
VHVT2wsg�y��ygi��y�

2exh

s��2e��vsge�syx�

Second Edition

About the Author
A. Nagoor Kani is a multifaceted personality with efficient technical expertise and management skills.

He obtained his BE degree in Electrical and Electronics Engineering from Thiagarajar College of

Engineering, Madurai, and MS (Electronics and Control) through Distance Learning program of

BITS, Pilani. He is a life member of ISTE and IETE.

He started his career as a self-employed industrialist (1986-1989) and then changed over to teaching

in 1989. He has worked as Lecturer in Dr MGR Engineering College (1989�1990) and as Asst. Professor

in Satyabhama Engineering College (1990�1997). In 1993, he started a teaching centre for BE students

named Institute of Electrical Engineering, which was renamed RBA Tutorials in 2005.

A. Nagoor Kani launched his own organization in 1997. The ventures currently run by him are RBA

engineering (involved in manufacturing of lab equipments, microprocessor trainer kits and undertake

Electrical contracts and provide electrical consultancy), RBA Innovations (involved in developing

projects for engineering students and industries), RBA Tutorials (conducting tutorial classes for

engineering students and coaching for GATE, IES, IAS) and RBA Publications (publishing of

engineering books), RBA Software (involved in web-design and maintenance). His optimistic and

innovative ideas have made the RBA Group a very successful venture.

A. Nagoor Kani is a well-known name in major engineering colleges in India. He is an eminent writer

and till now he has authored several engineering books (published by Tata McGraw Hill Education

and RBA Publications) which are very popular among engineering students. He has written books in

the areas of Control Systems, Signals and Systems, Microcontrollers, Digital Signal Processing,

Electric Circuits, Electrical Machines and Power Systems.

VHVT2wsg�y��ygi��y�

2exh

s��2e��vsge�syx�

Second Edition

A. Nagoor Kani
Founder RBA Group

Chennai

Tata McGraw Hill Education Private Limited

NEW DELHI

McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas

 Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal

 San Juan Santiago Singapore Sydney Tokyo Toronto

Published by the Tata McGraw Hill Education Private Limited,

7 West Patel Nagar, New Delhi 110 008.

8086 Microprocessor and Its Applications, 2e

Copyright © 2013 by Tata McGraw Hill Education Private Limited.

No part of this publication may be reproduced or distributed in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise or stored in a database or retrieval system without the prior written permission

of the publishers. The program listings (if any) may be entered, stored and executed in a computer system, but they

may not be reproduced for publication.

This edition can be exported from India only by the publishers,

Tata McGraw Hill Education Private Limited.

ISBN-13: 978-0-07-107767-5

ISBN-10: 0-07-107767-7

Vice President and Managing Director�MHE: Ajay Shukla

Head�Higher Education Publishing and Marketing: Vibha Mahajan

Publishing Manager�SEM & Tech Ed.: Shalini Jha

Assistant Sponsoring Editor: Smruti Snigdha

Editorial Researcher: Sourabh Maheshwari

Copy Editor: Preyoshi Kundu

Senior Production Manager: Satinder S Baveja

Proof Reader: Yukti Sharma

Marketing Manager�Higher Education: Vijay Sarathi

Senior Product Specialist�SEM & Tech Ed.: Tina Jajoriya

Graphic Designer�Cover: Meenu Raghav

General Manager-Production: Rajender P Ghansela

Production Manager: Reji Kumar

Information contained in this work has been obtained by Tata McGraw-Hill, from sources believed to be reliable.

However, neither Tata McGraw-Hill nor its authors guarantee the accuracy or completeness of any information

published herein, and neither Tata McGraw-Hill nor its authors shall be responsible for any errors, omissions, or

damages arising out of use of this information. This work is published with the understanding that Tata McGraw-

Hill and its authors are supplying information but are not attempting to render engineering or other professional

services. If such services are required, the assistance of an appropriate professional should be sought.

Typeset at Tej Composers, WZ-391, Madipur, New Delhi 110063, and

Cover printed at:

Dedicated to my

Brother-in-law:2Mr.2 M. Kadher Mydhen

Sister:2Mrs.2A. Fareedha Begum

Their Son:2K. Mohammed Noufel

CONTENTS

Preface ... xii

Acknowledgements .. xiv

CHAPTER - 1 INTRODUCTION

1.1 Terms used in microprocessor literature 1. 1

1.2 Evolution of microprocessor 1. 3

1.3 Basic functional blocks of a microprocessor 1. 5

1.4 Microprocessor-based system 1. 6

1.5 Concept of multiplexing in microprocessors 1. 8

1.6 Short questions and answers 1. 9

CHAPTER - 2 INTEL 8086 PINS, SIGNALS AND ARCHITECTURE

2.1 Introduction to INTEL 8086 2. 1

2.2 Pins and signals of INTEL 8086 2. 2

2.3 Architecture of INTEL 8086 2. 7

2.4 Instruction and data Flow in 8086 2.10

2.5 Even and odd memory banks 2.11

2.6 Bus cycles and timing diagram 2.13

2.7 Short questions and answers. 2.21

CHAPTER - 3 INSTRUCTION SET OF 8086

3.1 Introduction 3. 1

3.2 Instructions format 3. 1

3.3 Addressing modes of 8086 3. 7

3.4 Instruction execution time 3.12

3.5 Instructions affecting flags 3.27

3.6 Data transfer instructions. 3.29

3.7 Arithmetic instructions 3.34

3.8 Logical instructions 3.44

3.9 String manipulation instructions 3.52

viii

3.10Control transfer instructions 3.56

3.10.1 CALL and RET instructions 3.57

3.10.2 Unconditional jump instructions 3.60

3.10.3 Conditional jump instructions 3.61

3.10.4 Loop instructions 3.63

3.10.5 Software interrupts 3.63

3.11 Processor control instructions 3.66

3.12Examples of 8086 instructions 3.68

3.13Short questions and answers 3.77

CHAPTER - 4 MEMORY AND IO INTERFACING

4.1 Introduction to memory 4. 1

4.2 Semiconductor memory 4. 1

4.3 ROM and PROM 4. 3

4.4 EPROM 4. 4

4.5 Static RAM 4. 7

4.6 DRAM and NVRAM 4.11

4.7 Interfacing static RAM and EPROM 4.12

4.8 Memory organization in 8086-based system 4.17

4.9 IO structure of a typical microcomputer 4.22

4.10 Interfacing IO and peripheral devices 4.22

4.11 Short questions and answers 4.32

CHAPTER - 5 INTERRUPTS

5.1 Interrupt and its need 5. 1

5.2 Classification of interrupts 5. 2

5.3 Sources of interrupts in 8086 5. 3

5.4 Interrupts of 8086 5. 3

5.4.1 INTEL predefined (or dedicated) interrupts 5. 3

5.4.2 Software interrupts of 8086 5. 5

5.4.3 Hardware interrupts of 8086 5. 5

5.4.4 Priorities of interrupts of 8086 5. 5

i x

5.5 Implementing interrrupt scheme in 8086 5. 6

5.5.1 Interrupt vector table 5. 6

5.5.2 Servicing an interrupt by 8086 5. 6

5.6 INTR and its expansion 5. 8

5.7 Programmable interrupt controller - INTEL 8259 5. 9

5.7.1 Interfacing 8259 with 8086 microprocessor 5.10

5.7.2 Functional block diagram of 8259 5.12

5.7.3 Processing of interrupts by 8259 5.14

5.7.4 Programming (or initializing) 8259 5.14

5.8 Short questions and answers 5.19

CHAPTER - 6 ASSEMBLY LANGUAGE PROGRAMMING

6.1 Levels of programming 6. 1

6.2 Flowchart 6. 2

6.3 Assembly language program development tools 6. 3

6.4 Variables and constants used in assemblers 6. 8

6.5 Assembler directives 6. 9

6.6 Procedures and macros 6.13

6.7 Interrupts of personal computers 6.16

6.8 Hand coding of assembly language programs 6.22

6.9 Examples of 8086 assembly language programs 6.26

6.10Short questions and answers 6.115

CHAPTER - 7 PERIPHERAL DEVICES AND INTERFACING

7.1 Programmable peripheral devices 7. 1

7.2 Parallel data communication interface 7. 1

7.2.1 Parallel data transfer schemes 7. 2

7.2.2 Programmable peripheral interface - INTEL 8255 7. 4

7.2.3 DMA data transfer scheme 7.12

7.2.4 DMA controller - INTEL 8237 7.14

7.2.5 DMA controller - INTEL 8257 7.27

7.3 Serial data communication interface 7.33

x

7.3.1 Serial data communication 7.33

7.3.2 USART - INTEL 8251A 7.38

7.4 Keyboard and display interface 7.43

7.4.1 Keyboard interface using ports 7.43

7.4.2 Display interface using ports 7.46

7.4.3 Keyboard/Display controller - INTEL 8279 7.51

7.4.4 Keyboard and display interface using 8279 7.55

7.5 Programmable timer - INTEL 8254 7.58

7.6 DAC interface 7.69

7.6.1 DAC0800 7.71

7.7 ADC interface 7.74

7.7.1 ADC0809 7.76

7.8 Short questions and answers 7.80

CHAPTER-8 INTEL 80X86 FAMILY OF PROCESSORS

8.1 Introduction 8. 1

8.2 INTEL 80186 8. 2

8.2.1 Pins and signals of 80186 8. 3

8.2.2 Architecture of 80186 8. 6

8.3 INTEL 80286 8.10

8.3.1 Pins and signals of 80286 8.10

8.3.2 Architecture of 80286 8.13

8.3.3 Real address mode of 80286 8.16

8.3.4 Protected virtual address mode of 80286 8.16

8.4 INTEL 80386 microprocessor 8.20

8.4.1 Pins and signals of 80386 8.21

8.4.2 Architecture of 80386 microprocessor 8.25

8.4.3 Registers of 80386 microprocessor 8.27

8.4.4 Operating modes of 80386 microprocessor 8.30

8.5 INTEL 80486 microprocessor 8.34

8.5.1 Pins and signals of 80486 8.34

8.5.2 Architecture of 80486 8.38

x i

8.6 Pentium microprocessor 8.40

8.6.1 Pins and signals of pentium microprocessor 8.41

8.6.2 Architecture of pentium processor 8.47

8.7 Advanced pentium processors 8.49

8.7.1 Pentium pro 8.50

8.7.2 Pentium II 8.50

8.7.3 Pentium III 8.51

8.7.4 Pentium 4 8.51

CHAPTER - 9 8086 MICROPROCESSOR-BASED SYSTEM

9.1 Designing a microprocessor-based system 9. 1

9.2 Clock generator - INTEL 8284A 9. 3

9.3 Bus controller - INTEL 8288 9. 6

9.4 Coprocessor - INTEL 8087 9. 7

9.5 Minimum mode 8086-based system 9.11

9.6 Maximum mode 8086-based system 9.12

9.7 Multiprocessor configurations 9.14

9.8 Temperature control system 9.17

9.9 Motor speed control system 9.19

9.10Traffic light control system 9.21

9.11 Stepper motor control system 9.25

APPENDIX I Templates for 8086 instructions A. 1

APPENDIX II DOS and BIOS interrupts A.11

APPENDIX III List of microcprocessors released by INTEL A.15

GENERAL INDEX I. 1

CHIP INDEX I. 7

Preface
About the Book

8086 Microprocessor and its Applications, 2e is a book on microprocessor 8086 programming

and interfacing which has been crafted and designed to meet students' requirements. Considering

the complex technical nature of this subject, equal emphasis has been given to programming

and design aspects. Considerable effort has been made to explain the assembly language programs

with step-by-step algorithms and flowcharts. The main objective of this book is to explore the

basic concepts of popular INTEL 8086 microprocessor programming and interfacing techniques

in a simple and easy-to-understand manner.

This book with its lucid writing style and germane pedagogical features will prove to be a

master text for engineering students and practitioners. The peripheral interfacing techniques

have been explained with simple sketches clearly showing the necessary signals. Short questions

and answers with varied difficulty levels are given in the text to help students get an intuitive

grasp on the subject.

This book attempts to explain the basic concepts of programming and interfacing techniques

by taking INTEL 8086 microprocessor as an example. It includes the system design applications

based on 8086 Microprocessor. It discusses the concepts using numerous examples and programs

and step-wise approach which makes it easier for the readers to grasp the concepts. The book

has been designed as a self-study material for the students of engineering, polytechnic, arts and

science colleges.

Salient Features

� Lucid and easy language for concept explanation

� Extensive coverage to Instruction sets, Memory and Peripheral Interfacing of 8086

Microprocessor

� Discusses programming concepts for 8086 using assembly language

� Use of simple methodology (i.e., Problem analysis Flowchart Algorithm Code

Sample Data) for programming examples

� Numerous solved examples, programs and chapter-end questions with answers

Chapter Organization

The book is organized into 9 chapters and 2 appendices.

Chapter 1 briefs about the evolution of microprocessor and basics of microprocessor-based

system. The technical details of INTEL 8086 microprocessor like pin details, explanation of

various signals of the processor, internal architecture, bus cycles and their timing diagrams are

presented in Chapter 2.

Chapter 3 is fully devoted to the instruction set of 8086 processor. In this chapter, the format

of 8086 instruction and the addressing modes of 8086 instructions are explained in detail. A

brief discussion about semiconductor memory and their interfacing with 8086 microprocessor

are presented in Chapter 4. Design examples are also included for better understanding of the

concept of the memory and IO interfacing with 8086 microprocessor.

The importance of interrupts and the various interrupts of 8086 processor are discussed in

Chapter 5. The implementation of interrupt scheme and expansion of interrupts in 8086 system

are also presented in this chapter.

� Summary at the end of each chapter

The concepts of assembly language programming are discussed in Chapter 6. A number of

assembly language programs using 8086 microprocessor instructions are included in this chapter.

The concepts of DOS and BIOS services, and writing assembly language programs using these

services are also presented in this chapter. The example programs presented in this book are

assembled using MASM assembler and verified in RBA-8086 trainer kit and personal computer.

The concepts of keyboard and 7-segment display and their interfacing are discussed in Chapter

7. Simple discussions about USART, DMA controllers, programmable timer, ADC and DAC,

and their interfacing with 8086 microprocessor are also presented in Chapter 7.

A brief discussion about the architectures of 80x86 and Pentium family of processors are

presented in Chapter 8. The 8086 microprocessor-based system design concepts are discussed

in Chapter 9.

The instruction templates of 8086 microprocessor instructions are listed in Appendix-I and the

BIOS and DOS interrupts are listed in Appendix-II for the use of assembly language programmers.

I have taken utmost care to present the concepts of INTEL 8086 microprocessor in a simple

manner and I hope that the teaching and student community will welcome the book. The

readers can feel free to convey their criticism and suggestions to kani@vsnl.com for further

improvement of the book.

A. Nagoor Kani

Publisher's Note

Remember to write to us. We look forward to receiving your feedback, comments and ideas to

enhance the quality of this book. You can reach us at tmh.csefeedback@gmail.com. Kindly

mention the title and the author's name as the subject.

In case you spot piracy of this book, please do let us know.

xiv

Acknowledgements

I express my heartfelt thanks to my wife Mrs. C. Gnanaparanjothi Nagoor Kani and my sons N.

Bharath Raj alias Chandrakani Allaudeen and N. Vikram Raj for the support, encouragement,

and cooperation they have extended to me throughout my career.

It is my pleasure to acknowledge the contributions to our technical editors, Ms. B. Hemavathy,

Ms. S. Pavithra, Ms. K. Thangaselvi for editing and proofreading the manuscript, and Ms. A.

Selvi, Ms. M. Faritha for typesetting and preparing the layout of the book.

My sincere thanks to all the reviewers for their valuable suggestions and comments which

helped me in exploring the subject to a greater depth.

I am also grateful to Ms. Vibha Mahajan, Mr. Ebi John, Ms. Smruti Snigdha, Mr. Sourabh

Maheshwari, Ms. Preyoshi Kundu, and Ms. Yukit Sharma of Tata McGraw Hill Education for

their concern and care in publishing this work. My special thanks to Ms Smruti Snigdha of

McGraw Hill Education for her care in bringing out this work at the right time. I thank all my

office staff for their cooperation in carrying out my day-to-day activities.

 Finally, a special note of appreciation is due to my sisters, brothers, relatives, friends, students

and the entire teaching community for their overwhelming support and encouragement to my

writing.

A. Nagoor Kani

 CHAPTER 1

INTRODUCTION

1 . 1 TERMS USED IN MICROPROCESSOR LITERATURE

Bit : A digit of the binary number or code is called bit.

Nibble : The 4-bit (4-digit) binary number or code is called nibble.

Byte : The 8-bit (8-digit) binary number or code is called byte.

Word : The 16-bit (16-digit) binary number or code is called word.

Double Word : The 32-bit (32-digit) binary number or code is called double word.

Multiple Word : The 64, 128, ... bit /digit binary numbers or codes are called multiple words.

Data : The quantity (binary number/code) operated by an instruction of a program

is called data. The size of data is specified as bit, byte, word, etc.

Address : Address is an identification number in binary for memory locations.

The 8086 processor uses a 20-bit address for memory.

Memory Word Size : The memory word size or addressability is the size of binary information

(or Addressability) that can be stored in a memory location. The memory word size for an

8086 processor-based system is 8-bit.

[Address and program codes in a microprocessor system are given in binary (i.e., as a combination

of "0" and "1"). With n-bit binary we can generate 2
n
 different binary codes or addresses.]

Microprocessor : The microprocessor is a program controlled semiconductor device(IC),

which fetches (from memory), decodes and executes instructions. It

is used as CPU (Central Processing Unit) in computers.

The basic functional blocks of a microprocessor are ALU (Arithmetic

Logic Unit), an array of registers and a control unit. The microprocessor is

identified with the size of data, the ALU of the processor can work with at

a time. The 8086 processor has a 16-bit ALU, hence it is called a

16-bit processor. The 80486 processor has a 32-bit ALU, hence it is called

a 32-bit processor.

Bus : A bus is a group of conducting lines that carries data, address and control

signals. Buses can be classified into Data bus, Address bus and Control bus.

The group of conducting lines that carries data is called data bus.

The group of conducting lines that carries address is called address bus.

The group of conducting lines that carries control signals is called control bus.

1. 2 Chapter 1 Introduction

CPU Bus : The group of conducting lines that are directly connected to the

microprocessor is called CPU bus. In a CPU bus, the signals are multiplexed,

i.e., more than one signal is passed through the same line but at different

timings.

System Bus : The group of conducting lines that carries data, address and control signals

in a microcomputer system is called System bus. Multiplexing is not allowed

in a system bus.

[In microprocessor-based systems, each bit of information (data/address/control signal) is

sent through a separate conducting line. Due to practical limitations, the manufacturers of

microprocessors may provide multiplexed pins, i.e., one pin is used for more than one purpose. This

leads to a multiplexed CPU bus. For example, in an 8086 processor the address and data are sent

through the same pins but at different timings. But when the system is formed, the multiplexed bus

lines should be demultiplexed by using latches, ports, transceivers, etc. The demultiplexed bus lines

are called system bus. In a system bus, separate conducting lines will be provided for each bit of

data, address and control signals.]

Clock : A clock is a square wave used to synchronize various devices in the

microprocessor and in the system. Every microprocessor system

requires a clock for its functioning. The time taken for the microprocessor

and the system to execute an instruction or program are measured only in

terms of the time period of its clock.

A clock has three edges : rising edge (positive edge), level edge and

falling edge (negative edge). The device is made sensitive to any one of

the edges for better functioning (it means that the device will recognize

the clock only when the edge is asserted or arrived).

Tristate Logic : Almost all the devices used in a microprocessor-based system use

tristate logic. In devices with tristate logic, three logic levels will be available :

High state, Low state and High impedance state.

The high and low level states are normal logic levels for data, address

or control signals. The high impedance state is an electrical open-circuit

condition. The high impedance state is provided to keep the device

electrically isolated from the system. The tristate devices will normally

remain in high impedance state and their pins are physically connected in

the system bus but electrically isolated. In high impedance state, they

cannot receive or send any signal or information. These devices are provided

with chip enable/chip select pins. When the signal at this pin is asserted to

the right level, they come out from high impedance state to normal levels.

¬ ¯

 Negative EdgeLevel Edge

Positive Edge

1. 3

1 . 2 EVOLUTION OF MICROPROCESSOR

History tells us that it was the ancient Babylonians who first began using the abacus (a

primitive calculator made of beads) in about 500 B.C. This simple calculating machine eventually

sparked human mind into the development of calculating machine that use gears and wheels (Blaise

Pascal in 1642). The giant computing machines of the 1940s and 1950s were constructed with

relays and vacuum tubes. Next the transistor and solid-state electronics were used to build the

mighty computers of the 1960s. Finally, the advent of the Integrated Circuit (IC) led to development

of the microprocessor and microprocessor-based computer systems.

In 1971, INTEL Corporation released the world's first microprocessor the INTEL 4004, a

4-bit microprocessor. It addresses 4096 memory locations of word size 4-bit. The instruction set

consists of 45 different instructions. It is a monolithic IC employing large-scale integration in

PMOS Technology. The INTEL 4004 was soon followed by a variety of microprocessors, with

most of the major semiconductor manufacturers producing one or more types.

First Generation Microprocessors

The microprocessors introduced between 1971 and 1973 were the first generation processors.

They were designed using PMOS technology. This technology provided low cost, slow speed and

low output currents and was not compatible with TTL (Transistor Transistor Logic) levels.

The first generation processors required a lot of additional support ICs to form a system,

sometimes as high as 30 ICs. The 4-bit processors are provided with only 16 pins, but 8-bit and

16-bit processors are provided with 40 pins. Due to limitations of pins, the signals are multiplexed.

A list of first generation microprocessors are given below:

� INTEL 4004

� INTEL 4040

� FAIR CHILD PPS - 25

� NATIONAL IMP - 4

� ROCKWELL PPP - 4

� MICRO SYSTEMS INTL. MC - 1

� INTEL 8008

� NATIONAL IMP - 8

� ROCKWELL PPS - 8

� AMI 7200

� MOSTEK 5065

� NATIONAL IMP/16

� NATIONAL PACE

Second Generation Microprocessors

The second generation microprocessors appeared in 1973 and were manufactured using the

NMOS technology. The NMOS technology offers faster speed and higher density than PMOS and

it is TTL compatible. Some of the second generation processors are given below:

4-bit processors

8-bit processors

16-bit processors

I
P
Q

I
P
Q

I
P
Q

8086 Microprocessor and Its Appications

1. 4 Chapter 1 Introduction

� INTEL 8080

� INTEL 8085

� FAIRCHILD F - 8

� MOTOROLA M6800

� MOTOROLA M6809

� NATIONAL CMP -8

� RCA COSMAC

� MOS TECH. 6500

� SIGNETICS 2650

� ZILOG Z80

� INTERSIL 6100

� TOSHIBA TLCS - 12

� TI TMS 9900

� DEC - W.D. MCP - 1600

� GENERAL INSTRUMENT CP 1600

� DATA GENERAL μN601

Characteristics of second generation microprocessors

� Larger chip size (170 × 200 mils). [1mil = 10−3inch]

� 40 pins.

� More numbers of on-chip decoded timing signals.

� The ability to address large memory spaces.

� The ability to address more IO ports.

� Faster operation.

� More powerful instruction set.

� A greater number of levels of subroutine nesting.

� Better interrupt handling capabilities.

Third Generation Microprocessors

After 1978, the third generation microprocessors were introduced. These are 16-bit

processors and designed using HMOS (High density MOS) technology. Some of the third generation

microprocessors are given below:

� INTEL 8086 � INTEL 80286 � ZILOG Z8000

� INTEL 8088 � MOTOROLA 68000 � NATIONAL NS 16016

� INTEL 80186 � MOTOROLA 68010 � TEXAS INSTRUMENTS TMS 99000

The HMOS technology offers better Speed Power Product (SPP) and higher packing density

than NMOS.

Speed Power Product = Speed × Power

 = Nanosecond × Milliwatt

 = Picojoules

� Speed Power Product of HMOS is four times better than NMOS.

SPP of NMOS = 4 picojoules (pJ)

SPP of HMOS = 1 picojoules (pJ)

� Circuit densities provided by HMOS are approximately twice those of NMOS.

Packing density of NMOS = 1852.5 gates/mm2

Packing density of HMOS = 4128 gates/mm2 (1 mm = 10–6 meter)

8-bit processors

12 -bit processors

16-bit processors

I
P
Q

I
P
Q

I
P
Q

1. 5

Characteristics of third generation microprocessors

� Provided with 40/48/64 pins.

� High speed and very strong processing capability.

� Easier to program.

� Allow for dynamically relocatable programs.

� Size of internal registers are 8/16/32 bits.

� The processor has multiply/divide arithmetic hardware.

� Physical memory space is from 1 to 16 Mega bytes.

� The processor has segmented addresses and virtual memory features.

� More powerful interrupt handling capabilities.

� Flexible IO port addressing.

� Different modes of operations (e.g., user and supervisor modes of M68000).

Fourth Generation Microprocessors

The fourth generation microprocessors were introduced in the year 1980. These generation

processors are 32-bit processors and are fabricated using the low-power version of the HMOS

technology called HCMOS. These 32-bit microprocessors have increased sophistications that compete

strongly with mainframes. Some of the fourth generation microprocessors are given below:

� INTEL 80386 � MOTOROLA M68020 � MOTOROLA MC88100

� INTEL 80486 � BELLMAC - 32

� NATIONAL NS16032 � MOTOROLA M68030

Characteristics of fourth generation microprocessors

� Physical memory space of 224 bytes = 16 Mb (Mega bytes).

� Virtual memory space of 240 bytes = 1Tb (Tera bytes).

� Floating-point hardware is incorporated.

� Supports increased number of addressing modes.

Fifth Generation Microprocessors

In microprocessor technology, INTEL has taken a leading edge and is developing more and

more new processors. The latest processor by INTEL is the pentium which is considered as a

fifth generation processor. The pentium is a 32-bit processor with 64-bit data bus and is available

in a wide range of clock speeds from 60 MHz to 3.2 GHz. With improvement in semiconductor

technology, the processing speed of microprocessors has increased tremendously. The 8085 released

in the year 1976 executes 0.5 Million Instructions Per Second (0.5 MIPS). The 80486 executes 54

Million Instructions Per Second. The pentium is optimized to execute two instructions in one clock

period. Therefore a pentium processor working at 1 GHz clock can execute 2000 Million Instructions

Per Second (2000 MIPS). The various processors released by INTEL are listed in Appendix-III.

1 .3 BASIC FUNCTIONAL BLOCKS OF A MICROPROCESSOR

A microprocessor is a programmable IC which is capable of performing arithmetic and

logical operations. The basic functional block diagram of a microprocessor is shown in Fig. 1.1.

The basic functional blocks of a microprocessor are ALU, Flag register, Register array,

Program Counter (PC)/Instruction Pointer (IP), Instruction decoding unit, Timing and Control unit.

8086 Microprocessor and Its Appications

1. 6 Chapter 1 Introduction

ALU is the computational unit of the microprocessor which performs arithmetic and logical

operations on binary data. The various conditions of the result are stored as status bits called flags

in the flag register. For example, consider sign flag. One of the bit position of the flag register is

called sign flag and it is used to store the status of the sign of the result of the ALU operation

(output data of ALU). If the result is negative then "1" is stored in the sign flag and if the result is

positive then "0" is stored in the sign flag.

The register array is the internal storage device and so it is also called internal memory. The

input data for ALU, the output data of ALU (result of computations) and any other binary information

needed for processing are stored in the register array.

For any microprocessor, there will be a set of instructions given by its manufacturer. For

doing any useful work with the microprocessor, we have to first write a program using these

instructions, and store them in a memory device external to the microprocessor.

The instruction pointer generates the address of the instructions to be fetched from the memory

and sends it through the address bus to the memory. The memory will send the instruction codes and

data through the data bus. The instruction codes are decoded by the decoding unit and it sends information

to the timing and control unit. The data is stored in the register array for processing by the ALU.

The control unit will generate the necessary control signals for internal and external operations

of the microprocessor.

1 . 4 MICROPROCESSOR-BASED SYSTEMS

(ORGANIZATION OF A MICROCOMPUTER)

A microprocessor is a semiconductor device (or Integrated Circuit) manufactured by the

VLSI (Very Large Scale Integration) technique. It includes the ALU, register arrays and control

circuit on a single chip. To perform a function or useful task we have to form a system by using the

microprocessor as a CPU (Central Processing Unit) and interfacing memory, the input and output

devices to it. A system designed using a microprocessor as its CPU is called a microcomputer or

single board microcomputer. A microprocessor-based system consists of a microprocessor as the

CPU, semiconductor memories like EPROM and RAM, an input device, an output device and interfacing

devices. The memories, input device, output device and interfacing devices are called peripherals.

ALU

Register Array
or

Internal Memory

Instruction
Decoding UnitFlag Register

Timing and
Control Unit PC/IP

Data Bus

Control Bus Address Bus

Fig. 1.1 : Block diagram showing basic functional blocks of a microprocessor.

®

®

®

®

®

 1. 7

The commonly used EPROM and static RAM in microcomputers are given below:

EPROM Static RAM

INTEL 2708 (1 kb) MOTOROLA 6208 (1 kb)

INTEL 2716 (2 kb) MOTOROLA 6216 (2 kb)

INTEL 2732 (4 kb) MOTOROLA 6232 (4 kb)

INTEL 2764 (8 kb) MOTOROLA 6264 (8 kb)

Note : kb refer to kilo bytes.

The popular input devices are the keyboard, floppy disk, etc., and the output devices are

printer, LED/LCD displays, CRT monitor, etc.

The block diagram of microprocessor-based system (organization of microcomputer) is

shown in Fig. 1.2. In this system, the microprocessor is the master and all other peripherals are

slaves. The master controls all the peripherals and initiates all the operations.

Buses are a group of lines that carry data, address or control signals. The CPU bus has

multiplexed lines, i.e., the same line is used to carry different signals. The CPU interface is provided

to demultiplex the multiplexed lines, to generate chip select signals and additional control signals.

The system bus has separate lines for each signal.

All the slaves in the system are connected to the same system bus. At any time instant

communication takes place between the master and one of the slaves. All the slaves have tristate logic

and hence normally remain in a high impedance state. The processor selects a slave by sending an

address. When a slave is selected, it comes to the normal logic and communicates with the processor.

The EPROM memory is used to store permanent programs and data. The RAM memory is

used to store temporary programs and data. The input device is used to enter the program, data

and to operate the system. The output device is used for examining the results. Since the speed of

IO devices does not match with the speed of the microprocessor, an interface device is provided

between the system bus and the IO devices. Generally, IO devices are slow devices.

Fig. 1.2 : Microprocessor-based system (organization of microcomputer).

IPQ

IPQ

EPROM RAM

IO Interface

Input
Device

Output
DeviceMemory

Slaves

S
y
st
em

B
u
s

Address Bus

Data Bus

Control
Bus

CPU
Interface

mP
(CPU)

A/D - Address/Data Bus

A - Address Bus

C - Control Bus

CPU Bus
A/D

A

C

Master

8086 Microprocessor and Its Appications

1. 8 Chapter 1 Introduction

The work done by the processor can be classified into the following three groups :

1. Work done internal to the processor.

2. Work done external to the processor.

3. Operations initiated by the slaves or peripherals.

The work done internal to the processor are addition, subtraction, logical operations,

data transfer within registers, etc. The work done external to the processor are reading /writing the

memory and reading /writing the IO devices or the peripherals. If the peripheral requires the attention

of the master, then it can interrupt the master and initiate an operation.

The microprocessor is the master, which controls all the activities of the system. To perform

a specific job or task, the microprocessor has to execute a program stored in the memory. The

program consists of a set of instructions stored in consecutive memory locations. In order to

execute the program, the microprocessor issues address and control signals to fetch the instruction

and data from memory one by one. After fetching each instruction the processor decodes the

instruction and carries out the task specified by the instruction.

1 . 5 CONCEPT OF MULTIPLEXING IN MICROPROCESSORS

Multiplexing is transferring different information at different well-defined times through the

same lines. A group of such lines is called a multiplexed bus. The result of multiplexing is that fewer

pins are required for microprocessors to communicate with the outside world.

Due to pin number limitations, most microprocessors cannot provide simultaneously similar

lines (such as address, data, status signals, etc.). Hence multiplexing of one or more of these buses

is performed. Most often data lines are multiplexed with some or all address lines to form an

address/data bus (e.g., in 8086, the lower 16-address lines are multiplexed with data lines). The

status signals emitted by the microprocessor are sometimes multiplexed either with the data lines

(as done in INTEL 8080A) or with some of the address lines (as done in INTEL 8086).

Whenever multiplexing is used, the CPU interface of the system must include the necessary

hardware to demultiplex those lines to produce separate address, data and control buses required

for the system. Demultiplexing of a multiplexed bus can be handled either at the CPU interface or

locally at appropriate points in the system. Besides a slower system operation, a multiplexed bus

also results in additional interface hardware requirements.

Demultiplexing of Address/Data Lines in an 8086 Processor

In order to demultiplex the address/data lines (of the processor), the processor provides a

signal called ALE (Address Latch Enable). The ALE is asserted high and then low by the processor

at the beginning of every bus cycle. At the same time, the address is given out through AD
0
- AD

15

lines and A
16

- A
19

/status lines. Demultiplexing of address/data lines and address/status lines using 8-

bit D-latch 74LS373 is shown in Fig. 1.3.

The ALE is connected to the Enable Pin (EN) of the external 8-bit latches. When ALE is asserted

high and then low, the addresses are latched into the output lines of the latch. It holds the address until

the next bus cycle. After latching the address, the AD
0

- AD
15

 lines are free for data transfer and

A
16

- A
19

/status lines are free for carrying status information. The first T-state of every bus cycle is

used for address latching in 8086 and the remaining T states are used for reading or writing operation.

 1. 9

The data bus is provided with a bidirectional buffer in order to drive the data to a longer distance

in the bus. The 8086 provides two control signals DT/R and DEN for controlling the data buffers. The

DT/R is used to decide the direction of data flow and DEN is used to enable the data buffer.

1.6 SHOR T QUESTIONS AND ANSWERS

1.1 What is a microprocessor ?

A microprocessor is a program-controlled semiconductor device (IC), which fetches, decodes

and executes instructions.

1.2 What are the basic functional blocks of a microprocessor ?

The basic functional blocks of a microprocessor are ALU, an array of registers and control unit .

1.3 What is a bus ?

A bus is a group of conducting lines that carries data, address and control signals.

1.4 Define bit, byte and word.

A digit of the binary number or code is called bit. The bit is also the fundamental storage unit of

computer memory.

The 8-bit (8-digit) binary number or code is called byte and 16-bit binary number or code is called word.

(Some microprocessor manufacturers refer to the basic data size operated by the processor as word.)

1.5 State the relation between the number of address pins and physical memory space?

The size of the binary number used to address the memory decides the physical memory space.

If a microprocessor has n-address pins then it can directly address 2n memory locations. (The

memory locations that are directly addressed by the processor are called physical memory space.)

1.6 Why is data bus bidirectional?

The microprocessor has to fetch (read) the data from the memory or input device for processing

and after processing it has to store (write) the data in the memory or output device. Hence, the data

bus is bidirectional.

1.7 Why is address bus unidirectional?

The address is an identification number used by the microprocessor to identify or access a memory

location or IO device. It is an output signal from the processor. Hence, the address bus is unidirectional.

D - D0 15

DEN

DT/R

AD - AD0 15

8086
ALE

A - A / Status16 19

EN

74LS373

(8-bit

D-Latch)

EN

2 Nos. of

74LS373

(8-bit

D-Latch)

A - A0 15

DT/R

DEN EN

DIR

D - D0 15

Data Bus

A -A16 19
A - A0 19

Address bus

Status Lines

Fig. 1.3 : Demultiplexing of address and data lines in an 8086 processor.

2 Nos. of

74LS245

(Bidirectional

Buffer)

®
®

®
®

®

®

8086 Microprocessor and Its Appications

1. 10 Chapter 1 Introduction

1.8 State the difference between CPU and ALU.

ALU is the unit that performs arithmetic or logical operations. CPU is the unit that includes ALU and

control unit. Apart from processing the data, the CPU controls the functioning of the entire system.

Usually, a microprocessor will be the CPU of a system and it is called the brain of the computer.

1.9 What is tristate logic? Why is it needed in a microprocessor system?

In tristate logic, three logic levels are used: high, low and high impedance state. The high and low

are normal logic levels and high impedance state is an electrical open-circuit condition.

In a microprocessor system, all the peripheral/slave devices are connected to a common bus. But

communication (data transfer) takes place between the master (microprocessor) and one slave

(peripheral) at any time instant. During this time instant, all other devices should be isolated from

the bus. Therefore, normally all the slaves (peripherals) will remain in high impedance state (i.e.,

in electrical isolation). The master will select a slave by sending the address and chip select

signal. When the slave is selected, it comes to normal logic and it communicates with the master.

1.10 What is HMOS and HCMOS?

HMOS is High density n-type Metal Oxide Silicon field effect transistor. The third generation

microprocessors are fabricated using HMOS transistors.

HCMOS is High density n-type Complementary Metal Oxide Silicon field effect transistor. It is a

low power version of HMOS and the fourth generation microprocessors are fabricated using

HCMOS transistors.

1.11 What are the drawbacks of first generation microprocessors?

First generation processors are fabricated using PMOS technology and they have drawbacks

like slow speed, low output currents and are not compatible with TTL logic levels.

1.12 What is microcomputer ? Explain the difference between a microprocessor and a microcomputer.

A system designed using a microprocessor as its CPU is called a microcomputer. The term

microcomputer refers to the whole system, whereas a microprocessor is the CPU of a system.

1.13 What is the function of a microprocessor in a system?

A microprocessor is the master of a system, which controls all the activities of the system. It

issues address and control signals and fetches the instruction and data from the memory. It also

executes the instructions to take appropriate action.

1.14 List the components of a microprocessor-based (single-board microcomputer) system.

A microprocessor-based system consists of a microprocessor as the CPU, semiconductor memories

like EPROM and RAM, input device, output device and interfacing devices.

1.15 Why is interfacing needed for IO devices?

Generally, IO devices are slow devices. Therefore, the speed of IO devices do not match with the speed

of the microprocessors. Therefore, an interface is provided between the system bus and IO devices.

1.16 What is the difference between CPU bus and system bus?

The CPU bus has multiplexed lines but the system bus has separate lines for each signal. (The

multiplexed CPU lines are demultiplexed by the CPU interface circuit to form the system bus.)

1.17 What is multiplexing and what is its advantage?

Multiplexing is transferring of different information at different well-defined times through the

same lines. A group of such lines is called a multiplexed bus. The advantage of multiplexing is that

fewer pins are required for microprocessors to communicate with the outside world.

 CHAPTER 2

INTEL 8086 PINS, SIGNALS AND ARCHITECTURE

2 . 1 INTRODUCTION TO INTEL 8086

INTEL 8086 is the first 16-bit processor released by INTEL in the year 1978. The 8086 was

designed using the HMOS technology and it is now manufactured using HMOS III technology and

contains approximately 29,000 transistors. The 8086 is packed in a 40-pin DIP and requires a

single 5-V supply.

The 8086 does not have an internal clock circuit. The 8086 requires an external asymmetric

clock source with 33% duty cycle. The 8284 clock generator is used to generate the required clock

for 8086. The maximum internal clock of 8086 is 5 MHz. The other versions of 8086 with different

clock rates are 8086-1, 8086-2 and 8086-4 with maximum internal clock frequency of 10 MHz,

8 MHz and 4MHz respectively.

The 8086 uses a 20-bit address to access memory and hence it can directly address up to one

mega-byte (220 = 1 Mega) of memory space. One mega-byte (1Mb) of addressable memory space of

8086 are organized as two memory banks of 512 kilo bytes each (512 kb + 512 kb = 1 Mb). The

memory banks are called even (or lower) bank and odd (or upper) bank. The address line A
0
 is used

to select the even bank and the control signal BHE is used to select the odd bank.

For accessing IO-mapped devices, the 8086 uses a separate 16-bit address, and so the 8086

can generate 64 k(216) IO addresses. The signal M/IO is used to differentiate the memory and

IO addresses. For memory address, the signal M/IO is asserted high and for IO address the signal

is M/IO asserted low by the processor.

The 8086 can operate in two modes: minimum mode and maximum mode. The mode is

decided by a signal at MN/MX pin. When the MN/MX is tied high, it works in minimum mode and

the system is called a uniprocessor system. When MN/MX is tied low, it works in maximum mode

and the system is called a multiprocessor system. Usually the pin MN/MX is permanently tied to

low or high so that the 8086 system can work in any one of the two modes. The 8086 can work

with the 8087 coprocessor in maximum mode. In this mode an external bus controller 8288 is

required to generate bus control signals.

The 8086 has two families of processors. They are 8086 and 8088. The 8088 uses 8-bit data

bus externally but the 8086 uses 16-bit data bus externally. The 8086 accesses memory in words

but the 8088 accesses memory in bytes. IBM designed its first Personal Computer (PC) using an

INTEL 8088 microprocessor as the CPU.

2. 2 Chapter 2 INTEL 8086 Pins, Signals And Architecture

2.2 PINS AND SIGNALS OF INTEL 8086

The 8086 pins and signals are shown in Fig. 2.1. The 8086 is a 40-pin IC and all the 8086

pins are TTL compatible. The signal assigned to pins 24 to 31 will be different for minimum and

maximum mode of operation. The signal assigned to all other pins are common for minimum and

maximum mode of operation.

18

19

20

23

22

21

GND
AD14

VCC

AD15

A /S19 6

BHE/S7

WR (LOCK)

AD13

NMI

INTR

CLK

GND

M/IO

DT/R

RESET

ALE

INTA

TEST

AD12

AD11

AD10

AD9

AD8

AD7

AD6

AD5

AD4

AD3

AD2

AD1

AD0

READY

DEN

RD

MN/MX

HLDA (RQ / GT)1

HOLD (RQ / GT)0

A /S18 5

A /S17 4

A /S16 3

(S)2
(S)1
(S)0

(QS)0
(QS)1

Fig. 2.1a : 8086 pin assignments.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

8086

®
®

®®

®®

®®

®®

®®

®®

®®

®®

®

®

®

®

®

®

®

®

®®

®

®

®
®

®

®

® ®
®
®

®
®
®
®
®
®

®

®

®

®
®

®®
®
®
®
®

®

®

®

Note : Signals shown in parenthesis

are maximum mode signals.

®
®

Fig. 2.1 : 8086 pin and .signals

BHE, S7

INTR

NMI

AD0 15- AD

A16 19 3 6- A /S - S

CLK

GND

VCC

RESET

TEST

READY

RD

LOCK

RQ/GT0

Fig. 2.1c : 8086-Maximum mode.

S0

QS0

QS1

S1

S2

RQ/GT1

MN/MX=0-V

8086
Maximum

Mode

BHE, S7

INTR

NMI

AD0 15- AD

A16 19 3 6- A /S - S

CLK

GND

VCC

WR

MN/MX=VCC

M/IO

DT/R

DEN

ALE

INTA

RESET

TEST

READY

RD

HLDA

HOLD

Fig. 2.1b : 8086-Minimum mode.

8086
Minimum

Mode

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→ →

→

→

→

→

→

→ →

→

→

→

→

→

→

→

→

→

→

→

→

→

 2. 3

TABLE - 2.1 : COMMON SIGNALS

 Name Description /Function Type

AD
15

 - AD
0

Address /Data Bidirectional, Tristate

A
19

/S
6
-A

16
/S

3
Address /Status Output, Tristate

 BHE/S
7

Bus high enable/Status Output, Tristate

 MN/MX Minimum/Maximum mode control Input

RD Read control Output, Tristate

 TEST Wait on test control Input

READY Wait state control Input

RESET System reset Input

NMI Non-maskable interrupt request Input

INTR Interrupt request Input

CLK System clock Input

V
cc

+ 5-V Power supply input

GND Ground Power supply ground

TABLE - 2.2 : MINIMUM MODE SIGNALS [MN/MX = V
CC

 (Logic high)]

 Name Description/Function Type

HOLD Hold request Input

HLDA Hold acknowledge Output

 WR Write control Output, Tristate

 M/IO Memory / IO control Output, Tristate

 DT/R Data transmit /Receive Output, Tristate

 DEN Data enable Output, Tristate

 ALE Address latch enable Output

 INTA Interrupt acknowledge Output

TABLE - 2.3 : MAXIMUM MODE SIGNALS [MN/MX = Ground(Logic low)]

 Name Description /Function Type

RQ/GT
1
, RQ/GT

0
 Request/Grant bus access control Bidirectional

LOCK Bus priority lock control Output, Tristate

S
2
, S

1
, S

0
 Bus cycle status Output, Tristate

QS
1
, QS

0
 Instruction queue status Output

8086 Microprocessor and Its Appications

2. 4 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Common Signals

The common signals for minimum and maximum mode are listed in Table-2.1. The lower

sixteen lines of the address are multiplexed with data and the upper four lines of the address are

multiplexed with status signals. During the first clock period of a bus cycle the entire 20-bit address

is available on these lines. During all other clock periods of a bus cycle, the data and status signals

will be available on these lines.

The status signals on S
3
 and S

4
 specify the segment register used for calculating physical

address. The output on the status lines S
3
 and S

4
 when the processor is accessing various segments

are listed in Table-2.4.

TABLE - 2.4 : STATUS SIGNAL DURING MEMORY SEGMENT ACCESS

Status signal
Segment register

S
4

S
3

0 0 Extra segment

0 1 Stack segment

1 0 Code or no segment

1 1 Data segment

The status lines S
3
 and S

4
 can be used to expand the memory up to 4 Mb. The status line S

5

indicates the status of the 8086 interrupt enable flag. A low on the line S
6
 indicates that the 8086 is

on the bus (i.e., it indicates that 8086 is the bus master) and during hold acknowledge, this pin is

driven to high impedance state. The output signal BHE on the first T-state of a bus cycle is

maintained as status signal S
7
 during all other T states of the bus cycles.

The 8086 outputs a low on the BHE pin during read, write and interrupt acknowledge cycles

when the data is to be transferred to the high order data bus. The BHE can be used in conjunction

with address bit A
0
(AD

0
) to select memory banks.

When the processor reads from the memory or an IO location it asserts RD as low. The

TEST input is tested by the WAIT instruction. The 8086 will enter a wait state after execution of

the WAIT instruction, and it will resume execution only when TEST is made low by an external

hardware. This is used to synchronize an external activity to the processor's internal operation.

TEST input is synchronized internally during each clock cycle on the leading edge of the clock

signal.

INTR is the maskable interrupt and INTR must be held high until it is recognized to generate

an interrupt signal. NMI is the non-maskable interrupt input activated by a leading edge signal.

RESET is the system reset input signal. For power-ON reset, it is held high for 50

microseconds. For reset while working, it is held high for at least four clock cycles. When the

processor is reset, the DS, SS, ES, IP and flag register are cleared, Code Segment (CS) register

is initialized to FFFF
H
 and queue is emptied. After reset, the processor will start fetching instructions

from the 20-bit physical address FFFF0
H

.

 2. 5

READY is an input signal to the processor, used by the memory or IO devices to get extra

time for data transfer or to introduce wait states in the bus cycles. Normally READY is tied

high. If the READY is tied low, the 8086 introduces wait states after second T-state of a bus

cycle and it will complete the bus cycle only when READY is made high again.

CLK input is the clock signal that provides the basic timing for the 8086 and bus controller.

The 8086 does not have an on-chip clock generation circuit. Hence the 8284 clock generator

chip is used to generate the required clock. A quartz crystal whose frequency is thrice that of

internal clock of an 8086 must be connected to the 8284. The 8284 generates the clock at crystal

frequency. The 8284 divides the generated clock by three and modifies the duty cycle to 33%

and output on CLK pin of 8284. This CLK output of 8284 must be connected to the 8086 CLK

pin. The 8284 also provides the RESET and READY signals to the 8086.

Minimum Mode Signals

The minimum mode signals of an 8086 are listed in Table-2.2. For minimum mode of

operation the MN/MX pin is tied to V
cc

(logic high). In minimum mode, the 8086 itself generates

all bus control signals. The minimum mode signals are explained below:

DT/R - (Data Transmit / Receive). It is an output signal from the processor to control the

direction of data flow through the data transceivers.

DEN - (Data Enable) - It is an output signal from the processor used as output enable for

the data transceivers.

ALE - (Address Latch Enable) - It is used to demultiplex the address and data lines using

external latches.

M/IO - It is used to differentiate memory access and IO access. For IN and OUT instructions

it is low. For memory reference instructions, it is high.

WR - It is a write control signal and it is asserted low whenever the processor writes data

to memory or IO port.

INTA - (Interrupt Acknowledge) - The 8086 outputs low on this line to acknowledge when

the interrupt request is accepted by the processor.

HOLD - It is an input signal to the processor from other bus masters as a request to grant the

control of the bus. It is usually used by DMA controller to get the control of bus.

HLDA - (Hold Acknowledge) - It is an acknowledge signal by the processor to the master

requesting the control of the bus through HOLD. The acknowledge is asserted

high when the processor accepts the HOLD. [On accepting the hold, the processor

drives all the tristate pins to high impedance state and sends an acknowledge to

the device which requested HOLD. On receiving the acknowledge, the other master

will take control of the bus.]

8086 Microprocessor and Its Appications

2. 6 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Maximum Mode signals

The maximum mode signals of 8086 are listed in Table-2.3. The 8086-based system can be

made to work in maximum mode by grounding the MN/MX pin (i.e., MN/MX is tied to logic low).

In maximum mode, the pins 24 to 31 are redefined as follows.

S
0
, S

1
, S

2
 - These are status signals and they are used by the 8288 bus controller to generate the

bus timing and control signals. The status signals are decoded as shown in Table 2.5.

TABLE - 2.5 : STATUS SIGNALS DURING VARIOUS MACHINE CYCLES

Status signal

S
2

S
1

S
0

0 0 0 Interrupt acknowledge

0 0 1 Read IO port

0 1 0 Write IO port

0 1 1 Halt

1 0 0 Code access

1 0 1 Read memory

1 1 0 Write memory

1 1 1 Passive/Inactive

RQ/GT
0
, - (Bus Request/Bus Grant) These requests are used by the other local bus masters

RQ/GT
1

to force the processor to release the local bus at the end of the processor's current

bus cycle. These pins are bidirectional. The request on GT
0
 will have higher priority

than GT
1
.

The bus request to 8086 work as follows:

1. When a local bus master requires system bus control, it sends a low pulse to the 8086.

2. At the end of the current bus cycle, the processor (8086) drives its pins to high impedance state and sends

an acknowledge as a low pulse on the same pin to the device which requested the bus control.

3. On receiving the acknowledge the local master will take control of the system bus. After completing its work,

at the end, the local bus master sends a low signal on the same pin to the 8086 to inform the end of control.

Now 8086 regains the control of the bus.

LOCK - It is an output signal, activated by the LOCK prefix instruction and remains active

until the completion of the instruction prefixed by LOCK. The 8086 outputs low on

the LOCK pin while executing an instruction prefixed by LOCK to prevent other bus

masters from gaining control of the system bus.

QS
1
, QS

0
- (Queue Status) - The processor provides the status of queue on these lines. The queue

status can be used by the external device to track the internal status of the queue in

the 8086. The QS
0
 and QS

1
 are valid during the clock period following any queue

operation. The output on QS
0
 and QS

1
 can be interpreted as shown in Table-2.6.

 Machine cycle

 2. 7

TABLE - 2.6 : QUEUE STATUS

Queue status

QS
1

QS
0

 Queue operation

0 0 No operation

0 1 First byte of an opcode from queue

1 0 Empty the queue

1 1 Subsequent byte from queue

2 .3 ARCHITECTURE OF INTEL 8086

The 8086 has a pipelined architecture. In pipelined architecture, the processor will have a

number of functional units and the execution time of each functional unit overlaps. Each functional

unit works independently most of the time. The simplified block diagram of the internal architecture

of an 8086 is shown in Fig. 2.2. The architecture of the 8086 can be internally divided into two

separate functional units : Bus Interface Unit (BIU) and Execution Unit (EU).

Temporary
Registers

ALU

Flag Register

Internal
Control
System

AH AL

BH BL

CH CL

DH DL

SP

BP

DI

SI

AX

BX

CX

DX

General
Registers

ALU Data
Bus

(16-Bit)

Address
Generation

Address Bus

(20-Bit)

Data Bus

(16-Bit)
CS

DS

SS

ES

IP

Internal
Communication
Registers

Bus
Control
Logic

8086
Bus

Instruction Queue

Q Bus

(8-Bit)
1 2 3 4 5 6

Execution Unit (EU) Bus Interface Unit (BIU)

Fig. 2.2 : Internal architecture of 8086.

®

®

®
®

®

®

®

®®

®

®

®

®

®
®

®

®

® ® ® ®

®

®®

8086 Microprocessor and Its Appications

2. 8 Chapter 2 INTEL 8086 Pins, Signals And Architecture

The BIU fetches instructions, reads data from memory and IO ports, writes data to memory

and IO ports. The BIU contains segment registers, instruction pointer, instruction queue, address

generation unit and bus control unit. The EU executes instructions that have already been fetched

by the BIU. The BIU and EU function independently.

The instruction queue is a FIFO (First-In-First-Out) group of registers. The size of queue

is 6 bytes. The BIU fetches instruction code from the memory and stores it in the queue. The EU

fetches instruction codes from the queue.

The BIU has four numbers of 16-bit segment registers. They are Code Segment (CS)

register, Data Segment (DS) register, Stack Segment (SS) register and Extra Segment (ES) register.

The 8086 memory space can be divided into segments of 64 kilo bytes (64 kb). The 4 segment

registers are used to hold four segment base addresses. Hence 8086 can directly address 4 segments

of 64 kb at any time instant (4 × 64 = 256 kb within 1 Mb memory space). This feature of 8086

allows the system designer to allocate separate areas for storing program codes and data.

The contents of segment registers are programmable. Hence, the processor can access the

code and data in any part of the memory by changing the contents of the segment registers. The

memory segment can be continuous, partially overlapped, fully overlapped or disjoint.

Note : Since segment registers are programmable it is possible to design multitasking and multiuser

system using 8086. The program code and data for each task/user can be stored in separate

segments. The program execution can be switched from one task/user to another by changing

the content of the segment registers.

The dedicated address generation unit generates the 20-bit physical address from the segment

base and an offset or effective address. The segment base address is logically shifted left four times

and added to the offset [Logically shifting left four times is equal to multiplying by 16
10

.]

The address for fetching instruction codes is generated by logically shifting the content of

the CS to the left four times and then adding it to the content of the IP (Instruction Pointer). The

IP holds the offset address of the program codes. The content of IP gets incremented by two after

every bus cycle [In one bus cycle, the processor fetches two bytes of the instruction code.]

The data address is computed by using the content of DS or ES as base address and an

offset or effective address specified by the instruction. The stack address is computed by using

the content of the SS as base address and the content of the SP (Stack Pointer) as the offset

address or effective address.

The bus control logic of the BIU generates all the bus control signals such as read and write

signals for memory and IO. The EU consists of ALU, flag register and general purpose registers.

The EU decodes and executes the instructions. A decoder in the EU control system translates the

instructions.

The EU has a 16-bit ALU to perform arithmetic and logical operations. The EU has eight

numbers of 16-bit general purpose registers. They are AX, BX, CX, DX, SP, BP, SI and DI.

 2. 9

TABLE - 2.7 : SPECIAL FUNCTIONS OF 8086 REGISTERS

Some of the 16-bit registers can also be used as two numbers of 8-bit registers as given below:

AX - can be used as AH and AL ; CX - can be used as CH and CL

BX - can be used as BH and BL ; DX - can be used as DH and DL

The general purpose registers can be used for data storage, when they are not involved in

special functions assigned to them. These registers are named after special functions carried out

by each one of them as given in Table-2.7.

8086 Flag Register

The size of an 8086 flag register is 16-bit and in this nine bits are defined as flags. The six

flags are used to indicate the status of the result of the arithmetic or logical operations. Three flags

are used to control the processor operation and so they are also called control bits. The various

flags of an 8086 processor and their bit position in the flag register are shown in Fig. 2.3.

Carry Flag (CF) is set if there is a carry from addition or borrow from subtraction. Auxiliary

carry Flag (AF) is set if there is a carry from low nibble to high nibble of the low order 8-bit of a

16-bit number.

 Register Name of the register Special function

 AX 16-bit Accumulator Stores the 16-bit result of certain arithmetic and

logical operations.

 AL 8-bit Accumulator Stores the 8-bit result of certain arithmetic and

logical operations.

 BX Base register Used to hold the base value in base addressing

mode to access memory data.

 CX Count register Used to hold the count value in SHIFT, ROTATE and

LOOP instructions.

 DX Data register Used to hold data for multiplication and division

operations.

 SP Stack pointer Used to hold the offset address of top of stack

memory.

 BP Base pointer Used to hold the base value in base addressing

using stack segment register to access data

from stack memory.

 SI Source index Used to hold the index value of source operand

(data) for string instructions.

 DI Destination index Used to hold the index value of destination operand

(data) for string instructions.

8086 Microprocessor and Its Appications

2. 10 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Overflow Flag (OF) is set to one if there is an arithmetic overflow, that is, if the size of the

result exceeds the capacity of the destination location. Sign Flag (SF) is set to one if the most

significant bit of the result is one and SF is cleared to zero for non-negative result. Parity Flag (PF)

is set to one if the result has even parity and PF is cleared to zero for odd parity of the result. Zero

Flag (ZF) is set to one if the result is zero and ZF is cleared to zero for nonzero result.

The three control bits in the flag register can be set or reset by the programmer. The Direction

Flag (DF) is set to one for autodecrement and DF is reset to zero for autoincrement of SI and DI

registers during string data accessing. Setting Interrupt Flag (IF) to one causes the 8086 to recognize

external maskable interrupts and clearing IF to zero disables the interrupts.

Setting Trace Flag (TF) to one places the 8086 in the single-step mode. In this mode, the

8086 generates an internal interrupt after execution of each instruction. The single stepping is used

for debugging a program.

2 . 4 INSTRUCTION AND DATA FLOW IN 8086

The 8086 microprocessor allows the user to define different memory areas for storing

program and data. The program memory can be accessed by using CS-register and the data

memory can be accessed by using DS, ES and SS registers.

The program instructions are stored in program memory which is an external device. To

execute a program in 8086, the base address and offset address of the first instruction of the

program should be loaded in CS-register and IP, respectively. The 8086 computes the 20-bit

physical address of the program instruction by multiplying the content of CS-register by 16
10

 and

adding it to the content of IP. The 20-bit physical address is given out on the address bus. Then

RD is asserted low. Also other control signals necessary for program memory read operation are

asserted. The IP is incremented by two to point next instruction or next word of the same

instruction.

The address and control signals enable the memory to output one word (two bytes) of

program memory on the data bus. After a predefined time, the RD is asserted high and at this

instant the content of data bus is latched into two empty locations of instruction queue. Then BIU

starts fetching the next word of the program code as explained above. The BIU keeps on fetching

the program codes, word by word from consecutive memory locations whenever two locations

of queue are empty. When a branch instruction is encountered, the queue is emptied and then filled

with program codes from the new address loaded in CS and IP by the branch instruction.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CFPFAFZFSFTFIFDFOF

CF - Carry Flag
PF - Parity Flag
AF - Auxiliary Carry Flag

ZF - Zero Flag
SF - Sign Flag
OF - Overflow Flag

TF - Trace Flag (or Single Step Trap)
IF - Interrupt Flag
DF - Direction Flag

IPQ

Flags for Arithmetic/Logical Operations

IPQ

Control Bits

Fig. 2.3 : Bit positions of various flags in the flag register of 8086.

 2. 11

The EU reads the program instructions from queue, decodes and executes them one by

one. If the execution of an instruction requires data from memory (or to store data in memory)

then BIU is interrupted to read (or write) data in memory. When BIU is interrupted, it completes

the fetching of current instruction word and then starts reading/writing the data by generating a

20-bit data memory address. The 20-bit data memory address is obtained by multiplying the

content of segment base register specified by the instruction by 16
10

 and adding it to an effective

or offset address specified by the instruction.

2 . 5 EVEN AND ODD MEMORY BANKS

The 8086 microprocessor uses a 20-bit address to access memory. With 20-bit address the

processor can generate 220 = 1 Mega address. The basic memory word size of the memories used

in the 8086 system is 8-bit or 1-byte (i.e., in one memory location an 8-bit binary information can

be stored). Hence, the physical memory space of the 8086 is 1Mb (1 Mega-byte).

For the programmer, the 8086 memory address space is a sequence of one mega-byte in

which one location stores an 8-bit binary code/data and two consecutive locations store 16-bit

binary code/data. But physically (i.e., in the hardware), the 1Mb memory space is divided into two

banks of 512kb (512kb + 512kb = 1Mb). The two memory banks are called Even (or Lower) bank

and Odd (or Upper) bank. The organization of even and odd memory banks in the 8086-based

system is shown in Fig. 2.4.

The 8086-based system will have two sets of memory IC's. One set for even bank and

another set for odd bank. The data lines D
0
-D

7
 are connected to even bank and the data lines

D
8
-D

15
 are connected to odd bank. The even memory bank is selected by the address line A

0
 and

the odd memory bank is selected by the control signal BHE. The memory banks are selected when

these signals are low (active low). Any memory location in the memory bank is selected by the

address line A
1
 to A

19
.

The organization of memory into two banks and providing bank select signals allows the

programmer to read /write the byte (8-bit) operand in any memory address through 16-bit data

bus. It also allows the programmer to read /write the word (16-bit) operand starting from even

address or odd address.

The memory access for byte and word operand from the even and odd bank by the 8086

processor will be as follows:

Case i : Byte access from even bank

For read /write operation of a byte in even memory address, A
0
 is asserted low and BHE is

asserted high (i.e., A
0
 = 0 and BHE = 1). Now the even bank alone is enabled and the data transfer

take place through D
0
-D

7
 data lines.

Case ii : Byte access from odd bank

For read /write operation of a byte in odd memory address, A
0
 is asserted high and BHE is

asserted low (i.e., A
0
 = 1 and BHE = 0). Now odd bank alone is enabled and the data transfer take

place through D
8
-D

15
 data lines.

8086 Microprocessor and Its Appications

2. 12 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Case iii : Word access from even boundary

For read /write operation of a word (16-bit) in even boundary (i.e., low byte in even address

and high byte in next address (odd address)), both A
0
 and BHE are asserted low (i.e., A

0
 = 0 and

ΒΗΕ = 0). Now both the memory banks are enabled simultaneously and the processor read /write

the 16-bit operand in one bus cycle through D
0
-D

15
 data lines.

1Mb Memory
Address Space

512 kb Odd Memory
Address Space

512 kb Even Memory
Address Space

FFFFFH

FFFFEH

FFFFDH

FFFFCH

FFFFBH

FFFFAH

00007H

00006H

00005H

00004H

00003H

00002H

00001H

00000H

FFFFFH

FFFFDH

FFFFBH

00007H

00005H

00003H

00001H

FFFFEH

FFFFCH

FFFFAH

00006H

00004H

00002H

00000H

Þ

8086 CPU
Bus

Address
Latches

Address
Bus D

8
-
D
1
5

D
0
-
D

7

A
1
-
A

1
9

A
1
-
A

1
9

Odd
Memory
Bank IC’s

512 kb

(512 k 8)´

CS/ENCS/EN

Even
Memory
Bank IC’s

512 kb

(512 k 8)´

BHE A0

Odd Memory Bank
Select Signal

Even Memory
Bank Select Signal

Data Bus

Fig. 2.4 : Organization of even and odd memory banks in 8086-based system.

 2. 13

Case iv : Word access from odd boundary

For read/write operation of a word (16-bit) in odd boundary (i.e., low byte in odd address

and high byte in next address (even address)), the processor executes two bus cycles to

read/write the word (16-bit) operand. In the first bus cycle A
0
 is asserted high and BHE is asserted

low (i.e., A
0
 = 1 and BHE = 0). Now the odd bank alone is enabled and the low byte of

16-bit operand is read/write through D
8
-D

15
 data lines. In the second bus cycle A

0
 is asserted low

and BHE is asserted high (i.e., A
0
 = 0 and BHE = 1). Now the even bank alone is enabled and the

high byte of 16-bit operand is read/write through D
0
-D

7
 data lines.

The status of A
0
 and BHE for byte and word memory access are listed in Table-2.8.

TABLE - 2.8 : STATUS OF A
0
 AND BHE DURING MEMORY ACCESS

Note : 1. The processor may access the low byte operand via the upper data lines and high

byte operand via the lower data lines, but while placing the operand in the registers it

places in the appropriate locations.

2. When word operand is accessed from odd boundary the instruction execution

will take extra time due to two bus cycle memory access.

2 . 6 BUS CYCLES AND TIMING DIAGRAM

The 8086 processor has two functional units called Bus Interface Unit (BIU) and Execution

Unit (EU). Most of the time each unit works independently. The BIU takes care of fetching

instruction codes from memory, and data from memory and IO devices. The EU takes care of

executing the instructions prefetched by BIU.

The BIU initiates all external operations which are also called bus activity. The external bus

activities are repetitions of certain basic operations. The basic operations performed by the CPU bus

are called bus cycles. Depending on the activities of 8086, the bus cycles can be classified as follows:

1) Memory read cycle (Four T states)

2) Memory write cycle (Four T states)

3) IO read cycle (Four T states)

4) IO write cycle (Four T states)

5) Interrupt acknowledge cycle (Eight T states)

Memory Operand Data lines used for No. of

 bank type memory access bus cycle

 Even Byte 0 1 D
0
 - D

7
One

 Odd Byte 1 0 D
8
 - D

15
One

 Even Word 0 0 D
0
 - D

15
One

Odd Word

1 0 D
8
 - D

15
First cycle

0 1 D
0
 - D

7
Second cycle

 Status of

A
0

BHE

8086 Microprocessor and Its Appications

2. 14 Chapter 2 INTEL 8086 Pins, Signals And Architecture

The processor takes a definite time to perform a bus cycle. The time taken to perform a bus

cycle are specified in terms of T states. In an 8086 processor the time duration of one T-state is

equal to one time period of the internal clock of the processor. The T-state starts in the middle of

falling edge of the clock signal as shown in Fig. 2.5.

The normal time taken by 8086 to perform read/write cycle is four T states. The processor

also has facility to extend the timing of bus cycles by introducing extra T states called wait states

using READY control signal. If READY is permanently tied high then the bus cycles are executed

in normal timing.

The memory or IO access time allowed by the 8086 processor with 5 MHz clock is 400 ns.

If the memory or IO devices used in the system has access time more than 400 ns then wait states

have to be introduced in the bus cycles, between the second and third T states (T
2
 and T

3
) to

extend the timing of the bus cycle.

In order to introduce wait states the READY is made low by an external hardware in the

beginning of second T-state and then made high after required time delay. The processor samples

READY signal at the end of second T-state of every bus cycle. If READY is low at this time then

the processor introduces one wait state. Again it samples READY signal at the end of wait state and

if READY is still low then it introduces another wait state. This process is continued until READY

is high. Once READY is made high the processor will resume the bus activity and completes the

bus cycle.

Timing Diagram

The timing diagram provides information about the various conditions (high state or low

state or high impedance state) of the signals while a bus cycle is executed. The timing diagrams

are supplied by the manufacturer of the microprocessor. The timing diagrams are essential for a

system designer. Only from the knowledge of timing diagrams, the matched peripheral devices like

memories, ports, etc., can be selected to form a system with a microprocessor as the CPU.

Memory Read Cycle

The memory read cycle is initiated by BIU of 8086 to read a program code or data from

memory. The normal time taken by memory read cycle is four clock periods. The timings of

various signals involved in reading a word (16-bit) starting from even address of memory in

minimum mode are shown in Fig.2.6. The activities of the bus in each T-state are given below:

¬
¯

¬

Negative
or

Falling Edge

Positive
or

Rising Edge

One T-state

¯

¬ ®

Fig. 2.5 : Clock signal and one T-state of 8086.

 2. 15

Activities during T
1
 :

i) The 8086 outputs a 20-bit memory address on AD
0
-AD

15
 lines and ADDR/STATUS lines.

ii) The address latch enable signal ALE is asserted high in the beginning of T
1
 and then asserted low at the end of

T
1
. This enables the external address latches to latch the address (at the falling edge of ALE) and keep on their

output lines.

iii) The direction control signal DT/R is asserted low to inform the external bidirectional data buffer that the

processor has to receive data. (If DT/R is already low in the previous bus cycle then it remains low as such.)

iv) The M/IO signal is asserted high to indicate memory access. (If M/IO is already high then it remains high as

such.)

v) The BHE is asserted low to enable the odd/upper memory bank.

Activities during T
2
 :

i) The AD
0
-AD

15
 lines becomes inactive.

ii) The address is withdrawn from the ADDR/STATUS lines and status signals S
7
-S

3
 are issued on these lines. (The

BHE becomes the status signal S
7
.)

iii) At the end of T
2
 the read control signal RD is asserted low to enable the output buffer of memory. The time

during which RD remains low is the time allowed for memory to load data in the data bus.

iv) The DEN signal is asserted low to enable the external bidirectional data buffers.

v) The 8086 samples READY signal during T
2
.

(If READY is high then T

3
 and T

4
 are executed otherwise wait states

are introduced.)

® ®®

CLK

ALE

ADDR/STATUS

ADDR/DATA

RD

DT/R

DEN

M/IO

T1 T2 T3 T4

BHE ; A - A10 16
S - S7 3

A - A13 0 D to D (Data from Memory)13 0

(WR is ; READY is tied permanently or temporarily in the system.)high high

Fig. 2.6 : Memory read cycle of 8086.

8086 Microprocessor and Its Appications

2. 16 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Activities during T
3
 :

No activities are performed during T
3
. The status of the signals at the end of T

2
 are maintained throughout T

3
.

Activities during T
4
 :

 i) The RD is asserted high and at this time (i.e., at the rising edge of RD) the data is latched into 8086.

 ii) The DEN is made high to disable the data buffer.

Memory Write Cycle

The memory write cycle is initiated by BIU of 8086 to write a data in memory. The normal

time taken by memory write cycle is four clock periods. The timings of various signals involved

in writing a word (16-bit) starting from even address of memory in the minimum mode are shown

in Fig. 2.7. The activities of the bus in each T-state are explained below:

Activities during T
1
 :

 The activities during T
1
 is same as that of read cycle except DT/R signal. In memory write cycle, the DT/R signal is

asserted high to inform the external bidirectional data buffer that the processor is going to transmit data. (If DT/ R is already

high in the previous bus cycle then it remains, high as such.)

(RD is ; READY is tied permanently or temporarily in the system.)high high

Fig. 2.7 : Memory write cycle of 8086.

CLK

ALE

ADDR/STATUS

ADDR/DATA

WR

DT/R

DEN

M/IO

¬ ®¬ ® ®¬ ®¬

BHE = 0 ; A - A = 016 19 S - S7 3

A - A0 15 D - D (Data to Memory)15 0

T1 T2 T3 T4

 2. 17

Activities during T
2
 :

i) The address is withdrawn from AD
0
-AD

15
 lines and data is output on these lines.

ii) The address is withdrawn from ADDR/STATUS lines and status signals are issued on these lines (The BHE

becomes the status signal S
7
.)

iii) When data is output on data bus, the control signals WR and DEN are also asserted low to enable the input buffer

of memory and external data buffer on the data bus respectively.

iv) The 8086 samples READY signal during T
2
. (If READY is high then T

3
 and T

4
 are executed otherwise wait states

are introduced.)

Activities during T
3
 :

No activities are performed during T
3
.The status of the signals at the end of T

2
 are maintained throughout T

3
.

Activities during T
4
 :

i) The WR is asserted high and at this time (i.e., at the rising edge of WR), the data is latched into memory.

ii) The DEN is made high to disable the data buffers.

IO Read Cycle

The IO read cycle is initiated by BIU of 8086 to read a data from IO-mapped device or IO

port. The normal time taken by IO read cycle is four clock periods. The timings of various signals

involved in reading an IO port in the minimum mode are shown in Fig. 2.8. The activities of the

bus in each T-state are given below:

T1 T2 T3 T4

CLK

ALE

ADDR/STATUS

ADDR/DATA

RD

DT/R

DEN

M/IO

BHE = 0 ; A - A = 016 19 S - S7 3

A - A15 0 D - D (Data from IO Device)15 0

(WR is ; READY is tied permanently or temporarily in the system.)high high

Fig. 2.8 : IO read cycle of 8086.

¬ ®¬ ¬® ®¬ ®

8086 Microprocessor and Its Appications

2. 18 Chapter 2 INTEL 8086 Pins, Signals And Architecture

Activities during T
1
 :

i) The 8086 outputs a 16-bit IO address on AD
0
-AD

15
 lines. Logic low is output on the BHE and ADDR/STATUS

lines.

ii) The ALE is asserted high and then low. This enables the external address latches to latch the address (at the

falling edge of ALE) and keep on their output lines.

iii) The DT/R signal is asserted low to inform the external bidirectional data buffer that the processor has to

receive data. (If DT/R is already low in the previous bus cycle then it remains low as such.)

iv) The M/IO signal is asserted low to indicate IO access. (If M/IO is already low then it remains low as such.)

Activities during T
2
 :

i) The AD
0
-AD

15
 lines becomes inactive.

ii) The status signals S
7
-S

3
 are issued on ADDR/STATUS lines.

iii) At the end of T2 the read control signal RD is asserted low to enable the IO device for read operation. The time

during which RD remains low is the time allowed for IO device to load data in the data bus.

iv) The DEN signal is asserted low to enable the external bidirectional data buffers.

v) The 8086 samples READY signal during T
2
. (If READY is high then T

3
 and T

4
 are executed otherwise wait states

are introduced.)

Activities during T
3
 :

No activities are performed during T
3
. The status of the signals at the end of T

2
 are maintained throughout T

3
.

Activities during T
4
 :

i) The RD is asserted high and at this time (i.e., at the rising edge of RD), the data is latched into 8086.

ii) The DEN is made high to disable the data buffer.

IO Write Cycle

The IO write cycle is initiated by BIU of 8086 to send a data to IO device. The normal time

taken by IO write cycle is four clock periods. The timings of various signals involved in sending

a word to IO device in the minimum mode are shown in Fig. 2.9.

The activities during IO write cycle will be same as IO read cycle except the following.

i) During T
1
, DT/R is asserted high to inform the external bidirectional data buffer that the processor is going to

transmit data.

ii) During T
2
, the address is withdrawn from AD

0
-AD

15
 lines and data is output on these lines. At the same time

WR is asserted low to enable the IO device for write operation and DEN is asserted low to enable the data

buffer on the bus. Here RD remains high.

iii) During T
4
, WR is asserted high and at this time (i.e., at the rising edge of WR) the data is latched into IO device.

 2. 19

Interrupt Acknowledge Cycle

The interrupt acknowledge cycle is executed in response to an interrupt request through

the INTR pin of 8086. The 8086 samples the status of INTR pin during the last T-state of an

instruction (or at the end of instruction execution). If INTR is high at the time of sampling and

Interrupt flag is enabled (i.e., IF = 1) then the processor saves (or pushes) the content of flag

register, CS-register and IP in stack, and clears IF and TF flags, and then executes interrupt

acknowledge cycle.

The time taken by 8086 to execute an interrupt acknowledge cycle is eight T states. It is

actually two cycles with each cycle extending for 4T states. In the first cycle the processor send

INTA to the interrupting device to inform the acceptance of interrupt. In the second cycle the

processor requests the interrupting device to supply interrupt type number or pointer and read

type number from the interrupting device by using INTA signal.

The timings of various signals during interrupt acknowlegde cycle in minimum mode are

shown in Fig. 2.10. During T
1
 of both the cycles ALE is made high and low which results in

loading a junk value in address latches.

During T
1
 of first cycle DT/R, M/IO and S

5
 are asserted low. The DT/R is asserted low to

inform the data buffer that the processor has to receive data. The M/IO is asserted low to indicate

IO operation. The S
5
 is asserted low to inform the peripheral devices that the interrupt system is

disabled. (Actually S
5
 is the status of interrupt flag.)

(RD is ; READY is tied permanently or temporarily in the system.)high high

Fig. 2.9 : IO write cycle of 8086.

CLK

ALE

ADDR/STATUS

ADDR/DATA

WR

DT/R

DEN

M/IO

¬ ®¬ ® ®¬ ®¬

BHE = 0 ; A - A = 016 19 S - S7 3

A - A0 15 D - D (Data to IO Device)15 0

T1 T2 T3 T4

8086 Microprocessor and Its Appications

2. 20 Chapter 2 INTEL 8086 Pins, Signals And Architecture

T
1

T
2

T
3

T
4

¬
®
¬

®
¬

®
¬

®
¬

®
¬

®
¬

®
¬

®
T
1

T
2

T
3

T
4

In
te
rr
u
p
t
P
o
in
te
r

C
L
K

A
D
-
A
D

0
7

A
L
E

D
T
/R

D
E
N

M
/I
O

IN
T
A S
5

(W
R
an
d
R
D
ar
e

)
h

ig
h

.

F
ig
.
2
.1
0
:
In
te
rr
u
p
t
a
c
k
n
o
w
le
d
g
e
c
y
c
le
o
f
8
0
8
6
.

2. 21

In both the cycles the INTA is asserted low during T
2
 and then high during T

4
. In the

second cycle, when INTA is low the processor expects an 8-bit interrupt pointer on the lower

eight lines (AD
0
-AD

7
) of the data bus. The time allowed to the interruping device to load the

pointer is the time during which INTA remains low. The processor samples the interrupt pointer

on the rising edge of INTA signal in the second cycle.

2 .7 SHOR T QUESTIONS AND ANSWERS

2.1 What are the modes in which 8086 can operate?

The 8086 can operate in two modes and they are minimum (or uniprocessor) mode and maximum

(or multiprocessor) mode.

2.2 What is the data and address size in 8086?

The 8086 can operate on either 8-bit or 16-bit data. The 8086 uses 20-bit address to access memory

and 16-bit address to access IO devices.

2.3 What is the difference between 8086 and 8088.

The external data bus in 8086 is 16-bit and that of 8088 is 8-bit i.e., the 8086 access memory in

words but 8088 access memory in bytes.

2.4 Explain the function of M/IO in 8086.

The signal M/IO is used to differentiate memory address and IO address. When the processor is

accessing memory locations M/IO is asserted high and when it is accessing IO-mapped devices

it is asserted low.

2.5 How is a 20-bit physical address computed in 8086?

In 8086, the 20-bit physical address is computed by multiplying a segment base address to 16
10

 and

adding to a 16-bit effective address. For program codes, the CS-register will hold the segment base

address and IP will hold the effective address. For data the DS/ES/SS-register will hold the segment

base address and the method of calculating effective address will be specified in the instruction.

2.6 How is a clock signal generated in 8086? What is the maximum internal clock frequency of

8086?

The 8086 does not have on-chip clock generation circuit. Hence, the clock generator chip, 8284 is

used to generate the required clock. The frequency of the clock generated by 8284 is thrice that of

internal clock frequency of 8086. The 8284 divides the generated clock by three and modify the

duty cycle to 33% and then supply as clock signal to 8086. The maximum internal clock frequency

of 8086 is 5 MHz.

2.7 What is an ALE?

ALE (Address Latch Enable) is a signal used to demultiplex the address and data lines using an

external latch. It is used as enable signal for the external latch.

2.8 How is the READY signal used in a microprocessor system?

The READY is an input signal that can be used by slow peripherals to get extra time in order to

communicate with 8086. The 8086 will work only when READY is tied to logic high. Whenever

READY is tied to logic low, the 8086 will enter a wait state. When the system has slow peripheral

devices, additional hardware is provided in the system to make the READY input low during the

required extra time while executing a bus cycle, so that the processor will remain in wait state

during this extra time.

8086 Microprocessor and Its Appications

2. 22 Chapter 2 INTEL 8086 Pins, Signals And Architecture

2.9 What is HOLD and HLDA? How is it used?

The HOLD and HLDA signals are used for the Direct Memory Access (DMA) type of data transfer.

This type of data transfers are achieved by employing a DMA controller in the system. When

DMA is required the DMA controller will place a high signal on the HOLD pin of 8086. When

HOLD input is asserted high, the processor will enter a wait state and drive all its tristate pins to

high impedance state and send an acknowledgement signal to DMA controller through HLDA pin.

Upon receiving the acknowledgement signal, the DMA controller will take control of the bus and

perform DMA transfer and at the end it asserts HOLD signal low. When HOLD is asserted low, the

processor will resume its execution.

2.10 What happens to the 8086 processor when it is reset?

When the processor is reset, the DS, SS, ES, IP and flag register are cleared, Code Segment (CS)

register is initialized to FFFF
H
 and queue is emptied. After reset the processor will start fetching

instruction from the 20-bit physical address FFFF0
H

.

2.11 What is pipelined architecture?

In pipelined architecture, the processor will have a number of functional units and the execution time

of the functional units are overlapped. Each functional unit works independently most of the time.

2.12 What are the functional units available in 8086 architecture?

The Bus Interface Unit (BIU) and Execution Unit (EU) are the two functional units available in 8086

architecture.

2.13. List the segment registers of 8086.

The segment registers of 8086 are Code Segment (CS), Data Segment (DS), Stack Segment (SS)

and Extra Segment (ES) registers.

2.14 What is the difference between segment register and general purpose register?

Segment registers are used to store 16-bit segment base address of the four memory segments.

General purpose registers are used as the source or destination register during data transfer and

computation, as pointers to memory and as counters.

2.15 What is a queue? How is queue implemented in 8086?

A data structure which can be accessed on the basis of first-in-first-out is called queue. The 8086

has six numbers of 8-bit FIFO registers which are used as instruction queue.

2.16 What is a flag?

Flag is a flip-flop used to store the information about the status of the processor and the status of

the instruction executed most recently.

2.17 Write the flags of 8086.

The 8086 has nine flags and they are:

1. Carry Flag (CF) 6. Overflow Flag (OF)

2. Parity Flag (PF) 7. Trace Flag (TF) (or Single step trap)

3. Auxiliary carry Flag (AF) 8. Interrupt Flag (IF)

4. Zero Flag (ZF) 9. Direction Flag (DF)

5. Sign Flag (SF)

2.18 What are control bits?

The flags TF, IF and DF of 8086 are used to control the processor operation and so they are called

control bits.

 2. 23

2.19 Write the special functions carried by the general purpose registers of 8086.

The special functions carried by the registers of 8086 are the following:

2.20 How is memory organized in 8086?

The 1MB physical memory space of 8086 is organized as two banks of 512 kb each. The two banks

are known as odd (or upper) bank and even (or lower) bank. The odd bank is enabled using BHE

and the even bank is enabled using the address line A
o
.

2.21 What is a bus cycle?

A bus cycle is the basic external operation performed by the processor. It is also known as processor

cycle or machine cycle. To execute an instruction, the processor will run one or more bus cycles in

a particular order.

2.22. List the bus cycles of 8086?

The various bus cycles of 8086 are:

(i) Memory read cycle (iv) IO write cycle

(ii) Memory write cycle (v) Interrupt acknowledge cycle

(iii) IO read cycle

2.23. What is T-state?

T-state is the time period of the internal clock signal of the processor. The time taken by the

processor to execute a machine cycle is expressed in T-state.

2.24 What is the need for timing diagram?

The timing diagram provides information regarding the status of various signals, when a bus cycle

is executed. The knowledge of timing diagram is essential for system designer to select matched

peripheral devices like memories, latches, ports, etc., to form a microprocessor system.

 Register Name of the register Special function

 AX 16-bit Accumulator Stores the 16-bit result of certain arithmetic and logical

operations.

 AL 8-bit Accumulator Stores the 8-bit result of certain arithmetic and logical

operations.

 BX Base register Used to hold the base value in base addressing mode to

access memory data.

 CX Count register Used to hold the count value in SHIFT, ROTATE and LOOP

instructions.

 DX Data register Used to hold data for multiplication and division operations.

 SP Stack pointer Used to hold the offset address of top of stack memory.

 BP Base pointer Used to hold the base value in base addressing using stack

segment register to access data from stack memory.

 SI Source Index Used to hold the index value of source operand (data) for

string instructions.

 DI Destination Index Used to hold the index value of destination operand (data)

for string instructions.

8086 Microprocessor and Its Appications

2. 24 Chapter 2 INTEL 8086 Pins, Signals And Architecture

2.25 What operation is performed during the first T-state of every bus cycle in 8086?

In 8086, during the first T-state of every bus cycle the address is latched into the external latches

using ALE signal.

2.26 When does the 8086 processor check for an interrupt?

The 8086 checks for an interrupt in the last T-state of the last bus cycle of an instruction. (i.e., at the

end of an instruction execution).

2.27. What is interrupt acknowledge cycle?

The interrupt acknowledge cycle is a bus cycle executed by 8086 processor after acceptance of an

interrupt to get the interrupt type number or pointer, in-order to service the interrupting device.

2.28. When does the READY signal sampled by the processor?

The 8086 processor samples or checks the READY signal at the second T-state of every bus cycle.

2.29 What are wait states?

The T-state introduced between T
2
 and T

3
 of a bus cycle by the slow peripherals (to get extra time

for read/write operation) are called wait states.

2.30 When does the 8086 processor enter wait state?

The 8086 processor will check for READY signal at the second T-state of a bus cycle. If the READY

is tied low at this time, then it will enter into wait state (i.e., after second T-state). The processor will

come out of wait state only when READY is again made high.

 CHAPTER 3

INSTRUCTION SET OF 8086

3 .1 INTRODUCTION

The 8086 instructions can be classified into following six groups.

1. Data transfer instructions

2. Arithmetic instructions

3. Logical instructions

4. String manipulating instructions

5. Control transfer instructions

6. Processor control instructions

The data transfer group includes instructions for moving data between registers, register

and memory, register and stack memory, and accumulator and IO device.

The arithmetic group includes instructions for addition and subtraction of binary, BCD and

ASCII data, and instructions for multiplication and division of signed and unsigned binary data.

The logical group includes instructions for performing logical operations like AND, OR,

Exclusive-OR, Complement, Shift, Rotate, etc. The string manipulation group includes instructions

for moving string data between two memory locations and comparing string data word by word or

byte by byte.

The control transfer group includes instructions to call a procedure / subroutine in the main

program. It also includes instructions to jump from one part of a program to another part either

conditionally (after checking flags) or unconditionally (without checking flags).

The processor control group includes instructions to set /clear the flags, to delay and halt

the processor execution.

3.2 INSTRUCTIONS FORMAT

The size of 8086 instruction is one to six bytes. Some examples of 8086 instruction formats

are shown in Fig. 3.1 and the general format of 8086 instruction is shown in Fig. 3.2. The exact

format of individual instructions are summarized in Appendix-I : Templates for 8086 instructions.

In general, the first byte of the instruction will have a 6-bit opcode and two special bit

indicators d-bit and w-bit or (s-bit and w-bit) or (v-bit and w-bit). Some instructions will have an

8-bit opcode and some instructions will have a 7-bit opcode followed by special bit indicator

w-bit or z-bit. Some of the instructions will have a 2-bit or 3-bit register field in the first byte of the

instruction. The usage of special one-bit indicators are given below:

3. 2 Chapter 3 Instruction Set Of 8086

w-bit : This bit appears in the format of instructions which can operate on both byte and word

data.

If w = 0, then the data operated by the instruction is 8-bit/byte.

If w = 1, then the data operated by the instruction is 16-bit/word.

d-bit : This bit appears in the format of instructions which has a double operand. In double

operand instructions, one of the operand should be a register specified by reg field.

The d-bit is used to specify whether the register specified by reg field is source operand

or destination operand.

If d = 0, then the register specified by reg field is source operand.

If d = 1, then the register specified by reg field is destination operand.

s-bit : This bit appears in the format of arithmetic instructions which operate on immediate

data. If s = 1, w = 1 and immediate data is 8-bit then the immediate data is sign

extended to 16-bit and used for arithmetic operation.

sw = 00 → 8-bit operation with an 8-bit immediate data.

sw = 01 → 16-bit operation with a 16-bit immediate data.

sw = 11 → 16-bit operation with a sign extended 8-bit immediate operand.

v-bit : This bit appears in the format of shift and rotate instructions.

If v = 0, then the shift/rotate operation is performed one time.

If v = 1, then the content of CL is count value for number of shift/rotate operations.

z-bit : This bit appears in the format of REP prefix for string instructions and is used

for comparing with zero flag.

If z = 0, then repeat execution of string instruction until zero flag is zero.

If z = 1, then repeat execution of string instruction until zero flag is one.

In multi-byte instructions, the second byte will specify the addressing mode of the operands.

The second byte usually has three fields : mod, reg and r/m. The mod field is 2-bit wide and it defines

the method of addressing the operand specified by r/m field. The r/m field is 3-bit wide and it is used

to indicate the source or destination operand in memory/register. The reg field is 3-bit wide and it is

used to indicate the source or destination operand in register. If register specified by reg field is source

operand then r/m field is used to indicate destination operand or vice versa. The mod and

r/m field are used to calculate the effective address of memory operand as shown in Table-3.3.

 3. 3

N
o
te

 :

re

g
-
re

gi
st

er

;
 m

od
 -
 m

od
e

 ;

r/

m
 -
 r

eg
is

te
r/

m
em

or
y

 ;

l.
b.

d
is

p
 -
 l
ow

 b
yt

e
of

 d
is

p
la

ce
m

en
t
 ;

h
.b

.d
is

p
 -
 h

ig
h
 b

yt
e

of

 d

is
p
la

ce
m

en
t

 ;

l.
b.

d
a
ta

 -
 l
ow

 b
yt

e
of

 d
a
ta

;
 h

.b
.d

a
ta

 -
 h

ig
h
 b

yt
e

of
 d

a
ta

;
 d

a
ta

8
 -
 8

-b
it

 d
a
ta

.

o
p
co

d
e

7
6

5
4

3
2

1
0

O
n
e-
b
y
te
in
st
ru
ct
io
n

:
(I
m

p
li
ed

o
p
er

an
d

o
r
re

g
is

te
r
m

o
d
e)

T
w
o
-b
y
te
in
st
ru
ct
io
n

:
(R

eg
is

te
r
to

/f
ro

m
m

em
o
ry

/r
eg

is
te

r
w

it
h

n
o

d
is

p
la

ce
m

en
t)

F
o
u
r-
b
y
te
in
st
ru
ct
io
n

:
(R

eg
is

te
r
to

/f
ro

m
m

em
o
ry

w
it
h

1
6
-b

it
d
is

p
la

ce
m

en
t
o
r
1
6
-b

it
im

m
ed

ia
te

d
at

a
to

re
g
is

te
r/
m

em
o
ry

)

F
iv
e-
b
y
te
in
st
ru
ct
io
n

:
(I
m

m
ed

ia
te

8
-b

it
d
at

a
to

m
em

o
ry

w
it
h

1
6
-b

it
d
is

p
la

ce
m

en
t)

S
ix
-b
y
te
in
st
ru
ct
io
n

:
(I
m

m
ed

ia
te

1
6
-b

it
d
at

a
to

m
em

o
ry

w
it
h

1
6
-b

it
d
is

p
la

ce
m

en
t)

F
ig

.
3
.1

:
E

x
a

m
p

le
s

o
f

8
0

8
6

in
s
tr

u
c
ti
o

n
fo

rm
a

ts
.

o
p
co

d
e

7
6

5
4

3
2

1
0 w

(o
r)

o
p
co

d
e

7
6

5
4

3
2

1
0

z
(o

r)
o
p
co

d
e

7
6

5
4

3
2

1
0

re
g

(o
r)

o
p
co

d
e

7
6

5
4

3
2

1
0

re
g

d
w

m
o
d

r/
m

v

7
6

5
4

3
2

1
0

o
p
co

d
e

7
6

5
4

3
2

1
0 w

re
g

m
o
d

r/
m

7
6

5
4

3
2

1
0

(o
r)

T
h
re
e-
b
y
te
in
st
ru
ct
io
n

:
(R

eg
is

te
r
to

/f
ro

m
m

em
o
ry

w
it
h

8
-b

it
d
is

p
la

ce
m

en
t/
d
at

a)

o
p
co

d
e

7
6

5
4

3
2

1
0

d
w

re
g

m
o
d

r/
m

7
6

5
4

3
2

1
0

d
is

p
8

7
6

5
4

3
2

1
0

re
g

m
o
d

r/
m

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

(o
r)

o
p
co

d
e

7
6

5
4

3
2

1
0

d
w

d
at

a
8

o
p
co

d
e

7
6

5
4

3
2

1
0

d
w

re
g

m
o
d

r/
m

7
6

5
4

3
2

1
0

l.
b
.d

is
p

7
6

5
4

3
2

1
0

o
p
co

d
e

7
6

5
4

3
2

1
0 w

o
p
co

d
e

m
o
d

r/
m

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

h
.b

.d
is

p

7
6

5
4

3
2

1
0

l.
b
.d

at
a

7
6

5
4

3
2

1
0

h
.b

.d
at

a

o
p
co

d
e

7
6

5
4

3
2

1
0 w

o
p
co

d
e

m
o
d

r/
m

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

l.
b
.d

is
p

(o
r)

h
.b

.d
is

p

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

d
at

a
8

o
p
co

d
e

7
6

5
4

3
2

1
0 w

o
p
co

d
e

m
o
d

r/
m

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

l.
b
.d

is
p

h
.b

.d
is

p

7
6

5
4

3
2

1
0

7
6

5
4

3
2

1
0

l.
b
.d

at
a

7
6

5
4

3
2

1
0

h
.b

.d
at

a

8086 Microprocessor and Its Appications

3. 4 Chapter 3 Instruction Set Of 8086

o
p
c
o

d
e

7

 6

 5

 4

 3

 2

 1

 0

d
w

7

 6

 5

 4

 3

 2

 1

 0

m
o

d
re

g
l.

b
.d

is
p
/d

a
ta

7

 6

 5

 4

 3

 2

 1

 0

r/
m

h
.b

.d
is

p
/d

at
a

7

 6

 5

 4

 3

 2

 1

 0

l.
b
.d

a
ta

7

 6

 5

 4

 3

 2

 1

 0

h
.b

.d
a
ta

7

 6

 5

 4

 3

 2

 1

 0

→ →

T
h

is
 3

-b
it

 f
ie

ld
 i

s
u

se
d

 t
o

 i
n

d
ic

a
te

 t
h

e
 s

o
u

rc
e
 o

r
d

e
st

in
a
ti

o
n
 o

f
th

e
 o

p
e
ra

n
d

.
If

 t
h

e
 r

eg
is

te
r

sp
ec

if
ie

d
 b

y
 t

h
e

re
g
 f

ie
ld

 i
s

so
u
rc

e
 o

f
o
p

e
ra

n
d
,

th
e
n
 r

/m
 f

ie
ld

 i
s

u
se

d
 t

o
 i

n
d
ic

at
e,

 d
e
st

in
a
ti

o
n

o
p
e
ra

n
d
 o

r
v
ic

e
 v

e
rs

a
.
W

h
e
n
 m

o
d
 =

 1
1

,
th

e
co

d
es

 f
o
r

r/
m

 f
ie

ld
 c

a
n

 b
e
 o

b
ta

in
e
d

 f
ro

m
 T

a
b

le
-3

.2
a
n
d

 w
h

e
n
 m

o
d

 =
 0

0
/0

1
/1

0
, t

h
e
 p

o
ss

ib
le

 c
o

d
e
s

fo
r
r/

m
 f
ie

ld
 c

a
n
 b

e
 o

b
ta

in
e
d

 f
ro

m
 T

a
b
le

-3
.3

.

T
h

is
 3

-b
it

 r
e
g

 f
ie

ld
 i

s
u

se
d
 t

o
 i

n
d
ic

a
te

 t
h

e
 s

o
u
rc

e
 o

r
d
e
st

in
a
ti

o
n

 o
f

th
e

o
p
e
ra

n
d
 a

lo
n

g
 w

it
h
 t

h
e

d
-b

it
.

 I
f

d
 =

 0
,

th
e
n
 t

h
e
 r

e
g
is

te
r

sp
e
c
if

ie
d

 b
y
 t

h
e
 r

eg
 f

ie
ld

 i
s

so
u

rc
e
 o

p
e
ra

n
d

.
If

 d
 =

 1
,

th
e
n
 t

h
e

re
g

is
te

r
sp

ec
if

ie
d
 b

y
 t

h
e
 r

e
g

 f
ie

ld
 i

s
th

e
d

e
st

in
a
ti

o
n

 o
p

e
ra

n
d

.
T

h
e
 r

eg
is

te
r

c
a
n

 b
e
 a

 8
-b

it
/1

6
-b

it

re
g

is
te

r
a
s

sp
e
c
if

ie
d
 b

y
 th

e
w

-b
it

. T
h

e
p

o
ss

ib
le

 c
o
d

e
s

fo
r

th
e

re
g

 f
ie

ld
 a

re
 li

st
ed

 in
 T

a
b

le
-3

.2
.

T
h

is
 2

-b
it

 m
o
d

 f
ie

ld
 d

ef
in

e
s

th
e
 m

e
th

o
d

 o
f

a
d
d

re
ss

in
g

 t
h
e
 o

p
e
ra

n
d
 s

p
e
ci

fi
e
d
 b

y
 t
h
e
 r

/m
 f

ie
ld

. T
h

e

d
if

fe
re

n
t m

o
d

es
 o

f
a
d

d
re

ss
in

g
 a

re
 li

st
e
d

 in
 T

a
b

le
-3

.1
.

T
h

is
 1

-b
it

 f
ie

ld
 d

e
fi

n
e
s

w
o

rd
/b

y
te

 o
p
e
ra

ti
o
n

.
If

 w
 =

 1
,

th
en

 t
h

e
in

st
ru

c
ti

o
n

 o
p

er
at

es
 o

n
 w

o
rd

(1
6
-b

it
)
d

at
a

a
n

d
 if

 w
 =

 0
, t

h
e
n
 t
h
e
 in

st
ru

c
ti

o
n

 o
p

e
ra

te
s

o
n
 b

y
te

 (
8

-b
it

)
d

at
a
.

T
h

is
 1

-b
it

 f
ie

ld
 d

ef
in

e
s

w
h

et
h
e
r

th
e

re
g

is
te

r
sp

e
c
if

ie
d

 b
y

 t
h

e
 r

eg
 f

ie
ld

 i
s

so
u
rc

e
 o

r
d
e
st

in
a
ti

o
n

 f
o
r

o
p
e
ra

n
d
. I

f
d

 =
 0

, t
h
e
n

 th
e
 r
e
g
is

te
r
sp

e
ci

fi
e
d
 b

y
 th

e
 r
e
g

 f
ie

ld
 is

 s
o

u
rc

e
 o

p
e
ra

n
d

 a
n

d
 i
f
d

 =
 1

, t
h

e
n

 th
e

re
g

is
te

r
sp

ec
if

ie
d
 b

y
 th

e
 r
eg

 f
ie

ld
 is

 d
e
st

in
a
ti

o
n

 o
p
e
ra

n
d
.

T
h

e
 6

-b
it

 o
p
c
o

d
e
 o

f
th

e
 in

st
ru

c
ti

o
n
.

→ → → →

B
y

te
 -

 1
B

y
te

 -
 2

B
y

te
 -

 3
B

y
te

 -
 4

B
y

te
 -

 5
B

y
te

 -
 6

F
ig

.
3
.2

 :
 G

e
n
e

ra
l
fo

rm
a
t
o
f

8
0
8
6
 i
n
s
tr

u
c
ti
o
n
.

N
o
te

:

l.
b.

d
is

p
/d

a
ta

 -
lo

w
 b

yt
e

d
is

p
la

ce
m

en
t
or

 d
a
ta

 ;
 h

.b
.
d
is

p
/d

a
ta

 -
h
ig

h
 b

yt
e

d
is

p
la

ce
m

en
t
or

 d
a
ta

 ;
 l

.b
.
d
a
ta

 -
lo

w
 b

yt
e

d
a
ta

 ;

h
.b

.
d
a

ta
 -
 h

ig
h
 b

yt
e

d
a

ta
.

 3. 5

In multi-byte instructions the bytes following the opcode and address mode bytes (1st and

2nd bytes) may be any one of the following :

i) no additional bytes.

ii) two-byte effective address.

iii) one-byte (8-bit) signed displacement or two-byte (16-bit) unsigned displacement.

iv) one-byte (8-bit) immediate data or two-byte (16-bit) immediate data (operand).

v) one/two byte displacement followed by one/two-byte immediate data (operand).

vi) two-byte effective address followed by two-byte segment address.

Note : If a displacement or immediate data is two bytes long, then the low order byte always

appears first.

TABLE - 3.1 : CODES FOR mod FIELD

Code for
Name of the mode

mod field

 00 Memory mode with no displacement

 01 Memory mode with 8-bit signed displacement

 10 Memory mode with 16-bit unsigned displacement

 11 Register mode

TABLE - 3.2 : CODES FOR reg FIELD

 Code for
Name of the register represented by

 reg field
the code when w = 0 or 1

 When w = 0 When w = 1

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

TABLE - 3.3 : CODES FOR r/m FIELD

 Code for

Effective address calculation when mod = 00/01/10

 r/m field
 mod = 00 mod = 01 mod = 10

000 [BX + SI] [BX + SI + disp8] [BX + SI + disp16]

001 [BX + DI] [BX + DI + disp8] [BX + DI + disp16]

010 [BP + SI] [BP + SI + disp8] [BP + SI + disp16]

011 [BP + DI] [BP + DI + disp8] [BP + DI + disp16]

100 [SI] [SI + disp8] [SI + disp16]

101 [DI] [DI + disp8] [DI + disp16]

110 [disp16] [BP + disp8] [BP + disp16]

111 [BX] [BX + disp8] [BX + disp16]

Note : disp 8 → 8-bit signed displacement.

disp16 → 16-bit unsigned displacement.

8086 Microprocessor and Its Appications

3. 6 Chapter 3 Instruction Set Of 8086

TABLE - 3.3 : MEMORY ADDRESS CALCULATION IN 8086 USING DEFAULT SEGMENT

 REGISTER

 S.No. Addressing Effective address Physical address

 mode EA MA/MA
S

 1. [BX + SI] EA = (BX) + (SI) MA = (DS) × 16
10

 + EA

 2. [BX + SI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯ MA = (DS) × 16
10

 + EA

EA = (BX) + (SI) + disp16

 3. [BX + SI + disp16] EA = (BX) + (SI) + disp16 MA = (DS) × 16
10

 + EA

 4. [BX + DI] EA = (BX) + (DI) MA = (DS) × 16
10

 + EA

 5. [BX + DI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯ MA = (DS) × 16
10

 + EA

EA = (BX) + (DI) + disp16

 6. [BX + DI + disp16] EA = (BX) + (DI) + disp16 MA = (DS) × 16
10

 + EA

 7. [BP + SI] EA = (BP) + (SI) MAS = (SS) × 1610 + EA

 8. [BP + SI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MAS = (SS) × 16

10
 + EA

EA = (BP) + (SI) + disp16

 9. [BP + SI + disp16] EA = (BP) + (SI) + disp16 MA
S
 = (SS) × 16

10
 + EA

 10. [BP + DI] EA = (BP) + (DI) MAS = (SS) × 1610 + EA

 11. [BP + DI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MA

S
 = (SS) × 16

10
 + EA

EA = (BP) + (DI) + disp16

 12. [BP + DI + disp16] EA = (BP) + (DI) + disp16 MA
S
 = (SS) × 16

10
 + EA

 13. [SI] EA = (SI) MA = (DS) × 1610 + EA

 14. [SI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MA = (DS) × 16

10
 + EA

EA = (SI) + disp16

 15. [SI + disp16] EA = (SI) + disp16 MA = (DS) × 16
10

 + EA

 16. [DI] EA = (DI) MA = (DS) × 1610 + EA

 17. [DI + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MA = (DS) × 16

10
 + EA

EA = (DI) + disp16

 18. [DI + disp16] EA = (DI) + disp16 MA = (DS) × 16
10

 + EA

 19. [disp16] EA = disp16 MA = (DS) × 16
10

 + EA

 20. [BP + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MA

S
 = (SS) × 16

10
 + EA

EA = (BP) + disp16

 21. [BP + disp16] EA = (BP) + disp16 MAS = (SS) × 1610 + EA

 22. [BX] EA = (BX) MA = (DS) × 16
10

 + EA

 23. [BX + disp8] disp8
sign extend

disp16⎯ →⎯⎯⎯⎯⎯
MA = (DS) × 16

10
 + EA

EA = (BX) + disp16

 24. [BX + disp16] EA = (BX) + disp16 MA = (DS) × 16
10

 + EA

Note : Segment registers used in address calculation can be modified using segment override prefix.

MA → Memory address of data segment ; MA
s
→ Memory address of stack segment.

3. 7

3.3 ADDRESSING MODES OF 8086

Every instruction of a program has to operate on a data. The method of specifying the data

to be operated by the instruction is called addressing. The 8086 has 12 addressing modes and they

can be classified into following five groups.

1. Register addressing

2. Immediate addressing

3. Direct addressing

3. Register indirect addressing

5. Based addressing

6. Indexed addressing

7. Based index addressing

8. String addressing

9. Direct IO port addressing

10. Indirect IO port addressing

11. Relative addressing Group IV : Relative addressing mode

12. Implied addressing Group V : Implied addressing mode

Note : 1. The “register” or “register + constant” enclosed by square brackets in the operand

field of instructions refer to the method of effective address calculation of memory. The

16 - bit constant enclosed by square brackets in the operand field of instructions refer to

the effective address of memory data. The 8-bit/16-bit constants which are not enclosed

by square brackets in the operand field refer to immediate data.

2. The term MA used in the symbolic description of instructions refer to physical memory

address of data segment memory and MA
S
refer to physical memory address of stack

segment memory and MA
E
 refer to physical memory address of extra segment memory.

3. The register/memory enclosed by brackets in symbolic description refer to the content of

register/memory.

4. For hexa-decimal constant (data/address) the letter H is included at the end of

8-bit/16-bit constants(data/address), and the numeral 0 is included in the front of

hexadecimal constant starting with A through F.

Register Addressing

In register addressing, the instruction will specify the name of the register which holds the data to be operated by the

instruction.

Examples :

a) MOV CL,DH (CL) ← (DH) The content of 8-bit register DH is moved to another 8-bit register CL.

b) MOV BX,DX (BX) ← (DX) The content of 16 -bit register DX is moved to another 16 -bit register BX.

Group III : Addressing modes for IO ports

Group I : Addressing modes for register and immediate data

Group II : Addressing modes for memory data
I
P
Q

I
P
Q

I
P
Q

8086 Microprocessor and Its Appications

3. 8 Chapter 3 Instruction Set Of 8086

Immediate Addressing

In immediate addressing mode, an 8 -bit or 16 -bit data is specified as part of the instruction.

Examples :

a) MOV DL,08H (DL) ← 08
H

The 8 -bit data (08
H
) given in the instruction is moved to DL-register.

b) MOV AX,0A9FH (AX) ← 0A9F
H

The 16-bit data (0A9F
H
) given in the instruction is moved to AX-register.

Direct Addressing

In direct addressing, an unsigned 16-bit displacement or signed 8-bit displacement will be specified in the instruction. The

displacement is the Effective Address(EA) or offset. In case of 8-bit displacement, the effective address is obtained by sign extending

the 8-bit displacement to 16-bit.

The 20-bit physical address of memory is calculated by multiplying the content of DS-register by 16
10

 (or 10
H

) and adding to

effective address. When segment override prefix is employed, the content of segment register specified in the override prefix will be

used for segment base address calculation instead of DS-register.

Examples :

a) MOV DX,[08H]

EA = 0008
H
 (sign extended 8-bit displacement)

BA = (DS) ×16
10

; MA = BA + EA

(DX) ← (MA) or DL ← (MA)

 DH ← (MA+1)

The Effective Address(EA) is obtained by sign extending the 8-bit displacement given in the instruction to 16-bit. The

segment Base Address(BA) is computed by multiplying the content of DS by 16
10

. The Memory Address(MA) is computed by

adding the Effective Address (EA) to segment Base Address(BA).

The content of memory whose address is calculated as explained above is moved to DL-register and the content of next

memory location is moved to DH-register. b) MOV AX, [089DH]

EA = 089D
H
 ; BA = (DS) × 16

10
 ; MA = BA + EA

(AX) ← (MA) or (AL) ← (MA)

 (AH) ← (MA+1)

Here the 16-bit displacement given in the instruction is the effective address. The segment Base Address(BA) is

computed by multiplying the content of DS by 16
10

. The Memory Address(MA) is computed by adding the Effective Address(EA)

to segment Base Address(BA).

The content of memory whose address is calculated as explained above is moved to AL-register and the content of next

memory location is moved to AH-register.

Register Indirect Addressing

In register indirect addressing, the name of the register which holds the Effective Address(EA) will be specified in the

instruction. The register used to hold the effective address are BX, SI and DI. The content of DS is used for segment base address

calculation. When segment override prefix is employed, the content of segment register specified in the override prefix will be used for

base address calculation instead of DS-register.

The base address is obtained by multiplying the content of segment register by 16
10

. The 20-bit physical address of memory

is computed by adding the effective address to base address.

Examples :

a) MOV CX, [BX]

EA = (BX) ; BA = (DS) × 16
10

 ; MA = BA + EA

(CX) ← (MA) or (CL) ← (MA)

 (CH) ← (MA+1)

 3. 9

The content of BX is the Effective Address(EA). The segment Base Address(BA) is computed by multiplying the content

of DS by 16
10

. The Memory Address(MA) is obtained by adding BA and EA .

The content of memory whose address is calculated as explained above is moved to CL-register and the content of next

memory location is moved to CH-register.

b) MOV AX,[SI]

EA = (SI) ; BA = (DS) × 16
10

 ; MA = BA + EA

(AX) ← (MA) or (AL) ← (MA)

 (AH) ← (MA + 1)

The content of SI is the Effective Address (EA). The segment Base Address(BA) is computed by multiplying the content

of DS by 16
10

. The memory address is obtained by adding BA and EA.

The content of memory whose address is calculated as explained above is moved to AL-register and the content of next

memory location is moved to AH-register.

Based Addressing

In this addressing mode, the BX or BP-register is used to hold a base value for effective address and a signed 8-bit or unsigned

16-bit displacement will be specified in the instruction. The displacement is added to base value in BX or BP to obtain the Effective

Address(EA). In case of 8-bit displacement, it is sign extended to 16-bit before adding to base value.

When BX is used to hold base value for EA, the 20-bit physical address of memory is calculated by multiplying the content

of DS by 16
10

 adding to EA.

When BP is used to hold base value for EA, the 20-bit physical address of memory is calculated by multiplying the content

of SS by 16
10

 and adding to EA.

Example : MOV AX, [BX+08H]

 0008
H

 08
H
 ; EA = (BX) + 0008

H

 BA = (DS) × 16
10

 ; MA = BA + EA

 (AX) ← (MA) or (AL) ← (MA)

 (AH) ← (MA+1)

The effective address is calculated by sign extending the 8 -bit displacement given in the instruction to 16 -bit and

adding to the content of BX-register. The Base Address(BA) is obtained by multiplying the content of DS by 16
10

. The

Memory Address(MA) is obtained by adding BA and EA.

The content of memory whose address is calculated as explained above is moved to AL-register and the content

of next memory is moved to AH-register .

Indexed Addressing

In this addressing mode, the SI or DI-register is used to hold an index value for memory data and a signed 8-bit displacement

or unsigned 16-bit displacement will be specified in the instruction. The displacement is added to index value in SI or DI-register to

obtain the Effective Address (EA) . In case of 8 -bit displacement it is sign extended to 16 -bit before adding to index value.

The 20-bit memory address is calculated by multiplying the content of Data Segment (DS) by 16
10

 and adding to EA.

Note : In general the ef fective address = Reference + modifier.

In this context, the based and indexed addressing looks similar, but in based addressing, base value is

the reference and displacement is the modifier, whereas in indexed addressing, displacement is the reference

and index value is the modifier.

8086 Microprocessor and Its Appications

3. 10 Chapter 3 Instruction Set Of 8086

Example : MOV CX, [SI+0A2H]

FFA2
H

 A2
H
 ; EA = (SI) + FFA2

H

BA = (DS) × 16
10

 ; MA = BA + EA

(CX) ← (MA) or (CL) ← (MA)

 (CH) ← (MA + 1)

The effective address is calculated by sign extending the 8-bit displacement given in the instruction to 16-bit and adding

to the content of SI-register. The Base Address (BA) is obtained by multiplying the content of DS by 16
10

. The Memory Address(MA)

is obtained by adding BA and EA.

The content of memory whose address is calculated as explained above is moved to CL-register and the content of next

memory is moved to CH-register.

Based Indexed Addressing

In this addressing mode, the effective address is given by sum of base value, index value and an 8-bit or 16-bit displacement

specified in the instruction. The base value is stored in BX or BP-register. The index value is stored in SI or DI-register. In case of

8-bit displacement, it is sign extended to 16-bit before adding to base value. This type of addressing will be useful in addressing two

dimensional arrays where we require two modifiers.

When BX is used to hold base value for EA, the 20-bit physical address of memory is calculated by multiplying the content

of DS by 16
10

 and adding to EA.

When BP is used to hold the base value for EA, the 20-bit physical address of memory is obtained by multiplying the content

of SS-register by 16
10

 and adding it to EA.

Example :

MOV DX, [BX+SI+0AH]

000A
H

 0A
H

; EA = (BX) + (SI) + 000A
H

BA = (DS) × 16
10

 ; MA = BA + EA

(DX) ← (MA) or (DL) ← (MA)

 (DH) ← (MA + 1)

The Effective Address(EA) is calculated by sign extending the 8-bit displacement given in the instruction to 16-bit and

adding it to the content of BX and SI-register. The Base Address(BA) is obtained by multiplying the content of DS by 16
10

. The 20-

bit Memory Address(MA) is obtained by adding BA and EA.

The content of memory whose address is calculated as explained above is moved to DL-register and the content of the

next memory location is moved to DH-register.

STRING ADDRESSING

This addressing mode is employed in string instructions to operate on string data. In string addressing mode, the Effective

Address(EA) of source data is stored in SI-register and the EA of destination data is stored in DI-register .

The segment register used for calculating base address for source data is DS and can be overridden. The segment register

used for calculating base address for destination is ES and cannot be overridden.

This addressing mode also supports auto increment/decrement of index registers SI and DI depending on Direction

Flag(DF). If DF=1, then the content of index registers are decremented to point to next byte/word of the string after execution of

a string instruction. If DF=0, then the content of index registers are incremented to point to previous byte/word of the string after

execution of a string instruction. (For word operand, the content of index registers are incremented/decremented by two and for byte

operand, the content of index registers are incremented/decremented by one .)

sign extend
←

sign extend
←

3. 11

Example :

MOVS BYTE

EA = (SI) ; BA = (DS) × 16
10

; MA = BA + EA

EA
E
 = (DI) ; BA

E
 = (ES) × 16

10
; MA

E
 = BA

E
 + EA

E

(MA
E
) ← (MA)

If DF = 1, then (SI) ← (SI) – 1 and (DI) ← (DI) – 1

If DF = 0, then (SI) ← (SI) + 1 and (DI) ← (DI) + 1

This instruction move a byte of string data from one memory location to another memory location. The address of source

memory location is calculated by multiplying the content of DS by 16
10

 and adding to SI. The address of destination memory location

is calculated by multiplying the content of ES by 16
10

 and adding to DI.

After the move operation if DF = 1, then the content of index registers DI and SI are decremented by one. If DF = 0, then

the content of index registers DI and SI are incremented by one.

Direct IO Port Addressing

This addressing mode is used to access data from standard IO-mapped devices or ports. In the direct port addressing mode,

an 8 -bit port address is directly specified in the instruction.

Example :

IN AL, [09H]

PORT
addr

 = 09
H

(AL) ← (PORT)

The content of the port with address 09
H
 is moved to AL-register.

Indirect IO Port Addressing

This addressing mode is used to access data from standard IO-mapped devices or ports. In the indirect port addressing mode‚

the instruction will specify the name of the register which holds the port address. In 8086, the 16-bit port address is stored in DX-register.

Example :

OUT [DX], AX

PORT
addr

 = (DX) ; (PORT) ← (AX)

The content of AX is moved to the port whose address is specified by DX-register.

Relative Addressing

In this addressing mode the effective address of a program instruction is specified relative to the Instruction Pointer (IP) by an

8-bit signed displacement.

Example :

JZ 0AH

000A
H

 0A
H

If ZF = 1, then (IP) ← (IP) + 000A
H
 ; EA

C
 = (IP) + 000A

H

 BA
C
 = (CS) × 16

10
 ; MA

C
 = BA

C
 + EA

C

Note : Suffix C refers to code memory

 If ZF = 1, then the program control jumps to a new code address as calculated above. If ZF = 0, then the next instruction

of the program is executed.

Implied Addressing

In implied addressing mode, the instruction itself will specify the data to be operated by the instruction.

Example :

CLC - Clear carry ; CF ← 0

Execution of this instruction will clear the Carry Flag(CF).

sign extend
←

8086 Microprocessor and Its Appications

3. 12 Chapter 3 Instruction Set Of 8086

3.4 INSTRUCTION EXECUTION TIME

The execution time of each instruction of 8086 is specified by INTEL in terms of clock

cycles or periods of the processor. The execution time can be determined by multiplying the

number of clock cycles needed to execute the instruction by the time period of the processor

clock. The execution time of 8086 instructions are listed in the Table-3.5 : INTEL 8086 instruction

set. The execution time specified in Table-3.5, assumes that the instruction to be executed has

already been fetched and stored in the instruction queue.

When the instruction execution involves memory access then extra time is needed for memory

address calculation. This extra time is denoted as EACT(Effective Address Calculation Time) in

Table -3.5. The time required for address calculation (EACT) depends on addressing mode used in

the instruction. The clock cycles required for address calculation for various memory addressing

modes are listed in Table -3.6.

Instructions like multiply, divide, shift and rotate will have variable execution time depending

on the type of data operated by the instruction.

The conditional branch instructions will have different timings for TRUE and FALSE condition.

When the condition is TRUE, branch operation takes place which involves modifying the IP and

CS, clearing the queue and then filling the queue with instruction codes from branch address, and

so instruction execution takes a longer time. When the condition is FALSE, the next instruction is

executed and so the instruction takes lesser time.

The execution time specified in Table-3.5 also assumes that word operand is located in an

even address. If the word operand is located in an odd address then the processor executes two

bus cycles for each memory access and so four extra clock cycle has to be added to execution

time of the instruction for each memory access. The number of memory access while executing

the instruction is also listed in Table-3.5.

TABLE - 3.5 : INTEL 8086 INSTRUCTION SET

 S.No. Mnemonic

 1. MOV reg2/mem, reg1/mem

a) MOV reg2, reg1 2 2 -

b) MOV mem, reg1 2 to 4 9 + EACT 1

c) MOV reg2, mem 2 to 4 8 + EACT 1

 2. MOV reg /mem, data

a) MOV reg, data 3 to 4 4 -

b) MOV mem, data 3 to 6 10 + EACT 1

 3. MOV reg, data 2 to 3 4 -

 4. MOV A, mem

a) MOV AL, mem 3 10 1

b) MOV AX, mem 3 10 1

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

GROUP I : DATA TRANSFER INSTRUCTIONS

3. 13

Table - 3.5 continued...

 5. MOV mem, A

a) MOV mem, AL 3 10 1

b) MOV mem, AX 3 10 1

 6. MOV segreg, reg16/mem

a) MOV segreg, reg16 2 2 -

b) MOV segreg, mem 2 to 4 8 + EACT 1

 7. MOV reg16/mem, segreg

a) MOV reg16, segreg 2 2 -

b) MOV mem, segreg 2 to 4 9 + EACT 1

 8. PUSH reg16/mem

a) PUSH reg16 2 11 1

b) PUSH mem 2 to 4 16 + EACT 2

 9. PUSH reg16 1 11 1

 10. PUSH segreg 1 10 1

 11. PUSHF 1 10 1

 12. POP reg16/mem

a) POP reg16 2 8 1

b) POP mem 2 to 4 17 + EACT 2

 13. POP reg16 1 8 1

 14. POP segreg 1 8 1

 15. POPF 1 8 1

 16. XCHG reg2/mem, reg1

a) XCHG reg2, reg1 2 4 -

b) XCHG mem, reg1 2 to 4 17 + EACT 2

 17. XCHG AX, reg16 1 3 -

 18. XLAT 1 11 1

 19. IN A, [DX]

a) IN AL, [DX] 1 8 1 IO

b) IN AX, [DX] 1 8 1 access

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

I
P
Q

8086 Microprocessor and Its Appications

3. 14 Chapter 3 Instruction Set Of 8086

Table - 3.5 continued...

20. IN A, addr8

a) IN AL, addr8 2 10 1

b) IN AX, addr8 2 10 1

 21. OUT [DX], A

a) OUT [DX], AL 1 8 1

b) OUT [DX], AX 1 8 1

 22. OUT addr8, A

a) OUT addr8, AL 2 10 1

b) OUT addr8, AX 2 10 1

 23. LEA reg16, mem 2 to 4 2 + EACT -

 24. LDS reg16, mem 2 to 4 16 + EACT 2

 25. LES reg16, mem 2 to 4 16 + EACT 2

 26. LAHF 1 4 -

 27. SAHF 1 4 -

 28. ADD reg2/mem, reg1/mem

a) ADD reg2, reg1 2 3 -

b) ADD reg2, mem 2 to 4 9 + EACT 1

c) ADD mem, reg1 2 to 4 16 + EACT 2

 29. ADD reg/mem, data

a) ADD reg, data 3 to 4 4 -

b) ADD mem, data 3 to 6 17 + EACT 2

 30. ADD A, data

a) ADD AL, data8 2 4 -

b) ADD AX, data16 3 4 -

 31. ADC reg2/mem, reg1/mem

a) ADC reg2, reg1 2 3 -

b) ADC reg2, mem 2 to 4 9 + EACT 1

c) ADC mem, reg1 2 to 4 16 + EACT 2

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

GROUP II : ARITHMETIC INSTRUCTIONS

IO

access

IO

access

IO

access

I
P
Q

I
P
Q

I
P
Q

3. 15

Table - 3.5 continued...

32. ADC reg/mem, data

a) ADC reg, data 3 to 4 4 -

b) ADC mem, data 3 to 6 17 + EACT 2

 33. ADC A, data

a) ADC AL, data8 2 4 -

b) ADC AX, data16 3 4 -

 34. AAA 1 4 -

 35. DAA 1 4 -

 36. SUB reg2/mem, reg1/mem

a) SUB reg2, reg1 2 3 -

b) SUB reg2, mem 2 to 4 9 + EACT 1

c) SUB mem, reg1 2 to 4 16 + EACT 2

 37. SUB reg/mem, data

a) SUB reg, data 3 to 4 4 -

b) SUB mem, data 3 to 6 17 + EACT 2

 38. SUB A, data

a) SUB AL, data8 2 4 -

b) SUB AX, data16 3 4 -

 39. SBB reg2/mem, reg1/mem

a) SBB reg2, reg1 2 3 -

b) SBB reg2, mem 2 to 4 9 + EACT 1

c) SBB mem, reg1 2 to 4 16 + EACT 2

 40. SBB reg/mem, data

a) SBB reg, data 3 to 4 4 -

b) SBB mem, data 3 to 6 17 + EACT 2

 41. SBB A, data

a) SBB AL, data8 2 4 -

b) SBB AX, data16 3 4 -

 42. AAS 1 4 -

 43. DAS 1 4 -

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

8086 Microprocessor and Its Appications

3. 16 Chapter 3 Instruction Set Of 8086

Table - 3.5 continued...

44. MUL reg/mem

a) MUL reg

i) MUL reg8 2 70 to 77 -

ii) MUL reg16 2 118 to 133 -

b) MUL mem

i) MUL mem8 2 to 4 (76 to 83) + EACT 1

ii) MUL mem16 2 to 4 (124 to 139)+EACT 1

 45. IMUL reg/mem

a) IMUL reg

i) IMUL reg8 2 80 to 98 -

ii) IMUL reg16 2 128 to 154 -

b) IMUL mem

i) IMUL mem8 2 to 4 (86 to 104) + EACT 1

ii) IMUL mem16 2 to 4 (134 to 160) + EACT 1

 46. AAM 2 83 -

 47. DIV reg/mem

a) DIV reg

i) DIV reg8 2 80 to 90 -

ii) DIV reg16 2 144 to162 -

b) DIV mem

i) DIV mem8 2 to 4 (86 to 96) + EACT 1

ii) DIV mem16 2 to 4 (150 to 168)+EACT 1

 48. IDIV reg/mem

a) IDIV reg

i) IDIV reg8 2 101 to 112 -

ii) IDIV reg16 2 165 to 184 -

b) IDIV mem

i) IDIV mem8 2 to 4 (107 to 118)+EACT 1

ii) IDIV mem16 2 to 4 (171 to 190)+EACT 1

 49. AAD 2 60 -

 50. NEG mem/reg

a) NEG reg 2 3 1

b) NEG mem 2 to 4 16 + EACT 2

 51. INC reg8/mem

a) INC reg8 2 3 -

b) INC mem 2 to 4 15 + EACT 2

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

 3. 17

Table - 3.5 continued...

52. INC reg16 1 2 -

 53. DEC reg8/mem

 a) DEC reg8 2 3 -

 b) DEC mem 2 to 4 15 + EACT 2

 54. DEC reg16 1 2 -

 55. CBW 1 2 -

 56. CWD 1 5 -

 57. CMP reg2/mem, reg1/mem

 a) CMP reg2, reg1 2 3 -

 b) CMP reg2, mem 2 to 4 9 + EACT 1

 c) CMP mem, reg1 2 to 4 9 + EACT 1

 58. CMP reg/mem, data

 a) CMP reg, data 3 to 4 4 -

 b) CMP mem, data 3 to 6 10 + EACT 1

 59. CMP A, data

 a) CMP AL, data8 2 4 -

 b) CMP AX, data16 3 4 -

 60. AND reg2/mem, reg1/mem

 a) AND reg2, reg1 2 3 -

 b) AND reg2, mem 2 to 4 9 + EACT 1

 c) AND mem, reg1 2 to 4 16 + EACT 2

 61. AND reg/mem, data

 a) AND reg, data 3 to 4 4 -

 b) AND mem, data 3 to 6 17 + EACT 2

 62. AND A, data

 a) AND AL, data8 2 4 -

 b) AND AX, data16 3 4 -

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

GROUP III : LOGICAL INSTRUCTIONS

8086 Microprocessor and Its Appications

3. 18 Chapter 3 Instruction Set Of 8086

Table - 3.5 continued...

 63. OR reg2/mem, reg1/mem

a) OR reg2, reg1 2 3 -

b) OR reg2, mem 2 to 4 9 + EACT 1

c) OR mem, reg1 2 to 4 16 + EACT

 64. OR reg/mem, data

a) OR reg, data 3 to 4 4 -

b) OR mem, data 3 to 6 17 + EACT 2

 65. OR A, data

a) OR AL, data8 2 4 -

b) OR AX, data16 3 4 -

 66. XOR reg2/mem, reg1/mem

a) XOR reg2, reg1 2 3 -

b) XOR reg2, mem 2 to 4 9 + EACT 1

c) XOR mem, reg1 2 to 4 16 + EACT 2

 67. XOR reg/mem, data

a) XOR reg, data 3 to 4 4 -

b) XOR mem, data 3 to 6 17 + EACT 2

 68. XOR A, data

a) XOR AL, data8 2 4 -

b) XOR AX, data16 3 4 -

 69. TEST reg2/mem, reg1/mem

a) TEST reg2, reg1 2 3 -

b) TEST reg2, mem 2 to 4 9 + EACT 1

c) TEST mem, reg1 2 to 4 9 + EACT 1

 70. TEST reg/mem, data

a) TEST reg, data 3 to 4 5 -

b) TEST mem, data 3 to 6 11 + EACT 1

 71. TEST A, data

a) TEST AL, data8 2 4 -

b) TEST AX, data16 3 4 -

 72. NOT reg/mem

a) NOT reg 2 3 -

b) NOT mem 2 to 4 16 + EACT 2

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

 3. 19

Table - 3.5 continued...

 73. SHL reg/mem

(or SAL reg/mem)

a) SHL reg (or SAL reg)

i) SHL reg, 1 2 2 -

(or SAL reg, 1)

ii) SHL reg, CL 2 8 + 4 per bit -

(or SAL reg, CL)

b) SHL mem (or SAL mem)

i) SHL mem, 1 2 to 4 15 + EACT 2

(or SAL mem, 1)

ii) SHL mem, CL 2 to 4 20+EACT+4 per bit 2

(or SAL mem, CL)

 74. SHR reg/mem

a) SHR reg

i) SHR reg, 1 2 2 -

ii) SHR reg, CL 2 8 + 4 per bit -

b) SHR mem

i) SHR mem, 1 2 to 4 15 + EACT 2

ii) SHR mem, CL 2 to 4 20+ EACT+4 per bit 2

 75. SAR reg/mem

a) SAR reg

i) SAR reg, 1 2 2 -

ii) SAR reg, CL 2 8 + 4 per bit -

b) SAR mem

i) SAR mem, 1 2 to 4 15 + EACT 2

ii) SAR mem, CL 2 to 4 20+EACT+4 per bit 2

 76. ROL reg/mem

a) ROL reg

 i) ROL reg, 1 2 2 -

 ii) ROL reg, CL 2 8 + 4 per bit -

b) ROL mem

 i) ROL mem, 1 2 to 4 15 + EACT 2

 ii) ROL mem, CL 2 to 4 20+EACT+4 per bit 2

 77. RCL reg/mem

a) RCL reg

 i) RCL reg, 1 2 2 -

 ii) RCL reg, CL 2 8 + 4 per bit -

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

8086 Microprocessor and Its Appications

3. 20 Chapter 3 Instruction Set Of 8086

Table - 3.5 continued...

b) RCL mem

 i) RCL mem, 1 2 to 4 15 + EACT 2

 ii) RCL mem, CL 2 to 4 20+EACT+4 per bit 2

 78. ROR reg/mem

a) ROR reg

 i) ROR reg, 1 2 2 -

 ii) ROR reg, CL 2 8 + 4 per bit -

b) ROR mem

 i) ROR mem, 1 2 to 4 15 + EACT 2

 ii) ROR mem, CL 2 to 4 20+EACT+4 per bit 2

 79. RCR reg/mem

a) RCR reg

 i) RCR reg, 1 2 2 -

 ii) RCR reg, CL 2 8 + 4 per bit -

b) RCR mem

 i) RCR mem, 1 2 to 4 15 + EACT 2

 ii) RCR mem, CL 2 to 4 20 + EACT+4 per bit 2

 80. REP

a) REPZ/REPE 1 2 -

b) REPNZ/REPNE 1 2 -

 81. MOVS 18 or

a) MOVSB
1

9 + 17 per
2

b) MOVSW repetition

 82. CMPS 22 or

a) CMPSB
1

9 + 22 per
2

b) CMPSW repetition

 83. SCAS 15 or

a) SCASB
1

9 + 15 per
1

b) SCASW repetition

 84. LODS 12 or

a) LODSB
1

9 + 13 per
1

b) LODSW repetition

 85. STOS 11 or

a) STOSB
1

9 + 10 per
1

b) STOSW repetition

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

GROUP IV : STRING MANIPULATION INSTRUCTIONS

I
P
Q

I
P
Q

I
P
Q

I
P
Q

I
P
Q

 3. 21

Table - 3.5 continued...

 86. CALL disp16 3 19 1

 87. CALL reg/mem

a) CALL reg 2 16 1

b) CALL mem 2 to 4 21 + EACT 2

 88. CALL addr
offset

 , addr
base

5 28 2

 89. CALL mem 2 to 4 37 + EACT 4

 90. RET (Return from call

within segment) 1 8 1

 91. RET data16 3 12 1

(Return from call within segment

adding immediate data to SP)

 92. RET 1 18 2

(Return from intersegment call)

 93. RET data16 3 17 2

(Return from intersegment call

adding immediate data to SP)

 94. JMP disp16 3 15 -

(Unconditional jump near-direct

within segment)

 95. JMP disp8 2 15 -

(Unconditional jump short-direct

within segment)

 96. JMP reg/mem

(Unconditional jump

near-indirect within segment)

a) JMP reg 2 11 -

b) JMP mem 2 to 4 18 + EACT 1

 97. JMP addr
offset

 , addr
base

5 15 -

(Unconditional jump far-direct

intersegment)

 98. JMP mem 2 to 4 24 + EACT 2

(Unconditional jump far-indirect

intersegment)

 99. JE/JZ disp8 2 16 or 4 -

 100. JL/JNGE disp8 2 16 or 4 -

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

GROUP V : CONTROL TRANSFER INSTRUCTIONS

8086 Microprocessor and Its Appications

3. 22 Chapter 3 Instruction Set Of 8086

Table - 3.5 continued...

101. JLE/JNG disp8 2 16 or 4 -

102. JB/JNAE/JC disp8 2 16 or 4 -

103. JBE/JNA disp8 2 16 or 4 -

104. JP/JPE disp8 2 16 or 4 -

105. JNB/JAE/JNC disp8 2 16 or 4 -

106. JNBE/JA disp8 2 16 or 4 -

107. JNP/JPO disp8 2 16 or 4 -

108. JNO disp8 2 16 or 4 -

109. JNS disp8 2 16 or 4 -

110. JO disp8 2 16 or 4 -

111. JS disp8 2 16 or 4 -

112. JNE/JNZ disp8 2 16 or 4 -

113. JNL/JGE disp8 2 16 or 4 -

114. JNLE/JG disp8 2 16 or 4 -

115. JCXZ disp8 2 18 or 6 -

116. LOOP disp8 2 17 or 5 -

117. LOOPZ/LOOPE disp8 2 18 or 6 -

118. LOOPNZ/LOOPNE disp8 2 19 or 5 -

119. INT type 2 51 5

120. INT 3 1 52 5

121. INTO 1 53 or 4 5

122. IRET 1 24 3

123. CLC 1 2 -

124. CMC 1 2 -

125. STC 1 2 -

126. CLD 1 2 -

127. STD 1 2 -

128. CLI 1 2 -

129. STI 1 2 -

130. HLT 1 2 -

131. WAIT 1 3 + 5n -

132. ESC opcode, mem/reg

a) ESC opcode, mem 2 to 4 8 + EACT 1

b) ESC opcode, reg 2 2 -

133. LOCK 1 2 -

134. NOP 1 3 -

Size of

instruction

(Number of

bytes)

Clock period

(or T-state) needed

for instruction

execution

Number of

memory

access

(or transfer)

 S.No. Mnemonic

GROUP VI : PROCESSOR CONTROL INSTRUCTIONS

 3. 23

TABLE - 3.6 : EFFECTIVE ADDRESS CALCULATION TIME

 S.No.

Method of addressing memory
 Number of clock

 cycles for EACT 1. Direct addressing 6

 2. Register indirect addressing 5

[BX] or [SI] or [DI]

 3. Based addressing 9

[BX + disp] or [BP + disp]

 4. Indexed addressing 9

[SI + disp] or [DI + disp]

 5. Based indexed addressing

a) Without displacement

 i) [BP + DI] or [BX + SI] 7

 ii) [BP + SI] or [BX + DI] 8

b) With displacement

 i) [BP + DI + disp] or [BX + SI + disp] 11

 ii) [BP + SI + disp] or [BX + DI + disp] 12

TABLE - 3.7 : MEANINGS OF VARIOUS TERMS USED IN THE OPERAND

 FIELD OF INSTRUCTIONS IN TABLE - 3.5

Term Meaning Term Meaning

reg/reg1/reg2 8-bit or 16-bit register data8 8-bit data

reg8 8-bit register data16 16-bit data

reg16 16-bit register addr8 8-bit address

segreg segment register addr
offset

16-bit offset/effective

mem 8-bit or 16-bit memory address

mem8 8-bit memory addr
base

16-bit base address

mem16 16-bit memory disp8 8-bit displacement

data 8-bit or 16-bit data disp16 16-bit displacement

Note : 1. Possible choice for reg/reg1/reg2 are AL, AH, BL, BH, CL, CH, DL, DH, AX, BX, CX,

DX, SI, DI, SP and BP.

2. Possible choice for reg8 are AL, AH, BL, BH, CL, CH, DL and DH.

3. Possible choice for reg16 are AX, BX, CX, DX, SI, DI, SP and BP.

4. Possible choice for seg reg are DS, ES and SS.

5. The term mem stands for the 24 different methods of addressing memory data as shown in

Table-3.4.

8086 Microprocessor and Its Appications

3. 24 Chapter 3 Instruction Set Of 8086

TABLE - 3.8 : MEANING/EXPANSION OF MNEMONICS USED IN 8086 INSTRUCTION SET

 S.No. Mnemonic Meaning

1. AAA ASCII adjust after addition.

2. AAD ASCII adjust before division.

3. AAM ASCII adjust after multiply.

4. AAS ASCII adjust after subtraction.

5. ADC Add two specified data along with carry.

6. ADD Add two specified data.

7. AND AND two specified data bit by bit.

8. CALL Call a procedure/subroutine.

9. CBW Convert byte to word (Sign extend byte to word).

10. CLC Clear carry flag (CF = 0).

11. CLD Clear direction flag (DF = 0).

12. CLI Clear interrupt enable flag (IF = 0).

13. CMC Complement the state of the carry flag (CF = CF).

14 CMP Compare two specified data.

15. CMPS/CMPSB/CMPSW Compare two string byte or two string word.

16. CWD Convert word to double word. (Sign extend the word to

double word.)

17. DAA Decimal adjust after addition.

18. DAS Decimal adjust after subtraction.

19. DEC Decrement specified data.

20. DIV Divide unsigned word by byte, or unsigned double word by

word.

21. ESC Escape to external coprocessor such as 8087.

22. HLT Halt until interrupt.

23. IDIV Divide signed word by byte, or signed double word by word.

24. IMUL Multiply signed byte by byte or signed word by word.

25. IN Copy a byte/word from specified port to accumulator.

26. INC Increment specified data.

27. INT Interrupt program execution. (Call interrupt service procedure.)

28. INTO Interrupt program execution, if OF = 1.

29. IRET Interrupt return.

30. JA/JNBE Jump if above/Jump if not below nor equal.

31. JAE/JNB Jump if above or equal /Jump if not below.

32. JB/JNAE Jump if below /Jump if not above nor equal.

33. JBE/JNA Jump if below or equal /Jump if not above.

34. JC Jump if CF = 1.

35. JCXZ Jump if CX = 0.

36. JE/JZ Jump if equal /Jump if ZF = 1.

 3. 25

Table - 3.8 continued...

 S.No. Mnemonic Meaning

37. JG/JNLE Jump if greater /Jump if not less than nor equal.

38. JGE/JNL Jump if greater than or equal /Jump if not less than.

39. JL/JNGE Jump if less than/Jump if not greater than.

40. JLE/JNG Jump if less than or equal/Jump if not greater than.

41. JMP Jump to specified address to get next instruction.

42. JNC Jump if no carry (Jump if CF = 0).

43. JNE/JNZ Jump if not equal /Jump if not zero(ZF = 0).

44. JNO Jump if no overflow (Jump if OF = 0).

45. JNP/JPO Jump if not parity/Jump if parity odd. (PF = 0).

46. JNS Jump if not sign (Jump if sign flag = 0).

47. JO Jump if OF = 1.

48. JP/JPE Jump if parity/Jump if parity even (PF = 1).

49. JS Jump if SF = 1.

50. LAHF Load AH with the low byte of the flag register.

51. LDS Load DS-register and other specified register from memory.

52. LEA Load effective address of operand into specified register.

53. LES Load ES-register and other specified register from memory.

54. LOCK An instruction prefix which prevents another processor from

taking bus while the adjacent instruction (i.e., instruction

prefixed with lock) executes.

55. LODS/LODSB Load string byte into AL or string word into AX.

/LODSW

56. LOOP Loop through a sequence of instructions until CX = 0.

57. LOOPE/LOOPZ Loop through a sequence of instructions while ZF = 1 and

CX ≠ 0.

58. LOOPNE/LOOPNZ Loop through a sequence of instructions while ZF = 0 and

CX ≠ 0.

59. MOV Move (copy) a byte/word from specified source to specified

destination.

60. MOVS/MOVSB Move a byte/word from one string to another.

/MOVSW

61. MUL Multiply two specified unsigned data.

62. NEG Negative of specified data (2’s complement value of specified

data).

63. NOP No action (operation) except fetch and decode.

64. NOT Invert/complement each bit of specified data.

65. OR OR two specified data bit by bit.

66. OUT Copy a byte/word from accumulator to specified port.

67. POP Move the top of stack to specified location.

8086 Microprocessor and Its Appications

3. 26 Chapter 3 Instruction Set Of 8086

Table - 3.8 continued...

 S.No. Mnemonic Meaning

68. POPF Move the top of stack to flag register.

69. PUSH Push (copy) the specified register to top of stack.

70. PUSHF Push (copy) the flag register to top of stack.

71. RCL Rotate left through carry.

72. RCR Rotate right through carry.

73. REP An instruction prefix. Repeat adjacent instruction (i.e., instruction

prefixed with REP) until CX = 0.

74. REPE/REPZ An instruction prefix. Repeat adjacent instruction until CX = 0

or ZF ≠ 1.

75. REPNE/REPNZ An instruction prefix. Repeat adjacent instruction until CX = 0

or ZF = 1.

76. RET Return from procedure to calling program.

77. ROL Rotate left to carry.

78. ROR Rotate right to carry.

79. SAHF Store (copy) AH-register to low byte of flag register.

80. SAR Arithmetic Right shift.

81. SBB Subtract specified data and carry flag from another specified data.

82. SCAS/SCASB/ Scan (compare) a string byte/word with accumulator.

SCASW

83. SHL/SAL Logical left shift/Arithmetic left shift.

84. SHR Logical right shift.

85. STC Set carry flag (CF = 1).

86. STD Set direction flag (DF = 1).

87. STI Set interrupt enable flag (IF = 1).

88. STOS/STOSB/ Store byte from AL or word from AX into string.

STOSW

89. SUB Subtract a specified data from another specified data.

90. TEST Test by performing logical AND operation of specified operands

and modify flags.

91. WAIT Wait until signal on the test pin is low.

92. XCHG Exchange bytes or exchange words.

93. XLAT Translate a byte in AL using a table in memory.

94. XOR Exclusive-OR two specified data bit by bit.

 3. 27

3.5 INSTRUCTIONS AFFECTING FLAGS

The 8086 microprocessor has 9 flags. In this, six flags are altered by arithmetic and logical

instructions, and three flags are used to control the processor operation.

The flags which are altered by arithmetic and logical instructions are carry flag, auxiliary

carry flag, parity flag, zero flag, sign flag and overflow flag. The flags which are used to control

the processor operation are trace flag (or single step trap), interrupt flag and direction flag.

The status of various flags after execution of arithmetic and logical instructions are listed in

Table-3.9. The 8086 processor has instructions to directly set or clear the interrupt flag, direction

flag and carry flag.

While servicing an interrupt the 8086 processor, save the status of flags in stack and the

status of the flags are restored at the end of service procedure by executing IRET instruction.

The 8086 also has instruction to directly save the flags in stack(PUSHF) and to restore the

saved flags(POPF).

TABLE - 3.9 : 8086 INSTRUCTIONS AFFECTING FLAGS

 Instruction

 Flags

O D I T S Z A P C

AAA u - - - u u + u +

AAD u - - - + + u + u

AAM u - - - + + u + u

AAS u - - - u u + u +

ADC + - - - + + + + +

ADD + - - - + + + + 0

AND 0 - - - + + u + 0

CLC - - - - - - - - 0

CLD - 0 - - - - - - -

CLI - - 0 - - - - - -

CMC - - - - - - - - +

CMP + - - - + + + + +

CMPS + - - - + + + + +

DAA u - - - + + + + +

DAS u - - - + + + + +

DEC + - - - + + + + -

DIV u - - - u u u u u

IDIV u - - - u u u u u

8086 Microprocessor and Its Appications

3. 28 Chapter 3 Instruction Set Of 8086

Table - 3.9 continued...

 Instruction
 Flags

O D I T S Z A P C

IMUL + - - - u u u u +

INC + - - - + + + + -

INT - - 0 0 - - - - -

INTO - - 0 0 - - - - -

IRET r r r r r r r r r

MUL + - - - u u u u +

NEG + - - - + + + + +

OR 0 - - - + + u + 0

POPF r r r r r r r r r

RCL + - - - - - - - +

RCR + - - - - - - - +

ROL + - - - - - - - +

ROR + - - - - - - - +

SAHF - - - - r r r r r

SAL/SHL + - - - + + u + +

SAR + - - - + + u + +

SBB + - - - + + + + +

SCAS + - - - + + + + +

SHR + - - - + + u + +

STC - - - - - - - - 1

STD - 1 - - - - - - -

STI - - 1 - - - - - -

SUB + - - - + + + + +

TEST 0 - - - + + u + 0

XOR 0 - - - + + u + 0

Note : “+” → Flag is altered and defined (i.e., set or cleared according to the result).

“u” → Flag is undefined (i.e., altered but not defined).

“–” → Flag is not altered /affected.

“r” → The flag is restored from previous saved value.

“1” → Set to 1.

“0” → Cleared to 0.

 3. 29

3
.
6

D

A
T

A

T

R
A

N
S

F
E

R

I
N

S
T

R
U

C
T

I
O

N
S

T
h

e
in

st
ru

ct
io

n
 s

et
 o

f
8

0
8

6
 m

ic
ro

p
ro

ce
ss

o
r

in
cl

u
d

es
 a

 v
ar

ie
ty

 o
f

in
st

ru
ct

io
n

s
to

 t
ra

n
sf

er
 d

at
a/

ad
d

re
ss

 i
n

to
 r

eg
is

te
rs

,
m

em
o

ry

lo
ca

ti
o

n
s

an
d

 I
O

 p
o

rt
s.

 T
h

e
v

ar
io

u
s

m
n

em
o

n
ic

s
u

se
d

 f
o

r
d

at
a

tr
an

sf
er

 i
n

st
ru

ct
io

n
s

ar
e

M
O

V
,

X
C

H
G

,
P

U
S

H
,

P
O

P,
 I

N
,

O
U

T
,

et
c.

,
an

d

th
ey

 p
er

fo
rm

 a
n
y
 o

n
e

o
f

th
e

fo
ll

o
w

in
g
 o

p
er

at
io

n
s

:

 �Cop
y
 t

h
e

co
n
te

n
t

o
f

a
re

g
is

te
r

to
 a

n
o
th

er
 r

eg
is

te
r.

 �Cop
y
 t

h
e

co
n
te

n
t

o
f

a
re

g
is

te
r

to
 m

em
o
ry

 o
r

v
ic

e
v
er

sa
.

 �Loa
d
 t

h
e

im
m

ed
ia

te
 o

p
er

an
d
 t

o
 m

em
o
ry

/r
eg

is
te

r.

 �Cop
y
 t

h
e

co
n
te

n
t

o
f

a
re

g
is

te
r/

m
em

o
ry

 t
o
 s

eg
m

en
t

re
g
is

te
r

(e
x
cl

u
d
in

g
 C

S
-r

eg
is

te
r)

 o
r

v
ic

e
v
er

sa
.

 �Exc
h

an
g

e
th

e
co

n
te

n
t

o
f

tw
o

 r
eg

is
te

rs
 o

r
re

g
is

te
r

an
d

 m
em

o
ry

.

 �Cop
y

 t
h

e
co

n
te

n
t

o
f

ac
cu

m
u

la
to

r
to

 p
o

rt
 o

r
v

ic
e

v
er

sa
.

 �Loa
d
 e

ff
ec

ti
v
e

ad
d
re

ss
 i

n
 s

eg
m

en
t

re
g
is

te
rs

.

T
h
e

d
at

a
tr

an
sf

er
 i
n
st

ru
ct

io
n
s

g
en

er
al

ly
 i
n
v
o
lv

e
tw

o
 o

p
er

an
d
s

:
so

u
rc

e
o
p
er

an
d
 a

n
d
 d

es
ti

n
at

io
n
 o

p
er

an
d
. T

h
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n

o
p

er
an

d
s

sh
o

u
ld

 b
e

o
f

sa
m

e
si

ze
,

ei
th

er
 b

o
th

 t
h

e
o

p
er

an
d

 s
iz

e
sh

o
u

ld
 b

e
b

y
te

 o
r

w
o

rd
.

T
h

is
 m

ea
n

s
th

at
 o

n
ly

 8
-b

it
 d

at
a

ca
n

 b
e

m
o
v

ed
 t

o

8
-b

it
 r

e
g

is
te

r/
m

e
m

o
ry

 a
n

d
 o

n
ly

 1
6

-b
it

 d
a
ta

 c
a
n

 b
e
 m

o
v

e
d

 t
o

 1
6

-b
it

 r
e
g

is
te

r/
m

e
m

o
ry

.
M

o
v

in
g

 t
h

e
 c

o
n

te
n

t
o

f
8

-b
it

 r
e
g

is
te

r
to

 1
6

-b
it

re
g

is
te

r/
m

e
m

o
ry

 o
r

v
ic

e
 v

e
rs

a
 i

s
il

le
g

a
l.

T
h

e
so

u
rc

e
ca

n
 b

e
a

re
g

is
te

r
o

r
a

m
em

o
ry

 l
o

ca
ti

o
n

 o
r

an
 i

m
m

ed
ia

te
 d

at
a.

 T
h

e
d

es
ti

n
at

io
n

 c
an

 b
e

a
re

g
is

te
r

o
r

a
m

em
o

ry
 l

o
ca

ti
o

n
.

In
 d

o
u
b
le

 o
p
er

an
d
 i

n
st

ru
ct

io
n
s,

 t
h
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
 c

an
n
o
t

re
fe

r
to

 m
em

o
ry

 l
o
ca

ti
o
n
s

in
 t

h
e

sa
m

e
in

st
ru

ct
io

n
.
T

h
er

ef
o
re

,
co

p
y
in

g

th
e

co
n
te

n
t

o
f

o
n
e

m
em

o
ry

 l
o
ca

ti
o
n
 t

o
 a

n
o
th

er
 m

em
o
ry

 l
o
ca

ti
o
n
 i

n
 a

 s
in

g
le

 i
n
st

ru
ct

io
n
 i

s
n
o
t

p
o
ss

ib
le

 (
ex

ce
p
t

P
U

S
H

 i
n
st

ru
ct

io
n
).

T
h
e

d
at

a
tr

an
sf

er
 i

n
st

ru
ct

io
n
s

(e
x
ce

p
t

P
O

P
F

 a
n
d
 S

A
H

F
 i

n
st

ru
ct

io
n
s)

 d
o
 n

o
t

af
fe

ct
 t

h
e

fl
ag

s
o
f

8
0
8
6
.

W
h
il

e
ex

ec
u
ti

n
g
 t

h
e

P
O

P
F

in
st

ru
ct

io
n
,
th

e
p
re

v
io

u
sl

y
 s

to
re

d
 s

ta
tu

s
o
f

th
e

fl
ag

 i
s

re
st

o
re

d
 i

n
 t

h
e

fl
ag

 r
eg

is
te

r.
 T

h
e

in
st

ru
ct

io
n
 S

A
H

F
 i

s
u
se

d
 t

o
 m

o
d
if

y
 t

h
e

co
n

te
n

t
o

f

th
e

fl
ag

 r
eg

is
te

r.

T
h
e

d
at

a
tr

an
sf

er
 i

n
st

ru
ct

io
n
s

o
f

8
0
8
6
 a

re
 l

is
te

d
 i

n
 T

ab
le

-3
.1

0
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

8086 Microprocessor and Its Appications

3. 30 Chapter 3 Instruction Set Of 8086

N
o
t
e

:
1
.

T
h
e

te
rm

s
M

A
,

M
A
S
 a

n
d
 M

A
E
 u

se
d
 i

n
 s

ym
bo

li
c

d
es

cr
ip

ti
on

 o
f

in
st

ru
ct

io
n

s
re

fe
r

to
 p

h
ys

ic
a
l

m
em

or
y

a
d
d
re

ss
 o

f
d
a
ta

 s
eg

m
en

t,

st
a
ck

 s
eg

m
en

t a
n

d
 e

xt
ra

 s
eg

m
en

t r
es

p
ec

ti
ve

ly
.

2
.

T
h
e

re
gi

st
er

 o
r

m
em

or
y

en
cl

os
ed

 b
y

br
a
ck

et
s
in

 s
ym

bo
li

c
d
es

cr
ip

ti
on

 r
ef

er
 to

 c
on

te
n

t o
f r

eg
is

te
r

or
 m

em
or

y.

T
A

B
L

E
 -

 3
.1

0
 :

 D
A

T
A

 T
R

A
N

S
F

E
R

 I
N

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

1
.

M
O

V
 r

e
g
2
/m

e
m

,
re

g
1
/m

e
m

a
)

M
O

V
 r
e
g
2
,
re

g
1

(r
e
g
2
)

←

 (
re

g
1
)

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r1

 i
s
 t

ra
n
s
fe

rr
e
d
 t

o
 r

e
g
is

te
r2

.

 b
)

M
O

V
 m

e
m

,
re

g
1

(m
e

m
)

←
 (

re
g

1
)

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r1

 i
s
 t

ra
n

s
fe

rr
e

d
 t

o
 m

e
m

o
ry

.

 c
)

M
O

V
 r

e
g
2
,
m

e
m

(r
e
g
2
)

←

 (
m

e
m

)
T

h
e

 c
o

n
te

n
t

o
f

m
e

m
o

ry
 i

s
 t

ra
n

s
fe

rr
e

d
 t

o
 r

e
g

is
te

r2
.

2
.

M
O

V
 r

e
g
/m

e
m

,
d
a
ta

a
)

M
O

V
 r
e
g

,
d
a
ta

(r
e
g
)

←

 d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 t

ra
n
s
fe

rr
e
d
 t

o
 r

e
g
is

te
r.

b
)

M
O

V
 m

e
m

,
d
a
ta

(m
e
m

)
←

 d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 t

ra
n
s
fe

rr
e
d
 t

o
 m

e
m

o
ry

.

3
.

M
O

V
 r
e
g
,
d
a
ta

(r
e
g
)

←

 d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 t

ra
n
s
fe

rr
e
d
 t

o
 r

e
g
is

te
r.

4
.

M
O

V
 A

, m
e
m

a
)

M
O

V
 A

L
,
m

e
m

(A
L
)

←
 (

m
e

m
)

T
h

e
 c

o
n

te
n

t
o

f
(8

-b
it
)

m
e

m
o

ry
 i

s
 t

ra
n

s
fe

rr
e

d
 t

o
 8

-b
it

a
c
c
u
m

u
la

to
r

(A
L
).

b
)

M
O

V
 A

X
, m

e
m

(A
X

)
←

 (
m

e
m

)
T

h
e

 c
o

n
te

n
t

o
f

(1
6

-b
it

)
m

e
m

o
ry

 i
s
 t

ra
n

s
fe

rr
e

d
 t

o

a
c
c
u
m

u
la

to
r

(A
X

).

5
.

M
O

V
 m

e
m

, A

a
)

M
O

V
 m

e
m

,
A

L
(m

e
m

)
←

 (
A

L
)

T
h

e
 c

o
n

te
n

t
o

f
8

-b
it

 a
c
c
u

m
u

la
to

r(
A

L
)

is
 t

ra
n

s
fe

rr
e

d

to
 m

e
m

o
ry

.

b
)

M
O

V
 m

e
m

, A
X

(m
e

m
)

←
 (

A
X

)
T

h
e

 c
o

n
te

n
t

o
f

1
6

-b
it
 a

c
c
u

m
u

la
to

r
(A

X
)

is
 t

ra
n

s
fe

rr
e

d

to
 m

e
m

o
ry

.

6
.

M
O

V
 s

e
g
re

g
,

re
g
1
6
/m

e
m

a
)

M
O

V
 s

e
g
re

g
,

re
g
1
6

(s
e
g
re

g
)

←
 (

re
g
1
6

)
T

h
e

 c
o

n
te

n
t

o
f

1
6

-b
it
 r

e
g

is
te

r
is

 t
ra

n
s
fe

rr
e

d
 t

o
 s

e
g

m
e

n
t

re
g

is
te

r.

b
)

M
O

V
 s

e
g

re
g

,
m

e
m

(s
e

g
re

g
)

←
 (

m
e

m
)

T
h

e
 c

o
n

te
n

t
o

f
(1

6
-b

it
)

m
e

m
o

ry
 i

s
 t

ra
n

s
fe

rr
e

d
 t

o

s
e

g
m

e
n

t
re

g
is

te
r.

3. 31

T
a

b
le

 -
 3

.1
0

 c

o
n

ti
n

u
e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

7
.

M
O

V
 r

e
g
1
6
/m

e
m

,
s
e
g
re

g

a
)

M
O

V
 r

e
g
1
6
,

s
e
g
re

g
(r

e
g
1
6
)

←
 (

s
e
g
re

g
)

T
h

e
 c

o
n

te
n

t
o

f
s
e

g
m

e
n

t
re

g
is

te
r

is
 t

ra
n

s
fe

rr
e

d
 t

o
 1

6
-b

it

re
g

is
te

r.

b

)
M

O
V

 m
e

m
,

s
e

g
re

g
(m

e
m

)
←

 (
s
e

g
re

g
)

T
h

e
 c

o
n

te
n

t
o

f
s
e

g
m

e
n

t
re

g
is

te
r

is
 t

ra
n

s
fe

rr
e

d
 t

o
 1

6
-b

it

m
e

m
o

ry
.

 8

.
P

U
S

H
 r

e
g

1
6

/m
e

m
(S

P
)

←
 (

S
P

)
−
 2

 a

)
P

U
S

H
 r

e
g

1
6

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 2

 a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (
re

g
1

6
)

1
6

-b
it
 r

e
g

is
te

r
is

 p
u

s
h

e
d

 t
o

 s
ta

c
k
 m

e
m

o
ry

 p
o

in
te

d
 b

y
 S

P
.

 b

)
P

U
S

H
 m

e
m

(S
P

)
←

 (
S

P
)

−
 2

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 2

 a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(1
6
-b

it
)m

e
m

o
ry

 i
s
 p

u
s
h
e
d
 t

o
 s

ta
c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
.

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (

m
e
m

)

 9

.
P

U
S

H
 r

e
g
1
6

(S
P

)
←

 (
S

P
)

−
 2

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 2

 a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

1
6

-b
it
 r

e
g

is
te

r
is

 p
u

s
h

e
d

 t
o

 s
ta

c
k
 m

e
m

o
ry

 p
o

in
te

d
 b

y
 S

P
.

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (
re

g
1
6
)

1
0

.
P

U
S

H
 s

e
g

re
g

(S
P

)
←

 (
S

P
)

−
 2

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 2

 a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

s
e
g
m

e
n
t

re
g
is

te
r

is
 p

u
s
h
e
d
 t

o
 s

ta
c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
.

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (

s
e

g
re

g
)

1
1

.
 P

U
S

H
F

(S
P

)
←

 (
S

P
)

−
 2

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 2

 a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

1
6

-b
it
 f

la
g

 r
e

g
is

te
r

is
 p

u
s
h

e
d

 t
o

 s
ta

c
k
 m

e
m

o
ry

 p
o

in
te

d
 b

y
 S

P
.

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (

F
la

g
s
)

 1

2
.

 P
O

P
 r

e
g
1
6
/m

e
m

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h
e
 c

o
n
te

n
t

o
f

s
ta

c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
 i
s
 m

o
v
e
d

 a

)
 P

O
P

 r
e

g
1

6
(r

e
g

1
6

)
←

 (
M

A
S
 ;
 M

A
S
 +

 1
)

to
 1

6
-b

it
 r

e
g

is
te

r
a

n
d

 t
h

e
 s

ta
c
k
 p

o
in

te
r

is
 i

n
c
re

m
e

n
te

d
 b

y
 2

.

(S
P

)
←

 (
S

P
)

+
 2

 b

)
 P

O
P

 m
e
m

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h
e
 c

o
n
te

n
t

o
f

(1
6

-b
it
)

s
ta

c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
 i
s

(m
e

m
)

←
 (

M
A

S
 ;
 M

A
S
 +

 1
)

m
o

v
e

d
 t

o
 m

e
m

o
ry

 a
n

d
 t

h
e

 s
ta

c
k
 p

o
in

te
r

is
 i

n
c
re

m
e

n
te

d
 b

y
 2

.

(S
P

)
←

 (
S

P
)

+
 2

8086 Microprocessor and Its Appications

3. 32 Chapter 3 Instruction Set Of 8086

T

a
b

le
 -

 3
.1

0

 c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

1
3

.
P

O
P

 r
e
g
1
6

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h
e
 c

o
n
te

n
t
o
f
(1

6
-b

it
)

s
ta

c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
 i
s
 m

o
v
e

d
 t

o

(r
e

g
1

6
)

←
 (

M
A

S
 ;
 M

A
S
 +

 1
)

1
6

-b
it

 r
e

g
is

te
r

a
n

d
 t

h
e

 s
ta

c
k
 p

o
in

te
r

is
 i

n
c
re

m
e
n
te

d
 b

y
 2

.

(S
P

)
←

 (
S

P
)

+
 2

1
4

.
P

O
P

 s
e
g
re

g
M

A
S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h
e
 c

o
n
te

n
t

o
f

(1
6

-b
it
)

s
ta

c
k
 m

e
m

o
ry

 p
o
in

te
d
 b

y
 S

P
 i
s
 m

o
v
e
d

(s
e

g
re

g
)

←
 (

M
A

S
 ;
 M

A
S
 +

 1
)

to
 s

e
g

m
e

n
t

re
g

is
te

r
a

n
d

 t
h

e
 s

ta
c
k
 p

o
in

te
r

is

(S
P

)
←

 (
S

P
)

+
 2

in
c
re

m
e
n
te

d
 b

y
 2

.

1
5

.
P

O
P

F
M

A
S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h

e
 c

o
n

te
n

t
o

f
(1

6
-b

it
)

s
ta

c
k
 m

e
m

o
ry

 p
o

in
te

d

b
y
 S

P
 i

s

(F
la

g
s
)

←
 (

M
A

S
 ;
 M

A
S
 +

 1
)

m
o

v
e

d
 t

o
 f

la
g

 r
e

g
is

te
r

a
n

d
 t

h
e

 s
ta

c
k
 p

o
in

te
r

is

(S
P

)
←

 (
S

P
)

+
 2

in
c
re

m
e

n
te

d
 b

y
 2

.

1
6

.
X

C
H

G
 r

e
g

2
/m

e
m

,
re

g
1

 a

)
X

C
H

G
 r

e
g
2
,

re
g
1

(r
e
g
2
)

↔
 (

re
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

tw
o
 r

e
g
is

te
rs

 a
re

 e
x
c
h
a
n
g
e
d
.

 b

)
X

C
H

G
 m

e
m

,
re

g
1

(m
e
m

)
↔

 (
re

g
1
)

T
h
e
 c

o
n
te

n
t

o
f

 m
e
m

o
ry

 a
n
d
 r

e
g
is

te
r

a
re

 e
x
c
h
a
n
g
e
d
.

1
7
.

X
C

H
G

 A
X

, r
e
g
1
6

(A
X

)
↔

 (
re

g
1
6
)

T
h
e
 c

o
n
te

n
t

o
f

a
c
c
u
m

u
la

to
r

a
n
d
 1

6
-b

it
 r

e
g
is

te
r

a
re

 e
x
c
h
a
n
g
e
d
.

1

8
.

X
L
A
T

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
B

X
)
+

 (
A

L
)

T
h

e
 c

o
n

te
n

t
o

f
(8

-b
it
)

m
e

m
o

ry
 i
s
 t

ra
n

s
fe

rr
e

d
 t

o
 A

L
.

(A
L
)

←
 (
M

A
)

T
h
e
 e

ff
e
c
ti
v
e
 a

d
d
re

s
s
 o

f
m

e
m

o
ry

 i
s
 g

iv
e
n
 b

y
 s

u
m

 o
f

B
X

 a
n
d
 A

L
.

1
9
.

IN
 A

, [
D

X
]

P
O

R
T

a
d

d
r

=
 (

D
X

)

 a

)
IN

 A
L
, [

D
X

]
(A

L
)

←
 (
P

O
R

T
)

T
h
e
 c

o
n
te

n
t

o
f

(8
-b

it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i

s
 s

p
e
c
if
ie

d
 b

y

D
X

-r
e
g
is

te
r

is
 t

ra
n
s
fe

rr
e
d
 t

o
 8

-b
it
 a

c
c
u
m

u
la

to
r

(A
L
).

 b

)
IN

 A
X

, [
D

X
]

P
O

R
T

a
d

d
r

=
 (

D
X

)
T

h
e
 c

o
n
te

n
t

o
f

(1
6

-b
it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i

s
 s

p
e
c
if
ie

d

(A
X

)
←

 (
P

O
R

T
)

b
y
 D

X
-r

e
g
is

te
r

is
 t

ra
n
s
fe

rr
e
d
 t

o
 a

c
c
u
m

u
la

to
r

(A
X

).

2
0
.

IN
 A

,
a
d
d
r8

a
)

IN
 A

L
,
a
d
d
r8

(A
L
)

←
 (

a
d
d
r8

)
T

h
e
 c

o
n
te

n
t

o
f

(8
-b

it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i
s
 g

iv
e
n
 i
n
 t

h
e

in
s
tr

u
c
ti
o

n
 i

s
 t

ra
n

s
fe

rr
e

d
 t

o
 8

-b
it
 a

c
c
u

m
u

la
to

r
(A

L
).

b
)

IN
 A

X
,
a
d
d
r8

(A
X

)
←

 (
a
d
d
r

8
)

T
h
e
 c

o
n
te

n
t

o
f

(1
6
-b

it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i

s
 g

iv
e
n
 i

n
 t

h
e

in
s
tr

u
c
ti
o
n
 i

s
 t

ra
n
s
fe

rr
e
d
 t

o
 a

c
c
u
m

u
la

to
r

(A
X

).

3. 33

T
a

b
le

 -
 3

.1
0

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

2
1

.
O

U
T

 [D
X

],
 A

P
O

R
T

a
d

d
r

=
 (

D
X

)

a
)

O
U

T
 [D

X
],

 A
L

(P
O

R
T

)
←

 (
A

L
)

T
h
e

c
o
n
te

n
t

o
f

8
-b

it
 a

c
c
u
m

u
la

to
r

(A
L
)

is
 t

ra
n
s
fe

rr
e
d
 t

o

th
e
 (

8
-b

it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i

s
 s

p
e
c
if
ie

d
 b

y
 D

X
-r

e
g
is

te
r.

b
)

O
U

T
 [D

X
],

 A
X

P
O

R
T

a
d

d
r

=
 (

D
X

)
T

h
e
 c

o
n
te

n
t

o
f

1
6

-b
it
 a

c
c
u
m

u
la

to
r

(A
X

)
is

 t
ra

n
s
fe

rr
e
d
 t

o
 t

h
e

 (
P

O
R

T
)

←
 (
A

X
)

 (
1
6

-b
it
)

p
o
rt

,
w

h
o
s
e
 a

d
d
re

s
s
 i

s
 s

p
e
c
if
ie

d
 b

y
 D

X
-r

e
g
is

te
r.

2
2

.
O

U
T

 a
d

d
r8

, A

a
)

O
U

T
 a

d
d
r8

, A
L

(a
d
d
r8

)
←

 (
A

L
)

T
h

e
 c

o
n

te
n

t
o

f
8

-b
it
 a

c
c
u

m
u

la
to

r
(A

L
)

is
 t

ra
n

s
fe

rr
e

d
 t

o

th
e

 (
8

-b
it
)

p
o

rt
 w

h
o

s
e

 a
d
d
re

s
s
 i

s
 g

iv
e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
.

b
)

O
U

T
 a

d
d
r8

, A
X

(a
d
d
r8

)
←

 (
A

X
)

T
h
e
 c

o
n
te

n
t

o
f

1
6
-b

it
 a

c
c
u
m

u
la

to
r

(A
X

)
is

 t
ra

n
s
fe

rr
e
d
 t

o

th
e
 (

1
6
-b

it
)

p
o
rt

 w
h
o
s
e
 a

d
d
re

s
s
 i

s
 g

iv
e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
.

2
3

.
L
E

A
 r

e
g
1
6
,

m
e
m

(r
e
g
1

6
)

←
 E

A
T

h
e

 1
6

-b
it
 r

e
g

is
te

r
is

 l
o

a
d

e
d

 w
it
h

 t
h

e
 E

ff
e

c
ti
v
e

 A
d

d
re

s
s

(E
A

)
o
f

th
e
 m

e
m

o
ry

 l
o
c
a
ti
o
n
 s

p
e
c
if
ie

d
 b

y
 t

h
e
 i
n
s
tr

u
c
ti
o
n
.

2
4

.
L
D

S
 r

e
g
1
6
,

m
e
m

(r
e
g
1
6
)

←
 (

m
e

m
)

T
h

e
 w

o
rd

 f
ro

m
 f

ir
s
t

tw
o

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s
 i

s
 m

o
v
e

d
 t

o
 t

h
e

(D
S

)
←

 (
m

e
m

+
2

)
 1

6
-b

it
 r

e
g

is
te

r
a

n
d

 t
h

e
 w

o
rd

 f
ro

m
 n

e
x
t

tw
o

 m
e

m
o

ry

lo
c
a
ti
o
n
s
 i

s
 m

o
v
e
d
 t

o
 D

S
-r

e
g
is

te
r.

2
5

.
L
E

S
 r

e
g
1
6
,

m
e
m

(r
e
g
1

6
)

←
 (

m
e

m
)

T
h

e
 w

o
rd

 f
ro

m
 f

ir
s
t

tw
o

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s
 i

s
 t

ra
n

s
fe

rr
e

d

(E
S

)
←

 (
m

e
m

+
2
)

to
 t

h
e
 1

6
-b

it
 r

e
g
is

te
r

a
n
d
 t

h
e
 w

o
rd

fr

o
m

 n
e
x
t

tw
o
 m

e
m

o
ry

lo
c
a

ti
o

n
s
 i

s
 m

o
v
e

d
 t

o
 E

S
-r

e
g

is
te

r.

2
6

.
L
A

H
F

(A
H

)
←

 (
lo

w
e
r

b
y
te

 f
la

g
 r

e
g
is

te
r)

T
h
e
 c

o
n
te

n
t

o
f

th
e
 l
o
w

e
r

b
y
te

 f
la

g
 r

e
g
is

te
r

is
 t

ra
n
s
fe

rr
e
d

to
 t

h
e
 h

ig
h
e
r

b
y
te

 r
e
g
is

te
r

o
f

th
e
 a

c
c
u
m

u
la

to
r.

2
7

.
S

A
H

F
(l
o
w

e
r

b
y
te

 f
la

g
 r

e
g
is

te
r)

 ←
 (

A
H

)
T

h
e
 c

o
n
te

n
t

o
f

th
e
 h

ig
h
e
r

b
y
te

 r
e
g
is

te
r

o
f

th
e
 a

c
c
u
m

u
la

to
r

is
 m

o
v
e
d
 t

o
 l
o
w

e
r

b
y
te

 f
la

g
 r

e
g
is

te
r.

8086 Microprocessor and Its Appications

3. 34 Chapter 3 Instruction Set Of 8086

3
.
7

A

R
I
T

H
M

E
T

I
C

I
N

S
T

R
U

C
T

I
O

N
S

T
h
e

ar
it

h
m

et
ic

 g
ro

u
p
 i

n
cl

u
d
es

 i
n
st

ru
ct

io
n
s

fo
r

p
er

fo
rm

in
g
 t

h
e

fo
ll

o
w

in
g
 o

p
er

at
io

n
s

:

�
A

d
d
it

io
n
 o

r
su

b
tr

ac
ti

o
n
 o

f
b
in

ar
y,

 B
C

D
 o

r
A

S
C

II
 d

at
a.

�
M

u
lt

ip
li

ca
ti

o
n
 o

r
d
iv

is
io

n
 o

f
si

g
n
ed

 o
r

u
n
si

g
n
ed

 b
in

ar
y
 d

at
a.

�
In

cr
em

en
t

o
r

d
ec

re
m

en
t

o
r

co
m

p
ar

is
o

n
 o

f
b

in
ar

y
 d

at
a.

T
h

e
m

n
em

o
n

ic
s

u
se

d
 f

o
r

ar
it

h
m

et
ic

 i
n

st
ru

ct
io

n
s

ar
e

A
D

D
,
A

D
C

,
S

U
B

,
S

B
B

,
IN

C
,

D
E

C
,

M
U

L
,

D
IV

,
C

M
P,

 e
tc

.

T
h
e

ar
it

h
m

et
ic

 i
n
st

ru
ct

io
n
s

g
en

er
al

ly
 i
n
v
o
lv

e
tw

o
 o

p
er

an
d
s

:
so

u
rc

e
o
p
er

an
d
 a

n
d
 d

es
ti

n
at

io
n
 o

p
er

an
d
.
T

h
e

so
u
rc

e
ca

n
 b

e
a

re
g
is

te
r

o
r

a
m

em
o
ry

 l
o
ca

ti
o
n
 o

r
an

 i
m

m
ed

ia
te

 d
at

a.
 T

h
e

d
es

ti
n
at

io
n
 c

an
 b

e
a

re
g
is

te
r

o
r

m
em

o
ry

.
T

h
e

re
su

lt
 o

f
ar

it
h
m

et
ic

 o
p
er

at
io

n
 i

s
st

o
re

d
 i

n

d
es

ti
n

at
io

n
 r

eg
is

te
r

o
r

m
em

o
ry

 e
x

ce
p

t
in

 c
as

e
o

f
co

m
p

ar
is

o
n

.
(I

n
 c

o
m

p
ar

is
o

n
 t

h
e

re
su

lt
 i

s
u

se
d

 t
o

 m
o

d
if

y
 t

h
e

fl
ag

s
an

d
 t

h
en

 t
h

e
re

su
lt

 i
s

d
is

c
a
rd

e
d

.)

In
 d

o
u
b
le

 o
p
er

an
d
 a

ri
th

m
et

ic
 i

n
st

ru
ct

io
n
s,

 t
h
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
 c

an
n
o
t

re
fe

r
to

 m
em

o
ry

 l
o
ca

ti
o
n
s

in
 t

h
e

sa
m

e
in

st
ru

ct
io

n
.

T
h
er

ef
o
re

 p
er

fo
rm

in
g
 a

ri
th

m
et

ic
 o

p
er

at
io

n
 d

ir
ec

tl
y
 o

n
 t

w
o
 m

em
o
ry

 d
at

a
is

 n
o
t

p
o
ss

ib
le

.

In
 d

o
u
b
le

 o
p
er

an
d
 a

ri
th

m
et

ic
 i

n
st

ru
ct

io
n
s

ex
ce

p
t

d
iv

is
io

n
,

th
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
 o

p
er

an
d
 s

h
o
u
ld

 b
e

o
f

sa
m

e
si

ze
,

ei
th

er
 b

o
th

th
e

o
p
er

an
d
 s

iz
e

sh
o
u
ld

 b
e

b
y
te

 o
r

w
o
rd

.
In

 a
ll

 a
ri

th
m

et
ic

 i
n
st

ru
ct

io
n
s

em
p
lo

y
in

g
 i

m
m

ed
ia

te
 a

d
d
re

ss
in

g
 m

o
d
e,

 i
f

th
e

im
m

ed
ia

te
 o

p
er

an
d
/

d
at

a
is

 8
-b

it
 a

n
d
 t

h
e

si
ze

 o
f

re
g
is

te
r/

m
em

o
ry

 i
s

1
6
-b

it
 t

h
en

 t
h
e

8
-b

it
 i

m
m

ed
ia

te
 o

p
er

an
d
 i

s
si

g
n
 e

x
te

n
d
ed

 t
o
 1

6
-b

it
.

T
h
e

ar
it

h
m

et
ic

o
p
er

at
io

n
 i

s
p
er

fo
rm

ed
 b

et
w

ee
n
 t

h
e

si
g
n
 e

x
te

n
d
ed

 d
at

a
an

d
 t

h
e

co
n
te

n
t

o
f

re
g
is

te
r/

m
em

o
ry

.

T
h
e

ar
it

h
m

et
ic

 i
n
st

ru
ct

io
n
s

al
te

r
th

e
fl

ag
s

o
f

8
0
8
6
.
T

h
e

p
ro

ce
ss

o
r

u
se

 t
h
e

re
su

lt
 o

f
ar

it
h
m

et
ic

 o
p
er

at
io

n
 t

o
 a

lt
er

 t
h
e

fl
ag

.
T

h
e

fl
ag

s

re
fl

ec
t

th
e

st
at

u
s

o
f

re
su

lt
 (

fo
r

ex
am

p
le

,
th

e
re

su
lt

 i
s

ze
ro

 o
r

n
o
t;

 r
es

u
lt

 h
as

 c
ar

ry
 o

r
n
o
t,

 e
tc

.)
.

T
h

e
ar

it
h

m
et

ic
 i

n
st

ru
ct

io
n

s
o

f
8

0
8

6
 a

re
 l

is
te

d
 i

n
 T

ab
le

-4
.1

1
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n

 a
b

o
u

t
ea

ch
 i

n
st

ru
ct

io
n

.

 3. 35

T
A

B
L

E
 -

 3
.1

1
 :

 A
R

IT
H

M
E

T
IC

 I
N

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

2
8

.
A

D
D

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

a
)

A
D

D
 r

e
g
2
,

re
g
1

(r
e
g
2
)

←
 (

re
g
1
)

+
 (

re
g
2
)

T
h
e
 c

o
n
te

n
t

o
f

 t
w

o
 r

e
g
is

te
rs

 a
re

 a
d
d
e
d
 a

n
d
 t

h
e
 r

e
s
u
lt
 i
s

s
to

re
d

 i
n

 r
e

g
is

te
r2

.

b
)

A
D

D
 r

e
g

2
,

m
e

m
(r

e
g

2
)

←
 (

re
g
2
)

+
 (

m
e
m

)
T

h
e
 c

o
n
te

n
t

o
f

 r
e
g
is

te
r2

 a
n
d

m
e
m

o
ry

 a
re

 a
d
d
e
d
 a

n
d
 t

h
e

re
s
u

lt
 i

s
 s

to
re

d
 i

s
 r

e
g

is
te

r2
.

c
)

A
D

D
 m

e
m

,
re

g
1

(m
e
m

)
←

 (
m

e
m

)
+

 (
re

g
1
)

T
h
e
 c

o
n
te

n
t

o
f

 r
e
g
is

te
r1

 a
n
d
 m

e
m

o
ry

 a
re

 a
d
d
e
d
 a

n
d
 t

h
e

re
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

2
9

.
A

D
D

 r
e
g
/m

e
m

,
d
a
ta

a
)

A
D

D
 r

e
g
,
d
a
ta

(r
e
g

)
←

 (
re

g
)

+
 d

a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 i
s
 a

d
d
e
d
 t

o
 t

h
e
 c

o
n
te

n
t

o
f

re
g

is
te

r
a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 r

e
g

is
te

r.

b
)

A
D

D
 m

e
m

,
d

a
ta

(m
e

m
)

←
 (

m
e
m

)
+

 d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 i
s
 a

d
d
e
d
 t

o
 t

h
e

c
o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

3
0

.
A

D
D

 A
,
d
a
ta

a
)

A
D

D
 A

L
,
d
a
ta

8
(A

L
)

←
 (

A
L
)

+
 d

a
ta

8
T

h
e
 8

-b
it
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 i
s
 a

d
d
e
d
 t

o
 t

h
e
 c

o
n
te

n
t

o
f

8
-b

it
 a

c
c

u
m

u
la

to
r

a
n

d
 t

h
e

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n
 8

-b
it

a
c
c
u
m

u
la

to
r

(A
L
).

b
)

A
D

D
 A

X
,
d
a
ta

1
6

(A
X

)
←

 (
A

X
)
+

 d
a
ta

1
6

T
h
e
 1

6
-b

it
 d

a
ta

 g
iv

e
n
 in

 t
h
e
 in

s
tr

u
c
ti
o
n
 is

 a
d
d
e
d
 t
o
 t
h
e
 c

o
n
te

n
t

o
f

1
6

-b
it

 a
c
c
u

m
u

la
to

r
a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 1

6
-b

it

a
c
c
u
m

u
la

to
r

(A
X

).

3
1

.
A

D
C

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

a
)

A
D

C
 r

e
g
2
,

re
g
1

(r
e
g
2
)

←
 (

re
g
2
)

+
 (

re
g
1
)

+
 C

F
T

h
e
 c

o
n
te

n
t

o
f

 r
e
g
is

te
rs

 a
n
d

c
a
rr

y
 f

la
g

a
re

 a
d
d
e
d
 a

n
d

th
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

b
)

A
D

C
 r

e
g

2
,

m
e

m
(r

e
g

2
)

←
 (

re
g

2
)

+
 (

m
e

m
)

+
 C

F
T

h
e

 c
a

rr
y
 f

la
g

 a
n

d
 t

h
e

 c
o

n
te

n
t

o
f

m
e

m
o

ry
 a

re
 a

d
d

e
d

 t
o

re
g
is

te
r2

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

c
)

A
D

C
 m

e
m

,
re

g
1

(m
e

m
)

←
 (

m
e
m

)
+

 (
re

g
1
)

+
 C

F
T

h
e
 c

a
rr

y
 f

la
g
 a

n
d
 t

h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r1

 a
re

 a
d
d
e
d
 t

o

m
e
m

o
ry

a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

8086 Microprocessor and Its Appications

3. 36 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

3
2

.
A

D
C

 r
e
g
/m

e
m

,
d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 a

n
d
 t

h
e
 c

a
rr

y
 f

la
g
 a

re

a
)

A
D

C
 r

e
g
,
d
a
ta

(r
e
g
)

←
 (

re
g
)

+

d
a
ta

 +
 C

F
a
d
d
e
d
 t

o
 t

h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r

a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n

re
g

is
te

r.

b
)

A
D

C
 m

e
m

,
d
a
ta

(m
e
m

)
←

 (
m

e
m

)
+

 d
a
ta

 +
 C

F
T

h
e
 d

a
ta

 g
iv

e
n
 i
n
 i
n
s
tr

u
c
ti
o
n
 a

n
d
 t

h
e
 c

a
rr

y
 f

la
g

a
re

 a
d
d
e
d

to
 t
h
e
 c

o
n
te

n
t
o
f
m

e
m

o
ry

 a
n
d
 t
h
e
 r
e
s
u
lt
 is

 s
to

re
d
 in

 m
e
m

o
ry

.

3
3

.
A

D
C

 A
,
d
a
ta

a
)

A
D

C
 A

L
,
d
a
ta

8
(A

L
)

←
 (

A
L
)

+
 d

a
ta

8
 +

 C
F

T
h
e
 8

-b
it
 d

a
ta

 g
iv

e
n
 i
n
 i
n
s
tr

u
c
ti
o
n
 a

n
d
 t

h
e
 c

a
rr

y

fl
a
g
 a

re

a
d
d
e
d
 t

o
 c

o
n
te

n
t

o
f

8
-b

it
 a

c
c
u
m

u
la

to
r(

A
L
)

a
n
d
 t

h
e
 r

e
s
u
lt

is
 s

to
re

d
 i

n
 8

-b
it
 a

c
c
u
m

u
la

to
r(

A
L
).

b
)

A
D

C
 A

X
,
d
a
ta

1
6

(A
X

)
←

 (
A

X
)
+

 d
a
ta

1
6
 +

 C
F

T
h
e
 1

6
-b

it
 d

a
ta

 g
iv

e
n
 i
n
 i
n
s
tr

u
c
ti
o
n
 a

n
d
 t

h
e
 c

a
rr

y
 f

la
g

a
re

a
d
d
e
d
 to

 c
o
n
te

n
t o

f
a
c
c
u
m

u
la

to
r(

A
X

)
a
n
d
 th

e
 r
e
s
u
lt
 is

 s
to

re
d

in
 1

6
-b

it
 a

c
c
u
m

u
la

to
r
(A

X
).

3
4

.
A

A
A

A
d
ju

s
t
A

L
 t

o
 u

n
p
a
c
k
e
d
 B

C
D

T
h
is

 i
n
s
tr

u
c
ti
o
n
 i
s
 e

x
e
c
u
te

d
 a

ft
e
r

a
d
d
it
io

n
 o

f
tw

o
 A

S
C

II

1
.
(A

L
)

←
 (

A
L
)

&
 0

F
H

d
a
ta

 t
o
 c

o
n
v
e
rt

 t
h
e
 r

e
s
u
lt
 i
n
 A

L
 t

o
 c

o
rr

e
c
t

u
n
p
a
c
k
e
d
 B

C
D

.

2
.
If
 A

L
 >

 9
 o

r
A

F
 =

 1
 t
h
e
n

(A
L

)
←

 (
A

L
)

+
 6

(A
H

)←
 (

A
H

)
+

 1

C

F
 ←

 1
 ;
 A

F
 ←

 1
(A

L
)

←
 (
A

L
)
&

 0
F

H

H

3
5

.
D

A
A

A
d

ju
s
t
A

L
 t

o
 p

a
c
k
e

d
 B

C
D

.
T

h
is

 i
n

s
tr

u
c
ti
o

n
 i

s
 e

x
e

c
u

te
d

 a
ft

e
r

a
d

d
it
io

n
 o

f
tw

o
 p

a
c
k
e

d

1
.
If
 lo

w
e
r

n
ib

b
le

 o
f A

L
>

9
 o

r
A

F
=

1
B

C
D

 d
a
ta

 t
o
 c

o
n
v
e
rt

 t
h
e
 r

e
s
u
lt
 i
n
 A

L
 t

o
 p

a
c
k
e
d
 B

C
D

d
a
ta

.

 t
h
e
n
 (

A
L
)

←
 (

A
L

)+
0

6
 ;
 A

F
 ←

 1

2
.

If
 h

ig
h
e
r

n
ib

b
le

 o
f
A

L
>

9
 o

r
C

F
=

1

th

e
n

 (
A

L
)

←
 (

A
L
)

+
 6

0
 ;
 C

F
 ←

 1

3
6

.
S

U
B

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

a
)

S
U

B
 r

e
g
2
,

re
g
1

 (
re

g
2
)

←
 (

re
g
2
)

−
 (

re
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r1

 i
s
 s

u
b
tr

a
c
te

d
 f

ro
m

 t
h
e
 r

e
g
is

te
r2

a
n
d
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

b
)

S
U

B
 r

e
g

2
,

m
e

m
 (

re
g

2
)

←
 (

re
g

2
)

−
 (

m
e
m

)
T

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 i
s
 s

u
b
tr

a
c
te

d
 f

ro
m

 t
h
e
 c

o
n
te

n
t

o
f

re
g

is
te

r2
 a

n
d

 r
e

s
u

lt
 i

s
s
to

re
d

 i
n

 r
e

g
is

te
r2

.

c
)

S
U

B
 m

e
m

,
re

g
1

 (
m

e
m

)
←

 (
m

e
m

)
−
 (

re
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r1

 i
s
 s

u
b
tr

a
c
te

d
 f

ro
m

 t
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

 3. 37

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

3
7

.
S

U
B

 r
e
g
/m

e
m

,
d
a
ta

a
)

S
U

B
 r

e
g
,

d
a
ta

(r
e
g

)
←

 (
re

g
)

−
 d

a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 s

u
b
tr

a
c
te

d
 f

ro
m

 t
h
e

re
g

is
te

r
a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 r

e
g

is
te

r.

b
)

S
U

B
 m

e
m

,
d
a
ta

(m
e
m

)
←

 (
m

e
m

)
−

 d
a
ta

T
h
e
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 s

u
b
tr

a
c
te

d
 f

ro
m

 t
h
e

c
o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

3
8

.
S

U
B

 A
,
d
a
ta

a
)

S
U

B
 A

L
,
d
a
ta

8
(A

L
)

←
 (

A
L
)

−
 d

a
ta

8
T

h
e
 8

-b
it
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 s

u
b
tr

a
c
te

d

fr
o
m

 A
L
 a

n
d
 t

h
e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

L
-r

e
g
is

te
r.

b
)

S
U

B
 A

X
,
d
a
ta

1
6

(A
X

)
←

 (
A

X
)

−
 d

a
ta

1
6

T
h
e
 1

6
-b

it
 d

a
ta

 g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 i

s
 s

u
b
tr

a
c
te

d
 f

ro
m

a
c
c
u
m

u
la

to
r(

A
X

)
a
n
d
 t
h
e
 r
e
s
u
lt
 is

 s
to

re
d
 in

 a
c
c
u
m

u
la

to
r(

A
X

).

3
9

.
S

B
B

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

a
)

S
B

B
 r

e
g
2
,

re
g
1

(r
e
g
2
)

←
 (

re
g

2
)

−
 (

re
g

1
)

−
 C

F
T

h
e
 c

a
rr

y

fl
a
g

a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r1

 a
re

 s
u
b
tr

a
c
te

d

fr
o
m

re

g
is

te
r2

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

b
)

S
B

B
 r

e
g
2
,

m
e
m

(r
e
g
2
)

←
 (

re
g
2
)

−
 (

m
e

m
)

−
 C

F
T

h
e
 c

a
rr

y
 f

la
g

a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
re

 s
u
b
tr

a
c
te

d

fr
o
m

 r
e
g
is

te
r2

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

c
)

S
B

B
 m

e
m

,
re

g
1

(m
e

m
)

←
 (

m
e

m
)

−
 (

re
g

1
)

−
 C

F
T

h
e
 c

a
rr

y
 f

la
g

a
n
d
 t

h
e
 c

o
n
te

n
t

o
f

 r
e
g
is

te
r1

 a
re

 s
u
b
tr

a
c
te

d

fr
o
m

 t
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n

m
e

m
o

ry
.

4
0

.
S

B
B

 r
e
g
/m

e
m

,
d
a
ta

a
)

S
B

B
 r

e
g
,

d
a
ta

(r
e
g

)
←

 (
re

g
)

−
 d

a
ta

 −
 C

F
T

h
e
 c

a
rr

y
 f

la
g

a
n
d
 t

h
e
 d

a
ta

 g
iv

e
n
 i
n
 i
n
s
tr

u
c
ti
o
n
 a

re

s
u
b
tr

a
c
te

d
 f

ro
m

 r
e
g
is

te
r

a
n
d
 t

h
e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 r

e
g
is

te
r.

b
)

S
B

B
 m

e
m

,
d
a
ta

(m
e
m

)
←

 (
m

e
m

)
−

 d
a
ta

 −
 C

F
T

h
e

 c
a

rr
y
 f

la
g
 a

n
d

 t
h

e
 d

a
ta

 g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 a

re

s
u
b
tr

a
c
te

d
 f

ro
m

 t
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s

s
to

re
d

 i
n

 m
e

m
o

ry
.

8086 Microprocessor and Its Appications

3. 38 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

4
1

.
S

B
B

 A
,
d

a
ta

 a
)

S
B

B
 A

L
,
d
a
ta

8
(A

L
)

←
 (

A
L
)

−
 d

a
ta

8
 −

 C
F

T
h
e
 c

a
rr

y
 f

la
g
 a

n
d
 t

h
e
 8

-b
it
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 a

re
s
u
b
tr

a
c
te

d
 f

ro
m

 A
L

-r
e
g
is

te
r

a
n
d
 t

h
e
 r

e
s
u
lt

is
 s

to
re

d
 i
n
 A

L
-

re
g
is

te
r.

 b
)

S
B

B
 A

X
,
d

a
ta

1
6

(A
X

)
←

 (
A

X
)

−
 d

a
ta

1
6

 −
 C

F
T

h
e
 c

a
rr

y
 f

la
g
 a

n
d
 t

h
e
 1

6
-b

it
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n

a
re

 s
u
b
tr

a
c
te

d
 f

ro
m

 t
h
e
 a

c
c
u
m

u
la

to
r

a
n
d
 t

h
e
 1

6
-b

it
 r

e
s
u
lt

is
 s

to
re

d
 i

n
 a

c
c
u
m

u
la

to
r.

4
2

.
A

A
S

A
d

ju
s
t
A

L
 t

o
 u

n
p
a

c
k
e

d
 B

C
D

.
T

h
is

 i
n

s
tr

u
c
ti
o

n
 i
s
 e

x
e

c
u

te
d

 a
ft
e

r
s
u

b
tr

a
c
ti
o

n
 o

f
A

S
C

II
1
.
(A

L
)

←
 (

A
L
)

&
 0

F
H

d
a
ta

 t
o
 c

o
n
v
e
rt

 t
h
e
 r

e
s
u
lt
 i
n
 A

L
 t

o
 c

o
rr

e
c
t

u
n
p
a
c
k
e
d
 B

C
D

.
2
.
If
 (

A
L
)

>
 9

 o
r
A

F
 =

 1
 t
h
e
n
,

 (

A
L

)
←

 (
A

L
)

−
 6

 ;
 (

A
H

)
←

 (
A

H
)

−
 1

 A

F
 ←

 1
 ;
 C

F
 ←

 1
 ;
 A

L
 ←

 (
A

L
)

&
 0

F
H

4
3

.
D

A
S

A
d
ju

s
t
A

L
 t

o
 p

a
c
k
e
d
 B

C
D

.
T

h
is

 i
n
s
tr

u
c
ti
o
n
 i

s
 e

x
e
c
u
te

d
 a

ft
e
r

s
u
b
tr

a
c
ti
o
n
 o

f
p
a
c
k
e
d

1
.
If
 lo

w
e
r

n
ib

b
le

 o
f A

L
>

9
 o

r
A

F
 =

 1
B

C
D

 d
a
ta

 t
o
 c

o
n
v
e
rt

 t
h
e
 r

e
s
u
lt
 i
n
 A

L
 t

o
 p

a
c
k
e
d
 B

C
D

 d
a
ta

.

 t
h

e
n

,
(A

L
)

←
 (

A
L
)

−
6
 ;
 A

F
 ←

 1
.

2
.

If
 u

p
p
e
r

n
ib

b
le

 o
f
A

L
>

9
 o

r
C

F
=

1

th

e
n

,
(A

L
)

←
 (

A
L

)
−

6
0

 ;

C

F
 ←

 1
.

4
4

.
M

U
L

 r
e

g
/m

e
m

 a
)

M
U

L
 r

e
g

F
o

r
b

y
te

It
 i

s
 u

n
s
ig

n
e

d
 m

u
lt
ip

lic
a

ti
o

n
.W

h
ile

 u
s
in

g
 t

h
is

 i
n

s
tr

u
c
ti
o

n
(A

X
)

←
 (
A

L
)

×
 (
re

g
8
)

th
e
 c

o
n
te

n
t

o
f

a
c
c
u
m

u
la

to
r

a
n
d
 r

e
g
is

te
r

s
h
o
u
ld

 b
e
 u

n
s
ig

n
e
d

F
o
r

w
o
rd

b
in

a
ry

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 a

ls
o
 u

n
s
ig

n
e
d
 b

in
a
ry

.
(D

X
)(

A
X

)
←

 (
A

X
)

×
 (
re

g
1
6
)

F
o
r

b
y
te

 o
p
e
ra

n
d
 :

T
h
e
 c

o
n
te

n
t

o
f

8
-b

it
 a

c
c
u
m

u
la

to
r(

A
L
)

is
 m

u
lt
ip

lie
d
 b

y
 t

h
e

c
o

n
te

n
t

o
f

8
-b

it
 r

e
g

is
te

r
a

n
d

 t
h

e
 p

ro
d

u
c
t

is
 s

to
re

d
 i

n
A

X
-r

e
g
is

te
r.

F
o
r

w
o
rd

 o
p
e
ra

n
d
:

T
h
e
 c

o
n
te

n
t

o
f

1
6

-b
it
 a

c
c
u
m

u
la

to
r(

A
X

)
is

 m
u
lt
ip

lie
d
 b

y
th

e
 c

o
n

te
n

t
o

f
1
6

-b
it
 r

e
g

is
te

r.
T

h
e

 l
o

w
e

r
w

o
rd

 o
f

th
e

 r
e

s
u

lt
is

 s
to

re
d
 i
n
 A

X
-r

e
g
is

te
r

a
n
d
 t

h
e
 u

p
p
e
r

w
o
rd

 i
n
 D

X
-r

e
g
is

te
r.

 b
)

M
U

L
 m

e
m

F
o
r
b
y
te

T
h
is

 i
n
s
tr

u
c
ti
o
n
 i
s
 s

a
m

e
 a

s
 M

U
L
 r

e
g
,

e
x
c
e
p
t

th
a
t

o
n
e
 o

f
(A

X
)

←
 (

A
L

)
×

 (
m

e
m

8
)

th
e
 s

o
u
rc

e
 o

p
e
ra

n
d
 i

s
in

 m
e
m

o
ry

 i
n
s
te

a
d
 o

f
re

g
is

te
r.

F
o
r

w
o
rd

(D
X

)(
A

X
)

←
 (
A

X
)

×
 (
m

e
m

1
6

)

 3. 39

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

 I
n

st
ru

ct
io

n
 S

y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

4
5

.
IM

U
L
 r

e
g
/m

e
m

 a

)
IM

U
L
 r

e
g

F
o
r
b
y
te

It
 i

s
 s

ig
n
e
d
 m

u
lt
ip

lic
a
ti
o
n
.W

h
ile

 u
s
in

g
 t

h
is

 i
n
s
tr

u
c
ti
o
n
 t

h
e

(A
X

)
←

 (
A

L
)

×
 (
re

g
8
)

c
o
n
te

n
t

o
f

a
c
c
u
m

u
la

to
r

a
n
d
 r

e
g
is

te
r

s
h
o
u
ld

 b
e
 s

ig
n

F
o
r

w
o
rd

e
x
te

n
d
e
d
 b

in
a
ry

 i
n
 2

’s
 c

o
m

p
le

m
e
n
t

fo
rm

 a
n
d
 t

h
e
 r

e
s
u
lt
 i

s

(D
X

)
(A

X
)

←
 (
A

X
)

×
 (
re

g
1
6
)

a
ls

o
 s

ig
n
 e

x
te

n
d
e
d
 b

in
a
ry

.

F
o
r

b
y
te

 o
p
e
ra

n
d
 :

T
h
e
 c

o
n
te

n
t

o
f

A
L
 i
s
 m

u
lt
ip

lie
d
 b

y
 t

h
e
 c

o
n
te

n
t

o
f

8
-b

it

re
g
is

te
r

a
n
d
 t

h
e
 s

ig
n
 e

x
te

n
d
e
d
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

X
.

F
o
r

w
o
rd

 o
p
e
ra

n
d
 :

T
h
e
 c

o
n
te

n
t

o
f

A
X

 i
s
 m

u
lt
ip

lie
d
 b

y
 t

h
e
 c

o
n
te

n
t

o
f

1
6

-b
it

re
g

is
te

r.
 T

h
e

 l
o

w
e

r
w

o
rd

 o
f

s
ig

n
 e

x
te

n
d

e
d

 r
e

s
u

lt
 i

s
 s

to
re

d

in
 A

X
-r

e
g
is

te
r

a
n
d
 t

h
e
 u

p
p
e
r

w
o
rd

 i
n
 D

X
-r

e
g
is

te
r.

 b

)
IM

U
L
 m

e
m

F
o
r
b
y
te

T
h
is

 i
n
s
tr

u
c
ti
o
n
 i
s
 s

a
m

e
 a

s
 I

M
U

L
 r

e
g
,

e
x
c
e
p
t

th
a
t

o
n
e
 o

f

(A
X

)
←

 (
A

X
)

×
 (
m

e
m

8
)

th
e
 s

o
u
rc

e
 o

p
e
ra

n
d
 i

s
 i

n
 m

e
m

o
ry

 i
n
s
te

a
d
 o

f
re

g
is

te
r.

F
o
r

w
o
rd

(D
X

)
(A

X
)

←
 (
A

X
)

×
 (
m

e
m

1
6

)

4
6

.
A

A
M

A
d
ju

s
t
A

H
 t

o
 u

n
p
a
c
k
e
d
 B

C
D

 d
a
ta

.
A

ft
e
r

m
u
lt
ip

lic
a
ti
o
n
 o

f
tw

o
 8

-b
it
 u

n
p
a
c
k
e
d
 B

C
D

 d
a
ta

 t
h
e

(A
H

)
=

 (
A

L
)

÷
 0

A
H

re
s
u
lt
 i
n
 A

X
 w

ill
 b

e
 i
n
 b

in
a
ry

.
T

h
is

 i
n
s
tr

u
c
ti
o
n
 c

a
n
 b

e

(A
L

)
=

 (
A

L
)
M

O
D

 0
A

H
e
x
e
c
u
te

d
 a

ft
e
r

m
u
lt
ip

lic
a
ti
o
n
 t

o
 c

o
n
v
e
rt

 t
h
e
 r

e
s
u
lt
 i
n
 A

X

N
o
te

 :
 0

A
H

=

 1
0

1
0

to
 u

n
p
a
c
k
e
d
 B

C
D

.

8086 Microprocessor and Its Appications

3. 40 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

 4

7
.

D
IV

 r
e
g
/m

e
m

a
)

D
IV

 r
e
g

F
o
r

1
6

-b
it
 ÷

 8
-b

it
It

 i
s
 u

n
s
ig

n
e

d
 d

iv
is

io
n

.
W

h
il
e

 u
s
in

g
 t

h
is

 i
n

s
tr

u
c
ti
o

n
 t

h
e

(A
L

)
←

 (
A

X
)

÷
 (

re
g

8
)

c
o

n
te

n
t

o
f

a
c
c
u

m
u

la
to

r
a

n
d

 r
e

g
is

te
r

s
h

o
u

ld
 b

e
 a

n
 u

n
s
ig

n
e

d
Q

u
o
ti
e
n
t

b
in

a
ry

.
T

h
e
 r
e
s
u
lt
 is

 a
ls

o
 a

n
 u

n
s
ig

n
e
d
 b

in
a
ry

.
T

h
is

 in
s
tr

u
c
ti
o
n

(A
H

)
←

 (
A

X
)
M

O
D

 (
re

g
8
)

d
iv

id
e

s
 t

h
e

 c
o

n
te

n
t

o
f

 a
c
c
u

m
u

la
to

r
b

y
 t

h
e

 c
o

n
te

n
t

o
f

R
e
m

a
in

d
e
r

re
g
is

te
r.

 D
iv

is
io

n
 b

y
 z

e
ro

 w
ill

 g
e
n
e
ra

te
 a

 t
y
p
e

-0
 i
n
te

rr
u
p
t.

F
o

r
3

2
-b

it
 ÷

 1
6
-b

it
F

o
r

1
6

-b
it

 ÷
 8

-b
it
 :

(A
X

)
←

 (
D

X
)(

A
X

)
÷

 (
re

g
1
6
)

T
h
e
 q

u
o
ti
e
n
t

is
 s

to
re

d
 i

n
 A

L
-r

e
g
is

te
r

a
n
d
 t

h
e
 r

e
m

a
in

d
e
r

is

Q
u
o
ti
e
n
t

s
to

re
d
 i

n
 A

H
-r

e
g
is

te
r.

(D
X

)
←

 (
D

X
)(

A
X

)
M

O
D

 (
re

g
1
6
)

F
o
r

3
2

-b
it

 ÷
 1

6
-b

it
 :

R
e
m

a
in

d
e
r

T
h

e
 q

u
o

ti
e

n
t

is
 s

to
re

d
 i

n
 A

X
 (

a
c
c
u

m
u

la
to

r)
 w

h
il
e

 t
h

e

re
m

a
in

d
e
r

is
 s

to
re

d
 i

n
 D

X
-r

e
g
is

te
r.

b
)

D
IV

 m
e
m

F
o
r

1
6
-b

it
÷
8
-b

it
T

h
is

 i
n
s
tr

u
c
ti
o
n
 i
s
 s

a
m

e
 a

s
 D

IV
 r

e
g
 e

x
c
e
p
t

th
a
t

th
e
 d

iv
is

o
r

(A
L

)
←

 (
A

X
)

÷
 (

m
e
m

8
)

is
 s

to
re

d
 i

n
 m

e
m

o
ry

 i
n
s
te

a
d
 o

f
re

g
is

te
r.

Q
u
o
ti
e
n
t

(A
H

)
←

 (
A

X
)

M
O

D
 (

m
e

m
8

)

R
e
m

a
in

d
e
r

F
o

r
3

2
-b

it
 ÷

 1
6

-b
it

(A
X

)
←

 (
D

X
)(

A
X

)
÷
 (

m
e

m
1

6
)

Q
u
o
ti
e
n
t

(D
X

)
←

 (
D

X
)(

A
X

)
M

O
D

 (
m

e
m

1
6
)

R
e
m

a
in

d
e
r

 3. 41

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
e
p

r
e
se

n
ta

ti
o

n

4
8

.
ID

IV
 r

e
g

/m
e
m

a
)

ID
IV

 r
e
g

F
o
r

1
6

-b
it
 ÷

 8
-b

it
It

 i
s
 s

ig
n

e
d

 d
iv

is
io

n
.W

h
ile

 u
s
in

g
 t

h
is

 i
n

s
tr

u
c
ti
o

n
 t

h
e

 c
o

n
te

n
t

(A
L
)

←
 (

A
X

)
÷
 (

re
g

8
)

o
f

a
c

c
u

m
u

la
to

r
a

n
d

re

g
is

te
r

s
h

o
u

ld

b

e

s

ig
n

e

x
te

n
d

e
d

(A
H

)
←

 (
A

X
)
M

O
D

 (
re

g
8
)

b
in

a
ry

. T
h
e
 s

ig
n
 o

f
q
u
o
ti
e
n
t
d
e
p
e
n
d
s
 o

n
 t
h
e
 s

ig
n
 o

f
th

e
 d

iv
id

e
n
d

F
o

r
3

2
-b

it
 ÷

 1
6

-b
it

a
n

d

th
e

d

iv
is

o
r.

T

h
e

s

ig
n

o

f
th

e

re
m

a
in

d
e

r
w

il
l

b
e

(A
X

)
←

 (
D

X
)(

A
X

)
÷

 (
re

g
1

6
)

s
a

m
e

 a
s
 t

h
a

t
o

f
th

e
 d

iv
id

e
n

d
.

D
iv

is
io

n
 b

y
 z

e
ro

 g
e

n
e

ra
te

s

(D
X

)
←

 (
D

X
)(

A
X

)
M

O
D

 (
re

g
1
6
)

a
 t

y
p

e
-0

 i
n

te
rr

u
p

t.

F
o

r
1
6

-b
it

÷
8

-b
it
 :

T
h

e
 q

u
o

ti
e

n
t

is
 s

to
re

d
 i

n
 A

L
-r

e
g

is
te

r
a

n
d

 t
h

e
 r

e
m

a
in

d
e

r
is

s
to

re
d
 i

n
 A

H
-r

e
g
is

te
r.

F
o

r
3
2

-b
it

÷
1

6
-b

it
 :

T
h

e

q

u
o

ti
e

n
t

is

s

to
re

d

in

 A
X

(a
c

c
u

m
u

la
to

r)

w

h
il

e

th

e
re

m
a
in

d
e
r

is
 s

to
re

d
 i

n
 D

X
-r

e
g
is

te
r.

b

)
ID

IV
 m

e
m

F
o

r
1

6
-b

it
 ÷

 8
-b

it
T

h
is

 i
n
s
tr

u
c
ti
o
n
 i

s
 s

a
m

e
 a

s
 I

D
IV

 r
e
g
,

e
x
c
e
p
t

th
a
t

th
e
 s

ig
n
e
d

(A
L

)
←

 (
A

X
)

÷
 (

m
e
m

8
)

d
iv

is
o
r

is
 s

to
re

d
 i

n
 m

e
m

o
ry

 i
n
s
te

a
d
 o

f
re

g
is

te
r.

(A
H

)
←

 (
A

X
)

M
O

D
 (

m
e

m
8

)

F
o

r
3

2
-b

it
 ÷

 1
6

-b
it

(A
X

)
←

 (
D

X
)(

A
X

)
÷

 (
m

e
m

1
6

)
(D

X
)

←
 (
D

X
)(

A
X

)
M

O
D

 (
m

e
m

1
6

)

4
9

.
A

A
D

A
d
ju

s
t
A

L
 t

o
 p

a
c
k
e
d
 B

C
D

.
T

h
e
 u

n
p
a
c
k
e
d
 B

C
D

 d
ig

it
 i
n
 A

H
 a

n
d
 A

L
 r

e
g
is

te
rs

 a
re

 c
o
n
v
e
rt

e
d

(A
L
)

←
 (

A
H

)
×
 1

6
1
0
 +

 (
A

L
)

to
 e

q
u

iv
a

le
n

t
p

a
c
k
e

d
 B

C
D

 d
a

ta
 a

n
d

 s
to

re
d

 i
n

 A
L

-r
e

g
is

te
r.

(A
H

)
←

 0
0

H
T

h
is

 i
n

s
tr

u
c
ti
o

n
 s

h
o

u
ld

 b
e

 u
s
e

d
 b

e
fo

re
 t

h
e

 u
s
e

 o
f

d
iv

is
io

n
in

s
tr

u
c
ti
o

n
.

5
0

.
N

E
G

 m
e

m
/r

e
g

a

)
N

E
G

 r
e

g
(r

e
g

)
←

 0
−

(r
e
g
)

C
h

a
n

g
e

s
 t

h
e

 s
ig

n
 o

f
th

e
 r

e
g

is
te

r
c
o

n
te

n
t.

 (
T

h
e

 r
e

g
is

te
r

c
o
n
te

n
t

w
ill

 b
e
 r

e
p
la

c
e
d
 b

y
 i

ts
 2

’s
 c

o
m

p
le

m
e
n
t

v
a
lu

e
.)

b
)

N
E

G
 m

e
m

(m
e

m
)

←
 0

−
(m

e
m

)
C

h
a

n
g

e
s
 t

h
e

 s
ig

n
 o

f
th

e
 m

e
m

o
ry

 c
o

n
te

n
t.

 (
T

h
e

 m
e

m
o

ry
c
o
n
te

n
t

is
 r

e
p
la

c
e
d
 b

y
 i

ts
 2

’s
 c

o
m

p
le

m
e
n
t

v
a
lu

e
.)

8086 Microprocessor and Its Appications

3. 42 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

 S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
e
p

r
e
se

n
ta

ti
o

n

5
1

.
IN

C
 r

e
g

8
/m

e
m

a
)

IN
C

 r
e
g
8

(r
e
g
8
)

←
 (

re
g
8
)

+
 1

T
h
e
 c

o
n
te

n
t

o
f

th
e
 8

-b
it
 r

e
g
is

te
r

is
 i
n
c
re

m
e
n
te

d
 b

y
 1

.

b

)
IN

C
 m

e
m

(m
e

m
)

←
 (

m
e
m

)
+

 1
T

h
e
 c

o
n
te

n
t

o
f

th
e
 m

e
m

o
ry

 i
s
 i
n
c
re

m
e
n
te

d
 b

y
 1

.

5
2

.
IN

C
 r

e
g
1
6

(r
e
g
1
6

)
←

 (
re

g
1
6

)
+

 1
T

h
e
 c

o
n
te

n
t

o
f

th
e
 1

6
-b

it
 r

e
g
is

te
r

is
 i
n
c
re

m
e
n
te

d
 b

y
 1

.

5
3

.
D

E
C

 r
e

g
8

/m
e

m

a
)

D
E

C
 r

e
g
8

(r
e
g
8
)

←
 (

re
g
8
)

−
1

T
h
e
 c

o
n
te

n
t

o
f

th
e
 8

-b
it
 r

e
g
is

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 1

.

b

)
D

E
C

 m
e

m
(m

e
m

)
←

 (
m

e
m

)
−

1
T

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 i
s
 d

e
c
re

m
e
n
te

d
 b

y
 1

.

5
4

.
D

E
C

 r
e
g
1
6

(r
e
g
1
6

)
←

 (
re

g
1
6
)−

1
T

h
e
 c

o
n
te

n
t

o
f

th
e
 1

6
-b

it
 r

e
g
is

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 1

.

5
5

.
C

B
W

B
it

-7
 o

f
A

L
 i
s
 m

o
v
e
d
 t

o
 a

ll
th

e
 b

its
 o

f
S

ig
n
 e

x
te

n
d
s
 t

h
e
 c

o
n
te

n
t

o
f
A

L
 t
o
 A

H
-r

e
g
is

te
r

b
y
 c

o
p
y
in

g

A
H

-r
e

g
is

te
r.

th
e

 s
ig

n
 b

it
 o

f
A

L
 t

o
 a

ll
th

e
 b

it
s
 i
n

 A
H

-r
e

g
is

te
r.

1
. I

f A
L
 =

 1
x
x
x
 x

x
x
x
 (

ie
.,

≥
8
0

H
)

th

e
n
 A

H
 ←

 1
1
1
1

 1
1
1
1
(F

F
H
)

2
. I

f A
L
 =

 0
x
x
x
 x

x
x
x
 (
ie

.,
<

8
0

H
)

th

e
n
 A

H
 ←

 0
0
0
0
 0

0
0
0
 (

0
0

H
)

5
6

.
C

W
D

B
it

-1
5
 o

f
A

X
 i
s
 m

o
v
e
d
 t

o
 a

ll
th

e
 b

its
S

ig
n
 e

x
te

n
d
s
 t
h
e
 c

o
n
te

n
t
o
f
A

X
 t
o
 D

X
-r

e
g
is

te
r

b
y

c
o

p
y
in

g

o
f

D
X

-r
e
g
is

te
r.

th
e
 s

ig
n
 b

it
 o

f
A

X
 t

o
 a

ll
th

e
 b

its
 i
n
 D

X
-r

e
g
is

te
r.

1
.

If
 A

X
 =

 1
xx

x
xx

xx
 x

xx
x

xx
xx

(i
e
.,

≥
8
0
0
0

H
)

th
e
n

D
X

←
1
1
1
1
 1

1
1
1
 1

1
1
1
 1

1
1
1

 (
F

F
F

F
H
)

2
.

 If
 A

X
 =

 0
xx

x
xx

xx
 x

xx
x

xx
xx

(i
e
.,

<
8
0
0
0

H
)

th
e
n

D

X
←

0
0

0
0

 0
0

0
0

 0
0

0
0

 0
0

0
0

 (
0

0
0

0
H
)

 3. 43

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

5
7

.
C

M
P

 r
e
g
2

/m
e
m

,
re

g
1
/m

e
m

M
o
d
if
y
 f

la
g
s
 ←

 (
re

g
2
)−

(r
e
g
1
)

a
)

C
M

P
 r

e
g

2
,

re
g

1
If

 (
re

g
2

)>
(r

e
g

1
)

th
e

n
 C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0
T

h
e

 c
o

n
te

n
t

o
f

tw
o

 r
e

g
is

te
rs

 a
re

 c
o

m
p

a
re

d
 b

y

If
 (

re
g
2
)<

(r
e
g
1
)

th
e
n
 C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1
s
u

b
tr

a
c
ti
o

n
 a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y
 t

h
e

If
 (

re
g
2
)=

(r
e
g
1
)

th
e
n
 C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0
fl
a
g
s
.
T

h
e
 c

o
n
te

n
t
o
f
th

e
 t
w

o
 r
e
g
is

te
rs

 a
re

 n
o
t
a
lt
e
re

d
.

b

)
C

M
P

 r
e

g
2

,
m

e
m

M
o

d
if
y
 f

la
g

s
 ←

 (
re

g
2
)

−
 (

m
e
m

)
T

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 r

e
g
is

te
r2

 a
re

 c
o
m

p
a
re

d

If
 (

re
g
2
)>

(m
e
m

)
th

e
n
 C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0
b
y
 s

u
b
tr

a
c
ti
o
n
 a

n
d
 t

h
e
 r

e
s
u
lt
 i

s
 u

s
e
d
 t

o
 m

o
d
if
y
 t

h
e

If
 (

re
g
2
)<

(m
e
m

)
th

e
n
 C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1
fl
a
g
s
.

T
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 r

e
g
is

te
r

a
re

 n
o
t

If
 (

re
g
2
)=

(m
e
m

)
th

e
n
 C

F
=

0
 ;

 Z
F

=
1
 ;

 S
F

=
0

a
lt
e

re
d

.

c
)

C
M

P
 m

e
m

,
re

g
1

M
o

d
if
y
 f

la
g

s
 ←

 (
m

e
m

)
−

 (
re

g
1
)

T
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 r

e
g
is

te
r1

 a
re

 c
o
m

p
a
re

d

If
 (

m
e
m

)>
(r

e
g
1
)

th
e
n
 C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0
b
y
 s

u
b
tr

a
c
ti
o
n
 a

n
d
 t
h
e
 r

e
s
u
lt
 i
s
 u

s
e
d
 t
o
 m

o
d
if
y
 f
la

g
s
.

If
 (

m
e
m

)<
(r

e
g
1
)

th
e
n
 C

F
=

1
 ;

 Z
F

=
0

 ;
 S

F
=

1
T

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 a
n
d
 r

e
g
is

te
r

a
re

 n
o
t

a
lt
e
re

d
.

If
 (

m
e
m

)=
(r

e
g
1
)

th
e
n
 C

F
=

0
 ;

 Z
F

=
1

 ;
 S

F
=

0

5
8

.
C

M
P

 r
e
g
/m

e
m

,
d
a
ta

M

o
d
if
y
 f
la

g
s
 ←

 (
re

g
)−

d
a

ta

 a

)
C

M
P

 r
e
g

,
d
a
ta

 I
f
(r

e
g

)>
d
a
ta

 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0

 I
f
(r

e
g

)<
d

a
ta

 t
h

e
n

,
C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1

 I
f
(r

e
g

)=
d

a
ta

 t
h

e
n

,
C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0

 b

)
C

M
P

 m
e

m
,

d
a

ta

M
o

d
if
y
 f

la
g

s
 ←

 (
m

e
m

)−
d

a
ta

If
 (

m
e
m

)
>

d
a
ta

 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0

If
 (

m
e
m

)
<

d
a
ta

 t
h
e
n
,
C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1

If
 (

m
e
m

)
=

d
a
ta

 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0

T
h
e
 c

o
n
te

n
t
o
f
re

g
/m

e
m

 i
s
 c

o
m

p
a
re

d
 w

it
h
 d

a
ta

 g
iv

e
n

in
 t
h
e
 in

s
tr

u
c
ti
o
n
 b

y
 s

u
b
tr

a
c
ti
o
n
 a

n
d
 t
h
e
 r

e
s
u
lt
 is

 u
s
e
d

to
 m

o
d

if
y
 t

h
e

 f
la

g
s
.

T
h

e
 c

o
n

te
n

t
o

f
re

g
/m

e
m

 i
s
 n

o
t

a
lt
e

re
d

.

8086 Microprocessor and Its Appications

3. 44 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
1

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

5
9

.
C

M
P

 A
,
d
a
ta

M
o
d
if
y
 f
la

g
s
 ←

 (
A

L
)−

d
a
ta

 8

 a

)
C

M
P

 A
L
,
d
a
ta

8
If
 (

A
L
)>

d
a
ta

8
 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0

If
 (

A
L
)<

d
a
ta

8
 t
h
e
n
,
C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1

If
 (

A
L

)=
d

a
ta

8
 t
h

e
n

,
C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0

 b

)
C

M
P

 A
X

, d
a
ta

1
6

M
o
d
if
y
 f
la

g
s
 ←

 (
A

X
)

−
d

a
ta

1
6

If
 (
A

X
)>

d
a
ta

1
6
 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0

If
 (

A
X

)<
d

a
ta

1
6

 t
h

e
n

,
C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1

If
 (
A

X
)=

d
a
ta

1
6
 t
h
e
n
,
C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0

3
.
8

L

O
G

I
C

A
L

I
N

S
T

R
U

C
T

I
O

N
S

T
h

e
lo

g
ic

al
 g

ro
u

p
 i
n

cl
u

d
es

 i
n

st
ru

ct
io

n
s

fo
r

p
er

fo
rm

in
g

 A
N

D
,
O

R
,
E

x
cl

u
si

v
e-

O
R

,
co

m
p

le
m

en
t,

 s
h

if
t
an

d
 r

o
ta

te
 o

p
er

at
io

n
s

o
n

 b
in

ar
y

d
at

a.
 T

h
e

m
n

em
o

n
ic

s
u

se
d

 f
o

r
lo

g
ic

al
 i

n
st

ru
ct

io
n

s
ar

e
A

N
D

,
O

R
,

X
O

R
,
T

E
S

T
,

S
H

R
,

S
H

L
,

R
C

R
,

R
C

L
,

et
c.

T
h
e

lo
g
ic

al
 i
n
st

ru
ct

io
n
s

ex
ce

p
t
sh

if
t
an

d
 r

o
ta

te
 i
n
v
o
lv

es
 t
w

o
 o

p
er

an
d
s:

 s
o
u
rc

e
o
p
er

an
d
 a

n
d
 d

es
ti

n
at

io
n
 o

p
er

an
d
.
T

h
e

so
u
rc

e
o
p
er

an
d

ca
n
 b

e
a

re
g
is

te
r

o
r

m
em

o
ry

 l
o
ca

ti
o
n
 o

r
im

m
ed

ia
te

 d
at

a.
 T

h
e

d
es

ti
n
at

io
n
 c

an
 b

e
a

re
g
is

te
r

o
r

m
em

o
ry

.
T

h
e

re
su

lt
 o

f
lo

g
ic

al
 o

p
er

at
io

n
 i

s

st
o
re

d
 i

n
 d

es
ti

n
at

io
n
 r

eg
is

te
r

o
r

m
em

o
ry

 e
x
ce

p
t

in
 c

as
e

o
f

 T
E

S
T

.
(I

n
 T

E
S

T
 o

p
er

at
io

n
 t

h
e

re
su

lt
 i

s
u
se

d
 t

o
 m

o
d
if

y
 t

h
e

fl
ag

s
an

d
 t

h
en

 t
h
e

re
su

lt
 i

s
d

is
ca

rd
ed

.)

In
 d

o
u
b
le

 o
p
er

an
d
 l
o
g
ic

al
 i
n
st

ru
ct

io
n
s

th
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
 c

an
n
o
t
re

fe
r

to
 m

em
o
ry

 l
o
ca

ti
o
n
s

in
 t
h
e

sa
m

e
in

st
ru

ct
io

n
. T

h
er

ef
o
re

p
er

fo
rm

in
g
 l

o
g
ic

al
 o

p
er

at
io

n
 d

ir
ec

tl
y
 o

n
 t

w
o
 m

em
o
ry

 d
at

a
is

 n
o
t

p
o
ss

ib
le

.

In
 d

o
u
b
le

 o
p
er

an
d
 l

o
g
ic

al
 i

n
st

ru
ct

io
n
s,

 t
h
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
 o

p
er

an
d
 s

h
o
u
ld

 b
e

o
f

sa
m

e
si

ze
,

ei
th

er
 b

o
th

 t
h
e

o
p
er

an
d
 s

iz
e

sh
o

u
ld

 b
e

b
y

te
 o

r
w

o
rd

.

T
h
e

lo
g
ic

al
 i

n
st

ru
ct

io
n
s

al
te

r
th

e
fl

ag
s

o
f

8
0
8
6
.
T

h
e

p
ro

ce
ss

o
r

u
se

s
th

e
re

su
lt

 o
f

 l
o
g
ic

al
 o

p
er

at
io

n
 t

o
 a

lt
er

 t
h
e

fl
ag

.
T

h
e

fl
ag

s
re

fl
ec

t

th
e

st
at

u
s

o
f

th
e

re
su

lt
 (

fo
r

ex
am

p
le

,
w

h
et

h
er

 t
h

e
re

su
lt

 i
s

ze
ro

 o
r

n
o

t)
.

T
h
e

lo
g
ic

al
 i

n
st

ru
ct

io
n
s

o
f

8
0
8
6
 a

re
 l

is
te

d
 i

n
 T

ab
le

-3
.1

2
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

T
h
e
 c

o
n
te

n
t

o
f

a
c
c
u
m

u
la

to
r

is
 c

o
m

p
a
re

d
 w

it
h
 d

a
ta

g
iv

e
n
 in

 t
h
e
 in

s
tr

u
c
ti
o
n
 b

y
 s

u
b
tr

a
c
ti
o
n
 a

n
d
 t
h
e
 r
e
s
u
lt

is

u

s
e

d

to

m

o
d

if
y

th

e

fl

a
g

s
.

T
h

e

c

o
n

te
n

t
o

f

a
c
c
u
m

u
la

to
r

is
 n

o
t

a
lt
e
re

d
.

 3. 45

T
A

B
L

E
 -
 3

.1
2
 :
 L

O
G

IC
A

L
 IN

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

6
0

.
A

N
D

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

 a

)
A

N
D

 r
e
g
2
,

re
g
1

(r
e
g
2
)

←
 (

re
g
2
)

a
n
d
 (

re
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
rs

 a
re

 l
o
g
ic

a
lly

 A
N

D
e
d
 b

it
 b

y
 b

it

a
n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

 b

)
A

N
D

 r
e

g
2

,
m

e
m

(r
e

g
2

)
←

 (
re

g
2

)
a

n
d

 (
m

e
m

)
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r2
 a

n
d

 m
e

m
o

ry
 a

re
 l

o
g

ic
a

ll
y

A
N

D
e
d
 b

it
 b

y
 b

it
 a

n
d
 t

h
e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 r

e
g
is

te
r2

.

 c

)
A

N
D

 m
e
m

,
re

g
1

(m
e
m

)
←

 (
m

e
m

)
a
n
d
 (

re
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

th
e
 m

e
m

o
ry

 a
n
d
 r

e
g
is

te
r1

 a
re

 l
o
g
ic

a
lly

A
N

D
e

d
 b

it
 b

y
 b

it
 a

n
d

 r
e

s
u

lt
 i
s
 s

to
re

d
 i
n

 m
e

m
o

ry
.

6
1

.
A

N
D

 r
e

g
/m

e
m

,
d
a
ta

a
)

A
N

D
 r

e
g
,
d
a
ta

(r
e
g
)

←
 (

re
g
)

a
n
d
 d

a
ta

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r

a
n

d
 t

h
e

 d
a

ta
 g

iv
e

n
 i

n
 t

h
e

in
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l

o
g
ic

a
lly

 A
N

D
e
d
 a

n
d
 r

e
s
u
lt
 i

s

s
to

re
d

 i
n

 r
e

g
is

te
r.

b

)
A

N
D

 m
e

m
,

d
a

ta
(m

e
m

)
←

 (
m

e
m

)
a
n
d
 d

a
ta

T
h

e
 c

o
n

te
n

t
o

f
m

e
m

o
ry

 a
n

d
 t

h
e

 d
a

ta
 g

iv
e

n
 i

n
 t

h
e

in
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l

o
g
ic

a
lly

 A
N

D
e
d
 a

n
d
 r

e
s
u
lt
 i

s

s
to

re
d

 i
n

 m
e

m
o

ry
.

6
2

.
A

N
D

 A
,
d
a
ta

a

)
A

N
D

 A
L

,
d

a
ta

8
(A

L
)

←
 (

A
L
)

a
n
d
 d

a
ta

8
T

h
e
 c

o
n
te

n
t

o
f

8
-b

it
 a

c
c
u
m

u
la

to
r(

A
L
)

a
n
d
 8

-b
it
 d

a
ta

g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l

o
g
ic

a
lly

 A
N

D
e
d

a
n
d
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

L
.

b
)

A
N

D
 A

X
,
d
a
ta

1
6

(A
X

)
←

 (
A

X
)
a
n
d
 d

a
ta

1
6

T
h
e
 c

o
n
te

n
t
o
f
 a

c
c
u
m

u
la

to
r(

A
X

)
a
n
d
 1

6
-b

it
 d

a
ta

 g
iv

e
n

in
 t

h
e

 i
n

s
tr

u
c
ti
o

n
 a

re
 b

it
 b

y
 b

it
 l

o
g

ic
a

lly
 A

N
D

e
d

 a
n

d

th
e

 r
e

s
u

lt
 i
s
 s

to
re

d
 i
n

 A
X

.

8086 Microprocessor and Its Appications

3. 46 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

6
3

.
O

R
 r

e
g

2
/m

e
m

,
re

g
1

/m
e

m

a

)
O

R
 r

e
g

2
,

re
g

1
(r

e
g

2
)

←

(r

e
g
2
)

|
(r

e
g
1
)

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
rs

 a
re

 b
it
 b

y
 b

it
 l
o
g
ic

a
lly

O
R

e
d
 a

n
d
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

b
)

O
R

 r
e
g
2
,

m
e
m

(r
e
g
2
)

←

(r

e
g
2
)

|
(m

e
m

)
T

h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r2

 a
n
d
 m

e
m

o
ry

 a
re

 b
it
 b

y
 b

it

lo
g
ic

a
lly

 O
R

e
d
 a

n
d
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r2

.

c
)

O
R

 m
e
m

,
re

g
1

(m
e
m

)
←

 (
m

e
m

)
|

(r
e

g
1

)
T

h
e

 c
o

n
te

n
t

o
f

m
e

m
o

ry
 a

n
d

 r
e

g
is

te
r1

 a
re

 b
it
 b

y
 b

it

lo
g

ic
a

lly
 O

R
e

d
 a

n
d

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

6
4

.
O

R
 r

e
g

/m
e
m

,
d
a
ta

 a

)
O

R
 r

e
g

,
d

a
ta

(r
e

g
)

←
 (

re
g
)

|
d
a
ta

T
h
e
 c

o
n
te

n
t

o
f

re
g
is

te
r

a
n
d
 t

h
e
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e

in
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l
o
g
ic

a
lly

 O
R

e
d
 a

n
d
 t

h
e

re
s
u
lt
 i

s
 s

to
re

d
 i

n
 r

e
g
is

te
r.

 b

)
O

R
 m

e
m

,
d
a
ta

(m
e
m

)
←

 (
m

e
m

)
|

d
a
ta

T
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

a
n
d
 t

h
e
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e

in
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l
o
g
ic

a
lly

 O
R

e
d
 a

n
d
 t

h
e

re
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

6
5

.
O

R
 A

,
d
a
ta

 a

)
O

R
 A

L
,
d
a
ta

8
(A

L
)

←
(A

L
)

|
d

a
ta

8
T

h
e

 c
o

n
te

n
t

o
f

8
-b

it
 a

c
c
u

m
u

la
to

r
(A

L
)

a
n

d
 8

-b
it

d
a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it
 l
o
g
ic

a
lly

O
R

e
d
 a

n
d
 t

h
e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

L
.

 b

)
O

R
 A

X
,
d
a
ta

1
6

(A
X

)
←

 (
A

X
)
| d

a
ta

1
6

T
h

e
 c

o
n

te
n

t
o

f
1

6
-b

it
 a

c
c
u

m
u

la
to

r
(A

X
)

a
n

d

1
6

-b
it
 d

a
ta

 g
iv

e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n
 a

re
 b

it
 b

y
 b

it

lo
g
ic

a
lly

 O
R

e
d
 a

n
d
 t

h
e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

X
.

3. 47

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

6
6

.
X

O
R

 r
e

g
2

/m
e

m
,

re
g

1
/m

e
m

 a

)
X

O
R

re

g
2

,
re

g
1

(r
e

g
2

)
←

 (
re

g
2

)
^

(r
e

g
1

)
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

rs
 a

re
 b

it
 b

y
 b

it
 E

x
c
lu

s
iv

e
-O

R
e

d

a
n

d
 t

h
e

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n
 r

e
g

is
te

r2
.

 b

)
X

O
R

 r
e

g
2

,
m

e
m

(r
e

g
2

)
 ←

 (
re

g
2

)
^

(m
e

m
)

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r

a
n

d
 m

e
m

o
ry

 a
re

 b
it

 b
y
 b

it

E
x
c
lu

s
iv

e
-O

R
e

d
 a

n
d

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n
 r

e
g

is
te

r2
.

 c

)
X

O
R

 m
e

m
,

re
g

1
(m

e
m

)
←

(m
e

m
)

^
 (

re
g

1
)

T
h

e
 c

o
n

te
n

t
o

f
 m

e
m

o
ry

 a
n

d
 r

e
g

is
te

r1
 a

re
 b

it
 b

y
 b

it

E
xc

lu
si

ve
-O

R
e
d
 a

n
d
 t

h
e
 r

e
su

lt
is

 s
to

re
d
 i
n

m
e
m

o
ry

.

6
7

.
X

O
R

 r
e

g
/m

e
m

,
d

a
ta

a

)
X

O
R

 r
e

g
,
d

a
ta

(r
e

g
)

 ←
 (

re
g

)
^

d
a

ta
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r
a

n
d

 t
h

e
 d

a
ta

 g
iv

e
n

 i
n

 t
h

e

in
s
tr

u
c
ti
o

n
 a

re
 b

it
 b

y
 b

it
 E

x
c
lu

s
iv

e
-O

R
e

d
 a

n
d

 t
h

e
 r

e
s
u

lt

is
 s

to
re

d
 i

n
 r

e
g

is
te

r.

b

)
X

O
R

 m
e

m
,

d
a

ta
(m

e
m

)
 ←

 (
m

e
m

)
^

d
a

ta
T

h
e

 c
o

n
te

n
t

o
f

m
e

m
o

ry
 a

n
d

 t
h

e
 d

a
ta

 g
iv

e
n

 i
n

 t
h

e

in
s
tr

u
c
ti
o

n
 a

re
 b

it
 b

y
 b

it
 E

x
c
lu

s
iv

e
-O

R
e

d
 a

n
d

 r
e

s
u

lt
 i

s

s
to

re
d

 i
n

 m
e

m
o

ry
.

6
8

.
X

O
R

 A
,
d

a
ta

a

)
X

O
R

 A
L

,
d

a
ta

8
(A

L
)

 ←
 (

A
L

) ̂
 d

a
ta

8
T

h
e

 c
o

n
te

n
t

o
f

8
-b

it
 a

c
c
u

m
u

la
to

r
(A

L
)

a
n

d
 8

-b
it
 d

a
ta

g
iv

e
n

 i
n

 t
h

e
 i
n

s
tr

u
c
ti
o

n
 a

re
 b

it
 b

y
 b

it
 E

x
c
lu

s
iv

e
-O

R
e

d

a
n

d
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 A

L
.

b

)
X

O
R

 A
X

,
d
a
ta

1
6

(A
X

)
 ←

 (
A

X
) ̂

 d
a

ta
1

6
T

h
e

c

o
n

te
n

t
o

f
1

6
-b

it

a

c
c

u
m

u
la

to
r

(A
X

)
a

n
d

1
6

-b
it

 d
a

ta
 g

iv
e

n
 i

n
 t

h
e

 i
n

s
tr

u
c
ti

o
n

 a
re

 b
it

 b
y
 b

it

E
x
c
lu

s
iv

e
-O

R
e

d
 a

n
d

 r
e

s
u

lt
 i
s
 s

to
re

d
 i
n

 A
X

.

8086 Microprocessor and Its Appications

3. 48 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.1
2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

6
9

.
T

E
S

T
 r

e
g

2
/m

e
m

,
re

g
1

/m
e

m

a

)
T

E
S

T
 r

e
g

2
,

re
g

1
M

o
d

if
y
 f

la
g

s
 ←

 (
re

g
2

)
a

n
d

 (
re

g
1

)
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

rs
 a

re
 A

N
D

e
d

 a
n

d
 t

h
e

 r
e

s
u

lt

is
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
rs

 a
re

n
o

t
a

lt
e

re
d

.

b

)
T

E
S

T
 r

e
g

2
,

m
e

m
M

o
d

if
y
 f

la
g

s

←
 (

re
g

2
)

a
n

d
 (

m
e

m
)

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r

a
n

d
 m

e
m

o
ry

 a
re

 A
N

D
e

d
 a

n
d

th
e

 r
e

s
u

lt
 i
s
 u

s
e

d
 t

o
 m

o
d

if
y
 t

h
e

 f
la

g
s
.

T
h

e
 c

o
n

te
n

t
o

f

re
g

is
te

r/
m

e
m

o
ry

 a
re

 n
o

t
a

lt
e

re
d

.

c
)

T
E

S
T

 m
e

m
,

re
g

1
M

o
d

if
y
 f

la
g

s

←
 (

m
e

m
)

a
n

d
 (

re
g

1
)

7
0

.
T

E
S

T
 r

e
g

/m
e

m
,

d
a

ta

 a

)
T

E
S

T
 r

e
g

,
d

a
ta

M
o

d
if
y
 f

la
g

s

←
 (

re
g

)
a

n
d

 d
a

ta
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r
a

n
d

 t
h

e
 d

a
ta

 g
iv

e
n

 i
n

 t
h

e

in
s
tr

u
c
ti

o
n

 a
re

 A
N

D
e

d
 a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 u

s
e

d
 t

o

m
o

d
if
y
 f

la
g

s
.

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r

is
 n

o
t

a
lt
e

re
d

.

 b

)
T

E
S

T
 m

e
m

,
d

a
ta

M
o

d
if
y
 f

la
g

s

←
 (

m
e

m
)

a
n

d
 d

a
ta

T
h

e
 c

o
n

te
n

t
o

f
 m

e
m

o
ry

 a
n

d
 t

h
e

 d
a

ta
 g

iv
e

n
 i

n
 t

h
e

in
s
tr

u
c
ti

o
n

 a
re

 A
N

D
e

d
 a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 u

s
e

d
 t

o

m
o

d
if
y
 f

la
g

s
.T

h
e

 c
o

n
te

n
t

o
f

m
e

m
o

ry
 i

s
 n

o
t

a
lt
e

re
d

.

7
1

.
T

E
S

T
 A

,
d

a
ta

 a

)
T

E
S

T
 A

L
,
d

a
ta

8
M

o
d

if
y
 f
la

g
s

←
 (

A
L

)
a

n
d

 d
a

ta
8

T
h

e
 c

o
n

te
n

t
o

f
a

c
c
u

m
u

la
to

r
a

n
d

 t
h

e
 d

a
ta

 g
iv

e
n

 i
n

th
e

 i
n

s
tr

u
c
ti
o

n
 a

re
 l

o
g

ic
a

lly
 A

N
D

e
d

 a
n

d
 t

h
e

 r
e

s
u

lt

is
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

T
h

e
 c

o
n

te
n

t
o

f
a

c
c
u

m
u

la
to

r

is
 n

o
t

a
lt
e

re
d

.

 b

)
T

E
S

T
 A

X
,
d

a
ta

1
6

M
o

d
if
y
 f
la

g
s
 ←

 (
A

X
)

a
n

d
 d

a
ta

1
6

7
2

.
N

O
T

 r
e

g
/m

e
m

 a

)
N

O
T

 r
e

g
(r

e
g

)
 ←

 ~
 (

re
g

)
T

h
e

 c
o

n
te

n
t

o
f

th
e

 r
e

g
is

te
r

is
 c

o
m

p
le

m
e

n
te

d
.

 b

)
N

O
T

 m
e

m
(m

e
m

)
 ←

 ~
 (

m
e

m
)

T
h

e
 c

o
n

te
n

t
o

f
m

e
m

o
ry

 i
s
 c

o
m

p
le

m
e

n
te

d
.

 3. 49

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

7
3

.
S

H
L

 r
e

g
/m

e
m

 o
r

S
A

L
 r

e
g

/m
e

m
C

F
 ←

 B
M

S
D
 ;
 B

n
+

1
 ←

 B
n
 ;
 B

L
S

D
 ←

 0

 a

)
S

H
L

 r
e

g
 o

r
S

A
L

 r
e

g
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 i
s
 s

h
if
te

d

i)

S

H
L

 r
e

g
,

1
 o

r
S

A
L

 r
e

g
,

1
le

ft
,

th
e

 M
S

D
 i

s
 s

h
if
te

d
 t

o
 c

a
rr

y
 f

la
g

 w
h

ile

ii)
 S

H
L

 r
e

g
,

C
L

 o
r

S
A

L
 r

e
g

,
C

L

th
e

 L
S

D
 i
s
 f

ill
e

d
 w

it
h

 z
e

ro
.

F
o

r
S

H
L

 r
e

g
/m

e
m

,
1

 t
h

e
 c

o
n

te
n

t
o

f
th

e

re
g

is
te

r/
m

e
m

o
ry

is
 s

h
if
te

d
 l

e
ft

 o
n

c
e

.

 b

)
S

H
L

 m
e

m
 o

r
S

A
L

 m
e

m
F

o
r

S
H

L
 r

e
g

/m
e

m
,
C

L
,
th

e
 n

u
m

b
e

r
o

f
ti
m

e
s

i)

S
H

L
 m

e
m

,
1

 o
r

S
A

L
 m

e
m

,
1

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

ii)
 S

H
L

 m
e

m
,

C
L

 o
r

S
A

L
 m

e
m

,
C

L

s
h

if
te

d
 l

e
ft

 i
s
 s

p
e

c
if

ie
d

 b
y
 a

 c
o

u
n

t
v
a

lu
e

(1
 t

o
 2

5
5

1
0)

 s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

7
4

.
S

H
R

 r
e

g
/m

e
m

C
F

 ←
 B

L
S

D
 ;
 B

n
 ←

B
n

+
1

;
 B

M
S

D
←

 0
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 i
s
 s

h
if
te

d

 a

)
S

H
R

 r
e

g
ri

g
h

t,
 t

h
e

 L
S

D
 i

s
 s

h
if
te

d
 t

o
 c

a
rr

y
 f

la
g

 w
h

ile

i)

S
H

R
 r

e
g

,
1

th
e

 M
S

D
 i
s
 f

ill
e

d
 w

it
h

 z
e

ro
.

ii)
 S

H
R

 r
e

g
,

C
L

F
o

r
S

H
R

r
e

g
/m

e
m

,
1

th

e

c

o
n

te
n

t
o

f

re
g

is
te

r/
m

e
m

o
ry

 i
s
 s

h
if
te

d
 r

ig
h

t
o

n
c
e

.

F
o

r
S

H
R

 r
e

g
/m

e
m

,
C

L
,
th

e
 n

u
m

b
e

r
o

f
ti
m

e
s

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

 b

)
S

H
R

 m
e

m
s
h

if
te

d
 r

ig
h

t
is

 s
p

e
c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

i)
 S

H
R

 m
e

m
,

1
(1

 t
o

 2
5

5
1
0
)

s
to

re
d

 i
n

C

L
-r

e
g

is
te

r.

ii)
 S

H
R

 m
e

m
,

C
L

N
o
te

 :
 M

S
D

 -
 M

os
t

S
ig

n
if

ic
a
n

t
D

ig
it

;

 L
S

D
 -

 L
ea

st
 S

ig
n

if
ic

a
n

t
D

ig
it

.

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

0

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

®

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

®
0

M
S
D

L
S
D

re
g
8
/m

em
8

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

¬
0

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

¬
0

L
S
D

M
S
D

re
g
8
/m

em
8

8086 Microprocessor and Its Appications

3. 50 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

7
5

.
S

A
R

 r
e

g
/m

e
m

C
←

 B
L
S

D
 ;
 B

n
←

 B
n

+
1
 ;
 B

M
S

D
 ←

 B
M

S
D

a

)
S

A
R

 r
e

g

i)

S

A
R

 r
e

g
,
1

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 s

h
if
te

d

ii)
 S

A
R

 r
e

g
,

C
L

ri
g

h
t,

 t
h

e
 L

S
D

 i
s
 s

h
if
te

d
 t

o
 c

a
rr

y
 f

la
g

 w
h

ile

th
e

 M
S

D
 i

s
 r

e
ta

in
e

d
.

F
o

r
S

A
R

 r
e

g
/m

e
m

,
1

,
th

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 s

h
if
te

d
 r

ig
h

t
o

n
c
e

.

b

)
S

A
R

 m
e

m
F

o
r

S
A

R
 r

e
g

/m
e

m
,
C

L
,
th

e
 n

u
m

b
e

r
o

f
 t
im

e
s

i)

S
A

R
 m

e
m

,
1

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

ii)
 S

A
R

 m
e

m
,

C
L

s
h

if
te

d
 r

ig
h

t
is

 s
p

e
c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

(0
 t

o
 2

5
5

1
0
)

s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

7
6

.
R

O
L

 r
e

g
/m

e
m

B
n

+
1
 ←

 B
n
 ;
 C

F
 ←

 B
M

S
D
 ;
 B

L
S

D
 ←

 B
M

S
D

a

)
R

O
L

 r
e

g

i)

R
O

L
 r

e
g

,
1

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 r

o
ta

te
d

ii)
 R

O
L

 r
e

g
,

C
L

le
ft

,
w

h
ile

 t
h

e
 M

S
D

 i
s
 m

o
v
e

d
 t

o
 b

o
th

 L
S

D

a
n

d
 c

a
rr

y
 f

la
g

.

F
o
r

R
O

L
 r

e
g

/m
e
m

,
1
,
th

e
 c

o
n
te

n
t
o
f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 r

o
ta

te
d

 l
e

ft
 o

n
c
e

.

b

)
R

O
L

 m
e

m
F

o
r

R
O

L
 r

e
g

/m
e

m
,
C

L
,
th

e
 n

u
m

b
e

r
o

f
ti
m

e
s

i)

R
O

L
 m

e
m

,
1

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

ii)
 R

O
L

 m
e

m
,

C
L

ro
ta

te
d

 l
e

ft
 i

s
 s

p
e

c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

(0
 t

o
 2

5
5

1
0
)

 s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
8
/m

em
8

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

M
S
D

L
S
D

re
g
8
/m

em
8

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

 3. 51

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

7
7

.
R

C
L

 r
e

g
/m

e
m

B
n

+
1
 ←

 B
n
 ;
 B

L
S

D
 ←

 C
F

 ;
 C

F
 ←

B
M

S
D

a

)
R

C
L

 r
e

g

i)

R
C

L
 r

e
g

,
1

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 r

o
ta

te
d

ii)
 R

C
L

 r
e

g
,

C
L

le
ft

,
th

e
 c

a
rr

y
 f
la

g
 is

 m
o

v
e

d
 t
o

 t
h

e
 L

S
D

,
w

h
ile

th
e

 M
S

D
 i
s
 m

o
v
e

d
 t

o
 c

a
rr

y
 f

la
g

.

F
o

r
R

C
L

 r
e
g

/m
e
m

,
1
,
th

e
 c

o
n
te

n
t
o
f

re
g
is

te
r/

m
e
m

o
ry

 i
s
 r

o
ta

te
d
 l

e
ft
 o

n
c
e
.

b

)
R

C
L

 m
e

m
F

o
r

R
C

L
 r

e
g

/m
e

m
,
C

L
,
th

e
 n

u
m

b
e

r
o

f
ti
m

e
s

i)

R
C

L
 m

e
m

,
1

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

ii)
 R

C
L

 m
e

m
,

C
L

ro
ta

te
d

 l
e

ft
 i

s
 s

p
e

c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

(0
 t

o
 2

5
5

1
0
)

s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

7
8

.
R

O
R

 r
e

g
/m

e
m

B
n
 ←

 B
n

+
1
 ;
 B

M
S

D
←

 C
F

 ;
 C

F
 ←

 B
L
S

D

a

)
R

O
R

 r
e

g

i)
 R

O
R

 r
e

g
,

1
T

h
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 i
s
 r

o
ta

te
d

ii)
 R

O
R

 r
e

g
,

C
L

ri
g

h
t,

 t
h

e
 L

S
D

 i
s
 m

o
v
e

d
 b

o
th

 t
o

 M
S

D
 a

n
d

c
a

rr
y
 f
la

g
.

F
o

r
R

O
R

 r
e

g
/m

e
m

,
1
,
th

e
 c

o
n

te
n

t
o

f

re
g

is
te

r/
m

e
m

o
ry

 i
s
 r

o
ta

te
d

 r
ig

h
t

o
n

c
e

.

b

)
R

O
R

 m
e

m
F

o
r

R
O

R
 r

e
g

/m
e

m
,
C

L
,
th

e
 n

u
m

b
e

r
o

f
ti
m

e
s

i)

R
O

R
 m

e
m

,1
th

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 h

a
s
 t

o
 b

e

ii)
 R

O
R

 m
e

m
,

C
L

ro
ta

te
d

 r
ig

h
t

is
 s

p
e

c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

(0
 t

o
 2

5
5

1
0
)

s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

M
S
D

L
S
D

re
g
8
/m

em
8

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
8
/m

em
8

8086 Microprocessor and Its Appications

3. 52 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

2

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

7
9
.

R
C

R
 r

e
g

/m
e

m
B

n
 ←

 B
n

+
1
 ;
 B

M
S

D
 ←

 C
F

 ;
 C

F
 ←

 B
L
S

D

a

)
R

C
R

 r
e

g

i)

R
C

R
 r

e
g

,
1

T
h

e
 c

o
n

te
n

t
o

f
re

g
is

te
r/

m
e

m
o

ry
 i

s
 r

o
ta

te
d

ii)
 R

C
R

 r
e
g

,
C

L
ri
g
h
t,
 t

h
e
 c

a
rr

y
 f

la
g
 i

s
 m

o
v
e
d
 t

o
 M

S
D

 w
h
ile

th
e
 L

S
D

 i
s
 m

o
v
e
d
 t

o
 c

a
rr

y
 f

la
g
.

F
o

r
R

C
R

 r
e

g
/m

e
m

,
1

,
th

e
 c

o
n

te
n

t
o

f

re
g
is

te
r/

m
e
m

o
ry

 i
s
 r

o
ta

te
d
 r

ig
h
t

o
n
c
e
.

b
)

R
C

R
 m

e
m

F
o

r
R

C
R

 r
e
g

/m
e
m

,
C

L
,
th

e
 n

u
m

b
e
r

o
f
ti
m

e
s

i)

R
C

R
 m

e
m

,
1

th
e

 c
o

n
te

n
t

o
f

re
g

is
te

r/
m

e
m

o
ry

 h
a

s
 t

o
 b

e

ii)
 R

C
R

 m
e

m
,

C
L

ro
ta

te
d

 r
ig

h
t

is
 s

p
e

c
if
ie

d
 b

y
 a

 c
o

u
n

t
v
a

lu
e

(0
 t

o
 2

5
5

1
0
)

s
to

re
d
 i

n
 C

L
-r

e
g
is

te
r.

3
.
9

S

T
R

I
N

G

M

A
N

I
P

U
L

A
T

I
O

N

I
N

S
T

R
U

C
T

I
O

N
S

A
 s

tr
in

g
 i

s
a

se
q

u
en

ce
 o

f
b

y
te

s
o

r
w

o
rd

s.
 T

h
e

8
0

8
6

 i
n

st
ru

ct
io

n
 s

et
 i

n
cl

u
d

es
 i

n
st

ru
ct

io
n

s
fo

r
st

ri
n

g
 m

o
v

em
en

t,
 c

o
m

p
ar

is
o

n
,

sc
an

,

lo
ad

 a
n

d
 s

to
re

.
It

 a
ls

o
 c

o
n

si
st

s
o

f
th

e
R

E
P

 i
n

st
ru

ct
io

n
 p

re
fi

x
 w

h
ic

h
 i

s
u

se
d

 t
o

 r
ep

ea
t

th
e

ex
ec

u
ti

o
n

 o
f

st
ri

n
g

 i
n

st
ru

ct
io

n
s.

T
h
e

st
ri

n
g
 i

n
st

ru
ct

io
n
s

en
d
 w

it
h
 “

S
”
 o

r
“
S

B
”
 o

r
“
S

W
”
.

 H
er

e,
 “

S
”
 r

ep
re

se
n
ts

 s
tr

in
g
,
“
S

B
”
 r

ep
re

se
n

ts
 s

tr
in

g
 b

y
te

 a
n

d
 “

S
W

”
 r

ep
re

se
n

ts

st
ri

n
g

 w
o

rd
.

A
ll

 s
tr

in
g
 i
n
st

ru
ct

io
n
s

h
av

e
an

 i
m

p
li

ed
 s

o
u
rc

e
an

d
 d

es
ti

n
at

io
n
 o

p
er

an
d
 (

i.
e.

, t
h
e

o
p
er

an
d
s

ar
e

n
o
t
sp

ec
if

ie
d
 a

s
a

p
ar

t
o
f

th
e

in
st

ru
ct

io
n
).

T
h

e
st

ri
n

g
 i

n
st

ru
ct

io
n

s
M

O
V

S
 a

n
d

 C
M

P
S

 a
ss

u
m

e
th

at
 t

h
e

so
u

rc
e

o
p

er
an

d
 i

s
in

 d
at

a
se

g
m

en
t

m
em

o
ry

,
an

d
 t

h
e

d
es

ti
n

at
io

n
 i

s
in

 e
x

tr
a

se
g

m
en

t
m

em
o

ry
.
T

h
e

st
ri

n
g

 i
n

st
ru

ct
io

n
 S

T
O

S
 a

n
d

S

C
A

N
S

 a
ss

u
m

es
 t

h
at

 t
h

e
so

u
rc

e
o

p
er

an
d

 i
s

in
 a

cc
u

m
u

la
to

r,

an

d
 d

es
ti

n
at

io
n

 i
s

in
 e

x
tr

a

se
g
m

en
t
m

em
o
ry

. T
h
e

st
ri

n
g
 i
n
st

ru
ct

io
n
 L

O
D

S
 a

ss
u
m

es
 t
h
at

 t
h
e

so
u
rc

e
o
p
er

an
d
 i
s

in
 d

at
a

se
g
m

en
t
m

em
o
ry

 a
n
d
 d

es
ti

n
at

io
n
 i
s

ac
cu

m
u
la

to
r.

B
1
5
B

1
4

B
1
3

B
2

B
1

B
0

C
F

L
S
D

M
S
D

re
g
1
6
/m

em
1
6

B
7

B
6

B
5

B
4

B
3

B
2

B
1

B
0

C
F

M
S
D

L
S
D

re
g
8
/m

em
8

 3. 53

F
o
r

st
ri

n
g
 o

p
er

at
io

n
s,

 t
h
e

o
ff

se
t

o
r

ef
fe

ct
iv

e
ad

d
re

ss
 o

f
th

e
so

u
rc

e
o
p
er

an
d
 i

s
st

o
re

d
 i

n
 S

I-
re

g
is

te
r

an
d
 t

h
at

 o
f

d
es

ti
n
at

io
n
 o

p
er

an
d

is
 s

to
re

d
 i

n
 D

I-
re

g
is

te
r.

 O
n
 e

x
ec

u
ti

o
n
 o

f
a

st
ri

n
g
 i

n
st

ru
ct

io
n
 d

ep
en

d
in

g
 o

n
 D

ir
ec

ti
o

n
 F

la
g

 (
D

F
),

 S
I

an
d

 D
I

re
g

is
te

rs
 a

re
 a

u
to

m
at

ic
al

ly

u
p
d
at

ed
 t

o
 p

o
in

t
to

 t
h
e

n
ex

t
b
y
te

/w
o
rd

 o
f

th
e

so
u
rc

e
an

d
 d

es
ti

n
at

io
n
.

If
 D

F
 =

 0
,

th
en

 S
I

an
d
 D

I
ar

e
in

cr
em

en
te

d
 b

y
 o

n
e

fo
r

b
y
te

 a
n

d

in
cr

em
en

te
d

 b
y

 t
w

o
 f

o
r

w
o

rd
.

If
 D

F
 =

 1
,

th
en

 S
I

an
d

 D
I

ar
e

d
ec

re
m

en
te

d
 b

y
 o

n
e

fo
r

b
y

te
 a

n
d

 d
ec

re
m

en
te

d
 b

y
 t

w
o

 f
o

r
w

o
rd

.

T
h
e

st
ri

n
g
 i

n
st

ru
ct

io
n
s

o
f

8
0
8
6
 a

re
 l

is
te

d
 i

n
 T

ab
le

-3
.1

3
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

T
A

B
L

E
 -

 3
.1

3
 :

 S
T

R
IN

G
 M

A
N

IP
U

L
A

T
IO

N
 I
N

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
0

.
R

E
P

a

)
R

E
P

Z
/R

E
P

E
W

h
ile

 C
X

 ≠
 0

 a
n

d
 Z

F
 =

 1
,

re
p

e
a

t
It

 i
s
 a

 p
re

fi
x
 u

s
e

d
 f

o
r

c
o

m
p

a
re

 o
r

s
c
a

n
 s

tr
in

g
 i

n
s
tr

u
c
ti
o

n
.

e
x
e

c
u

ti
o

n
 o

f
s
tr

in
g

 i
n

s
tr

u
c
ti
o

n
 a

n
d

W
h

e
n

 a
 s

tr
in

g
 i
n

s
tr

u
c
ti
o

n
 i
s
 p

re
fi
x
e

d
 w

it
h

 R
E

P
Z

/R
E

P
E

,

(C
X

)
←

 (
C

X
)

−
 1

th
e

 i
n

s
tr

u
c
ti
o

n
 e

x
e

c
u

ti
o

n
 i
s
 r

e
p

e
a

te
d

 i
f

C
X

 ≠
 0

 a
n

d
 Z

F
=

1
.

A
ft

e
r

e
a

c
h

 e
x
e

c
u

ti
o

n
 o

f
s
tr

in
g

 i
n

s
tr

u
c
ti
o

n
,

th
e

 c
o

n
te

n
t

o
f

C
X

 i
s
 d

e
c
re

m
e

n
te

d
 b

y
 1

.
T

h
e

 r
e

p
e

a
t

o
p

e
ra

ti
o

n
 i

s

te
rm

in
a

te
d

 i
f

C
X

 =
 0

 o
r

Z
F

 =
 0

.

b

)
R

E
P

N
Z

/R
E

P
N

E
W

h
ile

 C
X

 ≠
 0

 a
n

d
 Z

F
 =

 0
,

re
p

e
a

t
It

 i
s
 a

 p
re

fi
x
 u

s
e

d
 f

o
r

c
o

m
p

a
re

 o
r

s
c
a

n
 s

tr
in

g
 i

n
s
tr

u
c
ti
o

n
s
.

e
x
e

c
u

ti
o

n
 o

f
s
tr

in
g

 i
n

s
tr

u
c
ti
o

n
 a

n
d

W
h
e
n
 a

 s
tr

in
g
 in

s
tr

u
c
ti
o
n
 is

 p
re

fi
x
e
d
 w

it
h
 R

E
P

N
Z

/R
E

P
N

E
,

(C
X

)
←

 (
C

X
)

−
 1

th
e
 i
n
s
tr

u
c
ti
o
n
 e

x
e
c
u
ti
o
n
 i
s
 r

e
p
e
a
te

d
 i
f

C
X

 ≠
 0

 a
n
d
 Z

F
=

0
.

A
ft
e
r

e
a

c
h

 e
x
e

c
u

ti
o

n
 o

f
s
tr

in
g

 i
n

s
tr

u
c
ti
o

n
 t

h
e

 c
o

n
te

n
t

o
f

C
X

 i
s
 d

e
c
re

m
e

n
te

d
 b

y
 1

.T
h

e
 r

e
p

e
a

t
o

p
e

ra
ti
o

n
 i

s

te
rm

in
a

te
d

 i
f

C
X

 =
 0

 o
r

Z
F

 =
 1

.

8086 Microprocessor and Its Appications

3. 54 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

3

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
1

.
M

O
V

S
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)

a

)
M

O
V

S
B

M
A

E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)
O

n
e

 b
y
te

 o
f

a
 s

tr
in

g
 d

a
ta

 s
to

re
d

 i
n

 d
a

ta
 s

e
g

m
e

n
t

is

(M
A

E
)

←
 (
M

A
)

is
 c

o
p

ie
d

 i
n

to
 e

x
tr

a
 s

e
g

m
e

n
t,

 a
n

d
 S

I
a

n
d

 D
I

a
re

If
 D

F
=

0
,
th

e
n

 (
D

I)
 ←

 (
D

I)
+

1
 ;
 (

S
I)

 ←
(S

I)
+

1
a

u
to

m
a

ti
c
a

lly
 i

n
c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 1

If
 D

F
=

1
,
th

e
n

 (
D

I)
 ←

(D
I)

−
1

 ;
 (

S
I)

 ←
 (

S
I)

−
1

d
e

p
e

n
d

in
g

 o
n

 D
ir

e
c
ti
o

n
 F

la
g

 (
D

F
).

b

)
M

O
V

S
W

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)
O

n
e

 w
o

rd
 o

f
a

 s
tr

in
g

 d
a

ta
 s

to
re

d
 i

n
 d

a
ta

 s
e

g
m

e
n

t

M
A

E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)
is

 c
o

p
ie

d
 i

n
to

 e
x
tr

a
 s

e
g

m
e

n
t,

 a
n

d
 S

I
a

n
d

 D
I

a
re

(M
A

E
 ;
 M

A
E
 +

 1
)

←
 (

M
A

 ;
M

A
 +

 1
)

a
u

to
m

a
ti

c
a

ll
y

in

c
re

m
e

n
te

d
/d

e
c

re
m

e
n

te
d

b

y

2

If
 D

F
 =

 0
,
th

e
n

 (
D

I)
 ←

 (
D

I)
+

2
 ;
 (

S
I)

 ←
 (

S
I)

 +
 2

d
e

p
e

n
d

in
g

 o
n

 D
ir

e
c
ti
o

n
 F

la
g

 (
D

F
).

If
 D

F
 =

 1
,
th

e
n

 (
D

I)
 ←

 (
D

I)
-2

;
(S

I)
 ←

 (
S

I)
 +

 2

8
2

.
C

M
P

S
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)

 a
)

C
M

P
S

B
M

A
E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)
O

n
e

 b
y
te

/w
o

rd
 o

f
a

 s
tr

in
g

 d
a

ta
 i

n
 e

x
tr

a
 s

e
g

m
e

n
t

is

 b
)

C
M

P
S

W
M

o
d
if
y
 f
la

g
s
 ←

 (
M

A
)

−
 (
M

A
E
)

s
u

b
tr

a
c
te

d
 f

ro
m

 o
n

e
 b

y
te

/w
o

rd
 o

f
a

 s
tr

in
g

 d
a

ta
 i

n

If
 (

M
A

)
>

 (
M

A
E
)

th
e
n
 C

F
 =

 0
 ;
 Z

F
 =

 0
 ;
 S

F
 =

 0
th

e
 d

a
ta

 s
e

g
m

e
n

t
a

n
d

 t
h

e
 r

e
s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y

If
 (

M
A

)
<

 (
M

A
E
)

th
e
n
 C

F
 =

 1
 ;
 Z

F
 =

 0
 ;
 S

F
 =

 1
fl
a

g
s
.T

h
e

 c
o

n
te

n
ts

 o
f

D
I

a
n

d
 S

I
a

re
 a

u
to

m
a

ti
c
a

lly

If
 (

M
A

)
=

 (
M

A
E
)

th
e
n
 C

F
 =

 0
 ;
 Z

F
 =

 1
 ;
 S

F
 =

 0
in

c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 d

e
p

e
n

d
in

g
 o

n
 D

ir
e

c
ti
o

n

F
o

r
 b

y
te

 o
p

e
ra

ti
o

n
 :

F
la

g
 (

D
F

).
 F

o
r

b
y
te

 o
p

e
ra

ti
o

n
 t

h
e

 c
o

n
te

n
ts

 o
f
 D

I
a
n
d

If
 D

F
=

0
,
th

e
n

 (
D

I)

←
 (

D
I)

+
1

 ;
 (

S
I)

←

 (
S

I)
+

1
S

I
a

re
 i

n
c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 1

.F
o

r
w

o
rd

If
 D

F
=

1
,
th

e
n

 (
D

I)

←

 (
D

I)
 −

1
 ;
 (

S
I)

←

 (
S

I)
−

1
o

p
e

ra
ti
o

n
,
th

e
 c

o
n

te
n

ts
 o

f
D

I
a

n
d

 S
I
a

re
 in

c
re

m
e

n
te

d
/

F
o

r
w

o
rd

 o
p

e
ra

ti
o

n
 :

d
e

c
re

m
e

n
te

d
 b

y
 2

.

If
 D

F
=

0
,
th

e
n

 (
D

I)

←

 (
D

I)
+

2
 ;
 (

S
I)

←

 (
S

I)
+

2

If
 D

F
=

1
,

th
e

n
 (

D
I)

 ←
 (

D
I)

−
2

 ;
 (

S
I)

←

 (
S

I)
−

2

 3. 55

T
a

b
le

-

3
.1

3

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
3

.
S

C
A

S
M

A
E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)

a
)

S
C

A
S

B
M

o
d

if
y
 f
la

g
s
 ←

(A

L
)

−
 (

M
A

E
)

O
n

e

b

y
te

o

f
s

tr
in

g

d

a
ta

in

e

x
tr

a

s

e
g

m
e

n
t

is

If
 (

A
L

)
>

 (
M

A
E
)

th
e

n
 C

F
=

0
 ;
 Z

F
=

0
 ;
 S

F
=

0
s
u

b
tr

a
c
te

d
 f

ro
m

 t
h

e
 c

o
n

te
n

t
o

f
A

L
 a

n
d

 t
h

e
 r

e
s
u

lt

If
 (

A
L

)
<

 (
M

A
E
)

th
e

n
 C

F
=

1
 ;
 Z

F
=

0
 ;
 S

F
=

1
is

 u
s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.T

h
e

 c
o

n
te

n
t

o
f

D
I

a
n

d
 S

I

If
 (

A
L

)
=

 (
M

A
E
)

th
e

n
 C

F
=

0
 ;
 Z

F
=

1
 ;
 S

F
=

0
a

re
 a

u
to

m
a

ti
c
a

lly
 i

n
c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 1

If
 D

F
 =

 0
 t

h
e

n
,
(D

I)
 ←

 (
D

I)
 +

 1
d

e
p

e
n

d
in

g
 o

n
 D

ir
e

c
ti
o

n
 F

la
g

 (
D

F
).

If
 D

F
 =

 1
 t

h
e

n
,
(D

I)
 ←

 (
D

I)
 −

 1

b
)

S
C

A
S

W
M

A
E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)

M
o

d
if
y
 f
la

g
s
 ←

 (
A

X
)

−
 (
M

A
E
 ;
 M

A
E
 +

 1
)

O
n

e
 w

o
rd

 o
f

s
tr

in
g

 d
a

ta
 i

n
 e

x
tr

a
 s

e
g

m
e

n
t

is

If
 (
A

X
)
>

 (
M

A
E
 ;
 M

A
E
 +

 1
)
th

e
n

 C
F

=
0

 ;
 Z

F
=

0
 ;
 S

F
=

0
s
u

b
tr

a
c
te

d
 f

ro
m

 t
h

e
 c

o
n

te
n

t
o

f
A

X
 a

n
d

 t
h

e
 r

e
s
u

lt

If
 (
A

X
)
<

 (
M

A
E
 ;
 M

A
E
 +

 1
)
th

e
n

 C
F

=
1

 ;
 Z

F
=

0
 ;
 S

F
=

1
is

 u
s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.T

h
e

 c
o

n
te

n
t

o
f

D
I

a
n

d
 S

I

If
 (
A

X
)
=

 (
M

A
E
 ;
 M

A
E
 +

 1
)
th

e
n

 C
F

=
0

 ;
 Z

F
=

1
 ;
 S

F
=

0
a

re
 a

u
to

m
a

ti
c
a

lly
 i

n
c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 2

If
 D

F
=

0
 t
h

e
n

,
(D

I)
 ←

 (
D

I)
 +

 2
d

e
p

e
n

d
in

g
 o

n
 D

ir
e

c
ti
o

n
 F

la
g

 (
D

F
).

If
 D

F
=

1
 t
h

e
n

,
(D

I)
 ←

 (
D

I)
 −

 2

8
4

.
L

O
D

S
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)

(A
L
)

←
 (

M
A

)
O

n
e

 b
y
te

 o
f

a
 s

tr
in

g
 d

a
ta

 s
to

re
d

 i
n

 d
a

ta
 s

e
g

m
e

n
t

is

a
)

L
O

D
S

B
If

 D
F

=
0

 t
h

e
n

,
(S

I)
 ←

(S
I)

 +
 1

c
o

p
ie

d
 i

n
to

 t
h

e
 A

L
-r

e
g

is
te

r
a

n
d

 S
I

is
 a

u
to

m
a

ti
c
a

lly

If
 D

F
=

1
 t
h

e
n

,
(S

I)
 ←

 (
S

I)
 −

 1
in

c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 1

,
d

e
p

e
n

d
in

g
 o

n

D
ir

e
c
ti
o

n
 F

la
g

 (
D

F
).

b
)

L
O

D
S

W
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)
O

n
e
 w

o
rd

 o
f

a
 s

tr
in

g
 d

a
ta

 s
to

re
d
 i
n
 d

a
ta

 s
e
g
m

e
n
t

is

(A
X

)
←

 (
M

A
 ;

M
A

 +
 1

)
c
o

p
ie

d
 i

n
to

 t
h

e
 a

c
c
u

m
u

la
to

r.
 S

I
is

 a
u

to
m

a
ti
c
a

ll
y

If
 D

F
=

0
 t
h

e
n

,
(S

I)
 ←

 (
S

I)
 +

 2
in

c
re

m
e

n
te

d
/d

e
c
re

m
e

n
te

d
 b

y
 2

,
d

e
p

e
n

d
in

g
 o

n

If
 D

F
=

1
 t
h

e
n

,
(S

I)
 ←

 (
S

I)
 −

 2
D

ir
e

c
ti
o

n
 F

la
g

 (
D

F
).

8086 Microprocessor and Its Appications

3. 56 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

3

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
5

.
S

T
O

S
M

A
E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)

a

)
S

T
O

S
B

(M
A

E
)

←
 (

A
L
)

T
h

e
 c

o
n

te
n

t
o

f
A

L
-r

e
g

is
te

r
is

 s
to

re
d

 a
s
 o

n
e

-b
y
te

 o
f

If
 D

F
=

0
 t
h

e
n

,
(D

I)
 ←

 (
D

I)
 +

 1
s
tr

in
g
 d

a
ta

 i
n
 t

h
e
 e

x
tr

a
 s

e
g
m

e
n
t.
 D

I
is

 a
u
to

m
a
ti
c
a
lly

If
 D

F
=

1
 t
h
e
n
,
(D

I)
 ←

(D

I)
 −

 1
in

c
re

m
e

n
te

d
/d

e
c

re
m

e
n

te
d

 b
y

 1
 d

e
p

e
n

d
in

g
 o

n

D
ir
e
c
ti
o
n
 F

la
g

 (
D

F
).

b

)
S

T
O

S
W

M
A

E
 =

 (
E

S
)

×
 1

6
1
0
 +

 (
D

I)
T

h
e

c

o
n

te
n

t
o

f
A

X
-r

e
g

is
te

r
is

s

to
re

d

a

s

o

n
e

(M
A

E
 ;

M
A

E
 +

 1
)

←
 (
A

X
)

w
o

rd
 o

f
s
tr

in
g

 d
a

ta
 i

n
 t

h
e

 e
x
tr

a
 s

e
g

m
e

n
t.

 D
I

is

If
 D

F
=

0
 t
h

e
n

,
(D

I)
 ←

 (
D

I)
 +

 2
a

u
to

m
a

ti
c

a
ll

y

in

c
re

m
e

n
te

d
/d

e
c

re
m

e
n

te
d

b

y

2

If
 D

F
=

1
 t
h
e
n
,
(D

I)
 ←

(D

I)
 −

 2
d
e
p
e
n
d
in

g
 o

n
 D

ir
e
c
ti
o
n
 F

la
g

 (
D

F
).

3
.
1

0

C

O
N

T
R

O
L

T

R
A

N
S

F
E

R

I
N

S
T

R
U

C
T

I
O

N
S

T
h

e
co

n
tr

o
l

tr
an

sf
er

 g
ro

u
p

 c
o

n
si

st
s

o
f

ca
ll

,
ju

m
p

,
lo

o
p

 a
n

d
 s

o
ft

w
ar

e
in

te
rr

u
p

t
in

st
ru

ct
io

n
s.

 N
o

rm
al

ly
,

a
p

ro
g

ra
m

 i
s

ex
ec

u
te

d

se
q
u
en

ti
al

ly
 (

i.
e.

,
th

e
p
ro

g
ra

m
 i

n
st

ru
ct

io
n
s

ar
e

ex
ec

u
te

d
 o

n
e

af
te

r
th

e
o
th

er
).

 W
h
en

 a
 b

ra
n
ch

 i
n
st

ru
ct

io
n
 i

s
en

co
u
n
te

re
d
,

th
e

p
ro

g
ra

m

ex
ec

u
ti

o
n
 c

o
n
tr

o
l

is
 t

ra
n
sf

er
re

d
 t

o
 t

h
e

sp
ec

if
ie

d
 d

es
ti

n
at

io
n
 o

r
ta

rg
et

 i
n
st

ru
ct

io
n
.

T
h
e

tr
an

sf
er

 o
f

p
ro

g
ra

m
 e

x
ec

u
ti

o
n
 c

o
n
tr

o
l

is
 d

o
n
e

ei
th

er

b
y
 c

h
an

g
in

g
 t

h
e

co
n
te

n
t

o
f

IP
 o

r
b
y
 c

h
an

g
in

g
 t

h
e

co
n
te

n
t

o
f

IP
 a

n
d
 C

S
.

W
h
en

 t
h
e

co
n
te

n
t

o
f

IP
 a

lo
n
e

is
 m

o
d
if

ie
d
,

th
e

p
ro

g
ra

m
 c

o
n
tr

o
l

b
ra

n
ch

es
 t

o
 a

 n
ew

 m
em

o
ry

 l
o
ca

ti
o
n
 i

n
 t

h
e

sa
m

e
se

g
m

en
t.

 W
h
en

 t
h
e

co
n
te

n
t

o
f

b
o
th

 I
P

 a
n
d
 C

S
 a

re
 m

o
d
if

ie
d
,
th

e
p
ro

g
ra

m
 c

o
n
tr

o
l

b
ra

n
ch

es

to
 a

 n
ew

 m
em

o
ry

 l
o
ca

ti
o
n
 i

n
 a

n
o
th

er
 m

em
o
ry

 s
eg

m
en

t.

T
h
e

co
n
tr

o
l

tr
an

sf
er

 i
n
st

ru
ct

io
n
s

d
o
 n

o
t

af
fe

ct
 t

h
e

fl
ag

s
o
f

8
0
8
6
.

T
h
e

ju
m

p
 a

n
d
 l

o
o
p
 i

n
st

ru
ct

io
n
s

ca
n
 b

e
cl

as
si

fi
ed

 i
n
to

 c
o
n
d
it

io
n
al

an
d
 u

n
co

n
d
it

io
n
al

 i
n
st

ru
ct

io
n
s.

 I
n
 c

o
n
d
it

io
n
al

 i
n
st

ru
ct

io
n
s,

 t
h
e

st
at

u
s

o
f

o
n
e

o
r

m
o
re

 f
la

g
s

ar
e

ch
ec

k
ed

 a
n
d
 c

o
n
tr

o
l

tr
an

sf
er

 t
ak

es
 p

la
ce

o
n
ly

 i
f

th
e

sp
ec

if
ie

d
 c

o
n
d
it

io
n
 i

s
sa

ti
sf

ie
d
.

T
h
e

co
n
tr

o
l

tr
an

sf
er

 i
n
st

ru
ct

io
n
s

ar
e

li
st

ed
 i

n
 T

ab
le

-3
.1

4
 t

o
 T

ab
le

-3
.1

9
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

 3. 57

3
.1

0
.1

C

A
L
L

a
n

d

R

E
T

In

s
tr

u
c
ti

o
n

s

T
h

e
C

A
L

L
 i

n
st

ru
ct

io
n

s
tr

an
sf

er
 c

o
n

tr
o

l
to

 a
 s

u
b

p
ro

g
ra

m
 o

r
su

b
ro

u
ti

n
e

o
r

a
p

ro
ce

d
u

re
 a

ft
er

 s
av

in
g

 r
et

u
rn

 a
d

d
re

ss
 i

n
 t

h
e

st
ac

k

m
em

o
ry

.
T

h
er

e
ar

e
tw

o
 t

y
p
es

 o
f

ca
ll

 i
n
st

ru
ct

io
n
s

:
In

tr
as

eg
m

en
t

o
r

n
ea

r
ca

ll
 a

n
d
 I

n
te

rs
eg

m
en

t
o
r

fa
r

ca
ll

.
A

 n
ea

r
ca

ll
 r

ef
er

s
to

 c
al

li
n

g
 a

p
ro

ce
d
u
re

 s
to

re
d
 i

n
 t

h
e

sa
m

e
co

d
e

se
g
m

en
t

m
em

o
ry

 i
n
 w

h
ic

h
 t

h
e

m
ai

n
 p

ro
g
ra

m
 (

o
r

ca
ll

in
g
 p

ro
g
ra

m
)

re
si

d
es

.
A

 f
ar

 c
al

l
re

fe
rs

 t
o
 c

al
li

n
g
 a

p
ro

ce
d
u
re

 s
to

re
d
 i

n
 a

 d
if

fe
re

n
t

co
d
e

se
g
m

en
t

m
em

o
ry

 t
h
an

 t
h
at

 o
f

m
ai

n
 p

ro
g
ra

m
.

W
h
il

e
ex

ec
u
ti

n
g
 n

ea
r

ca
ll

,
th

e
co

n
te

n
t

o
f

IP
 a

lo
n
e

is
 p

u
sh

ed
 t

o
 s

ta
ck

.
W

h
il

e
ex

ec
u
ti

n
g
 f

ar
 c

al
l,

 t
h
e

co
n
te

n
t

o
f

C
S

 a
n
d
 I

P
 a

re
 p

u
sh

ed

to
 s

ta
ck

.
E

v
er

y
 p

ro
ce

d
u

re
 o

r
su

b
ro

u
ti

n
e

en
d

s
w

it
h

 a
n

 R
E

T
 i

n
st

ru
ct

io
n

.
T

h
e

ex
ec

u
ti

o
n

 o
f

R
E

T
 i

n
st

ru
ct

io
n

 a
t

th
e

en
d

 o
f

su
b

ro
u

ti
n

e
o
r

p
ro

ce
d

u
re

,
w

il
l

p
o

p
 t

h
e

co
n

te
n

t
o

f
to

p
 o

f
st

ac
k

 t
o

 I
P

 i
n

 c
as

e
o

f
n

ea
r

ca
ll

 o
r

to
 I

P
 a

n
d

 C
S

 i
n

 c
as

e
o

f
fa

r
ca

ll
.
T

h
u

s,
 t

h
e

p
ro

g
ra

m
 c

o
n

tr
o

l
re

tu
rn

b
ac

k
 t

o
 m

ai
n
 p

ro
g
ra

m
.

T
h
e

ca
ll

 a
n
d
 r

et
u
rn

 i
n
st

ru
ct

io
n
s

ar
e

li
st

ed
 i

n
 T

ab
le

-3
.1

4
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

T
A

B
L

E
 -

 3
.1

4
 :

 C
A

L
L

 A
N

D
 R

E
T

 I
N

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
6

.
C

A
L

L
 d

is
p

1
6

(S
P

)
←

 (
S

P
)

−
 2

T
h

is
 i

n
s
tr

u
c
ti

o
n

 i
s
 n

e
a

r-
d

ir
e

c
t

c
a

ll
 i

n
 w

h
ic

h
 t

h
e

(C
a
ll

n
e
a
r

-
d
ir
e
c
t
w

it
h
in

 s
e
g
m

e
n
t)

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

p
ro

g
ra

m
 c

o
n

tr
o

l
is

 t
ra

n
s
fe

rr
e

d
 w

it
h

in
 t

h
e

 s
a

m
e

(M
A

S
)

←
 (
IP

)
s

e
g

m
e

n
t.

T

h
e

s

ta
c

k

p
o

in
te

r
is

d

e
c

re
m

e
n

te
d

(I
P

)
←

 d
is

p
1

6
b

y
 2

,
th

e
 I

n
s
tr

u
c
ti
o

n
 P

o
in

te
r

(I
P

)
is

 p
u

s
h

e
d

 i
n

to

s
ta

c
k

a

n
d

 t
h

e
 e

ff
e

c
ti
v
e

 a
d

d
re

s
s
 (

d
is

p
1

6
)

o
f

th
e

s
u
b
ro

u
tin

e
/p

ro
c
e
d
u
re

 t
o
 b

e
 e

x
e
c
u
te

d
 i
s
 l
o
a
d
e
d
 i
n
 I

P
.

8086 Microprocessor and Its Appications

3. 58 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

4

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
7

.
C

A
L

L
 r

e
g

/m
e

m

(C
a

ll
n

e
a

r
-

in
d

ir
e

c
t

w
it
h

in
 s

e
g

m
e

n
t)

a

)
C

A
L

L
 r

e
g

(S
P

)
←

 (
S

P
)

−
 2

T
h

is
 i

n
s
tr

u
c
ti

o
n

 i
s
 n

e
a

r-
in

d
ir

e
c
t

c
a

ll
 i

n
 w

h
ic

h
 t

h
e

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

c
o

n
tr

o
l

tr
a

n
s
fe

r
is

 w
it

h
in

 s
a

m
e

 s
e

g
m

e
n

t
a

n
d

 t
h

e

(M
A

S
)

←
 (
IP

)
e

ff
e

c
ti
v
e

 a
d

d
re

s
s
 o

f
s
u

b
ro

u
ti
n

e
/p

ro
c
e

d
u

re
 t
o

 b
e

 c
a

lle
d

(I
P

)
←

 (
re

g
)

is
 s

to
re

d
 i

n
 r

e
g

is
te

r/
m

e
m

o
ry

.

T
h

e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e

n
te

d
 b

y
 2

,
th

e
 I
n

s
tr

u
c
ti
o

n

P
o

in
te

r
(I

P
)

is
 p

u
s
h

e
d

 i
n

to
 t

h
e

 s
ta

c
k
 a

n
d

 t
h

e
 e

ff
e

c
ti
v
e

a
d

d
re

s
s
 o

f
th

e
 s

u
b

ro
u

ti
n

e
/p

ro
c
e

d
u

re
 t

o
 b

e
 e

x
e

c
u

te
d

is
 l

o
a

d
e

d
 i

n
 I

P
 f

ro
m

 t
h

e
 r

e
g

is
te

r/
m

e
m

o
ry

.

b

)
C

A
L

L
 m

e
m

(S
P

)
←

 (
S

P
)

−
 2

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(M
A

S
)

←
 (
IP

)

(I
P

)
←

 (
m

e
m

)

8
8

.
C

A
L

L
 a

d
d

r o
ff

s
e

t,
a

d
d

r b
a

s
e

T
h

is
 i
n

s
tr

u
c
ti
o

n
 i
s
 f

a
r-

d
ir

e
c
t

c
a

ll
in

 w
h

ic
h

 t
h

e
 p

ro
g

ra
m

(C
a

ll
fa

r
-

d
ir

e
c
t

in
te

rs
e

g
m

e
n

t)
c
o

n
tr

o
l

is
 t

ra
n

s
fe

rr
e

d
 t

o
 a

n
o

th
e

r
s
e

g
m

e
n

t.
 T

h
e
 o

ff
s
e
t

a
n

d
 s

e
g

m
e

n
t

b
a

s
e

 a
d

d
re

s
s
 o

f
th

e
 p

ro
c
e

d
u

re
 t

o
 b

e

e
x
e

c
u

te
d

 a
re

 d
ir

e
c
tl
y
 g

iv
e

n
 i

n
 t

h
e

 i
n

s
tr

u
c
ti
o

n
.

T
h

e

s
ta

c
k

 p
o

in
te

r
is

 d
e

c
re

m
e

n
te

d
 b

y
 2

,
th

e
 I
n

s
tr

u
c
ti
o

n

P
o

in
te

r
(I

P
)

is
 p

u
s
h

e
d

 i
n

to
 s

ta
c
k
.

T
h

e
 o

ff
s
e

t
a

d
d

re
s
s

o
f

th
e

 p
ro

c
e

d
u

re
 t

o
 b

e
 e

x
e

c
u

te
d

 i
s
 l

o
a

d
e

d
 i

n
 I

P
.

T
h

e

s
ta

c
k
 p

o
in

te
r

is
 a

g
a

in
 d

e
c
re

m
e

n
te

d
 b

y
 2

 a
n

d
 C

S
 i

s

p
u

s
h

e
d

 i
n

to
 s

ta
c
k
 a

n
d

 t
h

e
 b

a
s
e

 a
d

d
re

s
s
 o

f
th

e

p
ro

c
e

d
u

re
 t

o
 b

e
 e

x
e

c
u

te
d

 i
s
 l

o
a

d
e

d
 i

n
 C

S
.

(S
P

)
←

 (
S

P
)

-
2

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(M
A

S
)

←
 (
IP

)

(I
P

)
←

 a
d
d
r o

ff
s
e

t

(S
P

)
←

 (
S

P
)

−
 2

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(M
A

S
)

←
 (
C

S
)

(C
S

)
←

 a
d
d
r b

a
s
e

 3. 59

T
a

b
le

-

3
.1

4

c
o

n
ti

n
u

e
d

..
.

 S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

8
9

.
C

A
L

L
 m

e
m

(C
a

ll
fa

r
-

in
d

ir
e

c
t

in
te

rs
e

g
m

e
n

t)
T

h
is

 i
n

s
tr

u
c
ti

o
n

 i
s
 f

a
r-

in
d

ir
e

c
t

c
a

ll
 i

n
 w

h
ic

h
 t

h
e

p
ro

g
ra

m
 c

o
n
tr

o
l

is
 t

ra
n
s
fe

rr
e
d
 t

o
 d

if
fe

re
n
t

s
e
g
m

e
n
t,

a
n

d
 t

h
e

 o
ff

s
e

t
a

n
d

 s
e

g
m

e
n

t
b

a
s

e
 a

d
d

re
s

s
 o

f

p
ro

c
e
d
u
re

 t
o
 b

e
 e

x
e
c
u
te

d
 a

re
 s

to
re

d
 i

n
 m

e
m

o
ry

.

T
h

e
 s

ta
c
k
 p

o
in

te
r

is
 d

e
c
re

m
e

n
te

d
 b

y
 2

 a
n

d
 I

P
 i

s

p
u

s
h

e
d

 t
o

 s
ta

c
k
.

T
h

e
 o

ff
s
e

t
a

d
d

re
s
s
 a

v
a

il
a

b
le

 i
n

m
e
m

o
ry

 i
s
 m

o
v
e
d
 t

o
 I

P
.

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 a

g
a
in

d
e
c
re

m
e
n
te

d
 b

y
 2

,
a
n
d
 C

S
 i
s
 p

u
s
h
e
d
 t

o
 s

ta
c
k
.

T
h
e

b
a
s
e
 a

d
d
re

s
s
 a

v
a
ila

b
le

in

 m
e
m

o
ry

 i
s
 m

o
v
e
d
 t

o
 C

S
.

9
0

.
R

E
T

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

R
e

tu
rn

 t
h

e
 c

o
n

tr
o

l
b

a
c
k
 t

o
 c

a
lli

n
g

 p
ro

c
e

d
u

re
 f

ro
m

(R
e

tu
rn

 f
ro

m
 c

a
ll

w
it
h

in
 s

e
g

m
e

n
t)

(I
P

)
←

 (
M

A
S
)

th
e
 c

a
lle

d
 p

ro
c
e
d
u
re

 w
it
h
in

 t
h
e
 s

e
g
m

e
n
t.
 T

h
e
 c

o
n
te

n
t

(S
P

)
←

 (
S

P
)

+
 2

o
f

to
p
 o

f
s
ta

c
k
 i
s
 t

ra
n
s
fe

rr
e
d
 t

o
 I

P
.

T
h
e
 s

ta
c
k
 p

o
in

te
r

is
 i

n
c
re

m
e

n
te

d
 b

y
 2

.

9
1

.
R

E
T

 d
a
ta

1
6

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

R
e

tu
rn

 t
h

e
 c

o
n

tr
o

l
b

a
c
k
 t

o
 c

a
lli

n
g

 p
ro

c
e

d
u

re
 f

ro
m

(R
e

tu
rn

 f
ro

m
 c

a
ll

w
it
h

in
 s

e
g

m
e

n
t

a
d

d
in

g
th

e
 c

a
lle

d
 p

ro
c
e
d
u
re

 w
it
h
in

 t
h
e
 s

e
g
m

e
n
t.
 T

h
e
 c

o
n
te

n
t

 i
m

m
e

d
ia

te
 v

a
lu

e
 t

o
 S

P
).

(S
P

)
←

 (
S

P
)

+
 d

a
ta

1
6

o
f t

o
p
 o

f s
ta

c
k
 is

 tr
a
n
s
fe

rr
e
d
 to

 IP
 a

n
d
 th

e
 s

ta
c
k
 p

o
in

te
r

is
 i

n
c
re

m
e
n
te

d
 b

y
 a

 v
a
lu

e
 (

d
a
ta

1
6
)

s
p
e
c
if
ie

d
 i

n
 t

h
e

in
s
tr

u
c
ti
o

n
.

9
2

.
R

E
T

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

R
e

tu
rn

 t
h

e
 c

o
n

tr
o

l
b

a
c
k
 t

o
 c

a
lli

n
g

 p
ro

c
e

d
u

re
 f

ro
m

(R
e

tu
rn

 f
ro

m
 i

n
te

rs
e

g
m

e
n

t
c
a

ll)
(I

P
)

←
 (
M

A
S
)

th
e
 c

a
lle

d
 p

ro
c
e
d
u
re

 w
h
ic

h
 i

s
 i

n
 d

if
fe

re
n
t

s
e
g
m

e
n
t.

(S
P

)
←

 (
S

P
)

+
 2

T
h
e
 c

o
n
te

n
t

o
f

to
p
 o

f
th

e
 s

ta
c
k
 i

s
 m

o
v
e
d
 t

o
 I

P
,

a
n
d

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

s
ta

c
k
 p

o
in

te
r

is
 i

n
c
re

m
e
n
te

d
 b

y
 2

.
N

e
x
t

th
e
 c

o
n
te

n
t

(C
S

)
←

 (
M

A
S
)

o
f

c
u

rr
e

n
t

to
p

 o
f

s
ta

c
k
 i

s
 m

o
v
e

d
 t

o
 C

S
 a

n
d

 S
P

 i
s

(S
P

)
←

 (
S

P
)

+
 2

in
c
re

m
e
n
te

d

b
y
 2

.

(S
P

)
←

 (
S

P
)

−
 2

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(M
A

S
)

←
 (
IP

)

(I
P

)
←

 (
m

e
m

) (o
ff

s
e

t
a

d
d

re
s
s
)

(S
P

)
←

 (
S

P
)

−
 2

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(M
A

S
)

←
 (
C

S
)

(C
S

)
←

 (
m

e
m

+
2
) (b

a
s
e

 a
d

d
re

s
s
)

8086 Microprocessor and Its Appications

3. 60 Chapter 3 Instruction Set Of 8086

T
a

b
le

-

3
.1

4

c
o

n
ti

n
u

e
d

..
.

 S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

9
3

.
R

E
T

 d
a
ta

1
6

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

R
e

tu
rn

 t
h

e
 c

o
n

tr
o

l
b

a
c
k
 t

o
 c

a
lli

n
g

 p
ro

c
e

d
u

re
 f

ro
m

(R
e

tu
rn

 f
ro

m
 i
n

te
rs

e
g

m
e

n
t

c
a

ll
a

d
d

in
g

(I
P

)
←

 (
M

A
S
)

th
e
 c

a
lle

d
 p

ro
c
e
d
u
re

 w
h
ic

h
 i

s
 i

n
 d

if
fe

re
n
t

s
e
g
m

e
n
t.

 i
m

m
e

d
ia

te
 d

a
ta

 t
o

 S
P

)
(S

P
)

←
 (

S
P

)
+

 2
T

h
e
 c

o
n
te

n
t
o
f
to

p
 o

f
s
ta

c
k
 is

 m
o
v
e
d
 t
o
 I
P

 a
n
d
 s

ta
c
k

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

p
o
in

te
r
is

 in
cr

e
m

e
n
te

d
 b

y
2
. N

e
xt

 th
e
 c

o
n
te

n
t o

f
c
u
rr

e
n
t

(C
S

)
←

 (
M

A
S
)

to
p
 o

f
s
ta

c
k
 i
s
 m

o
v
e
d
 t
o
 C

S
 a

n
d
 t
h
e
 s

ta
c
k
 p

o
in

te
r

is

(S
P

)←
 (

S
P

)
+

 d
a
ta

1
6

in
c
re

m
e

n
te

d
 b

y
 a

 v
a

lu
e

 (
d

a
ta

1
6

)
s
p

e
c
if
ie

d
 i

n
 t

h
e

in
s
tr

u
c
ti
o

n
.

3
.1

0
.2

U

n
c
o
n

d
it

io
n

a
l

J
u

m
p

In

s
tr

u
c
ti

o
n

s

T
h
e

u
n
co

n
d
it

io
n
al

 j
u
m

p
 i
n
st

ru
ct

io
n
s

d
o
es

 n
o
t
ch

ec
k
 f

o
r

an
y
 f

la
g
 c

o
n
d
it

io
n
.
W

h
en

 t
h
e

u
n
co

n
d
it

io
n
al

 j
u
m

p
 i
n
st

ru
ct

io
n
 i
s

ex
ec

u
te

d
 t
h
e

p
ro

g
ra

m
 c

o
n

tr
o

l
is

 t
ra

n
sf

er
re

d
 t

o
 n

ew
 m

em
o

ry
 l

o
ca

ti
o

n
 e

it
h

er
 i

n
 s

am
e

se
g

m
en

t
o

r
in

 a
n

o
th

er
 s

eg
m

en
t.

 I
n

 n
ea

r
ju

m
p

 i
n

st
ru

ct
io

n
 t

h
e

p
ro

g
ra

m
 c

o
n
tr

o
l

is
 t

ra
n
sf

er
re

d
 t

o
 n

ew
 m

em
o
ry

 l
o
ca

ti
o
n
 i

n
 t

h
e

sa
m

e
se

g
m

en
t

b
y
 m

o
d
if

y
in

g
 t

h
e

co
n
te

n
t

o
f

In
st

ru
ct

io
n
 P

o
in

te
r

(I
P

).
 I

n
 f

ar

ju
m

p
 i

n
st

ru
ct

io
n
 t

h
e

p
ro

g
ra

m
 c

o
n
tr

o
l

is
 t

ra
n
sf

er
re

d
 t

o
 n

ew
 m

em
o
ry

 l
o
ca

ti
o
n
 i

n
 a

n
o
th

er
 s

eg
m

en
t

b
y
 m

o
d
if

y
in

g
 t

h
e

co
n
te

n
t

o
f

In
st

ru
ct

io
n

P
o
in

te
r

(I
P

)
an

d
 C

o
d

e
S

eg
m

en
t

(C
S

)
re

g
is

te
r.

T
A

B
L

E
 -

 3
.1

5
 :

 N
E

A
R

 J
U

M
P

 I
N

S
T

R
U

C
T

IO
N

S

S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

9
4

.
J
M

P
 d

is
p
1
6

(I
P

)
←

 (
IP

)
+

 d
is

p
1

6
T

h
e

 1
6

-b
it
 v

a
lu

e
 (

d
is

p
1

6
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n

is
 a

d
d
e
d
 t

o
 I

n
s
tr

u
c
ti
o

n
 P

o
in

te
r

(I
P

).

9
5

.
J
M

P
 d

is
p
8

d
is

p
1
6
 ←

⎯
⎯

⎯

d
is

p
8

T
h

e
 8

-b
it
 v

a
lu

e
 (

d
is

p
8

)
g

iv
e

n
 i

n
 t

h
e

 i
n

s
tr

u
c
ti
o

n
 i

s

s
ig

n
 e

x
te

n
d

e
d

 t
o

 1
6

-b
it
 a

n
d

 a
d

d
e

d
 t

o
 I

n
s
tr

u
c
ti
o

n

(I
P

)
←

 (
IP

)
+

 d
is

p
1

6
P

o
in

te
r

(I
P

).

S

ig
n

e
x
te

n
d

3. 61

T
a

b
le

-

3
.1

5

c
o

n
ti

n
u

e
d

..
.

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

r
e
p

r
e
se

n
ta

ti
o

n

9
6

.
J
M

P
 r

e
g
/m

e
m

a
)

J
M

P
 r
e
g

(I
P

)
←

 (
IP

)
+

 (
re

g
)

T
h
e
 1

6
-b

it
 v

a
lu

e
 s

to
re

d
 i

n
 t

h
e
 r

e
g
is

te
r/

m
e
m

o
ry

 i
s

a
d

d
e

d
 t

o
 I

n
s
tr

u
c
ti
o
n
 P

o
in

te
r(

IP
).

b

)
J
M

P
 m

e
m

(I
P

)
←

 (
IP

)
+

(m

e
m

)

T
A

B
L

E
 -

 3
.1

6
 :

 F
A

R
 J

U
M

P
 I
N

S
T

R
U

C
T

IO
N

S

 S

.N
o

.
In

st
r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
ep

re
se

n
ta

ti
o

n

9
7

.
J
M

P
 a

d
d
r o

ff
s
e

t,
a
d
d
r b

a
s
e

(I
P

)
←

 a
d
d
r o

ff
s
e

t
T

h
e
 o

ff
s
e
t
a
d
d
re

s
s
 g

iv
e
n
 in

 t
h
e
 in

s
tr

u
c
ti
o
n
 is

 lo
a
d
e
d

(C
S

)
←

 a
d
d
r b

a
s
e

in
 I

P
 a

n
d
 t

h
e
 b

a
s
e
 a

d
d
re

s
s
 g

iv
e
n
 i
n
 t

h
e
 i
n
s
tr

u
c
ti
o
n

is
 l

o
a
d
e
d
 i

n
 C

S
-r

e
g
is

te
r.

9
8

.
J
M

P
 m

e
m

(I
P

)
←

 (
m

e
m

)
T

h
e

 c
o

n
te

n
t

o
f

(1
6

-b
it
)

m
e

m
o

ry
 i

s
 m

o
v
e

d
 t

o
 I

P

(C
S

)
←

 (
m

e
m

+
2

)
a

n
d

 t
h

e
 n

e
x
t

w
o

rd
 i

n
 t

h
e

 m
e

m
o

ry
 i

s
 m

o
v
e

d
 t

o

C
S

-r
e

g
is

te
r.

3
.1

0
.3

C

o
n

d
it

io
n

a
l

J
u

m
p

In

s
tr

u
c
ti

o
n

s

In
 a

 c
o
n
d
it

io
n
al

 j
u
m

p
 i

n
st

ru
ct

io
n
,
o
n
e

o
r

m
o
re

 f
la

g
 c

o
n
d
it

io
n
s

ar
e

ch
ec

k
ed

.
If

 t
h
e

co
n
d
it

io
n
s

ar
e

T
R

U
E

,
th

en
 t

h
e

p
ro

g
ra

m
 c

o
n
tr

o
l

is

tr
an

sf
er

re
d
 t
o
 n

ew
 m

em
o
ry

 l
o
ca

ti
o
n
 i
n
 t
h
e

sa
m

e
se

g
m

en
t
b
y
 m

o
d
if

y
in

g
 t
h
e

co
n
te

n
t
o
f

th
e

IP
. A

ll
 c

o
n
d
it

io
n
al

 i
n
st

ru
ct

io
n
s

ar
e

o
n
ly

 n
ea

r
ju

m
p

(o
r

sh
o

rt
 j

u
m

p
),

 h
en

ce
 t

h
e

co
n

te
n

t
o

f
C

S
 i

s
n

o
t

al
te

re
d

.

In
 a

ll
 c

o
n

d
it

io
n

a
l

ju
m

p
 i

n
st

ru
c
ti

o
n

s,
 a

n
 8

-b
it

 v
a
lu

e
(d

is
p

8
)

w
il

l
b

e
 d

ir
e
c
tl

y
 s

p
e
c
if

ie
d

 i
n

 t
h

e
 i

n
st

ru
c
ti

o
n

 w
h

ic
h

 i
s

si
g

n
 e

x
te

n
d

e
d

 t
o

1
6
-b

it
 a

n
d
 a

d
d
ed

 t
o
 I

P
.

T
h
e

n
ew

 v
al

u
e

in
 I

P
 i

s
th

e
ef

fe
ct

iv
e

ad
d
re

ss
 o

f
th

e
in

st
ru

ct
io

n
 w

h
er

e
th

e
p
ro

g
ra

m
 c

o
n
tr

o
l

is
 t

ra
n
sf

er
re

d
,

if
 t

h
e

co
n
d
it

io
n
 i
s

T
R

U
E

.

8086 Microprocessor and Its Appications

3. 62 Chapter 3 Instruction Set Of 8086

I
n

s
tr

u
c
ti

o
n

 F
o
r
m

a
t

J
<

co
n
d
it

io
n

>

d
is

p
8

If
 <

co
n
d
it

io
n

>
is

 T
R

U
E

th

en
,

d
is

p
1
6

←
⎯

⎯
⎯

⎯
⎯

 d

is
p
8
 ;

 (

IP
)

←
 (

IP
)

+
 d

is
p

1
6

N
o
t
e

:
If

 t
h
e

co
n

d
it

io
n

 s
p
ec

if
ie

d
 b

y
th

e
in

st
ru

ct
io

n
 i
s

F
A

L
S

E
 t
h
en

 t
h
e

co
n

te
n

t
of

 I
P

 i
s

n
ot

 a
lt

er
ed

.

si
g

n
 e

x
te

n
d

T
A

B
L

E
 -

 3
.1

7
 :

 C
O

N
D

IT
IO

N
A

L
 J

U
M

P
 I
N

S
T

R
U

C
T

IO
N

S

 S

.N
o

.
In

st
r
u

c
ti

o
n

E
x
p

la
n

a
ti

o
n

9
9

.
J
E

 d
is

p
8

(J
Z

 d
is

p
8
)

J
u
m

p
 i
f

Z
F

=
1

1
0

0
.

J
L

 d
is

p
8

 (

J
N

G
E

 d
is

p
8

)
J
u

m
p

 i
f

S
F

≠
O

F

1
0

1
.

J
L

E
 d

is
p

8

(J
N

G
 d

is
p

8
)

J
u

m
p

 i
f
S

F
≠

O
F

 o
r

Z
F

 =
 1

1
0

2
.

J
B

 d
is

p
8

(J
N

A
E

/J
C

 d
is

p
8
)

J
u
m

p
 i

f
C

F
=

1

1
0

3
.

J
B

E
 d

is
p

8

(J
N

A
 d

is
p

8
)

J
u

m
p

 i
f

C
F

=
1
 o

r
Z

F
=

1

1
0

4
.

J
P

 d
is

p
8

(J
P

E
 d

is
p

8
)

J
u

m
p

 i
f

P
F

=
1

1
0

5
.

J
N

B
 d

is
p

8

(J
A

E
/J

N
C

 d
is

p
8
)

J
u
m

p
 i

f
C

F
=

0

1
0

6
.

J
N

B
E

 d
is

p
8

J
u

m
p

 i
f

C
F

=
0

 a
n

d
 Z

F
=

0

(J
A

 d
is

p
8

)

S
.N

o
.

In
st

r
u

c
ti

o
n

E
x
p

la
n

a
ti

o
n

1
0

7
.

J
N

P
 d

is
p

8
J
u

m
p

 i
f

P
F

=
0

(J
P

O
 d

is
p
8
)

1
0

8
.

J
N

O
 d

is
p

8
J
u

m
p

 i
f

O
F

=
0

1
0

9
.

J
N

S
 d

is
p

8
J
u

m
p

 i
f

S
F

=
0

1
1

0
.

J
O

 d
is

p
8

J
u
m

p
 i
f

O
F

=
1

1
1
1

.
J
S

 d
is

p
8

J
u

m
p

 i
f

S
F

=
1

1
1

2
.

J
N

E
 d

is
p

8
J
u

m
p

 i
f

Z
F

=
0

(J
N

Z
 d

is
p

8
)

1
1

3
.

J
N

L
 d

is
p

8
J
u
m

p
 i
f
S

F
=

O
F

(J
G

E
 d

is
p
8
)

1
1

4
.

J
N

L
E

 d
is

p
8

(J
G

 d
is

p
8
)

J
u
m

p
 i
f

C
F

=
O

F
 a

n
d
 Z

F
=

0

1
1

5
.

J
C

X
Z

 d
is

p
8

J
u
m

p
 i
f

(C
X

)
=

 0

N
o

t
e

:
T

h
e

ex
ec

u
ti

o
n

 o
f

in
st

ru
ct

io
n

 J
C

X
Z

 i
s

si
m

il
a

r
to

 t
h
a

t
o
f

a
n

y
co

n
d
it

io
n

a
l j

u
m

p
 i
n

st
ru

ct
io

n
 e

xc
ep

t
th

a
t
th

e
co

n
te

n
t
of

 C
X

-r
eg

is
te

r

is
 c

h
ec

ke
d
 t

o
m

a
ke

 a
 d

ec
is

io
n

 i
n

st
ea

d
 o

f
a
 f
la

g.

 3. 63

3
.1

0
.4

L
O

O
P

In

s
tr

u
c
ti

o
n

s

L
O

O
P

 i
n
st

ru
ct

io
n
s

ar
e

u
se

d
 t

o
 e

x
ec

u
te

 a
 g

ro
u
p
 o

f
in

st
ru

ct
io

n
s,

 a
 n

u
m

b
er

 o
f

ti
m

es
,

as
 s

p
ec

if
ie

d
 b

y
 a

 c
o
u
n
t

v
al

u
e

st
o
re

d
 i

n
 C

X
-

re
g
is

te
r.

 T
h
e

n
u
m

b
er

 o
f

in
st

ru
ct

io
n
s

to
 b

e
lo

o
p
ed

 w
il

l
b
e

sp
ec

if
ie

d
 d

ir
ec

tl
y
 i

n
 t

h
e

in
st

ru
ct

io
n
 a

s
a

si
g
n
ed

 e
ig

h
t

b
it

 n
u
m

b
er

 (
d
is

p
la

ce
m

en
t

o
r

d
is

p
8
).

 F
o
r

p
o
si

ti
v
e

d
is

p
la

ce
m

en
t

th
e

in
st

ru
ct

io
n
s

b
el

o
w

 t
h
e

L
O

O
P

 i
n
st

ru
ct

io
n
 a

re
 e

x
ec

u
te

d
 a

n
d
 f

o
r

n
eg

at
iv

e
d
is

p
la

ce
m

en
t

th
e

in
st

ru
ct

io
n
s

ab
o
v
e

th
e

L
O

O
P

 i
n
st

ru
ct

io
n
s

ar
e

ex
ec

u
te

d
. T

h
e

co
n
te

n
t
o
f

C
X

-r
eg

is
te

r
is

 d
ec

re
m

en
te

d
 b

y
 o

n
e

af
te

r
ea

ch
 e

x
ec

u
ti

o
n
 o

f
lo

o
p
ed

 i
n
st

ru
ct

io
n
s.

T
h
e

ef
fe

ct
iv

e
ad

d
re

ss
 o

f
th

e
fi

rs
t

in
st

ru
ct

io
n
 o

f
th

e
lo

o
p
 i

s
o
b
ta

in
ed

 b
y
 s

ig
n
 e

x
te

n
d
in

g
 t

h
e

d
is

p
8
 t

o
 1

6
-b

it
 a

n
d
 a

d
d
in

g
 i

t
to

 I
P.

T
A

B
L

E
 -

 3
.1

8
 :

 L
O

O
P

 I
N

S
T

R
U

C
T

IO
N

S

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
ep

re
se

n
ta

ti
o

n

1
1

6
.

L
O

O
P

 d
is

p
8

L
o

o
p

 i
f

(C
X

)
≠

 0
R

e
p

e
a

t
e

x
e

c
u

ti
o

n
 o

f
th

e
 g

ro
u

p
 o

f
in

s
tr

u
c
ti

o
n

s

(C
X

)
←

 (
C

X
)

−
 1

u
n

ti
l t

h
e

 c
o

n
te

n
t
o

f
C

X
 is

 z
e

ro
. A

ft
e

r
e

a
c
h

 e
x
e

c
u

ti
o

n

C
X

 i
s
 d

e
c
re

m
e

n
te

d
 b

y
 o

n
e

.

1
1

7
.

L
O

O
P

Z
 d

is
p

8
L

o
o

p
 i
f

(C
X

)≠
0

 a
n

d
 Z

F
=

1
R

e
p

e
a

t
e

x
e

c
u

ti
o

n
 o

f
th

e
 g

ro
u

p
 o

f
in

s
tr

u
c
ti
o

n
s
,

if

(L
O

O
P

E
 d

is
p

8
)

(C
X

)
 ←

 (
C

X
)

−
 1

th
e

 c
o

n
te

n
t

o
f

C
X

 i
s
 n

o
t

z
e

ro
 a

n
d

 t
h

e
 Z

F
=

1
.

A
ft
e

r

e
a

c
h

 e
x
e

c
u

ti
o

n
 C

X
 i

s
 d

e
c
re

m
e

n
te

d
 b

y
 o

n
e

.

1
1

8
.

L
O

O
P

N
Z

 d
is

p
8

(L
O

O
P

N
E

 d
is

p
8

)
L

o
o

p
 i
f

(C
X

)≠
0

 a
n

d
 Z

F
=

0
R

e
p

e
a

t
e

x
e

c
u

ti
o

n
 o

f
th

e
 g

ro
u

p
 o

f
in

s
tr

u
c
ti
o

n
s
,

if

(C
X

)
←

 (
C

X
)

−
 1

th
e

 c
o

n
te

n
t

o
f

C
X

 i
s
 n

o
t

z
e

ro
 a

n
d

 t
h

e
 Z

F
=

0
.

A
ft
e

r

e
a

c
h

 e
x
e

c
u

ti
o

n
,

th
e

C

X
 i
s
 d

e
c
re

m
e

n
te

d
 b

y
 o

n
e

.

3
.1

0
.5

S

o
ft

w
a
r
e

In

te
r
r
u

p
ts

T
h
e

IN
T

 i
n
st

ru
ct

io
n
s

ar
e

ca
ll

ed
 s

o
ft

w
ar

e
in

te
rr

u
p
ts

.
T

h
e

IN
T

 i
n
st

ru
ct

io
n
 i

s
u
se

d
 t

o
 c

al
l

a
p
ro

ce
d
u
re

 o
r

su
b
ro

u
ti

n
e

o
n
 i

n
te

rr
u
p
t

b
as

is
.

H
en

ce
,

th
e

p
ro

ce
d
u
re

 e
x
ec

u
te

d
 o

n
 i

n
te

rr
u
p
t

b
as

is
 i

s
ca

ll
ed

 I
n
te

rr
u
p
t

S
er

v
ic

e
R

o
u
ti

n
e

(I
S

R
).

T
h
e

IN
T

 i
n
st

ru
ct

io
n
 i

s
ac

co
m

p
an

ie
d
 b

y
 a

 t
y
p
e

n
u
m

b
er

,
w

h
ic

h
 c

an
 b

e
in

 t
h
e

ra
n
g
e

o
f

0
 t

o
 2

5
5
.
T

h
er

ef
o
re

,
in

 a
n
 8

0
8
6
 p

ro
ce

ss
o
r,

 2
5

6

ty
p
es

 o
f

so
ft

w
ar

e
in

te
rr

u
p
ts

 c
an

 b
e

im
p
le

m
en

te
d
.
T

h
es

e
so

ft
w

ar
e

in
te

rr
u
p
ts

 a
re

 u
se

d
 t

o
 i

m
p
le

m
en

t
th

e
sy

st
em

 c
al

l
se

rv
ic

e
o
f

th
e

o
p
er

at
in

g

sy
st

e
m

.

8086 Microprocessor and Its Appications

3. 64 Chapter 3 Instruction Set Of 8086

In
 o

rd
er

 t
o

 e
x

ec
u

te
 a

n
 I

S
R

,
a

1
6

-b
it

 e
ff

ec
ti

v
e

ad
d

re
ss

 f
o

r
IP

 a
n

d
 a

 1
6

-b
it

 b
as

e
ad

d
re

ss
 f

o
r

C
S

 a
re

 n
ee

d
ed

.
T

h
er

ef
o

re
,

fo
r

ea
ch

 I
N

T

in
st

ru
ct

io
n
 f

o
u
r

m
em

o
ry

 l
o
ca

ti
o
n
s

ar
e

re
se

rv
ed

 i
n
 t

h
e

fi
rs

t
1
k
 a

d
d
re

ss
 s

p
ac

e
o
f

m
em

o
ry

.
In

 t
h
e

re
se

rv
ed

 l
o
ca

ti
o
n
s,

 t
h
e

fi
rs

t
tw

o
 l

o
ca

ti
o
n
s

ar
e

u
se

d
 t

o
 s

to
re

 t
h

e
ef

fe
ct

iv
e

ad
d

re
ss

 (
to

 b
e

lo
ad

ed
 i

n
 I

P
),

 a
n

d
 t

h
e

n
ex

t
tw

o
 l

o
ca

ti
o

n
s

ar
e

u
se

d
 t

o
 s

to
re

 t
h

e
b

as
e

ad
d

re
ss

,
(t

o
 b

e
lo

ad
ed

 i
n

C
S

-r
eg

is
te

r)
.

T
h
e

ad
d
re

ss
 o

f
th

e
re

se
rv

ed
 m

em
o
ry

 l
o
ca

ti
o
n
 i

s
ca

ll
ed

 V
ec

to
r

ad
d
re

ss
.
T

h
e

v
ec

to
r

ad
d
re

ss
 o

f
an

 i
n
te

rr
u
p
t

is
 o

b
ta

in
ed

 b
y
 m

u
lt

ip
ly

in
g

th
e

ty
p

e
n

u
m

b
er

 b
y

 4
.

B
ef

o
re

 e
x

ec
u

ti
n

g
 I

S
R

 t
h

e
co

n
te

n
t

o
f

IP
,
C

S
 a

n
d

 f
la

g
 r

eg
is

te
r

ar
e

p
u

sh
ed

 t
o

 s
ta

ck
.
E

ac
h

 I
S

R
 i

s
te

rm
in

at
ed

 b
y

 I
R

E
T

 (
In

te
rr

u
p

t
re

tu
rn

)

in
st

ru
ct

io
n

.
O

n
 e

x
ec

u
ti

n
g

 I
R

E
T

 i
n

st
ru

ct
io

n
 t

h
e

to
p

 o
f

st
ac

k
 a

re
 p

o
p

ed
 t

o
 I

P
,

C
S

 a
n

d
 f

la
g

 r
eg

is
te

r.
 T

h
u

s,
 t

h
e

p
ro

g
ra

m
 c

o
n

tr
o

l
re

tu
rn

 b
ac

k

to
 m

ai
n
 p

ro
g
ra

m
 a

ft
er

 e
x
ec

u
ti

n
g

IS
R

.

T
A

B
L

E
 -

 3
.1

9
 :

 S
O

F
T

W
A

R
E

 I
N

T
E

R
R

U
P

T

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
ep

re
se

n
ta

ti
o

n

1
1

9
.

IN
T

 t
y
p

e
(S

P
)

←
 (

S
P

)
−
 2

 ;
 (

M
A

S
)

←
 F

la
g

s
T

h
is

 i
n

s
tr

u
c
ti
o

n
 i

s
 a

 s
o

ft
w

a
re

 i
n

te
rr

u
p

t
a

n
d

 u
s
e

d

IF
 ←

 0
 ;
 T

F
 ←

 0
to

 c
a

ll
 a

 s
e

rv
ic

e
 p

ro
c
e

d
u

re
(o

r
s
u

b
ro

u
ti

n
e

)
o

n

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 (

C
S

)
in

te
rr

u
p

t
b

a
s
is

.
T

h
e

 t
y
p

e
 n

u
m

b
e

r
is

 f
ro

m
 0

 t
o

 2
5

5
.

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 (

IP
)

O
n

 e
x
e

c
u

ti
o

n
 o

f
th

is
 i

n
s
tr

u
c
ti
o

n
,

th
e

 c
o

n
te

n
t

o
f

(I
P

)
←

 (
0

0
0

0
 :
 (

ty
p

e
 ×

 4
))

fl
a

g
 r

e
g

is
te

r,
 C

S
-r

e
g

is
te

r
a

n
d

 I
P

 a
re

 p
u

s
h

e
d

 t
o

(C
S

)
←

 (
0

0
0

0
 :
 (

ty
p

e
 ×

 4
)

+
 2

)
s
ta

c
k
 o

n
e

 b
y
 o

n
e

 a
ft

e
r

d
e

c
re

m
e

n
ti

n
g

 S
P

 b
y
 2

b
e

fo
re

 e
a

c
h

 p
u

s
h

 o
p

e
ra

ti
o

n
.

T
h

e
 f

la
g

s
 T

F
 a

n
d

 I
F

a
re

 a
ls

o
 c

le
a

re
d

.
T

h
e

 e
ff

e
c
ti
v
e

 v
e

c
to

r
a

d
d

re
s
s
 i

s

F
o
r

e
a
ch

 p
u
sh

 o
p
e
ra

tio
n
 t

h
e
 s

ta
ck

 m
e
m

o
ry

c
a

lc
u

la
te

d
 b

y
 m

u
lt
ip

ly
in

g
 t

h
e

 t
y
p

e
 n

u
m

b
e

r
b

y
 4

.

a
d

d
re

s
s
 i

s
 c

a
lc

u
la

te
d

 a
s
 s

h
o

w
n

 b
e

lo
w

.
T

h
e

 m
e

m
o

ry
 l

o
c
a

ti
o

n
 p

o
in

te
d

 b
y
 v

e
c
to

r
a

d
d

re
s
s

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

c
o

n
ta

in
 t

h
e

 a
d

d
re

s
s
 o

f
in

te
rr

u
p

t
s
e

rv
ic

e
 r

o
u

ti
n

e
.

T
h

e
 f

ir
s
t

w
o

rd
 p

o
in

te
d

 b
y
 t

h
e

 c
a

lc
u

la
te

d
 v

e
c
to

r

a
d

d
re

s
s
 is

 m
o

v
e

d
 t
o

 I
P

 a
n

d
 t
h

e
 n

e
x
t
w

o
rd

 is
 m

o
v
e

d

to
 C

S
-r

e
g

is
te

r.

 3. 65

T
a

b
le

-

3

.1
9

c
o

n
ti

n
u

e
d

..

..

S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
ep

re
se

n
ta

ti
o

n

1
2

0
.

IN
T

 3
(S

P
)

←
 (

S
P

)
−

 2
 ;
 (

M
A

S
)

←
 F

la
g

s
T

h
is

 i
n

s
tr

u
c
ti

o
n

 i
s
 a

 s
p

e
c
ia

l
ty

p
e

 o
f

s
o

ft
w

a
re

IF
 ←

 0
 ;
 T

F
 ←

 0
in

te
rr

u
p

t
w

h
ic

h
 h

a
s
 t

h
e

 s
in

g
le

 b
y
te

 c
o

d
e

 o
f

C
C

H
.

(S
P

)←
 (

S
P

)
−

 2
 ;
 (

M
A

S
)

←
 (

C
S

)
M

a
n

y
 s

y
s
te

m
s
 u

s
e

 t
h

is
 a

s
 a

 b
re

a
k
 p

o
in

t
in

s
tr

u
c
ti
o

n
.

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 (

IP
)

T
h

e
 o

p
e

ra
ti
o

n
s
 p

e
rf

o
rm

e
d

 b
y
 t

h
is

 i
n

s
tr

u
c
ti
o

n
 i

s

(I
P

)
←

 (
0

0
0

0
C

H
)

;
(C

S
)

←
 (

0
0

0
0

E
H
)

s
a

m
e

 a
s
 t

h
a

t
o

f
a

 t
y
p

e
-3

 i
n

te
rr

u
p

t.

N
o
te

 :
 3

 ×
 4

 =
 1

2
1
0
 =

 0
C

H
 ;
 1

2
 +

 2
 =

 1
4

1
0
 =

 0
E

H

F
o

r
e

a
c
h

 p
u

s
h

 o
p

e
ra

ti
o

n
 t

h
e

 M
A

S
 i
s
 g

iv
e

n
 b

y

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

1
2

1
.

IN
T

O
If

 O
F

=
1

,
th

e
n

 f
o

llo
w

in
g

 o
p

e
ra

ti
o

n
s
 a

re
If
 O

v
e

rf
lo

w
 F

la
g

 (
O

F
)

is
 1

,
th

e
n

 a
 t
y
p
e

-4
 in

te
rr

u
p

t
is

p
e

rf
o

rm
e

d
.

p
e

rf
o

rm
e

d
.

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 F

la
g

s

IF
←

 0
 ;
 T

F
 ←

 0

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 (

C
S

)

(S
P

)
←

 (
S

P
)

−
 2

 ;
 (

M
A

S
)

←
 (

IP
)

(I
P

)
←

(0
0

0
1

0
H
)

;
(C

S
)

←
 (

0
0

0
1

2
H
)

N
o
te

 :
 4

 ×
 4

 =
1
6

1
0
=

1
0

H

;

1
6

+
2

 =
1
8

1
0

 =
1
2

H

F
o

r
e

a
c
h

 p
u

s
h

 o
p

e
ra

ti
o

n
 t

h
e

 M
A

S
 i
s
 g

iv
e

n
 b

y

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

1
2

2
.

IR
E

T
(I

P
)

←
 (

M
A

S
)

;
(S

P
)

←
 (

S
P

)
+

 2
T

h
is

 i
n

s
tr

u
c
ti
o

n
 i

s
 u

s
e

d
 t

o
 t

e
rm

in
a

te
 a

n
 i

n
te

rr
u

p
t

(C
S

)
←

 (
M

A
S
)

;
(S

P
)

←
 (

S
P

)
+

 2
s
e

rv
ic

e
 p

ro
c
e

d
u

re
 a

n
d

 t
ra

n
s
fe

r
th

e
 p

ro
g

ra
m

 c
o

n
tr

o
l

F
la

g
 ←

 (
M

A
S
)

;
(S

P
)←

 (
S

P
)

+
 2

b
a

c
k
 t

o
 t

h
e

 m
a

in
 p

ro
g

ra
m

.
O

n
 e

x
e

c
u

ti
o

n
 o

f
th

is

F
o

r
e

a
c
h

 p
o

p
 o

p
e

ra
ti
o

n
 t

h
e

 s
ta

c
k
 m

e
m

o
ry

in
s
tr

u
c
ti
o

n
,

th
e

 c
o

n
te

n
ts

 o
f

to
p

 o
f

s
ta

c
k
 (

p
o

in
te

d

a
d

d
re

s
s
 i

s
 c

a
lc

u
la

te
d

 a
s
 s

h
o

w
n

 b
e

lo
w

:
b

y
 S

P
)

a
re

 m
o

v
e

d
 (

p
o

p
e

d
)

to
 I

P
,

C
S

 a
n

d
 f

la
g

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

re
g

is
te

rs
 o

n
e

 b
y
 o

n
e

.
A

ft
e

r
e

v
e

ry
 p

o
p

 o
p

e
ra

ti
o

n
,

th
e

 S
P

 i
s
 i
n

c
re

m
e

n
te

d
 b

y
 2

.

8086 Microprocessor and Its Appications

3. 66 Chapter 3 Instruction Set Of 8086

3
.
1

1

P

R
O

C
E

S
S

O
R

C

O
N

T
R

O
L

I
N

S
T

R
U

C
T

I
O

N
S

T
h
e

p
ro

ce
ss

o
r

co
n
tr

o
l

g
ro

u
p
 i

n
cl

u
d
es

 i
n
st

ru
ct

io
n
s

to
 s

et
 o

r
cl

ea
r

ca
rr

y
 f

la
g
,

d
ir

ec
ti

o
n
 f

la
g
 a

n
d
 i

n
te

rr
u
p
t

fl
ag

.
It

 a
ls

o
 i

n
cl

u
d
es

 H
L

T
,

N
O

P,
 L

O
C

K
 a

n
d

 E
S

C
 i

n
st

ru
ct

io
n

s
w

h
ic

h
 c

o
n

tr
o

ls
 t

h
e

p
ro

ce
ss

o
r

o
p

er
at

io
n

.

T
h
e

p
ro

ce
ss

o
r

co
n
tr

o
l

in
st

ru
ct

io
n
s

ar
e

li
st

ed
 i

n
 T

ab
le

-3
.2

0
,

w
it

h
 a

 b
ri

ef
 d

es
cr

ip
ti

o
n
 a

b
o
u
t

ea
ch

 i
n
st

ru
ct

io
n
.

T
A

B
L

E
 -

 3
.2

0
 :

 P
R

O
C

E
S

S
O

R
 C

O
N

T
R

O
L

 I
N

S
T

R
U

C
T

IO
N

S

 S
.N

o
.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
E

x
p

la
n

a
ti

o
n

 r
ep

re
se

n
ta

ti
o

n

1
2

3
.

C
L

C
C

F
←

0
T

h
e

 c
a

rr
y
 f

la
g

 i
s
 r

e
s
e

t
to

 z
e

ro
.

1
2

4
.

C
M

C
C

F
←

~
C

F
T

h
e
 c

a
rr

y
 f

la
g
 i

s
 c

o
m

p
le

m
e
n
te

d
.

1
2

5
.

S
T

C
C

F
←

1
T

h
e
 c

a
rr

y
 f

la
g
 i
s
 s

e
t

to
 o

n
e
.

1
2

6
.

C
L

D
D

F
←

0
T

h
e
 d

ir
e
c
ti
o
n
 f

la
g
 i
s
 r

e
s
e
t

to
 z

e
ro

.

1
2

7
.

S
T

D
D

F
←

1
T

h
e
 d

ir
e
c
ti
o
n
 f

la
g
 i
s
 s

e
t

to
 o

n
e
.

1
2

8
.

C
L

I
IF

←
0

T
h
e
 i
n
te

rr
u
p
t

fl
a
g
 i
s
 r

e
s
e
t

to
 z

e
ro

.

1
2

9
.

S
T

I
IF

←
1

T
h

e
 i
n

te
rr

u
p

t
fl
a

g
 i
s
 s

e
t

to
 o

n
e

.

1
3

0
.

H
L
T

H
a
lt
 p

ro
g
ra

m
 e

x
e
c
u
ti
o
n

T
h
is

 i
n
s
tr

u
c
ti
o
n
 i

s
 u

s
e
d
 t

o
 t

e
rm

in
a
te

 a
 p

ro
g
ra

m
.

O
n

e
x
e
c
u
ti
o
n
 o

f
th

is
 i

n
s
tr

u
c
ti
o
n
 t

h
e
 p

ro
c
e
s
s
o
r

e
n
te

r
in

to

a
n

 i
d

le
 s

ta
te

 a
n

d
 p

e
rf

o
rm

s
 n

o
-o

p
e

ra
ti

o
n

 u
n

ti
l

a
n

in
te

rr
u

p
t

o
c
c
u

rs
.

1
3

1
.

W
A

IT
W

a
it
 f
o
r

te
s
t
lin

e
 a

c
ti
v
e
.

T
h

is
 i

n
s
tr

u
c
ti
o

n
 c

a
u

s
e

s
 t

h
e

 p
ro

c
e

s
s
o

r
to

 e
n

te
r

in
to

a
n
 i

d
le

 s
ta

te
 o

r
a
 w

a
it
 s

ta
te

 a
n
d
 c

o
n
ti
n
u
e
 t

o
 r

e
m

a
in

in
 t

h
a
t

s
ta

te
 u

n
ti
l
a
 s

ig
n
a
l
is

 a
s
s
e
rt

e
d
 o

n
 T

E
S

T
 i
n
p
u
t

p
in

 o
r

u
n
ti
l
a
 v

a
lid

 i
n
te

rr
u
p
t

s
ig

n
a
l
is

 r
e
c
e
iv

e
d
 o

n
 t

h
e

IN
T

R
 o

r
N

M
I

in
te

rr
u
p
t

in
p
u
t

p
in

.

3. 67

T
a

b
le

 -
 3

.2
0

 :
 c

o
n

ti
n

u
e
d

 .
..

.

S
.N

o
.

In
st

r
u

c
ti

o
n

E
x
p

la
n

a
ti

o
n

1
3

2
.

E
S

C
 o

p
c
o

d
e

,
m

e
m

/r
e

g

a
)

E
S

C
 o

p
c
o

d
e

,
m

e
m

T
h

is
 i

n
s
tr

u
c
ti
o

n
 i

s
 u

s
e

d
 t

o
 p

a
s
s
 i

n
s
tr

u
c
ti
o

n
s
 t

o
 a

 c
o

p
ro

c
e

s
s
o

r
w

h
ic

h
 s

h
a

re
s
 t

h
e

 a
d

d
re

s
s
 a

n
d

b
)

E
S

C
 o

p
c
o
d
e
,

re
g

d
a
ta

 b
u
s
 w

it
h
 t

h
e
 8

0
8
6
.

T
h
e
 l

o
w

e
r

6
 b

it
s
 o

f
th

e
 o

p
c
o
d
e
 i

s
 t

h
e
 o

p
c
o
d
e
 o

f
8
0
8
7
 i

n
s
tr

u
c
ti
o
n
 a

n
d

th
e
 u

p
p
e
r

tw
o
 b

it
s
 a

re
 z

e
ro

s
.

F
o

r
E

S
C

 o
p

c
o

d
e
,
m

e
m

 t
h
e
 d

a
ta

 is
 a

c
c
e
s
s
e
d
 b

y
 8

0
8
7
 f
ro

m
 m

e
m

o
ry

 a
n
d
 f
o
r

E
S

C
 o

p
c
o

d
e
,
re

g
 t
h
e

d
a
ta

 i
s
 a

c
c
e
s
s
e
d
 b

y
 8

0
8
7
 f

ro
m

 t
h
e
 8

0
8
6
 r

e
g
is

te
r

s
p
e
c
if
ie

d
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
.

1
3

3
.

L
O

C
K

T
h
e
 L

O
C

K
 i

s
 u

s
e

d
 a

s
 a

 p
re

fi
x
 t

o
 a

 c
ri

ti
c
a

l
in

s
tr

u
c
ti
o

n
 w

h
ic

h
 h

a
s
 t

o
 b

e
 e

x
e

c
u

te
d

 w
it
h

o
u

t
a

n
y

d
is

tu
rb

a
n
c
e
 f

ro
m

 o
th

e
r

b
u
s
 m

a
s
te

rs
.

W
h
e
n
 L

O
C

K
 p

re
fi
x
 i

s
 u

s
e
d
 i

n
 a

n
 i

n
s
tr

u
c
ti
o
n
 t

h
e
n
 d

u
ri
n
g

e
x
e

c
u

ti
o

n
 o

f
th

is
 i

n
s
tr

u
c
ti
o

n
 t

h
e

 L
O

C
K

 p
re

fi
x
 e

n
s
u

re
s
 t

h
a

t
th

e
 s

h
a

re
d

 s
y
s
te

m
 r

e
s
o

u
rc

e
s
 a

re

n
o
t

ta
k
e
n
 o

v
e
r

b
y
 o

th
e
r

b
u
s
 m

a
s
te

rs
 i
n
 t

h
e
 m

id
d
le

 o
f

in
s
tr

u
c
ti
o
n
 e

x
e
c
u
ti
o
n
.

1
3

4
.

N
O

P
N

o
 o

p
e
ra

ti
o
n
 i
s
 p

e
rf

o
rm

e
d
 f

o
r

3
 c

lo
c
k
 p

e
ri
o
d
s
,

w
h
e
n
 t

h
is

 i
n
s
tr

u
c
ti
o
n
 i
s
 e

x
e
c
u
te

d
.

T
h
e
 p

ro
c
e
s
s
o
r

w
a
it
s
 f

o
r

3
 c

lo
c
k
 p

e
ri
o
d
s
 a

n
d
 t

h
e
n
 t

h
e
 n

e
x
t

in
s
tr

u
c
ti
o
n
 i
s
 e

x
e
c
u
te

d
.

S
ym

b
o
ls

/A
b

b
re

vi
at

io
n

s
u

se
d

 i
n

 I
n

st
ru

ct
io

n
 S

et

re
g
, r

eg
1
, r

eg
2

-
 8

-b
it

 o
r

1
6

-b
it

 r
eg

is
te

r
F

la
g

s
-

 F
la

g
 r

eg
is

te
r

O
F

-
 O

v
er

fl
o
w

 F
la

g

re
g
8

-
 8

-b
it

 r
eg

is
te

r
&

-
 l
o
g
ic

al
 A

N
D

T
F

-
 T

ra
ce

 F
la

g

re
g
1
6

-
 1

6
-b

it
 r

eg
is

te
r

|
-
 lo

g
ic

al
-O

R
IF

-
 I

n
te

rr
u

p
t
F

la
g

m
em

-
 8

-b
it

 o
r

1
6
-b

it
 m

em
o
ry

^
-
 lo

g
ic

al
 E

x
cl

u
si

v
e-

O
R

D
F

-
 D

ir
ec

ti
o
n
 F

la
g

m
e
m

8
-

 8
-b

it
 m

em
o
ry

 ~
-

 lo
g
ic

al
 N

O
T

S
F

-
 S

ig
n
 F

la
g

m
e
m

1
6

-
 1

6
-b

it
 m

em
o
ry

d
is

p
-

 8
-b

it
 o

r
1
6

-b
it

 d
is

p
la

ce
m

en
t

Z
F

-
 Z

er
o

 F
la

g

d
a
ta

-
 8

-b
it

 o
r

1
6

-b
it

 im
m

ed
ia

te
 d

at
a

d
is

p
8

-
 8

-b
it

 d
is

p
la

ce
m

en
t

P
F

-
 P

ar
it

y
 F

la
g

d
at

a8
-

 8
-b

it
 i
m

m
ed

ia
te

 d
at

a
d
is

p
1
6

-
 1

6
-b

it
 d

is
p
la

ce
m

en
t

ad
d
r8

-
 8

-b
it

 p
o
rt

 a
d
d
re

ss

se
g

re
g

-
 s

eg
m

en
t
re

g
is

te
r

(E
x
cl

u
d
in

g
 C

S
)

C
F

-
 C

ar
ry

 F
la

g
a
d

d
r o

ff
se

t
-

 1
6

-b
it

 o
ff

se
t/

ef
fe

ct
iv

e
ad

d
re

ss

d
at

a1
6

-
 1

6
-b

it
 im

m
ed

ia
te

 d
at

a
A

F
-

 A
u
x
il

ia
ry

 C
ar

ry
 F

la
g

a
d

d
r b

a
se

-
 1

6
-b

it
 b

as
e

ad
d
re

ss

8086 Microprocessor and Its Appications

3. 68 Chapter 3 Instruction Set Of 8086

3
.
1

2

E

X
A

M
P

L
E

S

O

F

8

0
8

6

I
N

S
T

R
U

C
T

I
O

N
S

N
o
te

:

1
.

T
h
e

re
gi

st
er

 o
r

re
gi

st
er

 +
 c

on
st

a
n

t
en

cl
os

ed
 b

y
sq

u
a

re
 b

ra
ck

et
s

in
 t

h
e

op
er

a
n

d
 f
ie

ld
 o

f
in

st
ru

ct
io

n
s

re
fe

r
to

 t
h
e

m
et

h
od

 o
f e

ff
ec

ti
v
e

a
d
d
re

ss
 c

a
lc

u
la

ti
o
n

 o
f
m

em
o
ry

.
T

h
e

1
6

-b
it

 c
o
n

st
a

n
t

en
cl

o
se

d
 b

y
sq

u
a

re
 b

ra
ck

et
s

in
 t

h
e

o
p
er

a
n

d
 f
ie

ld
 o

f
in

st
ru

ct
io

n
s

re
fe

r
to

 t
h
e

ef
fe

ct
iv

e
a

d
d
re

ss
 o

f
m

em
o
ry

 d
a

ta
.

T
h
e

8
-b

it
/
1

6
-b

it
 c

o
n

st
a

n
ts

 w
h
ic

h
 a

re
 n

o
t

en
cl

o
se

d
 b

y
br

a
ck

et
s

in
 t

h
e

op
er

a
n

d
 f

ie
ld

 r
ef

er
 t

o

im
m

ed
ia

te
 d

a
ta

.

2
.

T
h
e

te
rm

 M
A

 u
se

d
 i
n

 t
h
e

sy
m

bo
li

c
d
es

cr
ip

ti
on

 o
f i

n
st

ru
ct

io
n

s
re

fe
r

to
 p

h
ys

ic
a
l m

em
or

y
a
d
d
re

ss
 o

f d
a
ta

 s
eg

m
en

t
m

em
or

y
a
n

d
 M

A
s
re

fe
r

to
 p

h
ys

ic
a

l m
em

or
y

a
d
d
re

ss
 o

f s
ta

ck
 s

eg
m

en
t
m

em
or

y
a

n
d
 M

A
E
 r

ef
er

 t
o

p
h
ys

ic
a
l m

em
or

y
a
d
d
re

ss
 o

f e
xt

ra
 s

eg
m

en
t
m

em
or

y.

3
.

T
h
e

re
gi

st
er

/m
em

or
y

en
cl

os
ed

 b
y

br
a
ck

et
s
in

 s
ym

bo
li

c
d
es

cr
ip

ti
on

 r
ef

er
s
to

 th
e

co
n

te
n

t o
f r

eg
is

te
r/

m
em

or
y.

4
.

F
or

 h
ex

a
-d

ec
im

a
l

co
n

st
a

n
t

(d
a

ta
/a

d
d
re

ss
)

th
e

le
tt

er
 H

 i
s

in
cl

u
d
ed

 a
t

th
e

en
d
 o

f
8

-b
it

/1
6

-b
it

 c
on

st
a

n
ts

(d
a

ta
/a

d
d
re

ss
).

 W
h
en

 a

h
ex

a
-d

ec
im

a
l c

on
st

a
n

t
st

a
rt

 w
it

h
 A

, B
, C

, D
, E

 o
r

F
, a

 z
er

o
sh

ou
ld

 b
e

p
la

ce
d
 b

ef
or

e
th

e
co

n
st

a
n

t,
 o

th
er

w
is

e
th

e
a
ss

em
bl

er
 w

il
l
tr

ea
t
th

e

co
n

st
a
n

t a
s
a
 v

a
ri

a
bl

e.

T
A

B
L

E
 -
 3

.2
1

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

M
O

V
 A

X
, S

I
(A

X
)

←
 (
S

I)
T

h
e
 c

o
n
te

n
t

o
f

S
I-

re
g
is

te
r

is
 m

o
v
e
d
 t

o
 A

X
-r

e
g
is

te
r.

M
O

V
 C

H
, C

L
(C

H
)

←

(C

L
)

T
h
e
 c

o
n
te

n
t

o
f

C
L
-r

e
g
is

te
r

is
 m

o
v
e
d
 t

o
 C

H
-r

e
g
is

te
r.

M
O

V
 [B

X
 +

 0
8
H

],
 A

X
0
0
0
8

H

S
ig

n
 e

xt
e
n
d

 0
8

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h
e
 c

o
n
te

n
ts

 o
f
A

X
-r

e
g
is

te
r

is
 m

o
v
e
d
 t

o
 t

w
o
 c

o
n
s
e
c
u
ti
v
e

 M
A

 =
 (
D

S
)

×
1
6

1
0

 +
 (
B

X
)
+

 0
0

0
8

H

m
e

m
o

ry
 l

o
c
a

ti
o

n
s
.

(M
A

)
←

 (
A

L
)
 ;
 (

M
A

+
1
)

←
 (
A

H
)

M
O

V
 A

X
, [

B
P

 +
 S

I +
 0

7
H

]
0
0
0
7

S

ig
n
 e

xt
e
n
d

 0
7

H
H

←
⎯

⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 c

o
n

te
n

ts
 o

f
tw

o
 c

o
n

s
e

c
u

ti
v
e

 m
e

m
o

ry
 lo

c
a

ti
o

n
s
 f
ro

m

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
B

P
)

+
 (

S
I)

 +
 0

0
0
7

H
s
ta

c
k
 m

e
m

o
ry

 a
re

 m
o
v
e
d
 t

o
 A

X
-r

e
g
is

te
r.

(A
L

)
←

 (
M

A
S
)
 ;
 (

A
H

)
←

 (
M

A
S

 +
1
)

M
O

V
 C

X
, 1

5
0
A

H
(C

X
)

←
 1

5
0
A

H
T

h
e

 1
6

-b
it
 d

a
ta

 (
1

5
0

A
H
)
g

iv
e

n
 in

 t
h

e
 in

s
tr

u
c
ti
o

n
 is

 m
o
v
e
d

to
 C

X
-r

e
g
is

te
r.

M
O

V
 C

X
, [

1
5
0
A

H
]

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 1
5
0
A

H
T

h
e

 c
o

n
te

n
ts

 o
f

tw
o

 c
o

n
s
e

c
u

ti
v
e

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s

(C
L

)
←

 (
M

A
)
;
(C

H
)

←
 (
M

A
 +

 1
)

a
d
d
re

s
s
e
d
 b

y
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 a

re
 m

o
v
e
d
 t

o
 C

X
-r

e
g
is

te
r.

3. 69

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o
li

c
 d

es
cr

ip
ti

o
n

E
x
p

la
n

a
ti

o
n

M
O

V
 D

L
,
3

C
H

(D
L

)
←

 3
C

H
T

h
e

 8
-b

it
 d

a
ta

 (
3

C
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 i

s
 m

o
v
e

d

to
 D

L
-r

e
g

is
te

r.

M
O

V
 [B

X
],
 9

A
H

M
A

 =
 (

D
S

)
 ×

 1
6

1
0

 +
 (

B
X

)
T

h
e

 8
-b

it
 d

a
ta

 (
9

A
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 i

s
 m

o
v
e

d

(M
A

)
←

 9
A

H
to

 m
e

m
o

ry
.

M
O

V
 [
S

I+
0

A
0
H

],
 0

C
0

0
1

H
F

F
A

0

S
ig

n
 e

x
te

n
d

 A
0

H
H

←
⎯

⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 1

6
-b

it
 d

a
ta

 (
C

0
0

1
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti

o
n

 i
s

M
A

 =
 (

D
S

)
×

 1
6

1
0

 +
 (
S

I)
 +

 F
F

A
0

H
m

o
v
e

d
 t

o
 t

w
o

 c
o

n
s
e

c
u

ti
v
e

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s
.

(M
A

)
←

 0
1

H

;
 (

M
A

 +
 1

)
←

 C
0

H

M
O

V
 E

S
, C

X
(E

S
)←

(C

X
)

T
h

e
 c

o
n

te
n

t
o

f
C

X
-r

e
g

is
te

r
is

 m
o

v
e

d
 t

o
 E

S
-r

e
g

is
te

r.

M
O

V
 E

S
,
[S

I
+

 0
0

0
8
H

]
M

A
 =

 (
D

S
)

×

1

6
1
0
 +

 (
S

I)
 +

 0
0

0
8

H
T

h
e

 c
o

n
te

n
ts

 o
f

tw
o

 c
o

n
s
e

c
u

ti
v
e

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s
 a

re

(E
S

)
←

 (
M

A
 ;

M
A

+
1
)

m
o

v
e

d
 t

o
 E

S
-r

e
g

is
te

r.

M
O

V
 D

X
, S

S
(D

X
)

←
 (

S
S

)
T

h
e

 c
o

n
te

n
t

o
f

S
S

-r
e

g
is

te
r

is
 m

o
v
e

d
 t

o
 D

X
-r

e
g

is
te

r.

M
O

V
 [
B

X
 +

 0
C

0
H

],
 S

S
F

F
C

0

S
ig

n
 e

x
te

n
d

 C
0

H
H

←
⎯

⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 c

o
n

te
n

t
o

f
S

S
-r

e
g

is
te

r
is

 m
o

v
e

d
 t

o
 t

w
o
 c

o
n

se
c
u
ti
v
e

M
A

 =
 (

D
S

)
×

 1
6

1
0

 +
 (

B
X

)
+

 F
F

C
0

H
m

e
m

o
ry

 l
o

c
a

ti
o

n
s
.

(M
A

 ;
M

A
+

1
)

←
 (
S

S
)

P
U

S
H

 C
X

(S
P

)
←

 (
S

P
)

−
 2

T
h

e
 c

o
n

te
n

t
o

f
C

X
-r

e
g

is
te

r
is

 p
u

s
h

e
d

 t
o

 t
o

p
 o

f
s
ta

c
k
.

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

(T
h

e

c

o
n

te
n

t
o

f
C

X
-r

e
g

is
te

r
is

m

o
v

e
d

to

tw

o

(M
A

S
 ;
 M

A
S
+

1
)

←
 (
C

X
)

c
o

n
s
e

c
u

ti
v
e

 l
o

c
a

ti
o

n
s

in
 s

ta
c
k
 m

e
m

o
ry

,
w

h
o

s
e
 e

ff
e

c
ti
v
e

a
d

d
re

s
s
 i

s
 o

b
ta

in
e

d
 b

y
 d

e
c
re

m
e

n
ti
n

g
 S

P
 b

y
 t

w
o

.)

8086 Microprocessor and Its Appications

3. 70 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

P
U

S
H

[B

X
 +

 0
5
H

]
0

0
0
5

H

S
ig

n
 e

x
te

n
d

 0
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h

e

c

o
n

te
n

t
o

f
d

a
ta

m

e
m

o
ry

s

p
e

c
if

ie
d

b

y

th

e

M
A

 =
 (

D
S

)
×
 1

6
1
0
 +

 (
B

X
)

+
 0

0
0

5
H

in
s
tr

u
c
ti
o

n
 i

s
 p

u
s
h

e
d

 t
o

 t
o

p
 o

f
s
ta

c
k
 m

e
m

o
ry

.
(T

h
e

(S
P

)
←

 (
S

P
)

−
 2

c
o

n
te

n
t

o
f

tw
o

 c
o

n
s
e

c
u

ti
v
e

 m
e

m
o

ry
 l

o
c
a

ti
o

n
s
 i

n
 d

a
ta

M
A

S
 =

(S

S
)

×
 1

6
1
0
 +

 (
S

P
)

m
e

m
o

ry
 a

re
 m

o
v
e

d
 t

o
 t

w
o

 c
o

n
s
e

c
u

ti
v
e

 l
o

c
a

ti
o

n
s
 i

n

(M
A

S
)

 ←
 (
M

A
)
 ;
 (

M
A

S
+

1
)

 ←
 (
M

A
+

1
)

s
ta

c
k

m

e
m

o
ry

.
T

h
e

e

ff
e

c
ti

v
e

a

d
d

re
s

s

o

f
s

ta
c

k

m
e

m
o

ry
 i

s
 o

b
ta

in
e

d
 b

y
 d

e
c
re

m
e

n
ti
n

g
 S

P
 b

y
 t

w
o

.)

P
O

P
 B

X
M

A
S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

T
h

e
 c

o
n

te
n

t
o

f
to

p
 o

f
s
ta

c
k
 i

s
 m

o
v
e

d
 t

o
 B

X
-r

e
g

is
te

r.

(B
X

)
←

 (
M

A
S
 ;
 M

A
S

 +
 1

)
(T

h
e

 c
o

n
te

n
t

o
f

tw
o

 c
o

n
s
e

c
u

ti
v
e

 l
o

c
a

ti
o

n
s
 i

n
 s

ta
c
k

(S
P

)
←

 (
S

P
)

+
 2

m
e

m
o

ry
 a

re
 m

o
v
e

d
 t

o
 B

X
-r

e
g

is
te

r.
)

A
ft

e
r

th
is

 m
o

v
e

o
p

e
ra

ti
o

n
 S

P
 i

s
 i

n
c
re

m
e

n
te

d
 b

y
 t

w
o

.

P
O

P
 [
S

I
+

 0
5

H
]

0
0

0
5

H

S
ig

n
 e

x
te

n
d

 0
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 c

o
n

te
n

t
o

f
to

p
 o

f
s
ta

c
k
 m

e
m

o
ry

 i
s
 m

o
v
e

d
 t

o
 d

a
ta

M
A

 =
 (

D
S

)
×

 1
6

1
0
 +

 (
S

I)
 +

 0
0

0
5

H
m

e
m

o
ry

 s
p

e
c
if
ie

d
 b

y
 t

h
e

 i
n

s
tr

u
c
ti
o

n
.

(T
h

e
 c

o
n

te
n

t
o

f

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
S

P
)

tw
o

 c
o

n
s
e

c
u

ti
v
e

 l
o

c
a

ti
o

n
s
 i
n

 s
ta

c
k
 m

e
m

o
ry

 a
re

 m
o

v
e

d

(M
A

)
←

 (
M

A
S
)
 ;

 (
M

A
+

1
)

←
 (
M

A
S
+

1
)

to
 t

w
o

 c
o

n
s
e

c
u

ti
v
e

 l
o

c
a

ti
o

n
s
 i

n
 d

a
ta

 m
e

m
o

ry
.)

 T
h

e
n

(S
P

)
←

 (
S

P
)

+
 2

S
P

 i
s
 i

n
c
re

m
e

n
te

d
 b

y
 t

w
o

.

X
C

H
G

 C
X

,
S

I
(C

X
)

↔
 (

S
I)

T
h

e
 c

o
n

te
n

t
o

f
S

I-
re

g
is

te
r

is
 e

x
c
h

a
n

g
e

d
 w

it
h

 t
h

e

c
o

n
te

n
t

o
f

C
X

-r
e

g
is

te
r.

X
C

H
G

 D
H

,
C

L
(D

H
)

↔
 (

C
L

)
T

h
e

 c
o

n
te

n
t

o
f

C
L

-r
e

g
is

te
r

is
 e

x
c
h

a
n

g
e

d
 w

it
h

 t
h

e

c
o

n
te

n
t

o
f

D
H

-r
e

g
is

te
r.

X
C

H
G

 [
D

I+
0

7
H

],
 D

X
0
0
0
7

H

S
ig

n
 e

x
te

n
d

 0
7

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 c

o
n

te
n

t
o

f
D

X
-r

e
g

is
te

r
is

 e
x
c
h

a
n

g
e

d
 w

it
h

 t
h

e

M
A

 =
 (

D
S

)
×

 1
6

1
0

 +
 (

D
I)

 +
 0

0
0

7
H

c
o

n
te

n
t

o
f

m
e

m
o

ry
.

 (
M

A
 ;
 M

A
 +

 1
)

↔
 (
D

X
)

3. 71

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

IN
 A

X
, [

D
X

]
P

O
R

T
a
d
d
r
=

 (
D

X
)

T
h

e
 c

o
n

te
n

t
o

f
p

o
rt

,
(w

h
o

s
e

 a
d

d
re

s
s
 i

s
 i

n
 D

X
-r

e
g

is
te

r)
 i

s

(A
X

)
←

 (
P

O
R

T
)

m
o

v
e

d
 t
o

 A
X

-r
e

g
is

te
r.

IN
 A

X
,
0

C
0

H
P

O
R

T
a

d
d

r=
 C

0
H

T
h

e
 c

o
n

te
n

t
o

f
p

o
rt

,
(w

h
o

s
e

 a
d

d
re

s
s
 i

s
 s

p
e

c
if
ie

d
 i

n
 t

h
e

(A
X

)
←

 (
P

O
R

T
)

in
s
tr

u
c
ti
o

n
)

is
 m

o
v
e

d
 t

o
 A

X
-r

e
g

is
te

r.

O
U

T
 [D

X
],
 A

L
P

O
R

T
 a

d
d

r =
 (
D

X
)

T
h

e
 c

o
n

te
n

t
o

f
A

L
-r

e
g

is
te

r
is

 m
o

v
e

d
 t

o
 p

o
rt

 a
d

d
re

s
s
e

d
 b

y

(P
O

R
T

)
←

 (
A

L
)

D
X

-r
e

g
is

te
r.

O
U

T
 0

F
2

H
,
 A

X
P

O
R

T
a

d
d

r =
 F

2
H

T
h

e

c

o
n

te
n

t
o

f
A

X
-r

e
g

is
te

r
is

m

o
v

e
d

to

p

o
rt

w

h
o

s
e

(P
O

R
T

)
←

 (
A

X
)

a
d

d
re

s
s
 i

s
 s

p
e

c
if
ie

d
 i

n
 t

h
e

 i
n

s
tr

u
c
ti
o

n
.

L
E

A
 C

X
,
[B

X
 +

 D
I]

E
A

 =
 (

B
X

)
+

 (
D

I)
T

h
e

 i
n

s
tr

u
c
ti
o

n
 L

E
A

 d
e

te
rm

in
e

s
 t

h
e

 E
ff

e
c
ti
v
e

 A
d

d
re

s
s
 (

E
A

)

(C
X

)
←

 E
A

o
f

s
o

u
rc

e
 o

p
e

ra
n

d
 i

n
 m

e
m

o
ry

 a
n

d
 l

o
a

d
 t

h
e

 e
ff

e
c
ti

v
e

N
o
te

:

E
A

 -
 E

ff
ec

ti
v
e

A
d
d
re

ss
a

d
d

re
s
s
 i

n
 C

X
-r

e
g

is
te

r.

L
D

S
 B

X
,
[4

2
0

A
H

]
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 4
2

0
A

H
T

h
is

 i
n

s
tr

u
c
ti
o

n
 c

o
p

ie
s
 a

 w
o

rd
 f

ro
m

 m
e

m
o

ry
 t

o
 B

X
-r

e
g

is
te

r

(B
X

)
←

 (
M

A
 ;

M
A

 +
 1

)
a
n
d
 c

o
p
ie

s
 t

h
e
 n

e
x
t

w
o
rd

 i
n
 m

e
m

o
ry

 t
o
 D

S
-r

e
g
is

te
r.

(D
S

)
←

 (
M

A
+

2
 ;

M
A

+
3
)

L
E

S
 B

P
,
[0

C
0

0
F

H
]

M
A

 =
 (

D
S

)
×

 1
6

1
0

 +
 C

0
0

F
H

T
h

is
 i
n

s
tr

u
c
ti
o

n
 c

o
p

ie
s
 a

 w
o

rd
 f

ro
m

 m
e

m
o

ry
 t

o
 B

P
-r

e
g

is
te

r

(B
P

)
←

 (
M

A
 ;
 M

A
 +

 1
)

a
n

d
 c

o
p

ie
s

 t
h

e
 n

e
x
t

w
o

rd
 i

n
 m

e
m

o
ry

 t
o

 E
S

-r
e

g
is

te
r.

(E
S

)
←

 (
M

A
 +

 2
 ;
 M

A
 +

 3
)

A
D

D
 C

X
,
D

X
(C

X
)

←
 (

C
X

)
+

 (
D

X
)

T
h

e
 c

o
n

te
n

ts
 o

f
C

X
 a

n
d

 D
X

 r
e

g
is

te
rs

 a
re

 a
d

d
e

d
 a

n
d

 t
h

e

re
s
u

lt
 i

s
 s

to
re

d
 i

n
 C

X
-r

e
g

is
te

r.

8086 Microprocessor and Its Appications

3. 72 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

A
D

C
 B

H
, A

L
(B

H
)

←
 (

B
H

)
+

 (
A

L
)

+
 C

F
T

h
e
 c

o
n
te

n
t

o
f

B
H

-r
e
g
is

te
r,
 A

L
-r

e
g
is

te
r

a
n
d
 t

h
e
 c

a
rr

y

fl
a
g
 a

re
 a

d
d
e
d
.

T
h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 B

H
-r

e
g
is

te
r.

A
D

D
 C

X
,
[B

X
 +

 0
5

H
]

0
0

0
5

H

S
ig

n
 e

x
te

n
d

 0
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h
e
 c

o
n
te

n
t

o
f

C
X

-r
e
g
is

te
r

a
n
d
 a

 w
o
rd

 f
ro

m
 m

e
m

o
ry

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
B

X
)
+

 0
0
0
5

H
a
re

 a
d
d
e
d
.

T
h
e
 r

e
s
u
lt

is
 s

to
re

d
 i
n
 C

X
-r

e
g
is

te
r.

(C
X

)
←

 (
C

X
)
+
 (
M

A
 ;

M
A

 +
 1

)

A
D

C
 [
D

I]
,
C

2
H

M
A

 =
 (
D

S
)

×
 1

6
1

0
 +

 (
D

I)
T

h
e

 8
-b

it
 d

a
ta

 (
C

2
H
)

g
iv

e
n

 i
n

 t
h

e
 i
n

s
tr

u
c
ti
o

n
 a

n
d

 t
h

e

(M
A

)
←

 (
M

A
)
+

 C
2

H
 +

 C
F

c
a

rr
y
 f

la
g

 a
re

 a
d

d
e

d
 t

o
 m

e
m

o
ry

.
T

h
e

 r
e

s
u

lt
 i
s
 s

to
re

d

in
 m

e
m

o
ry

.

A
D

D
 D

X
, 0

F
A

5
H

(D
X

)
←

 (
D

X
)
+

 0
F
A

5
H

T
h

e
 1

6
-b

it
 d

a
ta

 (
0

F
A

5
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 i

s

a
d

d
e

d
 t

o
 t

h
e

 c
o

n
te

n
t

o
f

D
X

-r
e

g
is

te
r.

 T
h

e
 r

e
s
u

lt
 i

s

s
to

re
d

 i
n

 D
X

-r
e
g
is

te
r.

S
U

B
 D

I,
 S

I
(D

I)
 ←

 (
D

I)
 −

 (
S

I)
T

h
e
 c

o
n
te

n
t
o
f
S

I-
re

g
is

te
r

is
 s

u
b
tr

a
c
te

d
 f
ro

m
 D

I-
re

g
is

te
r.

T
h
e
 r

e
s
u
lt

is
 s

to
re

d
 i
n
 D

I-
re

g
is

te
r.

S
U

B
 [B

P
+

D
I]

, A
H

M
A

S
 =

 (
S

S
)

×
 1

6
1

0
 +

 (
B

P
)

+
 (

D
I)

T
h

e
 c

o
n

te
n

t
o

f
A

H
-r

e
g

is
te

r
is

 s
u

b
tr

a
c
te

d
 f

ro
m

 t
h

e

(M
A

S
)

←
 (
M

A
S
)

−
 (
A

H
)

c
o

n
te

n
t

o
f

a
 l

o
c
a

ti
o

n
 i

n
 s

ta
c
k
 m

e
m

o
ry

.
T

h
e

 r
e

s
u

lt
 i

s

s
to

re
d
 i

n
 s

ta
c
k
 m

e
m

o
ry

 l
o
c
a
ti
o
n
.

S
U

B
 S

P
,

0
5
0
0
H

(S
P

)
←

 (
S

P
)

−
 0

5
0
0

H
T

h
e

 1
6

-b
it
 d

a
ta

 (
0

5
0

0
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 i

s

s
u

b
tr

a
c
te

d
 f

ro
m

 S
P

-r
e

g
is

te
r.
 T

h
e

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n

S
P

-r
e

g
is

te
r.

S
B

B
 A

X
, D

I
(A

X
)

←
 (
A

X
)

−
 (
D

I)
 −

 C
F

T
h
e
 c

o
n
te

n
t
o
f
D

I-
re

g
is

te
r
a
n
d
 c

a
rr

y
 f
la

g
 a

re
 s

u
b
tr

a
c
te

d

fr
o

m
 t

h
e

 c
o

n
te

n
t

o
f

A
X

-r
e

g
is

te
r.

 T
h

e
 r

e
s
u
lt
 i

s
 s

to
re

d

in
 A

X
-r

e
g
is

te
r.

3. 73

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

S
B

B
 [
B

X
 +

 0
8
H

],
 D

L
0
0
0
8

H

S
ig

n
 e

x
te

n
d

 0
8

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h
e
 c

o
n
te

n
t
o
f
D

L
-r

e
g
is

te
r

a
n
d
 c

a
rr

y
 f
la

g
 a

re
 s

u
b
tr

a
c
te

d

M
A

 =
 (

D
S

)
×
 1

6
1
0
 +

 (
B

X
)

+
 0

0
0
8

H
fr

o
m

 m
e

m
o

ry
.

T
h

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

(M
A

)
←

 (
M

A
)
−
 (
D

L
)

−
 C

F

 M

U
L
 B

X
(D

X
)
 (
A

X
)
←

 (
A

X
)

×
 (
B

X
)

T
h
e
 c

o
n
te

n
t

o
f
A

X
 a

n
d
 B

X
 r

e
g
is

te
rs

 a
re

 m
u
lt
ip

lie
d
.

T
h
e

lo
w

e
r

w
o

rd
 o

f
th

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 A

X
-r

e
g

is
te

r

a
n
d
 t
h
e
 u

p
p
e
r

w
o
rd

 o
f
th

e
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 D

X
-r

e
g
is

te
r.

M
U

L
 D

L
(A

X
)

←
 (

A
L
)

×
 (

D
L
)

T
h

e
 c

o
n

te
n

t
o

f
A

L
 a

n
d

 D
L
 r

e
g

is
te

rs
 a

re
 m

u
lt
ip

li
e

d
.

T
h
e
 1

6
-b

it
 r

e
s
u
lt
 i
s
 s

to
re

d
 i
n
 A

X
-r

e
g
is

te
r.

M
U

L
 [

B
X

 +
 0

8
H

]
0
0
0
8

H

S
ig

n
 e

x
te

n
d

 0
8

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

In
 8

-b
it

 m
u

lt
ip

li
c
a

ti
o

n
 t

h
e

 c
o

n
te

n
t

o
f

A
L

 a
n

d
 8

-b
it

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
B

X
)
+

 0
0
0
8

H
m

e
m

o
ry

a

re

m

u
lt

ip
li

e
d

.
T

h
e

re

s
u

lt

is

s

to
re

d

in

(A
X

)
←

 (
A

L
)
×
 (
M

A
)

A
X

-r
e
g
is

te
r.

(o

r)
In

 1
6

-b
it
 m

u
lt
ip

lic
a

ti
o

n
 t

h
e

 c
o

n
te

n
t

o
f

A
X

 a
n

d
 1

6
-b

it

(D
X

)
(A

X
)
 ←

 (
A

X
)

×
 (
M

A
 ;

M
A

 +
 1

)
m

e
m

o
ry

 a
re

 m
u

lt
ip

li
e

d
.

T
h

e
 r

e
s
u

lt
 i

s
 s

to
re

d
 i

n
 A

X

a
n

d
 D

X
 r

e
g

is
te

rs
.

T
h

e
 8

-b
it
 o

r
1

6
-b

it
 m

u
lt
ip

li
c
a

ti
o

n

is
 d

e
fi
n
e
d
 b

y
 w

-b
it
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
 t

e
m

p
la

te
.

D
IV

 C
H

(A
L
)

←
 (
A

X
)

÷
 (
C

H
)

T
h

e
 c

o
n

te
n

t
o

f
A

X
-r

e
g

is
te

r
is

 d
iv

id
e

d
 b

y
 t

h
e

 c
o

n
te

n
t

Q
u
o
ti
e
n
t

o
f

C
H

-r
e

g
is

te
r.

 T
h

e
 q

u
o

ti
e

n
t

is
 s

to
re

d
 i

n
 A

L
-r

e
g

is
te

r

(A
H

)
←

 (
A

X
)
M

O
D

 (
C

H
)

a
n

d
 t

h
e

 r
e

m
a

in
d

e
r

in
 A

H
-r

e
g

is
te

r.

R
e
m

a
in

d
e
r

D
IV

 B
X

(A
X

)
←

 (
D

X
)
(A

X
)

÷
 (
B

X
)

T
h
e
 c

o
n
te

n
t

o
f
A

X
 a

n
d
 D

X
 r

e
g
is

te
rs

 a
re

 d
iv

id
e
d
 b

y
 t

h
e

Q
u
o
ti
e
n
t

c
o

n
te

n
t

o
f

B
X

-r
e

g
is

te
r.

 T
h

e
 q

u
o

ti
e

n
t

is
 s

to
re

d
 i

n

(D
X

)
←

 (
D

X
)
(A

X
)
M

O
D

 (
B

X
)

A
X

-r
e
g
is

te
r

a
n
d
 t

h
e
 r

e
m

a
in

d
e
r

in
 D

X
-r

e
g
is

te
r.

R
e
m

a
in

d
e
r

8086 Microprocessor and Its Appications

3. 74 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

D
IV

 [
S

I
+

 0
C

0
0

2
H

]
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)
 +

 C
0

0
2

H
In

 1
6

-b
it
 b

y
 8

-b
it
 d

iv
is

io
n

 t
h

e
 c

o
n

te
n

t
o

f
A

X
-r

e
g

is
te

r

1
6

-b
it
 ÷

 8
-b

it
is

 d
iv

id
e

d
 b

y
 8

-b
it
 m

e
m

o
ry

.
T

h
e

 q
u

o
ti
e

n
t

is
 s

to
re

d

(A
L
)

←
 (
A

X
)
÷

 (
M

A
)

in
 A

L
-r

e
g

is
te

r
a

n
d

 t
h

e
 r

e
m

a
in

d
e

r
is

 s
to

re
d

 i
n

Q
u

o
ti
e

n
t

A
H

-r
e

g
is

te
r.

A
H

 ←
 (

A
X

)
M

O
D

 (
M

A
)

In
 3

2
-b

it
 b

y
 1

6
-b

it
 d

iv
is

io
n
,

th
e
 c

o
n
te

n
ts

 o
f

A
X

 a
n
d

R
e
m

a
in

d
e
r

D
X

 r
e

g
is

te
r

a
re

 d
iv

id
e

d
 b

y
 1

6
-b

it
 m

e
m

o
ry

.
T

h
e

3
2

-b
it
 ÷

1
6

-b
it

q
u

o
ti
e

n
t
is

 s
to

re
d

 i
n

 A
X

-r
e

g
is

te
r

a
n

d
 t
h

e

re

m
a

in
d

e
r

A
X

 ←
 (
D

X
)
(A

X
)

÷
 (
M

A
 ;

M
A

 +
 1

)
is

 s
to

re
d

 i
n

 D
X

-r
e

g
is

te
r.

Q
u

o
ti
e

n
t

T
h

e
 8

-b
it
 o

r
1

6
-b

it
 d

iv
is

o
r

is
 d

e
fi
n

e
d

 b
y
 w

-b
it
 i

n

D
X

 ←
 (
D

X
)
(A

X
)
M

O
D

 (
M

A
 ;

M
A

 +
 1

)
th

e
 i

n
s
tr

u
c
ti
o

n
 t

e
m

p
la

te
.

R
e
m

a
in

d
e
r

 I

N
C

 D
L

(D
L

)
←

 (
D

L
)

+
 1

T
h

e
 c

o
n

te
n

t
o

f
D

L
-r

e
g

is
te

r
is

 i
n

c
re

m
e

n
te

d
 b

y
 o

n
e

.

 I
N

C
 D

X
(D

X
)

←
 (

D
X

)
+

 1
T

h
e

 c
o

n
te

n
t

o
f

D
X

-r
e

g
is

te
r

is
 i

n
c
re

m
e

n
te

d
 b

y
 o

n
e

.

 I
N

C
 [

B
P

 +
 S

I
+

 0
F

5
H

]
F

F
F

H
5

S

ig
n
 e

x
te

n
d

 F
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

In

8

-b
it

o

p
e

ra
ti

o
n

th

e

c

o
n

te
n

t
o

f
8

-b
it

s

ta
c

k

M
A

S
 =

 (
S

S
)

×
 1

6
1
0
 +

 (
B

P
)

+
 (

S
I)

 +
 F

F
F

5
H

m
e

m
o

ry
 i

s
 i

n
c
re

m
e

n
te

d
 b

y
 o

n
e

.

(M
A

S
)

←
 (

M
A

S
)
+

 1
In

 1
6

-b
it

 o
p

e
ra

ti
o

n
 t

h
e

 c
o

n
te

n
t

o
f

1
6

-b
it

 s
ta

c
k

(o

r)
m

e
m

o
ry

 i
s
 i

n
c
re

m
e

n
te

d
 b

y
 o

n
e

.

(M
A

S
 ;
 M

A
S
 +

 1
)

←
 (
M

A
S

 ;
M

A
S
 +

 1
)
+

 1
T

h
e

 8
-b

it
 o

r
1

6
-b

it
 o

p
e

ra
ti
o

n
 i

s
 d

e
fi
n

e
d

 b
y
 w

-b
it
 i

n

th
e

 i
n

s
tr

u
c
ti
o

n
 t

e
m

p
la

te
.

 D

E
C

 C
H

(C
H

)
←

 (
C

H
)

−
 1

T
h
e
 c

o
n
te

n
t

o
f

C
H

-r
e
g
is

te
r

is
 d

e
c
re

m
e
n
te

d
 b

y
 o

n
e
.

 D

E
C

 B
P

(B
P

)
←

 (
B

P
)

−
 1

T
h

e
 c

o
n

te
n

t
o

f
B

P
-r

e
g

is
te

r
is

 d
e

c
re

m
e

n
te

d
 b

y
 o

n
e

.

 D

E
C

 [
D

I
+

 0
0

0
7
H

]
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
D

I)
 +

 0
0

0
7

H
In

 8
-b

it
 o

p
e

ra
ti
o

n
,

th
e

 c
o

n
te

n
t

o
f

8
-b

it
 m

e
m

o
ry

 i
s

(M
A

)
←

 (
M

A
)

−
 1

d
e
c
re

m
e
n
te

d
 b

y
 o

n
e
.

 (

o
r)

In
 1

6
-b

it
 o

p
e

ra
ti
o

n
 t

h
e

 c
o

n
te

n
t

o
f

1
6

-b
it
 m

e
m

o
ry

(M
A

 ;
M

A
 +

 1
)
←

 (
M

A
 ;

M
A

 +
 1

)
−
 1

is
 d

e
c
re

m
e
n
te

d
 b

y
 o

n
e
.

T
h
e
 8

-b
it
 o

r
1
6
-b

it
 o

p
e
ra

ti
o
n
 i

s
 d

e
fi
n
e
d
 b

y
 w

-b
it
 i

n

th
e

 i
n

s
tr

u
c
ti
o

n
 t

e
m

p
la

te
.

3. 75

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

C
M

P
 D

L
,
C

H
M

o
d

if
y

fl
a

g
s
 ←

(D

L
)

−
 (

C
H

)
T

h
e

 c
o

m
p

a
ri

s
o

n
 i

s
 p

e
rf

o
rm

e
d

 b
y

 s
u

b
tr

a
c

ti
n

g

If
 (

D
L
)

=
 (

C
H

)
;
th

e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 1
th

e
 c

o
n

te
n

t
o

f
C

H
-r

e
g

is
te

r
fr

o
m

 t
h

e
 c

o
n

te
n

t
o

f

If
 (

D
L
)

<
 (

C
H

)
;
th

e
n
 C

F
 =

 1
,
S

F
 =

 1
,
Z

F
 =

 0
D

L
-r

e
g

is
te

r.

If
 (

D
L
)

>
 (

C
H

)
;
th

e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 0
T

h
e
 r

e
s
u
lt
 i

s
 u

s
e
d
 t

o
 m

o
d
if
y
 f

la
g
s
.

T
h
e
 c

o
n
te

n
ts

 o
f

D
L
 a

n
d
 C

H
 r

e
g
is

te
rs

 a
re

 n
o
t

a
lt
e
re

d
.

C
M

P
 C

X
, S

I
M

o
d
if
y

fl
a
g
s
 ←

 (
C

X
)

−
 (

S
I)

T
h

e
 c

o
m

p
a

ri
s
o

n
 i

s
 p

e
rf

o
rm

e
d

 b
y
 s

u
b

tr
a

c
ti
n

g
 t

h
e

If
 (

C
X

)
=

 (
S

I)
 ;
 t
h
e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 1
c
o
n
te

n
t o

f S
I-

re
g
is

te
r
fr

o
m

 th
e
 c

o
n
te

n
t o

f C
X

-r
e
g
is

te
r.

If
 (

C
X

)
<

 (
S

I)
 ;
 t
h

e
n

 C
F

 =
 1

,
S

F
 =

 1
,
Z

F
 =

 0
T

h
e

 r
e

s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

T
h

e
 c

o
n

te
n

t
o

f

If
 (

C
X

)
>

 (
S

I)
 ;
 t
h
e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 0
S

I
a
n
d
 C

X
 r

e
g
is

te
rs

 a
re

 p
re

s
e
rv

e
d
.

C
M

P
 [B

X
],
 C

L
M

A
 =

 (
D

S
)

×
 1

6
1
0
 +

 (
B

X
)

T
h

e
 c

o
m

p
a

ri
s
o

n
 i

s
 p

e
rf

o
rm

e
d

 b
y
 s

u
b

tr
a

c
ti
n

g
 t

h
e

M
o
d
if
y

fl
a
g
s
 ←

(M

A
)

−
 (

C
L
)

c
o

n
te

n
t

o
f

C
L

-r
e

g
is

te
r

fr
o

m
 8

-b
it

 m
e

m
o

ry
.

T
h

e

If
 (

M
A

)
=

 (
C

L
)

;
th

e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 1
re

s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

T
h

e
 c

o
n

te
n

t
o

f

If
 (

M
A

)
<

 (
C

L
)

;
th

e
n
 C

F
 =

 1
,
S

F
 =

 1
,
Z

F
 =

 0
C

L
-r

e
g
is

te
r

a
n
d
 m

e
m

o
ry

 a
re

 p
re

s
e
rv

e
d
.

If
 (

M
A

)
>

 (
C

L
)

;
th

e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 0

C
M

P
 [
D

I]
,
0
0
F

F
H

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
D

I)
T

h
e

 c
o

m
p

a
ri

s
o

n
 i

s
 p

e
rf

o
rm

e
d

 b
y
 s

u
b

tr
a

c
ti
n

g
 t

h
e

M
o

d
if
y
 f

la
g

s
 ←

 (
M

A
 ;
 M

A
 +

 1
)

−
 0

0
F

F
H

1
6

-b
it
 d

a
ta

 (
0

0
F

F
H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 f

ro
m

If
 (
M

A
 ;
 M

A
 +

 1
)
=

 0
0
F

F
H
 ;
 t
h

e
n

 C
F

 =
 0

,
S

F
 =

 0
,
Z

F
 =

 1
1

6
-b

it
 m

e
m

o
ry

.
T

h
e

 r
e

s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

If
 (
M

A
 ;
 M

A
 +

 1
)
<

 0
0
F

F
H
 ;
 t
h
e
n
 C

F
 =

 1
,
S

F
 =

 1
,
Z

F
 =

 0
T

h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 i
s
 p

re
s
e
rv

e
d
.

If
 (
M

A
 ;
 M

A
 +

 1
)
>

 0
0
F

F
H
 ;
 t
h
e
n
 C

F
 =

 0
,
S

F
 =

 0
,
Z

F
 =

 0

A
N

D
 C

X
, D

X
(C

X
)

←
 (
C

X
)
a
n
d
 (
D

X
)

T
h
e
 c

o
n
te

n
t
o
f
C

X
 a

n
d
 D

X
 r

e
g
is

te
rs

 a
re

 A
N

D
e
d
 a

n
d

 t
h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 C

X
-r

e
g
is

te
r.

A
N

D
 [B

X
 +

 S
I]

, A
X

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
B

X
)
+

 (
S

I)
T

h
e
 c

o
n
te

n
t

o
f

1
6
-b

it
 m

e
m

o
ry

 a
n
d
 A

X
-r

e
g
is

te
r

a
re

(M
A

 ;
M

A
 +

 1
)
←

 (
M

A
 ;

M
A

 +
 1

)
&

 (
A

X
)

A
N

D
e
d
 a

n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

A
N

D
 C

L
,
0
F

H
(C

L
)

←
 (

C
L
)

a
n
d
 0

F
H

T
h
e
 c

o
n
te

n
t

o
f

C
L
-r

e
g
is

te
r

a
n
d
 t

h
e
 8

-b
it
 d

a
ta

 (
0
F

H
)

g
iv

e
n

 i
n

 t
h

e
 i

n
s
tr

u
c
ti
o

n
 a

re
 A

N
D

e
d

.
T

h
e

 r
e

s
u

lt
 i

s

s
to

re
d

 i
n

 C
L

-r
e

g
is

te
r.

8086 Microprocessor and Its Appications

3. 76 Chapter 3 Instruction Set Of 8086

T
a

b
le

 -
 3

.2
1

 :
 c

o
n

ti
n

u
e
d

 .
..

.

In
st

r
u

c
ti

o
n

S
y
m

b
o

li
c

d
es

cr
ip

ti
o

n
E

x
p

la
n

a
ti

o
n

O
R

 A
H

,
D

L
(A

H
)

←
 (

A
H

)
| (

D
L

)
T

h
e

 c
o

n
te

n
t

o
f

A
H

 a
n

d
 D

L
 r

e
g

is
te

rs
 a

re
 O

R
e

d
 a

n
d

th
e

 r
e

s
u

lt
 i

s
 s

to
re

d
 i

n
 A

H
-r

e
g

is
te

r.

O
R

 C
X

,
[B

P
 +

 D
I
+

 0
5
H

]
0
0
0
5

H

S
ig

n
 e

x
te

n
d

 0
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h
e
 c

o
n
te

n
t

o
f

1
6
-b

it
 s

ta
c
k
 m

e
m

o
ry

 a
n
d
 C

X
-r

e
g
is

te
r

M
A

S
 =

(S

S
)

×
 1

6
1
0
 +

 (
B

P
)

+
 (

D
I)

 +
 0

0
0
5

H
a
re

 O
R

e
d
 a

n
d
 t

h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 C

X
-r

e
g
is

te
r.

(C
X

)
←

 (
C

X
)
| (

M
A

S
 ;
 M

A
S
 +

 1
)

O
R

 D
I,
 0

F
0
F

0
H

 (
D

I)
 ←

 (
D

I)
 |
 F

0
F

0
H

T
h

e
 c

o
n

te
n

t
o

f
D

I-
re

g
is

te
r

is
 O

R
e

d
 w

it
h

 1
6

-b
it
 d

a
ta

(F
0
F

0
H
)

g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
.

T
h
e
 r

e
s
u
lt
 i

s
 s

to
re

d

in
 D

I-
re

g
is

te
r.

X
O

R
 B

X
, D

X
(B

X
)

←
 (

B
X

) ̂
 (
D

X
)

T
h

e
 c

o
n

te
n

t
o

f
B

X
 a

n
d

 D
X

 r
e

g
is

te
rs

 a
re

 E
x
c
lu

s
iv

e
-

O
R

e
d
.

T
h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 B

X
-r

e
g
is

te
r.

X
O

R
 S

P
, [

S
I +

 0
A

0
0
A

H
]

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)
 +

 A
0
0
A

H
T

h
e

 c
o

n
te

n
t

o
f

S
P

-r
e

g
is

te
r

a
n

d
 1

6
-b

it
 m

e
m

o
ry

 a
re

(S
P

)
←

 (
S

P
) ̂

 (
M

A
 ;
 M

A
 +

 1
)

E
x
c
lu

s
iv

e
-O

R
e
d
.

T
h
e
 r

e
s
u
lt
 i

s
 s

to
re

d
 i

n
 S

P
-r

e
g
is

te
r.

X
O

R
 [
D

I
+

 0
5
H

],
 0

F
0
F

H
0
0
0
5

H

S
ig

n
 e

x
te

n
d

 0
5

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h

e
 c

o
n

te
n

t
o

f
1

6
-b

it
 m

e
m

o
ry

 i
s
 E

x
c
lu

s
iv

e
-O

R
e

d

M
A

 =
 (

D
S

)
×
 1

6
1
0
 +

 (
D

I)
 +

 0
0

0
5

H
w

it
h

 1
6

-b
it
 d

a
ta

 (
0

F
0

F
H
)

g
iv

e
n
 i

n
 t

h
e
 i

n
s
tr

u
c
ti
o
n
.

T
h
e

(M
A

 ;
M

A
 +

 1
)
←

 (
M

A
 ;

M
A

 +
 1

) ̂
 0

F
0
F

H
re

s
u
lt
 i

s
 s

to
re

d
 i

n
 m

e
m

o
ry

.

T
E

S
T

 C
X

, D
I

M
o
d
if
y
 f
la

g
s
 ←

 (
C

X
)

a
n
d
 (

D
I)

T
h
e
 T

E
S

T
 o

p
e
ra

ti
o
n
 i
s
 p

e
rf

o
rm

e
d
 b

y
 l
o
g
ic

a
lly

 A
N

D
in

g

th
e
 c

o
n
te

n
t

o
f

C
X

 a
n
d
 D

I
re

g
is

te
rs

.
T

h
e
 r

e
s
u
lt
 i
s
 u

s
e
d

to
 m

o
d
if
y
 f

la
g
s
.

T
h
e
 c

o
n
te

n
t

o
f

C
X

 a
n
d
 D

I
re

g
is

te
rs

a
re

 n
o
t

a
lt
e
re

d
.

T
E

S
T

 [
S

I
+

 0
F

0
H

],
 0

C
0
0
0
H

F
F

F
H

0

S
ig

n
 e

x
te

n
d

 F
0

H
←

⎯
⎯
⎯
⎯
⎯
⎯⎯

T
h
e
 T

E
S

T
 o

p
e
ra

ti
o
n
 i
s
 p

e
rf

o
rm

e
d
 b

y
 l
o
g
ic

a
lly

 A
N

D
in

g

M
A

 =
 (
D

S
)

×
 1

6
1
0
 +

 (
S

I)
 +

 F
F

F
0

H
th

e
 c

o
n
te

n
t

o
f

1
6
-b

it
 m

e
m

o
ry

 a
n
d
 1

6
-b

it
 d

a
ta

 g
iv

e
n
 i
n

M
o
d
if
y
 f
la

g
s
 ←

 (
M

A
 ;
 M

A
 +

 1
)
a
n
d
 C

0
0
0

H
th

e
 i

n
s
tr

u
c
ti
o

n
.

T
h

e
 r

e
s
u

lt
 i

s
 u

s
e

d
 t

o
 m

o
d

if
y
 f

la
g

s
.

T
h
e
 c

o
n
te

n
t

o
f

m
e
m

o
ry

 i
s
 n

o
t

a
lt
e
re

d
.

 3. 77

opcode

7 6 5 4 3 2 1 0

d w mod reg l.b.disp/datar/m h.b.disp/data l.b.data h.b.data

Byte - 1 Byte - 2 Byte - 3 Byte - 4 Byte - 5 Byte - 6

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Fig. Q3.2 : General format of 8086 instruction.

3.13 SHOR T QUESTIONS AND ANSWERS

3.1 What is the size of 8086 instructions?

The size of 8086 instruction is one to six bytes. The first byte consists of opcode and special bit

indicators. The second byte will specify the addressing mode of the operands. The subsequent

bytes will specify immediate data or address.

3.2 Write the general format of 8086 instructions?

The general format of 8086 instruction is shown in Fig. Q3.2.

3.3 What is addressing?

The method of specifying the data to be operated (operand) by the instruction is called addressing.

3.4 What are the addressing modes available in 8086?

The 8086 has the following 12 addressing modes.

i) Register addressing v) Based addressing ix) Direct IO port addressing

ii) Immediate addressing vi) Indexed addressing x) Indirect IO port addressing

iii) Direct addressing vii) Based index addressing xi) Relative addressing

iv) Register indirect addressing viii) String addressing xii) Implied addressing

3.5 What is register addressing? Give example.

In register addressing the instruction will specify the name of the register which holds the data to be operated by the instruction.

Example : MOV CX, DX - The content of DX-register is moved to CX-register.

3.6 What is immediate addressing? Give example.

In immediate addressing mode an 8-bit or 16-bit data is specified as part of the instruction.

Example : MOV BX, 0CA5H - The 16-bit data (0CA5
H
) given in the instruction is moved to BX-register.

3.7 Explain the direct addressing in 8086.

In direct addressing an unsigned 16-bit displacement or signed 8-bit displacement will be specified in the instruction. The

displacement is the effective address of the data. The 20-bit physical address of the data is computed by multiplying the

content of DS-register by 16
10

 and adding to effective address.

Example : MOV CL, [0F2AH] - The memory address is computed by multiplying the content of DS-register by 16
10

 and

adding the 16-bit displacement (0F2A
H
) given in the instruction. Then the content of memory is moved to CL-register.

3.8 Explain the register indirect addressing in 8086.

In register indirect addressing the name of the register which holds the effective address of data will be specified in the

instruction. The register used to hold the effective address are BX, SI or DI. The 20-bit physical address of data is obtained
by multiplying the content of DS-register by 16

10
 and adding to effective address.

Example : MOV DX, [DI] - The memory address of the data is obtained by multiplying the content of DS-register by 16
10

 and

adding the content of DI-register. The content of memory is moved to DX-register.

3.9 Explain the based addressing in 8086.

In based addressing the effective address of data is specified as a sum of base value and displacement. The register BX or

BP is used to hold the base value. When BX holds the base value, the 20-bit physical address of data is calculated by
multiplying the content of DS-register by 16

10
 and adding to effective address. When BP holds the base value, the 20-bit

physical address of data is calculated by multiplying the content of SS register by 16
10

 and adding to effective address.

Example : MOV CX, [BP + 00A2H] - The effective address is computed by adding the 16-bit displacement (00A2
H
) given

in the instruction to the content of BP-register . The 20-bit physical address is obtained by multiplying the content of SS-

register by 16
10

 and adding to effective address. The content memory is moved to CX-register.

3.10 Explain the indexed addressing in 8086.

In indexed addressing the effective address of data is specified as a sum of index value and displacement. The register SI or

DI is used to hold the index value. The 20-bit physical address of data is computed by multiplying the content of DS-register

by 16
10

 and adding to effective address.

8086 Microprocessor and Its Appications

3. 78 Chapter 3 Instruction Set Of 8086

Example : MOV AX, [DI + 04H] - The effective address is computed by sign extending the 8-bit displacement given in the

instruction to 16-bit and adding to the content of DI. The 20-bit physical address of memory is computed by multiplying the

content of DS-register by 16
10

 and adding to effective address. The content of memory is moved to AX-register.

3.11 What is based indexed addressing? Give an example.

In based indexed addressing, the ef fective address is specified as a sum of base value, index value and displacement. The

base value is stored in BX or BP and the index value is stored in SI or DI-register . When BX holds the base value of effective

address, the content of DS-register is considered as segment base address and when BP holds the base value, the content
of SS-register is considered as segment base address .

The 20-bit physical address is computed by multiplying the segment base address by 16
10

 and adding to effective address .

Example : MOV CX, [BP + DI + 01A0H] - The effective address is computed by adding the contents of BP-register, DI-register

and the 16-bit displacement (01A0
H
) given in the instruction. The 20-bit physical address of memory is computed by multiplying

the content of SS-register by 16
10

 and adding to effective address. The content of memory is moved to CX-register.

3.12 Explain string addressing in 8086.

In 8086, string addressing is used by string instructions to address the source and destination

operand/data. In this mode the SI-register is used to hold the effective address of source data and

DI-register is used to hold the effective address of destination. The memory address of source is

obtained by multiplying the content of DS-register by 16
10

 and adding to effective address (content
of SI-register). The memory address of destination is obtained by multiplying the content of

ES-register by 16
10

 and adding to effective address (content of DI-register). After execution of string

instruction the content of SI and DI are incremented or decremented depending on direction flag.

3.13 How are IO ports addressed in 8086?

The IO ports in 8086-based system can be addressed either by direct addressing or by indirect

addressing. In direct addressing an 8-bit port address is directly specified in the instruction. In
indirect addressing a 16-bit port address is stored in DX-register and the name of the register (DX)

is specified in the instruction.

3.14 What is relative addressing?

In relative addressing, the effective address of a program instruction is specified relative to instruction pointer by an 8-bit

signed displacement.

Example : JC 0F2H - If carry flag is one, then a new effective address is calculated and loaded in instruction pointer . The

new effective address is obtained by sign extending the 8-bit displacement (F2
H
) given in the instruction and adding to the

content of instruction pointer.

3.15 What is implied addressing?

In implied addressing mode, the instruction itself will specify the data to be operated by the instruction.

Example : CLD - Clear Direction Flag.

3.16 List the data transfer instructions that affects the flags in 8086.

In 8086, the data transfer instructions affecting the flags are POPF and SAHF. The POPF instruction

is used to restore the previously stored status of the flag. The instruction SAHF is used to modify

the content of flag register.

3.17 List the instructions of 8086 that affect only carry flag.

The instructions that affect only carry flag are CLC, CMC and STC.

3.18 List the instructions of 8086 that affect direction flag.

The instructions that affect direction flag are CLD, POPF and STD.

3.19 List the instructions of 8086 that affects interrupt flag.

The instructions that affects interrupt flag are CLI, INT, INTO, IRET, POPF and STI.

3.20 What are the operations performed by data transfer instructions?

The operations performed by the data transfer instructions are :

 i) Copy the content of a register to another register.

 ii) Copy the content of a register/segment register to memory or vice versa.

 3. 79

 iii) Copy the content of accumlator to port or vice versa.

 iv) Exchange the content of two registers or register and memory.

 v) Load an immediate operand to register/memory.

 vi) Load effective address in segment registers.

3.21 What are the operations performed by arithmetic instructions?

The operations performed by arithmetic instructions are:

i) Addition or subtraction of binary, BCD or ASCII data.

ii) Multiplication or division of signed or unsigned binary data.

iii) Increment or decrement or comparison of binary data.

3.22 What are the operations performed by logical instructions?

The operations performed by logical instructions are AND, OR, Exclusive-OR, complement, arithmetic

shift and logical shift.

3.23 What are the operations performed by string instructions?

The operations performed by string instructions are :

i) Copy a byte/word of a string data from data segment to extra segment.

ii) Compare the content of two memory locations or accumulator and a memory location.

iii) Load a byte/word of a string data from memory to accumulator or vice versa.

3.24 List the string instructions of 8086.

The string instructions of 8086 are REPZ/REPE, REPNZ/REPNE, MOVSB, MOVSW, CMPSB,

CMPSW, SCASB, SCASW, LODSB, LODSW, STOSB and STOSW.

3.25 What will be the content of stack pointer (SP) after a PUSH operation and after a POP operation?

The PUSH operation will decrement the content of SP by two and so after a PUSH operation the

content of SP will be less by two than earlier value.

The POP operation will increment the content of SP by two and so after a POP operation the

content of SP will be greater by two than earlier.

3.26 List the IO instructions of 8086.

The IO instructions of 8086 are:

 i) IN A, addr8 iii) OUT addr8, A

 ii) IN A, [DX] iv) OUT [DX], A

The IN instruction is used to load a byte/word from IO port to accumlator and the OUT instruction

is used to send a byte/word from accumlator to IO port.

3.27 Explain the instruction LEA reg16, mem.

The instruction LEA is used to load the effective address of the memory operand to the register

specified in the instruction (i.e., this instruction will not load the content of memory in register but

the calculated effective address of memory data is loaded in the register).

3.28 How can the low byte flag register be modified in 8086?

The low byte of flag register can be modified by moving an 8-bit data to AH-register and then

moving the content of AH to low byte flag register using SAHF instruction.

3.29 How can the 16-bit flag register be modified in 8086?

The steps involved in modifying the 16-bit flag register are given below:

 i) First move a 16-bit data to a 16-bit register.

 ii) Second save the content of register in stack using PUSH instruction.

 iii) Finally move the top of stack to flag register using POPF instruction.

3.30 How is subtraction performed in 8086 and how can the result be interpreted?

The 8086 processor performs 2’s complement subtraction and after subtraction the carry flag is

complemented. Therefore the result of subtraction can be interpreted as follows:

 i) After subtraction if carry flag is set (i.e., CF = 1) then the result is negative and the result will be in 2’s complement form.

 ii) After subtraction if carry flag is cleared/reset (i.e., CF = 0) then the result is positive.

8086 Microprocessor and Its Appications

3. 80 Chapter 3 Instruction Set Of 8086

3.31 What is the similarity and difference between subtract and compare instructions?

Similarity : Both the subtraction and comparison are performed by subtracting two data in ALU

 and flags are altered depending upon the result.

Difference: After subtract operation, the result is stored in destination register/memory, but after

 compare operation the result is discarded.

3.32 What will be the status of flags after division and multiplication operations?

The division and multiplication operation will modify all the six arithmetic flags (CF, AF, PF. ZF, SF and

OF flags) but all these flags will be in undefined state after the division and multiplication operations.

3.33 What is the difference between Compare and Test operations in 8086?

In Compare operation the content of register or memory is subtracted from the content of another

register and the result is used to modify the flags.

In Test operation the content of register or memory is bit by bit ANDed with the content another

register and the result is used to modify the flags.

In both Compare and Test operations the content of source and destination are not altered.

3.34 What is the difference between arithmetic shift and logical shift?

In logical shift operation zero is inserted in the shifted location (i.e., zero is inserted in LSD

position for left shift and for right shift zero is inserted in MSD position).

The arithmetic left shift operation is same as logical left shift, whereas in arithemetic right shift

operation, the sign bit is copied into shifted location i.e., after every right shift the old value of

MSD (Most Significant Digit) is copied into the current MSD location.

3.35 What is the difference between shift and rotate operation?

In shift operation either zero or one is inserted in the shifted location, whereas in rotate operation

ony the content of register/memory with or without carry are rotated (i.e., in rotate operation there

is no insertion of extra bit in the shifted position).

3.36 What is near call and far call?

Near call refers to calling a procedure stored in the same code segment memory in which main

program (or calling program)resides. Far call refers to calling a procedure stored in different code

segment memory than that of main program.

While executing near call instructions the content of IP alone is pushed to stack. While executing

far call the content of CS and IP are pushed to stack.

3.37 What is the difference between CALL and JUMP instruction?

In CALL instruction, the address of next instruction is pushed to stack (i.e., stored in stack

memory) before transferring the program control to call address. But in JUMP instruction the

address of next instruction is not saved.

3.38 What is the difference between conditional and unconditional branch instructions?

In unconditional branch instruction, the program control is transferred to branch address without checking

any flag condition. But in conditional branch instructions, a flag condition is checked and only if the flag

condition is true, program control is transferred to branch address, otherwise next instruction is executed.

3.39 What is near jump and far jump?

In near jump, the program control is transferred to new memory location in the same segment by

modifying the content of Instruction Pointer (IP). In far jump the program control is transferred to

new memory location in another segment by modifying the content of Instruction Pointer (IP) and

Code Segment (CS) register.

3.40 What is the difference between CALL and INT instruction?

While executing CALL instruction only IP and CS are saved in stack. But, while executing INT

instruction IP, CS and flag register are saved in stack.

 CHAPTER 4

MEMORY AND IO INTERFACING

4 . 1 INTRODUCTION TO MEMORY

A memory unit is an integral part of any microcomputer system and its primary purpose is

to store programs and data. In a broad sense, a microcomputer memory system can be logically

divided into three groups. They are :

� Processor memory

� Primary or main memory

� Secondary memory

The processor memory refers to registers inside the microprocessor. These registers are

used to hold the data and results temporarily when a computation is in progress. Since the registers

of the processor are fabricated using the same technology as that of a microprocessor, there is no

speed disparity between these registers and processor. However, the cost involved in this approach

forces a manufacturer to include only a few registers in the microprocessor.

The primary or main memory refers to the storage area which can be directly accessed by

the microprocessor. Therefore, all programs and data must be stored only in the primary memory

prior to execution. In primary memories the access time should be compatible with the read/write

time of the processor. Therefore, only semiconductor memories are used as primary memories

and they (the latest versions) are fabricated using CMOS technology. Primary memory normally

includes ROM, EPROM, static RAM, DRAM and NVRAM.

Secondary memory refers to the storage medium comprising slow devices such as magnetic

tapes and disks [hard disk, floppy disc and Compact Disc (CD)]. They are known as auxiliary or

backup storage. These devices are used to hold large data files and huge programs such as operating

systems, compilers, data bases, permanent programs, etc. The microcomputer system copies the

required programs and data from the secondary memory to the main memory and work directly

with the main memory only.

4.2 SEMICONDUCTOR MEMORY

The main or primary memory elements are semiconductor devices, because the

semiconductor devices alone can work at high speeds and consume less power. Moreover, they

can be fabricated as ICs and so they occupy less space.

A typical semiconductor memory IC will have n address pins (lines) and m data pins (lines).

The capacity of the memory will be 2n × m bits. Figure 4.1 shows a simplified functional block

diagram of semiconductor memory. The functional blocks of semiconductor memory are Row

address decoder, Column address decoder, Memory array, Input buffer and Output buffer.

4. 2 Chapter 4 Memory And IO Interfacing

Input Buffer

R
o
w

D
ec

o
d
er

q
to

2
q

Memory Array

2 m bits
n
´

O
u
tp

u
t
B
u
ff
er

q
In
p
u
ts
to

D
ec
o
d
er

2
In
p
u
ts
to

M
em

o
ry

A
rr
ay

q

m Data Lines

2 Inputs to
Memory Array

r

Column Decoder

r to 2
r

r Inputs to
Decoder

n Address Lines
(q + r = n)

Fig. 4.1 : A simplified functional block diagram of a typical semiconductor memory.

The input and output buffers are used to hold the data until the valid time and also takes care

of the signal current level matching (Impedance matching). The n address lines are split into q

lines and r lines, such that q + r = n. The q address lines are applied as input to row decoder and

r address lines are applied as input to the column decoder.

The output lines of the row and column decoder are used to form a matrix array of size,

2q × 2r consisting of 2n crossing points as shown in Fig. 4.2. Each crossing point is called

memory cell and can store one bit of binary information. A typical memory array will consist of m

number of layers of matrix array as that of Fig. 4.2 and all of them are wired in parallel. When an

I
P
Q

IPQ

2 Columns
r

Memory Cell

2 Rows
q

r Inputs

Column Decoder

R
o
w

D
ec

o
d
er

q Inputs

Fig. 4.2 : One layer of memory array.

 4. 3

address is send to memory IC, the row and column decoder will select one line each, which in

turn select one memory cell in each layer. Thus, m memory cells are selected by an address. Then

using read or write control signals, the data can be read or stored in the selected memory cells.

In the first version of semiconductor memory, the memory cells are made of passive

elements like resistors and capacitors. Later, diodes were used instead of passive elements. With

advancement in semiconductor technology, bipolar and MOS transistors were used to form memory

cells. The latest technology used for fabricating memory cells are CMOS and HMOS which offer

very low power and high speed operation.

The different types of semiconductor memory are ROM, PROM, EPROM, static

RAM, DRAM and NVRAM. These semiconductor memories can be classified into volatile

and nonvolatile memory. If the information stored in a semiconductor memory is lost when

the power supply to that IC is switched OFF, then the memory is called volatile. On the other

hand, if the stored information is retained even if the power supply is switched OFF, then the

memory is called nonvolatile. The ROM, PROM, EPROM and NVRAM are nonvolatile memories.

The static RAM and DRAM are volatile memories.

The semiconductor memories can also be classified into read only memory and

read/write memory. In read only memories, information is stored permanently either during

manufacturing or after manufacturing and then interfaced to microcomputer system. The processor

can only read the stored information from these memories and cannot write into it. But in read /

write memory, the processor can store (write) the information as well as read from it. The ROM,

PROM and EPROM are read only memories. The NVRAM, static RAM and DRAM are read/write

memories.

The other features of semiconductor memories are random access and nondestructive

readout. In random access memory, the memory access time is independent of the memory

location being accessed (i.e., the access time will be same for first or last location). All semiconductor

memories are random access memories. In semiconductor memories, a read operation by the

processor will not destroy the stored information and for this reason the semiconductor memory

is also called NDRO memory (Nondestructive Read-Out memory).

4.3 ROM AND PROM

ROM is a semiconductor memory which permits only a read access. ROM functions as a

memory array whose contents once programmed, are permanently fixed and cannot be altered by

the microprocessor to which the memory is interfaced. Other names for this type of memory are

dead memory, fixed memory, permanent memory and Read-Only Store (ROS). In ROM memory,

the memory cell (storage unit) will have a MOS transistor either with open gate or closed gate.

The transistors with closed gate represent 1's and with open gate represent 0's. Since the

configuration is fixed, they permanently store 1's and 0's.

ROM is a nonvolatile memory, i.e., loss of power or system malfunction does not change

the contents of the memory. Also, the ROM memories have the feature of random access, which

means that the access time for a given memory location is same as that for all other locations. The

process of storing information in ROM is called programming. The technique employed for storing

information in the ROM provides a convenient method for classifying ROMs into one of the

following three categories:

8086 Microprocessor and Its Appications

4. 4 Chapter 4 Memory And IO Interfacing

1. Custom programmed or Mask programmed ROM (ROM).

2. Programmable or Field programmable ROM (PROM).

3. Reprogrammable or Erasable-Programmable ROM (EPROM).

The custom programmed ROMs are programmed by the manufacturer as specified by the

user during fabrication and the contents cannot be changed after packaging. The programmable

ROMs are one-time programmable by the user. The reprogrammable ROMs have facilities for

programming as well as for erasing its content and reprogramming the memory. The reprogrammable

ROMs are erased either by passing electrical current or Ultraviolet light.

The programming of ROMs can be carried out using ROM (EPROM) programmer. Usually

the ROM programmer is a digital system interfaced to a Personal Computer (PC). The information

to be programmed are first stored as a file in the PC and converted to the required binary format

using a conversion software. Then the information is transferred from the PC to ROM programmer.

4.4 EPROM

The Read Only Memory (ROM) which has reprogrammable features is called EPROM

(Erasable-Programmable Read Only Memory). The EPROM memory is nonvolatile and also

has the feature of random access. In an EPROM, the binary informations are entered using

electrical impulses and the stored information is erased using ultraviolet rays. Typical erase time

varies between 10 to 30 minutes.

In EPROM, the memory cell (storage location of a bit) consists of a MOS transistor with

isolated gate. The isolated gate is located between the normal control gate and the source/drain

region of a MOS transistor. This gate may be charged with electrons during the programming

operation and when charged with electrons, the transistor is permanently turned OFF. The state of

the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely

pure oxide.

The charge on the isolated gate may be removed if the device is irradiated with ultraviolet

light. The ultraviolet light allows the electrons to recombine and discharge through the control

gate. The process of charging and discharging is repeatable.

The EPROM is programmed by inserting the EPROM chip into the socket of a PROM

programmer and providing addresses and voltage pulses at the appropriate pins of the chip. Usually,

the PROM programmer is interfaced to a Personal Computer (PC) and the information to be

programmed is downloaded from PC.

EPROMs are manufactured by many semiconductor industries like INTEL, Hitachi, Toshiba,

Cypress, etc. The manufacturers have a common industry standard, so that a product from

different industry will be pin-to-pin compatible and slightly differ in electrical and switching

characteristics. The various features of 2764 (8 kb EPROM) manufactured by Cypress

semiconductor corporation are discussed in this section.

CY27C64 (Cypress Make CMOS 2764)

The CY27C64 is a high performance 8192 byte (8 kb) CMOS EPROM. It has power down

mode, in which the device will enter a low-power standby mode when it is not enabled (or deselected).

4. 5

Fig. 4.3 : Logic block diagram of a CY27C64.

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A11

®

®

®

®

®

®

®

®

®

®

®®

A0

A12 ®

64 k
Programmable

Array

MultiplexerRow
Address

Address
Decoder

Column
Address

Power Down

CE

OE

O7

O6

O5

O4

O3

O2

O1

O0

®

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VCC

VCC

NC

A8

A9

A11

A10

27C64

O7

O6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

VCC

A12

A3

A2

A1

A0

O1

A7

A6

A5

O2

GND

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

A4

O0

O3

O4

O5

CE

OE

® Erasure
Window

Fig. 4.4 : Pin configuration of a CY27C64 in read mode.

Pin Description

A - A Address

O - O Output/Data

CE Chip Enable

OE Output Enable

V Power supply, +5-V

GND Ground (0-Volt)

NC No Connection

0 12

0 7

CC

®

®

®

®

®

®

®

®

®

®

Top View

The logic block diagram of CY27C64 is shown in Fig. 4.3 and the pin configuration

during read mode is shown in Fig. 4.4. [The pin configuration of CY27C64 will be different to that

of Fig. 4.4 during programming or write mode.] The chip has thirteen address inputs denoted as

A
0
-A

12
. The address is used to access any one of the 8 kilo (8192) locations within the chip. The

eight output lines, O
0
 to O

7
 are used to output data from the chip. The chip will be in standby mode

when CE is inactive. The CE is activated for selecting the chip and OE is activated for enabling

the output buffer during the read operation.

8086 Microprocessor and Its Appications

4. 6 Chapter 4 Memory And IO Interfacing

The CY27C64 EPROM is available with maximum access time of 70, 90, 120, 150 or 200

ns (nanosecond). The electrical characteristics or ratings of the EPROM are listed in Table-4.1.

TABLE - 4.1 : ELECTRICAL CHARACTERISTICS OF CY27C64

Description

 Rating

Unit Min Max

Operating Current
Commercial 80 mA

 Military 100 mA

Standby Current 15 mA

Output High Voltage 2.4 V

Output Low Voltage 0.4 V

Input High Voltage 2.0 V

Input Low Voltage 0.8 V

Output Capacitance 10 pF

Input Capacitance 10 pF

The timing diagram (or switching waveforms) of CY27C64 for read operation is shown in

Fig. 4.5. Only four important timings are shown in this diagram. For detailed discussions on

timing diagram refer to manufacturer's data sheet. The switching timings of various signals of

CY27C64 are listed in Table-4.2.

The read operation is carried out in the following steps:

1. Place the address of the location to be read, on the address pins A
0
 - A

12
.

2. Enable the chip by asserting chip enable low (CE = 0).

3. Assert the output enable signal low (OE = 0).

4. The data can be read from the output lines (O
0
 to O

7
) after a delay time of t

OE
 (40 or 50 ns) after asserting OE

 signal low.

Address
A - A0 12

CE

OE

Data out
O0 7-O

Active Mode

tCE

tOE

tAA

Standby Mode

tOH

Data Out Valid

Standby Mode

Fig. 4.5 : Timing diagram of a CY27C64 for read operation.

¬ ®

¬

®¬

®

¬ ®

 4. 7

TABLE - 4.2 : SWITCHING CHARACTERISTICS OF CY27C64

Parameter

 Description
Time

 Unit Min Max

t
AA

Address to output valid 70 to 200 ns

t
OE

Output enable active to

output valid 40 or 50 ns

t
CE

Chip enable active to

output valid 70 to 200 n s

t
OH

Data hold from address
3 n s

change

When the address is placed on the address lines, the memory will take a time of t
AA

 to place the

data on the output lines, provided the CE and OE are both asserted low, at the appropriate time.

The CY27C64 EPROM is equipped with an erasure window. When the window is exposed to

UV light, the contents of EPROM are erased and then it can be reprogrammed. Wavelengths of light less

than 4000A° (Angstrom unit) begin to erase the EPROM. Hence, an opaque label should be placed over

the window if the EPROM is exposed to sunlight or fluorescent lighting for a very long time.

The recommended dose of UV light for erasure is a wavelength of 2537 A° for a minimum

dose (UV intensity multiplied by exposure time) of 25 W-sec/cm2. For an UV lamp with a 12 mW/cm2

power rating, the exposure time would be approximately 35 minutes. The EPROM has to be placed

within a distance of 1 inch from the lamp during erasure. Permanent damage may result if EPROM is

exposed to high intensity UV light for a very long time. (Maximum dosage is 7258 W-sec/cm2).

4 .5 STATIC RAM

The static RAM (Random Access Memory) is a read/write memory which consists of an

array of flip-flops or similar storage devices. [Even though ROM memories are also technically

random access memory, the read/write memories are called RAM.] Besides random access feature,

the static RAMs are volatile in nature. In static RAM, the memory cell (storage location for each bit

of information) consist of a flip-flop or similar device. The stored information is retained in the

memory cell as long as power is supplied to the circuit. Each memory cell typically consists of six

to eight MOS transistors.

The static RAMs are manufactured by many semiconductor companies like Motorola, Hitachi,

Toshiba, Cypress, etc. The manufacturers have a common industry standard, so that a product

from different companies will be pin-to-pin compatible and olny slightly differ in electrical and

switching characteristics. The various features of 6264 (8 kb RAM) manufactured by Cypress

semiconductor corporation are discussed in this section.

CY6264 (Cypress Make CMOS 6264)

The CY6264 is a high performance CMOS static RAM organized as 8192 bytes (8 kb). The

device has a power down mode. When CY6264 is not enabled (deselected), it will enter the power

down mode and in this mode the power consumed is reduced to 30% of active mode power.

8086 Microprocessor and Its Appications

4. 8 Chapter 4 Memory And IO Interfacing

The logic block diagram and the pin configuration of CY6264 are shown in Figs. 4.6

and 4.7. The chip has 13 address inputs denoted as A
0
-A

12
. The address is used to access any one

of the 8 kilo (8192) locations within the chip. It has eight IO pins for reading/writing the data and

they are denoted as IO
0
-IO

4
.

28

27

26

25

24

23

22

21

20

19

18

17

16

15

VCC

A3

A2

A1

A0

6264

IO7

IO6

1

2

3

4

5

6

7

8

9

10

11

12

13

14

NC

A4

A9

A10

A11

A12

IO1

A5

A6

A7

IO2

GND

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

A8

IO0

IO3

IO4

IO5

CE1

OE

Fig. 4.7 : Pin configuration of a CY6264.

Top View

®

®

®

® WE

CE2

®

®

®

®

®

®

®

®

®

®

®

®

®

®

Pin Description

A - A Address

IO - IO Input/Output Data

CE Active Chip Enable

CE Active Chip Enable

WE Active Write Enable

OE Active Output Enable

V Power supply, +5-V

GND Ground (0-Volt)

NC No Connection

0 12

0 7

1

2

CC

low

high

low

low

®

Input Buffer

R
o
w

D
ec

o
d
er

Programmable
Array

256 32 8 = 64 k´ ´

S
en

se
A
m

p
li
fi
er

s

Column Decoder
Power
Down

Fig. 4.6 : Logic block diagram of a CY6264.

A1

A2

A3

A4

A5

A6

A7

A8

®

®

®

®

®

®

®

®

A
0

A
9

A
1
0

A
1
1

® ®®®

A
1
2
®

WE

CE2

OE

®

CE1

IO0

IO1

IO2

IO3

IO4

IO5

IO6

IO7

 4. 9

The chip has four control signals CE
1
, CE

2
, WE and OE. When CE

1
 and WE inputs are both

low and CE2 is high, data on the eight data pins (IO
0
 through IO

7
) is written into the memory

location addressed by the address pins (A
0
 through A

12
).

When CE
1
 and OE are both low and CE

2
 is high, the content of the memory location

addressed by the address pins will be loaded on the eight data pins, IO
0
 to IO

4
.

The CY6264 RAM is available with maximum access time of 55 or 70 ns (nanosecond). The

electrical characteristics or ratings of the RAM are listed in Table-4.3.

TABLE - 4.3 : ELECTRICAL CHARACTERISTICS OF CY6264

 Description
Value

 Unit

Min Max

Operating Current 100 mA

Standby Current 15 or 20 mA

Output High Voltage 2.4 V

Output Low voltage 0.4 V

Input High Voltage 2.2 V
cc

V

Input Low Voltage −0.5 0.8 V

Output Capacitance 7 pF

Input Capacitance 7 pF

Address
A - A0 12

CE1

OE

Data out
IO0 7- IO

tDOE

®

® tRC

CE2

tACE

tAA

tOHA

Fig. 4.8 : Read cycle timings of a CY6264.

High Impedance State

Data Valid

8086 Microprocessor and Its Appications

4. 10 Chapter 4 Memory And IO Interfacing

TABLE - 4.4 : READ CYCLE TIMINGS OF CY6264

Parameter Description
Time

Unit
 Min Max

 t
RC

Read cycle time 70 ns

 t
AA

Address to data valid 70 ns

 t
OHA

Data hold from address change 5 ns

 t
ACE

CE low/high to data valid 70 ns

 t
DOE

OE low to data valid 35 ns

The timing diagram (or switching waveforms) of CY6264 for read operation is shown in

Fig. 4.8. Only five important timings are shown in this diagram. For detailed discussions on timing

diagram, please refer to manufacturer's data sheet. The timings of various signals of CY6264 are

listed in Table-4.4.

The read operation is carried out in the following steps:

1. Place the address of the location to be read on the address pins A
0
-A

12
.

2. Enable the chip by asserting Chip Enable-1 (CE
1
) as low and Chip Enable-2 (CE

2
) as high.

3. Assert the Output Enable (OE) signal low.

4. When OE signal is asserted low, the data can be read from the input/output lines (IO
0
- IO

7
) after a delay

time of t
DOE

 (35 ns).

When the address is placed on the address line, the memory will take a time of t
AA

 to place

the data on the output lines, provided the CE
1
 and OE are asserted low and CE

2
 is asserted high at

the appropriate time.

The timing diagram (or switching waveform) of CY6264 for write operation is shown in

Fig. 4.9. The diagram shows some important timings of write cycle. For detailed discussions on

timing diagram, refer to the manufacturer's data sheet. The timings of various signals are listed in

Table-4.5.

The write operation is carried in the following steps :

1. Place the address of the location to be written on the address pins A
0
 - A

12
.

2. Enable the chip by asserting CE
1
 signal as low and after a small delay assert CE

2
 signal as high.

3. Assert the write enable WE signal as low.

4. Place the data to be written on the IO
0
- IO

7
 lines immediately after WE is asserted low.

After the address is placed on the address lines and CE
1
, CE

2
 and WE are asserted

appropriately, the data has to be placed on the data lines within the time t
SD

 (data set-up to

write end).

 4. 11

TABLE - 4.5 : WRITE CYCLE TIMINGS OF CY6264

Parameter Description Minimum time Unit

t
WC

Write cycle time 50 ns

t
SCE1

CE
1
 low to write end 40 ns

t
SCE2

CE
2
 high to write end 30 ns

t
AW

Address setup to write end 40 ns

t
PWE

WE pulse width 25 ns

t
SD

Data set-up to write end 25 ns

4.6 DRAM AND NVRAM

DRAM

DRAM (Dynamic RAM) is a read/write memory in which the information is stored in the

form of electric charge on the gate-to-substrate capacitance of a MOS transistor. This charge

dissipates in a few milliseconds and the element must be refreshed periodically. DRAMs are volatile

and have random access feature.

Dynamic RAMs are important because fewer elements are required to store a bit (typically

each memory cell will have three to four transistors as opposed to six to eight in static RAM), so

that more bits can be packed into an IC of a given physical area. They are also faster than the static

RAM and consume less power in the quiescent state.

Address
A - A0 12

CE1

WE

Data out
IO0 7- IO

®

® tWC

CE2

Fig. 4.9 : Write cycle timings of CY6264.

®

® tSCE1

®

® tSCE2

®

® tAW

®

®

tPWE

®

®

tSD

Data Undefined Data Valid

8086 Microprocessor and Its Appications

4. 12 Chapter 4 Memory And IO Interfacing

Refreshing of DRAMs needs extra circuitry and so the interfacing of DRAMs to the

microprocessor are more complex than the interfacing of static RAMs. The recent versions of

DRAMs have internal refreshing circuit. The manufacturing of DRAMs will be cheaper only for

very large capacity memories. Therefore, smaller memories are generally static elements (up to

256 kb) and large memories (> 1Mb) are typically dynamic.

NVRAM

NVRAMs are nonvolatile read/write memories. They are also called flash memory. These

memory devices are electrically erasable in the system, but require more time to erase than a static

RAM. Therefore, they are also called EEPROM (Electrically Erasable Programmable ROM). The

drawback in EEPROMs is that it takes longer time for the system to erase and write. The maximum

number of write operations that can be performed in most of the EEPROMs is about 10,000

operations.

INTEL and XYCOR have released their versions of nonvolatile RAMs, which does not have

the drawbacks of EEPROMs. (The drawbacks of EEPROM are high write time and limited number

of write cycles.) This type of NVRAM consists of a high speed static RAM and a corresponding

EEPROM on a single chip. For this reason, it is also called shadow RAM . In these devices for

each cell of static RAM, there is one EEPROM cell. A typical example of shadow RAM is INTEL

2004 and XYCOR's X2004. The 2004 has a special pin called nonvolatile enable (NE). Normally,

this pin is high and read or write operation is performed with static RAM. When NE is asserted

low, the data in the static RAM cells are written into the corresponding EEPROM cells.

4.7 INTERFACING STATIC RAM AND EPROM

The primary function of memory interfacing is that the microprocessor should be able to

read from and write into a set of semiconductor memory IC chips. Generally, EPROM is interfaced

for read operations and RAM is interfaced for read and write operations. The procedure for

interfacing SRAM for read/write operation and EPROM for read operation are similar and hence,

they are commonly dealt in this section.

In order to perform the read/write operation the memory access time should be less than

the read/write time of processor, chip select signals should be generated for selecting a particular

memory IC, suitable control signals should be generated for read/write operation and a specific

address should be allotted to each memory location.

Hence, memory interfacing deals with choosing memories with suitable access time,

designing address decoding circuit to generate chip select signals, generating control signals for

read/write operation and allocation of addresses to various memory ICs and their locations.

Typical EPROM and Static RAM

A typical semiconductor memory IC will have n address pins, m data pins (or output pins)

and a minimum of two power supply pins (one for connecting required supply voltage (V
CC

) and

the other for connecting ground). The control signals needed for static RAM are chip select

(chip enable), read control (output enable) and write control (write enable). The control signals

needed for read operation in EPROM are chip select (chip enable) and read control (output enable).

Typical static RAM and EPROM are shown in Figs. 4.10 and 4.11 respectively.

 4. 13

Note : The pins of EPROM are redefined for write operation. It also requires a different

hardware setup and higher supply voltage for write operation.

Memory Capacity

A semiconductor memory IC will have n address pins and m data pins. Such a memory has

2n locations and each location can store m-bit data. The size of the data stored in each memory

location is called memory word size. In INTEL 8086-based systems normally memories with

word size of 1-byte are used. (But we can even interface memories with word size 1-bit, 2-bit

and 4-bit.)

The memory capacity is specified in kilo bytes. If the memory IC has m data pins and n

address pins, then the memory IC will have a capacity of 2n × m bits. When m = 8, the memory

capacity is 2n bytes. One kilo-byte is 1024
10

 (= 400
H
) bytes. The relation between address pins and

capacity of memory ICs are listed in Table-4.4.

TABLE - 4.6 : RELATION BETWEEN NUMBER OF ADDRESS PINS AND MEMORY CAPACITY

 Number Memory capacity Range of
 of address in in address in
 pins in decimal kilo hexa hexa

 10 210 = 1024 1 k 400 000 to 3FF

11 211 = 2 × 210 = 2048 2 k 800 000 to 7FF

12 212 = 22 × 210 = 4 × 210 = 4096 4 k 1000 000 to FFF

13 213 = 23 × 210 = 8 × 210 = 8192 8 k 2000 0000 to 1FFF

14 214 = 24
× 210 = 16 × 210 = 16384 16 k 4000 0000 to 3FFF

15 215 = 25
× 210 = 32 × 210 = 32768 32 k 8000 0000 to 7FFF

16 216 = 26
× 210 = 64 × 210 = 65536 64 k 10000 0000 to FFFF

17 217 = 27
× 210 = 128 × 210 = 131072 128 k 20000 00000 to 1FFFF

18 218 = 28
× 210 = 256 × 210 = 262144 256 k 40000 00000 to 3FFFF

19 219 = 29
× 210 =512 × 210 = 524288 512 k 80000 00000 to 7FFFF

20 220 =210
× 210 =1024 × 210 =1048576 1024 k = 1 M 100000 00000 to FFFFF

Fig. 4.10 : A typical static RAM IC.

VCC

GND

n

Address Bus

m

Data Bus

CS/CE

OE/RD

WE/WR

CS/CE - Chip Select (or Chip Enable) ;

WE/WR - Write Enable (or Write Control)

Static

RAM

VCC

GND

n

Address Bus

m

Data Bus

CS/CE

EPROM

OE/RD

OE/RD - Output Enable (or Read Control)

Fig. 4.11 : A typical EPROM IC in read mode.

8086 Microprocessor and Its Appications

4. 14 Chapter 4 Memory and IO Interfacing

Choice of Memory ICs and Address Allocation

The memory requirement of a system depends on the application for which it is designed. A

system designer has a variety of choices for choosing memory ICs. The total memory requirement

can be realized in a single IC or in multiple ICs.

The total memory requirement of the system will be split between EPROM and RAM

memories. The EPROM memories are used for storing monitor program, other permanent programs

and data. The RAM memories are used for stack operations, temporary program and data storage.

The popular EPROM and static RAM ICs used with 8086-systems and their capacity are

listed here. The Table-4.7 shows the number of address pins and data pins available on these ICs.

EPROM Static RAM

2708 (1 k × 8 = 8 kilo bits/1 kb) 6208 (1 k × 8 = 8 kilo bits/1 kb)

2716 (2 k × 8 = 16 kilo bits/2 kb) 6216 (2 k × 8 = 16 kilo bits/2 kb)

2732 (4 k × 8 = 32 kilo bits/4 kb) 6232 (4 k × 8 = 32 kilo bits/4 kb)

2764 (8 k × 8 = 64 kilo bits/8 kb) 6264 (8 k × 8 = 64 kilo bits/8 kb)

27256 (32 k × 8 = 256 kilo bits/32 kb) 62256 (32 k × 8 = 256 kilo bits/32 kb)

27512 (64 k × 8 = 512 kilo bits/64 kb) 62512 (64 k × 8 = 512 kilo bits/64 kb)

27010 (128 k × 8 = 1 Mega-bit/128 kb) 62128 (128 k × 8 = 1 Mega-bit/128 kb)

27020 (256 k × 8 = 2 Mega bits/256 kb) 62138 (256 k × 8 = 2 Mega bits/256 kb)

27040 (512 k × 8 = 4 Mega bits/512 kb) 62148 (512 k × 8 = 4 Mega bits/512 kb)

Note : In this book kb refers to kilobytes.

TABLE - 4.7 : NUMBER OF ADDRESS AND DATA PINS IN MEMORY ICs

Memory IC Number of Number of

EPROM/RAM
 Capacity

address pins data pins

2708/6208 1 kb 10 8

2716/6216 2 kb 11 8

2732/6232 4 kb 12 8

2764/6264 8 kb 13 8

27256/62256 32 kb 15 8

27512/62512 64 kb 16 8

27010/62128 128 kb 17 8

27020/62138 256 kb 18 8

27040/62148 512 kb 19 8

Note : 16 kb memory is not available as a standard product.

In 8086 system, the EPROMs are mapped at the end of memory space and RAMs are

mapped at the begining of memory space (i.e., 00000
H
 address is alloted to RAM and FFFFF

H
 is

alloted to EPROM). This organization will facilitate automatic execution of monitor program and

creation of interrupt vector table in RAM upon reset. Whenever the power supply is switched ON,

 4. 15

the microprocessor chip will be reset. This power-on reset will be implemented by the system

designer. When the processor is reset, except CS-register all other internal registers, flag register

and instruction pointer will be cleared. The CS-register is initialized with FFFF
H
. Hence, after a

reset, the processor starts fetching and executing the instruction stored at FFFF0
H
. [(CS) × 16

10
+

(IP) = FFFF0
H
 after a reset].

The system designer will store the monitor program starting from the address FFFF0
H
. The

monitor program should be executed to initialize system peripherals whenever the system is switched

ON. To enable automatic execution of monitor program, Whenever the system is switched ON, the

EPROM should be mapped at the end of memory space in 8086-based system. Monitor program is

a permanent program written by the system designer to take care of system initializations. The

system initializations includes the following.

1. Programming 8279 for keyboard scanning and display refreshing.

2. Programming peripheral ICs 8259,8257,8255,8251,8254,etc.,.

3. Initializing stack.

4. Display a message on display (output) device.

5. Intializing interrupt vector table.

 Note : 8279 - Programmable keyboard/display controller 8257 - DMA controller

8259 - Programmable interrupt controller 8251 - USART

8255 - Programmable peripheral interface 8254 - Programmable timer

Generation of Chip Select Signals

The decoders are used for generating chip select signals. The 2-to-4 decoder will give four

chip select signals. The 3-to-8 decoder will give eight chip select signals. The 4-to-16 decoder will

give sixteen chip select signals.

The decoder is a logic circuit that identifies each combination of the signals present at its

input. The decoders will have n input lines and 2n output lines. In logic low decoder, at any one time

one of the 2n output will remain low and all other outputs will remain high.

The output which remains low depends on the input signal. Hence, if the decoder outputs are

connected to chip select pins of ICs in the microprocessor system, at any one time only one chip will

be selected. The input to the decoders are unused address lines or high order address lines.

While interfacing memories, the low order address lines are connected to the memory ICs.

The remaining unused address lines (or the high order address line) are connected to input of

decoder. The outputs of decoder are connected to CS or CE pins of memory ICs.

In a microprocessor-based system, all the memory ICs and peripheral ICs are connected to a

common system bus. Therefore the data, address and control lines are connected to all the slaves

(memory/peripheral ICs). But all the slaves remain in high impedance state. So, they cannot communicate

with master (processor) through bus (i.e., they are physically connected but electrically isolated).

When the address is given out by the processor for read/write operation, only one of the

memory IC is selected and the selected memory IC will come to normal logic. The selection logic

8086 Microprocessor and Its Appications

4. 16 Chapter 4 Memory and IO Interfacing

depends on address decoding logic. All other memory ICs will remain in high impedance state and

so they are electrically isolated from the system. The read/write operation is performed by the

processor with the selected memory IC.

Decoder

The popular decoders used in the microprocessor-based system are 74LS138 and 74LS139.

The 74LS138 is a 3-to-8 decoder and 74LS139 is dual 2-to-4 decoder.

The 74LS138 consists of 3-input lines, 8-output lines (logic low) and three enables or ground.

In the three enables, two are logic low and one is logic high enable. The pin configuration of 3-to-8

decoder (74LS138) is shown in Fig. 4.12. The truth table of the decoder is given in Table-4.8.

TABLE - 4.8 : TRUTH TABLE OF 3-TO-8 DECODER

Enables Input Output

G
1

G
2A

G
2B

C B A Y
7

Y
6

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

1 0 0 0 0 0 1 1 1 1 1 1 1 0

1 0 0 0 0 1 1 1 1 1 1 1 0 1

1 0 0 0 1 0 1 1 1 1 1 0 1 1

1 0 0 0 1 1 1 1 1 1 0 1 1 1

1 0 0 1 0 0 1 1 1 0 1 1 1 1

1 0 0 1 0 1 1 1 0 1 1 1 1 1

1 0 0 1 1 0 1 0 1 1 1 1 1 1

1 0 0 1 1 1 0 1 1 1 1 1 1 1

0 1 1 X X X H H H H H H H H

TABLE - 4.9 : TRUTH TABLE OF

2-TO-4 DECODER

Enable Input Output

E B A Y
3

Y
2

Y
1

Y
0

0 0 0 1 1 1 0

0 0 1 1 1 0 1

0 1 0 1 0 1 1

0 1 1 0 1 1 1

1 X X H H H H

Fig. 4.12 : Signals of 74LS138.

A

3-to-8

Decoder

74LS138

B

C

IPQ

I
P
Q

I
P
Q

1

2

3

6 4 5

G1 G2A G2B

15

14

13

12

11

9

10

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

7

IPQ

VCC
GND

16 8

Power Supply

In
p
u
t

O
u
tp
u
t

Enables

Fig. 4.13 : Signals of 74LS139.

1A

Decoder-1
1B

IPQ

I
P
Q

I
P
Q

2

3

1

16 8

VCC

9

10

11

12

7

5

6

4

In
p
u
t

O
u
tp
u
t

Power Supply

I
P
Q

O
u
tp
u
t

2A

2B

2E

I
P
Q

14

13

15

In
p
u
t

1E

®

GND

Decoder-2

74LS139

2-to-4

Decoder

1Y0

1Y1

1Y2

1Y3

2Y0

2Y1

2Y2

2Y3

 4. 17

The 74LS139 consists of two numbers of 2-to-4 decoder packed in a single IC package.

Each decoder has two input pins, four output lines and a logic low enable. The pin configuration

of 74LS139 is shown in Fig. 4.13. The truth table of 2-to-4 decoder is given in Table-4.9. In

74LS139 each decoder can work independently.

4.8 MEMORY ORGANIZATION IN 8086-BASED SYSTEM

In 8086, the one mega-byte (1Mb) of addressable memory space is divided into two

banks : Even memory bank and Odd memory bank. Each bank will have an addressable space of

512 kilo bytes (512 kb). In 8086-based system the lower eight lines of data bus, D
0
- D

7
 are

connected to even bank memory ICs and the upper eight lines of data bus, D
8
-D

15
 are connected

to odd bank memory ICs. The even bank is selected by the address line A
0
 and the odd bank is

selected by the control signal BHE.

A microprocessor-based system requires both EPROM and RAM. Hence, the available

memory space has to be divided between EPROM and RAM. This choice depends on the system

designer as well as on the application for which the system is designed. For proper system

functioning, the system designer should allot equal address space in odd and even bank for both

EPROM and RAM.

Some systems may require large memory space and so full memory space is utilized. But in

some systems, the memory requirement may be less and in this case the full memory space is not

utilized. When full memory space is not utilized for memory, then the unused memory addresses

can be used for addressing IO devices. Such IO devices are called memory-mapped IO devices

and they can be accessed similar to that of memory device.

The required EPROM memory capacity of the system can be implemented in two ICs (one

for even and the other for odd bank) or in multiple ICs. Similarly, the RAM capacity of the system

can be implemented in two ICs or in multiple ICs. This choice depends on the availability of

memory IC and the system designer. Some example memory organisations for 8086 processor

based-system are discussed in this section.

Consider a system in which the full memory space is utilized and the memory space is

equally divided between EPROM and RAM. For this system in each memory bank 256 kilo bytes

of EPROM memory space and 256 kilo bytes of RAM memory space is available. If the 256 kb

memory space is implemented in single IC then we require two numbers of 256 kb RAM and two

numbers of 256kb EPROM. This memory organization is shown in Fig. 4.14.

In the memory organization shown in Fig. 4.14, the lower eight data lines D
0
- D

7
 are

connected to even bank ICs, the upper eight data lines D
8
-D

15
 are connected to the odd bank ICs

and the address lines A
1
-A

18
 are used to select the internal locations of memory ICs. The even

bank ICs are selected when A
0
 is low and the odd bank ICs are selected when BHE is low. The

EPROM or RAM selection is decided by address line A
19

. When A
19

 is low, RAM ICs are selected

and when A
19

 is high EPROM ICs are selected.

8086 Microprocessor and Its Appications

4. 18 Chapter 4 Memory and IO Interfacing

In this organization the first half address space (i.e., first 512 kb) is implemented in RAM.

The address range of RAM memory is 00000
H
 to 7FFFF

H
. The second half address space (i.e.,

second 512 kb) is implemented in EPROM. The address range of EPROM memory is 80000
H
 to

FFFFF
H
. The address allocation for RAM and EPROM locations are shown in Table-4.10.

Note : While alloting binary address to odd bank memory, A
0
 is considered as 1.

Let us discuss another example of memory organization with unequal memory space for

EPROM and RAM and utilized only half the available memory space. Consider a system with

128 kb (2 × 64kb = 128 kb) EPROM and 384 kb (6 × 64 kb = 384 kb) RAM. For this system in

each bank 64 kb of EPROM and 192 kb of RAM is available. If the memory system is designed

using 64 kb memory IC then we may require two numbers of 64 kb EPROM and six numbers of

64 kb RAM. This memory organisation is shown in Fig. 4.15.

In the memory organization shown in Fig. 4.15, the lower eight data lines, D
0
- D

7
 are

connected to even bank ICs, the upper eight data lines, D
8
-D

15
 are connected to the odd bank ICs

and the address lines A
1
-A

16
 are used to select the internal locations of memory ICs. The address

lines A
17

, A
18

 and A
19

 are decoded to generate chip select signals. Here two numbers of 3-to-8

decoders are employed for generating separate chip select signals for even and odd bank ICs.

Each 3-to-8 decoder will generate eight chip select signals and in this, four signals are used as

chip select signals for four memory ICs of a bank. The remaining four signals are reserved for

future expansion (or can be used for IO devices).

In the memory organization shown in Fig. 4.15, the first 384 kb of memory space is

implemented in RAM and the last 128 kb of memory space is implemented in EPROM. The address

range of RAM is 00000
H
 to 5FFFF

H
 and the address range of EPROM is E0000

H
 to FFFFF

H
. The

address allocation for RAM and EPROM locations are shown in Table-4.11.

Latches

and

Buffers

8086

® ® ® ® ® ® ® ® ® ® ® ®

®

® ® ® ®

®

D
8
-
D

1
5

A
1
-
A

1
8

R
D

D0 - D15

A0 - A19

A
1
-
A

1
8

D
8
-
D

1
5

R
D

W
R

A
0
-
A

1
7

O
0
-
O

7

O
E

A
0
-
A

1
7

IO
0
-
IO

7

O
E

W
E

256 kb

EPROM

27020

Odd

256 kb

RAM

62138

Odd

A19 A19

D
0
-
D

7

A
1
-
A

1
8

R
D

A
1
-
A

1
8

D
0
-
D

7

R
D

W
R

A
0
-
A

1
7

O
0
-
O

7

O
E

A
0
-
A

1
7

IO
0
-
IO

7

O
E

W
E

256 kb

RAM

62138

Even

256 kb

EPROM

27020

Even

CS CS CS CS

BHE

RD

WR

A19 A19

Even Bank MemoryOdd Bank Memory

Fig. 4.14 : Example of implementing full memory space in 8086-based system.

A0

®
®

 4. 19

 Memory

 Hexa

 Device

 address

 RAM

 256 kb

 Even

 RAM

 256 kb

 Odd

 EPROM

 256 kb

 Even

 EPROM

 256 kb

 Odd

 A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6
A

5
A

4
A

3
A

2
A

1
A

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 6

.

.

.

.

.

.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 7 F F F E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 7

.

.

.

.

.

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 7 F F F F

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 8 0 0 0 2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 8 0 0 0 4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 8 0 0 0 6

.

.

.

.

.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 F F F F E

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 8 0 0 0 1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 8 0 0 0 3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 8 0 0 0 5

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 8 0 0 0 7

.

.

.

.

.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F F F F F

R
A

M
 A

d
d
re

s
s
 R

a
n
g
e
 0

0
0
0
0

H
 t

o
 7

F
F

F
F

H
E

P
R

O
M

 A
d
d
re

s
s
 R

a
n
g
e
 8

0
0
0
0

H
 t

o
 F

F
F

F
F

H

Binary address

Input to memory address pins

TABLE- 4.10 : ADDRESS ALLOCATION TABLE FOR MEMORY ORGANIZATION

 SHOWN IN FIG. 4.14

8086 Microprocessor and Its Appications

4. 20 Chapter 4 Memory and IO Interfacing

D
0
-
D

7

A
0
-
A

7

A0-A15

IO0-IO7

®

®

L
a
tc
h
e
s

A
n
d

B
u
ff
e
r
s

8
0
8
6

®
®

®

®
®
®
®

®
®
®
®

®
®
®

®
®
®
®

®
®
®
®

®
®
®
®

®
®
®

®
®

OE
WEWR

RD

A1-A16

D8-D15

WR

RD

A1-A16

D8-D15

WR

RD

A1-A16

D8-D15

RD

A1-A16

D8-D15

WR

RD

A1-A16

D0-D7

WR

RD

A1-A16

D0-D7

WR

RD

A1-A16

D0-D7

RD

A1-A16

D0-D7

A0-A15

IO0-IO7

OE
WE

A0-A15

IO0-IO7

OE
WE

A0-A15

O0-O7

OE

A0-A15

IO0-IO7

OE
WE

A0-A15

IO0-IO7

OE
WE

A0-A15

IO0-IO7

OE
WE

A0-A15

IO0-IO7

OE

6
4
k
b

R
A
M
-I

O
d
d

6
2
5
1
2

6
4
k
b

R
A
M
-I
I

O
d
d

6
2
5
1
2

6
4
k
b

R
A
M
-I
I
I

O
d
d

6
2
5
1
2

6
4
k
b

E
P
R
O
M

O
d
d

2
7
5
1
2

6
4
k
b

R
A
M
-I

E
v
e
n

6
2
5
1
2

6
4
k
b

R
A
M
-I
I

E
v
e
n

6
2
5
1
2

6
4
k
b

R
A
M
-I
I
I

E
v
e
n

6
2
5
1
2

6
4
k
b

E
P
R
O
M

E
v
e
n

2
7
5
1
2

B
H
E
R
D
W
R

® ® ® ® ® ® ® ®

A
1
7

A
1
8

A
1
9

A
1
7

A
1
8

A
1
9

A
0+
5
-V

+
5
-V

G
1

G
2
A

A B C G
2
B

G
1

G
2
A

A B C G
2
B

3-to-8Decoder 3-to-8Decoder

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

O
B
C
S
0

O
B
C
S
1

O
B
C
S
2

O
B
C
S
3

O
B
C
S
4

O
B
C
S
5

O
B
C
S
6

O
B
C
S
7

E
B
C
S
0

E
B
C
S
1

E
B
C
S
2

E
B
C
S
3

E
B
C
S
4

E
B
C
S
5

E
B
C
S
6

E
B
C
S
7

C
S

C
S

C
S

C
S

C
S

C
S

C
S

C
S

O
D
D
M
E
M
O
R
Y
B
A
N
K

E
V
E
N
M
E
M
O
R
Y
B
A
N
K

O
B
C
S
-O
d
d
B
an
k
C
h
ip
S
el
ec
t

;
E
B
C
S
-E
v
en
B
an
k
C
h
ip
S
el
ec
t

F
ig
.
4
.1
5
:
E
x
a
m
p
le
o
f
im
p
le
m
e
n
ti
n
g
5
1
2
k
b
m
e
m
o
ry
s
p
a
c
e
in
a
n
8
0
8
6
-b
a
s
e
d
s
y
s
te
m
.

¬ ®

® ®

4. 21

64 kb

 RAM-I

 Even

 64 kb

 RAM-I

 Odd

 64 kb

 RAM-II

 Even

 64 kb

 RAM-II

 Odd

 64 kb

 RAM-III

 Even

 64 kb

 RAM-III

 Odd

 64 kb

 EPROM

 Even

 64 kb

 EPROM

 Odd

A
19

A
18

A
17

A
16

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2
A

1
A

0

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4
.
.
.
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 F F F E

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 5
.
.
.
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F F F F

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 2 0 0 0 2

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 0 4
.
.
.
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 F F F E

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0 0 0 3

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 2 0 0 0 5
.
.
.
0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 F F F F

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 4 0 0 0 2

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 4 0 0 0 4
.
.
.
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 5 F F F E

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 4 0 0 0 1

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 0 0 0 3

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 4 0 0 0 5
.
.
.
0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 F F F F

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 E 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 E 0 0 0 2

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 E 0 0 0 4
.
.
.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 F F F F E

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 E 0 0 0 1

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 E 0 0 0 3

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 E 0 0 0 5
.
.
.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F F F F F

E

P
R

O
M

 A
d
d
re

s
s

 R
a

n
g

e
 :
 E

0
0

0
0

H
 t

o
 F

F
F

F
F

H

 R

A
M

-I
II
 A

d
d
re

s
s

R

a
n
g
e
 :
 4

0
0
0
0

H
 t
o
 5

F
F

F
F

H

R
A

M
-I

I
A

d
d
re

s
s

 R

a
n
g
e
 :
 2

0
0
0
0

H
 t
o
 3

F
F

F
F

H

T
o

ta
l
R

A
M

 A
d
d
re

s
s
 R

a
n
g
e
 :
 0

0
0
0
0

H
 t
o
 5

F
F

F
F

H

R

A
M

-I
 A

d
d
re

s
s

R
a
n
g
e
 :
 0

0
0
0
0

H
 t
o

 1
F

F
F

F
H

Hexa

Address

TABLE - 4.11 : ADDRESS ALLOCATION TABLE FOR MEMORY ORGANISATION

SHOWN IN FIG 4.15

Memory

Device

Binary Address

Input to memory address pinsDecoder
input

8086 Microprocessor and Its Appications

4. 22 Chapter 4 Memory and IO Interfacing

4 .9 IO STRUCTURE OF A TYPICAL MICROCOMPUTER

The IO devices connected to a microcomputer system provides an efficient means of

communication between the microcomputer system and the outside world. These IO devices are

commonly called peripherals and include keyboards, CRT displays, printers and disks (floppy disk,

hard disk and Compact Disc (CD)).

The characteristics of the IO devices are normally different from the characteristics of the

microprocessor. Since the characteristics of the IO devices are not compatible with that of the

microprocessor, interface hardware circuitry between the microprocessor and IO device are

necessary.

There are three major types of data transfer between the microcomputer and an IO device.

They are

1. Programmed IO

2. Interrrupt driven IO

3. Direct Memory Access (DMA)

In programmed IO, the data transfer is accomplished through an IO port and controlled by

software. In interrupt driven IO, the IO device will interrupt the processor, and initiate data transfer.

In DMA, the data transfer between the memory and IO can be performed by bypassing the

microprocessor. Each type of data transfer scheme mentioned above, includes different methods

of data transfer schemes. The Fig. 4.16 shows all the types of data transfer schemes in a

microcomputer and it can also be called IO structure of a microcomputer.

4.10 INTERFACING IO AND PERIPHERAL DEVICES

IO devices are generally slow devices and so they are connected to the system bus through

the ports. The ports are buffer ICs which are used to temporarily hold the data transmitted from

microprocessor to IO device or to hold the data transmitted from IO device to microprocessor.

® ®®

Programmed IO Interrupt IO Direct Memory Access

Standard IO
or

Isolated IO
or

Port IO

Memory
Mapped IO

® ® ® ®

Block
Transfer
DMA

Cycle
Stealing
DMA

Demand
Transfer
DMA

®

® ®

External Internal

Maskable Nonmaskable Due to
Exceptional
Conditions

Software
Interrupts

®®®®

IO

Fig. 4.16 : IO structure of a typical microcomputer.

4. 23

For data transfer from input device to processor the following operations are performed:

1. The input device will load the data to the port.

2. When the port receives a data, it sends message to the processor to read the data.

3. The processor will read the data from the port.

4. After a data have been read by the processor the input device will load the next data into the port.

For data transfer from processor to output device the following operations are performed:

1. The processor will load the data to the port.

2. The port will send a message to the output device to read the data.

3. The output device will read the data from the port.

4. After the data have been read by the output device the processor can load the next data to the port.

INTEL IO Port Devices

The various INTEL IO port devices are 8212, 8155 /8156, 8255, 8355 and 8755.

 8212 : The 8212 is a 24-pin IC. It consists of eight number of D-type latches, each followed by

a tristate buffer. It has 8-input lines DI
1
- DI

8
 and 8-output lines DO

1
- DO

8
. The 8212 can

be used as an input or output device and the function is determined by the mode pin.

However it cannot be used simultaneously for input and output in the same circuit, since

its mode pin is hardwired. It has 2-device select signals DS
1
and DS

2
. The port is selected

by the processor by sending the appropriate address to device select pins.

Output Port : When MD = 1, DS
1
 = 0 and DS

2
 = 1

Input Port : When MD = 0, DS
1
 = 0 and DS

2
 = 1

8155 : It has 256 × 8 static RAM, two numbers of

8-bit parallel IO port (ports A and B), one number

of 6-bit parallel IO port (port-C) and 14-bit timer.

The ports A and B can be programmed to work as

simple or handshake input or output port. If port-A

and port-B are simple ports then port-C can be

used as input or output port. The timer can be

programmed to operate in four different modes.

The 8155 requires six internal addresses and has

one logic low Chip Select pin (CS). The address

of internal devices of 8155 are listed in Table-4.12.

8156 : Same as 8155, but it has logic high Chip Select (CS), i.e., the chip is selected when

CS = 1.

8255 : It has 3 numbers of 8-bit parallel IO ports (ports A, B and C).

Port-A can be programmed in mode-0, mode-1 or mode-2 as input or output port.

Port-B can be programmed in mode-1 and mode-2 as IO port. When ports A and

B are in mode-0, the port-C can be used as an IO port. The individual pins of port-C

can be set or reset. The 8255 requires four internal addresses and has one logic low

Chip Select (CS) pin. The address of internal devices of 8255 are listed in Table-4.13.

TABLE - 4.12 : INTERNAL

ADDRESS OF 8155 / 8156

Internal Device A
2

A
1

A
0

Control Register/
0 0 0Status Register

Port-A 0 0 1

Port-B 0 1 0

Port-C 0 1 1

LSB of Timer 1 0 0

MSB of Timer 1 0 1

8086 Microprocessor and Its Appications

4. 24 Chapter 4 Memory and IO Interfacing

8355 : It has 2 k × 8 ROM and two numbers of 8-bit port (Ports A and B). The individual

pins of ports A and B can be programmed as input or output lines by sending a

control word to DDR (Data Direction Register). The address of internal devices of

8355 are listed in Table-6.16. The 8355 requires four internal addresses and has one

logic low Chip Select (CS) pin.

8755 : Same as 8355 but has 2 k × 8 EPROM.

Intel Peripheral Devices

Apart from port ICs, dedicated programmable controller/peripheral ICs are used in the

system for various activities. Some of the controller/peripheral devices used in the 8086

system and their functions and internal addresses are listed in Table-4.15.

TABLE - 4.15 : FUNCTIONS AND INTERNAL ADDRESSES OF PERIPHERAL DEVICES

Device Function Internal addresses

INTEL Keyboard/display controller. Two-internal addresses

8279 Used for keyboard scanning A
0
 = 0 → Data register

and display refreshing. A
0
 = 1 → Control register

INTEL DMA controller. Used for supporting Sixteen-internal addresses

8257 DMA access to IO device. It acts as A
3
 A

2
A

1
 A

0

or a master during the DMA mode. It is a 0 0 0 0

INTEL slave device during programming 0 0 0 1

8237 mode.

 1 1 1 1

INTEL Interrupt controller. Used to expand Two-internal addresses

8259 the hardware interrupt INTR to eight A
0
 = 0

interrupts in 8085-based system and A
0
 = 1

256 interrupts in 8086-based system.

8253/ Used in the system to produce A
1

 A
0

8254 various timing signals. It has three Counter -0 0 0

independent counters and can be Counter -1 0 1

programmed in six operating modes. Counter -2 1 0

Control Register 1 1

INTEL Universal Synchronous/Asynchronous Two-internal addresses

8251 Receiver Transmitter. C/ D = 0 → Data register

USART Used for serial data communication. C/ D = 1 → Control register

TABLE - 4.13 : INTERNAL ADDRESS

 OF 8255

 Internal Device A
1

A
0

Port-A 0 0

Port-B 0 1

Port-C 1 0

 Control Register 1 1

 Internal Device A
1

A
0

Port- A 0 0

Port- B 0 1

DDR-A 1 0

DDR-B 1 1

TABLE - 4.14 : INTERNAL ADDRESS

 OF 8355/8755

 4. 25

The port and peripheral devices will have one logic low/high chip select pin. The processor

can access the port/peripheral device by supplying the internal address and chip select signal.

Therefore, the port and peripheral device interfacing (IO interfacing) deals with allocation of

various internal addresses and generation of chip select signals.

There are two ways of interfacing IO devices in 8086-based system. [The interfacing of

IO ports and controller/peripheral ICs are commonly referred as IO device mapping.]

The two methods are,

1. Memory-mapped IO device.

2. Standard IO-mapped IO device or Isolated IO mapping.

In memory mapping of IO devices, the ports are allotted a 20-bit address like that of

memory location. Some of the chip select signals generated to select memory ICs are used for

selecting the IO port devices. Hence, the processor treats the IO ports as memory locations for

reading and writing (i.e., the devices which are mapped by memory mapping are accessed by

executing memory read cycle or memory write cycle).

In standard IO mapping or isolated IO mapping, a separate 8-bit or 16-bit address is allotted

for IO ports and the peripheral ICs. The processor differentiates the IO-mapped devices, from the

memory-mapped devices in the following ways.

1. For accessing the IO-mapped devices the processor executes IO read or write cycle.

2. During IO read or write cycle, the 8-bit or 16-bit address is placed on low order address lines and the high

order address lines are asserted zero.

3. M/IO is asserted low to indicate the IO operation (for read as well as write).

The 8086 processor does not provide separate read (RD) and (WR)signals for memory

and IO devices. But it differentiates the memory and IO device accesses by M/IO signal. The

three signals RD,WR and M/IO can be decoded as shown in Fig . 4.17 to provide separate read

and write control signals for IO devices and memory devices.

MEMW

RD

M/IO

WR

MEMR

IOR

IOW

Fig. 4.17 : Circuit to generate separate read and write signals for
memory and IO devices in an 8086 system.

8086 Microprocessor and Its Appications

4. 26 Chapter 4 Memory and IO Interfacing

When the devices are IO-mapped, then only IN and OUT instructions has to be used for

data transfer between the device and the processor. For IO-mapped devices, a separate decoder

should be used to generate the required chip select signals.

TABLE - 4.16 : COMPARISON OF MEMORY MAPPING AND IO MAPPING OF IO DEVICE

DESIGN EXAMPLE 1

In a microprocessor system using 8086, the memory requirement is 16 kb EPROM and 16 kb RAM. The system requires

8279 for keyboard and display interface, and 8255 for IO ports. Draw an interface diagram for memory and peripheral devices,

and allot addresses for each device.

Solution

The 16 kb EPROM can be implemented in two numbers of 8 kb EPROM (2764). One of the 8 kb

EPROM can be mapped as even bank and the other as odd bank. The address lines A
1
-A

13
 are connected

to each EPROM IC to select the internal locations of EPROM.

The 16 kb RAM can be implemented in two numbers of 8 kb RAM (6264). One of the 8 kb RAM can

be mapped as even bank and the other as odd bank. The address lines A
1
-A

13
 are connected to each RAM

IC to select the internal locations of RAM.

Since a large amount of memory space is free, we can interface the 8279 and 8255 as memory-

mapped device. In the interface diagram shown in Fig. E1.1, these devices are interfaced such that even

addresses are allotted to them. The address line A
1
 of 8086 is connected to address line A

0
 of 8279, and the

address lines A
1
 and A

2
 of 8086 are connected to address lines A

0
 and A

1
 of 8255 to provide the required

internal addresses.

IO mapping of IO device

1. 8-bit or 16-bit addresses are provided for

IO devices.

2. Only IN and OUT instructions can be used

for data transfer between IO device and

the processor.

3. In IO-mapped ports, the data transfer can

take place only between the accumulator

and the ports.

4. When IO mapping is used for IO devices,

then the full memory address space can

be used for addressing memory. Hence it

is suitable for systems which requires

large memory capacity.

5. For accessing the IO-mapped devices, the

processor executes IO read or write cycle.

During this cycle M/IO is asserted low.

 Memory mapping of IO device

 1. 20-bit addresses are provided for IO

devices.

 2. The IO ports or peripherals can be treated

like memory locations and so all

instructions related to memory can be

used for data transfer between IO

device and the processor.

 3. In memory-mapped ports, the data can be

moved from any register to the ports and

vice versa.

 4. When memory mapping is used for IO

devices, the full memory address space

cannot be used for addressing memory.

Hence, memory mapping is useful only

for small systems, where the memory

requirement is less.

 5. For accessing the memory-mapped

devices, the processor executes memory

read or write cycle. During this cycle M/IO

is asserted high.

 4. 27

8
k
b

R
A
M

6
2
6
4

O
d
d

A-A113

D-D815

8
0
8
6

L
a
tc
h
e
s

a
n
d

B
u
ff
e
r
s

D
-D
0

1
5

A
-A
0

1
9

RD

WR

A-A113

D-D815

RD

A-A113

D-D07

RD

WR

A-A113

D-D07

RD

A1

D-D07

C
S

A,A12

D-D07

Y
0

Y
1

Y
2

Y
3

A B

2-to-4Decoder

A
1
8

A
1
9

A
1
8

A
1
9

A
0

A B

2-to-4Decoder

R
D
W
R

O
B
C
S
0

O
B
C
S
1

O
B
C
S
2

O
B
C
S
3

E
B
C
S
0

E
B
C
S
1

E
B
C
S
2

E
B
C
S
3

8
k
b

E
P
R
O
M

2
7
6
4

O
d
d

8
k
b

R
A
M

6
2
6
4

E
v
e
n

8
k
b

E
P
R
O
M

2
7
6
4

E
v
e
n

8
2
7
9

8
2
5
5

E
B
H
E

A0

A,A 01

RD

WR

RD

WR

C
S

C
S

C
S

C
S

C
S

Y
0

Y
1

Y
2

Y
3

E

A-A012

IO-IO 07

OE

WE

A-A012

O-O07

OE

A-A012

IO-IO 07

OE

WE

A-A012

O-O07

OE

D-D07

RD

WR

D-D07

RD

WR

¯
¯
¯
¯

¯
¯

¯
¯
¯
¯

¯
¯

¯
¯
¯

¯
¯
¯
¯

¯
¯

® ® ® ® ® ®

¯

F
ig
.
E
1
.1
:
M
e
m
o
ry
a
n
d
I/
O
d
e
v
ic
e
in
te
rf
a
c
e
d
ia
g
ra
m
fo
r
D
e
s
ig
n
E
x
a
m
p
le
-1
.

® ®
®

¬
¬ B
H
E

®

®

®

®

RAM
SelectA14

A15

A16

A17

EBCS1

OBCS0

Chip select of
RAM-Even

Chip select of
RAM-Odd

EPROM
Select

EBCS3

OBCS3

A14

A15

A16

A17

Chip select of
EPROM-Even

Chip select of
EPROM-Odd

A2

A17

Chip select
of 8279

A3

A17

EBCS1

EBCS2

Chip select
of 8255

Fig. E1.2 : Additional logic circuits to avoid don’t care for memory organization shown in Fig. E1.1.

8086 Microprocessor and Its Appications

4. 28 Chapter 4 Memory and IO Interfacing

 Hexa

 Device Address

 8 kb RAM

 Memory

 Even

 8 kb RAM

 Memory

 Odd

 8 kb

 EPROM

 Memory

 Even

 8 kb

 EPROM

 Memory

 Odd

 8279

 Data

 Register

 Control

 Register

 8255

 Port-A

 Port-B

 Port-C

 Control

 Register

A
19

 A
18

 A
17

 A
16

 A
15

 A
14

 A
13

 A
12

 A
11

 A
10

 A
9
 A

8
 A

7
 A

6
 A

5
 A

4
 A

3
 A

2
 A

1
 A

0

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4

0 0 x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 3 F F E

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3

0 0 x x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 5

0 0 x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 F F F

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F C 0 0 0

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 0 F C 0 0 2

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 F C 0 0 4

1 1 x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 0 F C 0 0 E

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 F C 0 0 1

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 F C 0 0 3

1 1 x x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 F C 0 0 5

1 1 x x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F F F F F

0 1 x x x x x x x x x x x x x x x x 0 0 4 0 0 0 0

0 1 x x x x x x x x x x x x x x x x 1 0 4 0 0 0 2

1 0 x x x x x x x x x x x x x x x 0 0 0 8 0 0 0 0

1 0 x x x x x x x x x x x x x x x 0 1 0 8 0 0 0 2

1 0 x x x x x x x x x x x x x x x 1 0 0 8 0 0 0 4

1 0 x x x x x x x x x x x x x x x 1 1 0 8 0 0 0 6

 E
P

R
O

M
 A

d
d
re

ss
 R

an
g
e

R
A

M
 A

d
d
re

ss
 R

an
g
e

 F

C
0

0
0

H

to

F
F

F
F

F
H

 0

0
0

0
0

H

to

0
3
F

F
F

H

TABLE - E1 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE-1

Binary Address

Unused

Address Lines
Decoder

Input

Input To Memory/ IO Device

Address Pins

 4. 29

Let us employ two numbers of 2-to-4 decoder to generate chip select signals. Both the decoder,

take A
18

 and A
19

 as input, and each decoder produces four decoded output signals. One of the decoder is

enabled by address line A
0
 and the output of this decoder is used as chip select signals for even bank

memory ICs, 8279 and 8255. The other decoder is enabled by the control signal BHE and the output of this

decoder is used as chip select signals for odd bank memory ICs.

The address lines A
14

 - A
17

 are not used for memory ICs. Similarly, the address lines A
2
 - A

17
 are not

used for 8279 and the address lines A
3
 - A

17
 are not used for 8255.

The addresses allotted to the memory and IO devices are shown in Table-E1. The unused address

lines are denoted by "x"(don't care) in Table-E1. While framing hexa address, the don't cares are considered

as zero for RAM and IO devices, and they are considered as one for EPROM. This will map RAM memory

in the beginning of address space and EPROM at the end of address space, which is a necessary requirement

for 8086 system.

The don't care can be avoided by generating additional chip select signals using unused address

lines and logically ORing this additional chip select signal with output of decoder and then the combined

chip select signal can be used to select the memory and IO devices as shown in Fig. E1.2.

DESIGN EXAMPLE 2

Repeat design example -1 by providing IO mapping for 8279 and 8255.

Solution

The 16 kb EPROM can be implemented in two numbers of 8 kb EPROM-2764 and 16kb RAM can

be implemented in two numbers of 8 kb RAM-6264. The odd bank will consist of 8 kb EPROM and 8 kb

RAM, and the even bank will consist of 8 kb EPROM and 8 kb RAM.

The address lines A
1
 - A

13
 are used to select the internal locations of memory. The address lines

A
17

, A
18

 and A
19

 are decoded to generate chip select signals for memory ICs. Two numbers of 3-to-8

decoder are employed in the system, one for even bank and the other for odd bank. The even bank

decoder is enabled by A
0
 and M/IO. The odd bank decoder is enabled by BHE and M/IO. Memory

decoders are enabled when M/IO is high.

The 8279 and 8255 are IO-mapped in the system. The chip select signals for IO devices are generated

by decoding the address lines A
5
, A

6
 and A

7
 using a separate 3-to-8 decoder which is enabled by A

0
 and

M/IO. The IO decoder is enabled when M/IO is low.

The address allotted to memory and IO devices are shown in Table-E2. The unused address lines

are denoted by don't cares in Table-E2. While framing hexa address, the don't care are considered as zeros

for RAM and IO devices, and they are considered as one for EPROM.

8086 Microprocessor and Its Appications

4. 30 Chapter 4 Memory and IO Interfacing

8
k
b

R
A
M

6
2
6
4

O
d
d

A-A113

D-D815

8
0
8
6

L
a
tc
h
e
s

a
n
d

B
u
ff
e
r
s

D
-D
0

1
5

A
-A
0

1
9

C
S

RD

C
S

C
S

C
S

WR

A-A113

D-D815

RD

A-A113

D-D07

RD

WR

A-A113

D-D07

RD

A1

D-D07 C
S

RD

C
S

WR

RD

WR

D-D07

A B

3-to-8Decoder

A
1
8

A
1
9

RD

WR

BHE

O
B
C
S
0 O
B
C
S
1

O
B
C
S
2

O
B
C
S
3

8
k
b

E
P
R
O
M

2
7
6
4

O
d
d

8
k
b

R
A
M

6
2
6
4

E
v
e
n

8
k
b

E
P
R
O
M

2
7
6
4

E
v
e
n

8
2
7
9

8
2
5
5

G
2
A

B
H
E

M/IO

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

A
1
7

M
/I
O

C G
2
B

G
1

O
B
C
S
4

O
B
C
S
5

O
B
C
S
6

O
B
C
S
7

Y
0

A B

3-to-8Decoder

A
1
8

A
1
9

Y
1

Y
2

Y
3

E
B
C
S
0

E
B
C
S
1

E
B
C
S
2

E
B
C
S
3

G
2
A

Y
4

Y
5

Y
6

Y
7

A
1
7

M
/I
O

C G
2
B

G
1

E
B
C
S
4

E
B
C
S
5

E
B
C
S
6

E
B
C
S
7

A
0

A B

3-to-8Decoder

A
6

A
7

IO
C
S
0

IO
C
S
2

IO
C
S
3

G
2
A

A
5

M
/I
O

C G
2
B

G
1

IO
C
S
4

IO
C
S
5

IO
C
S
6

IO
C
S
7

A
0 +
5
-V

IO
C
S

A12 ,A

A-A012

IO-IO 07

OE

WE

A-A012

O-O07

OE

A-A012

IO-IO 07

OE

WE

A-A012

O-O07

OE

A0

A,A 01

D-D07

RD

WR

D-D07

RD

WR

Y
0

Y
1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

¯
¯

¯
¯

¯
¯

¯
¯
¯
¯

¯
¯

¯
¯
¯
¯

¯
¯
¯
¯

® ®

® ® ® ® ® ® ® ® ® ® ® ®

® ® ® ® ® ®

F
ig
.
E
2
:
M
e
m
o
ry
a
n
d
IO

d
e
v
ic
e
in
te
rf
a
c
e
d
ia
g
ra
m
fo
r
D
e
s
ig
n
E
x
a
m
p
le
-2
.

¯
¯
¯
¯

®

®
®

 4. 31

R

A
M

 A
d

d
re

ss
 R

an
g

e

 0

0
0

0
0

H

to

0
3

F
F

F
H

TABLE - E2 : ADDRESS ALLOCATION TABLE FOR DESIGN EXAMPLE-2

 Hexa

Device

Address

8 kb RAM

Memory

Even

8 kb RAM

Memory

Odd

8 kb

EPROM

Memory

Even

8 kb

EPROM

Memory

A
19

A
18

A
17

A
16

 A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7
A

6
A

5
A

4
A

3
A

2
A

1
 A

0

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 4
.
.
.

0 0 0 x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 3 F F E

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3

0 0 0 x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 5
.
.
.

0 0 0 x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 3 F F F

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 F C 0 0 0

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 0 F C 0 0 2

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 0 F C 0 0 4
.
.
.

1 1 1 x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 0 F F F F E

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 0 0 1 F C 0 0 1

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 0 1 1 F C 0 0 3

1 1 1 x x x 0 0 0 0 0 0 0 0 0 0 0 1 0 1 F C 0 0 5
.
.
.

1 1 1 x x x 1 1 1 1 1 1 1 1 1 1 1 1 1 1 F F F F E

Binary Address

Decoder

input

Unused
address

lines

Input address lines to memory IC

E
P

R
O

M
 A

d
d

re
ss

 R
an

g
e

F
C

0
0
0

H
 t

o
 F

F
F

F
F

H

8279

Data

Register

Control

Register

A
7

A
6

A
5

A
4

A
3

A
2

A
1

 A
0

0 0 0 x x x 0 0 0 0

0 0 0 x x x 1 0 0 2

0 0 1 x x 0 0 0 2 0

0 0 1 x x 0 1 0 2 2

0 0 1 x x 1 0 0 2 4

0 0 1 x x 1 1 0 2 6

Binary Address

Decoder

input

Input address

lines to

IO devices

Hexa

Address
Device

8255

Port-A

Port-B

Port-C

Control

Register

8086 Microprocessor and Its Appications

4. 32 Chapter 4 Memory and IO Interfacing

4.11 SHOR T QUESTIONS AND ANSWERS

4.1 What is memory ?

Memory is a storage device in a microprocessor-based system and its primary function is to store

programs and data.

4.2 Why are semiconductor memories used as the main memory in a microprocessor system ?

The semiconductor memories alone have processor compatible access time for read and write

operations. Therefore, semiconductor memories are used as main memories.

4.3 What are the different types of semiconductor memory?

The different types of semiconductor memory are RAM, PROM, EPROM, static RAM, DRAM

and NVRAM.

4.4 List the features of semiconductor memories ?

 1. The semiconductor memories are random access memories.

 2. In semiconductor memories, a read operation by the processor will not destroy the stored information.

 3. The read and write time of semiconductor memory are compatible with the microprocessor.

4.5 What is meant by volatile and nonvolatile ?

If the information stored in the memory is lost when the power supply is switched OFF, then the

memory is called volatile.

If the content of memory is preserved even after switching OFF the power supply, then the memory

is called nonvolatile.

4.6 List the volatile and nonvolatile semiconductor memories.

The volatile semiconductor memories are static RAM and DRAM. The nonvolatile semiconductor

memories are ROM, PROM, EPROM and NVRAM.

4.7 What are the characteristics of ROM memory ?

1. It is nonvolatile memory.

2. The contents of ROM memory can be read by the processor and it cannot write into it.

3. The ROM memory has the feature of random access.

4. The memory cell has a MOS transistor either with open gate or closed gate.

4.8 How are the ROM memories classified?

The ROM memories can be classified into the following three categories based on the method of

programming:

 1. Custom programmed or Mask programmed ROM 3. Reprogrammable or Erasable - Programmable ROM.

 2. Programmable or Field programmable ROM

4.9 List the characteristics of EPROM.

 1. EPROM is nonvolatile.

 2. It has random access feature.

 3. The contents of EPROM can be erased by passing UV light and then the device can be programmed.

 4. The EPROM is read only memory and for writing into EPROM, a separate hardware set-up is required.

4.10 Write a short note on the memory cell of EPROM.

The memory cell of EPROM contains a MOS transistor with an isolated gate. The isolated gate is

located between the normal control gate and the source/drain region of transistor. The information

is stored as a charge or no charge in the floating gate.

 4. 33

4.11 What is NVRAM?

The nonvolatile read/write memories are called NVRAM. The various types of NVRAMs are

flash memory, EEPROM and Shadow RAM.

4.12 List the features of static RAM?

 1. The static RAMs are read/write memories.

 2. They are volatile and have random access feature.

 3. The memory cell is a flip-flop constructed using 6 to 8 MOS transistors.

4.13 What is DRAM ?

DRAMs are read/write semiconductor memories in which the information is stored in the form of

electric charge on the gate to substrate capacitance of a MOS transistor.

4.14 List the characteristics of DRAM?

1. The DRAMs are volatile and have random access feature.

2. They are read/write memories.

3. The contents of DRAM have to be refreshed periodically using refreshing circuits.

4. The memory cell of DRAM will have 3 to 4 MOS transistors.

4.15 Compare Static RAM and DRAM?

Static RAM DRAM

1. Information is stored as voltage level in a 1. Information is stored as a charge in the gate to

 flip-flop. substrate capacitance.

2. Six to eight transistors are required to form 2. Three to four transistors are required to form one

 one memory cell. memory cell.

3. Packing density is low. 3. Packing density is high.

4. The contents of memory need not be refreshed. 4. The contents of memory have to be refreshed periodically.

4.16 What is physical memory space?

Memory locations that are directly addressed by the microprocessor are called physical memory

space.

4.17 What is memory word size?

The size of data that can be stored in a memory location is called memory word size.

4.18 What is meant by memory mapping?

Memory mapping is the process of interfacing memories to a microprocessor and allocating

addresses to each memory locations.

4.19 What is memory access time?

Memory access time is the time taken by the processor to read or write a memory location. During

read operation, it is the time between a valid address on the bus and end of read control signal.

During write operation, it is the time between, a valid address on the bus and end of write control

signal.

8086 Microprocessor and Its Appications

4. 34 Chapter 4 Memory and IO Interfacing

4.20 What are the factors to be considered while selecting a semiconductor memory for a

microprocessor system ?

The following are the factors to be considered while selecting a semiconductor memory IC:

� Capacity and organization (Memory word size).

� Timings of various signals.

� Power consumption and bus loading (Current levels).

� Physical dimensions and packaging.

� Cost, reliability and availability.

4.21 What is bus contention?

If two devices drive the data bus simultaneously, then it is called bus contention. It may lead to

the following undesirable events:

 1. Damaging one or both the IC chip.

 2. The high current may cause a voltage spike in the supply system leading to data loss.

4.22 Why is EPROM mapped at the end of memory space in 8086 ?

The mapping of EPROM at the end of memory space will facilitate automatic execution of monitor

program upon reset. Whenever the processor is reset, the IP is cleared and CS is initialized with

FFFF
H
, and so after a reset the processor will start executing the instructions from FFFF0

H
 after

a reset. The system designer has to permanently store the monitor/boot program starting from

this address, which is possible only if EPROM is mapped at the end of memory space.

4.23 What is chip select signal and how is it generated?

Chip select signal is the control signal that has to be asserted TRUE to bring an IC from high

impedance state to normal state. Generally, chip select signals are generated in a system by

decoding the unused address lines with the help of decoders.

4.24 Write the typical control signals involved in EPROM interfacing ?

The control signals needed for EPROM are chip select and output enable.

4.25 Write the typical control signals involved in RAM interfacing ?

The control signals needed for RAM interfacing are chip enable, output enable and write enable.

4.26 What is the relation between memory capacity and address and data pins of memory IC?

If a memory IC has "m" data pins and "n" address pins, then the memory IC will have a capacity of

2n × m bits. When m = 8, the memory capacity is 2n bytes.

4.27 How is memory space organised in 8086?

In 8086, the one mega byte (1 Mb) of addressable memory space is divided into two banks: Even

(or lower) memory bank and Odd (or upper) memory bank. Each bank will have an addressable

space of 512 kb.

4.28 How are the data lines connected to memory banks in 8086?

In 8086-based system, the lower eight lines of data bus, D
0
 - D

7
 are connected to even bank

memory ICs and the upper eight lines of data bus, D
8
-D

15
 are connected to odd bank memory ICs.

 4. 35

4.29 What are the signals involved in memory bank selection?

In 8086-based system, the even bank is selected by the address line A
0
 and the odd bank is

selected by the control signal BHE.

4.30 What is a programmed IO ?

If the data transfer between an IO device and the processor is accomplished through an IO port

and controlled by a program then the IO device is called programmed IO.

4.31 What is an interrupt IO?

If the IO device initiate the data transfer through interrupt, then the IO is called interrupt driven IO.

4.32 What is DMA?

The direct data transfer between IO device and memory is called DMA.

4.33 What is the need for Port?

The IO devices are generally slow devices and their timing characteristics do not match with

processor timings. Hence, the IO devices are connected to system bus through the ports.

4.34 What is a port?

The port is a buffered IC which is used to hold the data transmitted from the microprocessor to

IO device or vice versa.

4.35 Give some examples of port devices used in an 8086 microprocessor-based system ?

The various INTEL IO port devices used in an 8086 microprocessor-based system are 8212, 8155,

8156, 8255, 8355 and 8755.

4.36 Write a short note on INTEL 8255?

The INTEL 8255 is a IO port device consisting of 3 numbers of 8-bit parallel IO ports. The ports can

be programmed to function either as an input port or as an output port in different operating modes.

It requires 4 internal addresses and has one logic low chip select pin.

4.37 What are the different methods of interfacing IO devices to an 8086-based system.

There are two methods of interfacing IO devices to an 8086 system. They are memory mapping of

IO device and standard IO mapping.

4.38 Draw a simple circuit to decode three control signal RD, WR and M/IO and to produce

separate read/write control signals for memory and IO devices.

MEMW

RD

IO/M

WR

MEMR

IOR

IOW

Fig. Q4.38 : Circuit to generate separate read and write signals for
memory and IO devices.

8086 Microprocessor and Its Appications

4. 36 Chapter 4 Memory and IO Interfacing

4.39 Compare memory-mapped IO and standard IO-mapped IO.

4.40 What is the drawback in memory-mapped IO?

When IO devices are memory-mapped, some of the addresses are allotted to IO devices and so

the full address space cannot be used for addressing memory (i.e., physical memory address

space will be reduced). Hence, memory mapping is useful only for small systems, where the

memory requirement is less.

IO mapping of IO device

1. 8-bit or 16-bit addresses are provided for IO devices.

2. Only IN and OUT instructions can be used for data transfer

between IO device and the processor.

3. In IO mapped ports, the data transfer can take place only

between the accumulator and ports.

4. When IO mapping is used for IO devices, then the full

memory address space can be used for addressing memory.

Hence, it is suitable for systems which require large memory

capacity.

5. For accessing the IO mapped devices, the processor

executes IO read or write cycle. During this cycle

M/IO is asserted low.

 Memory mapping of IO device

 1. 20-bit addresses are provided for IO devices.

 2. The IO ports or peripherals can be treated like

memory locations and so all instructions related

to memory can be used for data transfer between

IO device and the processor.

 3. In memory mapped ports, the data can be moved

from any register to ports and vice versa.

 4. When memory mapping is used for IO devices,

the full memory address space cannot be used

for addressing memory. Hence, memory mapping

is useful only for small systems, where the memory

requirement is less.

 5. For accessing the memory mapped devices, the

processor executes memory read or write cycle.

During this cycle M/IO is asserted high.

 CHAPTER 5

INTERRUPTS

5.1 INTERRUPT AND ITS NEED

The microprocessors allow normal program execution to be interrupted in order to carry

out a specific task/work. The processor can be interrupted in the following ways :

1. By an external signal generated by a peripheral.

2. By an internal signal generated by a special instruction in the program.

3. By an internal signal generated due to an exceptional condition which occurs while executing an instruction.

(For example, in 8086 processor, divide by zero is an exceptional condition which initiates type-0 interrupt

and such an interrupt is also called exception.)

In general, the process of interrupting the normal program execution to carry out a specific

task/work is referred to as interrupt.

The interrupt is initiated by a signal generated by an external device or by a signal generated

internal to the processor. When a microprocessor receives an interrupt signal it stops executing

current normal program, saves the status (or content) of various registers (IP, CS and flag registers

in case of 8086) in stack and then the processor executes a subroutine/procedure in order to

perform the specific task/work requested by the interrupt. The subroutine/procedure that is executed

in response to an interrupt is also called Interrupt Service Subroutine (ISS). At the end of ISR, the

stored status of registers in stack are restored to respective registers, and the processor resumes

the normal program execution from the point (instruction) where it was interrupted.

The external interrupts are used to implement the interrupt driven data transfer scheme. The

interrupts generated by special instructions are called software interrupts and they are used to

implement system services/calls (or monitor services/calls). The system /monitor services are

procedures developed by the system designer for various operations and stored in memory. The

user can call these services through software interrupts. The interrupts generated by exceptional

conditions are used to implement error conditions in the system.

Interrupt Driven Data Transfer Scheme

The interrupts are useful for efficient data transfer between the processor and the peripheral.

When a peripheral is ready for data transfer, it interrupts the processor by sending an appropriate

signal. Upon receiving an interrupt signal, the processor suspends the current program execution,

saves the status in stack and executes an ISS to perform the data transfer between the peripheral

and processor. At the end of ISS the processor status is restored from stack and processor resumes

its normal program execution. This type of data transfer scheme is called interrupt driven data

transfer scheme.

5. 2 Chapter 5 Interrupts

The data transfer between the processor and peripheral devices can be implemented either

by the polling technique or by the interrupt method. In the polling technique, the processor has to

periodically poll or check the status/readiness of the device and can perform data transfer only

when the device is ready. In polling technique, the processor time is wasted, because the processor

has to suspend its work and check the status of the device in predefined intervals.

Alternatively, if the device interrupts the processor to initiate a data transfer whenever it is

ready, then the processor time is effectively utilized because the processor need not suspend its

work and check the status of the device in predefined intervals.

For example, consider the data transfer from a keyboard to the processor. Normally, a

keyboard has to be checked by the processor once in every 10 milliseconds for a key press.

Therefore, once in every 10 milliseconds the processor has to suspend its work and then check the

keyboard for a valid key code. Alternatively, the keyboard can interrupt the processor, whenever a

key is pressed and a valid key code is generated. In this way the processor need not waste its time

to check the keyboard once in every 10 milliseconds.

5.2 CLASSIFICATION OF INTERRUPTS

In general, interrupts can be classified in the following three ways :

1. Hardware and software interrupts.

2. Vectored and non-vectored interrupts.

3. Maskable and non-maskable interrupts.

The interrupts initiated by external hardware by sending an appropriate signal to the interrupt

pin of the processor is called hardware interrupt. The 8086 processor has two interrupt pins: INTR

and NMI. The interrupts initiated by applying appropriate signal to these pins are called hardware

interrupts of 8086.

The software interrupts are program instructions. These instructions are inserted at desired

locations in a program. While running a program, if a software interrupt instruction is encountered

then the processor initiates an interrupt. The 8086 processor has 256 types of software interrupts.

The software interrupt instruction is INT n, where n is the type number in the range 255
10

.

When an interrupt signal is accepted by the processor, if the program control automatically

branches to a specific address (called vector address), then the interrupt is called vectored interrupt.

The automatic branching to a vector address is predefined by the manufacturer of processors. [In

these vector addresses the Interrupt Service Subroutines(ISS) are stored.] In nonvectored interrupts

the interrupting device should supply the address of the ISS to be executed in response to the

interrupt. All the 8086 interrupts are vectored interrupts. The vector address for an 8086 interrupt

is obtained from a vector table implemented in the first 1kb memory space.

The processors have the facility for accepting or rejecting hardware interrupts. Programming

the processor to reject an interrupt is referred to as masking or disabling and programming the

processor to accept an interrupt is referred to as unmasking or enabling. In 8086, the Interrupt

Flag(IF) can be set to one to unmask or enable all hardware interrupts and IF is cleared to zero to

mask or disable all hardware interrupts except NMI.

 5. 3

The interrupts whose request can be either accepted or rejected by the processor are called

maskable interrupts. The interrupts whose request has to be definitely accepted (or cannot be

rejected) by the processor are called nonmaskable interrupts. Whenever a request is made by

nonmaskable interrupt, the processor has to definitely accept that request and service that interrupt

by suspending its current program and executing an ISS. In an 8086 processor, all the hardware

interrupts initiated through INTR pin are maskable by clearing Interrupt Flag(IF). The interrupt

initiated through NMI pin and all software interrupts are nonmaskable.

5.3 SOURCES OF INTERRUPTS IN 8086

An interrupt in 8086 can come from one of the following three sources:

1. One source is from an external signal applied to NMI or INTR input pin of the processor. The interrupts initiated by

applying appropriate signals to these input pins are called hardware interrupts.

2. A second source of an interrupt is execution of the interrupt instruction "INT n", where n is the type number. The

interrupts initiated by "INT n" instructions are called software interrupts.

3. The third source of an interrupt is from some condition produced in the 8086 by the execution of an instruction.

An example of this type of interrupt is divide by zero interrupt. Program execution will be automatically interrupted

if you attempt to divide an operand by zero. Such conditional interrupts are also known as exceptions.

5.4 INTERRUPTS OF 8086

The 8086 microprocessor has 256 types of interrupts which come from any one of the

three sources mentioned above. INTEL has assigned a type number to each interrupt. The type

numbers are in the range of 0 to 255
10

. The 8086 processor has dual facility of initiating these 256

interrupts. The interrupts can be initiated either by executing "INT n" instruction where n is the

type number or the interrupt can be initiated by sending an appropriate signal to INTR input pin of

the processor.

For the interrupts initiated by software instruction "INT n", the type number is specified by

the instruction itself. When the interrupt is initiated through INTR pin, then the processor runs an

interrupt acknowledge cycle to get the type number (i.e., the interrupting device should supply the

type number through D
0
-D

7
 lines when the processor requests for the same through an interrupt

acknowledge cycle).

In these 256 interrupts, INTEL has defined the functions of the first five interrupts, i.e., the

interrupts type-0 to type-4 are dedicated for specific functions by INTEL and they are called

INTEL predefined interrupts. The next 27 interrupts, i.e., from type-5 to type-31 are reserved by

INTEL for use in future microprocessors or for system calls/services. The upper 224 interrupts,

i.e., from type-32 to type-255 are available for the user as hardware or software interrupts.

5.4.1 INTEL Predefined (or Dedicated) Interrupts

The INTEL predefined interrupts are :

1. Division by zero (Type-0 interrupt).

2. Single step (Type-1 interrupt).

3. Nonmaskable interrupt, NMI (Type-2 interrupt).

4. Breakpoint interrupt (Type-3 interrupt).

5. Interrupt on overflow (Type-4 interrupt).

8086 Microprocessor and Its Appications

5. 4 Chapter 5 Interrupts

The predefined interrupts are only defined by INTEL and INTEL has not provided any subroutine/

procedure to be executed for these interrupts. To use the predefined interrupts the user/system

designer has to write Interrupt Service Subroutine (ISS) for each interrupt and store them in memory.

The corresponding address of the ISS should be stored in interrupt vector table. If a predefined

interrupt is not used in a system then the user may assign some other functions to these interrupts.

Divide by zero interrupt (type-0 interrupt)

Type-0 interrupt is implemented by INTEL as a part of the execution of the divide instruction.

The 8086 will automatically do a type-0 interrupt if the result of a division operation is too large to

fit in the destination register and this interrupt is nonmaskable. Since the type-0 interrupt cannot be

disabled in any way, we have to account for it in the programs using divide instructions. To

account for this, we have to write an ISS which takes the desired action or indicate error condition

when an invalid division occurs. The ISS should be stored in memory and the address of ISS is

stored in interrupt vector table.

Single step interrupt (type-1 interrupt)

When the Trap/Trace Flag (TF) is set to one, the 8086 processor will automatically generate

a type-1 interrupt after execution of each instruction. The user can write an ISS for type-1 interrupt

to halt the processor temporarily and return the control to the user so that after execution of each

instruction, the processor status (content of register/memory) can be verified. If they are correct

then we can proceed to execute the next instruction. Execution of one instruction by one instruction

is known as single step and this feature will be useful to debug a program.

Nonmaskable interrupt, NMI (type-2 interrupt)

The 8086 processor will automatically generate a type-2 interrupt when it receives a

low-to-high transition on its NMI input pin. This interrupt cannot be disabled or masked. Usually, the

type-2 interrupt is used to save program data or processor status in case of system ac power failure.

The ac power failure is detected by an external hardware and whenever the ac power fails,

the external hardware will send an interrupt signal to the NMI input pin of the processor. The

rectifier which converts ac to dc usually has a large filter capacitor and so it can retain the dc

power for atleast 50 milliseconds, after the ac power supply is interrupted. This 50 milliseconds

time will be sufficient to run an ISS by type-2 interrupt to save program data or processor status to

NVRAM or RAM with battery back-up power supply.

Breakpoint interrupt (type-3 interrupt)

Type-3 interrupt is used to implement a breakpoint function, which executes a program

partly or up to the desired point and then return the control to the user.

The breakpoint interrupt is initiated by the execution of "INT 3" instructions. To implement

the breakpoint function the system designer has to write an ISS for type-3, which takes care of

displaying a message and return the control to the user whenever type-3 interrupt is initiated.

This interrupt will be useful to debug a program by executing the program part by part. The

user can insert "INT 3" instruction at the desired location and execute the program. Whenever

 5. 5

"INT 3" instruction is encountered, the processor halts the program execution and return the

control to the user. Now the user can verify the processor status (contents of register/memory). If

they are correct then the user can proceed to execute next part of the program.

Overflow interrupt (type-4 interrupt)

In the 8086 processor, the Overflow Flag (OF) will be set if the signed arithmetic operation

generates a result whose size is larger than the size of the destination register/memory. During

such conditions, the type-4 interrupt can be used to indicate an error condition. The type-4

interrupt is initiated by "INTO" instruction.

One way of detecting the overflow error is to put the INTO instruction immediately after

the arithmetic instruction in the program. After arithmetic operation if the overflow flag is not set

then the processor will consider "INTO" instruction as NOP (No operation). However, if the

overflow flag is set then the 8086 will generate a type-4 interrrupt, which executes an ISS to

indicate overflow condition.

5.4.2 Software Interrupts of 8086

The "INT n" instructions are called software interrupts. The "INT n" instruction will initiate

type-n interrupt, and the value of n is in the range of 0 to 255
10

. Therefore, all the 256 type interrupts

including the INTEL predefined and reserved interrupts can be initiated through "INT n" instruction.

The software interrupts are nonmaskable and has higher priority than hardware interrupts.

5.4.3 Hardware Interrupts of 8086

The interrupts initiated by applying appropriate signals to INTR and NMI pins of 8086 are

called hardware interrupts. All the 256 types of interrupts including INTEL predefined and reserved

interrupts can be initiated by applying a high signal to INTR pin of 8086. When a high signal is

applied to the INTR pin and the hardware interrupt is enabled/unmasked, then the processor runs

an interrupt acknowledge cycle to get the type number of the interrupt from the device which

sends the interrupt signal. The interrupting device can send a type number in the range of 0 to

255
10

. Therefore, all the 256 types of interrupts can be initiated through INTR pin.

The hardware interrupts initiated through INTR are maskable by clearing the Interrupt Flag,

(IF), i.e., the hardware interrupts are masked/disabled when IF = 0 and they are unmasked/enabled

when IF = 1. The interrupts initiated through INTR has lower priority than software interrupts.

The hardware interrupt NMI is nonmaskable and has higher priority than interrupts initiated

through INTR. The NMI is initiated by a rising edge (or low-to-high transition) of the signal

applied to NMI pin of the processor. The processor will execute type-2 interrupt in response to

interrupt initiated through NMI pin and this type number is fixed by INTEL. The external device,

interrupting the processor through NMI pin, need not supply the type number for this interrupt.

5.4.4 Priorities of Interrupts of 8086

The priorities of the interrupts of 8086 are shown in Table-5.1. The 8086 processor checks

for internal interrupts before it checks for any hardware interrupt. Therefore, software interrupts has

higher priority than hardware interrupts. But the processor can accept the NMI interrupt request and

execute a procedure for it even in between the execution of procedure for higher priority interrupt.

8086 Microprocessor and Its Appications

5. 6 Chapter 5 Interrupts

For example, if the NMI is initiated by an external

hardware while the processor internally generates the

divide error interrupt, then the processor goes to start

of divide error procedure and then suspends it to service

NMI. Only after servicing the NMI, the processor will

complete the divide error procedure.

5.5 IMPLEMENTING INTERRUPT SCHEME IN 8086

The 8086 processor has 256 types of interrupts and these interrupts can be implemented

either as hardware or software interrupts. The number of interrupts to be implemented and used

in a system depends on the system designer and also on the application for which the system is

designed. The choice of implementing the INTEL predefined interrupts also depends on the system

designer.

Except some of the INTEL predefined interrupts, for all other interrupts the system designer

has to decide on the method of initiating the interrupts selected to implement on a system. The

interrupts can be initiated either by external hardware or internally by software instruction "INT n".

In a system some interrupt types are chosen to be initiated by the hardware, some other interrupt

types are chosen to be initiated by software and some of the interrupts are left unused. The unused

interrupts can be implemented by the user for user-defined functions.

5.5.1 Interrupt Vector Table

For each and every interrupt decided to be implemented in the system, the system designer

has to write an Interrupt Service Subroutine (ISS) and store them in memory. Then the system

designer has to create an interrupt vector table in the first 1kb memory space (i.e., in the memory

space with address range 00000
H
 to 003FF

H
) of the 8086 system. In this vector table, the 16-bit

offset address and 16-bit segment base address of each ISS are stored in four consecutive memory

locations. The address stored in this table are called vector addresses. For storing the vector addresses

of all the 256 interrupt types, the vector table requires 1 kb (256 × 4 = 1 kb) memory space.

The memory address for storing the vector address for an interrupt is given by multiplying

the type number by four and sign extending it to 20-bit. The vector address for an interrupt is

stored in four consecutive memory location starting from this 20-bit address. The first two locations

are used to store the low byte and high byte of offset address, and next two locations are used to

store low byte and high byte of segment base address of ISS to be executed for an interrupt. The

organization of interrupt vector table of 8086-based system is shown in Fig. 5.1.

5.5.2 Servicing an Interrupt By 8086

The 8086 processor checks for interrupt request at the end of each instruction cycle. If an

interrupt request is deducted, then the 8086 processor responds to the interrupt by performing the

following operations:

1. The SP is decremented by two and the content of flag register is pushed to stack memory.

2. The interrupt system is disabled by clearing Interrupt Flag (IF).

3. The single-step trap flag is disabled by clearing Trap Flag (TF).

TABLE - 5.1 : INTERRUPT PRIORITY

 Interrupt Priority

Divide error, INT n, INTO Highest

NMI

INTR

SINGLE STEP Lowest

↓

 5. 7

Memory space for storing
vector addresses for the interrupts
available to user.
(224 interrupts)

Memory space for storing
vector addresses for INTEL
reserved interrupts .
(27 interrupts)

Memory space for storing
vector addresses for INTEL
defined interrupts.
(5 interrupts)

Vector address
for type-32 (or INT-32)

Vector address
for type-31(or INT-31)

Vector address
for type-255 (or INT-255)

Vector address
for type-5 (or INT-5)

Vector address
for type-4 (or INT-4)
(Interrupt on overflow)

Vector address
for type-3 (or INT-3)
(Breakpoint interrupt)

Vector address
for type-2 (or INT-2)
(Nonmaskable interrupt)

Vector address
for type-1 (or INT-1)
(Single step interrupt)

Vector address
for type-0 (or INT-0)
(Interrupt on division by zero)

Hexa Address Memory Locations

003FF

00000

00003
00004

00008

0000B

0000F

00010

00007

0000C

00014

00013

00018

00017

0007C

0007B

0007F
00080

00084
00083

003FB
003FC

high byte base address

low byte base address
high byte offset address
low byte offset address

Fig. 5.1 : Organization of interrupt vector table in 8086.

® ®

8086 Microprocessor and Its Appications

5. 8 Chapter 5 Interrupts

4. The stack pointer is decremented by two and the content of CS-register is pushed to stack memory.

5. Again, the stack pointer is decremented by two and the content of IP is pushed to stack memory.

6. In case of hardware interrupt through INTR, the processor runs an interrupt acknowledge cycle to get the interrupt type

number. For software interrupts, the type number is specified in the instruction itself. For NMI and exceptions the type

number is defined by INTEL.

7. The processor generates a 20-bit memory address by multiplying the type number by four and sign extending it to

20-bit. This memory address is the address of the interrupt vector table, where the vector address of the Interrupt

Service Subroutine (ISS) is stored by the user/system designer.

8. The first word pointed by vector table address is loaded in IP and the next word is loaded in CS-register. Now the content

of the IP is the offset address and the content of the CS-register is the segment base address of the ISS to be executed.

9. The 20-bit physical memory address of ISS is calculated by multiplying the content of CS-register by 16
10

 and adding it

to the content of IP.

10. The processor executes the ISS to service the interrupt.

11. The ISS will be terminated by the IRET instruction. When this instruction is executed, the top of stack is poped to IP,

CS and flag register one word by one word. After every pop operation, the SP is incremented by two.

12. Thus, at the end of ISS, the previous status of the processor is restored and so the processor will resume the execution

of normal program from the instruction where it was suspended.

5.6 INTR AND ITS EXPANSION

The hardware interrupt INTR can be used by any external device to interrupt the processor.

When an interrupt request is made through the INTR and the INTR interrupt is enabled/unmasked

then the processor will run an interrupt acknowledge cycle. During this cycle, the processor asserts

INTA signal twice. The first INTA signal is to inform the interrupting device about the acceptance of

the interrupt. The second time, INTA is asserted to request the interrupting device to supply the type

number and to read the type number from the low order data bus. Therefore, the processor expects

a type number on the low order data bus whenever it is interrupted through the INTR input pin.

A scheme for loading the type number on low order data bus is shown in Fig. 5.2. In this scheme

the desired type number is applied to the input of the tristate octal buffer through switch settings and the

buffer is enabled by the INTA signal. The output of the buffer is connected to low order data bus.

Hence, whenever the buffer is enabled by INTA signal, the type number available on its input pins are

transferred to its output lines. Thus, the type number is loaded on the low order data bus.

In the schematic shown in Fig. 5.2 the switches can be manually set to create a binary type

number in the range 0000 0000
2
 to 1111 1111

2
 corresponding to 0

10
 to 255

10
. When a switch is open,

the voltage applied to the corresponding input pin of tristate buffer is +5-V and so it is logic-1.

When a switch is closed, the voltage applied to the corresponding input pin of tristate buffer is zero

volt and so it is logic-0. Thus, by closing/opening the switches an 8-bit binary number can be

created which is the desired type number.

The scheme shown in Fig. 5.2 can be used to implement only one interrupt and so only one

external device can interrupt the processor. But the INTR interrupt can be used to initiate all the

256 type interrupts. To initiate multiple interrupts through INTR, there should be some provision

to supply different type numbers for various interrupts. Such a scheme is possible with

programmable interrupt controller INTEL 8259.

 5. 9

The programmable interrupt controllers can be interfaced to the 8086 processor to handle

multiple interrupt requests and allow one by one to the processor INTR input pin. One interrupt

controller can accept up to eight interrupt requests and allow one by one to the processor. Multiple

interrupt controllers can be interfaced to the processor in cascaded mode, to handle up to 64

interrupt requests. In the cascaded mode, one master interrupt controller and a maximum of eight

slave interrupt controllers can be interfaced to the processor to handle 64 interrupt requests and

allow one by one to the processor INTR input pin.

A detailed discussion on the programmable interrupt controller, 8259 and its interfacing

with 8086 processor are presented in the following sections.

5.7 PROGRAMMABLE INTERRUPT CONTROLLER - INTEL 8259

The 8259 is a programmable interrupt controller. It is used to expand the interrupts of the

8085 or 8086 processor. One 8259 can accept eight interrupt requests and allow one by one to the

processor INTR pin. The interrupt controller can be used in cascaded mode in a system to expand

the interrupts up to 64.

Features of 8259

1. It is programmed to work with either 8085 or 8086 processor.

2. It manages 8 interrupts according to the instructions written into its control registers.

3. In an 8086 processor-based system, it supplies the type number of the interrupt and the type number is programmable.

In an 8085 processor-based system, it vectors an interrupt request anywhere in the memory map and the interrupt

vector address is programmable.

®

®

®

®

®

® ® ® ® ® ® ® ®

®

74LS244

Tristate Octal Buffer

Enable

A0 - A19

D8 - D15

D0 - D7

Buffers

and

Latches

8086

Processor

®

®

INTR

INTA

I0 I1 I2 I3 I4 I5 I6 I7
INTA

O
0
-
O

7

Closed Switch = logic - 0
Open Switch = logic -1

Fig. 5.2 : A schematic to load any type number on low order
data bus (D - D) in response to the INTA.0 7

Interrupt Signal
From Interrupting
Device

+VCC

Switches

8086 Microprocessor and Its Appications

5. 10 Chapter 5 Interrupts

4. The priorities of the interrupts are programmable. The different operating modes which decide the priorites are

automatic rotation mode, specific rotation mode and fully nested mode.

5. The interrupts can be masked or unmasked individually.

6. The 8259 is programmed to accept either level triggered interrupt signal or edge triggered interrupt signal.

7. The 8259 provides the status of the pending interrupts, masked interrupts and the interrupt being serviced.

8. The 8259s can be cascaded to accept a maximum of 64 interrupts.

5.7.1 Interfacing 8259 With 8086 Microprocessor

The 8259 is a 28-pin IC packed in DIP. The various pins of 8259 are shown in Fig. 5.3.

It requires two internal address and they are A
0
 = 0 or A

0
 = 1. It can be either memory-mapped

or IO-mapped in the system. The interfacing of 8259 to 8086 is shown in Fig. 5.4. In Fig. 5.4,

the 8259 is IO-mapped in the system. The low order data bus lines D
0
-D

7
 are connected to

D
0
-D

7
 of 8259. The address line A

1
 of the 8086 processor is connected to A

0
 of 8259 to provide

the internal address. The 8259 requires one chip select signal. The chip select signal for 8259 is

generated by using 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are used as input to decoder.

The address line A
0
 and control signal M/IO are used as logic low enables for the decoder. The IO

addresses of 8259 are shown in Table-5.2. The signals CAS
0
-CAS

2
 are used only in cascade

operation of 8259s.

The SP/EN pin can be used as input or output signal. In nonbuffered mode, it is used as input

signal and tied to logic-1 in master 8259 and logic-0 in slave 8259. In buffered mode, it is used as

output signal to disable the data buffers while the data is transferred from 8259A to the CPU.

Working of 8259 With 8086 Processor

First the 8259 should be programmed by sending Initialization Command Word (ICW) and

Operational Command Word (OCW). These command words will inform 8259 about the following:

• Type of interrupt signal (Level triggered/Edge trigerred). • Masking of interrupts.

• Type of processor (8085/8086). • Priority of interrupts.

• Call address and its interval (4 or 8). • Type of end of interrupt.

Once 8259 is programmed, it is ready for accepting an interrupt signal. When it receives an

interrupt through any one of the interrupt lines IR
0
-IR

7
, it checks for its priority and also checks

whether it is masked or not. If the previous interrupt is completed and if the current request has

highest priority and unmasked, then it is serviced.

For servicing this interrupt the 8259 will send INT signal to INTR pin of 8086. In response

it expects an acknowledge INTA from the processor. When the processor accepts the interrupt, it

sends two INTA one by one. The first INTA is send to 8259, to inform the acceptance of interrupt

and to prepare 8259 for supplying type number. The second INTA is send to 8259 to read the type

number from the 8259. Once the processor receives the type number, it starts processing the

interrupt corresponding to this type number. The 8086 processor multiplies the type number by

four and sign extends to 20-bit to generate a 20-bit vector table address. From this vector table,

the vector addresses of the interrupt type requested are read and loaded in IP and

CS-register. Then the processor executes the ISR stored in this address.

 5. 11

 Decoder Input to address Decoder
 input pin of 8259 enable

A
7

A
6

A
5

A
4

A
3

A
2

A
1

 A
0

For A
0
 of 8259 to be zero 0 0 0 x x x 0 0 00

For A
0
 of 8259 to be one 0 0 0 x x x 1 0 02

Note : Don't care "x" is considered as zero.

Binary address

 Hexa
address

TABLE - 5.2 : IO ADDRESS OF 8259

®®

®

® ®

®

®

®

®

®

®

®

®

®

®
®

®

®

®

®®
®
®

®

®

CPU Bus
Latches
and

Buffers

A0 - A7

RD

WR

A5

A6

A7

A0

+5-V

A

B

C

G2A

G2B

G1

8086

3
-t
o
-8
D
ec
o
d
er

7
4
L
S
1
3
8

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-2

IOCS-3

IOCS-4

IOCS-5

IOCS-6

IOCS-7

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

RD

WR

CS

INTEL
8259

INTR

INTA INTA

INT

D0 - D7
8

1
A1

D0 - D7
A0

Fig. 5.4 : Interfacing 8259 to 8086 microprocessor.

® ®

D0 - D15

A0 - A19

I
P
Q

C
h
ip
se
le
c
t
si
g
n
a
ls
fo
r

o
th
e
r
IO
d
e
v
ic
e
s

M/IO

®
®

®®®®

®®

®®

®®®®

®®

®®

®®

®®

® ®®

®®

®

®

®
®
®
®
®
®
®
®
®
®

CS

WR

RD

D7

D6

D5

D4

D3

D2

D1

D0

CAS0

CAS1

GND

V (+5-V)CC

A0

INTA

IR7

IR6

IR5

IR4

IR3

IR2

IR1

IR0

INT

SP/EN

CAS2

D0 - D7

8

RD

WR

CS

A0

CAS0 - CAS2

3

SP/EN GND

VCC

INTA

INT

8

IR0 - IR7

INTEL
8259

INTEL
8259

Fig. 5.3 : Pin details of 8259.

 Pins Description

D
0
- D

7
Bidirectional

datalines

RD Read control

WR Write control

A
0

Internal address

CS Chip select

CAS
0
-CAS

2
Cascade lines

SP/EN Slave program

/Enable buffer

INT Interrupt output

INTA Interrupt

acknowledge

input

IR
0
-IR

7
Interrupt request

inputs

8086 Microprocessor and Its Appications

5. 12 Chapter 5 Interrupts

5.7.2 Functional Block Diagram of 8259

The functional block diagram of 8259 is shown in Fig. 5.5 and it shows eight functional

blocks. They are Control logic, Read/Write logic, Data bus buffer, Interrupt Request Register(IRR),

In-Service Register(ISR), Interrupt Mask Register(IMR), Priority Resolver(PR), and Cascade

buffer.

The data bus and its buffer are used for the following activities :

1. The processor sends control word to data bus buffer through D
0
- D

7
.

2. The processor reads status word from data bus buffer through D
0
- D

7
.

3. From the data bus buffer, the 8259 sends type number (in case of 8086) or the call opcode and address (in case

 of 8085) through D
0
- D

7
 to the processor.

The processor uses the RD, WR and A
0
 to read or write 8259. The 8259 is selected by CS.

The IRR has eight input lines (IR
0
-IR

7
) for interrupts. When these lines go high, the requests are

stored in IRR. It registers a request only if the interrupt is unmasked. Normally, IR
0
 has highest

priority and IR
7
 has the lowest priority. The priorities of the interrupt request input are also

programmable.

The interrupt mask register stores the masking bits of the interrupt lines to be masked.

The relevant information is send by the processor through OCW1. The in-service register keeps

a track of which interrupt input is currently being serviced. For each input that is currently

being serviced, the corresponding bit will be set in the in-service register. The priority resolver

examines the interrupt request, mask and in-service registers and determines whether INT

signal should be sent to the processor or not.

Data
Bus

Buffer
Control Logic

®

IR0

IR1

IR2

IR3

IR4

IR5

IR6

IR7

®
®
®
®
®
®
®

Read/
Write
Logic

®

®
®
®

®

Cascade
Buffer/

Comparator

®

®
®
®

®

®
®
®

®

In
te
rn
a
l
B
u
s

Interrupt Mask Register
(IMR)

In-Service
Register

Priority
Resolver

(ISR) (PR) (IRR)

Interrupt
Request
Register

INTINTA

D0 - D7

A0

RD

WR

CS

CAS0

CAS1

CAS2

SP/EN
Fig. 5.5 : Functional block diagram of an 8259.

®®

® ®

 5. 13

C
P
U

B
u
s

®

®

®

®

8
0
8
6

IN
T

R

IN
T
A

R
D

W
R

L
a
tc
h
es

a
n
d

B
u
ff
er

F
ig
.
5
.6
:
E
x
a
m
p
le
o
f
c
a
s
c
a
d
e
c
o
n
n
e
c
ti
o
n
o
f
p
ro
g
ra
m
m
a
b
le
in
te
rr
u
p
t
c
o
n
tr
o
lle
rs
-8
2
5
9
.

®® ®
®

® ® ® ® ® ® ® ®IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

8 D0-D7

A0

8
2
5
9

M
a
st
er

C
S

R
D

W
R Y

0

V
C

C

(+
5
-V

)

® ® ® ®
S
P
/E

N

CAS0

CAS1

CAS2
®® ®
®

® ® ® ® ® ® ® ®IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

8 D0-D7

A0

8
2
5
9

S
la
v
e
0

C
S

R
D

W
R Y

1

® ® ® ®
S
P
/E

N

CAS0

CAS1

CAS2

®® ®
®

® ®

8

D
0
-

D
7

D0-D7

A0

INTA

8
2
5
9

S
la
v
e
7 C

S

R
D

W
R

®

S
P
/E

N

CAS0

CAS1

CAS2

®
®
®

IN
T

IN
T

INTA

INTA

IR
0

IR
1

IR
2

IR
3

IR
4

IR
5

IR
6

IR
7

® ® ® ® ® ® ®

Y
2®

®

A
1

D
0
-

D
7

D
0
-

D
7

A
1

A
1

A
0
-
A

1
9

D
0
-

D
7

® ® ®

Y
0

Y
1

Y
2

U
n
u
se

d
A

d
d
re

ss
L

in
es

IO
/MA

0

A
d
d
re
ss

D
ec
o
d
er

®
®
®

®
®
®

®

IN
T

®

8086 Microprocessor and Its Appications

5. 14 Chapter 5 Interrupts

The cascade buffer/comparator is used to expand the interrupts of 8259. Figure 5.6 is an

example of 8259s in cascade connection. In this configuration, one 8259 will be directly interrupting

8086 and it is called master 8259. To each interrupt request input of master 8259 (IR
0
-IR

7
) one

slave 8259 can be connected. The 8259s interrupting the master 8259 are called slave 8259s.

Each 8259 has its own addresses so that each 8259 can be programmed independently by

sending command words and independently the status bytes can be read from it.

The cascade pins (CAS
0
, CAS

1
 and CAS

2
) from the master are connected to the corresponding

pins of the slave. For the master, these pins function as output, and for the slave device they function

as input. For the slave 8259, the SP/EN pin is tied low to let the device know that it is a slave.

5.7.3 Processing of Interrupts By 8259

To implement interrupts, the processor interrupt should be enabled and 8259 is initialized.

The 8259 is initialized by sending ICWs and OCWs. The ICWs are used to set up the proper

conditions and to specify interrupt type number. The OCWs are used to perform functions such as

masking interrupts, setting up status, read operations, etc. After the 8259 is initialized, the following

sequence of events occur when one or more interrupt request lines go high.

1. The IRR stores the request.

2. The priority resolver checks three register. The IRR is checked for interrupt request. The IMR is checked for masking bits

and the ISR for the interrupt request being served. It resolves the priority and sets the INT high when appropriate.

3. The processor acknowledges the interrupt by sending two INTA signals one by one.

4. When the first INTA is received, the appropriate priority bit in the ISR is set to indicate which interrupt level is being

served, and the corresponding bit in the IRR is reset to indicate that the request is accepted.

5. When the 8259 receives the second INTA, it places the type number on the data bus.

6. Once the processor reads the type number from 8259, the bit corresponds to the current interrupt being serviced in the

ISR should be reset to allow the next interrupt. This is done automatically if the 8259 is programmed for Automatic End

Of Interrupt (AEOI). Alternatively the processor can send command word at the end of interrupt service routine to

inform 8259 about the end of interrupt.

7. The 8086 processor multiplies the type number by four to generate a vector table address and from vector table, the

processor reads the vector address of the interrupt type and loads in IP and CS-register. Then the processor starts

executing the ISS.

5.7.4 Programming (or Initializing) 8259

The 8259 has four numbers of Initialization Command Word (ICW) and three numbers of

Operational Command Word (OCW). The command words are sent to 8259 by selecting it by

CS= 0 and A
0
 = 0 or 1. Certain command words are sent to the internal address, A

0
 = 0 and others

with A
0
 = 1.

The OCW1 should be sent to 8259 after sending the ICWs. The OCW2 can be sent at any

time (either before servicing interrupt or at the end of interrupt service routine). The order of

sending ICWs and OCWs are shown as flowchart in Fig. 5.7. The format of ICWs and OCWs are

shown in Fig. 5.8 and Fig. 5.9.

 5. 15

The ICWs are used to program the following features of 8259 :

� Call address interval in case of 8085.

� Level or Edge triggered.

� Cascade mode or single.

� Vector addresses or Type number.

� 8085 or 8086 mode.

� Auto or Normal end of interrupt.

� Special fully nested mode.

The OCWs are used to read the status of interrupts and

also to program the following features of 8259:

� Masking or unmasking of individual interrupts.

� Specific or Nonspecific end of interrupt.

� Priority modes.

A brief discussion about ICWs and OCWs are presented

in the following sections.

Initialization command words (ICWs)

The 8259A has four ICWs and they are named as ICW1,

ICW2, ICW3 and ICW4. When only one 8259 is used in the

system then we have to program 8259 by sending ICW1, ICW2

and ICW4. When a number of 8259s are used in the system

then we have to program each 8259 by sending all the four

ICWs. The format of ICW3 for master and slave 8259 are

different.

ICW1 : The ICW1 programs the basic operation of 8259. In the 8086

processor-based system the bits ADI, A
7
, A

6
 and A

5
 in the format of

ICW1 are don't cares.(These fields are applicable only for 8085 processor-based system.) For an 8086-based

system we have to set "IC4" bit to one. The single or cascade mode of operation is selected by programming the

"SNGL" bit. The LTIM bit determines whether the interrupt request input is positive edge-triggered or level-triggered.

ICW2 : In 8086, the ICW2 is used to program the interrupt type number and associate an interrupt type number to

interrupt request IR
0
 to IR

7
. The lower three bits of type number are automatically inserted by 8259 and the upper

five bits are programmable. The binary code inserted in the lower three bits for interrupt request IR
0
 to IR

7
 are 000 to 111.

For example, if the bits T
3
 to T

7
 are chosen as 10010 then the following interrupt type numbers are associated with IR

0

to IR
7
. For any interrupt request input through IR

0
-IR

7
 lines, the associated interrupt type is executed by the processor.

IR
0
 is associated with type-90

H
 interrupt (90

H
 = 1001 0000)

IR
1
 is associated with type-91

H
 interrupt (91

H
 = 1001 0001)

IR
2
 is associated with type-92

H
 interrupt (92

H
 = 1001 0010)

IR
3
is associated with type-93

H
 interrupt (93

H
 = 1001 0011)

IR
4
is associated with type-94

H
 interrupt (94

H
 = 1001 0100)

IR
5
is associated with type-95

H
 interrupt (95

H
 = 1001 0101)

IR
6
is associated with type-96

H
 interrupt (96

H
 = 1001 0110)

IR
7
is associated with type-97

H
 interrupt (97

H
 = 1001 0111)

®
®

®
®

®
®

®
®

®

®

®

®

®

Start

Send ICW1

Send ICW2

In
Cascade
Mode

?

No

(SNGL=1)

Yes
(SNGL=0)

Send ICW3
Master/Slave

No

(IC4=0)

Is ICW4
Needed

? Yes
(IC4=1)

Send ICW4

Send OCW1

Send OCW2
(The 8259 is

Ready to Accept
Interrupts)Return

Fig. 5.7 : Sending order
of ICWs and OCWs.

8086 Microprocessor and Its Appications

5. 16 Chapter 5 Interrupts

01

A0

ICW3 (Slave Device)

®

0 0 0 0 ID2 ID1 ID0

B7
B6 B5

B4
B3 B2

B1 B0

Slave ID Number
0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

®
®

Note : Slave ID number is equal to the

binary number of corresponding

master IR input to which the slave

is connected.

B7 B6 B5
B4

B3 B2 B1 B0

A7 LTIM ADI SNGL IC4

1 = ICW4 Needed
0 = ICW4 is Not Needed®

®

®

®

A6 A5 10

A0

A - A of Interrupt

Vector Address
(8085 Mode Only)

7 5 1 = Single
0 = Cascade Mode

Call Address Interval (8085 Mode Only)
1 = Interval of 4
0 = Interval of 8

1 = Level Triggered Mode
0 = Edge Triggered Mode

ICW1

B7 B6 B5
B4 B3 B2

B1 B0

A15/T7 A9
A81

A0

ICW2

A14/T6 A13/T5 A12/T4 A11/T3
A10

®

A - A of Interrupt Vector

Address (8085 Mode).
T - T of Interrupt Type Number

(8086/8088 Mode)

15 8

7 3

B7
B6 B5

B4
B3 B2

B1 B0

S71

A0

ICW3 (Master Device)

® 1 = IR Input Has a Slave
0 = IR Input Does Not Have a Slave

S6 S5 S4 S3
S2 S1 S0

01

A0

ICW4

®

0 0 SFNM BUF M/S AEOI mPM

B7
B6 B5

B4
B3 B2

B1 B0

®®

1 = Special Fully Nested Mode
0 = Not Special Fully Nested Mode

® ®

0 X Nonbuffered Mode
1 0 Buffered Mode/Slave
1 1 Buffered Mode/Master

1 = 8086/8088 Mode
0 = 8085 Mode

1 = Auto EOI
0 = Normal EOI

Fig. 5.8 : Format of ICWs.

 5. 17

ICW3 : The ICW3 should be sent to 8259s in cascade operation. Separate formats are provided for master and slave

8259s. In cascade mode, slave 8259s are connected to one or more IR inputs of master 8259 and each slave is

provided with a slave ID number. The connection of slave 8259s to the IR inputs of master are informed to master

through ICW3. For slave 8259s, the ID numbers are informed through ICW3.

ICW4 : The ICW4 is used to inform 8259 whether it is connected to 8085 or 8086-based system. For an 8086-based

system the right most bit is set to one. The AEOI bit is used to program the method of terminating the interrupt.

If AEOI is set to one, then the 8259 will automatically reset the interrupt request bit in the in-service register

after supplying the type number to the processor. If AEOI bit is programmed as zero then the processor has to

send OCW2 to terminate the interrupt.

The BUF and M/S bits are used to select the buffered or nonbuffered operation of master/slave 8259. The SFNM

bit is used to nest or include the priorities of the slave IR input with the master IR input. For example, if IR
4
 of a

master 8259 has a slave 8259 connected to it and they are programmed for SFNM operation. Now the priorities

of IR
0
 to IR

7
 of slave 8259 will be higher than IR

5
 to IR

7
 of master 8259.

Operation command words (OCWs)

The 8259 has three Operation Command Words (OCWs) and they are named as OCW1,

OCW2 and OCW3.

OCW1 : The OCW1 is sent to 8259 to mask or unmask the IR inputs of 8259. At any time the mask status of interrupts can

be read by the processor by using the same address of OCW1.

OCW2 : The OCW2 is sent to 8259A only when the AEOI mode (in ICW4) is not selected. The OCW2 is sent by the processor

to decide on the type of End-of-Interrupt (EOI) and to program the priorities of the interrupt (i.e., IR inputs

of 8259A). The different methods of EOI are discussed here :

1. Nonspecific End-of-Interrupt : This command is sent by the processor to 8259 to terminate the current interrupt

being serviced by the 8259. This resets the corresponding bit in the in-service register of 8259 and allows the next

higher priority interrupt.

2. Specific End-of-Interrupt : This command is sent by the processor to reset or terminate a specific interrupt

request, decided by the lower three bits of OCW2.

3. Rotate on Nonspecific EOI : This command will take action same as that of nonspecific EOI except that it rotates

the priorities after resetting the bit in-service register. In this case the interrupts will have rotating priority, in which

the priority of the currently serviced interrupt becomes the least.

4. Rotate on Automatic EOI : This command is sent to 8259 to select automatic EOI with rotating priority.

5. Rotate on Specific EOI : This command will take action similar to that of specific EOI except that it rotates the

priorities of the interrupts after they are serviced.

6. Set priority : The command is sent to set the priority of the interrupt level specified by the lower three bits of OCW2

as the least.

OCW3 : The OCW3 is used to set special mask mode, poll the active interrupt request and to read the in-service and interrupt

request registers. In special mask mode, the mask status are negated to allow the interrupts masked by the interrupt

mask register.

8086 Microprocessor and Its Appications

5. 18 Chapter 5 Interrupts

OCW1

B7
B6 B5

B4
B3 B2

B1 B0

M71

A0

®
Interrupt Mask
1 = Mask Set
0 = Mask Reset

M6 M5 M4 M3 M2 M1 M0

OCW3

B7 B6 B5
B4

B3 B2
B1 B0

00

A0

®

ESMM SMM 0 1 P RR RIS

®

®

Read Register Command

0 1 0 1

0 0 1 1

No Action Read IRR on Next Read ISR on

RD Pulse Next RD Pulse

1 = Poll Command ; 0 = No Poll Command

Read Register Command

0 1 0 1

0 0 1 1

No Action Reset Set

Special Mask Special Mask

®
®

Fig. 5.9 : Format of OCWs.

OCW2

B7
B6 B5

B4
B3 B2

B1 B0

R0

A0

®

SL EOI 0 0 L2
L1 L0

IR Level to be Acted Upon
0 1 2 3 4 5 6 7
0 1 0 1 0 1 0 1
0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1

®
®

0 0 1 Nonspecific EOI Command

0 1 1 Specific EOI Command

1 0 1 Rotate on Nonspecific EOI Command

1 0 1 Rotate in Automatic EOI Mode (SET)

0 0 0 Rotate in Automatic EOI Mode (CLEAR)

1 1 1 *Rotate on Specific EOI Command

1 1 0 *Set Priority Command

0 1 0 No Operation

I
P
Q

I
P
Q

I
P
Q

End of Interrupt

Automatic Rotation

Specific Rotation

*L - L are used0 2

® ® ®

5. 19

5.8 SHOR T QUESTIONS AND ANSWERS

5.1 What is an interrupt ?

Interrupt is a signal sent by an external device to the processor to request the processor to perform
a particular task or work.

5.2 How are the interrupts classified ?

There are three methods of classifying interrupts.

 Method I : The interrupts are classified into Hardware and Software interrupts.

 Method II : The interrupts are classified into Vectored and Nonvectored interrupt.

 Method III : The interrupts are classified into Maskable and Nonmaskable interrupts.

5.3 Explain how a microprocessor services an interrupt request ?

When the processor recognizes an interrupt, it saves the processor status in a stack. Then it calls
and execute an Interrupt Service Subroutine (ISS). At the end of ISS, it restores the processor
status and the program control is transferred to the main program.

5.4 What is the role of interrupt service subroutine?

For each interrupt the processor has to perform a specific job. An interrupt service routine has been
developed in order to perform the operations required for a device that is interrupting the processor.

5.5 What are software interrupts?

Software interrupts are program instructions. These instructions are inserted at the desired locations
in a program. While running a program, if a software interrupt instruction is encountered then the
processor executes an interrupt service routine.

5.6 What is hardware interrupt?

If an interrupt is initiated in a processor by applying an appropriate signal to interrupt pin, then the
interrupt is called hardware interrupt.

5.7 What is the difference between hardware and software interrupt?

The software interrupt is initiated by the main program, but the hardware interrupt is initiated by an
external device.

In 8086, the software interrupt cannot be disabled or masked but the hardware interrupts except
NMI can be disabled or masked.

5.8 What is vectored and nonvectored interrupt?

When an interrupt is accepted, if the processor control branches to a specific address defined by
the manufacturer, then the interrupt is called vectored interrupt.

In nonvectored interrupt, there is no specific address for storing the interrupt service routine.
Hence the interrupting device should give the address of the interrupt service routine.

5.9 What is masking and why is it required?

Masking is the prevention of the interrupt from disturbing the current program execution. When
the processor is performing an important job (process) and if the process should not be interrupted
then all the interrupts should be masked or disabled.

In a processor with multiple interrupts, the lower priority interrupt can be masked so as to prevent
it from interrupting, the execution of interrupt service subroutine of higher priority interrupt.

5.10 What is vectoring?

Vectoring is the process of generating the address of an interrupt service subroutine to be loaded
in program counter.

8086 Microprocessor and Its Appications

5. 20 Chapter 5 Interrupts

5.11 What are the sources of 8086 interrupt?

There are three sources for interrupts in 8086.

1. One source is from an external signal applied to INTR or NMI pin of the processor.

2. The second source of an interrupt is the execution of interrupt instruction "INT n".

3. The third source of an interrupt is from some condition produced in the 8086 by the execution of an instruction.

5.12 What is an exception? Give an example.

Exception is an interrupt generated due to exceptional condition (i.e., impossible situation) which
occurs while executing an instruction. Example of an exception is divide by zero interrupt in 8086.

While executing division instruction if the divisor is zero, then the 8086 will generate a divide by
zero (type-0) interrupt.

5.13 How many interrupts are available in 8086? How are they classified?

The 8086 has 256 types of interrupts. INTEL has given a type number to the interrupts in the range
of 0 to 255

10
. Type-0 to type-4 are defined by INTEL and they are called INTEL predefined interrupts.

Type-5 to type-31 are reserved by INTEL for use in future processors. Type-32 to type-255 are
available for the user as hardware or software interrupts.

5.14 How can interrupts be initiated in 8086?

The 8086 processor has dual facility of initiating all the 256 interrupts. The interrupts can be
initiated either by executing the "INT n" instruction where n is the type number or the interrupt
can be initiated by sending an appropriate signal to the INTR pin of the processor.

5.15 List the INTEL predefined interrupts.

The INTEL predefined interrupts are:

i) Division by zero (Type-0 interrupt) iv) Breakpoint interrupt (Type-3 interrupt)

ii) Single step (Type-1 interrupt) v) Interrupt on overflow (Type-4 interrupt)

iii) Non-maskable interrupt, NMI (Type-2 interrupt)

5.16 What are software and hardware interrupts of 8086?

In 8086, the interrupts initiated by executing the "INT n" instruction are called software interrupts.

The interrupts initiated by applying appropriate signals to the INTR and NMI pins of 8086 are
called hardware interrupt.

5.17 What are maskable and nonmaskable interrupts of 8086?

The hardware interrupts initiated by applying an appropriate signal to INTR pin of 8086 are
maskable interrupts.

The software interrupts and the hardware interrupt NMI are nonmaskable.

5.18 How can the interrupts be masked/unmasked in 8086?

The maskable interrupts of 8086 can be masked by clearing the interrupt flag to zero and they can
be unmasked/allowed by setting the interrupt flag to one.

5.19 What is a vector table? Where is it located?

The memory block consisting of vector addresses of all the 256 types of interrupts of 8086 is
called vector table. The vector table is stored in the first 1 kb of physical memory space.

5.20 How is the interrupt address generated in 8086?

The 8086 will multiply the type number by four and sign extend to 20-bit to get a memory address

of a vector table. The vector address for an interrupt will be available in four consecutive memory

locations starting from this 20-bit address. The first word in the table is offset address of ISS

(Interrupt Service Subroutine) and the next word is the segment base address of ISS.

 5. 21

5.21 What is the need for an interrupt controller?

The interrupt controller is employed to expand the interrupt input. It can handle the interrupt

request from various devices and allow one by one to the processor.

5.22 List some of the features of INTEL 8259 (Programmable Interrupt Controller).

� It can manages eight interrupt request.

� The interrupt vector addresses are programmable.

� The priorities of interrupts are programmable.

� The interrupt can be masked or unmasked individually.

5.23 Write the various functional blocks of INTEL 8259 ?

The various functional blocks of 8259 are Control logic, Read/ Write logic, Data bus buffer,

Interrupt Request Register (IRR), Interrupt Mask Register (IMR) and In-Service Register (ISR),

Priority Resolver (PR) and Cascade buffer.

5.24 What is master and slave 8259 ?

When 8259s are connected in cascade, one 8259 will be directly interrupting the processor and it

is called master 8259. To each interrupt request input of master 8259, one slave 8259 can be

connected. The 8259s interrupting the master 8259 are called slave 8259.

5.25 How is 8259 programmed?

The 8259 is programmed by sending Initialization Command Words (ICWs) and Operational

Command Words (OCWs).

5.26 What are the features of 8259 that are programmed using ICWs?

The ICWs are used to program the following features of 8259.

� Call address interval (in case of 8085) � 8085 or 8086 mode

� Cascade mode or single � Auto or normal end of interrupt

� Level or edge triggered � Special fully nested mode

� Vector address (in case of 8085) or type number (in case of 8086)

5.27 What are the features of 8259 that can be programmed using OCWs?

The OCWs are used to program the following features of 8259.

� Masking of individual interrupts. � Specific or Non-specific end of interrupt. � Priority modes.

5.28 Write the format of ICW1?

B7
B6 B5

B4
B3 B2

B1 B0

®

1 LTIM ADI SNGL IC4

®

®

®

®

0

A0

A7
A6 A5

1 = ICW4 Needed
0 = ICW4 is Not Needed

1 = Single
0 = Cascade Mode

Call Address Interval
1 = Interval of 4
0 = interval of 8

1 = Level Triggered Mode
0 = Edge Triggered Mode

A7 - A5 of Interrupt
Vector Address

(MCS-8080/8085 Mode Only)

8086 Microprocessor and Its Appications

5. 22 Chapter 5 Interrupts

ICW3

B7
B6 B5

B4
B3 B2

B1 B0

00

®

0 0 0 0 1 1

®

8086 Mode

Auto EOI

Nonbuffered Mode

= 03
H

IPQ

Not Special Fully Nested Mode®

OCW1

B7
B6 B5

B4
B3 B2

B1 B0

00 0 0 0 0 0 0 = 00
H

IPQ

All the Interrupt Mask are Reset

5.29 What is the difference between programming master 8259 and slave 8259 ?

The ICW 3 will be different for master 8259 and slave 8259. For master, the ICW3 will inform the IR
input that are having slaves. For slave, the ICW3 will inform its slave ID number.

5.30 When ICW 4 is sent to 8259 ?

The ICW 4 is send to 8259 to perform any one of the following features :

� 8085 or 8086 mode � Auto or normal end of interrupt

� Special fully nested mode � Buffered or nonbuffered mode.

5.31 Frame the command words ICW1, ICW2, ICW4 and OCW1 for initializing single 8259 to

initiate INT 40H to INT 47H . The desired features are level triggered interrupt and automatic

end of interrupt.

5.32 Write a program segment to initialize a single 8259 connected to the 8086 processor.

Let us assume that 8259 is IO-mapped in the system with even address. The 8259 can be

initialized by sending ICW1, ICW2, ICW4 and OCW1. Let the 8-bit address with A
0
 = 0 be

00
H
 and when A

0
 = 1 be 02

H
.

MOV AL,ICW1 ;Move ICW1 to AL-register

OUT [00H] ;Send ICW1 to 8259

MOV AL,ICW2 ;Move ICW2 to AL-register

OUT [02H] ;Send ICW2 to 8259

MOV AL,ICW4 ;Move ICW4 to AL-register

OUT [02H] ;Send ICW4 to 8259

MOV AL,OCW1 ;Move OCW1 to AL-register

OUT [02H] ;Send OCW1 to 8259

HLT ;Stop

ICW1

B7
B6 B5

B4
B3 B2

B1 B0

XX

®

X 1 1 X 1 1

®

ICW4 is Needed

Single 8259

Level Triggered Interrupt

= 1B
H

®

ICW2

B7
B6 B5

B4
B3 B2

B1 B0

10 0 0 0 0 0 0 = 40
H

IPQ

Upper 5 Bits of Type Number 40H

 CHAPTER 6

ASSEMBLY LANGUAGE PROGRAMMING

6.1 LEVELS OF PROGRAMMING

A program is a set of instructions or commands needed for performing a specific task by

a programmable device such as a microprocessor. The programs needed for a programmable

device can be developed at three different levels. They are :

1. Machine level programming

2. Assembly level programming

3. High level programming

Machine Level Programming

In machine level programming, the instructions are written using binary codes which use

only two symbols '0' and '1'. The manufacturer of microprocessors will give a set of instructions

for each microprocessor in binary codes, i.e., a binary code will represent each operation

performed by the microprocessor. The language in which the instructions are represented

by binary codes is called machine language. A microprocessor can understand and execute

the machine language programs directly.

The binary instructions of one microprocessor will not be the same as that of another

microprocessor. Therefore the machine language programs developed for one microprocessor

cannot be used for another microprocessor i.e., the machine level programs are machine-dependent.

Moreover, it is highly tedious for a programmer to write program in machine language.

Assembly Level Programming

In assembly level programming, the instructions are written using mnemonics.

A mnemonic will have a few letters of English language which represent the operation

performed by the instruction. For example, the mnemonic for the instruction which perform

addition operation is ADD. The manufacturer of the microprocessors will provide a set of

instructions in the form of mnemonic for each microprocessor. Also for each mnemonic a binary

code will be specified by the manufacturer. If the program is developed using binary codes, then

it is called machine level programming and if the program is developed using mnemonics then it is

called assembly level programming.

The language in which the instructions are represented by mnemonics is called assembly

language. Microprocessors cannot execute the assembly language programs directly. The assembly

language programs have to be converted to machine language for execution. This conversion is

performed using a software tool called assembler.

6. 2 Chapter 6 Assembly Language Programming

The mnemonics of one microprocessor will not be same as that of another microprocessor.

Therefore the assembly language programs developed for one microprocessor cannot be used for

another microprocessor directly, i.e., the assembly language programs are machine-dependent.

But certain manufacturers provide upward compatability for same family of microprocessors,

i.e., the program developed for a lower version of microprocessor of a family can be run on a

higher version without modifications. For example, consider the INTEL 80x86 family of

microprocessors. The program developed for 8086 microprocessor can be run on 80186, 80286,

80386 or 80486 microprocessor-based systems without any modifications.

High Level Programming

In high level programming, the instructions will be in the form of statements written using

symbols, English words and phrases. Each high level language will have its own vocabulary of

words, symbols, phrases and sentences. Examples of high level languages are BASIC, C, C++,

etc. The programs written in high level languages are easy to understand and machine independent

and so they are known as portable programs. A high level language program has to be converted

into machine language program in order to be executed by the microprocessor. This conversion is

performed by a software tool called compiler.

6.2 FLOWCHART

A flowchart is a graphical representation of the operation flow of the program. It is also the

graphical form of algorithms. Flowcharts can be a valuable aid in visualizing programs. The various

symbols used for drawing flowcharts are shown in Fig. 6.1. The operations represented by various

symbols of flowchart are explained in Table-6.1. A sample flowchart is shown in Fig. 6.2.

Process
Connector

Subroutine

Off-Page
Connector

Decision

Line

Input/Output

Start/End

Arrow

Fig. 6.1 : Symbols used in a flowchart.

Start

Process-1

Decision

Process-2

End

¯

¯

¯

¯¯

¯

¯

¯

®1

1

No Yes

Fig. 6.2 : A sample flowchart.

Read Input

CALL
Subroutine

Send Output

 6. 3

Symbol Operation

Racetrack-shaped box The racetrack shaped symbol is used to indicate the beginning

(start) or end of a program.

Parallelogram The parallelogram is used to represent input or output operation.

Rectangular box

The rectangular box is used to represent simple operations other

than input and output operations.

A rectangular box with The rectangular box with double lines on vertical sides is used to

represent a subroutine or procedure.double lines on vertical
sides

Diamond-shaped box

The diamond-shaped box is used to represent a decision point

or cross-road in programs.

Small circle A small circle is used as a connector to show the connections

between various parts of flowchart within a page. Identical numbers

are entered inside the circles that represent the same connecting

points.

Five-sided box A five-sided box symbol is used as off-page connector to show

the connections between various sections of flowchart in different

pages. Identical numbers are entered inside the boxes that

represent the same connecting point.

The lines are drawn between boxes and diamonds to indicate

the program flow.

Arrow The arrows are placed on the lines to indicate the direction of program

flow.

6.3 ASSEMBLY LANGUAGE PROGRAM DEVELOPMENT TOOLS

The development system is used by system designers to design and test the software and

hardware of a microprocessor-based system before going for practical implementation (or fabrication).

The microprocessor development system consists of a set of hardware and software tools. The

hardware of development system usually contain a standard PC (Personal Computer), printer and

an emulator. The software tools are also called program development tools and they are editor,

assembler, library builder, linker, debugger and simulator. These software tools can be run on the

PC in order to write, assemble, debug, modify and test the assembly language programs.

TABLE - 6.1 : OPERATIONS REPRESENTED BY THE SYMBOLS USED IN FLOWCHART

Line

→

8086 Microprocessor and Its Appications

6. 4 Chapter 6 Assembly Language Programming

Editor (Text Editor)

The editor is a software tool which, when run on a PC, allows the user to type/enter and

modify the assembly language program. The editor provides a set of commands for insertion,

deletion, modification of letters, characters, statements, etc. The main function of an editor is to

help the user to construct the assembly language program in the right format. The program created

using an editor is known as source program and it is usually saved with file extension ".ASM". For

example, if a program for addition is developed using editor then it can be saved as

"ADDITION.ASM". Some examples of editors are NE (Norton Editor), EDIT (DOS Editor), etc.

Assembler

The assembler is a software tool which, when run on a PC, converts the assembly language

program to a machine language program. Several types of assemblers are available and they are

one- pass assembler, two-pass assembler, macro assembler, cross assembler, resident assembler

and meta assembler.

In one-pass assembler, the source code is processed only once, and we can use only

backward reference. In one-pass assembler as the source code is processed, any labels encountered

are given an address and stored in a table. Whenever a label is encountered, the assembler may

look backward to find the address of the label. If the label is not yet defined then it issues an error

message (because the assembler will not look forward). Since only one pass is used to translate

the source code, a one-pass assembler is very fast, but because of the forward reference problem,

the one-pass assembler is not used often.

Most of the popularly used assemblers are two-pass assemblers. In a two-pass assembler,

the first pass is made through the source code for the purpose of assigning an address to all the

labels and to store this information in a symbol table. The second pass is made to actually translate

the source code into the machine code.

The input for the assembler is the source program which is saved with the file extension

".ASM". The assembler usually generates two output files called object file and list file. The object

file consists of relocatable machine codes of the program and it is saved with file extension ".OBJ".

The list file contains the assembly language statements, the binary codes for each instruction and

the address of each instruction. The list file is saved with file extension ".LST".

The list file also indicates any syntax errors in the source program. The assembler will not identify

the logical errors in the source program. In order to correct the errors indicated on the list file, the user has

to use the editor again. The corrected source program is saved again and then reassembled. Usually, it may

take several times through edit-assemble loop to eliminate the syntax errors from the source program.

Some examples of assemblers are TASM (Borland's Turbo Assembler), MASM (Microsoft's

Macro Assembler), ASM86 (INTEL'S 8086 Assembler), ASM85 (INTEL'S 8086 Assembler), etc.

Advantages of the assembler

1. The assembler translates mnemonics into binary code with speed and accuracy, thus eliminating human errors in

looking up the codes.
2. The assembler assigns appropriate values to the variables used in a program. This feature offers flexibility in

specifying jump locations.
3. It is easy to insert or delete instructions in a program and reassemble the entire program quickly with new memory

locations and modified addresses for jump locations. This avoids rewriting the program manually.

 6. 5

4. The assembler checks syntax errors, such as wrong labels, opcodes, expressions, etc., and provides error

messages. However, it cannot check logic errors in a program.

5. The assembler can reserve memory locations for data or results.

6. The assembler provides list file for documentation.

Library Builder

The library builder is used to create library files which are collections of procedures of

frequently used functions. Actually, a library file is a collection of assembled object files. While

developing a software for a particular application, the programmers can link the library files in

their programs. When the library file is linked with a program, only the procedure required by the

program are copied from the library file and added to the program.

The input to the library builder is a set of assembled object files of program modules/

procedures. The library builder combines the program modules/procedures into a single file known

as library file and it is saved with file extension ".LIB". Some examples of library builder are

microsoft's LIB, Borlands TLIB, etc.

Linker

The linker is a software tool which is used to combine relocatable object files of program

modules and library functions into a single executable file.

While developing a program for a particular application it is much more efficient to develop

the program in modules. The entire task of the program can be divided into smaller tasks and

procedures for each task can be developed individually. These procedures are called program

modules. For a certain task we can use library files if they are available. Each module can be

individually assembled, tested and debugged. Then the object files of program modules and the

library files can be linked to get an executable file.

The linker also generates a link map file which contains the address information about the

linked files. Some examples of linkers are microsoft's linker LINK, Borland's Turbo linker TLINK, etc.

Debugger

The debugger is a software tool that allows the execution of a program in single-step or

breakpoint mode under the control of the user. The process of locating and correcting the errors in

a program using a debugger is known as debugging.

The debugger allows the designer to load the object code program into the memory of the

PC, execute the program and troubleshoot or debug it. The debugger allows the designer to look

at the contents of registers and memory locations after running the program. It allows the system

designer to change the contents of registers and memory locations and return the program.

Some debuggers allow the user to stop execution after each instruction so that the memory/

register content can be checked or altered. A debugger also allows the user to set a breakpoint at

any point in user program. When the user runs the program, the PC will execute instructions up

to this breakpoint and stop. The user can then examine the register and memory contents to

see whether the results are correct up to that point. If the results are correct, the user can

move the breakpoint to a later point in the program. If the results are not correct, the user can

check the program up to that point to find out why they are not correct.

8086 Microprocessor and Its Appications

6. 6 Chapter 6 Assembly Language Programming

The debugger tools can help the user to isolate a problem in the program. Once the problem/

errors are identified, the algorithm can be modified. Then the user can use the editor to correct the

source program, reassemble the corrected source program, relink and run the program again.

Simulator

The simulator is a program which can be run on the development system (Personal Computer)

to simulate the operations of the newly designed system. Some of the operations that can be

simulated are given below:

� Execute a program and display result.

� Single-step execution of a program.

� Breakpoint execution of a program.

� Display the contents of register/memory.

Simulators usually show the contents of registers and memory locations on the screen of

the computer and allow the system designer to perform all of the operations listed above, with the

added advantage of watching the data change as the program operates. This feature saves

considerable time because the register/memory contents do not have to be displayed using separate

commands. The visual representation also gives the programmer a better feel for what is taking

place in the program.

The simulators do not have the ability to perform actual IO or internal hardware operations

such as timing or data transmission and reception.

Emulator

An emulator is a mixture of hardware and software. It is usually used to test and debug the

hardware and software of a newly designed microprocessor-based system. The emulator has a

multicore cable which connects the PC of a development system with the newly designed hardware

of the microprocessor system. A connector/plug at one end of the cable is plugged into the new

hardware in the place of its microprocessor. The other end of the cable is connected to a parallel

port of the PC. Through this connection, the software of the emulator allows the designer to

download the object code program into RAM in the system being tested and run it.

Like a debugger, an emulator allows the system designer to load and run programs, examine

and change the contents of registers, examine and change the contents of memory locations and

insert breakpoints in the program.

The emulator also takes a snapshot of the contents of registers, activity on the address and

data bus and the state of the flags as each instruction executes. Also, the emulator stores this trace

data. The user can have a printout of the trace data to see the results that the program produced on

a step-by-step basis. Another powerful feature of an emulator is the ability to use either development

system memory or the memory on the hardware under test for the program that is being debugged.

Summary of the Use of Program Development Tools

The various steps in the development of an assembly language program are given below,

and also as a flowchart in Fig. 6.3.

1. Define the problem carefully.

2. Use an editor to create the source file for assembly language program.

3. Assemble the source file with the assembler.

 6. 7

Start

¯
Define Problem

Develop or Modify Algorithm

Create or Modify Source File with Editor

Assemble

Assembler
Errors
?

Link

Link
Errors
?

External
System
?

Load Emulator

Load Program

Run and Test Program

Errors
?

Use Emulator Tools to
Find Errors

Load Debugger

Load Program

Run and Test Program

Errors
?

Use Debugger Tools to
Find Errors

Stop

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

¯

®¬® ¬

¬ ®

®

®¬

¬
Yes

Yes
¬

No

No

No Yes

No

Yes Yes

No

Fig. 6.3 : Development process of an assembly language program.

¬ ®

¯

8086 Microprocessor and Its Appications

6. 8 Chapter 6 Assembly Language Programming

4. If the assembler list file indicates errors then use the editor and correct the errors.

5. Cycle through the edit -assemble loop until all errors indicated by the assembler are cleared.

6. Use the linker to link all object files of the program modules and library files into a single executable file.

7. If the linker indicates any error then modify the source program, reassemble and relink it to correct the errors.

8. If the developed program does not interact with any external hardware other than that directly connected to the

system, then you can use the system debugger to run and debug your program.

9. If the designed program is intended to work with external hardware then use an emulator to run and debug the program.

6.4 VARIABLES AND CONSTANTS USED IN ASSEMBLERS

The various characters used to construct assembler variables, constants and directives are

the following :

Upper case English alphabets : A to Z

Lower case English alphabets : a to z

Numbers : 0 to 9

Special characters : @, $, ?, _ (Underscore)

Variables

The variables are symbols (or terms) used in assembly language program statements in

order to represent the variable data and address. While running a program, a value has to be

attached to each variable in the program. The advantage of using variables is that the value of the

variable can be dynamically varied while running the program.

Usually a variable name is constructed such that it reflects the meaning of the value it holds. A

variable name selected to represent the temperature of a device can be TEMP, a variable name selected

to represent the speed of a motor can be M_SPEED, etc. While construcing variable names, the

numeric characters (0 to 9) should not be used as the first character and the special characters $ and

? should not be used.

Rules for framing variable names

1. The variable name can have any of the following characters. A to Z, a to z, 0 to 9, @, _(underscore).

2. The first character in the variable name should be an alphabet (A to Z or a to z) or an underscore.

3. The length of a variable name depends on assembler and normally the maximum length of variable name is 32 characters.

4. The variable names are case insensitive. Therefore, the assembler does not distinguish between upper and lower case

letters/alphabets.

Constants

The decimal, binary or hexadecimal numbers used to represent the data or address in an

assembly language program statement are called constants or numerical constants. When constants

are used to represent the address/data, their values are fixed and cannot be changed while running

a program. The binary, hexadecimal and decimal constants can be differentiated by placing a

specific alphabet at the end of the constant.

A valid binary constant/number is framed using numeric characters 0 and 1, and the alphabet

B is placed at the end.

 6. 9

A valid decimal (BCD) constant/number is framed using numeric characters 0 to 9, and the

alphabet D is placed at the end. However, a constant/number which does not end with any alphabet

is also treated as a decimal constant.

A valid hexadecimal constant/number is framed using numeric characters 0 to 9 and alphabets

A to F, and the alphabet H is placed at the end. A zero should be placed/inserted at the beginning of

the hexadecimal number if the first digit is an alphabet character from A to F, otherwise the

assembler will consider the constant starting with A to F as a variable.

Examples of valid constant

1011 - Decimal (BCD) constant

1060D - Decimal constant

1101B - Binary constant

92ACH - Hexadecimal constant

0E2H - Hexadecimal constant

Examples of invalid constant

1131B - The character 3 should not be used in a binary constant.

0E2 - The character H at the end of the hexadecimal number is missing.

C42AH - Zero is not inserted in the beginning of hexadecimal number and so it is treated as a variable.

1A65D - The character A should not be used in decimal constant.

6.5 ASSEMBLER DIRECTIVES

The assembler directives are the instructions to the assembler regarding the program being

assembled. They are also called pseudo-instructions. The assembler directives are used to specify

start and end of a program, attach value to variables, allocate storage locations to input/output

data, to define start and end of segments, procedures, macros, etc.

The assembler directives control the generation of machine code and organization of

the program. But no machine codes are generated for assembler directives. Some of the

assembler directives that can be used for 8086 assembly language program development are

listed in Table -6.2. A brief discussion about some of the assembler directives is presented in the

following sections.

TABLE - 6.2 : ASSEMBLER DIRECTIVES

 Assembler
Function

 directive

ASSUME Indicates the name of each segment to the assembler.

BYTE Indicates a byte sized operand.

DB Define byte. Used to define byte type variable.

DD Define double word. Used to define 32-bit variable.

DQ Define quad word. Used to define 64-bit variable.

DT Define ten bytes. Used to define ten bytes of a variable.

8086 Microprocessor and Its Appications

6. 10 Chapter 6 Assembly Language Programming

Table-6.2 continued ...

 Assembler
Function

 directive

DUP Duplicate. Generate duplicates of characters or numbers.

DW Define word. Used to define 16-bit variable.

DWORD Double word. Indicates a double-word-sized operand.

END Indicates the end of a program.

ENDP End of procedure. Indicates the end of a procedure.

ENDS End of segment. Indicates the end of a memory segment.

EQU Equate. Used to equate numeric value or constant to a variable.

EVEN Informs the assembler to align the data array starting from even address.

FAR Used to declare the procedure as far which assigns a far address.

MACRO Defines the name, parameters, and start of a macro.

NEAR Used to declare a procedure as near which assigns a near address.

OFFSET Specifies an offset address.

ORG Origin. Used to assign the starting address for a program module or data segment.

PROC Procedure. Defines the beginning of a procedure.

PTR Pointer. It is used to indicate the type of memory access (BYTE/ WORD/

DWORD).

PUBLIC Used to declare variables as common to various program modules.

SEGMENT Defines the start of a memory segment.

STACK Indicates that a segment is a stack segment.

SHORT Used to assign one-byte displacement to jump instructions.

THIS Used with EQU directive to set a label to a byte, word or double word.

WORD Indicates a word sized operand.

DB (DEFINE BYTE)

The directive DB is used to define a byte type variable. It reserves specific amount of memory to variables and stores
the values specified in the statement as initial values in the allotted memory locations. The range of value that can be stored
in a byte type variable is 0 to 255

10
 (00

H
 to FF

H
) for unsigned value, and -128

10
 to 127

10
 for signed value (00

H
 to 7F

H
 for positive

values and 80
H
 to FF

H
 for negative values).

The general form of the statement to define the byte variables is

variable DB value/values

Examples :

AREA DB 45 One memory location is reserved for the variable AREA and 45
10

 is stored as initial
value in that memory location.

LIST DB 7FH, 42H, 35H Three consecutive memory locations are reserved for the variable LIST, and
7F

H
, 42

H
, and 35

H
 are stored as initial value in the reserved memory location.

MARK DB 50 DUP (0) Fifty consecutive memory locations are reserved for the variable MARK and
they are initialized with value zero.

 6. 11

SCODE DB 'C' One memory location is reserved for variable SCODE and initialized with ASCII
value of C.

WELMSG DB 'HELLO RAM$' Ten consecutive memory locations are reserved for the variable WELMSG and they
are initialized with ASCII value of H, E, L, L, O, space, R, A, M and $. (The symbol
$ is used to denote end of a string.)

DW (DEFINE WORD)

The directive DW is used to define a word type (16-bit) variable. It reserves two consecutive memory locations to each
variable and store the 16-bit values specified in the statement as initial value in the allotted memory locations. The range of value that
can be stored in word type variable is 0 to 65,535

10
 (0000

H
 to FFFF

H
) for unsigned value, and -32,768 to +32,767 for signed value (0000

H

to 7FFF
H
 for positive value and 8000

H
 to FFFF

H
 for negative value).

The general form of the statement to define the word type variable is

variable DW value/values

Examples :

WEIGHT DW 1250 Two consecutive memory locations are reserved for the variable WEIGHT
and initialized with value 125010.

ALIST DW 6512H, 0F251H, 0CDE2H Six consecutive memory locations are reserved for the variable ALIST and
each 16-bit data specified in the instruction is stored in two consecutive
memory location.

BCODE DW '8E' Two consecutive memory locations are reserved for variable BCODE and initialized

with ASCII value of 8 and E .

SEGMENT AND ENDS (END OF SEGMENT)

The directive SEGMENT is used to indicate the beginning of a code/data/stack segment. The directive ENDS is used to
indicate the end of a code/data/stack segment. The directives SEGMENT and ENDS must enclose the program or data defining
segment. The general form of writing a program or data defining segment is given below :

segnam SEGMENT

segnam ENDS

where "segnam" is the user defined name of the segment and it can be any valid assembler variable.

Examples :

_DATA SEGMENT

The _DATA is the name of the data segment enclosed by the directives SEGMENT

and ENDS.

_DATA ENDS

_CODE SEGMENT

The _CODE is the name of the program segment enclosed by the directives

SEGMENT and ENDS.

_CODE ENDS

 Program code

or

 Data defining statements

.

.

.

.

.

.

.

.

.

 UV|
W|

Data
defining

statements

.

.

.

.

.

.

.

.

.

 U
V
|

W|

Program codes

.

.

.

.

.

.

.

.

.

 U
V
|

W|

8086 Microprocessor and Its Appications

6. 12 Chapter 6 Assembly Language Programming

ASSUME

The directive ASSUME informs the assembler the name of the program/data segment that should be used for a specified

segment. The general form of a statement using ASSUME directive is given below :

ASSUME segreg : segnam, , segreg : segnam

where, "segreg" is the segment register.

"segnam" is user defined name of the segment.

The segment register can be any of the CS, SS, DS and ES registers and segment name can be any valid assembler variable.

In a single statement logical segments can be assigned to one or all the segment registers .

Examples :

 ASSUME CS : _CODE The directive ASSUME informs the assembler that the instruction of the program are

stored in the user-defined logical segment _CODE.

 ASSUME DS : _DATA The directive ASSUME informs the assembler that the data of the program are
stored in the user-defined logical segment _DATA.

 ASSUME CS : ACODE, DS: ADATA The directive ASSUME informs the assembler that the instructions of the program

are stored in the segment ACODE and data are stored in the segment ADATA.

ORG, END, EVEN AND EQU

The directive ORG (Origin) is used to assign the starting address (effective address) for a program/data segment. The
directive END is used to terminate a program. The statements after the directive END will be ignored by the assembler.

The directive EVEN will inform the assembler to store the program/data segment starting from an even address. The 8086
requires one bus cycle to access a word at even address and two bus cycles to access a word at odd address. The even alignment
with EVEN directive helps in accessing a series of consecutive memory words quickly.

The directive EQU (Equate) is used to attach a value to a variable.

Examples :

ORG 1000H This directive informs the assembler that the statements following ORG 1000H should be

stored in memory starting with effective address 1000
H
.

PORT1 EQU 0F2H The value of variable PORT1 is F2
H
.

LOOP EQU 10FEH The value of variable LOOP is 10FE
H
.

_SDATA SEGMENT In this data segment the e ffect ive address of memory location assigned to A will be
ORG 1200H 1200

H
 and the effective address of memory location assigned to B will be 1202

H
 and 1203

H
.

A DB 4CH

EVEN

B DW 1052H

_ SDATA ENDS

PROC, FAR, NEAR AND ENDP

The directives PROC, FAR, NEAR and ENDP are used to define a procedure/subroutine. The directive PROC indicates the
beginning of a procedure and the directive ENDP indicates the end of a procedure. The FAR or NEAR, are type specifier which is used by

the assembler to differentiate intrasegment call (call within segment/near call) and intersegment call (call from another segment/far call).

The general form of writing a procedure is given below :

procname PROC [NEAR/FAR]

 Program statements in the procedure

RET ; Last statement of the procedure

procname ENDP

where "procname" is the user defined name of the procedure.

.

.

.

.

.

.

.

.

.

 U
V
|

W|

6. 13

The procedure name can be any valid assembler variable. The type specifier NEAR/FAR is optional and if it is discarded then
the assembler assumes the procedure as near call. Also the use of a specifier helps the assembler to decide whether to code RET as
near return or far return.

Examples :

ADD64 PROC NEAR The subroutine/procedure named ADD64 is declared as NEAR and so the assembler will

code the CALL and RET instructions involved in this procedure as near call and return.

 RET

ADD64 ENDP

CONVERT PROC FAR The subroutine/procedure named CONVERT is declared as FAR and so the assembler will

code the CALL and RET instructions involved in this procedure as far call and return.

 RET

CONVERT ENDP

SHORT

The directive SHORT is used to reserve one memory location for 8-bit signed displacement in jump instructions.

Examples :

JMP SHORT AHEAD The directive will reserve one memory location for an 8-bit displacement named AHEAD.

MACRO AND ENDM

The directive MACRO is used to indicate the beginning of a macro and the directive ENDM is used to indicate the end of a
macro. The directives MACRO and ENDM must enclose the definitions, declarations and program statements which are to be
substituted at the invocation of a macro.

The general form of writing a macro is given below :

macroname MACRO [Arg1, Arg2,]

 Program statements in macro

macroname ENDM

where, "macroname" is the user defined name of the macro.
 The macroname can be any valid assembler variable.

6.6 PROCEDURES AND MACROS

When a group of instructions are to be used several times to perform a same function in a

program, then we can write them as a separate subprogram called procedure or subroutine. Whenever

required the procedures can be called in a program using CALL instructions.

The procedures are written and assembled as separate program modules and stored in memory.

When a procedure is called in the main program, the program control is transferred to procedure

and after executing the procedure the program control is transferred back to the main program. In

an 8086 processor, the instruction CALL is used to call a procedure in the main program and the

instruction RET is used to return the control to the main program.

.

.

.

.

.

.

.

.

.

 U
V
|

W|

.

.

.

.

.

.

.

.

.

 U
V
|

W|

Program

statements in

the procedure

Program

statements in

the procedure

.

.

.

.

.

.

.

.

.

 U
V
|

W|

8086 Microprocessor and Its Appications

6. 14 Chapter 6 Assembly Language Programming

The 8086 processor has two types of call instructions and they are intrasegment call or near

call (call within a segment) and intersegment call or far call (call outside a segment). A procedure

can be called using near call instruction if it is stored in the same segment where the main program

is also stored. A procedure can be called using far call instruction if the procedure and main

program are stored in different memory segments.

The procedures are terminated with RET instructions. The 8086 has two types of RET

instructions and they are near return and far return. The near return instruction is used to terminate

a procedure stored in the same segment. The far return instruction is used to terminate a procedure

stored in a different segment.

When a procedure is called by using far call instruction, the 8086 processor will push the

contents of IP and CS-register in stack and the segment base address of procedure is loaded in CS-

register and the effective address of procedure is loaded in IP. Now the program control is transferred

to procedure stored in another segment and so the processor will start executing the instructions of

the procedure. At the end of procedure, RET instruction is encountered. On executing the RET

instruction, the top of stack (which is the previous stored value) is poped to CS-register and IP.

Thus the program control is returned to main program.

When a procedure is called by using near call instruction, the 8086 processor will push the

contents of IP alone in stack and the effective address of procedure is loaded in IP. Here the content

of CS-register is not altered. Now the program control is transferred to procedure stored in same

segment and so the processor will start executing the instructions of the procedures. At the end of

procedure, RET instruction is encountered. On executing the RET instruction, the top of stack (which

is the previous stored value) is poped to IP. Thus, the program control is returned to main program.

The main advantage of using a procedure is that the machine codes for the group of

instructions in the procedure has to be put in memory only once. The disadvantages of using the

procedure are the need for a stack, and the overhead time required to call the procedure and return

to the calling program.

When a group of instructions are to be used several times to perform a same function in a

program and they are too small to be written as a procedure, then they can be defined as a macro.

Macro is a small group of instructions enclosed by the assembler directives MACRO and ENDM.

Macros are identified by their name and usually defined at the start of a program.

The macro is called by its name in the program. Whenever a macro is called in a program,

the assembler will insert the defined group of instructions in place of the call. In other words, the

macro call is like shorthand expression which tells the assembler, "Every time you see a macro

name in the program, replace it with the group of instructions defined as macro". Actually the

assembler generates machine codes for the group of instructions defined as macro, whenever it is

called in the program. The process of replacing the macro with the instructions it represent is

called expanding the macro. Hence, macros are also known as open subroutines because they get

expanded at the point of macro invocation.

 6. 15

When macros are used, the generated machine codes are right-in-line with the rest of the

program and so the processor does not have to go off to a procedure call and return. This results

in avoiding the overhead time involved in calling and returning from a procedure. The disadvantage

of using macro is that the program may take up more memory due to insertion of the machine

codes in the program at the place of macros. Hence, the macros should be used only when its body

has a few program statements.

TABLE - 6.3 : COMPARISON OF PROCEDURE AND MACRO

 Procedure Macro

Stack

The stack is a portion of RAM memory defined by the user for temporary storage and

retrieval of data while executing a program. The microprocessor will have a dedicated internal

register called Stack Pointer (SP) to hold the address of the stack. Also the processor will have

facility to automatically decrement/increment the content of SP after every write/read into stack.

The user can initialize or create a stack by loading a RAM memory address in Stack Pointer

(SP). Once an address is loaded in SP, the RAM memory locations below the address pointed by SP

are reserved for stack. Typically, 25 to 100 RAM memory locations are sufficient for stack. The

user should take care that the reserved RAM memory locations for stack are not used for any other

purpose.

The user has to create/implement a stack whenever the program consists of PUSH, POP, RST

n, CALL and RET instructions. Also the stack is needed whenever the system uses interrupt facility.

In a program, when the number of available registers are not sufficient for storing intermediate

result and data, then some of intermediate result and data can be stored in the stack using PUSH

instruction, and retrieved whenever required using POP instruction.

The CALL instruction and the interrupts store the return address (content of program

counter) in the stack before executing the subroutine. Usually the subroutines are terminated with

RET instruction. When RET instruction is executed, the top of stack is poped to program counter

and so the program control returns to the main program after execution of the subroutine.

Stack in 8086 microprocessor

The usage and functioning of the stack in 8086 is similar to that of 8085 except the computation

of the stack address. In 8085, the content of SP is the address of top of stack, whereas in 8086

the content of the SP is the offset address of tthe op of stack. The physical address of the stack

in 8086 is computed by using the contents of SS-register and SP.

1. Accessed by CALL and RET mechanism

during program execution.

2. Machine code for instructions are stored

in memory once.

3. Parameters are passed in registers,

memory locations or stack.

1. Accessed during assembly with name given

to macro when defined.

2. Machine codes are generated for instructions

in the macro each time it is called.

3. Parameters are passed as part of statement

which calls macro.

8086 Microprocessor and Its Appications

6. 16 Chapter 6 Assembly Language Programming

In 8086 microprocessor-based system, the stack is created by loading a 16-bit base address

in Stack Segment (SS) register and a 16-bit offset address in Stack Pointer (SP). The 20-bit

physical address of the stack is computed by multiplying the contents of SS-register by 16
10

 and

then adding the contents of SP to this product. Here the content of SP is the offset address of the

stack. Upon reset, the SS-register and SP are cleared to zero.

For every write operation into stack, the SP is automatically decremented by two and for

every read operation from stack, the SP is automatically incremented by two. The contents of SS-

register will not be altered while reading or writing into the stack. Like 8085, the stack in 8086 is

also a LIFO stack. A typical example of stack in 8086 is shown in Fig. 6.4.

6.7 INTERRUPTS OF PERSONAL COMPUTERS

The 8086 assembly language program can be executed in any Personal Computer (PC)

based on a 80x86/pentium processor or its compatibility. While executing the programs in PC,

the IO devices of the PC like keyboard, monitor, printer, etc., can be used as interactive IO

devices for input data to the program and outputs the result of the program. These devices can be

accessed by the programmer through the predefined interrupts of personal computer.

In the personal computers based on 80x86/pentium processor, specific interrupt type number

are assigned to various activities. The interrupts predefined in personal computers can be broadly

classified into the following three groups.

1. Interrupts generated from peripherals or exceptions.

2. Interrupts for services (system calls) through software interrupts.

3. Interrupts used to store pointers to the device parameters.

xx

xx

xx

xx

xx

xx

04007

04009

0400B

0400D I
P
Q

¯

Memory
Address

Memory
Location

Empty
Stack

Occupied
Stack

Fig. 6.4 : Example of stack in an 8086.

xx

xx

xx

xx

xx

xx

xx

xx

0400F

04011

04013

04015

04017

04019

0401B I
P
Q

04006

04008

0400A

0400C

0400E

04010

04012

04014

04016

04018

0401A

®Top of Stack

¯ ¯ ¯

Memory
Location

Memory
Address

TUVTUV

Even Bank Odd Bank

+

¯

¯

400E

0000 ´ 1610

SS

SP

®0400EH

 6. 17

The interrupts of each group along with function assigned are listed in Table-6.4 to

Table-6.6. In personal computers, the BIOS and OS programs will initialize the vector table for

the interrupts listed from Table-6.4 to Table-6.6. These interrupt vector tables should not be

modified by the programmer. The interrupts which are not mentioned in the Tables 6.5 to 6.7, are

not predefined in personal computers and so the undefined interrupts can be used by the programmer

for any specific task/function.

TABLE - 6.4 : HARDWARE OR EXCEPTION INTERRUPTS OF PC

 Interrupt number Function assigned

INT 00H Division by zero

INT 01H Single-step

INT 02H Nonmaskable

INT 03H Breakpoint

INT 04H Overflow

INT 05H Print screen

INT 06H Reserved

INT 07H Reserved

INT 08H Timer

INT 09H Keyboard

INT 0AH to INT 0DH Hardware Interrupts

INT 0EH Diskette

INT 0FH Hardware Interrupt

TABLE - 6.5 : SOFTWARE INTERRUPTS IN

PC FOR IMPLEMENTING SYSTEM CALLS

 Interrupt number Function assigned

INT 10H to INT 17H BIOS Interrupts

INT 18H ROM - BASIC

INT 19H Bootstrap

INT 1AH Time IO

INT 1BH Keyboard Break

INT 1CH User timer Interrupt

INT 20H to INT 2FH DOS Interrupts

INT 67H Expanded Memory

Functions

Some of the DOS and BIOS interrupts are explained in the following sections. For detailed

discussion on the interrupts of PC, readers are advised to refer the IBM PC technical reference

manual and DOS reference manual.

DOS Interrupts

The DOS (Disk Operating System) provides a large number of procedures to access devices,

files, memory and process control services. These procedures can be called in any user program

using software interrupts "INT n" instruction. The various DOS interrupts are listed in Table-6.6.

Interrupt Function assigned

 number

INT 1DH Video Parameters

INT 1EH Diskette Parameters

INT 1FH Graphics Characters

INT 41H Hard Disk-0 Parameters

INT 46H Hard Disk-1 Parameters

INT 44H EGA Graphic Characters

INT 4AH User Alarm Address

INT 50H CMOS Timer Interrupt

TABLE - 6.6 : INTERRUPTS USED

IN PC TO STORE POINTERS TO

DEVICE PARAMETERS

8086 Microprocessor and Its Appications

6. 18 Chapter 6 Assembly Language Programming

The DOS interrupt INT 21H provides a large number of services. A function code has been

allotted to each service provided by INT 21H. The function code should be loaded in AH-register

before calling INT 21H to avail the service provided by the function.

TABLE - 6.7 : DOS INTERRUPTS

 Interrupt type Service provided by the interrupt

INT 20H Program Terminate

INT 21H DOS services (DOS system call)

INT 22H Terminate Address

INT 23H Control Break Address

INT 24H Critical Error Handler Address

INT 25H Absolute Disk Read

INT 26H Absolute Disk Write

INT 27H Terminate and Stay Resident (TSR)

INT 28H DOS time slice

INT 2EH Perform DOS Command

INT 2FH Multiplex Interrupts

The various services provided by the INT 21H are classified depending on the function

performed by them and they are listed in Appendix-II.

The following steps are involved in accessing DOS services :

1. Load a DOS function number in AH-register. If there is a subfunction, then its code is loaded in AL-register.

2. Load the other registers as indicated in the DOS service formats.

3. Prepare buffers, ASCIIZ (ASCII string terminated by zero) and control blocks , if necessary.

4. Set the location of Disk Transfer Area, if necessary.

5. Invoke DOS service INT 21H.

6. The DOS service will return the required parameters in the specified registers.

Note : All values entered in the register are preserved by the DOS service call except when

information is returned in a register.

BIOS Interrupts

In personal computers, the basic interface between the hardware and software is provided by

a program stored in ROM called BIOS program. (BIOS-Basic Input Output control System). The

BIOS program consists of a large number of procedures to access various hardwares in a PC. These

procedures can be called in any user program using software interrupts "INT n" instruction. Even the

DOS uses BIOS interrupts to control the hardware. The various BIOS interrupts are listed in Table-6.8.

TABLE - 6.8 : BIOS INTERRUPTS

 Interrupt type Service name

INT 10H Video services

INT 11H Machine configuration

INT 12H Usable RAM Memory size

INT 13H Disk IO

INT 14H Serial port IO (RS 232C)

INT 15H AT services

INT 16H Keyboard IO

INT 17H Printer IO

 6. 19

Each BIOS interrupt provides a large number of services. A function code has been allotted

to each service provided by the BIOS interrupts. The function code should be loaded in the AH-

register before calling the BIOS interrupt to avail the service provided by the function. The various

functions performed by BIOS interrupts are listed in Appendix-II.

The following steps are involved in accessing the BIOS services:

1. Load a BIOS function number in the AH-register. If there is a subfunction, then its code is loaded in AL-register.

2. Load the other register as indicated in the BIOS service formats.

3. Prepare buffers, ASCIIZ (ASCII string terminated by zero) and control blocks , if necessary.

4. Invoke BIOS call.

5. The BIOS service will return the required parameters in the specified register.

Note : All values entered in the register are preserved except when information is returned

in a register.

Explanation of DOS and BIOS Interrupts

The explanation provided for DOS and BIOS interrupts consists of following three sections :

1. Operation : This section explains the dedicated operation performed by the interrupt

with specified function code.

2. Expects : This section explains the register and parameter settings required before

accessing the service.

3. Returns : This section explains the status of a service call and return parameters

after the response of the service.

INT 10H, FUNCTION CODE 02H : SET CURSOR POSITION

Operation : The INT 10H with function code 02H is used to set the position of the cursor on the monitor using

text coordinates (row and column).

Expects : AH = 02H

BH = Video page (must be zero in graphics mode)

DH = Row (y–coordinate)

DL = Column (x–coordinate)

Returns : None

INT 10H, FUNCTION CODE 03H : READ CURSOR POSITION

Operation : The INT 10H with function code 03H is used to read the current position of cursor on the monitor in text coordinates.

Expects : AH = 03H

BH = Video page

Returns : DH = Current row (y-coordinate)

DL = Current column (x-coordinate)

CH = Starting line for cursor

CL = Ending line for cursor

INT 10H, FUNCTION CODE 06H : INITIALIZE/SCROLL RECTANGULAR WINDOW UP

Operation : The INT 10H with function code 06H is used to initialize a specified rectangular window on the monitor

or scrolls the contents of a window up by a specified number of lines.

8086 Microprocessor and Its Appications

6. 20 Chapter 6 Assembly Language Programming

Expects : AH = 06H

AL = Number of lines to scroll up

 (If AL = zero, entire window is cleared or blanked)

BH = Blanked area attributes

CH = y-coordinate, upper left corner of window

CL = x-coordinate, upper left corner of window

DH = y-coordinate, lower right corner of window

DL = x-coordinate, lower right corner of window

Returns : None

INT 10H, FUNCTION CODE 07H: INITIALIZE/SCROLL RECTANGULAR WINDOW DOWN

Operation : The INT 10H with function code 07H is used to initialize a specified rectangular window or scrolls the

contents of a window down by a specified number of lines.

Expects : AH = 07H

AL = Number of lines to scroll down

 (If AL = zero, entire window is cleared or blanked)

BH = Blanked area attributes

CH = y-coordinate, upper left corner of window

CL = x-coordinate, upper left corner of window

DH = y-coordinate, lower right corner of window

DL = x-coordinate, lower right corner of window

Returns : None

INT 10H, FUNCTION CODE 09H : WRITE CHARACTER AND ATTRIBUTE AT CURSOR

Operation : The INT 10H with function code 09H is used to write a specified ASCII character and its attribute to the

monitor at the current cursor position.

Expects : AH = 09H

AL = ASCII character code

BH = Video page

BL = Attribute (in text mode) or colour (in graphics mode)

CX = Count of character to write (replication factor).

Returns : None

INT 10H, FUNCTION CODE 0AH : WRITE CHARACTER ONLY AT CURSOR

Operation : The INT 10H with function code 0AH is used to write an ASCII character to the monitor at current cursor

position. The character uses the attribute of the previous character displayed at the same position.

Expects : AH = 0AH

AL = ASCII character code

BH = Video page

BL = Colour (graphics mode)

CX = Count of character to write (replication factor)

Returns : None

INT 16H, FUNCTION CODE 00H : READ KEYBOARD CHARACTER

Operation : The INT 16H with function code 00H is used to read a character from the keyboard. It also returns the

keyboard scan code.

Expects : AH = 00H

Returns : AH = Keyboard scan code

AL = ASCII character code

 6. 21

INT 17H, FUNCTION CODE 00H : WRITE TO PRINTER

Operation : The INT 17H with function code 00H is used to send a character to the specified parallel port to which a

printer is connected. It also returns the current status of the printer.

Expects : AH = 00H

AL = Character to be written

DX = Port number ("0" for LPT1, "1" for LPT2 and "2" for LPT3)

Returns : AH = Printer status as shown below

INT 21H, FUNCTION CODE 01H : READ CHARACTER FROM STANDARD INPUT DEVICE

Operation : The INT 21H with function code 01H reads a character from the standard input device (keyboard) and

echoes (send) the character to the standard output device (monitor). It waits for the character if no

character is available on the input device.

Expects : AH = 01H

Returns : AL = ASCII code of the input key.

INT 21H, FUNCTION CODE 02H : WRITE CHARACTER TO STANDARD OUTPUT DEVICE

Operation : The INT 21H with function code 02H writes a character to the standard output device (monitor).

Expects : AH = 02H

DL = ASCII character code

Returns : None

INT 21H, FUNCTION CODE 05H : SEND A CHARACTER TO PRINTER

Operation : The INT 21H with function code 05H send a character to printer. The default parallel port is LPT1, unless

explicitly redirected by the DOS.

Expects : AH = 05H

DL = ASCII code of the output character

Returns : None

INT 21H, FUNCTION CODE 08H : READ CHARACTER WITHOUT ECHO

Operation : The INT 21H with function code 08H reads a character from the standard input device (keyboard)

without echo to the standard output device (monitor). It waits for the character, if no character is

available on the input device.

Expects : AH = 08H

Returns : AL = ASCII code of the input key.

INT 21H, FUNCTION CODE 09H : DISPLAY STRING

Operation : The INT 21H with function code 09H writes a string terminated with $ to the standard output

device(monitor).

Expects : AH = 09

DS = Segment address of the string terminated by the symbol $.

DX = Offset address of the string terminated by the symbol $.

Returns : None

AH

1 = Timed OUT

1 = IO error

1 = Printer selected

1 = Out of paper

1 = Acknowledge
1 = Printer not busy

U V| W|

Not used

B7 B6 B5
B4

B3
B2 B1 B0

→

→

→

→

→

→

8086 Microprocessor and Its Appications

6. 22 Chapter 6 Assembly Language Programming

INT 21H, FUNCTION CODE 4CH : TERMINATE WITH RETURN CODE-EXIT(n).

Operation : The INT 21H with function code 4CH is used to terminate the program with return code. The return code

"0" is generally considered as program terminating with successful execution. DOS sets the error level to

the return code.

Expects : AH = 4CH

AL = return code

Returns : None

6.8 HAND CODING OF ASSEMBLY LANGUAGE PROGRAMS

The 8086 assembly language programs should be converted to machine codes (binary

codes) for execution. This can be acheived by two methods.

In one method, the software development tools like editor, assembler and linker are used to

generate the machine codes of the program. Using editor, the assembly language program is typed

and saved as ".asm" file. Using assembler, it is converted to machine code and saved as ".obj" file.

Using linker, the machine codes are mapped to the memory of the target hardware and saved as

".exe" file. The ".exe" file is the machine language program which can be run on an 8086 system

or its compatible.

In another method, the machine language codes of each instruction is obtained manually by

referring to the machine code templates of 8086 provided by INTEL. This method is referred to as

hand coding of assembly language program.

The template of 8086 instructions are listed in Appendix-I. The templates of each instruction

will have a fixed binary code called opcode, programmable fields (like mod, reg, segreg, r/m) and

one bit special indicators (like w, d, sw, v or z). The various choice of binary codes for programmable

fields and one bit special indicators are listed in Tables A-1 to A-5 in Appendix-I:

While hand coding 8086 instructions, the following hints will be useful.

1. The term "mem" in the operand field of instructions refers to operand in memory (or memory operand) and it can be specified

in 24 different ways as shown in Table A-5 of Appendix-I. The different methods of specifying memory operand differs in the

way of calculating effective and physical address of memory. These calculations are shown in Table-3.4 in Chapter-3.

2. The term "disp8" in the operand field of jump instructions (for both conditional and unconditional) refer to the

number of memory locations to be jumped forward or backward. For forward jump the disp8 is a positive integer and

for backward jump the disp8 is a negative integer. Therefore, for backward jump the disp8 should be

expressed in 2's complement form.

The hand coding of example program 19 in Section 6.9 is shown in Table-6.9

After hand coding of the instructions, they should be stored in memory locations. In the

example program 19, the origin of the program effective address is specified as 1000
H
. Therefore,

the instructions are stored in the memory starting from the address 1000
H
. The machine codes of

the instructions along with the address of each instructions are listed in Table-6.10. In this table,

the address in the address column refers to the starting address of each instruction.

 6. 23

 I
n

st
ru

ct
io

n
T

em
p

la
t e

B
i n

a
ry

 c
o
d

e

 H
ex

 c
o
d

e

M

O
V

 S
I,

 1
1

0
0

H

1
0

1
1

 w
 r

eg
 l

.b
.d

at
a

 h
.b

.d
at

a

1

0
1

1
 1

1
1

0

 0

0
0

0
 0

0
0

0

 0
0

0
1

 0
0

0
1

B

E
 0

0
 1

1

w
 =

 1
,

re
g
 =

 1
1
0
,

l.

b
.d

at
a

=
 0

0
H
,

h
.b

.d
at

a
=

 1
1

H

M

O
V

 D
L

,
[S

I]
1

0
0

0
 1

0
d

w
m

o
d

 r
eg

 r
/m

1
0

0
0

 1
0

1
0

0
0

0
1

 0
1

0
0

8
A

 1
4

d
 =

 1
,

w
 =

 0
,

m
o
d
 =

 0
0
,

re
g
 =

 0
1
0
,

r/
m

 =
 1

0
0

M

O
V

 D
I,

 1
2

0
0

H
1

0
1

1
 w

 r
eg

l.
b

.d
a
ta

h
.b

.d
a
ta

1
0

1
1

 1
1

1
1

0
0

0
0

 0
0

0
0

0
0

0
1

 0
0

1
0

B
F

 0
0

 1
2

w
 =

 1
,

re
g
 =

 1
1
1
,

l.
b
.d

at
a

=
 0

0
H
,

h
.b

.d
at

a
=

 1
2

H

M

O
V

 B
L

,
0

1
H

1
0

1
1

 w
 r

eg
l.

b
.d

a
ta

1
0

1
1

 0
0

1
1

0
0

0
0

 0
0

0
1

B
3

 0
1

w
 =

 0
,

re
g

 =
 0

1
1

,
l.

b
.d

at
a

=
 0

1
H

M

O
V

 [
D

I]
,

B
L

1
0

0
0

 1
0

d
w

m
o

d
 r

eg
 r

/m
1

0
0

0
 1

0
0

0
0

0
0

1
 1

1
0

1
8

8
 1

D

d
 =

 0
,

w
 =

 0
,

m
o
d
 =

 0
0
,

re
g
 =

 0
1
1
,

r/
m

 =
 1

0
1

IN

C
 D

I
0

1
0

0
 0

 r
e
g

0
1

0
0

 0
1

1
1

4
7

re
g

 =
 1

1
1

I N

C
 B

L
1

1
1

1
 1

1
1

w
m

o
d

 0
0

0
 r

/m
1

1
1

1
 1

1
1

0
1

1
0

0
 0

0
1

1
F

E
 C

3

w
 =

 0
,

m
o
d
 =

 1
1
,

r/
m

 =
 0

1
1

M

O
V

 C
L

,
0

2
H

1
0

1
1

 w
 r

eg
l .

b
.d

a
ta

1
0

1
1

 0
0

0
1

0
0

0
0

 0
0

1
0

B
1

 0
2

w
 =

 0
,

re
g

 =
 0

0
1

,
l.

b
.d

at
a

=
 0

2
H

C

M
P

 B
L

,
C

L
0

0
1

1
 1

0
d

w
m

o
d

 r
eg

 r
/m

0
0

1
1

 1
0

1
0

1
1

0
1

 1
0

0
1

3
A

 D
9

d
 =

 1
,

w
 =

 0
,

m
o
d
 =

 1
1
,

re
g
 =

 0
1
1
,

r/
m

 =
 0

0
1

JZ

 S
T

O
R

E
0

1
1

1
 0

1
0

0

d
is

p
8

0
1

1
1

 0
1

0
0

S
T

O
R

E
7

4
 S

T
O

R
E

d
is

p
8

 =
 S

T
O

R
E

M

O
V

 A
H

,
0

0
H

1
0

1
1

 w
 r

eg
l.

b
.d

a
ta

1
0

1
1

 0
1

0
0

0
0

0
0

 0
0

0
0

B
4

 0
0

w
 =

 0
,

re
g

 =
 1

0
0

,
l.

b
.d

at
a

=
 0

0
H

T
A

B
L

E
 -

 6
.9

 :
 H

A
N

D
C

O
D

IN
G

 O
F

 E
X

A
M

P
L

E
 P

R
O

G
R

A
M

 1
9

8086 Microprocessor and Its Appications

6. 24 Chapter 6 Assembly Language Programming

 I

n
st

ru
ct

io
n

T
em

p
la

t e

B
in

a
ry

 c
o
d

e

 H

ex
 c

o
d

e

M

O
V

 A
L

,
B

L

1
0

0
0

 1
0

d
w

 m

o
d

 r
e

 r
/m

1
0
0
0
 1

0
1
0

1
1
0
0
 0

0
1
1

8
A

 C
3

d
 =

 1
,

w
 =

 0
,

m
o
d
 =

 1
1
,

re
g
 =

 0
0
0
,

r/
m

 =
 0

1
1

D

IV
 C

L
1

1
1

1
 0

1
1

w
m

o
d

 1
1

0
 r

/m
1

1
1

1
 0

1
1

0
1

1
1

1
 0

0
0

1
F

6
 F

1

w
 =

 0
,

m
o
d
 =

 1
1
,

r/
m

 =
 0

0
1

C

M
P

 A
H

,
0

0
H

1
0

0
0

 0
0

sw
m

o
d

 1
1

1
 r

/m

l.
b
.d

at
a

1
0

0
0

 0
0

0
0

1
1

1
1

 1
1

0
0

0
0

0
0

 0
0

0
0

8
0

 F
C

 0
0

sw
 =

 0
0
,

m
o
d
 =

 1
1
,

r/
m

 =
 1

0
0
,

l.
b
.d

at
a

=
 0

0
H

JZ

 N
E

X
T

0
1

1
1

 0
1

0
0

 d
is

p
8

0
1

1
1

 0
1

0
0

N

E
X

T
7

4
 N

E
X

T

d
is

p
8

 =
 N

E
X

T

IN

C
 C

L
1

1
1

1
 1

1
1

w
m

o
d

 0
0

0
 r

/m
1

1
1

1
 1

1
1

0
1

1
0

0
 0

0
0

1
F

E
 C

1

w
 =

 0
,

m
o
d
 =

 1
1
,

r/
m

 =
 0

0
1

JM

P
 R

E
P

E
A

T
1

1
1

0
 1

0
1

1

 d

is
p
8

1
1

1
0

 1
0

1
1

 R
E

P
E

A
T

E
B

 R
E

P
E

A
T

d
is

p
8

 =
 R

E
P

E
A

T

M

O
V

 [
D

I]
,

B
L

1
0

0
0

 1
0

d
w

m
o

d
 r

e
 r

/m
1

0
0

0
 1

0
0

0
0

0
0

1
 1

1
0

1
8

8
 1

D

d
 =

 0
,

w
 =

 0
,

m
o
d
 =

 0
0
,

re
g
 =

 0
1
1
,

r/
m

 =
 1

0
1

IN

C
 D

I
0

1
0

0
 0

re
g

0
1

0
0

 0
1

1
1

4
7

re
g

 =
 1

1
1

I N

C
 B

L
1

1
1

1
 1

1
1

 w
m

o
d

 0
0

0
 r

/m
1

1
1

1
 1

1
1

0
1

1
0

0
 0

0
1

1
F

E
 C

3

w
 =

 0
,

m
o
d
 =

 1
1
,

r/
m

 =
 0

1
1

C

M
P

 B
L

,
D

L
0

0
1

1
 1

0
d

w
m

o
d

 r
eg

 r
/m

0
0

1
1

 1
0

1
0

1
1

0
1

 1
0

0
1

3
A

 D
9

d
 =

 1
,

w
 =

 0
,

m
o
d
 =

 1
1
,

re
g
 =

 0
1
1
,

r/
m

 =
 0

0
1

JN

Z
 G

E
N

E
R

A
T

0
1

1
1

 0
1

0
1

 d
is

p
8

0
1

1
1

 0
1

0
1

G
E

N
E

R
A

T
7

5
 G

E
N

E
R

A
T

d
is

p
8

 =
 G

E
N

E
R

A
T

H

L
T

1
1

1
1

 0
1

0
0

1
1

1
1

 0
1

0
0

F
4

T
a

b
le

-6
.9

c
o

n
ti

n
u

e
d

..

.

 6. 25

TABLE - 6.10

Instruction
 Effective

Hex code

 address in Hex

MOV SI, 1100H 1000 BE 00 11

MOV DL, [SI] 1003 BA 14

MOV DI, 1200H 1005 BF 00 12

MOV BL, 01H 1008 B3 01

MOV [DI], BL 100A 88 1D

INC DI 100C 47

INC BL 100D FE C3

GENERAT : MOV CL, 02H 100F B1 02

REPEAT : CMP BL, CL 1011 3A D9

JZ STORE 1013 74 0F

MOV AH, 00H 1015 B4 00

MOV AL, BL 1017 8A C3

DIV CL 1019 F6 F1

CMP AH, 00H 101B 80 FC 00

JZ NEXT 101E 74 07

INC CL 1020 FE C1

JMP REPEAT 1022 EB ED

STORE : MOV [DI], BL 1024 88 1D

INC DI 1026 47

NEXT : INC BL 1027 FE C3

CMP BL, DL 1029 3A DA

JNZ GENERAT 102B 75 E2

HLT 102D F4

The machine codes (or binary codes) for the disp8 in the jump instructions are determined

as explained below.

The instruction "JZ STORE" is a forward jump. In this instruction the program control

should be transferred to the instruction labelled "STORE" if zero flag is one. The instruction labelled

"STORE" is stored in memory after 15
10

 (or 0F
H
) memory locations from "JZ STORE". Hence, the

machine code for "STORE" is 0F
H
.

8086 Microprocessor and Its Appications

6. 26 Chapter 6 Assembly Language Programming

The instruction "JZ NEXT" is a forward jump. In this instruction the program control

should be transferred to the instruction labelled NEXT if zero flag is one. The instruction labeled

"NEXT" is stored in the memory after 07
10

 (or 07
H
) memory locations from "JZ NEXT". Hence,

the machine code for "NEXT" is 07
H
.

The instruction "JMP REPEAT" is a backward jump. In this instruction, the program control

is unconditionally transferred to the instruction labelled REPEAT which is stored at the memory

address 1011
H
. After executing "JMP REPEAT" instruction the content of IP (Instruction Pointer)

will be the address of the next instruction, which is 1024
H
. The difference between these two addresses

gives the disp8, which is the number of locations to be jumped backward. Here, 1024
H
 − 1011

H
 = 13

H

= 19
10

. Since JMP REPEAT is a backward jump, we have to express 13
H
 in 2's complement. The

2's complement of 13
H
 is ED

H
. Therefore, the machine code for REPEAT is ED

H
.

The instruction "JNZ GENERAT" is a backward jump. In this instruction the program control

is transferred to the instruction labelled GENERAT if zero flag is zero. The instruction labeled

GENERAT is stored at memory address 100F
H
. After executing "JNZ GENERAT" instruction the

content of IP (Instruction Pointer) will be the address of the next instruction, which is 102D
H
. The

difference between these two addresses gives the disp8, which is the number of locations to be

jumped backward. Here, 102D
H
 − 100F

H
 = 1E

H
 = 30

10
. Since "JNZ GENERAT" is a backward

jump, we have to express 1E
H
 in 2's complement. The 2's complement of 1E

H
 is E2

H
. Therefore,

the machine code for GENERAT is E2
H
.

6.9 EXAMPLES OF 8086 ASSEMBLY LANGUAGE PROGRAMS

Note : 1. The example programs 1 to 26 given in this book can be run on any 8086 microprocessor

trainer kit. Since the initialization of segment registers and stack are taken care by the

monitor program in the trainer kits, those initializations are not included in the example

programs 1 to 26.

2. The example programs 27 to 30 given in this book can be run on INTEL microprocessor-based

PC (Personal Computer) or its compatibility. In these programs the PC keyboard is used as

input device and the monitor is used as the output device. The DOS and BIOS interrupts are

used to access these devices.

EXAMPLE PROGRAM 1 : 16-bit Addition

Write an assembly language program to add two numbers of a 16-bit data.

Problem Analysis

To perform addition in 8086, one of the data should be stored in a register and another data can be

stored in register/memory. After addition, the sum will be available in the destination register/memory. The

sum of two 16-bit data can be either 16 bits (sum only) or 17 bits (sum and carry). The destination register/

memory can accommodate only the sum and if there is a carry the 8086 will indicate by setting carry flag.

6. 27

Hence, one of the register is used to account for carry. The program for addition in 8086 has been

presented by three methods. In method-I, immediate addressing is used for input data and direct addressing

is used for output data. In method-II, direct addressing is used for input and output data. In method-III,

indexed addressing is employed.

Algorithm (Method - I)

1. Load the first data in AX-register.

2. Load the second data in BX-register.

3. Clear CL-register.

4. Add the two data and get the sum in AX-register.

5. Store the sum in memory.

6. Check for carry. If carry flag is set then go to next step, otherwise go to step 8.

7. Increment CL-register.

8. Store the carry in memory.

9. Stop.

Flowchart (Method - I)

Start

Load the 1 Data in AX-register
st

¯

Load the 2 Data in BX-register
nd

¯

Get the Sum in AX-register

¯

Clear CL-register

¯

Store the Sum (AX-register) in Memory

¯

¯
Is

CF = 1?

Store Carry (CL-register)
in Memory

¯

Stop
¯

¯

¬

®
Yes

No Increment
CL-register

¯

8086 Microprocessor and Its Appications

6. 28 Chapter 6 Assembly Language Programming

Assembly language program (Method - I)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-1)

DATA SEGMENT ;start of data segment.

ORG 1104H ;specify data segment starting address.

SUM DW 0 ;Reserve two memory locations for sum.

CARRY DB 0 ;Reserve one memory location for carry.

DATA ENDS ;End of data segment.

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.

ASSUME DS:DATA ;Assembler directive.

ORG 1000H ;specify program starting address.

MOV AX,205AH ;Load the first data in AX-register.

MOV BX,40EDH ;Load the second data in BX-register.

MOV CL,00H ;Clear the CL-register for carry.

ADD AX,BX ;Add the two data, sum will be in AX.

MOV SUM,AX ;Store the sum in memory location (1104H).

JNC AHEAD ;Check the status of carry flag.

INC CL ;If carry flag is set,increment CL by one.

AHEAD: MOV CARRY,CL ;Store the carry in memory location (1106H).

HLT ;Halt program execution.

CODE ENDS ;End of code segment.

END ;Assembly end.

Assembler listing for example program 1 (Method - I)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-1)

0000 DATA SEGMENT ;start of data segment.

1104 ORG 1104H ;specify data segment starting address.

1104 0000 SUM DW 0 ;Reserve two memory locations for sum.

1106 00 CARRY DB 0 ;Reserve one memory location for carry.

1107 DATA ENDS ;End of data segment.

0000 CODE SEGMENT ;start of code segment.

ASSUME CS:CODE ;Assembler directive.

ASSUME DS:DATA ;Assembler directive.

1000 ORG 1000H ;specify program starting address.

1000 B8 205A MOV AX,205AH ;Load the first data in AX-register.

1003 BB 40ED MOV BX,40EDH ;Load the second data in BX-register.

1006 B1 00 MOV CL,00H ;Clear the CL-register for carry.

1008 03 C3 ADD AX,BX ;Add the two data, sum will be in AX.

100A A3 1104 R MOV SUM,AX ;Store the sum in memory location (1104H).

100D 73 02 JNC AHEAD ;Check the status of carry flag.

100F FE C1 INC CL ;If carry flag is set,increment CL by one.

1011 88 0E 1106 R AHEAD: MOV CARRY,CL ;Store the carry in memory location (1106H).

1015 F4 HLT ;Halt program execution.

1016 CODE ENDS ;End of code segment.

END ;Assembly end.

 6. 29

Sample data

Input Data : 205A
H

 Output Data : SUM = 6147
H

 40ED
H

 CARRY = 00
H

Algorithm (Method - II)

1. Get the first data in AX-register.

2. Clear CL register.

3. Add the second data to AX-register and get the sum in AX-register.

4. Store the sum in memory.

5. Check for carry. If carry flag is set then go to next step, otherwise go to step 7.

6. Increment CL-register.

7. Store the carry in memory.

8. Stop.

Assembly language program (Method - II)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-2)

DATA SEGMENT ;Start of data segment.

ORG 1100H ;Specify data segment starting address.
DATA1 DW 0 ;Reserve two memory locations for DATA1.
DATA2 DW 0 ;Reserve two memory locations for DATA2.
SUM DW 0 ;Reserve two memory locations for sum.
CARRY DB 0 ;Reserve one memory location for carry.

DATA ENDS ;End of data segment.

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV AX,DATA1 ;Load the first data in AX-register.
MOV CL,00H ;Clear the CL-register for carry.
ADD AX,DATA2 ;Add 2nd data to AX, sum will be in AX.
MOV SUM,AX ;Store sum in memory location (1104H).
JNC AHEAD ;Check the status of carry flag.

Memory address Content

1104 47
1105 61
1106 00

Start

Get the 1 Data in AX-register
st

¯

Add the 2 Data to AX-register
nd

¯

Clear CL-register

¯

Store the Sum (AX-register) in Memory

¯

¯
Is

CF = 1?

Store Carry (CL-register) in Memory

¯

Stop
¯

¯

¬

®
Yes

No Increment CL-register

¯

Flowchart (Method - II)

8086 Microprocessor and Its Appications

6. 30 Chapter 6 Assembly Language Programming

INC CL ;If carry is set,increment CL by one.
AHEAD: MOV CARRY,CL ;Store carry in memory location (1106H).

HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 1 (Method - II)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-2)

0000 DATA SEGMENT ;Start of data segment.

1100 ORG 1100H ;Specify data segment starting address.
1100 0000 DATA1 DW 0 ;Reserve two memory locations for DATA1.
1102 0000 DATA2 DW 0 ;Reserve two memory locations for DATA2.
1104 0000 SUM DW 0 ;Reserve two memory locations for sum.
1106 00 CARRY DB 0 ;Reserve one memory location for carry.

1107 DATA ENDS ;End of data segment.

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

1000 ORG 1000H ;Specify program starting address.

1000 A1 1100 R MOV AX,DATA1 ;Load the first data in AX-register.
1003 B1 00 MOV CL,00H ;Clear the CL-register for carry.
1005 03 06 1102 R ADD AX,DATA2 ;Add 2nd data to AX, sum will be in AX.
1009 A3 1104 R MOV SUM,AX ;Store sum in memory location(1104H).
100C 73 02 JNC AHEAD ;Check the status of carry flag.
100E FE C1 INC CL ;If carry is set,increment CL by one.
1010 88 0E 1106 R AHEAD: MOV CARRY,CL ;Store carry in memory location(1106H).
1014 F4 HLT ;Halt program execution.

1015 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : Data1 = F048
H
 Output Data :Sum = 009A

H

 Data2 = 1052
H

 Carry = 01
H

Algorithm (Method - III)

1. Set SI-register as pointer for data.

2. Get the first data in AX-register.

3. Get the second data in BX-register.

4. Clear CL-register.

5. Get the sum in AX-register.

6. Store the sum in memory.

7. Check for carry. If carry flag is set then go to next step, otherwise go to step 9.

8. Increment CL-register.

9. Store the carry in memory.

10. Stop.

Memory
Content

address

 1100 48
 1101 F0
 1102 52
 1103 10

Memory
Content

address

 1104 9A

 1105 00

 1106 01

6. 31

Assembly language program (Method - III)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-3)

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for data.
MOV AX,[SI] ;Get the first data in AX-register.
MOV BX,[SI+2] ;Get the second data in BX-register.
MOV CL,00H ;Clear the CL-register for carry.
ADD AX,BX ;Add the two data, sum will be in AX-register.
MOV [SI+4],AX ;Store the sum in memory location (1104H).
JNC AHEAD ;Check the status of carry flag.
INC CL ;If carry flag is set,increment CL by one.

AHEAD: MOV [SI+6],CL ;Store carry in memory location (1106H).
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 1 (Method - III)

;PROGRAM TO ADD TWO 16-BIT DATA (METHOD-3)

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for data.
1003 8B 04 MOV AX,[SI] ;Get the first data in AX-register.
1005 8B 5C 02 MOV BX,[SI+2] ;Get the second data in BX-register.
1008 B1 00 MOV CL,00H ;Clear the CL-register for carry.
100A 03 C3 ADD AX,BX ;Add the two data, sum will be in AX-register.
100C 89 44 04 MOV [SI+4],AX ;Store the sum in memory location (1104H).
100F 73 02 JNC AHEAD ;Check the status of carry flag.
1011 FE C1 INC CL ;If carry flag is set,increment CL by one.
1013 88 4C 06 AHEAD: MOV [SI+6],CL ;Store carry in memory location (1106H).

Flowchart (Method - III)

Start

Load the Address of Data in SI-register

¯

Get 2 Data to BX-register
nd

¯

Get 1 Data in AX-register
st

¯

Clear CL-register

¯

¯
Is

CF = 1?

Store Carry (CL-register) in Memory

¯

Stop
¯

¯

¬

®
Yes

No Increment CL-register

¯

Get the Sum in AX-register

¯

Store the Sum in Memory

¯

8086 Microprocessor and Its Appications

6. 32 Chapter 6 Assembly Language Programming

1016 F4 HLT ;Halt program execution.

1017 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : Data1 = F048
H

Output Data : Sum = 009A
H

 Data2 = 1052
H

 Carry = 01
H

EXAMPLE PROGRAM 2 : 16-Bit Subtraction

Write an assembly language program to subtract two numbers of 16-bit data. Store the magnitude of the result in the

memory. In one of the memory locations store 00
H
 to indicate positive result or store 01

H
 to indicate negative result.

Problem Analysis

To perform subtraction in 8086, one of the data should be stored in a register and another data

should be stored in the register or memory. After subtraction the result will be available in the destination

register/memory. The 8086 will perform 2's complement subtraction and then complement the carry.

Therefore, if the result is negative then the carry flag is set and the destination register/memory will have

2's complement of the result. Hence, one of the register is used to account for sign of the result. To get

the magnitude of the result again take 2's complement of the result.

Algorithm

1. Set SI-register as pointer for data.

2. Get the minuend in AX-register.

3. Get the subtrahend in BX-register.

4. Clear CL-register to account for sign.

5. Subtract the content of BX from AX, the difference will be in AX.

6. Check for carry. If carry flag is set then go to next step, otherwise go to step 9.

7. Increment CL-register by one.

Memory
Content

address

1100 48
1101 F0
1102 52
1103 10

Memory Content
address

1104 9A
1105 00
1106 01

Flowchart

Start

Load the Address of Data in SI-register

¯

Get the Subtrahend in BX-register

¯

Get the Minuend in AX-register

¯

Clear CL-register

¯

®
Yes

No

Subtract BX fromAX

¯

¯
Is

CF = 1?

Store the Difference in
Memory

¯

Store the Sign Bit

¯

Stop
¯

Increment
CL-register by One

¯

Complement the
Content of
AX-register

¯

Add 01 to

AX-register
H

¯

¬

¯

 6. 33

8. Take 2's complement of the difference in AX-register (For this complement AX and add one).

9. Store the magnitude of difference in memory.

10. Store the sign bit in memory.

11. Stop.

Assembly language program

;PROGRAM TO SUBTRACT TWO 16-BIT DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Load the address of data in SI-register.
MOV AX,[SI] ;Get the minuend in AX-register.
MOV BX,[SI+2] ;Get the subtrahend in BX-register.
MOV CL,00H ;Clear the CL-register to account for sign.
SUB AX,BX ;Get the difference in AX-register.
JNC STORE ;Check the status of carry flag.
INC CL ;If carry flag is set,increment CL by one,
NOT AX ;then take 2’s complement of difference.
ADD AX,0001H

STORE: MOV [SI+4],AX ;Store difference in memory location (1104H).
MOV [SI+6],CL ;Store sign bit in memory location (1106H).
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 2

;PROGRAM TO SUBTRACT TWO 16-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Load the address of data in SI-register.
1003 8B 04 MOV AX,[SI] ;Get the minuend in AX-register.
1005 8B 5C 02 MOV BX,[SI+2] ;Get the subtrahend in BX-register.
1008 B1 00 MOV CL,00H ;Clear the CL-register to account for sign.
100A 2B C3 SUB AX,BX ;Get the difference in AX-register.
100C 73 07 JNC STORE ;Check the status of carry flag.
100E FE C1 INC CL ;If carry flag is set,increment CL by one,
1010 F7 D0 NOT AX ;then take 2’s complement of the difference.
1012 05 0001 ADD AX,0001H

1015 89 44 04 STORE: MOV [SI+4],AX ;Store difference in memory location (1104H).
1018 88 4C 06 MOV [SI+6],CL ;Store sign bit in memory location (1106H).
101B F4 HLT ;Halt program execution.

101C CODE ENDS ;End of code segment.
END ;Assembly end.

Sample data

Input Data : Minuend = 840C
H

Subtrahend = B2CA
H

Output Data : Difference = 2EBE
H

Sign Bit = 01
H

Memory

Contentaddress

 1100 0 C
 1101 84
 1102 CA
 1103 B 2
 1104 B E
 1105 2 E
 1106 01

8086 Microprocessor and Its Appications

6. 34 Chapter 6 Assembly Language Programming

EXAMPLE PROGRAM 3 : Multibyte Addition

Write an assembly language program to add two numbers of multibyte data.

Problem Analysis

In the 8086 processor, the multibyte data can be added either byte by byte or word by word. The

number of bytes in the data can be used as a count for the number of additions. One of the register is

used to account for the final carry.

To perform addition we require three address pointers : Two pointers for input data and one

pointer for output data.

Algorithm

1. Load the starting address of 1st data in SI-register.

2. Load the starting address of 2nd data in DI-register.

3. Load the starting address of result in BP-register.

4. Load the byte count in CL-register.

5. Let BX-register be byte pointer. Initialize byte pointer as zero.

6. Clear DL-register to account for final carry.

7. Clear carry flag (i.e., initial carry is zero).

8. Load a byte of 1st data in AL-register.

9. Add the corresponding byte of 2nd data in memory to AL-register along with previous carry.

10. Store the sum in memory.

11. Increment the byte pointer (BX) and result pointer (BP).

12. Decrement the byte count (CL).

Flowchart

Start

Load Address of 1 Data in SI-register
st

¯

Load Address of Result in BP-register

¯

Load Address of 2 Data in DI-register
nd

¯

Clear DL-register

¯

Load the Byte Count in CL-register

¯

Clear BX-register. (Initialize
Byte Pointer as Zero)

¯

Get a Byte of 1 Data in AL-register
st

¯

Add Corresponding Byte of 2
Data to AL-register

nd

¯

Store the Sum in Memory

¯

Increment Byte Pointer

¯

Increment Result Pointer

¯

Decrement Byte Count

¯

¯
Is

(CL) = 0?

¯
Is

CF = 1?

Increment DL-register

¯

Store DL in Memory

¯

Stop
¯

®

Yes

®

No

No

Yes

¬

¬

 6. 35

13. If byte count (CL) is zero go to next step, otherwise go to step 8.

14. Check for carry. If carry flag is set then go to next step, otherwise go to step 16.

15. Increment DL-register.

16. Store final carry in memory.

17. Stop.

Assembly language program

;PROGRAM TO ADD TWO MULTIBYTE DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for 1st data.
MOV DI,1201H ;Set DI-register as pointer for 2nd data.
MOV BP,1301H ;Set BP-register as pointer for result.
MOV CL,[SI] ;Load the count for number of bytes in CL.
INC SI ;Set SI to point to 1st byte of 1st data.
MOV BX,00H ;Initialize byte pointer as zero.
MOV DL,00H ;Initialize final carry as zero.
CLC ;Clear carry flag.

REPEAT: MOV AL,[SI+BX] ;Get a byte of 1st data in AL-register.
ADC AL,[DI+BX] ;Add the corresponding byte of 2nd data to AL.
MOV [BP],AL ;Store sum of corresponding bytes in memory.
INC BX ;Increment the byte pointer.
INC BP ;Increment the result pointer.
LOOP REPEAT ;Repeat addition until byte count is zero.

JNC AHEAD ;Check for final carry.
INC DL ;If carry flag is set then increment DL.

AHEAD: MOV [BP],DL ;Store the final carry in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 3

;PROGRAM TO ADD TWO MULTIBYTE DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for 1st data.
1003 BF 1201 MOV DI,1201H ;Set DI-register as pointer for 2nd data.
1006 BD 1301 MOV BP,1301H ;Set BP-register as pointer for result.
1009 8A 0C MOV CL,[SI] ;Load the count for number of bytes in CL.
100B 46 INC SI ;Set SI to point to 1st byte of 1st data.
100C BB 0000 MOV BX,00H ;Initialize byte pointer as zero.
100F B2 00 MOV DL,00H ;Initialize final carry as zero.
1011 F8 CLC ;Clear carry flag.

1012 8A 00 REPEAT: MOV AL,[SI+BX] ;Get a byte of 1st data in AL-register.
1014 12 01 ADC AL,[DI+BX] ;Add corresponding byte of 2nd data to AL.
1016 88 46 00 MOV [BP],AL ;Store sum of corresponding bytes in memory.
1019 43 INC BX ;Increment the byte pointer.
101A 45 INC BP ;Increment the result pointer.
101B E2 F5 LOOP REPEAT ;Repeat addition until byte count is zero.

8086 Microprocessor and Its Appications

6. 36 Chapter 6 Assembly Language Programming

101D 73 02 JNC AHEAD ;Check for final carry.
101F FE C2 INC DL ;If carry flag is set then increment DL.
1021 88 56 00 AHEAD: MOV [BP],DL ;Store the final carry in memory.
1024 F4 HLT ;Halt program execution.

1025 CODE ENDS ;End of code segment.
 END ;Assembly end.

Sample data

 1st Data : F5C2647217
H
 2nd Data : C265750712

H
 Output Data : 01B827D97929

H

EXAMPLE PROGRAM 4 : Multibyte Subtraction

Write an assembly language program to subtract two numbers of multibyte data.

Problem Analysis

In the 8086 processor, the multibyte data can be subtracted either byte by byte or word by word.

The number of bytes in the data can be used as count for number of subtractions. One of the registers

is used to account for the final borrow.

To perform subtraction we require three pointers : Two pointers for input data and one pointer for

output data.

Algorithm

1. Load the starting address of minuend in SI-register.

2. Load the starting address of subtrahend in DI-register.

3. Load the starting address of result in BP-register.

4. Load the byte count in CL-register.

5. Let BX-register be byte pointer. Initialize byte pointer as zero.

6. Clear DL-register to account for final borrow.

7. Clear carry flag, i.e., initial borrow is zero.

8. Load a byte of minuend in AL-register.

9. Subtract the corresponding byte of subtrahend in memory from AL-register along with previous borrow.

10. Store the difference in memory.

11. Increment the byte pointer (BX) and result pointer (BP).

12. Decrement the byte count (CL).

13. If byte count (CL) is zero then go to next step, otherwise go to step 8.

14. Check for carry flag, if carry flag is set then go to next step, otherwise go to step 16.

15. Increment DL-register.

16. Store final borrow in memory.

17. Stop.

Memory Content
address

 1301 29
 1302 79
 1303 D9
 1304 27
 1305 B8
 1306 01

Memory Content
address

 1200 05
 1201 12
 1202 07
 1203 75
 1204 65
 1205 C2

Memory Content
address

 1100 05
 1101 17
 1102 72
 1103 64
 1104 C2
 1105 F5

 6. 37

Assembly language program

;PROGRAM TO SUBTRACT TWO MULTIBYTE DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for minuend.
MOV DI,1201H ;Set DI-register as pointer for subtrahend.
MOV BP,1301H ;Set BP-register as pointer for result.
MOV CL,[SI] ;Load the count for number of bytes in CL.
INC SI ;Set SI to point to 1st byte of minuend.
MOV BX,00H ;Initialize byte pointer as zero.
MOV DL,00H ;Initialize final borrow as zero.
CLC ;Clear carry flag.

REPEAT: MOV AL,[SI+BX] ;Get a byte of minuend in AL-register.
SBB AL,[DI+BX] ;Subtract corresponding byte of subtrahend.
MOV [BP],AL ;Store difference in memory.
INC BX ;Increment the byte pointer.
INC BP ;Increment the result pointer.
LOOP REPEAT ;Repeat subtraction until byte count is zero.

JNC AHEAD ;Check for final borrow.
INC DL ;If carry flag is set then increment DL.

Flowchart

Start

Load the Address of Minuend in SI-register

¯

Load the Address of Result in BP-register

¯

Load the Address of Subtrahend in DI-register

¯

Clear DL-register

¯

Load the Byte Count in CL-register

¯

Subtract Corresponding Byte of
Subtrahend fromAL-register

¯

Get a Byte of Minuend in AL-register

¯

Increment Result Pointer (BP)

¯

Decrement Byte Count

¯

¯
Is

(CL) = 0?

¯
Is

CF = 1?

Increment DL-register

¯

Store DL in Memory

¯

Stop
¯

®

Yes

®

No

No

Yes

¬¬

Initialize Byte Pointer (BX) as Zero

¯

Store the Result in Memory

¯

Increment Byte Pointer (BX)

¯

8086 Microprocessor and Its Appications

6. 38 Chapter 6 Assembly Language Programming

AHEAD: MOV [BP],DL ;Store the final borrow in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 4

;PROGRAM TO SUBTRACT TWO MULTIBYTE DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;Specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for minuend.
1003 BF 1201 MOV DI,1201H ;Set DI-register as pointer for subtrahend.
1006 BD 1301 MOV BP,1301H ;Set BP-register as pointer for result.
1009 8A 0C MOV CL,[SI] ;Load the count for number of bytes in CL.
100B 46 INC SI ;Set SI to point to 1st byte of minuend.
100C BB 0000 MOV BX,00H ;Initialize byte pointer as zero.
100F B2 00 MOV DL,00H ;Initialize final borrow as zero.
1011 F8 CLC ;Clear carry flag.

1012 8A 00 REPEAT: MOV AL,[SI+BX];Get a byte of minuend in AL-register.
1014 1A 01 SBB AL,[DI+BX];Subtract corresponding byte of subtrahend.

1016 88 46 00 MOV [BP],AL ;Store difference in memory.
1019 43 INC BX ;Increment the byte pointer.
101A 45 INC BP ;Increment the result pointer.
101B E2 F5 LOOP REPEAT ;Repeat subtraction until byte count is zero.

101D 73 02 JNC AHEAD ;Check for final borrow.
101F FE C2 INC DL ;If carry flag is set then increment DL.
1021 88 56 00 AHEAD: MOV [BP],DL ;Store the final borrow in memory.
1024 F4 HLT ;Halt program execution.

1025 CODE ENDS ;End of code segment.
 END ;Assembly end.

Sample Data

Minuend : D2564A6756
H

 Subtrahend : F2C579F2E7
H
 Output Data : 01DF90D0746F

EXAMPLE PROGRAM 5 : Sum of an Array

Write an assembly language program to determine the sum of elements in an array.

Problem Analysis

Declare the content of one of the register as sum and take initial value of sum as zero. The sum of

elements of array can be obtained by adding the elements of array one by one (i.e., byte by byte) to sum.

The number of bytes in the array can be used as count for number of additions to be performed. The carry

in each addition can be separately added in a register and saved as high byte of sum.

Memory Content
address

 1100 05

 1101 56

 1102 67

 1103 4A

 1104 56

 1105 D2

Memory
Content

address

 1200 05
 1201 E7
 1202 F2
 1203 79
 1204 C5
 1205 F2

Memory Content
address

 1301 6F
 1302 74
 1303 D0
 1304 90
 1305 DF
 1306 01

 6. 39

Algorithm

1. Load the address of the array in SI-register.

2. Load the address of the result in DI-register.

3. Load the count value in CL-register.

4. Let the content of AX be sum and keep initial sum as zero.

5. Add a byte of array to sum.

6. Check for carry. If carry flag is set then go to next step otherwise go to step 8.

7. Increment high byte of sum (AH-register).

8. Increment the array pointer.

9. Decrement the count (CL-register).

10. If count (CL) is zero then go to next step, otherwise go to step 5.

11. Store the 16-bit sum in memory.

12. Stop.

Assembly language program

;PROGRAM TO FIND THE SUM OF THE ELEMENTS IN AN ARRAY

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for array.
MOV DI,1200H ;Set DI-register as pointer for result.
MOV CL,[SI] ;Set CL as count for number of bytes in array.
INC SI ;Set SI to point to 1st byte of array.
MOV AX,0000H ;Set initial sum as zero.

Flowchart
Start

Load the Address of Array in SI-register

¯

Load the Count Value in CL-register

¯

Load the Address of Result in DI-register

¯

Initialize Sum (AX) as Zero

¯

¯

¯
Is

CF = 1?

Add a Byte of Array to Sum

¯

Increment High Byte of Sum
(AH-register)

¯

Increment Address Pointer

¯

Decrement the Count

¯
Is

(CL) = 0?

¯
Store the Sum in Memory

Stop
¯

¬

®® No
No

¬

Yes
Yes

8086 Microprocessor and Its Appications

6. 40 Chapter 6 Assembly Language Programming

AGAIN: ADD AL,[SI] ;Add a byte of array to sum.
JNC AHEAD ;Check for carry flag.
INC AH ;If carry flag is set then increment AH.

AHEAD: INC SI ;Increment array pointer.
LOOP AGAIN ;Repeat addition until count is zero.

MOV [DI],AX ;Store the sum in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 5

;PROGRAM TO FIND THE SUM OF THE ELEMENTS IN AN ARRAY

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for array.
1003 BF 1200 MOV DI,1200H ;Set DI-register as pointer for result.
1006 8A 0C MOV CL,[SI] ;Set CL as count for number of bytes in array.
1008 46 INC SI ;Set SI to point to 1st byte of array.
1009 B8 0000 MOV AX,0000H ;Set initial sum as zero.
100C 02 04 AGAIN: ADD AL,[SI] ;Add a byte of array to sum.
100E 73 02 JNC AHEAD ;Check for carry flag.
1010 FE C4 INC AH ;If carry flag is set then increment AH.
1012 46 AHEAD: INC SI ;Increment array pointer.
1013 E2 F7 LOOP AGAIN ;Repeat addition until count is zero.

1015 89 05 MOV [DI],AX ;Store the sum in memory.
1017 F4 HLT ;Halt program execution.

1018 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample data

Input Data :06 Output Data : 02AD
H

 12

 47

 C2

 F5

 47

 56

EXAMPLE PROGRAM 6 : BCD Addition

Write an assembly language program to add two numbers of BCD data.

Problem Analysis

The 8086 processor will perform only binary addition. Hence, for BCD addition, the binary addition

of BCD data is performed and then the sum is corrected to get the result in BCD. After the binary addition

the following correction should be made to get the result in BCD :

1. If the sum of lower nibble exceeds 9 or if there is auxiliary carry then 6 is added to lower nibble.

2. If the sum of upper nibble exceeds 9 or if there is carry then 6 is added to upper nibble.

Memory Content
address

 1100 06
 1101 12
 1102 47
 1103 C2
 1104 F5
 1105 47
 1106 56
 1200 AD
 1201 02

←Count

Array

Sum

I
P
Q

I

P

Q

 6. 41

The above correction is taken care of by the DAA(Decimal Adjust Accumulator) instruction.

Therefore after binary addition, execute the DAA instruction to do the above correction in the sum.

Algorithm

1. Load the address of data in SI-register.

2. Clear CL-register to account for carry.

3. Load the first data in AX-register and second data in BX-register.

4. Perform binary addition of low byte of data to get the sum in AL-register.

5. Adjust the sum of low bytes to BCD.

6. Save the sum of low bytes in DL-register.

7. Get the high byte of first data in AL-register.

8. Add the high byte of second data and previous carry to AL-register. Now the sum of high bytes will be in AL-register.

9. Adjust the sum of high bytes to BCD.

10. Save the sum of high bytes in DH-register.

11. Check for carry. If carry flag is set then go to next step, otherwise go to step 13.

12. Increment CL-register.

13. Save the sum (DX-register) in memory.

14. Save the carry (CL-register) in memory.

15. Stop.

Assembly language program

;PROGRAM TO ADD TWO BCD DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

Flowchart

Start

¯

Get the First Data in AX-register

¯

Clear CL-register

¯

Get the Second Data in BX-register

¯

Add BH to AL to Get the Sum of
High Bytes in AL

¯

Stop
¯

¬

Load the Address of Data in SI-register

Add BL to AL in Order to Get
the Sum of Low Bytes in AL

¯

Adjust the Sum to BCD

¯

Save the Sum in DL

¯

Get the High Byte of First Data in AL

¯

Adjust the Sum to BCD

¯

Save the Sum of High Bytes in DH

¯

¯
Is

CF = 1?

Increment CL-register

¯

Save Sum and Carry in Memory

¯

®

Yes

No

8086 Microprocessor and Its Appications

6. 42 Chapter 6 Assembly Language Programming

MOV SI,1100H ;Set SI-register as pointer for data.
MOV CL,00H ;Clear CL-register.
MOV AX,[SI] ;Get first data in AX-register.
MOV BX, [SI+2] ;Get second data in BX-register.

ADD AL,BL ;Get sum of low bytes in AL-register.
DAA ;Adjust the sum to BCD.
MOV DL,AL ;Save sum of low bytes in DL-register.

MOV AL,AH ;Move high byte of first data to AL.
ADC AL,BH ;Get sum of high bytes in AL-register.
DAA ;Adjust the sum to BCD.
MOV DH,AL ;Save sum of high bytes in DH-register.

JNC AHEAD ;Check for carry flag.
INC CL ;If carry flag is set then increment CL.

AHEAD: MOV [SI+4],DX ;Store the sum in memory.
MOV [SI+6],CL ;Store the carry in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 6

;PROGRAM TO ADD TWO BCD DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for data.
1003 B1 00 MOV CL,00H ;Clear CL-register.
1005 8B 04 MOV AX,[SI] ;Get first data in AX-register.
1007 8B 5C 02 MOV BX, [SI+2] ;Get second data in BX-register.

100A 02 C3 ADD AL,BL ;Get sum of low bytes in AL-register.
100C 27 DAA ;Adjust the sum to BCD.
100D 8A D0 MOV DL,AL ;Save sum of low bytes in DL-register.

100F 8A C4 MOV AL,AH ;Move high byte of first data to AL.
1011 12 C7 ADC AL,BH ;Get sum of high bytes in AL-register.
1013 27 DAA ;Adjust the sum to BCD.
1014 8A F0 MOV DH,AL ;Save sum of high bytes in DH-register.

1016 73 02 JNC AHEAD ;Check for carry flag.
1018 FE C1 INC CL ;If carry flag is set then increment CL.
101A 89 54 04 AHEAD: MOV [SI+4],DX ;Store the sum in memory.
101D 88 4C 06 MOV [SI+6],CL ;Store the carry in memory.
1020 F4 HLT ;Halt program execution.

1021 CODE ENDS ;End of code segment.
 END ;Assembly end.

Sample data

Input Data : Data1 = 4578
10
 Output Data : 013176

10

 Data2 = 8598
10

Memory Content
address

 1100 78
 1101 45
 1102 98
 1103 85
 1104 76
 1105 31
 1106 01

Data 1

Sum

Data 2

Carry

I
P
Q

←

I
P
Q
I
P
Q

 6. 43

EXAMPLE PROGRAM 7 : BCD Subtraction

Write an assembly language program to subtract two numbers of BCD data.

Problem Analysis

The 8086 processor will perform only binary subtraction. Hence for BCD subtraction, the binary

subtraction of BCD data is performed and then the difference is corrected to get the result in BCD. After

binary subtraction the following correction should be made to get the result in BCD.

1. If the difference of lower nibble exceeds 9 or if there is auxiliary carry then 6 is subtracted

from lower nibble.

2. If the difference of upper nibble exceeds 9 or if there is carry then 6 is subtracted from upper nibble.

The above correction is taken care by the DAS (Decimal Adjust after Subtraction) instruction.

Therefore, after binary subtraction, execute DAS to do the above correction in the difference.

Algorithm

1. Load the address of data in SI-register.

2. Clear CL-register to account for borrow.

3. Load the minuend in AX-register.

4. Get the subtrahend in BX-register.

5. Subtract BL from AL to get the difference of low bytes in AL.

6. Adjust the difference of low bytes to BCD and then save it in DL-register.

7. Get the high byte of minuend in AL-register.

8. Subtract BH and the previous borrow from AL to get the difference of high bytes in AL-register.

9. Adjust the difference of high bytes to BCD and save it in DH-register.

10. Check for carry. If carry flag is set then go to next step, otherwise go to step 12.

12. Increment CL-register.

13. Save the difference (DX-register) and the borrow (CL-register) in memory.

14. Stop.

Flowchart

Start

¯

Get the Minuend in AX-register

¯

Clear CL-register

¯

Get the Subtrahend in BX-register

¯

Subtract BH fromAL to Get the
Difference of High Bytes in AL

¯

Stop
¯

¬

Load the Address of Data in SI-register

Subtract BL fromAL to Get the
Difference of Low Bytes in AL

¯

Adjust the Difference to BCD

¯

Save the Difference of Low Bytes in
DL-register

¯

Get the High Byte of Minuend in AL-register

¯

Adjust the Difference to BCD

¯

Save the Difference of High Bytes
in DH

¯

¯
Is

CF = 1?

¯

Save the Difference and Borrow
in Memory

¯

®

Yes

No

Increment CL-register

8086 Microprocessor and Its Appications

6. 44 Chapter 6 Assembly Language Programming

Assembly language program

;PROGRAM TO SUBTRACT TWO BCD DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.
MOV SI,1100H ;Set SI-register as pointer for data.
MOV CL,00H ;Clear CL-register.
MOV AX,[SI] ;Get minuend in AX-register.
MOV BX,[SI+2] ;Get subtrahend in BX-register.
SUB AL,BL ;Get difference of low bytes in AL-register.
DAS ;Adjust the difference to BCD.
MOV DL,AL ;Save difference of low bytes in DL-register.
MOV AL,AH ;Move high byte of minuend to AL-register.
SBB AL,BH ;Get difference of high bytes in AL-register.
DAS ;Adjust the difference to BCD.
MOV DH,AL ;Save difference of high bytes in DH-register.
JNC AHEAD ;Check for carry flag.
INC CL ;If carry flag is set then increment CL.

AHEAD: MOV [SI+4],DX ;Store the difference in memory.
MOV [SI+6],CL ;Store the borrow in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 7

;PROGRAM TO SUBTRACT TWO BCD DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.
1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for data.
1003 B1 00 MOV CL,00H ;Clear CL-register.
1005 8B 04 MOV AX,[SI] ;Get minuend in AX-register.
1007 8B 5C 02 MOV BX, [SI+2] ;Get subtrahend in BX-register.
100A 2A C3 SUB AL,BL ;Get difference of low bytes in AL-register.
100C 2F DAS ;Adjust the difference to BCD.
100D 8A D0 MOV DL,AL ;Save difference of low bytes in DL-register.
100F 8A C4 MOV AL,AH ;Move high byte of minuend to AL-register.
1011 1A C7 SBB AL,BH ;Get difference of high bytes in AL-register.
1013 2F DAS ;Adjust the difference to BCD.
1014 8A F0 MOV DH,AL ;Save difference of high bytes in DH-register.
1016 73 02 JNC AHEAD ;Check for carry flag.
1018 FE C1 INC CL ;If carry flag is set then increment CL.
101A 89 54 04 AHEAD: MOV [SI+4],DX ;Store the difference in memory.
101D 88 4C 06 MOV [SI+6],CL ;Store the borrow in memory.
1020 F4 HLT ;Halt program execution.

1021 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : Minuend = 9572
10

Subtrahend = 4793
10

Output Data : 004779
10

Memory
Content

address

 1100 72

 1101 95

 1102 93

 1103 47

 1104 79

 1105 47

 1106 00

Minuend

Difference

Borrow

Subtrahend

I
P
Q

←

I
P
Q
I
P
Q

 6. 45

EXAMPLE PROGRAM 8 : Multiplication

Write an assembly language program to multiply two numbers of 16-bit data.

Problem Analysis

To perform multiplication in 8086 processor one of the data should be stored in AX-register and

another data can be stored in the register/memory. After multiplication the product will be in AX and DX

registers.

Algorithm

1. Load the address of data in SI-register.

2. Get the first data in AX-register.

3. Get the second data in BX-register.

4. Multiply the content of AX and BX. The product will be in AX and DX.

5. Save the product (AX and DX) in memory.

6. Stop.

Assembly language program

;PROGRAM TO MULTIPLY TWO 16-BIT DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI as pointer for data.
MOV AX,[SI] ;Get the 1st data in AX-register.
MOV BX,[SI+2] ;Get the 2nd data in BX-register.
MUL BX ;Multiply AX and BX.

 ;The product will be in AX and DX registers.
MOV [SI+4],AX ;Save the lower 16 bits of product in memory.
MOV [SI+6],DX ;Save the upper 16 bits of product in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Flowchart

Start

Load the Address of Data in SI-register

¯

Get the First Data in AX-register

¯

¯
Stop

¯

Get the Second Data in BX-register

¯

Multiply the Content of AX and BX

¯

Save the Lower Word (AX) of
Product in Memory

¯

Save the Upper Word (DX) of
Product in Memory

¯

8086 Microprocessor and Its Appications

6. 46 Chapter 6 Assembly Language Programming

Assembler listing for example program 8

;PROGRAM TO MULTIPLY TWO 16-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI as pointer for data.
1003 8B 04 MOV AX,[SI] ;Get the 1st data in AX-register.
1005 8B 5C 02 MOV BX,[SI+2] ;Get the 2nd data in BX-register.
1008 F7 E3 MUL BX ;Multiply AX and BX.

;The product will be in AX and DX registers.
100A 89 44 04 MOV [SI+4],AX ;Save the lower 16 bits of product in memory.
100D 89 54 06 MOV [SI+6],DX ;Save the upper 16 bits of product in memory.
1010 F4 HLT ;Halt program execution.

1011 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data
Input Data : Data1 = EF1A

H
Output Data : BFC28A20

H

 Data2 = CD50
H

EXAMPLE PROGRAM 9 : 32-Bit Multiplication

Write an assembly language program to multiply two numbers of 32-bit data.

Problem Analysis

In 8086 processor the 32-bit multiplication can be implemented in terms of 16-bit multiplication. The

given data can be divided into two words (Lower Word (LW) and Upper Word (UW)) as shown below:

Data1 (32-bit) → D1
UW

 (16-bit), D1
LW

 (16-bit)

Data2 (32-bit) → D2
UW

 (16-bit), D2
LW

 (16-bit)

Then perform the following four multiplications. Each multiplication will give a 32-bit result which

can be divided into Lower Word (LW) and Upper Word (UW) as shown below:

Product 1 (P1) : D1
LW

 × D2
LW

 = P1
UW

, P1
LW

Product 2 (P2) : D1
UW

 × D2
LW

 = P2
UW

, P2
LW

Product 3 (P3) : D1
LW

 × D2
UW

 = P3
UW

, P3
LW

Product 4 (P4) : D1
UW

 × D2
UW

 = P4
UW

, P4
LW

The result of the above four multiplications can be added to get the final result as shown below:

The final product will have a size of four words and they are denoted as P
W1

, P
W2

, P
W3

 and P
W4

.
D1

UW
D1

LW

 × D2
UW

D2
LW

P1
UW

P1
LW

P2
UW

P2
LW

P3
UW

P3
LW

P4
UW

P4
LW

P
W4

P
W3

P
W2

P
W1

Memory Content
address

1100 1A
1101 EF
1102 50
1103 CD

Memory Content
address

1104 20
 1105 8A
 1106 C2
 1107 BF

 6. 47

Flowchart

Start

¯

Get D1 in AX-registerLW

¯

Clear CX-register

¯

Multiply AX and BP and Get the
Product1 in AX and DX

¯

Add P3 to SILW

¯

Stop
¯

Load the Address of Data in
BX-register

¯
Is

CF = 1?

¯

Add CX and Previous Carry to DX to
Get the Fourth Word of Final Product

¯

Yes

Increment CX

Get D2 in BP-registerLW

¯

Save AX as First Word of Final
Product

¯

Save P1 in SI-registerUW

¯

Get D1 in AX-registerUW

¯

Multiply AX and BP and Get the
Product2 in AX and DX

¯

Add P2 to SILW

¯

¯
Is

CF = 1?

Increment CX

¯

Save P2 in DIUW

¯

Get D1 in AXLW

¯

Get D2 in BPUW

¯

Multiply AX and BP and Get the
Product3 in AX and DX

¯

¬

®
No

Yes

Add CX and P3 to DIUW

¯

Clear CX

¯

¯
Is

CF = 1?

Increment CX

¯

Save SI as Second Word of
Final Product

¯

Get D1 in AXUW

¯

Multiply AX and BP to Get the
Product4 in AX and DX

¯

Add DI to AX to Get Third Word
of Final Product

¯

Save Third and Fourth Word of
Final Product in Memory

¯

¬

®
No

No

¬

Yes

8086 Microprocessor and Its Appications

6. 48 Chapter 6 Assembly Language Programming

Algorithm

1. Load the address of data in BX-register.

2. Clear CX-register to account for carry in additions.

3. Get D1
LW

 in AX-register and D2
LW

 in BP-register.

4. Multiply AX and BP to get product 1 in AX and DX.

5. Save AX as first word of final product.

6. Save P1
UW

 in SI-register.

7. Get D1
UW

 in AX-register.

8. Multiply AX and BP to get product 2 in AX and DX.

9. Add P2
LW

 to SI-register.

10. Check for carry. If carry flag is set then go to next step, otherwise go to step 12.

11. Increment CX-register.

12. Save P2
UW

 in DI-register.

13. Get D1
LW

 in AX-register and D2
UW

 in BP-register.

14. Multiply AX and BP to get product 3 in AX and DX.

15. Add P3
LW

 to SI-register.

16. Check for carry. If carry flag is set then go to next step, otherwise go to step 18.

17. Increment CX-register.

18. Add CX and P3
UW

 to DI-register.

19. Clear CX-register.

20. Check for carry. If carry flag is set then go to next step, otherwise go to step 22.

21. Increment CX-register.

22. Save SI as second word of final product.

23. Get D1
UW

 in AX-register.

24. Multiply AX and BP to get product 4 in AX and DX.

25. Add DI to AX to get third word of final product in AX.

26. Add CX to DX along with previous carry to get fourth word of final product in DX.

27. Save third (AX) and fourth (DX) word of final product in memory.

28. Stop.

Assembly language program

;PROGRAM TO MULTIPLY TWO 32-BIT DATA

CODE SEGMENT ;Start of code segment.

ORG 1000H ;specify program starting address.
ASSUME CS:CODE ;Assembler directive.

MOV BX,1100H ;Set BX as pointer for data.
MOV CX,0000H ;Clear CX.

P1: MOV AX,[BX] ;Get D1LW in AX-register.
MOV BP,[BX+04] ;Get D2LW in BP-register.
MUL BP ;Get P1 in AX and DX.
MOV [BX+08],AX ;Save P1LW (first word of product) in memory.
MOV SI,DX ;Save P1UW in SI-register.

P2: MOV AX,[BX+02] ;Get D1UW in AX-register.
MUL BP ;Get P2 in AX and DX.
ADD SI,AX ;Add P1UW and P2LW.
JNC SKIP1
INC CX

SKIP1: MOV DI,DX ;Save P2UW in DI-register.

P3: MOV AX,[BX] ;Get D1LW in AX-register.
MOV BP,[BX+06] ;Get D2UW in BP-register.
MUL BP ;Get P3 in AX and DX.

6. 49

ADD SI,AX ;Get sum of P1UW, P2LW and P3LW in SI.
JNC SKIP2
INC CX

SKIP2: ADD DX,CX ;Get sum of P2UW and P3UW in DI-register.
MOV CX,0000H
ADC DI,DX
JNC SKIP3
INC CX

SKIP3: MOV [BX+0AH],SI ;Save second word of the product in memory.

P4: MOV AX,[BX+02] ;Get D1UW in AX-register.
MUL BP ;Get P4 in AX and DX.
ADD AX,DI ;Get sum of P2UW, P3UW and P4LW in AX.
ADC DX,CX
MOV [BX+0CH],AX ;Save third word of the product in memory.
MOV [BX+0EH],DX ;Save fourth word of the product in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 9

;PROGRAM TO MULTIPLY TWO 32-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

1000 ORG 1000H ;specify program starting address.
ASSUME CS:CODE ;Assembler directive.

1000 BB 1100 MOV BX,1100H ;Set BX as pointer for data.
1003 B9 0000 MOV CX,0000H ;Clear CX.

1006 8B 07 P1: MOV AX,[BX] ;Get D1LW in AX-register.
1008 8B 6F 04 MOV BP,[BX+04] ;Get D2LW in BP-register.
100B F7 E5 MUL BP ;Get P1 in AX and DX.
100D 89 47 08 MOV [BX+08],AX ;Save P1LW (first word of product) in memory.
1010 8B F2 MOV SI,DX ;Save P1UW in SI-register.

1012 8B 47 02 P2: MOV AX,[BX+02] ;Get D1UW in AX-register.
1015 F7 E5 MUL BP ;Get P2 in AX and DX.
1017 03 F0 ADD SI,AX ;Add P1UW and P2LW.
1019 73 01 JNC SKIP1
101B 41 INC CX
101C 8B FA SKIP1: MOV DI,DX ;Save P2UW in DI-register.

101E 8B 07 P3: MOV AX,[BX] ;Get D1LW in AX-register.
1020 8B 6F 06 MOV BP,[BX+06] ;Get D2UW in BP-register.
1023 F7 E5 MUL BP ;Get P3 in AX and DX.
1025 03 F0 ADD SI,AX ;Get sum of P1UW, P2LW and P3LW in SI.
1027 73 01 JNC SKIP2
1029 41 INC CX
102A 03 D1 SKIP2: ADD DX,CX ;Get sum of P2UW and P3UW in DI-register.
102C B9 0000 MOV CX,0000H
102F 13 FA ADC DI,DX
1031 73 01 JNC SKIP3
1033 41 INC CX
1034 89 77 0A SKIP3: MOV [BX+0AH],SI ;Save second word of the product in memory.

1037 8B 47 02 P4: MOV AX,[BX+02] ;Get D1UW in AX-register.
103A F7 E5 MUL BP ;Get P4 in AX and DX.
103C 03 C7 ADD AX,DI ;Get sum of P2UW, P3UW and P4LW in AX.

103E 13 D1 ADC DX,CX
1040 89 47 0C MOV [BX+0CH],AX ;Save third word of the product in memory.

8086 Microprocessor and Its Appications

6. 50 Chapter 6 Assembly Language Programming

1043 89 57 0E MOV [BX+0EH],DX ;Save fourth word of the product in memory.
1046 F4 HLT ;Halt program execution.

1047 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : Data1 : 42107F6C
H

Output Data : 0436 636C B64F 17D4
H

 Data2 : 1052C26F
H

EXAMPLE PROGRAM 10 : Division

Write an assembly language program to divide 32-bit data by 16-bit data.

Problem Analysis

To perform division in the 8086 processor the 32-bit dividend should be stored in AX and DX

registers (The lower word in AX and upper word in DX). The 16-bit divisor can be stored in the register/

memory. After division the quotient will be in AX-register and the remainder will be in DX-register.

Algorithm

1. Load the address of data in SI-register.

2. Get the lower word of dividend in AX-register.

3. Get the upper word of dividend in DX-register.

4. Get the divisor in BX-register.

5. Perform division to get quotient in AX and remainder in DX.

6. Save the quotient (AX) and the remainder (DX) in memory.

7. Stop.

Flowchart

Memory Content
address

1100 6C
 1101 7F
 1102 10
 1103 42
 1104 6F
 1105 C2
 1106 52
 1107 10

Memory Content
address

1108 D4
1109 17
110A 4F
110B B6
110C 6C
110D 63
110E 36
110F 04

Start

Get the Lower Word of Dividend
in AX-register

¯

Divide AX and DX with BX

¯ ¯
Stop

Save the Quotient (AX) in Memory

¯

Get the Upper Word of Dividend
in DX-register

¯

Save the Remainder (DX) in Memory

¯

6. 51

Assembly language program

;PROGRAM TO DIVIDE 32-BIT DATA BY 16-BIT DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.

ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI as pointer for data.

MOV AX,[SI] ;Get the lower 16-bit of dividend in AX-register.

MOV DX,[SI+2] ;Get the upper 16-bit of dividend in DX-register.

MOV BX,[SI+4] ;Get the divisor in BX-register.

DIV BX ;Divide the content of AX and DX with content of BX.

 ;The quotient will be in AX-register.

 ;The remainder will be in DX-register.

MOV [SI+6],AX ;Save the quotient in memory.

MOV [SI+8],DX ;Save the remainder in memory.

HLT ;Halt program execution.

CODE ENDS ;End of code segment.

END ;Assembly end.

Assembler listing for example program 10

;PROGRAM TO DIVIDE 32-BIT DATA BY 16-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.

1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI as pointer for data.

1003 8B 04 MOV AX,[SI] ;Get the lower 16-bit of dividend in AX-register.

1005 8B 54 02 MOV DX,[SI+2] ;Get the upper 16-bit of dividend in DX-register.

1008 8B 5C 04 MOV BX,[SI+4] ;Get the divisor in BX-register.

100B F7 F3 DIV BX ;Divide the content of AX and DX with content of BX.

;The quotient will be in AX-register.

;The rezmainder will be in DX-register.

100D 89 44 06 MOV [SI+6],AX ;Save the quotient in memory.

1010 89 54 08 MOV [SI+8],DX ;Save the remainder in memory.

1013 F4 HLT ;Halt program execution.

1014 CODE ENDS ;End of code segment.

 END ;Assembly end.

Sample Data

Input Data : Dividend = 71C2580A
H

Output Data : Quotient = 75EE
H

 Divisor = F6F2
H

 Remainder = 290E
H

Memory address Content

1100 0A
1101 58
1102 C2
1103 71
1104 F2
1105 F6

Memory address Content

 1106 EE
 1107 75

 1108 0E

 1109 29

8086 Microprocessor and Its Appications

6. 52 Chapter 6 Assembly Language Programming

EXAMPLE PROGRAM 11 : Search for a Given Data

Write an assembly language program to search a given data in an array. Also determine the position and address of the

data in the array.

Problem Analysis

The given data is stored in a register, and then it is compared with each element of the array. The

comparison is terminated once the data is found or after comparing all elements of the array. One register

can be used to keep track of the position of the element being compared. One of the index registers can be

used to hold the address of the element being compared.

If the data is found then store FF
H
 in a memory location to show availability, and store the position

and address in consecutive memory locations. If data is not available then store zero in all these locations.

The array is terminated with character 20
H
.

Flowchart
Start

Load the Address of Array in SI-register
and Address of Given Data in DI-register

¯

Move CX to Memory Locations Reserved for
Availability, Position and Address

¯

Get the Data to Search in DL-register

¯

¯
Is

ZF = 1?

Increment BL and SI

¯

Clear CX-register

¯

Yes

Initialize BL-register as Position Count

¯

Get an Element of Array in AL

¯

Compare AL and DL

¯

Get Next Element of Array in AL

¯

Compare AL with 20H

¯

¯
Is

ZF = 1?

¯
Move FF to BH-registerH

Store BH-register in Memory

Store BL in Memory

Store SI in Memory

Stop
¯

®
No

®

¬

No

®

Yes

6. 53

Algorithm

1. Set SI-register as pointer for the array.

2. Set DI-register as pointer for given data and result.

3. Get the data to search in DL-register.

4. Let BL-register keep track of position. Initialize the position count as one.

5. Get an element of array in AL.

6. Compare an element of array (AL) with given data (DL).

7. Check for zero flag. If zero flag is set then go to step 14, otherwise go to next step.

8. Increment the array pointer (SI) and position count (BL).

9. Get next element of array in AL-register.

10. Compare AL with end marker (20
H
).

11. Check zero flag. If zero flag is not set then go to step 6, otherwise go to next step.

12. Clear CX-register and store CX-register in four consecutive locations in memory after the given data.

13. Jump to end (step 17).

14. Move FF
H
 to BH-register and store it in memory.

15. Store the position count (BL) in memory.

16. Store the address (SI) in memory.

17. Stop.

Assembly language program

;PROGRAM TO SEARCH A GIVEN DATA IN AN ARRAY

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

START: MOV SI,1100H ;Set SI-register as pointer for array.
MOV DI,1200H ;Load the address of data to search in DI-register.
MOV DL,[DI] ;Get the data to search in DL-register.
MOV BL,01H ;Set BL-register as position count.
MOV AL,[SI] ;Get first element of array in AL-register.

AGAIN: CMP AL,DL ;Compare an element of array with data to search.
JZ AVAIL ;If data are equal then jump to AVAIL.
INC SI ;If data are not equal, increment address pointer.
INC BL ;Increment position count.
MOV AL,[SI] ;Get the next element of array in AL-register.
CMP AL,20H ;Check for end of array,
JNZ AGAIN ;if not end, repeat search,otherwise go to NOTAVA.

NOTAVA: MOV CX,0000H ;If search data is not found, then store zero.
MOV [DI+1],CX
MOV [DI+3],CX
JMP OVER

AVAIL: MOV BH,0FFH
MOV [DI+1],BH ;Store FFH to indicate availability of data.
MOV [DI+2],BL ;Store the position of data.
MOV [DI+3],SI ;Store the address of data.

OVER: HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

8086 Microprocessor and Its Appications

6. 54 Chapter 6 Assembly Language Programming

Assembler listing for example program 11

;PROGRAM TO SEARCH A GIVEN DATA IN AN ARRAY

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.

1000 ORG 1000H ;specify program starting address.

1000 BE 1100 START: MOV SI,1100H ;Set SI-register as pointer for array.

1003 BF 1200 MOV DI,1200H ;Load the address of data to search in DI-register.

1006 8A 15 MOV DL,[DI] ;Get the data to search in DL-register.

1008 B3 01 MOV BL,01H ;Set BL register as position count.

100A 8A 04 MOV AL,[SI] ;Get first element of array in AL-register.

100C 3A C2 AGAIN: CMP AL,DL ;Compare an element of array with data to search.

100E 74 15 JZ AVAIL ;If data are equal then jump to AVAIL.

1010 46 INC SI ;If data are not equal,increment address pointer.

1011 FE C3 INC BL ;Increment position count.

1013 8A 04 MOV AL,[SI] ;Get the next element of array in AL-register.

1015 3C 20 CMP AL,20H ;Check for end of array,

1017 75 F3 JNZ AGAIN ;if not end, repeat search, otherwise go to NOTAVA.

1019 B9 0000 NOTAVA: MOV CX,0000H ;If search data is not found, then store zero.

101C 89 4D 01 MOV [DI+1],CX

101F 89 4D 03 MOV [DI+3],CX

1022 EB 0C 90 JMP OVER

1025 B7 FF AVAIL : MOV BH,0FFH

1027 88 7D 01 MOV [DI+1],BH ;Store FFH to indicate availability of data.

102A 88 5D 02 MOV [DI+2],BL ;Store the position of data.

102D 89 75 03 MOV [DI+3],SI ;Store the address of data.

1030 F4 OVER : HLT ;Halt program execution.

1031 CODE ENDS ;End of code segment.

 END ;Assembly end.

Sample Data

Input Data : Output Data :
Array = 1F

H
 Availability = FF

H

AC
H

 Position = 04H
D0

H
 Address = 1103

H

89
H

72
H

20
H

Given Data = 89
H

EXAMPLE PROGRAM 12 : Search for the Smallest Data

Write an assembly language program to search the smallest data in an array.

Problem Analysis

Let the size of the array be N bytes. Let us reserve AL-register to store the smallest data. The first

byte of the array is assumed to be the smallest and it is saved in AL-register. Then each byte of the array

is compared with AL. After each comparison the smaller among the two is brought to AL-register. Therefore,

after the N−1 comparison the AL-register will have the smallest data.

Memory Content
address

1100 1F
1101 AC
1102 D0
1103 89
1104 72
1105 20
1200 89

Memory Content
address

1201 FF
1202 04
1203 03
1204 11

6. 55

Algorithm

1. Load the starting address of the array in SI-register.

2. Load the address of the result in DI-register.

3. Load the number of bytes in the array in CL-register.

4. Increment the array pointer (SI-register).

5. Get the first byte of the array in AL-register.

6. Decrement the byte count (CL-register).

7. Increment the array pointer (SI-register).

8. Get next byte of the array in BL-register.

9. Compare current smallest (AL) and next byte (BL) of the array.

10. Check carry flag. If carry flag is set then go to step 12, otherwise go to next step.

11. Move BL to AL.

12. Decrement the byte count (CL-register).

13. Check zero flag. If zero flag is reset then go to step 7, otherwise go to next step.

14. Save the smallest data in memory pointed by DI.

15. Stop.

Assembly language program

;PROGRAM TO FIND SMALLEST DATA IN AN ARRAY

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

Flowchart
Start

¯

Increment Array Pointer (SI)

¯

Set CL as Byte Count

¯

Increment Array Pointer (SI)

¯

Stop
¯

¬

Load the Address of Array in
SI-register

Get the First Byte of Array in
AL-register

¯

Decrement the Byte Count

¯

Get the Next Byte of Array in
BL-register

¯

Compare AL and BL registers

¯

¯
Is

CF = 1?

Move BL to AL

¯

®
Yes

No

¯
Load the Address of Result in

DI-register

Decrement Byte Count (CL)

¯

¯
Is

ZF = 1?

Store AL in Memory

¯

¬

®

No

Yes

8086 Microprocessor and Its Appications

6. 56 Chapter 6 Assembly Language Programming

START: MOV SI,1100H ;Set SI-register as pointer for array.
MOV DI,1200H ;Set DI-register as pointer for result.
MOV CL,[SI] ;Set CL as count for elements in the array.
INC SI ;Increment the address pointer.
MOV AL,[SI] ;Set first data as smallest.
DEC CL ;Decrement the count.

AGAIN: INC SI ;Make SI to point to next data in array.
MOV BL,[SI] ;Get the next data in BL-register.
CMP AL,BL ;Compare current smallest data in AL with BL.
JC AHEAD ;If carry is set then AL is less than BL,

;hence proceed to AHEAD.
MOV AL,BL ;If carry is not set,

;then make BL as current smallest.

AHEAD: DEC CL ;Decrement the count.
JNZ AGAIN ;If count is not zero repeat search.
MOV [DI],AL ;Store the smallest data in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 12

;PROGRAM TO FIND SMALLEST DATA IN AN ARRAY

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 START: MOV SI,1100H ;Set SI-register as pointer for array.
1003 BF 1200 MOV DI,1200H ;Set DI-register as pointer for result.
1006 8A 0C MOV CL,[SI] ;Set CL as count for elements in the array.
1008 46 INC SI ;Increment the address pointer.
1009 8A 04 MOV AL,[SI] ;Set first data as smallest.
100B FE C9 DEC CL ;Decrement the count.

100D 46 AGAIN: INC SI ;Make SI to point to next data in array.
100E 8A 1C MOV BL,[SI] ;Get the next data in BL-register.
1010 3A C3 CMP AL,BL ;Compare current smallest data in AL with BL.
1012 72 02 JC AHEAD ;If carry is set then AL is less than BL,

;hence proceed to AHEAD.
1014 8A C3 MOV AL,BL ;If carry is not set,

;then make BL as current smallest.

1016 FE C9 AHEAD: DEC CL ;Decrement the count.
1018 75 F3 JNZ AGAIN ;If count is not zero repeat search.
101A 88 05 MOV [DI],AL ;Store the smallest data in memory.
101C F4 HLT ;Halt program execution.

101D CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : 06
H
(count) Output Data : 2D

H

4E
H

2D
H

30
H

98
H

AC
H

FE
H

Memory Content
address

1100 06
1101 4E
1102 2D
1103 30

 1104 98
1105 AC
1106 FE
1200 2D

 6. 57

EXAMPLE PROGRAM 13 : Search for Largest Data

Write an assembly language program to search the largest data in an array.

Problem Analysis

Let the size of array be N bytes. Let us reserve AL-register to store the largest data. The first byte

of the array is assumed to be the largest and it is saved in AL-register. Then each byte of the array is

compared with AL. After each comparison the larger among the two is brought to AL-register. Therefore,

after N−1 comparisons the AL-register will have the largest data.

Algorithm

1. Load the starting address of the array in SI-register.

2. Load the address of result in DI-register.

3. Load the number of bytes in the array in CL-register.

4. Increment the array pointer (SI-register).

5. Get the first byte of the array in AL-register.

6. Decrement the byte count (CL-register).

7. Increment the array pointer (SI-register).

8. Get next byte of the array in BL-register.

9. Compare current largest (AL) and next byte (BL) of the array.

10. Check carry flag. If carry flag is reset then go to step 12, otherwise go to next step.

Flowchart

Start

Set SI-register as Array Pointer

¯
Increment the Array Pointer

¯

Stop
¯

¬

Get the Next Byte of the Array in BL

¯

Compare AL and BL registers

¯

¯
Is

CF = 0?

Move BL to AL

¯

®
Yes

No

Decrement Byte Count

¯

¯
Is

ZF = 1?

Store AL in Memory

¯

¬

®

No

Yes

Set DI-register as Result Pointer

¯

Set CL as Byte Count

¯

Increment Array Pointer

¯

Get the First Byte of Array in AL-register

¯

Decrement the Byte Count

¯

8086 Microprocessor and Its Appications

6. 58 Chapter 6 Assembly Language Programming

11. Move BL to AL.

12. Decrement byte count (CL-register).

13. Check zero flag. If zero flag is reset then go to step 7, otherwise go to next step.

14. Store the largest data in memory pointed by DI.

15. Stop.

Assembly language program

;PROGRAM TO FIND THE LARGEST DATA IN AN ARRAY

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

START: MOV SI,1100H ;Set SI-register as pointer for array.
MOV DI,1200H ;Set DI-register as pointer for result.

MOV CL,[SI] ;Set CL as count for elements in the array.
INC SI ;Increment the address pointer.
MOV AL,[SI] ;Set first data as largest.
DEC CL ;Decrement the count.

AGAIN: INC SI ;Make SI to point to next data in array.
MOV BL,[SI] ;Get the next data in BL-register.
CMP AL,BL ;Compare the current largest data in AL with BL.
JNC AHEAD ;If carry is not set then AL is greater than BL,

;hence proceed to AHEAD.
MOV AL,BL ;If carry is set then make BL as current largest.

AHEAD: DEC CL ;Decrement the count.
JNZ AGAIN ;If count is not zero repeat search.
MOV [DI],AL ;Store the largest data in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 13

;PROGRAM TO FIND THE LARGEST DATA IN AN ARRAY

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 START: MOV SI,1100H ;Set SI-register as pointer for array.
1003 BF 1200 MOV DI,1200H ;Set DI-register as pointer for result.

1006 8A 0C MOV CL,[SI] ;Set CL as count for elements in the array.
1008 46 INC SI ;Increment the address pointer.
1009 8A 04 MOV AL,[SI] ;Set first data as largest.
100B FE C9 DEC CL ;Decrement the count.

100D 46 AGAIN: INC SI ;Make SI to point to next data in array.
100E 8A 1C MOV BL,[SI] ;Get the next data in BL-register.
1010 3A C3 CMP AL,BL ;Compare the current largest data in AL with BL.
1012 73 02 JNC AHEAD ;If carry is not set then AL is greater than BL,

;hence proceed to AHEAD.
1014 8A C3 MOV AL,BL ;If carry is set then make BL as current largest.

 6. 59

1016 FE C9 AHEAD: DEC CL ;Decrement the count.
1018 75 F3 JNZ AGAIN ;If count is not zero repeat search.
101A 88 05 MOV [DI],AL ;Store the largest data in memory.
101C F4 HLT ;Halt program execution.

101D CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : 06 (count) Output Data :FE
H

4E
H

2D
H

30
H

98
H

AC
H

FE
H

EXAMPLE PROGRAM 14 : Sorting an Array in Ascending Order

Write an assembly language program to sort an array of data in ascending order.

Problem Analysis

The array can be sorted in ascending order by bubble sorting. In bubble sorting of N-data, N−1

comparisons are performed by taking two consecutive data at a time. After each comparison the two data

can be rearranged in the ascending order in the same memory locations, i.e., smaller first and larger next.

When the above N−1 comparisons are performed N−1 times, the array will be sorted in ascending order in

the same locations.

Algorithm

1. Set SI-register as pointer for array.

2. Set CL-register as count for N–1 repetitions.

3. Initialize array pointer.

4. Set CH as count for N–1 comparisons.

5. Increment the array pointer.

6. Get an element of array in AL-register.

7. Increment the array pointer.

8. Compare the next element of the array with AL.

9. Check carry flag. If carry flag is set then go to step 12, otherwise go to next step.

10. Exchange the content of memory pointed by SI and the content of previous memory location. (For this, exchange AL and

memory pointed by SI, and then exchange AL and memory pointed by SI–1.)

11. Decrement the count for comparisons (CH-register).

12. Check zero flag. If zero flag is reset then go to step 6, otherwise go to next step.

13. Decrement the count for repetitions (CL-register).

14. Check zero flag. If zero flag is reset then go to step 3, otherwise go to next step.

15. Stop.

Memory Content
address

1100 06
1101 4E
1102 2D
1103 30
1104 98
1105 AC
1106 FE
1200 FE

8086 Microprocessor and Its Appications

6. 60 Chapter 6 Assembly Language Programming

Assembly language program

;PROGRAM TO SORT AN ARRAY OF DATA IN ASCENDING ORDER

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

START: MOV SI,1100H ;Set SI-register as pointer for array.
MOV CL,[SI] ;Set CL as count for N-1 repetitions.
DEC CL

REPEAT: MOV SI,1100H ;Initialize pointer.
MOV CH,[SI] ;Set CH as count for N-1 comparisons.
DEC CH
INC SI ;Increment the pointer.

REPCOM: MOV AL,[SI] ;Get an element of array in AL-register.
INC SI
CMP AL,[SI] ;Compare with next element of array in memory.
JC AHEAD ;If AL is lesser than memory, then go to AHEAD.

Flowchart

Start

¯

Increment the Array Pointer (SI)

¯

Load the Address of the Array
in SI-register

No

¯
Load the Count in CL-register

and Decrement by One

¯
Load the Address of Array in

SI-register

¯
Load the Count in CH-register

and Decrement by One

¯
Get an Element of Array in

AL-register

Increment the Array Pointer (SI)

¯

¯
Compare Next Element of

Array with AL

¯
Is

CF = 1?

2¬

1¬

Exchange AL and Memory
Pointed by SI

¯

Exchange AL and Memory

Pointed by SI 1-

¯

Decrement CH Count

Decrement CL Count

¯
Is

ZF = 1?

¯
Is

ZF = 1?

Stop
¯

1 ¬

2 ¬

®

Yes

No

Yes

®
No

Yes

6. 61

XCHG AL,[SI] ;If AL is less than memory then,
XCHG AL,[SI-1] ;exchange the content of memory pointed by SI,

;and the previous memory location.

AHEAD: DEC CH ;Decrement the count for comparisons.
JNZ REPCOM ;Repeat comparison until CH count is zero.
DEC CL ;Decrement the count for repetitions.
JNZ REPEAT ;Repeat N-1 comparisons until CL count is zero.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 14

;PROGRAM TO SORT AN ARRAY OF DATA IN ASCENDING ORDER

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS: CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 START: MOV SI,1100H ;Set SI-register as pointer for array.
1003 8A 0C MOV CL,[SI] ;Set CL as count for N-1 repetitions.
1005 FE C9 DEC CL

1007 BE 1100 REPEAT: MOV SI,1100H ;Initialize pointer.
100A 8A 2C MOV CH,[SI] ;Set CH as count for N-1 comparisons.
100C FE CD DEC CH
100E 46 INC SI ;Increment the pointer.

100F 8A 04 REPCOM: MOV AL,[SI] ;Get an element of array in AL-register.
1011 46 INC SI
1012 3A 04 CMP AL,[SI] ;Compare with next element of array in memory.
1014 72 05 JC AHEAD ;If AL is lesser than memory, then go to AHEAD.

1016 86 04 XCHG AL,[SI] ;If AL is less than memory then,
1018 86 44 FF XCHG AL,[SI-1] ;exchange the content of memory pointed by SI,

;and the previous memory location.

101B FE CD AHEAD: DEC CH ;Decrement the count for comparisons.
101D 75 F0 JNZ REPCOM ;Repeat comparison until CH count is zero.
101F FE C9 DEC CL ;Decrement the count for repetitions.
1021 75 E4 JNZ REPEAT ;Repeat N-1 comparisons until CL count is zero.
1023 F4 HLT ;Halt program execution.

1024 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : 07 Output Data : 11

 AA 22

 77 44

 FF 77

 22 AA

 11 BB

 44 FF
 BB

Before Execution After Execution

Memory Content
address

 1100 07
 1101 AA
 1102 77
 1103 FF
 1104 22
 1105 11
 1106 44
 1107 BB

Memory Content
address

 1101 11
 1102 22
 1103 44
 1104 77
 1105 AA
 1106 BB
 1107 FF

8086 Microprocessor and Its Appications

6. 62 Chapter 6 Assembly Language Programming

EXAMPLE PROGRAM 15 : Sorting an Array in Descending Order

Write an assembly language program to sort an array of data in descending order.

Problem Analysis

The array can be sorted in descending order by bubble sorting. In bubble sorting of N-data, N−1

comparisons are performed by taking two consecutive data at a time. After each comparison, the two data

can be rearranged in the descending order in the same memory locations, i.e., larger first and smaller next.

When the above N−1 comparisons are performed N−1 times, the array will be sorted in descending order

in the same locations.

Algorithm

1. Set SI-register as pointer for array.

2. Set CL-register as count for N–1 repetitions.

3. Initialize array pointer.

4. Set CH as count for N–1 comparisons.

5. Increment the array pointer.

6. Get an element of array in AL-register.

7. Increment the array pointer.

8. Compare the next element of the array with AL.

Flowchart

Start

¯

Increment the Array Pointer (SI)

¯

Load the Address of the Array in SI-register

No

¯
Load the Count in CL-register

and Decrement by One

¯
Load the Address of Array in SI-register

¯
Load the Count in CH-register

and Decrement by One

¯
Get an Element of Array in AL-register

Increment the Array Pointer (SI)

¯

¯
Compare Next Element of Array with AL

¯
Is

CF = 0?

2¬

Exchange AL and Memory
Pointed by SI

¯

Exchange AL and Memory

Pointed by (SI 1)-

¯

¯
Decrement CH Count

¯
Decrement CL Count

¯
Is

ZF = 1?

¯
Is

ZF = 1?

Stop
¯

1 ¬

2 ¬

®

Yes

No

Yes

®
No

Yes

1¬

 6. 63

9. Check carry flag. If carry flag is reset then go to step 12, otherwise go to next step.

10. Exchange the content of memory pointed by SI and the content of previous memory location. (For this, exchange AL and

memory pointed by SI, and then exchange AL and memory pointed by SI – 1.)

11. Decrement the count for comparisons (CH-register).

12. Check zero flag. If zero flag is reset then go to step 6, otherwise go to next step.

13. Decrement the count for repetitions (CL-register).

14. Check zero flag. If zero flag is reset then go to step 3, otherwise go to next step.

15. Stop.

Assembly language program

;PROGRAM TO SORT AN ARRAY OF DATA IN DESCENDING ORDER

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

START: MOV SI,1100H ;Set SI-register as pointer for array.
MOV CL,[SI] ;Set CL as count for N-1 repetitions.
DEC CL

REPEAT: MOV SI,1100H ;Initialize pointer.
MOV CH,[SI] ;Set CH as count for N-1 comparisons.
DEC CH
INC SI ;Increment the pointer.

REPCOM: MOV AL,[SI] ;Get an element of array in AL-register.
INC SI
CMP AL,[SI] ;Compare with next element of the array in memory.
JNC AHEAD ;If AL is greater than memory, then go to AHEAD.

XCHG AL,[SI] ;If AL is less than memory then,
XCHG AL,[SI-1] ;exchange the content of memory pointed by SI,

;and the previous memory location.
AHEAD: DEC CH ;Decrement the count for comparisons.

JNZ REPCOM ;Repeat comparison until CH count is zero.
DEC CL ;Decrement the count for repetitions.
JNZ REPEAT ;Repeat N-1 comparisons until CL count is zero.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 15

;PROGRAM TO SORT AN ARRAY OF DATA IN DESCENDING ORDER

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 START: MOV SI,1100H ;Set SI-register as pointer for array.
1003 8A 0C MOV CL,[SI] ;Set CL as count for N-1 repetitions.
1005 FE C9 DEC CL

1007 BE 1100 REPEAT: MOV SI,1100H ;Initialize pointer.
100A 8A 2C MOV CH,[SI] ;Set CH as count for N-1 comparisons.
100C FE CD DEC CH
100E 46 INC SI ;Increment the pointer.

100F 8A 04 REPCOM: MOV AL,[SI] ;Get an element of array in AL-register.

8086 Microprocessor and Its Appications

6. 64 Chapter 6 Assembly Language Programming

1011 46 INC SI
1012 3A 04 CMP AL,[SI] ;Compare with next element of the array in memory.
1014 73 05 JNC AHEAD ;If AL is greater than memory, then go to AHEAD.

1016 86 04 XCHG AL,[SI] ;If AL is less than memory then,
1018 86 44 FF XCHG AL,[SI-1] ;exchange the content of memory pointed by SI,

;and the previous memory location.

101B FE CD AHEAD: DEC CH ;Decrement the count for comparisons.
101D 75 F0 JNZ REPCOM ;Repeat comparison until CH count is zero.
101F FE C9 DEC CL ;Decrement the count for repetitions.
1021 75 E4 JNZ REPEAT ;Repeat N-1 comparisons until CL count is zero.
1023 F4 HLT ;Halt program execution.

1024 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : 07 Output Data : FF
 AA BB
 77 AA
 FF 77
 22 44
 11 22
 44 11

 BB

EXAMPLE PROGRAM 16 : GCD of Two 16-Bit Data

Write an assembly language program to determine the GCD of two 16-bit data.

Problem Analysis

First divide the larger data by the smaller data and check for remainder. If the remainder is zero, then

smaller data is the GCD.

If the remainder is not zero then take the remainder as the divisor and the previous divisor as the

dividend and repeat division until the remainder is zero. When the remainder is zero, we can store the divisor

as GCD. Before performing division we can even check whether the dividend and divisor are equal. If they

are equal, then we can directly store the divisor as GCD without performing division.

Algorithm

1. Set BX as pointer for input data.

2. Set DI as pointer for result.

3. Get one data in AX-register.

4. Get another data in CX-register.

5. Compare the two data (AX and CX).

6. Check zero flag. If zero flag is set then go to step 14, otherwise go to next step.

7. Check carry flag. If carry flag is reset then go to step 9, otherwise go to next step.

8. Exchange the content of AX and CX, so that the larger among the two is dividend and smaller is the divisor.

9. Clear DX-register.

10. Divide AX-register by CX-register.

11. Compare DX-register (Remainder) with 0000
H
.

12. Check zero flag. If zero flag is set then go to step 14, otherwise go to next step.

13. Move the remainder (DX-register) to AX and go to step 5.

14. Save the content of CX-register as GCD in memory.

15. Stop.

 Before Execution After Execution

Memory Content
address

 1101 FF
 1102 BB
 1103 AA
 1104 77
 1105 44
 1106 22
 1107 11

Memory Content
address

 1100 07
 1101 AA
 1102 77
 1103 FF
 1104 22
 1105 11
 1106 44
 1107 BB

 6. 65

Flowchart

Assembly language program

;PROGRAM TO FIND GCD OF TWO 16-BIT DATA

CODE SEGMENT ;start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV BX,1100H ;Set BX-register as pointer for data.
MOV DI,1200H ;Set DI-register as pointer for result.
MOV AX,[BX] ;Get the first data in AX-register.
MOV CX,[BX+02] ;Get the second data in CX-register.

RPT: CMP AX,CX ;Compare the two data.
JE STORE ;If the data are equal, store CX as GCD.
JNC SKIP ;If AX is greater than CX, then go to SKIP.
XCHG AX,CX ;If AX is less than CX, then exchange AX and CX.

SKIP: MOV DX,0000H
DIV CX ;Divide the two data.
CMP DX,0000H ;Check whether remainder is zero.
JE STORE ;If remainder is zero, then store CX as GCD.
MOV AX,DX ;If remainder is not zero, move remainder to AX.
JMP RPT ;Repeat comparison and division.

STORE: MOV [DI],CX ;Store CX as GCD.
HLT ;Halt program execution.

Start

Load the Address of
Data in BX-register

¯

Load the Address of Result
in DI-register

¯

¯
Is

ZF = 1?

Compare AX and CX registers

¯

Get One Data in AX-register
and Another in CX-register

¯

¯
Is

CF = 0?

¯
Exchange AX and CX registers

¯
Clear DX-register

¯
Is

ZF = 1?

¯
Store CX in Memory as GCD

Stop

No

®

®

¬

¬

Yes

Yes

®

No

Yes

Divide AX by CX

¯
Compare DX with 0000H

Move DX
to AX

¬

No

¬

8086 Microprocessor and Its Appications

6. 66 Chapter 6 Assembly Language Programming

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 16

;PROGRAM TO FIND GCD OF TWO 16-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BB 1100 MOV BX,1100H ;Set BX-register as pointer for data.
1003 BF 1200 MOV DI,1200H ;Set DI-register as pointer for result.
1006 8B 07 MOV AX,[BX] ;Get the first data in AX-register.
1008 8B 4F 02 MOV CX,[BX+02] ;Get the second data in CX-register.

100B 3B C1 RPT: CMP AX,CX ;Compare the two data.
100D 74 11 JE STORE ;If the data are equal, store CX as GCD.
100F 73 01 JNC SKIP ;If AX is greater than CX, then go to SKIP.
1011 91 XCHG AX,CX ;If AX is less than CX, then exchange AX and CX.

1012 BA 0000 SKIP: MOV DX,0000H
1015 F7 F1 DIV CX ;Divide the two data.
1017 83 FA 00 CMP DX,0000H ;Check whether remainder is zero.
101A 74 04 JE STORE ;If remainder is zero, then store CX as GCD.
101C 8B C2 MOV AX,DX ;If remainder is not zero, move remainder to AX.
101E EB EB JMP RPT ;Repeat comparison and division.

1020 89 0D STORE: MOV [DI],CX ;Store CX as GCD.
1022 F4 HLT ;Halt program execution.

1023 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

 Input Data : Data1 = 358E
H
 Output Data : 0005

H

 Data2 = 01BD
H

EXAMPLE PROGRAM 17 : LCM of Two 16-Bit Data

Write an assembly language program to determine the LCM of two 16-bit data.

Problem Analysis

First determine the GCD of two data. Then determine the product of two data. Here it is assumed

that the product does not exceed 32 bits. When the product is divided by GCD, the quotient will be the

LCM of the two data. (For the GCD of two data please refer to example program 16.)

Algorithm

1. Set BX as pointer for input data.

2. Set DI as pointer for result.

3. Get first data in AX-register and second data in CX-register.

4. Call procedure GCD to get the GCD in SI-register.

5. Again get first data in AX-register and second data in CX-register.

Memory Content
address

 1100 8E
 1101 35
 1102 BD
 1103 01
 1200 05
 1201 00

 6. 67

6. Determine the product of two data. The product will be in AX and DX registers.

7. Divide the product (AX and DX registers) by GCD (SI-register).

8. Save the quotient (AX-register) as LCM in memory.

9. Stop.

Note : The algorithm for procedure GCD can be obtained from example program 16.

Assembly language program

;PROGRAM TO FIND LCM OF TWO 16-BIT DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV BX,1100H ;Set BX-register as pointer for data.
MOV DI,1200H ;Set DI-register as pointer for result .
MOV AX,[BX] ;Get the first data in AX-register.
MOV CX,[BX+02] ;Get the second data in CX-register.
CALL GCD ;Call procedure GCD.

MOV AX,[BX] ;Get the first data in AX-register.
MOV CX,[BX+02] ;Get the second data in CX-register.
MUL CX ;Get product of two numbers in AX and DX.
DIV SI ;Divide the product with GCD.
MOV [DI],AX ;Save the quotient as LCM.
HLT ;Halt program execution.

Note : The flowchart for procedure GCD can be obtained from example progra m 16.

Flowchart

Start

Load the Address of Data in BX-register

¯

Load the Address of Result in DI-register

Stop

Call Procedure GCD to Get
GCD in SI-register

¯

Get the Given Data in AX and CX registers

Get the Given Data in AX and CX registers

¯

Multiply AX and CX to Get the
Product in AX and DX

Divide AX and DX by SI

Save the Quotient (AX) as LCM

8086 Microprocessor and Its Appications

6. 68 Chapter 6 Assembly Language Programming

GCD PROC NEAR

RPT: CMP AX,CX ;Compare the two data.
JE SAVE ;If the data are equal, store CX as GCD.
JNC SKIP ;If AX is greater than CX, then go to SKIP.
XCHG AX,CX ;If AX is less than CX, then exchange AX and CX.

SKIP: MOV DX,0000H
DIV CX ;Divide the two data.
CMP DX,0000H ;Check whether remainder is zero.
JE SAVE ;If remainder is zero, then store CX as GCD.
MOV AX,DX ;If remainder is not zero, move remainder to AX.
JMP RPT ;Repeat comparison and division.

SAVE: MOV SI,CX ;Store CX as GCD.
RET

GCD ENDP ;Assembler directive.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 17

;PROGRAM TO FIND LCM OF TWO 16-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BB 1100 R MOV BX,1100H ;Set BX-register as pointer for data.
1003 BF 1200 R MOV DI,1200H ;Set DI-register as pointer for result.
1006 8B 07 MOV AX,[BX] ;Get the first data in AX-register.
1008 8B 4F 02 MOV CX,[BX+02] ;Get the second data in CX-register.
100B E8 000C R CALL GCD ;Call procedure GCD.

100E 8B 07 MOV AX,[BX] ;Get the first data in AX-register.
1010 8B 4F 02 MOV CX,[BX+02] ;Get the second data in CX-register.
1013 F7 E1 MUL CX ;Get product of two numbers in AX and DX.
1015 F7 F6 DIV SI ;Divide the product with GCD.
1017 89 05 MOV [DI],AX ;Save the quotient as LCM.
1019 F4 HLT ;Halt program execution.

101A GCD PROC NEAR

101A 3B C1 RPT: CMP AX,CX ;Compare the two data.
101C 74 11 JE SAVE ;If the data are equal, store CX as GCD.
101E 73 01 JNC SKIP ;If AX is greater than CX, then go to SKIP.
1020 91 XCHG AX,CX ;If AX is less than CX, then exchange AX and CX.
1021 BA 0000 SKIP: MOV DX,0000H
1024 F7 F1 DIV CX ;Divide the two data.
1026 83 FA 00 CMP DX,0000H ;Check whether remainder is zero.
1029 74 04 JE SAVE ;If remainder is zero, then store CX as GCD.
102B 8B C2 MOV AX,DX ;If remainder is not zero, move remainder to AX.
102D EB EB JMP RPT ;Repeat comparison and division.

102F 8B F1 SAVE: MOV SI,CX ;Store CX as GCD.
1031 C3 RET

1032 GCD ENDP ;Assembler directive.

1032 CODE ENDS ;End of code segment.
END ;Assembly end.

 6. 69

Sample Data

 Input Data : Output Data : 077A
H

 Data1 = 0042
H

 Data2 = 003A
H

EXAMPLE PROGRAM 18 : Factorial of 8-Bit Data

Write an assembly language program to determine the factorial of 8-bit data.

Problem Analysis

The factorial can be calculated by repeated multiplication. In the first multiplication the given data

is taken as multiplicand and data−1 (data minus one) is taken as multiplier. In each subsequent multiplication

the previous product is taken as multiplicand and previous multiplier is decremented by one and used as

current multiplier. The multiplications are repeated until the multiplier becomes zero. The final product

after data−1 (data minus one) multiplications will be the factorial of the data.

In this example it is assumed that the product/factorial does not exceed 32 bits. The given data is

converted to 16-bit data by taking the high byte as zero and in each multiplication 32-bit by 16-bit

multiplication is performed. The logic of 32-bit by 16-bit multiplication is given below :

The multiplicand can be divided into two words : Lower Word (LW) and Upper Word (UW) as

shown below.

Multiplicand (32-bit) → MD
UW

 (16-bit), MD
LW

 (16-bit)

Let the 16-bit multiplier be MR. Then perform the following two multiplications. Each multiplication

will give a 32-bit result which can be divided into Lower Word (LW) and Upper Word (UW) as shown

below :

Product 1 (P1) : MD
LW

 × MR = P1
UW

, P1
LW

Product 2 (P2) : MD
UW

 × MR = P2
UW

, P2
LW

The result of the above two multiplications can be added to get the final result as shown below.

The final product will have a size of three words and they are denoted as P
W1

, P
W2

 and P
W3

. Since, we

restrict the product to 32-bit the third word PW
3
 is discarded.

Algorithm

1. Set SI as pointer for data.

2. Get the data in AL-register and clear AH-register to convert the data to 16-bit.

3. Clear BP-register to keep initial value of second word of final product as zero.

4. Compare AX-register with 01
H
.

5. Check zero flag. If zero flag is set then go to step 19, otherwise go to next step.

6. Set CX-register as count for data–1 (data minus one) multiplications.

7. Move AX-register to BX-register, so that the initial mutiplier in BX is the given data.

Memory Content
address

 1100 42
 1101 00
 1102 3A
 1103 00
 1200 7A
 1201 07

MD
UW

MD
LW

 × MR

P1
UW

P1
LW

P2
UW

P2
LW

P
W3

P
W2

P
W1

←Discard

8086 Microprocessor and Its Appications

6. 70 Chapter 6 Assembly Language Programming

Flowchart

8. Decrement the multiplier (BX-register).

9. Multiply AX and BX to get the product1 in AX and DX.

10. Save the product1 in stack.

11. Load the second word of previous product in BP to AX-register.

12. Multiply AX and BX to get the product 2 in AX and DX.

13. Get the upper word of product1 in DX.

14. Add AX and DX to get the second word of final product in AX.

15. Move AX to BP to save the second word of final product in BP.

16. Get the first word of final product in AX-register.

17. Decrement multiplication count (CX-register).

18. If content of CX-register is not zero, then go to step 8, otherwise go to next step.

19. Store AX and BP in memory.

20. Stop.

Start

Load the Address of Data in
SI-register

¯

Add AX and DX. Save the Sum in
BP as Second Word of Result

¯

Stop
¯

Decrement Count (CX-register)

¯

Yes

No

Get the Data in AL-register

¯

Compare AX with 0001H

¯

Clear AH and BP-register

¯

¯
Is

ZF = 1?

Move AX to CX and Decrement CX by One

¯

Move AX to BX

¯

Decrement BX by One

¯

Multiply AX and BX to Get P1 in AX and DX

¯

Save AX and DX in Stack

¯

Move BP to AX

¯

Multiply AX and BX to Get P2 in AX and DX

¯

Get the Upper Word of P1 in DX

¯

Set the Lower Word of P1 as
First Word of Result

¯

¯
Is

(CX) = 0?

Save AX and BP as
Result in Memory

¯

®
Yes

No

®

¬

 6. 71

Assembly language program

;PROGRAM TO FIND FACTORIAL OF 8-BIT DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI as pointer for data.
MOV AL,[SI] ;Get the data in AL.
MOV AH,00H ;Clear AH-register.
MOV BP,0000H ;Initialize upper word of the result as zero.
CMP AX,0001H ;Check whether data is 01.
JNG STORE ;If data is 01, then store 01 as factorial.

MOV CX,AX ;Set CX as count for number of multiplications.
DEC CX ;Decrement the count.

MOV BX,AX ;Set the data as multiplier.
REPEAT: DEC BX ;Decrement the multiplier.

MUL BX ;Get the product1(P1) in AX and DX registers.
PUSH AX ;Save lower word of product 1 in stack.
PUSH DX ;Save upper word of product 1 in stack.
MOV AX,BP
MUL BX ;Get the product 2(P2) in AX and DX registers.
POP DX ;Get the upper word of product 1 in DX-register.
ADD AX,DX ;Get sum of lower word of P1 and

;upper word of P2 in AX.
MOV BP,AX ;Set the sum as second word of the result.
POP AX ;Set lower word of P1 as first word of result.
LOOP REPEAT ;Repeat multiplication until count is zero.

STORE: MOV [SI+1],AX ;Store the lower word of the result in memory.
MOV [SI+3],BP ;Store the upper word of the result in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 18

;PROGRAM TO FIND FACTORIAL OF 8-BIT DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI as pointer for data.
1003 8A 04 MOV AL,[SI] ;Get the data in AL.
1005 B4 00 MOV AH,00H ;Clear AH-register.
1007 BD 0000 MOV BP,0000H ;Initialize upper word of the result as zero.
100A 3D 0001 CMP AX,0001H ;Check whether data is 01.
100D 7E 16 JNG STORE ;If data is 01, then store 01 as factorial.

100F 8B C8 MOV CX,AX ;Set CX as count for number of multiplications.
1011 49 DEC CX ;Decrement the count.

1012 8B D8 MOV BX,AX ;Set the data as multiplier.
1014 4B REPEAT: DEC BX ;Decrement the multiplier.
1015 F7 E3 MUL BX ;Get the product 1(P1) in AX and DX registers.
1017 50 PUSH AX ;Save lower word of product 1 in stack.
1018 52 PUSH DX ;Save upper word of product 1 in stack.

8086 Microprocessor and Its Appications

6. 72 Chapter 6 Assembly Language Programming

1019 8B C5 MOV AX,BP
101B F7 E3 MUL BX ;Get the product 2(P2) in AX and DX registers.
101D 5A POP DX ;Get the upper word of product 1 in DX-register.
101E 03 C2 ADD AX,DX ;Get sum of lower word of P1 and

;upper word of P2 in AX.
1020 8B E8 MOV BP,AX ;Set the sum as second word of the result.
1022 58 POP AX ;Set lower word of P1 as first word of result.
1023 E2 EF LOOP REPEAT ;Repeat multiplication until count is zero.

1025 89 44 01 STORE: MOV [SI+1],AX ;Store the lower word of the result in memory.
1028 89 6C 03 MOV [SI+3],BP ;Store the upper word of the result in memory.
102B F4 HLT ;Halt program execution.

102C CODE ENDS ;End of code segment.
END ;Assembly end.

Sample data

Input Data : 0B
H
 Output Data : 02611500

H

EXAMPLE PROGRAM 19 : Generation of Prime Numbers

Write an assembly language program to generate all possible prime numbers less than the given data.

Problem Analysis

A number is prime if it is divisible only by one and the same number, and it should not be divisible

by any other number. Hence to check whether a number is prime or not, we can divide the number by all

possible integer less than the given number and verify the remainder. (The initial divisor is 02.) If the

remainder is zero in any of the division, then the number is not prime. If the remainder is nonzero in all the

divisions, then we can say the number is prime.

Algorithm

1. Set SI-register as pointer for data.

2. Load the given data in DL-register.

3. Set DI as pointer for result.

4. Initialize the number to checked as 01
H
 in BL-register.

5. Save 01
H
 as first prime number.

6. Increment the result pointer (DI).

7. Increment the number (BL-register) to be checked.

8. Load the initial divisor 02
H
 in CL-register.

9. Compare BL and CL registers.

10. Check zero flag. If zero flag is set then go to step 16, otherwise go to next step.

11. Clear AH-register and load the number to be checked in AL-register.

12. Divide AX by CL-register.

13. Compare the remainder (AH-register) with 00
H
.

14. Check zero flag. If zero flag is set then go to step 18, otherwise go to next step.

15. Increment the divisor (CL-register) and go to step 9.

16. Save the prime number.

17. Increment the result pointer (DL-register).

18. Increment the number to be checked (BL-register)

19. Compare DL and BL registers.

20. Check zero flag. If zero flag is reset then go to step 8, otherwise stop.

Memory Data
address

 1100 0B
 1101 00
 1102 15
 1103 61
 1104 02

6. 73

Assembly language program

;PROGRAM TO GENERATE PRIME NUMBERS

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for end data N.
MOV DL,[SI] ;Get the data N in DL-register.
MOV DI,1200H ;Set DI as pointer for storing prime numbers.
MOV BL,01H ;Initialize the number to be checked as 01.
MOV [DI],BL ;Save the first prime number.
INC DI ;Increment address pointer.
INC BL ;Increment the number to be checked.

GENERAT: MOV CL,02H ;Set initial divisor as 02.
REPEAT: CMP BL,CL ;If BL=CL, jump to store.

JZ STORE

MOV AH,00H ;Clear AH register.
MOV AL,BL ;Set the number to be checked as dividend.
DIV CL ;Check whether divisible by any other number.
CMP AH,00H ;Check whether the remainder is zero.
JZ NEXT ;If remainder is zero, verify next number.
INC CL ;If remainder is non-zero then,
JMP REPEAT ;increment the divisor and jump to REPEAT.

STORE: MOV [DI],BL ;Save the prime number.
INC DI ;Increment address pointer.

Flowchart

Start

¯

Increment DI-register

¯

Set SI-register as
Pointer for Given Data

¯
Get the Given Data

in DL-register

¯
Load the Address of the
Result in DI-register

¯
Set Initial Number to be

Checked as 01 in

BL-register
H

¯
Save BL as First
Prime Number

Increment BL-register

¯

¯
Set Initial Divisor as
02 in CL-registerH

Compare BL and
CL registers

¯
Is

ZF = 1?

¯

Clear AH-register,
Move BL to AL and
Divide AX by CL

¯

Compare AH
with 00H

¯

¯
Is

ZF = 1?

Increment CL-register

¯

®

¯
Save BL as Prime

Number

¯

Increment DI

¯

Increment BL

¯

Compare BL and
DL registers

¯

¯
Is

ZF = 1?

Stop
¯

®

®

®

®
Yes

Yes

No

No

No

Yes

8086 Microprocessor and Its Appications

6. 74 Chapter 6 Assembly Language Programming

NEXT: INC BL ;Increment the number to be checked.
CMP BL,DL ;Check whether number to be checked is N.
JNZ GENERAT ;If number to be checked is not equal to N,
HLT ;then continue generation,otherwise stop.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 19

;PROGRAM TO GENERATE PRIME NUMBERS

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for end data N.
1003 8A 14 MOV DL,[SI] ;Get the data N in DL-register.
1005 BF 1200 MOV DI,1200H ;Set DI as pointer for storing prime numbers.
1008 B3 01 MOV BL,01H ;Initialize the number to be checked as 01.
100A 88 1D MOV [DI],BL ;Save the first prime number.
100C 47 INC DI ;Increment address pointer.
100D FE C3 INC BL ;Increment the number to be checked.

100F B1 02 GENERAT: MOV CL,02H ;Set initial divisor as 02.
1011 3A D9 REPEAT: CMP BL,CL ;If BL=CL, jump to store.
1013 74 0F JZ STORE

1015 B4 00 MOV AH,00H ;Clear AH-register.
1017 8A C3 MOV AL,BL ;Set the number to be checked as dividend.
1019 F6 F1 DIV CL ;Check whether divisible by any other number.
101B 80 FC 00 CMP AH,00H ;Check whether the remainder is zero.
101E 74 07 JZ NEXT ;If remainder is zero, verify next number.
1020 FE C1 INC CL ;If remainder is non-zero then,
1022 EB ED JMP REPEAT ;increment the divisor and jump to REPEAT.

1024 88 1D STORE: MOV [DI],BL ;Save the prime number.
1026 47 INC DI ;Increment address pointer.

1027 FE C3 NEXT: INC BL ;Increment the number to be checked.
1029 3A DA CMP BL,DL ;Check whether number to be checked is N.
102B 75 E2 JNZ GENERAT ;If number to be checked is not equal to N,
102D F4 HLT ;then continue generation, otherwise stop.

102E CODE ENDS ;End of code segment.
END ;Assembly end.

Sample data

Input Data :0C
H
 Output Data : 01

H

 02
H

 03
H

 05
H

 07
H

 0B
H

EXAMPLE PROGRAM 20 : Generation of Fibanocci Series

Write an assembly language program to generate fibanocci series.

Problem Analysis

The first and second term of fibanocci series are 00
H
 and 01

H
. The third element is given by sum of

first and second element. The fourth element is given by sum of second and third element, and so on. In

general an element of fibanocci series is given by sum of immediate two previous element.

Memory Content
address

 1100 0C
 1200 01
 1201 02
 1202 03

Memory Content
address

 1203 05
 1204 07
 1205 0B

 6. 75

Algorithm

1. Set SI-register as pointer for fibanocci series.

2. Set CL-register as count for number of elements to be generated.

3. Increment the pointer (SI).

4. Initialize the first element of fibanocci series as 00
H
 in AL-register.

5. Store first element in memory.

6. Increment the pointer (SI).

7. Increment AL to get second element (01
H
) of fibanocci series in AL-register.

8. Store the second element in memory.

9. Decrement the count (CL-register) by 02.

10. Decrement the pointer (SI).

11. Get the element prior to last generated element in AL.

12. Increment the pointer (SI).

13. Get the last generated element in BL.

14. Add the previous two element (AL and BL) to get the next element in AL.

15. Increment the pointer.

16. Store the next element (AL) of the fibanocci series in memory.

17. Decrement the count (CL-register).

18. If the content of CL is not zero then go to step 10, otherwise stop.

Flowchart

Start

Set SI-register as Pointer for
Series

¯

Load the Count Value in CL

¯

Decrement the Pointer

¯

Load the Element Pointed by SI to AL

¯

Increment the Pointer

¯

Load the Element Pointed by SI to BL-register

¯

¯
Is

(CL) = 0

Stop
¯

Yes

No

Increment the Pointer

¯

Move 00 to ALH

¯

Store AL in Memory

¯

Increment the Pointer

¯

Increment AL

¯

Store AL in Memory

¯

Decrement Count by 02

¯

Get the Sum of AL and BL registers in AL

¯

Increment the Pointer

¯

Store AL as Next Element
of Series in Memory

¯

Decrement the CL

¯

®

8086 Microprocessor and Its Appications

6. 76 Chapter 6 Assembly Language Programming

Assembly language program

;PROGRAM TO GENERATE FIBANOCCI SERIES

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI-register as pointer for series.
MOV CL,[SI] ;Set CL as count for number of elements of series.
INC SI ;Increment the pointer.
MOV AL,00H ;Load the first element of the series in AL.
MOV [SI],AL ;Save the first element of the series.
INC SI ;Increment the pointer.
INC AL ;Get the second number of the series in AL.
MOV [SI],AL ;Save the second number of the series.
SUB CL,02H ;Decrement the count by two.

GENERAT: DEC SI ;Let SI point to element prior to last element
;of generated series.

MOV AL,[SI] ;Get the element prior to last element of
;generated series in AL.

INC SI ;SI point to last element of generated series.
MOV BL,[SI] ;Get last element of generated series in BL.
ADD AL,BL ;Get the next element of the series in AL.
INC SI ;Increment the pointer.
MOV [SI],AL ;Save next element of series in memory.
LOOP GENERAT ;Decrement count and continue generation

;until count is zero.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 20

;PROGRAM TO GENERATE FIBANOCCI SERIES

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI-register as pointer for series.
1003 8A 0C MOV CL,[SI] ;Set CL as count for number of elements of series.
1005 46 INC SI ;Increment the pointer.
1006 B0 00 MOV AL,00H ;Load the first element of the series in AL.
1008 88 04 MOV [SI],AL ;Save the first element of the series.
100A 46 INC SI ;Increment the pointer.
100B FE C0 INC AL ;Get the second number of the series in AL.
100D 88 04 MOV [SI],AL ;Save the second number of the series.
100F 80 E9 02 SUB CL,02H ;Decrement the count by two.

1012 4E GENERAT: DEC SI ;Let SI point to element prior to last element
;of generated series.

1013 8A 04 MOV AL,[SI] ;Get the element prior to last element of
;generated series in AL.

1015 46 INC SI ;SI point to last element of generated series.
1016 8A 1C MOV BL,[SI] ;Get last element of generated series in BL.
1018 02 C3 ADD AL,BL ;Get the next element of the series in AL.
101A 46 INC SI ;Increment the pointer.
101B 88 04 MOV [SI],AL ;Save next element of series in memory.

 6. 77

101D E2 F3 LOOP GENERAT ;Decrement count and continue generation
;until count is zero.

101F F4 HLT ;Halt program execution.

1020 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

Input Data : 08
H

 Output Data :00
H

 01
H

 01
H

 02
H

 03
H

 05
H

 08
H

 0D
H

EXAMPLE PROGRAM 21 : Matrix Addition

Write an assembly language program to add two numbers of 3×3 matrices.

Problem Analysis

While storing the matrices in the memory, the first row elements are stored first, followed by

second row elements and then third row elements. For addition operation the matrices can be addressed

as an array with number of elements in the matrices as the count value.

The two input matrices can be stored in different memory areas in the same order as mentioned

above. The base registers BX and BP can be used to hold the base address of the input matrices and SI-

register can be used as pointer for the elements in the matrices. Another index register DI can be used as

pointer to store the sum matrix.

Algorithm

1. Load the base address of first input matrix in BX-register.

2. Load the base address of second input matrix in BP-register.

3. Set SI-register as index (or pointer) for elements of the matrix.

Memory Content
address

1100 08
1101 00
1102 01
1103 01
1104 02

Memory Content
address

1105 03
1106 05
1107 08
1108 0D

Flowchart

Start

Load the Address of First Matrix
in BX-register

¯

Initialize SI with 01H

¯

Load the Count Value in CL-register

¯

Load the Address of Second Matrix
in BP-register

¯

Load the Address of Sum Matrix
in DI-register

¯

¯

Get an Element of First Matrix
in AL-register

¯

Add the Content of Memory Pointed by
BP + SI to AL-register

¯

Store the Sum in Memory Pointed by DI

¯

Increment the Pointers (SI and DI)

¯

Decrement the Count (CL-register)

¯

¯
Is

(CL) = 0

Stop
¯

Yes

®
No

¬

8086 Microprocessor and Its Appications

6. 78 Chapter 6 Assembly Language Programming

4. Set DI-register as pointer for sum matrix.

5. Load the count value in CL-register.

6. Get an element of first matrix in AL-register.

7. Add the corresponding element of second matrix to AL-register.

8. Store the sum in memory.

9. Increment the SI and DI registers.

10. Repeat steps 6 to 9 until the count value in CL-register is zero.

11. Stop.

Assembly language program

;PROGRAM TO ADD TWO 3X3 MATRIX

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV BX,1300H ;Load the base address of 1st input matrix in BX.
MOV BP,1400H ;Load the base address of 2nd input matrix in BP.
MOV SI,0001H ;Initialize pointer for element of matrix.
MOV DI,1501H ;Set DI-register as pointer for sum matrix.
MOV CL,09H ;Set CL as count for elements in matrix.

REPEAT: MOV AL,[BX+SI] ;Get an element of 1st matrix in AL.
ADD AL,[BP+SI] ;Add corresponding element of 2nd matrix to AL.
MOV [DI],AL ;Store the sum of an element in memory.
INC SI ;Increment the pointers.
INC DI
LOOP REPEAT ;Repeat addition until count is zero.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 21

;PROGRAM TO ADD TWO 3X3 MATRIX

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BB 1300 MOV BX,1300H ;Load the base address of 1st input matrix in BX.
1003 BD 1400 MOV BP,1400H ;Load the base address of 2nd input matrix in BP.
1006 BE 0001 MOV SI,0001H ;Initialize pointer for element of matrix.
1009 BF 1501 MOV DI,1501H ;Set DI-register as pointer for sum matrix.
100C B1 09 MOV CL,09H ;Set CL as count for elements in matrix.

100E 8A 00 REPEAT: MOV AL,[BX+SI] ;Get an element of 1st matrix in AL.
1010 02 02 ADD AL,[BP+SI] ;Add corresponding element of 2nd matrix to AL.
1012 88 05 MOV [DI],AL ;Store the sum of an element in memory.
1014 46 INC SI ;Increment the pointers.
1015 47 INC DI
1016 E2 F6 LOOP REPEAT ;Repeat addition until count is zero.
1018 F4 HLT ;Halt program execution.

1019 CODE ENDS ;End of code segment.
END ;Assembly end.

 6. 79

Sample data

MATRIX 1 : 01 MATRIX 2 : F0 SUM MATRIX : F1
 02 E1 E3
 03 D2 D5
 04 C3 C7
 05 B4 B9
 06 A5 AB
 07 96 9D
 08 87 8F

 09 78 81

EXAMPLE PROGRAM 22 : Matrix Multiplication

Write an assembly language program to multiply two numbers of 3×3 matrices.

Problem Analysis

While storing the matrices in memory, the first row elements are stored first, followed by second

row elements and then third row elements. For multiplication operation the matrices should be addressed

as two dimensional array. Here the two-dimensional arrays are addressed by using pointers and counters.

The SI and DI registers are used as address pointers for two input matrices. The CL and CH

registers are used as row and column count, respectively. The BP-register is used as pointer for storing

the elements of product matrix.

Algorithm

1. Load the address of first input matrix in SI-register.

2. Load the address of second input matrix in DI-register.

3. Load the address of product matrix in BP-register.

4. Load the row count in CL-register.

5. Load the column count in CH-register.

6. Copy the column count in BL-register (Let it be second column count).

7. Initialize sum as zero in DL-register.

8. Get the column count in DH-register.

9. Get a row element of first matrix in AL-register.

10. Multiply a column element of second matrix with AL, the product will be in AL . (Because it is assumed that the product

does not exceed 8-bit.)

11. Add the product (AL) to sum (DL).

12. Increment SI to point to next element of same row in first input matrix.

13. Increment DI by 03 to point to next element of same column in second input matrix.

14. Decrement the column count (DH-register).

15. Check zero flag. If zero flag is reset then go to step 9, otherwise go to next step.

16. Store an element of product matrix (DL) in memory.

17. Increment the product matrix pointer (BP).

18. Subtract 03
H
 from SI to point to the first element of same row.

19. Subtract 09
H
 from DI to point to first element of next row.

20. Decrement BL-register (second column count).

21. Check zero flag. If zero flag is reset then go to step 7, otherwise go to next step.

22. Add 03
H
 to SI to point to first element of next row in first matrix.

23. Load the starting address of second matrix in DI-register.

24. Decrement the row count.

25. Check zero flag. If zero is reset then go to step 6, otherwise stop.

Memory Content
address

1301 01
1302 02
1303 03
1304 04
1305 05
1306 06
1307 07
1308 08
1309 09

Memory Content
address

1401 F0
 1402 E1

1403 D2
1404 C3
1405 B4
1406 A5
1407 96
1408 87
1409 78

Memory Content
address

1501 F1
1502 E3
1503 D5
1504 C7
1505 B9
1506 AB
1507 9D
1508 8F
1509 81

8086 Microprocessor and Its Appications

6. 80 Chapter 6 Assembly Language Programming

Flowchart

Start

¯
Load the Address of First Matrix

in SI-register

¯
Load the Address of Second

Matrix in DI-register

¯
Load the Address of Product

Matrix in BP-register

Load the Row Count in CL-register

¯

Load the Column Count in CH-register

¯

Copy the Column Count in BL-register

¯

Clear DL-register to Initialize
Sum as Zero

¯

Move CH to DH to Copy
the Column Count in DH

¯

Get One Element of Row in
First Matrix in AL-register

¯

Multiply AL with a Column Element
of Second Matrix. Product in AL

¯

Add the Product (AL) to Sum (DL)

¯

Increment First Matrix Pointer (SI)

¯

Add 03 to Second Matrix
Pointer (DI)

¯

Decrement the Column Count DH

¯

¯
Is

ZF = 1?

¯
Store an Element of Product
Matrix (DL) in Memory

Increment Product Matrix Pointer (BP)

¯

Subtract 03 from SI and Subtract 09
from DI

¯

Decrement Column Count BL

¯

¯
Is

ZF = 1?

Add 03 to SI and Load the Starting
Address of Second Matrix in DI

¯

Decrement Row Count CL

¯

¯
Is

ZF = 1?

Stop
¯

¬

¬

¬

®
No

Yes

Yes

®
No

®
No

Yes

 6. 81

Assembly language program

;PROGRAM TO MULTIPLY TWO 3X3 MATRIX

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1301H ;Set SI as pointer for first input matrix.
MOV DI,1401H ;Set DI as pointer for second input matrix.
MOV BP,1501H ;Set BP as pointer for product matrix.
MOV CL,03H ;Set CL as count for elements in a row.
MOV CH,03H ;Set CH as count for elements in a column.

REPEAT3: MOV BL,CH ;Copy the column count in BL-register.

REPEAT2: MOV DL,00H ;Initialize sum as zero.
MOV DH,CH ;Get the column count in DH.

REPEAT1: MOV AL,[SI] ;Get one element of the row in AL-register.
MUL [DI] ;Get product of row and column element in AL.
ADD DL,AL ;Add the product to sum.
INC SI ;Increment the first input matrix pointer.
ADD DI,03H ;Let DI point to next element of

;same column of 2nd matrix.
DEC DH ;Decrement the column count.
JNZ REPEAT1 ;Repeat multiplication and addition until

;DH count is zero.

MOV [BP],DL ;Store an element of product matrix in memory.
INC BP ;Increment the product matrix pointer.
SUB SI,03H ;Make SI to point to first element of the row.
SUB DI,09H
INC DI
DEC BL ;Decrement the column count.
JNZ REPEAT2 ;Repeat multiplication and addition of a row

;in 1st matrix with next column of 2nd matrix.
ADD SI,03H ;Let SI point to first element of

;next row of 1st matrix.
MOV DI,1401H ;Make DI to point to first element of 2nd matrix.
DEC CL ;Decrement the row count.
JNZ REPEAT3 ;Repeat multiplication and addition of next row

;in 1st matrix with all column of 2nd matrix.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 22

;PROGRAM TO MULTIPLY TWO 3X3 MATRIX

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BE 1301 MOV SI,1301H ;Set SI as pointer for first input matrix.
1003 BF 1401 MOV DI,1401H ;Set DI as pointer for second input matrix.
1006 BD 1501 MOV BP,1501H ;Set BP as pointer for product matrix.
1009 B1 03 MOV CL,03H ;Set CL as count for elements in a row.
100B B5 03 MOV CH,03H ;Set CH as count for elements in a column.
100D 8A DD REPEAT3: MOV BL,CH ;Copy the column count in BL-register.

8086 Microprocessor and Its Appications

6. 82 Chapter 6 Assembly Language Programming

100F B2 00 REPEAT2: MOV DL,00H ;Initialize sum as zero.
1011 8A F5 MOV DH,CH ;Get the column count in DH.

1013 8A 04 REPEAT1: MOV AL,[SI] ;Get one element of the row in AL-register.
1015 F6 25 MUL [DI] ;Get product of row and column element in AL.
1017 02 D0 ADD DL,AL ;Add the product to sum.
1019 46 INC SI ;Increment the first input matrix pointer.
101A 83 C7 03 ADD DI,03H ;Let DI point to next element of

;same column of 2nd matrix.
101D FE CE DEC DH ;Decrement the column count.
101F 75 F2 JNZ REPEAT1 ;Repeat multiplication and addition until

;DH count is zero.

1021 88 56 00 MOV [BP],DL ;Store an element of product matrix in memory.
1024 45 INC BP ;Increment the product matrix pointer.
1025 83 EE 03 SUB SI,03H ;Make SI to point to first element of the row.
1028 83 EF 09 SUB DI,09H
102B 47 INC DI
102C FE CB DEC BL ;Decrement the column count.
102E 75 DF JNZ REPEAT2 ;Repeat multiplication and addition of a row

;in 1st matrix with next column of 2nd matrix.
1030 83 C6 03 ADD SI,03H ;Let SI point to first element of

;next row of 1st matrix.
1033 BF 1401 MOV DI,1401H ;Make DI to point to first element of 2nd matrix.
1036 FE C9 DEC CL ;Decrement the row count.
1038 75 D3 JNZ REPEAT3 ;Repeat multiplication and addition of next row

;in 1st matrix with all column of 2nd matrix.
103A F4 HLT ;Halt program execution.

103B CODE ENDS ;End of code segment.
END ;Assembly end.

Sample data

 MATRIX 1 :01 MATRIX 2 : 04 PRODUCT MATRIX : 0F
01 04 0F
01 04 0F
02 05 1E
02 05 1E
02 05 1E
03 06 2D
03 06 2D

03 06 2D

EXAMPLE PROGRAM 23 : BCD to Binary Conversion

Write an assembly language program to convert a BCD data (2-digit/8-bit) to binary .

Problem Analysis

The 2-digit BCD data will have units digit and tens digit. When the tens digit (upper nibble) is

multiplied by 0A
H
 and the product is added to units digit (lower nibble), the result will be in binary,

because the microprocessor will perform binary arithmetic.

Memory Content
address

1301 01
1302 01
1303 01
1304 02
1305 02
1306 02
1307 03
1308 03
1309 03

Memory Content
address

1401 04
1402 04
1403 04
1404 05
1405 05
1406 05
1407 06
1408 06
1409 06

Memory Content
address

1501 0F
1502 0F
1503 0F
1504 1E
1505 1E
1506 1E
1507 2D
1508 2D
1509 2D

 6. 83

Algorithm

1. Load the address of BCD data in BX-register.

2. Get the BCD data in AL-register.

3. Copy the BCD data in DL-register.

4. Logically AND DL with 0F
H
 to mask upper nibble and get units digit in DL.

5. Logically AND AL with F0
H
 to mask lower nibble.

6. Move the count value for rotation in CL-register.

7. Rotate the content of AL to move the upper nibble to lower nibble position.

8. Move 0A
H
 to DH-register.

9. Multiply AL with DH-register. The product will be in AL-register.

10. Add the units digit in DL-register to product in AL-register.

11. Save the binary data (AL) in memory.

12. Stop.

Assembly language program

;PROGRAM TO CONVERT A BCD DATA TO BINARY DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.
MOV BX,1100H ;Load the address of the data in BX-register.
MOV AL,[BX] ;Get the BCD data in AL-register.
MOV DL,AL ;Copy the data in DL-register.
AND DL,0FH ;Mask upper nibble (tens digit).
AND AL,0F0H ;Mask lower nibble (units digit).
MOV CL,4 ;Rotate the upper nibble to lower nibble position.
ROR AL,CL
MOV DH,0AH ;Set multiplier as 0AH.
MUL DH ;Multiply tens digit by 0AH,

;the product will be in AL.
ADD AL,DL ;Get sum of units digit and product in AL.
MOV [BX+1],AL ;Save the binary data in memory.
HLT ;Halt program execution.

Flowchart

Start

Load the Address of BCD Data
in BX-register

¯

Get the BCD Data in AL-register

¯

Rotate the Content of AL
Four Times

¯

Load the Multiplier 0A to

DH-register
H

¯

Save the Binary Data in Memory

¯

Stop
¯

Move AL to DL

¯

AND DL with 0F to Get Units DigitH

¯

ANDAL with F0 to Get Tens DigitH

¯

Move a Count Value 04 to CL-register

¯

Multiply AL with DH. The
Product in AL

¯

Add Units (DL) to Product (AL) to Get
Binary Data in AL

¯

8086 Microprocessor and Its Appications

6. 84 Chapter 6 Assembly Language Programming

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 23

;PROGRAM TO CONVERT A BCD DATA TO BINARY DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BB 1100 MOV BX,1100H ;Load the address of the data in BX-register.
1003 8A 07 MOV AL,[BX] ;Get the BCD data in AL-register.
1005 8A D0 MOV DL,AL ;Copy the data in DL-register.
1007 80 E2 0F AND DL,0FH ;Mask upper nibble (tens digit).
100A 24 F0 AND AL,0F0H ;Mask lower nibble (units digit).
100C B1 04 MOV CL,4 ;Rotate the upper nibble to lower nibble position.
100E D2 C8 ROR AL,CL
1010 B6 0A MOV DH,0AH ;Set multiplier as 0AH.
1012 F6 E6 MUL DH ;Multiply tens digit by 0AH,

;the product will be in AL.
1014 02 C2 ADD AL,DL ;Get sum of units digit and product in AL.
1016 88 47 01 MOV [BX+1],AL ;Save the binary data in memory.
1019 F4 HLT ;Halt program execution.

101A CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

 Input Data : 75
10

 Output Data : 4B
H

EXAMPLE PROGRAM 24 : Binary to BCD Conversion

Write an assembly language program to convert 8-bit binary data to BCD.

Problem Analysis

The maximum value of 8-bit binary is FF
H
. The BCD equivalent of FF

H
 is 256

10
. Hence, when an

8-bit binary is converted to BCD, the BCD data will have hundreds, tens and units digit. We can use two

counters to count hundreds and tens. Initially the counters are cleared. First let us subtract all hundreds

from the given data and for each subtraction hundreds counter is incremented by one. Then we can

subtract all tens from the given data and for each subtraction tens counter is incremented by one. The

remaining will be units. The tens and units can be combined as 2-digit BCD and stored in the memory. The

hundreds can be separately stored in the memory.

Algorithm

1. Load the address of data in BX-register.

2. Get the binary data in AL-register.

3. Clear DX-register for storing hundreds and tens.

4. Compare AL with 64
H
 (100

10
).

5. Check carry flag. If carry flag is set then go to step 9, otherwise go to next step.

6. Subtract 64
H
 (100

10
) from AL-register.

7. Increment hundreds register (DL).

8. Go to step 4.

Memory Content
address

1100 75

1101 4B

 6. 85

9. Compare AL with 0A
H
 (10

10
).

10. Check carry flag. If carry flag is set then go to step 14, otherwise go to next step.

11. Subtract 0A
H
 (10

10
) from AL-register.

12. Increment tens register (DH).

13. Go to step 9.

14. Move the count value 04
H
 for rotation in CL-register.

15. Rotate the content of DH four times.

16. Add DH to AL to combine tens and units as 2-digit BCD.

17. Save AL and DL in memory.

18. Stop.

Assembly language program

;PROGRAM TO CONVERT A BINARY DATA TO BCD DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV BX,1100H ;Load the address of the data in BX-register.
MOV AL,[BX] ;Get the binary data in AL-register.
MOV DX,0000H ;Clear DX for storing hundreds and tens.

HUND: CMP AL,64H ;Compare whether data is less than 100 (or 64H).
JC TEN ;If the data is less than 100 then jump to TEN.
SUB AL,64H ;If data greater than 100, subtract hundred.
INC DL ;Increment hundreds register.

Flowchart

Start

Load the Address of Data
in BX-register

¯

Get the Binary Data in AL-register

¯

Rotate the Content of DH
Register Four Times

¯

¯
Is

CF = 1?

Stop
¯

Yes

No

Clear DX-register

¯

Compare AL with 64H

¯

Compare AL with 0AH

¯

¯
Is

CF = 1?

¯

Subtract 64 fromAL and

Increment DL-register
H®

® Subtract 0A fromAL and

Increment DH-register
H

¬

¬

Yes

No

Move 04 to CLH

¯

Add DH to AL

¯

Save AL and DL in Memory

¯

8086 Microprocessor and Its Appications

6. 86 Chapter 6 Assembly Language Programming

JMP HUND ;Repeat subtraction of hundred.

TEN: CMP AL,0AH ;Compare whether data is less than 10 (or 0AH).
JC UNIT ;If data is less than 10 then jump to UNIT.
SUB AL,0AH ;If data greater than 10 then, subtract ten.
INC DH ;Increment tens register.
JMP TEN ;Repeat subtraction of ten.

UNIT: MOV CL,4 ;Rotate tens digit to upper nibble position.
ROL DH,CL
ADD AL,DH ;Combine tens and units digit.
MOV [BX+1],AL ;Save tens and units in memory.
MOV [BX+2],DL ;Save hundreds in memory.
HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 24

;PROGRAM TO CONVERT A BINARY DATA TO BCD DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.

1000 BB 1100 MOV BX,1100H ;Load the address of the data in BX-register.
1003 8A 07 MOV AL,[BX] ;Get the binary data in AL-register.
1005 BA 0000 MOV DX,0000H ;Clear DX for storing hundreds and tens.

1008 3C 64 HUND: CMP AL,64H ;Compare whether data is less than 100 (or 64H).
100A 72 06 JC TEN ;If the data is less than 100 then jump to TEN.
100C 2C 64 SUB AL,64H ;If data greater than 100, subtract hundred.
100E FE C2 INC DL ;Increment hundreds register.
1010 EB F6 JMP HUND ;Repeat subtraction of hundred.

1012 3C 0A TEN: CMP AL,0AH ;Compare whether data is less than 10 (or 0AH).
1014 72 06 JC UNIT ;If data is less than 10 then jump to UNIT.
1016 2C 0A SUB AL,0AH ;If data greater than 10 then, subtract ten.
1018 FE C6 INC DH ;Increment tens register.

101A EB F6 JMP TEN ;Repeat subtraction of ten.

101C B1 04 UNIT: MOV CL,4 ;Rotate tens digit to upper nibble position.
101E D2 C6 ROL DH,CL
1020 02 C6 ADD AL,DH ;Combine tens and units digit.
1022 88 47 01 MOV [BX+1],AL ;Save tens and units in memory.
1025 88 57 02 MOV [BX+2],DL ;Save hundreds in memory.
1028 F4 HLT ;Halt program execution.

1029 CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

 Input Data : E4
H

Output Data : 0228
10

Memory Content
address

1100 E4
1101 28
1102 02

6. 87

EXAMPLE PROGRAM 25 : Binary to ASCII Conversion

Write an assembly language program to convert an array of 8-bit binary data to ASCII code.

Problem Analysis

The 8-bit binary can be represented by 2-digit hexa. Each hexa digit can be converted to an 8-bit

ASCII code (i.e., each nibble of binary data can be converted to an 8-bit ASCII code). The hexa digit 0

through 9 are represented by 30 to 39 in ASCII and the hexa digit A through F are represented by 41 to 46

in ASCII. Therefore, the 8-bit binary data is split into two nibbles : lower nibble and upper nibble. Then

check each nibble whether it is less than 0A
H
 or not, if it is less than 0A

H
 then add 30

H
 to convert to ASCII

or of it is greater than/equal to 0A
H
 then add 37

H
 to convert to ASCII.

Flowchart

Start

Load the Address of Binary
Array in SI-register

¯

Clear Direction Flag (DF)

¯

Move 20 to BL-registerH

¯

Load the Address of ASCII Array
in DI-register

¯

Get a Byte of Binary Array in AL

¯

Compare AL and BL registers

¯

¯
Is

ZF = 1?

Move AL to BH

¯

Logically ANDAL with 0FH

¯

Compare AL with 0AH

¯

Stop®

¯
Is

CF = 1?

Add 30 to ALH

¯

Store ASCII Code of Lower
Nibble (AL) in Memory

¯

Move BH to AL

¯

Logically ANDAL with F0H

¯

Move 04 to CL-register
and Then Rotate AL Four

Times Left

¯

Compare AL with 0AH

¯

¯
Is

CF = 1?

Add 30 to ALH

¯

Store ASCII Code of Upper
Nibble (AL) in Memory

¯

®

® Add 07 to AL

¬

® Add 07 to AL

¬

Yes

Yes

No

No

No

Yes

8086 Microprocessor and Its Appications

6. 88 Chapter 6 Assembly Language Programming

Algorithm

1. Set SI as pointer for binary array.

2. Set DI as pointer for ASCII array.

3. Clear Direction Flag (DF) for autoincrement of pointers.

4. Move the end character 20
H
 to BL-register.

5. Load a byte of binary array in AL-register.

6. Compare AL and BL .

7. Check zero flag. If zero flag is set then go to step 24, otherwise go to next step.

8. Save the byte in BH-register.

9. Logically AND AL with 0F
H
 to mask the upper nibble.

10. Compare AL with 0A
H
.

11. Check carry flag. If carry flag is set then go to step 13, otherwise go to next step.

12. Add 07
H
 to AL-register.

13. Add 30
H
 to AL-register.

14. Store AL-register (ASCII code for lower nibble) in memory.

15. Move the saved byte in BH register to AL-register.

16. Logically AND AL-register with F0
H
 to mask the lower nibble.

17. Rotate the upper nibble in AL-register to lower nibble position.

18. Compare AL with 0A
H
.

19. Check carry flag. If carry flag is set then go to step 21, otherwise go to next step.

20. Add 07
H
 to AL-register.

21. Add 30
H
 to AL-register.

22. Store AL-register (ASCII code for upper nibble) in memory.

23. Jump to step 5.

24. Stop.

Assembly language program

;PROGRAM TO CONVERT AN ARRAY OF BINARY DATA TO ASCII DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.
MOV SI,1100H ;Set SI as pointer for binary array.
MOV DI,1400H ;Set DI as pointer for ASCII array.
CLD ;Clear DF for autoincrement of SI and DI.
MOV BL,20H ;Load the end character in BL-register.

NEXT: LODSB ;Load a byte of binary data in AL-register.
CMP AL,BL ;Check for end of string.
JE EXIT ;If zero flag is set, then go to EXIT.

MOV BH,AL ;Save the byte in BH-register.
AND AL,0FH ;Mask the upper nibble of binary data.
CMP AL,0AH ;Check whether lower nibble less than 0AH.
JL SKIP1 ;If lower nibble less than 0AH, then add 30H.
ADD AL,07H ;If lower nibble is greater than 0AH, then add 37H.

SKIP1: ADD AL,30H
STOSB ;Store ASCII code of lower nibble in memory.

MOV AL,BH ;Get the data in AL-register.
AND AL,0F0H ;Mask the lower nibble.
MOV CL,04H ;Rotate upper nibble to lower nibble position.
ROL AL,CL
CMP AL,0AH ;Check whether upper nibble is less than 0AH.
JL SKIP2 ;If upper nibble less than 0AH, then add 30H.
ADD AL,07H ;If upper nibble greater than 0AH, then add 37H.

 6. 89

SKIP2: ADD AL,30H
STOSB ;Store ASCII code of upper nibble in memory.
JMP NEXT ;Jump to NEXT to convert next byte.

EXIT: HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 25

;PROGRAM TO CONVERT AN ARRAY OF BINARY DATA TO ASCII DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.

1000 ORG 1000H ;specify program starting address.

1000 BE 1100 MOV SI,1100H ;Set SI as pointer for binary array.

1003 BF 1400 MOV DI,1400H ;Set DI as pointer for ASCII array.

1006 FC CLD ;Clear DF for autoincrement of SI and DI.

1007 B3 20 MOV BL,20H ;Load the end character in BL-register.

1009 AC NEXT: LODSB ;Load a byte of binary data in AL-register.

100A 3A C3 CMP AL,BL ;Check for end of string.

100C 74 20 JE EXIT ;If zero flag is set, then go to EXIT.

100E 8A F8 MOV BH,AL ;Save the byte in BH-register.

1010 24 0F AND AL,0FH ;Mask the upper nibble of binary data.

1012 3C 0A CMP AL,0AH ;Check whether lower nibble less than 0AH.

1014 7C 02 JL SKIP1 ;If lower nibble less than 0AH, then add 30H.

1016 04 07 ADD AL,07H ;If lower nibble greater than 0AH, then add 37H.

1018 04 30 SKIP1: ADD AL,30H

101A AA STOSB ;Store ASCII code of lower nibble in memory.

101B 8A C7 MOV AL,BH ;Get the data in AL-register.

101D 24 F0 AND AL,0F0H ;Mask the lower nibble.

101F B1 04 MOV CL,04H ;Rotate upper nibble to lower nibble position.

1021 D2 C0 ROL AL,CL

1023 3C 0A CMP AL,0AH ;Check whether upper nibble is less than 0AH.

1025 7C 02 JL SKIP2 ;If upper nibble less than 0AH, then add 30H.

1027 04 07 ADD AL,07H ;If upper nibble greater than 0AH, then add 37H.

1029 04 30 SKIP2: ADD AL,30H

102B AA STOSB ;Store ASCII code of upper nibble in memory.

102C EB DB JMP NEXT ;Jump to NEXT to convert next byte.

102E F4 EXIT: HLT ;Halt program execution.

102F CODE ENDS ;End of code segment.

END ;Assembly end.

Sample Data

 Input Data : 4E
H

 Output Data : 45
 15

H
 34

 87
H

 35
 C0

H
 31

 20
H

 37
 38
 30

 43

Memory Content
address

 1100 4E
 1101 15
 1102 87
 1103 C0
 1104 20

Memory Content
address

 1400 45
 1401 34
 1402 35
 1403 31
 1404 37
 1405 38
 1406 30
 1407 43

8086 Microprocessor and Its Appications

6. 90 Chapter 6 Assembly Language Programming

EXAMPLE PROGRAM 26 : ASCII to Binary Conversion

Write an assembly language program to convert an array of ASCII character to binary array.

Problem Analysis

The hexa digit 0 through 9 are represented by 30
H
 to 39

H
 in ASCII. Hence, if the ASCII code is in

the range 30
H
 to 39

H
, then we can subtract 30

H
 to get the binary value. The hexa digit A through F are

represented by 41
H
 to 46

H
 in ASCII. Hence, if the ASCII code is in the range 41

H
 to 46

H
 then we can

subtract 37
H
 to get the binary value.

Algorithm

1. Set SI as pointer for ASCII array.

2. Set DI as pointer for binary array.

3. Clear direction flag (DF)for autoincrement of pointers.

4. Move the end character 20
H
 to BL.

5. Get a byte of ASCII array in AL-register.

Flowchart
Start

Load the Address of ASCII Array in SI-register

¯

Clear Direction Flag (DF)

Get a Byte of ASCII Array in AL-register

Subtract 30 fromALH

¯

Load the Address of Binary Array in DI-register

¯

Move 20 to BL-registerH

¯
Compare AL and BL registers

¯
Is

ZF = 1?

Compare AL with 0AH

¯

¯
Is

CF = 1?

Store the Binary Value
(AL) in Memory

¯

Stop
¯

Subtract 07

fromAL-register
H®

®

¬

Yes

No

®

No

Yes

 6. 91

6. Compare AL and BL registers.

7. Check zero flag. If zero flag is set then go to step 14, otherwise go to next step.

8. Subtract 30
H
 from AL-register.

9. Compare AL with 0A
H
.

10. Check carry flag. If carry flag is set then go to step 12, otherwise go to next step.

11. Subtract 07
H
 from AL-register.

12. Store the binary value (AL) in memory.

13. Go to step 5.

14. Stop.

Assembly language program

;PROGRAM TO CONVERT AN ARRAY OF ASCII DATA TO BINARY DATA

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ORG 1000H ;specify program starting address.

MOV SI,1100H ;Set SI as pointer for ASCII array.
MOV DI,1400H ;Set DI as pointer for binary array.
CLD ;Clear DF for autoincrement of SI and DI.
MOV BL,20H ;Load the end character in BL-register.

NEXT: LODSB ;Load a byte of ASCII array in AL-register.
CMP AL,BL ;Check for end of string.
JE EXIT ;If zero flag is set, then go to EXIT.
SUB AL,30H ;If zero flag is not set,

;then subtract 30H from AL.
CMP AL,0AH ;Check whether AL is greater than 0AH.
JC STORE ;If AL is less than 0AH, then go to STORE.
SUB AL,07H ;If AL is greater than or equal to 0AH,

;then subtract 07H from AL.
STORE: STOSB ;Store the binary value in memory.

JMP NEXT ;Jump to convert next byte.

EXIT: HLT ;Halt program execution.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 26

;PROGRAM TO CONVERT AN ARRAY OF ASCII DATA TO BINARY DATA

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
1000 ORG 1000H ;specify program starting address.
1000 BE 1100 MOV SI,1100H ;Set SI as pointer for ASCII array.
1003 BF 1400 MOV DI,1400H ;Set DI as pointer for binary array.
1006 FC CLD ;Clear DF for autoincrement of SI and DI.
1007 B3 20 MOV BL,20H ;Load the end character in BL-register.

1009 AC NEXT: LODSB ;Load a byte of ASCII array in AL-register.
100A 3A C3 CMP AL,BL ;Check for end of string.
100C 74 0B JE EXIT ;If zero flag is set, then go to EXIT.
100E 2C 30 SUB AL,30H ;If zero flag is not set,

;then subtract 30H from AL.
1010 3C 0A CMP AL,0AH ;Check whether AL is greater than 0AH.
1012 72 02 JC STORE ;If AL is less than 0AH, then go to STORE.

8086 Microprocessor and Its Appications

6. 92 Chapter 6 Assembly Language Programming

1014 2C 07 SUB AL,07H ;If AL is greater than or equal to 0AH,
;then subtract 07H from AL.

1016 AA STORE: STOSB ;Store the binary value in memory.
1017 EB F0 JMP NEXT ;Jump to convert next byte.

1019 F4 EXIT: HLT ;Halt program execution.

101A CODE ENDS ;End of code segment.
END ;Assembly end.

Sample Data

 Input Data : 42 Output Data : 0B

 37 07

 46 0F

 39 09

 38 08

 20

EXAMPLE PROGRAM 27 : Program to Display the ASCII Code of the Key Pressed

Write an 8086 assembly language program to read the PC (Personal Computer) keyboard and display the ASCII code of

the key pressed in the PC monitor.

Problem Analysis

This assembly language program can be developed using BIOS and DOS interrupts. The BIOS

interrupt INT 16H with function code 00
H
 can be used to read the ASCII code of the key pressed. Using the

received ASCII value and the DOS interrupt INT 21H with function code 02
H
 the symbol/character

representing the key which is being pressed can be displayed.

In order to display the ASCII value of the key, the ASCII value has to be considered as hexcode and

then the ASCII value of each nibble of the hexcode has to be determined. A separate procedure can be

written to convert the hexcode to ASCII. (The logic of converting hex to ASCII has been discussed in

example program 25.) The ASCII values of lower and upper nibbles can be stored as ASCII string and then

displayed on the PC monitor using the DOS interrupt INT 21H with function code 09
H
.

Apart from displaying the key symbol and ASCII value, some message can also be displayed for

the user. Since the program involves display of codes/messages a number of times, a macro can be written

for display of ASCII string on PC the monitor.

One of the PC keys can be used to terminate the program. Here the ESC key is used to terminate the

program. When the ESC key is pressed, the DOS interrupt INT 21H with function code 4C
H
 can be initiated

to terminate the program and return the control to the command prompt.

Memory Content
address

1100 42

1101 37

1102 46

1103 39

1104 38

1105 20

Memory Content
address

1400 0B

1401 07

1402 0F

1403 09

1404 08

 6. 93

Flowchart

Note : For flowchart of the procedure HEX2ASC please refer to Example program 25.

Start

¯

Load 00 in AH-registerH

¯

Load the Offset Address of
Data Segment in AX

¯
Copy the Content of AX to

DS-register

¯
Display Message-1 (MSG 1)

Using Macro DISP

¯
Is

ZF = 1?

Load 02 in AH and Move AL

to DL
H

¯
Display the Cursor in Next
Line Using Macro DISP

¯
Call BIOS Service INT 16H
to Get Keycode in AL

Compare Content of AL with 1BH

¯

Load 4C in AH and 00 in ALH H

¯

¯
Call DOS Service INT 21H
to Terminate Program

Stop
¯

¯
Call DOS Service INT 21H to

Display the Symbol of Key Pressed

¯
Set SI as Pointer for

ASCII Code

¯
Call Procedure HEX2ASC
to Get the ASCII Code in
Memory Pointed by SI

¯
Display Message-2(MSG 2)

Using Macro DISP

¯
Display the ASCII Code of
the Key Pressed Using

Macro DISP

1
¯

®

®
No

Yes

1¬

Load the Function Code 09 in AHH

¯

Start

Load Offset Address of First Byte
of ASCII String to Display in DX

¯

¯
Call DOS Service INT 21H
to Display the ASCII String

Stop
¯

Flowchart for Main Program Flowchart for Macro DISP

8086 Microprocessor and Its Appications

6. 94 Chapter 6 Assembly Language Programming

Algorithm

i) Macro DISP to display ASCII string

1. Load function code 09
H
 in AH-register.

2. Load the offset address of the first byte of ASCII string to be displayed in DX-register.

3. Initiate DOS interrupt INT 21H.

ii) Procedure for hex to ASCII conversion

For algorithm of this procedure please refer to Example program 25.

iii) Main program

1. Initialize DS-register.

2. Display the message "Press any key to test and ESC to exist" using macro DISP.

3. Move the cursor to next line using macro DISP.

4. Load the function code 00
H
 in AH-register and initiate BIOS interrupt INT 16H to get the ASCII value of key pressed in

AL-register.

5. Compare the content of AL with ASCII value of ESC key to check whether ESC key is pressed. If ZF = 1, go to step 11,

otherwise go to next step.

6. Load the function code 02
H
 in AH-register and load the ASCII value of key pressed in DL-register and then initiated DOS

interrupt INT 21H to display the character/symbol of the key pressed.

7. Set SI as memory pointer for ASCII code.

8. Call procedure HEX2ASC to determine the ASCII codes.

9. Display the message "Normal ASCII character code = " using the macro display and then display the ASCII code using the

same macro.

10. Go to step 3.

11. Load the function code 4C
H
 in AH-register and initiate the DOS interrupt INT 21H to terminate the program.

12. Stop.

Assembly language program

;PROGRAM TO DISPLAY THE ASCII CODE OF THE KEY PRESSED

;user defined macro to display the string

DISP MACRO MSG ;Start of macro DISP.

MOV AH, 09H ;Move the function code in AH.
MOV DX,OFFSET MSG ;Load the address of message in DX.
INT 21H ;Call DOS service for display.

ENDM ;End of macro DISP.

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

MOV AX,DATA ;Initialize DS to DATA.
MOV DS,AX
DISP MSG1 ;Display MSG1 using macro DISP.

RDKEY: DISP NL ;Display cursor in next line.
MOV AH,00H ;Move the function code in AH.
INT 16H ;Call BIOS service to read key code.

CMP AL,ESC ;Check whether ESC key is pressed.
JE OVER ;If yes, jump to OVER, otherwise write

;character to standard output device.
MOV AH,02H ;Move the function code in AH.
MOV DL,AL ;Load hexcode of key pressed in DL.
INT 21H ;Call DOS service for display.

 6. 95

MOV SI,OFFSET ASCI ;Get address for saving ASCII code.
CALL HEX2ASC ;Call procedure hex to ASCII conversion.
DISP MSG2 ;Display MSG2 using macro DISP.
DISP ASCI ;Display ASCII code using macro DISP.
JMP RDKEY ;Jump to RDKEY to read next key code.

OVER: MOV AH,4CH ;Move the function code in AH.
MOV AL,00H
INT 21H ;Return to command prompt.

HEX2ASC PROC NEAR ;Start of procedure HEX2ASC.

MOV BL,AL ;Save the key code in BL-register.
AND AL,0F0H ;Mask the lower nibble of key code.
MOV CL,04H ;Rotate upper nibble to
ROL AL,CL ;lower nibble position.
MOV DL,0AH ;Check whether upper nibble is
CMP AL,DL ;less than 0AH.
JL SKIP1 ;If upper nibble is less than 0AH,
ADD AL,07H ;then add 30H or if upper nibble is

SKIP1: ADD AL,30H ;greater than 0AH, then add 37H.
MOV [SI],AL ;Store ASCII code of upper nibble.

MOV AL,BL ;Get the key code in AL-register.
AND AL,0FH ;Mask the upper nibble.
CMP AL,DL ;Check whether lower nibble is less than 0AH.
JL SKIP2 ;If lower nibble is less than 0AH,
ADD AL,07H ;then add 30H or if lower nibble is

SKIP2: ADD AL,30H ;greater than 0AH, then add 37H.
MOV [SI+1],AL ;Store ASCII code of lower nibble.
MOV AL,’$’ ;Append end of string.
MOV [SI+2],AL
RET ;Return to main program.

HEX2ASC ENDP ;End of procedure HEX2ASC.

CODE ENDS ;End of code segment.

DATA SEGMENT ;start of data segment.

CR EQU 0DH ;ASCII for carriage return.
LF EQU 0AH ;ASCII for line feed.
ESC EQU 1BH ;ASCII for escape.
ASCI DB 8 DUP(0) ;Assembler directive.

MSG1 DB ‘Press any key to test and esc to exit ‘,’$’.
MSG2 DB ‘, Normal ASCII character code = ‘,’$’.
NL DB CR,LF,’$’.

DATA ENDS ;End of data segment.
END ;Assembly end.

Assembler listing for example program 27

;PROGRAM TO DISPLAY THE ASCII CODE OF THE KEY PRESSED

;user defined macro to display the string

 DISP MACRO MSG ;Start of macro DISP.

MOV AH, 09H ;Move the function code in AH.
MOV DX,OFFSET MSG ;Load the address of message in DX.
INT 21H ;Call DOS service for display.

8086 Microprocessor and Its Appications

6. 96 Chapter 6 Assembly Language Programming

ENDM ;End of macro DISP.

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

0000 B8 — R MOV AX,DATA ;Initialize DS to DATA.
0003 8E D8 MOV DS,AX

DISPMSG1 ;Display MSG1 using macro DISP.
0005 B4 09 + MOV AH, 09H ;Move the function code in AH.
0007 BA 0008 R + MOV DX,OFFSET MSG1 ;Load the address of message in DX.
000A CD 21 + INT 21H ;Call DOS service for display.

000C RDKEY: DISP NL ;Display cursor in next line.
000C B4 09 + MOV AH, 09H ;Move the function code in AH.
000E BA 0050 R + MOV DX,OFFSET NL ;Load the address of message in DX.
0011 CD 21 + INT 21H ;Call DOS service for display.
0013 B4 00 MOV AH,00H ;Move the function code in AH.
0015 CD 16 INT 16H ;Call BIOS service to read key code.

0017 3C 1B 90 90 CMP AL,ESC ;Check whether ESC key is pressed.
001B 74 1C JE OVER ;If yes, jump to OVER, otherwise write

;character to standard output device.
001D B4 02 MOV AH,02H ;Move the function code in AH.
001F 8A D0 MOV DL,AL ;Load hexcode of key pressed in DL.
0021 CD 21 INT 21H ;Call DOS service for display.

0023 BE 0000 R MOV SI,OFFSET ASCI ;Get address for saving ASCII code.
0026 E8 003F R CALL HEX2ASC ;Call procedure hex to ASCII conversion.

DISP MSG2 ;Display MSG2 using macro DISP.
0029 B4 09 + MOV AH, 09H ;Move the function code in AH.
002B BA 002F R + MOV DX,OFFSET MSG2 ;Load the address of message in DX.
002E CD 21 + INT 21H ;Call DOS service for display.

DISP ASCI ;Display ASCII code using macro DISP.
0030 B4 09 + MOV AH, 09H ;Move the function code in AH.
0032 BA 0000 R + MOV DX,OFFSET ASCI ;Load the address of message in DX.
0035 CD 21 + INT 21H ;Call DOS service for display.
0037 EB D3 JMP RDKEY ;Jump to RDKEY to read next key code.

0039 B4 4C OVER: MOV AH,4CH ;Move the function code in AH.
003B B0 00 MOV AL,00H

003D CD 21 INT 21H ;Return to command prompt.

003F HEX2ASCPROC NEAR ;Start of procedure HEX2ASC.

003F 8A D8 MOV BL,AL ;Save the key code in BL-register.

0041 24 F0 AND AL,0F0H ;Mask the lower nibble of key code.

0043 B1 04 MOV CL,04H ;Rotate upper nibble to
0045 D2 C0 ROL AL,CL ;lower nibble position.

0047 B2 0A MOV DL,0AH ;Check whether upper nibble is
0049 3A C2 CMP AL,DL ;less than 0AH.

004B 7C 02 JL SKIP1 ;If upper nibble is less than 0AH,
004D 04 07 ADD AL,07H ;then add 30H or if upper nibble is

004F 04 30 SKIP1: ADD AL,30H ;greater than 0AH, then add 37H.

0051 88 04 MOV [SI],AL ;Store ASCII code of upper nibble.

0053 8A C3 MOV AL,BL ;Get the key code in AL-register.
0055 24 0F AND AL,0FH ;Mask the upper nibble.

0057 3A C2 CMP AL,DL ;Check lower nibble is less than 0AH.

0059 7C 02 JL SKIP2 ;If lower nibble is less than 0AH,
005B 04 07 ADD AL,07H ;then add 30H or if lower nibble is

 6. 97

005D 04 30 SKIP2: ADD AL,30H ;greater than 0AH, then add 37H.

005F 88 44 01 MOV [SI+1],AL ;Store ASCII code of lower nibble.
0062 B0 24 MOV AL,’$’ ;Append end of string.
0064 88 44 02 MOV [SI+2],AL
0067 C3 RET ;Return to main program.

0068 HEX2ASC ENDP ;End of procedure HEX2ASC.

0068 CODE ENDS ;End of code segment.

0000 DATA SEGMENT ;start of data segment.

= 000D CR EQU 0DH ;ASCII for carriage return.
= 000A LF EQU 0AH ;ASCII for line feed.
= 001B ESC EQU 1BH ;ASCII for escape.
0000 08 [ASCI DB 8 DUP(0) ;Assembler directive.
 00
]
0008 50 72 65 73 73 20 MSG1 DB ‘Press any key to test and esc to exit ‘,’$’.

61 6E 79 20 6B 65
79 20 74 6F 20 74
65 73 74 20 61 6E
64 20 65 73 63 20
74 6F 20 65 78 69
74 20 24

002F 2C 20 4E 6F 72 6D MSG2 DB ‘, Normal ASCII character code = ‘,’$’.
61 6C 20 41 53 43
49 49 20 63 68 61
72 61 63 74 65 72
20 63 6F 64 65 20
3D 20 24

0050 0D 0A 24 NL DB CR,LF,’$’

0053 DATA ENDS ;End of data segment.

END ;Assembly end.

EXAMPLE PROGRAM 28 : Program to Find the Length of a String

Write an 8086 assembly language program to determine the length of ASCII string. Use PC keyboard to input the

string and display the length on PC monitor.

Problem Analysis

The ASCII string is input through PC keyboard and so DOS interrupt INT 21H with function code

01
H
 can be used to read the key code. On counting the number of input characters the length can be

determined. The carriage return (Enter key) can be used to terminate the input string. The input string can

also be displayed on PC monitor.

The count value representing the length of string will be in hex. In order to display the count value

in PC monitor it has to be converted to decimal and ASCII value of each decimal digit has to be determined

and stored in memory as ASCII string. Then the DOS interrupt INT 21H with function code 09
H
 can be

used to display the length in decimal.

A separate procedure can be written to convert the count value in hex to decimal and then to

ASCII. In this procedure the hex value is divided by ten (0A
H
). Now the quotient is ten's digit and

remainder is unit's digit. (Here it is assumed that the count does not exceeds 99
10

.) Then the ASCII value

of zero can be added to ten's digit and unit's digit to get their respective ASCII values.

Apart from displaying the input string and its length some message can also be displayed for the

user. Since the program involves display of messages a number of times, a macro can be written for display

of ASCII string on PC monitor.

After displaying the length of string the DOS interrupt INT 21H with function code 4C
H
 can be

initiated to terminate the program execution and return the control to the command prompt.

8086 Microprocessor and Its Appications

6. 98 Chapter 6 Assembly Language Programming

Flowchart

Start

¯

Load 01 in AH-registerH

¯

Load Offset Address of Data
Segment in AX

¯
Copy the Content of AX to

DS-register

¯
Display Message-1 (MSG1)

Using Macro DISP

¯
Is

ZF = 1?

¯
Clear CX-register

(Initialize Count as Zero)

¯
Call DOS Service INT 21H to Get

Keycode in AL and Echo it on Monitor

Compare Content of AL with 0DH

¯

Set SI as Pointer for ASCII
Value of Length

¯
Display Message-2 Using

Macro DISP

Stop
¯

®
No

Yes

Flowchart for Main Program

Increment CX-register

¯

Copy the Count Value in
AX-register

¯

¯
Call Procedure HEX2ASC
to Get ASCII Value of
Length in Memory

¯
Display the Length of String

Using Macro DISP

Load 4C in AH and 00

in AL
H H

¯

¯
Call DOS Service INT 21H
to Terminate Program

Divide AX by BX
¯

Start

Load 0A in BX-register and 00 in

DX-register
H H

¯

Return
¯

Flowchart for
Procedure HEX2ASC

Add ASCII Zero to DL
¯

Add ASCII Zero to AL
¯

Store AL and DL in Memory
Pointed by SI

¯

Store ASCII Value of as
End of ASCII String

$
¯

¬

 6. 99

Algorithm

i) Main program

1. Initialize DS-register

2. Display the message "ENTER THE STRING.INPUT = " using macro DISP.

3. Let CX-register be used as counter. Initialize count as zero.

4. Load the function code 01
H
 in AH-register and initiate DOS interrupt INT 21H to get the ASCII value of key pressed

in AL and echo (display) the key symbol/character in the PC monitor.

5. Compare the content of AL with ASCII value of ENTER key to check whether ENTER key is pressed. If ZF =1, go

to step 8, otherwise go to next step.

6. Increment the counter (CX-register).

7. Go to step 4.

8. Display the message " THE LENGTH OF STRING = " using the macro DISP.

9. Set SI as memory pointer for ASCII value of length.

10. Copy the count value in AX-register.

11. Call procedure HEX2ASC to get the ASCII value of count in memory pointed by SI.

12. Display the length of string using the macro DISP.

13. Load the function code 4C
H
 in AH-register and initiate the DOS interrupt INT 21H to terminate the program.

14. Stop.

ii) Procedure HEX2ASC

1. Load the divisor (0A
H
) in BX-register.

2. Divide the hex value of length in AX with 0A
H
 to get units in DX and tens in AX.

3. Add the ASCII value of zero to DL-register to get ASCII value of units.

4. Add the ASCII value of zero to AL-register to get ASCII value of tens.

5. Store the ASCII values in memory pointed by SI.

6. Return.

Note : Refer to Example program 27 for algorithm of macro DISP.

Assembly language program

;PROGRAM TO FIND THE LENGTH OF STRING

;User defined macro to display message

DISP MACRO MSG ;Start of macro.

MOV AH, 09H ;Move function code in AH.
MOV DX,OFFSET MSG ;Get address of string to display in DX.
INT 21H ;Call DOS service for display.

ENDM ;End of macro.

DATA SEGMENT ;Start of data segment.

CR EQU 0DH ;ASCII for carriage return.
LF EQU 0AH ;ASCII for line feed.
LEN DB 04 DUP(0) ;Assembler directive.
MSG1 DB ‘ENTER THE STRING.INPUT = ‘,’$’.
MSG2 DB CR,LF, ’THE LENGTH OF STRING = ‘,’$’.

DATA ENDS ;End of data segment.

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

MOV AX,DATA ;Initialize DS to data.
MOV DS,AX
DISP MSG1 ;Display MSG1 using macro DISP.

8086 Microprocessor and Its Appications

6. 100 Chapter 6 Assembly Language Programming

MOV CX,00H ;Initialize count to zero.

RDKEY: MOV AH,01H ;Move function code in AH.
INT 21H ;Call DOS service to read keycode.

CMP AL,CR ;Compare keycode with carriage return.
JE AHEAD ;If key is carriage return, go to AHEAD.

INC CX ;Increment the counter.
JMP RDKEY ;Jump to RDKEY to get next keycode.

AHEAD: DISP MSG2 ;Display MSG2 using macro disp.
MOV SI,OFFSET LEN ;Get the address for saving the length.
MOV AX,CX ;Get the count in AX-register.
CALL HEX2ASC ;Call procedure HEX2ASC.
DISP LEN ;Display length of string using macro.

MOV AH,4CH ;Move function code in AH.
MOV AL,00H
INT 21H ;Return to command prompt.

HEX2ASC PROC NEAR ;Start of procedure HEX2ASC.

MOV BX,0AH ;Load the divisor in BX-register.
MOV DX,00 ;Clear DX-register.
DIV BX ;Divide the count value by 0AH to get

;unit digit in DL and ten’s digit in AL.
ADD DL,’0' ;Convert the unit digit to ASCII.
ADD AL,’0' ;Convert the ten’s digit to ASCII.
MOV [SI],AL ;Store the ASCII values in memory.
MOV [SI+1],DL
MOV AL,’$’ ;Append end of string.
MOV [SI+2],AL
RET

HEX2ASC ENDP ;End of procedure HEX2ASC.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 28

;PROGRAM TO FIND THE LENGTH OF STRING
;User defined macro to display message

 DISP MACRO MSG ;Start of macro.

MOV AH, 09H ;Move function code in AH.
MOV DX,OFFSET MSG ;Get address of string to display in DX.
INT 21H ;Call DOS service for display.

 ENDM ;End of macro.

0000 DATA SEGMENT ;start of data segment.

= 000D CR EQU 0DH ;ASCII for carriage return.
= 000A LF EQU 0AH ;ASCII for line feed.
0000 04 [LEN DB 04 DUP(0) ;Assembler directive.

 00
]

0004 45 4E 54 45 52 20 MSG1 DB ‘ENTER THE STRING.INPUT = ‘,’$’.
54 48 45 20 53 54
52 49 4E 47 2E 49
4E 50 55 54 20 3D
20 24

 6. 101

001E 0D 0A 54 48 45 20 MSG2 DB CR,LF, ’THE LENGTH OF STRING = ‘,’$’.
 4C 45 4E 47 54 48
 20 4F 46 20 53 54
 52 49 4E 47 20 3D
 20 24

0038 DATA ENDS ;End of data segment.

0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

0000 B8 — R MOV AX,DATA ;Initialize DS to data.
0003 8E D8 MOV DS,AX

DISP MSG1 ;Display MSG1 using macro DISP.
0005 B4 09 + MOV AH, 09H ;Move function code in AH.
0007 BA 0004 R + MOV DX,OFFSET MSG1 ;Get address of string to display in DX.
000A CD 21 + INT 21H ;Call DOS service for display.
000C B9 0000 MOV CX,00H ;Initialize count to zero.

000F B4 01 RDKEY: MOV AH,01H ;Move function code in AH.
0011 CD 21 INT 21H ;Call DOS service to read keycode.

0013 3C 0D CMP AL,CR ;Compare keycode with carriage return.
0015 74 03 JE AHEAD ;If key is carriage return, go to AHEAD.

0017 41 INC CX ;Increment the counter.
0018 EB F5 JMP RDKEY ;Jump to RDKEY to get next keycode.

001A AHEAD: DISP MSG2 ;Display MSG2 using macro disp.
001A B4 09 + MOV AH, 09H ;Move function code in AH.
001C BA 001E R + MOV DX,OFFSET MSG2 ;Get address of string to display in DX.
001F CD 21 + INT 21H ;Call DOS service for display.
0021 BE 0000 R MOV SI,OFFSET LEN ;Get the address for saving the length.
0024 8B C1 MOV AX,CX ;Get the count in AX-register.
0026 E8 0036 R CALL HEX2ASC ;Call procedure HEX2ASC.

DISP LEN ;Display length of string using macro.
0029 B4 09 + MOV AH, 09H ;Move function code in AH.
002B BA 0000 R + MOV DX,OFFSET LEN ;Get address of string to display in DX.
002E CD 21 + INT 21H ;Call DOS service for display.

0030 B4 4C MOV AH,4CH ;Move function code in AH.
0032 B0 00 MOV AL,00H
0034 CD 21 INT 21H ;Return to command prompt.

0036 HEX2ASC PROC NEAR ;Start of procedure HEX2ASC.

0036 BB 000A MOV BX,0AH ;Load the divisor in BX-register.
0039 BA 0000 MOV DX,00 ;Clear DX-register.
003C F7 F3 DIV BX ;Divide the count value by 0AH to get

;unit digit in DL and ten’s digit in AL.
003E 80 C2 30 ADD DL,’0' ;Convert the unit's digit to ASCII.
0041 04 30 ADD AL,’0' ;Convert the ten’s digit to ASCII.
0043 88 04 MOV [SI],AL ;Store the ASCII values in memory.
0045 88 54 01 MOV [SI+1],DL
0048 B0 24 MOV AL,’$’ ;Append end of string.
004A 88 44 02 MOV [SI+2],AL
004D C3 RET
004E HEX2ASC ENDP ;End of procedure HEX2ASC.

004E CODE ENDS ;End of code segment.

 END ;Assembly end.

8086 Microprocessor and Its Appications

6. 102 Chapter 6 Assembly Language Programming

EXAMPLE PROGRAM 29 : Program to Find Palindrome

Write an 8086 assembly language program to verify whether an input string is a palindrome or not. Use PC keyboard to

input the string and display the result on the PC monitor.

Problem Analysis

The input ASCII string can be read using DOS interrupt INT 21H with function code 01
H
 and stored

in memory. Then the input string can be arranged in the reverse order to get reversed string and store the

reversed string in another memory location.

Compare the input string and reversed string byte by byte to verify whether it is a palindrome. If

the input string is byte by byte same as reversed string then it is a palindrome, otherwise it is not a

palindrome.

For the convenience of the user, the input string and reversed string can also be displayed on the

PC monitor. The result can be displayed as a message on the PC monitor. Since the program involves

display of messages a number of times, a macro can be written for display of ASCII string on the PC

monitor. After displaying the result the DOS interrupt INT 21H with function code 4C
H
 can be initiated to

terminate the program execution and return the control to the command prompt.

Algorithm

1. Initialize DS-register.

2. Set SI as pointer for input string and DI as pointer for reversed string.

3. Display the message "ENTER THE STRING. INPUT STRING = " using the macro DISP.

4. Let CX-register be used as counter for number of bytes in the input string. Initialize count as zero.

5. Load the function code 01
H
 in AH-register and initiate DOS interrupt INT 21H to get the ASCII value of key pressed

in AL and echo (display) the key symbol/character in the PC monitor.

6. Compare the content of AL with ASCII value of ENTER key to check whether ENTER key is pressed. If ZF = 1, go to

step 10, otherwise go to next step.

7. Save the content of AL-register in memory pointed by SI, and increment SI-register.

8. Increment the counter (CX-register).

9. Go to step 5.

10. Save the count value in BX-register.

11. Decrement SI register and copy a byte of input string in AL-register.

12. Copy the content of AL-register to the memory pointed by DI and increment DI-register.

13. Decrement CX-register. Check whether content of CX is zero and if it is true, go to next step, otherwise go to step 11.

14. Display the message "REVERSE OF STRING = " using the macro DISP.

15. Display the reversed string using the macro DISP.

16. Again set SI as pointer for input string and DI as pointer for reversed string.

17. Load the count value from BX-register to CX-register.

18. Get a byte of input string in AL and compare with corresponding byte of reverse string in memory.

19. Check zero flag. If ZF = 0, then go to step 24, otherwise go to next step.

20. Increment SI and DI-register.

21. Decrement CX-register. Check whether content of CX is zero and if it is true, go to next step, otherwise go to step 18 .

22. Display the message "INPUT STRING IS A PALINDROME" using macro DISP.

23. Go to step 25.

24. Display the message "INPUT STRING IS NOT A PALINDROME" using macro DISP.

25. Load function code 4C
H
 in AH-register and initiate the DOS interrupt INT 21H to terminate the program.

26. Stop.

Note : For algorithm and flowchart of macro DISP refer to Example program 27.

 6. 103

Flowchart

Start

Load Offset Address of Data Segment in
AX and Then Copy AX to DS-register

Set SI and DI as Pointers for Input and
Reversed String Respectively

Call DOS Service INT 21H to Get
Keycode in AL and Echo it on Monitor

Compare Content of AL with 0DH

Save the Content of CX in BX

Load 01 in AH-registerH

Display Message-1(MSG 1)
Using Macro DISP

Clear CX-register
(Initialize Count as Zero)

¯

¯

¯

¯

¯

¯

¯

¯
Is

ZF = 1?

¯

Decrement SI and Move the Content of
Memory Pointed by SI to AL-register

¯

Copy the Content of AL-register to
Memory Pointed by DI and Then

Increment DI

¯

Decrement CX

¯

¯
Is

(CX) = 0

¯
1

Increment CX-register

Increment SI-register

® Save the Content of AL
in Memory

¬

No

Yes

¬

®
No

8086 Microprocessor and Its Appications

6. 104 Chapter 6 Assembly Language Programming

Flowchart continued

Load 4C in AH and 00 in ALH H

Copy the Content of Memory
Pointed by SI to AL-register

Display Message-2(MSG 2)
Using Macro DISP

Set SI and DI as Pointer for Input and
Reversed String Respectively

¯

¯

¯

¯
Is

ZF = 0

¯

1

No

Yes

Display the Reversed String
Using Macro DISP

¯

Load the Count Value from
BX to CX

¯

Compare the Content of AL
with Memory Pointed by DI

¯

Display Message-4(MSG 4)
Using Macro DISP

¯

Call DOS Service INT 21H to
Terminate Program

Stop
¯

¯

Increment SI and DI

¯

Decrement CX-register

¯

¯
Is

(CX) = 0

Display Message-3(MSG 3)
Using Macro DISP

¯

¬

Yes

¬

®
No

Yes

 6. 105

Assembly language program

;PROGRAM TO FIND PALINDROME
;Macro to display string
DISP MACRO MSG ;Start of macro DISP.

MOV AH,09H ;Move function code to AH-register.
MOV DX,OFFSET MSG ;Move address of string to display in DX.
INT 21H ;Call DOS service for display.

ENDM ;End of macro DISP.
;Define code segment
CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.
MOV AX,DATA ;Initialize DS to DATA.
MOV DS,AX
MOV SI,OFFSET INS ;Load address of input string in SI.
MOV DI,OFFSET RES ;Load address of reverse string in DI.
DISP MSG1 ;Display MSG1 using macro DISP.
MOV CX,00H ;Initialize the count.

RDCHAR: MOV AH,01H ;Move the function code in AH.
INT 21H ;Call DOS service to read keyboard.
CMP AL,CR ;Check for carriage return.
JE AHEAD ;If key entered is carriage return,

;then go to AHEAD.
MOV [SI],AL ;Save character in memory pointed by SI.
INC SI ;Increment the pointer.
INC CX ;Increment the counter.
JMP RDCHAR ;Jump to RDCHAR to get next character.

AHEAD: MOV BX,CX ;Save the count in BX.
REVERS: DEC SI ;Copy characters from memory pointed

MOV AL,[SI] ;by SI to memory pointed by DI
MOV [DI],AL ;in reverse order.
INC DI
LOOP REVERS
MOV AL,’$’ ;Put end of string.
MOV [DI],AL
DISP MSG2 ;Display the MSG2 using macro DISP.
DISP RES ;Display reversed string using macro DISP.
MOV SI,OFFSET INS ;Get address of input string in SI.
MOV DI,OFFSET RES ;Get address of reversed string in DI.
MOV CX,BX ;Initialize the counter.

CHECK: MOV AL,[SI] ;Get a character of input string in AL.
CMP AL,[DI] ;Compare with character of reversed string.
JNE FALSE ;If not equal jump to FALSE.
INC SI ;Increment the pointers.
INC DI
LOOP CHECK ;Repeat comparison until counter expires.
DISP MSG3 ;Display MSG3 using macro DISP.
JMP EXIT

FALSE: DISP MSG4 ;Display MSG4 using macro DISP.
EXIT: MOV AH,4CH ;Move function code to AH-register.

MOV AL,00H
INT 21H ;Return to command prompt.

CODE ENDS ;End of code segment.
;Define data segment
DATA SEGMENT ;start of data segment.

CR EQU 0DH ;ASCII code for carriage return.
LF EQU 0AH ;ASCII code for line feed.
INS DB 40 DUP(0) ;Reserve 40 locations for input string.
RES DB 40 DUP(0) ;Reserve 40 locations for reverse string.
MSG1 DB‘ENTER THE STRING.INPUT STRING= ‘,’$’.
MSG2 DB CR,LF,’REVERSE OF STRING = ‘,’$’.

8086 Microprocessor and Its Appications

6. 106 Chapter 6 Assembly Language Programming

MSG3 DB CR,LF,’INPUT STRING IS A PALINDROME’,’$’.
MSG4 DB CR,LF,’INPUT STRING IS NOT A PALINDROME’,’$’.

DATA ENDS ;End of data segment.
END ;Assembly end.

Assembler listing for example program 29

;PROGRAM TO FIND PALINDROME
;Macro to display string

 DISP MACRO MSG ;Start of macro DISP.

MOV AH,09H ;Move function code to AH-register.
MOV DX,OFFSET MSG ;Move address of string to display in DX.
INT 21H ;Call DOS service for display.
ENDM ;End of macro DISP.

 ;Define code segment
0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:DATA ;Assembler directive.

0000 B8 — R MOV AX,DATA ;Initialize DS to DATA.
0003 8E D8 MOV DS,AX
0005 BE 0000 R MOV SI,OFFSET INS ;Load address of input string in SI.
0008 BF 0028 R MOV DI,OFFSET RES ;Load address of reverse string in DI.

DISP MSG1 ;Display MSG1 using macro DISP.
000B B4 09 + MOV AH,09H ;Move function code to AH-register.
000D BA 0050 R + MOV DX,OFFSET MSG1 ;Move address of string to display in DX.
0010 CD 21 + INT 21H ;Call DOS service for display.
0012 B9 0000 MOV CX,00H ;Initialize the count.
0015 B4 01 RDCHAR: MOV AH,01H ;Move the function code in AH.
0017 CD 21 INT 21H ;Call DOS service to read keyboard.
0019 3C 0D 90 90 CMP AL,CR ;Check for carriage return.
001D 74 06 JE AHEAD ;If key entered is carriage return,

;then go to AHEAD.
001F 88 04 MOV [SI],AL ;Save character in memory pointed by SI.
0021 46 INC SI ;Increment the pointer.
0022 41 INC CX ;Increment the counter.
0023 EB F0 JMP RDCHAR ;Jump to RDCHAR to get next character.
0025 8B D9 AHEAD: MOV BX,CX ;Save the count in BX.
0027 4E REVERS: DEC SI ;Copy characters from memory pointed
0028 8A 04 MOV AL,[SI] ;by SI to memory pointed by DI
002A 88 05 MOV [DI],AL ;in reverse order.
002C 47 INC DI
002D E2 F8 LOOP REVERS
002F B0 24 MOV AL,’$’ ;Put end of string.
0031 88 05 MOV [DI],AL

DISP MSG2 ;Display the MSG2 using macro DISP.
0033 B4 09 + MOV AH,09H ;Move function code to AH-register.
0035 BA 0063 R + MOV DX,OFFSET MSG2 ;Move address of string to display in DX.
0038 CD 21 + INT 21H ;Call DOS service for display.

DISP RES ;Display reversed string using macro DISP.
003A B4 09 + MOV AH,09H ;Move function code to AH-register.
003C BA 0028 R + MOV DX,OFFSET RES ;Move address of string to display in DX.
003F CD 21 + INT 21H ;Call DOS service for display.
0041 BE 0000 R MOV SI,OFFSET INS ;Get address of input string in SI.
0044 BF 0028 R MOV DI,OFFSET RES ;Get address of reversed string in DI.
0047 8B CB MOV CX,BX ;Initialize the counter.
0049 8A 04 CHECK: MOV AL,[SI] ;Get a character of input string in AL.
004B 3A 05 CMP AL,[DI] ;Compare with character of reversed string .
004D 75 0E JNE FALSE ;If not equal jump to FALSE.
004F 46 INC SI ;Increment the pointers.
0050 47 INC DI
0051 E2 F6 LOOP CHECK ;Repeat comparison until counter expires.

DISP MSG3 ;Display MSG3 using macro DISP.
0053 B4 09 + MOV AH,09H ;Move function code to AH-register.

 6. 107

0055 BA 007A R + MOV DX,OFFSET MSG3 ;Move address of string to display in DX.

0058 CD 21 + INT 21H ;Call DOS service for display.

005A EB 08 90 JMP EXIT

005D FALSE: DISP MSG4 ;Display MSG4 using macro DISP.

005D B4 09 + MOV AH,09H ;Move function code to AH-register.

005F BA 0099 R + MOV DX,OFFSET MSG4 ;Move address of string to display in DX.

0062 CD 21 + INT 21H ;Call DOS service for display.

0064 B4 4C EXIT: MOV AH,4CH ;Move function code to AH-register.

0066 B0 00 MOV AL,00H

0068 CD 21 INT 21H ;Return to command prompt.

006A CODE ENDS ;End of code segment.

;Define data segment

0000 DATA SEGMENT ;start of data segment.

= 000D CR EQU 0DH ;ASCII code for carriage return.

= 000A LF EQU 0AH ;ASCII code for line feed.

0000 28 [INS DB 40 DUP(0) ;Reserve 40 locations for input string.

 00

]

0028 28 [RES DB 40 DUP(0) ;Reserve 40 locations for reverse string.

 00

]

0050 45 4E 54 45 52 20 MSG1 DB‘ENTER THE STRING.INPUT STRING= ‘,’$’.

 54 48 45 20 53 54

 52 49 4E 47 2E 49

 4E 50 55 54 20 53

 54 52 49 4E 47 3D

 20 24

0070 0D 0A 52 45 56 45 MSG2 DB CR,LF,’REVERSE OF STRING = ‘,’$’.

 52 53 45 20 4F 46

 20 53 54 52 49 4E

 47 20 3D 20 24

0087 0D 0A 49 4E 50 55 MSG3 DB CR,LF,’INPUT STRING IS A PALINDROME’,’$’.

 54 20 53 54 52 49

 4E 47 20 49 53 20

 41 20 50 41 4C 49

 4E 44 52 4F 4D 45

 24

00A6 0D 0A 49 4E 50 55 MSG4 DB CR,LF,’INPUT STRING IS NOT A PALINDROME’,’$’.

 54 20 53 54 52 49

 4E 47 20 49 53 20

 4E 4F 54 20 41 20

 50 41 4C 49 4E 44

 52 4F 4D 45 24

00C9 DATA ENDS ;End of data segment.

END ;Assembly end.

EXAMPLE PROGRAM 30 : Program to Verify Password

Write an 8086 assembly language program to read a password through the PC keyboard and validate the user . Use the

PC monitor to display the validity of the password.

Problem Analysis

The actual password can be stored in the memory as an ASCII array. The user entered password

through the PC keyboard can be read by using BIOS service INT 16H with function code 00
H
. A-register

can be used as the counter to count the number of characters received and the received characters can be

stored in the memory. The carriage return/enter key can be used to terminate the password.

8086 Microprocessor and Its Appications

6. 108 Chapter 6 Assembly Language Programming

First the count value is checked with the number of characters in the stored password. If it is not

equal then an invalid password message can be displayed on the PC screen and request the user either to

enter the correct password or to enter the ESC key to exit.

If the count is equal to the number of characters in the stored password, then the user entered

password is checked with the stored password byte by byte. If the passwords are equal then an acceptance

message can be displayed and the control can be returned to DOS prompt. If they are not equal then an

invalid message can be displayed and request the user either to enter the correct password or to enter ESC

key to exit.

In this program separate procedures has been written to clear the PC monitor screen and position

the cursor at the desired location using the BIOS services.

Algorithm

1. Call procedure CLRS to clear the PC monitor screen.

2. Call procedure POS to position the cursor.

3. Initialize DS-register.

4. Load 09
H
 in AH and 0450

H
 in DX, and then call DOS service INT 21H to display the message "ENTER THE PASSWORD :".

5. Set SI as memory pointer to store user entered password.

6. Let CX be counter for number of characters in user entered password.Initialize CX as zero.

7. Load 00
H
 in AH and call BIOS service INT 16H to get the keycode in AL-register.

6. Compare AL with 0D
H
(ASCII value of ENTER key).

9. If ZF = 1, go to step 13, otherwise go to next step.

10. Load 02
H
 in AH and ASCII value of "*" in DL, and then call DOS service INT 21H to display the symbol "*".

11. Increment the pointer(SI) and count(CL).

12. Go to step 7.

13. Compare the count (CX-register) with 07
H
 (Here the stored password has 7 characters).

14. If ZF = 0, then go to step 20, otherwise go to next step.

15. Set SI as pointer for user entered password and DI as pointer for stored password.

16. Load a character of entered password in AL and compare with corresponding character stored password.

17. If ZF = 0, then go to step 25, otherwise go to next step.

16. Increment the pointer (SI and DI).

19. Decrement CX-register and check whether CX is zero.

20. If content of CX is zero then go to next step, otherwise go to step 16.

21. Call procedure CLRS to clear the PC monitor screen.

22. Call procedure POS to position the cursor.

23. Load 09
H
 in AH-register and 0600

H
 in DX-register and then call DOS service INT 21H to display the message "ENTRY

ACCEPTED".

24. Go to step 32.

25. Call procedure CLRS to clear the PC monitor screen.

26. Call procedure POS to position the cursor.

27. Load 09
H
 in AH and 0550

H
 in DX, and then call DOS service INT 21H to display the message "INCORRECT PASSWORD".

26. Load 09
H
 in AH and 0580

H
 in DX, and then call DOS service INT 21H to display the message "PRESS ANY KEY TO TRY

AGAIN OR PRESS ESC TO EXIT."

29. Load 00
H
 in AH and call BIOS service INT 16H to get the keycode in AL.

30. Compare AL with 1B
H
 (ASCII value of ESC key).

31. If ZF = 0, then go to step 1, otherwise go to next step.

32. Load 4C
H
 in AH-register and call DOS service INT 21H to terminate the program and return the control to DOS prompt.

33. Stop.

 6. 109

Algorithm for procedure CLRS

1. Load the function code 07
H
 in AH-register.

2. Load the number of lines to scroll down in AL-register.

3. Load the blanked area attribute (07
H
) in BL-register.

4. Load the x and y coordinates of upper left corner in CL and CH registers.

5. Load the x and y coordinates of lower right corner in DL and DH.

6. Call BIOS video service INT 10H to clear the screen.

7. Return.

Algorithm for procedure POS

1. Load the function code 02
H
 in AH-register.

2. Load the video page (00
H
) in BH-register.

3. Load the x and y coordinates of video page in DL and DH.

4. Call BIOS video service INT 10H to position the cursor.

5. Return.

Flowchart
Start

Load 09 in AH and 450 in DXH H

Call Procedure CLRS to
Clear Screen

Copy the Content of CS to AX and
Then Copy AX to DS

¯

¯

¯

Call Procedure POS to
Position Cursor

¯

Call DOS Service INT 21H

¯

Set SI as Pointer for Entered Password

¯

Clear CX-register
(Initialize Count as Zero)

¯

Load 00 in AHH

¯

Call BIOS Service INT 16H
to Get Keycode in AL

¯

Compare AL with 0DH

¯

1

¯

3

2

¬

¬

8086 Microprocessor and Its Appications

6. 110 Chapter 6 Assembly Language Programming

Compare the Count (CX)
with 07H

¯

1

¯
Is

ZF = 1?

¯
Is

ZF = 0?

Set SI and DI as Pointer
for Entered and Stored
Password Respectively

¯

Copy a byte of Memory
Pointed by SI in AL and

Compare with Corresponding
Byte in Memory Pointed by DI

¯

¯
Is

ZF = 0?

Increment Pointers
(SI and DI)

¯

Decrement CX
¯

¯
Is

(CX) = 0?

¯
Call Procedure CLRS to

Clear Screen

¯
Call Procedure POS to

Position Cursor

¯
Load 09 in AH and 0600

in DX
H H

Call DOS Service INT 21H

¯

Load 4C in AHH

¯

Call DOS Service INT 21H

¯

Stop
¯

¯
Call Procedure CLRS to

Clear Screen

¯
Call Procedure POS to

Position Cursor

¯
Load 09 in AH and 0550

in DX
H H

Call DOS Service INT 21H

¯

Load 09 in AH and 0580 in DXH H

¯

Call DOS Service INT 21H

¯

Load 00 in AHH

¯

¯
Call BIOS Service INT 16H to

Get Keycode in AL

¯
Is

ZF = 0?

Compare AL with 1BH

¯

®

®

¬

¯

3®

®

®

¬

Copy the Content of AL to
Memory Pointed by SI

¯

Load 02 in AH and

ASCII Value of “
H

*” in DL

¯

¯
Call DOS Service

INT 21H

Increment Pointer (SI)
and Count (CX)

¯

2

¯

No

Yes

No

Yes

Yes

No

Yes

No

Yes

No

Flowchart continued ...

 6. 111

Assembly language program

;PROGRAM TO READ THE PASSWORD AND VALIDATE THE USER

CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:CODE ;Assembler directive.
CR EQU 0DH ;Assign ASCII value for carriage return.

AGAIN: CALL CLRS ;Clear the screen.
CALL POS ;Position the cursor.

MOV AX,CS ;Initialize DS to code segment.
MOV DS,AX

MOV AH,09H ;Load the function code in AH.
MOV DX,450H ;Load address of string to display in DX.
INT 21H ;Call DOS service for display.

MOV SI,400H ;Initialize the pointer.
MOV CX,0000H ;Initialize count in CX-register as zero.

L1: MOV AH,00H ;Load the function code in AH.
INT 16H ;Call BIOS service to get keyboard character in AL.
CMP AL,CR ;Compare the keycode with carriage return.
JE CHECK ;If equal go to CHECK.
MOV [SI],AL ;Store the keyboard character in memory.
MOV AH,02H ;Load the function code in AH.
MOV DL,’*’ ;Load the ASCII value of ‘*’ in DL.
INT 21H ;Call DOS service for display.
INC SI ;Increment pointer.
INC CX ;Increment the count.
JMP L1 ;Jump to L1 to get next character.

CHECK: CMP CX,0007H ;Compare count with 07H.
JNE REPEAT ;If count is not equal to 07H,

;then go to REPEAT.
MOV SI,400H ;Initialize the pointers.
MOV DI,500H

L2: MOV AL,[SI] ;Get a character of entered password in AL.
CMP AL,[DI] ;Compare entered character with

;corresponding character of stored password.
JNE REPEAT ;If not equal jump to REPEAT.
INC SI ;Increment the pointers.
INC DI
LOOP L2 ;Repeat comparison until counter expires.

CALL CLRS ;Clear the screen.
CALL POS ;Position the cursor.
MOV AH,09H ;Load the function code in AH.
MOV DX,600H ;Load address of string to display in DX.
INT 21H ;Call DOS service for display.
JMP EXIT ;Go to exit.

REPEAT: CALL CLRS ;Clear the screen.
CALL POS ;Position the cursor.

MOV AH,09H ;Load the function code in AH.
MOV DX,550H ;Load address of string to display in DX.
INT 21H ;Call DOS service for display.

MOV AH,09H ;Load the function code in AH.

8086 Microprocessor and Its Appications

6. 112 Chapter 6 Assembly Language Programming

MOV DX,580H ;Load address of string to display in DX.
INT 21H ;Call DOS service for display.

MOV AH,00H ;Load the function code in AH.
INT 16H ;Call BIOS service to get keyboard

;Character in AL.
CMP AL,1BH ;Check for esc key.
JNE AGAIN ;If key pressed is not esc, then go to AGAIN.
JMP EXIT ;If key pressed is esc, then go to EXIT.

POS PROC NEAR ;Start of procedure to position the cursor.

MOV AH,02H ;Load the function code in AH.
MOV BH,00H ;Load the video page in BH.
MOV DX,0000H ;Load the x and y coordinates in DL and DH.
INT 10H ;Call BIOS service for cursor positioning.
RET ;Return to main program.

POS ENDP ;End of procedure to position the cursor.

CLRS PROC NEAR ;Start of procedure to clear the screen.

MOV AH,07H ;Load the function code in AH.
MOV AL,00H ;Load number of lines to scroll down in AL.
MOV BH,07H ;Load the blanked area attribute in BL.
MOV CX,0000H ;Load the x and y coordinates of

;upper left corner in CL and CH.
MOV DX,184FH ;Load the x and y coordinates

;of lower right corner in DL and DH.
INT 10H ;Call BIOS video service for clearing screen.
RET ;Return to main program.

CLRS ENDP ;End of procedure to clear the screen.
ORG 450H
DB ‘ENTER THE PASSWORD : ‘,’$’.
ORG 500H
DB ‘WELCOME’,’$’.
ORG 550H
DB ‘INCORRECT PASSWORD. ‘,’$’.
ORG 580H
DB ‘PRESS ANY KEY TO TRY AGAIN OR PRESS ESC TO EXIT ‘,’$’.
ORG 600H
DB ‘ENTRY ACCEPTED’,’$’.

EXIT: MOV AH,4CH ;Load the function code in AH.
INT 21H ;Call DOS service to return to command prompt.

CODE ENDS ;End of code segment.
END ;Assembly end.

Assembler listing for example program 30

 ;PROGRAM TO READ THE PASSWORD AND VALIDATE THE USER
0000 CODE SEGMENT ;Start of code segment.

ASSUME CS:CODE ;Assembler directive.
ASSUME DS:CODE ;Assembler directive.

=000D CR EQU 0DH ;Assign ASCII value for carriage return.

0000 E8 0079 R AGAIN: CALL CLRS ;Clear the screen.
0003 E8 006F R CALL POS ;Position the cursor.

0006 8C C8 MOV AX,CS ;Initialize DS to code segment.
0008 8E D8 MOV DS,AX

 6. 113

000A B4 09 MOV AH,09H ;Load the function code in AH.
000C BA 0450 MOV DX,450H ;Load address of string to display in DX.

000F CD 21 INT 21H ;Call DOS service for display.

0011 BE 0400 MOV SI,400H ;Initialize the pointer.

0014 B9 0000 MOV CX,0000H ;Initialize count in CX-register as zero.

0017 B4 00 L1: MOV AH,00H ;Load the function code in AH.
0019 CD 16 INT 16H ;Call BIOS service to get keyboard character in AL .

001B 3C 0D CMP AL,CR ;Compare the keycode with carriage return.
001D 74 0C JE CHECK ;If equal go to CHECK.

001F 88 04 MOV [SI],AL ;Store the keyboard character in memory.

0021 B4 02 MOV AH,02H ;Load the function code in AH.
0023 B2 2A MOV DL,’*’ ;Load the ASCII value of ‘*’ in DL.

0025 CD 21 INT 21H ;Call DOS service for display.
0027 46 INC SI ;Increment pointer.

0028 41 INC CX ;Increment the count.

0029 EB EC JMP L1 ;Jump to L1 to get next character.

002B 83 F9 07 CHECK: CMP CX,0007H ;Compare count with 07H.
002E 75 20 JNE REPEAT ;If count is not equal to 07H,

;then go to REPEAT.
0030 BE 0400 MOV SI,400H ;Initialize the pointers.

0033 BF 0500 MOV DI,500H

0036 8A 04 L2: MOV AL,[SI] ;Get a character of entered password in AL.
0038 3A 05 CMP AL,[DI] ;Compare entered character with

;corresponding character of stored password.
003A 75 14 JNE REPEAT ;If not equal jump to REPEAT.

003C 46 INC SI ;Increment the pointers.
003D 47 INC DI

003E E2 F6 LOOP L2 ;Repeat comparison until counter expires.

0040 E8 0079 R CALL CLRS ;Clear the screen.

0043 E8 006F R CALL POS ;Position the cursor.
0046 B4 09 MOV AH,09H ;Load the function code in AH.

0048 BA 0600 MOV DX,600H ;Load address of string to display in DX.

004B CD 21 INT 21H ;Call DOS service for display.
004D E9 060F R JMP EXIT ;Go to exit.

0050 E8 0079 R REPEAT: CALL CLRS ;Clear the screen.

0053 E8 006F R CALL POS ;Position the cursor.

0056 B4 09 MOV AH,09H ;Load the function code in AH.

0058 BA 0550 MOV DX,550H ;Load address of string to display in DX.
005B CD 21 INT 21H ;Call DOS service for display.

005D B4 09 MOV AH,09H ;Load the function code in AH.

005F BA 0580 MOV DX,580H ;Load address of string to display in DX.

0062 CD 21 INT 21H ;Call DOS service for display.

0064 B4 00 MOV AH,00H ;Load the function code in AH.
0066 CD 16 INT 16H ;Call BIOS service to get keyboard

;character in AL.
0068 3C 1B CMP AL,1BH ;Check for esc key.

006A 75 94 JNE AGAIN ;If key pressed is not esc, then go to AGAIN.

006C E9 060F R JMP EXIT ;If key pressed is esc,then go to EXIT.
006F POS PROC NEAR ;Start of procedure to position the cursor.

006F B4 02 MOV AH,02H ;Load the function code in AH.

8086 Microprocessor and Its Appications

6. 114 Chapter 6 Assembly Language Programming

0071 B7 00 MOV BH,00H ;Load the video page in BH.

0073 BA 0000 MOV DX,0000H ;Load the x and y coordinates in DL and DH.

0076 CD 10 INT 10H ;Call BIOS service for cursor positioning.

0078 C3 RET ;Return to main program.

0079 POS ENDP ;End of procedure to position the cursor.

0079 CLRS PROC NEAR ;Start of procedure to clear the screen.

0079 B4 07 MOV AH,07H ;Load the function code in AH.

007B B0 00 MOV AL,00H ;Load number of lines to scroll down in AL.

007D B7 07 MOV BH,07H ;Load the blanked area attribute in BL.

007F B9 0000 MOV CX,0000H ;Load the x and y coordinates of

;upper left corner in CL and CH.

0082 BA 184F MOV DX,184FH ;Load the x and y coordinates

;of lower right corner in DL and DH.

0085 CD 10 INT 10H ;Call BIOS video service for clearing screen.

0087 C3 RET ;Return to main program.

0088 CLRS ENDP ;End of procedure to clear the screen.

0450 ORG 450H

0450 45 4E 54 45 52 20 DB ‘ENTER THE PASSWORD : ‘,’$’.

 54 48 45 20 50 41

 53 53 57 4F 52 44

 20 3A 20 24

0500 ORG 500H

0500 57 45 4C 43 4F 4D DB ‘WELCOME’,’$’.

 45 24

0550 ORG 550H

0550 49 4E 43 4F 52 52 DB ‘INCORRECT PASSWORD. ‘,’$’.

 45 43 54 20 50 41

 53 53 57 4F 52 44

 2E 20 20 24

0580 ORG 580H

0580 50 52 45 53 53 20 DB ‘PRESS ANY KEY TO TRY AGAIN OR PRESS ESC TO EXIT ‘,’$’.

 41 4E 59 20 4B 45

 59 20 54 4F 20 54

 52 59 20 41 47 41

 49 4E 20 4F 52 20

 50 52 45 53 53 20

 45 53 43 20 54 4F

 20 45 58 49 54 20

 24

0600 ORG 600H

0600 45 4E 54 52 59 20 DB ‘ENTRY ACCEPTED’,’$’.

 41 43 43 45 50 54

 45 44 24

060F B4 4C EXIT: MOV AH,4CH ;Load the function code in AH.

0611 CD 21 INT 21H ;Call DOS service to return to command prompt.

0613 CODE ENDS ;End of code segment.

END ;Assembly end.

6. 115

6.10 SHORT QUESTIONS AND ANSWERS

6.1 What is meant by a program?

A program is a set of instructions written to perform a certain task.

6.2 What is assembler, interpreter and compiler?

Assembler : It is a software that converts assembly language program codes to machine

language codes.

Compiler : It is a software that converts the programs written in high level language to

machine language.

Interpreter : It is similar to a compiler but it converts the instructions one by one.

6.3 What is the need for an assembler?

The assembler is used to translate assembly language programs to machine language programs

(i.e., in the executable format). Without the assembler it is very difficult to convert very large

assembly language programs to machine codes.

6.4 What are the advantages of an assembler?

The advantages of the assembler are :

1. The assembler translates mnemonics into binary code with speed and accuracy.

2. It allows the programmer to use variables in the program.

3. It is easier to alter the program and reassemble it.

4. The assembler identifies the syntax errors.

 5. The assembler can reserve memory locations for data or result.

 6. The assembler provides the list file for documentation.

6.5 What are assembler directives or pseudo-instructions?

Assembler directives are the instructions to the assembler regarding the program being assembled.

They are also called pseudo-instructions or pseudo-opcodes.

The assembler directives will give informations like start and end of a program, values of variables

used in the program, storage locations for input and output data, etc.

6.6 List some of the assembler directives of a typical 8085/8086 assembler.

Some of the assembler directives of a typical 8085/8086 assembler are the following :

 Assembler directive Function

 DB Define byte. Used to define byte type variable.

 DW Define word. Used to define 16-bit variable.

 END Indicates the end of the program.

 ENDM End of macro. Indicates the end of a macro sequence.

 EQU Equate. Used to equate numeric value or constant to a variable.

 MACRO Defines the name, parameters, and start of a macro.

 ORG Origin. Used to assign the starting address for a program.

8086 Microprocessor and Its Appications

6. 116 Chapter 6 Assembly Language Programming

6.7 What is a macro and when is it used?

A macro is a group of instructions written within brackets and identified by a name. A macro is

written when a repeated group of instructions is too short or not appropriate to be written as a

subroutine.

6.8 What is expanding the macro?

While assembling a program, the assembler replaces the instructions represented by a macro in

the place where the macro is called. This process is called expanding the macro.

6.9 What is the disadvantage in a macro?

The disadvantage in macro is that, if it is expanded or used a number of times in a program then

the program may occupy more memory.

6.10 What is a subroutine (or procedure)?

A subroutine (or procedure) is a group of instructions written separately from the main program

to perform a function that occurs repeatedly in the main program.

6.11 What are the advantages of a subroutine?

1. Modular programming : The various tasks in a program can be developed as separate modules and called in the main

 program.

2. Reduction in the amount of work and program development time.

3. Reduces memory requirement for program storage.

6.12 What is a list?

A list is a linked data structure used in programming techniques. The linked data structure will

have a number of components linked in a particular fashion. Each component will consist of a

string data and a pointer to the next component.

6.13 What are the types of linked data structures?

The different types of linked data structures are linear linked listed, linked lists with multiple

pointers, circular linked lists and trees.

6.14 Whar is an array?

An array is a series of data of the same type stored in successive memory lacations. Each value

in the array is referred to as an element of the array.

6.15 What is a flowchart?

A flowchart is a graphical representation of the operation flow of the program. It is the graphical

(pictorial) form of an algorithm.

6.16 List the symbols used for drawing a flowchart.

The following symbols are used for drawing a flowchart :

Process Decision Input/Output

Fig. Q.6.16 :

 Symbols used

in flowcharts.

Start/End

Subroutine

Connector Off-page connector Line Arrow

→

 6. 117

6.17 What is development system? What are its components?

A development system is a system used by a microprocessor-based system designer to design

and test the software and hardware aspects of a new system under development.

The components of development system are a microcomputer with standard accessories, emulator

and program development tools like editor, assembler, linker, locator, debugger, simulator, etc.

6.18 Write a short note on assembly language program development tools.

The program development tools include the editor, assembler, linker, locator, debugger and

simulator. These tools are softwares that can be run on the development system in order to write,

assemble, debug, modify and test the assembly language programs.

6.19 What is an editor?

An editor is a program which when run on a microcomputer system, allows the user to type and

modify the assembly language program statements. The main function of an editor is to help the

user to construct the assembly language program in the right format and save it as a file.

6.20 What is a one-pass assembler?

A one-pass assembler is an assembler in which the source codes are processed only once. A one-

pass assembler is very fast and in one-pass assembler only backward reference may be used.

6.21 What is a two-pass assembler?

A two-pass assembler is an assembler in which the source codes are processed twice. In the first

pass the assembler assigns addresses to all the labels and attaches values to all the variables

used in the program. In the second pass it converts the source code into machine code.

6.22 What is the drawback of a one-pass assembler?

The drawback of a one-pass assembler is that the program cannot have forward reference, because

the one-pass assembler issues an error message if it encounters a label or variable that is defined

at a later part of a program.

6.23 What is linker and locator?

A linker is a program used to join together several object files into one large object file.

A locator is a program used to assign specific addresses to the object codes to be loaded into

memory.

6.24 What is debugging?

A process of locating and correcting an error using a debugger is known as debugging.

6.25 What is a debugger?

A debugger is a software used to locate and troubleshoot the errors in a program.

6.26 What is simulator?

The simulator is a program which can be run on the development system to simulate the operations

of the newly designed system. Some of the operations that can be simulated are given below:

� Execute a program and display the result. � Single-step execution of a program.

� Break-point execution of a program. � Display the content of a register/memory.

8086 Microprocessor and Its Appications

6. 118 Chapter 6 Assembly Language Programming

6.27 What is an emulator?

An emulator is a system that can be used to test the hardware and software of a newly developed

microprocessor-based system.

6.28 What is the difference between an emulator and a simulator?

A simulator can be used to run and check the software of a newly developed microprocessor-

based system but an emulator can be used to run and check both the hardware and software

of a newly developed microprocessor-based system.

6.29 How can one access DOS services?

The steps involved in accessing DOS services are :

1. Load a DOS function number in AH-register. If there is a subfunction, then its code is loaded in AL-register.

2. Load the other registers as indicated in the DOS service formats.

3. Prepare buffers, ASCIIZ (ASCII string terminated by zero) and control blocks, if necessary.

4. Set the location of the Disk Transfer Area if necessary.

5. Invoke DOS service INT 21H.

6. The DOS service will return the required parameters in the specified registers.

6.30 How does one access BIOS services?

The steps involved in accessing the BIOS services are :

1. Load a BIOS function number in the AH-register. If there is a subfunction, then its code is loaded in AL- register.

2. Load the other register as indicated in the BIOS service formats.

3. Prepare buffers, ASCIIZ (ASCII string terminated by zero) and control blocks if necessary.

4. Invoke BIOS call.

5. The BIOS service will return the required parameters in the specified register.

 CHAPTER 7

PERIPHERAL DEVICES AND INTERFACING

7 . 1 PROGRAMMABLE PERIPHERAL DEVICES

The programmable peripheral devices are designed to perform various input/output functions

and specific routine activities. Every programmable device will have one or more control registers.

The programmable devices can be set up to perform specific functions by writing control words

into the control registers. The control word is an instruction which informs the peripheral about

various functions it has to perform. The format of the control word will be specified by the

manufacturer of the peripheral devices.

INTEL have developed a number of peripheral devices that can be used with 8085/8086/

8088-based systems. Some of the peripheral devices developed by INTEL for 8085/8086/8088-

based systems are Parallel peripheral interface-8255, Serial communication interface-8251, Keyboard/

Display controller-8279, Programmable Timer 8253/8254 and DMA controller-8237. A brief

discussion about these devices and their interfacing with 8086 processor are presented in this

chapter.

The parallel peripheral interface-8255 is used to interface a slow IO device to the fast

processor and to achieve an efficient data transfer between them. The USART is used to provide

serial communication between processor and another system. The 8279 is used to relieve the

processor from time consuming routine activities like keyboard scanning and display refreshing.

The programmable timers are used to maintain various timings and to initiate time-based activities.

The DMA controllers are used to achieve very fast data transfer between memory and IO devices

by bypassing the processor.

7 .2 PARALLEL DATA COMMUNICATION INTERFACE

In microprocessor-based systems, digital informations can be transmitted from one system

to another system either by parallel or serial data transfer scheme.

In parallel data transfer, a group of bits (for eg., 8 bits) are transmitted from one device to

another at any one time. To achieve parallel data transfer scheme, a group of data lines will be

connecting the processor and peripheral devices. Normally, in microprocessor-based systems the

parallel data transfer scheme are adopted to transfer data between various devices inside the system.

Basically, the microprocessor-based system has been fabricated on a PCB (Printed Circuit

Board) in which a bus is formed with required number of data lines and the bus connects all the

devices in the system. The data transmitted over the bus in a PCB are highly reliable. In a well-

designed board, there will not be any loss of data and the data will not be corrupted.

When data has to be transmitted over longer distances (i.e., greater than 0.5 m), we require

high current signals to drive the data for longer distance. In such cases data are transmitted bit by

bit through a single data line.

7. 2 Chapter 7 Peripheral Devices And Interfacing

7.2.1 Parallel Data Transfer Schemes

The data transfer schemes refer to the method of data transfer between the processor and

peripheral devices. In a typical microcomputer, data transfer takes place between any two devices:

microprocessor and memory, microprocessor and IO devices, memory and IO devices. For effective

data transfer between these devices, the timing parameters of the devices should be matched. But

most of the devices have incompatible timings. For example, an IO device may be slower than the

processor due to which it cannot send data to the processor at the expected time.

The semiconductor memories are available with compatible timings. Moreover, slow

memories can be interfaced using additional hardware to introduce wait states in machine cycles.

The microprocessor system designer often faces difficulties while interfacing IO devices and

magnetic memories (like floppy or hard disk) to achieve efficient data transfer to or from

microprocessor. Several data transfer schemes have been developed to solve the interfacing problems

with IO devices.

The data transfer schemes have been broadly classified into the following two categories:

1. Programmed data transfer.

2. Direct Memory Access (DMA) data transfer.

In programmed data transfer, a memory resident routine (subroutine) requests the device

for data transfer to or from one of the processor register.

Programmed data transfer scheme is used when relatively small amount of data are to be

transferred. In these schemes, usually one-byte or word of data is transferred at a time. Examples

of devices using programmed data transfer are ADC, DAC, Hex-keyboard, 7-segment LEDs, etc.

The programmed data transfer scheme can be further classified into the following three types:

1. Synchronous data transfer scheme.

2. Asynchronous data transfer scheme.

3. Interrupt driven data transfer scheme.

In DMA data transfer, the processor is forced to HOLD state (high impedance state) by an

IO device until the data transfer between the device and the memory is complete. The processor

does not execute any instructions during the HOLD period.

The DMA data transfer is used for a large block of data transfer between the IO device and

memory. Typical examples of devices using DMA are CRT controller, floppy disk, hard disk, high

speed line printer, etc.

The different types of DMA data transfer schemes are:

a) Cycle stealing DMA or Single transfer mode DMA.

b) Block or Burst mode DMA.

c) Demand transfer mode DMA.

Figure 7.1 shows the various types of data transfer scheme. All the data transfer schemes

discussed above require both software and hardware for their implementation. Within a microcomputer,

more than one scheme can be used for interfacing different IO devices. However, some of these

schemes require specific hardware features in the microprocessor for implementing the scheme.

 7. 3

Synchronous Data Transfer Scheme

The synchronous data transfer scheme is the simplest of all data transfer schemes. In this

scheme, the processor does not check the readiness of the device. The IO device or peripheral

should have matched timing parameters. Whenever data is to be obtained from the device or

transferred to the device, the user program can issue a suitable instruction for the device. At the

end of the execution of this instruction, the transfer would have been completed.

The synchronous data transfer scheme can also be implemented with small delay (if the

delay is tolerable) after the request has been made. The sequence of operations for synchronous

data transfer scheme is shown in Fig. 7.2. The mode-0 input/output in 8255 is an example of

synchronous data transfer.

® ®

®

Programmed Data Transfer Direct Memory Access (DMA)

Synchronous

Interrupt Driven

®

®

® ®

Cycle
Stealing
DMA

Block
Transfer Mode

DMA

Demand Transfer
Mode DMA

®

® ®

Polled Interrupts Vectored Interrupts

Software
Polling

Hardware
Polling

Fixed
Priority

Variable
Priority

®®®®

Data Transfer

Fig. 7.1 : Types of data transfer schemes.

®

Asynchronous

Request Device
to Get Ready

®

PerformAny Other
Task Until the Device

is Ready

®

Execute Input/Output
Instruction

®

®

Fig. 7.2 : Synchronous data
transfer scheme.

Request Device to
Get Ready

®

®

Execute Input/Output
Instruction

®

Fig. 7.3 : Asynchronous data transfer scheme.

Wait (Execute a Delay
Routine) or Perform
Another Task

®

Yes

NoCheck Whether
the Device is
Ready

®

8086 Microprocessor and Its Appications

7. 4 Chapter 7 Peripheral Devices And Interfacing

Asynchronous Data Transfer Scheme

The asynchronous data transfer scheme is employed when the speed of the processor

and IO device do not match. In this scheme, the processor sends a request to the device for read/

write operation. Then the processor keeps on polling the status of the device. Once the device is

ready, the processor executes a data transfer instruction to complete the process. To implement

this scheme, the device should provide a signal which may be tested by the processor to ascertain

whether it is ready or not.

The sequence of operations for asynchronous data transfer is shown in Fig. 7.3. The

mode-1 and mode-2 handshake data transfer of 8255 without interrupt is an example of

asynchronous data transfer.

Interrupt Driven Data Transfer Scheme

The interrupt driven data transfer scheme is the best method of data transfer for efficient

utilization of processor time. In this scheme, the processor first initiates the IO device for data

transfer. After initiating the device, the processor will continue the execution of instructions in the

program. Also at the end of every instruction the processor will check for a valid interrupt signal.

If there is no interrupt then the processor will continue the execution.

Note : The user/system designer need not write any subroutine/procedure to check for an

interrupt. The logic of checking interrupt signals while executing each instruction is

incorporated in the processor itself by the manufacturer of the processor.

When the IO device is ready, it will interrupt

the processor. On receiving an interrupt signal

the processor will complete the current instruction

execution and save the processor status in stack.

Then the processor call an Interrupt Service

Subroutine (ISS) to service the interrupting

device. At the end of ISS, the processor status is

retrieved from stack and the processor starts

executing its main program. The sequence of

operations for an interrupt driven data transfer

scheme is shown in Fig. 7.4. (For detailed

discussion on interrupt driven data transfer

scheme, please refer to Chapter-5.)

7.2.2 Programmable Peripheral Inter face - INTEL 8255

The INTEL 8255 is a device used to implement parallel data transfer between processor and

slow peripheral devices like ADC, DAC, keyboard, 7-segment display, LCD, etc.

The 8255 has three ports: Port-A, Port-B and Port-C. The ports A and B are 8-bit parallel

ports. Port-A can be programmed to work in any one of the three operating modes as input or

output port. The three operating modes are:

Request Device
to Get Ready

®

Fetch Next Instruction
and Execute

®

Call ISS Associated
With This Interrupt

®

Fig. a : Main program
execution sequence.

Check for
Interrupt

®

No

®

Save Processor Status

®

Execute Data Transfer
Instructions

®

®

®

Fig. b : ISS execution
sequence.

Start ISS

Restore Processor Status
®

Enable Interrupt System

Return to Main Program

Fig. 7.4 : Interrupt driven data transfer scheme.

Yes

7. 5

Mode-0 → Simple IO port.

Mode-1 → Handshake IO port.

Mode-2 → Bidirectional IO port.

Port-B can be programmed to work either in mode-0 or mode-1 as input or output port.

Port-C pins (8 pins) have different assignments depending on the mode of ports-A and B. If ports-A and

B are programmed in mode-0, then port-C can perform any one of the following functions :

1. As 8-bit parallel port in mode-0 for input or output.

2. As two numbers of 4-bit parallel port in mode-0 for input or output.

3. The individual pins of port-C can be set or reset for various control applications.

If port-A is programmed in mode-1/mode-2 and port-2 is programmed in mode-1 then some

of the pins of port-C are used for handshake signals and the remaining pins can be used as input/

output lines or individually set/reset for control applications.

IO Modes of 8255

Mode-0 : In this mode all the three ports can be programmed either as input or output port. In

mode-0, the outputs are latched and the inputs are not latched. The ports do not have

handshake or interrupt capability. The ports in mode-0 can be used to interface DIP

switches, Hexa-keypad, LEDs and 7-segment LEDs to the processor.

Mode-1 : In this mode, only ports A and B can be programmed either as input or output port. In

mode-1, handshake signals are exchanged between the processor and peripherals prior

to data transfer. The port-C pins are used for handshake signals. Input and output data

are latched. Interrupt driven data transfer scheme is possible.

Mode-2 : In this mode the port will be a bidirectional port (i.e., the processor can perform both

read and write operations with an IO device connected to a port in mode-2).Only

port-A can be programmed to work in mode-2. Five pins of port-C are used for

handshake signals. This mode is used primarily in applications such as data transfer

between two computers or floppy disk controller interface.

Pins, Signals and Internal Block Diagram of 8255

The pin description of 8255 is shown in Fig. 7.5. It has 40 pins and requires a single +5-V

supply. The internal block diagram of 8255 is shown in Fig. 7.6.

The ports are grouped as Group A and Group B. The group A has port-A, port-C upper

and

its control circuit. The group B comprises port-B, port-C lower and its control circuit. The read/

write control logic requires six control signals. These signals are given below:

RD (Read) : This control signal enables the read operation. When this signal is low, the

microprocessor reads data from a selected IO port of the 8255A.

WR (Write) : This control signal enables the write operation. When this signal goes low,

the microprocessor writes into a selected IO port or the control register.

RESET : This is an active high signal. It clears the control register and set all ports

in the input mode.

8086 Microprocessor and Its Appications

7. 6 Chapter 7 Peripheral Devices And Interfacing

Fig. 7.5 : Pin description of 8255.

Pin Description

D - D Data Lines

RESET Reset Input

CS Chip Select

RD Read Control

WR Write Control

A , A Internal Address

PA - PA Port-A Pins

PB - PB Port-B Pins

PC - PC Port-C Pins

V +5-V

V 0-V (GND)

0 7

0 1

7 0

7 0

7 0

CC

SS

8255A

®

®
PA - PA7 0

8

®

®
D - D0 7

8

®

®
PC - PC7 4

4

®

®
PC - PC3 0

4

®

®
PB - PB7 0

8

RD

WR

A1

A0

RESET

CS

(+5-V)VCC

(0-V)VSS

40

39

38

37

36

35

34

33

32

31

30

29

PA4

8255A

1

2

3

4

5

6

7

8

9

10

11

12

PA3

®

®

®

®

PA5

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®

®

®

®

®
®

®

®

®

®®

®®

®®

®®

®®

®®

®®

®®
®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®

®®

®

®

®

®

®

®

®PA2

RD

PA6

PA7

D0

D1

D2

D3

D4

D5

D6

D7

VCC

PB7

PB6

PB5

PB4

PB3

RESET

PA1

PA0

CS

VSS

A1

A0

PC7

PC6

PC5

PC4

PC0

PC1

PC2

PC3

PB0

PB1

PB2

®
®

®®

®
®

®

®

WR

®
®

®

®

Read
Write
Control
Logic

RD

A1

A0

WR

RESET

CS

Data
Bus

Buffer

Group A
Port-C
Upper
(4)

Group B
Port-C
Lower
(4)

Group B
Port-B
(8)

®

® Group A
Control

¯

¯

Group B
Control

Group A
Port-A
(8) ¬

¬

¬

¬

PA - PA7 0

PC - PC7 4

PC - PC3 0

PB - PB7 0

D - D7 0 8-bit Internal
Data Bus

I
P
Q

®

¬

+ 5-V

GND
Power Supply

Fig. 7.6 : Internal block diagram of 8255.

 7. 7

 CS, A
0
 and A

1
: These are device select signals. The address

lines A
0
 and A

1
 of 8255 can be connected to

any two address lines of the processor to

provide internal addresses. A
0
 and A

1

selects any one of the 4 internal devices as

shown in Table-7.1. The 8255 will remain in

high impedance state if the signal input to

CS is high and the device can be brought to

normal logic by making the signal input to

CS as logic low.

Interfacing of 8255 with 8086 Processor

A simple schematic for interfacing the 8255 with 8086 processor is shown in Fig. 7.7. The

8255 can be either memory-mapped or IO-mapped in the system. In the schematic shown in

Fig. 7.7, the 8255 is IO-mapped in the system with even addresses. The chip select signals for

IO-mapped devices are generated by using a 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are

decoded to generate eight chip select signals (IOCS-0 to IOCS-7) and in this, the chip select

IOCS-1 is used to select 8255. The address line A
0
 and the control signal M/IO are used as enable

for decoder.

The address line A
1
 of 8086 is connected to A

0
 of 8255 and A

2
 of 8086 is connected to A

1
 of

8255 to provide the internal addresses. The IO addresses allotted to the internal devices of 8255

are listed in Table-7.2. The data lines D
0
-D

7
 are connected to D

0
-D

7
 of the processor to achieve

parallel data transfer.

Internal
 Deviceaddress

 selected
A

1
A

0

 0 0 Port-A

 0 1 Port-B

 1 0 Port-C

 1 1 Control Register

TABLE - 7.1

8086

L

B

atches
and
uffers

RD

WR
8255

M/IO

Y0
A

B

3
-
to

-
8
D
ec
o
d
erA6

A7

Y1

Y2

Y3

G2A Y4

Y5

Y6

Y7

A5

M/IO

C

G2B

G1

A0

+5-V

CPU
Bus

C
L
O
C
K

R
E
S
E
T

R
E
A
D
Y

C

8284
lock

Generator

A1 A2

RESET

A0 A1

CS

RD

WR

D
-
D

0
7

PA - PA0 7

PC - PC0 7

PB - PB0 7

D - D0 78
A - A0 19

D - D0 15

WRRD

IOCS- 0

IOCS- 1

IOCS- 2

IOCS- 3

IOCS- 4

IOCS- 5

IOCS- 6

IOCS- 7

®¬

¯ ¯ ¯

®

®
®

®
®

®

®

®

®

®

¯ ¯ ¯

¬®

¬®

¬®

Fig. 7.7 : Interfacing of 8255 with 8086 processor.

®

¬

8086 Microprocessor and Its Appications

7. 8 Chapter 7 Peripheral Devices And Interfacing

TABLE - 7.2 : IO ADDRESSES OF 8255

Note : Don't care "x" is considered as zero.

In the schematic shown in Fig. 7.7, the interrupt scheme is not included and so the data

transfer can be performed only by checking the status of 8255 and not by interrupt method. For

interrupt driven data transfer scheme, the interrupt controller 8259 has to be interfaced to system

and the interrupts of port-A (PC
3
) and port-B (PC

0
) should be connected to two IR inputs of 8259.

Programming (or Initializing) 8255

The 8255 has two control words: IO Mode Set control Word (MSW) and Bit Set/Reset

(BSR) control word. The MSW is used to specify IO functions and BSR word is used to set/reset

individual pins of port-C. Both the control words are written in the same control register. The

control register differentiates them by the value of bit B
7
.The BSR control word does not affect

the functions of ports A and B.

Bit B
7
 of the control register specifies either the IO function or the bit set/reset function. If

B
7
 = 1, then the bits B

6
- B

0
 determine the IO functions in various modes. If bit B

7
 = 0, then the bits

B
6
- B

0
 determine whether the pin of port-C is to be set or reset.

The 8255 ports are programmed (or initialized) by writing a control word in the control

register. For setting IO functions and mode of operation the IO mode set control word is sent to

control register. For setting/resetting a pin of port-C, the bit set/reset control word is sent to

control register. The format of the IO mode set control word is shown in Fig. 7.8 and the format

of bit set/reset control word is shown in Fig. 7.9. The various functions (assignments) of port-C

pins during the different operating modes of ports A and B are listed in Table -7.3.

In handshake mode (i.e., in mode-1 and mode-2) the data transfer between the processor

and the port can be implemented either by interrupt method or by checking the status of 8255

ports. In interrupt driven data transfer scheme when the port is ready it interrupts the 8086 processor

through NMI/INTR pin for a read/write operation. In status check technique, the 8086 processor

can check the status of ports A and B by reading port-C. When the port is ready for data

transfer, the processor executes a read/write cycle.

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Port-A 0 0 1 x x 0 0 0 20

Port-B 0 0 1 x x 0 1 0 22

Port-C 0 0 1 x x 1 0 0 24

Control Register 0 0 1 x x 1 1 0 26

 Decoder
input

Input to address

pins of 8255
Decoder
enable

Binary address

Hexa

address

Internal

 device

 7. 9

B7 B6 B5 B4 B3 B2 B1 B0

Fig. 7.8 : Format of IO mode set control word of 8255.

→

GROUP - B

Port-C Lower (PC - PC)

1 = Input ; 0 = Output

Port-B

1 = Input ; 0 = Output

Port-B Mode Selection

0 = Mode-0 ; 1 = Mode-1

GROUP - A

Port-C Upper (PC - PC)

1 = Input ; 0 = Output

Port-A

1 = Input ; 0 = Output

Port-A Mode Selection

00 = Mode-0 ; 01 = Mode-1

1X = Mode-2

3 0

4 7

→

→

→

→

123

→

→

B7 B6 B5 B4 B3 B2 B1 B0

Fig. 7.9 : Format of Bit Set/Reset control word of 8255.

→ 1 = Set

0 = Reset

↓↓↓
0 0 0 Set/Reset PC

0 0 1 Set/Reset PC

0 1 0 Set/Reset PC

0 1 1 Set/Reset PC

1 0 0 Set/Reset PC

1 0 1 Set/Reset PC

1 1 0 Set/Reset PC

1 1 1 Set/Reset PC

0

1

2

3

4

5

6

7

S
el

ec
t

P
o

rt
-C

 P
in

 t
o

 b
e
 S

et
/R

e
se

t

D
e
p
e
n

d
in

g
 o

n
 B

it
 B

0

↓
0 = BSR Mode

Don’t Care

8086 Microprocessor and Its Appications

7. 10 Chapter 7 Peripheral Devices And Interfacing

The 8255 has two internal flip-flops as interrupt enables (INTE
A
 and INTE

B
) for port-A and

port-B interrupt signals. In interrupt driven data transfer scheme the 8255 generates an interrupt

signal only if these flip-flops are enabled by using BSR control word. The INTE
A
 is enabled by

setting PC
4
 to high and INTE

B
 is enabled by setting PC

2
 to high using BSR control word. The

interrupt signal can be disabled by resetting these two bits to zero using BSR control word.

When port-A and port-B are programmed in handshake mode (i.e., in mode-1 and mode-2)

the port-C can be read to know the readiness of the ports for data transfer. The format of the

status word read from port-C is shown in Fig. 7.10.

TABLE - 7.3 : PORT-C PIN ASSIGNMENTS

Functions of ports A and B PC
7

PC
6

PC
5

PC
4

PC
3

PC
2

PC
1

PC
0

Ports A and B in mode-0 IO IO IO IO IO IO IO IO

Input/Output

Ports A and B in mode-1 IO IO IBF
A

STB
A

INTR
A

STB
B

IBF
B

INTR
B

Input ports

Ports A and B in mode-1 OBF
A

ACK
A

IO IO INTR
A

ACK
B

OBF
B

INTR
B

Output ports

Port-A in mode-2 OBF
A

ACK
A

IBF
A

STB
A

INTR
A

IO IO IO

Port-B in mode-0

IO - Input /Output line OBF - Output Buffer Full

STB - Strobe ACK - Acknowledge

IBF - Input Buffer Full The subscript A denotes Port-A signal.

INTR - Interrupt request The subscript B denotes Port-B signal.

IPQIPQ

IPQ IPQ

IPQ IPQ

B7 B6 B5 B4
B3 B2 B1 B0

B7 B6 B5 B4 B3

IO IO IBFA INTEA INTRA

¯

B7 B6 B5 B4 B3

OBFA INTEA IO INTRAIO

¯ ¯

¯

B2 B1 B0

IBFBINTEB INTRB

B2 B1 B0

OBFBINTEB
INTRB

Port-C Bits

Port-A
Status

Port-B
Status

Status of Port-AWhen
Used as Input Port

Status of Port-B When
Used as Input Port

Status of Port-B When
Used as Output Port

Status of Port-AWhen
Used as Output Port

Fig. 7.10 : Format of status word of 8255 for handshake input and output operation.

 7. 11

8255 handshake input port (Mode-1)

The signals used for data transfer between input device and microprocessor using port-A

of 8255 as handshake input port (Mode-1) are shown in Fig. 7.11.

1. The input device checks IBF
A
 signal, if it is low then the input device places the data on the port lines PA

0
-PA

7
 and asserts

STB
A
 low and after a delay time STB

A
 is asserted high.

2. When STB
A
 is low the 8255 asserts IBF signal high and at the rising edge of STB

A
 the data is latched to the port and

INTR
A
is set high.

3. When INTR
A
 goes high the processor is interrupted through RST 5.5 input pin to execute a subroutine for reading the

data from the port. For a read operation, the processor asserts RD low and then high.

4. When RD is low, the INTR
A
 is resetted (asserted low) by 8255 and at the rising edge of RD, the IBF is asserted low

and the input device can send the next data.

Note : For port-B as input port in mode-1, same operations are performed, but for handshake

signals PC
0
, PC

1
 and PC

2
 are used.

8255 handshake output port (Mode-1)

The signals used for data transfer between output device and microprocessor using port-A

of 8255 as handshake output port (Mode-1) are shown in Fig. 7.12.

1. When the port is empty, the processor writes a byte in the port.

2. For writing a data to the port, the processor asserts WR low and then high. At the rising edge of WR, both the INTR
A

and OBF
A
 are asserted low by the 8255.

3. The OBF
A
 signal informs the output device that the data is ready. If the output device accepts the data then it sends an

acknowledge signal by asserting ACK
A
 low and then high.

8086-
Based
System

RD

8255 Input
Device

®

®

®

¬ ¬

®
INTRA STBA

IBFA

A0

Fig. 7.11 : Port-A of 8255 as handshake input port (Mode-1).

®
®

D - D0 7

RESET

NMI

D - D0 7

PA - PA0 7

A1

RD

CS

RESET PC5

PC4PC3

8086-
Based
System 8255 Output

Device

®
®
®

¬ ¬

®
INTRA ACKA

OBFA

A0

Fig. 7.12 : Port-A of 8255 as handshake output port (Mode-1).

®
®

D - D0 7

RESET

NMI

D - D0 7

PA - PA0 7

A1

CS

RESET PC7

PC6PC3

WR WR

8086 Microprocessor and Its Appications

7. 12 Chapter 7 Peripheral Devices And Interfacing

4. When ACK
A
 is low, the OBF

A
 is asserted high by the 8255. When ACK

A
 is high the INTR

A
 is set (asserted high), to

interrupt the processor.

5. When INTR
A
 goes high, the processor is interrupted through RST 5.5 input pin to execute an interrupt service routine

to load next data in the output port.

Note : For port-B as output port in mode-1, same operations are performed, but for handshake

signals PC
0
, PC

1
 and PC

2
 are used.

8255 bidirectional port (Mode-2)

The signals used for data transfer between IO device and microprocessor using port-A of

8255 as bidirectional port (Mode-2) are shown in Fig. 7.13.

Note : Only port-A can work in mode-2.

In mode-2 the port can be used either as an input port or as an output port. At any one time,

the processor will perform either read or write operation. In mode-2, the read operation can be

followed by write or the write operation can be followed by read. The signals involved and the

operations performed for read operation are similar to mode-1 input port. The signals involved and

the operations performed for write operation are similar to the mode-1 output port.

7.2.3 DMA Data Transfer Scheme

Normally the data transfer from memory to IO device or IO device to memory can be acheived

only through the microprocessor. When data has to be transferred from memory to IO device, first

the processor sends address and control signals to memory to read the data from memory. Then the

processor sends address and control signals to IO device to write data to IO device.

Similarly, when the data has to be transferred from IO device to memory, first the processor

sends address and control signals to IO device to read data from IO device. Then the processor

sends address and control signals to memory device to write data to memory.

In the data transfer method described above, the data cannot be directly transferred between

memory and IO device, even though they are connected to a common bus. The above process is

inevitable because the processor cannot simultaneously select two devices. Hence a scheme called

Direct Memory Access (DMA) has been developed in which the IO device can access the memory

directly for data transfer. The DMA data transfer will be useful to transfer large amounts of data

between the memory and IO device in a short time.

For direct data transfer between IO device and memory a dedicated hardware device called

Direct Memory Access controller (DMA controller) is used. A DMA controller temporarily borrows

8086-
Based
System

8
2
5
5

Input/
Output
Device

®
®
®

¬ ¬
INTRA ACKA

A0

Fig. 7.13 : Port-A of 8255 as bidirectional port (Mode-2).

®
®

D - D0 7

NMI

D - D0 7

PA - PA0 7

A1

CS

PC7

PC6PC3

WR WR ®
OBFA

RD

®

¬
STBA

IBFA

PC4

PC5

RD

 7. 13

the address bus, data bus and control bus from the microprocessor, and transfers the data bytes

directly from the IO ports to a series of memory locations or vice versa. Some DMA controllers

can also perform memory-to-memory transfer.

A Microcomputer System with a DMA Controller

The simplified diagram of a microcomputer system with a DMA controller is shown in

Fig. 7.14. In the system shown in Fig. 7.14, the DMA controller has one channel, which serves for

one IO device. In an actual DMA controller we may have more than one channel and each channel

may service an IO device independently. Each channel contains an address register, a control

register and a count register. For simplicity let us consider a one-channel DMA controller.

The DMA controller can work as a slave or as a master. In the slave mode, the microprocessor

loads the address register with the starting address of the memory, loads the count register with the

number of bytes to be transferred and loads the control register with the control information.

For performing DMA operation the processor has to initialize or program the IO device and

DMA controller. Consider an example of transferring a bulk data from floppy to memory by DMA.

In this case the processor initializes both DMA controller and floppy controller, so that DMA

controller is informed about the address, type of DMA and number of bytes to be transferred, and

the floppy controller is informed to go for a DMA.

When the IO device needs a DMA transfer it sends a DMA request signal (DREQ) to the

DMA controller. When the DMA controller receives a DMA request, it sends a HOLD request to the

¯

¯

¯ ¯ ¯

¯

DMA

Controller

8237 or 8257

External
Device

IO Port

IOMemory
Microprocessor

8086

Latches

and

Buffers

¯ ¯ ¯ ¯ ¯ ¯

System Bus

H
O
L
D

¯

¯

¯

A
d
d
re
ss

B
u
s

M
E
M

R

M
E
M

W

H
O
L
D

H
L
D
A

A
d
d
re
ss

D
at
a

C
o
n
tr
o
l

A
d
d
re
ss

D
at
a

C
o
n
tr
o
l

H
L
D
A

D
R
E
Q

D
A
C
K

IO
R

IO
W

S
y
st
em

B
u
s

Enable

¬ ®®

(Such as Floppy Disk

or Disk Controller)

Fig. 7.14 : Block diagram of a microcomputer
system with DMA controller.

C
P
U

B
u
s

8086 Microprocessor and Its Appications

7. 14 Chapter 7 Peripheral Devices And Interfacing

processor. At the end of the current instruction execution, the processor relieves the bus by asserting

all its data, address and control pins to high impedance state. Then the processor sends an

acknowledge (HLDA) signal to the DMA controller.

When the controller receives an acknowledge signal it takes control of the system bus and

begins to work as a master. The DMA controller sends a DMA acknowledge signal (DACK) to IO

device. The DACK signal will inform the device to get ready for DMA transfer.

For a read operation, the DMA controller outputs the memory address on the address bus and

asserts MEMR and IOW signals. The DMA read refers to reading memory locations. Hence, for a

read operation, the memory outputs the data on the data bus and this data will be written into IO port.

For a write operation, the DMA controller outputs the memory address on the address bus

and asserts MEMW and IOR signals. The DMA write refers to writing data to the memory. Hence,

for a write operation, the IO device outputs the data on the data bus and this data will be written

into memory. When the data transfer is complete the DMA controller unasserts its HOLD request

signal to the processor and the processor takes control of the system bus.

The DMA transfer may be performed to transfer a byte at a time or in blocks. In cycle stealing

DMA or single transfer mode, the DMA controller will perform one-byte transfer in between instruction

cycles. In burst mode or block transfer mode, the DMA controller will transfer a block of data.

7.2.4 DMA Controller - INTEL 8237

The DMA controller-8237 has been developed for 8085/8086/8088 microprocessor-based

system. It is a device dedicated to perform high speed data transfer between memory and IO

device. The 8237 has four channels and so it can be used to provide DMA to four IO devices.

When more than four devices require DMA, then a number of 8237 can be connected in cascade

to increase the DMA channels.

Fig. 7.15 : Pin configuration of 8237.

40

39

38

37

36

35

34

33

32

31

30

29

A7

8
2
3
7

D
M
A
C
o
n
tr
o
ll
er

1

2

3

4

5

6

7

8

9

10

11

12CLK

RESET

®

®
HRQ

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®
®®

®

®
®
®
®®

®
®

®

®

®

®

®

®

®

®

®

®

®

®

®
®

®

®

®®

®

®

®

®

®
®
®
®

READY

NC

HLDA

IOR

(GND)VSS

A6

A5

A4

EOP

A3

A2

A1

A0

V (+5-V)CC

DB0

DB1

DB2

DB3

DB4

DACK0

DB5

DB6

DB7

®
®
®
®

®®
®
®

®

®
®

IOW

MEMR

MEMW

ADSTB

AEN

CS

DACK2

DACK3

DREQ3

DREQ2

DREQ1

DREQ0

DACK1®

A -A0 3

8
2
3
7

D
M
A
C
o
n
tr
o
ll
er

CLK

RESET

®

®®

IOR

(GND)VSS

EOP

IOW

MEMR

MEMW

ADSTB

AEN

CS

READY

(+5-V)VCC

®

A -A4 7

DB -DB0 7

DREQ0
-DREQ3

DACK0
-DACK3

®®

®
®
®
®

®
®
®
®®

®®

®

HRQ

HLDA

 7. 15

¬
® ® ® ®

¬

®

¬¬ ¬ ¬ ¬

® ® ® ®

¬ ¬

¬ ¬ ¬

In
te
rn
a
l
D
a
ta

B
u
s

¯

¯

¯

¯
¯

® ®

¯

E
O
P

R
E
S
E
T

C
S

R
E
A
D
Y

C
L
K

A
E
N

A
D
S
T
B

M
E
M

R

M
E
M

W

IO
R

IO
W

D
R
E
Q
0
-

D
R
E
Q
3

H
L
D
A

H
R
Q

D
A
C
K
0
-

D
A
C
K
3

4 4

T
im

in
g

a
n
d

C
o
n
tr
o
l

B
a
se

A
d
d
re
ss

(1
6
)

B
a
se

W
o
rd

C
o
u
n
t

(1
6
)

R
ea
d

B
u
ff
er

P
ri
o
ri
ty

E
n
co
d
er

a
n
d

R
o
ta
ti
n
g

P
ri
o
ri
ty

L
o
g
ic

C
o
m
m
a
n
d
(8
)

M
a
sk

(4
)

R
eq

u
es
t
(4
)

R
ea
d
/W

ri
te

M
o
d
e

(4
)

´
8

S
ta
tu
s
(8
)

T
em

p
o
ra
ry

(8
)

W
ri
te

B
u
ff
er

R
ea
d
B
u
ff
er

R
ea
d
/W

ri
te

B
u
ff
er

C
u
rr
en

t
A
d
d
re
ss

(1
6
)

C
u
rr
en

t
W
o
rd

C
o
u
n
t

(1
6
)

D
ec
re
m
en

to
r

T
em

p
W
o
rd

C
o
u
n
t
R
eg

(1
6
)

In
cr
em

en
to
r/
D
ec
re
m
en

to
r

T
em

p
A
d
d
re
ss

R
eg

(1
6
)

IO
B
u
ff
er

O
u
tp
u
t

B
u
ff
er

C
o
m
m
a
n
d

C
o
n
tr
o
l

IO
B
u
ff
er

1
6
-b
it
B
u
s

1
6
-b
it
B
u
s

A
-A

0
3

A
-A

4
7

A-A815

D
-D

0
1

D
B

-D
B

0
7

F
ig
.
7
.1
6
:
F
u
n
c
ti
o
n
a
l
b
lo
c
k
d
ia
g
ra
m
o
f
a
n
8
2
3
7
.

8086 Microprocessor and Its Appications

7. 16 Chapter 7 Peripheral Devices And Interfacing

For each DMA channel, a set of registers has been dedicated to store the memory address

and the count value for the number of bytes to be read/write by DMA. These registers are base

address, current address, base word count, current word count and mode registers. Apart from

these dedicated registers, the 8237 has temporary registers, status, command, mask and request

registers.

The 8237 is a 40-pin IC and available in a Dual In-Line Package (DIP). The pin configuration

of 8237 is shown in Fig. 7.15. A brief description about the pins and signals of 8237 are listed in

Table-7.4. The functional block diagram of 8237 is shown in Fig. 7.16.

Features of 8237

� It has four independent DMA channels to service four IO devices.

� Number of channels can be increased by cascading any number of 8237.

� Each channel can be independently programmable to transfer upto 64 kb of data by DMA.

� Each channel can independently perform read transfer, write transfer and verify transfer.

� Channel-0 and channel-1 are used to perform memory-to-memory transfer.

� Each channel can be independently programmable to perform demand transfer DMA, single transfer DMA and block

transfer DMA.

TABLE - 7.4 : PIN DESCRIPTION OF 8237

 Pin Description

 CLK Clock input to 8237. Maximum clock frequency is 5 MHz. In 8086/8088 system, the

processor clock is inverted and applied to the CLK of 8237.

 CS Logic low chip select signal. It is input signal to select the 8237 during the programming

mode.

 RESET Reset input to 8237. Connected to system reset, when the RESET signal goes high

the command, status, request and temporary registers are cleared. It also clears

the first-last flip-flop and sets the mask register.

 READY Ready input signal and it is tied to V
CC

 for normal timings. When READY input is tied

low, the 8237 enters a wait state. This is used to get extra time in the DMA machine

cycles to transfer data between slow memory and IO devices.

 HRQ Hold request output signal. It is the hold request signal sent by the 8237 to the processor

HOLD pin, to make a request for bus to perform DMA transfer.

 HLDA Hold acknowledge input signal. It is the hold acknowledge signal to be send by the

processor to inform the acceptance of hold request.

 DREQ3 DMA request inputs (Four channel inputs). Used by IO devices to request for

 to DMA transfer.

 DREQ0

 DACK3 DMA acknowledge output signals. These are output signals from 8237 to the IO

 to devices to inform the acceptance of DMA request. These outputs are programmable

 DACK0 as either active high or active low signals.

 7. 17

Table - 7.4 continued...

 Pin Description

DB
7
 to Data bus lines. These pins are used for data transfer between the processor and DMA

 DB
0

controller during the programming mode. During DMA mode, these lines are used

as multiplexed high order address and data lines.

 IOR Bidirectional IO read control signal. It is the input control signal for reading the DMA

controller during the programming mode and the output control signal for reading the

IO device during DMA (memory) write cycle.

 IOW Bidirectional IO write control signal. It is an input control signal for writing the DMA

controller during the programming mode and output control signal for writing IO device

during the DMA (memory) read cycle.

 EOP End of process. It is a bidirectional active low signal. It is used either as input to

terminate a DMA process or as output to inform the end of the DMA transfer to the

processor. This output can be used as interrupt to terminate the DMA.

 A
3
 to A

0
Four bidirectional address lines. Used as input address during the programming

mode, to select internal registers. During DMA mode, the low order four bits of memory

address are output by 8237 on these lines.

 A
7
 to A

4
Four unidirectional address lines. Used to output the memory address bits A

7
 to A

4

during DMA mode.

 AEN Address enable output signal. It is used to enable the address latch connected to

the DB
7
 - DB

0
 pins of 8237. It is also used to disable any buffers in the system connected

to the processor.

 ADSTB Address strobe output signal. It is used to latch the high byte memory address

issued through DB
7
 to DB

0
 lines by 8237 during the DMA mode into an external

latch.

 MEMR Memory read control signal. It is an output control signal issued during DMA read

operation.

 MEMW Memory write control signal. It is an output control signal issued during DMA write

operation.

The various internal registers of 8237 are listed in Table-7.5. The processor can read or

write into these registers. But with certain registers the processor can perform only read operation

and with certain registers the processor can perform only write operation. The internal registers

are selected by a 4-bit address supplied through A
0
-A

3
 lines of 8237. The addresses of the internal

registers and the operations (read/write) that can be performed on these registers are listed

in Table-7.6.

8086 Microprocessor and Its Appications

7. 18 Chapter 7 Peripheral Devices And Interfacing

TABLE - 7.5 : INTERNAL REGISTERS OF 8237

 Name of the register
Size of register Number of

 in bits registers available

Base address register 16 4

Base word count register 16 4

Current address register 16 4

Current word count register 16 4

Temporary address register 16 1

Temporary word count register 16 1

Status register 8 1

Command register 8 1

Temporary register 8 1

Mode register 8 4

Mask register 4 1

Request register 3 1

The 16-bit internal registers of 8237 are read/write through an 8-bit data bus. The 8237

has an internal first-last flip-flop which has to be cleared to zero for reading/writing low byte

first and then high byte. The first last flip-flop can be set to one for reading/writing high byte

first and then low byte. (However, the 8237 does not have the facility to directly set the first-

last flip-flop, but it has the facility to directly clear the first-last flip-flop.) After each read or

write operation, the state of flip-flop automatically toggles.

Internal Registers of 8237

Current address (CA) register

It is used to hold the 16-bit memory address of the next memory location to be accessed

by DMA. The 8237 outputs the content of the CA-register as the memory address and

increments/decrements it by one. Each channel has its own CA-register. Initially the starting

address of memory is loaded in CA-register from base address register.

Current word count (CWC) register

It holds the count value of the number of bytes to be transferred by the DMA. Initially the

count value is loaded to the CWC register from the base count register. After each byte transfer by

the DMA, the count value is decremented by one. Therefore, at any one time it holds the count

value for the number of bytes (pending) to be transferred by DMA.

Base address (BA) register

It is used to hold the starting address of the memory block to be accessed by the DMA.

During the start of the DMA process the content of BA-register is loaded in CA-register. If auto

initialization is enabled in the mode register, then the content of BA-register is reloaded in the

CA-register at the end of the DMA process.

 7. 19

Base word count (BWC) register

It is used to hold the count value for the number of bytes to be transferred by DMA. During

the start of DMA process, the content of BWC register is loaded in CWC register. If auto initialization

is enabled in mode register then the content of BWC register is reloaded in CWC register at the end

of DMA process.

TABLE - 7.6 : ADDRESS OF INTERNAL REGISTERS OF 8237

Operation

performed

Binary address

Channel-0 Base and Current address Write 0 0 0 0

Channel-0 Current address Read 0 0 0 0

Channel-0 Base and Current word count Write 0 0 0 1

Channel-0 Current word count Read 0 0 0 1

Channel-1 Base and Current address Write 0 0 1 0

Channel-1 Current address Read 0 0 1 0

Channel-1 Base and Current word count Write 0 0 1 1

Channel-1 Current word count Read 0 0 1 1

Channel-2 Base and Current address Write 0 1 0 0

Channel-2 Current address Read 0 1 0 0

Channel-2 Base and Current word count Write 0 1 0 1

Channel-2 Current word count Read 0 1 0 1

Channel-3 Base and Current address Write 0 1 1 0

Channel-3 Current address Read 0 1 1 0

Channel-3 Base and Current word count Write 0 1 1 1

Channel-3 Current word count Read 0 1 1 1

Command register Write 1 0 0 0

Status register Read 1 0 0 0

Request register Write 1 0 0 1

Write single mask register bit Write 1 0 1 0

Mode register Write 1 0 1 1

Clear byte pointer flip-flop Write 1 1 0 0

Temporary register Read 1 1 0 1

Master clear Write 1 1 0 1

Clear mask register Write 1 1 1 0

Write all mask register bits Write 1 1 1 1

Name of the register
A

3
A

2
A

1
A

0

8086 Microprocessor and Its Appications

7. 20 Chapter 7 Peripheral Devices And Interfacing

Command register

The command register is used to program the following features of 8237:

� Enable /Disable memory-to-memory transfer.

� Enable /Disable the DMA controller.

� Normal /Compressed timing.

� Fixed/Rotating priority.

� Type of (active low/high) DMA request and acknowledge signal.

The format of the control word to be loaded in the command register to program the above

features is shown in Fig. 7.17. During memory-to-memory DMA transfer, the channel-0 registers

are used to hold the source address and the channel-1 registers are used to hold the destination

address. The data transfer takes place via the temporary register in 8237. The number of bytes

transferred is determined by the channel-1 count register.

The bit B
2
 is used to turn ON/OFF the entire controller by the software. The bit B

3
 is used

to program the normal/compressed timing. In normal timing, the time taken to perform one DMA

transfer will be four clock periods. In compressed timing, the time taken to perform one DMA

transfer will be two clock periods.

The bit B
4
 is used to select fixed/rotating priority for DMA channels. In fixed priority, the

channel-0 has the highest priority and channel-3 has the lowest priority. In rotating priority, after

servicing a channel its priority is made as the lowest. For example, if DMA request is made to

channel-2 and there is no DMA request in other channels. Now after servicing channel-2 in the

rotating priority scheme the priorities of the channels from the highest to the lowest will be

channel-0, channel-1, channel-3 and channel-2. Alternately, if the 8237 is programmed for fixed

priority, then for the same situation after servicing channel-2, the priorities of the DMA channels

from highest to lowest will be channel-0, channel-1, channel-2 and channel-3.

The bit B
5
 is used to extend the timing of the write pulse when the IO devices require wider

write pulse. This is possible only in normal timing. The bit B
6
 and B

7
 are used to program the

polarities (logic low/high) of the DMA request input and DMA acknowledge output.

B7 B6 B5 B4 B3 B2 B1 B0

¬

¬

¬

¬

®

®

®

®

I
P
QDACK Sense Active Low = 0

DACK Sense Active High = 1

I
P
QDREQ Sense Active Low = 0

DREQ Sense Active High = 1

I
P
QLate Write Selection = 0

Extended Write Selection = 1
If B = 1, then B is Don’t Care3 5

I
P
QFixed Priority = 0

Rotating Priority = 1

I

P

Q 0 = Memory-to-Memory Disable
1 = Memory-to-Memory Enable

I

P

Q 0 = Channel-0 Address Hold Disable
1 = Channel-0 Address Hold Enable
If B = 0, then B is Don’t Care0 1

I

P

Q 0 = Controller Enable
1 = Controller Disable

I

P

Q 0 = Normal Timing
1 = Compressed Timing
If B = 1, then B is Don’t Care0 3

Fig. 7.17 : Format of control word to be loaded in command register.

 7. 21

Mode register

Each channel has its own mode register and it is used to program the following features of

each channel of 8237.

� Read/Write/Verify transfer.

� Demand/Single/Block transfer mode.

� Single/Cascaded operation of 8237.

� Enable/Disable auto initialization.

The format of the control word to be loaded in the mode register is shown in Fig. 7.18. The

control word of all the four mode registers are sent to the same internal address, but 8237 identifies

the control word of a channel from the bits B
0
 and B

1
. The bits B

2
 and B

3
 are used to program the

read/write/verify transfer. In read transfer the data is transferred from memory to the IO device.

In write transfer the data is transferred from the IO device to the memory. Verification operations

generate the DMA addresses without generating the DMA memory and IO control signals.

The bit B
4
 is used to enable/disable auto initialization of DMA channels. When it is enabled,

the memory address and count value from base registers are loaded in the current registers after

completion of DMA process, which are used to repeat the DMA process between the IO device

and same block of memory.

The bits B
6
 and B

7
 are used to program various modes of operation like demand transfer

mode, single transfer mode, block transfer mode and cascade mode. In demand transfer mode, the

DMA transfer is performed until an external signal is applied to the EOP pin of 8237 or until the

DREQ input becomes inactive.

In single transfer mode, the 8237 releases the bus to the processor by deactivating the HOLD

signal after transfer of each byte by the DMA. If the DREQ pin is held active, then 8237 will make a

request for the DMA to the processor through the HOLD pin again after a small delay. This will allow

the processor to execute one instruction and the 8237 to perform one DMA transfer alternatively.

In block transfer mode, the 8237 will transfer an entire block of data specified by the count

register and then release the bus to the processor by deactivating the HOLD signal. In cascaded

operation, the Hold Request pin (HRQ) of one 8237 will be connected to the HOLD pin of the

processor and to each DREQ pin of this 8237, the HRQ pin of another 8237 can be connected.

This connection can be extended until we get the required number of DMA channels.

00 = Demand Mode Select
01 = Single Mode Select
10 = Block Mode Select
11 = Cascade Mode Select

0 = Address Increment Select
1 = Address Decrement Select

0 = Auto initialization Disable
1 = Auto initialization Enable

00 = Channel-0 Select
01 = Channel-1 Select
10 = Channel-2 Select
11 = Channel-3 Select

00 = Verify Transfer
01 = Write Transfer
10 = Read Transfer
11 = Illegal
If Bits B and B are One, Then

B and B are Don’t Care
6 7

3 2

B7 B6 B5 B4 B3 B2 B1 B0

I

P

Q

I

P

Q

I

P

Q

I

P

Q

I

P

Q

®

®

®

®

®

IPQ IPQIPQ

Fig. 7.18 : Format of control word to be loaded in the mode register.

8086 Microprocessor and Its Appications

7. 22 Chapter 7 Peripheral Devices And Interfacing

When DMA request is made to a channel by another 8237, then this channel cannot perform

read/write/verify transfer.

Request register

It is used to request a DMA transfer via software. The format of the control word to be

loaded in the request register is shown in Fig. 7.19. The bit B
0
 and B

1
 selects the channel in which

DMA transfer is required and the bit B
2
 is used to set/reset the DMA request.

Mask register

This register is used to mask (or disallow) the DMA request made through channels and to

unmask (or enable) the DMA request made through channels. Please remember that after a RESET

all the channels are masked and so after a RESET the channels have to be unmasked by sending a

control word to the mask register.

The mask register has two internal addresses. One address is used to set/reset the single

mask bit (i.e., to mask/unmask one channel at a time) and the other address is used to set/reset all

the mask bits (i.e., to mask/unmask all the channels). The format of the two control words for

mask register are shown in Fig. 7.20.

Don’t Care 00 = Select Channel-0

1
11

01 = Select Channel-1
0 = Select Channel-2
= Select Channel-3

0 = Reset DMARequest
1 = Set DMARequest

B7 B6 B5 B4 B3 B2 B1 B0

IPQ

I

P

Q

I

P

Q

IPQ

®

®

Fig. 7.19 : Format of control word to be loaded in a request register.

Don’t Care

0 = Clear Mask Bit
1 = Set Mask Bit

00 = Select Channel-0

0 = Select Channel-2
11 = Select Channel-3

01 = Select Channel-1
1

Don’t Care

0 = Clear Channel-0 Mask Bit
1 = Set Channel-0 Mask Bit

0 = Clear Channel-1 Mask Bit
1 = Set Channel-1 Mask Bit

0 = Clear Channel-2 Mask Bit
1 = Set Channel-2 Mask Bit

0 = Clear Channel-3 Mask Bit
1 = Set Channel-3 Mask Bit

B7 B6 B5 B4 B3 B2 B1 B0

IPQ IPQ

I

P

Q

I

P

Q

B7 B6 B5 B4 B3 B2 B1 B0

IPQ

®

®

®
I

P

Q

I

P

Q

I

P

Q

I

P

Q

®

®

®

Fig. a : Format of the control word to
mask/unmask one channel.

Fig. b : Format of the control word to
mask/unmask all channel.

Fig. 7.20 : Format of the control word to be loaded in the mask register.

 7. 23

Status register

The status register can be read to know whether the channels has reached their Terminal

Count (TC) or not and also to know whether the DMA request on the DREQ pins are active or

not. The format of status register is shown in Fig. 7.21.

Software Commands of 8237

The 8237 has three software commands to control its operation and they are Clear first-last

flip-flop, Master clear and Clear mask register. These software commands can be enabled by

executing a write operation to the internal address allotted to these commands. (Please refer to

Table-7.6 for internal addresses of these commands.) We need not worry about the data sent to

these port during write operation because the 8237 will ignore the data. The function of the

software commands are given below.

Clear first-last flip-flop

This command resets the first-last flip-flop in 8237 to zero. The first-last flip-flop selects

the low or high byte during the read/write operation of the address and count registers of the

channels. If first-last flip-flop is zero (i.e., reset) then the low byte can be read/write. If it is one

(i.e., set) then the high byte can be read/write. After every read/write operation the first-last

flip-flop automatically toggles.

Master Clear

This command is used as software RESET. The functions performed by this command is

same as that of hardware RESET. During RESET all internal registers and first-last flip-flop are

cleared and all the mask bits of the channels are set.

Clear mask register

This command is used to clear the mask bits of the DMA channels in order to enable all the

four DMA channels.

Programming 8237

The 8237 can work as a slave or as a temporary master in a microprocessor system.

Normally the 8237 is interfaced to a system as a slave device. During the DMA operation, it works

as a temporary master. For proper DMA operation the 8237 has to be programmed, when it is

working as a slave. The programming of 8237 refers to sending software commands and various

1 = Channel-0 DMARequest is Active

1 = Channel-1 DMARequest is Active

1 = Channel-2 DMARequest is Active

1 = Channel-3 DMARequest is Active

1 = Channel-0 has Reached TC.

1 = Channel-1 has Reached TC.

1 = Channel-2 has Reached TC.

1 = Channel-3 has Reached TC.

B7 B6 B5 B4 B3 B2 B1 B0

®
®
®
®

®
®
®
®

Fig. 7.21 : Format of a status register.

8086 Microprocessor and Its Appications

7. 24 Chapter 7 Peripheral Devices And Interfacing

control words to 8237, in order to inform the types of DMA, memory address, count value, etc.,

for each channel. At the start of programming all DMA channels have to be disabled and then they

are enabled at the end of programming. Also the first-last flip-flop has to be cleared before sending

16-bit address/count value to 8237 in order to load low byte first and then high byte in address/

count registers. The various steps in programming 8237 are given below:

1. First send a "master clear" software command to 8237, which mask/disable all DMA channels, clears first-last

flip-flop and clears all internal register, except the mask register.

2. Send a control word to the command register to inform priority of DMA channels, normal/compressed timings, polarity

of the DREQ and polarity of the DACK signals.

3. Write a mode word to the mode register of each channel to inform the DMA mode and the type of DMA transfer.

4. Send a "clear first-last flip-flop" software command to reset it to zero.

5. After ensuring that the first-last flip-flop is zero, write the 16-bit address in the address register of each channel, by

sending the low byte first and then high byte.

6. Then write the 16-bit count value in the count register of each channel, by sending the low byte first and then the high

byte. It is sufficient if the first-last flip-flop is cleared at the beginning of sending a series of 16-bit address/count

values, because after each write operation it automatically toggles to keep track of low byte and high byte.

7. Finally send "the clear mask register" software command to enable all DMA channels. Now 8237 is ready to perform

the DMA process.

Interfacing 8237 with 8086 Processor

A simple schematic for interfacing the 8237 with 8086 processor is shown in Fig. 7.22.

The 8237 can be either memory-mapped or IO-mapped in the system. In the schematic shown

in Fig. 7.22, the 8237 is IO-mapped in the system with even addresses. The chip select signals for

IO-mapped devices are generated by using a 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are

decoded to generate eight chip select signals (IOCS-0 to IOCS-7) and in this the chip select

signal IOCS-6 is used to select 8237. The address line A
0
 and the control signal M/IO are used as

enables for the decoder.

The address lines A
1
 - A

4
 of 8086 are connected to A

0
 - A

3
 of 8237 through a latch enabled

by ALE to provide the internal addresses. The intermediate latch is necessary because the address

lines A
0
 - A

3
 of 8237 should be connected to A

1
 to A

4
 of the address bus during the programming

mode and they are connected to A
0
 - A

3
 of the address bus during the DMA mode. The IO

addresses of the internal register of 8237 are listed in Table-7.7.

The 8237 supplies only lower 16 bits (A
0
-A

15
) of memory address during the DMA mode.

The upper 4 bits of the memory address (A
16

-A
19

) should be generated by some means. For this a

latch is provided in the system to hold the upper four bits of the DMA memory address. This latch

is enabled by the chip select signal IOCS-7 and the IO address of this latch is also listed in Table-

7.7. The processor can load the upper four bits of the DMA memory address in this latch while

initializing the DMA controller.

The DB
0
-DB

7
 lines of 8237 are connected to the data bus lines D

0
-D

7
 for data transfer with

the processor during the programming mode. These lines (DB
0
-DB

7
) are also used by 8237 to

supply the memory address A
8
-A

15
 during the DMA mode. The 8237 also supplies two control

signals ADSTB and AEN to latch the address supplied by it during the DMA mode on the external

 7. 25

¬
®

F
ig
.
7
.2
2
:
In
te
rf
a
c
in
g
o
f
8
2
3
7
w
it
h
8
0
8
6
p
ro
c
e
s
s
o
r.

8086 Microprocessor and Its Appications

7. 26 Chapter 7 Peripheral Devices And Interfacing

latches. In the schematic shown in Fig. 7.22, two 8-bit latches are provided to hold the lower

16-bit memory address during DMA mode. During the DMA mode, the AEN signal is also used to

disable the buffers and latches used for address, data and control signals of the processor.

The 8237 provides separate read and write control signals for memory and IO devices

during DMA. Therefore the RD, WR and M/IO of the 8086 processor are decoded by a suitable

logic circuit to generate separate read and write control signals for memory and IO devices. (Please

refer to Chapter-4, Fig. 4.17 for the logic circuit to generate separate read and write signals for

memory and IO devices.)

The RESET, READY and clock signal for 8237 are provided by 8284 clock generator. The

clock used for the processor should be inverted and supplied to 8237 for proper operation. The

HRQ output of 8237 is connected to the HOLD input of 8086 in order to make a HOLD request to

the processor. The HLDA output of 8086 is connected to HLDA input of 8237 in order to receive

the acknowledge signal from the processor once the HOLD request is accepted.

TABLE - 7.7 : IO ADDRESSES OF 8237

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

 Channel-0 Base and Current address register 1 1 0 0 0 0 0 0 C0

 Channel-0 Base and Current word count register 1 1 0 0 0 0 1 0 C2

 Channel-1 Base and Current address register 1 1 0 0 0 1 0 0 C4

 Channel-1 Base and Current word count register 1 1 0 0 0 1 1 0 C6

 Channel-2 Base and Current address register 1 1 0 0 1 0 0 0 C8

 Channel-2 Base and Current word count register 1 1 0 0 1 0 1 0 CA

 Channel-3 Base and Current address register 1 1 0 0 1 1 0 0 CC

 Channel-3 Base and Current word count register 1 1 0 0 1 1 1 0 CE

 Status/Command register 1 1 0 1 0 0 0 0 D0

 Request register 1 1 0 1 0 0 1 0 D2

 Write single mask register bit 1 1 0 1 0 1 0 0 D4

 Mode register 1 1 0 1 0 1 1 0 D6

 Clear first-last flip-flop 1 1 0 1 1 0 0 0 D8

 Temporary register/Master clear 1 1 0 1 1 0 1 0 DA

 Clear mask register 1 1 0 1 1 1 0 0 DC

 Write all mask register bits 1 1 0 1 1 1 1 0 DE

Upper 4-bit DMA address latch 1 1 1 x x x x x E0

 Note : Here don't care "x" is considered as zero.

Decoder input Input to address

pins of 8237

Decoder

enable

Name of the internal register of 8237
Binary address

 Hexa

 address

Decoder input
 Hexa

 address
Name of the external device

Binary address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Unused address lines

 7. 27

The IO device has to read/write data from/to both the even memory bank and the odd

memory bank. In order to provide this facility two bidirectional data buffers are provided in the

system. These buffers act as switches to connect the D
0
-D

7
 of the IO device to D

0
-D

7
of the

system bus for even addresses and to D
8
-D

15
 of the system bus for odd addresses. The address A

0

is used to enable these buffers.

The buffer which is enabled by A
0
 is used for read/write data from/to the even memory

bank via the low order data bus. The buffer which is enabled by A
0
 is used for read/write data

from/to the odd memory bank via the high order data bus. The direction control for the bidirectional

buffer can be provided by using either IOR or IOW signal.

DMA Operation in 8086 using 8237

After programming the 8237 in the slave mode, it will be ready to perform DMA. Once the

8237 is programmed it keeps on checking the DMA request input from the IO devices. When the

8237 deducts a valid DMA request, it performs the following activity :

1) When the 8237 receives a DMA request from a peripheral it sends a hold request to the 8086 processor (provided

the channel should be enabled and there should not be any pending higher priority DMA request).

2) When the 8086 processor receives a hold request, it will complete the current instruction execution and drive all its

tristate (address, data and control) pins to high impedance state. Then the 8086 sends an acknowledge signal to

the 8237.

3) On receiving an acknowledge from the 8086, the 8237 will send an acknowledge to the peripheral device which

requested DMA.

4) The 8237 asserts AEN high, which enable DMA memory address latches and disables the processor address latch.

5) Then the 8237 outputs the low byte address on the A
0
-A

7
 lines and high byte address on the DB

0
 to DB

7
 lines. Also

the control signal ADSTB is asserted high to latch this address into the external latches.

6) Also the DMA controller asserts appropriate read and write control signals to perform DMA transfer.

7) In block transfer mode, after performing one-byte transfer, steps 4,5 and 6 are repeated again and again until the

count is zero. In demand transfer mode, steps 4, 5 and 6 are repeated until an external end of process signal is

applied or till the DMA request is deactivated. In single transfer mode the 8237 deactivates the hold request to the

processor after one-byte of transfer by the DMA.

7.2.5 DMA Controller - INTEL 8257

The DMA controller-8257 has been developed for 8085/8086/8088 microprocessor-based

systems. It is a device dedicated to perform a high speed data transfer between memory and IO

device. The 8257 has four channels and so it can be used to provide DMA to four IO devices. It

cannot be connected in cascade like the 8237 and it has less features than the 8237.

For each DMA channel an address register and a count register has been dedicated to store

the memory address and the count value for the number of bytes to be read/write by DMA

respectively. Apart from these dedicated registers, the 8257 has mode set and status registers.

The 8237 is a 40-pin IC and available in Dual In-line Package (DIP). The pin configuration

of the 8257 is shown in Fig. 7.23. A brief description about the pins and signals of the 8257 are

listed in Table -7.8.

8086 Microprocessor and Its Appications

7. 28 Chapter 7 Peripheral Devices And Interfacing

TABLE - 7.8 : PIN DESCRIPTION OF 8257

 Pin Description

 CLK Clock input to 8257. The maximum clock frequency is 5 MHz. In an 8086/8088 system,

the processor clock signal is inverted and applied to the CLK of 8257.

 CS Logic low chip select signal. It is the input signal to select 8257 during the programming

mode.

 RESET Reset input to 8257. Connected to the system reset, when the RESET signal goes high

all the internal registers are cleared.

 READY Ready input signal and it is tied to V
CC

 for normal timings. When READY input is tied

low, the 8257 enters a wait state. This is used to get extra time in DMA machine cycles

to transfer data between slow memory and IO devices.

 HRQ Hold request output signal. It is the hold request signal sent by 8257 to the processor

HOLD pin to make a request for bus to perform DMA transfer.

 HLDA Hold acknowledge input signal. It is the hold acknowledge signal to be sent by the

processor to inform the acceptance of a hold request.

 DREQ3 DMA request inputs (Four channel inputs). Used by IO devices to request for

 to DMA transfer.

 DREQ0

 DACK3 DMA acknowledge output signals. These are active low output signals from 8257 to

 to the IO devices to inform the acceptance of a DMA request.

 DACK0

Fig. 7.23 : Pin configuration of an 8257.

40

39

38

37

36

35

34

33

32

31

30

29

A7

8
2
5
7

D
M
A
C
o
n
tr
o
ll
er

1

2

3

4

5

6

7

8

9

10

11

12CLK

RESET

®

®
HRQ

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

®
®

®
®®

®

®
®
®
®®

®
®

®

®

®

®

®

®

®

®

®

®

®

®

®
®

®

®

®®

®

®

®
®
®
®
®

READY

MARK

HLDA

IOR

GND

A6

A5

A4

TC

A3

A2

A1

A0

VCC

D0

D1

D2

D3

D4

DACK0

D5

D6

D7

®
®
®
®

®®
®
®

®

®
®

IOW

MEMR

MEMW

ADSTB

AEN

CS

DACK2

DACK3

DRQ3

DRQ2

DRQ1

DRQ0

DACK1®

A -A0 3

8
2
5
7

D
M
A
C
o
n
tr
o
ll
er

CLK

RESET

®

®

®

IOR

(0-V) GND TC

IOW

MEMR

MEMW

ADSTB

AEN

CS

READY

(+5-V)VCC

A -A4 7

D -D0 7

DRQ0 - DRQ3

DACK0 - DACK3

®®

®
®
®
®

®
®
®
®

®

®

®

®

HRQ

HLDA

®

®
MARK

 7. 29

Table - 7.8 continued...

 Pin Description

D
0
 - D

7
Data bus lines. These pins are used for data transfer between the processor and the

DMA controller during the programming mode. During the DMA mode, these lines are

used as multiplexed high order address and data lines.

IOR Bidirectional IO read control signal. It is the input control signal for reading DMA

controller during the programming mode and the output control signal for reading IO

device during the DMA (memory) write cycle.

IOW Bidirectional IO write control signal. It is the input control signal for writing the DMA

controller during the programming mode and output control signal for writing the IO

device during the DMA (memory) read cycle.

TC Terminal count.

MARK Modulo-128 mark.

A
3
 to A

0
Four bidirectional address lines. Used as input address during programming mode

to select internal registers. During DMA mode the low order four bits of memory address

are output by 8257 on these lines.

A
7
 to A

4
Four unidirectional address lines. Used to output the memory address bits A

7
 to A

3

during the DMA mode.

AEN Address enable output signal. It is used to enable the address latch connected to

D
7
 - D

0
 pins of 8257. It is also used to disable any buffers in the system connected to

the processor.

ADSTB Address strobe output signal. It is used to latch the high byte memory address

issued through D
7
 - D

0
 lines by 8257 during the DMA mode into an external latch.

MEMR Memory read control signal. It is an output control signal issued during the DMA

read operation.

MEMW Memory write control signal. It is an output control signal issued during the DMA

write operation.

Features of 8257

� It has four independent DMA channels to service four IO devices.

� Each channel is independently programmable to transfer up to 64 kb of data by DMA.

� Each channel can independently perform read transfer, write transfer and verify transfer.

Functional Block Diagram of 8257

The functional block diagram of 8257 is shown in Fig. 7.24. The functional blocks of 8257

are the data bus buffer, read/write logic, control logic and four numbers of the DMA channels.

Each channel has two programmable 16-bit registers. One register is used to program the

starting address of the memory location for DMA data transfer and another register is used to

program a 14-bit count value and a 2-bit code for the type of DMA transfer (Read/Write/Verify

transfer). The address in the address register is automatically incremented after every read/write/

verify transfer. The format of the count register is shown in Fig. 7.25(a).

8086 Microprocessor and Its Appications

7. 30 Chapter 7 Peripheral Devices And Interfacing

In read transfer, the data is transferred from the memory to the IO device. In write transfer,

the data is transferred from the IO device to memory. Verification operations generate the DMA

addresses without generating the DMA memory and IO control signals.

Apart from the address and count registers of each channel, the 8257 has a mode set

register and status register. The mode set register is used to program various features of 8257 and

the status register can be read to know the terminal count status of the channels. The registers of

8257 are selected for read/write operation during the slave/programming mode by sending a 4-bit

address to 8257 through A
0
 - A

3
 lines. The internal addresses of the registers of 8257 are listed in

Table-7.9.

Channel-0

16-bit

Address and

Count

Registers

MARK

Channel-1

16-bit

Address and

Count

Registers

Channel-2

16-bit

Address and

Count

Registers

Channel-3

16-bit

Address and

Count

Registers

®

®

®

®

®

®

Control

Logic and

Mode Set

Register

¬
¬
¬
¬
¬
¬

¬

¬
¬
¬
¬

CLK

RESET

HRQ

READY

HLDA

IOR

TC

IOW

MEMR

MEMW

AEN

ADSTB

®

®

Priority
Resolver

®

A7

A6

A5

A4

Read/

Write

Logic

¬A3

A2

A1

A0

®
¬®
¬®
¬®
®
®
¬®
¬®

Data Bus

Buffer

D -D7 0

¯

¬

¬

¬

¬

DACK0

DRQ0

DACK1

DRQ1

DACK2

DRQ2

DACK3

DRQ3

In
te
rn
a
l
B
u
s

Fig. 7.24 : Functional block diagram of DMA controller 8257.

¯ ¯ ¯

®

CS

®

®

®

®

 7. 31

TABLE - 7.9 : INTERNAL ADDRESS OF 8257 REGISTERS

A
3

A
2

A
1

A
0

Channel-0 DMA address register 0 0 0 0

Channel-0 Count register 0 0 0 1

Channel-1 DMA address register 0 0 1 0

Channel-1 Count register 0 0 1 1

Channel-2 DMA address register 0 1 0 0

Channel-2 Count register 0 1 0 1

Channel-3 DMA address register 0 1 1 0

Channel-3 Count register 0 1 1 1

Mode set register (Write only) 1 0 0 0

Status register (Read only) 1 0 0 0

While programming 16-bit register the low byte has to be send first and then the high byte.

Internally, the loading of low byte and high byte into 16-bit register are taken care by a first-last

flip-flop.

The mode set register is used to program the following features of 8257 :

� Enable/disable a channel.

� Fixed/rotating priority.

� Stop DMA on terminal count.

� Extended/normal write time.

� Auto reloading of channel-2.

The format of the control word to be loaded in the mode set register of the 8257 is shown

in Fig. 7.25(b). The bits B
0
, B

1
, B

2
 and B

3
 of the mode set register are used to enable/disable

channel-0, 1,2 and 3 respectively. A one in these bit position will enable a particular channel and a

zero will disable it.

In the mode set register, if bit B
4
 is set to one, then the channels will have rotating priority

and if it is zero then the channels will have fixed priority. In rotating priority, after servicing a

channel its priority is made as lowest. In fixed priority, channel-0 has the highest priority and

channel-2 has the lowest priority.

In mode set register, if bit B
5
 is set to one, then the timing of the write signals (MEMW and

IOW) will be extended and if bit B
6
 is set to one then the DMA operation is stopped at the terminal

count. Bit B
7
 is used to select the auto load feature for DMA channel-2. When bit B

7
 is set to one,

the content of channel-3 count and address registers are loaded in channel-2 count and address

registers respectively whenever channel-2 reaches terminal count. Therefore, when this mode is

activated the number of channels available for DMA reduces from four to three.

Address
Register

8086 Microprocessor and Its Appications

7. 32 Chapter 7 Peripheral Devices And Interfacing

0 0 = Verify Transfer

1
1 1

0 1 = Write Transfer
0 = Read Transfer
= Illegal

B15 B14 B13 B12 B11 B10 B9 B8

IPQ

Fig. a : Format of count to be loaded in the count register of 8257.

B7 B6 B5 B4 B3 B2 B1 B0

¯ ¯ 14-bit Count

AL TCS EW RP EN3

®

Fig. b : Format of control word to be loaded in mode set register of 8257.

EN2 EN1 EN0

1 = Enable Channel - 0

0 = Disable Channel - 0

®
1 = Enable Channel - 1

0 = Disable Channel - 1

®
1 = Enable Channel - 2

0 = Disable Channel - 2

®
1 = Enable Channel - 3

0 = Disable Channel - 3

® 1 = Rotating Priority

0 = Fixed Priority

® 1 = Extended Write Selection

0 = Normal Write Selection

1 = Stop DMA on Terminal Count®

® 1 = Enable Auto Reload

0 = Disable Auto Reload

B7 B6 B5 B4 B3 B2 B1 B0

1 = Channel-0 has Reached Terminal Count

1 = Channel-1 has Reached Terminal Count

1 = Channel-2 has Reached Terminal Count

1 = Channel-3 has Reached Terminal Count

B7 B6 B5 B4 B3 B2 B1 B0

®
®
®
®

Fig. c : Status register of 8257.

0 0 0 UP TC3 TC2 TC1 TC0

® 1 = Channel-2 is Reloaded from Channel-3

Fig. 7.25 : Format of registers of 8257.

7. 33

The format of status register of 8257 is shown in Fig. 7.25(c). The processor can read the

status of 8257 during slave mode to know the terminal count status of the channels. The bits B
0
,

B
1
, B

2
 and B

3
 of the status register indicate the terminal count status of channels-0, 1, 2 and 3,

respectively. A one in these bit positions indicate that the particular channel has reached terminal

count. These status bits are cleared after a read operation by the microprocessor. Bit B
4
 of the

status register is called update flag and a one in this bit position indicates that the channel-2

registers has been reloaded from channel-3 registers in the auto load mode of operation.

Note : Interfacing of 8257 with 8086 processor will be similar to that of interfacing 8237 with 8086.

DMA Operation in 8086 using 8257

In the slave mode the microprocessor sends control word to mode register and programs the

count and address registers of the required DMA channels. Once the 8257 is programmed, it will keep

on checking the DMA request input from the IO devices. Whenever a DMA request is made by an IO

device, the DMA operation is performed. The various steps of the DMA operation are as follows :

1. When a peripheral device require a DMA, it will assert the DRQ signal high.

2. When the DRQ of a channel is asserted high and if the channel is enabled then the 8257 will assert HRQ (HOLD

Request) as high.

3. When the 8086 processor receives a high signal on its HOLD pin, it will complete the current instruction execution

and then drive all its tristate (address, data and control) pins to high impedance state and send an acknowledge

signal to 8257 by asserting the HLDA signal as high.

4. When the 8257 receives an acknowledge signal from 8086, the 8257 will send an acknowledge signal to the

peripheral which requested the DMA, by asserting the DACK signal as low.

5. The 8257 asserts AEN high, which enable the DMA memory address latches and disables the processor address

latch. Then the 8257 outputs low byte DMA address on A
0
-A

7
 lines and high byte DMA address on D

0
- D

7
 lines.

Also the ADSTB signal is asserted high to latch this address into external latches. Once the address is output on

the address lines the content of address register is incremented by one and the count register is decremented by one.

6. Also the 8257 asserts appropriate read and write control signal to perform DMA transfer from the peripheral to

the memory.

7. After performing one-byte transfer steps 5 and 6 are repeated again and again, until the terminal count (i.e.,

until the count reaches zero).

7 . 3 SERIAL DATA COMMUNICATION INTERFACE

7.3.1 Serial Data Communication

The fastest way of transmitting data, within a microcomputer is parallel data transfer. For

transferring data over long distances, however, parallel data transmission requires too many wires.

Therefore, for long distance transmission, data is usually converted from parallel form to serial form

so that it can be sent on a single wire or pair of wires. Serial data received from a distant source is

converted to parallel form so that it can be easily transferred on the microcomputer buses.

Three terms often encountered in literature on communication systems are simplex, half-

duplex and full-duplex. A simplex data line can transmit data only in one direction. Data from

sensors to the processor and commercial radio stations are examples of simplex transmission.

8086 Microprocessor and Its Appications

7. 34 Chapter 7 Peripheral Devices And Interfacing

Half-duplex transmission means that communication can take place in either direction

between two systems, but can occur only in one direction at a time. An example of a half-duplex

transmission is a two-way radio system, where one user always listens while the other talks

because the receiver circuitry is turned off during transmit.

The term full-duplex means that each system can send and receive data at the same time.

A normal phone conversation is an example of a full-duplex operation.

Serial data can be sent synchronously or asynchronously. In synchronous transmission,

data are transmitted in blocks at a constant rate. The start and end of a block are identified with

specific bytes or bit patterns. In asynchronous transmission, data is transmitted one by one. Each

data has a bit which identifies its start and 1 or 2 bits which identifies its end. Since each data is

individually identified, data can be sent at any time. Figure 7.26 shows the bit format often used for

transmitting asynchronous serial data.

When no data is being sent, the signal line will be at constant high or marking state. The

beginning of a data character is indicated by the line going low for 1-bit time. This bit is called a

start bit. The data bits are then sent out on the line one after the other. Note that the least significant

bit is sent out first. Depending on the system, the data word may consist of 5,6,7 or 8 bits.

Following the data bits is a parity bit, which is used to check for errors in received data. Some

systems do not insert or look for a parity bit. After the data bits and the parity bit, the signal line is

returned high for at least 1-bit time to identify the end of the character. This always-high bit is

referred to as a stop bit. Some systems may use 2 stop bits.

The term baud rate is used to indicate the rate at which serial data is being transferred. Baud

rate is defined as . In some systems, one-bit cell has one data bit, then the

baud rate and bits/second are same. In other cases, 2 to 4 actual data bits are encoded within one

transmitted bit time, so data bits per second and baud do not correspond. Commonly used baud

rates are 110, 300, 1200, 2400, 4800, 9600 and 19,200 bauds.

In order to interface a microcomputer with serial data lines, the data must be converted to

and from serial form. A parallel-in-serial-out shift register and a serial-in-parallel-out shift register

can be used to do this. In some cases of serial data transfer, handshake signals are needed to make

sure that a transmitter does not send data faster than it can be read in by the receiving system. The

programmable devices INTEL 8251A, National INS8250, etc., can be interfaced to microprocessors

to perform such functions.

D0 D1 D2 D3 D4 D5 D6

P
ar

it
y

S
to

p

S
to

p

↑↑

One Character

Always Low Always High

Fig. 7.26 : Bit format used for sending asynchronous serial data.

↓ ↓

S
ta

rt

1

(The time for a bit cell)

 7. 35

A device such as INTEL 8251A which can be programmed to do either asynchronous or

synchronous communication is often called USART(Universal Synchronous Asynchronous Receiver

Transmitter). A device such as the National INS8250 which can only do asynchronous

communication is often referred to as a Universal Asynchronous Receiver Transmitter (UART).

Once the data is converted to serial form it must be in some way sent from the transmitting

UART to the receiving UART. There are several ways in which serial data is commonly sent. One

method is to use a current to represent a "1" in the signal line and no current to represent a "0".

Another approach is to add line drivers at the output of the UART to produce a sturdy voltage

signal. The range of each of these methods, however is limited to a few thousand feet.

For sending serial data over long distances the standard telephone system is a convenient path,

because the wiring and connections are already in place. Standard phone lines, often referred to as

switched lines because any two points can be connected together through a series of switches and

have a bandwidth of about 300 to 3000 Hz. But digital signals require very large bandwidth (typically

5 MHz). Therefore, for several reasons, digital signals cannot be sent directly over standard phone lines.

The solution to this problem is to convert the digital signals to audio-frequency tones,

which are in the frequency range that the phone lines can transmit. The device used to do this

conversion and to convert transmitted tones back to digital information is called a MODEM. The

term is a contraction of modulator-demodulator.

Modems and other equipment used to send serial data over long distances are known as

data communication equipment or DCE. The terminals and computers that are sending or receiving

the serial data are referred to as data terminal equipment or DTE.

RS-232C Serial Data Standard

In serial IO, data can be transmitted as either current or voltage. Several standards have

been developed for serial communication. When data are transmitted as voltage, the commonly

used standard is known as RS-232C. It was developed by Electronics Industries Association

(EIA), USA and adopted by IEEE. This standard, proposes a maximum of 25 signals for the bus

used for serial data transfer. The 25 signals of RS-232C are listed in Table-7.10. In practice the

first 9 signals are sufficient for most of the serial data transmission scheme and so the RS-232C

bus signals are terminated on a D-type 9-pin connector. (When all the 25 signals are used, then

the RS-232C serial bus is terminated on a 25-pin connector.)

The voltage levels for all RS-232C signals are :

Logic low = −3-V to −15-V under load (−25-V on no load)

Logic high = +3-V to +15-V under load (+25-V on no load)

Commonly used voltage levels are :

+12-V (logic high) and −12-V(logic low).

1 2 3 4 5

6 7 8 9

1 2 3 4 5

14 15 16 17

6 7 8 9 10 11 12 13

18 19 20 21 22 23 24 25

Fig. a : 9-pin D-type connector. Fig. b : 25-pin D-type connector.

Fig. 7.27 : Connectors used for terminating RS-232C bus.

8086 Microprocessor and Its Appications

7. 36 Chapter 7 Peripheral Devices And Interfacing

Pin Common RS-232C
Description

Signal

number name name
direction

 on DCE

1 - AA Protective Ground -

2 TxD BA Transmitted Data IN

3 RxD B B Received Data OUT

4 RTS CA Request to send IN

5 CTS C B Clear to send OUT

6 DSR C C Data Set ready OUT

7 GND AB Signal ground (Common return) -

8 CD CF Received line signal detector OUT

9 - Reserved for Data set testing -

10 - Reserved for Data set testing -

11 - Unassigned -

12 SCF Secondary Received Line

signal Detector OUT

13 SCB Secondary clear to send OUT

14 SBA Secondary Transmitted Data IN

15 DB Transmission signal OUT

element timing (DCE source)

16 SBF Secondary Received data OUT

17 DD Receiver signal element

timing (DCE source) OUT

18 - Unassigned -

19 SCA Secondary request to send IN

20 DTR CD Data terminal ready IN

21 CG Signal quality detector OUT

22 C E Ring indicator OUT

23 CH/CI Data signal rate selector

(DTE/DCE Source) IN/OUT

24 DA Transmit signal element

timing (DTE source) IN

25 - Unassigned -

TABLE - 7.10 : RS-232C PIN NAMES AND SIGNAL DESCRIPTION

 7. 37

®

®

®2 3

4 6

5

10

9

13

12

8

11

MC1488

RS-232CTTL

TxD

RTS

DTR

330 pF

330 pF

330 pF

Pin 14 = +12-V

Pin 1 = 12-V

Pin 7 = GND

-

®

®

®
1 3

4 6

10

13 11

8

MC1489

RS-232C TTL

To RxD

Pin 14 = +5-V

Pin 7 = GND

®

To CTS

To DSR

To CD

C1+

C1-

+5-V TO +10-V
Voltage Doubler

VCC V+

C2+

C2-

+10-V TO 10-V
Voltage Inverter

-
V-

-

+

-10-V

+10-V
1

6

3

4

5 0.1 Fm

T1

+5-V
400 k

T1IN®
T1OUT

11 14
®

7
®T2

+5-V
400 k

T2IN®
T2OUT

10

12 13
¬ R1

R1OUT R1IN

9
R2

15

¬

¬
R2OUT

5 k

5 k

R2IN ¬
8

GND

0.1 Fm
+

-
16

- +

0.1 Fm
+5-V
Input

2

+

+

I
P
Q

I
P
Q

I

P

Q

I

P

Q

T
T
L
/C
M
O
S

In
p
u
t

T
T
L
/C
M
O
S

O
u
tp
u
t

R
S
-2
3
2

O
u
tp
u
t

R
S
-2
3
2

In
p
u
t

16

15

14

13

12

11

10

9

1

2

3

4

5

6

7

8

M
A
X
2
3
2
A

C1+

V+

C1-

C2+

C2-

V-

T2OUT

R2IN

VCC

GND

T1OUT

R1IN

R1OUT

T1IN

T2IN

R2OUT

Typical circuit connection of MAX 232A

Fig. 7.28 : TTL to RS-232C and RS-232C to TTL signal conversion.

0.1 Fm

0.1 Fm

-

-

Note : 1. For MAX 232 all capacitors should be 1 mF.

2. The voltage rating of all capacitors should be above 10-V.

8086 Microprocessor and Its Appications

7. 38 Chapter 7 Peripheral Devices And Interfacing

The RS-232C signal levels are not compatible with TTL logic levels. Hence for interfacing

TTL devices, level converters or RS-232C line drivers are employed. The popularly used level

converters are :

MC1488 - TTL to RS-232C level converter.

MC1489 - RS-232C to TTL level converter.

MAX 232 - Bidirectional level converter.

(Max 232 is equivalent to a combination of MC1488 and MC1489 in single IC.)

The signal level conversion using the above converters are shown in Fig. 7.28.

7.3.2 USAR T-INTEL 8251A

The 8251A is a programmable serial communication interface chip designed for synchronous

and asynchronous serial data communication. It is packed in a 28-pin DIP. The 8251A is the

enhanced version of its predecessor, 8251 and it is compatible with 8251. The pin description of

8251A is shown in Fig. 7.29.

The functional block diagram of 8251A is shown in Fig. 7.30. The block diagram shows five

sections, they are read/write control logic, transmitter, receiver, data bus buffer and modem control.

28

27

26

25

24

23

22

21

20

19

18

17

1

2

3

4

5

6

7

8

9

10

11

12

®

®

13

14 15

16

®
®

®
®®

®

®®

®®

®

®
®

®
®

®

®
®

®

®®
®

®
®

®®
®

®
®
®

®
®
®
®

®

D2

D3

RxD

GND

D4

D5

D6

D7

TxC

WR

RD

CS

C/D

RxRDY

D1

D0

VCC

RxC

DTR

RTS

DSR

RESET

CLK

TxD

TxEMPTY

CTS

SYNDET/BRKDET

TxRDY

8251A

Fig. 7.29 : Pin description of 8251A.

®

®

®

®

®

®
®

RESET

CLK

C/D TxC

WR

RD

CS

RxRDY

VCC

RxCDTR

RTS

DSR

TxD

TxEMPTY

CTS
SYNDET/
BRKDET

TxRDY

8251A

D - D0 7

®

®

®

®
®

®

®

®

®

®

®

®

®

®

GND

RxD

Pin Description

D
0
-D

7
Parallel data

C/D Control register or

Data buffer select

RD Read control

WR Write control

CS Chip Select

CLK Clock pulse (TTL)

RESET Reset

TxC Transmitter Clock

TxD Transmitter Data

RxC Receiver Clock

RxD Receiver Data

RxRDY Receiver Ready

TxRDY Transmitter Ready

DSR Data Set Ready

DTR Data Terminal Ready

SYNDET/ Synchronous Detect /

BRKDET Break Detect

RTS Request To Send Data

CTS Clear To Send Data

TxEMPTY Transmitter Empty

V
CC

Supply (+5-V)

GND Ground (0-V)

 7. 39

Read/Write Control Logic

The Read/Write control logic interfaces the 8251A with CPU, determines the functions of

the 8251A according to the control word written into its control register and monitors the data

flow. This section has three registers and they are control register, status register and data buffer.

The signals RD, WR,C/D and CS are used for read/write operations with these registers.

When C/D is high, the control register is selected for writing control word or reading status

word. When C/D is low, the data buffer is selected for read/write operation.

A high on the reset input forces 8251A into the idle mode. The clock input is necessary for

8251A for communication with CPU and this clock does not control either the serial transmission

or the reception rate.

Transmitter Section

The transmitter section accepts parallel data from CPU and converts them into serial data.

The transmitter section is double buffered, i.e., it has a buffer register to hold an 8-bit parallel data

and another register called output register to convert the previous data into a stream of serial bits.

The processor loads a data into buffer register. When output register is empty, the data

is transferred from buffer to output register. Now the processor can again load another data

in buffer register. If buffer register is empty, then TxRDY is asserted high and if output

register is empty then TxEMPTY is asserted high. These signals can also be used as interrupt

or status for data transmission.

The clock signal, TxC controls the rate at which the bits are transmitted by the USART.

The clock frequency can be 1,16 or 64 times the baud rate.

Receiver Section

The receiver section accepts serial data and converts them into parallel data. The receiver

section is double buffered, i.e., it has an input register to receive the serial data and convert it to

parallel, and a buffer register to hold the previous converted data.

Normally, RxD line is high, when the RxD line goes low, the control logic assumes it as a

START bit, waits for half a bit time and samples the line again. If the line is still low, then the input

register accepts the following bits, forms a character and loads it into the buffer register. The CPU

reads the parallel data from the buffer register.

When the input register loads a parallel data to the buffer register, the RxRDY line goes

high. This signal can be used as an interrupt or status to indicate the readiness of the receiver

section to CPU. The clock signal RxC controls the rate at which bits are received by the USART.

In the asynchronous mode, the clock frequency can be set to 1,16 or 64 times the baud rate.

During the asynchronous mode, the signal SYNDET/BRKDET will indicate the intentional

break in the data transmission. If the RxD line remains low for more than 2 character times then

this signal is asserted high to indicate the break in the transmission.

During synchronous mode, the signal SYNDET/BRKDET will indicate the reception of the

synchronous character. If the 8251A finds a synchronous character in the incoming string of data

bits then it asserts SYNDET signal as high.

8086 Microprocessor and Its Appications

7. 40 Chapter 7 Peripheral Devices And Interfacing

MODEM Control

The MODEM control unit allows to interface a MODEM to 8251A and to establish data

communication through MODEM over telephone lines. This unit takes care of handshake signals

for MODEM interface.

Programming the 8251A

The 8251A is programmed by sending the mode word and command word. First reset the

8251A and then send a mode word to control register address. Next, the command word is sent to

the same address. The CPU can check the readiness of the 8251A for data transfer by reading the

status register. The format of control and status words are shown in Fig. 7.31.

The mode word informs 8251 about the baud rate, character length, parity and stop bits.

The command word can be sent to enable the data transmission and/or reception. The information

regarding the readiness of transmitter/receiver and the transmission errors can be obtained from

the status word.

If 8251A is programmed for a baud rate factor of 64x through mode, word then the baud

rate is clock frequency divided by 64. If the baud rate factor is 16x, then the baud rate is clock

frequency divided by 16. If the baud rate factor is 1x, then the baud rate is given by clock

frequency.

Transmit
Buffer

(P)® S

Transmit
Control

Receive
Control

¯

¯

®

®
®

®

Data
Bus

Buffer

Modem
Control

Receive
Buffer

(P)¬ S

Read/
Write
Control
Logic

®
®
®

®

®

®
®

®

®

RESET

CLK

RD

CS

DTR

RTS

DSR

CTS

C/D
TxC

RxRDY

RxC

TxD

TxEMPTY

SYNDET/
BRKDET

TxRDY

RxD

D - D7 0

WR

Fig. 7.30 : The functional block diagram of 8251A - USART.

¬

¬

¬

¬®

¬¬

¬
In
te
rn
al
D
at
a
B
u
s

 7. 41

B7 B6 B5 B4 B3 B2 B1 B0

SYNDETSYNDETDSR FE OE PE TxE RxRDY TxRDY

TRANSMITTERREADY
IndicatesUSARTis ready to accept
a data character or command

RECEIVERREADY
Indicates USART has received a
character on its serial input and is
ready

TRANSMITTEREMPTY
Indicates that parallel to serial
converter in transmitter is empty.

PARITYERROR
PE flag is set when a parity error is
detected. It is reset by ER bit of
Command instruction. PE does not
inhibit operation of 8251.

OVERRUNERROR
The OE flag is set when the CPU does not
read a character before the next one
becomes available. It is reset by the ER bit
of the command instruction. OE does not
inhibit operation of the 8251; however,
the previously overrun character is lost.

DATASETREADY
DSR is general purpose. Normally
used to test modem conditions such
asData setReady

SYNCDETECT
When set for internal sync detect
indicates that character sync has been
achieved and 8251 is ready for data.

FRAMINGERROR(ASYNCONLY)
FE flag is set when a valid stop bit is not
detected at end of every character. It is
reset byERbit of command instruction.
FEdoes not inhibit operation of 8251.

¬

¯̄

¬

¬

Fig. c : Status word.

Fig. 7.31 : Format of 8251A mode, command and status words.

®

®

®

S2

B7 B6 B5
B4 B3 B2 B1 B0

S1 EP PEN L2 L1 B2 B1

0 1 0 1

0 0 1 1

Sync (1x) (16x) (64x)

Mode

®
®

Baud Rate Factor

0 1 0 1

0 0 1 1

5 6 7 8

Bits Bits Bits Bits

Character Length

Parity Enable
1 = Enable ; 0 = Disable®
Even Parity
Generation/Check
1 = Even ; 0 = Odd

®

® 0 1 0 1

0 0 1 1

Invalid 1 1 2

Bit Bits Bits

½

Number of Stop Bits

(Only Effects Tx ; Rx Never Requires
More than One Stop Bit)

Fig. a : Mode word.

EH

B7 B6 B5
B4 B3 B2 B1 B0

IR RTS ER SBRK RxE DTR TxEN

®

®

Transmit Enable
1 = Enable
0 = Disable

¯

Data Terminal Ready
High will Force DTR
Output to Zero

Receiver Enable
1 = Enable RxRDY
0 = Disable RxRDY

Send Break Character
1 = Forces TxD Low
0 = Normal Operation

Error Reset
1 = Reset All Error
Flags (PE, OE, FE)

Request to Send
High will Force rts
Output to Zero

Internal Reset
High Returns 8251
to Mode Instruction
Format

Enter Hunt Mode
1 = Enable Search for
Syn Characters

®

®

®

®

®

Fig. b : Command word.

8086 Microprocessor and Its Appications

7. 42 Chapter 7 Peripheral Devices And Interfacing

Interfacing 8251A to 8086

A simple schematic for interfacing the 8251A with 8086 processor is shown in Fig. 7.32. The

8251A can be either memory-mapped or IO-mapped in the system. In the schematic shown in

Fig. 7.32, the 8251A is IO-mapped in the system, with even addresses. The chip select signals for

IO-mapped devices are generated by using a 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are decoded

to generate eight chip select signals (IOCS-0 to IOCS-7) and in this, the chip select signal IOCS-2 is

used to select 8251A. The address line A
0
 and the control signal M/IO are used as enable for the decoder.

The address line A
1
 of 8086 is connected to C/D of 8251A to provide the internal addresses.

The IO addresses allotted to the internal devices of 8251A are listed in Table-7.11. The data lines

D
0
-D

7
 are connected to D

0
-D

7
 of the processor to achieve parallel data transfer. The RESET and

clock signals are supplied by 8284 clock generator. Here the processor clock is directly connected

to 8251A. This clock controls the parallel data transfer between the processor and 8251A.

TABLE - 7.11 : IO ADDRESSES OF 8251A

 Internal device

of 8251A

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Data buffer 0 1 0 x x x 0 0 40

Control register 0 1 0 x x x 1 0 42

Note : The don't care "x" is considered as zero.

Decoder input
Input to address pin

of 8251

Binary address

Decoder

 enable

 Hexa

address

8086

Latches
and

Buffers

8251A

M/IO

CPU
Bus

C
L
K

R
E
S
E
T

R
E
A
D
Y

8284
Clock

Generator

WR RD

®® ®

Clock Divider

Clock Divider

®

®

®
®
®

®
®

®
®

® ®

D - D0 15

A - A0 19

IOCS - 1

IOCS - 2

IOCS - 3

IOCS - 4

IOCS - 5

IOCS - 6

IOCS - 7

IOCS - 0
A

B

G2A

C

G2B

G1

3
-t
o
-8

D
ec
o
d
er

® ® ® ®

R
E
S
E
T

C
L
K

T
x
C

R
x
C

RD

WR

RD

WR
®

®
¬

¬

1 2 3 4 5

6 7 8 9

DSR

TxD

RxD

RTS

CTS

¬

DTR

RxRDY

TxRDY

TxEMPTY

SYNDET/
BRKDET

MAX232A

®

TTL
Serial Bus

R
2
O
U
T

T
2
IN

T
1
IN

R
1
O
U
T

T
1
O
U
T

R
1
IN

R
2
IN

T
2
O
U
T

®

®

®

T
x
D

R
x
D

R
T
S

C
T
S

RS-232
Serial Bus

9-pin D-type
Connector

®

M/IO

A5

A6

A7

A0

+5-V

¬ ®

PCLK

CS

®

®

8A1

D - D0 7

C/D

D
-
D

0
7

Fig. 7.32 : Interfacing of 8251A to 8086 microprocessor.

¬

¬

7. 43

The Peripheral Clock (PCLK) supplied by 8284, is divided by suitable clock dividers and then

used as clock for serial transmission and reception (TxC and RxC). In 8251A, the transmission and

reception baud rates can be different or same. Usually a programmable timer, 8254 (which is discussed

in Section 7.5) is used to divide the PCLK, and supply to TxC and RxC at the required rate.

The TTL logic levels of the serial data lines (RxD and TxD) and the control signals necessary

for serial transmission and reception are converted to RS232 logic levels using MAX232 and then

terminated on a standard 9-pin D-type connector. The device which requires serial communication

with processor can be connected to this 9-pin D-type connector using a 9-core cable.

The signals TxEMPTY, TxRDY and RxRDY can be used as interrupt signals to initiate the

interrupt driven data transfer scheme between the processor and 8251A.

7.4 KEYBOARD AND DISPLAY INTERFACE

7.4.1 Keyboard Inter face using Ports

A common method of entering programs into a microcomputer is through a keyboard

which consists of a set of switches. Basically each switch will have two normally open metal

contacts. These two contacts can be shorted by a metal plate supported by a spring as shown in

Fig. 7.33. On pressing the key, the metal plate will short the

contacts and on releasing the key, again the contacts will be

open. The processor has to perform the following three major

task to get a meaningful data from a keyboard.

1. Sense a key actuation.

2. Debounce the key.

3. Decode the key.

The three major tasks mentioned above can be performed

by the software, when a keyboard is connected through ports to 8086 processor. Consider a

simple keyboard in which the keys are arranged in rows and columns as shown in Fig. 7.34. The

rows are connected to port-A lines of 8255. The columns are connected to port-B lines, of the

same chip. The rows and columns are normally tied high. At the intersection of a row and column

a key is placed such that pressing a key will short the row and the column.

A key actuation is sensed by sending a low to all the rows through port-A. Pressing a key

will short the row and column to which it is connected, and so the column to which the key is

connected will be pulled low. Therefore, the columns are read through port-B to see whether any

of the normally high columns are pulled low by a key actuation. If they are, then rows can be

checked individually to determine the row in which the key is down. For checking each row, the

scan code of the type shown in Table -7.12 are output to port-A one by one. This process of

sensing a key actuation is called keyboard scanning.

A key press has to be accepted only after debouncing. Normally, the key bounces for 10 to

20 milliseconds when it is pressed and released. The bouncing time depends on the type of key.

When this bounce occurs, it may appear to the microcomputer that the same key has been actuated

Connecting

Leads

Metal
Plate

Metal
Contact

Metal
Contact

Press

Fig. 7.33 : A representation of
keyboard switch.

8086 Microprocessor and Its Appications

7. 44 Chapter 7 Peripheral Devices And Interfacing

several times instead of just once. This problem can be eliminated by scanning the row in which

the key press is deducted after 10 to 20 milliseconds and then verifying to see if the same key is

still down. If it is, then the key actuation is valid. This process is called key debouncing.

After debouncing, the code for the key has to be generated. Each key can be individually

identified by the port-A output value (row code) and port-B input value (column code). The next

step is to translate the row and column code into a more popular code such as a hexadecimal or an

ASCII. This can easily be accomplished by a program. The flowchart for the keyboard scanning

when the keyboard is interfaced using ports is shown in Fig. 7.35.

In keyboard interfacing there are two methods of handling multiple key presses and they

are two-key lockout and N-key rollover. The two-key lockout takes into account only one key

pressed. An additional key pressed and released does not generate any codes. The system is simple

to implement and more often used. However, it might slow down the typing since each key must

be fully released before the next one is pressed down. On the other hand, the N-key rollover will

detect all the keys pressed in the order of entry and generate a corresponding keycode.

The disadvantage in keyboard interfacing using ports is that most of the processor time is

utilized (or wasted) in keyboard scanning and debouncing.

8086
System

8255

PA0

PA1

PA2

PA3

PB0

PB1

PB2

PB3

1kW

+5-V

+5-V

1kW

C
o
lu
m
n
0

C
o
lu
m
n
1

0 1 2 3

4 5 6 7

8 9 A B

C D E F

C
o
lu
m
n
2

C
o
lu
m
n
3

Row 0

Row 1

Row 2

Row 3

Port-A is Initialized as Output Port
Port-B is Initialized as Input Port

Fig. 7.34 : Keyboard interfacing using ports.

PA
3

PA
2

PA
1

PA
0

1 1 1 0

1 1 0 1

1 0 1 1

0 1 1 1

TABLE - 7.12 : SCAN CODE FOR

KEYBOARD SCANNING

 7. 45

Start

Send Zero to All Rows

Read Columns

Set Count for Rows.
Initialize Row
Count as Zero

Determine the
Key Code

↓

Yes

No

All
Keys

Open?

↓

Wait 20 ms

↓

Return

↓

Output Low to the
Row Specified
by Row Count

↓

Read Columns

All
Rows

Scanned
→←

Return

↓

NoYes

Key
Pressed?

↓

Output Zero to Same Row

↓
Read Columns

Key
Found?

↓

Increment
Row Count

←

↑

↑

←

No

No

Convert to HEX

Return

↓

Yes

Yes

Fig. 7.35 : Flowchart for keyboard scanning subroutine.

→

←

8086 Microprocessor and Its Appications

7. 46 Chapter 7 Peripheral Devices And Interfacing

7.4.2 Display Interface using Ports

The 7-segment LEDs are the most popular display devices used for single board

microcomputers (microprocessor trainer kits). The 7-segment LEDs can be either common anode

type or common cathode type.

Each 7-segment LED will have seven Light Emitting Diodes (LEDs) arranged in the form

of small rectangular segments and another LED as a dot point in a single package. In common

cathode type, all the cathode terminals of LEDs are internally shorted and one/two pins are provided

for external connection. The anode of the LEDs are terminated on separate pins for external

connection. The pin configuration and the internal connection of a common cathode 7-segment

LED are shown in Fig. 7.36.

In common anode type, all the anode terminals of LEDs are internally shorted and one /two

pins are provided for external connection. The cathode of LEDs are terminated on separate

pins for external connection. The pin configuration and the internal connection of the common

anode 7-segment LED are shown in Fig. 7.37.

In a 7-segment LED, a segment will glow or emit light when it is forward biased. Therefore, a

segment can be made to glow by applying a high (logic-1/+5-V) to the anode and a low(logic-0/0-V) to

cathode. The alphabetic/numeric characters can be displayed on the 7-segment LED by forward biasing

the appropriate segments.

In a common cathode 7-segment LED, the common point is tied to logic-0. To display a

character, logic-1 is applied to the anode of segments which has to emit light and logic-0 is applied

to anode of segments which should not emit light. The binary and hex codes for displaying the

decimal digits 0 to 9 in the common cathode 7-segment LED are listed in Table-7.13.

In a common anode 7-segment LED, the common point is tied to logic-1. To display a

character, logic-0 is applied to the cathode of segments which has to emit light and logic-1 is

applied to the cathode of segments which should not emit light. The binary and hex codes for

displaying the decimal digits 0 to 9 in the common anode 7-segment LED are listed in Table-7.14.

The display codes for LEDs can be generated by using the BCD to 7-segment decoder, IC

7447. When a BCD code is sent to the input of the 7447, it outputs low on the segments required

to display the number represented by the BCD code. A simple schematic is shown in Fig. 7.38, to

interface a common anode 7-segment LED to 8086 system using a port device. This circuit

connection is referred to as static display because current is being passed through the display at all

times.

 7. 47

BCD digit

Binary code
Hexa code

dp g f e d c b a

0 0 1 1 1 1 1 1 3F

0 0 0 0 0 1 1 0 06

0 1 0 1 1 0 1 1 5B

0 1 0 0 1 1 1 1 4F

0 1 1 0 0 1 1 0 66

0 1 1 0 1 1 0 1 6D

0 1 1 1 1 1 0 1 7D

0 0 0 0 0 1 1 1 07

0 1 1 1 1 1 1 1 7F

0 1 1 0 1 1 1 1 6F

TABLE - 7.13 : 7-SEGMENT DISPLAY CODE FOR COMMON CATHODE LED

e d co c dp

10 9 8 7 6

1 2 3 4 5

g f co a b

a

d

f b

e c

g

dp

Fig. a : Pin configuration.

gf

co

a b edc dp

Fig. b : Internal connection.

co - common cathode

dp - anode of dot point

a, b, c, d, e, f, g - anodes of segments

Fig. 7.36 : Common cathode 7-segment LED.

8086 Microprocessor and Its Appications

7. 48 Chapter 7 Peripheral Devices And Interfacing

BCD digit

Binary code
Hexa code

dp g f e d c b a

1 1 0 0 0 0 0 0 C0

1 1 1 1 1 0 0 1 F9

1 0 1 0 0 1 0 0 A4

1 0 1 1 0 0 0 0 B0

1 0 0 1 1 0 0 1 99

1 0 0 1 0 0 1 0 92

1 0 0 0 0 0 1 0 82

1 1 1 1 1 0 0 0 F8

1 0 0 0 0 0 0 0 80

1 0 0 1 0 0 0 0 90

TABLE - 7.14 : 7-SEGMENT DISPLAY CODE FOR COMMON ANODE LED

e d co c dp

10 9 8 7 6

1 2 3 4 5

g f co a b

a

d

f b

e c

g

dp

Fig. a : Pin configuration.

gf

co

a b edc dp

Fig. b : Internal connection.

co - common anode

dp - cathode of dot point

a, b, c, d, e, f, g - cathodes of segments

Fig. 7.37 : Common anode 7-segment LED.

 7. 49

A typical microprocessor system normally requires 6 to 8 numbers of 7-segment LEDs.

The current requirement of each 7-segment LED is 140 mA to 200 mA. Hence the total current

requirement for 6 numbers of 7-segment LEDs will be 1200 mA. Also each 7-segment LED

requires a 7447 decoder and 4 lines of a port. The current required by the decoder and the LED

displays might be several times the current required by the rest of the circuit in the microprocessor

system.

The heavy current requirement in the static display can be reduced drastically by using

multiplexed display scheme. In multiplexed display only one 7-segment display is made to glow at

a time. Each 7-segment LED is turned ON at definite intervals. Due to persistence of vision the

display appears to be continuous to a human eye. (Actually LEDs are turned ON and OFF.)

Note : A human eye can retain an image for 125 milliseconds.

The advantages of a multiplexed display are the following :

1. Only one 7447 is needed for all the 7-segment LEDs.

2. In a current requirement of one-7-segment LED, 6 to 8 LEDs can be interfaced.

Figure 7.39 shows a multiplexed display of 6 numbers of 7-segment common anode LEDs.

The segment pins (cathodes) of 7-segment LEDs are connected to a common bus. The output

of the decoder (7447) is connected to this common bus. The BCD code for the character to be

displayed is sent to 7447 through port-A lines. The common anode of each 7-segment LED has

a driver transistor (PNP type). A driver transistor can be turned ON by sending low to the base

of the transistor through port-B lines.

The trick of multiplexed display is that the segment information is sent out to all of the

digits on the common bus, but only one display digit is turned on at a time. The PNP transistors

in series with the common-anode of each digit acts as an ON and OFF switch for that digit.

The BCD code for digit-1 is the first output from port-A to the 7447. The 7447 outputs

the corresponding 7-segment code on the segment bus lines. The transistor connected to

digit-1 is then turned ON by outputting a low on the corresponding bit of port-B (Remember, a

low turns ON a PNP transistor). All of the rest of the bits of port-B should be high to make sure

no other digits are turned ON. After a few milliseconds, digit-1 is turned OFF by outputting all

high to port-B.

8086-Based
System

Fig. 7.38 : 7-Segment LED display using port.

8255

PA0

PA1

PA2

PA3

7447

BCD to

7-segment

Decoder

+5-V

Common Anode

®

®

®

®

8086 Microprocessor and Its Appications

7. 50 Chapter 7 Peripheral Devices And Interfacing

Next the BCD code for digit-2 is output to the 7447

on port-A and a data to turn ON the driver transistor of

digit-2 is output on port-B. After a few millisecond, digit-

2 is turned OFF and the process is repeated for digit-3.

This process is continued until all of the digits have had a

turn. Then digit-1 and the following digits are turned ON

again in turn. This process is also called display refreshing.

With 6 digits and 5 ms per digit, we can get back to

digit-1 every 25 ms or about 40 times a second. This

refresh rate is fast enough so that, all the digits appear to

be turned ON all the time. Refresh rates of 40 to 200 times

a second are acceptable. A flowchart for the operational

flow in a multiplexed display is shown in Fig. 7.40.

The greatest advantages of multiplexing the displays

are that only one 7447 is required and only one digit is ON at

a time. Hence, it results in large saving of power and parts.

Start

Initialize a Counter for
Number of Digits

Send BCD Code of a Digit to Decoder

Is
Count Zero?

→

NoYes

Turn ON Corresponding Digit Driver

↓
Wait for 5 Millisecond

Decrement the Count

→←

Fig. 7.40 : Flowchart for a multiplexed
display.

←

7447
BCD to 7-segment Decoder

← ← ← ← ← ←

Common Anode
7-segment LEDs

Anode
Driver

Transistor

Q6 Q5 Q4 Q3 Q2 Q1

1
k
Ω

1
k
Ω

1
k
Ω

1
k
Ω

1
k
Ω

1
k
Ω

+5-V

Q to Q = 2N39061 6

Port-B

Port-A

8255

Fig. 7.39 : A schematic diagram of a multiplexed display using ports.

1
5

0
Ω

↓ ↓ ↓ ↓

7. 51

7.4.3 Keyboard /Display Controller - INTEL 8279

The INTEL 8279 is a dedicated controller specially developed for interfacing keyboard and

display devices to 8085/8086/8088 microprocessor-based system. It relieves the processor from

the time consuming task like keyboard scanning and display refreshing.

The important features of 8279 are :

� Simultaneous keyboard and display operations.

� 2-key lockout or N-key rollover with contact debounce.

� Scanned keyboard mode.

� Scanned sensor mode.

� Strobed input entry mode.

� 8-character keyboard FIFO.

� 16-character display.

� Right or left entry 16-byte display RAM.

� Mode programmable from CPU.

� Programmable scan timing.

� Interrupt output on key entry.

The 8279 provides an interface for a maximum of 64-contact key matrix (arranged as 8 × 8

matrix array of key switches). The keyboard entries are debounced and stored in the internal FIFO

RAM. It generates an interrupt signal for each key entry, to inform the processor to read the

keycode from FIFO.

The 8279 provides a multiplexed interface for 7-segment LEDs and other popular display

devices. It consist of 16 × 8 display RAM which can also be organized into dual 16 × 4 RAM. The

CPU have to load the display codes in this RAM. Once the data is loaded, the 8279 takes care of

display and refreshing. A maximum of 16 numbers of 7-segment LEDs can be interfaced using 8279.

Pin Description

DB
0 - 7

Data Bus

(Bidirectional)

CLK Clock Input

RESET Reset Input

CS Chip Select

RD Read Control

WR Write Control

 A
0

Internal Address

IRQ Interrupt Request

Output

SL
0-3

Scan Lines

RL
0-7

Return Lines

SHIFT Shift Input

CNTL/STB Control /Strobe Input

OUT A
0-3

Display (A) Output

OUT B
0-3

Display (B) Output

BD Blank Display Output

Fig. 7.41 : Pin description of 8279.

40

39

38

37

36

35

34

33

32

31

30

29

VCC1

2

3

4

5

6

7

8

9

10

11

12

→

→

13

14

15

16

17

18

19

20 21

22

23

24

25

26

27

28

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

→

RL2

RL3

CLK

IRQ

RL4

RL5

RL6

RL7

RESET

RD

DB0

WR

CS

DB1

DB2

DB3

DB4

DB5

DB6

DB7

VSS

8279

RL1

RL0

CNTL/STB

SHIFT

SL3

SL2

SL1

SL0

OUT B0

OUT B1

OUT B2

OUT B3

OUT A0

OUT A1

OUT A2

OUT A3

BD

A0

→

→

→

→

→

IRQ
RL0 - 7

RD

WR

CS

A0

RESET

CLK

VCC

VSS

8279

SHIFT

CNTL/STB

SL0 - 3

OUT A0 - 3

OUT B0 - 3

BD

8

8

4

4

4

DB0 - 7

→

→

→

→

→

→

→

8086 Microprocessor and Its Appications

7. 52 Chapter 7 Peripheral Devices And Interfacing

The 8279 is a 40-pin IC available in DIP (Dual In-line Package). The pin configuration of

8279 is shown in Fig. 7.41. The 8279 has two internal addresses decided by the logic level of A
0
.

If A
0
 is low then the processor can read or write to the data register of 8279. If A

0
 is high then the

processor can write to control register or read status register. The 8279 can be either IO-mapped

or memory-mapped in the system.

Block Diagram of 8279

The functional block diagram of 8279 is shown in Fig. 7.42. The four major sections of

8279 are keyboard, scan, display and CPU interface.

Data

Buffers
IO Control

RD WR CS A
0

8×8

FIFO/Sensor

RAM

Control and

Timing

Registers

16×8

Display

RAM

Display

Address

Registers

CLK
RESET DB

0
- DB

7

Internal Data Bus (8)

Timing

and

ControlDisplay

Registers

8

OUT A
0
- A

3
, OUT B

0
-B

3

BD

Scan

Counter

SL
0
- SL

3

Return

RL
0
- RL

7

← ←

←
←

←

←

←

←

←

←

←

FIFO/Sensor

RAM Status

IRQ

Keyboard

Debounce

and Control

CNTL/STB

SHIFT

←

←

←

←

← ←

Fig. 7.42 : Block diagram of 8279.

 7. 53

Keyboard section

The keyboard section consists of eight return lines RL
0
 - RL

7
 that can be used to form the

columns of a keyboard matrix. It has two additional inputs : shift and control/strobe. The keys are

automatically debounced. The two operating modes of keyboard section are 2-key lockout and N-key

rollover. In the 2-key lockout mode, if two keys are pressed simultaneously, only the first key is recognized.

In the N-key rollover mode simultaneous keys are recognized and their codes are stored in the FIFO.

The keyboard section also has an 8×8 FIFO (First-In-First-Out) RAM. The FIFO can

store eight keycodes in the scan keyboard mode. The status of the shift key and control key are

also stored along with keycode. The 8279 generates an interrupt signal when there is an entry in the

FIFO. The format of the keycode entry in FIFO for the scan keyboard mode is shown in Fig. 7.43.

In a sensor matrix mode, the condition (i.e., open/close status) of 64 switches is stored in

FIFO RAM. If the condition of any of the switches change then the 8279 asserts IRQ as high to

interrupt the processor.

Display section

The display section has eight output lines divided into two groups A
0
-A

3
 and B

0
-B

3
. The

output lines can be used either as a single group of eight lines or as two groups of four lines, in

conjunction with the scan lines for a multiplexed display. The output lines are connected to the

anodes through a driver transistor in case of common cathode 7-segment LEDs. The cathodes are

connected to scan lines through driver transistors. The display can be blanked by BD line. The

display section consists of 16×8 display RAM. The CPU can read from or write into any location

of the display RAM.

Scan section

The scan section has a scan counter and four scan lines, SL
0
 to SL

3
. In a decoded scan

mode, the output of the scan lines will be similar to a 2-to-4 decoder. In encoded scan mode, the

output of the scan lines will be binary count, and so an external decoder should be used to convert

the binary count to the decoded output. The scan lines are common for keyboard and display. The

scan lines are used to form the rows of a matrix keyboard and are also connected to the digit

drivers of a multiplexed display to turn ON/OFF.

Fig. 7.43 : Keycode entry in FIFO for scan keyboard mode.

Status of

Control Key

Status of

Shift Key

Binary Value of

the Row in which

Key Closure is

Detected

Binary Value of

the Column in

which Key Closure

is Detected

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

→

→

8086 Microprocessor and Its Appications

7. 54 Chapter 7 Peripheral Devices And Interfacing

Write Display RAM

Code :

The CPU sets up the 8279 for a write to the
Display RAM by first writing this command. After

writing the command with A
0
=1, all subsequent

writes with A
0
 = 0 will be to the Display RAM. The

addressing and Auto increment functions are
identical to those for the Read Display RAM.

1 0 0 AI A A A A

Display Write Inhibit/Blanking

Code :

The IW Bits can be used to mask nibble A and
nibble B in application requiring separate 4-bit
display ports. By setting the IW flag (IW=1) for one
of the ports, the port becomes masked.

The BL flags are available for each nibble. The
last Clear command issued determined the code
to be used as a blank.

1 0 1 X IW IW BL BL

A B A B

Clear

Code :

The CD bits are available in this command to
clear all rows of the Display RAM to a selectable
blanking code as follows.

CD CD CD

0 X All Zeros (X = Don't Care)
1 0 AB = Hex 20 (0010 0000)
1 1 All Ones

Enable clear display if this bit is 1

If the C
F
 bit is asserted (C

F
 = 1), the FIFO status

is cleared and the interrupt output line is reset.

C
A
, the clear all bit, has the combined effect of

C
D
 and C

F
; it uses the C

D
clearing code on the Display

RAM and also clears FIFO status. Furthermore, it
resynchronizes the internal timing chain.

1 1 0 C
D

C
D

C
D

C
F

C
A

End Interrupt/Error Mode Set

Code :

For the sensor matrix modes this command
lowers the IRQ line and enables further writing
into RAM. For the N-Key rollover mode , if the E
bit is programmed to 1 the chip will operate in
the special Error mode.

1 1 1 E X X X X

X = Don't care

Keyboard/Display Mode Set

 Code :

D D

0 0 Eight No.of 8-bit character display -Left entry
0 1 Sixteen No.of 8-bit character display -Left entry
1 0 Eight No.of 8-bit character display -Right entry
1 1 Sixteen No.of 8-bit character display -Right entry

K K K

0 0 0 Encoded Scan Keyboard - 2-Key Lockout
0 0 1 Decoded Scan Keyboard- 2-Key Lockout
0 1 0 Encoded Scan Keyboard - N-Key Rollover
0 1 1 Decoded Scan Keyboard - N-Key Rollover
1 0 0 Encoded Scan Sensor Matrix
1 0 1 Decoded Scan Sensor Matrix
1 1 0 Strobed Input, Encoded Display Scan
1 1 1 Strobed Input, Decoded Display Scan.

0 0 0 D D K K K

Program Clock

Code :

All timing and multiplexing signals for the
8279 are generated by an internal prescaler. This
prescaler divides the external clock (pin 3) by a
programmable integer. Bits PPPPP determine the
value of this integer which ranges from 2 to 31.
Choosing a divisor that yields 100 kHz will give
the specified scan and debounce times.

0 0 1 P P P P P

Read Display RAM

 Code :

The CPU sets up the 8279 for a read of the
Display RAM by first writing this command. The
address bits AAAA select one of the 16 rows of
the Display RAM. If the AI flag is set (AI=1), this
row address will be incremented after each read
or write to the Display RAM.

0 1 1 AI A A A A

Fig. 7.44 : 8279 Command word formats.

Read FIFO/Sensor RAM

Code :

The CPU sets up the 8279 for a read of the
FIFO/Sensor RAM by first writing this command. In
the Scan keyboard Mode, the Auto-Increment flag
(AI) and the Ram address bits (AAA) are irrelevant.

In the Sensor Matrix Mode, the RAM address bits
AAA select one of the 8 rows of the Sensor RAM. If the
AI flag is set (AI = 1), each successive read will be
from the subsequent row of the sensor RAM.

0 1 0 AI X A A A

X = Don't care

 7. 55

CPU interface section

The CPU interface section takes care of the data transfer between 8279 and the processor.

This section has eight bidirectional data lines DB
0
-DB

7
 for data transfer between 8279 and CPU.

It requires two internal address A
0
 = 0 or 1, for selecting either data buffer or control register of

8279. The control signals WR, RD, CS and A
0
 are used for read/write to 8279. It has an interrupt

request line IRQ for interrupt driven data transfer with the processor.

The 8279 requires an internal clock frequency of 100 kHz. This can be obtained by dividing

the input clock by an internal prescaler. The prescaler can take a value from 2 to 31, which is

programmable. The RESET signal sets the 8279 in 16-character display with two-key lockout keyboard

mode. Also the reset will set the clock prescaler to 31.

Programming the 8279

The 8279 can be programmed to perform various functions through eight command words.

The formats of the command words and a brief explanation are presented in Fig. 7.44.

7.4.4 Keyboard and Display Inter face using 8279

In a microprocessor-based system, when keyboard and 7-segment LED displays are

interfaced using ports or latches then the processor has to carry the following task :

� Keyboard scanning

� Key debouncing

� Keycode generation

� Sending display code to LED

� Display refreshing

The above functions have to be performed continuously in specified time intervals. Hence,

most of the processor time will be utilized for the above task. To overcome this problem, the

dedicated keyboard/display controller such as INTEL 8279 can be employed in the system. The

8279 provides a hardware solution for keyboard and display interfacing in microprocessor-based

system.

When 8279 is employed, the processors task is to program the 8279 by sending the control

words and load the display code in the display RAM of 8279. Once 8279 is programmed, it takes

care of keyboard scanning, debouncing, keycode generation and display refreshing. Whenever

8279 detects a key press, it informs the processor through the interrupt so that the processor can

read the keycode from the FIFO of 8279.

A typical hexa keyboard and 7-segment LED display interfacing circuit using 8279 is shown

in Fig. 7.45. The circuit can be used in 8086 microprocessor system and consists of 16 numbers

of hexa-keys and 8 numbers of 7-segment LEDs. The 7-segment LEDs can be used to display

eight digit alphanumeric character.

The 8279 can be either memory-mapped or IO-mapped in the system. In the circuit shown

in Fig. 7.45, the 8279 is IO-mapped. The address line A
1
 of the system is used as A

0
 of 8279. The

clock signal for 8279 is obtained by dividing the PCLK (Peripheral clock) of 8284 by a clock

divider circuit.

8086 Microprocessor and Its Appications

7. 56 Chapter 7 Peripheral Devices And Interfacing

F
ig

.
7

.4
5

 :
 K

e
y
b

o
a

rd
 a

n
d

 d
is

p
la

y
 i
n

te
rf

a
c
e

 u
s
in

g
 8

2
7

9
.

R
E

S
E

T

C
L

K
8

2
7

9

O
U

T
 B

2

O
U

T
 B

3

A
n

o
d

e
 D

ri
v

e
rs

 (
B

C
1

5
8

)
S

H
IF

T

C
N

T
L

C
o

m
m

o
n

 C
a
th

o
d

e
 L

E
D

s
(L

T
5

4
3

)

S
5

S
4

S
3

S
2

S
1

S
0

A

 B

 C

7
4

L
S

1
3

8
3

-t
o

-8
 D

e
c
o

d
e
r

S
c
a

n
 L

in
e
 D

e
c
o

d
e
r

H
e
x

a
 K

e
y

b
o

a
rd

 M
a
tr

ix

3
3

0
Ω

SL0

SL1

SL2

C
a
th

o
d

e
 D

ri
v

e
rs

 (
B

C
1

5
8

)

8
0

8
6

L
a

tc
h

e
s

 a

n
d

B
u

ff
e

r
s

→

N
M

I
IR

Q

C
P

U

 B
u

s

CLK

READY

RESET

C
lo

c
k

G
e

n
e

r
a

to
r

8
2

8
4

P

C
L

K

 C

lo
c

k

D

iv
id

e
r

CS

W
R

R
D

W
R

R
D

M
/I

O

→ → → →

→

→ →

 3-to-8 Decoder

→

IO
C

S
-0

→ → → →

D
0
-
D

7

8

A
1

IO
C

S
-2

IO
C

S
-3

IO
C

S
-1

IO
C

S
-4

IO
C

S
-6

IO
C

S
-7

IO
C

S
-5

A C G
1

B

+
5

-V

→

G
2

A

G
2

B

A
6

A
5

A
7

A
0IO

 A
d

d
re

ss
 D

e
c
o

d
e
r

→

IR
Q

IR
Q

R
L

0
-
R

L
7

D
0
-
D

1
5

A
0
-
A

1
9

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

R
L

0
R

L
3

R
L

2
R

L
1

R
L

4
R

L
7

R
L

6
R

L
5

↓

S
7

S
6

D
B

0
-D

B
7

A
0

O
U

T
 A

0
2

2
k
Ω

O
U

T
 A

1

O
U

T
 A

2

O
U

T
 A

3

O
U

T
 B

0

O
U

T
 B

1

+
5

-V

a

b

c

d

e

g

f

d
p

SL3

Y
7

Y
6

Y
5

Y
4

Y
3

Y
2

Y
1

Y
0

→

M
/I

O

7. 57

The chip select signal CS, is obtained from the IO address decoder of the 8086 system.

The chip select signals for IO-mapped devices are generated by using a 3-to-8 decoder. The

address lines A
5
, A

6
 and A

7
 are used as input to the decoder. The address line A

0
 and the control

signal M/IO are used as enable for the decoder. The chip select signal IOCS-3 is used to select

8279. The IO address of the internal devices of 8279 are shown in Table -7.15.

The circuit has 8 numbers of 7-segment LEDs and so the 8279 has to be programmed in

encoded scan. (Because in decoded scan, only 4 numbers of 7-segment LEDs can be interfaced.)

In encoded scan the output of the scan lines will be binary count. Therefore an external, 3-to-8

decoder is used to decode the scan lines SL
0
, SL

1
 and SL

2
 of 8279 to produce eight scan lines S

0

to S
7
. The decoded scan lines S

0
 and S

1
 are common for keyboard and display. The decoded scan

lines S
2
 to S

7
 are used only for display.

The common cathode LEDs, LT543 are used in the circuit shown in Fig. 7.45. The

corresponding segments of the anodes are connected to a common line to form a bus and this bus

can be called a segment bus (i.e., segment "a" of all 7-segment LEDs are connected to a common

line, similiarly segment "b" and so on).

Anode and cathode drivers are provided to take care of the current requirement of the

LEDs. The pnp transistors, BC158, are used as driver transistors. The anode drivers are called

segment drivers and the cathode drivers are called digit drivers.

The 8279 outputs the display code for one digit through its output lines (OUT A
0
 to OUT A

3

and OUT B
0
 to OUT B

3
) and sends a scan code through SL

0
-SL

3
. The display code is inverted by

the segment drivers and sent to the segment bus. The scan code is decoded by the decoder and

turns ON the corresponding digit driver. Now one digit of the display character is displayed. After

a small interval (10 milliseconds, typical), the display is turned OFF (i.e., display is blanked) and the

above the process is repeated for the next digit. Thus multiplexed display is performed by 8279.

Note : Since the anode drivers inverts the display code, the complement of the data required

to turn ON a common cathode LED should be loaded in the display RAM of 8279.

The keyboard matrix is formed using the return lines RL
0
 to RL

7
 of 8279 as columns and

decoded scan lines S
0
 and S

1
 as rows. A hexa key is placed at the crossing point of each row and

column. A key press will short the row and column. Normally, the column and row line will be

high (i.e., the 8279 will tie the return line as high and decoder will tie the scan line as high).

During scanning the 8279 will output the binary count on SL
0
 to SL

3
, which is decoded by the

decoder to make a row as zero. When a row is zero the 8279 reads the columns. If there is a key

press then the corresponding column will be zero.

 Internal

 Binary address

Hexa
device

address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Data register 0 1 1 x x x 0 0 60

Control register 0 1 1 x x x 1 0 62

TABLE - 7.15 : IO ADDRESSES OF 8279

Note : Don't care "x" is considered as zero.

Decoder input
Input to address

pin of 8279
Decoder

enable

8086 Microprocessor and Its Appications

7. 58 Chapter 7 Peripheral Devices And Interfacing

If the 8279 detects a key press then it waits for debounce time and again read the columns

to generate the keycode. In encoded scan keyboard mode, the 8279 stores an 8-bit code for each

valid key press. The keycode consists of the binary value of the column and row in which the key

is found and the status of the shift and control key. The format of the code entered in FIFO RAM

is shown in Fig. 7.45. After a scan time, the next row is made zero and the above process is

repeated and so on. Thus 8279 continuously scans the keyboard.

7 . 5 PROGRAMMABLE TIMER - INTEL 8254

When the processor has to perform time-based activities, there are two methods to maintain

the timings of the operations. In one method the processor can execute a delay subroutine. In this

method, the delay subroutine will load a count value in one of the registers of the processor and

starts decrementing the count value. After every decrement operation, the zero flag is checked to

verify whether the count has reached zero or not. If the count has reached zero, the delay subroutine

is terminated. Now the desired time will be elapsed and the processor can perform the desired

time-based task. In this method, the time is estimated in terms of processor clock periods needed

to execute the delay subroutine.

In the second method, an external timer can maintain the timings and interrupt the processor

at periodic intervals. In the first method, the processor time is wasted by simply decrementing a

register. But in the second method, the processor time can be efficiently utilized, because the

processor can perform other tasks in between the timer interrupts. One of the programmable

external timer device is 8254 developed by INTEL. The INTEL 8254 timer has three independent

counters. In each counter a count value can be loaded and the count value can be decremented by

applying a clock signal. At the end of count, each counter will generate an output which can be

used as an interrupt to the processor to initiate the time-based activity. Some of the applications of

a programmable timer are given below:

1. The timer can interrupt a time-sharing operating system at specified intervals so that it can switch programs.

2. The timer can send timing signals at periodic intervals to IO devices. (For e.g., start of conversion signal to ADC.)

3. The timer can be used as a baud rate generator. (For e.g., the timer can be used as a clock divider to divide the

processor clock to desired the frequency for TxC and RxC of USART-8251A.)

4. The timer can be used to measure the time between external events.

5. The timer can be used as an external event counter to count repetitive external operations and inform the count value to

the processor.

6. The timer can be used to initiate an activity through the interrupt after a programmed number of external events have

occurred.

The 8254 is a 24-pin IC packed in DIP and requires a single +5-V supply. The pin configuration

of 8254 is shown in Fig. 7.46. The functional block diagram of 8254 is shown in Fig. 7.47.

The 8254 has three independent 16-bit counters, which can be programmed to work in any

one of the possible six modes. Each counter has a clock input, gate input and counter output. To

operate a counter, a count value has to be loaded in count register, gate should be tied high and a

clock signal should be applied through the clock input. The counter counts by decrementing the

count value by one in each cycle of the clock signal and generates an output depending on the

mode of operation. The maximum input clock frequency for 8254 is 10 MHz.

 7. 59

Data

Bus

Buffer

Read/

Write

Logic

Control

Word

Register

In
te

rn
a
l

B
u

s

C
o

u
n

te
r

-
1

C
o

u
n

te
r

-
2

C
o

u
n

te
r

-
0

D
7
- D

0

CLK-2

GATE-2

OUT-2

CLK-1

GATE-1

OUT-1

CS

Fig. 7.47 : Functional block diagram of an 8254 timer.

CLK-0

GATE-0

OUT-0

RD

WR

A
0

A
1

Fig. 7.46 : Pin configuration of an 8254 timer.

 Pin Description

D
0
 - D

7
Bidirectional data lines

CS Chip select

RD Read control

WR Write control

A
0
, A

1
Internal address

CLK-0 to CLK-2 Clock input to counters

GATE-0 to GATE-2 Gate control input to counters

OUT-0 to OUT-2 Output of counters

Timer

8254

D
0
-D

7

OUT-0

t o

OUT-2

CLK-0

t o

CLK-2

GATE-0

t o

GATE-2

Timer

8254

1

2

3

4

5

6

7

8

9

10

11

12

GATE-0

24

23

22

21

20

19

18

17

16

15

14

13

V
CC

A
1

A
0

CLK-2

OUT-2

CLK-1

GATE-2

OUT-1

GATE-1

WR

RD

CS

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

CLK-0

OUT-0

GND

GND

A
1

A
0

V
CC

WR

RD

CS

8086 Microprocessor and Its Appications

7. 60 Chapter 7 Peripheral Devices And Interfacing

Note : Another timer released by INTEL is 8253 which is a low clock version of the 8254.

The maximum input clock frequency to 8253 is 2.6 MHz. The 8253 and 8254 are pin

to pin compatible and functionally same except the clock frequency.

The 8254 has eight data lines which can be

used for communication with the processor. The

control words and count values are written into 8254

registers through the data bus buffer. The CS is used

to select the chip. The address lines A
0
 and A

1
 are

used to select any one of the four internal devices as

shown in Table-7.16. The control signals RD and

WR are used by the processor to perform read/write

operation. The processor can read the count value

in the count register with/without stopping the

counter at any time.

Interfacing 8254 with 8086 Processor

A simple schematic for interfacing the 8254 with 8086 processor is shown in Fig. 7.48.

The 8254 can be either memory-mapped or IO-mapped in the system. In the schematic shown in

Fig. 7.48, the 8254 is IO-mapped in the system with even addresses. The chip select signals for

IO-mapped devices are generated by using a 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are

decoded to generate eight chip select signals (IOCS-0 to IOCS-7) and in this, the chip

select IOCS-5 is used to select 8254. The address line A
0
 and the control signal M/IO are used to

enable the decoder.

TABLE - 7.16 : INTERNAL ADDRESSES

OF 8254

Internal address
Device selected

 A
1

A
0

0 0 Counter-0

0 1 Counter-1

1 0 Counter-2

1 1 Control Register

D
B

0
-D

B
7

8254

8086
Latches

 and

Buffers

CPU

 Bus

C
L

O
C

K

R
E

A
D

Y

R
E

S
E

T

 8284

 Clock

Generator

 PCLK

WRRDM / IO

→
D

0
- D

7
8

3

-t
o

-8
 D

e
c

o
d

e
r

G
1

+5-V

M/IO

G
2A

A
6

A
5

A
7

A
0

Clock

Divider

Circuits

 CLK-0

 CLK-1

 CLK-2

D
0
- D

15

A
0
- A

19

CS

A
2

A
1

A
1

A
0

CLK-0

GATE-0

OUT-0

CLK-1

GATE-1

OUT-1

CLK-2

GATE-2

OUT-2

RD

WR

Y0

Y1

Y
2

Y
3

Y
4

Y
5

Y
6

Y
7

G
2B

Fig. 7.48 : Interfacing of 8254 with 8086 processor.

IOCS-0

IOCS-1

IOCS-2

IOCS-3

IOCS-4

IOCS-5

IOCS-6

IOCS-7

A

B

C

→

→ →→

→

→

→

→

→

→

→ → →

→

→→
→

→

RD

WR

 7. 61

The address lines A
1
 and A

2
 of 8086 are connected to A

0
 and A

1
 of 8254 to provide

the internal addresses. The IO addresses allotted to the internal devices of 8254 are listed in

Table -7.17. The data lines D
0
-D

7
 are connected to D

0
-D

7
of the processor, and RD and WR

signals of 8254 are connected to the RD and WR of the processor respectively to achieve parallel

data transfer.

The clock signals required for the counters can be obtained either from the processor clock

or from the Peripherals clock (PCLK) supplied by the clock generator 8284. The clock signals

from 8284 can also be divided to lower values by using clock divider circuits and then applied to

the clock input of counters.

Programming 8254

Each counter of 8254 can be individually programmed by writing a control word followed

by the count value. The format of control word is shown in Fig. 7.49.

Note : Don't care "x" is considered as zero.

TABLE- 7.17 : IO ADDRESSES OF 8254

 A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

Counter-0 1 0 1 x x 0 0 0 A0

Counter-1 1 0 1 x x 0 1 0 A2

Counter-2 1 0 1 x x 1 0 0 A4

Control 1 0 1 x x 1 1 0 A6

Register

Internal

device

Binary address

Decoder input
Input to address

pins of 8254

Decoder

enable

 Hexa
 address

Fig. 7.49 : Format of control word for timer 8254.

B
7
 B

6
 B

5
 B

4
 B

3
 B

2
 B

1
 B

0

SC1 SC0 RW1 RW0 M2 M1 M0 BCD

00 = Counter Latch Command.

01 = Read/Write LSB only.

10 = Read/Write MSB only.

11 = Read/Write LSB First and

 then MSB next.

00 = Select Counter - 0

01 = Select Counter - 1

10 = Select Counter - 2

11 = Ilegal

1 = BCD Count

0 = Binary Count

0 0 0 → Mode - 0

0 0 1 → Mode - 1

x 1 0 → Mode - 2

x 1 1 → Mode - 3

1 0 0 → Mode - 4

1 0 1 → Mode - 5

LSB - Least Significant Byte

MSB - Most Significant Byte

←

←

←

↓

IPQIPQIPQ

IPQ

I

P

Q

I

P

Q

I

P

Q

I

P

Q

8086 Microprocessor and Its Appications

7. 62 Chapter 7 Peripheral Devices And Interfacing

The bit B
0
 (BCD) of the control word is used to select BCD or binary count and the bits B

1

to B
3
 (M0, M1 and M2) are used to select the mode of operation for the counter specified by bits

B
6
 and B

7
 of control word. Please remember that for each counter separate control word has to be

sent to the same control register address. The 8254 identifies the control word for a particular

counter from bits B
6
 and B

7
 of the control word.

The bits B
4
 and B

5
 are used for read/write command. These bits are programmed for

reading/writing the 16-bit count value in a proper order. If the count value is read without stopping

the counter, then the count value may change between reading the LSB and MSB. To avoid this,

the counter latch command can be used to latch the count value to an internal latch available at the

output of each counter before the read operation.

Alternatively, a separate read-back control word is available for latching the count value in

8254. (This control word is not available in 8253.) The format of the read-back control word of

8254 is shown in Fig. 7.50. This control word has to be sent to the same control register address

before the read operation to latch the count value. The control register identifies this control word

from the value of bits B
6
 and B

7
.

The read-back control word can be used to latch one or all the counters by sending a single

control word. This control word is also used to latch the status register to the output latch of the

counters, so that the status registers can be read by using the respective counter address. At any

one time, we can latch either the count value by programming the bit B
5
 as zero or latch the status

register by programming the bit B
4
 as zero.

The format of the status register of each counter is shown in Fig. 7.51. The status word of

a counter can be read to check the programmed status of the counter and also to verify whether

the count value has reached terminal count, i.e., zero or not.

Fig. 7.50 : Format of read-back control word of 8254.

Always One

for Read-Back

Command

1 = Select Counter-2

0 = Latch Status Register

 of Selected Counters

0 = Latch Count Register

 of Selected Counters

B
7
 B

6
 B

5
 B

4
 B

3
 B

2
 B

1
 B

0

1 CNT 0 01 CNT 1CNT 2CNT ST

Always Zero, Reserved

for Future Expansion

1 = Select Counter-0

1 = Select Counter-1

←

←

←

←

←

IPQ

7. 63

Operating Modes of 8254

The 8254 has six modes of operation. Each counter of 8254 can be independently

programmed to work in one of the possible six operating modes. The six modes are :

Mode -0 → Interrupt on terminal count.

Mode -1 → Hardware retriggerable one shot.

Mode -2 → Rate generator or Timed interrupt generator.

Mode -3 → Square wave mode.

Mode -4 → Software triggered strobe.

Mode -5 → Hardware triggered strobe.

The initialization procedure for each mode is almost same, but the output of each mode will

be different. To initialize a counter, the following steps are necessary:

1. Write a control word into the control register.

2. Write a count value in the count register.

The writing of count value depends on the control word. There may be three possible choices :

1. If the control word is framed for writing LSB only then write LSB alone.

2. If the control word is framed for writing MSB only then write MSB alone.

3. If the control word is framed for writing LSB first and MSB next, then write LSB first and write MSB next.

Note : LSB - Least Significant Byte (Low order byte).

MSB - Most Significant Byte (High order byte).

In all the modes, the GATE signal act as a control signal to start, stop or maintain the

counting process. In modes 0, 2, 3 and 4 once the count value is loaded in the counter, the timer

starts decrementing the count value if the GATE is high. Whenever the GATE signal goes low, the

counter stops counting and will resume counting only when the GATE is made high again.

In modes 1 and 5, the GATE act as a triggering pulse. In these modes, the count value is loaded

in the counter and it starts the decrementing process only when the GATE signal makes a low-to-high

transition (i.e., the count process is initiated only on the rising edge of the GATE signal). In modes 1

and 5, the GATE signal need not remain high (after initiation) to maintain the counting process.

Fig. 7.51 : Format of status word of each counter of 8254.

Level of the

Output Pin

B
7
 B

6
 B

5
 B

4
 B

3
 B

2
 B

1
 B

0

OUT BCDNULL M2

1 = Programmed for

 BCD Counting

0 = Programmed for

 Binary Counting

RW1 RW0 M1 M0

R S| T| R S| | T| | R

S
|

T|A One on this Bit

Position Indicates

that the Counter

Value is Zero

Programmed Status of

Read /Write Operation

01 = Read/Write LSB

 only

10 = Read/Write MSB

 only

11 = Read/Write LSB

 First and then

 MSB Next

Programmed Mode

of Operation.

000 = Mode-0

001 = Mode-1

010 = Mode-2

011 = Mode-3

100 = Mode-4

101 = Mode-5

→

→
←

8086 Microprocessor and Its Appications

7. 64 Chapter 7 Peripheral Devices And Interfacing

A brief description about each mode of operation is presented here. In the following discussions

it is assumed that the counter is initialized for binary count, by writing only LSB of the count.

Mode-0 : Interrupt on terminal count

In mode-0 operation, when a count value is loaded in a counter it starts decrementing the

count value by one for each input clock pulse (provided the GATE is high) and asserts the output

as high when the count value is zero. (i.e., on terminal count). This low-to-high transition of the

counter output can be used as an interrupt to the processor to initiate any activity. In mode-0, the

8254 will count as long as the GATE is high. Whenever the GATE signal goes low the counter

stops counting and will resume counting only when the GATE is made high again.

The timing diagram for mode-0 operation is shown in Fig. 7.52. In the timing diagram of

Fig. 7.52 (a) initially the counter output remains high, and it is assumed that the GATE is always

high. The processor writes the control word and the count value using the write control signal (WR).

Once the control word is written into the control register the output goes low. After the write operation

of count value by the processor, the 8254 requires one clock pulse to load the count value in the

respective count register. Therefore, in the first clock pulse after WR goes high, the 8254 loads the

count value in the count register and in the each subsequent clock pulse, the count value is decremented

by one. When the count value becomes zero, the output of the counter is asserted high.

WR

Write Control

Word Write LSB of Count (05H)

Number

of Clock

 Pulses

Loaded Count Value End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

OUT

xx xx xx xx 05 04 03 02 01 00 FF FE

1 2 3 4 5 6 7 8

Fig. a : Timing diagram of Mode-0 with GATE always high.

Note : "xx" represents undefined count value.

Fig. b : Example diagram of mode-0 when the GATE is made

low for small duration before the terminal count.

WR

CLK

GATE

OUT

1 2 3 4 5 6 7 8 9 10 11

xx xx xx xx 05 04 03 02 01 00 FF FE0303 03

Loaded Count Value
Count Value

after Each

Clock Pulse

End of Count

Number

of Clock

Pulses

R S| | T| |

No Decrement

Write LSB of Count (05H)

Write Control

Word

Fig. 7.52 : Timing diagram of mode-0 of 8254.

 7. 65

Figure 7.52 shows the timing diagram for a count value of 05H initially loaded in the count

register. Here the output goes high after 6 (5 + 1 = 6) clock pulse. In general, if a count value of

N is loaded in the count register then the output goes high after N +1 clock pulses. Please

remember that the counter continues to decrement the count value even after zero (00 → FF ;

FF → FE and so on) as long as GATE is high and the clock signal is supplied. The output of the

counter remains high until a new count or command is sent to the counter.

In the timing diagram shown in Fig. 7.52 (b), the GATE is made low for a small period before the

terminal count value. It is observed that in this period, the count value is not decremented and previous

value is maintained as such. The counter resumes operation only when the GATE is made high again.

Mode -1 : Hardware retriggerable one shot

In mode-1, the counter functions as a retriggerable monostable multivibrator (one shot). In

this mode the output will be high once the control word is sent to the control register. The GATE

acts as a trigger pulse to start the count process. When a low-to-high transition of GATE

signal occurs, the count value is loaded in the counter and the count is decremented by one

for each clock pulse. When the count value is loaded in the counter the OUTPUT goes low and it

becomes high when the count value is zero. Therefore, mode-1 produces a logic low pulse output

whose width is equal to the duration of the count.

Write Control Word

Fig. a : Timing diagram of mode-1.

WR

CLK

GATE

OUT

Loaded Count Value End of Count

02 01 FF FE

Write LSB of Count (05H)

Number

of Clock

Pulses

1 2 3 4 5 6 7 8

xx xx xx xx 05 04 03 00xx xx Count Value

after Each

Clock Pulse

Fig. b : Timing diagram of mode-1 with GATE retriggering before end of count.

Fig. 7.53 : Timing diagram of mode-1 of 8254.

WR

CLK

GATE

OUT

Write Control

 Word Write LSB of Count (05H)

Number

of Clock

 Pulses

Count Value after

Each Clock Pulse
Loaded Count Value End of Count

02 01 FF FExx xx xx 05 04 03 00xx xx xx 05 04 03

 Count Reloaded

1 2 3 4 5 6 7 8 9 10 11

Note : "xx" represents undefined count value.

8086 Microprocessor and Its Appications

7. 66 Chapter 7 Peripheral Devices And Interfacing

The timing diagram of mode -1 operation is shown in Fig. 7.53. The processor writes the

control word and count value using the WR control signal. Initially, the output is assumed to be

high. Even if it is low, it is asserted high, once the control word is written into the control register.

Initially the GATE can be high or low. If the GATE is low then it is made high to initiate the count

process. If it is high then it is made low and after a small delay it is made again high, because the

count process is initiated only after a low-to-high transition of GATE. After the trigger pulse (i.e.,

low-to-high transition) the gate can remain either in the high state or in low state.

The first clock pulse after a low-to-high transition of gate is used to load the count value in

the counter and for each subsequent clock the count value is decremented by one. Once the count

value is loaded in the counter the output is asserted low and at the end of the count, when the

count value is zero, the output is asserted high. In the timing diagram shown in Fig. 7.53 (a), a

count value of 05H is loaded and so the output remains low for 5 clock periods. In general if a

count value of N is loaded in the counter then the output will remain low for N clock periods.

Therefore the output low pulse width will be N times the clock period.

In the timing diagram of Fig. 7.53 (b), the GATE is retriggered before the end of count.

In this case, the original count value is reloaded again in the clock pulse after gate retriggering

and the count value is decremented by one in each subsequent clock pulse.

Mode-2 : Rate generator or timed interrupt generator

Mode-2 is used to generate a periodic low pulse of width equal to one clock period. If a

count value of N is loaded in the counter then the output will go low once in N clock periods.

Therefore, the frequency of low pulse generated will be equal to the input clock frequency divided

by N. For mode-2 operation GATE should be always high.

The timing diagram of mode-2 operation is shown in Fig. 7.54. The processor writes the

control word and count value using the WR control signal. Initially, the output is assumed to be

high. Even if it is low it is asserted high once the control word is written into the control register.

The GATE input is permanently tied to logic high. In the first clock pulse after the WR signal goes

high, the count value is loaded in the counter and the count value is decremented by one for each

subsequent clock pulse.

Fig. 7.54 : Timing diagram of mode-2 of 8254.

WR

CLK

GATE

OUT

Loaded Count

 Value

Write Count Value (03H)Write Control Word

 Count

Reloaded

 Count

Reloaded

 Count

Reloaded

Number

of Clock

Pulses

1 2 4 5 6 7 8 9 10

01 03 01 03xx xx 03 02 01 03 02 02xx xx

Count Value

after Each

Clock Pulse

´

 7. 67

Initially, the output is high. When the count reaches one, the output is asserted low. In the

next clock pulse the output is asserted high and the original count value is reloaded. In the subsequent

clock pulses the count value is decremented. The above process is repeated again and again until

a next command by the processor. In the timing diagram shown in Fig. 7.54, a count value of 03H

is loaded in the counter. In a total period of 3 clock periods, the output goes low for one clock

period. If the gate is made low at any time during the count process, the counter will stop the

operation and resumes the counting only when the gate is made high again.

Mode-3 : Square wave mode

In mode-3, the counter generates a square wave at the output pin. The frequency of the

square wave will be given by the frequency of input clock signal divided by the count value

loaded in the count register. If the count value N is an even number then the output will be

alternatively high for N
2

 clock periods and low for N
2

 clock periods. If the count value is odd

number then the output will be alternatively high for
N 1

2

+
 clock periods and low for N 1

2

−

clock periods (i.e., when the count value is odd, then the output high period will be more than

low period by one clock period). The timing diagram of mode-3 is shown in Fig. 7.55.

In the timing diagram shown in Fig. 7.55, a count value of 06H is loaded in the counter. The

count value is loaded in the counter in the first clock pulse after WR signal goes high. Then for

each subsequent clock pulse the count is decremented by two. When the count value reaches two

then in the next clock pulse, the output is asserted low and original /initial count is reloaded in the

counter and for each subsequent clock pulse the count is decremented by two. When the count

value reaches two then in the next clock pulse the output is asserted high and the original /initial

count is reloaded and the above process is repeated again and again.

Fig. 7.55 : Timing diagram of mode-3 of 8254.

WR

CLK

GATE

OUT

Loaded Count

 Value

Write Count Value (06H)Write Control Word

 Count

Reloaded

 Count

Reloaded

 Count

Reloaded

Number

of Clock

Pulses

1 2 3 5 6 7 8 9 10

02 06 02 06xx xx 06 04 02 06 04 04xx xx

Count Value

after Each

Clock Pulse

02 0604

 Count

Reloaded

11 12 134

8086 Microprocessor and Its Appications

7. 68 Chapter 7 Peripheral Devices And Interfacing

In the output waveform generated on the output pin of the counter, the high period and low

period are equal to three clock periods. The frequency of waveform generated is given by the

clock signal divided by six, because six clock periods are required to generate one cycle of output

wave. Throughout the mode-3 operation, the GATE input signal should be maintained as high. If

it is made low during the count process then the counter stops counting and resumes the operation

only after the GATE is made high.

Mode-4 : Software triggered strobe

Mode-4 is used to generate a single logic low pulse after a delay. In this mode, when a count

value, N is loaded in the counter, a logic low pulse of width equal to one clock period is generated

in the (N +1)th clock pulse. Here the delay time is N clock periods. This signal is often used as

strobe signal in parallel data transfer scheme. Mode-4 is called software triggered strobe because

the counter starts its operation once the count value is written into the count register by a software

instruction. However the GATE input signal should remain high throughout the mode-4 operation.

The timing diagram of mode- 4 operation is shown in Fig. 7.56. The GATE is permanently

tied to high. The processor writes the control word and count value using write control signal. In

the first clock pulse after WR signal goes high, the count value is loaded in the counter and in each

subsequent clock pulse the count value is decremented by one. When the count value reaches zero

the output is asserted low for one clock period and then it is made high.

Here a count value of 04H is loaded in the counter. Initially the output remains high and in

the fifth clock pulse the output goes low for one clock period. In mode-4 operation if the GATE is

made low during count process then the counter stops counting and resumes the operation only

when the GATE is made high.

Mode-5 : Hardware Triggered Strobe

Mode-5 is same as that of mode-4, except that the counter is initiated by a low-to-high

transition of the GATE signal. In mode-4, the counter will start decrementing the count value

immediately after the write operation of count value by the processor. But in mode-5, the counter

will wait for a low-to-high transition of GATE signal after the write operation of count value by the

processor.

Fig. 7.56 : Timing diagram of mode-4 operation of 8254.

WR

Write Control Word Write LSB of Count (04H)
Number

of Clock

 Pulses

Loaded Count Value Low Pulse at the End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

04 03 02 01 00 FF FE

1 2 3 4 5 6 7

xx xx xx xx

OUT

7. 69

The timing diagram of mode-5 operation is shown in Fig. 7.57. In the first clock pulse after

a low-to-high transition of GATE, the count value is loaded in the counter and for each subsequent

clock pulse the count value is decremented by one. When the count value reaches zero the output

is asserted low for one clock period and then it is made high. Here a count value of 04H is loaded

in the counter. Initially the output remains high and the counter wait for a low-to-high transition

of the GATE signal. In the fifth clock pulse after a low-to-high transition of GATE signal, the

output goes low for one clock period.

In mode-5 operation, if the gate signal makes another low-to-high transition (i.e., retriggered)

before the end of count then the original count value is reloaded in the clock pulse after gate

retriggering and count value is decremented by one in each subsequent clock pulse.

7 . 6 DAC INTERFACE

In many applications, the microprocessor has to produce analog signals for controlling certain

analog devices. Basically the microprocessor system can produce only digital signals. In order to

convert the digital signal to analog signal, a Digital-to-Analog Converter (DAC) has to be employed.

The DAC will accept a digital (binary) input and convert to analog voltage or current. Every

DAC will have "n" input lines and an analog output. The DAC requires a reference analog voltage

(V
ref

) or current (I
ref

) source. The smallest possible analog value that can be represented by the

n-bit binary code is called resolution. The resolution of DAC with n-bit binary input is
1

2n
 of the

reference analog value. Every analog output will be a multiple of the resolution. In some converters

the input reference analog signal will be multiplied or divided by a constant to get full scale value. In

this case the resolution will be
1

2
n

 of the full scale value.

For example, consider an 8-bit DAC with reference analog voltage of 5 volts. Now the

resolution of the DAC is (1/28) × 5 volts. The 8-bit digital input can take, 28 = 256 different values.

The analog values for all possible digital inputs are as shown in Table-7.18.

Fig. 7.57 : Timing diagram of mode-5 operation of 8254.

WR
Number

of Clock

 Pulses

Loaded

Count Value

Low Pulse at the

End of Count

Count Value

after Each

Clock Pulse

CLK

GATE

04 03 02 01 00 FF FExxxxxxxxxx

1 2 3 4 5 6 7

Write Control Word Write LSB of Count (04H)

OUT

8086 Microprocessor and Its Appications

7. 70 Chapter 7 Peripheral Devices And Interfacing

The maximum input digital signal will have an analog value which is equal to reference

analog value minus resolution. The digital-to-analog converters can be broadly classified into three

categories, and they are current output, voltage output and multiplying type DAC. The current

output DAC provides an analog current as output signal. In voltage output DAC, the analog current

signal is internally converted to voltage signal.

TABLE - 7.18

Digital input Analog output

0000 0000 0

2
5

8
× Volts

0000 0001
1

2
5

8
× Volts

0000 0010
2

2
5

8
× Volts

0000 0011
3

2
5

8
× Volts

1111 1111
255

2
5

8
× Volts

In multiplying type DAC, the output is given by the product of the input signal and the

reference source and the product is linear over a broad range. Basically, there is not much difference

between these three types and any DAC can be viewed as multiplying DAC.

The basic components of a DAC are resistive network with appropriate values, switches, a

reference source and a current to voltage converter as shown in Fig. 7.58

The switches in the circuit of Fig. 7.58 can be transistors which connect the resistance

either to ground or V
ref

. The resistors are connected in such a way that for any possible binary

input, the total current I
T
 is in binary proportion. The operational amplifier converts the current I

T

to a voltage signal V
0
, which can be calculated from the following equation.

Fig. 7.58 : A typical R/2R ladder resistive network as DAC.

1

D
0

2 R

10

D
1

2 R

R R

10

D
2

2 R

−

+

R
f

V
0

→

I
T

R

V
ref

0

 7. 71

V V
R

R

D D D
ref

f
0

2
1

1
2

0
32 2 2

= + +
F
HG

I
KJ

The circuit of Fig. 7.58 can be modified as 8-bit DAC by increasing the number of R/2R

ladder. For an 8-bit DAC the output voltage is given by,

V V
R

R

D D D D D D D D
ref

f
0

7
1

6
2

5
3

4
4

3
5

2
6

1
7

0
82 2 2 2 2 2 2 2

= + + + + + + +
F
HG

I
KJ

The time required for converting the digital signal to analog signal is called conversion time.

It depends on the response time of the switching transistors and the output amplifier. If the DAC is

interfaced to the microprocessor, then the digital data (signal) should remain at the input of DAC,

until the conversion is complete. Hence, to hold the data a latch is provided at the input of DAC.

The Digital-to-Analog converters compatible to the microprocessors are available with or

without internal latch and I to V converting amplifier. The AD558 of the Analog Device is an

example of an 8-bit DAC with an internal latch and I to V converting amplifier. The output of

AD558 is an analog voltage signal.

The AD558 can be directly interfaced to 8086 microprocessor bus and it requires only two

control signals : Chip Select (CS) and Chip Enable (CE). [No handshake signals are necessary for

interfacing a DAC. The time between loading two digital data to the DAC is controlled by software

time delay.]

The DAC0800 of the National Semiconductor Corporation is an example of an 8-bit DAC

without internal latch and I to V converting amplifier. The DAC0800 can be interfaced to the

microprocessor using either a port device or a latch.

7.6.1 DAC0800

The DAC0800 is an 8-bit, high speed, current output DAC with a typical settling time

(conversion time) of 100 ns. It produces complementary current output which can be

converted to voltage by using a simple resistor load.

The DAC0800 is available as a 16-pin IC in DIP. The pin configuration of DAC0800 is

shown in Fig. 7.59 and the internal block diagram of a DAC0800 is shown in Fig. 7.60.

The DAC0800 requires a positive and a negative supply voltage in the range of ± 5-V

to ±18-V. It can be directly interfaced with TTL, CMOS, PMOS and other logic families. For

TTL input, the threshold pin should be tied to ground (V
LC

 = 0-V). The reference voltage and

the digital input will decide the analog output current, which can be converted to a voltage by

simply connecting a resistor to output terminal or by using an op-amp I to V converter. A

typical example of generating a positive voltage output using DAC0800 is shown in Fig. 7.61.

8086 Microprocessor and Its Appications

7. 72 Chapter 7 Peripheral Devices And Interfacing

 Pin Description

D
0
-D

7
Digital input data

IOUT Current output

IOUT Complement of output current

V− Negative supply voltage

V+ Positive supply voltage

COMP Compensation voltage

V
LC

Threshold control

V
REF

(+) Positive reference voltage

V
REF

(–) Negative reference voltage

Fig. 7.59 : Pin description of DAC0800.

MSD - Most Significant Digit

LSD - Least Significant Digit

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

V
LC

I
OUT

V
−

I
OUT

(MSD)D
7

D
6

D
5

D
4

COMP

V
REF

(−)

V
REF

(+)

V+

D
0
(LSD)

D
1

D
2

D
3

D
A

C
0
8
0
0

V
REF

(+)

V
REF

(−)

 V
LC

COMP

D
0
-D

7
I

OUT

I
OUT

V
+

V
−

D
A

C
0
8
0
0

V+ V
LC D

7
D

6 D
5

D
4 D

3
D

2
D

1
D

0

LSDMSD

13 1 5 6 7 8 9 10 11 12

14

15

16 3

4

2

Bias
Network

Current
Switches

V
REF

(+)

V
REF

(−)

COMP V−

I
OUT

Fig. 7.60 : Block diagram of DAC0800.

+

−

REF
AMP

I
OUT

 7. 73

Interfacing DAC0800 With 8086

The DAC0800 can be interfaced to 8086 system bus by using an 8-bit latch and the latch

can be enabled by using one of the chip select signal generated for IO devices. A simple schematic

for interfacing the DAC0800 with 8086 is shown in Fig. 7.62. In this schematic the DAC0800 is

interfaced using an 8-bit latch 74LS273 to the system bus and the latch is IO-mapped in the system

with an even address. The 3-to-8 decoder 74LS138 is used to generate chip select signals for IO

devices. The address lines A
5
, A

6
 and A

7
 are used as inputs to the decoder. The address line A

0
 and

the control signal M/IO are used as enable for decoder. The decoder will generate eight chip select

signals and in this the signal IOCS-7 is used as enable for latch of DAC. The IO address of the DAC

is shown in Table-7.19.

→

→
→←

Latches

and

Buffer

8086

A
0
-A

19

D
0
-D

15

8
D

0
-D

7

→
→
→

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-7

IOCS-6

IOCS-5

IOCS-4

IOCS-3

IOCS-2

A

B

C

G
1

G
2A

G
2B

↓

↓

8-bit Latch

74LS273EN

V
REF

(+)

V
REF

(−)

V
LC

DAC0800

I
OUT

I
OUT

V
REF

5k

5k

+ −

Fig. 7.62 : Interfacing DAC0800 with an 8086 microprocessor.

3
-t

o
-8

 D
e
c
o

d
e
r

A
5

A
6

A
7

A
0

C
L

O
C

K

R
E

A
D

Y

R
E

S
E

T

+5-V

RD WR

↓

8284
Clock

Generator

E
0 Analog Output

Voltage

M/IO

M/IO

←

I to V

Converter
741

D
A

C
 L

a
tc

h

↓ ↓ ↓ ↓ ↓ ↓ ↓

V
REF

(−)

V
REF

(+)V
REF

+

−I
OUT

I
OUT

I
OUT
←

I
OUT

←

14

15

4

2

DIN

E
o

I to V Converter
using op-amp

E
o
 = V

REF

×

DIN

256

where, DIN = Decimal Equivalent of Binary Input

Fig. 7.61 : DAC 0800 with V to I converter to produce positive output voltage.

5k

5k

5k

DAC 0800

8086 Microprocessor and Its Appications

7. 74 Chapter 7 Peripheral Devices And Interfacing

7 . 7 ADC INTERFACE

In many applications, an analog device has to be interfaced to the digital system. But the

digital devices cannot accept the analog signals directly and so the analog signals are converted to

equivalent digital signals (data) using Analog-to-Digital Converter (ADC).

The Analog to Digital (A/D) conversion is the reverse process of Digital to Analog (D/A)

conversion. The A/D conversion is also called quantization, in which the analog signal is represented

by an equivalent binary data. The analog signals vary continuously and defined for any interval of

time. The digital signals (or data) can take only finite values and defined only for discrete instant

of time. If the digital data is represented by an n-bit binary then it can have 2n different values. In

A/D conversion the given analog signal has to be divided into steps of 2n values, and each step is

represented by one of the 2n values.

The analog to digital converters can be classified into two groups based on the technique

involved for conversion. The first group includes successive approximation, counter and flash-

type converters. The technique involved in these devices is that the given analog signal is compared

with the internally generated analog signal. The second group includes integrator converters and

voltage to frequency converters. In the devices of the second group, the given analog signal is

converted to time or frequency and the new parameters (time or frequency) is compared with the

known values to produce digital signal.

The trade-off between the two techniques is based on Accuracy vs Speed. The successive

approximation and the flash type are faster but generally less accurate than the integrator and the

voltage-to-frequency type converters. Also, the flash type is costlier. The successive approximation

type converters are used for high speed conversion and the integrating type converters are used

for high accuracy.

The resolution of the converter is the minimum analog value that can be represented by the

digital data. If the ADC gives n-bit digital output and the full scale analog input is X volts, then the

resolution is
1

2n × X volts. In ADC, another critical parameter is conversion time. The conversion

time is defined as the total time required to convert an analog signal into its digital equivalent. It

depends on the conversion technique and the propagation delay in various circuits.

Device

Binary address

Decoder input Unused address lines Hexa address

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 1 1 x x x x 0 60
DAC Latch

74LS273

TABLE - 7.19 : IO ADDRESS OF DAC LATCH

Decoder

enable

 7. 75

Successive Approximation ADC

A successive approximation ADC consists of D/A converter, successive approximation

register and comparator. Figure 7.63 shows the functional blocks of a typical successive

approximation A/D converter.

The conversion process is initiated by a Start Of Conversion (SOC) signal from the processor

to the ADC. On receiving the SOC, the control unit of the ADC will give a start command to the

successive approximation register and it starts generating digital signal by the successive

approximation method. The generated digital data is converted to analog signal by the D/A converter

and then compared with given the analog signal. When the analog signals are equal the comparator

output informs the control unit to stop generation of digital signal. The digital data available at this

instant is given as output through output register. Also the control unit generates a signal to indicate

the End Of Conversion (EOC) process to the processor.

Successive Approximation Method of Conversion

In this method, the MSD (Most Significant Digit) is first set to "1" and all other digits are

reset to "0". The analog signal generated for this digital data is compared with the given analog

signal. (Initially the comparator output will be high. After comparison the output of the comparator

remains in high state if the given analog signal is higher than the generated analog signal. Otherwise,

if the given signal is less than the generated signal, then the output of the comparator changes

from high to low state.) If the output state of the comparator changes then the MSD is reset to

"0" otherwise it is retained as "1". Then the above process is repeated by setting the next higher

order bit to "1". The process is continued for each bit starting from MSD to LSD. (During a

process, the higher order bits are the bits determined in earlier steps and the lower order bits are

reset to "0".) After one complete cycle through MSD to LSD, the data available on the successive

approximation register will be the digital equivalent of the given analog signal.

+

−

Analog Voltage

Input

Comparator

D/A

Converter

(DAC)

Analog Reference

Voltage

Successive

Approximation

Register

Output

Register

↓

Control

Unit

SOC (Start Of

Conversion)

EOC (End Of

Conversion)
Clock

R S| T|

Output Digital Data

Fig. 7.63 : Successive approximation A/D converter.

OE (Output Enable)

8086 Microprocessor and Its Appications

7. 76 Chapter 7 Peripheral Devices And Interfacing

7.7.1 ADC0809

The ADC0809 is an 8-bit successive approximation type ADC with inbuilt 8-channel

multiplexer. The ADC0809 is suitable for interface with 8086 microprocessor. The ADC0809 is

available as a 28-pin IC in DIP (Dual In-line Package). The ADC0809 has a total unadjusted error

of ±1 LSD (Least Significant Digit). The ADC0808 is also same as ADC0809 except the error. The

total unadjusted error in ADC0808 is ±
1

2
 LSD. The pin configuration of ADC0809/ADC0808 is

shown in Fig. 7.64.

The internal block diagram of ADC0809/ADC0808 is shown in Fig. 7.65. The various

functional blocks of ADC are 8-channel multiplexer, comparator, 256R resistor ladder, switch tree,

successive approximation register, output buffer, address latch and decoder.

 Signals Description

IN0-IN7 Eight single ended analog input to ADC.

A, B, C 3-bit binary input to select one of the eight analog signals for conversion at

any one time.

ALE Address latch enable. Used to latch the 3-bit address input to an internal latch.

START Start of conversion pulse input. To start ADC process this signal should be

asserted high and then low. This signal should remain high for atleast 100 ns.

CLOCK Clock input and the frequency of clock can be in the range of 10 kHz to

1280 kHz. Typical clock input is 640 kHz.

Fig. 7.64 : Pin configuration of ADC0809/ADC0808.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

IN3

IN4

IN5

IN6

IN7

START

EOC

D
3

OE

CLOCK

V
CC

V
REF

 (+)

GND

D
1

IN2

IN1

IN0

A

B

C

ALE

D
7
 (MSD)

D
6

D
5

D
4

D
0
 (LSD)

V
REF

(−)

D
2

A
D

C
0

8
0

9
/A

D
C

0
8

0
8

IN0-IN7

A, B, C

ALE

START

CLOCK

V
REF

(+)

V
REF

(−)

D
0
-D

7

EOC

OE

V
CC

GND

A
D

C
0

8
0

9
/A

D
C

0
8

0
8 Digital

Output
Channel
selection

Analog
Input

LSD = Least Significant Digit, MSD = Most Significant Digit

TABLE - 7.20 : SIGNAL DESCRIPTION OF ADC0809/ADC0808

 7. 77

 Signals Description

V
REF

(+),V
REF

(-) Reference voltage input. The positive reference voltage can be less than or

equal to V
cc

 and the negative reference voltage can be greater than or equal to

ground.

D
0
-D

7
The 8-bit digital output. The reference voltages will decide the mapping of the

analog input to the digital data.

EOC End of conversion. This signal is asserted high by the ADC to indicate the

end of conversion process and it can be used as interrupt signal to processor.

OE Output buffer enable. This signal is used to read the digital data from the output

buffer after a valid EOC.

V
cc

Power supply, +5-V

GND Power supply ground, 0-V

The 8-channel multiplexer can accept eight analog inputs in the range of 0 to 5-V and allow

one by one for conversion depending on the 3-bit address input. The channel selection logic is

shown in Table-7.21.

Table - 7.20 : continued ...

8 Channel

Multiplexing

Analog

Switches

Successive

Approximation

Register

Control and Timing

Switch Tree

256R Resistor

Ladder

Tristate

Output

Buffer

Address

Latch and

Decoder

↓

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

D
7
 (MSD)

D
6

D
5

D
4

D
3

D
2

D
1

D
0
 (LSD)

Comparator

⇔

↓ ↓

↑

→

A

B

C

ALE

V
CC

GND V
REF

(+) V
REF

(−)

OE

EOC

CLKSOC

Fig. 7.65 : Functional block diagram of ADC0809/ADC0808.

↓
↓ ↓

8086 Microprocessor and Its Appications

7. 78 Chapter 7 Peripheral Devices And Interfacing

The Successive Approximation Register (SAR) performs

eight iterations to determine the digital code for input value. The

SAR is reset on the positive edge of the START pulse and start the

conversion process on the falling edge of START pulse. A

conversion processs will be interrupted on receipt of a new START

pulse. The End Of Conversion (EOC) will go low between 0 and

8 clock pulses after the positive edge of the START pulse. The

ADC can be used in continuous conversion mode by tying the

EOC output to the START input. In this mode an external START

pulse should be applied whenever power is switched ON.

The 256R resistor network and the switch tree is shown in

Fig. 7.66. The 256R ladder network has been provided instead of

conventional R/2R ladder because of its inherent monotonicity,

which guarantees no missing digital codes. Also, the 256R resistor

network does not cause load variations on the reference voltage.

The comparator in the ADC0809/

ADC0808 is a chopper-stabilized

comparator. It converts the DC input

signal into an AC signal and amplifies the

AC signal using a high gain AC amplifier.

Then it converts AC signal to DC signal.

This technique limits the drift component

of the amplifier, because the drift is a DC

component and it is not amplified/passed

by the AC amplifier. This makes the ADC

extremely insensitive to temperature, long

term drift and input offset errors.

In ADC conversion process the

input analog value is quantized and each

quantized analog value will have a unique

binary equivalent. The quantization step

in ADC0809/ADC0808 is given by,

Q
V V V

step
REF REF REF

= =

+ − −

2 2568
10

() ()

The digital data corresponding to an analog input (V
in
) is given by,

Digital data =
V

Q

in

step

−

F

H
G

I

K
J1

10

 Address input Selected

C B A channel

0 0 0 IN0

0 0 1 IN1

0 1 0 IN2

0 1 1 IN3

1 0 0 IN4

1 0 1 IN5

1 1 0 IN6

1 1 1 IN7

TABLE - 7.21

→

↓ ↓..............↓ ↓

..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
.

..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

.............

RS |||T |||

V
REF

(+)

V
REF

(−)

T
o

 C
o

m
p

a
ra

to
r

In
p

u
t

Control Signal From SAR

1
1

2 R

R

R

R

R

1
1

2 R

Fig. 7.66: 256R resistor network and switch tree.

 7. 79

EXAMPLE 1

Let, V
REF

 (+) = 3.84-V, V
REF

 (−) = 0-V

∴ Q
V () V ()

256

3.84

256
step

REF REF

10

=
+ − −

= = 0.015-V = 15-mV

Let the input analog voltage be 2.56-V. Now the digital data corresponding to 2.56-V is given by,

Digital data = − = −

V

Q

in

step

1
2 56

0 015
1

.

.
 = 169

10
 = A9

H
 = 1010 1001

2

EXAMPLE 2

Let V
REF

 (+) = 5-V, V
REF

 (−) = 0-V

∴ Q
V V

step
REF REF

=
+ − −

=
() ()

256

5

25610

 = 0.01953125

Let the input analog voltage be 1.25-V. Now the digital data corresponding to 1.25-V is given by,

Digital data = − = −

V

Q
1in

step

125

0 01953125
1

.

.
 = 63

10
 = 3F

H
 = 0011 1111

2

Interfacing ADC0809 With 8086

A simple schematic for interfacing ADC0809/ADC0808 with 8086 microprocessor is shown

in Fig. 7.67. The ADC can be either memory-mapped or IO-mapped in the system. Here the ADC

is IO-mapped in the system with even address. The chip select signals for IO-mapped devices are

generated by using a 3-to-8 decoder. The address lines A
5
, A

6
 and A

7
 are used as input to decoder.

The address line A
0
 and the control signal M/IO are used as enable for the decoder. The decoder

generates eight chip select signals (IOCS-0 to IOCS-7), and these three chip select signals are used

for the ADC interface.

→

→
→←

8086

A
0
-A

19

D
0
-D

15

8
D

0

→
→
→
→

→

Y0

Y1

Y2

Y3

Y4

Y5

Y6

Y7

IOCS-0

IOCS-1

IOCS-7

IOCS-6

IOCS-5

IOCS-4

IOCS-3

IOCS-2

A

B

C

G
1→

G
2A

G
2B

3
-t

o
-8

 D
e
c
o

d
e
r

Reference

Voltage

Source

→

→

↑ ↑

↑

CLOCK

ALE

OE
SOC

EOC

V
R

E
F
(+

)

V
R

E
F
(−

)

B
1
-B

8

A
,B

,C

ADC0809/

ADC0808

31 A
1
-A

3

Fig. 7.67 : Interfacing ADC0809/ADC0808 with 8086 microprocessor.

A
5

A
6

A
7

A
0

Inverter

T
ri

st
a

te
B

u
ff

e
r

(7
4

L
S

1
2

5
)

IN0

IN1

IN2

IN3

IN4

IN5

IN6

IN7

Latches

and

Buffer

C
L

O
C

K

R
E

A
D

Y

R
E

S
E

T

Clock Divider

Circuit

+5-V

WRRD

→
PCLK

8284 Clock

Generator

M/IO

M/IO

←

8086 Microprocessor and Its Appications

7. 80 Chapter 7 Peripheral Devices And Interfacing

The chip select signal IOCS-6 is used to give the Start Of Conversion (SOC) signal to the

ADC along with a channel address. The chip select IOCS-5 is used to enable the tristate buffer

provided for interfacing EOC with the data bus. The chip select signal IOCS-7 is inverted and used

to enable the output buffer of the ADC whenever the digital data has to read from the ADC.

The Peripheral Clock Signal (PCLK) of the 8284 is divided by a suitable clock divider circuit

and used as a clock signal for the ADC. A separate voltage source has to be provided to give an

accurate reference voltage levels. The End Of Conversion (EOC) signal of the ADC is connected

to the bus line D
0
 of the system through a tristate buffer, so that the processor can check for a valid

EOC before reading the output buffer of ADC.

7.8 SHOR T QUESTIONS AND ANSWERS

7.1 What is a programmable peripheral device?

If the functions performed by a peripheral device can be altered or changed by a program

instruction then the peripheral device is called a programmable device. Usually programmable

devices will have control registers. The device can be programmed by sending the control word

in the prescribed format to the control register.

7.2 What is data transfer scheme and what are its types ?

The data transfer scheme refers to the method of data transfer between the processor and the

peripheral devices.

The different types of data transfer schemes are shown below :

TABLE - 7.22 : IO ADDRESS OF ADC0809/ADC0808

Operation

performed

Binary address

Hexa

address
Decoder input Address input to ADC

A
4

A
3

A
2

A
1A

7
A

6
A

5

SOC channel-0 1 1 0 x 0 0 0 0 C0

SOC channel-1 1 1 0 x 0 0 1 0 C2

SOC channel-2 1 1 0 x 0 1 0 0 C4

SOC channel-3 1 1 0 x 0 1 1 0 C6

SOC channel-4 1 1 0 x 1 0 0 0 C8

SOC channel-5 1 1 0 x 1 0 1 0 CA

SOC channel-6 1 1 0 x 1 1 0 0 CC

SOC channel-7 1 1 0 x 1 1 1 0 CE

Read EOC 1 0 1 x x x 0 A0

Read ADC Output 1 1 1 x x x 0 E0

 A
0

Decoder enable

 7. 81

7.3 What is synchronous data transfer scheme?

In synchronous data transfer scheme, the processor does not check the readiness of the device

after a command has been issued for read/write operation. In this scheme the processor will

request the device to get ready and then read/write to the device immediately after the request. In

some synchronous schemes a small delay is allowed after the request.

7.4 What is asynchronous data transfer scheme ?

In asynchronous data transfer scheme, first the processor sends a request to the device for read/

write operation. Then the processor keeps on polling the status of the device. Once the device is

ready, the processor execute a data transfer instruction to complete the process.

7.5 What are the internal devices of 8255 ?

The internal devices of 8255 are port-A, port-B and port-C. The ports can be programmed for

either input or output function in different operating modes.

7.6 What are the operating modes of port-A of 8255?

The port-A of 8255 can be programmed to work in any one of the following operating modes as

input or output port :

 Mode-0 : Simple IO port.

 Mode-1 : Handshake IO port.

 Mode-2 : Bidirectional IO port.

7.7 What are the functions performed by port-C of 8255?

1. The port-C pins are used for handshake signals.

2. Port-C can be used as an 8-bit parallel IO port in mode-0.

3. It can be used as two numbers of 4-bit parallel port in mode-0.

4. The individual pins of port-C can be set or reset for various control applications.

7.8 What is a handshake port ?

In a handshake port, signals are exchanged between the IO device and the port or between the

port and the processor for checking/informing various condition of the device.

7.9 Explain the working of a handshake input port.

In handshake input operation, the input device will check whether the port is empty or not. If the

port is empty then it will load the data to the port. When the port receives the data, it will inform

the processor for read operation. Once the data has been read by the processor, the port will

signal the input device that it is empty. Now the input device can load another data to the port and

the above process is repeated.

Synchronous

→ →

Data transfer

Programmed data transfer Direct memory access

→ →

→

Asynchronous

Interrupt driven
→

Cycle stealing

Block transfer

Demand transfer

→

8086 Microprocessor and Its Appications

7. 82 Chapter 7 Peripheral Devices And Interfacing

7.10 Explain the working of a handshake output port.

In a handshake output operation, the processor will load a data to the port. When the port

receives the data, it will inform the output device to collect the data. Once the output device

accepts the data, the port will inform the processor that it is empty. Now the processor can load

another data to the port and the above process is repeated.

7.11 How is DMA initiated?

When the IO device needs a DMA transfer, it will send a DMA request signal to the DMA

controller. The DMA controller in turn will send a HOLD request to the processor. When the

processor receives a HOLD request, it will drive its tristated pins to high impedance state at the

end of current instruction execution and send an acknowledge signal to DMA controller. Now the

DMA controller will perform DMA transfer.

7.12 What are the different types of DMAs?

The different types of DMA data transfer are cycle stealing (or single transfer) DMA, Block

transfer (or Burst mode) DMA and Demand transfer DMA.

7.13 What is cycle stealing DMA?

In cycle stealing DMA (or single transfer mode) the DMA controller will perform one DMA
transfer in between instruction cycles (i.e., In this mode the execution of one processor instruction

and one DMA data transfer will take place alternatively).

7.14 What is block and demand transfer mode DMA?

In block transfer mode, the DMA controller will transfer a block of data and relieve the bus to

processor. After sometime another block of data is transferred by the DMA and so on.

In demand transfer mode the DMA controller will complete the entire data transfer at a stretch and

then relieve the bus to the processor.

7.15 What are the programmable registers of 8237?

The programmable registers of 8237 are base address registers, base word count registers,

command register, request register, mode registers and mask register.

7.16 What is the first-last flip-flop?

The 8237 has an internal flip-flop called first-last flip-flop which takes care of reading/writing

16-bit information through 8-data lines.

The first-last flip-flop selects the low or high byte during read/write operation of the address and

count registers of the channels. If first-last flip-flop is zero (i.e. reset),then the low byte can be

read/write. If it is one (i.e., set) then the high byte can be read/write. After every read/write

operation the first-last flip-flop automatically toggles.

7.17 What is the bit format used for sending asynchronous serial data?

In asynchronous transmission, each data character has a bit which identifies its start and 1 or 2

bits which identifies its end. A typical bit format is shown in Fig. Q7.17.

D
1

D
2

D
3

D
4

D
5

D
6

D
0

S
to

p

P
a

ri
ty

S
to

p

S
ta

rt

Always low Always high
→ → →

One Character

Fig. Q7.17 : Bit format used for sending asynchronous serial data.

7. 83

7.18 What is baud rate ?

The baud rate is the rate at which the serial data are transmitted. Baud rate is defined as
1

(The time for a bit cell)
. In some systems one bit cell has one data bit, then the baud rate and bits

per second are the same.

7.19 What is RS-232C standard ?

The RS-232C is a serial bus consisting of a maximum of 25 signals. This bus signals are standardized

by EIA (Electronics Industries Association), USA and adopted by IEEE. Usually the first

9 signals are sufficient for most of the serial data transmission. The RS-232C serial bus is usually

terminated using either a 9-pin connector or a 25-pin connector.

7.20 What voltage levels are used in RS-232C serial communication standard?

The voltage levels for all RS-232C signals are :

Logic low = −3-V to −15-V under load (−25-V on no load)
Logic high = +3-V to +15-V under load (+25-V on no load)

Commonly used voltage levels are +12-V (logic high) and −12-V (logic low).

7.21 How is the RS-232C serial bus interfaced to TTL logic device ?

The RS-232C signal voltage levels are not compatible with TTL logic levels. Hence for interfacing

TTL devices to RS-232C serial bus, level converters are used. The popularly used level converters

are MC 1488 and MC 1489 or MAX 232.

7.22 What is USART ?

The device which can be programmed to perform synchronous or asynchronous serial

communication is called USART (Universal Synchronous Asynchronous Receiver Transmitter).

The INTEL 8251A is an example of USART.

7.23 What are the functions performed by INTEL 8251A?

The INTEL 8251A is used for converting parallel data to serial or vice versa. The data transmission

or reception can be either asynchronous or synchronous. The 8251A can be used to interface the

MODEM and establish serial communication through the MODEM over telephone lines.

7.24 What are the control words of 8251A and what are its functions?

The control words of 8251A are Mode word and Command word. The mode word informs 8251

about the baud rate, character length, parity and stop bits. The command word can be sent to

enable the data transmission and/or reception.

7.25 What is the information that can be obtained from the status word of 8251?

The status word can be read by the CPU to check the readiness of the transmitter or receiver and

to check the character synchronization in synchronous reception. It also provides information

regarding various errors in the data received. The various error conditions that can be checked

from the status word are parity error, overrun error and framing error.

7.26 What are the tasks involved in keyboard interface ?

The tasks involved in keyboard interfacing are Sensing a key actuation, Debouncing the key and

Generating keycodes (Decoding the key). These tasks are performed by software if the keyboard

is interfaced through ports and they are performed by hardware if the keyboard is interfaced

through 8279.

8086 Microprocessor and Its Appications

7. 84 Chapter 7 Peripheral Devices And Interfacing

7.27 What is debouncing ?

When a key is pressed it bounces for a short time. If a key code is generated immediately after

sensing a key actuation, then the processor will generate the same keycode a number of times. (A

key typically bounces for 10 to 20 milliseconds.) Hence the processor has to wait for the key

bounces to settle down before reading the keycode. This process is called keyboard debouncing.

7.28 What is scanning in keyboard and what is scan time?

The process of sending a zero to each row of a keyboard matrix and reading the columns for key

actuation is called scanning. The scan time is the time taken by the device/processor to scan all

the rows one by one starting from the first row and coming back to the first row again.

7.29 What is the disadvantage in keyboard interfacing using ports?

The disadvantage in keyboard interfacing using ports is that most of the processor time is utilized

in keyboard scanning and debouncing. As a result the computational speed/efficiency of the

processor will be reduced.

7.30 What is multiplexed display? What is its advantage?

The process of switching ON the display devices one by one for a specified time interval is called

multiplexed display. In microprocessor-based systems, six to eight 7-segment LEDs are interfaced

to provide multiplexed display. At any one time only one 7-segment LED is made to glow at a time.

After a few milliseconds, the next 7-segment LED is made to glow and so on. Due to persistence

of vision, it will appear as if the LEDs are glowing continuously. The advantage in multiplexed

display is that the power requirement of the display devices are reduced to a very large extent.

7.31 What is scanning in display and what is the scan time?

In display devices, the process of sending display codes to 7-segment LEDs to display the LEDs

one by one is called scanning (or multiplexed display). The scan time is the time taken to display

all the 7-segment LEDs one by one, starting from first LED and coming back to the first LED again.

7.32 What is the disadvantage of 7-segment LED interfacing using ports?

The disadvantage in using ports for 7-segment LED interfacing is that most of the processor time

is utilized for display refreshing.

7.33 What is the advantage of using INTEL 8279 for keyboard and display interfacing?

When 8279 is used for keyboard and display interfacing, it takes care of all the tasks involved in

keyboard scanning and display refreshing. Hence, the processor is relieved from the task of

keyboard scanning, debouncing, keycode generation and display refreshing, and so the processor

time can be more efficiently used for computing.

7.34 List the functions performed by 8279.

The functions performed by 8279 are,

• Keyboard scanning • Key debouncing • Keycode generation

• Informing the key entry to CPU • Storing display codes • Output display codes to LEDs

• Display refreshing

7.35 What is the maximum number of keycodes that can be generated by 8279?

In scanned keyboard mode the maximum size of keyboard matrix array that can be interfaced to

the 8279 is 8 x 8, which consists of 64 keys. In addition, the 8279 has two control keys called shift

and control. For each key press, an 8-bit code is generated and stored in FIFO (keyboard RAM of
8279). The keycode consists of row and column number of the key in binary along with the status

of shift and control key. Hence, with 64 contact keys, shift and control key, a maximum of 256

keycodes can be generated by 8279.

 7. 85

7.36 What are the programmable display features of 8279 ?

The 8279 can be used for interfacing LEDs or 7 segment LEDs. In decoded scan, 4 numbers of

7-segment LEDs can be interfaced and in encoded scan, a maximum of 16 numbers of 7-segment

LEDs can be interfaced. The 8279 can be programmed for left entry or right entry.

7.37 What are the different scan modes of 8279?

The different scan modes of 8279 are decoded scan and encoded scan. In a decoded scan mode,

the output of scan lines will be similar to a 2-to-4 decoder. In encoded scan mode, the output of

scan lines will be binary count, and so an external decoder should be used to convert the binary

count to the decoded output.

7.38 What is the difference in programming the 8279 for encoded scan and decoded scan?

If the 8279 is programmed for decoded scan then the output of scan lines will be decoded output

and if it is programmed for encoded scan then the output of scan lines will be a binary count. In

encoded mode, an external decoder should be used to decode the scan lines.

7.39 How is a keyboard matrix formed in keyboard interface using 8279?

The return lines, RL
0
 to RL

7
 of 8279 are used to form the columns of keyboard matrix. In decoded

scan the scan lines SL
0
 to SL

3
 of 8279 are used to form the rows of keyboard matrix. In encoded

scan mode, the scan line SL
0
 to SL

3
are connected to input of a decoder and the output lines of

decoder are used as rows of keyboard matrix.

7.40 What are the operating modes of the 8254 timer?

The 8254 timer has six operating modes and they are :

1. Mode-0 → Interrupt on terminal count.

2. Mode-1 → Hardware retriggerable one shot.

3. Mode-2 → Rate generator or Timed interrupt generator.

4. Mode-3 → Square wave mode.

5. Mode-4 → Software triggered strobe.

6. Mode-5 → Hardware triggered strobe.

 7.41 What is the function of GATE signal in the 8254 timer?

In timer 8254, the GATE signal acts as a control signal to start, stop or maintain the counting

process. In modes 0, 2, 3 and 4 the GATE signal should remain high to start and maintain the

counting process. In modes 1 and 5 the GATE signal has to make a low-to-high transition to start

the counting process and need not remain high to maintain the counting process.

7.42 What will be the frequency of square wave generated by the 8254 timer in mode-3?

The frequency of the generated square wave is given by the frequency of the input clock signal

divided by the count value loaded in the count register. If the count value N is an even number

then the square wave will be alternatively high and low for N/2 clock periods. If the count value

N is an odd number then the high time of square wave will be N 1
2
+ clock periods and low time will

be N 1
2

−
clock periods.

7.43 What is resolution in DAC?

The resolution in DAC is the smallest possible analog value that can be generated by the n-bit

binary input. If the reference voltage in n-bit DAC is V
REF

, then the resolution is (1/2n) × V
REF

 Volts.

8086 Microprocessor and Its Appications

7. 86 Chapter 7 Peripheral Devices And Interfacing

7.44 What are the internal devices of a typical DAC?

The internal devices of a DAC are R/2R resistive network, an internal latch and current to voltage

converting amplifier.

7.45 What is settling or conversion time in DAC?

The time taken by the DAC to convert a given digital data to a corresponding analog signal is

called conversion time.

7.46 What are the different types of ADC?

The different types of ADC are successive approximation ADC, counter type ADC, flash type

ADC, integrator converters and voltage-to-frequency converters.

7.47 What is resolution and conversion time in ADC?

The resolution in ADC is the minimum analog value that can be represented by the digital data. If

the ADC gives n-bit digital output and the analog reference voltage is V
REF

, then the resolution is

(1/2n) × V
REF

 volts. The conversion time in ADC is defined as the total time required to convert an

analog signal into its digital equivalent.

 CHAPTER 8

INTEL 80X86 FAMILY OF PROCESSORS

8.1 INTRODUCTION

The microprocessors are used as CPU in personal computers. The IBM Corporation, USA,

designed the first Personal Computer(PC) using INTEL 8088 as CPU. Ever since the introduction

of the PC, the applications and usage of personal computers, has increased day-by-day. This leads

to great improvement and advancement in PC, which inturn demands improvement in

microprocessors.

The INTEL has realized the demand for improvement in microprocessor and so keeps on

updating the features of microprocessors year-after-year. Every year INTEL is releasing new

processors with improved features. (Please refer to Appendix-I for complete list of processors

released by INTEL.) The improvements in microprocessors are related to the following :

• increased word length and memory space

• increased internal performance and clock rating

• increased external communications and error detection

• improved instruction set and support to software

• improved trouble shooting aids/provision

Initially, INTEL had retained the 8086 architecture as base architecture and improved the

other features of processor and released 80x86 family of processors. The 80x86 family includes

80186, 80286, 80386 and 80486 processors. Then INTEL switched to superscalar architecture

and released Pentium family of processors. The Pentium family of processors includes Pentium,

Pentium Pro, Pentium II, Pentium III and Pentium 4 processors. The data and address bus size,

addressable memory space and internal clock ratings of 80 x86 and Pentium family of processors

are listed in Table-8.1. The major new features of 80x86 and Pentium family of processors are

listed in Table-8.2.

TABLE - 8.1 : INTEL 80X86 AND PENTIUM FAMILY OF PROCESSORS

INTEL Internal External Address

 Physical Virtual Internal

processor data bus data bus bus

 memory memory clock

 space space rating

 8086 16-bit 16-bit 20-bit 1 Mb - 5/8/10 MHz

 8088 16-bit 8-bit 20-bit 1 Mb - 5/8 MHz

 80186 16-bit 16-bit 20-bit 1 Mb - 10/12 MHz

 80286 16-bit 16-bit 24-bit 16 Mb 1 Gb 6/10/12 MHz

80386 DX 32-bit 32-bit 32-bit 4 Gb 64 Tb 16/20/25/33 MHz

80486 DX 32-bit 32-bit 32-bit 4 Gb 64 Tb 25/33/50 MHz

Pentium 32-bit 64-bit 32-bit 4 Gb 64 Tb 60 - 200 MHz

Pentium pro 32-bit 64-bit 36-bit 64 Gb 64 Tb 150/166/180/200 MHz

Pentium II 32-bit 64-bit 36-bit 64 Gb 64 Tb 233 - 450 MHz

Pentium III 32-bit 64-bit 36-bit 64 Gb 64 Tb 450 MHz - 1 GHz

Pentium 4 32-bit 64-bit 36-bit 64 Gb 64 Tb 1.4 - 3.3 GHz

8. 2 Chapter 8 INTEL 80x86 Family Of Processors

TABLE - 8.2 : NEW FEATURES OF 80X86 AND PENTIUM FAMILY OF PROCESSORS

 INTEL
Major new features processor

8086/8088 Pipelined architecture, Instruction queue, Coprocessor support, segmented

memory.

80286 Instruction pre-decode, Multitasking, Memory protection, Virtual memory,

Auto-shutdown.

80386DX Instruction pipelining, Break-point instruction, Built-in self test, 32-bit internal registers.

80486DX Cache memory, Internal floating point unit, Restartable instruction, Data bus parity.

Pentium Superscalar architecture, Dual processor configuration, Internal error detection,

Dynamic branch prediction, Performance monitoring, Power management, Functional

redundancy check, Machine check, Address bus parity.

Pentium Pro Out-of-order execution, speculative execution, Register renaming, Secondary cache,

ECC (Error checking and correcting codes), DIB (Dual Independent Bus).

Pentium II MMX (Multi-Media Extension), System management bus, Integrated thermal diode.

Pentium III Processor serial number, Improved MMX, SIMD (Single Instruction Multiple Data)

extensions.

Pentium 4 Rapid execution engine, Hyperpipelined and Hyper Threading (HT) technology,

Advanced dynamic execution, 400/533/800 MHz system bus.

8.2 INTEL 80186

The 80186 microprocessor was released in 1982. The 80186 is a 16-bit microprocessor and

it consists of 15 to 20 of the most common microprocessor-based system components on a single

chip. It is actually an integration of BIU (Bus Interface Unit) and EU (Execution Unit) of 8086

processor with the following functional units on a single chip.

• Clock generator

• Programmable interrupt controller

• Programmable timers (3 independent 16-bit timers)

• Programmable DMA controller (2 independent DMA channels)

• Programmable memory and peripheral chip selection logic

• Programmable wait state generator

• Local bus controller

The 80186 is object code compatible with 8086 and provides twice the performance of

standard 8086. The instruction set of 80186 includes all the instructions of 8086 with additional 10

new instructions.

The 80186 uses a 20-bit address to access memory and hence it can directly address up to

one mega-byte (220 = 1 Mega) of memory space. The memory organization in 80186 and the IO

addressing are similar to that of 8086.

The 80186 is available with maximum internal clock frequency of 6, 8, 10 and 12 MHz.

 8. 3

8.2.1 Pins and Signals of 80186

The 80186 is a 68-pin IC available in three different packages : PLCC (Plastic Leaded Chip

Carrier), LCC (Ceramic Leadless Chip Carrier) and PGA (Ceramic Pin Grid Array). The pin

configuration of the PLCC package of 80186 is shown in Fig. 8.1. The name of the pins and

signals of 80186 processor are listed in Table-8.3.

TABLE - 8.3 : PIN DESCRIPTION OF 80186

Pin name Description Type

AD
15

-AD
0

Multiplexed address/data Bidirectional, Tristate

A
19

/S
6
-A

16
/S

3
Multiplexed address/status signals Output, Tristate

BHE/ S
7

Bus high enable or status signal S
7

Output, Tristate

ALE/QS
0

Address latch enable or Queue status 0 Output

WR/QS
1

Write control signal or Queue status 1 Output, Tristate

RD/ QSMD Read control signal or Queue status mode Bidirectional

S
0
, S

1
, S

2
Bus cycle status indicators Output, Tristate

DT/ R Data transmit/receive Output, Tristate

DEN Data enable Output, Tristate

ARDY Asynchronous ready signal Input

SRDY Synchronous ready signal Input

RES System reset Input

RESET Peripheral reset Output

X
1
, X

2
Crystal connection Input

CLKOUT Peripheral clock Output

LOCK Bus priority lock control Output, Tristate

HOLD Hold request Input

HLDA Hold acknowledge Output

TEST Wait on test control Input

TMR IN 0 Timer 0 input clock or control signal Input

TMR IN 1 Timer 1 input clock or control signal Input

TMR OUT 0 Timer 0 output signal Output

TMR OUT 1 Timer 1 output signal Output

DRQ 0 Channel 0 DMA request Input

DRQ 1 Channel 1 DMA request Input

NMI Nonmaskable interrupt Input

INT0, INT1 Maskable interrupt request Input

INT2, INTA0 Maskable interrupt request or

Acknowledge of INT0 Bidirectional

INT3, INTA1 Maskable interrupt request or

Acknowledge of INT1 Bidirectional

UCS Upper memory chip select signal Output

LCS Lower memory chip select signal Output

MCS
0
to MCS

3
Mid-range memory chip select signals Output

8086 Microprocessor and Its Appications

8. 4 Chapter 8 INTEL 80x86 Family Of Processors

A
R

D
Y

C
L

K
 O

U
T

R
E

S
E

T X
1

X
2

V
S

S

A
L

E
/Q

S
0

R

D
/Q

S
M

D

W
R

/Q
S

1

 S
7
/B

H
E

A
1
9
/S

6

A
1
8
/S

5

A
1
7
/S

4

A
1
6
/S

3

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1

 2

 3

 4

 5

 6

 7

 8

 9

1
0

1
1
 1

2
 1

3

1
4
 1

5

1
6

1
7

5
1

 5
0

 4
9

 4
8

 4
7

 4
6

 4
5

 4
4

 4
3

 4
2

 4
1

 4
0

 3
9

 3
8

 3
7

 3
6

 3
5

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

V
S
S

T
M

R
 O

U
T

 1

T
M

R
 O

U
T

 0

T
M

R
 I

N
 1

T
M

R
 I

N
 0

D
R

Q
 1

D
R

Q
 0

HLDA

HOLD

SRDY

NMI

INT0

INT1/SELECT

VCC

INT2/INTA0

INT3/INTA1/IRQ

DT/R

DEN

AD15

AD7

AD14

AD6

AD13

AD5

AD12

AD4

VCC

AD11

AD3

AD10

AD2

AD9

AD1

AD8

AD0

8
0
1
8
6

8
0
1
8
6

A
D

1
5
-A

D
0

A
1
6/

S
3
-A

1
9
/S

6 X
1

X
2

C
L

K
O

U
T

R
E

S
E

T

S
R

D
Y

A
R

D
Y

H
O

L
D

H
L

D
A

D

T
/

B
H

E
/S

7

 R

D
/Q

S
M

D

W
R

/Q
S

1

A
L

E
/Q

S
0

N
M

I

IN
T

3
/I

N
T

A
1

/I
R

Q

IN
T

2
/I

N
T

A
0

IN
T

1
/S

E
L

E
C

T

IN
T

0

T
M

R
 I

N
 1

T
M

R
 I

N
 0

T
M

R
 O

U
T

 1

T
M

R
 O

U
T

 0

D
R

Q
 1

D
R

Q
 0

V
C

C

V
S

S

R

F
ig

.
8
.1

 :
 P

in
 c

o
n
fi
g
u
ra

ti
o
n
 o

f
8
0
1
8
6
.

⇓⇔

⇑

⇓

⇑

P
C

S
6
 /

A
2

P
C

S
5
 /

A
1

L
C

S

U
C

S

M
C

S
3

 -
 M

C
S

0

P
C

S
4

 -
 P

C
S

0

L
C

S

U
C

S

P
C

S
6
 /
A

2

P
C

S
5
 /

A
1

P
C

S
4

P
C

S
3

P
C

S
2

P
C

S
1

P
C

S
0

R
E

S

MCS3

MCS2

MCS1

MCS0

S 0

S 1

S 2

R
E

S

T
E

S
T

L
O

C
K

D
E

N

TEST

LOCK

S
0
 -

 S
2

↑↓

 8. 5

Table - 8.3 : continued...

Pin name Description Type

PCS
0
 to PCS

4
Peripheral chip select signals Output

PCS
5
/A

1
Peripheral chip select 5 or

Latched address A
1

Output

PCS
6
/A

2
Peripheral chip select 6 or

Latched address A
2

Output

V
C C

Power supply,+5-V Input

V
S S

Power supply ground, 0-V Output

In an 80186 processor, the lower sixteen lines of address are multiplexed with the data and

the upper four lines of address are multiplexed with the status signals. During the first clock

period of a bus cycle, the entire 20-bit address is available on these lines. During all other clock

periods of a bus cycle, the data and status signals will be available on these lines. The signal ALE

is used to demultiplex address and data/status lines using external latches.

During the processor initiated bus cycle, the status signal S
6
 is asserted low and during

DMA cycle, it is asserted high. The status signals S
3
, S

4
 and S

5
 always remain at logic low.

The 80186 outputs a low on BHE pin during read, write and interrupt acknowledge cycles

when the data is to be transferred to the high order data bus. The output signal BHE on the first

T-state of a bus cycle is maintained as status signal S
7
 during all other T states of the bus cycle.

The BHE can be used in conjunction with address bit A
0
 (AD

0
) to select memory banks. The status

of BHE and A
0
 during word/byte transfer from even/odd memory bank are shown in Table-8.4.

TABLE - 8.4 : STATUS OF BHE AND A
0
 DURING MEMORY ACCESS

BHE A
0

Function

 0 0 Word transfer

 0 1 Byte transfer on upper half of data bus (D
15

-D
8
)

 1 0 Byte transfer on lower half of data bus (D
7
-D

0
)

 1 1 Reserved

The queue status are output through ALE and WR pins during the queue status mode. This

mode is selected by the coprocessor 80187 by sending a logic low signal to RD pin. The queue

status can be used to track the internal status of the queue. The output on QS
0
 and QS

1
 can be

interpreted as shown in Table-8.5.

TABLE - 8.5 : QUEUE STATUS

 QS
1
 QS

0
 Queue operation

0 0 No queue operation

0 1 First opcode byte fetched from the queue

1 0 Empty the queue

1 1 Subsequent byte fetched from the queue

8086 Microprocessor and Its Appications

8. 6 Chapter 8 INTEL 80x86 Family Of Processors

The status signals S
0
, S

1
 and S

2
 will

provide information regarding the nature of

the bus cycle performed by the processor.

The output on S
0
, S

1
 and S

2
during various

bus cycles are listed in Table-8.6.

The signal DEN is used to enable the

external data bus buffers/transceivers and

DT/R is used for direction control of data

bus buffers.

The ARDY and SRDY are input signals

to the processor, used by the memory or IO

devices to get extra time for data transfer or to introduce wait states in the bus cycles. The ARDY

pin accepts a rising edge that is asynchronous to CLKOUT and it is active high. The SRDY pin

accepts an active high input synchronized to CLKOUT. When one of the ready input is used, the

other should be tied to logic low. When both ready inputs are not used, they should be tied to logic

high.

The RES is the input reset signal to be applied to bring the processor to a known state. The

RES pin should be held low for atleast 50 milliseconds after power is switched-ON. Whenever RES

goes low, the processor generates a logic high output RESET signal and this signal can be used to

reset the peripheral devices in the system. When the processor is reset, the DS, SS, ES, IP and flag

register are cleared, Code Segment (CS) register is initialized to FFFF
H
 and queue is emptied. After

reset, the processor will start fetching instructions from the 20-bit physical address FFFF0
H
.

The pins X
1
 and X

2
 are provided to connect an external quartz crystal. The frequency of the

quartz crystal should be double that of internal clock frequency or processor clock frequency. The

processor clock signal is also given out through CLKOUT pin for used by the peripheral devices.

The LOCK is an active low output signal activated by the LOCK prefix instruction and

remains active until the completion of the instruction prefixed by LOCK, in order to prevent other

bus masters from gaining control of the system bus. The TEST input is tested by the WAIT

instruction. The processor will enter a wait state after execution of the WAIT instruction, and it

will resume execution only when TEST is made low by an external hardware.

The LCS is a programmable memory chip select signal to select a memory block of size 1 kb

to 256 kb with starting address 00000
H
. The UCS is a programmable memory chip select signal to

select a memory block of size 1kb to 256 kb ending with the address FFFFF
H
. The MCS

0
 to MCS

3

are programmable to select four middle memory blocks of size 8 kb to 512 kb.

The PCS
0
 to PCS

6
 are programmable peripheral chip select signals to select seven IO devices.

The PCS
5
 can also be programmed to provide internally latched address bit A

1
 and PCS

6
 can be

programmed to provide internally latched address bit A
2
.

8.2.2 Architecture of 80186

The architecture (functional block diagram) of 80186 microprocessor is shown in Fig. 8.2. The

various functional blocks of 80186 are Bus Interface Unit (BIU), Execution Unit (EU), Clock generator,

Programmable interrupt controller, Programmable timers, DMA controller and Chip select unit.

TABLE - 8.6 : BUS STATUS SIGNALS

S
2

S
1

S
0

 Bus cycle

0 0 0 Input acknowledge

0 0 1 Read IO

0 1 0 Write IO

0 1 1 Halt

1 0 0 Instruction fetch

1 0 1 Read data from memory

1 1 0 Write data to memory

1 1 1 Passive (No bus cycle)

 8. 7

C
h

ip
 S

e
le

c
t

U
n

it

P
ro

g
ra

m
m

ab
le

C
o

n
tr

o
l

R
eg

is
te

rs

1
6
-B

it
 S

eg
m

en
t

R
eg

is
te

rs

6
-B

y
te

 P
re

fe
tc

h

Q
u
eu

e

B
u

s
In

te
rf

a
ce

 U
n

it

INT3/INTA1/IRQ
1

6
-B

it

D
es

ti
n
at

io
n
 P

o
in

te
rs

P
ro

g
ra

m
m

a
b

le

D
M

A
 U

n
it

0

 1

2
0

-B
it

S
o
u
rc

e
P

o
in

te
rs

C
o
n
tr

o
l
R

eg
is

te
rs

1
6

-B
it

T
ra

n
sf

er
 C

o
u
n
te

r

LOCK

DEN

AD0- AD15

A16/S3-A19/S6

ALE/QS0

DT/R
P

ro
g

ra
m

m
a

b
le

 T
im

er
s

0

1

 2

M
ax

 C
o

u
n

t

R
eg

is
te

r
B

M
ax

 C
o
u
n
t

R
eg

is
te

r
A

C
o
n
tr

o
l
R

eg
is

te
rs

1
6
-B

it
 C

o
u
n
t

R
eg

is
te

r

In
te

rn
a
l

B
u

s

P
ro

g
ra

m
m

a
b

le

In
te

rr
u

p
t

C
o

n
tr

o
ll

e
r

C
o

n
tr

o
l

R
eg

is
te

rs

INT2/INTA0

INT1/SELECT

INT0

NMI

1
6

-B
it

A
L

U

 1
6

-B
it

G
en

er
al

P
u

rp
o

se

R
eg

is
te

rs

E
x

ec
u

ti
o

n
 U

n
it

C
lo

c
k

G
e
n

e
r
a

to
r

X1

X2

TMR IN 1

TMR OUT 0

TMR IN 0

TMR OUT 1

F
ig

.
8

.2
 :
 F

u
n
c
ti
o
n
a
l b

lo
c
k
 d

ia
g
ra

m
 o

f
IN

T
E

L
 8

0
1
8
6
 m

ic
ro

p
ro

c
e
s
s
o
r.

D
R

Q
 0

D
R

Q
 1

←

BHE / S7

RD/QSMD

WR / QS1

MCS0 - MCS3

PCS0 - PCS4

PCS5 / A1

PCS6 / A2

UCS

LCS

S
R

D
Y

H
L

D
A

H
O

L
D

A
R

D
Y

S
0
-S

2

V
C

C

G
N

D

C
L

K
O

U
T

R
E

S
E

T

R
E

S

T
E

S
T

8086 Microprocessor and Its Appications

8. 8 Chapter 8 INTEL 80x86 Family Of Processors

The BIU of 80186 is identical to the BIU of 8086 processor. The BIU consists of a dedicated

adder to generate a 20-bit address, 16-bit segment registers CS, DS, SS and ES, logic circuit to

produce bus control signals and 6-byte instruction queue. The 20-bit physical address is generated

by multiplying the content of one of the segment register by 16
10

 and then adding it to a 16-bit

offset. The EU of 80186 is identical to the EU of 8086 processor. The EU consists of 16-bit ALU,

Flag register, and general purpose registers AX, BX, CX, DX, SP, BP, SI and DI. The functions of

the general purpose registers and the flags of 80186 processor are same as that of 8086 processor.

The on-chip (internal) clock generator consists of a crystal oscillator, a divide-by-two

counter, synchronous and asynchronous ready inputs and reset circuitry. An external quartz crystal

of frequency double that of the processor clock should be connected through X
1
 and X

2
 pins to

the oscillator of the clock generator. The clock generated by the oscillator is divided by two and

used as a processor clock. The clock signal is also given out through the CLKOUT pin for use by

peripheral devices. The clock generator also provides the internal timing for synchronizing the

ready input signals.

The timer unit consists of three programmable 16-bit timers. The timer-0 and timer-1 can be

used to count external events, provide timings for external events, generate waveforms, etc., depending

on the mode of operation. The timer-0 and timer-1 can be driven either by a processor clock or by

an external clock. The timer-2 can be used only for internal timing operations. It can be used as a

clock source for other timers, as a watchdog timer or as a DMA request source. [A watchdog timer

is a timer which can internally interrupt the processor after a programmed time interval.]

The DMA controller unit consists of two independent DMA channels. DMA data transfer

can be performed between memory spaces or between IO spaces or between memory and IO

space. The data can be transferred either in bytes or in words to/from even/odd addresses. Each

data transfer consumes two bus cycles, one to read data and the other to write. Each DMA

channel has a 20-bit source pointer, a 20-bit destination pointer, a 16-bit count register and a

16-bit control register. The pointers are used to hold the source and destination addresses. The

count register is used to program the number of bytes/words to be transferred by DMA. The

control register is programmed for the type of DMA and various other functions. The DMA

channels can be programmed such that one channel can have higher priority over the other.

The interrupt controller unit arbitrates all internal and external interrupts. The 80186 has

five external (hardware) interrupt inputs and they are INT0, INT1, INT2, INT3 and NMI. The

external hardware interrupts can be expanded by connecting INTEL 8259 (external Programmable

Interrupt Controller) to INT0 and INT1 inputs.

The internal interrupts of 80186 includes INTEL predefined interrupts, software interrupts

and interrupts from internal timers and DMA channels. The INTEL predefined interrupts of 80186

includes the five INTEL predefined interrupts of 8086 (Divide error, Single step, NMI, Break point

and Interrupt on overflow) and in addition has three predefined interrupts : Array BOUNDS Interrupt,

Unused opcode interrupt and ESC opcode interrupt.

The array BOUNDS interrupt occurs if the boundary of an index register is outside the

values set up in the memory. The unused opcode interrupt occurs whenever the processor executes

any undefined opcode. The ESC opcode interrupt occurs if ESC opcodes are executed.

 8. 9

Each interrupt of 80186 has been allotted a type number and a vector address like that of

8086. The interrupt vector table of 80186 occupies the first 1kb memory space like that of 8086.

The type number, vector address and priority of the internal and external interrupts of 80186 are

listed in Table-8.7.

The chip select unit generates the chip select signals for memories and peripherals. This

unit provides 6 memory chip select outputs, namely UCS, LCS, MCS
0
, MCS

1
, MCS

2
 and MCS

3
.

The UCS is used to select the upper/top memory space of size 1kb to 256 kb ending with address

FFFFF
H
. The LCS is used to select the lower/bottom memory space of size 1kb to 256 kb starting

with address 00000
H
. The MCS

0
 to MCS

3
 can be used to select four address spaces of size 8 kb to

512 kb within 1Mb address space, excluding the address space defined by UCS and LCS.

The chip select unit provides seven peripheral chip select signals. Each peripheral chip

select signal addresses a 128 byte block of IO address space. The programmable IO address

space starts at a base IO (or memory) address programmed by the user. The seven consecutive

blocks of 128 bytes starting from this base address will be the IO address space addressed by the

seven peripheral chip select signals respectively.

TABLE - 8.7 : TYPE NUMBER AND PRIORITIES OF INTERRUPTS OF 80186

 Interrupt
 Type

Vector address
 Priority

 number level

Divide error 0 00000 - 00003 1

Single step 1 00004 - 00007 1A

NMI 2 00008 - 0000B 1

Breakpoint 3 0000C - 0000F 1

Interrupt on overflow 4 00010 - 00013 1

Array BOUNDS 5 00014 - 00017 1

Unused opcode 6 00018 - 0001B 1

ESC opcode 7 0001C - 0001F 1

Timer-0 8 00020 - 00023 2A

Timer-1 18 00048 - 0004B 2B

Timer-2 19 0004C - 0004F 2C

Reserved 9 00024 - 00027 3

DMA 0 10 00028 - 0002B 4

DMA 1 11 0002C - 0002F 5

INT0 12 00030 - 00033 6

INT1 13 00034 - 00037 7

INT2 14 00038 - 0003B 8

INT3 15 0003C - 0003F 9

80187 16 00040 - 00043 1

Note : Interrupt priority level 1 is the highest and 9 is the lowest. Some interrupts have the same priority.

8086 Microprocessor and Its Appications

8. 10 Chapter 8 INTEL 80x86 Family Of Processors

The chip select signals are active for all memory and IO cycles in their programmed areas,

whether they are generated by the BIU or the DMA unit.

The 80186 is completely object code compatible with 8086. The instruction set of 80186

consists of the instructions of 8086 and of 10 new instructions, which are listed below:

1. ENTER - Enter a procedure

2. LEAVE - Leave a procedure

3. BOUND - Check if an array index in a register is in range of array

4. INS - Input string byte or string word

5. OUTS - Output string byte or string word

6. PUSHA - Push all registers to stack

7. POPA - Pop all registers from stack

8. PUSH imm - Push immediate(imm) data to stack

9. IMUL reg,sou,imm - Multiply the immediate(imm) data and source(sou) data,

and store the result in register(reg)

8. SHIFT des,imm - Shift the destination(des) register /memory contents specified

immediate(imm) number of times.

8.3 INTEL 80286

The INTEL 80286 is a 16-bit microprocessor with on-chip memory protection capabilities.

The 80286 is an integration of 8086 and memory management unit on a single chip. It is primarily

designed for multiuser/multitasking systems. The 80826 is used as a CPU in IBM's personal

computers PC/AT and its clones.

The 80826 has two operating modes : real address mode and protected virtual address

mode. In real address mode, the 80286 can address upto 1Mb (Mega-byte) of physical memory

address space like 8086. In protected virtual address mode, it can address up to 16 Mb of physical

memory address space and 1Gb (Giga-byte) of virtual memory address space.

The instruction set of 80286 includes the instructions of 8086 and 80186, and has some

extra instructions to support the operating system and memory management. In real address

mode, the 80286 is object code compatible with 8086. In protected virtual address mode, it is

source code compatible with 8086 and the software may require some modifications to incorporate

the virtual address features. The performance of 80286 is five times faster than that of a standard

8086.

The 80286 is available with maximum internal clock frequency ratings of 4, 6 and 8 MHz.

8.3.1 Pins and Signals of 80286

The 80286 is a 68-pin IC available in ceramic leadless flat package. The pin configuration of

80286 is shown in Fig. 8.3. The pins and signals of 80286 are listed in Table-8.8. The 80286 has

nonmultiplexed address and data bus. It has 16 pins (D
0
-D

15
) for data and 24 pins (A

0
-A

23
) for

address.

8. 11

8
0
2
8
6

V
C

C

V
S
S

� �

D
0
-D

1
5

A
0
-A

2
3

P
E

R
E

Q

P
E

A
C

K

R
E

A
D

Y

H
O

L
D

H
L

D
A

R
E

S
E

T

C
L

K

C
A

P

M
/I

O

C
O

D
/I

N
T

A

IN
T

R

N
M

I

F
ig

.
8
.3

 :

P
in

 c
o

n
fi
g

u
ra

ti
o

n
 o

f
8

0
2

8
6

.

3
4

3
3

3
2

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

A
0

A
1

A
2

C
L

K

V
C

C

R
E

S
E

T

A
3

A
4

A
5

A
6

A
7

A
8

A
9

A
1

0

A
1

1

A
1

2

A
1

3

D15

D7

D14

D6

D13

D5

D12

D4

D11

D3

D10

D2

D9

D1

D8

D0

VSS

1

 2

 3

 4

 5

 6

 7

 8

 9

1
0

 1
1
 1

2

1
3

1
4

1
5
 1

6
 1

7

5
1

 5
0

 4
9

 4
8

 4
7

 4
6

 4
5

 4
4

 4
3

 4
2

 4
1

 4
0

 3
9

 3
8

 3
7

 3
6

 3
5

5
2

5
3

5
4

5
5

5
6

5
7

5
8

5
9

6
0

6
1

6
2

6
3

6
4

6
5

6
6

6
7

6
8

N
C

N
C

IN
T

R

N
C

N
M

I

V
S

S

P
E

R
E

Q

V
C

C

H
O

L
D

H
L

D
A

C
O

D
/I

N
T

A

 M
/I

O

8
0
2
8
6

C
A

P

NC

NC

A23

A22

VSS

A21

A20

A19

A18

A17

A16

A15

A14

N
o
te

 :

N
C

 -
 N

o
 c

o
n

n
e
c
ti

o
n

.

L
O

C
K

B
H

E

B
U

S
Y

E
R

R
O

R

S 1

S 0

S1

S0

PEACK

BHE

L
O

C
K

R
E

A
D

Y

B
U

S
Y

E
R

R
O

R

8086 Microprocessor and Its Appications

8. 12 Chapter 8 INTEL 80x86 Family Of Processors

TABLE - 8.8 : PINS AND SIGNALS OF 80286

Pin Description Type

D
15

-D
0

Data Bidirectional

A
23

-A
0

Address Output

BHE Bus high enable Output

S
0
, S

1
Status signals Output

M/IO Memory or IO indicator Output

LOCK Bus priority lock control Output

RESET Processor reset input Input

CLK Clock input Input

CAP Capacitor connection Bidirectional

READY Wait state control Input

HOLD Hold request Input

HLDA Hold acknowledge Output

PEREQ Processor extention request Input

PEACK Processor extention acknowledge Output

BUSY Wait request input from coprocessor Input

ERROR Coprocessor interrupt on error Input

INTR Interrupt request Input

NMI Non-maskable interrupt Input

COD/INTA Code access/Interrupt acknowledge Output

V
cc

+5-V, Power supply Input

V
ss

0-V, Ground Output

In 80286-based system, the memory is organized as odd bank and even bank. The odd

bank is enabled by the signal BHE and the even bank is enabled by the address bit A
0
 when it is low.

From the control point of view, the 80286 works as 8086 in maximum mode. The 80286

requires an external bus controller 82288 to generate the bus control signals. The status signals S
0
,

S
1
 and M/IO are decoded by the bus controller to generate memory read, memory write, IO read,

IO write, interrupt acknowledge and other bus control signals.

The COD/INTA output and M/IO can be used to produce early control bus signals. The

COD/INTA is asserted low for interrupt acknowledge and data memory read/write bus cycles. It

is asserted high for IO read/write and instruction/code read bus cycles.

The 80286 does not have an internal clock generation circuit. Hence an external clock

generator 8284 should be employed in 80286-based system to generate the required clock for

80286 processor. The clock generator also supplies the RESET and READY inputs to 80286. The

function of READY and LOCK of 80286 are similar to READY and LOCK of 8086.

The 80286 has a logic high reset to bring the processor to a known state. After a reset, the

80286 processor will work in real address mode and start executing the program stored at FFFFF0
H
.

The reset will also initialize the internal registers as follows:

 8. 13

Flag register : 0002
H

CS-register : F000
H

Machine Status Word : FFF0
H

DS-register : 0000
H

Instruction Pointer : FFF0
H

SS-register : 0000
H

ES-register : 0000
H

The CAP pin has been provided to connect an external filter capacitor for the negative bias

voltage generator located internally. The negative bias voltage is required for the substrate of MOS

devices in 80286 in order to work at maximum speed. An electrolyte capacitor of rating 0.047 μF,

±20%, 25-V should be connected to a CAP pin. The positive end of capacitor is grounded and the

negative end is connected to the CAP pin.

The HOLD input is used by the DMA controller to request the bus to perform DMA transfer.

The HLDA signal is the acknowledge signal sent by 80286 to the DMA controller to inform that the

bus has been released for performing DMA.

The pins PEREQ, PEACK, BUSY and ERROR are used for interfacing coprocessor 80287

with 80286. The coprocessor (80287) will assert PEREQ as high whenever it requires a memory

data transfer. When the processor (80286) starts performing the data transfer it will send an

acknowledge to the coprocessor (80287) by asserting PEACK as low.

When the coprocessor executes an instruction, the 80286 will wait (by executing wait

instruction) until the BUSY signal is asserted low by the coprocessor. Whenever the coprocessor

finds some error during processing it will interrupt the processor by asserting ERROR as low. In

response the processor will perform a type 16
H
 interrrupt call, which will automatically execute a

procedure written for the desired response to error condition.

8.3.2 Architecture of 80286

The architecture (functional block diagram) of 80286 is shown in Fig. 8.4. The 80286 has

four separate processing units: Bus Unit (BU), Instruction Unit (IU), Execution Unit (EU) and

Address Unit (AU).

The Bus Unit (BU) performs all the memory and IO read/write operations. Whenever the

bus is free, the BU will fetch instruction bytes and put them in 6-byte prefetch queue. When a

jump/call instruction is encountered, the BU will dump/clear the queue and starts filling it from the

jump/call address. The BU also controls transfer of data to and from the coprocessor 80287.

The Instruction Unit (IU) will read the prefetched instructions from the BU and decode

them, and then put them in the instruction queue. The instruction queue can accommodate up to

three decoded instructions. This additional pipelining in 80286 increases the speed of processing

of 80286, when compared to an 8086.

The Execution Unit (EU) will read the decoded instructions from the IU and execute them

sequentially. It directs the BU to fetch memory or IO operands whenever needed. The EU has a

16-bit ALU, a set of registers identical to that of 8086 and in addition it has a 16-bit Machine Status

Word (MSW). The MSW is used to switch from real address mode to protected virtual address

mode after a reset.

8086 Microprocessor and Its Appications

8. 14 Chapter 8 INTEL 80x86 Family Of Processors

A
d

d
re

ss
 L

a
tc

h
es

a
n

d
 D

ri
v

er
s

P
r
e
fe

tc
h

e
r

P
ro

ce
ss

o
r

E
x

te
n

si
o

n

In
te

rf
a

ce

B
u

s
C

o
n

tr
o

l

D
a

ta
 T

ra
n

sc
ei

v
er

s

6
-B

y
te

 P
r

e
fe

tc
h

Q
u

e
u

e

P
h

y
si

c
a

l

A
d

d
r
e
ss

A
d

d
e
r

S
e

g
m

e
n

t

B
a

s
e

s

S
e

g
m

e
n

t

S
iz

e
s

S
e

g
m

e
n

t
L

im
it

C
h

e
c

k
e

r

O
ff

s
e

t

A
d

d
e
r

A
d

d
r
e
ss

 U
n

it
 (

A
U

)

B
u

s
U

n
it

 (
B

U
)

A
L

U

R
e
g

is
te

r
s

C
on

tr
ol

E
x

e
c
u

ti
o

n
 U

n
it

 (
E

U
)

3
 D

e
c
o

d
e
d

I
n

s
tr

u
c

ti
o

n

Q
u

e
u

e
In

st
r
u

c
ti

o
n

 U
n

it
 (

IU
)

I
n

s
tr

u
c

ti
o

n

D
e

c
o

d
e

r

INTR
NMI

F
ig

.
8

.4
 :
 F

u
n
c
ti
o
n
a
l b

lo
c
k
 d

ia
g
ra

m
 o

f
a
n
 I
N

T
E

L
 8

0
2
8
6
 m

ic
ro

p
ro

c
e
s
s
o
r.

R
E

S
E

T

C
A

P

V
S
S

V
C

C

C
L

K

D
1

5
-D

0

H
O

L
D

R
E

A
D

Y

P
E

R
E

Q

A
2

3
-A

0
,

B
H

E
,

M
/I

O

P
E

A
C

K

S
1
,

S
0
,

C
O

D
/I

N
T

A
,

L
O

C
K

,
H

L
D

A
ERROR

BUSY

 8. 15

The general purpose registers available in the EU of 80286 are AX, BX, CX, DX, SP, BP, SI

and DI. The function of these registers are same as that of 8086. Also, the EU has a 16-bit Instruction

Pointer (IP) and a 16-bit flag register. The format of the flag register of 80286 is shown in Fig. 8.5.

The Address Unit (AU) takes care of computing physical address of memory or IO and

sends the address to the BU. The 80286 can operate either in real address mode or protected

virtual address mode. After a reset, the 80286 processor will work in real address mode. In real

address mode, the address computation is similar to that of 8086 and the processor uses only

lower 20 bits of the address. Therefore, the maximum physical address space in this mode is only

1Mb. The AU has four numbers of 16-bit segment registers like 8086 and they are Code Segment

(CS), Data Segment (DS), Stack Segment (SS) and Extra Segment (ES) registers. The program/

code address is computed by multiplying the content of the CS by 16
10

 and then adding it to 16-bit

offset available in IP. The data address is computed by multiplying the content of the DS/ES by

16
10

 and then adding it to a 16-bit offset specified by the instruction. The stack address is computed

by multiplying the content of SS by 16
10

 and then adding to a 16-bit offset specified by the

instruction.

The processor can be switched from real address mode to Protected Virtual Address Mode

(PVAM) by loading an appropriate word in MSW register. In PVAM, the address unit functions as

a complete Memory Management Unit (MMU). In PVAM, the 80286 uses all the 24 address lines

and can access up to 16 Mb (224 = 16 Mega) of physical memory address space and 1Gb of virtual

address space. In PVAM mode, each memory location is represented by a 32-bit virtual address

(or logical address). The MMU translates the 32-bit virtual address to a 24-bit physical address.

The 32-bit virtual address has a 16-bit selector and 16-bit offset. The 16-bit selector is used to

fetch a descriptor from a descriptor table. The descriptor contains a 24-bit segment base address

which is added to the 16-bit offset to get a 24-bit physical address.

Note : The 80286 has a 13-bit index for descriptor and allows two descriptor tables (Global

Descriptor Table [GDT] and Local Descriptor Table [LDT]). Therefore, the processor allows

213 × 2 = 214 = 16 k descriptors. Each descriptor can define a segment of size 1kb to 64 kb.

Hence total virtual space is 16 k × 64 kb = 214 × 216 bytes = 210 × 220 bytes = 1024 × 1Mb = 1Gb.

N T IO P L OF IF T F SF ZF PF CFDF

→
→
→
→
→

ALU Status Flags

Carry Flag

Parity Flag

Auxiliary Carry Flag

Zero Flag

Sign Flag

Overflow Flag

Control Bits

Trap Flag

Interrupt Flag

Direction Flag

Special Fields

Nested Task Flag

IO Privilege Level

←
←

Fig. 8.5 : Flag register of 80286.

AF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IPQ

8086 Microprocessor and Its Appications

8. 16 Chapter 8 INTEL 80x86 Family Of Processors

8.3.3 Real Address Mode of 80286

After a reset, the 80286 processor will work in real address mode. The working of 80286

in real address mode is similar to that of 8086 in maximum mode. In real address mode, the 80286

will directly execute the 8086 machine code programs with only minor modifications. In 80286,

the execution will be faster due to extensive pipelining and other hardware improvements.

In real address mode, the 80286 computes the memory address similar to that of 8086. It

uses 20-bit address to access memory. The 20-bit physical address is computed by multiplying a

16-bit segment base address by 16
10

 and adding it to a 16-bit offset. Hence, 80286 can address up

to 1Mb (220 = 1 Mega) of physical memory space. In this mode, the upper 4 bits of memory

address bus are ignored.

The 80286 has 256 interrupts like 8086 and each interrupt has a type number in the range

0 to 255. In real address mode, the execution of interrupt is similar to that of 8086 processor. The

interrupt vector table is located in the first 1kb of memory space. When an interrupt occurs, the

processor multiplies the interrupt type number by four to get the address of the vector table. From

this address in the vector table, the segment base address and offset address of the interrupt

service procedure/subroutine are read and loaded in CS and IP respectively. The INTEL predefined

interrupts of 80286 includes the predefined interrupts of 8086 and has additional few predefined

interrupts. The predefined interrupts of the 80286 are listed in Table-8.9

The real address mode is mainly used to initialize peripheral devices, load the main part of the

operating system from disk into memory, enable interrupts and enter the protected virtual address mode.

TABLE - 8.9 : PREDEFINED INTERRUPTS OF 80286

 Interrupt Type number

Divide error 0

Single step 1

NMI 2

Breakpoint 3

Interrupt on overflow 4

Array bounds 5

Invalid opcode 6

Processor extension not available 7

Interrupt table limit too small 8

Processor extension segment overrun 9

Invalid task state segment 10

Segment not present 11

Stack segment overrun or not present 12

Segment overrun 13

Processor extension error 16

8.3.4 Protected Virtual Address Mode of 80286

After a reset, the 80286 processor will work in real address mode and it can be made to

work in Protected Virtual Address Mode (PVAM) by loading an appropriate word in the Machine

Status Word (MSW) register. The format of the MSW is shown in Fig. 8.6. In order to enter

PVAM, frame a word such that the most significant bit (PE) is one (i.e., to enter PVAM, PE bit is

 8. 17

set to one) and load this word in a register/memory, and then execute the instruction LMSW

(Load MSW). Once the processor enters PVAM, the only way to get back to the real address

mode is by resetting the system. In PVAM, the Address Unit (AU) functions as a Memory

Management Unit (MMU). In PVAM, 24-bit address is used to access memory and this address is

computed by adding a 24-bit segment base address and a 16-bit offset. The segment base address

is obtained from a descriptor, which is stored in the descriptor table.

Memory Management in PVAM

In PVAM, the 80286 allows the user to create memory segments of length/size 1kb to 64 kb

for each task/program. A size or limit is given to each segment when it is created. The 80286 allows

64 k memory segments and all these segments are not available in the physical memory space at the

same time. Hence, these segments are called logical/virtual segments. The segments currently being

used by a task/program are kept in physical memory. The segments which are not currently used will

be in secondary memory like hard disk and they are brought to physical memory whenever needed.

In PVAM, the user has to provide a 32-bit virtual address for memory. The lower word

(lower 16-bit) of virtual address is offset address and the upper word (upper 16-bit) is called

selector, which is loaded in segment register. The 16-bit selector is used to fetch an 8-byte descriptor

from the descriptor table. The descriptor contains the 24-bit segment base address which is added

to the 16-bit offset to get a 24-bit physical address. Thus, address calculation in PVAM involves

selector, descriptor and descriptor table.

Selector

When a program is assembled for execution on an 80286 processor in PVAM, each segment

is assigned a unique 16-bit selector. The format of the selector is shown in Fig. 8.7.

The 2-bit RPL (Requested Privilege Level) field is used by operating system for implementing

the 80286's protection features and is not used in address calculation. The 1-bit TI field is used to

select one of the two descriptor tables. When TI field is one, Global Descriptor Table (GDT) is

selected and when TI field is zero, Local Descriptor Table (LDT) is selected. The 13-bit index is

used to create 213 = 8192
10

 = 8 k descriptors in each table. The 13-bit index is multiplied by 8 to get

the address of the descriptor in a descriptor table.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TS MPEM P E

Task Switch

Emulate Processor Extension
Monitor Processor Extension

Protection Enable←

←

←

←

Fig. 8.6 : Format of Machine Status Word (MSW).

15 . 4 3 2 1 0

13-bit Index
Requested Privilege
Level 0 to 3

1 = Select GDT

0 = Select LDTFig. 8.7 : Format of selector.

INDEX

1 2444 3444

T I RPL

IPQ

8086 Microprocessor and Its Appications

8. 18 Chapter 8 INTEL 80x86 Family Of Processors

Descriptor

When a program is assembled for execution on an 80286 processor in PVAM, a unique

descriptor is produced for each segment. The length of the descriptor is 8-byte. The format of

descriptor is shown in Fig. 8.8.

The byte-0 and byte-1 of the descriptor contains the length/limit of the segment in bytes.

When an attempt is made to access a location beyond the limit, the MMU will generate an interrupt.

The byte-2, byte-3 and byte-4 of the descriptor contain the 24-bit segment base address. Byte-5

of the descriptor is called the access byte and it contains information regarding privilege level,

access right and the type of segment. Byte-6 and byte-7 are reserved for future expansion and

should be filled with zero for compatibility with a higher version of 80x86 family.

Descriptor table

In 80286-based system, the descriptors are stored in descriptor tables. There are two types

of descriptor tables: Global Descriptor Table (GDT) and Local Descriptor Table (LDT). The

descriptor tables are created by system software and stored in memory. The processor can read

the descriptors from the tables in memory, whenever needed.

INTEL Reserved

INTEL Reserved

Base Address

23-16

Base Address

15-8

Base Address

7-0

Limit

15-8

Limit

7-0

P DPL S TYPE A

Byte-7

Byte-6

Byte-5

Byte-4

Byte-3

Byte-2

Byte-1

Byte-0

P S TYPE A

7 6 5 4 3 2 1 0

1 = Segment Descriptor

 is Accessed

0 = Segment Descriptor

 is not Accessed

1
 =

 C
o

d
e
/D

a
ta

 S
e
g

m
e
n

t
D

e
sc

ri
p

to
r

0
 =

 S
y

st
e
m

 S
e
g

m
e
n

t
D

e
sc

ri
p

to
r

o
r

G
a
te

 D
e
sc

ri
p

to
r

D
es

cr
ip

to
r

P
ri

v
il

eg
e

L
ev

el
 0

 t
o

 3

1
=

 P
re

se
n

t.
 S

e
g

m
e
n

t
is

 M
a
p

p
e
d

in
to

 P
h

y
si

c
a
l

M
e
m

o
ry

0
=

 S
eg

m
en

t
n
o
t

P
re

se
n
t

Access Byte

DPL

TYPE for Code/Data Segment Descriptor

Code segment Data segment

E C R

1 = Readable

0 = Not Readable

1 = Code Segment May Only be

 Executed When CPL ≥ DPL

0 = Not Executed

1

E ED W

1 = Writable

0 = Not Writable

1 = Expand Down Segment,

 Offsets Must be >Limit.

0 = Expand up Segment,

 Offsets Must be ≤ Limit.

0

 TYPE for system

 segment descriptor

000 Invalid descriptor

001 available task

state segment

010 LDT descriptor

011 Busy task state

segment

100 to 111 Control descriptor

Fig. 8.8 : Format of a descriptor.

IPQ

8. 19

The GDT contains the descriptors for the operating system segments and descriptors for

segments which need to be accessed by all user tasks. The LDT contains descriptors for each

task. A four level protection scheme can be used to protect the operating system descriptors in the

GDT from unauthorized access by user tasks.

Address Translation in 80286

The 80286 has four numbers of segment descriptor cache registers which are invisible to

the programmer. The size of these register is 48 bits (so that it can hold the 6-byte descriptor).

When the 80286 is operating in PVAM, descriptors must be copied to the processor from

tables in memory and loaded in the invisible segment descriptor cache registers. The descriptors

are then used for producing and checking physical addresses.

The 80286 also has internal registers for storing base addresses of descriptor tables and they

are GDTR and LDTR. The 80286 keeps the base addresses and limits for the descriptor tables

currently in use in these internal registers.

The Global Descriptor Table Register (GDTR) contains the 24-bit base address and limit for

the table containing the global address space description. This register is initialized with LGDT

(Load GDT) instruction when the system is booted.

The Local Descriptor Table Register (LDTR) in the 80286 contains the base address and

limit of the local descriptor table for the task currently being executed. The LLDT(Load LDT)

instruction is used to load this register when the system is booted.

Each address in the PVAM is represented by a 32-bit virtual address. The virtual address

consists of a 16-bit selector and 16-bit offset. To access a segment, the selector for that segment is

loaded into the visible part of the appropriate segment register in the 80286. The 80286 then automatically

multiplies the index value of the selector by 8 and adds the result to a descriptor table base address in

its GDTR or LDTR. The 80286 then fetches the segment descriptor from the resultant address in a

descriptor table. Byte-0 to byte-5 of the descriptor is loaded into an invisible segment descriptor cache

register. The descriptor has a 24-bit base address. This base address is added directly to the offset

part of the virtual address to produce the physical address of the desired byte or word. The conversion

of virtual address to physical address is diagrammatically shown in Fig. 8.10.

VISIBLE HIDDEN

Address Translation gisterRe
6 7444444444444 8444444444444

Segment Selectors
Access
 Right

Segment Base
 Address

Segment
 Size

7 0 23 0 15 0

47 40 39 16 15 0

Segment Descriptor Cache Register.

(CPU Loads This Explicit Cache

Which is Invisible to Programs)

CS

DS

SS

ES

Fig. 8.9 : Address translation register.

8086 Microprocessor and Its Appications

8. 20 Chapter 8 INTEL 80x86 Family Of Processors

In a system which always runs the same program, the physical base addresses in descriptors

are fixed by program development tools when the program is built. In a general purpose system

which runs the same program, the physical base addresses in the descriptors may be changed by the

operating system when a program is loaded into the memory to be run. This is done so that the

program can be loaded into available memory without disturbing the programs or tasks already present.

8.4 INTEL 80386 MICROPROCESSOR

The 80386 is a 32-bit microprocessor and it is an improved version of 80286 with software

compatibility with 8086, 80186 and 80286. The major improvements in 80386 over 80286 are the

following:

� The processor registers and ALU are 32 -bit wide and the instruction set is extended to support 32-bit addresses

and data.

� The main memory and the data path to memory can be 32- bit wide, so instructions and data read/write operations

will be two times faster.

� The maximum size of physical memory is extended from 16 Mb (224 bytes) to 4 Gb (232 bytes).

� Since 80386 runs at higher clock frequency, faster execution speed is obtained and most instructions take fewer

clock cycles to execute.

� The on-chip memory management supports paging.

Access Byte 24-Bit Base LimitIndex

Selector Offset

U

V
|

W
|

U

V

|
||

W

|
|
|

UV ||||W ||||

Descriptor Loaded into Segment
Descriptor Cache Register

Byte-7

Byte-6

Byte-5

Byte-4

Byte-3

Byte-2

Byte-1

Byte-0

Physical
Memory

Addressed
Code/Data

Segment Base
Address

+

+

x8

→

8-Byte
Descriptor

U

V

|
||

W

|
|
|

→

↓

↓

→→
↑

Descriptor Table Base Address

Fig. 8.10 : Translation of 32-bit virtual address to 24-bit physical address in 80286.

GDTR

LDTR

↑

Physical Memory

15............3 2 10 47 40 39 8 7 0

..
..

.

31 16 15 0

or

↑

 8. 21

The 80386 is available in two versions: 80386DX and 80386SX. The internal architecture

of both the versions of 80386 are same, but they differ only in external address and data bus. The

80386DX has separate external 32-bit data bus and address bus. The 80386SX has external 16-bit

data bus and 24-bit address bus. The 80386DX is called the full version of 80386 and 80386SX is

called the reduced bus version of 80386. The 80386SX was developed after the 80386DX for

applications that did not require an external 32-bit bus and at the same time had the advantage of

internal 32-bit computation.

The 80386SX can address up to 16 Mb (224 = 16 M) of physical memory space and memory

is organized as two banks of 8 Mb. The 80386DX can address up to 4 Gb (232 = 4 G) of physical

memory space and memory is organized as four banks of 1 Gb. Both 80386SX and 80386DX

have virtual address space of 64 Tera bytes (246 = 64 T).

The 80386 can work in three modes : real address mode, protected virtual address mode

and virtual 8086 mode. The 80386 processor will enter real address mode after a hardware reset

and in this mode it works as fast as an 8086 processor with a few additional new instructions. The

real address mode is mainly used for initialization and enters into the Protected Virtual Address

Mode (PVAM).

In PVAM, the 80386 works as a 32-bit processor and all instructions and features of 80386

are available in this mode. While working in PVAM, the processor can switch to Virtual 8086

(V86) mode to run 8086 applications and then return to PVAM. In V86 mode, the processor can

run 8086 applications with protection features of 80386.

The 80386 is available with maximum clock speed rating of 12.5, 16, 20, 25 or 33 MHz.

8.4.1 Pins and Signals of 80386

The 80386DX is a 132-pin IC available in Pin Grid Array (PGA) package. The pin

configuration of an 80386DX is shown in Fig. 8.11. The 80386SX is a 100-pin IC available in

plastic quad flatpack package. The pin configuration of 80386SX is shown in Fig. 8.12. The

signals of 80386DX are listed in Table-8.8.

The 80386DX has 32 pins for data transfer from/to memory or IO. It can access byte/

word/double word from memory or IO in one bus cycle.

The 80386DX has 30 pins for addressing 1 Gb (230 = 1G) of physical address space and

four byte/bank enable signals BE
0
to BE

3
 to enable four memory banks, each of size 1 Gb. The

signals BE
0
to BE

3
 are generated internally by decoding the address bits A

0
 and A

1
.

8086 Microprocessor and Its Appications

8. 22 Chapter 8 INTEL 80x86 Family Of Processors

F
ig

.
8
.1

1
 :
 P

in
 d

e
s
c
ri
p
ti
o
n
 o

f I
N

T
E

L
 8

0
3
8
6
D

X
 m

ic
ro

p
ro

c
e
s
s
o
r.

M
et

a
l L

id

V
C

C
V

C
C

V
C

C
V

C
C

V
C

C

V
C

C
V

C
C

V
C

C
V

S
S

V
S
S

V
S
S

V
S
S

V
S
S

D
3
1

D
2
9

D
2
7

D
2
6

D
2
8

D
2
5

D
2
4

D
2
3

V
S
S

D
2
0

D
2
1

D
2
2

D
1
7

D
1
9

D
1
5

D
1
6

D
1
8

D
1
0

D
1
4

D
1
2

D
7

V
S
S

D
0

B
E

0
C

L
K

2
N

C
M

/
IO

D
/

C

N
o
te

 :
 1

.
V

ie
w

 f
ro

m
 p

in
 s

id
e

2
.
N

C
 -
 N

o
co

n
n

ec
ti

on
.

A
B

C
D

E
F

G
H

J
K

L
M

N
P

A
B

C
D

E
F

G
H

J
K

L
M

N
P

1 2 3 4 5 6 7 8 9 1
0

1
1

1
4

1
2 1
3

V
C

C
V

S
S

 A
14

A
8

A
1
1

 A
15

A
2
6

A
1
6

A
1
7

A
2
0

A
2
1

A
2
3

A
2
7

A
3
0

V
C

C
V

C
C

V
S
S

 V
S

S
V

S
S

A
1
3

A
5

A
7

A
1
0

A
1
8

A
2
2

A
3
1

A
2
9

A
2
4

V
C

C
V

C
C

 V
S

S
V

S
S

V
S
S

D
3
0

A
3

A
4

A
6

A
9

 A
12

A
2
8

A
2
5

A
1
9

N
C

N
C

A
2

V
C

C
V

C
C

V
S
S

N
C

N
C

V
S
S

V
C

C
N

C
IN

T
R

E
R

R
O

R
N

M
I

P
E

R
E

Q

B
U

S
Y

R
E

S
E

T
V

S
S

V
C

C
L

O
C

K
W

/
R

V
S
S

D
1
1

D
1
3

V
C

C
D

8
D

5
D

1
R

E
A

D
Y

N
A

B
E

1
B

E
2

B
E

3
N

C
N

C

V
C

C
V

C
C

V
S
S

V
S
S

D
9

H
L

D
A

D
6

D
4

V
S
S

D
3

D
2

A
D

S
B

S
16

H
O

L
D

5 8 9 1
31 2 3 4 6 7 1
0

1
1

1
4

1
2

E
R

R
O

R

L
O

C
K

B
U

S
Y

W
/R

P
E

R
E

Q

D
/C

M
/I

O

R
E

A
D

Y

B
S

1
6

N
A

A
D

S

N
C

 (
8

 p
in

s)

B
E

0
-B

E
3

A
2
-A

3
1

D
0
-D

3
1

3
2

-B
it

D
a

ta

3
2

-B
it

A
d
d
re

ss

C
lo

c
k

C
L

K
2

H
O

L
D

H
L

D
A

R
E

S
E

T
IN

T
A

N
M

I

P
o

w
e
r

S
u

p
p

ly
(2

1
 p

in
s)

 V
S

S

(2
0

 p
in

s)
 V

C
C

In
te

rr
u

p
ts

B
u
s

A
rb

it
ra

ti
o

n

C
o

p
ro

c
e
ss

o
r

S
ig

n
al

s

B
u

s
C

y
cl

e
D

e
fi

n
it

io
n

B
u
s

C
o

n
tr

o
l

IN
T

E
L

8
0

3
8

6
D

X

⇓⇔ ⇓

IPQ

IPQ

IPQ
IPQ IPQ

IPQ

IPQ
IPQ

IPQ

 8. 23

A
1
-A

2
3

D
0
-D

1
5

1
6

-B
it

D
a

ta

2
4

-B
it

A
d
d
re

ss

C
lo

c
k

C
L

K
2

H
O

L
D

H
L

D
A

R
E

S
E

T
IN

T
R

N
M

I

P
o

w
e
r

S
u

p
p

ly
(1

8
 p

in
s)

 V
S

S

(1
4

 p
in

s)
 V

C
C

In
te

rr
u

p
ts

B
u
s

A
rb

it
ra

ti
o

n

IN
T

E
L

8
0

3
8

6
S

X

B
H

E

B
L

E

E
R

R
O

R

L
O

C
K

B
U

S
Y

W
/R

P
E

R
E

Q

D
/C

M
/I

O

R
E

A
D

Y

F
L

T

N
A

A
D

S

N
C

 (
1

0
 p

in
s)

C
o

p
ro

c
e
ss

o
r

S
ig

n
al

s

B
u

s
C

y
cl

e
D

e
fi

n
it

io
n

B
u
s

C
o

n
tr

o
l

F
ig

.
8
.1

2
 :
 P

in
 d

e
s
c
ri
p
ti
o
n
 o

f
IN

T
E

L
 8

0
3
8
6
S

X
 m

ic
ro

p
ro

c
e
s
s
o
r.

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

100

99

98

97

96

95

94

93

92

91

90

89

88

87

86

85

84

83

82

81

80

79

78

77

76

7
5

7
4

7
3

7
2

7
1

7
0

6
9

6
8

6
7

6
6

6
5

6
4

6
3

6
2

6
1

6
0

5
9

5
8

5
7

5
6

5
5

5
4

5
3

5
2

5
1

LOCK

NC

FLT

NC

NC

NC

VCC

RESET

BUSY

VSS

ERROR

PEREQ

NMI

VCC

INTR

VSS

VCC

NC

NC

NC

NC

NC

VCC

VSS

VSS

D
0

V
S
S

H
L

D
A

H
O

L
D

V
S
S

N
A

R
E

A
D

Y

V
C

C

V
C

C

V
C

C

V
S
S

V
S
S

V
S
S

V
S
S

C
L

K
2

A
D

S

B
L

E

A
1

B
H

E

N
C

V
C

C

 V
S

S

M
/I

O

D
/C

W
/R

A
2

0

A
1

9

A
1

8

A
1

7

V
C

C

A
1

6

V
C

C

V
S
S

V
S
S

A
1

5

A
1

4

A
1

3

V
S
S

A
1

2

A
1

1

A
1

0

A
9

A
8

V
C

C

A
7

A
6

A
5

A
4

A
3

A
2

D1

D2

VCC

D3

D4

D5

D6

D7

VCC

D8

D9

D10

D11

D12

VSS

VCC

D13

D14

D15

A23

A22

VSS

VSS

A21

T
O

P
 V

IE
W

⇓⇔

VSS

IPQ

IPQIPQIPQ

IPQ

IPQ

IPQIPQ
IPQ

8086 Microprocessor and Its Appications

8. 24 Chapter 8 INTEL 80x86 Family Of Processors

TABLE - 8.10 : SIGNALS OF 80386DX MICROPROCESSOR

Signal Function Type

D
31

-D
0

32-bit data bus Bidirectional

A
31

-A
2

30-bit address bus. Used to address 1 Gb memory space Output

BE
3
-BE

0
Byte/Bank enables. Used to enable four memory banks

each of size 1 Gb Output

CLK2 Clock input Input

W/R Write/Read control Output

D/C Data/Control bus cycle indicator Output

M/IO Memory or IO bus cycle indicator Output

LOCK Bus priority lock control Output

ADS Address status Output

NA Next address request input Input

READY Wait state request Input

BS16 Bus size 16. Used to select 32/16-bit data bus Input

HOLD Bus request input Input

HLDA Bus hold acknowledge Output

BUSY Busy signal from coprocessor Input

ERROR Error signal/Interrupt from coprocessor Input

PEREQ Processor extension (coprocessor) data transfer request Input

RESET Processor reset Input

INTR Maskable interrupt request Input

NMI Nonmaskable interrupt request Input

V
CC

+5-V, Power supply input Input

V
SS

0-V, Power supply ground Output

NC No connection -

The 80386 does not have an internal clock generator. The clock signal for 80386 is generated

by using an external clock generator 82384 and supplied through the CLK2 pin. The clock input to

the CLK2 pin should have a frequency double that of internal clock frequency. The processor

divides the clock signal by two and uses them for internal operations.

The W/R is used to indicate write/read operation. During write operation, it is asserted high

and during read operation, it is asserted low. The D/C signal is asserted high during data read/

write bus cycles and it is asserted low during instruction fetch, interrupt acknowledge and halt bus

cycles. The M/IO is used to indicate memory or IO access. During memory read/write operation,

it is asserted high and during IO read/write operation, it is asserted low.

The LOCK signal is asserted low by the processor during execution of the instruction prefixed

by LOCK. This prevents other bus masters from taking control of the bus during execution of

important instructions.

The ADS is asserted low whenever an address is output by the processor. The signal NA is

used for address pipelining and when it is asserted low, the 80386 outputs the address of the next

 8. 25

instruction/data in the current bus cycle. The READY signal is used to introduce wait states in bus

cycles. The BS16 is used to interface a 16-bit bus to a 32-bit bus. It is tied to logic low for 16-bit

external data bus and tied to logic high for 32-bit external data bus.

The HOLD and HLDA signals are used for DMA data transfer. The signals BUSY, ERROR

and PEREQ are used for 80387 coprocessor interface. The functions of these pins are similar to

that of 80286.

The 80386 has logic high RESET input. Whenever the processor is reset, it is initialized to

execute instructions from the memory location FFFF FFF0
H
 in the real mode. The 80386 has one

maskable interrupt request input INTR, which can be expanded using interrupt controller 8259

and one nonmaskable interrupt request input, NMI.

8.4.2 Architecture of 80386 Microprocessor

The architecture of 80386 is shown in Fig. 8.13. It has a highly pipelined architecture with

six functional units operating in parallel. In 80386 processor fetching, decoding, execution, memory

management (address computation) and bus access for several instructions are performed

simultaneously. The six functional units of 80386 are:

� Bus interface unit � Execution unit

� Instruction prefetch unit � Segmentation unit

� Instruction decode unit � Paging unit

The bus interface unit generates signals for memory and IO interface. This unit generates

the control signals for the current bus cycle based on internal requests for fetching instructions

from the instruction prefetch unit and transferring data from the execution unit. The physical

address of memory and IO are output through the bus interface unit and also the data transfer to

the external world takes place through this unit.

Whenever the bus is free, the instructions are fetched and stored in the 16-byte code queue

in the instruction prefetch unit. The instruction decode unit reads the instructions from the prefetch

unit and decodes them. The decoded instructions are then stored in the queue in decode unit. The

queue in the decode unit can accommodate three decoded instructions. The queues in the instruction

prefetch and decode units are FIFO queues.

The execution unit reads the decoded instructions from the decode unit and processes

them. The execution unit consists of a control unit, data unit and a protection test unit. The

control unit contains the microcode stored in the ROM for the instructions, flag register and

generates internal control signals. The data unit includes an ALU, a 64-bit barrel shifter and eight

general purpose registers. The data unit performs the operations requested by the control unit.

The barrel shifter is used for fast shift, rotate, multiply and divide operations. The protection test

unit checks for segmentation violations under the control of the microcode.

The segmentation and paging units can be considered as MMU (Memory Management

Unit) of 80386. In real address mode, the paging is disabled and the segmentation unit computes

the address similar to that of 8086 or 80286 in real mode. In Protected Virtual Address Mode

(PVAM) the segmentation unit computes a 32-bit linear address using an offset, selector and

descriptor (similar to that of 80286). In PVAM mode, each memory location is represented by a

8086 Microprocessor and Its Appications

8. 26 Chapter 8 INTEL 80x86 Family Of Processors

3
-I
n
p
u
t

A
d
d
er

D
es
cr
ip
to
r

R
eg
is
te
rs

L
im
it
an
d

A
tt
ri
b
u
te
P
L
A

A
d
d
er

P
ag
e
C
ac
h
e

C
o
n
tr
o
l
an
d

A
tt
ri
b
u
te
P
L
A

A
d
d
re
ss

D
ri
v
er

P
ip
el
in
e
B
u
s

S
iz
e
C
o
n
tr
o
l

M
U
X
/

T
ra
n
sc
ei
v
er
s

A
L
U

B
ar
re
l
S
h
if
te
r

M
u
lt
ip
ly
/

D
iv
id
e

R
eg
is
te
r

F
il
e

In
st
ru
ct
io
n

D
ec
o
d
er

3
-D
ec
o
d
ed

In
st
ru
ct
io
n

Q
u
eu
e

P
re
fe
tc
h
er
/

L
im
it
C
h
ec
k
er

1
6
-B
y
te

C
o
d
e
Q
u
eu
e

D
ec
o
d
e
an
d

S
eq
u
en
ci
n
g

C
o
n
tr
o
l

R
O
M

R
eq
u
es
t

P
ri
o
ri
ti
ze
r

P
ro
te
ct
io
n

T
es
t
U
n
it

D
ed
ic
at
ed
A
L
U
B
u
s

Linearaddressbus

E
ff
ec
ti
v
e
A
d
d
re
ss
B
u
s

E
ff
ec
ti
v
e
A
d
d
re
ss
B
u
s

P
ag
e
C
ac
h
e

PhysicalAddressBus

C
o
d
e
F
et
ch
/

P
ag
e
T
ab
le

F
et
ch

In
te
rn
al
C
o
n
tr
o
l
B
u
s

Displacement
bus

Control

H
O
L
D
,
IN
T
R
,
N
M
I

E
R
R
O
R
,
B
U
S
Y

R
E
S
E
T
,
H
L
D
A

B
E
-B
E
,A
-A

0
3

2
3
1

M
/I
O
,
D
/C
,
W
/R
,
L
O
C
K
,

N
A
,A
D
S
,

R
E
A
D
Y

B
S
1
6
,

D
-D
0

3
1

In
st
ru

ct
io
n

P
re
fe
tc
h
U
n
it

In
st
ru

ct
io
n

D
ec
o
d
e
U
n
it

3
2
-b
it

C
o
d
e

S
tr
ea
m

C
o
n
tr
o
l
U
n
it

A
L
U

C
o
n
tr
o
l

D
a
ta

U
n
it

S
ta
tu
s

F
la
g

P
a
g
in
g
U
n
it

B
u
s
C
o
n
tr
o
l

S
eg
m
en

ta
ti
o
n
U
n
it

B
u
s
In
te
rf
a
ce

U
n
it

E
x
ec
u
ti
o
n
U
n
it

3
2

3
4

3
2

3
2

3
2

3
2

F
ig

.
8
.1

3
:
A

rc
h

it
e

c
tu

re
o

f
a

n
8

0
3

8
6

m
ic

ro
p

ro
c
e

s
s
o

r.

 8. 27

48-bit virtual address. The MMU translates the 48-bit virtual address to the 32-bit physical address.

The 48-bit virtual address has a 16-bit selector and 32-bit offset. The 16-bit selector is used to

fetch a descriptor from a descriptor table. The descriptor contains a 32-bit segment base address

which is added to a 32-bit offset to get a 32-bit linear address. If the paging unit is not enabled,

then this linear address is used as physical address. If paging is enabled, then the paging unit will

translate the 32-bit linear address to a 32-bit physical address. The paging provides an additional

memory management mechanism to handle very large segments.

Note : The 80386 has 13-bit index for descriptor and allows two descriptor table (Global

Descriptor Table [GDT] and Local Descriptor Table [LDT]). Therefore, the processor

allows 213 × 2 = 214 = 16 k descriptors. Each descriptor can define a segment of maximum

size 4 Gb. Hence, total virtual address space is 16 k × 4 Gb = 64 Tb (terabyte).

8.4.3 Registers of 80386 Microprocessor

The 80386 processor has 32 internal registers and they can be classified into following

seven categories:

� General purpose registers

� Segment registers

� Instruction pointer and flag register

� Control registers

� System address and segment registers

� Debug registers

� Test registers

Most of the 80386 registers are 32-bit registers. The registers of 80386 are a superset of

8086, 80186 and 80286 registers and so all the registers of 8086, 80186 and 80286 are contained

within the 32-bit registers of 80386. The general purpose registers, segment registers, instruction

pointer and flag register are called base architecture registers. Figure 8.14 shows the base architecture

registers of 80386.

General Purpose Registers

The 80386 has eight numbers of 32-bit general purpose registers and they are EAX, EBX,

ECX, EDX, ESI, EDI, EBP and ESP. The least significant 16 bits of these registers can be accessed

separately with their 16-bit names AX, BX, CX, DX, SI, DI, BP and SP.

Each of the 16-bit registers AX, BX, CX and DX can be accessed as two numbers of 8-bit

registers. The lower 8 bits of these registers can be accessed with the name AL, BL, CL and DL.

The higher 8 bits of these registers can be accessed with the name AH, BH, CH and DH.

Segment Register

The 80386 has six segment registers to address six segments of memory at any given time.

The segment registers of 80386 includes the four segment registers (CS, SS, DS and ES) of 80286

and has two additional data segment registers FS and GS registers. The four data segment registers

DS, ES, FS and GS registers can be used to access four separate data areas and allow programs to

access different types of data structures. In real address mode, the segment registers will hold the

8086 Microprocessor and Its Appications

8. 28 Chapter 8 INTEL 80x86 Family Of Processors

segment base address like that of 8086. In PVAM, the segment registers will hold the selectors like

that of 80286. The selector in CS and SS registers indicates the current code and stack segment

respectively. The selectors in DS, ES, FS and GS registers indicate the current data segments.

Each segment register has a program invisible 64-bit register called segment descriptor register.

These registers are used to hold the 8-byte descriptor of the current memory segment in PVAM.

Instruction Pointer and Flag Register

The 80386 has a 32-bit instruction pointer and it is named as EIP. It is used to hold a 32-bit

offset. The lower 16 bits of EIP is called 16-bit instruction pointer, IP, which is used in real address

mode.

The 80386 has a 32-bit flag register and it is called EFLAG. The format of flag register of

80386 is shown in Fig. 8.15. The flags of 80386 can be classified into three groups: status flags,

control flags and system flags. The status flags are CF, AF, PF, ZF, SF and OF. The control flags

are TF, DF and IF. (The status and control flags are same as that of 8086.) The system flags are

ID, VIP, VIF, AC, VM, RF, NT and IOPL. The system flags control IO access, maskable interrupt,

debugging, task switching and operating mode switching.

31

AH

16 15 8 7 0

AX

BX

CX

DX

BH

DH

CH

AL

BL

DL

CL

SI

DI

SP

BP

EAX

EBX

ECX

EDX

ESI

EDI

EBP

ESP

G
e
n

e
ra

l
P

u
rp

o
se

 R
e
g

is
te

rs

0

CS

SS

DS

ES

FS

G S
S

e
g

m
e
n

t
R

e
g

is
te

rs

15

15 01631

31 16 15 0

Fig. 8.14 : Base architecture registers of an 80386.

I P

FLAGS

EIP

EFLAG

I
P
Q

I
P
Q

 8. 29

Control Registers

The 80386 has four numbers of 32-bit control registers CR0, CR1, CR2 and CR3. The

control registers of 80386 are shown in Fig. 8.16. The lower 16-bit of CR0 is the Machine Status

Word (MSW) similar to MSW of 80286. The most significant bit of CR0 is used to enable/disable

paging. The CR1 is reserved for future expansion. The CR2 holds the 32-bit linear address of the

last page accessed before a page fault interrupt. The CR3 holds the 32-bit base address of the page

directory. Since the page directory table is always page aligned (4 kb - aligned), the lower 12 bits of

CR3 are undefined.

System Address and Segment Registers

The 80386 has two numbers of 32-bit system address registers and two numbers of 16-bit

system segment registers. The system address registers are Global Descriptor Table Register (GDTR)

and Interrupt Descriptor Table Register (IDTR). The GDTR holds the 32-bit base address and

16-bit limit of GDT (Global Descriptor Table). The IDTR holds the 32-bit base address and 16-bit

limit of IDT (Interrupt Descriptor Table).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CF1PF0ZFSFTFIF AF0

Auxiliary Flag

Zero Flag

Sign Flag

Trap Flag

Interrupt Enable

Direction Flag

Overflow Flag

Fig. 8.15 : Flag register of 80386 microprocessor.

INTEL Reserved DFOFIOPLNT0RFVMACVIFVIPID

Identification Flag

Virtual Interrupt Pending

Virtual Interrupt Flag

Alignment Check

Virtual Mode

Resume Flag

Nested Task Flag

IO Privilege Level

Note : "0" Indicates INTEL reserved bits.

→

Carry Flag

Parity Flag

→

0 0 0 0 0 0 0 0 0 0 0 0Page Directory Base Address

Page Fault Linear Address

INTEL Reserved

0 8 712 1116 1524 2331

PEMPEMTSRPG

MSW

16 15

Reserved

Task Switching

Emulate Coprocessor

Monitor Coprocessor

Protection Enable

←

←

←

←

←

Paging Enable

Fig. 8.16 : Control registers of 80386 microprocessor.

CR0

 4 3 2 1 0
 31 30

CR3

CR2

CR1

IPQ

8086 Microprocessor and Its Appications

8. 30 Chapter 8 INTEL 80x86 Family Of Processors

The system segment registers are Local Descriptor Table Register (LDTR) and Task Register
(TR). The LDTR holds the 16-bit selector for LDT (Local Descriptor Table) descriptor. The TR
holds the 16-bit selector for TSS (Task State Segment) descriptor. Each system segment register
has a program invisible 64-bit descriptor register and they are used to hold an 8-byte descriptor for

LDT and TSS.

Debug and Test Register

The 80386 has eight numbers of 32-bit debug registers in which six are accessible by
programmer and two are reserved by INTEL. The debug registers are denoted as DR

0
 - DR

7
 as

shown in Fig. 8.17. The DR
0
 - DR

3
 are used to specify four linear breakpoint address. The DR

4

and DR
5
 are reserved by INTEL. The DR

7
is used to set the breakpoints and DR

6
 displays the

current status of the breakpoints.

The 80386 has two numbers of 32-bit test registers denoted as TR
6
 and TR

7
. The test

registers will test the Translation Lookaside Buffer (TLB) in the paging unit. The TLB holds the

most commonly used page table address translations, which are tested by test registers. The TR
6

holds the tag field (linear address) of the TLB and TR
7
 holds the physical address of the TLB.

8.4.4 Operating Modes of 80386 Microprocessor

The 80386 has three operating modes and they are Real address mode, Protected Virtual

Address Mode (PVAM) and Virtual 8086 (V86) mode. After a hardware reset, the processor will

start working in the real address mode and this mode appears to programmers as a fast 8086

processor with a few additional new instructions. The main purpose of real address mode is to

initialize the system for protected virtual address mode of operation. In PVAM, the 80386 works

as a normal 32-bit processor, and all the instructions and features are available in this mode. The

V86 mode allows the programmer to execute 8086 applications without disturbing the protection

mechanism of PVAM. The 80386 processor can switch from PVAM to V86 mode to execute 8086

applications and then can return to PVAM.

DR
0

DR
1

DR
2

DR
3

DR
4

DR
5

DR
6

DR
7

Linear Breakpoint Address 0

Linear Breakpoint Address 1

Linear Breakpoint Address 2

Linear Breakpoint Address 3

INTEL Reserved

INTEL Reserved

Breakpoint Status

Breakpoint Control

TR
6

TR
7

Test Control

Test Status

0

0

31

31

Fig. 8.17 : Debug and test registers of 80386 microprocessor.

 8. 31

Real Address Mode

The 80386 processor will enter the real address mode when it is reset. This mode is similar to
8086 but allows access to the 32-bit registers. In real address mode, the default operand size is
16 bits and so override prefixes should be employed to use 32-bit registers and addressing modes.

In real address mode, paging is disabled and the processor can access 1 Mb of physical memory
space like 8086 using a 20-bit address. Therefore, the address lines A

2
-A

19
 alone are active. The 20-bit

physical address is computed by multiplying the segment register by 16
10

 and adding to an offset.

Note : Multiplying by 16
10

 is equivalent to shifting four times left.

In real address mode, the size of memory segments are 64 kb and the segments can be

overlapped like 8086. Since segment size is 64 kb, when 32-bit effective address or offset is employed
it should be less than 0000 FFFF

H
. In real address mode, two memory areas are reserved. One for

system initialization and the other for interrupt pointer table. The memory address 00000
H
 to 003FF

H

are reserved for interrupt pointer table and the memory address FFFF0
H
 to FFFFF

H
 are reserved

for system initialization.

All the instructions of 80386, except a few can be executed in real address mode. The
primary purpose of real address mode is to set up the 80386 processor for protected virtual address

mode of operation.

Protected Virtual Address Mode

The processor can switch from the real address mode to PVAM by setting the PE bit

(Protection Enable bit) in the control register CR
0
. In PVAM, the processor can run all the 8086

and 80286 programs with sophisticated memory management and hardware assisted protection

mechanism. In PVAM, the processor has a very large address space. It has 4 Gb of physical

memory address space and 64 Tb of virtual memory address space. The address lines A
2
 - A

31

along with four bank select signals BE
0
 - BE

3
 are used to address 4 Gb of physical memory.

In PVAM, each physical address is represented by a 48-bit virtual address. The 80386

supports two method of converting a virtual address to physical address. In one method, the

paging is disabled and the physical address is computed using the selector, descriptor and offset

like 80286. In another method, the paging is enabled and a linear address is computed using the

selector, descriptor and offset like 80286, and then the linear address is converted to physical

address by the paging unit.

The physical address computation in 80386, when paging unit is disabled is shown in Fig. 8.18.

The virtual address (pointer) can be 48-bit or 32-bit. The 48-bit pointer has a 16-bit selector and

32-bit offset. The 32-bit pointer has 16-bit selector and a 16-bit offset. The selector is used to

fetch an 8-byte segment descriptor from the descriptor table. The descriptor has a 32-bit segment

base address, segment length /limit, protection level, privilege level, the default operand size and

segment type. The sum of segment base address and offset gives the 32-bit physical address. The

80386 allows a maximum size of 4 Gb to each segment.

8086 Microprocessor and Its Appications

8. 32 Chapter 8 INTEL 80x86 Family Of Processors

The physical address computation in 80386 when paging is enabled is shown in Fig. 8.19.

When paging is enabled the 80386 processor provides additional memory management mechanism

which is available only in PVAM. The paging provides a method for managing very large memory

segments defined in PVAM. The paging divides each segment into equal sized pages. When paging

is enabled, the segmentation unit will generate a 32-bit linear address and supply it to the paging

unit, which translates this linear address to a 32-bit physical address.

When paging in enabled the segmentation unit computes a 32-bit linear address using a

selector, descriptor and offset. (This computation is similar to the computation of physical address

when paging is disabled.) In fact, the output of segmentation is used as a physical address when

paging is disabled and when paging is enabled the output of segmentation unit is fed as input to the

paging unit.

Selector Offset

031|1547|31

..
..

..
..

..
..

..
..

..
.

..
..

.

Memory
Operand

Segment
Base Address

Segment Limit

Maximum Size of

Segment Can be 4 Gb

Physical
Memory

8-Byte Segment
Descriptor

Access Rights

Limit

Segment Base
Address

+

→

→ →

↑

Fig. 8.18 : Address computation in PVAM of 80386 when paging is disabled.

48/32 Bit Pointer (Virtual Address)

I
P
Q

Segment
Selector

32 3147

8-Byte Segment
Descriptor

Access Rights

Limit

Segment Base
Address

→

Fig. 8.19 : Address computation in PVAM of 80386 when paging is enabled.

 Offset

0

+

80386
Paging

Mechanism

 3
2

-B
it

L
in

ea
r

A
d

d
re

ss

 32-bit
Physical
Address

..
..

..
.

Operand

4 kb
page

..
..

..
.

..
..

..
..

..
..

..
.

4 kb
page

4 kb
page

4 kb
page

→

Physical Memory

48-Bit Pointer (Virtual Address)

 Page Frame
Address

I
P
Q

I
P
Q

I
P
Q

I
P
Q

→

 8. 33

 In paging mechanism, the memory segments can be organized as pages of size 4 kb. The

80386 paging mechanism allows 220 pages (1024 × 1024 = 210 × 210) of size 4 kb. The paging

mechanism involves three elements and they are page directory, page table and page. The paging

mechanism allows one page directory of size 4 kb and the page directory can define 1024 (1k)

page tables. Four bytes (32 bits) of the page directory are used to store information about a page

table. Each page table can define 1024 pages of size 4 kb. The size of each page table is also 4 kb

and four bytes (32 bits) of page table are used to store information about a page.

The paging mechanism of 80386 is shown in Fig. 8.20. The segmentation unit will supply

a 32-bit linear address to paging unit. The upper 10 bits (A
22

-A
31

) of linear address is the index for

page directory, the middle 10 bits (A
12

-A
21

) of linear address is the index for the page table and the

lower 12 bits (A
0
-A

11
) of linear address is the lower 12 bits of physical address.

The control register CR
3
 holds the base/root address of the page directory. The root address

is added to the 10-bit page directory index (given by the linear address) to get the address page

directory entry of the page table. The page directory entry has the base address of the page table,
which is added to the 10-bit page table index (given by the linear address) to get the address of the
page table entry of the page. The page table entry has the upper 20 bits of the page frame address,
which is concatenated with lower 12 bits of the linear address to form the physical address.

Virtual 8086 Mode

The processor can switch from PVAM to virtual 8086 mode by setting the VM bit in the
EFLAG register to logic 1. While working in privilege level 0, the processor can also enter the
virtual 8086 mode by executing the IRET instruction. The processor can return to PVAM from the
virtual 8086 mode only on receipt of an interrupt or exception.

The virtual 8086 mode permits the execution of 8086 applications with all protection features
of 80386. In the virtual 8086 mode, the segment registers are used similar to that of the real mode. In

this mode, the processor computes 20-bit address by shifting the segment register left by four times

and adding to the offset. The 20-bit address can be used to access 1 Mb of physical memory space.

Directory
Index

22 2131

Page Table
Base

Address

Page Directory
Base Address Page Base

Address

→ →
↓

Fig. 8.20 : Paging mechanism of 80386 microprocessor.

 Offset of
Physical Address

0

+

32-Bit Physical Address

 Physical
Address

..
..

..
..

..
..

..
..

..
..

..

Memory
Operand

4kb
Page

..
..

..

4kb
Page

Physical
Memory

Root Address

Control Registers

Table
Index

12 11

+
Page Table

Entry
Page Frame

Entry +

→

Page
Directory

Page Table

10 10 12

CR
0

CR
3

CR
2

CR
1

↓

↑

↓

I
P
Q
I
P
Q

8086 Microprocessor and Its Appications

8. 34 Chapter 8 INTEL 80x86 Family Of Processors

In virtual 8086 mode, paging can be enabled to run multiple virtual mode tasks, to provide
protection and operating system isolation. When paging is enabled, the 20-bit linear address can be
divided into 256 pages and each page can be located anywhere in the 4 kb physical address space

of 80386.

8.5 INTEL 80486 MICROPROCESSOR

The INTEL 80486 is a 32-bit processor with higher performance than 80386. It is integration
of the improved 80386 processor, 80387 coprocessor and 8 kb RAM memory (called cache memory)
on a single chip. The INTEL 80486 family of processors includes 80486SX, 80486DX, SX2,
DX2, Write-back enhanced DX2, DX4 and Write-back enhanced DX4 processors. The base

architecture for the entire family of 80486 processor is same except minor differences. The 80486SX
and SX2 processors does not have an internal coprocessor unit. The DX2 and DX4 are double
clock version of 80486. Also the DX4 processor has 16 kb internal cache memory. The concepts
discussed in this section refer to 80486DX processor.

The 80486 has 1.2 million transistors and works three times faster than the combined operation
of 80386 and 80387. The 80486 has five stages of instruction pipeline execution and allows
simultaneous execution of two consecutive instructions if resources used by one instruction are
not used by the other instruction. Due to extensive pipelining the execution time of most of the
instruction is one clock cycle and average execution time of an instruction is 1.6 clock cycle.

The base architecture, memory address capability, memory management unit and operating
modes are identical to that of 80386. The 80486 processor is software compatible with 80386. The
instruction set of 80486 includes the instructions of 80386 and a few new instructions to support

the new applications and increase performance.

The 80486DX is available with maximum clock speed ratings of 33, 66 and 100 MHz.

8.5.1 Pins and Signals of 80486

The 80486DX is a 168-pin IC and available in PGA package. The pin configuration of

80486DX is shown in Fig. 8.21. The functions of pins of 80486 are listed in Table-8.11.

The 80486 has 32 data pins and so we can form a 32-bit data bus. The 80486 has dynamic
bus size feature, which allows 8-bit and 16-bit devices to be interfaced with the processor through

a 32-bit data bus. When the signal BS8 is asserted low the processor selects an 8-bit data bus and
when BS16 is asserted low the processor selects a 16-bit data bus.

The pins DP
0
 to DP

3
 are used for parity bits of the data bytes of the data bus. One pin is used

for each byte of data bus. During write operation, the processor generates even parity bits and output
on these lines. During read operation, the external device has to supply even parity bits through these
lines. When parity is not employed these pins should be tied to V

CC
 through a pull up resistor. During

read operation, whenever the processor detects a parity error, it asserts PCHK signal as low.

In 80486, the memory is organized as 4 banks, each of size 1 Gb. The address lines A
2
-A

31

are used to select the memory locations and the bank/byte enable signals BE
0
 - BE

3
 are used to

select memory banks. The bank select signals are generated internally by decoding the address
lines A

0
 and A

1
.

 8. 35

⇔

C
L

K

D
0
-D

3
1

A
D

S

IN
T

R
N

M
I

R
E

S
E

T

A
H

O
L

D

PW
T

P
C

D

(1
7

 p
in

s)
 V

C
C

(2
8

 p
in

s)
 V

S
S

(1
7

 p
in

s)
 N

C

A
2
-A

3
1

R
D

Y

E
A

D
S

K
E

N
F

L
U

S
H

F
E

R
R

IG
N

N
E

A
20

M

B
E

3

B
E

2

B
E

1

B
E

0

L
O

C
K

P
L

O
C

K

B
O

F
F

B
L

A
S

T

B
S

8

P
C

H
K

D
P

0

D
P

1

D
P

2

D
P

3

H
O

L
D

H
L

D
A

B
R

E
Q

B
R

D
Y

B
S

16

D
at

a
B

u
s C

lo
ck

B
u

s
C

o
n

tr
o

l

In
te

rr
up

t
S

ig
na

ls

C
ac

h
e

In
v

al
id

at
io

n

P
ag

e
C

ac
h

in
g

C
o

n
tr

o
l

N
u

m
er

ic
 E

rr
o

r
R

ep
o

rt
in

g

A
dd

re
ss

 B
it

2
0

 M
as

k

P
o

w
er

S
u

p
p

lyC
ac

h
e

C
on

tr
ol

N
o

C
o

n
n

ec
ti

o
n

3
0

-b
it

A
dd

re
ss

U V| W|

B
y

te
E

n
ab

le
s

A
dd

re
ss

B
us

B
u

s
C

y
cl

e
D

ef
in

it
io

n

B
us

A
rb

it
ra

ti
o

n

B
u

rs
t

C
o

n
tr

o
l

B
us

 s
iz

e
C

o
n

tr
o

l

P
a

ri
ty

8
0

4
8

6
D

X

F
ig

.
8
.2

1
 :
 P

in
 c

o
n
fi
g
u
ra

ti
o
n
 o

f a
n
 8

0
4
8
6
D

X
.

8
0
4
8
6
 M

ic
ro

p
ro

ce
ss

o
r

P
in

 S
id

e
V

ie
w

1
2

3
4

5
6

7
8

9
10

11
14

12
13

V
C

C
V

C
C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C

V
C

C
V

C
C

V
C

C

V
C

C

V
C

C
V

C
C

V
C

C

V
C

C
V

C
C

V
C

C

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SS

V
SSV
SS

V
SS

V
SS

D
31

D
30

D
29

D
27

D
26

D
28

D
25

D
24

D
12

V
SS

D
20

D
21

D
22

D
17

D
19

D
15

D
16

D
18

D
10

D
14

D
23

D
11

D
13

D
9

H
L

D
A

V
C

C

D
8

D
6

D
4

D
5

D
7

V
SS

V
SS

D
3

D
2

D
1

D
0

B
E

0

R
D

Y

B
S1

6

B
E

1
B

E
2

B
E

3

L
O

C
K

B
L

A
ST

B
S

8

N
C

N
C

C
L

K

N
C

N
C

N
C

N
C

N
C

R
E

SE
T

V
SS

M
/I

O

D
/C

W
/R

N
M

I

B
R

E
Q

D
P

2

N
C

V
SS

A
2

A
3

A
4

A
6

A
9

A
12

A
13

A
14

A
5

A
7

A
10 A
8

A
11

A
15

A
26

A
16

A
17

A
20

A
21

A
23

A
27

A
30

A
18

A
22

A
31

A
29

A
24

A
28

A
25

A
19

S

H
O

L
D

15
17

16

A
D

S

PL
O

CK
P

C
H

K

A
2

0
M

B
R

D
Y

K
E

N

B
O

F
F

F
E

R
R

FL
U

SH

N
C

N
C

N
C

N
C

N
C

N
C

N
C

P
W

T

N
C

V
SS

D
P

1

V
C

C
V

SS

V
SS

V
SS

V
SS

V
SS

V
C

C

V
C

C

D
P

0

V
C

C

N
C

D
P

3
V

SS
IN

T
R

A
H

O
L

D

E
A

D
S

IG
N

N
E

PC
D

ABCDEFGHJKLMNPQR

⇔

IPQ

IPQ IPQ

IPQ

IPQ
IPQ

IPQ

IPQIPQ

IPQ

IPQ

IPQ

IPQ
IPQIPQ

IPQ
IPQ

IPQ

M
/I

O

D
/C

W
/R

8086 Microprocessor and Its Appications

8. 36 Chapter 8 INTEL 80x86 Family Of Processors

TABLE - 8.11 : SIGNALS OF 80486DX MICROPROCESSOR

Signal Function Type

D
31

-D
0

32-bit data bus Bidirectional

A
31

-A
2

30-bit address bus. Used to address

1Gb memory space Bidirectional

BE
3
-BE

0
Byte/Bank Enables. Used to enable four
memory banks each of size 1Gb Output

CLK Clock input Input

W/R Write/Read control Output

D/C Data/Control bus cycle indicator Output

M/IO Memory or IO bus cycle indicator Output

LOCK Bus priority lock control Output

PLOCK Pseudo-lock output Output

ADS Address Status Output

RDY Nonburst Ready Input - (wait state request) Input

BRDY Burst Ready Input Input

BLAST Burst Last Output Output

BS8 Bus size 8. Used to select 8/32 bit data bus Input

BS16 Bus size 16. Used to select 16/32 bit data bus Input

A20M Address bit 20 mask Input

INTR Maskable interrupt request Input

NMI Nonmaskable interrupt request Input

RESET Processor reset input Input

HOLD DMA hold request Input

HLDA Hold Acknowledge Output

BOFF Backoff Input Input

BREQ Bus Request Output

DP
3
-DP

0
Data Parity IO Bidirectional

PCHK Parity error status (Parity Check) Output

AHOLD Address hold Input

EADS External address strobe Input

KEN Cache memory enable Input

FLUSH Cache memory flush (clear) control Input

PWT Page write through status Output

PCD Page cache disable status Output

FERR Floating point error status Output

IGNNE Ignore numeric error control Input

V
CC

Power supply (+5-V) Input

V
SS

Power supply ground (0-V) Output

NC No connection –

 8. 37

The signal A20M input can be used to mask the physical address bit 20 while working in the
real address mode. When A20M is asserted low, the processor address space is wraparound into
1 Mb memory space (from FFFFF

H
 to 00000

H
) as that of 8086 processor.

The processor asserts ADS as low in the first clock of a bus cycle to indicate the start of a
bus cycle and it is inactive in the subsequent clock of a bus cycle. The signal RDY is used to
introduce wait states in nonburst bus cycles and the signal BRDY is used to introduce wait states
in burst bus cycles. For normal bus timings, these signals should be tied low. The BLAST signal is
asserted low by the processor to indicate the completion of a burst bus cycle.

The 80486 processor does not have an internal clock generator. The clock required for
80486 should be generated externally and supplied through CLK pin. The 80486 processor has
active high reset. The RESET input is used to bring the processor to a known state. The reset will

clear all segment registers except the CS-register and after a reset all general purpose registers
except EDX will be in an undefined state. The reset will load F000

H
 in CS-register, 0FFF0

H
 in EIP

and a component identifier is loaded in DX-register.

The 80486 has two hardware interrupt pins INTR and NMI. The INTR is a maskable
interrupt request. The INTR is active high and it is not provided with an internal pull-down
resistor. The NMI is nonmaskable interrupt request and when asserted, it executes a type-2 interrupt.
The NMI is rising edge sensitive and it is not provided with an internal pull-down resistor.

The signals M/IO, D/C and W/R are primary bus cycle definition signals and these signals
are asserted after a valid ADS. For memory read/write cycle M/IO is asserted high. For IO read/
write cycle, M/IO is asserted low. For memory or IO data bus cycles (read/write), the D/C is
asserted high. For interrupt acknowledge, code access and halt bus cycles the D/C is asserted
low. The W/R differentiates between read and write bus cycles.

The LOCK signal is activated during execution of instruction prefixed by lock prefix . The
PLOCK is asserted low during memory read/write operations that involves operands greater than
32 bits. The PLOCK is asserted low during floating point unit read/write (which involve 64 bits

operand), segment table descriptor read (which involve 64 bits operand) and cache line fills (which
involve 128 bits operand). When LOCK or PLOCK is asserted low, the other bus masters cannot
take control of the system bus.

The HOLD input forces the processor to high impedance state after execution of current
bus cycle and asserts HLDA to acknowledge the device which requested the HOLD. The HOLD
and HLDA are mainly used for DMA data transfer. The BOFF input will force the processor to high

impedance state immediately in the next clock. The BOFF is similar to HOLD but differs in two
ways : First, the processor will not complete the current bus cycle before releasing the bus.

Second, the processor does not assert HLDA.

The processor asserts BREQ whenever a bus cycle is pending internally. External logic can
use BREQ signal to arbitrate among multiple processors. The AHOLD and EADS inputs are used

during cache invalidation cycles. When AHOLD is asserted, the processor will stop driving its
address bus in the next clock and so an external device can supply an address to the processor
through the address bus. The EADS input is asserted low to indicate that a valid external address

has been driven into the address bus.

8086 Microprocessor and Its Appications

8. 38 Chapter 8 INTEL 80x86 Family Of Processors

The KEN is a cache enable pin and is used to determine whether the data being returned by

the current cycle is cacheable. The FLUSH input forces the processor to flush its entire internal

cache and this signal needs to be asserted low for one clock period to clear the cache memory.

The PWT and PCD output signals correspond to two user attribute bits in the page table

entry. The PCD output reflects the state of the PCD attribute bit in the page table entry or the page

directory entry. The PWT output reflects the state of the PWT attribute bit in the page table entry

or page directory entry.

The processor asserts FERR pin as low whenever an unmasked floating point error is

encountered. The assertion of IGNNE input signal informs the processor to ignore the floating

point errors and continue executing noncontrol floating-point instructions.

8.5.2 Architecture of 80486

The INTEL 80486 is a 32-bit processor with on-chip memory management, floating point

and cache memory units. The architecture (or functional block diagram) of 80486 processor is

shown in Fig. 8.22. The various functional units of 80486 processor are:

� Data processing unit consisting of ALU, barrel shifter and an array of registers.

� Bus interface unit consisting of drivers and various control logic unit.

� 32-byte instruction prefetch queue.

� Instruction decode unit.

� Floating point unit.

� Memory management unit consisting of segmentation and paging units.

� 8 kb cache memory unit.

The data processing unit consists of a 32-bit ALU, a 64-bit barrel shifter and eight 32-bit

general purpose registers. The functions of ALU and barrel shifter are same as that of 80386

processor. The general purpose registers of 80486 are also same as that of 80386 processor. The

general purpose registers are EAX, EBX, ECX, EDX, EBP, EDI, ESI and ESP. Part of these 32-bit

registers can be accessed as 16 or 8-bit registers like that of 80386. The Instruction Pointer and

Flag register of 80486 are identical to that of 80386 processor.

The bus interface unit consists of drivers for address and data bus and various control logic

units, which includes bus cycle control, burst bus cycle control, bus size control and cache control

logic units. The control signals necessary for memory, IO and interrupt bus cycles are generated

by this unit. It also takes care of managing the control signals for cache memory control.

The bus interface unit also has a parity generation and control unit. The parity unit generates

a parity bit (for even parity) for each byte of data during write operation, and output on DP
0
 - DP

3

lines. These parity bits can be stored in the memory along with data when parity is employed in the

system. During read operation the parity unit checks for even parity and if it finds an error then it

generates a parity check error signal.

The 80486 processor has five stage instruction pipeline execution, which includes prefetch,

first decode, second decode, execute and write back. Due to five stage pipeline, several instructions

will be in the pipeline at a time. Hence, the 80486 processor can execute two instructions

 8. 39

F
ig

.
8
.2

2
 :
 A

rc
h
it
e
c
tu

re
 o

f
8
0
4
8
6
 m

ic
ro

p
ro

c
e
s
s
o
r.

6
4

-b
it

 I
n

te
ru

n
it

 T
ra

n
sf

e
r

B
u

s

3
2

P
a

ri
ty

G
e
n

e
ra

ti
o

n

a
n

d
 C

o
n

tr
o

l

C
L

K

B
a
rr

e
l

S
h

if
te

r

R
eg

is
te

r

F
il

e

A
L

U

B
as

e/

In
d

e
x

B
u
s

S
e
g

m
e
n

ta
ti

o
n

U
n

it

D
e
sc

ri
p

to
r

R
e
g

is
te

rs

L
is

t
a
n

d

A
tt

ri
b

u
te

 P
L

A

D
a

ta

P
ro

c
e
ss

in
g

U
n

it

M
ic

ro
-I

n
st

ru
c
ti

o
n

F
lo

a
ti

n
g

P
o

in
t

U
n

it

F
lo

a
ti

n
g

 P
o

in
t

R
eg

is
te

r
F

il
e

C
o
n
tr

o
l

an
d

P
ro

te
c
ti

o
n

 T
e
st

U
n

it

C
o

n
tr

o
l

R
O

M

D
e
c
o

d
e
d

In
st

ru
c
ti

o
n

P
a

th

In
st

ru
c
ti

o
n

D
e
c
o

d
e
r

C
o

d
e

S
tr

e
a
m

C
a
c
h

e
C

o
n

tr
o

l

B
u
s

si
ze

C
o

n
tr

o
l

B
u
rs

t
B

u
s

C
o

n
tr

o
l

R
eq

u
es

t
S

eq
u

en
ce

r

B
u

s
C

o
n

tr
o

l

D
at

a
B

u
s

T
ra

n
sc

e
iv

e
rs

W
ri

te
 B

u
ff

e
rs

4
 ×

3
2

A
d
d
re

ss
D

ri
v

e
rs

B
u

s
In

te
rf

a
c
e
 u

n
it

3
2 3
2

D
0
-D

3
1

D
P

0
-D

P
3

P
C

H
K

3
2

 B
y

te
 C

o
d

e

Q
u

eu
e

2
 ×

 1
6

 B
y

te
s

P
re

fe
c
h

e
r

2
4

3
2

3
2

3
2

3
2

P
a
g

in
g

 U
n

it

8
 k

b
y

te
c
a
c
h

e
T

ra
n

sl
a
ti

o
n

L
o

o
k

a
si

d
e

B
u

ff
e
r

 C
a
c
h

e
 U

n
it

3
2

-b
it

 D
a
ta

 B
u

s

3
2

-b
it

 D
a
ta

 B
u

s

3
2

-b
it

 D
a
ta

 B
u

s

2 2
0

P
h
y
si

ca
l

A
d
d
re

ss

P
C

D
, P

W
T

3
2

D
is

p
la

c
e
m

e
n

t
B

u
s

A
0
-A

3
1
,

B
E

0
-B

E
3

A
D

S
,

R
D

Y
,

IN
T

R
,

N
M

I,

R
E

S
E

T
,

P
W

T
,

P
C

D
,

F
E

R
R

,

IG
N

N
E

,
A

2
0

M
,

M
/I

O
,

D
/C

H
L

D
A

,
B

O
F

F
,

B
R

E
Q

B
R

D
Y

B
L

A
S

T

B
S

8

B
S

1
6

A
H

O
L

D

E
A

D
S

K
E

N

F
L

U
S

H

8086 Microprocessor and Its Appications

8. 40 Chapter 8 INTEL 80x86 Family Of Processors

simultaneously if execution of one instruction does not depend on the other instruction. While

decoding jump instructions, the processor automatically prefetch the instructions from the jump

destination, which improves the processor performance greatly.

The floating point unit consists of eight numbers of 80-bit data registers, three numbers of

16-bit registers called status register, control register and tag word register and two numbers of

48-bit pointer registers called instruction pointer and data pointer. The floating point unit supports

32/64/80 bits floating point data types, 16/32/64 bits (signed) integer data types and 80-bit packed

BCD data types.

The Memory Management Unit (MMU) consists of a segmentation unit and paging unit. The

MMU of 80486 is almost identical to that of 80386. Segmentation allows management of the logical

address space. The paging mechanism operates beneath segmentation. The paging is optional and

can be disabled by system software. Memory is organized into one or more variable length segments,

each up to 4 Gb in size. Each segment can be divided into one or more 4 kb pages. The segment

registers and descriptors of 80486 are identical to that of 80386.

The cache memory contains static RAMs which are very fast as compared to the dynamic

RAMs. The cache memory address is a small part of total memory space which the processor can

address. The cache memory can be used to store both code and data. The cache memory is

organised as a four-way set associative cache with LRU (Least Recently Used) replacement

technique. The 8 kb cache is divided into 128 sets. Each set has 64 bytes (8 kb = 213 bytes = 27
×26

bytes = 128×64 bytes) and organized as 4 lines with 16 bytes per line (4×16 bytes = 64 bytes).

Thus, cache organization is a 4-way set-associative cache.

8.6 PENTIUM MICROPROCESSOR

The Pentium processor is an advanced 32-bit superscalar processor with 64-bit data bus

and 32-bit address bus to address up to 4 Gb of physical memory space. It was released in the year

1993 and consists of 3.1 million transistors. The Pentium employs two general purpose integer

pipelines, branch prediction, highly pipelined floating point unit and separate code and data caches

to achieve the highest performance level while preserving the binary code compatibility with 80x86

processors. The Pentium processor can execute two integer instructions simultaneously. The Pentium

is available with maximum clock speed ratings of 60 to 233 MHz.

The features of Pentium processor are:

� Superscalar architecture � Dynamic branch prediction

� Pipelined Floating-Point Unit � Improved instruction execution time

� Separate code and data caches � 64-bit data bus

� Bus cycle pipelining � Address parity

� Internal parity checking � Functional redundancy checking and lock-step operation

� Execution tracing � Performance monitoring

� IEEE 1149.1 boundary scan � System Management Mode

� Virtual mode extensions � Dual processing support

� Advanced power management feature � Fractional bus operation

� On-chip local APIC (Advanced Programmable

Interrupt Controller) device.

 8. 41

8.6.1 Pins and Signals of Pentium Microprocessor

The Pentium processor is a 296-pin IC available in SPGA package. The pin configuration of

Pentium processor is shown in Fig. 8.23 and functional grouping of pins of Pentium processor is

shown in Fig. 8.24. The functions of pins of the Pentium processor are listed in Table-8.12.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

INC INC INC FLUSH VCC VCC VCC VCC VCC VCC VCC VCC VCC VCC NC A10 A6VCC

ADSC EADS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS A8 A4 A30W/R

INC PWT HITM BUSCHK BE0 BE2 BE4 SCYC NC A20 A18 A16 A14 A12 A11 A7 A3 VSSBE6

AP D/C HIT A20M BE1 BE3 BE5 BE7 CLK RESET A19 A17 A15 A13 A9 A5 A29 A28

 A31 A25 VSSBREQ HLDA ADS

 A26 A22VSS LOCK

 A27 A24 VCC

VSS A21

VCC SMIACT PCD

PCHKVSS

VCC PBREQ APCHK VCCD/P A23

VSS

VCCIGNNEINIT

VSSSMI

V
C C

NMI

INTRVSS PBGNT

VCC PHITM PRDY

VSS HOLD

VCC PHIT WB/WT

VSS BOFF

R/S

VCC

VSS

VCC

VSS

VCCNCNC

VSSVCC

VC CVCC VSS

VSSSTPCLK

NCNC

BF1

BF0

PEN

FRCMCVCC BRDYC NA

VSS BRDY

VCC EWBE KEN

VSS AHOLD

VCC CACHE INV

VSS

VCC BP2 BP3

VSS PM1BP1

M/IO

VSS D59

VCC D57 D58

VSS D56

VCC D55 D53

DP6 D51 DP5

D54 D52 D49 D46 D42

VCC PM0BP0 FERR

VSS IERR

VCC D63 DP7

VSS D62

VCC D61 D60

VSSNC

D7 D6

VCC

VCC

D5 D4

D3 D1 VCC

VSSPICCLK

VCCD2PICD0

VSSD0

VCCVCC PICD1

VSSTCK

VCCTD1TD0

TRST

VSSTMS

CPUTYP

D50 D48 D44 D40 D39 D37 D35 D33 DP3 D30 D28 D26 D23 D19 DP1 D12 D8 DP0

INC D47 D45 DP4 D38 D36 D34 D32 D31 D29 D27 D25 DP2 D24 D21 D17 D14 D10 D9

INC VCC VCC VCC VCC VCCD41 VCC NCD15D18D22VCC VCC VCC VCC VCC VCC

INC D43 VSS VSS VSS VSS VSS VSS VSS D16 D13 D11VSS VSS VSS VSSVSS D20

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Pin Side View

Fig. 8.23 : Pin configuration of Pentium processor.

U

T

Z

V

Y

W

X

A

B

C

D

E

F

G

J

H

N

L

K

M

S

R

Q

P

AN

AM

AJ

AF

AE

AD

A G

AC

AA

AH

AB

AL

AK

VSS

U

T

Z

V

Y

W

X

A

B

C

D

E

F

G

J

H

N

L

K

M

S

R

Q

P

AN

AM

AJ

AF

AE

AD

A G

AC

AA

AH

AB

AL

AK

8086 Microprocessor and Its Appications

8. 42 Chapter 8 INTEL 80x86 Family Of Processors

PENTIUM

Fig. 8.24 : Functional grouping of the pins of a Pentium processor.

⇐

A
31

-A
3

A20M

PICCLK

A P

PICD1

PICD0

CLK

RESET

Page
Cacheability

Address Bit
20 Mask

PM0/BP0

Address Bus

INIT

BF1

BF0

INV

HIT

HITM

AHOLD

EADS

PCD

KEN

FLUSH

FRCMC

FERR

PWT

EWBE

INTR

NMI

IGNNE

STPCLK

BP3

BP2

PM1/BP1

Address Parity

APIC Support

Clock

Initialization

Error Signals

Cache

Invalidation

Cache Control

Write Ordering

Interrupts

Floating point Error
Reporting

Functional Redundancy
Checking

Power Management

Breakpoint

Performance

Monitoring

LOCK

PCHK

BRDY

Bus Cycle
Definition

Bus Arbitration

Bus Control

D
63

-D
0

Data Bus

DP
7
-DP

0

Data Parity

PEN

CACHE

SCYC

BRDYC

NA

BOFF

BREQ

HOLD

HLDA

PBGNT

PBREQ

PHIT

PHITM

Dual Processing
Private Bus Control

CPUTYP Miscellaneous Dual
Processing

SMI

SMIACT

System
Management Mode

PRDY
Probe Mode

TCK

TMS

TDI

TDO

V
CC

(53 Pins)

V
SS

(53 Pins)

NC, INC (15 Pins)

TAP Port

TRST

I

P

Q

I
P
Q

I
P
Q

I

P

Q

I
P
Q

I
P
Q

I
P
Q

I
P
Q

I
P
Q

I
P
Q

I
P
Q

I

P

Q

I

P

Q

I

P

Q

I
P
Q

I

P

Q

I

P

Q

I

P

Q

I

P

Q

I

P

Q

I

P

Q

I
P
Q

I
P
Q
I
P
Q

I

P

Q

I

P

Q

WB/WT

M/IO

W/R

D/C

D/P

R/S

APCHK

BE
4
 – BE

0

BE
7
 – BE

5

BUSCHK

IERR

ADS

ADSC

 8. 43

The Pentium has 64 data pins and so we can form a 64-bit data bus. The physical memory

in the Pentium processor-based system can be organized as 8 banks. Each bank can have an

address space of 512 Mb. The Pentium processor has 29 address pins (A
3
-A

31
) to address 512 Mb

of address space and 8-bank select signals (BE
0
to BE

7
) to select 8-memory banks.

The pins DP
0
 - DP

7
 are used for parity of the data bytes of the data bus and the functions of

these pins are similar to that of data parity pins of 80486. The pins W/R, D/C, M/IO, LOCK, BRDY,

A20M, INTR, NMI, HOLD, HLDA, BOFF, BREQ, PCHK, AHOLD, EADS, KEN, FLUSH, PWT,

PCD, FERR and IGNNE are common to 80486 and Pentium processors. The functions of these

pins in Pentium processor are similar to that in 80486 processor.

The pin CPUTYP is used to distinguish the primary processor and dual processor. For

primary processor CPUTYP is tied to ground (V
SS

). For dual processor it is tied to V
CC

. A brief

description about the functions of each pin of Pentium processor are provided in Table-8.12. For

detailed explanations the readers are advised to refer INTEL Pentium data sheet.

TABLE - 8.12 : SIGNALS OF PENTIUM MICROPROCESSOR

Signal Function Type

A20M Address 20 mask. Used to emulate the 1Mb Input

address wrap around of 8086.

A
31

-A
3

29-bit address bus. Used to address 512 Mb Bidirectional

memory space.

ADS Address strobe. Indicates that a new valid bus Output
cycle is currently being driven by the processor.

ADSC Additional address strobe. Output

AHOLD Address hold. Used to get the address bus for an Input

inquire cycle.

AP Address parity. Address parity pin for the Bidirectional

address lines.

APCHK Address parity check. The status of the address Output
parity check is driven on this output.

BE
7
- BE

0
Byte /Bank enables. Used to enable eight memory Output

banks each of size 512 Mb.

BF
1
-BF

0
Bus-to-core frequency ratio. Used to configure Input

processor bus-to-core frequency ratio.

BOFF Backoff input. This input is used to force the Input

processor off the bus in the next clock.

BP
3
-BP

0
Breakpoint signals. These signals externally

indicates a breakpoint match. Output

BRDY Burst ready. Transfer complete indication. Input

8086 Microprocessor and Its Appications

8. 44 Chapter 8 INTEL 80x86 Family Of Processors

Table - 8.12 continued...

 Signal Function Type

BRDYC Additional burst ready input Input

BREQ Bus request. Indicates externally when a bus Output

cycle is pending internally.

BUSCHK Bus check. Allows the system to signal an

unsuccessful completion of a bus cycle. Input

CACHE Cacheability. External indication of internal

cacheability. Output

CLK Clock. Fundamental timing source for processor. Input

CPUTYP Processor type definition pin. Used to configure

as primary/dual processor. Input

D/C Data/Code access. Distinguishes a data access Output

from a code access.

D
63

-D
0

64-data lines. Forms the 64-bit data bus. Bidirectional

DP
7
-DP

0
Data parity. These are parity pins for the data bytes. Bidirectional

D/P Dual/Primary processor indicator. Output

EADS External address strobe. This input signals the

processor to run an inquire cycle with the Input

address on the bus.

EWBE External write buffer empty. Provides the option Input

of strong write ordering to the memory system.

FERR Floating point error. The floating point error output

is driven active when an unmasked floating point Output

error occurs.

FLUSH Cache flush. Writes all modified lines in the data cache Input

back and flushes the code and data caches.

FRCMC Functional Redundancy Checking Master/Checker

configuration. Determines whether the processor is Input

configured as a master or checker.

HIT Inquire cycle hit/miss. Output

HITM Inquire cycle hit/miss to a modified line. Output

HLDA Bus hold acknowledge. External indication that the Output

processor outputs are floated.

HOLD Bus hold request. Used for DMA transfer. Input

 8. 45

Table - 8.12 continued...

 Signal Function Type

IERR Internal or functional redundancy check error. Alerts

the system of internal parity errors and functional Output

redundancy errors.

IGNNE Ignore numeric exception. Determines whether or not Input

numeric exceptions should be ignored.

INIT Initialization. Forces the processor to begin execution

in a known state without flushing the caches or Input

affecting the floating point state.

INTR Nonmaskable external interrupt request. Input

INV Invalidation request. Determines the final state of Input

a cache line as a result of an inquire hit.

KEN Cache enable. Indicates to the processor whether or

not the system can support a cache line fill for the Input

current cycle.

LOCK Bus lock. Indicates to system that the current bus cycle Output

should not be interrupted.

M/IO Memory or IO indicator. Distinguishes a memory access Output

from an IO access.

NA Next address. Indicates that external memory is prepared Input

for a pipelined cycle.

NMI Nonmaskable interrupt request. Input

PBGNT Dual processor bus grant. Indicates to the LRM

(Least Recent Master) processor that it will become the Bidirectional

MRM (Most Recent Master) processor in the next cycle.

PBREQ Dual processor bus request. Indicates to MRM Bidirectional

processor that LRM processor requires the bus.

PCD Page cacheability disable. Externally reflects the Output

cacheability paging attribute bit in control register.

PCHK Data parity check. Indicates the result of a parity Output

check on a data read.

PHIT Private inquire cycle hit/miss indication. Bidirectional

PHITM Private inquire cycle hit/miss to a modified line indication. Bidirectional

PICCLK Processor interrupt controller clock. This pin drives Input

the clock for APIC serial data bus operation.

PICD1-PICD0 Processor interrupt controller data. These are the data Bidirectional

pins for the 3-wire APIC bus.

8086 Microprocessor and Its Appications

8. 46 Chapter 8 INTEL 80x86 Family Of Processors

PEN Parity enable. This signal determines whether a machine Input

check exception has to be taken for data parity error.

PM1-PM0 Performance Monitoring. Externally indicates the status Output

of the performance monitor counter.

PRDY Probe ready. For use with INTEL debug port. Output

PWT Page write through status. Externally reflects the write Output

through paging attribute bit in control register.

R/S Run/Stop. For use with the INTEL debug port. Input

RESET Processor reset. Forces the processor to begin Input

execution at a known state.

SCYC Split cycle indication. Indicates that a misaligned Output

locked transfer is on the bus.

SMI System management interrupt request. Input

SMIACT System management interrupt active. Indicates Output

that the processor is operating in SMM.

STPCLK Stop clock request. Used to stop the internal processor Input

clock and consume less power.

TCK Test clock input. Provides boundary scan clocking Input

function.

TDI Test Data Input. Input pin to receive serial data and Input

instructions.

TDO Test Data Output. Output serial test data and instructions. Output

TMS Test Mode Select. Controls TAP controller state Input

transitions.

TRST Test reset. Allows the TAP controller to be Input

asynchronously initialized.

V
CC

Supply to processor (3.3-V). Input

V
SS

Power supply ground. Output

W/R Write/Read control. Distinguishes a write cycle from Output

a read cycle.

WB/WT Write Back/Write Through. This pin allows a cache line

to be defined as write back or write through on a line Input

by line basis.

Table - 8.12 continued...

 Signal Function Type

 8. 47

8.6.2 Architecture of Pentium Processor

The Pentium processor has superscalar architecture which allows parallel execution of two

instructions. The various functional blocks of Pentium processor are shown in Fig. 8.25. The

functional units of Pentium processor are Bus unit, Paging unit, Prefetch buffer, Instruction decode,

Control ROM, Execution unit with two integer pipelines (U-pipe and V-pipe), Branch Target Buffer

(BTB), Code cache, Data cache, Floating Point Unit (FPU), Dual Processing (DP) logic, and

Advanced Programmable Interrupt Controller (APIC).

The bus unit takes care of the issuing control signals and fetching the code/data from the

external memory and IO devices. The Pentium processor has 64-bit external data bus and supports

burst read and burst writeback cycles. In addition, bus cycle pipelining has been added to allow

two bus cycles to be in progress simultaneously. The paging unit contains optional extensions to

the architecture which allow 2 Mb and 4 Mb page sizes.

→←
→←

←→

↓

↑

→

↓↓↓↓

→←
←→

→←

←

←

← →

→←

→←

→←

→←

→

→

←

←

← →

↑ ↑

↓

→←

← →

←

→

↓

↑

→
→→ →

↓

→

↓

→ ←

→

↑

↑

↓

↓

→

→
→

→
→ ←

→ ←

→ →←

←

→

Control DP

Logic

Branch

Target

Buffer

Prefetch

Address

TLB

Code Cache

8 kb

256

Instruction Decode

Prefetch Buffers
Control
ROM

Page

Unit

64-Bit

Data Bus

Address

Bus

32-Bit

Control

Bus

Unit

64

32
64-Bit

Data Bus

32-Bit

Address

Bus

APIC

Data

Control

Barrel Shifter

ALU
(U Pipeline)

Integer Register File

ALU
(V Pipeline)

Data Cache

8 kTLB

32

32

32

32

32

32

Instruction

Pointer

Branch Verification

and Target Address

Address

Generate

(U Pipeline)

Address

Generate

(V Pipeline)

Control Unit

E
x

e
c
u

ti
o

n
 U

n
it

Floating
Point Unit

Control

Register File

Add

Divide

Multiply

80

80

Fig. 8.25 : Architecture of a Pentium processor.

8086 Microprocessor and Its Appications

8. 48 Chapter 8 INTEL 80x86 Family Of Processors

The code cache, branch target buffer and prefetch buffers are responsible for getting

instructions into the execution unit. Instructions are fetched from the code cache or from the

external memory. Branch addresses are remembered by the branch target buffer. The code cache

TLB (Translation Lookaside Buffer) translates linear addresses to physical addresses used by the

code cache.

The Pentium processor has two independent pairs of 32-byte prefetch buffers which operate

in conjunction with BTB (Branch Target Buffer). Only one prefetch buffer will be active at any

one time. One prefetch buffer will fetch instructions sequentially until a branch instruction is

encountered. When a branch instruction is fetched, the BTB will predict whether a branch will

occur or not. If the BTB predicts that the branch will not take place then the prefetch buffer will

continue fetching instructions linearly. If the BTB predicts that the branch will take place then the

other prefetch buffer is enabled and begins to fetch instructions from branch target address. In

this way the instructions needed for branching are also prefetched and kept ready for decode and

execution.

If a branching is mispredicted then the instruction pipelines are flushed and the first buffer

will start prefetch activity. The penalty for misprediction is three clock in U-pipe and four clock

in V-pipe. Mispredicted calls and unconditional jump instructions have a three clock penalty in

either pipe.

The execution unit has two parallel integer pipelines U-pipe and V-pipe with individual ALU

for each pipe. The pipeline has five stages and they are Prefetch (PF), Decode Stage-1(D1),

Decode Stage-2 (D2), Execute (E) and Writeback (WB). The U-pipe can execute all integer and

floating point instructions. The V-pipe can execute simple integer instructions and the FXCH

floating point instruction.

While executing (previous) instructions, the processor checks the next two instructions. If

the execution of one instruction does not depend on the other then the first instruction is issued to

U-pipe and the second instruction is issued to V-pipe, so that two instructions can be executed

simultaneously. If it is not possible to execute two instructions simultaneously then the two

instructions are issued to U-pipe one by one and no instruction is issued to V-pipe.

The control ROM contains microcodes to control the sequence of operations that must be

performed to implement the Pentium processor architecture. The control ROM unit has direct

control over both pipelines. The Pentium processor has an 8 kb code cache and 8 kb data cache.

These caches are transparent to application software to maintain compatibility with previous INTEL

processors. The data cache fully supports the MESI (Modified/Exclusive/Shared/Invalid) cache

consistency protocol. The code cache is write protected to prevent code corruption and so supports

a subset of MESI protocol, the S (Shared) and I (Invalid) states.

The cache is organized as a 2-way set associative cache. There are 128 sets in each cache

with each set containing 2 lines. Each cache line is 32 bytes wide. The replacement in the cache is

handled by LRU (Least Recently Used) mechanism.

8. 49

The code cache is connected to prefetch buffer by a 256-bit bus. Hence, in one clock cycle

the instruction cache can provide up to 32 bytes (32 ×8 = 256) of raw opcode to prefetch buffer.

The data cache has two ports and each port is connected to pipelines by a 32-bit. Hence the data

cache can provide data for two data references simultaneously. The caches are accessed with

physical address and each cache has its own TLB (Translation Lookaside Buffer) to translate

linear addresses to physical address.

The Pentium processor has a pipelined Floating Point Unit (FPU) working independently.

The FPU of Pentium processor is up to ten times faster than the FPU of 80486 processor for

common operations including add, multiply and load.

The Pentium processor supports clock control. When the clock to the processor is stopped,

power dissipation is virtually eliminated and this makes the Pentium processor a good choice for

energy efficient designs. The Pentium processor supports fractional bus operation. This allows the

processor core to operate at high frequencies, while communicating with the external bus at lower

frequencies.

The Pentium processor contains an on-chip Advanced Programmable Interrupt Controller

(APIC), which supports multiprocessor interrupt management, multiple IO subsystem support,

8259A compatiblity and inter-processor interrupt support.

The Pentium processor has in-built logic for dual processing mode of operation. In dual

processor mode, two identical Pentium processors can be interfaced to a single system bus. The

dual processor pair appears to the system bus as a single, unified processor. Multiprocessor

operating systems properly schedule computing tasks between the two processors. This scheduling

of task is transparent to software applications and the end user. Through a private bus, the two

processors arbitrate for the external bus and maintains cache coherency. In dual processing mode,

both the processor should have the same bus to core frequency ratio.

8.7 ADVANCED PENTIUM PROCESSORS

INTEL has released a number of advanced microprocessors after pentium with advanced

features. (Please refer to Appendix-III for processors released by INTEL.) In the pentium series,

the INTEL has released Pentium Pro, Pentium II, Pentium III and Pentium 4 processors. The

Pentium Pro, Pentium II and Pentium III have a common architecture and the architecture of

these processors are known as INTEL's P6 microarchitecture. The architecture of Pentium 4 is

known as NetBurst Microarchitecture. The higher clock version of pentium 4 incorporates Hyper

Threading (HT) technology. In all these advanced pentium processors, the basic data size and

memory addressing capability has been retained, but the processors are provided with enhanced

features and advanced/sophisticated method of instruction execution. The salient features of the

advanced pentium processors are presented in the following sections:

8086 Microprocessor and Its Appications

8. 50 Chapter 8 INTEL 80x86 Family Of Processors

8.7.1 Pentium PRO

The Pentium pro is a 32-bit processor with 64-bit data bus and 36-bit address bus to

address up to 64 Gb of physical memory space. It was released in the year 1995 and consists of

5.5 million transistors. It is a 387 pin IC and available in PGA (Pin Grid Array) package. It is

available with maximum internal clock ratings of 150/166/180/200 MHz.

The features of pentium pro processor are:

� Three-way superscalar architecture.

� Five parallel execution units and 12-stage super pipeline.

� Dual cavity PGA ceramic packages with a CPU die and a secondary cache die.

� Out of order execution and speculative execution.

� DIB (Dual Independent Bus) architecture.

� Register renaming

� Error checking and correcting codes.

� Improved power management with two extra modes (Stop Grant and Auto HALT modes).

� Internal micro-ops similar to RISC like instructions.

� Transactional IO bus.

� Scalable up to four processors.

� Fault analysis/recovery.

� Integrated level two (secondary) cache of 256 k/512 k/1Mb.

� Internal thermal protection.

� Automatic selection of power supply voltage.

8.7.2 Pentium II

The Pentium II was released in 1997 and consists of 7.5 million transistors. It is actually a

pentium pro processor with on-chip MMX (Multi Media Extension). It is also a 32-bit processor

with 64-bit data bus and 36-bit address bus to address up to 64 Gb of physical memory space. It

is available with maximum internal clock ratings of 233 MHz to 450 MHz and in SEC (Single Edge

Connector) catridge packaging or as a boxed processor along with fan/heatsink.

The features of pentium II processor are:

� Supports the INTEL architecture with dynamic execution.

� Integrated primary (L1) 16 kb instruction cache and 16 kb write back data cache.

� Integrated 256 kb second level (L2) cache.

� Fully compatible with previous microprocessors.

� Supports MMX technology.

� Quick start and Deep sleep modes provide extremely low power dissipation.

� Low power GTL + processor system bus interface (GTL : Gunning Transceiver Logic)

� Integrated math co-processor (Floating point unit compatible with IEEE std 754).

� Integrated thermal diode for measuring processor temperature.

 8. 51

8.7.3 Pentium III

The Pentium III was released in 1999 and consists of 9.5 million transistors. The higher

clock version of pentium III consists of 28 million transistors. The Pentium III is a 32-bit processor

with a 64-bit data bus and a 36-bit address bus to address up to 64 Gb of physical memory space.

It is available with maximum internal ratings of 500 MHz to 1 GHz.

In the IC form, it is available as 370-pin IC in PGA (Pin Grid Array) package. The Pentium

III is an advanced version of pentium II with improved MMX technology and processor serial

number. The INTEL has incorporated a processor serial number in Pentium III which supports

the concept of processor identification. Each pentium III processor has a 96-bit processor number

accessible by software (of various applications) to identify a system. Some of the applications

that may utilize processor serial number are membership authentication, data backup/restore

protection, removable storage data protection, managed access to files, etc.

The features of pentium III processor are:

� Dynamic execution microarchitecture.

� Optimized for 32-bit applications running on advanced 32-bit operating systems.

� Fully compatible with previous microprocessors.

� Integrated high performance 16 kb instruction and 16 kb data, nonblocking level one cache.

� Integrated 512 kb full speed level two cache allows for low latency on read/store operation.

� 256-bit cache data bus provides extremely high throughput on read/store operation.

� Eight-way cache associativity provides improved cache hit rate on read/store operations.

� Error correcting code for system bus data.

� Data prefetch logic

� Internet streaming SIMD (Single Instruction Multiple Data) Extensions for enhanced Video, Sound and 3D

performance.

� System management mode and multiple low-power states.

� Flip Chip Pin Grid Array (FC-PGA2) packaging technology which offers improved handling protection and

socketability.

� Intel processor serial number.

8.7.4 Pentium 4

The Pentium 4 processor was released in 2000 and consists of 42 million transistors. It is

available with maximum internal clock ratings of 1.4 GHz to 2.8 GHz. The Pentium 4 processor

with HT (Hyper Threading) Technology was released in the year 2002 and consists of 55 million

transistors. It is available with maximum internal clock ratings of 2.4 GHz to 3.3 GHz. It is

available as 478-pin IC in PGA (Pin Grid Array) package.

8086 Microprocessor and Its Appications

8. 52 Chapter 8 INTEL 80x86 Family Of Processors

The features of Pentium 4 processor are:

� INTEL NetBurst microarchitecture

� Hyper Threading (HT) technology.

� Hyperpipelined technology which supports advanced dynamic execution and very deep out-of-order execution.

� Rapid execution engine-ALUs run at twice the processor core frequency.

� System bus frequency at 400/533/800 MHz.

� Binary compatible with applications running on previous members of INTEL processors.

� 8 kb level 1 data cache.

� Level 1 execution trace cache stores 12 k micro-ops and removes decoder latency from main execution loops.

� 512 kb advanced transfer cache with 8-way associativity and error correcting code.

� 144 streaming SIMD Extensions 2(SSE2) instructions. (SIMD : Single Instruction Multiple Data).

� System management mode and mulitple low power states.

The features of INTEL NetBurst microarchitecture are hyper pipelined technology, a rapid

execution engine, 400/533/800 MHz system bus, execution trace cache, advanced dynamic

execution, advanced transfer cache, enhanced floating point and multimedia unit and streaming

SIMD Extensions 2 (SSE2).

The hyper pipelined technology doubles the pipeline depth in the Pentium-4 processor with

512 kb L2 cache, allowing the processor to reach much higher core frequencies. The rapid execution

engine allows the two integer ALUs in the processor to run at twice the core frequency, which

allows many integer instructions to execute in 1/2 clock tick.

The Hyper Threading (HT) technology allows a single physical Pentium-4 processor to

function as two logical processors. Each logical processor has its own architecture state, own set

of general purpose registers and control registers to provide increased system performance in

multitasking environments.

 CHAPTER 9

8086 MICROPROCESSOR-BASED SYSTEM

9 .1 DESIGNING A MICROPROCESSOR-BASED SYSTEM

Desiging of a microcomputer system starts with specifications. The specification of

the system includes the following :

1. Input device

2. Output device

3. Memory requirement

4. System clock frequency

5. Peripheral devices required

6. Type of CPU (Microprocessor)

7. Applications or Nature of work

Input Devices

The popular input device in a single board microcomputer system (microprocessor trainer

kit) is the Hex-keyboard. Other forms of input devices are DIP switches, ADC interfaced through

port and floppy disk interfaced through the floppy disk controller - INTEL 8272. The Hex-keyboard

is normally interfaced to the 8086 system using INTEL 8279 keyboard and display controller. A

maximum of 64 keys can be interfaced using 8279. Along with shift and control, 256 key-codes can

be generated using 8279.

Output Devices

The popular output device used in single board microcomputer (microprocessor trainer

kit) is the 7-segment LED. The seven segment LEDs are interfaced to the 8086 processor using

INTEL 8279 keyboard and display controller. The 8279 is a dedicated controller which takes care

of keyboard scanning and display refreshing. A maximum of 16 number of 7-segment LEDs can

be interfaced using one 8279 in an 8086-based system as multiplexed display.

Other output devices are LCD (Liquid Crystal Display), printer, floppy disk and CRT terminal.

The LCD and printer can be interfaced using ports. Special dedicated controllers are required for

interfacing floppy disk and CRT terminal. The INTEL 8272 or INTEL 82072 floppy disk controller

and INTEL 8275 CRT controller are popularly used with 8086/8088 systems.

Memory Requirement

The memory requirement of the system is split between EPROM and RAM. The memory

capacity of EPROM and RAM are estimated based on the applications and work to be performed

by the processor. Most of the microprocessors use memory with a word size of 1-byte. Hence,

the memory capacity of the system is specified in kilobytes.

9. 2 Chapter 9 8086 Microprocessor-Based System

The popular EPROM used in the 8086-based system are 2708 (1 k × 8), 2716 (2 k × 8),

2732 (4 k × 8), 2764 (8 k × 8) and 27256 (32 k × 8). The popular static RAM used in the 8086-based

system are 6208 (1 k × 8), 6216 (2 k × 8), 6232 (4 k × 8), 6264 (8 k × 8) and 62256 (32 k × 8). The

memories are chosen with compatible access time, i.e., the access time of memories should be

less than the read time and write time of the processor.

The total memory requirement of the system is implemented by using more than one memory

IC. But the processor, at any one time can communicate with (or access) only one memory IC. To

select a memory IC, chip select signals have to be generated using decoders. The input to the

decoders are the unused address lines and also to each memory location specific addresses

should be allotted. [These techniques are discussed in memory interfacing.]

The EPROMs are mapped at the end of memory space in 8086-based system in order to

store the monitor program in EPROM and to execute the monitor program upon power-on-reset.

[Every system will be reset, when power supply is switched ON.]

In an 8086-based system, the interrupt vector addresses belongs to RAM locations in the

beginning of address space. The 8086 processor has 256 types of interrupts. For each interrupt,

four locations are reserved in the first 1 kilobyte address space. In these locations, the offset and

base address of the subroutine program to be executed in response to the interrupts are stored.

Apart from allocating addresses to memory devices, the peripherals and IO devices should

also be allotted specific addresses. The peripherals and IO devices can be either memory-mapped or

IO-mapped in the system. If the memory requirement of the system is very large and in future if

memory expansion is required then the peripherals and IO devices are IO-mapped in the system. If

memory requirement of the system is less, then the peripherals and IO devices are memory- mapped

in the system.

System Clock Frequency

The microprocessor and the peripheral devices require a clock signal for synchronizing

various internal operations/devices. An oscillator is needed for generating the clock signal. The

oscillator consists of an amplifier and a feedback network. The feedback network has R, L, C or

quartz crystal.

The 8086 microprocessor does not have an internal clock circuit. Hence, the clock has to

be supplied from an external device. The INTEL 8284 clock generator can be employed to generate

the clock required for 8086. The 8284 has an internal oscillator circuit. An external quartz crystal

has to be connected to the 8284 to generate the clock signal. The frequency of the quartz crystal

should be thrice the internal clock frequency of 8086. The 8284 generates the clock at crystal

frequency and divides the clock by three and then supplies to 8086.

For each system a maximum clock speed is specified. Driving a system at the maximum

clock is advantageous because the execution time will be minimum if the clock is maximum.

When the system is driven at maximum clock, then the peripherals chosen should have speed

compatibility with the processor.

 9. 3

Peripheral Devices

The peripheral devices required for a system depends on its applications. Some of the

peripheral devices that can be interfaced to the 8086-based system are:

� Programmable Interval Timer - INTEL 8253/8254

� USART - INTEL 8251

� Programmable Peripheral Interface - INTEL 8255

� Keyboard /Display Controller - INTEL 8279

� Programmable Interrupt Controller - INTEL 8259

� DMA Controller - INTEL 8237/8257

� ADC

� DAC, etc.

When the system has to monitor an analog signal from a sensor, then an ADC can be

interfaced using 8255 ports. If the processor has to control an analog device, then it has to convert

the digital signal to analog signal using DAC.

When the system requires a large number of interrupt inputs, the interrupt structure of the

system has to be expanded by using interrupt controller 8259. One 8259 supports 8-interrupt requests.

The USART-8251 can be used for serial data communication and the programmable timer-

8253/8254 can be employed for various timing operations.

Type of CPU

The CPU of the system is a microprocessor. The microprocessor is chosen based on clock

speed, instruction execution time, memory capacity, size of data and address, addressing modes,

the operations it can perform and the number of additional devices required to form a system.

Application or Nature of Work

The specifications of the microprocessor itself depends on the applications for the proposed

system and the nature of work it is going to perform. The input device, output device, memory

requirement, peripheral requirement and the choice of CPU depend on the nature of work to be

performed by the system.

9.2 CLOCK GENERATOR - INTEL 8284A

The clock generator 8284A is specially designed for 8086/8088 microprocessor. It generates

the clock signal, READY signal and RESET signal required for 8086/8088 microprocessor. It also

generates a TTL level peripheral clock signal which can be used for other peripheral devices in the

system.

8086 Microprocessor and Its Appications

9. 4 Chapter 9 8086 Microprocessor-Based System

The INTEL 8284A is an 18-pin IC packed in DIP. The pin configuration of 8284A is shown

in Fig. 9.1. The function of various pins are listed in Table-9.1.

A typical connection of 8284A with 8086 is shown in Fig. 9.2. The clock generator is used

for generating clock signal and reset signal. It is assumed that the processor does not require wait

states in bus cycles and so READY of 8086 is permanently tied to logic high (V
CC

).

Fig. 9.1 : Pin configuration of 8284A.

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

CSYNC

PCLK

AEN1

RDY1

READY

RDY2

AEN2

CLK

GND

V
CC

X
1

X
2

ASYNC

EFI

F/C

OSC

RES

RESET

8284A

 Pins Description

CSYNC Clock synchronization

PCLK Peripheral clock

 AEN1, AEN2 Address enable

RDY1, RDY2 Bus ready (Transfer complete)

READY Ready signal to 8086/8088

CLK Clock for 8086/8088

GND Power supply/ground

RESET Reset signal to 8086

 RES Reset input to 8284A

OSC Oscillator output

 F/C Frequency/crystal selection

EFI External frequency input

 ASYNC Ready synchronization

X
1
, X

2
Pins for crystal connection

V
CC

Power supply, +5-V

→

→

↓

↓

15 MHz
5 MHz

CLK

8086

RESET
RESET

PCLK

10 μF

 Switch for

Manual Reset

10 kΩ

+5-V (V
CC

)

CSYNC

Fig. 9.2 : A typical connection of 8284A with 8086.

Peripheral

Reset

Peripheral

Clock

X
1

X
2

CLK

8284A

F/C

RES

 9. 5

TABLE - 9.1 : PINS AND SIGNALS OF 8284A

 Pin name Function

CSYNC When EFI is employed this clock synchronization input signal is used to

synchronize the clocks of the various processors in a multimaster system.

When crystal is connected to X
1
 and X

2
, this pin is grounded.

PCLK It is a clock signal for peripheral devices in the system with a frequency of

one-sixth the crystal frequency or EFI signal and has 50% duty cycle.

 AEN1, AEN2 Address enables are provided to qualify (i.e., to allow) the bus ready signals

RDY1 and RDY2 respectively. In a two-master system AEN1 will qualify

RDY1 and AEN2 wi l l qual i fy RDY2. In a s ing le-master system AEN1

and AEN2 are tied to logic low (Ground).

RDY1, RDY2 These are active high signals from the devices located on the system data

bus of each master to indicate that the data has been received or available.

The RDY along with AEN are used to generate the READY signal for the 8086.

READY The READY signal for the 8086 is supplied through this pin.

CLK Clock signal for 8086. The frequency of this clock signal is one-third the frequency

of crystal/EFI and has 33% duty cycle.

RESET The reset signal for 8086 and other peripheral devices are supplied through this pin.

RES The reset input for 8284 and usually a RC network is connected to this pin to

provide power-on reset.

OSC A clock signal with same frequency as that of crystal/EFI. It can be used as EFI

for other 8284s in a multimaster system.

F/C This is used to select crystal or EFI for clock generation. When EFI is used this

pin is tied to logic high (V
CC

). When a crystal is connected, this pin is tied to logic

low (Ground).

EFI This pin is used to supply external frequency input to 8284 when F/C is tied high.

This external signal should be a square wave with frequency three times the

frequency required for the CLK output.

ASYNC This signal is used to select one or two stages of synchronization for the RDY1

and RDY2 inputs. When this input is tied low, two stages of synchronization is

provided and when this input is left open or tied high, one stage of synchronization

is provided.

X
1
, X

2
Pins for connecting quartz crystal. The frequency of crystal should be three

times the desired processor clock frequency. When EFI is employed, X
1

should be tied to V
CC

 / GND and X
2
 should be left open.

V
CC

Power supply input, +5-V

GND Power supply ground

8086 Microprocessor and Its Appications

9. 6 Chapter 9 8086 Microprocessor-Based System

9.3 BUS CONTROLLER - INTEL 8288

The Bus controller-INTEL 8288 is specially designed for 8086/8088 microprocessor for

use in maximum mode to generate bus control signals. It reads the status signals from the processor

and generates bus control signal for memory and other IO devices.

The INTEL 8288 is a 20-pin IC packed in DIP. The pin configuration and internal block

diagram of 8288 is shown in Fig. 9.3.

Fig. 9.3: Bus controller-INTEL 8288.

1

2

3

4

5

6

7

8

9

10

20

19

18

17

16

15

14

13

12

11

IOB

CLK

DT/R

ALE

AEN

MRDC

AMWC

MWTC

GND

V
CC

S
0

MCE/PDEN

DEN

CEN

INTA

IORC

AIOWC

IOWC

Fig. a : Pin configuration of INTEL 8288.

8288

 Pin Description

AEN Address enable

AIOWC Advanced IO write control signal

ALE Address latch enable

AMWC Advanced memory write control signal

CEN Command enable

CLK Clock input

DEN Data enable

DT/R Data transmit/receive

INTA Interrupt acknowledge

IOB IO bus mode

IORC IO read control signal

IOWC IO write control signal

MCE/PDEN Master cascade enable/
Peripheral data enable

MRDC Memory read control signal

MWTC Memory write control signal

S
0
, S

1
, S

2
Input status signals

V
CC

Power supply, +5-V

GND Ground, 0-V

S
2

S
1

Status

Decoder

Control

Logic

Command

Signal

Generator

Control

Signal

Generator

→

→

→

→

→

→

→

→

→

→

AEN

CEN

CLK

IOB

8
0

8
6

 S
ta

tu
s

In
p

u
t

C
o

n
tr

o
l

S
ig

n
al

s

M
u

lt
ib

u
s

C
o

m
m

a
n

d

S
ig

n
al

s

MRDC

DT/R

MWTC
AMWC

IORC

IOWC
AIOWC

INTA

DEN

MCE/PDEN
ALE

V
CC

GND

O
u

tp
u

t
C

o
n

tr
o

l

S
ig

n
al

s

Fig. b : Internal block diagram of INTEL 8288.

Power

Supply

S
1

S
0

S
2

I
P
Q

I
P
Q

I

P

Q

I
P
Q

I

P

Q

 9. 7

The pins S
0
, S

1
, S

2
 are provided to receive the corresponding status bits from the 8086/

8088 processor. The processor clock is directly connected to the CLK input of the 8288 in order

to synchronize the activity of the bus controller with that of the processor. The signal output on

ALE, DT/R and DEN are similar to that of 8086/8088 minimum mode signals for various bus

cycles in order to enable the address latch and data transceivers. The bus controller issues the

appropriate interrupt acknowledge signal through the INTA pin when the status signals are all zero

(i.e., when S
0
= S

1
= S

2
=0).

The IORC and IOWC can be used as normal IO read and write control signals respectively.

The AIOWC will provide extended IO write time, which can be used for writing IO devices

requiring higher write time. The MRDC and MWTC can be used as normal memory read and

write control signals respectively. The AMWC will provide extended memory write time, which

can be used for writing memory devices requiring higher write time.

The AEN, IOB and CEN are provided to configure the bus controller either for the uniprocessor

or the multiprocessor system. In a uniprocessor system, AEN and IOB are tied to the ground (0-V)

and CEN is tied to V
CC

(+5-V). In a multiprocessor system, the AEN can be asserted low/high (by

a bus arbiter such as INTEL 8289) to enable/disable the command outputs of 8288. For multiprocessor

system IOB is tied to V
CC

(+5-V). The signal output on MCE/PDEN depends on the mode, which is

determined by the signal applied to IOB. In a uniprocessor mode, IOB is grounded and so the

output of MCE/PDEN will be high and it is used to control the cascaded 8259s (cascaded interrupt

controllers). In multiprocessor mode, IOB is tied to V
CC

 (+5-V) and in this mode the MCE/PDEN is

asserted low during the IO read/write operation and this signal is used to enable IO bus data

transceivers.

Note : In multiprocessor mode when an IO transfer is made, PDEN is active and DEN is inactive.

For a memory transfer DEN is active and PDEN is inactive.

9.4 COPROCESSOR - INTEL 8087

The coprocessors has been specially designed to take care of mathematical calculations

involving integer and floating point data. The coprocessor is also called math coprocessor or

Numeric Data Processor (NDP). A coprocessor is designed to work in parallel with a microprocessor.

The INTEL has developed 80×87 series of coprocessors for 80×86 family of microprocessors.

For example, INTEL has developed 8087 coprocessor for 8086/8088 processor, 80287 coprocessor

for 80286 processor and so on. From 80486DX onwards INTEL has started integrating the

coprocessor with the microprocessor and started fabricating microprocessors with an on-chip

coprocessor.

The coprocessor-INTEL 8087 has been developed to work with 8086/8088 system in

maximum mode. The 8087 coprocessor is a 40-pin IC packed in DIP. The pin configuration of

8087 is shown in Fig. 9.4.

8086 Microprocessor and Its Appications

9. 8 Chapter 9 8086 Microprocessor-Based System

The 8087 has 16 numbers of multiplexed address/data pins and 4 numbers of multiplexed

address/status pins. Hence, it can have 16-bit external data bus and 20-bit external address bus

like 8086. (In case of 8088 system, the external data bus is 8-bit.) The processor clock, reset and

ready signals are applied as clock, reset and ready signals for coprocessor. The BUSY output is

used as TEST input of the processor. One of the Request/Grant (RQ/GT) signal can be connected

to the corresponding pin of the processor to get the control of bus from the processor. During an

internal error condition, the coprocessor asserts the INT output as high, which can be used to

interrupt the processor to take appropriate action. The pins S
2
, S

1
 and S

0
 are used to receive the

bus status signal from the processor and the pins QS
1
and QS

0
 are used to receive the queue status

from the processor. When used with 8086, the BHE signal is asserted to enable the upper memory

bank.

Architecture of 8087

The internal architecture of 8087 is shown in Fig. 9.5. The 8087 has two funtional units:

Control Unit (CU) and Numeric Execution Unit (NEU).

The control unit consists of data buffer, shared operands queue, addressing and bus tracking

unit, exception pointers and control and status word registers.

The numeric execution unit consists of eight numbers of 80-bit register stack, microcode

control unit, exponent module, programmable shifter, arithmetic module, temporary registers and

shared operands queue.

Fig. 9.4 : Pin configuration of INTEL 8087 coprocessor.

A
0
/D

0
 - A

15
/D

15

A
16

/S
3
 - A

19
/S

6

IN
T

E
L

 8
0
8
7

RESET

V
CC

(2 pins)V
SS

CLK

(4 pins)NC

⇐

⇔

READY

I N T

BUSY

QS
0

QS
1

BHE/S
7

S
0

S
1

S
2

RQ/GT
1

RQ/GT
0

IN
T

E
L

 8
0

8
7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

V
SS

A
14

/D
14

A
13

/D
13

A
12

/D
12

A
11

/D
11

A
10

/D
10

A
9
/D

9

A
8
/D

8

A
7
/D

7

A
6
/D

6

A
5
/D

5

A
4
/D

4

A
3
/D

3

A
2
/D

2

A
1
/D

1

A
0
/D

0

NC

NC

CLK

V
SS

V
CC

A
15

/D
15

A
16

/S
3

A
17

/S
4

A
18

/S
5

A
19

/S
6

BHE/S
7

RQ/GT
1

I N T

RQ/GT
0

NC

NC

S
2

S
1

S
0

QS
0

QS
1

BUSY

READY

RESET

 9. 9

The NEU is responsible for the execution of the coprocessor instructions under the control

of the coprocessor CU. The CU transfers the numeric instructions to the microcode control unit

of NEU.

The 8087 internally operates on all numbers in the 80-bit temporary real format. The 8087

has eight numbers of 80-bit registers which are used as LIFO(Last-In-First-Out) stack. This

register stack holds the operands on which the coprocessor instruction operates. The 8087 has a

3-bit stack pointer to point to current top of stack. The stack pointer can hold binary values 000
2

to 111
2
 to represent the eight registers of the stack. The stack operates as a circular stack of fixed

size (8 elements) on the basis of LIFO access. Upon reset, the stack pointer is initialized with 000
2
.

The coprocessor works with seven types of numeric data, which are divided into the

following three classes:

i) Word integer (16 -bit)

ii) Short integer (32 -bit)

iii) Long integer (64 -bit)

 Binary integers

iv) BCD (80 -bit) Packed decimal number

v) Short real (32 -bit)

vi) Long real (64 -bit)

vii) Temporary real (80 -bit)

 Real numbers

U

V
|
|

W
|
|

U

V
|
|

W
|
|

}

→
← →

←→

←→

↑

↓

→← ←

→←

↓
←

↑

↓

↑

↓

← →

←→

← ↑

→←←

↓

↑

Status

Fig. 9.5 : Architecture of coprocessor-INTEL 8087.

Address

Addressing &

Bus Tracking

Exception

Pointers

Data

D
a

ta

B
u

ff
e

r

Control Word

Status Word

Control Unit

NEU Instruction

Exponent

Module

Microcode

Control Unit

Exponent

Bus

Numeric Execution Unit

Operands

Q u e u e

T

a
g

W

o
r

d

Register Stack

80 bits

(7)

(6)

(5)

(4)

(3)

(2)

(1)

(0)

(16)

(16)

(16)

(64)

(64)

Fraction

Bus

Programmable

Shifter

Interface

Arithmetic

Module

Temporary

Registers

8086 Microprocessor and Its Appications

9. 10 Chapter 9 8086 Microprocessor-Based System

The 8087 has a 16-bit control word and a 16-bit status word. The format of the control

word and the status word are shown in Fig. 9.6.

In order to write the control word to the control register, the processor has to write the

control word to a memory location. Then the coprocessor has to read the control word from

memory and load it in the control register. Similarly, to read the status word, first the coprocessor

has to transfer/copy the content of status register to a memory location and then the processor

has to read the status word from the memory location. Actually, the communication of data

between the microprocessor and the coprocessor takes place through the main memory only.

Invalid Operation

Denormalized Operand

Zero Divide

Overflow

Underflow

Precision

Reserved

Interrupt Request

Condition Code

Stack Top Pointer

Busy

B C3 ST IR P E UE OE ZE DE IEC2 C1 C0

Fig. 9.6b : Format of status word.

Fig. 9.6 : Control and Status word format of the coprocessor 8087.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

→

→

→

→

→

→

→

→

→

→

→

Invalid Operation (I)

Denormalized Operand (D)

Zero Divide (Z)

Overflow(O)

Underflow (U)

Precision (P)

Reserved

Interrupt Enable Mask

Precision Control

Rounding Control

Infinity Control

Reserved

IC RC PC IEM P M UM OM ZM DM IM

Fig. 9.6a : Format of control word.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

→

→

→

→

→

→

→

→

→

→

→

→

 9. 11

Working of 8087 with 8086 Processor

The 8087 coprocessor has its own set of instructions. When a program is written the

required instructions of 8087 are written along with the 8086 instructions. The instructions of

8087 always start with the letter F and this differentiates the 8087 instruction from the 8086

instruction in an assembly language program.

When the 8086 fetches instructions from the memory and stores them in its queue, the

8087 also reads these instructions and stores them in its internal queue. Here both the processor

and coprocessor read and decode every instruction but execute only its own instruction. The

most significant bits of all the 8087 instructions will be "11011" and this code is used to identify the

8087 instruction by the processor and coprocessor. Every instruction of the program is read and

decoded by both the processor and the coprocessor. After decoding, if the processor identifies an

8087 instruction then it treats that instruction as NOP(No-operation). Similarly, if the coprocessor

identifies an 8086 instruction then it treats that instruction as NOP(No-operation).

9.5 MINIMUM MODE 8086-BASED SYSTEM

In minimum mode, the 8086 processor itself generates all bus control signals and so there

is no need for an external bus controller. The 8086 processor has multiplexed address/data pins

and address/status pins. In a system, multiplexing is not allowed and so the multiplexed address

lines has to be demultiplexed by using external latches and the latches are enabled by using the

signal ALE supplied by the processor. In an 8086-based system, the data bus should be provided

with data transceivers to drive the data on the bus. The signal DEN is used as enable and the signal

DT/R is used as direction control for data transceivers.

The formation of address bus and data bus in the 8086-based minimum mode system is

shown in Fig. 9.7. For minimum mode of operation the MN/MX is tied to V
cc

(+5-V). The clock

generator of the 8284 is used to generate the clock, reset and ready signals for the processor. A

quartz crystal of frequency 15 MHz is connected to the X
1
 and X

2
 pins of 8284 so that the clock

frequency supplied to the 8086 processor will be 5 MHz. An RC circuit is connected to the reset

input of 8284 to provide power-ON reset. A switch is also connected across the capacitor to

provide manual reset.

In the system shown in Fig. 9.7, three numbers of 8-bit latch 74LS573 are used as address

latches and two numbers of 8-bit bidirectional buffer 74LS245 are used as data transceivers. The

interfacing of memory and IO (or peripheral) devices are discussed in Chapters 4 and 7.

8086 Microprocessor and Its Appications

9. 12 Chapter 9 8086 Microprocessor-Based System

9.6 MAXIMUM MODE 8086-BASED SYSTEM

In maximum mode 8086-based system, an external bus controller 8288 has to be employed

to generate the bus control signals. The 8288 can be configured for uniprocessor or multiprocessor

mode of operation using the signals, AEN, IOB and CEN. The formation of address bus and data

bus in 8086-based maximum mode system is shown in Fig. 9.8. For maximum mode of operation,

the pin MN/MX of 8086 processor is tied to the ground.

The system shown in Fig. 9.8 employs a bus controller 8288 to generate bus control

signals. Here the bus controller is configured for the uniprocessor mode of operation by grounding

AEN and IOB, and by applying +5-V to CEN. (For multiprocessor mode of operation, IOB should

be tied to +5-V and the signals AEN and CEN are supplied by a bus arbiter such as INTEL 8289.)

In 8086 processor, the address is multiplexed with the data or status signals. In a system,

multiplexing is not allowed and so the multiplexed address lines of the CPU bus has to be

demultiplexed by using external latches. In the system shown in Fig. 9.8, three numbers of 8-bit

latch 74LS573 are employed to demultiplex the address lines. The signal ALE generated by the bus

controller is used as enable for the latches.

AD
15

 - AD
0←

A
19

/S
6
 - A

16
/S

3

DT/R

ALE

MN/MX

8086

C
L

K

R
E

A
D

Y

R
E

S
E

T

BHE/S
7

→

→

→

→

→

A
19

/S
6
 - A

16
/S

3

BHE/S
7

DEN

ALE

EN
↓↓

A
D

1
5

-
A

D
8

A
L

E

B
H

E
/S

7

↓ ↓ ↓A
1

9
/S

6
 -

 A
1

6
/S

3

A
L

E
EN EN

↓ ↓

A
D

7
 -

 A
D

0

A
L

E

↓ ↓ ↓A
D

1
5

-
A

D
8

DIREN
↓ ↓ ↓

A
D

7
 -

 A
D

0

DIR

DEN

AD
15

 - AD
0

C
P

U
 B

u
s

74LS573

8-Bit

Latch

74LS573

8-Bit

Latch

74LS573

8-Bit

Latch

74LS245

8-Bit

Bidirectional

Buffer

→
→

Address Bus

Data Bus

Control Bus
→ S

y
st

em
 B

u
s

↓↓
↓↓↓

↓↓ ↓↓

↓ ↓

D
7
 - D

0
D

15
 - D

8A
7
 - A

0
A

15
 - A

8
A

19
- A

16BHE

88884

X
1

R
E

S
E

T
P

C
L

K

C
L

K

R
E

A
D

Y

R
E

S
E

T

PCLK

8284
X

2

←

←
←

Fig. 9.7 : Formation of system bus in 8086-based minimum mode system.

+5-V

↑ ↑ ↑

1

EN

74LS245

8-Bit

Bidirectional

Buffer

 RES

 S
w

it
ch

 f
o
r

M
a
n

u
a
l

R
e
se

t10 kΩ

+5-V

+

−

DT/R

1
5

M
H

z

10 μF

M
/I

O
,

R
D

,
W

R
,

IN
T

A

I
P
Q

I

P

Q

 9. 13

←

↓

B
H

E

←←←

A
1

9
/S

6
 -

 A
1

6
/S

3

E
N↓

↓AD15 - AD8

ALE

BHE/S7 ↓
↓
↓

A19/S6 - A16/S3

ALE

E
N

E
N

↓
↓

AD7 - AD0

ALE

↓
↓
↓

AD15 - AD8

D
IR

E
N

↓

AD7 - AD0

A
D

1
5
 -

 A
D

0

7
4

L
S

5
7

3

8
-B

it

L
a

tc
h

7
4

L
S

5
7

3

8
-B

it

L
a

tc
h

7
4

L
S

5
7

3

8
-B

it

L
a

tc
h

7
4

L
S

2
4

5

8
-B

it

B
id

ir
e
c
ti

o
n

a
l

B
u

ff
e

r

7
4

L
S

2
4

5

8
-B

it

B
id

ir
e
c
ti

o
n

a
l

B
u

ff
e

r

A
d

d
re

ss
 B

u
s

D
at

a
B

u
s

C
o

n
tr

o
l

B
u

s

←

D
7
 -

 D
0

D
1

5
 -

 D
8

A
7
 -

 A
0

A
1

5
 -

A
8

A
1

9
-A

1
6

8
8

8
4

A
D

1
5

-
A

D
0

A
1

9
/S

6
 -

 A
1

6
/S

3

M
N

/M
X

8
0
8
6

CLK

READY

RESET

B
H

E
/S

7

X
1

CLK

READY

RESET

P
C

L
K

8
2
8
4

X
2

1
5

M
H

z

← ←

↓
↓

↓
↓
↓

→ →

S
2 S
1

S
0

+
5

-V

S
2

S
1

S
0

C
E

N

IO
B

A
E

N

8288
Bus Controller

D
E

N

A
L

E

D
T

/R

D
E

N

8

3 21

R
E

S
E

T

P
C

L
K

→ → → → → →

B
H

E
/S

7

D
T

/R A
L

E

↓
↓

E
N

D
IRD
E

N

CPU Bus

→ → →

System Bus

8

F
ig

.
9

.8
 :

 F
o

rm
a

ti
o

n
 o

f
s
y
s
te

m
 b

u
s
 i
n

 8
0

8
6

-b
a

s
e

d
 m

a
x
im

u
m

 m
o

d
e

 s
y
s
te

m
.

←

←

←

↓

↓

↓
↓

↓
↓

←

1

 R
E

S

 Switch for

Manual Reset

1
0

 k
Ω+
5

-V

1
0

 μ
F

→

+ −

IORC, IOWC, AIOWC, INTA

MRDC, MWTC, AMWC, MCE/PDEN

LOCK, QS1, QS0

TEST

RQ/GT1, RQ/GT0

IPQ IPQ

8086 Microprocessor and Its Appications

9. 14 Chapter 9 8086 Microprocessor-Based System

In 8086-based system, the data bus should be provided with data transceivers to drive the

data on the bus. In the system shown in Fig. 9.8, two numbers of bidirectional buffer 74LS245

are employed as data transceivers. The signals DEN and DT/R generated by the bus controller are

used as enable and direction control of buffers respectively.

The system employs a clock generator INTEL 8284 to generate the clock, reset and ready

signals for the 8086 processor. A quartz crystal of frequency 15 MHz is connected to the X
1
 and

X
2
 pins of 8284 so that the clock frequency supplied to the 8086 processor will be 5 MHz. An RC

circuit is connected to the reset input of the 8284 to provide power-ON reset. A switch is also

connected across the capacitor to provide manual reset.

The bus controller generates separate read and write controls for memory and IO devices.

It also generates extended write control signal for memory and IO devices requiring higher write

time.

9.7 MULTIPROCESSOR CONFIGURATIONS

A multiprocessor system will have two or more processors that can execute instructions

(or perform operations) simultaneously. In multiprocessor systems, the extra or added processors

can be special purpose processors which are specifically designed to perform certain tasks efficiently

or can be other general purpose processors. For example, a multiprocessor system can be formed

by using an 8086 microprocessor and an 8087 coprocessor in order to impart efficient floating

point arithmetic capability to the 8086-based system.

The multiprocessor systems offers the following advantages over single processor design:

1. Several low cost processors may be combined to fit the needs of an application while avoiding the expense

of the unneeded capabilities of a centralized system.

2. The multiprocessor system provides room for expansion because it is easy to add more processors as the

need arises.

3. In a multiprocessor system, implementation of modular processing of task can be achieved.

4. When a failure occurs, it is easier to replace only the faulty part/processor.

The two major issues in multiprocessor system design are bus contention and interprocessor

communication. In a multiprocessor system, more than one processor will share the system

memory and IO devices through a common system bus and so extra logic must be included to

ensure that only one processor has access to the system bus at any one time. Also, there should be

an unambiguous way of interprocessor communication so that one processor can despatch a task

or return a result to another processor unambiguously.

The maximum mode 8086/8088 microprocessor has features for designing a multiprocessor

system. Two types of multiprocessor configurations can be formed using 8086/8088 processor:

closely coupled (or tightly coupled) configuration and loosely coupled configuration.

 9. 15

In an 8086-based system, only two or three processors can be connected to work in

closely coupled configuration and in this, 8086/8088 is the host/master processor and other/

supporting processor is the slave processor. The slave processor can be a coprocessor or an IO

processor or general purpose processor. Two numbers of 8086/8088 processors cannot work in

closely coupled configurations. In a closely coupled configuration, both the master and slave

processors share the same bus control logic, clock generator, system memory and IO. In a

closely coupled configurations each processor will not have its own local memory or IO. The

general block diagram of a closely coupled configuration is shown in Fig. 9.9.

In a closely coupled configuration, the bus access control is provided by the master/host

processor and so the bus request of the supporting/slave processor is connected to the master (In

case of 8086/8088 the signal RQ, GT is used for bus request and grant.) In a closely coupled

configuration, when the slave is a coprocessor, it interacts directly with the master and to a

certain extent its functioning depends on the master. But when the slave is another processor then

it can work independently.

In a loosely coupled configuration, a number of modules of microprocessor-based system

(or masters) can be interfaced through a common system bus to work as a multiprocessor system.

Each module in the loosely coupled configuration is an independent microprocessor-based system

with its own clock source, and its own memory and IO devices interfaced through a local bus.

Each module can also be a closely coupled configuration of a processor and coprocessor. The

block diagram of a loosely coupled configuration using three modules of 8086/8088 is shown in

Fig. 9.10.

Each module in a loosely coupled configuration functions independently and there is no

direct connection between them. The modules can have access to system resources (system

memory and IO) through the system bus. Each module has a local and system bus control logic

which takes care of interprocessor communication and system bus allocation to the masters/

modules competing for system resources.

8086 / 8088

Microprocessor

8087 Coprocessor
or

Independent
Processor

Clock
Generator

Bus Control
Logic

Memory IO

System Bus

Fig. 9.9 : Closely coupled configuration.

8086 Microprocessor and Its Appications

9. 16 Chapter 9 8086 Microprocessor-Based System

System

Memory

System

I O

Devices

S
y
st

em
 B

u
s

Module - 1

Module - 2

Module - 3

Clock

Generator

8086/8088

or

Closely Coupled

Processors

Local Bus

Control Logic

Local Bus

Local

Memory

Local

I O

Devices

System Bus

Control Logic

Clock

Generator

8086/8088

or

Closely Coupled

Processors

Local Bus

Control Logic

Local Bus

Local

Memory

Local

I O

Devices

System Bus

Control Logic

Clock

Generator

8086/8088

or

Closely Coupled

Processors

Local Bus

Control Logic

Local Bus

Local

Memory

Local

I O

Devices

System Bus

Control Logic

Fig. 9.10 : Loosely coupled configuration.

 9. 17

9.8 TEMPERATURE CONTROL SYSTEM

The microprocessor-based temperature control system can be used for automatic control

of the temperature of a plant. A simplified block diagram of an 8086 microprocessor-based temperature

control system is shown in Fig. 9.11.

The system consists of 8086 microprocessor in minimum mode as CPU, EPROM memory

for program storage, RAM memory for stack and data storage, INTEL 8279 for keyboard and

display interface, ADC, DAC, INTEL 8255 for IO ports, amplifiers, signal conditioning circuit,

temperature sensor and supply control circuit. In this system, the temperature is controlled by

controlling the power input to the heating element.

The EPROM memory is provided for storing the system program, and RAM memory for

temporary data storage and stack operation. Using INTEL 8279, a keyboard and six numbers of 7-

segment LEDs are interfaced to the system. The system has been designed to accept the desired

temperature and various control commands through the keyboard. The 7-segment display has been

provided to display the temperature of the plant at any time instant.

The temperature of the plant is measured using a temperature sensor. The different types of

temperature sensors that can be used for temperature measurement are thermo-couples, thermistors,

PN-junctions, IC sensors like AD590, etc. These sensors will convert the input temperature to

proportional analog voltage or current. The output signal of the sensor will be a weak signal and so

it has to be amplified using high input impedance operational amplifier. Then the analog signal is

scaled to a suitable level by the signal conditioning circuit.

The microprocessor can process only digital signals and so the analog signal from signal

conditioning circuit cannot be read by the processor directly. The system has an Analog-to-Digital

Converter (ADC) to convert the analog signal to proportional digital data. In this system, the ADC

is interfaced to 8086 processor through port-A and port-C of 8255. The 8086 processor sends

signal to ADC through port-C to start conversion and at the end of conversion it reads the digital

data from the port-A of 8255.

The 8086 processor calculates the actual temperature using the input data and displays it on

the 7-segment LED. The processor also compares the desired temperature with actual temperature

(the operator can enter the desired temperature through the keyboard) and calculate the error (the

difference between actual temperature and desired temperature.)

The error is used to compute a digital control signal, which is converted to analog control

signal by DAC. The DAC is interfaced to the system through port-B of 8255. The analog control

signal produced by DAC is used to control the power supply of the heating element of the plant.

The digital control signal can be computed by the 8086 processor using different digital

control algorithms (P/PI/PID/FUZZY logic control algorithms).

8086 Microprocessor and Its Appications

9. 18 Chapter 9 8086 Microprocessor-Based System

↓

S
ig

n
al

C
o

n
d

it
io

n
in

g

C
ir

c
u

it

S
u

p
p

ly
 V

o
lt

a
g

e

C
o

n
tr

o
l

C
ir

c
u

it

A
D

C

0
8

0
9

D
A

C

0
8

0
0

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

A
n

o
d

e
 D

ri
v

e
rs

K
e
y

b
o

a
rd

 a
n

d

C
o

n
tr

o
l

P
a
n

e
l

D
e
c
o

d
e
rC

a
th

o
d

e
 D

ri
v

e
rs

7
-S

e
g

m
e
n

t
L

E
D

D
is

p
la

y

F
ig

.
9

.1
1

 :
 8

0
8

6
 m

ic
ro

p
ro

c
e

s
s
o

r-
b

a
s
e

d
 t
e

m
p

e
ra

tu
re

 c
o

n
tr

o
l s

y
s
te

m
.

A
m

p
li

fi
e
r

A
m

p
li

fi
e
r

S
u

p
p

ly
 t

o
 H

e
a
ti

n
g

E
le

m
e
n

t

H
e
a
ti

n
g

 E
le

m
e
n

t

P
o

rt
-C
↓

E
O

C

S
O

C

T
h

e
 P

la
n

t

W
h

o
se

T
e
m

p
e
ra

tu
re

H
as

 t
o
 b

e

C
o

n
tr

o
ll

e
d

Temperature

Sensor

A
d
d
re

ss

L
a
tc

h
e
s

a
n

d
 D

a
ta

B
u

ff
e
rs

8
0

8
6

C
P

U

R
A

M

6
2

6
4

8
 k

b

↓

E
P

R
O

M

2
7

6
4

8
 k

b

C
P

U

B
u
s

8
2

8
4

C
lo

c
k

G
e
n

e
ra

to
r

1
5

 M
H

z

Q
u

a
rt

z

8
0

8
6

-B
a
se

d

M
in

im
u

m
 M

o
d

e

S
y

st
e
m

N
o
te

 :
 R

ef
er

 F
ig

.
9
.7

 f
or

 8
0
8
6
-b

a
se

d
 m

in
im

u
m

 m
od

e
sy

st
em

.

System Bus

9. 19

The control circuit for power supply can be either

a thyristor-based circuit or relay. In case of thyristor

control circuits, the firing angle can be varied by the

control signal to control the power input to the heater. In

case of relay, the control signal can switch ON/OFF the

relay to control the power input to the heater.

The sequence of operations performed by the

microprocessor based system are shown in the

flowchart of Fig. 9.12.

9.9 MOTOR SPEED CONTROL SYSTEM

The microprocessor-based speed control system

can be used to automatically control the speed of a motor.

A typical 8086 microprocessor-based dc motor speed

control system is shown in Fig. 9.13. In this system,

the speed of the dc motor is varied by varying the

armature voltage and the field voltage is kept constant.

A controlled rectifier using SCR develops the required

armature voltage and the uncontrolled rectifier generates

the required field voltage. The microprocessor controls

the speed of the motor by varying the firing angle of

SCRs in the controlled rectifier.

The speed control system has been developed using

the 8086 microprocessor in minimum mode as CPU. The

system has EPROM for system program storage, and

RAM for temporary data storage and stack. A keyboard

has been provided to input the desired speed and other commands to operate the system. In order to

display the speed of the motor, a 7-segment LED display has been provided. The keyboard and

7-segment LED display has been interfaced to the 8086-based system using keyboard/display controller

INTEL 8279.

The speed of the dc motor is measured using a tachogenerator. It produces an analog

voltage proportional to the speed of the motor. Then the analog signal is scaled to the desired level

by the signal conditioning circuit and digitized using ADC. (The processor cannot process the

analog signal directly, hence the analog signal is digitized using ADC.)

The ADC is interfaced to the 8086 processor through port-B and port-C of 8255. The

processor can send a start of conversion to ADC through port-C pin and at the end of conversion

it can read the digital data from port-B of 8255. This digital data is proportional to the actual speed.

Get Desired

Temperature (T
d
)

Send SOC to ADC

Read the Actual

Temperature (T
a
)

Display the Actual

Temperature (T
a
)

Is

T
d
 = T

a

Yes

No

Calculate Error

Generate Control Signal

Send Control Signal to DAC

Initialize Ports and 8279

Fig. 9.12 : Flowchart for temperature

control system.

Start

←

←

8086 Microprocessor and Its Appications

9. 20 Chapter 9 8086 Microprocessor-Based System

F
ir

in
g

C
ir

c
u

it

fo
r

S
C

R
s

S
ig

n
al

C
o

n
d

it
io

n
in

g

C
ir

c
u

it

D
A

C

0
8

0
0

A
D

C

0
8

0
9

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

System Bus

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

A
n

o
d

e
 D

ri
v

e
rs

K
ey

b
o

ar
d

an

d

C
o

n
tr

o
l

P
a
n

e
l

D
e
c
o

d
e
rC

a
th

o
d

e
 D

ri
v

e
rs

7
-S

e
g

m
e
n

t
L

E
D

D
is

p
la

y

F
ig

.
9

.1
3

 :
 8

0
8

6
 m

ic
ro

p
ro

c
e

s
s
o

r-
b

a
s
e

d
 d

c
 m

o
to

r
s
p

e
e

d
 c

o
n

tr
o

l
s
y
s
te

m
.

U
n

c
o

n
tr

o
ll

e
d

 R
e
c
ti

fi
e
r

U
si

n
g

 D
io

d
es

M

C
o

n
tr

o
ll

e
d

R
e
c
ti

fi
e
r

U
si

n
g
 S

C
R

s

A
C

 S
u

p
p

ly

T
a

c
h

o
-

G
e
n

e
ra

to
r

D
C

 M
o

to
r

Motor

Field

A
rm

a
tu

re

D
C

 M
O

T
O

R

P
o

rt
-C

E
O

C

S
O

C

A
d
d
re

ss

L
a
tc

h
e
s

a
n

d
 D

a
ta

B
u

ff
e
rs

8
0

8
6

C
P

U

R
A

M

6
2

6
4

8
 k

b

↓

E
P

R
O

M

2
7

6
4

8
 k

b

C
P

U

B
u
s

8
2

8
4

C
lo

c
k

G
e
n

e
ra

to
r

1
5

 M
H

z

Q
u

a
rt

z

8
0

8
6

-B
a
se

d

M
in

im
u

m
 M

o
d

e

S
y

st
e
m

N
o
te

 :
 R

ef
er

 F
ig

.
9
.7

 f
or

 8
0
8
6
-b

a
se

d
 m

in
im

u
m

 m
od

e
sy

st
em

.

 9. 21

The processor calculates the actual speed and

displays it on LEDs. The processor also compares the

actual speed with desired speed entered by the operator

through the keyboard. If there is a difference then the

error is estimated. The error can be modified by a digital

control algorithm, (P/PI/PID/FUZZY logic control

algorithm) to produce a digital control signal.

The digital control signal is converted to analog

signal by the DAC. The analog control signal is used to

alter the firing angle of SCRs in the controlled rectifiers.

The operational flow of the speed control system is shown

in the flowchart of Fig. 9.14.

9.10 TRAFFIC LIGHT CONTROL SYSTEM

The traffic lights placed at the road crossings can

be automatically switched ON/OFF in the desired

sequence using a microprocessor system. The system

can also have a manual control option, so that during

heavy traffic (or during traffic jam) the duration of ON/

OFF time can be varied by the operator.

A typical traffic light control system

(demonstration type) is shown in Fig. 9.15. The system

has been developed using 8086 microprocessor in

minimum mode as CPU. The system has EPROM

memory for system program storage and RAM memory

for stack operation. For manual control, a keyboard has

been provided. It will be helpful for the operator if the

direction of the traffic flow is displayed during manual

control. Hence, 7-segment LEDs are interfaced to display

the direction of traffic flow both during manual and

automatic mode.

The primary function of the microprocessor in the system is to switch ON/OFF the Red/

Yellow/Green lights in the specified sequence. In the demonstration system of Fig. 9.15, Red/

Yellow/Green LEDs are provided instead of lights (lamps). The LEDs are interfaced to the system

through buffer (74LS245) and ports of 8255.

Fig. 9.14 : Flowchart for a dc motor

speed control system.

Start

Initialize Ports and

8279

Send SOC to ADC

Read the Data From

ADC

Calculate the Actual

Speed (N
a
)

Is

N
a
 = N

d

Yes

No

Calculate Error and Generate

Control Signal

Output Control Signal to DAC

Get the Desired Speed

(N
d
)

Is
Conversion

Complete ?

No

Yes

Display the Actual

Speed

←

←

8086 Microprocessor and Its Appications

9. 22 Chapter 9 8086 Microprocessor-Based System

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A P o r t - B

System Bus

R
A

M

6
2

6
4

8
 k

b

E
P

R
O

M

2
7

6
4

8
 k

b

F
ig

.
9

.1
5

 :
 8

0
8

6
 m

ic
ro

p
ro

c
e

s
s
o

r-
b

a
s
e

d
 t
ra

ff
ic

 l
ig

h
t
c
o

n
tr

o
l
d

e
m

o
n

s
tr

a
ti
o

n
 s

y
s
te

m
.

P o r t - C

B
u

ff
e
r

7
4

L
S

2
4

5

B
u

ff
e
r

7
4

L
S

2
4

5

B
u

ff
e
r

7
4

L
S

2
4

5

N
R

N
Y

N
G

N
F
R

N
F

L
S R

S
Y

S
F
R

S
F

L
E

R
E

Y
E

G
E

F
R

E
F

L

W
Y

W
G

W
F

R
W

F
L

L
E

D

L
E

D

L
E

D

N
-

N
o

rt
h

S
-

S
o

u
th

E
-

E
a
st

W
-

W
e

st

S
u

ff
ix

 R
-

R
ed

S
u

ff
ix

 G
-

G
re

e
n

S
u

ff
ix

 Y
-

Y
e
ll

o
w

S
u
ff

ix
 F

R
-

F
re

e
R

ig
h
t

S
u
ff

ix
 F

L
-

F
re

e
 L

e
ft

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓ ↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

↓↓

A
d
d
re

ss

L
a
tc

h
e
s

a
n

d
 D

a
ta

B
u

ff
e
rs

8
0

8
6

C
P

U
C

P
U

B
u
s

8
2

8
4

C
lo

c
k

G
e
n

e
ra

to
r

1
5

 M
H

z

Q
u

a
rt

z

8
0

8
6

-B
a
se

d

M
in

im
u

m
 M

o
d

e

S
y

st
e
m

↓

S
G

W
R

↓↓

↓↓ ↓↓

↓↓

A
n

o
d

e
 D

ri
v

e
rs

K
e
y

b
o

a
rd

a
n

d
 C

o
n

tr
o

l

P
a
n

e
l

C
a
th

o
d

e
 D

ri
v

e
rs

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

D
e
c
o

d
e
r

N
o
te

 :
 R

ef
er

 F
ig

.
9
.7

 f
or

 8
0
8
6
-b

a
se

d
 m

in
im

u
m

 m
od

e
sy

st
em

.

 9. 23

T
A

B
L

E
 -
9
.2

 :
 S

W
IT

C
H

IN
G

 S
C

H
E

D
U

L
E

 F
O

R
 T

R
A

F
F

IC
 L

IG
H

T
S

N
o
te

 :

"1
"

re
p
re

se
n

ts
 O

N
 a

n
d
 "

0
"

re
p
re

se
n

ts
 O

F
F.

O
N

/O
F

F
 s

ta
tu

s
o
f

tr
a
ff

ic
 l

ig
h

ts

S
w

it
c
h

in
g

P
C

3
P

C
2

P
C

1
P

C
0

P
B

7
P

B
6

P
B

5
P

B
4

P
B

3
P

B
2

P
B

1

 P

B
0

 P

A
7

P
A

6
P

A
5

P
A

4

P
A

3
P
A

2
P

A
1

P
A

0

S
c
h

e
d

u
le

W
F

L
W

F
R

W
G

W
Y

W
R

E
F

L
E

F
R

E
G

E
Y

E
R

S
F

L
S

F
R

S
G

S
Y

S
R

N
F

L
N

F
R

N
G

N
Y

N
R

S
c
h
e
d
u
le

 I
0

0
0

1
0

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1

S
c
h

e
d

u
le

 I
I

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

S
c
h
e
d
u
le

 I
II

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
1

1
1

0
0

S
c
h
e
d
u
le

 I
V

0
0

0
0

1
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

S
c
h

e
d

u
le

 V
0

0
0

0
1

0
0

0
0

1
0

0
0

1
0

0
0

0
0

1

S
c
h
e
d
u
le

 V
I

0
0

0
0

1
0

0
0

0
1

1
1

1
0

0
0

0
0

0
1

S
c
h
e
d
u
le

 V
II

0
0

0
0

1
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

S
c
h
e
d
u
le

 V
II
I

0
0

0
0

1
0

0
0

1
0

0
0

0
0

1
0

0
0

0
1

S
c
h
e
d
u
le

 I
X

0
0

0
0

1
1

1
1

0
0

0
0

0
0

1
0

0
0

0
1

S
c
h
e
d
u
le

 X
0

0
0

0
1

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1

S
c
h
e
d
u
le

 X
I

0
0

0
1

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

S
c
h
e
d
u
le

 X
II

1
1

1
0

0
0

0
0

0
1

0
0

0
0

1
0

0
0

0
1

8086 Microprocessor and Its Appications

9. 24 Chapter 9 8086 Microprocessor-Based System

Call Subroutine

NORTH

Call Subroutine

SOUTH

Call Subroutine

EAST

Call Subroutine

WEST

Output Code for

Schedule-IV

Delay-I

Output Code for

Schedule-V

Delay-II

Output Code for

Schedule-VI

Delay-III

Return

Output Code for

Schedule-I

Delay-I

Output Code for

Schedule-II

Delay-II

Output Code for

Schedule-III

Delay-III

Return

Start
NORTH SOUTH

↓

EAST

Output Code for

Schedule-VII

Delay-I

Output Code for

Schedule-VIII

Delay-II

Output Code for

Schedule-IX

Delay-III

Return

WEST

Output Code for

Schedule-X

Delay-I

Output Code for

Schedule-XI

Delay-II

Output Code for

Schedule-XII

Delay-III

Return

Fig. 9.16 : Flowchart for traffic light control program.

 9. 25

In the practical implementation scheme the lights can be turned ON/OFF using driver

transistors and relays. In practical implementation the output of buffer (74LS245) can be connected

to the driver transistor. A relay placed at the collector of the transistor can be used to switch ON/

OFF the light as shown in Fig. 9.17. A reverse biased diode is connected across the relay coil to

prevent relay chattering (for free-wheeling action).

The microprocessor sends high through a port line to switch ON the light and low to switch

OFF the light. A switching schedule (or sequence) can be developed as shown in Table-9.2. In this

switching sequence, it is assumed that the traffic is allowed only in one direction at a time. In

Table-9.2, "1" represents ON condition and "0" represents OFF condition. These 1's and 0's can be

directly output to 8255 ports to switch ON/OFF the light. A flowchart for traffic light control

program is shown in Fig. 9.16.

The processor can output the codes for switching the lights for schedule-I and then waits.

After a specified time delay the processor outputs the codes for schedule-II and so on. For each

schedule the processor can wait for a specified time. After schedule-XII, the processor can again

return to schedule-I. On observing the schedules we can conclude that three different delay routines

are sufficient for implementing the twelve switching schedules.

9.11 STEPPER MOTOR CONTROL SYSTEM

Stepper motors are popularly used in computer peripherals, plotters, robots and machine

tools for precise incremental rotation. In stepper motor, the stator windings are excited by electrical

pulses and for each pulse the motor shaft advances by one angular step. (Since the stepper motor

can be driven by digital pulses, it is also called digital motor.) The step size in the motor is determined

by the number of poles in the rotor and the number of pairs of stator windings (one pair of stator

winding is called one phase). The stator windings are also called control windings.

The motor is controlled by switching ON/OFF the control winding. The popular stepper

motor used for demonstration in laboratories has a step size of 1.8° (i.e., 200 steps per revolution).

This motor consists of four stator windings and requires four switching sequences as shown in

74LS245

Buffer

Light

Relay

+ 12-V

Fig. 9.17 : Switching circuit for traffic light.

NO

NC

Common

AC Supply, 230-V

↓

8086 Microprocessor and Its Appications

9. 26 Chapter 9 8086 Microprocessor-Based System

IN
T

E
L

8
2

5
5

P
P

I

P o r t - A

System Bus

A
n

o
d

e
 D

ri
v

e
rs

K
e
y

b
o

a
rd

a
n

d
 C

o
n

tr
o

l

P
a
n

e
l

C
a
th

o
d

e
 D

ri
v

e
rs

R
A

M

6
2

6
4

8
 k

b

E
P

R
O

M

2
7

6
4

8
 k

b

F
ig

.
9

.1
8

 :
 A

n
 8

0
8

6
 m

ic
ro

p
ro

c
e

s
s
o

r-
b

a
s
e

d
 s

te
p

p
e

r
m

o
to

r
c
o

n
tr

o
l
s
y
s
te

m
.

IN
T

E
L

8
2

7
9

K
e
y

b
o

a
rd

/

D
is

p
la

y

C
o

n
tr

o
ll

e
r

D
e
c
o

d
e
r

B
u

ff
e
r

7
4

L
S

2
4

5

→ → → →

P
A

0

P
A

1

P
A

2

P
A

3

B
1

B
2

B
3

B
4

1
k
Ω

Windings of

Stepper Motor

Darlington Pair

Transistor

2N3055
+

1
2

-V

→

→

→

→

→

→

→

→
A

d
d

re
ss

la
tc

h
es

an
d
 D

at
a

B
u
ff

er
s

80
86

C
P
U

C
P

U

B
u

s

8
2
8
4

C
lo

ck

G
en

er
at

o
r

1
5

 M
H

z

Q
u

a
rt

z

8
0
8
6
 b

as
ed

 m
in

im
u
m

m
o

d
e

sy
st

em

N
o
te

 :
 R

ef
er

 f
ig

 9
.7

 f
o

r
8

0
8

6
 b

a
se

d
 m

in
im

u
m

 m
o

d
e

sy
st

em
.

 9. 27

Table-9.3. The basic step size of the motor is called full-step. By altering the switching sequence,

the motor can be made to run with incremental motion of half the full-step value. The switching

sequence for half step rotation is shown in Table-9.4.

A typical stepper motor control system is shown in Fig. 9.18, for a two-phase or four

winding stepper motor. The system consists of an 8086 microprocessor in minimum mode as

CPU, EPROM and RAM memory for program and data storage and for stack. Using INTEL 8279,

a keyboard and six number of 7-segment LED display have been interfaced in the system. Through

the keyboard, the operator can issue commands to control the system. The LED display have been

provided to display messages to the operator.

The windings of the stepper motor are connected to the collector of the darlington pair

transistors. The transistors are switched ON/OFF by the microprocessor through the ports of

8255 and buffer (74LS245). A free-wheeling diode is connected across each winding for fast

switching. The flowchart for the operational flow of the stepper motor control system is shown

in Fig .9.19. The processor has to output a switching sequence and wait for 1 to 5 milliseconds

before sending the next switching sequence. (The delay is necessary to allow the motor transients

to die out.)

Start

↓
Initialize Ports and 8279

Output Data for a Sequence

Set Count for

4-Stepping Sequence

Wait for One Millisecond
↓

Decrement the Count
↓

Yes

Fig. 9.19 : Flowchart for stepper motor

control program.

Is
count = 0 ?

No

8086 Microprocessor and Its Appications

9. 28 Chapter 9 8086 Microprocessor-Based System

TABLE-9.3 : SWITCHING SEQUENCE FOR FULL-STEP ROTATION

TABLE-9.4 : SWITCHING SEQUENCE FOR HALF-STEP ROTATION

Clockwise Anticlockwise

rotation rotation

PA
3

PA
2

PA
1

PA
0

 PA
3

PA
2

PA
1

PA
0

1 1 0 0 0 0 1 1

0 1 0 0 0 0 1 0

0 1 1 0 0 1 1 0

0 0 1 0 0 1 0 0

0 0 1 1 1 1 0 0

0 0 0 1 1 0 0 0

1 0 0 1 1 0 0 1

1 0 0 0 0 0 0 1

Switching Clockwise Anticlockwise

sequence rotation rotation PA
3

PA
2

PA
1

PA
0

PA
3

PA
2

PA
1

PA
0

Sequence-1 1 1 0 0 0 0 1 1

Sequence-2 0 1 1 0 0 1 1 0

Sequence-3 0 0 1 1 1 1 0 0

Sequence-4 1 0 0 1 1 0 0 1

APPENDIX I : APPENDIX I : APPENDIX I : APPENDIX I : APPENDIX I : TEMPLATEMPLATEMPLATEMPLATEMPLATES FOR 8086 INSTRUCTIONSTES FOR 8086 INSTRUCTIONSTES FOR 8086 INSTRUCTIONSTES FOR 8086 INSTRUCTIONSTES FOR 8086 INSTRUCTIONS

S.No. Mnemonic Templates

 Group - I Data Transfer Instructions

 1. Mov reg2/mem, reg1/mem

a) MOV reg2, reg1 1000 10dw mod reg r/m

b) MOV mem, reg1

c) MOV reg2, mem
1000 10dw mod reg r/m l.b.disp h.b.disp

2. MOV reg/mem, data

a) MOV reg, data 1100 011w mod 000 r/m l.b.data h.b.data

b) MOV mem, data 1100 011w mod 000 r/m l.b.disp h.b.disp l.b.data h.b.disp

3. MOV reg, data 1011 wreg l.b.data h.b.data

4. MOV A, mem 1010 000w l.b.disp h.b.disp

a) MOV AL, mem

b) MOV AX, mem

5. MOV mem, A 1010 001w l.b.disp h.b.disp

a) MOV mem, AL

b) MOV mem, AX

6. MOV segreg, reg16/mem

a) MOV segreg, reg16 1000 1110 mod 0 sr r/m

b) MOV segreg, mem 1000 1110 mod 0 sr r/m l.b.disp h.b.disp

7. MOV reg16/mem, seg reg

a) MOV reg16, segreg 1000 1100 mod 0 sr r/m

b) MOV mem, segreg 1000 1100 mod 0 sr r/m l.b disp h.b.disp

8. PUSH reg16/mem

a) PUSH reg16 1111 1111 mod 110 r/m

b) PUSH mem 1111 1111 mod 110 r/m l.b disp h.b.disp

9. PUSH reg16 0101 0 reg

10. PUSH seg reg 000 sr 110

11. PUSHF 1001 1100

12. POP reg16/mem

a) POP reg16 1000 1111 mod 000 r/m

b) POP mem 1000 1111 mod 000 r/m l.b disp h.b.disp

13. POP reg16 0101 1 reg

14. POP segreg 000 sr 111

15. POPF 1001 1101

I
P
Q

A. 2

Appendix I continued ...

 S.No. Mnemonic Templates

 16. XCHG reg2/mem, reg1

a) XCHG reg2, reg1 1000 011w mod reg r/m

b) XCHG mem, reg1 1000 011w mod reg r/m l.b disp h.b.disp

17. XCHG AX, reg16 1001 0 reg

18. XLAT 1101 0111

19. IN A, [DX] 1110 110w

a) IN AL, [DX]

b) IN AX, [DX]

20. IN A, addr8 1110 010w addr8

a) IN AL, addr8

b) IN AX, addr8

21. OUT [DX], A 1110 111w

a) OUT [DX], AL

b) OUT [DX], AX

22. OUT addr8, A 1110 011w addr8

a) OUT addr8, AL

b) OUT addr8, AX

23. LEA reg16, mem 1000 1101 mod reg r /m l.b.disp h.b. disp

24. LDS reg16, mem 1100 0101 mod reg r /m l.b.disp h.b. disp

25. LES reg16, mem 1100 0100 mod reg r /m l.b.disp h.b. disp

26. LAHF 1001 1111

27. SAHF 1001 1110

Group - II Arithmetic Instructions

28. ADD reg2/mem,reg1/mem

a) ADD reg2, reg1 0000 00dw mod reg r/m

b) ADD reg2, mem

0000 00dw mod reg r/m l.b. disp h.b. disp

c) ADD mem, reg1

29. ADD reg/mem, data

a) ADD reg, data 1000 00sw mod 000 r/m l.b. data h.b. data

b) ADD mem, data 1000 00sw mod 000 r/m l.b. disp h.b. disp l.b. data h.b. data

30. ADD A, data 0000 010w l.b. data h.b. data

a) ADD AL, data8

b) ADD AX, data16

31. ADC reg2/mem,reg1/mem

a) ADC reg2, reg1 0001 00dw mod reg r/m

b) ADC reg2, mem

001 00dw mod reg r/m l.b. disp h.b.disp
c) ADC mem, reg1

I
P
Q

I
P
Q

8086 Microprocessor and Its Appications

AP P END I X A. 3

Appendix I continued ...

 S.No. Mnemonic Templates

 32. ADC reg/mem, data

a) ADC reg, data 1000 00sw mod 010 r/m l.b.data h.b.data

b) ADC mem, data 1000 00sw mod 010 r/m l.b.disp h.b.disp l.b.data h.b.data

33. ADC A, data 0001 010w l.b.data h.b.data

a) ADC AL, data8

 b) ADC AX, data16

34. AAA 0011 0111

35. DAA 0010 0111

36. SUB reg2/mem,reg1/mem

 a) SUB reg2, reg1 0010 10dw mod reg r/m

 b) SUB reg2, mem

0010 10dw mod reg r/m l.b.disp h.b.disp

 c) SUB mem, reg1

37. SUB reg/mem, data

a) SUB reg, data 1000 00sw mod 101 r/m l.b. data h.b.data

 b) SUB mem, data 000 00sw mod 101 r/m l.b.disp h.b.disp l.b.data h.b.data

38. SUB A, data 0010 110w l.b.data h.b.data

a) SUB AL, data8

b) SUB AX, data16

39. SBB reg2/mem,reg1/mem

 a) SBB reg2, reg1 0001 10dw mod reg r/m

 b) SBB reg2, mem

 0001 10dw mod reg r/m l.b.disp h.b.disp

 c) SBB mem, reg1

40. SBB reg/mem, data

 a) SBB reg, data 1000 00sw mod 011 r/m l.b.data h.b.data

b) SBB mem, data 1000 00sw mod 011 r/m l.b.disp h.b.disp l.b.data h.b.data

41. SBB A, data 0001 110w 1.b.data h.b.data

 a) SBB AL, data8

 b) SBB AX, data16

42. AAS 0011 1111

43. DAS 0010 1111

44. MUL reg/mem

 a) MUL reg 1111 011w mod 100 r/m

 b) MUL mem 1111 011w mod 100 r/m l.b.disp h.b.disp

45. IMUL reg/mem

 a) IMUL reg 1111 011w mod 101 r/m

 b) IMUL mem 1111 011w mod 101 r/m l.b.disp h.b.disp

I
P
Q

I
P
Q

A. 4

Appendix I continued ...

S.No. Mnemonic Templates

 46. AAM 1101 0100 0000 1010

47. DIV reg/mem

a) DIV reg 1111 011w mod 110 r/m

b) DIV mem 1111 011w mod 110 r/m l.b.disp h.b.disp

48. IDIV reg/mem

 a) IDIV reg 1111 011w mod 111 r/m

b) IDIV mem 1111 011w mod 111 r/m l.b.disp h.b.disp

49. AAD 1101 0101 0000 1010

50. NEG mem/reg

a) NEG reg 1111 011w mod 011 r/m

 b) NEG mem 1111 011w mod 011 r/m l.b.disp h.b.disp

51. INC reg8/mem

 a) INC reg8 1111 111w mod 000 r/m

 b) INC mem 1111 111w mod 000 r/m l.b.disp h.b.disp

52. INC reg16 0100 0 reg

53. DEC reg8/mem

a) DEC reg8 1111 111w mod 001 r/m

 b) DEC mem 1111 111w mod 001 r/m l.b.disp h.b.disp

54. DEC reg16 0100 1 reg

55. CBW 1001 1000

56. CWD 1001 1001

57. CMP reg2/mem, reg1/mem

 a) CMP reg2, reg1 0011 10dw mod reg r/m

b) CMP reg2, mem

0011 10dw mod reg r/m l.b.disp h.b.disp

c) CMP mem, reg1

58. CMP reg/mem, data

a) CMP reg, data 1000 00sw mod 111 r/m l.b.data h.b.data

b) CMP mem, data 1000 00sw mod 111 r/m l.b.disp h.b.disp l.b.data h.b.data

59. CMP A, data 0001 110w l.b.data h.b.data

a) CMP AL, data8

b) CMP AX, data16

Group - III Logical Instructions

60. AND reg2/mem, reg1/mem

 a) AND reg2, reg1 0010 00dw mod reg r/m

 b) AND reg2, mem

0010 00dw mod reg r/m l.b.disp h.b.disp

 c) AND mem, reg1

I
P
Q

I
P
Q

8086 Microprocessor and Its Appications

AP P END I X A. 5

Appendix I continued ...

 S.No. Mnemonic Templates

 61. AND reg/mem, data

a) AND reg, data 1000 000w mod 100 r/m l.b.data h.b.data

b) AND mem, data 1000 000w mod 100 r/m l.b.disp h.b.disp l.b.data h.b.data

62. AND A, data 0010 010w l.b.data h.b.data

a) AND AL, data8

b) AND AX, data16

63. OR reg2/mem, reg1/mem

a) OR reg2, reg1 0000 10dw mod reg r/m

b) OR reg2, mem

0000 10dw mod reg r/m l.b.disp h.b.disp

c) OR mem, reg1

64. OR reg/mem, data

a) OR reg, data 1000 000w mod 001 r/m l.b.data h.b.data

b) OR mem, data 1000 000w mod 001 r/m l.b.disp h.b.disp l.b.data h.b.data

65. OR A, data 0000 110w l.b.data h.b.data

a) OR AL, data8

b) OR AX, data16

66. XOR reg2/mem, reg1/mem

a) XOR reg2, reg1 0011 00dw mod reg r/m

b) XOR reg2, mem

0011 00dw mod reg r/m l.b.disp h.b.disp

c) XOR mem, reg1

67. XOR reg/mem, data

a) XOR reg, data 1000 000w mod 110 r/m l.b.data h.b.data

b) XOR mem, data 1000 000w mod 110 r/m l.b.disp h.b.disp l.b.data h.b.data

68. XOR A, data 0011 010w l.b.data h.b.data

a) XOR AL, data8

b) XOR AX, data16

69. TEST reg2/mem, reg1/mem

a) TEST reg2, reg1 1000 010w mod reg r/m

b) TEST reg2, mem

1000 010w mod reg r/m l.b.disp h.b.disp

c) TEST mem, reg1

70. TEST reg/mem, data

a) TEST reg, data 1111 011w mod 000 r/m l.b.data h.b.data

b) TEST mem, data 1111 011w mod 000 r/m l.b.disp h.b.disp l.b.data h.b.data

71. TEST A, data 1010 100w l.b.data h.b.data

a) TEST AL, data8

b) TEST AX, data16

I
P
Q

I
P
Q

I
P
Q

A. 6

Appendix I continued ...

S.No. Mnemonic Templates

 72. NOT reg/mem

a) NOT reg 1111 011w mod 010 r/m

b) NOT mem 1111 011w mod 010 r/m l.b.disp h.b.disp

73. SHL reg/mem

or SAL reg/mem

a) SHL reg or SAL reg 1101 00vw mod 100 r/m

i) SHL reg, 1 or SAL reg, 1

ii) SHL reg, CL

 or SAL reg, CL

b) SHL mem or SAL mem 1101 00vw mod 100 r/m l.b.disp h.b.disp

i) SHL mem, 1

 or SAL mem, 1

ii) SHL mem, CL

 or SAL mem, CL

74. SHR reg/mem

a) SHR reg 1101 00vw mod 101 r/m

i) SHR reg, 1

ii) SHR reg, CL

b) SHR mem 1101 00vw mod 101 r/m l.b.disp h.b.disp

 i) SHR mem,1

 ii) SHR mem,CL

75. SAR reg/mem

a) SAR reg 1101 00vw mod 111 r/m

i) SAR reg, 1

ii) SAR reg, CL

b) SAR mem 1101 00vw mod 111 r/m l.b.disp h.b.disp

i) SAR mem, 1

ii) SAR mem, CL

76. ROL reg/mem

a) ROL reg 1101 00vw mod 000 r/m

i) ROL reg, 1

ii) ROL reg, CL

b) ROL mem 1101 00vw mod 000 r/m l.b.disp h.b.disp

i) ROL mem, 1

ii) ROL mem, CL

77. RCL reg/mem

a) RCL reg 1101 00vw mod 010 r/m

i) RCL reg, 1

ii) RCL reg, CL

b) RCL mem 1101 00vw mod 010 r/m l.b.disp h.b.disp

i) RCL mem, 1

ii) RCL mem, CL

8086 Microprocessor and Its Appications

AP P END I X A. 7

Appendix I continued ...

S.No. Mnemonic Templates

 78. ROR reg/mem

a) ROR reg 1101 00vw mod 001 r/m

i) ROR reg, 1

ii) ROR reg, CL

b) ROR mem 1101 00vw mod 001 r/m l.b.disp h.b.disp

i) ROR mem, 1

ii) ROR mem, CL

79. RCR reg/mem

a) RCR reg 1101 00vw mod 011 r/m

i) RCR reg, 1

ii) RCR reg, CL

b) RCR mem 1101 00vw mod 011 r/m l.b.disp h.b.disp

i) RCR mem, 1

ii) RCR mem, CL

Group - IV String Manipulation Instructions

80. REP 1111 001z

a) REPZ/REPE

b) REPNZ/REPNE

81. MOVS 1010 010w

a) MOVSB

b) MOVSW

82. CMPS 1010 011w

a) CMPSB

b) CMPSW

83. SCAS 1010 111w

a) SCASB

b) SCASW

84. LODS 1010 110w

a) LODSB

b) LODSW

85. STOS 1010 101w

a) STOSB

b) STOSW

Group - V Control Transfer Instructions

86. CALL disp16 1110 1000 l.b.disp h.b.disp

(Call near - direct within segment)

87. CALL reg/mem

(Call near - indirect

within segment)

a) CALL reg 1111 1111 mod 010 r/m

b) CALL mem 1111 1111 mod 010 r/m l.b.disp h.b.disp

A. 8

Appendix I continued ...

 S.No. Mnemonic Templates

 88. CALL addr
offset

, addr
base

1001 1010 l.b.offset h.b.offset l.b.base h.b.base

(Call far-direct intersegment)

89. CALL mem 1111 1111 mod 011 r/m l.b.disp h.b.disp

(Call far-indirect intersegment)

90. RET 1100 0011

(Return from call within segment)

91. RET data16 1100 0010 l.b. data h.b.data

(Return from call within segment

adding immediate data to SP)

92. RET 1100 1011

(Return from intersegment call)

93. RET data16 1100 1010 l.b. data h.b.data

(Return from intersegment call

adding immediate data to SP)

94. JMP disp16 1110 1001 l.b. disp h.b.disp

(Unconditional jump

 near-direct within segment)

95. JMP disp8 1110 1011 disp8

(Unconditional jump short-direct

within segment)

96. JMP reg/mem

(Unconditional jump

near-indirect within segment)

a) JMP reg 1111 1111 mod 100 r/m

b) JMP mem 1111 1111 mod 100 r/m l.b.disp h.b.disp

97. JMP addr
offset

, addr
base

1110 1010 l.b.offset h.b.offset l.b.base h.b.base

(Unconditional jump far-direct

intersegment)

98. JMP mem 1111 1111 mod 101 r/m l.b.disp h.b.disp

(Unconditional jump far-indirect

intersegment)

99. JE/JZ disp8 0111 0100 disp8

100. JL/JNGE disp8 0111 1100 disp8

101. JLE/JNG disp8 0111 1110 disp8

102. JB/JNAE/JC disp8 0111 0010 disp8

103. JBE/JNA disp8 0111 0110 disp8

104. JP/JPE disp8 0111 1010 disp8

105. JNB/JAE/JNC disp8 0111 0011 disp8

106. JNBE/JA disp8 0111 0111 disp8

107. JNP/JPO disp8 0111 1011 disp8

8086 Microprocessor and Its Appications

AP P END I X A. 9

Appendix I continued ...

 S.No. Mnemonic Templates

 108. JNO disp8 0111 0001 disp8

109. JNS disp8 0111 1001 disp8

110. JO disp8 0111 0000 disp8

111. JS disp8 0111 1000 disp8

112. JNE/JNZ disp8 0111 0101 disp8

113. JNL/JGE disp8 0111 1101 disp8

114. JNLE/JG disp8 0111 1111 disp8

115. JCXZ disp8 1110 0011 disp8

116. LOOP disp8 1110 0010 disp8

117. LOOPZ/LOOPE disp8 1110 0001 disp8

118. LOOPNZ/LOOPNE disp8 1110 0000 disp8

119. INT type 1100 1101 type

120. INT 3 1100 1100

121. INTO 1100 1110

122. IRET 1100 1111

 Group - VI Processor Control Instructions

123. CLC 1111 1000

124. CMC 1111 0101

125. STC 1111 1001

126. CLD 1111 1100

127. STD 1111 1101

128. CLI 1111 1010

129. STI 1111 1011

130. HLT 1111 0100

131. WAIT 1001 1011

132. ESC opcode, mem/reg

a) ESC opcode, mem 1101 1opc mod opc r/m l.b.disp h.b.disp

b) ESC opcode, reg 1101 1opc mod opc r/m

133. LOCK 1111 0000

134. NOP 1001 0000

135. Segment override prefix 001 sr 110

A. 10

TABLE - A - 1 : ONE BIT SPECIAL INDICATOR

 Special
Meaning

 bit value

w = 0 8-bit operation.

w = 1 16-bit operation.

d = 0 The register specified by reg

field is source operand.

d = 1 The register specified by reg

field is destination operand.

sw = 00 8-bit operation with an 8-bit

immediate data.

sw = 01 16-bit operation with a 16-bit

immediate data.

sw = 11 16-bit operation with a sign

extended 8-bit immediate operand.

v = 0 Shift/rotate operation is performed one time.

v = 1 The content of CL is count value

for number of shift/rotateoperations

to be performed.

z = 0 Repeat execution of string instruction

until ZF = 0.

z = 0 Repeat execution of string instruction

until ZF = 1.

TABLE - A - 2 : CODES FOR

 “mod” FIELD

Code for

 Name of the mode

mod field

 00 Memory mode with no displacement

 01 Memory mode with 8-bit displacement

 10 Memory mode with 16-bit displacement

 11 Register mode

TABLE - A - 5 : CODES FOR “r/m” FIELD

 Code for Effective address calculation when mod = 00/01/10

 r/m field mod = 00 mod = 01 mod = 10

 000 [BX + SI] [BX + SI + disp8] [BX + SI + disp16]

 001 [BX + DI] [BX + DI + disp8] [BX + DI + disp16]

 010 [BP + SI] [BP + SI + disp8] [BP + SI + disp16]

 011 [BP + DI] [BP + DI + disp8] [BP + DI + disp16]

 100 [SI] [SI + disp8] [SI + disp16]

 101 [DI] [DI + disp8] [DI + disp16]

 110 [disp16] [BP + disp8] [BP + disp16]

 111 [BX] [BX + disp8] [BX + disp16]

TABLE - A - 3 : CODES FOR “reg” FIELD

Code for
 Name of the register represented by

reg field
the code when w = 0 or 1

 When w = 0 When w = 1

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

TABLE - A - 4 : CODES FOR

“sr” FIELD

 Code for

 sr field Segment register

 00 E S

 01 CS

 10 SS

 11 DS

TABLE - A - 6 : MEANINGS OF VARIOUS TERMS USED IN THE OPERAND

FIELD OF INSTRUCTIONS AND IN TEMPLATES

Term Meaning

reg/reg1/reg2 8-bit or 16-bit register

reg8 8-bit register

reg16 16-bit register

segreg, sr segment register

mem 8-bit or 16-bit memory

mem8 8-bit memory

mem16 16-bit memory

data 8-bit or 16-bit data

Term Meaning

data8 8-bit data

data16 16-bit data

addr8 8-bit address

addr
offset

16-bit offset/effective address

addr
base

16-bit base address

disp8 8-bit signed displacement

disp16 16-bit displacement

opc opcode

8086 Microprocessor and Its Appications

APPENDIX II APPENDIX II APPENDIX II APPENDIX II APPENDIX II : DOS AND BIOS INTERRUPTS DOS AND BIOS INTERRUPTS DOS AND BIOS INTERRUPTS DOS AND BIOS INTERRUPTS DOS AND BIOS INTERRUPTS

TABLE - 1 : DOS INTERRUPTS

Interrupt Function

 number code
 Dedicated operation

INT 20H - Program Terminate

INT 21H 01H Read character from standard input device.

INT 21H 02H Write character to standard output device.

INT 21H 03H Read character from auxiliary input device.

INT 21H 04H Write character to auxiliary output device.

INT 21H 05H Write character to printer.

INT 21H 06H Console input or output.

INT 21H 07H Unfiltered character input without echo.

INT 21H 08H Read character without echo.

INT 21H 09H Display string.

INT 21H 0AH Buffered string input.

INT 21H 0BH Get input status.

INT 21H 0CH Clear input buffer and read.

INT 21H 0FH Open file using FCB (File Control Block).

INT 21H 10H Close file using FCB.

INT 21H 11H Find first matching file using FCB.

INT 21H 12H Find next matching file using FCB.

INT 21H 13H Delete file using FCB.

INT 21H 16H Create/Truncate file using FCB.

INT 21H 17H Rename file using FCB.

INT 21H 23H Get file size in records using FCB.

 INT 21H 29H Parse file name.

 INT 21H 3CH Create/Truncate file.

 INT 21H 3DH Open file.

 INT 21H 3EH Close file.

 INT 21H 41H Delete file.

 INT 21H 43H Set/Get file attributes - CHMOD.

 INT 21H 45H Duplicate a file handle.

 INT 21H 46H Force duplication of handle.

 INT 21H 4EH DOS first find (matching file).

 INT 21H 4FH DOS next find (matching file).

 INT 21H 56H Rename file.

 INT 21H 57H Get/Set file time and date.

 INT 21H 5AH Create unique temporary file.

 INT 21H 5BH Create new file.

 INT 21H 14H Read file sequentially using FCB.

 INT 21H 15H Write file sequentially using FCB.

 INT 21H 1AH Set disk transfer area address.

Character Input / Output

File Operations

Record Operations

A. 12

Appendix II continued...

 Interrupt Function

 number code
 Dedicated operation

 INT 21H 21H Random record read using FCB.

 INT 21H 22H Random file read/write using FCB.

 INT 21H 24H Set random record number.

 INT 21H 27H Read random file block.

 INT 21H 28H Write random file block.

 INT 21H 2FH Get current disk transfer area address.

 INT 21H 3FH Read file or device.

 INT 21H 40H Write to file or device.

 INT 21H 42H Move file pointer.

 INT 21H 5CH Lock/unlock file access.

 INT 21H 39H Create new subdirectory.

 INT 21H 3AH Delete subdirectory.

 INT 21H 3BH Set current directory.

 INT 21H 47H Get present working directory.

 INT 21H 0DH Reset disk.

 INT 21H 0EH Set DOS default disk.

 INT 21H 19H Get DOS default disk drive.

 INT 21H 1BH Get FAT information for default drive.

 INT 21H 1CH Get FAT information for specified drive.

 INT 21H 2EH Set or reset verify flag.

 INT 21H 36H Get disk free space.

 INT 21H 54H Get DOS verify switch.

 INT 21H 00H Program terminate.

 INT 21H 26H Create program segment prefix.

 INT 21H 31H Terminate and stay resident.

 INT 21H 4BH Execute or load program.

 INT 21H 4CH Terminate with return code.

 INT 21H 4DH Get return code.

 INT 21H 62H Get PSP (Program Segment Prefix) pointer.

 INT 21H 48H Allocate memory.

 INT 21H 49H Release memory.

 INT 21H 4AH Modify memory allocation.

 INT 21H 58H Get or set allocation strategy.

 INT 21H 5EH Get machine name and Get/Set printer setup.

 INT 21H 5FH Get redirection entry.

 INT 21H 2AH Get DOS system date.

 INT 21H 2BH Set DOS system date.

 INT 21H 2CH Get DOS system time.

 INT 21H 2DH Set DOS system time.

Directory Operations

Disk Management

Process Management

Memory Management

Network Functions

Time and Date Functions

8086 Microprocessor and Its Appications

AP P END I X A. 13

Appendix II continued...

 Interrupt Function

 number code
 Dedicated operation

INT 21H 25H Set interrupt vector.

INT 21H 30H Get DOS version number.

INT 21H 32H Get DOS disk information.

INT 21H 33H Get/set Ctrl-Break flag, Get boot drive.

INT 21H 34H DOS re-entrance status address.

INT 21H 35H Get interrupt vector.

INT 21H 37H Set/Get switch character.

INT 21H 38H Get/Set country dependent information.

INT 21H 44H Device I/O control.

INT 21H 59H Get extended error information.

INT 21H 63H Get load byte table.

INT 22H - Terminate handler pointer.

INT 23H - Ctrl-C handler pointer.

INT 24H - Critical error handler pointer.

INT 25H - Absolute disk read.

INT 26H - Absolute disk write.

INT 27H - Terminate and stay resident.

INT 28H

 to - Reserved.

INT 2EH

INT 2FH 01H Print spooler.

INT 2FH 10H Share.

TABLE - 2 : BIOS INTERRUPTS

 Interrupt Function

 number code
 Dedicated operation

INT 10H 00H Set video mode.

INT 10H 01H Set cursor shape.

INT 10H 02H Set cursor position.

INT 10H 03H Read cursor position.

INT 10H 04H Read light pen position.

INT 10H 05H Set active video page.

INT 10H 06H Scroll/Initialize rectangle window up.

INT 10H 07H Scroll/Initialize rectangle window down.

INT 10H 08H Read character and attribute at cursor.

INT 10H 09H Write character and attribute at cursor.

INT 10H 0AH Write character only at cursor.

INT 10H 0BH Set colour palette.

INT 10H 0CH Set pixel.

INT 10H 0DH Get pixel.

INT 10H 0EH Write text in teletype mode.

INT 10H 0FH Get video mode.

INT 10H 10H Set colour palette registers.

BIOS Video Driver Services

Miscellaneous System Functions

A. 14

Appendix VII continued...

 Interrupt Function

 number code
 Dedicated operation

INT 10H 13H Display string.

INT 10H 0FEH Get video buffer pointer.

INT 10H 0FFH Update video buffer.

INT 11H - Get machine configuration.

INT 12H - Get conventional memory size.

INT 13H 00H Reset disk system.

INT 13H 01H Get disk system status.

INT 13H 02H Read disk sector.

INT 13H 03H Write disk sector.

INT 13H 04H Verify disk sectors.

INT 13H 05H Format disk track.

INT 14H 00H Initialize communication port.

INT 14H 01H Write communication port.

INT 14H 02H Read communication port.

INT 14H 03H Read communication port status.

 INT 15H - AT services.

 INT 16H 00H Read keyboard character.

 INT 16H 01H Read keyboard status.

 INT 16H 02H Read keyboard flags.

 INT 17H 00H Write to printer.

 INT 17H 01H Initialize printer port.

 INT 17H 02H Read printer status.

 BIOS Floppy Disk Services

BIOS Serial Communication Port Services

BIOS Keyboard Driver Services

BIOS Printer Driver Services

8086 Microprocessor and Its Appications

APPENDIX Ill : LIST OF MICROPROCESSORS RELEASED BY INTEL

MICROPROCESSOR DATE OF NUMBER OF CLOCK SPEED

INTRODUCTION TRANSISTORS

4004 15th Nov, 1971 2,300 400 kHz

8008 Apr, 1972 3,500 500-800 kHz

8080 Apr, 1974 4,500 2 MHz

8085 Mar, 1976 6,500 5 MHz

8086 8th Jun, 1978 29,000 5/8/10 MHz

8088 Jun, 1979 29,000 5/8 MHz

80186 1982 10/12 MHz

80286 Feb, 1982 134,000 6/10/12 MHz

INTEL386 DX 17th Oct, 1985 275,000 16/20/25/33 MHz

INTEL386 SX 16th Jun, 1988 275,000 16/20/25/33 MHz

INTEL386 SL 15th Oct, 1990 855,000 20/25 MHz

INTEL486 DX 10th Apr, 1989 1.2 million 25/33/50 MHz

INTEL486 SX 16th Sep, 1991 900,000 16/20/25 MHz

INTEL486 SX 21st Sep, 1992 1.185 million 33 MHz

INTEL486 SL 4th Nov, 1992 1.4 million 20/25/33 MHz

INTELDX 2 3rd Mar, 1992 1.2 million 50/66 MHz

INTELDX 4 7th Mar, 1994 3.2 million 75/100 MHz

Pentium 22nd Mar, 1993 3.1 million 60/66 MHz

Pentium 7th Mar, 1994 3.2 million 75/90/100/120 MHz

Pentium Jun, 1995 3.3 million 133/150/166/200 MHz

Pentium Pro 1st Nov, 1995 5.5 million 150/166/180/200 MHz

Pentium (MMX) 8th Jan, 1997 4.5 million 166/200/233 MHz

Mobile Pentium (MMX) 9th Sep, 1997 4.5 million 200/233/266/300 MHz

Pentium II 7th May, 1997 7.5 million 233/266/300/333/350/400/

450 MHz

Mobile Pentium II 2nd Apr, 1998 7.5 million 233/266/300 MHz

Mobile Pentium II 25th Jan, 1999 27.4 million 333/366/400 MHz

Pentium II Xeon 29th Jun, 1998 7.5 million 400/450 MHz

Celeron 15th Apr, 1998 7.5 million 266/300 MHz

Celeron 24th Aug, 1998 19 million 333 MHZ to 2.7 GHz

Mobile Celeron 25th Jan, 1999 18.9 million 266 MHz to 2.4 GHz

Pentium III 26th Feb, 1999 9.5 million 450/500/550/600 MHZ

A. 16

Appendix Ill continued...

MICROPROCESSOR DATE OF NUMBER OF CLOCK SPEED

INTRODUCTION TRANSISTORS

Pentium III 25th Oct, 1999 28 million 500 MHz to 1 GHz

Pentium III Xeon 17th Mar, 1999 9.5 million 500/550 MHz

Pentium III Xeon 25th Oct, 1999 28 million 600 to 900 MHz

Mobile Pentium III 25th Oct, 1999 28 million 400 MHz to 1 GHz

Mobile Pentium III 30th Jul, 2001 44 million 1/1.06/1.13/1.2/1.33 GHz

Pentium 4 20th Nov, 2000 42 million 1.4/1.5/1.6/1.7/1.8/1.9/2 GHz

Pentium 4 27th Aug, 2001 55 million 2 to 2.8 GHz

Pentium 4 (HT Technology) 14th Nov, 2002 55 million 2.4 to 3.3 GHz

Mobile Pentium 4 4th Mar, 2002 55 million 1.5 to 3.2 GHz

INTEL Xeon 21st May, 2001 42 million 1.4/1.5/1.7/2 GHz

INTEL Xeon 9th Jan, 2002 52 million 1.8/2/2.2/2.4/2.6/2.8 GHz

INTEL Xeon 18th Nov, 2002 108 million 1.4 to 3.2 GHz

INTEL Itanium May, 2001 25 million 733/800 MHz

INTEL Itanium 2 8th Jul, 2002 220 million 900 MHz/1 GHz

INTEL Itanium 2 30th Jun, 2003 410 million 1/1.4/1.5 GHz

INTEL Pentium-M 12th Mar, 2003 77 million 900 MHz to 1.7 GHz

Note : The date mentioned here is the date of introduction of the lowest clock version of the processor.

For the date of introduction of higher clock version of a processor please refer to INTEL website

www.intel.com.

8086 Microprocessor and Its Appications

GENERAL INDEX

A

AAA 3.24

AAD 3.24

AAM 3.24

AAS 3.24

Accumulator 2.9

ADC 3.24

ADC0809

- Functional block diagram 7.77

- Interfacing with 8086 7.79

- Pin description 7.76

ADD 3.24

Address 1.1

Address bus 1.1

Addressing 3.77

Address latch enable 1.8, 2.5

Address translation register 8.19

ALU 1.6

Analog to digital converter

- Conversion time of ADC 7.74

- Resolution of ADC 7.74

AND 3.24

Architecture of

 - 80186 8.6

- 80286 8.13

- 80386 8.25

- 80486 8.38

- 8086 2.7

- Pentium 8.47

Arithmetic instructions 3.14

Array 6.116

Assembler

- One pass assembler 6.4

- Two pass assembler 6.4

Assembler directives 6.9

Assembly language 6.1

Asynchronous data transfer 7.4

Auxiliary carry flag 2.9

B

Base pointer 2.9

Base register 2.9

Based addressing 3.9

Based indexed addressing 3.10

 Baud rate 7.83

BIOS interrupts 6.18

BIOS service 6.18, 6.19

Bit 1.1

Block transfer DMA 7.3

Bus

- Address bus 1.1

- Control bus 1.1

- CPU bus 1.2

- Data bus 1.1

- System bus 1.2

Bus contention 4.34

Bus controller 9.6

Bus cycle 2.13

Bus interface unit 2.7, 2.8

Byte 1.1

C

CALL 3.24

Carry flag 2.9

CBW 3.24

Chip select signal 4.15, 4.34

CLC 3.24

CLD 3.24

CLI 3.24

Clock 1.2

Clock generator 2.1, 9.3

Closely coupled configuration 9.14, 9.15

CMC 3.24

CMP 3.24

CMPS 3.24

CMPSB 3.24

CMPSW 3.24

Code segment 2.8

Common anode 7-segment LED 7.46

Common cathode 7-segment LED 7.46

Compiler 6.2

Conditional jump 3.61

Constant 6.8

Control bits 2.9

Control bus 1.1

General Index I. 2

Control transfer instructions 3.21

Conversion time of ADC 7.74

Conversion time of DAC 7.71

Coprocessor 2.1, 9.7

Count register 2.9

CPU bus 1.2

CWD 3.24

 Cycle stealing DMA 7.3

D

DAA 3.24

DAC0800

- Block diagram 7.72

- Interfacing with 8086 7.73

- Pin description 7.72

DAS 3.24

Data 1.1

Data bus 1.1

Data register 2.9

Data segment 2.8

Data transfer

- Asynchronous data transfer 7.4

- DMA data transfer 7.3

- Interrupt driven data transfer 7.4

- Synchronous data transfer 7.3

Data transfer instructions 3.12

d-bit 3.1, 3.2

 Debouncing 7.84

Debugger 6.5

DEC 3.24

Decoder 2.8

Demand transfer DMA 7.3

Demultiplexing 1.8

Descriptor 8.18

Descriptor table

- Global descriptor table 8.17, 8.19

- Local descriptor table 8.17, 8.19

Destination index 2.9

Development system 6.117

Digital to analog converter

- Conversion time of DAC 7.71

- Resolution of DAC 7.69

Direct addressing 3.8

Direction flag 2.10

Direct IO port addressing 3.11

Display interface using ports 7.46

Display refreshing 7.50

DIV 3.24

DMA controller [8237]

- Command register 7.20

- Control words 7.20

- Functional block diagram 7.15

- Interfacing with 8086 7.24

- Internal addresses 7.19

- Internal registers 7.18

- Mask register 7.22

- Mode register 7.21

- Pin description 7.14, 7.16

- Request register 7.22

- Software commands 7.23

- Status register 7.23

DMA controller [8257]

- Control word 7.32

- Count register 7.32

- Functional block diagram 7.29

- Internal addresses 7.31

- Mode set register 7.31

- Pin description 7.28

- Status register 7.32

DMA data transfer

- Cycle stealing DMA 7.3

- Block transfer DMA 7.3

- Demand transfer DMA 7.3

DMA 4.35

DOS interrupts 6.17

DOS service 6.18

Double word 1.1

DRAM 4.11

E

EACT 3.12

Editor 6.4

EEPROM 4.12

Emulator 6.6

EPROM 1.7, 4.4

ESC 3.24

Even memory bank 2.1

 Exception 5.1, 5.3

I. 3

Execution unit 2.7, 2.8

Extra segment 2.8

F

Far call 6.14

Far jump 3.80

FIFO RAM 2.8

First-last flip-flop 7.23

Flag 1.6, 2.22

Flag register

 - of 80286 8.15

 - of 80386 8.29

 - of 8086 2.9

Flowchart 6.2

Full-duplex transmission 7.34

G

Global descriptor table 8.17, 8.19

H

Half-duplex transmission 7.34

Hand coding 6.22

Handshake port 4.23

Hardware interrupt 5.2

High impedance state 1.2

HLT 3.24

 Hyperthreading technology 8.52

I

IO device 4.22

IO mapping 4.25, 4.26

IO port addressing

- Direct 3.11

- Indirect 3.11

IO read cycle 2.17

IO structure 4.22

IO write cycle 2.18

IDIV 3.24

Immediate addressing 3.8

Implied addressing 3.11

IMUL 3.24

IN 3.24

INC 3.24

Indexed addressing 3.9

Indirect IO port addressing 3.11

Instruction execution time 3.12

Instruction format 3.1

Instruction pointer 1.6, 2.8

Instruction queue 2.8

INT 3.24

Interpreter 6.115

Interrupt

- Hardware interrupt 5.2

- Maskable interrupt 5.3

- Non-maskable interrupt 5.3

- Non-vectored interrupt 5.2

- Software interrupt 5.2

- Vectored interrupt 5.2

Interrupt acknowledge cycle 2.5, 2.19

Interrupt driven data transfer 5.1, 7.4

Interrupt flag 2.10, 5.3

Interrupt IO 4.35

Interrupt service routine 3.63, 5.6

Interrupts of PC

- DOS interrupts 6.17

- BIOS interrupts 6.18

Interrupt vector table 5.6

Intersegment call 6.14

INTO 3.24

INTR 2.4, 5.6

Intrasegment call 6.14

IRET 3.24

Isolated IO mapping 4.25

J

JA 3.24

JAE 3.24

JB 3.24

JBE 3.24

JC 3.24

JCXZ 3.24

JE 3.24

JG 3.25

JGE 3.25

JL 3.25

JLE 3.25

JMP 3.25

8086 Microprocessor and Its Appications

General Index I. 4

JNA 3.24

JNAE 3.24

JNB 3.24

JNBE 3.24

JNC 3.25

JNE 3.25

JNG 3.25

JNGE 3.25

JNL 3.25

JNLE 3.25

JNO 3.25

JNP 3.25

JNS 3.25

JNZ 3.25

JO 3.25

JP 3.25

JPE 3.25

JPO 3.25

JS 3.25

Jump instructions

 - Conditional jump 3.61

 - Far jump 3.80

 - Near jump 3.60

 - Unconditional jump 3.60

JZ 3.24

K

Keyboard/Display controller[8279]

 - Block diagram 7.52

 - Command words 7.54

 - Interfacing with 8086 7.56

 - Keycode entry in FIFO 7.53

 - Pin description 7.51

Keyboard interface using ports 7.43

Keyboard scanning 7.43

Keyboard switch 7.43

Key debouncing 7.43, 7.44

L

LAHF 3.25

LDS 3.25

LEA 3.25

LES 3.25

Library builder 6.5

Linker 6.5

List 6.116

Local descriptor table 8.17, 8.19

Locator 6.117

LOCK 2.3, 2.6, 3.25

LODS 3.25

LODSB 3.25

LODSW 3.25

Logical instructions 3.17

LOOP 3.25

LOOPE 3.25

Loop instructions 3.63

LOOPNE 3.25

LOOPNZ 3.25

LOOPZ 3.25

Loosely coupled configuration 9.14, 9.15

Lower memory bank 2.1

M

Machine language 6.1

Macro

- Expanding macro 6.116

Maskable interrupt 5.3

Master 8259 5.14

Maximum mode 2.1

Maximum mode system 9.12

Memory

 - Primary memory 4.1

- Processor memory 4.1

- Secondary memory 4.1

- Semiconductor memory 4.1

Memory access time 4.33

Memory bank

- Even bank 2.1

- Lower bank 2.1

- Odd bank 2.1

- Upper bank 2.1

Memory cell 4.2

Memory-mapped IO 4.17

Memory mapping 4.25, 4.26

Memory read cycle 2.14

Memory word size 1.1, 4.33

I. 5

Memory write cycle 2.16

Microcomputer 1.6

Microprocessor 1.1, 1.6

Minimum mode 2.1

Minimum mode system 9.11

MIPS 1.5

Mnemonics 6.1

MODEM 7.35

MOV 3.25

MOVS 3.25

MOVSB 3.25

MOVSW 3.25

MUL 3.25

Multiple word 1.1

Multiplexed display 7.49

Multiplexing 1.8

Multiprocessor configuration 9.14

N

NDRO 4.3

Near call 6.14

Near jump 3.60

NEG 3.25

NetBurst microarchitecture 8.49

Nibble 1.1

NMI 2.4, 5.3

Non-maskable interrupt 2.3, 5.3

Non-vectored interrupt 5.2

Non-volatile memory 4.3

NOP 3.25

NOT 3.25

NVRAM 4.12

O

Odd memory bank 2.1

 One pass assembler 6.4

OR 3.25

OUT 3.25

Overflow flag 5.5

P

Paging 7.27

Parallel data transfer 7.1

Parity flag 2.10

Pentium-4 8.51

Pentium 8.40

Pentium II 8.50

Pentium III 8.51

 Pentium pro 8.50

Personal computer 2.1

Physical memory space 4.33

Pipelined architecture 2.7, 2.22

POP 3.25

POPF 3.26

Port 4.35

Predefined interrupts 5.3

Primary memory 4.1

Procedure 6.13

Processor control instructions 3.22

Processor memory 4.1

Program 6.1

Program development tools 6.3

Programmable interrupt controller [8259]

- Functional block diagram 5.12

- Initialization command word 5.15, 5.16

- Interfacing with 8086 5.11

- Master 8259 5.14

- Operation command word 5.17

- Pin description 5.11

- Slave 8259 5.14

Programmable peripheral interface [8255]

- Control words 7.9

- Interfacing with 8086 7.7

- Internal addresses 7.7

- Internal block diagram 7.6

- IO modes 7.5

- Pin description 7.5, 7.6

- Port-C pin assignment 7.10

- Status word 7.10

Programmable timer [8254] 7.58

Programmed IO 4.22

PROM 4.3

Pseudo instruction 6.115

8086 Microprocessor and Its Appications

PUSH 3.26

PUSHF 3.26

Q

Queue 2.22

Queue status 2.6

R

Random access memory 1.7, 4.3

RCL 3.26

RCR 3.26

Register addressing 3.7

Register indirect addressing 3.8

Relative addressing 3.11

REP 3.26

REPE 3.26

REPNE 3.26

REPNZ 3.26

REPZ 3.26

Resolution of ADC 7.74

Resolution of DAC 7.69

RET 3.26

ROL 3.26

ROM 4.3

ROR 3.26

Rotating priority 5.17, 7.20

RS-232C 7.83

S

SAHF 3.26

SAL 3.26

SAR 3.26

SBB 3.26

s-bit 3.1, 3.2

Scanning 7.43

Scan time 7.58

SCAS 3.26

SCASB 3.26

SCASW 3.26

Secondary memory 4.1

Selector 8.17

Semiconductor memory 4.1

Serial communication

 - Asynchronous 7.34

 - Synchronous 7.34

SHL 3.26

SHR 3.26

Sign flag 1.6, 2.10

Simplex transmission 7.34

Simulator 6.6

Single step trap flag 2.10

Single transfer DMA 7.14

Slave 8259 5.14

Software interrupt 3.63, 5.1, 5.2

Source index 2.9

Special bit indicator 3.1

Stack pointer 2.8, 2.9, 6.15

Stack segment 2.8

Standard IO mapping 4.25

Static RAM 4.7

Status signals 1.8, 2.4, 2.6

STC 3.26

STD 3.26

STI 3.26

STOS 3.26

STOSB 3.26

STOSW 3.26

String addressing 3.10

String manipulation instructions 3.20

SUB 3.26

Subroutine 6.13

Superscalar architecture 8.1

Synchronous data transfer 7.3

T

TEST 2.4, 3.26

Tightly coupled configuration 9.14

Timer [8254]

- Control words 7.61

- Functional block diagram 7.59

- Interfacing with 8086 7.60

General Index I. 6

I. 7

- Operating modes 7.63

- Pin description 7.59

- Status word 7.63

Timing diagram 2.14

Trace flag 2.10

Tristate logic 1.2

T-state 2.14

Two pass assembler 6.4

U
UART 7.35

Unconditional jump 3.60

Upper memory bank 2.1

USART [8251]

- Command word 7.41

- Functional block diagram 7.40

- Interfacing with 8085 7.42

- Mode word 7.41

- Pin description 7.38

 - Status word 7.41

V

Variable 6.8

v-bit 3.1, 3.2

Vectored interrupt 5.2

Vectoring 5.19

Vector table 5.6

Verify transfer 7.29

Volatile memory 4.3

W

WAIT 2.4, 3.26

Wait state 2.4, 2.5, 2.14

 w-bit 3.1, 3.2

Word 1.1

X

XCHG 3.26

XLAT 3.26

XOR 3.26

Z

z-bit 3.2

Zero flag 2.10

8086 Microprocessor and Its Appications

- Control words 7.9

- IO modes 7.5

- Interfacing with 8086 7.7

- Internal addresses 4.24,7.7

- Internal block diagram 7.6

- Pin description 7.5, 7.6

- Port-C pin assignment 7.10

- Status word 7.10

8257

- Control word 7.32

- Count register 7.32

- Functional block diagram 7.29

- Internal addresses 4.24, 7.31

- Mode set register 7.31

- Pin description 7.28

- Status register 7.32

8259

- Functional block diagram 5.12

- Initialization command word 5.15, 5.16

- Interfacing with 8086 5.11

- Master 8259 5.14

- Operation command word 5.17

- Pin description 5.11

- Slave 8259 5.14

8279

- Block diagram 7.52

- Command words 7.54

- Interfacing with 8086 7.56

- Keycode entry in FIFO 7.53

- Pin description 7.51

8284

- Pin configuration 9.4

- Typical connection with 8086 9.4

8288

- Internal block diagram 9.6

- Pin configuration 9.6

ADC0809/0808

- Functional block diagram 7.77

General Index I. 8

- Interfacing with 8086 7.79

- Pin description 7.76

DAC0800

- Block diagram 7.72

- Interfacing with 8086 7.73

- Pin description 7.72

MAX232

- Pin description 7.37

- Typical circuit connection 7.37

PENTIUM - Architecture 8.47

 - Pin configuration 8.41

CHIP INDEX

2764

- Logic block diagram 4.5

- Pin description 4.5

6264

- Logic block diagram 4.8

- Pin description 4.8

74LS138

- Pin description 4.16

- Truth table 4.16

74LS139

- Pin description 4.16

- Truth table 4.16

80186

- Architecture 8.6

- Pin configuration 8.3

80286

- Architecture 8.13

- Flag register 8.15

- Pin configuration 8.10

- Protected virtual address mode 8.16

- Real address mode 8.16

80386

- Architecture 8.25

- Flag register 8.29

- Pin configuration 8.21

- Protected virtual address mode 8.31

- Real address mode 8.31

- Virtual 8086 mode 8.33

80486

- Architecture 8.38

- Pin configuration 8.34

8086

- Architecture 2.7

- Flags 2.9

- Pin description 2.2

8087

- Architecture 9.8

- Control word 9.10

- Pin configuration 9.8

- Status word 9.11

8237

- Command register 7.20

- Control words 7.20

- Functional block diagram 7.15

- Interfacing with 8086 7.24

- Internal addresses 4.24, 7.19

- Internal registers 7.18

- Mask register 7.22

- Mode register 7.21

- Pin description 7.14, 7.16

- Request register 7.22

- Software commands 7.23

- Status register 7.23

8251

- Command word 7.41

- Functional block diagram 7.40

- Interfacing with 8086 7.42

- Mode word 7.41

- Pin description 7.38

- Status word 7.41

8254

- Control words 7.61

- Functional block diagram 7.59

- Interfacing with 8086 7.60

- Operating modes 7.63

- Pin description 7.59

- Status word 7.63

8255

	Cover
	Contents
	1 INTRODUCTION
	1.1 Terms used in microprocessor literature 1.
	1.2 Evolution of microprocessor 1.
	1.3 Basic functional blocks of a microprocessor 1.
	1.4 Microprocessor-based system 1.
	1.5 Concept of multiplexing in microprocessors 1.
	1.6 Short questions and answers 1.

	2. INTEL 8086 PINS, SIGNALS AND ARCHITECTURE
	2.1 Introduction to INTEL 8086 2.
	2.2 Pins and signals of INTEL 8086 2.
	2.3 Architecture of INTEL 8086 2.
	2.4 Instruction and data Flow in 8086 2.
	2.5 Even and odd memory banks 2.
	2.6 Bus cycles and timing diagram 2.
	2.7 Short questions and answers. 2.

	3. INSTRUCTION SET OF 8086
	3.1 Introduction 3.
	3.2 Instructions format 3.
	3.3 Addressing modes of 8086 3.
	3.4 Instruction execution time 3.
	3.5 Instructions affecting flags 3.
	3.6 Data transfer instructions. 3.
	3.7 Arithmetic instructions 3.
	3.8 Logical instructions 3.
	3.9 String manipulation instructions 3.
	3.10 Control transfer instructions 3.
	3.10.1 CALL and RET instructions 3.
	3.10.2 Unconditional jump instructions 3.
	3.10.3 Conditional jump instructions 3.
	3.10.4 Loop instructions 3.
	3.10.5 Software interrupts 3.

	3.11 Processor control instructions 3.
	3.12 Examples of 8086 instructions 3.
	3.13 Short questions and answers 3.

	4. MEMORY AND IO INTERFACING
	4.1 Introduction to memory 4.
	4.2 Semiconductor memory 4.
	4.3 ROM and PROM 4.
	4.4 EPROM 4.
	4.5 Static RAM 4.
	4.6 DRAM and NVRAM 4.
	4.7 Interfacing static RAM and EPROM 4.
	4.8 Memory organization in 8086-based system 4.
	4.9 IO structure of a typical microcomputer 4.
	4.10 Interfacing IO and peripheral devices 4.
	4.11 Short questions and answers 4.

	5. INTERRUPTS
	5.1 Interrupt and its need 5.
	5.2 Classification of interrupts 5.
	5.3 Sources of interrupts in 8086 5.
	5.4 Interrupts of 8086 5.
	5.4.1 INTEL predefined (or dedicated) interrupts 5.
	5.4.2 Software interrupts of 8086 5.
	5.4.3 Hardware interrupts of 8086 5.
	5.4.4 Priorities of interrupts of 8086 5.

	5.5 Implementing interrrupt scheme in 8086 5.
	5.5.1 Interrupt vector table 5.
	5.5.2 Servicing an interrupt by 8086 5.

	5.6 INTR and its expansion 5.
	5.7 Programmable interrupt controller - INTEL 8259 5.
	5.7.1 Interfacing 8259 with 8086 microprocessor 5.
	5.7.2 Functional block diagram of 8259 5.
	5.7.3 Processing of interrupts by 8259 5.
	5.7.4 Programming (or initializing) 8259 5.

	5.8 Short questions and answers 5.

	6. ASSEMBLY LANGUAGE PROGRAMMING
	6.1 Levels of programming 6.
	6.2 Flowchart 6.
	6.3 Assembly language program development tools 6.
	6.4 Variables and constants used in assemblers 6.
	6.5 Assembler directives 6.
	6.6 Procedures and macros 6.
	6.7 Interrupts of personal computers 6.
	6.8 Hand coding of assembly language programs 6.
	6.9 Examples of 8086 assembly language programs 6.
	6.10Short questions and answers 6.

	7. PERIPHERAL DEVICES AND INTERFACING
	7.1 Programmable peripheral devices 7.
	7.2 Parallel data communication interface 7.
	7.2.1 Parallel data transfer schemes 7.
	7.2.2 Programmable peripheral interface - INTEL 8255 7.
	7.2.3 DMA data transfer scheme 7.
	7.2.4 DMA controller - INTEL 8237 7.
	7.2.5 DMA controller - INTEL 8257 7.

	7.3 Serial data communication interface 7.
	7.3.1 Serial data communication 7.
	7.3.2 USART - INTEL 8251A 7.
	7.4 Keyboard and display interface 7.
	7.4.1 Keyboard interface using ports 7.
	7.4.2 Display interface using ports 7.
	7.4.3 Keyboard/Display controller - INTEL 8279 7.
	7.4.4 Keyboard and display interface using 8279 7.

	7.5 Programmable timer - INTEL 8254 7.
	7.6 DAC interface 7.
	7.6.1 DAC0800 7.

	7.7 ADC interface 7.
	7.7.1 ADC0809 7.

	7.8 Short questions and answers 7.

	8. INTEL 80X86 FAMILY OF PROCESSORS
	8.1 Introduction 8.
	8.2 INTEL 80186 8.
	8.2.1 Pins and signals of 80186 8.
	8.2.2 Architecture of 80186 8.

	8.3 INTEL 80286 8.
	8.3.1 Pins and signals of 80286 8.
	8.3.2 Architecture of 80286 8.
	8.3.3 Real address mode of 80286 8.
	8.3.4 Protected virtual address mode of 80286 8.

	8.4 INTEL 80386 microprocessor 8.
	8.4.1 Pins and signals of 80386 8.
	8.4.2 Architecture of 80386 microprocessor 8.
	8.4.3 Registers of 80386 microprocessor 8.
	8.4.4 Operating modes of 80386 microprocessor 8.

	8.5 INTEL 80486 microprocessor 8.
	8.5.1 Pins and signals of 80486 8.
	8.5.2 Architecture of 80486 8.

	8.6 Pentium microprocessor 8.
	8.6.1 Pins and signals of pentium microprocessor 8.
	8.6.2 Architecture of pentium processor 8.

	8.7 Advanced pentium processors 8.
	8.7.1 Pentium pro 8.
	8.7.2 Pentium II 8.
	8.7.3 Pentium III 8.
	8.7.4 Pentium 4 8.

	9. 8086 MICROPROCESSOR-BASED SYSTEM
	9.1 Designing a microprocessor-based system 9.
	9.2 Clock generator - INTEL 8284A 9.
	9.3 Bus controller - INTEL 8288 9.
	9.4 Coprocessor - INTEL 8087 9.
	9.5 Minimum mode 8086-based system 9.
	9.6 Maximum mode 8086-based system 9.
	9.7 Multiprocessor configurations 9.
	9.8 Temperature control system 9.
	9.9 Motor speed control system 9.
	9.10 Traffic light control system 9.
	9.11 Stepper motor control system 9.

	APPENDIX I : TEMPLATES FOR 8086 INSTRUCTIONS
	APPENDIX II : DOS AND BIOS INTERRUPTS
	APPENDIX Ill : LIST OF MICROPROCESSORS RELEASED BY INTEL
	GENERAL INDEX
	CHIP INDEX

