nibble 1.1

Non-maskable interrupt 4.3

Non-vectored interrupt 4.2

Non-volatile memory 3.3

NOP 2.19

NVRAM 3.12

O

Opcode 2.2

Opcode fetch cycle 2.2

Operand 2.59

ORA 2.19

ORG 5.10

ORI 2.19

OUT 2.19

Overflow flag 1.28

P

Parallel data transfer 6.1

Parity flag 1.7, 1.28

PCHL 2.19

Pentium 1.5

Persistent of vision 6.61

Physical memory space 3.40

Polling 4.2, 4.7

POP 2.20

Port 3.41

Primary memory 3.1

Procedure 5.11

Processor cycle 2.1

Processor memory 3.1

Program 5.64

Program counter 1.19

Programmable IO port and timer [8155]

- Control word 6.8

- Interfacing with 8085 6.11, 6.12

- Internal address 6.6

- Internal block diagram 6.7

- Pin description 6.7

Microprocessor (8085) And Its Applications I. 5

- Status register 6.10

- Timer modes 6.10

Programmable interrupt controller [8259] 4.12

Programmable peripheral devices 6.1

Programmable peripheral interface [8255]

- Control words 6.16

- Interfacing with 8085 6.14

- Internal address 6.14

- Internal block diagram 6.13

- IO modes 6.12

- Pin description 6.13

- Port-C pin assignment 6.17

- Status word 6.18

Programmable timer [8254] 6.72

Programmed data transfer 3.19

PROM 3.3

PSW (Program Status Word) 1.17

PUSH 2.20

R

RAL 2.20

Random access memory 3.3

RAR 2.20

RC 2.20

Read only memory 3.3

Read/write memory 3.3

Register addressing 2.12

Register indirect addressing 2.12

Resolution of ADC 6.87

Resolution of DAC 6.82

RET 2.20

RIM 4.4, 2.20

RLC 2.20

RM 2.20

RNC 2.20

RNZ 2.20

ROM 3.3

Rotating priority 6.40, 6.42, 4.22

RP 2.20

RPE 2.20

RPO 2.20

RRC 2.20

RS-232C serial bus 6.47

RST 4.12

RST 5.5 4.5

RST 6.5 4.5

RST 7.5 4.5

RZ 2.20

S

SBB 2.20

SBI 2.20

Secondary memory 3.1

Semiconductor memory 3.1

Serial data transfer 6.45

Seven segment LED

- Common anode 6.58

- Common cathode 6.58

Shadow registers 3.12, 1.44

SHLD 2.20

Sign flag 1.7, 1.28

SIM 4.4, 2.20

Simplex transmission 6.45

Simulator 5.6

Single step trap 1.28

Slave [8259] 4.17

Software 2.1

Software interrupts 4.2

Software polling 4.8

Speed power product 1.4

SPHL 2.20

STA 2.20

Stack 5.16

Stack pointer 5.16, 1.19

Standard IO mapping 3.22

Static RAM 3.7

STAX 2.20

STC 2.20

SUB 2.20

Subprogram 5.11

Subroutine 5.11

Successive approximation ADC 6.87

I. 6 General Index

SUI 2.20

Supercomputer 1.40

Synchronous data transfer 6.4

System bus 1.2

System clock 7.2

T

Timer [8254]

- Control word 6.75

- Functional block diagram 6.73

- Interfacing with 8085 6.74

- Operating modes 6.76

- Pin description 6.73

- Status word 6.76

Timing diagram 2.2

Trace flag 1.28

TRAP 4.4

Tristate logic 1.2

T-state 1.24

U

UART 6.46

Unconditional CALL 2.44

Unconditional jump 2.43

USART 6.46

USART [8251A]

- Command word 6.53

- Functional block diagram 6.51

- Interfacing with 8085 6.54

- Mode word 6.53

- Pin description 6.50

- Status word 6.53

V

Variable 5.8

Vector address 4.2

Vectored interrupt 4.2

Vectoring 4.26

Verify transfer 6.30

Volatile memory 3.3

W

Wait State 2.9

Word

- Double word 1.1

- Multiple word 1.1

X

XCHG 2.20

XRA 2.20

XRI 2.20

XTHL 2.20

Z

Z80 1.29

Zero flag 1.17, 1.28

CHIP INDEX

2764

- Logic block diagram 3.5

- Pin description 3.5

6264

- Logic block diagram 3.8

- Pin description 3.8

6800

- Architecture 1.35

- Flags 1.34

- Pin description 1.33

74LS138

- Pin description 3.16

- Truth table 3.16

74LS139

- Pin description 3.16

- Truth table 3.16

8085

- Architecture 1.17

- Flags 1.17

- Pin description 1.13

8086

- Architecture 1.26

- Flags 1.28

- Pin description 1.20

8155

- Control word 6.8

- Interfacing with 8085 6.11, 6.12

- Internal address 6.6

- Internal block diagram 6.7

- Pin description 6.7

- Status register 6.10

- Timer modes 6.10

8212

- Internal block diagram 6.5

- Input control logic 6.6

- Output control logic 6.5

- Pin description 6.5

8237

- Command register 6.29

- Control words 6.30

- Functional block diagram 6.25

- Interfacing with 8085 6.34

- Internal addresses 6.28

- Internal registers 6.29

- Mask register 6.32

- Mode register 6.30

- Pin description 6.24, 6.26

- Request register 6.31

- Software commands 6.33

- Status register 6.32

8251

- Command word 6.53

- Functional block diagram 6.51

- Interfacing with 8085 6.54

- Mode word 6.53

- Pin description 6.50

- Status word 6.53

8254

- Control words 6.75

- Functional block diagram 6.73

- Interfacing with 8085 6.74

- Operating modes 6.76

- Pin description 6.73

- Status word 6.76

8255

- Control words 6.16

I. 8 Chip Index

- Interfacing with 8085 6.14

- Internal address 6.14

- Internal block diagram 6.14

- IO modes 6.12

- Pin description 6.13

- Port-C pin assignment 6.17

- Status word 6.18

8257

- Control word 6.41

- Count register 6.41

- Functional block diagram 6.39

- Interfacing with 8085 6.42

- Internal addresses 6.39

- Mode set register 6.41

- Pin description 6.38

- Status register 6.41

8259

- Functional block diagram 4.15

- Initialization command word 4.18

- Interfacing with 8085 4.13

- Master 8259 4.17

- Operation command word 4.19

- Pin description 4.13

- Slave 8259 4.17

8279

- Block diagram 6.66

- Command words 6.68

- Interfacing with 8085 6.70

- Keycode entry in FIFO 6.67

- Pin description 6.65

8355

- Data direction register 6.21

- Internal address 6.20

- Internal block diagram 6.20

- Pin description 6.20

8755

- Data direction register 6.22

- Internal address 6.22

- Internal block diagram 6.21

- Pin description 6.21

ADC0809/0808

- Functional block diagram 6.89

- Interfacing with 8085 6.91

- Pin description 6.88

DAC0800

- Block diagram 6.85

- Interfacing with 8085 6.85

- Pin description 6.84

MAX232

- Pin description 6.49

- Typical circuit connection 6.49

Z80

- Architecture 1.31

- Flags 1.32

- Pin description 1.30

	Cover
	Contents
	1. INTRODUCTION TO MICROPROCESSOR
	1.1 Terms used in microprocessor literature
	1.2 Evolution of microprocessor
	1.3 Basic functional blocks of a microprocessor
	1.4 Microprocessor-based system (Organization of microcomputer
	1.5 Concept of multiplexing in microprocessor
	1.6 Micro, Mini and Large computers
	1.7 INTEL 8085
	1.8 INTEL 8086
	1.9 ZILOG Z80
	1.10 MOTOROLA 6800
	1.11 Summary
	1.12 Short questions and answers

	2. INSTRUCTION SET OF 8085
	2.1 Origin of software
	2.2 Processor cycles
	2.3 Machine cycles of 8085
	2.3.1 Timing diagram

	2.4 Instruction format of 8085
	2.5 Addressing modes
	2.6 Instruction set
	2.7 Data transfer instructions
	2.8 Arithmetic instructions
	2.9 Logical instructions
	2.10 Branching instructions
	2.11 Machine control instructions
	2.12 Timing diagram of 8085 instructions
	2.13 Summary
	2.14 Short questions and answers

	3. MEMORY AND IO INTERFACING
	3.1 Introduction to memory
	3.2 Semiconductor memory
	3.3 ROM and PROM
	3.4 EPROM
	3.5 Static RAM
	3.6 DRAM and NVRAM
	3.7 Interfacing static RAM and EPROM
	3.8 Memory organization in 8085-based system
	3.9 IO structure of a typical microcomputer
	3.10 Interfacing IO and peripheral devices
	3.11 Summary
	3.12 Short questions and answers

	4. INTERRUPT STRUCTURE
	4.1 Interrupt and its need
	4.2 Classification of interrupts
	4.3 Interrupts of 8085
	4.3.1 Software interrupts of 8085
	4.3.2 Hardware interrupts of 8085
	4.3.3 Priorities of interrupts of 8085

	4.4 Enabling, disabling and masking of 8085 interrupts
	4.5 Polling of interrupts
	4.6 INTR and its expansion
	4.7 Programmable interrupt controller - INTEL 8259
	4.7.1 Interfacing 8259 with 8085 microprocessor
	4.7.2 Functional block diagram of 8259
	4.7.3 Processing of interrupts by 8259
	4.7.4 Programming 8259(or initializing 8259)

	4.8 Summary
	4.9 Short questions and answers

	5. ASSEMBLY LANGUAGE PROGRAMMING
	5.1 Levels of programming
	5.2 Flowchart
	5.3 Assembly language program development tools
	5.4 Variables and constants used in assemblers
	5.5 Assembler directives
	5.6 Procedure and Macro
	5.7 Delay routine
	5.8 List and array
	5.9 Stack
	5.10 Examples of 8085 assembly language programs
	5.11 Summary
	5.12 Short questions and answers

	6. PERIPHERAL DEVICES AND INTERFACING
	6.1 Programmable peripheral devices
	6.2 Parallel data communication interface
	6.2.1 Parallel data transfer schemes
	6.2.2 INTEL 8212
	6.2.3 Programmable IO port and timer - INTEL 8155/8156
	6.2.4 Programmable peripheral interface - INTEL 8255
	6.2.5 Programmable IO port and memory - INTEL 8355
	6.2.6 Programmable IO port and memory - INTEL 8755
	6.2.7 DMA data transfer scheme
	6.2.8 DMA controller - INTEL 8237
	6.2.9 DMA controller - INTEL 8257

	6.3 Serial data communication interface
	6.3.1 Serial data communication
	6.3.2 USART - INTEL 8251A

	6.4 Keyboard and display interface
	6.4.1 Keyboard interface using ports
	6.4.2 Display interface using ports
	6.4.3 Latches and buffers as IO devices
	6.4.4 Keyboard/Display controller - INTEL 8279
	6.4.5 Keyboard and display interface using 8279

	6.5 Programmable timer - INTEL 8254
	6.6 DAC interface
	6.6.1 DAC0800

	6.7 ADC interface
	6.7.1 ADC0809

	6.8 Summary
	6.9 Short questions and answers

	7. MICROCOMPUTER SYSTEM DESIGNAND APPLICATION
	7.1 Designing a microprocessor-based system
	7.2 8085-based minimum system
	7.3 Temperature control system
	7.4 Motor speed control system

	APPENDIX I 8085A instructions in hexadecimal order
	APPENDIX II 8085A instructions in alphabetical order
	APPENDIX III List of microprocessors released by INTEL
	GENERAL INDEX
	CHIP INDEX

