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Wavelets and multiresolution analysis created revolution in signal processing nearly three decades ago. 

Since then the area of research has grown steadily, covering many application areas as well. The topic 

has had far reaching impact on the way we understand signals, their transforms, and the limitations 

of time-frequency analysis. These techniques are founded on fundamental principles in mathematics, 

and at the same time they have great relevance to many practical applications in areas such as audio 

signal analysis, image processing, medical signal analysis, biological signal processing, and so forth. 

Wavelet and multiresolution methods have close relation to the theory of multirate filter banks, which 

also evolved around the same time, nearly three decades ago. For example, the first-order two channel 

orthonormal filter bank is related to the Haar wavelets through a tree structure, and the more general 

M-channel orthonormal filter bank can be related to orthonormal wavelets. These connections are also 

well established in the literature.

This book, authored by Prof. Gadre and Prof.  Abhyankar, gives an excellent and up-to-date exposure 

to the developments in this field. First and foremost, it is written in a reader friendly style. There are 

many examples throughout the book which motivate the introduction of deep and subtle topics. The 

authors are careful to make this motivation because, as such, the topic is complicated, and needs this 

kind of an introduction. The examples chosen here range from simple toy examples to actually practical 

ones from a wide range of application areas such as image processing, audio, biological signals, and 

many others. While the book has this attractive style, it also makes sure that the theoretical depth is 

impressive. Especially in the later chapters, the authors do justice to the detailed and rather intricate 

theory of multiresolution by providing deeper discussions and derivations, again supplemented with 

a generous supply of examples. The thoughtful addition of MATLAB codes will be very valuable to 

students and practicing engineers, as they allow the reader to quickly construct examples and plots that 

enhance the understanding of the theory just presented.  The homework problems at the end of each 

chapter are thought-provoking and useful.

The introduction of historical anecdotes and notes is an added bonus, and makes it informative for 

the reader. Any student with an introductory background in signal processing and mathematics will be 

able to benefit from the book. More advanced readers will also thoroughly enjoy the wealth of material 

which can motivate further research in the area, and initiate advanced projects in graduate curriculum.

Foreword



vi Foreword

In short, this is a book on a very important and well established topic, which every student and lover 

of signal processing should learn. It is authored by highly reputed scholars who have taken great pains 

to present the material in a very welcoming style. It is my great pleasure to welcome this book, which 

will be a wonderful addition to the literature on signal processing.

Prof. P. P. Vaidyanthan

Department of Electrical Engineering

California Institiute of Technology



Both of us, as instructors on basic and advanced subjects related to signal processing, have felt the 

need to strike the delicate balance between inspiring an audience of students to penetrate deep into the 

subject of multirate signal processing and  being ‘true to the subject’ in terms of rigor and formalism. 

This has been made possible by making the study and search pleasurable. The subject of wavelets 

and multiresolution signal processing has posed a major challenge to us, from this point of view. In 

the numerous opportunities that we have had, to teach or discuss the subject, the audience has always 

demanded a ‘down to earth exposition of the subject’, a ‘connection to everyday reality’, a ‘compendium 

of exercises which will help them understand the theory behind the subject’, a ‘hands-on experience to 

feel the subject through implementations’ and things of similar nature. This book is a humble endeavour 

on our part to meet these demands, at least to some measure, based largely on our interaction with Indian 

audiences.

As authors of this book, we also well appreciate and acknowledge with great respect, the existence 

of several books on the broad subject of wavelets, multirate and multiresolution signal processing 

written by experts in the field. Writing this book posed another challenge – to bring just that uniqueness 

to this, to make it worthy of occupying a place on the shelves on which those other books are kept. We 

think that the main contribution of this book is twofold – (i) a text written to inspire a beginner in the 

subject with several guiding examples, illustrations and exercises and (ii) a reference for some advanced 

topics, explained in a manner that makes them follow smoothly from the more basic ones. The former 

aspect of the book will make it useful as instructional material, the latter, we hope, makes it attractive 

to a researcher in the subject.

The book presents a thorough treatment of several concepts, along with simplified mathematical 

formulas. It also connects these mathematical ideas to the world around, thus giving physical significance 

to the material. The book also covers the third aspect of helping readers understand implementation 

strategies of the theory presented, by providing programs and codes, and making these available to 

readers. We hope that the explanation of concepts supported with many examples, tutorial exercises, 

codes, historical anecdotes, stories of scientists and demonstrations will make this book a unique 

reference material for instructors, students as well as researchers.

Today, ‘wavelets’ has been replacing many traditional mechanisms in multiple applications, spanning 

several disciplines in engineering and science. For example, the compression standards formulated by 

the Joint Picture Experts’ Group (JPEG) saw an enhancement in the form of JPEG2000. Thus, from 

the year 2000, for compressing heavy satellite images, critical medical images and standard day-to-day 

images, JPEG 2000 has gained popularity. JPEG 2000 uses bi-orthogonal wavelet taps in lieu of the 

conventional DCT (Discrete Cosine Transform). Beyond this example, there are different walks of life 

Preface



viii Preface

where use of wavelets has become a powerful tool. The book starts with basic concepts and the coverage 

gets extended to latest trends in the field, with the likes of second-generation wavelets, wavelet packets, 

curvelets, brushlets, ridgelets, and so on.

Chapter 1 introduces the subject to the readers and provides a motivation and foundation for the 

rest of the book. Chapters 2–6, which explains MRA (Multi Resolution Analysis) and exposes readers 

to Conjugate Quadrature Filters (CQF), in particular, the Haar and Daubechies families. These Chapters 

provide a detailed explanation with the help of many examples and helps readers understand, how 

looking at multiple resolutions simultaneously is possible and useful. Chapters 7–10 uncovers the 

time-frequency conflict, the uncertainty principle, the time-bandwidth product and allied topics such as 

the time-frequency plane and tiling in time frequency. Chapters 11–14 and every chapter is a variant 

of MRA, viz., Bi-orthogonal filters in Chapter 11, splines in Chapter 12, wavelet packets in Chapter 13 

and the lifting scheme in Chapter 14. Whi!le Chapter 15 gives designs and salient features of about ten 

wavelet families, Chapter 16 talks about advanced topics, Chapter 17 discusses various applications, 

Chapter 18 takes the readers beyond the realms of ‘traditional ways’ in wavelets and the concluding 

section of Appendix provides extended notes on all chapters. The extended notes are particularly used 

for topics, which require further extensions to grasp the depth and comprehend the maturity of the topic.

Writing any book is a journey. This journey has been unique in many ways. The thought of 

collaborating on this project started with Vikram Gadre’s course on Multirate Signal Processing and 

Wavelets, offered under the National Programme on Technology Enhanced Learning (NPTEL) of the 

Ministry of Human Resource Development (MHRD) Government of India. Aditya Abhyankar was 

actively associated with this course, initially as a reviewer and later as a Co-Instructor. Since then, we 

have been expanding the scope of the material through various workshops, interaction with relevant 

audiences, which included eminent academicians and, importantly, young, bright, enthusiastic students. 

In particular, when the ‘Knowledge Incubation under TEQIP’ Initiative of the MHRD (MHRD-TEQIP-

KITE) was launched at IIT Bombay, I (Vikram Gadre) was keen that we (I and Aditya Abhyankar) 

undertake this project as a collaborative endeavour involving IIT Bombay and a reputed University – the 

S P Pune University, which had reputed TEQIP Institutes like the College of Engineering Pune (COEP) 

in its circle in Pune. An attempt has been made to create content that will prove useful to the community. 

For many of the concepts written in this book, the inspiration has been interesting questions posed by 

colleagues and students in these interactions. 

A book, though a manifestation of the thought process of the authors, requires support at many 

levels from vivid backgrounds and this project has been no exception. We would first like to thank the 

Almighty, without whose blessings, nothing is possible. We would then like to thank the respective 

families for the everlasting support provided through this project. Vikram Gadre would like to thank 

his wife (Kaumudi Gadre),  mother, brother and sister-in-law (Nirmala, Rohit and Vaishali Gadre), late 

father (Manohar Gadre), parents-in-law, brother-, sister-in-law and their daughter (the Pandit family),  

for their constant support, good wishes and blessings. He would also like to thank his supervisor 

(Professor R. K. Patney) and several other faculty members at IIT Delhi, who played an important role 

in shaping his interest and expertise in wavelets. He would also like to thank his colleagues and the 

administration at IIT Bombay, who then nurtured this interest and expertise further. Aditya Abhyankar 

would like to thank his father (Vidyavachaspati Shankar Abhyankar), mother (Aparna Abhyankar), 

brother (CA Jitendra Abhyankar), sister-in-law (Madhura Abhyankar), wife (Arati Abhyankar),  
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niece (Arundhatee Abhyankar), nephew (Arjun Abhyankar) and son (Advait Abhyankar) for the best of 

love and support a person could ever ask for. Aditya Abhyankar would also like to thank his PhD advisor 

Dr Stephanie Schuckers and other professors who have been his source of inspiration. He would also like 

to thank Professors Raghunath Shevgaonkar and W N Gade, the former and current Vice Chancellors 

of SP Pune University respectively, for their constant encouragement. The authors would also like to 

thank many generations of our students at IIT Bombay and at SP Pune University, respectively for 

their assistance in the creation of digital material. There are just too many names that merit mention 

in this context but in particular, we would like to mention Gunjan and Sunil, Ph D students of Aditya 

Abhyankar, for the help in the preparation of the Supplementary Workbook, which was a daunting task. 

A special thanks to Professor P. P. Vaidyanathan of Caltech, USA, whose contributions to the field of 

multirate signal processing and wavelets are well known and respected worldwide but whose special 

role in this book, has been to inspire Vikram Gadre in many ways, to make the project see the light 

of day. Last but not the least; the authors would like to thank all the students, colleagues, and fellow 

scholars who have directly or indirectly provided inputs and feedback in making this manuscript more 

relevant.

Vikram M Gadre

Aditya S Abhyankar
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1.1  Introduction

This chapter introduces the subject of wavelets and multirate digital signal processing. It provides an 

inspiration to understand this subject at a greater depth along with broader picture of joint time-

frequency analysis (JTFA).

The subject of wavelets follows a basic exposition to subjects like signal analysis, system theory 

and digital signal processing. It could be considered as an advanced topic on signal processing, however, 

this does not imply that the concepts introduced in this book are difficult to understand. In fact, the con-

cepts are easier than a basic course on signal analysis. The basic text introduces the idea of abstraction, 

i.e. abstraction of signals, systems, transforms, analysis in different domains, etc. On the other hand, 

wavelets bring us closer to reality. We call it a journey from ‘romanticism’ to ‘realism’! Being practi-

cal, pragmatic and realistic, use of wavelets not only requires good understanding of fundamentals but 

also practical constraints. In this sense, the contents covered in this book are very ‘hands-on’. Wavelet 

analysis provides more precise information about signal data than other signal analysis techniques, such 

as Fourier because of which this branch of signal processing is growing very rapidly. In a basic text on 

digital signal processing, we assume that the signals last forever, i.e. for infinite duration of time. For 

example, while calculating the Fourier transform, we represent any signal in terms of basis functions and 

these basis functions last from t = -¥ to t = +¥, where t denotes time. However, practically no signal in 

this world can last forever. Thus, we should deal with signals in finite domains.

Example 1.1.1 — Audio signal.

We understand finite domains very well, if that finite domain is the natural domain. To reflect more 

on this, consider an example of a piece of an audio signal which is finite in time. Here, time is the 

natural domain. From a signal processing perspective, we wish to find the content in that audio 

signal, by enhancing some parts of that signal and suppress others. We may even be interested in 

characterizing the system. But for doing all these things, we deal with finite time signal and the 

abstraction of everlasting signals is unnecessary.

Introduction Introduction

Brief outline of the book

Multirate digital signal processing

Prerequisites

Summary

1Chapter



2 Multiresolution and Multirate Signal Processing

Example 1.1.2 — 2D face.

Consider another example, in which we have a picture of a ‘face’. In this case, the natural domain 

is space and it is 2-Dimensional. The face has various features like eyebrows, forehead, nose, lips 

etc. Suppose we wish to isolate a particular feature, say an eye. This requires localization in the 

spatial domain. Here, again, the amount of data is finite reflecting the finite domain signal. This is 

shown in Fig. 1.1, where the face image has 3072 columns and 2304 rows and thus 3072 × 2304 

number of (finite) pixels per palette. The picture is made up of rows and columns, in other words 

it gets represented in 2D space and, hence, spatial isolation can be used isolate a particular feature.

Figure 1.1  Face Example: Isolation is spatial domain

Example 1.1.3 — Musical signal.

Another example which explains localization is a piece of audio in which a number of notes are 

sung. It may be called as a ‘raga’ in Indian tradition and the notes may be called as the components 

of the raga. Now, we aim to make a system that takes the rendition of this ‘raga’ and identifies the 

notes that compose it. To achieve this, we need to segment the signal in time. For example, the first 

note may be played for 1 second, the second note for 0.5 seconds, and so on. This demands seg-

mentation in time. Moreover, we should also understand that all the notes are not of fixed lengths. 

The length of the time segment is also important. But more important is to understand the concept 

of ‘Notes’ in the signal processing context. For example, Notes of raga ‘Gujari Todi’ are depicted 

in Fig. 1.2.
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Sa Re Ga Ma Dha Ni Sa

Figure 1.2  Sample Notation: Frequencies of raga ‘Gujari Todi’

In the basic course of “Signals and Systems”, we were exposed to the idea of frequency domain. We 

know that signals have embedded inside them, as collection of sine waves. These sine waves are contin-

uous for continuous time signals while they are sampled for discrete sequences. The continuous signals 

look for superposition of these sine waves whereas summation of sampled sine waves is observed in dis-

crete case. Thus, most reasonable signals can be thought of as a collection of sine waves. In principle, if 

the signal is not periodic, its fourier transform comprises infinity of sine waves whose frequency ranges 

from 0 to ¥. For periodic signals, we have a discrete set of sine waves with possibly finite or infinite 

range of frequency represented by Fourier series. Thus, a different domain is more useful to analyze the 

signal. Now if we query about the ‘Notes’ in the raga, it is equivalent to asking the frequency content in 

the audio piece, i.e. what points on the frequency axis are occupied by this note? Which are the locations 

where the transform is prominent? It will also be of interest to analyze to understand exact locations of 

these frequencies on time-axis. The ‘analyzer’ often wishes to know at what ‘time’ which ‘frequency’ 

existed. This demands the analysis building blocks to have simultaneous time and frequency localization 

capabilities. This is one of the most fundamental inspirations to study wavelets, and joint time frequency 

analysis (JTFA) in broader perspective.

Before continuing with the above example and other concepts, it is worthwhile to introduce the 

term ‘wavelets’.

1.1.1 Wavelets

Fourier transform deals with sine waves. Sine waves have many important properties. Firstly, they occur 

naturally. For example, an electrical engineer recognizes sine wave as naturally emerging from an elec-

tricity generation system. Secondly, sine waves are the most analytic, the smoothest possible periodic 

functions. They also have the power to express many other waveforms, i.e. they form a very good basis. 

Addition of two sine waves of the same frequency but with possibly different amplitudes and phases, 

gives a sine wave of the same frequency with possibly different amplitude and phase. A sine wave on 

differentiation or integration is a sine wave of the same frequency. Any linear combination of all these 

operations on a sine wave results in a sine wave of the same frequency. But the biggest drawback of 

sine waves is that they need to last forever. If the sine wave is truncated (a one sided sine wave, for 

example), the response to this signal by a system, in general, is different from the response which would 

be obtained if the signal would be a sine wave from t = - ¥ to t = + ¥. There would be transients which 

are not periodic. All the useful properties mentioned above, will then no longer be valid. So, if we need 

to apply the principles studied in a basic course, we need something unrealistic, i.e. a sine wave which 

lasts forever. To be more realistic in our demands, it is appropriate to deal with wavelets rather than 

waves. Wavelets are waves that last for a finite time, or more appropriately, they are waves that 

are not predominant forever. We let the waves die out to create a compactly supported ‘wavelet’ 

of finite duration. They may be significant in a certain region of time and insignificant elsewhere 
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Example 1.1.5 — Mobile system.

Consider a mobile communication system in which a bit stream is transmitted at 1Mbps. If the bit 

interval is uniform, the time interval for 1 bit is 1 ms ce . This indicates segmentation in time. Now, 

consider that there are two mobile operators operating in a given region. All the users in the region 

are using mobile from any one of the two operators. To avoid interference or overlapping of these 

signals, these operators should be separated in some domain. They cannot be separated in the time 

domain since the users of different operators can use the mobiles at the same time. So the separation 

could be in frequency domain. Thus, every operator is allocated a particular bandwidth, i.e. a region 

in the frequency domain so that the users of that operator can operate in that frequency region only 

without any problem of time coincidence. This is indicative of segmentation in frequency. Thus, in 

a mobile communication case, there is a desire to localize in time and frequency simultaneously, i.e. 

transmitting a bit in a time interval of 1 msec, indicating a localization in time and transmitting in 

a particular frequency region only indicating localization in frequency. Thus, this example clearly 

depicts practical need of simultaneous localization in time and frequency.

Example 1.1.4 — Musical signal revisited.

Now, we go back to the example of audio clip. The audio clip comprises of many notes of vary-

ing time lengths and hence requires time segmentation. On the other hand, identifying notes in a 

particular time segment, involves segmentation in the frequency domain. Thus we are asking for a 

simultaneous localization in time and frequency domain. But the uncertainty principle in nature 

puts constraints on this simultaneous localization beyond a point. In signal processing, we call it 

uncertainty in time and frequency domain i.e. both domains are contrary to each other. Thus, 

the resolution in the time domain is increased at a compromise in the resolution in the frequency 

domain. It could be even intuitively argued that, for a shorter audio clip, it is more difficult to iden-

tify a note in that time segment than a note played for a longer period of time. But, what is not intui-

tive from this discussion is that we cannot go down to identifying one particular frequency precisely. 

So, if we wish to come down to a point on the time axis, we need to spread all over the frequency 

axis and vice versa. This is the stronger version of this principle. However the weaker version is 

more subtle. Even if we select a time region on the time axis and ask for the region of frequencies 

which are predominant in that time region, even then there is a restriction on the simultaneous length 

or measure of the time and frequency regions. In fact, the more we focus in time, the less we focus 

in frequency. This could be best explained by examples.

or they might exist only for finite time duration. For example, a sine wave that exists only between 

t t= 0  = 1 and m sec  is, in principle, a wavelet (though not a very good one), a wave that doesn’t last 

forever. Thus, a wavelet is a mathematical function useful in digital signal processing and image com-

pression. In signal processing, wavelets make it possible to recover weak signals from noise.

In subsequent topics we will see that concept of wavelets arose when scientists debated on a serious 

issue of “time-frequency localisation”.
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Figure 1.3  ECG Signal Sample

Example 1.1.6 — Biomedical signal.

Consider another example of a biomedical signal, say ECG signal (electro-cardiographic waveform) 

in which various features of the ECG signals are analysed. There are various segments in a typical 

ECG signal which are often indexed by letters say P, Q etc. as shown in Fig. 1.3. These segments are 

of unequal length, e.g. from Fig. 1.3, it can be seen that interval PR is much shorter than interval QT. 

In fact, biomedical engineers often talk about what are called as evoked potentials. They give stimu-

lus to a biomedical system and evoke a response and the waveform corresponding to that response 

is called an evoked potential. An evoked potential typically has both fast and slow-varying parts in 

the response. Obviously, the slower parts of the response are predominantly located in the lower 

ranges of the frequency region while the quicker parts of the response are predominantly located in 

the higher ranges of the frequency. To isolate the quicker parts of the response, is it sufficient to pass 

the signal through a conventional high pass filter? Here arises the time frequency conflict. Indeed, 

it is not sufficient. In fact, we need a different perspective on filtering. We need to identify, in dif-

ferent parts of the time axis, which regions of the frequency axis are predominant and then identify 

different parts of the frequency axis that need to be emphasized in different time ranges. This is yet 

another example of time frequency conflict. In a basic course, we understand the domains very well 

because we keep them apart. But one normally needs to consider the two domains together and when 

we try to do so, there is a fundamental conflict as understood from the uncertainty principle.
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Struggling with the concept of simultaneous time frequency localisation scientists came to a solu-

tion or more like a workaround. Perhaps if a signal is split into components that were not pure sine 

waves, it would be possible to condense the information in both time and frequency domains. This was 

the idea which ultimately led to the concept of wavelets.

Rect(t) sinc(f)2A

A
A/f

− inf

− f + f

+ inf

t

FOURIER TRANSFORM

− t + t

Figure 1.4   Fourier Transform of Rectangular ‘box’ type function with crisp and compact 
time domain presence is a ‘sync’ function with spread and no isolation in 
frequency domain

Figure 1.4 clearly depicts the limitation of using sinusoidal basis functions that simultaneous show 

isolation in time as well as frequency domain is not possible. In fact, as the figure depicts, as the time 

domain representation is compact in the form of ‘box’ type rectangular function its Fourier Transform 

spreads out and has no isolation in frequency domain (‘sync’ function).

1.2  Brief Outline of the Book

This book begins with an introduction to the Haar Multiresolution Analysis a particular tool to analyze sig-

nals; proposed as a dual of the idea of Fourier analysis by Haar, a French mathematician. In Fourier analysis, 

we represent even discontinuous or non-smooth waveforms into a linear combination of extremely smooth 

functions, namely, the sine waves. Haar proposed the idea of taking smooth functions and convert them into 

a linear combination of effectively discontinuous functions. For example, data in a digital communication 

system, e.g. an audio signal, image, or a video, is transmitted with a large level of discontinuity. To record a 

digital audio, we first sample the signal followed by digitizing and then recording it. All these are highly dis-

continuous operations, in which not only forcibly introduce discontinuity in time but also in amplitude. Thus, 

representing a smooth audio signal into a discontinuous bit stream is very beneficial to digital communica-

tion system and a digital recording is even better than an analog recording. Therefore, the first few chapters 

of this book will look at wavelets and multirate digital signal processing based on the principles that Haar 

propounded. Understanding Haar multiresolution analysis (MRA) in depth leads to better understanding 

of many of the principles of wavelets and multirate processing, specifically the two-band processing. After 

presenting material on Haar MRA, the sequence of presentation in the book would be as follows:

●● The Daubechies family of multiresolution analysis (Daubechies is the name of the mathematician 

who proposed this family of multiresolution analysis).
●● The uncertainty principle, fundamentally and in terms of its implications.
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●● The continuous wavelet transform (CWT). In the Haar multiresolution analysis, we have a certain 

discretization in the variables associated with the wavelet transform. In the continuous wavelet 

transform, the variables become continuous.
●● Some of the generalisations of the ideas like ‘wave packet transform’, variants of wavelet 

transforms like next generation wavelets through lifting scheme, etc.
●● In the last parts of the book, we shall look at some of the important applications, where wavelets 

and multirate digital processing provide great advantages.
●● A special chapter also provides material on the scope beyond wavelets.

1.3  Multirate Digital Signal Processing

Let us look at some of the developments in the subject of multirate signal processing. The connection 

with wavelets will also be seen. Consider the biomedical example discussed previously. The biomedi-

cal signal has fast-varying parts and slow-varying parts of the response. The slow-varying parts of the 

response are likely to last for a longer period of time while the quicker parts of the response are likely to 

last for a shorter period of time. So, apart from considering localization in time and also in frequency, the 

localization required for higher frequencies and lower frequencies is also important. Lower frequencies 

in response have lower time resolution. Resolution means the ability to resolve, the ability to be able to 

identify specific components. How can the frequency axis be narrowed down? Frequency resolution 

relates to being able to identify the specific frequency components. More appropriately, how much do 

we need to narrow down? It is often desired (not always) that the higher frequency components be 

compromised on frequency resolution but not on time resolution. So things that are transient, demand 

time resolution and things that occupy lower frequency ranges, demand frequency resolution. Hence for 

increasing frequencies, more frequency resolution is needed opposed to time resolution. This brings the 

idea of multirate processing. So, if we have higher frequencies, we should use smaller sampling interval 

and vice versa, in a discrete processing system. This leads to more efficient processing operations. In 

an evoked potential response, frequent sampling is not required for the lower frequency components. 

It increases data without any advantage. On the other hand, while handling quicker components, if our 

sampling rate is less or inadequate, ‘aliasing’ is introduced. Hence, it is not a good idea to use the same 

sampling rate for all the frequency components. Unlike a basic course, we deal here with sequences that 

are obtained with different sampling rates in the same system. This brings the idea of multirate digital 

signal processing. Thus, in the analysis of same system we need to have different sampling rates accord-

ing to demand of resolution and the conservation of data.

Another important aspect which triggers use of multirate systems is the way conventional trans-

forms like Fast Fourier Transform (FFT) divides the frequency range. While human ears perceive fre-

quencies in logarithmic sense, FFT provides equal prominence to every frequency bin, thus making 

frequency segmentation ‘linear’.

Example 1.3.1 — Linear segmentation of FFT.

Human hearing is sensitive to typical range of 20 Hz to 20 KHz. Female speech typically ranges 

from 140 Hz to 500 Hz, male speech typically ranges from 70 Hz to 250 Hz, flute produces frequen-

cies from 260 Hz to 3350 Hz, Violin produces from 200 Hz to 3000 Hz and so on. Often we have to 

process and analyze various ranges of frequencies. Due to linear segmentation of frequencies using 
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1.3.1 Filter Banks

Going further, let us construct the idea of filter banks, which is quite important for the analysis and  

synthesis of the signals. In a biomedical example, to separate components, many different operators 

have to be simultaneously used. So a system of filters is needed, which has certain individual character-

istics as well as collective characteristics. Thus, analysis as well as synthesis is required. In addition to 

that, we also require localization. So a bank of filters, refers to a set of filters which either have a com-

mon input or a common point of output. This concept of a bank of filters, (in fact, two banks of filters) 

namely analysis and synthesis filter banks, taken together, is very central to multirate signal processing. 

So a two-band filter bank will be presented in this book at a greater depth. The concept of two-band filter 

bank is of great importance in constructing wavelets. The subsequent chapters and discussions about 

Haar multiresolution analysis will bring out the intimate relationship, which exists between the Haar 

wavelet and a two-band Haar filter bank.

1.4  Prerequisites

The subject of ‘Wavelets’ has many interesting features and facets. It uses different approaches for 

representation of signals and functions than conventional techniques. In this section we will try to build 

physical significance to bring out concepts from underlying mathematical formulas. The readers who 

are well versed with the fundamental concepts may skip the reminder of the chapter.

1.4.1 Generalized Vectors

A vector quantity or vector, provides the magnitude as well as the direction of a specific quantity. A two-

dimensional vector is generally represented in terms of two co-ordinates along two perpendicular axis. 

This idea of perpendicularity is intimately related to the idea of independence. Let us look at a system 

of vector representation:

System representation
When giving directions to a point, it is not enough to say that it is x miles away, but the direction of 

those x miles must also be provided for the information to be useful. (Note that physical quantities are 

represented by Scalars, such as temperature, volume and time, etc.)

FFT, to record high frequency data accurately the compromise is made on low frequency resolu-

tion. Thus, in general, FFT has excellent high frequency pitch resolution but poor low frequency 

resolution. For example, let’s say we are processing a signal for which Nyquist stability criterion 

is followed and signal is sampled at appropriate sampling rate. When FFT frame size is divided by 

sampling rate it gives us frequency window. For a particular signal under analysis, let us assume 

the frequency window be 50 Hz. This could be very small analysis window for fast moving (high 

frequency) signal but could be a big window for slow moving (low frequency) signal, which may 

prevent FFT to capture good details at low frequency. The natural intuitive solution to this is to have 

different sampling rates for different parts, which leads us to multirate systems.
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Example 1.4.1 — Parallelogram law of vector.

Let us take an example. Refer Fig. 1.6, we shall see how we can get the resultant of two vectors by 

the use of the parallelogram law of vector addition. Given two vectors v
1
 and v

2
, their resultant is 

given by the diagonal of the parallelogram as shown in the Fig. 1.6.

v v v=
1 2
 +

where v k u
1 1 1

= ˆ

and v k u
2 2 2

= ˆ

then v k u k u=
1 1 2 2
ˆ ˆ+

v2
v2

v1

v3

v1

v = v1û1 + v2û2

v = v1û1 + v2û2 + v3û3

00 2 - dimensional 3 - dimensional

Figure 1.5  Graphical representation of vectors

Given a coordinate system in three dimensions, a vector may thus be represented by an ordered set 

of three components, which represent its projections v v v
1 2 3
, ,  on the three coordinate axes.

v v v v= [ , , ]
1 2 3

The three most commonly used coordinate systems are rectangular, cylindrical, and spherical. 

Alternatively, as shown in Fig. 1.5, a vector may be represented by the sum of the magnitudes of its 

projections on three mutually perpendicular axes:

v v u v u v u=
1 1 2 2 3 3
ˆ ˆ ˆ+ +

The n-dimensional coordinate systems based on the Euclidean space (Cartesian space or n-space) 

represented by Rn or En, under n-dimensions and n-vectors. Usually, the Euclidean space is formed by 

( , , ,..., )
1 2 3

X X X X
n

 where n is equal to 8.
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û
2

û
1

Figure 1.6  Parallelogram law of vectors

1.4.2 Relationship Between Functions, Sequences, Vectors

As we may recall, one can intimately relate processing of a function to processing of equivalent sequence, 

and retrieving information from or modifying a function can be done equivalently by processing or mod-

ifying that sequence corresponding to function. A sequence is like a vector and each n (corresponding 

to a value in the sequence) is a different dimension of that vector. Now, once this analogy is clear, it is 

very easy to extend other ideas of vectors to this context. For example, we can think of vector addition 

as addition of the sequences point by point, and so on.

An infinite (countably infinite) dimension vector is a sequence x n n[ ], Î, where n  is index and 

  is set of integers.

Now, we would like to extend other ideas of vectors to this context of infinite dimension vector.

Dot product of vectors
Let,

e e u e u
1 11 1 12 2

= ˆ ˆ+  and e e u e u
2 21 1 22 2

= ˆ ˆ+  then dot product is e e e e e e
1 2 11 21 12 22

= + .

It can be easily seen that this is nothing but sum of products of corresponding coordinates.

Let two n-dimensional vectors be

e e e e
N1 11 12 1

: , ,...,  and e e e e
N2 21 22 2

: , ,...,

the dot product of these two vectors is

á ñ åe e e e
k

N

k k1 2

=1

1 2
= . These are also called as orthogonal coordinates.

Let, in two sequences, say x n x n n Z
1 2
[ ], [ ], ,Î  the ‘dot product’ or ‘inner product’ be á ñx x

1 2
, ,

where

á ñ
-¥

+¥

åx x x n x n
n

1 2

=

1 2
, = [ ] [ ]
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The word ‘magnitude’ is generally used in the context of 2 ,3- -D D  space; but in a general n D-  

space, we will use the word ‘norm’. In L
2
( ) , norm squared represents the energy.

Let vector x: essentially a sequence x n n Z[ ], ,Î  then the ‘norm’ of sequence x x=   should be 

á ñx x
1 2

1/2,

 x ³ 0  and  x = 0  iff x = 0  i.e. x n[ ] = 0  "  n ZÎ

If x
1
 and x

2
 are real,

á ñ
-¥

+¥

åx x x n x n
n

1 2

=

1 2
, = [ ] [ ]

á ñ
-¥

+¥

åx x x n
n

, = [ ]
=

2

As long as x n[ ]  is real " În  , this will satisfy norm requirements.

A small change will be applied for complex sequences as follows

á ñ
-¥

+¥

åx x x n x n
n

1 2

=

1 2
, = [ ] [ ]

Properties of Inner product
1. Conjugate commutativity

á ñ á ñx x x x
1 2 2 1
, = ,

= [ ] [ ]
=

1 2

n

x n x n
-¥

+¥

å

= [ ] [ ]
=

2 1

n

x n x n
-¥

+¥

å

á ñ á ñx x x x
1 2 2 1
, = ,

2. Linear in first argument

á + ñ á ñ + á ña x a x x a x x a x x
1 1 2 2 3 1 1 3 2 2 3

, = , ,

= ( )
=

1 1 2 2 3

n

a x a x x
-¥

+¥

å +

= ( ) ( )
=

1 1 3 2 2 3

n

a x x a x x
-¥

+¥

å +

á + ñ á ñ + á ña x a x x a x x a x x
1 1 2 2 3 1 1 3 2 2 3

, = , ,

3. Positive definiteness or non-negativity

á ñ
-¥

+¥

åx x x n x n
n

, = [ ]. [ ]
=
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á ñ "x x iff x n n, = 0; [ ] = 0

This inner product is also called the ‘standard inner product’. In the chapters henceforth when we 

say inner product of sequences we shall be talking about the ‘standard inner product’ unless specified.

Extension to uncountably infinite dimension
For any ‘t’, t Î is a different dimension and x t( ), t Î, means x t( ) for the ‘t th’ coordinate. Then the 

‘dot product’ or ‘inner product’ between two functions x t( ) and y t( ) in general is given by

á ñ
-¥

+¥

òx y x t y t dt, = ( ) ( )

The properties of conjugate commutativity, linearity in the first argument and positive definiteness are 

also valid for this case and its verification is left as an assignment to the reader.

Parseval’s Theorem
The Parseval’s theorem states that the inner product of any two functions in time domain is equal to the 

inner product of those two functions in frequency domain.

Let x t( )  be a function then its fourier transform, x( )n  or x( )W (in Hz or in radians respectively) is 

defined as

x x t e dt or x x t e dt
j t j t ( ) = ( ) ( ) = ( ) = 22n pnpn

-¥

+¥ -

-¥

+¥ -ò òW WW where

From now on we shall use ‘W’ to represent the angular frequency variable in the continuous time and ‘n ’  

to represent the Hertz’ frequency variable. What we are referring to shall be clear from the context. Let 

y t( )  be a function and y( )n  or y( )W  its fourier transform (in Hz or in radians) defined as

y y t e dt or y y t e dt
j t j t ( ) = ( ) ( ) = ( ) = 22n pnpn

-¥

+¥ -

-¥

+¥ -ò òW WW where

The inner product of these in time domain is

á ñ
-¥

+¥

òx y x t y t dt, = ( ) ( )

and it is equal to the inner product in frequency domain given by

á ñ
-¥

+¥

òx y x y d   , = ( ) ( )n n W

That means á ñ á ñx y x y, = , 

The function x t( )  can be reconstructed from its frequency components as

x t x e d
j t( ) = ( )

-¥

+¥ -ò  W WW

Parseval’s theorem basically states that the inner product is independent of the co-ordinate system. 

So, whether we choose to represent two functions in the standard co-ordinate system of ‘time’ or the 

slightly less obvious co-ordinate system of ‘frequency’, their inner product always remains the same.
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Example 1.4.2 — Applications of Parseval’s theorem.

The Parseval’s theorem is often used in many areas like physics and engineering etc, and it is written 

many of the times as

-¥

+¥

-¥

+¥

ò ò| ( ) | = | ( ) |2 2
x t dt x d n n

where x( )n  represents the continuous Fourier transform of x t( )  and ‘‰ ’ represents the frequency 

component of x .

From this equation, the theorem states that the total energy contained in a function x t( )  

over all time ‘ t ’ is equal to the total energy of the its Fourier Transform x( )n  overall fre-

quency ‘n’.

For discrete time signals, the theorem becomes:

n

j
x n x e d

=

2 2| [ ] | =
1

2
| ( ) |

-¥

+¥

-

+

å òp w
p

p
w

where x e
j( )w  is the Discrete-Time Fourier transform (DTFT) of x  and ‘w’ represents the angular 

frequency (in radians per sample) of x .

For the Discrete Fourier transform (DFT), the relation becomes:

n

N

k

N

x n
N

x k
=0

1
2

=0

1
2| [ ] | =

1
| [ ] |

- -

å å 

where x k[ ] is the DFT of x n[ ] and ‘ N ’ is length of sequence in both domains.

Relation between continuous functions and sequences
Let x t( )  be a continuous function and let f ( )t  be a unit step function in [0,1] interval, then x t( )  can be 

written as

x t C t C t C t C t( ) = .... ( 1) ( ) ( 1) ( 2) ....
1 0 1 2

+ + + + - + - +- f f f f

It can be graphically represented, as shown in Fig. 1.7.

Through successive approximations as one of the ways of representing signal in interval used, sig-

nal x t( )  can be represented as sequence x n[ ] as x n C C C C[ ] { . , , , , ..}= - 
1 0 1 2

.

Equivalance between continous funcitons and sequences will be dealt in greater detail in subsequent 

chapters

C
−1 C0 C1 C2 C3

−1 0 1 2 3 4

x(t)

Figure 1.7  Relation between continous functions and sequences
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1.4.3 Need for Transformations

There are many reasons for carrying out a transformation, most siginificant one is convenience. For 

example, we do not understand music as just few time domain signals with varying voltage, but as 

sequence of frequencies. Thus, it makes sense to transform musical signal into frequency domain and 

then the analyzer will be more comfortable dealing with those frequencies. Ultimately, we want to 

design filters, more pertinently filter banks in the context of wavelets, and it is more convenient to design 

filter banks in frequency domain compared to time domain or spatial domain.

Wavelet transform is strikingly different than most of the conventional transforms. For all conven-

tional transforms like Laplace transform, Z transform, Fourier Transform and Logarithmic Transform 

the basis function comes from natural logarithmic base e. However, for understanding wavelet transform 

we have to go beyond the purview of these conventional transforms.

We already know how to analyze Linear Time Invariant (LTI) Systems. For doing so, traditionally, 

we have two methods,

 1. Convolution

 2. Difference Equations

Convolution evolves out of the fact that given a signal x[n], we can decompose that signal into 

scaled and shifted impulse sequences. After doing so, we can write,

 

x n x k n k
k

[ ] [ ] [ ]= -
=-¥

¥

å d  (1.1)

This is the scaled summation of shifted impulses. We are able to do this because the system is 

assumed to be linear and shift invariant. Since the system is linear and thus would follow superposition 

theorem we are able to add up the products to get x[n]. Also, because of time invariance property we are 

able to shift the impulses without affecting the end result.

Once we do this and understand how the system reacts to impulses as stimulus, we would be able 

to get the systems impulse response. Now if we call the impulse response as h[n], excite the LTI system 

with an exponential e
j nw

0  as an input x[n] and call the output as y[n] we would have,

 

y n e h n k
j n

[ ] = [ ]0

-¥

¥

å -
w

 (1.2)

However we know by commutative law,

 

y n x k h n k x n k h n
k

[ ] = [ ] [ ] = [ ] [ ]- -
=-¥

¥

-¥

¥

å å  (1.3)

Thus by putting e
j nw

0  in place of x[n] we have,

 

y n e h n
k

j n k
[ ] = [ ]

=

0
[ ]

-¥

¥
-å w

 (1.4)

This forms an interesting eigen system for LTI analysis. That is because we can split the exponential 

term from Eq. (1.4) and then the summation happens for variable k  and the term e
j nw

0  can be deduced 

out of this summation of k terms.

 

y n e e h n
j n j k

k

[ ] = [ ]0
[ ]

0
[ ]w w -

=-¥

¥

å  (1.5)
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 y n e e h n
j n j k

k

[ ] = [ ]0
[ ]

0
[ ]w w -

=-¥

¥

å  (1.6)

From Eq. (1.6) we can see that after exciting the system with exponential of frequency w
0
 the result 

is the same term with something. The term e
j nw

0  is known to us as eigen function and the multiplying 

term is known as a eigen value. This eigen value in a broader sense is known to us as a Fourier Transform. 

The basis function here is exponential e . This fact as discussed earlier in this chapter remains the same 

for other transforms also, for example in Z transform the basis function Z also equals e
jw

.

It would be interesting now to look at from where this constant ‘ e ’ comes from.

The constant e  was discovered by Dr. Bernoulli in a vague accident for which the story does not 

have authentic source, it is still very interesting though. Dr. Bernoulli was trying to help his banker 

friend because his business was not picking up. He gave him a solution based on the formulae for calcu-

lation of compound interest. As we know the compound interest formula for investment of a one rupee 

or one dollar or one euro as principle amount is given as,

1
1

+






n

n

Dr. Bernoulli brought in series expansion by applying limit for n  terms to infinity,

 n

n

n→∞
+









lim 1
1

 (1.7)

and the constant ‘e’ came into existence, waiting for Euler to give it meaning! An engineer’s per-

spective is provided in the MATLAB code (Example 1.4.3) for readers to try out the above limit approxi-

mation through simulations (rather than solving it actually – may be a mathematician’s perspective!) 

and get convinced that it indeed gives us the constant after few iterations.

Example 1.4.3 — MATLAB code to approximate constant ‘e’. \\
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 Jacob Bernoulli

Jacob Bernoulli (1654–1705) was son of Nicolas Bernoulli and elder brother of Johann Bernoulli. 

Jacob acquired degree in theology to start his formal education as his father was against his children 

taking up mathematics. In spite of that due to his deep interest and curiosity he became a mathemati-

cian. In 1687, he became Professor of mathematics at University of Basel, where he taught till the 

end of his life. He continued working on the lines of Napier and was able to successfully discover 

the constant ‘e’. His contributions in the field of calculus are also well known and respected.

Though the story of banker friend of Dr. Bernoulli lacks authenticity, it was certain that around 1889 

he published series of articles on theory of infinite series and proposed continuously compounded inter-

est. There were also some series expansions like

1
1

4

1

9

1
2

+ + + + + 
k

for which he could not settle with a converging number and the quest was completed by Dr. Euler 

when he showed that above infinite summation equates to 
p 2

6
. Thus in many ways Dr. Euler took Dr. 

Bernoulli’s work forward. After Dr. Bernoulli invented constant e , Dr. Euler came up with an identity 

known today as Euler’s Identity which is still regarded as one of the most beautiful of all mathematical 

discoveries.

 e
ip = 1-  (1.8)

From application perspective more useful version of Euler’s Identity is,

 
e j
iq q q= ( ) ( )cos sin+  (1.9)

The interesting thing to note is if we draw a tangent to any point on this exponential curve the 

y-intercept and slope of this tangent matches. Thus at any point along the curve we can resolve the point 

into ‘cos’ and ‘sin’ components which are in turn orthogonal in nature. Dr. Euler really gave special 

meaning to this constant ‘e’ and it’s because of his contribution we get orthognal and energy preserving 

transforms. It’s because of this unique property of ‘e’, the inverse of the transform also exists.
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 Leonard Euler

Leonard Euler (1707–1783) was a Swiss mathematician and he was well known for the quality as 

well as quantity of his work. His contributions in the field of graph theory, number theory and cal-

culus are considered to be outstanding. Born in Basel in 1707, in 1727 he went to St Petersburgh 

Academy. In 1741 he joined berlin Academy and in 1766 joined back St Petersburgh Academy. He 

died in 1783. In 1748 he gave a meaning to the constant ‘e’ and gave base to the natural logarithm 

which then went on to become basis to most of the transforms.

After Dr. Euler gave a powerful meaning to ‘e’, Dr. Fourier worked on analyzing periodic and 

aperiodic functions and signals. The legacy of transforms is thus result of contribution from these three 

great scientists. Dr. Fourier gave a systematic way of analyzing periodic as well as aperiodic signals 

through Fourier series and Fourier Transform framework. For a time domain signal x t( ) the correspond-

ing Fourier Transform is given by Eq. (1.10).

 
X̂ x t e dt

j t( ) = ( )W W-

-¥

¥

ò  (1.10)

Thus, conceptually Fourier description is the inner product between the signal to be analyzed and 

the basis or kernel function.

 Jacob Fourier

Jacob Fourier (1768–1830) was a French mathematician and a well-known scientist with the contri-

butions like Fourier series, Fourier descriptors, Fourier transform etc. Fourier introduced the notion 

of representing continuous as well as discontinuous functions using continuous basis functions. This 

was an important and path-breaking research, which also encouraged scientists like Laplace to build 

their own theories like Laplace transform.

Now, let us look at question why wavelet transform? The wavelet transform decomposes signal into 

two separate series. One which represents the coarse version which leads to scaling function and other 

which represents the details or the refined version which leads to wavelet function or the mother wavelet 

function.

Still two more questions need to be answered: Are not the traditional methods of representing sig-

nals good enough? And what is so special about this wavelet transform? We will answer this gradually 

in this book.
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Let us take these questions one at a time. In the traditional methods the most basic representation 

of signals is with Taylor series.

For example,

Taylor series expansion at x
0

= 0,

 

e
x x x x

n

x
n

n

= 1
1! 2! 3!

=
!

1 2 3

0

+ + + +
=

¥

å  (1.11)

Every single coefficient in the above expression can be looked upon as a decomposed piece and 

such pieces can be used for reconstructing the corresponding signal or function. If we only make use of 

finite number of coefficients lets say up to first 5 coefficients and try to reconstruct the signal then the 

reconstructed signal would look like the signal shown in Fig. 1.8.

Figure 1.8 (b–f) shows Taylor series approximation of exponential function with number of coeffi-

cients used to be N = 1, N = 2, N = 3 , N = 4, and N = 5, respectively. It is clear that as the number of 

coefficients increase the approximation (shown as black dotted line) starts approaching the actual func-

tion (shown as black solid line). Thus in Taylor series, cooperation to build better representation is rigid 

from the perspective of lack of inter-coefficient resolution. Since we have to work with large terms, also 

scale and translation of every single term is limited. In contrast to this in wavelet analysis the scaling 

function and its associated wavelet function makes the representation flexible.
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(b) Taylor series approximation
using N = 1

Exponential Function approximated using Taylor series
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(c) Taylor series approximation
using N = 2

Exponential Function approximated using Taylor series
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(d) Taylor series approximation
using N = 3

Exponential Function approximated using Taylor series

1.510.50−0.5−1−1.5−2

0

−1

1

2

3

4

6

5

7

8

2

Taylor series approximation N = 3
Function ex

(e) Taylor series approximation
using N = 4

Exponential Function approximated using Taylor series
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(f) Taylor series approximation
using N = 5

Exponential Function approximated using Taylor series
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Figure 1.8  Approximation of exponential function using up to 5 coefficients from Taylor 
series

The MATLAB code to try more coefficients out is provided for readers:

Example 1.4.4 — MATLAB code to understand Fourier transform.\\
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In wavelet analysis the scale {1 / 2}j is dependent upon the analyzer. Thus while sampling a high 

frequency signal we can bring in a very high value of j. Then a translation t
j k

j
k

,
= / 2  can be used to 

focus on that part. Hence with wavelet analysis we can ‘look’ into any particular part of the signal.

By changing the scale and translation parameter we have an interesting zoom-in or zoom-out facil-

ity of wavelet transform.

Fourier series has a noteworthy advancement over the Taylor series. Since elements of a Taylor 

series do not necessarily and always form an orthogonal set. However, in case of Fourier series the set 

{1, ( ), ( )}
1

cos sinnx nx
n=
¥  is always orthogonal on ( , )-p p . But still flexibility with scale and translation 

parameters remains to be explored.

Even though Fourier series is rigid in terms of rotations and translations, we derive some informa-

tion related to wavelet transformation from it. Fourier series is represented by following equation,

 

f x a a kx b kx
k k

k

( ) = [ ( ) ( )]
0

1

+ +
=

¥

å cos sin  (1.12)

Where,

a f x dx
0

=
1

2
( )

p -¥

¥

ò

 
a f x kx dx
k

=
1

( ) ( )
p -¥

¥

ò sin

b f x kx dx
k

=
1

( ) ( )
p -¥

¥

ò cos
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We observe that a special relationship exists between cosine and sine terms of the series. A similar 

relationship also exists between scaling f(.)  and wavelet y (.) functions. This relationship although 

trivial is very interesting. Though wavelets are radically different from conventional transforms like 

Fourier transform, its rise has its roots in the shortcomings of these conventional transforms. To find out 

what is so different about wavelet representation, let us revisit the Fourier theory briefly.

1.4.4 How Fourier Transform Works?

To answer this question, let us start with Fourier basis function. It is the complex conjugate of known frequency. 

Euler’s theorem allows us to divide this basis into real and imaginary parts as e i
iq q q= cos sin+ .  

The real and imaginary parts of basis function used in Fourier transform are shown in Fig. 1.9.
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Figure 1.9  Real and imaginary parts of Fourier basis function

Let us say we want to analyze a stationary signal using Fourier mechanism. Let us also assume 

that this signal is made up of two frequencies say sin(4 )x  and cos(7 )x . These are linear frequen-

cies of emerging out of independent variable x  and readers should note that sin(4 )x  is not 4Hz  

sinusoidal. We can excite this signal using all the basis functions as in Fig. 1.9 and integration of 
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dot product yields the Fourier domain representation. We know that in Fourier domain this will produce two peaks 

corresponding to 3x  and 7x  coming from sin  and cos  components respectively in the signal under the probe. The 

peak generation process comes out of the fact that this mechanism is a dot product or correlation filter mechanism. 

This can be clearly witnessed from the simulation results below.

Figure 1.10 shows a case when the signal is excited with basis function with different frequency than one of the exist-

ing frequency components ( sin(4 )x  or cos(7 )x  in this case). The Fig. 1.10(a) shows the actual signal, Fig. 1.10(b) shows 

the sin(4 )x  basis function superimposed on the signal to be analyzed and Fig. (1.10(c)) demos the effect of dot product 

in case of excellent correlation. The positive parts when integrated will produce the desired peak at that frequency ( 4x  

in this case).
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(a) Stationary Signal 
with sin(4x) and cos 
(7x) frequencies

(b) Signal super 
imposed with sin(4x)
basis  function-good 
correlation

(c) Dot product of 
signal with sin(4x)
basis giving many  
positive parts.

Figure 1.10   When excited with basis frequency which belongs to the signal it produces peak at that 
frequency

When the basis uses frequency, which is not part of stationary components of signal, it results in poor correlation and 

will not produce peak for that frequency.

Figure 1.11 shows a case when the signal is excited with basis function of one of the existing frequency components 

( sin(4 )x  in this case). Figure 1.11(a) shows the actual signal, Fig. 1.11(b) shows the sin(7 )x  basis function super-

imposed on the signal to be analyzed and Fig. 1.11(c) demos the effect of dot product in case of poor correlation. When 

integrated, the positive parts destroy the negative parts not producing the peak at that frequency ( 7x  in this case as the 

basis had sin part and signal has cos part. If the signal is excited with cos(7 )x  it will certainly produce the peak).

From the simulation we can see that if the basis function contains frequency present in the actual signal on integration of 

the dot product we will get a peak at that frequency.

This brings the clarity on how exactly Fourier Transform works.

For further clarity readers can run the following MATLAB program and try out different basis examples and bring 

out conviction on how the dot product helps deploy the thematic of Fourier Transform.
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Example 1.4.6 — MATLAB code: Fourier for non-stationary signals.\\
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Example 1.4.7 — AM-GM inequality.

Further, we will use the result of Young’s inequality to get the result (1) i.e. the Hölders Inequality. 

To do this, consider two real functions f t( ) and g t( ) in space L
p
( )  and L

q
( )  respectively. We first 

normalize these functions by dividing each of them with their respective norms.

Mathematically,

f t L
p

( ) ( )Î 

g t L
q

( ) ( )Î 

given that 
1 1

= 1
p q

+ . Now the normalized functions are given as:
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F t
f t

f
p

( ) =
( )

 

G t
g t

g
q

( ) =
( )

 
Where,

 f f t dt
p

p p
= | ( ) |

1
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+¥
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 g g t dt
q

q q
= | ( ) |

1
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+¥

ò( )
Now using Young’s inequality we can point wise state that,
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p

G t

q
F t G t

p q( ) ( )
( ) ( )+ ³

Integrating above equation over real line we get,
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Therefore,

 
   f g f t g t dt

p q
³

-¥

+¥

ò | ( ) ( ) |  (1.15)

Since,

1 1
= 1

p q
+
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Example 1.4.5 — MATLAB code to understand Fourier transform.\\
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Figure 1.11  When excited with basis frequency which does not belong to the signal it produces 
cancellations

It must be noted, however that Example 1.4.5 shows how Fourier Transform operates effectively for 

stationary signals. In case of non-stationary signals, Fourier transform fails to provide the information 

related to at what time which frequency existed. All the real-life signals are non-stationary and Fourier 

does not provide insight into the time stamps of frequency components to be analyzed. This is a serious 

limiting factor for many applications and corresponding usage of Fourier.

1.4.5 Fourier Transform and Non-stationary Signals

Stationary signals have all the frequencies existing all the time and because of this exact location of a 

particular frequency on time axis does not have much meaning for stationary signals. The answer to the 

question ‘At what time instance a particular frequency existed?’ will be at every time instance! This does 

not hold true in case of non-stationary signals and hence exact location of frequency plays vital role. 

Fourier transform does not capture this and the same is depicted in the MATLAB code Example 1.4.6.

 The code creates two signals, x t
1
( ) is stationary and x t

2
( ) is non-stationary. As shown in Fig. 1.12 

for both these signals the Fourier engine produces similar responses. The exact frequencies are suc-

cessfully captured by FFT, however, this is not enough for non-stationary signals as the frequencies are 

present only at pertinent time stamps and not throughout. Interestingly, when inverse Fourier Transform 

of FFT of non-stationary signal is taken, it produces back stationary signal like x t
1
( ) in lieu of producing 

back original non-stationary signal x t
2
( ).
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Non Stationary Signal x1(t)
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Figure 1.12  Fourier Transform: difficulty in handling non-stationary signals

Fourier transform can not handle the non-stationary signals because it is governed by ‘Uncertainty 

Principle’. The subsequent sections will bring out this point systematically.

1.4.6 Inability of Simultaneous Time and Band Limitedness

According to the theorem based on the Uncertainty principle of Fourier transform, a non-zero function 

cannot be both time limited and band limited at the same instance. Basically, this means that a non-zero 

function cannot be compactly supported in both the domains simultaneously. Now, a function is said to 

be compactly supported if it has a finite support; for example, a rectangular pulse ranging from point a  

to b on real line is compactly supported. On the contrary, the Gaussian function which extends throughout 

the real line is not a compactly supported function. We will prove the result for a class of functions in L
1
 

space and then extend the proof for a general class L
P
 where 1 < <P ¥.

Background of the proof: Let us first recall the basics before we study other tools applied.

Fourier transform
Fourier transform provides a way to look at the signal from its frequency domain. Fourier transform 

relies on the principle that a signal can be represented by the linear combination of sine waves, and their 

respective frequencies together constitute the frequency domain of the signal. Further, we can move to 

complex domain since sin( ) =
2

t
e e

j

jt jt- -

. Mathematically, Fourier transform projects the function onto 

the complex exponentials. Thus, Fourier transform of a function x t( ) is given as:

X x t e dt
j t( ) = ( )W W

-¥

+¥ -ò
NOTE:
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For a function, there exists a Fourier transform only if the function is absolutely integrable i.e. x t( ) 

is said to have a Fourier transform only if | ( ) |x t dt
-¥

+¥

ò  is finite.

Space L
P
( )  and Norm

A function x t( ) lies in space L
P
( )  if | ( ) |

1

x t dt
P P

-¥

+¥

ò{ }  is finite, and the term is called as the L
P
 norm of 

the function x t( ) where 1 £ £ ¥P . With the context of our discussion let us see an example of function 

with finite L
1
 norm:

We see that, for above given function the absolute integral of the function is equal to 1 and thus it 

belongs to space L
1
. Also, it can be proved that the function exists in space L

P
 in general for 1 <£ ¥P . 

On the other hand sinc function does not have a finite absolute integral and, therefore, does not belong 

to space L
1
.

1

t

Figure 1.13  Function belonging to L
1
( )

Hölders Inequality
Aforesaid, in this proof we will consider the functions in L

1
 space and then extend the proof more gen-

eral class of functions in spaces L
P
 where 1 < P £ ¥. Now, for time to limited functions it can be proved 

that if a function belongs to L
P
 where 1 < P £ ¥ then it also belongs to space L

1
 using Hölders Inequality.

Mathematically,

f L for p
P

Î Î ¥,    (1, )

Þ Îf L
1

Hölders Inequality states that for two functions f t( ) and g t( );

 f t g t dt f t dt g t dt
p p q q

( ) ( ) | ( ) | | ( ) |

1 1

-¥

+¥

-¥

+¥

-¥

+¥

ò ò ò£ ( ) ( )  (1.13)

The above condition holds true only if 
1 1

= 1
p q

+  and p q, > 0. The above result of Hölders Inequality 

can be obtained using Young’s Inequality and generalized AM-GM Inequality stated as below.

Young’s Inequality
Young’s inequality states that, given two positive real numbers a and b,

 

a b

ab
a

p

b

q

p q

, Î

£ +

+


 (1.14)

Given,
1 1

= 1
p q

+
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This can be proved using the generalized AM-GM Inequality as explained below.

Arithmetic Mean- Geometric Mean (AM-GM) Inequality
AM-GM inequality states that, given two positive real numbers a and b with weights a

1
 and a

2
, follow-

ing equations holds.

a a

a a

a a
a a

1 2

1 2

1 2

1

1 2a b
a b

+

+
³ ( )

+

Now, substituting a a
p= , b b

q= , a
1

= p and a
2

= q and knowing that 
1 1

= 1
p q

+ , we get Eq. (1.14) 

i.e. Young’s inequality.

Thus, using the Hölders Inequality as stated in Eq. (1.13), by selecting appropriate function g t( ) we 

can prove that function f t( ) which belongs to L
p
( )  also belongs to L

1
( ) . Now, to prove this consider 

a function spread over finite interval C which belongs to space L
p
, 1 < <p ¥. Since the function f t( ) 

belongs to space L
p
 its pth norm is finite i.e. 

-¥

+¥

ò( )| ( ) |

1

f t dt
p p

 is finite. The function f t( ) can be similar 

to that shown in Fig. 1.14. We select g t( ) as shown in Fig. 1.15 to get the result.

f(t)

C t

Figure 1.14  Function f t( )

1 g(t)

tC

Figure 1.15  Function g t( )

Now putting down the Hölders Inequality for these two functions as follows:

   f g f t g t dt
p q

C
³ ò | ( ) ( ) |

C C

p p

C

qf t dt f t dt dtò ò ò£ ( ) ( )| ( ) | | ( ) |

1 1

C C

p p
qf t dt f t dt Cò ò£ ( )| ( ) | | ( ) |

1
1

Since the right side of the above equation is the product of L
p
 norm which is finite and another finite 

quantity the net result on the RHS is finite. Also, since the LHS is less than or equal to RHS we can infer 

that the L
1
 norm of f t( ) is finite. Thus, we have proved our statement that if a function belong to space 

L
p
( ) , where 1 < <p ¥, then it also belongs to space L

1
.
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With this background let us now know some tools which will help us in proving the final result.

Tools for the proof
Fourier transform of rect a( )

The Fourier transform of the rect a( ) function, shown in Fig. 1.16, is
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= Hertz frequency.
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Figure 1.16  Function rect a( )

Vandermonde Matrix
A Vandermonde matrix is defined as
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Where, m and n are the number of rows and columns respectively.

Further, whenever we need to solve any linear equation of the form Ax y= , we always look for the 

invertibility of matrix A so that we can solve for x  as x A y= 1- . Now the Vandermonde matrix have very 

Example 1.4.8 — MATLAB code: Fourier for non-stationary signals. \\
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good properties by which it can be shown to be invertible once we know the entries. This is because the 

determinant of a Vandermonde matrix can be proved to be of the form

t V a a
m
m

i j m

i j
( ) = 1

1

2

1 <

-( ) × -
-

£ £
Õ ( )

Therefore, until all the entries of a particular row are distinct the value of det( )V  will not be equal 

to zero and V  will be invertible.
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Review of the proof
Consider a very smooth function which is compactly supported. For example, we can have the following 

function:

f x e x

else

x( ) = £

=

-

-

1

1 2

1

0

1 f(x)

11 0 x

Figure 1.17  Example of a smooth and compactly supported function

The function has the structure as shown in Fig. 1.17. It can be shown that all the derivatives of 

f x( ) exist in the interval - £ £1 1x  with all derivatives f x
p ( ) 0®  as | | 1x ® . Now, we need to find if we 

can have a compactly supported spectrum for such well-behaved time-limited function. Let us look at 

an existing proof.

For any general well-behaved function in space L
1
( )  similar to above example we have the Fourier 

transform given by:

F f t e dt
j t( ) = ( )W W

-¥

+¥ -ò
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Now, we will also assume that the function is band-limited and show that our assumption will hold 

only for a zero function. Therefore, with the assumption we have

| ( ) | | ( ) ||

| ( ) |

   ( )

|

1

F f t e dt

f t dt

L norm of f t

j tW W£

£

£

-¥

+¥ -

-¥

+¥

ò

ò

Now, if we take the derivative of f t( ), it can be represented as,

¢
-¥

+¥ -òf t j f t e dt
j t( ) = ( )W W

In the above equation, since function is bounded in both time and frequency, we get a finite bound 

on the magnitude of ¢f t( ). Similarly, we can show that all the derivatives of f t( ) have finite bound on 

their magnitude. Further, we can express function f t( ) in the form of a McLauren series as:

f t f tf
t

f( ) = (0) (0)
2!

(0)
2

+ ¢ + ¢¢ +
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Now as per our assumption all the above derivatives of f t( ) are finite and therefore above equation 

is essentially a power series expansion, i.e.

Exercise 1.1

Exercise 1.1 What is Short Time Fourier Transform (STFT) and its drawbacks as compared to wave-

let transform.

Hint: In STFT, signal is first windowed using different type of window functions like Triangular 

window, Rectangular window, Gaussian window, etc. Now, Fourier Transform of resulting win-

dowed signal is taken. This gives the STFT of signal for particular time. As window slides along 

time axis, so basically STFT maps input signal x t( ) into two dimensional function in a time-fre-

quency plane or tiling.

So, drawback of STFT is that once a window has been chosen for STFT, then time-frequency 

resolution is fixed over the entire time-frequency plane or say STFT moves a tile of constant shape in 

the time-frequency plane. But in case of wavelet transform, the time resolution becomes arbitrarily 

good at high frequencies, while the frequency resolution becomes arbitrarily good at low frequen-

cies. In other words we can say that CWT moves a tile of variable shape but constant area which is 

governed by time-bandwidth product.

Exercises

Exercise 1.2

What is uncertainty principle? Explain it for different domains.

Hint: The basic uncertainty principle also called Heisenberg Uncertainty Principle is that, the 

position and velocity of an object cannot both be measured exactly, at the same time. Uncertainty 

principle derives from the measurement problem, the connection between the wave and particle 

nature of quantum objects. The uncertainty principle is alternatively expressed in terms of particle’s 

momentum and position. the momentum of a particle is equal to the product of its mass times its 

velocity. The principle applies to other related (conjugate) pair of observables, such as energy and 

time. Finally, uncertainty principle states that exact knowledge, of complementarity pairs (position, 

energy/velocity, time) is impossible.

The uncertainty principle for time-frequency pair will be studied further in detail in this course.

Exercise 1.3 

What are basis functions? What type of basis function is used in Fourier Transform? How is it dif-

ferent from the basis functions used in Haar multiresolution analysis?

Ans. In mathematics, a basis function is an element of a particular basis for a function space. Every 

function in the function space can be represented as a linear combination of basis functions, just as 

every vector in a vector space can be represented as a linear combination of basis vectors.
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Exercise 1.4 

If sum and difference of two vectors 

a  and 


b  are perpendicular to each other. Find the relation 

between two vectors.

Hint: The sum 
 
a b+  and difference 

 
a b-  are perpendicular to each other. Hence, their dot product 

should be equal to zero.

Complex exponential functions form the basis for Fourier analysis. They are extremely smooth 

functions. On the other hand, Haar analysis uses discontinuous functions as basis, i.e. every signal 

is represented as a linear combination of discontinuous functions.

Exercise 1.5 

Find a function f t a bt( ) = +  that is perpendicular to the another function g t t( ) = 1 -  in the interval 

[0,1].

Hint: If the functions are perpendicular to each other, then their dot product is zero.

á ñ + -òf g a bt t dt, = ( )(1 )
0

1

0

1
2( ) 0ò + - - =a bt at bt dt

2 2 3
0

2 6
0

+ - - =

+ =

a
b a b

a b

So, we can take f t t( ) = 1 3-

Exercise 1.6 

Determine the number of dimensions in the following sequences:

(a) (....,0,0,4,5,3,1,6,0,0....)

(b) (....,0,0,4,0,0,1,0,9,6,0,0....)

Hint:

(a) The dimension of a sequence is the the length of support of a sequence. In this example, a sequence 

has 5 non-zero samples and hence it has a dimension of 5.

(b) Since the dimension of a sequence is the length of support of a sequence, a sequence has a dimension 

7. Note that this also considers the 3 zero samples which have non-zero samples on their 

either left or right hand sides.
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Exercise 1.7 

What is Wavelet? How Wavelet transform is different than Fourier transform?

Hint: Refer Section 1.4 of this chapter.

Exercise 1.8 

What are orthogonal vectors? How functions, sequences and vectors are relate?

Hint: Refer Chapters 1 and 4 of this book.

Exercise 1.9 

What is the concept of dot or inner product? How this product is different than cross or outer prod-

uct? Describe properties of dot product? What is the significance of dot product in Transforms?

Hint: Refer Section 1.4 of this chapter.

Exercise 1.10 

Explain what is uncertainty principle? How this principle revolves around evolution of wavelets 

from conventional transforms?

Hint: Refer Chapters 7 to 10 of this book.

Exercise 1.11 

Exercise 1.11 What is Parseval’s Theorem? Explain its applications?

Hint: Refer Section 1.4 of this chapter.

Exercise 1.12 

Explain how Fourier Transform produces peaks corresponding to the frequencies present in the sig-

nal under consideration? Explain using concept of dot product?

Hint: Refer Section 1.4 of this chapter.

Exercise 1.13 

Explain limitations of Fourier Transform in handling non-stationary signals?

Hint: Refer Section 1.4 of this chapter.
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Exercise 1.14

What are multirate systems of doing signal analysis? Describe sampling theorem and explain what 

is the role of sampling theorem in design of multirate systems?

Hint: Refer Section 1.4 of this chapter.



2.1  Introduction

In this chapter we shall discuss the Haar Multiresolution Analysis about which we had briefly discussed 

previously. Haar was a mathematician, who gave a radical idea that any continuous function can be 

represented in the form of discontinuous functions, and by doing so one can go to any level of continu-

ity that one desires. This is the central idea in the ‘Haar way’ of representing functions. We start from 

a very discontinuous function and make it smoother by adding more and more discontinuous functions 

(which is in a way some additional information) to it until we reach arbitrarily closer to the continuous 

function that we are trying to approximate. This idea is opposite to the idea of the Fourier transform. 

One can recall that in Fourier transform the discontinuous function is represented in the form of smooth 

continuous function.

Th e Haar Wavelet Introduction

The Haar wavelet

L
k
 norms of x(t)

Haar MRA (Multi Resolution 
Analysis)

Axioms of MRA

Theorem of MRA

Chapter 2

 lfred Haar

(Hungarian: Haar Alfréd; 11 October 1885, Budapest 16 March 1933, Szeged) was a Hungarian 

mathematician. In 1904 he began to study at the University of Gottingen . His doctorate was super-

vised by David Hilbert. The Haar measure, Haar wavelet, and Haar transform are named in his 

honor. The Haar sequence is now recognised as the first-known wavelet basis and extensively used 

as a teaching example.

Representation of the continuous function in the form of discontinuous function has its own impor-

tance. Let us look at an example to illustrate this.
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Figure 2.1  Resolution difference

Example 2.1.1—Dyadic wavelets picture example. 

Information is generally represented in the form of bits. While transmitting an audio piece we con-

vert a extremely smooth audio pattern into a highly discontinuous stream of bits. When these bits 

are transmitted over a communication channel a discontinuity is introduced every time a bit changes. 

This discontinuity may be in the function or its derivatives. Thus Haar’s way of representation is 

very useful for us today.

Let us first start building the idea of ‘wavelets’ or what are more specifically called as ‘dyadic’ 

wavelets (explained later). We shall start with the ‘Haar’ wavelet. For that let us consider how we 

represent a picture on a screen. Every picture is enclosed by a boundary. Contents of the picture such 

as a person or a tree are enclosed within the boundary. The natural scene is inherently continuous. In 

order to represent it in a computer we divide the area of the image into very small subareas. These 

small rectangular sub-areas are called ‘picture elements’ or ‘pixels’. Now if we make 512 divisions 

on the vertical and also on the horizontal then we say that we have a ‘512 × 512’ image. We can also 

have images at other resolutions.

Now consider an image of dimension 204 × 92 pixels. We have 204 divisions on one side and 

92 divisions on the other. There exists something called as the piecewise constant representation of 

the image. What we do is represent each piece (here pixel) by a constant number which represents 

the average intensity and colour in that area. As we increase the number of divisions the area of 

each pixel goes on decreasing. Thus as we go from a ‘512 × 512’ image to a ‘1024 × 1024’ image, 

the area of a pixel becomes one fourth. We introduce more information by increasing the number 

of divisions. Evidently as we increase the number of pixels, we go closer and closer to the original 

picture. The effect of changing the resolution of an image can be seen in Fig. 2.1.

Thus one may say that ‘the smaller the pixel area the larger the resolution’. This can be seen 

easily from the picture below (Fig. 2.1). But the idea that we are trying to build is not quite the idea 

of the ‘Haar MRA’. The Haar MRA does something deeper.

Example 2.1.2—Audio signal piecewise constants. 

The same can be done of an audio signal. Consider an audio output which is a one dimensional sig-

nal and can be plotted against time.

Let the output be as shown in Fig. 2.2.

Since this is now ‘1 dimensional’ we divide the time axis in small intervals of size ‘T’. We now 

represent the function values in each interval by a constant number. Now, it is convenient to choose 

this number to be the average of the function values in that time interval. By doing so we are trying 

to represent a continuous function by a discontinuous one. The average C
0
 over the strictly open 

interval (0,T) can be computed as
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C
T

x t dt
T

0
0

=
1

( ) ò
(Open interval is the interval excluding end points). For any interval of size T we have

C
T

x t dt
n

T
=

1
( ) ò

Similarly, for interval of size T/2,

C
T

x t dt
n T T, /2

2

=
1

/ 2
( ) ò

If a time interval of length ‘T’ is divided into two time intervals of length T/2, we get two averages 

computed by the above formula. Figure 2.3 clarifies this concept further. Now, consider

A
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x t dt
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Figure 2.2  Audio signal
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Figure 2.3  Average of T and T/2
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0 T 2T

Figure 2.4  Intervals of 2T,T and T/2

T/2
3T/2 h2

h2 2T

Time
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Figure 2.5  f t f t
2 1
( ) ( )-

A
T
 is the average of the function on the interval of size ‘T’ while A

T1, /2
 and A

T2, /2
 are the averages on 

the two half intervals of size ‘
T

2
’ each. The key concept in Haar multi resolution analysis is to relate 

these three terms ( , , )
1, /2 2, /2

A A A
T T T

 and it is in that relationship that the Haar wavelet is hidden. It can 

be easily observed that, the average of A
T1, /2

 and A
T2, /2

 gives A
T
, i.e.

A
A A

T

T T
 = 

  

2

1, /2 2, /2
+

Thus a function can be approximately represented by addition of piecewise constant functions. We 

can go on reducing the interval by half to whatever degree of accuracy we desire. This is illustrated 

in the Fig. 2.4.

Each different line (dot dash, dash-dash, bold line with squares) represents a piecewise approxi-

mation in its own way, with different resolution. Let the function represented in Fig. 2.4 using dot-

dash line be f t
1
( ) and the bold line with squares be f t

2
( ) then, the additional information obtained by 

representing the signal as f t
2
( ) is given by

f t f t
2 1
( ) ( )-

which is shown in Fig. 2.5.
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2.2  The Haar Wavelet

To understand ‘Haar Wavelet’, consider the function shown in Fig. 2.6. This function is represented as 

y ( )t . By usingscalar multiplication and delaying, we can see that f t f t
2 1
( ) ( )-  can be reconstructed from 

y ( )t . Thus,

f t f t h t T h
t T

T
2 1 1 2
( ) ( ) = ( / )− − × + ×

−





y y

HAAR wavelet

1
1

1

ψ(t)

1/2

Figure 2.6  f t f t
2 1
( ) ( )-

here h
1
 and h

2
 are as shown in Fig. 2.5. The function y ( )t  is called the Haar wavelet. In general when 

we start with y ( )t  we can construct a function y
tt

s

−





 as a building block, where ‘s’ is positive real and 

t  should be real. The variable ‘s’ dilates y ( )t  and ‘̃ ’ translates y ( )t . The variable t  is called the transla-

tion index and the variable ‘s’ is called the dilation variable. If we consider time intervals of length T/2 

for piecewise constant approximation then the value of ‘s’ is T/2, if length of time interval is T then s = T. 

It means the single function y ( )t  allows you to bring in resolution step-by-step to any level of detail. Thus, 

by dividing T into smaller subdivisions of T/2, T/4 and so on, any function x t
a
( ) can be made arbitrarily 

close to original function x t( ). If x t
e
( ) denotes the error due to approximation, it can be expressed as

x t x t x t

x t dt

e a

e

( ) = ( ) ( )

= ( ) 2

-

-¥

¥

òz | |

Where, z  is the squared error. What we mean by arbitrarily close is that for any fixed value of z (> 0),  

we can always find a positive integer m such that a piecewise constant approximation of x t( ) with an 

interval of T m/ 2  satisfies the requirement of z .

It must be noted that any signal can be represented in piece wise constant form if and only if it has finite 

energy.

2.3  L
k 
Norms of x(t)

A function with finite energy content implies and is implied by its L
2
 norm being finite. So what is this 

L
2
 norm? The L

2
 norm of a signal is defined as

L x t x t dt
2

2

1

2
   ( ) = ( )norm of

-¥

¥

òéëê
ù
ûú

| |

In general, we can define the L
p
 norm of x(t) as

L x t x t dt
p

p p
  ( ) = ( )

1

norm of
-¥

¥

òéëê
ù
ûú

| |
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where p is any real number. The L¥ norm of x t( ) is defined as

L x t x t dt
p

p p

¥
®¥ -¥

¥

òéëê
ù
ûú

  ( ) = ( )

1

norm of lim | |

2.3.1  Significance of L
¥
 Norm

As the value of p increases, large values in x t( ) are being emphasized. This happens because for a large 

p, the integral will have a large contribution from higher values in x t( ).

L
2
( )  is said the to be the space of all real functions whose L

2
 norm is finite. The word ‘space’ is 

used with the intent that if we take a linear combination of two or more functions in that set then we get 

back a function in that set. As we reduce the size of the individual time intervals previously considered, 

we said we could as close to the original function as we desire by reducing the error. This clearly means 

that L
2
 norm of the error can be reduced to as small a value as we desire. The Fourier series allows us to 

do this for a reasonable class of functions.

The same kind of thing is happening here. Just on function y ( )t  is able to take us as close as we 

desire to the function which we wish to approximate. And this is just one y ( )t . The whole subject of 

wavelets allows us to build many such y ( )t ’s. Each time we improved the resolution by factors of ‘2’ 

and, hence, the term ‘dyadic’ which represents steps of two was used in the beginning of the chapter. 

Thus the Haar wavelet is an example of a dyadic wavelet. In the following chapters we will mostly focus 

our attention on dyadic wavelets. Dyadic wavelets are the most easily designed, the best and most easily 

implemented and also the best understood.

After understanding the ‘Haar wavelet’ and the way in which the Haar MRA is constructed many 

concepts of multiresolution analysis would become clear. In this chapter, we brought out the idea of the 

Haar wavelet explicitly. We now know that dialates and traslates of this function can capture information 

in going from one resolution to the next level of resolution in steps of two each time. So in terms of the 

spaces we are actually going from one subspace of L
2
( )  to the next subspace.

The next task is to see how the dilates and translates of Haar wavelet help us in adding more and more 

to the subspaces in going from a coarser subspace all the way to L
2
( )  on one side and all the way down 

to a trivial subspace on the other (also referred to as the ladder of subspaces). Further, we will bring out the 

idea of the basis of these subspaces and how the Haar wavelet helps in capturing the difference subspace.

2.4  Haar MRA (Multi Resolution Analysis)

As we got a basic instinct about Haar MRA in the previous section, let us understand the fundamental 

concepts surrounding it in next few sections. The underlying principle of wavelets is to capture incre-

mental or so called additional information in a function. The piecewise constant approximation of a 

function is a representation of the function at different resolutions.

For understanding this, consider an example of an onion. Let the outermost shell be of the maximum reso-

lution. Now, the job of wavelet function is to peel-off or to take out a particular shell of that onion. Thus, 

we are essentially peeling-off shell-by-shell using different dilates and translates of a wavelet. Figure 2.7 

illustrates the concept of nested subspaces. So, it goes like this,

Different dilates 
corresponds to¾ ®¾¾¾¾  different resolutions.

Different translates 
takes us along¾ ®¾¾¾¾  same resolution corresponding to a given dilate.

R
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The idea of wavelets may be introduced using an example of the Haar wavelet. The Haar wavelet 

is a dyadic wavelet, i.e. the piecewise constant approximation is defined in steps of powers of two at a 

time. The wavelet captures the incremental information between two consecutive levels of resolution. 

In other words, Haar wavelet keeps on retreiving additional information as we move on towards higher 

and higher resolution.

W1 W0 V0

…  ⊂  V1  ⊂  V2  ⊂  …

Figure 2.7  Nested subspaces

Example 2.4.1

The idea of expressing a function at different resolutions may be explained by considering an exam-

ple. Observe Fig. 2.8, it shows the signal at high resolution in dotted line, its piecewise constant 

approximation over unit intervals in blue and that over intervals of length 0.5 in green. This piece-

wise constant approximation is done in the same way as was discussed in the previous lecture, i.e. 

by taking average value of the function over the dyadic intervals.

The corresponding function which gives the incremental information between the two approxima-

tion levels is shown in Fig. 2.9. This was the case of a 1-dimensional function.
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Figure 2.8  Signal at different resolution
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Figure 2.9  Incremental information

Example 2.4.2

The same idea may be extended to two dimensions as well. In Fig. 2.10, Figure 2.10a is the 

2-dimensional image at a certain level of resolution. Figure 2.10b(i) is the image at 0.5 resolution of  

Fig. 2.10(a). Fig. 2.10b(ii), 2.10b(iii) and 2.10b(iv) gives the additional information in the vertical, 

horizontal and diagonal directions respectively (also known as ‘bands’).

Thus, the idea of wavelets is analogous to an object with many shells. Wavelet translates at the maxi-

mum resolution, takes out the outermost shell, the next shell is taken out at the next lower resolution 

and so on. Hence, we are essentially ‘peeling off’ shell by shell using different dilates and translates 

of the wavelet function. The dilation takes us to the next level of resolution, while translation takes 

us along a given resolution. Now, let us look over the focal point for further operations on wavelet 

to perform.

a

b(ii)

dwt

b(i) b(iii)

b(iv)

Figure 2.10  2D example, showing image 0.5 resolution and incremental information
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Focal Point:- Piecewise constant approximation on unit intervals.

Without any loss of generality, let us begin with piecewise constant approximation at a resolution of unit 

length. The choice of unit interval is entirely one’s own choice.

Now a question arises at this point. What function f ( )t  is such that its integer translates can span 

the space of piecewise constant functions on the standard unit intervals? As we saw in linear algebra or 

more generally functional analysis, the span of a set of vectors in a vector space is the intersection of all 

subspaces containing that set. Here, space refers to a linear space of functions, that is, a set of functions 

which is closed under linear combinations. In other words, the linear combination of these functions 

belong in the same set/space as of the function itself. Here, we only consider finite linear combinations. 

The same ideas may be extended for infinite linear combinations.

A set V
0
 is defined as follows,

V
0
 : { x t( ), such that x L( ) ( )

2
× Î   is piecewise constant on interval ] n n, 1+  [ , " În  }. The subscript 

‘0’ is used for V
0
 because of piecewise constancy on interval of size 2 0- .

Similarly, V
1
 is defined as,

V
1
 : { x t( ), such that x L( ) ( )

2
× Î   is piecewise constant on all ] 2 ,2 ( 1)1 1- - +n n  [ , " În  }.

V
1
 is the set of functions piecewise constant over the interval of 2 1- .

In general V
m
 is the set of functions which is piecewise constant over the interval of size 2-m.

V
m
 : { x t( ), such that x L( ) ( )

2
× Î   is piecewise constant on all ] 2 ,2 ( 1)- - +m m

n n [ , " În }.

Example 2.4.3—Function.

Function x V( )
2

× Î . All function belonging to V
2
 are piecewise constant over the interval of 2 2-  i.e. 0.25. 

Figure 2.11(a) shows a function belonging to V
2
. Here x t V( )

2
Î  means x t L( ) ( )

2
Î  . This implies that 

when squared sum of all the piecewise constant values of the function is carried out, it converge to a 

finite value.
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Figure 2.11(a)  Example of a function belonging to V
2
 space
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Figure 2.11(b)  Example of a function belonging to V-1
 space

In general a function which belongs to space V
m
 also belongs to space V

m+1
. Hence, a ladder of sub-

spaces is implied as depicted below:

... ...
2 1 0 1 2

V V V V V- -Ì Ì Ì Ì

Intuitively, we can see that as we move towards right, i.e. up the ladder we are moving towards L
2
( )

{ }È ÎV
m m 

 = L
2
( )

The expression above, if written without the coverline implies that it covers all the interior region 

whereas with closure (by coverline) ensures the covering of boundary patches too. This talk is not of 

much importance though but a slight glance at it is necessary.

When we go left towards the ladder? Movement towards leftwards implies, piecewise constant 

approximation over larger and larger intervals, as m in 2 ( )- m  goes more and more negative. Now, consider 

L
2
 norm of function going towards leftwards:

| ( ) | 22

=

C n
m

m

n

-

-¥

¥

å

where C( )×  is approximate coefficient at resolution 2-m. Now, as we move towards left m becomes nega-

tive and m ®-¥. Therefore L
2
 norm is given by

Example 2.4.4—Function belonging to V-1
 space. 

Any function belonging to V-1
 is piecewise constant over the interval of length 2 ( 1)- -  i.e. 2. Figure 

2.11(b) shows a function belonging to V-1
.

Now, a function which is piecewise constant over the interval of 1 is also piecewise constant 

on the interval of 0.5 (as that constant value can be divided in two parts). Therefore, a function 

 belonging to space V
0
 also belongs to space V

1
.
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2 | ( ) || | 2

=

m

m

n

C n
-¥

¥

å

If we require L
2
 norm to converge, however for large | |m , | ( ) |2

=

C n
m

n -¥

¥

å  must be zero. That is C n n
m

( ) = 0 " .  

Hence, movement towards left implies movement towards trivial subspace {0}.

{ } = {0}Ç ÎV
m m 

One important point to note here is that trivial subspace is different then null subspace as null subspace 

do not contain any element.

We say that a set of functions { , , ,..., ,...}
1 2 3
f f f f

k
 span a whole space if any function in that space can 

be represented by the linear combination of these functions.

What is function f ( )t  and how does its integer translates span V
0
? We may consider function f ( )t  as 

shown in Fig. 2.12.

Any function in V
0
 can be expressed in the form

C t n
n

n

f ( )-
Î
å


1 2t0
0

1

Φ(t)

Figure 2.12  Function f ( )t

where C
n
 is piecewise approximation constants and f ( )t n-  are the integer translates of f ( )t . Figure 2.13 

shows a function belonging to V
0
. It can be expressed in terms of translates of f ( )t  as shown below:

1.3

0.6
0.7

0.2

0.5

1

1.5

0

0

1 2 3 4

−0.4

−1
−0.5

Figure 2.13  Example of a function belonging to V
0
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0.2 ( 1) 0.7 ( ) 0.4 ( 1) 0.6 ( 2) 1.3 ( 3)f f f f ft t t t t+ + - - + - + -

Hence any space V
m
 can be similarly constructed using a function f (2 )m

t .

V span t n
m

m

n m
= { (2 )}

,
f - Î

f ( )t  is called as scaling function(Haar MRA), also known as ‘Father function’. The ladder of 

subspaces

... ...
2 1 0 1 2

V V V V V- -Ì Ì Ì Ì

with these properties is called as Multi-Resolution Analysis (MRA).

2.5  Axioms of MRA

There exists a ladder of subspaces, ... ...
2 1 0 1 2

V V V V V- -Ì Ì Ì Ì  such that

1. { }È ÎV
m m 

 = L
2
( )

2. { } = {0}Ç ÎV
m m 

3. There exists f ( )t  such that, V span t n
n0

= { ( )}f - Î

4. { ( )}f t n
n

- Î is an orthogonal set.

5. If f t V f t V m
m

m( ) (2 ) ,
0

Î Î " Î-then 

6. If f t V f t n V n( ) ( ) ,
0 0

Î - Î " Îthen 

2.6  Theorem of MRA

Given the axioms, there exists a y ( ) ( )
2

× ÎL  , so that { (2 )}
,

y m

m n
t n- Î Î 

 spans the L
2
( ) .

The wavelet function Y ( )×  is also called as ‘Mother function’.

Example 2.6.1—Spanning spaces. 

In this illustration we will consider the vector space V
j
 spanned by the discrete scaling functions 

{ (2 )}f j
x k- , we use this span of the vector space to project any function say f x( ) such that f x V

j j
( )Î .  

The projected function can be mathematically encoded as,

 

f x x k
j

k

j k

j

j( ) = 2 (2 )
,

2å -a f  (2.1)

In this equation, a
j k,

 depict the approximation values as it derives the components from the low 

pass scaling equation as given in equation,

R

R
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a f

j k

j

j
f x x k dx

,
2= ( )2 (2 )

-¥

¥

ò -  (2.2)

where the set { (2 )}f j
x k-  constitutes the basis. This f x

j
( ) represents “approximation” of the signal 

f x( ). In most of the denoising applications this finds it’s scope, and this set is orthogonal on ( , )-¥ ¥  

with respect to the translation, i.e.,

-¥

¥

ò - - ¢ ¹ ¢2 (2 ) (2 ) = 0,  j j j
x k x k k kf f

Also,

 
-¥

¥

ò -f 2 (2 ) =
1

2

j

j
x k dx  (2.3)

since,

 

-¥

¥

-¥

¥

-¥

¥

ò ò

ò

- -

-

f f

f

2 2

2

(2 ) =
1

2
(2 )

1

2

=
1

2
( ) =

1

2

j

j

j

j

j j

x k dx x k dx

y k dy

 

(2.4)

 (2.5)

where we used the change of variable y x k
j= 2 -  and the fact that 

-¥

¥

ò f 2 ( ) = 1x dx . So, the factor 22

j

 is 

for the normalization of f (2 )j
x k-  to be 2 (2 )2

j

j
x kf - , in order that we have,

 
-¥

¥

ò - - ¢
¹ ¢ì

í
î

2 (2 )2 (2 ) =
0,

1, =
2 2

j

j

j

j
x k x k dx

k k

k k
f f  (2.6)

We mention that the orthogonality of the scaling functions on ( , )-¥ ¥  with respect to transla-

tions, is a very basic requirement in the (usual) definition of the multiresolution analysis.

We know that V V
j j
Î +1

 as depicted in Fig. 2.14, and that V
j+1

 has better refinement than V
j
. This 

“difference” (as only a refinement and not an approximation like f x
j
( ) in (2.1) of the signal!) is a 

subset of V
j+1

 spanned by the discrete wavelets of the subspace W
j
, g x W

j j
( )Î ,

 

g x x k
j

k

j k

j

j( ) = 2 (2 )
,

2å -b y  (2.7)

 
b y

j k

j

j
f x x k

,
2= ( )2 (2 )

-¥

¥

ò -  (2.8)

The basis { (2 )}Y j
x k-  of this vector space W

j
 are always orthogonal to the scaling functions 

{ (2 )}f j
x k-  of V

j
 on ( , )-¥ ¥ ,

 -¥

¥

¢ò - - ¢2 (2 )2 (2 ) =2 2
,

j

j

j

j

k k
x k x k dxf y d  (2.9)

This relation resembles the orthogonality of the cosine functions to the sine functions of the Fourier 

series.
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An example again is that of Haar function and their associated wavelets, where they are 

orthogonal even when k k= ¢, as can be seen from Fig. 2.15, where their product is, for example 

f y( 1) ( 2)x x- -  or f y( 1) ( 1)x x- - , is zero on ( , )-¥ ¥ . With this orthogonality of the basis of V
j
 

to those of W
j
, we have W

j
 as the orthogonal complement of V

j
 in V

j+1
, V V W

j j j+ Å
1

= . This can 

be done in the same way for V V W
j j j

=
1 1- -Å , whereas V V W W

j j j j+ - -Å Å
1 1 1

= . Then this process 

can be continued until we reach a coarse (or blurred) resolution, for example, such that of V
0
 with 

scale 
1

2
= 1

0
,

 
V V W W W W W

j j j+ -Å Å Å Å Å Å
1 0 0 1 2 1

= ...  (2.10)

Figure 2.15 shows schematically this relation with the blurred approximation in V
0
 of scale 

l
0

= 1, and the refinements that are added to it by W
0
, W

1
, W

2
 and W

3
. We must note that, for  example, 

V
1
 and W

1
 are two subspaces in V

2
, where the W

2
 basis span the difference between V

2
 and V

1
.

In the next illustration (Examples 2.6.2 and 2.6.3) we show the decomposition f x V
0 0
( )Î  of 

the function f x x x( ) = , 0 < < 3 as a rough approximation of f x( ), then wrote its decomposition 

(refinement) as g x W
0 0
( )Î . We showed that the latter decomposition g x

0
( ) is not an approximation 

to the function f x x x( ) = , 0 < < 3, but it represented a helping hand to f x V
0 0
( )Î  at the scale l

0
= 1 

where it added to it a bit of a refinement to advance this approximation f x
0
( ) to the more refined one 

f x V
1 1
( )Î  at the smaller scale l

1
=

1

2
. This is the essence of W

0
 being the orthogonal complement of V

0
 

in V
1
. Both V

0
 and W

0
 are subspaces of V

1
 and V V W

1 0 0
= Å , where the basis of W

1
 span the difference 

between V
1
 and V

0
. Another way of putting this is that, for having the refinement at the lower scale 

l
1

=
1

2
, that help us go from V

0
 at scale l

0
= 1 to V

1
 at the scale 

1

2
, V V

0 1
Î , we can go to the basis of W

0
 

at the same scale l
0

= 1 to span the difference between the spaces V
1
 and V

2
. This alternative means 

that while we work with the scale l
0

= 1 for V
0
 and W

0
, we are getting the equivalent refinement of 

being with the smaller scale l
1

=
1

2
 in V

1
. Well, the credit must go to the little details (refinement) in 

the wavelets series (2.8) versus its associated scaling function series of (2.2) for j = 0. This can be 

seen clearly, where the Haar basic wavelet,

 

Y ( ) =

1, 0 <
1

2

1,
1

2
< 1

0,

t

x

x

£

- £

ì

í

ï
ï
ï

î

ï
ï
ï

otherwise

 (2.11)

has more structure (refinement-details) than that of its associated scaling function,

 

f( ) =
1, 0 < 1

0,
t

x£ì
í
î otherwise

 (2.12)
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Vj+1

Vj

V1

V0

           Figure 2.14   Nested subspaces spanned by the (discrete) scaling function 
f f f f( ), (2 ),..., (2 ), (2 )1

x x k x k x k
j j- - -+

V4=V3⊕W3

V3=V2⊕W2

V2=V1⊕W1

V1=V0⊕W0
V0

W0

W1

W2

W3

Figure 2.15  Wavelets subspaces W
j
 as the orthogonal components of  V

j
 in V

j+1
, V V W

j j j+ Å
1

=

Example 2.6.2—Building multiresolution framework through nested subsets.

In broader perspective wavelet analysis relies on multiresolution framework which gets  manifested 

through nested subsets. While scaling function (father,f( )× ) presents the low pass effect to ‘approxi-

mately’ project the signal to be analysed in some subspace V
j
, for the same scale(j) analyser can also 

use wavelet function (mother,y ( )× ) to have high pass effect to produce ‘refinements’ or ‘details’, thus 

projecting the same signal in W
j
 subspaces. If f x V

0 0
( )Î  are low pass and g x W

0 0
( )Î  are high 

pass projections for scale, then f x
0
( ) + g x

0
( ) = f x V

1 1
( )Î  gives the analyser an opportunity to move 
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from V
0
 to V

1
 seamlessly. A signal processing perspective of looking at this arrangement is how 

the frequency content of a signal is measured by the ‘dot’ product of < ( ), ( ) >f × ×f  and < ( ), ( ) >f × ×y . 

Now, Haar scaling function is shown in Figure 2.21 and readers can remember that the frequency 

representation of a box type function is sync. Thus, Haar f( )x  produces frequency behaviour of low 

pass cos x  on ( , )-p p , while Haar y ( )x  as shown in Fig. 2.20 produces frequency behaviour of high 

pass sin( )x  on ( , )-p p .

For scale j = 0 and translation k = 0, coefficient a
0,0

 will be obtained from dot product < ( ), ( ) >f x xf  

and b
0,0

 from < ( ), ( ) >f x xy . As cos( ) | = 1
=0

w w  and sin( ) | = 0
=0

w w , < ( ), ( ) >f ⋅ ⋅f  indicates fre-

quency content of DC, i.e. zero frequency and < ( ), ( ) >f ⋅ ⋅y  indicated the frequency contents of unit 

frequency.

IR  Simpler interpretation of this system will be as follows:

For a unit continuous function say f(x) on [0,1],

                                  
< ( ), ( ) >= ( ) ( ) = ( ) 1

0

1

f x x f x x dx f x dxf f
-¥

¥

ò ò× × × ×  (2.13)

Equation (2.13) clearly depicts a ‘mean’ or an ‘average’ or ‘zeroth statistical moment’ of f(x).  

Thus, < ( ), ( ) >f x xf  gives ‘coarse’ or ‘blurred’ or ‘approximated’ or ‘low pass’ projection of f(x) on [0,1].

In case of wavelet basis,

                                 

< ( ), ( ) > = ( ) ( )

= ( ) 1 ( ) 1
0

1

2
1

2

1

f x x f x x dx

f x dx f x dx

y y
-¥

¥

ò

ò ò

× ×

× × - × ×
 (2.14)

Equation (2.14) clearly depicts a ‘difference’ or ‘gradient’, or ‘derivative effect’ to f(x). Thus 

< ( ), ( ) >f x xy  gives ‘finer’ or ‘sharpened’, or ‘refined’ or ‘high pass’ projection of f(x) on [0,1].

Thus where wavelet analysis is very different than a quantizer like successive approximation for 

example. While < ( ), ( ) >f × ×f  gives approximated values, < ( ), ( ) >f × ×y  brings in the refinement and 

ability to add details to improve the resolution, in signal analysis. Blurring of < ( ), ( ) >f × ×y  is con-

nected with low pass filtering and detailing of < ( ), ( ) >f × ×y  is connected with high pass filtering! 

This why in DSP we focus on filter design, in wavelet analysis we focus on design of filter ‘banks’!

Prior to advent of wavelet theory, electrical engineers used conventional techniques like fourier 

transform for signal analysis. The measure of frequency content was captured in Fourier coefficients,

         
a f x n x b f x n x x

n n
=

1
< ( ), ( ) >, =

1
< ( ), ( ) >,

p p
p pcos sin − ≤ ≤

Also, for f x( ) ,Î-¥ ¥, Fourier transform is

F f x e f x e
j x j fx( ) =

1

2
< ( ), > =< ( ), >2w

p
w p− −

where,‘w ’ is frequency in radians per second and ‘f ’ is frequency in hertz (cycles/second).

In the typical sense of ‘highpass filtering’,for a given cut-off frequency w
c
, all the frequen-

cies less than w
c
 are blocked and higher than w

c
 are passed in a given signal. Similarly a typical 

low pass filter passes all the frequencies lower than a cut-off of w
c
 and blocks all the frequencies 

greater than w
c
. Thus, it makes sense to use high pass philosophy to implement < ( ), ( ) >f × ×y  while 
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searching for “details” in the signal, and use low pass philosophy to implement < ( ), ( ) >f × ×f  while 

trying to derive “approximations” from signal.

Implementation strategy: The critical point is how do we implement this moving from one resolu-

tion to another? Let us say we have projected signal (with unit range (0,1)) in V
1
 such that f V

1 1
Î  and  

scale =
1

21
=

1

2
. We approximate the signal in V

1
 with scaling functions { , }

1,0 1,1
f f  and the correspond-

ing approximation coefficients { , }
1,0 1,1

a a  (Readers should note, as we are in V
1
, j = 1, and since we 

wish to span unit range and scale is 
1

2
, we will require two translations; k = 0  &  k = 1).

Thus f V
1 1
Î  gets approximated by { }f f

1,0 1,1
, = 2 (2 0), 2 (2 1)f fx x- -{ }. To add in details we 

calculate g x W
1 1
( )Î , which is captured using { , = 2 (2 0), 2 (2 1)

1,0 1,1
y y y y} x x- -{ }  and gets 

calculated through coefficients { }b b
1,0 1,1

, . It goes without saying that a a
1,0 1,1

,{ }  is associated with 

low frequencies and { }b b
1,0 1,1

,  is associated with higher frequencies.

Schematically this is depicted in Fig. 2.16. If the signal has ‘n’ samples, then two parallel filters 

(f :low,y :high) add up to produce ‘2n’ samples. To maintain same number of samples, we drop 

every alternate sample at the output of each filter. Thus 
‘n
2

’
 samples produces by every filter adds 

up to maintain ‘n’ samples. This process of reducing the samples to half is called ‘down  sampling’  

and is depicted by ¯ ; in this particular case ‘down sampling by 2’ depicted by ¯ 2 .

From Fig. 2.16, we have averages associated with coefficients { , }
1,0 1,1

a a  of scaling function  

ÎV
1
, and low pass filter only gives ‘blurred’ picture of average associated with a

0,0
 of f

0,0
 from 

lower subspace V
0
. The details are captured by b

0,0
 of wavelet y

0,0
 of sub-space W

0
. What this 

leads to in essence is V V W
1 0 0

= Å .

What we have shown in Fig. 2.16 is called as ‘analysis’ or ‘decomposition’ of signal and what 

is depicted in Fig. 2.17 is called as ‘synthesis’ or ‘reconstruction’ of signal. In decomposi tion we 

always move to lower subspaces (e.g. from V V
1 0
® ,V W

1 0
® ) and in reconstruction we always 

move towards higher subspaces (e.g. from V
0
 and W

0
 to V

1
).

The two processes above are duals of each other.If ‘decomposition’ demands downsampling 

to match up samples,‘reconstruction’ demands upsampling for the same purpose.In upsampling we 

insert samples every alternate index and this is called ‘upsampling by factor of 2’, represented by 

↑2 .

A combination of these two is depicted in Fig. 2.18. Together the two operations constitute to 

what is called ‘quadrature mirror filter pair’. Figure 2.18 depicts decomposition (analysis) as well 

as reconstruction (synthesis) of signal f x V
2 2
( )Î  via quadrature mirror filter pairs, thus leading us 

to ‘2-band filter bank structures’. The first decomposition stage expresses V V W
2 1 1

= Å , and second 

decomposition stage expresses V V W
1 0 0

= Å . Thus, V V W W
2 0 0 1

= Å Å . This means projections in V
2
 

are formed by approximations in V
0
 with scale =1, orthogonally added to projections of f(x) onto wavelet 

spaces W
0

 and W
1
 with scales of ‘1’ and 

‘ 1

2

’
 respectively. The analysis can go deeper, e.g. f x V

6 6
( )Î ,  
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and V V W W W W W W
6 0 0 1 2 3 3 5

= Å Å Å Å Å Å , with six low and high pass filter pairs for decompo-

sition and same number for reconstruction.

W1
α0.0
φ0.0

β0.0
ψ0.0

α1.0α1.1
φ1.0φ1.1

V1

W0

H

L

Figure 2.16   The outputs f t V
0 0
( )Î  and g t W

0 0
( )Î  of the low and high pass filters respectively 

(after down sampling)

β0.0
ψ0.0

β0.0
ψ0.0

α1.0α1.1

φ1.0φ1.1

Figure 2.17   The reconstruction part of the (quadrature mirror) filter pairs to implement the 
scaling function wavelets reconstruction of the signal f x V

1 1
( )Î .

W0

V1V1 V0 V2V2

W1

β0.0′β1.1
ψ0.0′ψ1.1

β0.0
ψ0.0

α1.0α1.1

φ1.0φ1.1

α1.0α1.1

φ1.0φ1.1

α0.0

φ0.0

α2.0′α2.2′α2.3

φ2.0′φ2.1′φ2.2′φ2.3

Figure 2.18   Decomposition and reconstruction of f x V
2 2
( )Î  – A special case of a “quadrature 

mirror filter pairs”.
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Figure 2.19  Signal f(x)

Example 2.6.3—Zoom-in and zoom-out. 

In this chapter we have seen that wavelet transform decomposes signal into two separate series. One 

is a single series that represents coarse version, which leads to scaling function, popularly known as 

the father function. Other is a double series that represents a refined version, which leads to  wavelet 

function, popularly known as mother wavelet. We also got familiarized with the idea of nested 

subspaces, an MRA and two band filter bank to realize an MRA. The major problem regarding an 

MRA was that while analyzing a signal we move down the ladder in an MRA. However, in many 

applications moving up the ladder is desired. Thus, an alternative framework is needed. So let us 

start defining that framework.

The concept of MRA is in fact based on the idea of nested subspaces. This gives the entire wave-

let structure ability to ‘zoom-in’ and ‘zoom-out’ of any signal under analysis. We can bring about 

this essence using two mathematical equations.

1. Equation of scaling function

 

f f( ) = 2 (2 )t h t k
k

kå -  (2.15)

 In the above equation we can clearly see that f ( )t  belongs to subspace V
0
. Similarly, we can 

see that f (2 )t k-  belongs to subspace V
1
. Thus the idea of nested subspaces is captured in the 

above equation.

2. Equation of Wavelet function

 

y f( ) = 2 (2 )t g t k
k

kå -  (2.16)

Similar to the case seen above we can see that y ( )t  belongs to subspace W
0
 and f (2 )t k-  belongs 

to V
1
.

From the above two equations we can see that,

V V W
j j j

= 1 1- Å -
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Above equation leads us again to the idea of subspaces. If we start at V
0
 and go on adding details 

then at some stage we would be able to go tantalizingly close to the signal. Let us now see how to 

achieve that,

Let a function be,

f x V
j j
( )Î , scale = 

1

2 j
.

To span these space V
j
 the basis function would be 2 (2 )/2j j

k
x kf -

Here k is the translational parameter and 2
/2j
 is the normalizing factor to convert orthogonal basis 

into an orthonormal basis.

Thus we can write,

f x x k
j

k

j k

j j( ) = ( 2 (2 ))
,

/2å -a f

Alpha can be calculated by as,

a f
j k j

j j
f x x k dx

,

/2= ( )2 (2 )
-¥

+¥

ò -

Similarly, for W subspaces,

g x W
j j
( )Î , scale = 

1

2 j

The basis would now be,

2 (2 )/2j j

k
x ky -

Also we can write,

g x x k
j

k

j k

j j( ) = ( 2 (2 ))
,

/2å -b y

b y
j k j

j j
g x x k dx

,

/2= ( )2 (2 )
-¥

+¥

ò -

b  values here would give us the details, which are required to move from one subspace to another.

Now, to understand how the framework so designed is useful in moving up the ladder let us consider 

a problem.

Consider a signal,

f x
x x

( ) =
0 3,

0

£ £ì
í
î elsewhere

The function f x( ) is shown in Fig. 2.19.

Objectives:

1. To find f x V
0 0
( )Î

2. To find g x W
0 0
( )Î



The Haar Wavelet 65

3.  To find f x V
1 1
( )Î  by f x f x g x

1 0 0
( ) = ( ) ( )Å . This would be moving up the ladder since we are get-

ting f x
1
( ) from f x

0
( ) and g x

0
( ).

4.  Ultimately to prove V W V
0 0 1

=Å

Firstly let us find f x V
0 0
( )Î , j = 0 Scale = 

1

2 j

 
= 

1

20

 
= 1. In, (2 (2 ))/2j j

k
x kf - ,

if we put j = 0 the basis function would be, y ( )x k
k

- . The projection would be,

f x x k
k k0 =0

2

0,
( ) = ( ( ))å -a f

For k = 0,

a f
0,0 0

= ( ) ( )
-¥

+¥

ò f x x dx

The interesting thing to note is, here we can choose our own scaling function f  which is not the case 

with Fourier or any other conventional transforms discussed in the last lecture. In the conventional 

transforms the basis function is fixed and is exponential.

1/2 1

1

−1

Figure 2.20  Haar wavelet function

1

0 1

Figure 2.21  Haar scaling function

Here we would be using Haar scaling and wavelet functions shown in Fig. 2.20, and Fig. 2.21.

For k = 0 the equation would result in,

a
0,0

0

1

= ò xdx

 

a
0,0

2

0

1

=
2

x

 
a

0,0
=

1

2
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Correspondingly,

a f
0,1

1

2

= ( 1)ò -x x dx

 
a

0,1
1

2

= ò xdx

 
a

0,1
=

3

2
Similarly,

a f
0,2

2

3

= ( 2)ò -x x dx

 
a

0,2
2

3

= ò xdx

 
a

0,2
=

5

2
Now we can write,

 
f x x x x
0
( ) =

1

2
( )

3

2
( 1)

5

2
( 2)f f f+ - + -  (2.17)

This is how we can find out projections of signal f in space V
0
. The coefficients of f x

0
( ) represent the 

approximations of the signal. This can be seen in Fig. 2.22.
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x
)
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4.5

5

3

4

1

Figure 2.22  Plotting of f x
0
( ) coefficients

Now the next task is to find the projections g x
0
( ) of the signal on W

0
. Let, g x W

0 0
( )Î , scale =1. The 

basis function would be, 2 (2 )/2j j

k
x ky - .

We will again make use of Haar wavelet function. Thus as j = 0, the basis function would now reduce 

to, y ( )x k
k

- .

Thus we can write,
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g x x k
k

k0 0,
( ) = ( ( ))å -b y

       
b y

0, 0
= ( ) ( )

k
g x x k dx

-¥

+¥

ò -

As the projections are taken in W
0
 subspace these b  values will now represent all the details. 

Similar to the case of a  values, from above equation, we can find out corresponding b  values as 

follows,

 
b y

0,0 0
= ( ) ( )

-¥

+¥

ò g x x dx

 
b y

0,0
0

1

= ( )ò x x dx

 
b

0,0
0

1/2

1/2

1

= (1) ( 1)ò ò+ -xdx x dx

 
b

0,0
=

1

8

1

2

1

8
- +

 
b

0,0
=

1

4

-

 
b y

0,1
1

2

= ( 1)ò -x x dx

 
b

0,1
1

3/2

3/2

2

= (1) ( 1)ò ò+ -xdx x dx

 
b

0,1
=

1

4

-

Similarly,

b(0,2) =
1

4

-

Thus we can write,

        
g x x x x

0 0,0 0,1 0,2
( ) = ( ) ( 1) ( 2)b y b y b y+ - + -

 
g x x x x

0
( ) =

1

4
( )

1

4
( 1)

1

4
( 2)

-
+
-

- +
-

-y y y  (2.18)

Hence, we can see that all the b s have the same value 
-1

4
. We will discuss that later in the  chapter. 

The projections g x
0
( ) are plotted along f x

0
( ) in Fig. 2.23.
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Figure 2.23  Plotting of g x
0
( ) and f x

0
( ) coefficients

Now let us find out projections on V
1
 subspace. Let, f x V

1 1
( )e , j = 1, scale = 

1

2
=

1

2j
.

The basis function would now change to, 2 (2 )/2j j

k
x kf - . As j = 1, 2 (2 )f x k

k
-

Correspondingly, we can write,

f x x k
k

k1

=0

5

1,
( ) = ( 2 (2 ))å -a f

At this point the a  values obtained from above equation should match numerically with the values 

obtained by orthogonally adding a  values in V
0
 with b  values in W

0
. If these values match, we can 

say that the framework so developed is definitely working and would thus be able to move up the 

ladder.

So let us now calculate a
1,k

 values.

a f
1,0 1

= ( ) 2 (2 )
-¥

+¥

ò f x x dx

a f
1,0

0

1/2

1
= ( ) 2 (2 )ò f x x dx

a f
1,0

0

1/2

1
= ( ) 2 (2 )ò f x x dx

From Fig. 2.24,

a
1,0

0

1/2

= 2 (1)ò x dx

 
a

1,0
= 2

1

8

 

a
1,0

=
1

4 2
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0 1

1

1/2

Figure 2.24  Plotting of function f (2 )x

From Fig. 2.23, we can calculate a
1,0

 as,

a a b
1,0 0,0 0,0

= - -+

 
a

1,0
=

1

2

1

4
-

 
a

1,0
=

1

4

This matches the previously calculated value with an exception of 2 which would eventually get 

canceled, since we have normalized the basis basis functions. This is seen with the help of following:

f x x k
k

k1

=0

5

1,
( ) = ( 2 (2 ))å -a f

For k = 0,

 
f x x
1 1,0
( ) = 2 (2 )a f

f x x
1
( ) =

1

4 2
2 (2 )f

 
f x x
1
( ) =

1

4
( )f

Similar to a
1,0

 we can calculate other a  values.

 
a

1,1
=

3

4

 
a

1,2
=

5

4

 
a

1,3
=

7

4

 
a

1,4
=

9

4

 
a

1,5
=

11

4
Thus, we can conclude that approximations obtained in V1 are better than those obtained in V0.

Hence, this is a mechanism through which we can not only think of moving up the ladder but also 

think of making the choice of the scale and translation parameter and then specifically zoom on to 

a particular point in the signal or function, which is of greater importance. This framework enables 

the analyzer to either zoom-in onto a specific part of the signal or zoom-out to understand the big 

picture. This bigger picture can be illustrated in Fig. 2.25.
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Figure 2.25  Plotting of a  values of f x
1
( ) [Note - The thick black lines are a  values of f x

1
( )]

The following MATLAB code presents the analysis carried out in the previous illustration.

Example 2.6.4—MATLAB code: Fourier for non-stationary signals.
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The saved function can be opened in the wavelet toolebox of MATLAB by typing wavemenu on the 

command prompt and loading the test signal and doing analysis using wavelet of the reader’s choice. 

The output is shown in the Fig. 2.26.
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Figure 2.26   MRA exercise. Black line indicates the function f x( ), dotted line projections 
indicate f x V

0 0
( )Î , dash-dash line projections indicate g x W

0 0
( )Î , red projections 

indicate f x V
1 1
( )Î
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Question:Use Haar wavelet transform on following signal and solve given objectives:

0
0

1

2

3

4

5

1 2 3 4 5

8−x,4 ≥ x ≥ 8

6 7 8 9

0, otherwise

1. f x v
0 0
( )Î

2. g x w
0 0
( )Î

3. f x v
1 1
( )Î

4. Prove: v v w
1 0 0

= Å

Answer: To solve this problem,we are going to use haar wavelet. The scaling function of Haar 

wavelet is:

f x v
j j
( )Î , w

a j
=

1

2

span 2 (2 )2

j

j
x kf -

ì
í
î

ü
ý
þ

 

f x x k
j

k

j k j

j( ) = 2 (2 )
,

2

å -a f  (2.19)

     
a f

j k j

j

j
f x x k

,
2= ( )2 (2 )

-¥

¥

ò -  (2.20)

1 2

x

0
0

1

2
f(x)
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The dilation function of Haar wavelet is: g x w
j j
( )Î , wa j

=
1

2

span x k

j

j2 (2 )2y -
ì
í
î

ü
ý
þ

 

g x j k x k
j

k
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j( ) = , 2 (2 )2å -b y  (2.21)
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j

j, = ( )2 (2 )2
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¥

ò -  (2.22)
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2
y(x)
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1] f x v
0 0
( )Î  \ j = 0 so w

a
=
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2
= 1

0

span x k2 (2 )
0

2 0f -
ì
í
î

ü
ý
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span x kf ( )-{ }
From (2),when we put j=0 we get

 

f x x k

x k

k

k

k

k

0 0,

0

2 0

0,

( ) = (2) (2 )

= ( )

å

å

-

-

a f

a f
 (2.23)

 

a f
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2 0

0

= ( )2 (2 )

= ( ) ( )
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f x x k

f x x k
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-
 (2.24)

Putting k = 0 in Eq. 2.24, we get

 

a f

f

0,0 0

0

= ( ) ( 0)

= ( ) ( )

-¥

¥

-¥

¥

ò

ò

-f x x dx

f x x dx

 (2.25)
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But,

1 2

x

0
0

1

2
f(x)

So, scaling function f ( )x  varies from 0 to 1.

= ( )(1)
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1

ò x dx
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2
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ê
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 \a
0,0
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Putting k=1 in Eq. 2.24, we get
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= ( ) ( 1)

= ( ) ( 1)
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f x x dx
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But,

10
0

1

f(x−1)
2

2 3

x

So scaling function f ( 1)x -  varies from 1 to 2.
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x dxò
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ê
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=
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Putting k = 2 in Eq. 2.24, we get
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But,
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For k = 3,
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But,
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For k = 4,
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But,
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So scaling function f ( 4)x -  varies from 4 to 5.
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For k = 5,
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For k = 6,
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For k = 7,
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So scaling function f ( 7)x -  varies from 7 to 8.
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Using Eq. 2.23, we can write

f x x x x x x x
0
( ) =

1

2
( )

3

2
( 1)

5

2
( 2)

7

2
( 3)

7

2
( 4)

5

2
( 5)f f f f f f+ - + - + - + - + - +

33

2
( 6)

1

2
( 7)f fx x- + -

6 7 8 9543210
0

1

2

3

4

5

The grey line is showing Wavelet scaling coefficients.

2]g x g
0 0
( )Î  \ j = 0 so w

a
=

1

2
= 1

0

 

span

span

2 (2 )

( )

0

2 0y

y

x k

x k

-
ì
í
î

ü
ý
þ

-{ }
 (2.33)



80 Multiresolution and Multirate Signal Processing

From Eqs. 2.21 and 2.22, when we put j = 0
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For k = 0, we have
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For k = 2, we have
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But,
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For k = 3, we have
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So dilation function y ( 3)x -  varies from 3 to 4.
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For k = 4,
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For k = 5, we have
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So dilation function y ( 5)x -  varies from 5 to 6.
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For k = 6, we have
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But,
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So dilation function y ( 6)x -  varies from 6 to 7.
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For k = 7, we have
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So dilation function y ( 7)x -  varies from 7 to 8.
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Using Eq. 2.24, we can write

g x x x x x x x
0
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1
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1
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1
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The dark grey line is showing Wavelet scaling coefficients.

The light grey line is showing Wavelet dilation coefficients.

3] f x v
1 1
( )Î  \ j = 1 so w

a
=

1

2
=

1

21

span 2 (2 )
1

2 0f x k-
ì
í
î

ü
ý
þ



The Haar Wavelet 87

span x k2 (2 )f -{ }
From Eq. 2.19, when we put j = 1

f x x k
k k1 1,

1

2 1( ) = (2) (2 )å -a f

     
= 2 (2 )

1,k k
x kå -a f

a f
1, 1

1
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f x x k
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∞

∫ −
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f x x k
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∞

∫ −  (2.38)

For k = 0, we have

a f
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¥

ò -f x x dx

= ( ) 2 (2 )
1-¥

¥

ò f x x dxf
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4 2

For k = 1, we have
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a f
1,1 1

= 2 ( ) (2 1)
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For k = 2, we have
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¥
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For k = 3, we have
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For k = 4, we have
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For k = 5, we have
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2
 to 3.
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For k = 6, we have
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For k = 7, we have
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As scaling function f (2 8)x -  varies from 4 to 
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For k = 10, we have
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For k = 11, we have
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For k = 12, we have
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For k = 13,

a f
1,13 1

= ( ) 2 (2 13)
-¥

¥

ò -f x x dx

But,

f(2x − 13)

x

2 3 4 5 6 7 810
0

1

2

As scaling function f (2 13)x -  varies from 
13

2
 to 7.

 

= 2(8 )(1)13

2

7

ò - x dx

 

= 2 8
2

2

13

2

7

× -
é

ë
ê

ù

û
úx

x

 

= 2
617

8

612

8
× -
é

ëê
ù

ûú

 
= 2

5

8
×

 

\a
1,13

=
5

4 2



The Haar Wavelet 97

For k = 14, we have
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As scaling function f (2 15)x -  varies from 
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The dark grey line is showing Wavelet scaling coefficients.

The light grey line is showing Wavelet dilation coefficients.
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Now, take first component of v
0
 and first component of w

0
 and find out following term,

a f b y
0,1 0,1

( ) ( )× + ×x k

The scaling function varies from 0 to 1 and the value is 1 overall interval. The dilation function varies 

from 0 to 1 and the value is 1 for 0 to 0.5 and −1 for 0.5 to 1. So, we will get two values using these two 

functions.

For k = 0

\ +a
0,0

( ) + b
0,0

( )+

        = 
1

2

1

4
+
-

= 
1

4

This is equal to a
1,0

Also,

\ -a
0,0

( ) + b
0,0

( )-

        = 
1

2

1

4
+

= 
3

4

This is equal to a
1,1

.

For k = 1

\ +a
0,1

( ) + b
0,1

( )+

        = 
3

2

1

4
+
-

= 
5

4

This is equal to a
1,2

.

\ -a
0,1

( ) + b
0,1

( )-

        = 
3

2

1

4
+

= 
7

4

This is equal to a
1,3

.
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Similarly, we can find values of a 0,k and b0,k  to make a conclusion that addition of these two values 

will a
1,k

 (k = Total number of coefficients).

Thus, v
1
 is formed by combining v

0
 and w

0
.

Hence,v v w
1 0 0

= Å .

Exercises

Exercise 2.1

Verify graphically Mexican hat wavelet function using wavelet dilation equation. Assume compact 

support of [0,2) for the roof scaling function. State clearly if this pair of scaling and wavelet func-

tions can produce MRA?

Exercise 2.2

Explain which V
j
 subspace the signal, shown in Fig. 2.27, belongs to and why?

Exercise 2.3

Explain { } = {0}Ç ÎV
m m 

 in detail?

−0.4
−0.4

−0.2

0

0 0.25 0.5 0.75 1
x

f(x)

1.25 1.5 1.75

0.2

0.4

0.6

0.8 0.7

0.2

0.6

1.3

1

0.7

1.2

1.4

1

Figure 2.27  The function f x( ). Which V
j
 subspace it belongs to?
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Exercise 2.4

Given, 

 

f x
x for x

otherwise
( ) =

3  0, ,3,

0

-ì
í
î

 (2.39)

Calculate: f x V
0 0
( )Î , g x W

0 0
( )Î  and f x V

1 1
( )Î ,

Prove: f x g x f x V
0 0 1 1
( ) ( ) = ( )+ Î

Exercise 2.5

Calculate the L
2
 norm of the following function x(t), where x(t) = 1 t- | | in the interval [−1,1] and 

zero else where.

Hint: Since the function is symmetric between −1 to 0 and 0 to 1. The norm will be twice that of the 

value caliculated in any one of the above two intervals.

Hence L
2
 norm of x t t dt t dt( ) = [2 (1 )  ] = [2 (1 )  ] = 2 / 3

0

1
2

1

2

1

0
2

1

2ò ò- +
-

| | | |

Exercise 2.6

Give an example of function which does not exist in L ( )
2
 .

Hint: All the exponential functions having geometric ratio greater than 1 does not exist in L
2
( ) . 

For example consider function 2t for t > 0. Its L
2
 norm does not exist because 

0

22
¥

òéëê
ù
ûú

| |t
dt  does not 

converge.

Exercise 2.7

Give some examples of functions for the following cases

 (a) Function that exists in L
1
( )  but does not exist in L

2
( ) .

 (b) Function that exists in L
2
( )  but does not exist in L

1
( ) .

 (c) Functions which does not exist in both the spaces.

Hint:

 (a) Consider the function 
1

t
 in the interval (0,1] and 0 else where. Its L

1
 norm converges but L

2
 

norm does not converge.

 (b) Consider the function 
1

t
 in the interval [1,¥). Its L

2
 norm converges, but L

1
 norm diverges.

 (c) All the periodic functions such as sin( )t  and cos( )t  does not exist in both L
1
( )  and L

2
( ) .
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Exercise 2.8

Give the axioms that are to be satisfied by a vector space.

Hint: A real vector space is a set X with a special element 0 called as zero vector, and three operations:

Addition: Given two elements x, y in X, one can form the sum x + y, which is also an element of X.

Inverse: Given an element x in X, one can form the inverse -x, which is also an element of X.

Scalar multiplication: Given an element x in X and a real number c, one can form the product cx, 

which is also an element of X.

These operations must satisfy the following axioms

Additive axioms: For every x,y,z in X, we have

 (a) x+y = y+x.

 (b) (x+y)+z = x+(y+z).

 (c) 0+x = x+0 = x.

 (d) (-x) + x = x + (-x) = 0.

Multiplicative axioms: For every x in X and real numbers c,d, we have

 (a) 0x = 0.

 (b) 1x = x.

 (c) (cd)x = c(dx).

Distributive axioms: For every x,y in X and real numbers c,d, we have

 (a) c(x+y) = cx + cy.

 (b) (c+d)x = cx +dx. Scalar multiplication: Given an element x in X and a real number c, one can 

form the product cx, which is also an element of X.

Exercise 2.9

Why in general, only functions in L
2
( )  are considered for piecewise constant approximations?

Hint: The L
2
 norm signifies the energy of a signal. In general, most of the rea-time signals have 

finite energy. So we are interested in the signals which have finite energy. So functions in L
2
( )  are 

considered for piecewise constant approximations.

Exercise 2.10

Show that the function f( )t  is orthogonal to its integer translates.

Hint: Let,

f( ) = 1, < < 1

= 0,

t n n t n- +

otherwise  

f( ) = 1, < < 1

= 0,

t m m t m- +

otherwise
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Therefore, their dot product

a

b

t n t m dt for n mò - - ¹f f( ) ( ) = 0,

Hence { ( )}f t n
n

- Î are orthogonal.

Exercise 2.11

Explain the effect of dilation and translation of a function f ( )t  in frequency domain.

Hint: Let,

f( ) = 1, 0 < < 1

= 0,

t t

otherwise

Fourier Transform of f ( )t  is given as follow,

f f( ) = ( )

=

=
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∫
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Ω
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Ω Ω Ω

Ω

Ω
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2 2 2
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e e e
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j j j

j
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sin

sin

Effect of dilation and translation in fourier domain.

Let

f(2 ) = 1, 2 < < 2 ( 1)

= 0,

m m m
t n n t n- +- -

otherwise
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By using the scaling and shifting property of Fourier transform we obtain Fourier Transform of 

f (2 )m
t n-  as

=

(
2

2
)

2

2

2 2
e e

j
m

j n
m

m- -

- -
-W

W W

W

sin

From the Fourier Transform of f ( )t , it can be observed that f ( )t  has a low pass nature and captures a 

frequency band around zero frequency. Dilation of f ( )t  results in capturing a band of frequencies of 

varying bandwidth around zero frequency. However, we will see the effect of dilation and translation 

in detail in subsequent chapters.

Exercise 2.12

Explain the effect of dilation and translation of a function y ( )t  in frequency domain.

Hint: Let

y ( ) = 1 0 < < 0.5

= 1 0.5 < < 1

= 0

t t

t-

otherwise

Fourier Transform of y ( )t  is given as follow

f f

f f

f f

( ) ( )
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2
(

2
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Using these relationships we get

y f f
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Ω

Ω
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Effect of dilation and translation in Fourier domain.

Let

y

y

( )
4

4

( )
4

. .
2

2

. .
2

2

t je

t n e je

F T j

F T
jn

j
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−

−
−

Ω

Ω
Ω
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sin
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−

Ω
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4
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4

. .
2

2

2

2

y m
F T
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m

j
m

m

t n je e

sin

From the Fourier Transform of ← ( )t , it can be observed that ← ( )t  has a band pass nature and 

captures a frequency band around certain centre frequency. Dilation of ← ( )t  results in capturing a 

band of frequencies of varying bandwidth around a centre frequency, which itself changes. Again, 

we will have a detailed discussion on this in subsequent chapters.

Exercise 2.13

Consider the continuous time function x t( ) defined as follow.

x t t t( ) = 1 1 < < 1

= 0

2- -

otherwise

Compute the piecewise approximation over the subspace V
0
 and find the maximum error.

Hint: The given function x t( ) is as shown in Fig. 2.28.

V
0
 : x t( ), such that x L( ) ( )

2
× Î   is piecewise constant on interval] n n, 1+  [, " În Z }.

] 1,0 [: (1 )
1

0
2- -

-ò t dt

           
= [

3
]

3

1

0
t

t
- -

=
2

3

]0,1[: (1 )
0

1
2ò - t dt
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= [

3
]

3

0

1
t

t
-

=
2

3

1
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Figure 2.28  The function x t( )

Calculation of maximum error:

E t= (1 )
2

3

2- -

dE

dt
t= 2-

d E

dt

2

2
= 2-

As second derivative is negative we get maxima so the maximum value is obtained at t=0. So the 

maximum value is

max( ) = (1 0 )
2

3

=
1

3

2
E − −





3.1  Introduction

In Chapter 2, we saw an equivalence between functions and vectors. We also saw how processing of a 

function can be related to processing of equivalent sequence w.r.t. inner product and Parseval’s theorem. 

How functions can be considered as generalized vectors? Another dimension of same is replacing work 

with function, by work with sequence. It is possible to work with sequences in place of functions rather 

sequences are much easier to deal with as they can be simulated and analysed on computer like in the 

case of discrete time. If whatever we do with a sequence maps exactly with what we want to do with an 

original continuous time function, then it is an added advantage. This is true for the spaces contained in 

V
0
, in V

1
, in V

2
, and so on in the L

2
( )  ladder shown in Fig. 3.1.

{0}
2 1 0 1 2

 Ì Ì Ì Ì Ì Ì- -V V V V V

Basis function for V
0
 subspace is given by { ( )}f t n

n
- Î. The function f ( )t n-  for t n=  is shown below. 

This is also an orthonormal basis for V
0
 because

á - - ñ ¹f f( ), ( ) = 0,

= 1, =

t n t m n m

n m

where n m, Î .This is the primary condition of orthonormality of a function.

1

n n + 1

Figure 3.1  Basis function for V
0

Th e Haar Filter Bank Introduction

Function and sequence

Downsampler

The Haar filter bank

Analysis part

Synthesis part

Frequency domain analysis of 

Haar filter bank

Frequency domain behaviour

Chapter 3
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3.2  Function and Sequence

To have an idea between equivalence of function and sequence, consider the function x t V( )
0

Î  written in 

terms of translates of f ( )t .

x t t t t t( ) =
1

2
( 1)

3

4
( )

3

2
( 1) (4) (+

æ

è
ç
ö

ø
÷ + +

-æ

è
ç

ö

ø
÷ +

æ

è
ç
ö

ø
÷ - + -f f f f 22) +

There is an equivalence between x t( ) and sequence. So, the corresponding sequence is

x n[ ] = ,
1

2
,

3

4
,
3

2
,4, -

é

ëê
ù

ûú

-
The downarrow represent the zero’th position of the sequence. Since the function x t( ) belongs to 

V L
0 2

( )Î   thus the sequence x[n] should also belong to a set of square summable sequences. If a 

function x t( ) is square integrable, i.e.
-¥

¥

ò ¥( )x t dt( ) <
2

 then corresponding sequence is square sum-

mable, i.e. 
n

x n
=

2
[ ] <

-¥

¥

å ¥( ) . Here, we use a notion that x t L( ) ( )
2

Î   implies x n l[ ] ( )
2

Î  . Thus, l
2
( )  

is a space of all the discrete sequences which are square summable.

In general, l
p
( )  is a linear space of sequences such that

n

p
x n

=

[ ] <
-¥

¥

å ¥
æ

è
ç

ö

ø
÷

We have just shown a correspondence that if x t V L( ) ( )
0 2

Î Î   then x n l[ ] ( )
2

Î  .

Note: x[n] is the sequence of coefficients of expansion of x(t) with respect to an ORTHONORMAL 

basis of x(t). If the basis is orthonormal then there is a mapping between inner products of the function 

and the sequence. For example, suppose x t y t V( ), ( )
0

Î , then inner product in continuous time is given by

á ñ
-¥

¥

òx t y t x t y t dt( ), ( ) = ( ) ( )

 

= [ ] [ ]
0

=

K x n y n
n -¥

¥

å  (3.1)

where K
0
 is a constant.

Therefore, what we do in the context of continuous time function can be equivalently done in the context 

of discrete domain for corresponding sequence. So, eventually we are leaving behind the continuous 

function and dealing with the sequence x n[ ]. For example, the concept of pixels or 2-dimensional area 

in case of an image shows that, we can equivalently replace this continuous intensity of the image in the 

pixel by 2 sequences (x p[ ] and x q[ ]) in 2 dimensions. If we want to get some inference from the image, 

we can look at these sequences and analyse them.

What is the motivation behind this? Our motive is to extract an additional information while going from 

one subspace to another in a ladder. Now, we will see how to move from one resolution to another and 

extract the incremental information from the function. Note that this process corresponds to going from 

lower resolution subspaces to higher resolution in L
2
( )  ladder of subspaces.

¬
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10

7

4

Y (t)

16
14

11

3

−1
−1 −1/2 0 1/2 3/2 5/22 3 t1

Figure 3.2  Function y(t)

Example 3.2.1 — Equivalence, decomposition and reconstruction. 

Consider y t V( )
1

Î  i.e.with intervals of length half as shown in Fig. 3.2 and let the corresponding 

sequence y[n] be

[ ,4,7,10,16,11,3, 1 ] -

The relationship between y(t) and y[n] is

y t y n t n
n

( ) = [ ] (2 )
Î
å -


f

where

f(2 ) = 1,
2

< <
1

2

= 0,

t n
n

t
n

-
+

otherwise

Let us move on to another fundamental concept involved here.

Consider the figure shown above. Our next objective is to perform an orthogonal decomposition of 

a function in V
1
 to functions in V

0
 and W

0
 denoted by

V V W
1 0 0

= Å
where

W t n
n0

= { ( )}span y - Î

V t n
n0

= { ( )}span f - Î

V
1
 is the orthogonal sum of subspaces V

0
 and W

0
. The idea of orthogonal decomposition states 

that there is a unique way of taking a vector in V
1
 and decomposing this vector into two vectors, one 

¬
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from V
0
 and other from W

0
 with both being orthogonal to each other, i.e., their inner product is zero. 

Thus, a linear space is divided into two orthogonal subspaces.

We have seen the equivalence between functions and sequences with respect to square inte-

grability and inner products. Now, consider the angle between two functions or vectors defined in 

terms of their inner product. An equivalence exists with respect to angles also. As we are considering 

functions and sequences as generalized vectors, angle between two functions x t( ) and y t( ) in any 

subspace can be defined as:

cos( ) =
( ), ( )

q
á ñx t y t

x y  

where q  is the angle between x t( ) and y t( ) and x t y t L( ), ( ) ( )
2

Î  . Correspondingly we have notion 

of angle between sequences too.

To check whether it is possible to decompose a sequence in terms of other sequences, consider 

x t V
1 0
( )Î  and x t W

2 0
( )Î  denoted by solid and dashed lines respectively, as shown in Fig. 3.3. Note 

that á ñx t x t
1 2
( ), ( ) = 0 and thus x t

1
( ) and x t

2
( ) are orthogonal to each other.

Take any function in V
1
 in the open interval 

n n

2
,

1

2

+é

ëê
ù

ûú
. It can be written as a summation of func-

tion belonging to V
0
 and and a function belonging to W

0
 from Fig. 3.3. Thus we can decompose a 

function in V
1
 to functions in V

0
 and W

0
 in a unique way quite easily.

Can we make corresponding construction on the sequences too?

Consider

V p t p n
1

( ) [ ]: ®

W q t q n
0 0 0

( ) [ ]: ®

V p t p n
0 0 0

( ) [ ]: ®

Here p t
0
( ) and q t

0
( ) are orthogonally decomposed functions of p t( ). Thus, p t p t q t( ) = ( ) ( )

0 0
+  and 

p n[ ], p n
0
[ ] and q n

0
[ ] are corresponding sequences. To check whether p n p n q n[ ] = [ ] [ ]

0 0
+  holds or 

not, consider the three sequences p[n], p n
0
[ ] and q n

0
[ ] of V

1
, V

0
 and W

0
 subspaces respectively. If the 

unit interval in V
0
 and W

0
 subspaces is [ ]n n, 1+  then the corresponding interval in V

1
 and W

1
 sub-

spaces is [ ]2 ,2 1n n + . The previous example is reconsidered for the corresponding sequences in the  

Figs. 3.4, 3.5 and 3.6.

Note that function in V
1
 has the value C

1
 at 2n and C

2
 at 2 1n + . Thus, p n C[2 ] =

1
, p n C[2 1] =

2
+ .

Similarly,

p n
C C

0
[ ] =

( 1 2)

2

+

q n
C C

0
[ ] =

( 1 2)

2

-

Note that the relation among p[n], p n
0
[ ] and q n

0
[ ] is not p n p n q n[ ] = [ ] [ ]

0 0
+ , but
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3.3  Downsampler

In the previous example (Example 3.2.1) if p[n] is the input to the filter given by Eq. 3.4, then output is 

not p n
0
[ ]. For output to be equal to p n

0
[ ], the filter must be driven by a system with input x

in
 and output 

x
out

 related by x n x n
out in

[ ] = [2 ].

 

p n
p n p n

0
[ ] =

[2 ] [2 1]

2

+ +

 (3.2)

 

q n
p n p n

0
[ ] =

[2 ] [2 1]

2

- +

 (3.3)

Looking at these equations, we observe that some filter kind of operations are being done on a set of 

sequences (i.e above equations) which depict that p n
0
[ ] and q n

0
[ ] are outputs of discrete time filters.

Consider the Discrete time filter with x n[ ] and y n[ ] as input and output respectively satisfying:

 
y n

x n x n
[ ] =

[ ] [ 1]

2

+ +

 (3.4)

This equation looks similar to Eq. 3.2 except that there we have 2n as index of the sequence whereas 

it is n here.Thus we need a new system which satisfies our need, given by the equation:

x n x n
out in

[ ] [ ]= 2

1

1
2

1
x2(t)

t

x1(t)

−1

Figure 3.3  Functions x t
1
( ) and x t

2
( )
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C1

C2

n + 1n 2n + 1

2

Figure 3.4  Sequence corresponding to function p t V( )
1

Î

C1 − C2

2

C1 − C2

2

2n + 1

2
−

n + 1n

Figure 3.5  Sequence corresponding to function q t W
0 0
( )Î

(C1 + C2)
2

n + 1n (2n + 1)
2

Figure 3.6  Sequence corresponding to function p t V
0 0
( )Î
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−4 −3 −2 −1 0 1 2 3 4

n

−4 −3 −2 −1 0 1 2 3 4

n

Figure 3.7  Downsampling by 2

3.4  The Haar Filter Bank

In this section, we shall continue on the idea of connecting Multi-resolution analysis and a set of fil-

ters. Our main aim is to implement Haar MRA using appropriate filter banks. In the analysis part, we 

decompose a given function in y
v0

 and y
w0

. Decomposition of corresponding sequence is carried out in 

terms of wavelet function y ( )t  and scaling function f ( )t . We then explore signal reconstruction using y
v0

 

and y
w0

. Earlier, we have seen that we can divide the real axis (number line) into various equally spaced 

blocks which then constitute a space. For example, let us split the line into blocks of width 1 as shown 

in Fig. 3.8.

Corresponding to the figure, we have basis functions of V
0
 and W

0
. If the same functions were used over 

a period of half 
1

2

æ

è
ç
ö

ø
÷, we have the spaces V

1
 and W

1
, and by halving or doubling the width we achieve the 

whole range of spaces.

−2 −1 0 1 2 3

Figure 3.8  Number Line

{0}
2 1 0 1 2

Ì Ì Ì Ì Ì Ì Ì- - V V V V V

Example 3.3.1 — Downsampler example.

Now, consider the system which does this operation. It retains only the even samples of the input 

sequence and removes the odd samples. Note that it locates the even samples at half of the origi-

nal sample number. For example, if x n
in

[ ] = [63527834] is the input to this system, then output 

x n
out

[ ] = [6573]. Note that x
out

[0] comes from x
in

[0], x x
out in

[2] = [4] and thus x n x n
out in

[ ] = [2 ]. Such 

a system is called Downsampler or Decimator. Figure. 3.7 shows decimation by 2.

Thus to implement Eq. (3.2) we need a discrete time filter given by Eq. (3.4) followed by a 

downsampler by two. This helps to construct a sequence p n
0
[ ] from p n[ ].

Similar kind of filter analysis and decimation process can also be found out for q n
0
[ ].
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3.5  Analysis Part

Once we have decided the space in which we are operating, we can create a piecewise approximation 

of a given function.

Example 3.5.1 — Analysis example.

Consider a function y t V( )
1

Î  defined between [-1, 3]. The number written in between the interval 

indicates piecewise constant amplitude for that interval (Fig. 3.9).

This continuous function can be associated with the sequence

y y y y y y y[ 2] = 4, [ 1] = 7, [0] = 10, [1] = 16, [2] = 14, [3] = 11, [4] = 3, [5- -y ]] = 1-

−1 −1/2 1/2 3/2 2 5/2 3

−131114161074

t10

Figure 3.9  y t V( )
1

Î

Here it must be noted that -2,-1,0,1... are used as indices for a specific element of the sequence. y n[ ] 

is the corresponding sequence of y t( ) over a period 
n n

2
,

1

2

+é

ëê
ù

ûú
 in the space V

1
.

In general, we write

y t y n t n
n

( ) = [ ] (2 )
=-¥

¥

å -f

where f (2 )t n-  is shifted version of basis function of V
1
, as shown in Fig. 3.10.

Now, we decompose space V
1
 in two subspaces V

0
 and W

0
 as

n

2

1

n+1

2

Figure 3.10  Basis function of V
1

V V W
1 0 0

= Å
Corresponding to these subspaces, we obtain two functions y

v0
 and y

w0
. So, for a given y t V( )

1
Î , we 

can split it in two components y t
v0

( ) and y t
w0

( ) which are projections of y t( ) on the V
0
 and W

0
 sub-

spaces, respectively (Fig. 3.11).
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−1

−1

y

yV0

yW0

−1/2 1/2 1 3/2 2 5/2 3
t

t

t

0

4

11/2 13 25/2 1

(4+7)/2

(4−7)/2

(10+16)/2 (14+11)/2 (3+(−1))/2

(10−16)/2 (14−11)/2 (3−(−1))/2

2 30 1

−1

−3/2 −3 3/2 2

2 30 1

7 10 16 14 11 3 −1

Figure 3.11  Projection of y t( ) over subspaces V
0
, W

0

Note that this is after the whole analysis part (after the decimation operation). These functions can 

be represented as shown in Fig. 3.12.

These representations graphically demonstrate scaled and shifted combinations of the bases to 

get the original signal (sequence).

−1

−3/2

−1
0

1

3/2 2

3

−3

11/2

yV0

yW0

0 13 1 25/2 2 1 3

t

t

Figure 3.12  Graphical representation of y
v0

 and y
w0
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We now, use different notations. We will define a n[ ] as the input and b n
1
[ ] and b n

2
[ ] as the out-

put of the two filters below as shown in Fig. 3.13.

b n a n a n
1
[ ] =

1

2
( [ ] [ 1])+ -

b n a n a n
2
[ ] =

1

2
( [ ] [ 1])- -

This is equivalent to

b n y n y n
1
[ ] =

1

2
( [ ] [ 1])+ -

b n y n y n
2
[ ] =

1

2
( [ ] [ 1])- -

Here, b n
1
[ ] and b n

2
[ ] are sequences having the same length and order as y n[ ] whereas we want 

them to be shorted and one order lesser than y n[ ]. b n
1
[ ] and b n

2
[ ] must be modified somehow to get 

y V
v0 0
Î  and y W

w0 0
Î  respectively. This is performed by decimation (downsampling).

Taking Z -transform on both the sides, we get

B Z z Y Z
1

1( ) =
1

2
(1 ) ( )+ -

B Z z Y Z
2

1( ) =
1

2
(1 ) ( )- -

This is followed by the decimation operation to remove unwanted data. The expression of  

‘
1

2
(1 )1+ -

z ’ and ‘
1

2
(1 )1- -

z ’ shown in Fig. 3.14 are called the system functions and are obtained by 

simple algebraic operations on the above two equations. Hence, the Analysis filter bank is as shown 

in Fig. 3.14.

Input = a[n]
y[n] Output = b1[n] & b2[n]

2

2

yV0

yW0

b2[n] =
a[n] − a[n − 1]

2

b1[n] =
a[n] + a[n − 1]

2

Figure 3.13  Filter Bank: Analysis part discrete domain
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3.6  Synthesis Part

Now, if we have the sequences corresponding to y t
v0

( ) and y t
w0

( ) then what we need to do in order to 

obtain the original sequence back? We might intuitively realise that we need to ‘outdo’ the decimation 

process. So what has the decimation exactly done? It has in some sense halved the n index. It brought 

the index 4 to index 2, the index 2 to the index 1 and in this sense has reduced the indices by a factor 

of 2. Thus, to undo this we need to restore the indices back to their original place, which can be done 

simply by doubling the value of the index. Therefore to construct a Synthesis filter bank or to synthesize 

y t( ) from y t
v0

( ) and y t
w0

( ), in continuous time, we can simply do the following: y t y t y t
v w

( ) = ( ) ( )
0 0

+ , 

However, it is not the same in the discrete case. Here we need to work more rigorously.

Example 3.6.1 — Reconstruction example.

So, let us again write all the three sequences,

y n[ ] = {4,7,10,16,14,11,3, 1}-

y n
v0

[ ] = {
11

2
,13,

25

2
,1}

y n
w0

[ ] = {
3

2
, 3,

3

2
,2}

-
-

The original sequence y n[ ] has eight terms and the other two have four each. Therefore, some 

kind of expansion is required. Upsampler: To ‘outdo’ or ‘overcome’ decimation operation, we 

define operation of upsampling by symbol as shown in Fig 3.15.

x n x
n

n
out in

[ ] =
2

, 2

= 0,

é

ëê
ù

ûú
where ismultipleof

otherwise

¬

¬
¬

y[n]

2

2 yV0

yW0

(1 + z−1)
1
2

(1 − z−1)
1
2

Figure 3.14  Filter Bank: Analysis part Z domain
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xin[n] xout,u[n]2

Figure 3.15  Upsampler

The upsampler, thus, expands the input sequence by adding zero in between successive samples.

If x n y n
in v

[ ] = [ ]
0

, then x
out

 is given by

x n
out

[ ] = {
11

2
,0,13,0,

25

2
,0,1,0}

and similarly, y n
w0

[ ] on upsampling gives,

x n
out

[ ] = {
3

2
,0, 3,0,

3

2
,0,2,0}

-
-

If the sequences obtained after upsampling (y
v0

 and y
w0

) are added and subtracted alternately, we will 

get two more sequences. We then alternately allow passage for the elements of the two sequences, 

i.e. we first pass the first element of the first sequence and then pass the first element of the second 

sequence. The single sequence so obtained will be the original sequence itself (This will be clarified 

further if you refer to the Q1 of the Tutorials at the end of this chapter). Figure 3.16 shows how an 

operation of upsampling. The diagram is called a signal flow graph. Here the circles represent the 

nodes and the lines with arrows the edges. It is a convenient way of showing computation. When 

we have a node at which multiple edges come together, the content of the edges is added together 

and that is the output of the node. Each edge carries information from the source node to the desti-

nation node multiplying it by the multiplier of that node and deposits it at the destination node. So 

if multiple edges come to a node, then all the deposits get added and if they go out of a node then 

each carries the same value of the node times the multiplier of that edge. In the graph shown in Fig 3.16, 

each edge has a multiplier of ‘1’ except on edge which has a multiplier of ‘-1’. We pass the sum 

branch on one instance (even to be precise) and the difference branch on the next instance (which is 

odd instance). We can do this by delaying the difference by a unit time period which is as shown by 

the corresponding operation in the ‘Z’ domain. The upsample can commute in the sense that it does 

not matter whether we first upsample and then add and subtract, or do the reverse. The delay is used 

to give the output in proper order. The structure that we have thus put down gives us an efficient way 

of computing the synthesis filter bank.

Figure 3.17 shows the synthesis part of 2-band perfect reconstruction filter bank.

In this way, filter bank is used to implement Analysis and Synthesis aspects of Haar MRA. We shall 

discuss this in greater depth in the chapters that follow.

¬
¬
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2

2
−1

z−1

yv0[n]

y[n]

yw0[n]

Figure 3.16  Signal flow diagram with up-sampler by two

y

2

2yV0

yW0

(1 + z−1)

(1 − z−1)

+

Figure 3.17  Filter Bank: Synthesis Part

3.7  Frequency Domain Analysis of Haar Filter Bank

We have looked at the structure of the Haar analysis and synthesis filter bank. In the earlier sections we 

discussed the Z-transform behaviour of the sequences involved in the filter banks and in this section, the 

frequency domain behaviour of the Haar MRA filter bank will be explored.

Revising the structure of analysis and synthesis filter bank we obtained the following diagrams 

(Figs. 3.18 and 3.19).

0.5(1 + z−1) 2

20.5(1 − z−1)

x[n]

Figure 3.18  Haar analysis filter bank
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2

2 0.5(1 + z−1)

±0.5(1 − z−1)

Figure 3.19  Haar synthesis filter bank

The reason we use ± in the synthesis filter bank is due to a slight ambiguity to determine where to place 

sum sample and difference sample which will be explored in detail in further chapters. If ‘+’ sign in 

used, sum sample would get placed at even location and difference sample at odd location. If ‘-’ sign is 

used, the reverse would happen.

Important: Note the analysis and synthesis filter banks are almost the same (except for the scaling factor).

Haar filter banks are not the ideal filter banks. It will soon be understood why. However, understand-

ing Haar filter banks leads us to clarification of many concepts of Multiresolution analysis which will 

open a new path of processing the images.

3.8  Frequency Domain Behaviour

Now, let us switch on to the frequency domain. The frequency domain behavior can be determined by 

substituting z e
j = w . The necessary condition for a system to have a frequency reponse is to ensure that 

in the Z  domain the unit circle lies within the Region of Convergence (ROC) of the Z -transform.

3.8.1 Region of Convergence

Typically, the region of convergence of any Z -transform lies within two concentric circles of radius R
1
 

and R
2
 as shown in Fig. 3.20.

R
1

R
2

Figure 3.20  The ROC for any Z -transform

In general, R
1
 could be ¥ and R

2
 could be 0. The boundary circles may or may not be included in the 

ROC. If the circle with radius 1, i.e unit circle, is included in the ROC, the system is said to have a 

R
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frequency response i.e., we say the sequence has a Discrete time fourier transform (DTFT). To deter-

mine the frequency response, we substitute z e
j = w. Note that | |= 1z , i.e. we are evaluating the Z -trans-

form on the unit circle.

3.8.2 Analysis Filter Bank

Substituting z e
j = w  in 

1

2

1+ -
z

, we get

1

2
=

2
2

2 2+ +- -
-

e
e

e e
j j

j j

w w
w w

 

=
2

2e cos

j- æ

è
ç
ö

ø
÷

w
w

 (3.5)

Now, consider the magnitude and phase part separately. The magnitude of this response is given by 

|
2

|cos
wæ

è
ç
ö

ø
÷  (because | |= 12e

j- w

). Similarly the phase response, given by 
-w
2

 as the cos
w

2

æ

è
ç
ö

ø
÷, does not 

contribute to phase as it is real and positive. The graph of magnitude response is shown in the Fig. 3.21.

Important: Since we have periodicity in the frequency domain with period 2p , thus we need to con-

sider the frequency domain only between -p  and +p . We plot only for positive w  noting that magnitude 

response is an even function of w  i.e. magnitude is even-symmetric and, hence, the complete spectrum 

will also involve a mirror image of the spectrum in figure about the Y-axis. Similarly, the phase response 

is an odd function of w  or odd-symmetric and thus Ð - -ÐH H( ) = ( )
0 0

w w .

H(jw)

cos(w/2)

π ω

1

Figure 3.21  Magnitude response of filter

Looking at the magnitude response, as shown in Fig. 3.21, we observe that this response approximates 

a crude low pass filter (crude imply far from ideal) since it emphasizes lower frequency components. 

For comparison, the frequency response of an ideal lowpass filter is as shown in Fig. 3.22.

If we plot the phase response of the crude low pass filter, we will get a plot as shown in Fig. 3.23. We 

observe that the phase response is a straight line passing through the origin.

Importance of having a Linear Phase
The frequency response tells us that what happens to a sine wave when it is passed through a system. Let 

us consider the case in continuous time domain.
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If we apply a signal A cos t
0 0 0

( )W +f  to a system or a continuous time filter with frequency response 

given by H( )W , then the output is given by

H(jw)

1

π/2 π ω

Figure 3.22  Magnitude response of ideal lowpass D.T. filter with cutoff  
p

2

Phase

π w0

π

2

Figure 3.23  Phase response of ideal lowpass filter

Output = | ( ) | ( ( ))
0 0 0 0 0

H A cos t HW W W+ +Ðf

  = | ( ) |
( )

0 0 0

0

0

0
H A cos t

H
W W

W

W
+
Ðæ

è
ç

ö

ø
÷ +

é

ë
ê
ê

ù

û
ú
ú

f  (3.6)

where ÐH( )
0

W  is the angle introduced by system function H( )
0

W . We see that introduction of this sys-

tem has resulted in a time shift in the signal, which is dependent on signal frequency W
0
. Thus, here we 

see that phase is a necessary evil. For a system with no phase response, it would not be a causal. Phase 

introduces a time shift, which is in general different for different frequencies which we do not desire. 

Thus if we want to preserve the shape of the waveform, we can at least try that all frequencies are shifted 

by the same time i.e.

ÐH( )
=  ( )0

0

0 0

W

W
Wt independent of

t
0
 is a constant independent of W

0
. This implies that,

ÐH( ) =
0 0 0

W W t
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This is an equation of a straight line passing through origin, hence called as a linear phase. Thus Haar 

filter bank has the useful property of linear phase.

For the ideal case no ÐH( )
0

W  is required because of the causality condition, i.e. if casual filters are 

asked then zero phase condition is unachievable. Also, it is not easy to design filter banks of larger order 

with linear phase.

3.8.3 Second Filter in Analysis Filter Bank

Substituting z e
j= w in the expression 

1

2
(1 )1- -

z , we get

1

2
(1 ) =

2
2-

æ

è
ç
ö

ø
÷

-
-

e je
j

j

w

w
w

sin

The magnitude and phase responses are shown in the Figs. 3.24 and 3.25 respectively.

H(jw)

1

π ω

Figure 3.24  Magnitude response of second analysis filter

Phase (radians)

π

2

π w

Figure 25  Phase response of second analysis filter

Note that in calculating phase response we get an extra term of 
p

2
 due to presence of j . The expression 

for phase response is thus given by

phase( ) =
2 2

w
p w
-

It is thus seen that although the graph is still a straight line, it no longer passes through the origin. 

This phase response is thus called pseudo-linear response, i.e. it looks similar to linear phase response.
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Example 3.8.1 — Complementary property.

If we add the functions of both filters, we get

1

2
(1 )

1

2
(1 ) = 11 1+ + -- -

z z

The meaning of this result is that if we pass a sine wave through both filters and add the filter out-

puts, we get back the original sine wave. This property is called the Magnitude complementarity 

property of the filters.

To summarize, we will again see the complete phase and magnitude responses of both filters.  

Fig. 3.26 shows the response of the first filter and Fig. 3.27 refers to the response of the second filter. 

The phase response is antisymmetric about origin because the expression is an odd function of w  (due 

to presence of sin
w

2

æ

è
ç
ö

ø
÷).

−p w
−p

p

p

2

−p

2

w

1 H(jw) Phase (radians)

    (a) magnitude response      (b) phase response

Figure 3.26  Magnitude and Phase response of first analysis filter

H(jw)

Magnitude response Phase response

Phase

π

2

π
2

−

1

−p

−p

p
w

p
w

Figure 3.27  Magnitude and Phase response of second analysis filter

Looking at the phase response of the second filter in Fig. 3.27, we observe that at w = 0 phase has two 

values namely -
p

2
 and 

p

2
 thus there is an ambiguity. However, since value of magnitude at w = 0 is zero, 

the phase response at w = 0 has no consequence.
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As we know that if we pass a wave of frequency w
0
 through a filter of transfer function H( )w , the 

power output is given by | ( ) |
0

2
H w . If we add the power outputs of both filters, we get

| (
2

) | | (
2

) | = 10 2 0 2cos sin
w w

+

Thus, we see that even the sum of powers from both filters is conserved and on addition of the fil-

ter outputs, we get the same power back. This property is known as the Power complementarity 

property. Let us consider the analysis filter bank with frequency response of the upper branch as 

H w
upper

( ) and that of lower branch as H w
lower

( ) then we have

H w H w
upper lower

( ) ( ) = 1+

as magnitude complementary property and

| ( ) | | ( ) | = 12 2
H w H w

upper lower
+

as the power complementary property ‘1’ here represents the identity function. Similar analysis can 

be done for synthesis filter bank too.

Thus, we can conclude that filters in filter bank may have individual as well as collective properties. 

Magnitude and power complimentary properties are the collective properties whereas low pass and 

high pass nature of the filters depict their individual characteristics.

Exercises

Exercise 3.1

What are basis functions? Write down the bases for spaces V
1
, V-1

 and W-1
 of Haar MRA.

Hint: Basis functions are the basic building blocks of a function space. Any function in the func-

tion space, for example L R
2
( ) space, can be represented as linear combination of the basis func-

tions or bases of that space. Bases for spaces V
1
, V-1

 and W-1
 of Haar MRA are span{ (2 )}f t n

n
- Î ,

span f
t

n
n

2
-

æ

è
ç

ö

ø
÷

ì
í
î

ü
ý
þ Î

 and span y
t

n
n

2
-

æ

è
ç

ö

ø
÷

ì
í
î

ü
ý
þ Î

 respectively.

Exercise 3.2 

Consider a triangular pulse x t( ) as described by

x t t t( ) = , 0 1£ £

= 2 , 1 2- £ £t t
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x(2t)

x(2t — 1)

x(2t — 2)

t

x(t)

1
2

1

0 1 2

1
2

Figure 3.28  x t x t x t x t( ) =
1

2
(2 ) (2 1)

1

2
(2 2)+ - + -

Exercise 3.3 

In the case of orthogonality and independence of vectors, which is necessary and sufficient condi-

tion for the other?

Hint: When two vectors are orthogonal then they are also independent. However, if two vectors are 

independent then they are not necessarily orthogonal. In other words, orthogonality of vectors is a 

sufficient condition for the vectors to be independent but independence of vectors is necessary for 

vectors to be an orthogonal.

Moreover, for two subspaces V
1
 and V

2
, of vector space V , V

1
 and V

2
 are said to be orthogonal if every 

vector in V
1
, is orthogonal to every vector in V

2
 which implies that bases of subspace V

1
 and V

2
 are 

orthogonal. In case of independence, bases of subspace V
1
 and V

2
 are independent and need not not 

be orthogonal.

= 0, otherwise

Write down a sequence x n[ ] using dilates and translates of x t( ).

Hint: x t( ) can be sketched in terms of its own dilates and translates as shown in Fig. 3.28, so cor-

responding sequence is

x n[ ] = [
1

2
,1,

1

2
]

¬
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where mÎ. Hence orthogonal decomposition is not unique but once the subspaces are fixed then 

the decomposition is unique.

For example, a function from V
1
 space can be represented as linear combination of scaling function 

f ( )t  and wavelet function y ( )t  if space is decomposed into subspaces V
0
 and W

0
 i.e.

f t t n t n
n n

( ) = ( ) ( )
Î Î
å å- + -
 

f y

Similarly, the same function can be represented as linear combination of dilates of scaling and wave-

let function from subspaces V-1
, W-1

 respectively and wavelet function from space W
0
 as

f t
t

n
t

n t n
n n n

( ) = (
2

) (
2

) ( )
Î Î Î
å å å- + - + -
  

f y y

Exercise 3.5 

Comment on the linearity, time-invariant and invertibility property of Upsampler and Downsampler.

Hint: Upsampler: General equation for upsampling by M is given as,

x n x
n

M
n M

out in
[ ] = ,

= 0,

é

ëê
ù

ûú
where ismultipleof

otherwise

As, here zeroes are added in between, there is no loss of information during upsampling and we can 

retrieve the original sequence by passing through the downsampler by M. Hence, it is Invertible.

Now, consider,

Exercise 3.4 

Is orthogonal decomposition unique?

Hint: Orthogonal decomposition is decomposing or splitting the vector space V  into the two orthog-

onal subspaces. Consider a function from V
1
 space. Then,

V V W
1 0 0

= Å

Also, we can write

V V W
0 1 1

= - -Å

In general,

V V W
m m m+ Å

1
=
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x n x
n

M
n M

out in1 1
[ ] = ,

= 0,

é

ëê
ù

ûú
where ismultipleof

otherwise

x n x
n

M
n M

out in2 2
[ ] = ,

= 0,

é

ëê
ù

ûú
where ismultipleof

otherwise

Now, if we apply the combine input x
in1
 and x

in2
, we get,

x n x
n

M
x

n

M
n M

out in in
[ ] = ,

= 0,

1 2

é

ëê
ù

ûú
+

é

ëê
ù

ûú
where ismultipleof

othherwise

which is same as,

x n x n x n n M
out out out

[ ] = [ ] [ ],

= 0,

1 2
+ where ismultipleof

otherwise

Hence, it is Linear.

Now, again consider our general equation of up-sampler by M . Now, delay the input sequence by 

k samples.

 

x n x
n

M
k n M

out in
[ ] = ,

= 0,

-
é

ëê
ù

ûú
where ismultipleof

otherwise
 (3.7)

Now, replace n by n k-  in equation, we get

 

x n x
n k

M
n M

out in
[ ] = ,

= 0,

-é

ëê
ù

ûú
where ismultipleof

otherwise

 (3.8)

Now, Eqs. (3.7) and (3.8) are not equal. Hence, upsampling by M  is Time-variant.

Downsampler: General equation for downsampling by M is given as,

x n x Mn
out in

[ ] = [ ]

Here, the samples which are at nonmultiple of M  are deleted. Hence, it is not possible to retrieve the 

deleted samples by passing through upsampler. Hence, it is Noninvertible.

Similar to upsampler, we can show that it is Linear and Time-variant.
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Exercise 3.6 

A periodic sequence x n[ ] with a period of 5 is applied at the input of the two-band filter bank shown 

in Fig. 3.29.

One period of the sequence x n[ ] is indicated as below:

                x n[ ] = {7, 3,4,8, 5}- -

  1).   Show that each of the sequences y n
k
[ ], k = 1,2,3,...,9 are periodic and obtain each of their peri-

ods P
k
, k = 1,2,3,...,9.

 2).  For k = 1,2,3,...,9, obtain y n
k
[ ], n P

k
= 0,...,( 1)- .

 3).  Comment on the relation between the input x n[ ] and the output y n
9
[ ].

Hint: We can write corresponding sequences as below:

samples: - -2 1 0 1 2 3 4 5 6 7 8 9 10

x n[ ]: 8 5 7 3 4 8 5 7 3 4 8 5 7- - - - -

x n[ 1]- : 4 8 5 7 3 4 8 5 7 3 4 8 5- - - - -

y n
1
[ ]: 12 3 2 4 1 12 3 2 4 1 12 3 2

y n
2
[ ]: - - - - - - - -4 13 12 10 7 4 13 12 10 7 4 13 12

y n
3
[ ]: 4 12 2 1 3 4 12 2 1 3 4 12 2

y n
4
[ ]: 10 4 12 7 13 10 4 12 7 13 10 4 12- - - - - - - -

y n
5
[ ]: 12 0 2 0 1 0 3 0 4 0 12 0 2

y n
6
[ ]: - - - - -4 0 12 0 7 0 13 0 10 0 4 0 12

y n
5
[ 1]- : 0 12 0 2 0 1 0 3 0 4 0 12 0

y n
6
[ 1]- : 0 4 0 12 0 7 0 13 0 10 0 4 0- - - -

y n
7
[ ]: 6 6 1 1

1

2

1

2

3

2

3

2
2 2 6 6 1

y n
8
[ ]: - -

- -
- - -2 2 6 6

7

2

7

2

13

2

13

2
5 5 2 2 6

y n
9
[ ]: 4 8 5 7 3 4 8 5 7 3 4 8 5- - - - -

From above, we can easily conclude that, each of the sequences y n
k
[ ], k = 1,2,3,...,9 are peri-

odic and their periods P
k
, k = 1,2,3,...,9 are as below:

P P P P P
1 2 3 4 9

= = = = = 5 and

¬
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P P P P
5 6 7 8

= = = = 10.

Hence, y n
k
[ ], n P

k
= 0,...,( 1)-  are written as,

samples: 0 1 2 3 4 5 6 7 8 9

y n
1
[ ]: 2 4 1 12 3

y n
2
[ ]: - - -12 10 7 4 13

y n
3
[ ]: 2 1 3 4 12

y n
4
[ ]: - - -12 7 13 10 4

y n
5
[ ]: 2 0 1 0 3 0 4 0 12 0

y n
6
[ ]: - - -12 0 7 0 13 0 10 0 4 0

y n
7
[ ]: 1 1

1

2

1

2

3

2

3

2
2 2 6 6

y n
8
[ ]: -

- -
- -6 6

7

2

7

2

13

2

13

2
5 5 2 2

y n
9
[ ]: - -5 7 3 4 8

It is seen that, y n
9
[ ] is actually periodic with a period of 5. The period y n

9
[ ], n : 0 4®  of y n

9
[ ], 

is essentially the period x n[ ], n : 0 4®  of x n[ ] circularly shifted by 1. This amounts to subjecting x n[ ] 

to a delay of 1 sample as expected for this perfect reconstruction system.

x[n]

y1[n] y3[n] y5[n]

y7[n]

y8[n]

y2[n] y4[n] y6[n]

y9[n] +

1 + z−1 1 + z−1

2
2

2

2

2 1 − z−1

2
−1 + z−1

Figure 3.29  Two-Band Filter Bank
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Exercise 3.7 

Why is the Haar MRA considered not adequate even though it can give perfect reconstruction?

Hint: The frequency response of the Haar low pass and high pass filter is cos
w

2

æ

è
ç
ö

ø
÷ and sin

w

2

æ

è
ç
ö

ø
÷ 

respectively. This leads to poor localization in frequency domain as the filter cutoff is not sharp. 

Hence, the Haar MRA is not considered adequate.

Exercise 3.10 

Why does 2-D processing NOT require causality as a condition for filter?

Hint: For applications such as image processing, the entire data is already present. Hence, the past, 

present and future samples are already known. Thus a non-causal filter can be employed for 2-D 

applications. However, if in 2-D processing, we have 2 different 1-D data streams which have to be 

operated in real time, then we cannot employ non-causal systems.

Exercise 3.8 

Why is a filter with a zero phase response necessarily non-causal?

Hint: Consider a filter with transfer function h t( ) and Fourier Transform H( )W .

H h t e dt
j t( ) = ( )W W

-¥

¥ -ò

 
= ( ) ( ) ( ) ( )

-¥

¥

-¥

¥

ò ò-h t t dt j h t t dtcos sinW W

For a zero phase response, imaginary part of H( )W  is zero. Hence,

-¥

¥

ò h t t dt( ) ( ) = 0sin W

Thus h t( ) must be an even function of t, i.e. symmetric about zero. Thus it will have values for t < 0 

and hence will be noncausal.

Exercise 3.9 

Why is linear phase important? What is pseudo-linear phase?

Hint: A transfer function is said to have a linear phase if the phase angle is directly proportional 

to frequency and the graph of angle v/s frequency is a straight line passing through the origin. 

Linear phase is important because it ensures that the entire waveform is shifted by the same time. In  

nonlinear phase system, since the different frequency components are delayed by different amounts, 

the waveform is distorted.

A transfer function is said to have a Pseudo-linear phase if the phase angle f  is related to frequency 

W by f = m cW + , where c ¹ 0 (NOTE: c can be different for different parts of W axis). Please refer 

to figures of magnitude and phase plots in given for further clarification.





4.1  Introduction

In this chapter we will learn how to relate y ( )t  and f( )t  of the MRA to the filter bank by studying the generic 

structure of the analysis and synthesis filter bank. It is obvious by now that such a connection exists. We 

built the filter bank out of the idea of multi-resolution analysis with the Haar MRA as an example. Let us 

first make a few generalizations which will help us to build that relationship more intimately. We will arrive 

at the general structure of the analysis and the synthesis filter banks based on the study of the Haar MRA.

4.2  Haar Analysis Filter Bank

We shall discuss a two-band filter bank here as we are speaking of dyadic MRA and dyadic refers to changes 

by a factor of two. The analysis filter bank is shown in Fig. 4.1 for the case of the Haar MRA. Recall that in 

the Chapter 3, we had seen that the filter on the top is a crude low pass filter while filter in the bottom is a 

crude high pass filter. We call them crude in the sense that ideally the pass-band of one filter should not over-

lap other filter’s stop band. We also saw that the filters together satisfy two very important properties, namely

●● Magnitude complementarity, i.e. addition of amplitudes from both fi lters give the original 

amplitude of the signal.
●● Power complementarity, i.e. addition of powers from individual fi lters gives back the original 

power of the signal

x(n)

0.5(1 + z−1)

0.5(1 − z−1)

2

2

Figure 4.1  Haar analysis fi lter bank

M-Channel Filter 
Bank

Chapter 4
Introduction

Haar analysis filter bank

Why is Haar filter not ideal?

Realizable two band filter bank

Relation between Haar MRA and filter bank

The strategy for future analysis

Iterated filter banks and continuous time MRA

Iterating the filter bank for f(.), y(.)

Z-domain analysis of Multirate filter bank

Two-channel filter bank

M-band filter banks and looking ahead

3-band filter bank (Ideal)
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4.3  Why is Haar Filter not Ideal?

To understand this, we should ask ourselves, what is the ideal response we would like to have? Let us 

have a look at both the filter responses of the Haar filter bank. (Fig. 4.2).

H(jw)
Phase (radians)

1

−p −pw

p

w

p

2
−

p

2

       Magnitude response             Phase response

H(jw)

Magnitude response Phase response

Phase
p

2

π
2

−

1

−p

−p

p w p w

Figure 4.2  Magnitude and phase responses of analysis and synthesis filters of the Haar MRA

The phase response of the high pass filter has a pseudo-linear phase, i.e. it is piecewise linear. The 

value of magnitude response is same for both the filters at w
p

=
2

. What we ideally want is a perfect high 

pass and a perfect low pass filter characteristics, as shown in the Fig. 4.3.

H(jw)

1

p

2
Lowpass Filter

p w

H(jw)

1

p

2
Highpass Filter

p w

Figure 4.3  Ideal filters magnitude response
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It is clearly seen that the Haar filters are far from the desirable ideal filter responses. The ideal filter 

bank would have a structure similar to that in Fig. 4.4.

Ideal
Lowpass
Filter

x[n]

Ideal
Highpass
Filter

Ideal
Lowpass
Filter

Ideal
Highpass
Filter

2 2

2 2

Figure 4.4  Ideal filter bank structure

In ideal filter banks, the filters are identical. However, ideal filters are unrealizable and to reason it 

out we require the impulse responses of these ideal filters. This is not due to the limitations of technol-

ogy today but due to the nature of the system. The impulse response h n[ ] of a filter is obtained by taking 

the inverse Fourier transform of the filter frequency response as:

h n H e d
ideal ideal

j n[ ] =
1

2
[ ]

p
w w

p

p
w

-ò

The ideal low pass and high pass filter impulse responses are obtained by solving the above integral. The 

impulse responses of the ideal low pass and high pass filters are:

h n

n

n
n

idealLPF
[ ] =

2

( )
, 0

sin
p

p

æ

è
ç

ö

ø
÷

¹

=
1

2
, = 0n

and

h n

n
n

n
n

idealHPF
[ ] =

( )
2

( )
, 0

sin sinp
p

p

- æ

è
ç

ö

ø
÷

¹

=
1

2
, = 0n

The above impulse responses show that the ideal filters are: 

●● Infinitely noncausal
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 The impulse response extends infinitely towards left side, i.e. for the negative values of index n,  

which makes it noncausal. For finite amount of noncausality, i.e only a finite number of n, Hence  

the infinite noncausal nature of the ideal filters makes it impossible to realize them.
●● Unstable

 A linear time invariant system is said to be stable in BIBO (Bounded Input Bounded Output) 

sense if it produces a bounded output for a bounded input. The condition on the impulse response 

to attain stability is given as S
n

h nÎ ¥


| [ ] |<  i.e. the absolute sum of the impulse response coef-

ficients should be finite. For ideal filters this absolute sum of impulse response coefficients 

diverges; may not produce a bounded output for a bounded input and are therefore unstable. 

Intuitively, the system may be stable for many of the known input signal but for some peculiar 

signal the system may give unbounded output, i.e. the system may become unstable. In other 

words for a bounded input the system may give unbounded output.
●● Irrational

 The most important disqualification is that these systems is irrationality. Rationality and irratio-

nality are the characteristics of linear time invariant (LTI) systems which have system function, 

i.e. their Z -transforms exist in some finite region of convergence. A filter system function is said 

to be rational if it can be expressed in terms of the ratio of two finite series in powers of z. Ideal 

filters cannot be expressed as a ratio of two finite series in powers of z and are therefore irra-

tional or unrealizable. Non-realizability means that the system cannot be realized by physical 

means. There are no known techniques to realize irrational filters today, as they require infinite 

resources. Suppose we want to generate exponential signals they can easily generated by using 

R-C components. Irrationality must not be confused with stability and causality. Let us see an 

example of an irrational system function.

The function e z
z
-1

, | |> 0 is irrational and can be expanded as:

e
z

n

z

n

n
- ¥ -

å
1

=0

1

=
( )

!

Thus, the inverse Z -transform for the above equation can be obtained as

h n
n

u n[ ] =
1

!
[ ]

 This is a convergent sum. Though all irrational systems are not unstable, but it is impossible to 

realize this as it requires infinite resources. Resources here constitute adders, multipliers and 

delays. A rational system can be realized by finite resources. However, ideal is often not achiev-

able. But we can go arbitrarily close to the ideal by investing more and more resources. There are 

several ways of doing it, i.e. the resources can be put to use in different ways. At times investing 

in one specific method takes us faster to the ideal that some other, but certain aspects need to be 

compromised for this rate.
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H0(Z)

H1(Z)

G0(Z)

G1(Z)

x[n]

2 2

2 2

Figure 4.5  Haar analysis and synthesis filter banks

4.4  Realizable Two Band Filter Bank

Though the ideal filter bank is unachievable we can go quite close to it. We can build a two-band 

filter bank arbitrarily close to the ideal simply by investing more and more resources. But what does 

a realizable two-band filter bank look like? Let's say the realizable two-band filter bank looks like the 

one shown in Fig 4.5. The filter bank is realizable if H Z H Z G Z G Z
0 1 0 1
( ), ( ), ( ), ( ) are all rational system 

functions. The filters must not satisfy any of the above-mentioned disqualifications. Hence the system 

responses H Z H Z G Z G Z
0 1 0 1
( ), ( ), ( ), ( ) must be rational, stable, finitely causal. H Z G Z

0 0
( ), ( ) aspire to be 

ideal low pass filters with w
p

c
=

2
 and H Z G Z

1 1
( ), ( ) aspire to be high pass filters with cutoff frequency 

w
p

c
=

2
 as ideal filters are not achievable.

4.5  Relation Between Haar MRA and Filter Bank

In this section, we will try to establish a relation between the functions f( )t , y ( )t  and the filter banks. Let 

us focus our attention on Haar MRA. As discussed earlier, the Haar MRA is not ideal. Several concepts 

can be learned from the shortcomings of Haar MRA, which can be utilized to construct better families 

of Dyadic Multiresolution analysis.

4.5.1 Relation Between the Function f( )t  and Filter Banks

For Haar MRA, f( )t  is the basis of V
0
 i.e f( )

0
t VÎ . Also, recall that there exists a ladder of spaces in MRA 

which states that V V
0 1
Ì . f( )t  should, therefore, be expressible in the basis of V

1
 i.e. f(2 ) , t n n- Î.

Φ(2t) Φ(2t−1)

Φ(t)1

0 1/2 1

Figure 4.6  Expressing f( )t  in term of dilates and translates



138 Multiresolution and Multirate Signal Processing

4.5.2 Relation Between the Function y ( )t  and Filter Banks

y ( )
0

t VÎ  should also be expressible in terms of basis of V
1
 i.e. f(2 ), t n n- Î.

Example 4.5.1 — Connecting f( )t  and filter banks.

From the Fig. 4.6 we see that f( )t  is expressible in its own dilates and translates.

f f f( ) = (2 ) (2 1)t t t+ -

The above equation is called the dilation equation. If we write down the coefficients of f(2 )t n-  as 

a sequence, we get the impulse responses corresponding to the Lowpass filter.

1 1

0

The dilation equation can thus be modified in a generalized way as follows:

If h n[ ] is the impulse response of the low pass filter in the two band filter bank then,

f f( ) = [ ] (2 )t h n t n
nÎ
å -


Example 4.5.2 — Connecting y ( )t  and filter banks.

Graphically, from Fig. 4.7, we can see that the dilation equation will be of the form

y f f( ) = (2 ) (2 1)t t t- -

If we write down the coefficients of f(2 )t n-  as a sequence, we get the impulse responses corre-

sponding to the high pass filter.

The dilation equation can thus be modified in a generalized way as follows.

If g n[ ] is the impulse response of the high pass filter in the two-band filter bank then,

y f( ) = [ ] (2 )t g n t n
nÎ
å -


This implies that, if we know the impulse responses, we can go the reverse way round to generate 

f( )t  and y ( )t .

Thus in short,

low pass filter ® scaling function expansion

high pass filter ® wavelet expansion

Therefore, we can completely characterize the system f( )t  and y ( )t  if we know their dilation 

equation.

¬

1 1

0

-¬
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Φ(2t)

−Φ(2t−1)

y(t)
1

0 1/2

1

Figure 4.7  Expressing y ( )t  in term of dilates and translates

4.6  The Strategy for Future Analysis

After obtaining the dilation equations, these equations are used to find the wavelet and the scaling function, 

given the high pass and the low pass filter responses. This is accomplished in two steps as follows:

●● Take Fourier transform on both sides of the dilation equation to get a recursive equation in 

Fourier domain, which completely characterizes F { ( )}f t  in terms of DTFT of h n[ ].
●● Relate Fourier transform of wavelet function to Fourier transform of scaling function by using 

DTFT of g n[ ] to obtain the wavelet function.

4.7  Iterated Filter Banks and Continuous Time MRA

In the last section we deduced certain concepts of the ideal two-band filter bank and studied the  

frequency response of ideal filter which is obtained for HAAR filter bank. Inspite of certain drawbacks 

of the ideal nature of filters we then derived the dilation equation, and the sequences related to it showed 

us a path to move from filter banks to the scaling and wavelet function. In this section, we will study the 

relation between filter coefficients and the basis vectors. HAAR filter bank case is particularly consid-

ered for calculations.

4.8  Iterating the Filter Bank for f( )× , y ( )×

The dilation equation relates filter bank to scaling function and also to wavelets.

If h n[ ]: low pass filter impulse response.

Then we can relate the operation of LPF H Z( ) on basis of input signal f( )t  in general as

f f( ) = [ ] (2 )
=

t h n t n
n -¥

¥

å -

= (2 ) (2 1)f ft t+ -

for the case of HAAR low pass filter.

Dilation equation is a new class of equation, which denotes the relation between wavelets and multirate 

filter bank.
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Recursively we can write,

ˆ ˆf f
W W W
2

=
1

2 4 4

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷H

Hence after N recursions,

f f ( ) =
1

2 2 2=1

Ω
Ω Ω

m

N

m N
H N∏ 


















∈where 

As,

N
lim

N
® ¥

W
2

= 0

Example 4.8.1

For analysis let us consider the Fourier transform of f( )t  be f̂(W) where W represent the analog 

angular frequency variable.

f̂ f( ) = ( )W W

-¥

+¥ -ò t e dt
j t

= [ ] (2 )
=

-¥

+¥

-¥

¥
-ò å -

n

j t
h n t n e dtf W

= [ ] (2 )
=n

j t
h n t n e dt

-¥

¥

-¥

+¥ -å ò -f W

= [ ]
1

2
( )

=

2 2

n

j n
j

h n e e d
-¥

¥ -

-¥

+¥ -

å ò
W

W
f l l

l

= [ ]
1

2 2=

2

n

j n

h n e
-¥

¥ -

å æ

è
ç

ö

ø
÷

W W
f̂

This is via a transformation done by substituting 2 t - n = l.

Thus the frequency domain dilation equation can be represented as

ˆ ˆf f( ) =
1

2 2 2
W

W W
H

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

where

n

j n

h n e
=

2[ ]
-¥

¥ -

å
W

is DTFT of h[.] at 
W
2

.
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Therefore,

ˆ ˆf f
W
2

= (0)
N

æ

è
ç

ö

ø
÷

ˆ ˆf f( ) =
1

2 2
(0)

=1

W
W

m

N

m
HÕ æ

è
ç

ö

ø
÷

ì
í
î

ü
ý
þ

for finite W where f(0) = constant. Therefore, we can express the Fourier transform f̂( )W  completely in 

terms of product of dilated LPF transfer function H( )W  as above.

The product of dilated terms in the frequency domain implies the convolution of impulse response h n[ ], 

subject to above dual equation of Fourier transform.

Now, consider the case of HAAR wavelet. When we carry out the same derivation (as above) for 

the HAAR scaling function f(t) and draw the magnitude response, it appears looks same as the sinc  

function with maximum density around zero frequency and thus depicting the low pass nature.

0 1 1 + ∆δ 0 δ Ω Ω + δ

Figure 4.8  h n[ ] and H( )W

Consider h n[ ] and its Fourier transform, as shown in Fig. 4.8.

As h n H e
F T

j n[ ] = {1,1} ( ) = (1 )
.

Û + -W W

 
since h n H

F T

[ ] ( )
.

Û W

h
n

a
a H a

F Té

ëê
ù

ûú
Û

.

| | . ( )W

Here d  ® 0 imply moving towards the impulse function.Thus, we have train of impulses corresponding 

to the impulse response h[n].

Now, consider a term

m

N

m
H

=1

1

2 2
Õ æ

è
ç

ö

ø
÷

W

Let us take first N = 3 for our convenience.
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H H H
W W W
2

.
4

.
8

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

Now put 
W
8

= l .

Hence, the product be H H H(4 ). (2 ). ( )l l l

In time domain H(4 )l  means h n[ ] upsampled by 4 and H(2 )l  is h n[ ] upsampled by 2.

Now, we have to find out the convolution,

h n[ ] *(h n[ ] up-sampled by 2)* (h n[ ] up-sampled by 4).

This process can be carried out by following the steps depicted in plots shown above. We have h n[ ] shown 

in Fig. 4.8, (h n[ ] upsampled by 2) in Fig. 4.9 and convolution of these both, i.e h n[ ]*(h n[ ] upsampled 

by 2) in Fig. 4.10.

0 2 4 t

Figure 4.9  h n[ ] upsampled by 2

0 1 2 3 4 t

Figure 4.10  h n[ ]*(h n[ ] upsampled by 2)

Now, consider (h n[ ] upsampled by 4) as shown in Fig. 4.11. The plot shown in the figure convolves with 

impulse response (h n[ ] upsampled by 4) to yield Fig. 4.12.

Now, replace 
W
8

= l  according to our previous assumption. Since 
W
8

 means expansion in the frequency 

domain, hence we need to contract signal by the same factor in the time domain. Hence, contracting the 

resulting convolution term by a factor of 8 we get a plot as shown in Fig. 4.13.

0 4 t

Figure 4.11  h n[ ] upsampled by 4
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0 42 6 8 t

Figure 4.12  h n[ ]*( [ ]h n  upsampled by 2)*(h n[ ] up-sampled by 4)

0 1 t

Figure 4.13  after substituting 
W
8

= l

If we consider N = 8 and the higher indices so on on, i.e., moving towards the infinite iterations, the last 

of these impulses moves closer and closer to 1. Thus, we are obviously moving towards the continuous 

signal from 0 to 1 in time domain, as shown in Fig. 4.14, known as scaling function f(t).

Similarly, we can construct the wavelet function as it is a function of basis function.

y f( ) = [ ] (2 )
=0

t g n t n
n

¥

å -

In terms of Haar wavelet g n[ ] = {1, 1}-

y f f( ) = (2 ) (2 1) = 1t t t N- - for

0 1

1

time

Figure 4.14  After infinite iterations

Example 4.8.2

Let the Fourier transform of y (t) be ŷ  ( )W  then we have

ŷ y( ) = ( )W W

-¥

+¥ -ò t e dt
j t
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The same transformation in the integral and DTFT of g[n] is being assumed as in the case of derivation 

of fourier transform of f(t).

Recursively we can write,

ˆ ˆy f
W W W
2

=
1

2 4 4
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è
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÷
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è
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÷
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Hence, the recursive equation can be written as,

Y f( ) =
1

2 2

1

2 4

1

2 8
.......... (0)W

W W W
G H H
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ˆ

y f( ) =
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2 2
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1

2 2
} (0)

=2

W
W W

G H
m

N

m

æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷Õ ˆ

Now, let N=3

G H H
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.
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.
8
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ø
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è
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Now put 
W
8

= l . Hence the product now transforms to G H H(4 ). (2 ). ( )l l l

In the time domain, G(4 )l  means g n[ ] upsampled by 4 and H(2l) signify h n[ ] upsampled by 2. Now, 

we need to find out the convolution h n h n[ ]* ( [ ] upsampled by 2) * (g n[ ] upsampled by 4) for wavelet 

function.

= [ ] (2 )
=0

-¥

+¥ ¥
-ò å -

n

j t
g n t n e dtf W

= [ ] (2 )
=0n

j t
g n t n e dt
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This convolution can be carried out in much a similar way as it was in the case of the scaling function 

convolution.

We have g n[ ] upsampled by 4 as shown in Fig. 4.15, h n[ ] upsampled by 2 as shown in Fig. 4.16 and h n[ ] 

* (h n[ ] upsampled by 2) as shown in Fig. 4.17.

0 4 t

Figure 4.15  g n[ ] upsampled by 4

0 2 t

Figure 4.16  h n[ ] upsampled by 2

0 2 4 t

Figure 4.17  h n[ ]*h n[ ] upsampled by 2

The convolution output obtained in Fig. 4.16 ( i.e, h n[ ]*h n[ ] upsampled by 2) is convolved with g n[ ] 

upsampled by 4 which is shown in Fig. 4.18.

Now, again considering the assumption 
W
8

= l , we contract the signal by factor 8 as explained 

above. Hence the resulted signal looks as shown in Fig. 4.19, which is achieved after performing the 

transformation 
W
8

= l .

0 2 4 8 t

Figure 4.18  h n[ ]*(h n[ ] upsampled by 2)*(g n[ ] up-sampled by 4)
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0 1/2 1 t

 

Figure 4.19  After substituting 
W
8
= l

Now, when we consider larger number of iterations the function keeps on moving closer to look 

like wavelet function. Thus, we reconstruct the wavelet function, y ( )t  by performing infinite iterations  

(N = ¥) and get the final plot, as shown in Fig. 4.20.

0 1/2 1 time

Figure 4.20  After infinite iterations

4.9  Z-domain Analysis of Multirate Filter Bank

In the few earlier sections we have established a very close relationship between the wavelet functions, 

the continuous time scaling function and the two channel filter bank. Convincingly, there is an intimate 

relationship between designing a two-band filter bank and a multiresolution analysis. After knowing the 

impulse response of the low pass filter in the filter banks, one can obtain the scaling function and hence 

the wavelet function by iterative convolution. Thus a pertinent reason for studying the two channel filter 

bank in great depth. We, now need to know how to deal with multi-rate operations. So let us begin with 

the two-channel filter bank.

4.10  Two-channel Filter Bank

A two-channel filter bank has an analysis side and a synthesis side, as shown in the Fig. 4.21. On the 

analysis side we have two filters namely the low pass analysis filter and the high pass analysis filter fol-

lowed by downsampling operations. On the synthesis side we have the upsampling operation followed 

by the synthesis low pass filter and the synthesis high-pass filter. The outputs of these got added forming 

the overall output, as shown in the figure.
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H0(z)

H1(z)

Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8

G0(z)

Y(z)

(Output)(Input)

2

2

2

+

2 G1(z)

X(z)

Analysis Side Synthesis Side

Figure 4.21  Two channel filter bank

H z
0
( ): Discrete time analysis low pass filter with angular cutoff frequency 

p

2

G z
0
( ): Discrete time synthesis low pass filter with angular cutoff frequency 

p

2

H z
1
( ): Discrete time analysis high pass filter with angular cutoff frequency 

p

2

G z
1
( ): Discrete time synthesis high pass filter with angular cutoff frequency 

p

2

The signals X Y Y Y Y Y Y Y, , , , , , ,
1 2 5 6 7 8

 are all of sequences of sampling rate x. The signal Y Y
3 4
,  are sequences 

of sampling rate 
x

2
.

The unusual and new blocks in the above-shown block diagram are the upsampler and downsampler; 

unusual in the sense that one is not exposed to these while discussing filters.

4.10.1 Analysis of Downsampler Operation

Let us consider the downsampler block in detail. A basic downsampling operation is as follows:

The above sequence of numbers represents the indices of the samples of a signal prior to downsam-

pling, the bottom sequences of numbers represents the resultant indices of the signal after subjecting it 

to downsampling operation. Hence a downsampling operation can be viewed as the combination of 2 

steps as follows:
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 1. It first “kills” some samples as explained below:

 where (.) represent the indices of the samples that are retained without killing and those with no braces 

represent the ‘killed’ samples of the given sequence.

 2. Then it compresses the resultant as shown above.

4.10.2 Analysis of Upsampler Operation

The upsampler outdoes the last ’compression’ step of a downsampler. Hence, it is also called Expander. 

The upsampler operation is invertible; we can get the original sequence, i.e. the sequence prior the 

upsampling. It converters a sequence of lower sampling rate to a sequence of higher sampling rate, 

whereas the downsampling operation is not invertible. The downsampler converts a sequence of higher 

sampling rate to a sequence of lower sampling rate. Downsampler and upsampler operations are taken 

care of by clocking rates at different points in the sytem. Consider the downsampling a sequence by M  

and let M = 5, this is as shown below:
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Consider the upsampling operation by M. assume M = 7: Then it is as follows:

4.10.3 Z-Domain Effect of Upsampling

X z x k z
u u

Mk[ ] = [ ]
-¥

+¥

å

X z X z
u

M[ ] = [ ]

X z X z
u

M[ ] = [ ]
1

Therefore, it is evident that the upsampling operation is invertible.

4.10.4 Z-Domain Effect of Downsampling

First “killing step” can be viewed as a “modulation” or “multiplication by killing sequence” (a window). 

We pass those values through the window which are retained. Window periodic sequence: P n P
W

[ ];  rep-

resents periodic and W  represents windowed.
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The process of killing is essentially multiplication by P n
W

[ ] for the appropriate M  and it 

can be written as shown in the figure where the bar on upsampler denotes the inverse upsampling 

operation.

x[n] xd[n]M

X M

PW[n]

xd[n]x[n]

Multiplying a sequence by a sequence in Z-domain is best done by exponentials. So, the noninvertible 

part of the downsampling operation must be replaced.

Xx[n]

PW[n]  

In other words, we need to express P n C
W

k

Q

k k

n[ ] =
=1

å a  DFT represents time-limited periodic sequences as 

the combination of exponentials, i.e., time-limited sequence means b b b
N0 1 1

, ,...., - . Its Discrete Fourier 

Transform (DFT) is given as:

B k b n e k N
n

N
j

N
nk

[ ] = [ ] = 0,1,..., 1
=0

1 2- -

å -
p

where

We can reconstruct b n[ ] by the IDFT equation defined as

b n
N

B k e n N
k

N
j

N
nk

[ ] =
1

[ ] = 0,1,..., 1
=0

1 2-

å -
p

where

even if reconstructed for n N> 1-  up to ¥, we can get a sequence periodic in N. The expression 

k

N
j

N
nk

B k e
=0

1 2

[ ]
-

å
p

 generates a periodic sequence say b n[ ].
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b n lN B k e
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 b n lN b n[ ] = [ ]+

For M = 2, we have a periodic sequence ...1 0 1 0 1 0 1 0 1 0 1...

where one period of the sequence is 1 0, taking DFT of the one period 1 0 is given as

B k e
j

[ ] = 1. 0 = 1
2

2
-

+
p

P N
W

[ ] for M = 2 is

=
1

2
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=0

1 2
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2
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This is the modulation opereation. So, it is followed by an inverse upsampler operation for the downs-

ampling operation to be completed.

X n X z X z
d
[ ] =

1

2

1

2

1

2
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Additional information

−2p 2p

Y(w)

w0

Figure 4.22  Signal spectrum before downsampling operation

−2p 2p

Yd(w)

w0

Figure 4.23  Signal spectrum after downsampling operation

Downsampling operation in time domain corresponds to aliasing in the frequency domain unless the 

given signal is sufficiently bandlimited in time. It can be pictorially explained as shown in Figs. 4.22 

and 4.23. Figure 4.22 shows the discrete time fourier transform of a signal without downsampling 

operation. The signal then subjected to the downsampling operation may result in aliasing in the spec-

trum of the signal, as shown in Fig. 4.23. It may not be with all downsampling cases as explained 

below:
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4.11  M-band Filter Banks and Looking Ahead

M-band filter banks are generalization of 2-band filter banks. For 2-band filter banks the signal is downs-

ampled and upsampled by a factor of 2 but in the case of generalized M-band filter bank, the sequence 

is sampled by a factor of M.

In next few sections a specific case of M = 3, called 3-band filter bank, is considered and analyzed in 

depth, which will help in understanding the generalization to any M.

4.12  3-band Filter Bank (Ideal)

Similar to 2-band filter banks, we can define 3-band filter banks too. This is shown in Fig 4.24.

H0(Z)

H1(Z)

H2(Z)

G0(Z)

G1(Z) Y(Z)X(Z)

G2(Z)

3

3

3

3

3 +

3

Figure 4.24  Analysis side and synthesis side of a 3-band filter bank

Example 4.10.1 — Example: Samplers.

Let x n[ ] is a discrete time signal given by

x n n
1
[ ] = [ 1,2,1,0,3, 2], = 0,1,..5- -

x n n
2
[ ] = [ 1,0,1,0,3,0], = 0,1,..5-

if the above signals are subjected to downsampling operation by a factor of 2, then the signal x n
1
[ ] 

will suffer aliasing and signal x n
2
[ ] will not suffer aliasing.

Hence the downsampling operation is not invertible when it result in the aliasing of the spectrum in 

the frequency domain, while it is invertible when it does not result in aliasing. Whereas the upsam-

pling operation is always invertible.

The aliasing that is noticed in the 2-band filter bank is because of the downsampling operations 

involved in the process.

In this chapter we have established the Z-transforms of the basic multirate operations in terms of the 

original Z-transforms of the sequences. We shall continue with this further in the next chapter to carry 

out the complete analysis of the two-channel filter bank.
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The above filter is true for any uniform 3-band filter bank, i.e., the length of all filters should be 

equal.

For ideal perfect reconstruction Y  = X , but in general for perfect reconstruction the output Y  can be a 

scaled or/and delayed function of X , also it can be a version of X  with an easily invertible operation.

4.12.1 Analyzing an Ideal 3-band Filter Bank

Conditions for perfect reconstruction:

H G
0 0

=

H G
1 1

=

H G
2 2

=

Frequency responses of the ideal filters

H0(e
jw)

−π/3

(a) (b) (c)

π/3 π/3 2π/3 2π/3ω ω ωπ

H1(e
jw) H2(e

jw)

Figure 4.25  (a)H
0
: a low pass filter, (b)H

1
: a band pass filter, (c)H

2
: a high pass filter

Figure 4.25(a–c) shows the frequency responses of the ideal filter banks for a 3-band filter bank. As you 

can see the frequency axis is divided into three parts from 0 to 
p

3
, 
p

3
 to 

2

3

p
 and 

2

3

p
 to p , thereby covering 

the complete axis.

Frequency effect of Upsampling

A(ejw) A(e3jw)3

Figure 4.26  Upsampling by 3

As can be seen there is a compression of frequency axis by a factor of 3. (Fig 4.26).

Suppose we have a spectrum, as shown in Fig. 4.27(a), its upsampled version will be as shown in  

Fig. 4.27(b) where frequency axis is compressed by a factor of 3.
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A(ejw)

(a) (b)

A(ejw)

1

1

β
β

−π −π/3 π/3 π ω

α β α β α
α

−π π ω

Figure 4.27  (a) Original spectrum,(b) Upsampled version by compressing frequency axis by a factor of 3

Frequency effect of Downsampling
Downsampling by a number creates aliases of the original spectrum, i.e., it will have original spectrum 

shifted and added. Figure 4.28 shows the downsampling by 3.

A(ejw) A(e3jw)3

Figure 4.28  Downsampling by 3

Downsampling is effectively multiplying the sequence by ..1001001001.. and then compressing it by 

throwing away the zeros obtained. Since ..1001001.. is a periodic sequence, it can be expressed in the 

terms of its IDFT by taking one period, finding its DFT and then IDFT giving us the sequence in form 

of modulates.

The above periodic sequence can be written as: 
1

3 =0

2
2

3

k

j kn

eå
p

. We multiply this expression with the 

sequence to be downsampled in frequency domain and then reduce the z3 to z to obtain the final downs-

ampled version.

Effectively,

a[n] a[n]. kn
j2π
3Σ

2
k = 0 e3

1
3

the above equation can be easily analyzed and solved in Z -domain; multiplying it and then replacing Z  

by Z
1

3 to get the downsampled sequence.

In Z -domain

a n A Z
Z transform

[ ] ( )®
-

 

a n e A Ze
k

j kn Z transform

k

j k

[ ]
1

3

1

3
( )

=0

2 2

3

=0

2 2

3å å®
-p p

 (4.1)
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now replace Z  by Z
1

3, we get

In sinusoidal frequency domain

 

The last equation in the above section shows that the downsampled version of sequence is obtained by 

shifting its DTFT on the frequency axis by 
2

3

p
 for k = 0,1,2 and adding. After adding the shifted DTFTs, 

scale it vertically by 
1

3
 and horizontally stretch by a factor of 3 to get the final downsampled by 3 version.

4.12.2 Interpretation of 3-band Filter Bank

Low frequency interpretation
Now, let us analyze the effect of the 3-band filter bank in a low frequency region on a prototype spectrum.

Figure 4.29 shows the prototype spectrum to be analyzed. Spreaded over the whole frequency range 

with a variable amplitude assuming 0 phase.

X(ejw)1

π−π ω

Figure 4.29  Prototype spectrum

Subject this spectrum to the low pass branch in the ideal 3-band filter bank, which has a cut off fre-

quency of 
p

3
 and a downsampler of 3.

Firstly, spectrum obtained after passing it through the low pass filter is shown in Fig. 4.30.
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−π −π/3 π/3

1

π ω

Figure 4.30  Low pass spectrum

Secondly, spectrum obtained after translating to multiples of 
2

3

p
 and adding is shown in Fig. 4.31.

−2π/3−π −π/3 π/3 2π/3

2/3

1

π ω

Figure 4.31  Translated by multiples of 
2

3

p
 and added

Lastly, the spectrum obtained by scaling vertically by a factor of 
1

3
 and horizontally by a factor of 3 is 

shown in Fig. 4.32.

1/3
2/9

π−π ω

Figure 4.32  Spectrum obtained after subjecting to analysis filter bank

Now, for synthesis we upsample it by 3 and pass it through the synthesis low pass filter. It retains the 

scaled version of the original filter and destroys the aliases. The spectrum obtained is as shown in  

Fig. 4.33.
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1/3

2/9

−π −2π/3 −π/3 π/3 2π/3 π
ω

Figure 4.33  Spectrum obtained after subjecting the sequence to low frequency branch

Aliases gets created in between the analysis and synthesis filters, because we wish to retain the total 

amount of data. The total number of samples per unit time at the input of the analysis filter is reduced 

to one-third at the outputs of each of the downsamplers. Thus, total amount of information remains the 

same at any point of time.

Middle branch interpretation
On the analysis side of the middle branch we have a bandpass filter between 

p

3
 and 

2

3

p
 followed by a 

downsampler of 3.

Let us take the same prototype spectrum, when subjected to a bandpass filter, we obtain a spectrum as 

shown in Fig. 4.34.

2/3

1/3

−π −2π/3 −π/3 π/3 2π/3 π

ω

Figure 4.34  Band pass version of the signal

After passing it through the bandpass filter, a downsampler by 3 acts on the spectrum. The spectrum is 

translated by shifts of multiples of 
2

3

p
 and added as shown in Fig. 4.35. To obtain the final downsampled 

version, the spectrum is scaled vertically by a factor of 
1

3
 and horizontally by a factor of 3. Spectrum 

obtained is as shown in Fig. 4.36.
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1/3 2/3

−2π/3−π/3 π/3 2π/3 π ω−π

Figure 4.35  Translated by multiples of 
2

3

p
 and added

1/9 2/9

π−π ω

Figure 4.36  Middle branch spectrum after subjecting to analysis side

Now, for synthesis we upsample it by 3 and pass it through the synthesis low pass filter. It retains 

the scaled version of the original filter and destroys the aliases. The spectrum obtained is as shown in 

Fig. 4.37.

1/9 2/9

−π −2π/3−π/3 π/3 2π/3 π ω

Figure 4.37  Reconstructed Middle branch spectrum
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Exercise 4.1

Prove that:

n

h n
Î
å


[ ] = 2

and

n

g n
Î
å


[ ] = 0

Where h n[ ] and g n[ ] are the impulse responses of the low pass and high pass analysis filters respec-

tively used in MRA.

Hint: The problem can be answered using the two dilation equations of the scaling and the wavelet 

function used in MRA. The two dilation equations are:

 

f f( ) = [ ] (2 )t h n t n
nÎ
å -


 (4.2)

 

y f( ) = [ ] (2 )t g n t n
nÎ
å -


 (4. 3)

Exercises

Integrating Eq. 4.2 with respect to t on both sides we get:

¥

-¥

¥

-¥

Î
ò ò å -f f( ) = [ ] (2 )t dt h n t n dt

n 

 
¥

-¥

Î
¥

-¥

ò å ò -f f( ) = [ ] (2 )t dt h n t n dt
n 

 (4. 4)

We will solve the integral term in the above summation:

Substituting 2 =t n k-  in the integral we get:

 
¥

-¥

¥

-¥

ò ò-f f(2 ) =
1

2
( )t n dt k dk  (4.5)

Now 
¥

-¥

ò f( )k dk is the area under the scaling function which is equal to one, i.e

 ¥

-¥

ò f( ) = 1k dk  (4.6)

Therefore from Eqs. (4.4), (4.5) and (4.6) we get:
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1 =
[ ]

2n

h n

Î
å


n

h n
Î
å


[ ] = 2

Similarly, integration dilation equation for the wavelet function, i.e Eq. (4.3) we get

¥

-¥

¥

-¥

Î
ò ò å -y f( ) = [ ] (2 )t dt g n t n dt

n 

 
¥

-¥

Î
¥

-¥

ò å ò -y f( ) = [ ] (2 )t dt g n t n dt
n 

 (4.7)

Now 
¥

-¥

ò y ( ) = 0t dt  i.e are under y ( )t

Thus, from Eqs. (4.5), (4.6) and (4.7), we have

n

g n
Î
å


[ ] = 0

Exercise 4.2 

Prove that for a causal system the impulse response h n[ ] = 0 for n < 0.

Hint: For a system to be causal its output should be independent of the future input, i.e it should be 

generated or caused as an effect of something (in our case an input). Thus by general sense effect 

cannot be produced before an event occurs ( i.e input), and therefore causal systems are independent 

of future input values.

Now, consider an impulse response defined for both positive and negative indices, say from -1 to 

+1, as in Fig.4.38.

Let the output sequence be y n[ ] and the input be x n[ ].

The input output relationship in the Z-domain is given as:

Y Z H Z X Z( ) = ( ) ( )

Y Z h Z h h Z X Z( ) = ) ( )
1 0 1

1

-
-+ +

 
Y Z h ZX Z h X Z h Z X Z( ) = ( ) ( ) ( )

1 0 1

1

-
-+ +  (4.8)

Taking inverse Z-transform of Eq. (4.8), we get

y n h x n h x n h x n[ ] = [ 1] [ ] [ 1].
1 0 1- + + + -
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We find that the present output is dependent on future input, i.e y n[ ] is dependent on x n[ 1]+  which is 

against our discussion of causality. Thus, to make the system causal, in above case h-1
= 0. Further, 

we can generalize it as:

For a system to be causal h n[ ] = 0 for n < 0.

h[n]

h
−1

−1 0 1 n

h0 h1

Figure 4.38  Impulse response h[n]

Exercise 4.3 

Why the frequency response of f( )t  should not have zero at w = 0?

Hint: Frequency response of f( )t  at w = 0 is constant because of low pass nature of f( )t .

Exercise 4.4 

Prove that if the length of wavelet filter is L then the support of scaling function f( )t is L -1?

Hint: As defined earlier, scaling function is given as,

ˆ ˆf f( ) = {
1

2
.

2
}. (0).

=1

W
W

m

N

m
HÕ æ

è
ç

ö

ø
÷

Now, the multiplication in frequency domain corresponds to convolution in time domain.

If we consider two functions x n[ ] extending from 0 to N and y n[ ] extending from 0 to M . Now, 

convolution of x n[ ] and y n[ ] will extend from 0 to N M+ .

Similarly, if we consider wavelet filter h n[ ] having length L that is extending from 0 to L -1.

Now, for each iteration filter support squeezes by a factor 
1

2
.

Hence the support of scaling function is the sum of

L L L L-æ

è
ç

ö

ø
÷ +

-æ

è
ç

ö

ø
÷ +

-æ

è
ç

ö

ø
÷ +

-æ

è
ç

ö

ø
÷ + +

1

2

1

4

1

8

1

16
............ ¥¥.

This sums up to L -1.
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Exercise 4.5 

How does the killing step of the downsampling operation is described mathematically?

Hint: Killing is nothing but multiplication of the given signal to be downsampled by a signal termed 

as windowed periodic sequence P n
W

[ ], which can be described as the combination of the exponen-

tials by means of the DFT (Discrete Fourier Transform) which then simply implies killing step of 

downsampling is mathematically done by subjecting the given signal to modulation property of the 

Z-transform.

Exercise 4.6 

Are the downsampling and the upsampling operations linear and shift invariant?

Hint: The downsampling and the upsampling operations are linear but not shift invariant, one can 

easily check the linearity by the principle of superposition. The signals obtained by downsampling 

the delayed signal will be different from the signal obtained by delaying the downsampled signal, 

so they are shift variant.





5.1  Introduction

In the previous chapter we studied Z -domain analysis of two-channel filter bank. This structure is often 

used in the implementation of discrete wavelet transform. So in this chapter we intend to analyze it 

completely by relating the Z -transform at every point of following structure and finding relationship 

between H Z
0
( ), H Z

1
( ), G Z

0
( ) and G Z

1
( ) which ensures perfect reconstruction at Y Z( ). We also aim to 

enhance our analysis to understand ‘conjugate quadrature filter banks’.

Consider two channel filter bank as shown in Fig. 5.1.

X(Z) Y(Z)

2H0(Z) G0(Z)

H1(Z) G1(Z)

2

22

Figure 5.1  Two-channel fi lter bank

For a two-channel filter bank which realizes the multirate systems effectively, the critical components are 

upsamplers and downsamplers. In chapter 4 we have seen that for 2-channel structures we use upsampling and 

downsampling by factor of 2 and for M-channel structures the usage gets extended to upsampling and downs-

ampling by factor of M. In Chapter 4 we have also studies the effect of upsampling and downsampling as:

 1. Effect of Upsampler

xin[n] xout,u[n]2

Figure 5.2  Upsampler

X Z X Z
out U in,

2( ) = ( ) (5.1)

Conjugate Quadrature 
Filter Bank

Chapter

Introduction

Z-Domain analysis of filter bank

Aliasing cancellation

Perfect reconstruction: Conjugate 
quadrature

Condition for perfect reconstruction

Polynomial as an input

Conjugate quadrature flter bank

5
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 2. Effect of Downsampler

xin[n] xout,d[n]2

xin[n] xout,d[n]2

Modulation

Inverse Up-sampling
(1n + (−1)n)

1

2

Figure 5.3  Downsampler

In Z -domain,

 
X Z X Z X Z

out D in in,

1

2

1

2( ) =
1

2
[ ( ) ( )]+ -  (5.2)

As proved earlier, downsampling by factor of 2 operation can be split into modulation by a sequence 

followed by inverse upsampling by 2. This follows from the fact that, upsampling by any factor is an 

invertible operation which implies that inverse upsampling is meaningful. Here, ( )
1

2Z  appears due to 

inverse up-sampler. If inverse sampler is not considered, then power of 
1

2
 will disappear.

Using this Z -transform, we can get a relation between Z -transform of input and Z - transform of 

output, provided it exists throughout the process of analysis and synthesis.

5.2  Z-domain Analysis of Filter Bank

To simplify the process, we name the output of each block as shown in Fig. 5.4.

X(Z) Y(Z)

2H0(Z) G0(Z)

H1(Z)
Y2(Z) Y4(Z) Y6(Z)

Y1(Z) Y3(Z) Y5(Z)

Y8(Z)

Y7(Z)

G1(Z)

2

22

Figure 5.4  Filter bank with notations
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With this notations, Z -transform at each point can be written quite easily. It is seen that Y Z
1
( ) and Y Z

2
( ) 

are simply X Z( ) passed through filter H Z
0
( ) and H Z

1
( ) respectively.

  
Y Z H Z X Z

1 0
( ) = ( ) ( ) (5.3)

 
Y Z H Z X Z

2 1
( ) = ( ) ( ) (5.4)

We can write the relation between Y Z
3
( ) and Y Z

4
( ) in terms of Y Z

1
( ) and Y Z

2
( ) respectively. But if we 

notice the steps for downsampling, then it is clear that inverse upsampling operation needed for downs-

ampling cancels with upsampler leaving only modulation part as a combined effect of downsampling 

and upsampling. Thus it becomes easy to jump from Y Z
1
( ) and Y Z

2
( ) to directly Y Z

5
( ) and Y Z

6
( ) respec-

tively (Fig. 5.5). This strategy is quite useful in analyzing multi-rate system particularly when downs-

ampler is followed by upsampler. Thus it follows that,

Y1(Z) Y5(Z)

(1n + (−1)n)
1
2

Figure 5.5  Jumping across up and down sampler

 
Y Z Y Z Y Z

5 1 1
( ) =

1

2
{ ( ) ( )}+ -  (5.5)

  
Y Z Y Z Y Z

6 2 2
( ) =

1

2
{ ( ) ( )}+ -  (5.6)

The important point is that from this point on, we have contribution from X Z( ) as well as X Z( )- . 

Significance of X Z( )-  will be dealt with later on. Once we have Y Z
5
( ) and Y Z

6
( ) we can easily go back 

and write for Y Z
3
( ) and similarly Y Z

4
( ) as follows.

 
Y Z Y Z

3 5

1

2( ) = ( ) (5.7)

 
Y Z Y Z

4 6

1

2( ) = ( ) (5.8)

Jumping across upsampler and downsampler is useful since it brings us quickly to output. We are only 

one step away from output which can be easily achieved as

 
Y Z Y Z Y Z( ) = ( ) ( )

7 8
+  (5.9)

where Y Z
7
( ) and Y Z

8
( ) are given by

  
Y Z Y Z G Z

7 5 0
( ) = ( ) ( ) (5.10)

 
Y Z Y Z G Z

8 6 1
( ) = ( ) ( ) (5.11)
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where

 
Y Z H Z X Z

2 1
( ) = ( ) ( ) (5.12)

 
Y Z H Z X Z

2 1
( ) = ( ) ( )- - -  (5.13)

In total, we can write

 
Y Z Z X Z Z X Z( ) = ( ) ( ) ( ) ( )

0 1
t t+  (5.14)

where

 
t

0 0 0 1 1
( ) =

1

2
{ ( ) ( ) ( ) ( )}Z G Z H Z G Z H Z+  (5.15)

 
t

1 0 0 1 1
( ) =

1

2
{ ( ) ( ) ( ) ( )}Z G Z H Z G Z H Z- + -  (5.16)

This implies that Y Z( ) is a linear combination of X Z( ) and X Z( )-  in Z -domain. If the term X Z( )-  

would not have been there, Y Z( ) would have simply be the X Z( ) passed though a filter with func-

tion t
0
( )Z  like a LSI system. Dependence on X Z( )-  is what brings the trouble in the equation. To 

understand this, let us first interpret what the term X Z( )-  spectrally means and what it reflects in the 

frequency domain.

Effect of X(–Z)

To understand effect of X Z( )−  let us go back to frequency domain by substituting z e
j← w

. It implies

X Z X e
j( ) = ( )( )− ±w p

i.e. we are shifting the spectrum of X e
j( )w  by +p  or −p . Due to periodicity on the w axis of 2p, shift-

ing by +p  or −p  is equivalent. The impact of this shift can be best understood by taking an example.

1

X(ej(w))

−p p ωp

2
0

−

p

2

Figure 5.6  Spectrum of X( )w

Here X e
j( )w  is the Fourier transform of some sequence x n[ ] as shown in Fig. 5.6. But this is just the 

principal interval of w axis. Actually, X e
j( )( )w  looks as shown in Fig. 5.7.

R
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X(ej(w))

−p p w−2p 2pp

2
0

1

−

p

2

Figure 5.7  Periodic nature of spectrum of X( )w

After shifting by +p  or -p , spectrum becomes, as shown in Fig. 5.8.

1

X(w ± p)

A A A A

−p
p

2
0− p wp

2
−

Figure 5.8  Spectrum of X( )w  after shift of ±p

Thus it is evident that shifting by +p  or -p  is same. Notation A and A is justified since for real x n[ ] 

which is a general case, X e
j( )w  has a conjugate symmetry.

The spectrum can be redrawn by shifting the X e
j( )w  by +p  or -p . For clarity in future, X e

j( )w  is 

written as X( )w  . We mark the edges of spectrum as A and A carefully.

X(w ± p)

X(ω)

AA
A

A

−p
p

2
0− p w

p

2

Figure 5.9  Spectrum of X( )w  in the principal interval
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A, which has been shifted to region p  to 
3

2

p
, is repeated in region -p  to -

p

2
. In Fig. 5.9, solid line rep-

resents X( )w p±  while dashed line represents original X( )w . We see clearly from the figure how the 

position of A and A has been modified from its original position. The so-called negative frequencies 

between 
-p
2

 and 0 now appear between 
p

2
 and p . This results in two changes:

●● The order of frequency has been reversed. Frequency, which was initially ordered as 0 to 
-p
2

 has 

now been reordered between 
p

2
 and p . Larger frequency has now become smaller and vice versa. 

For example frequency 
p

4
, which was larger than 

p

8
, appears as a smaller frequency in shifted 

spectrum.
●● The frequency itself has changed. In other words, frequencies have attained a false identity.

This is exactly the same phenomenon as aliasing. It occurs in sampling if the input signal is not sampled 

with the adequate rate. It has occurred due to the down-sampler used in the process. By using the 

 downsampler, we have allowed the possibility of aliasing. It is due to this fact that term X Z( )-  is called 

aliasing term. In two channel filter bank where we want perfect reconstruction, this aliasing should be 

absent. Perfect reconstruction means after you analyze (decompose), and finally reconstruct (synthesis), 

Y Z( ) is exact replica of X Z( ).This condition is fulfilled when the filters are chosen properly, for example 

as in case of Haar. Thus in general term X Z( )-  is troublemaker. The first step to ensure the prefect 

reconstruction is to do away with the aliasing term.

5.3  Aliasing Cancellation

When we say that we do not want aliasing to appear at the output it essentially means that t
1
( ) = 0Z . In 

terms of filter response we want

G Z H Z G Z H Z
0 0 1 1
( ) ( ) ( ) ( ) = 0- + -

If we explicitly express the synthesis filter in terms of the analysis filter we can easily ensure that 

t
1
( ) = 0Z . Expressing synthesis filter as required can be done by simply rearranging this equation.

 

G Z

G Z

H Z

H Z

1

0

0

1

( )

( )
=

( )

( )
-

-

-
 (5.17)

Very simple choice for this condition is:

 
G Z H Z

1 0
( ) = ( )± -

 
G Z H Z

0 1
( ) = ( ) -  (5.18)

This is a simple choice but definitely not the only choice. We can allow the factor common in both numer-

ator as well as denominator, which eventually gets cancelled when we divide them. So more generally,

 
G Z R Z H Z

1 0
( ) = ( ) ( )± -  (5.19)

 
G Z R Z H Z

0 1
( ) = ( ) ( ) -  (5.20)

where R Z( ) is factor cancelled. Interpretation of G Z H Z
1 0
( ) = ( )± -  can be shown as follows. Ideally, 

H Z
0
( ) is a low pass filter with cutoff frequency of 

p

2
 and frequency spectrum as shown in Fig. 5.10.
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1
H0(Z)

−p
p

2
0−

p w
p

2

Figure 5.10  Spectrum of ideal low pass filter

Then H Z
0
( )-  has spectrum as shown in Fig. 5.11.

−p
p

2
0

1

−

p w
p

2

H0(−Z)

Figure 5.11  Spectrum of ideal high pass filter

 This is nothing but a spectrum of ideal high pass filter with cutoff 
p

2
. Thus relationship G Z H Z

1 0
( ) = ( )+ -  

makes a lot of sense for ideal filter. Same analogy goes for G Z H Z
0 1
( ) = ( )- - . Since this is just a mag-

nitude plot, effect of minus sign is not visible here. It only adds additional phase of ±
p

2
 to the system.

Thus, we see that how this simple choice for G Z
0
( ) and G Z

1
( ) makes sense for an ideal filter. If we gen-

eralize our choice with factor R Z( ), there is slightly more modification than just low pass to high pass 

and vice-versa. With making this choice we have completed the first step towards perfect reconstruction. 

Next step is to prove the perfect reconstruction property.

5.4  Perfect Reconstruction: Conjugate Quadrature

In the last few sections we have dealt with two channel filter bank in detail. We had noted the effects of 

going past a downsampler and an upsampler in the Z-domain. Some of its important points are/noted 

as follows.

Input : x n X Z
Z[ ] ( )¾ ®¾



172 Multiresolution and Multirate Signal Processing

Output : y n Y Z
Z[ ] ( )¾ ®¾

Analysis side has low pass filter and high pass filter with system functions H Z
0
( ) and H Z

1
( ). Synthesis 

side has Low Pass Filter and High Pass Filter with system functions G Z
0
( ) and G Z

1
( ). Output is

 
Y Z Z X Z Z X Z( ) = ( ) ( ) ( ) ( )

0 1
t t+ -  (5.21)

X(-Z) is called the ‘alias’ term and hence t
1
( )Z  is called Alias System Function. We call it a system func-

tion, but it is incorrect. The word is a misnomer because when there is an alias term the system is not 

linear and shift invariant. For alias cancellation we want t
1
( )Z  to be equal to zero. Then system becomes 

Linear Shift Invariant(LSI).

 
t

1 0 0 1 1
( ) =

1

2
{ ( ) ( ) ( ) ( )}Z G Z H Z G Z H Z- + -  (5.22)

For t
1
( ) = 0Z

 

G Z

G Z

H Z

H Z

1

0

0

1

( )

( )
=

( )

( )
-

-

-
 (5.23)

Simply equating numerator and denominator we get

 
G Z R Z H Z

1 0
( ) = ( ) ( )± -  (5.24)

 
G Z R Z H Z

0 1
( ) = ( ) ( ) -  (5.25)

Here, if H Z
1
( )-  is a high pass filter, G Z

0
( ) becomes low pass filter. If t

1
( )Z  becomes zero, the system 

becomes LSI as Y Z Z X Z( ) = ( ) ( )
0
t  with t

0
( )Z  being a system function.

5.5  Condition for Perfect Reconstruction

We want to decompose a signal and reconstruct it back with ideal case as X Z Y Z( ) = ( ). Even tolerable 

changes in the output can be accepted.

What could be tolerable or acceptable changes?
In case of time systems, time delays are tolerable since finite time is needed to process the signal at 

analysis and synthesis side. Even an output multiplied by a constant is acceptable. So, in perfect recon-

struction process t
0
( )Z  takes the form of

 
t

0 0
( ) =Z C z

D-  (5.26)

where C
0
 is a constant. Ideally, we would like to have t

0
( ) = 1Z  for all z. But this makes the system 

noncausal. So, a factor Z D-  is allowed to take care of causality.

In Haar Filter Bank, shown in Fig. 5.12, we have following

t
1 0 0 1 1
( ) =

1

2
{ ( ) ( ) ( ) ( )}Z G Z H Z G Z H Z- + -

                       

=
1

2
(1 )

1

2
(1 )

1

2

1
1

1
1

+
−




± −

+
















−

−
−

−

z
z

z
z

 (5.27)
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X(Z) Y(Z)

2H0(Z) G0(Z)

H1(Z)
Y2(Z) Y4(Z) Y6(Z)

Y1(Z) Y3(Z) Y5(Z)

Y8(Z)

Y7(Z)

G1(Z)

2

22

Figure 5.12  The haar filter bank

For alias cancellation we need t
1
( )z  to be equal to zero. This gives G z z

1

1( ) = (1 )- - - . System functions 

of Haar Filter Bank are as follows

 
H Z

z
0

1

( ) =
1

2

+ -

 
H Z

z
1

1

( ) =
1

2

- -

 
G Z z

0

1( ) = 1+ -

G Z z
1

1( ) = (1 )- + -

We find the value of t
0
( )Z

t
0 0 0 1 1
( ) =

1

2
{ ( ) ( ) ( ) ( )}Z G Z H Z G Z H Z+

                       

=
1

2
1

1

2
1

1

2

1
1

1
1

+( ) +æ

è
ç

ö

ø
÷ - -( ) -æ

è
ç

ö

ø
÷

ì
í
ï

îï

ü
ý
ï

þï
-

-
-

-

z
z

z
z

 = 1
z

-  (5.28)

This represents a delay of one sample. This delay is required on account of causality. If we try to avoid 

this delay we must have noncausality either on synthesis side or on analysis side.

Simplest possibilty for alias cancellation is G Z H Z
0 1
( ) = ( )± . In case of Haar Filter Bank

  
H Z

z
1

1

( ) =
1

2

- -

H Z
z

1

1

( ) =
1

2
-

+ -

Essentially, G Z R Z H Z
0 1
( ) = ( ) ( )± -  condition should be satisfied. More generally for alias cancellation 

we need
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G Z R Z H Z
0 1
( ) = ( ) ( )± -

 
G Z R Z H Z

1 0
( ) = ( ) ( ) -

In particular, for Haar case we have chosen R Z( ) = 2 and G Z
1
( ) as

G Z H Z
1 0
( ) = 2 ( )-

                      
= { 2[

1

2
(1 )]}1- + -

z

           = (1 )1- - -
z

5.6  Polynomial as an Input

Haar MRA has many hidden concepts. However, we need to study what is the problem associated with 

Haar MRA. In other words, we should learn how Haar is a beginning of a family of Multiresolution 

Analysis.

X(Z)

2H0(Z)

H1(Z)
zero output

2

Figure 5.13  Output for constant input

Example 5.6.1 — Effect of splitting on high pass branch. 

To have more insight we look at low pass and high pass filters from a different perspective. It can 

be understood by taking an example of constant sequence as input and noting the output at different 

points in filter bank.

x n C n

H Z z

x n x n
n

[ ] =

( ) =
1

2
(1 )

[ ] [ 1]

2
= 0

1

1

1

for all

for all

-

- -

-

If there is a constant component in the input sequence of Haar filter bank, it is destroyed by high pass 

filter. This is depicted in Fig 5.13.

In Haar filter bank we have a term (1 )1- -
z . What could be the situation in case of multiple or 

cascaded (1 )1- -
z ?
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1 − z
−1 1 − z

−1

Figure 5.14  Cascade system

As we increase seniority in this family, there are more and more (1 )1- -
z  terms on high pass branch. 

Effectively, we are reducing degree of higher order polynomial on high pass branch. We are killing 

them on high pass branch, i.e. we are transferring them on low pass branch. We are thus retaining more 

smoothness on low pass branch. In addition to this we want the same filters on analysis and synthesis 

side of filter bank. This gives us a class of filter bank known as Conjugate Quadrature Filter bank. 

Describing equations of these filter banks is very simple.We start from aliasing cancellation condition

G Z H Z
0 1
( ) = ( )±

G Z H Z
1 0
( ) = ( )

We choose (inspired by Haar)

G Z H Z
0 1
( ) = ( )- -

G Z H Z
1 0
( ) = ( )- -

Here we keep away a factor of 2 that can be absorbed by constant C
0
. We need t

1
( ) = 0Z  (by con-

struction) and t
0
( )Z  as

 
t

0 1 0 0 1
( ) =

1

2
{ ( ) ( ) ( ( )) ( )}Z H Z H Z H Z H Z- + - -  (5.29)

If we assume an input having polynomial components, then every instance of (1 )1- -
z  reduces 

degree of polynomial by one. A Taylor series is a polynomial expansion of input and if we subject 

some terms in the polynomial expansion to (1 1- -
z ) we have interpretation like this

a n a n a n a x n
M M M

M0 1

1

2

2 = [ ]+ + + +- -


where x[n] is polynomial input sequence. Every time this is subjected to term (1 1- -
z ), what happens is

a n a n a n a a n a n a
M M M

M

M M

M0 1

1

2

2

0

1

1

2{ ( 1) ( 1) }+ + + + - - + - + +- - - -
 

When we expand this, coefficient of nM is a a
0 0

- , i.e. zero.

Each time we subject this polynomial to action of (1 1- -
z ), we are reducing degree by one. For 

example, consider sequence of polynomial degree one (say 3 5n + )

output n n= (3 5) [3( 1) 5]+ - - +

    = 3 5 3 3 5n n+ - + -

 
= 3 for all n

Hence coefficient of highest power of n vanishes. These terms are (1 )1- -
z  on high pass branch and 

can not be on low pass branch. We build up whole family of MRA with more and more (1 )1- -
z  

terms on high pass branch. That is what is called as Daubechies family of MRA.
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As H Z
1
( ) is a high pass filter (in synthesis side) H Z

1
( )-  becomes a low pass filter with cutoff 

p

2
. 

Therefore, the first term in above expression (Eq. 5.29) represents cascade of two low pass filters and 

the second term represents a cascade of two high pass filters with cutoff 
p

2
.

In case of Haar there is relation between H
0
 and H

1
. For perfect reconstruction, t

0
( )Z  should be 

equal to a delay and some multiplying constant. In Haar case,

H Z
z

H Z
1

1

0
( ) =

1

2
= ( )-

+ -

We shall in general note that H Z
0
( ) should be related to H Z

1
( )- . Choosing H Z

1
( ) to be slightly modi-

fied from H Z
0
( )-  as

H Z z H Z
D

1 0

1( ) = ( )- --

For Haar case,

z H Z
Z- -

-

-
-1

0

1
1

( ) =
1

2

In general case for H Z z H Z
D

1 0

1( ) = ( )- -- , t
0
( )Z  becomes

t
0 0 0

1

0 0

1( ) =
1

2
{ ( )(( ) ) ( ) ( )( ) ( )}Z H Z Z H Z H Z Z H Z

D D- - - -- - - -

                   
=

1

2
{ ( )( ) ( )( 1 ) ( )( ) (( ) )}

0 0

1

0 0

1
H Z Z H Z H Z Z H Z

D D D- - - - -- - - -  (5.30)

In Eq. (5.30), we choose value of D and put condition on H
0
, then this becomes perfect reconstruction 

situation, which we shall discuss in more detail in the next section.

5.7  Conjugate Quadrature Filter Bank

We continue in this section to build upon the particular class of filter bank, which we have introduced 

earlier called a Conjugate Quadrature Filter (CQF) bank. For the perfect reconstruction system we must 

first do away aliasing. The alias cancellation equation for the two-band filter bank is given by

 
G Z H Z G Z H Z

0 0 1 1
( ) ( ) ( ) ( ) = 0- + -  (5.31)

 

G Z

G Z

H Z

H Z

1

0

0

1

( )

( )
=

( )

( )
-

-

-
 (5.32)

Equating the numerator and denominator we get the relation between G Z H Z G Z
0 1 1
( ), ( ), ( )-  and H Z

0
( )-  as

 
G Z H Z

1 0
( ) = ( )- -  (5.33)

 
G Z H Z

0 1
( ) = ( )-  (5.34)

The relation between the analysis HPF (high pass filter) and analysis LPF (low pass filter) called a con-

jugate quadrature relationship, is given by
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 H Z z H Z
D

1 0

1( ) = ( )- --  (5.35)

Here z D-  term is used to introduce causality. Putting Z e
j= w  in the Eq. (5.35), we get the frequency 

response equation as

        
H Z z H Z

D

Z e
j1 0

1

=
( ) = ( ) |- --

w

H e e H e
j j D j

1 0
( ) = ( )w w w- --

The magnitude response is given by

 
| ( ) | = | ( ) |

1 0
H e e H e

j j D jw w w− −−

| ( ) | = | || ( ) |
1 0

H e e H e
j j D jw w w- --

 
| ( ) | = | ( ) |

1 0
H e H e

j jw w- -

H Z
0
( ) is a Low pass filter with a real impulse response (real coefficients), therefore

H e H e
j j

0 0
( ) = ( )- w w

The magnitude response of LPF H Z
0
( ) is symmetric along the magnitude axis and phase response is 

anti-symmetric along the frequency axis w.

H e H e
j j

0 0

( )( ) = ( )- - - ±w w p

NOTE LPF with cutoff frequency HPF with c
With shift by on

: (
2

) (
( )

p
p w

 uutoff frequency
p

2
)

We have shown,

H Z z H Z
D

1 0

1( ) = ( )- --

For the perfect reconstruction the equation must satisfy,

                                    
G Z H Z G Z H Z C z

D

0 0 1 1 0
( ) ( ) ( ) ( ) =+ -

                            
H Z H Z H Z H Z C z

D

1 0 0 1 0
( ) ( ) ( ) ( ) =- - - -

( 1) ( ) ( ) ( ) ( ) =
0

1

0 0 0

1

0
- - - -- - - - - -D D D D

z H Z H Z H Z z H Z C z

We need the following for perfect reconstruction systems,

( 1) ( ) ( ) ( ) ( ) =
0

1

0 0 0

1

0
- - - -- - -D

H Z H Z H Z H Z C

If we consider the Haar filter then the relationship between H Z
0
( ) and H Z

1
( ) is given by,

H Z z
0

1( ) = 1+ -

H Z z
0

1( ) = 1- --

The above equation is non-causal so to make it causal by inserting delay, we get the below equation,

z H Z z z
D D- - -- -

0

1( ) = (1 )

Here z D-  retains causality.
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If D is odd,

       
H Z H Z H Z H Z C

0 0

1

0 0

1

0
( ) ( ) ( ) ( ) =- -+ - - -

H Z H Z H Z H Z
0 0

1

0 0

1( ) ( ) ( ) ( ) =- -+ - - Constant

Putting Z e
j= w  , we get the above equation in the frequency domain as,

H e H e H e H e
j j j j

0 0 0 0
( ) ( ) ( ) ( ) =w w w w- -+ - - Constant

For real impulse response we have,

                                                 
H e H e

j j

0 0
( ) = ( )- w w

H e H e H e H e
j j j j

0 0 0

( )

0

( )( ) ( ) ( ) ( ) =w w w p w p+ ± ± Constant

                      
| ( ) | | ( ) | =

0

2

0

( ) 2
H e H e

j jw w p+ ± Constant

This equation is called the power complementary equation.

For perfect reconstruction system,

H Z H Z H Z H Z
0 0

1

0 0

1( ) ( ) ( ) ( ) =- -+ - - Constant

Lets us assume k
0 0 0

1( ) = ( ) ( )Z H Z H Z
−

 
k k

0 0
( ) ( ) =Z Z+ - Constant  (36)

We are going to choose even length of H Z
0
( ) , i.e. D ® Odd

h n h h h h

n

D

D

1 0

0

1 2
[ ] :
↑ ↑ ↑



Similarly, H Z
0

1( )-  is given by,

h n h h h h

n

D

D

2 2 1 0

0

[ ] :
↑ ↑

−
↑



Here, H Z H Z
0 0

1( ) ( )-  corresponds to its convolution in time domain

( ) ( )
0

0

1 2 2 1 0

0

h h h h h h h h
D

D

D

D
↑ ↑ ↑

−
↑

∗ 

Let the impulse response h k[ ] be as given below

h k h h h h
D

D

[ ] :
0

0

1 2
↑ ↑



And impulse response g k[ ], as given below, which is mirror image of h k[ ], that means g k h k[ ] = [ ]-

g k h h h h
D

D

[ ] :
2 1 0

0
↑
−

↑


Similarly, g n k[ ]-  is given below

g n k h h h h

n

D

n D

[ ] :
0 1 2

−
↑ ↑

+
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The convolution between h k[ ] and g k[ ] is given as

k
0

=

=

[ ] = [ ] [ ]n h k g n k
k

k

−∞

+∞

∑ −

Here h k[ ] is causal and filter length is ( 1)D + .

The convolution at the sample n is k 0
[ ]n . Shown below is the multiplication of h k[ ] and g k[ ]-  (which 

is shifted by n samples)

k n h h h h h h

h h h

n

n n0 0 1 2 1

0 1 2

[ ] :

0

... ......
D+

↑

↑

In Z -domain k
0 0 0

1( ) = ( ) ( )Z H Z H Z
- .

The m th  sample of the filter k m
0
[ ] is < [ ], [ ] >h k h k m±

Let m be equal to 2 and filter length 4 ( = 3)D

k h h h h

h h h h

0 0 1 2 3

0 1 2 3

[2] :

0

2

↑

↑

k h h h h
0 0 2 1 3
[2] = +

k h h h h

h h h h

0 0 1 2 3

0 1 2 3

[ 2] :

2 0

−

↑ ↑
−

If m = 2-  and filter length 4 ( = 3)D

k h h h h
0 0 2 1 3
[ 2] =- +

That means the convolution between h k[ ] and g k[ ], i.e. k
0
[ ]n  and k

0
[ ]−n  is symmetrical.

k k
0 0
( ) ( ) =Z Z+ - Constant

1

2
{ ( ) ( )} =

0 0
k kZ Z+ - Constant

1

2
{ ( ) ( )}

0 0
k kZ Z+ −  represents nonzero sample value at the even location and zero sample value at the 

odd location. Let k
0
( )Z  correspond to the sequence k n

0
[ ], 

1

2
{ ( ) ( )}

0 0
k kZ Z+ − , an impulse response so 

obtained is shown below.
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multiplication

non zero at even zero locationk n
0
[ ] &

........

® Ä ® -

›

11 0 1 0 1 0 1 0

0

.......

›

Consider the equation 
1

2
{ ( ) ( )}

0 0
k kZ Z+ − = constant. Taking inverse Z  transform on both sides, we 

obtain impulse at zero location on Right Hand Side (since inverse Z  transform of a constant is an 

impulse),thus we want the nonzero sample value only at zero location and zero sample value for odd 

and even location.

So, at the even location m l= 2  and m ¹ 0 and ( )l Î , we want zero sample value.

Let Daubechies filter with length 4( = 3)D

h n h h h h
0 0

0

1 2 3

3

[ ] :
↑ ↑



In the Haar case, (1 )1- -
z  represents a High pass filter.

Here, we consider the Daubechies filter with length 4, so two (1 )1- -
z  terms in the High pass filter which 

means (1 )1 2- -
z  factor in HPF.

Similarly, low pass filter has a factor (1 )1 2+ -
z .

A Daubechies low pass filter with length 4 is given by

H Z h h z h z h z
0 0 1

1

2

2

3

3( ) = + + +- - -

 We can write this equation in the factor of (1 )1 2+ -
z  that is

H Z z B z
0

1 2

0

1( ) = (1 ) (1 )+ +- -

 In the above equation, we need three zeros.

Two zeros are already chosen at unit circle which are - -1, 1 and one zero is selected based on the value 

of B
0
. This value can be obtained by comparing the above two equations.

Expanding the above two equations

 
H Z z z B z

0

1 2

0

1( ) = (1 2 )(1 )+ + +- - -

H Z B z B z B z
0 0

1

0

2

0

3( ) = 1 (2 ) (1 2 )+ + + + +- - -

 The dot product of the impulse response of LPF with its even shifts must be zero. We will use this con-

straint to find the value of B
0
 in the next chapter.
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−p −3p/4 −p/2−p/4 p/4 p/2 3p/4 p w0

H0(-Z)

Figure 5.16  Spectrum of H Z
0
( )-

Exercise 5.1 

Consider H Z
0
( ) to be an ideal Band Pass Filter with cutoffs 

p

4
 and 

3

4

p

 as shown in Fig. 5.15. Find 

and sketch the spectrum of H Z
0
( )- .

H0(Z)

−p p

2
0

−

p wp

2

Figure 5.15  Spectrum of H Z
0
( )

Hint: Replacing Z  by -Z  in H Z
0
( )-  implies shifting the spectrum by +p  or -p . But, due to the peri-

odicity of w axis, shifting by +p  or -p  are equivalent. Given H Z
0
( ) is a band pass filter, on shifting 

its spectrum by ±p  will result in a band stop filter as shown in Fig. 5.16 with band stop frequencies 
p

4
 and 

3

4

p
.

Exercises

Exercise 5.2  

Find Y
1
 to Y

9
 in the two channel filter bank after interchanging downsampler and upsampler as shown 

in Fig. 5.17.

Hint: It can be clearly seen that there is no effect of interchanging on Y
1
 and Y

2
. To calculate further 

we will use the Eqs (5.37) and (5.38) previously mentioned in this chapter representing the effects 

of upsampler and downsampler respectively.
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X(Z) Y(Z)

2H0(Z) G0(Z)

H1(Z)
Y2(Z) Y4(Z) Y6(Z)

Y1(Z) Y3(Z) Y5(Z)

Y8(Z)

Y7(Z)

G1(Z)

2

22

Figure 5.17  Modified two-channel filter bank

  
Y Z H Z X Z

1 0
( ) = ( ) ( )

 (5.37)

 
Y Z H Z X Z

2 1
( ) = ( ) ( ) (5.38)

now using (5.37),

 
Y Z Y Z

3 1

2( ) = ( ) (5.39)

 
Y Z Y Z

4 2

2( ) = ( ) (5.40)

now using (5.38),

 
Y Z Y Z Y Z

5 3

1

2
3

1

2( ) =
1

2
[ ( ) ( )]+ -  (5.41)

 
Y Z Y Z Y Z

6 4

1

2
4

1

2( ) =
1

2
[ ( ) ( )]+ -  (5.42)

substitute Y Z
3
( ) and Y Z

4
( ) from (5.39) and (5.40)

 
Y Z Y Z

5 1
( ) = ( ) (5.43)

 
Y Z Y Z

6 2
( ) = ( ) (5.44)

Y Z
7
( ) and Y Z

8
( ) are given by;

 
Y Z G Z Y Z G Z Y Z

7 0 5 0 1
( ) = ( ) ( ) = ( ) ( ) (5.45)

 
Y Z G Z Y Z G Z Y Z

8 0 6 0 2
( ) = ( ) ( ) = ( ) ( ) (5.46)

In total, we can write

 
Y Z Y Z Y Z( ) = ( ) ( )

7 8
+  (5.47)

 
Y Z H Z G Z H Z G Z X Z( ) = { ( ) ( ) ( ) ( )} ( )

0 0 1 1
+  (5.48)

From the above equations we can infer that there is no effect of a upsampler followed by a downs-

ampler on the signal magnitude or phase.
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Exercise 5.3 

Obtain the Z -transform of a general downsampler (down-sampling by a factor of M).

Hint: Downsampler can be broken down into two steps as modulation by a sequence and then 

inverse upsampling. General sequence for modulation in case of downsampling by a factor of M  can 

be written as:

 

1

=0

1 2

M
e

l

M j l

M

- -

å
p

 (5.49)

Using this equation, we can write the Z-Transform of downsampler by factor M  as:

 

X Z
M

X Z e
out d

l

M

in
M

j
l

M
,

=0

1 1
2

( ) =
1

( )
- -

å ´
p

 (5.50)

Exercise 5.4  

Obtain the output of M-channel filter bank.

Hint: Z -transform of M-channel filter bank, which has M  analysis filters denoted by H Z
0
( ), H Z

1
( ), 

× × × H Z
M -1

( ) and corresponding M  synthesis filter denoted by F Z
0
( ), F Z

1
( ) × × × F Z

M -1
( ), can be written 

as follows:

 

X Z
M

X Z e H Z e F
out d

l

M

in

j l

M

k

M

k

j l

M
k,

=0

1 2

=0

1 2

( ) =
1

( ( ) ( ( ))
- - - -

å å´ ´
p p

(( ))Z  (5.51)

(For further reading on filter banks, you can refer Multirate Systems and Filter Banks by 

P.P.Vaidyanathan).

Exercise 5.5 

Consider the cascade system given in Fig. 5.14. Input to the system is

3 5 12
n n+ +

Find the output and comment on its degree.

Hint: Output y
0
 after the first block is:

 
y n n n n n

0

2 2( ) = (3 5 1) (3( 1) 5( 1) 1)+ + - - + - +  (5.52)

 
y n n

0
( ) = 6 2+  (5.53)

Final output y(n) will be:

 
y n n n( ) = 6 2 (6( 1) 2) = 6+ - - +  (5.54)

Degree of output is lower than input by 2, which is expected as a block of 1-Z -1 lowers the degree 

of polynomial by 1.
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Exercise 5.6  

Consider the two-channel filter bank, whose two filters are given below:

 
H Z Z Z

0

1 2( ) = 1 + +- -

H Z Z Z Z
1

1 2 3( ) = 1- + -- - -

Find out filters G Z
0
( ) and G Z

1
( ) so that alias cancellation occurs.

Hint: For alias cancellation we should have:

 
t

1 0 1 1
( ) =

1

2
{ ( ) ) ( ) ( )}= 0Z G Z H Z G Z H Z(- + -  (5.55)

 

G Z

G Z

H Z

H Z

1

0

0

1

( )

( )
=

( )

( )
-

-

-
 (5.56)

Hence we get:

G Z H Z Z Z Z
0 1

1 2 3( ) = ( ) = 1- + + +- - -

G Z H Z Z Z
1 0

1 2( ) = ( ) = (1 )- - - - +- -

Exercise 5.7 

Consider a two-channel perfect reconstruction filter bank, as shown in Fig. 5.12.

H Z
0

1= (1 )- + -

Find the other three filters, namely H Z
1
( ), G Z

0
( ) and G Z

1
( )

Hint: We know

H Z Z H Z
D

1 0

1( ) = ( )- --

In this simple case, let us take D = 1. Therefore, H Z
1
( ) becomes

 
H Z Z Z

1

1( ) = (1 )- --  (5.57)

   
H Z

1
( ) = 1− Z -1

G Z
0
( ) = H Z

1
( )-  this gives, G Z

0
( ) = 1 + Z -1

   
G Z

1
( ) = - -H Z

0
( ) this gives, G Z

1
( ) = 1 − Z

-1

It can be verified that this filter bank satisfies both Alias Cancelation and PR condition.
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Exercise 5.8 

Why H Z
1
( ) is related to H Z

0
( )- ? Express H Z

0
( ) in terms of H Z

1
( ).

Sol. In a perfect reconstruction filter bank, analysis low pass filter and high pass filter are compli-

mentary filters, i.e. frequencies blocked by one filter must pass through another filter so that there 

is no loss of information and we can get a perfect reconstruction. H Z
0
( ) is a low pass filter. H Z

0
( )-  

has spectrum of shape similar to that of H Z
0
( ) but all frequencies shifted by p . It is a high pass filter 

which is closely related to H Z
1
( ). The exact mathematical relation is derived as follows:

we know

H Z Z H Z
D

1 0

1( ) = ( )- --

Replacing Z by - -
Z

1, we get

H Z Z H Z
D D

1

1

0
( ) = ( 1) ( )- --

On rearrangement, we get:

H Z Z H Z
D D

0 1

1( ) = ( 1) ( )- -- -

Assignment

Exercise 5.9  

Plot the frequency response (magnitude only) of (1 )1+ -
Z

n for n Î (1,2,3, )          





6.1  Introduction

In this chapter we will continue with the discussion of the Daubechies filter bank, which was briefly 

introduced in Chapter 5. The salient feature of Daubechies filter bank is that its construction depends 

on addition of polynomial of higher degree in filter transfer function. To be specific, more and more 

(1 )1- -
z  terms are utilized in high pass analysis filter bank.

 Ingrid Daubechies

Ingrid Daubechies (born 17 August 1954) is a Belgian physicist and mathematician. Between 2004 

and 2011 she was the William R. Kenan, Jr. Professor in the mathematics and applied mathematics 

departments at Princeton University, New Jersey. In January 2011 she moved to Duke University as a 

Professor in mathematics. She is the first woman president of the International Mathematical Union 

(2011–2014). She is best known for her work with wavelets in image compression. At Courant in 1986 

she made her best-known discovery: based on quadrature mirror filter-technology she constructed 

compactly supported continuous wavelets that would require only a finite amount of processing, in 

this way enabling wavelet theory to enter the realm of digital signal processing.

6.2  Impulse Response of Daubechies Analysis Low Pass Filter

The first member of the Daubechies family is the Haar filter bank itself. In the second member of 

Daubechies family the analysis side high pass filter has a factor of (1 )1 2- -
z . Now, high pass filter of 

analysis side is of form z H z
D- --

0

1( ), where H z
0
( ) is the analysis side low pass filter. So H z

0
( ) should 

have a factor of (1 )1 2+ -
z .

Daubechies Family

Chapter

Introduction

Impulse response of Daubechies 
analysis low pass filter

Calculation of scaling function

Daub-4 and Daub-6 design details

In search of scaling and wavelets 
coefficients

6
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Example 6.2.1 — D2 calculations.

It can be recalled that in the Daubechies family the filter lengths are always even. So, for the second 

member of the Daubechies family, filter length will be 4 and the order will be 3. So H z
0
( ) has 3 

zeros. Two of them are already specified to be at z = 1- . The third zero is to be determined to get 

complete transfer function. The complete transfer function is obtained as follows:

Let the impulse response be,
h n h h h h[ ] = [ ]

0 1 2 3

So h n[ ] is orthogonal to its even shifts, e.g. shifts of 2,4,6 etc. So the only non-trivial relation is 

obtained by the dot product of h n[ ] and h n[ 2]- .

h n h h h h[ ] = [ ]
0 1 2 3

h n h h h h

n

[ 2] = [...... ]
0 1 2 3

2

-

=

Hence their dot product is ( )
0 2 1 3

h h h h+  and because of orthogonality of dot product with respect to 

even shifts,

 
h h h h

0 2 1 3
= 0+  (6.1)

Now, system function can be expressed as,

 
H z h h z h z h z

0 0 1

1

2

2

3

3( ) = + + +- - -  (6.2)

Also, as H z
0
( ) has a factor of (1 )1 2+ -

z , so in general H z
0
( ) can be written as,

H z C z B z
0 0

1 2

0

1( ) = (1 ) (1 )+ +- -

where C
0
 is a constant.

Here two zeros are constrained at z = 1- . If we neglect the constant for the time being and then 

expanding the previous expression, we can write,

H z z z B z B z B z
0

1 2

0

1

0

2

0

3( ) = 1 2 2+ + + + +- - - - -

 
H z B z B z B z

0 0 0

2

0

3( ) = 1 (2 ) 1 (1 2 )+ + + + +- - -  (6.3)

Comparing the coefficients of powers of z-1 from Eqs. (6.2) and (6.3), we get,

h
0

= 1

h B
1 0

= 2 +

h B
2 0

= 1 2+

h B
3 0

=
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6.3  Calculation of Scaling Function

The next step is to calculate f ( )t  and y ( )t  from the calculated impulse response. To calculate the scaling 

function f ( )t  we have to compress and convolve h n[ ] iteratively. This is done as follows:

Let us treat h n[ ] as the set of coefficients of an impulse train containing only 4 impulses in the con-

tinuous time domain, such as the function in the continuous time domain is h t( ) such as,

 
h t h t h t T h t T h t T( ) = ( ) ( ) ( 2 ) ( 3 )

0 1 2 3
d d d d+ - + - + -  (6.8)

Putting this value in Eq. (6.1), we get,

(1 2 ) (2 ) = 0
0 0 0

+ + +B B B

Þ + +B B
0

2

0
4 1 = 0

Solving the above quadratic equation, we get,

 
B

0
= ( 4 2 3) / 2 = 2 3- ± - ±  (6.4)

Now, the implication of B
0
 is that the third zero of H z

0
( ) is at B

0
. For B

0
= 2 3- - , i.e. 

B
0

= 3.732− ,  the zero is outside the unit circle in the z-plane. Since B
0

> 1, this will not become 

the minimum phase implementation. The magnitude response being the same as required, there will 

be more phase delay and group delay in the system which is undesirable. But for B
0

= 2 3- + , i.e. 

B
0

= 0.268- , the zero is inside the unit circle in the z-plane. Since B
0

< 1, the system remains the 

minimum phase system. We, therefore, choose B
0

= 2 3- + , i.e. B
0

= 0.268- .

So the impulse response of the analysis side low pass filter of length 4 of Daubechies family is 

as shown in Table 6.1.

In this derivation process we have neglected the constant C
0
. To find C

0
, let us recall:

 
k k0 0( ) ( ) =z z constant+ -  (6.5)

where,

 
k 0 0 0

1( ) = ( ) ( )z H z H z- -  (6.6)

In order to choose the constant C
0
 the easiest option is to do is to make the norm of the impulse 

response of H z
0
( ) unity in the sense of l

2
 norm. Now, the dot product of a sequence with itself gives 

the square of its l
2
 norm. So the sequence corresponding to k 0 ( )z  at the 0th location is essentially the 

squared norm in the l Z
2
( ) of [h

0
 h

1
 h

2
 h

3
]. So C

0
 chosen such as,

 

C h h h h

C

C

0

2

0

2

1

2

2

2

3

2

0

2

0

( ) = 1

= 1 / 4.287 = 0.233

= 0.4829

+ + +

 (6.7)

         Table 6.1   Impulse response of the analysis side low pass filter of  

length 4 of Daubechies family

1 (2 + B0) (1 + B0) B0

1 1.732 0.464 -0.268
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Accordingly the shape of h t h t h t(2 ), (4 ), (8 ) etc. are shown in Fig. 6.1.

For the iterative convolution, first h t( ) is convolved with h t(2 ) and the result is convolved with h t(4 ). 

h
0

h
1

h
2

h
3

0.4829*1=0.4829 0. 0.4829*1.732=0.8364 0.4829*0.464=0.2241 0.4829*(-0.268)=-0.129

Then the result is convolved with h t(8 ), and so on. If this convolution process with compressed  

version of h t( ) is carried on infinitely, we will get the scaling function f ( )t .

There is an interesting conclusion of this iterative convolution process. Suppose h t( ) has length L, 

i.e. h t( ) = 0 for any t < 0 and for any t L> . So h t(2 ) has a length L / 2, h t(4 ) has a length L / 4, h t(8 ) has 

a length L / 8, and so on. Now, the convolution of h t( ) with h t(2 ) gives result with length L L+ / 2. This 

result when convolved with h t(4 ), it gives a result with length L L L+ +/ 2 / 4. Continuing this way we 

can get f ( )t , which is of length L L L L+ + +/ 2 / 4 ... = 2 .

It means f ( )t  is zero for any t < 0 and t L> 2 , i.e. we converge towards a compactly supported  

scaling function. The independent variable region over which the scaling function is nonzero is finite. 

This is the most important contribution made by Daubechies. Before Daubechies came up with these set 

of filter banks, idea of neatly constructing a family of compactly supported multiresolution analysis did 

not exist in record. So this is a very useful contribution in MRA.

h(t)

h(2t)

h(4t)

h(8t)

Figure 6.1  Shape of h t h t h t( ), (2 ), (4 ) and h t(8 )
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6.3.1 Interpretation for Daubechies Filter Banks

The theories of wavelets and filter banks developed in parallel. Using filter banks effectively to generate 

compactly supported scaling function is an important contribution by Daubechies.

A different interpretation can be thought about the Daubechies filter banks. The high pass analysis 

filter bank essentially reduces the degree of a polynomial input. Suppose there is an input of the form 

x n a bn[ ] = + , where a and b are constants. So the factor (1 )1- -
z  in the high pass filter reduces the degree 

of the input. If there had been only this term in the high pass filter, the output would have been in the 

form of y n a bn a b n b[ ] = ( 1) =+ - - - . If there had been another term of (1 )1- -
z  the output would have 

become 0. So in Daubechies length 4 (abbreviated as Daub-4) high pass filter bank the polynomial is 

annihilated. On the other side, in the low pass analysis filter, because of the (1 )1+ -
z  term, the output 

becomes y n a bn a b n a bn b[ ] = ( 1) = 2 2+ + + - + - . It can similarly be extended for another (1 )1+ -
z  

term. This means that the polynomial form of expression remains in the low pass branch and the high 

pass branch contains some residual component, thereby retaining a few more smoother terms related to 

polynomial in the low pass branch and removing them from the high pass branch.

While calculating the iterative convolution we saw that the scaling function thus obtained has a 

compact support. But it is important to note that had it taken any arbitrary values of h h h h
0 1 2 3
, , ,  the  

iterative convolution process might not have converged to a function with finite number of disconti-

nuities. But beauty of Daubechies family is that whatever be the filter length, the convolution always 

converges to a function with finite number of discontinuities. The specialty that makes the convolution 

to converge is denoted by a term ‘regularity’ in Wavelet literature, i.e. the filters need to obey regularity 

for the iterative convolution to converge. This regularity comes because of the presence of the zeros in 

the system function. One guaranteed way of forcing regularity is to introduce factors of (1 )1+ -
z , i.e. 

adding zeroes at z = 1- , i.e. w p=  in the low pass analysis filters. In case of high pass analysis filter the 

zeros are added at z = 1, i.e. w = 0. So the zeros are put at the extreme high frequency in low pass filter 

and at the extreme low frequency in high pass filter. In case of different filter banks, the number of zeros 

are as listed in Table 6.2.

Table 6.2  Daunechies family member and corresponding zeros

Haar 1 zeros

Daub-4 2 zeros

Daub-6 3 zeros

Higher is the filter length more regular is the Daubechies filter. This means the function to which we 

converge by iterative convolution becomes more and more smooth, i.e. they have more and more derivative 

which are continuous. In Daubechies-4 there are some issues in the differentiability but in the higher order 

filters that is also taken care of.

6.3.2 Next Daubechies Family Member Daub-6

The next member of Daubechies family is a length 6 filter of degree 5. In that case H z
0
( ) can be written as,

 
H z C z B z B z

0 0

1 3

0

1

1

1( ) = (1 ) (1 )(1 )+ + +- - -   (6.9)
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here C
0
 is a constant. Three zeros are constrained and two are free (B

0
  and B

1
 ). Let the impulse  

response be,

h n h h h h h h[ ] = [ ]
0 1 2 3 4 5

so h n[ ] is orthogonal to its even shifts, e.g. shift of 2, 4, 6, etc. The nontrivial relations are obtained by 

the dot product between h n[ ] and h n[ 2]-  or h n[ 4]- . Here,

h n h h h h h h[ ] = [ ]
0 1 2 3 4 5

h n h h h h h h

n

[ 2] = [...... ]
0 1 2 3 4 5

2

−

=
↑

h n h h h h h h

n

[ 4] = [................. ]
0 1 2 3 4 5

2

−

=
↑

 
Þ + + +h h h h h h h h

2 0 3 1 4 2 5 3
= 0 (6.10)

 
Þ +h h h h

4 0 5 1
= 0 (6.11)

From Eqs. (6.9), (6.10) and (6.11), we can find out the values of B
0

  and B
1

 . Therefrom we can  

construct the impulse response in a way similar to Daub-4 case.

This type of filter banks are called Conjugate Quadrature filter bank. The reason for this nomencla-

ture is that the low pass and the high pass filter frequency responses are p  apart from each other. So the 

principal equation governing the conjugate quadrature filter is,

k k0 0( ) ( ) = constantz z+ -

where,

k 0 0 0

1( ) = ( ) ( )z H z H z
-

k w w w

0 0 0( ) = ( ) ( )e H e H e
j j j

If the frequency response is real, then

 
H e e

j j

0

2

0( ) = ( )w wk  (6.12)

This means designing a conjugate quadrature filter bank is essentially designing k w

0 ( )e
j  only. 

k 0 ( )z  corresponds to a real and even impulse response with the constraints that even samples of the 

impulse response are all ‘0’ except at the 0th sample.

There are many ways to design such filter banks. Once we have k 0 ( )z  we find its roots. For each 

root there are pairs of reciprocal roots H z
0
( ) and H z

0

1( )- . Out of each reciprocal root pair, one root is 

assigned to H z
0
( ) and the other automatically gets assigned to H z

0

1( )- . The Daubechies filters are one 

class of conjugate quadrature filters.

Our future study will aim at what we are looking for out of these filter banks in both time and  

frequency domains.

6.4  Daub-4 and Daub-6 Design Details

This aims at using linear algebra and matrices.

we wish to come up with design procedure to construct ‘even’ length Doubechies filter.
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Let

h h h h
L

= , ,
0 1

{ } be the LPF coefficients and

g g g g
L

= , ,
0 1

{ } be the HPF coefficients and

Let both these filters be finite impulse response filters

For example, if h h h h= , , =
1

4
,
1

2
,
1

4
0 1 2{ } ì

í
î

ü
ý
þ

Then the Fourier series h( )w  will be

 

H e e e
j j j( ) =

1

4

1

2

1

4
=

1

2
12w ww w w+ × + ×

æ

è
ç

ö

ø
÷ × +( )cos  (6.13)

If we plot the magnitude graph over [0, ]p , then

1

0

H(w)

p

w

\
 
low pass filter conditions could be

H

H

| (0) | =
1

2
(1 0) = 1

| ( ) | =
1

2
(1 ) = 0

+

+

cos and

cosp p

Now,

 

H h e
k

L

k

jk( ) =
=0

w wå × -  (6.14)

Now if g g g g g
L

= { , , , }
0 1 2



 

G g e
k

L

k

jk( ) =
=0

w wå × -  (6.15)
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High pass conditions will be | (0) | = 0 | ( ) | = 1G Gand p
To design Daub-4 and Daub-6,

L = 3 & 5.

Now, let us construct system of linear and quadratic equations that coefficient of ’h’ show satisfy.

Design 1- Daubechies-4

h = h h h h
0 1 2 3
, , ,{ }

 g = g g g g
0 1 2 3
, , ,{ }

Typical output of any filtered is mathematically captured by ‘convolution’.

x h y x- - = ´ h

 

y h x h x h x
n

k

L

k n k n n
= =

=0

0 1å × × + × +-  (6.16)

\ For causal system and sequences (i.e. no y y x x- - - -1, 2, 1, 2, and  terms)

 

y

y

y

H

x

x

x

0

1

2

0

1

2

=
 

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

×

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (6.17)

then, ‘H’ can be written in matrix form as follows:

hL h2 h1 h0 0 0 0 0 0 0

Upper Triangle = 0

M
ain D

iagonal

C
onstant D

iagonal

C
onstant D

iagonal

C
onstant D

iagonal

. . . . . . . . .

0 hL h2 h1 h0 0 0 0 0 0. . . . . . . . .

0 0 hL h2 h1 h0 0 0 0 0. . .
.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

.
 .

 .

. . .

. . . . . .

Important points to note about ‘H’ matrix:

 1. Since it represents a system in matrix form it is a system of linear equations.

 2. ‘ho’s constitute main diagonal.
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 3. With reference to main diagonal, upper triangle is ‘0’, which suggests, system is causal 

H for all j i i j Z
ij

= 0 > , , Îéë ùû
 4. Since all diagonals are constant, it indicates, system is shift invariant.

 5. Therefore, ‘H’ is a causal LTI system.

Similarly, for high pass filter ‘G’ matrix can be built. ‘H’ and ‘G’ together constitute wavelet 

matrix ‘w’, as in wavelets we use filter bank, combination of LPF(H) and HPF(G).

For example, if in case of Haar,

h[n] = 
1

2
,

1

2

ì
í
î

ü
ý
þ
 and g[n] = 

1

2
,

1

2

-ì
í
î

ü
ý
þ

‘W’ matrix will be,

W
H

G
=
é

ë
ê
ù

û
ú

and would look like

 

W = 2

12 12 0 0

0 0 12 12

12 12 0 0

0 0 12 12

× -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

 (6.18)

This is Daub-2 or Haar.

Now, for Daub-4, the filter length will be ‘4’ and W matrix wil be 8 × 8.

Let us call that as W
D4

.

 

W

h h h h

h h h h

h h h h

h h h h

D4

3 2 1 0

3 2 1 0

3 2 1 0

1 0 3 2

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

- - - - - - -- -

é

ë

ê
ê
ê
ê
ê

g g g g

g g g g

g g g g

g g g g

3 2 1 0

3 2 1 0

3 2 1 0

1 0 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

êê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

- - - - - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

=

4

4

H

G

D

D

 (6.19)

Now, for W
D4

 to become a transformation matrix, following conditions should be met:

 1. The inverse should exist.

 2. W
D4

 should be unitary, i.e. for real values, W W
D D

T

4

1

4
=- .

 3. W
D4

 should be orthogonal.
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Assuming 1st two criteria,

For the orthogonality,

W W I
D D

T

4 4
=×

\ ×

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë
ê

ù

û
ú

× ×

W W

H

G
H G

H H H G

G
D D

T

D

D

D D

D D

T

D D

T

D4 4

4

4

4 4

4 4 4 4

4
= = ×× ×

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë
ê

ù

û
úH G G

I

I
D

T

D D

T

4 4 4

4 4

4 4

=
0

0

\ ×H H I
D D

T

4 4 4
=

\

é

ë

ê
ê
ê
ê
ê
ê

ùh h h h

h h h h

h h h h

h h h h

3 2 1 0

3 2 1 0

3 2 1 0

1 0 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ûû

ú
ú
ú
ú
ú
ú

×

h h

h h

h h

h h g

h h

h h

h h

h h

3 1

2 0

1 3

0 2 0

1 3

0 2

1 3

0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0
22

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Let us work on 1st row, 1st column ® should lead to ‘1’

and 1st row, 2nd column ® should lead to ‘0’

\

 
h h h h

3

2

2

2

1

2

0

2 = 1+ + +  (6.20)

and

 
h h h h

1 3 0 2
= 0× + ×  (6.21)

The orthogonality between ‘h’ and ‘g’ plays vital role. One way of understanding orthogonality is 

‘zero’ dot product between two vectors. ‘Dot’ product is element-by-element product. For every ‘h’, if 

we create corresponding ‘g’ by flipping the sequence and making alternate samples go negative, then 

that will certainly achieve orthogonalization.

For example, if h = 1,2,3,4{ }
then g = 4, 3,2, 1- -{ } is a good candidate to produce orthogonal framework.

á ×ñ ´ + ´ - + ´ + ´ -[ ]h = 1 4 2 ( 3) 3 (2) 4 ( 1) = 0!

Mathematically, this can be captured using:

g h
k

k

L k
= ( 1)- × - ,

where, h = h h hL g g g g
L0 1 0 1

, , , = , , , { } { }and

This grantees á ñ ×[ ]h g h g, = = 0

\ { } - -{ }g g g g g h h h h= , , , = , , ,
0 1 2 3 3 2 1 0
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Now,

H G
D D

T

4 4 4 4
= 0× [ ] ´

\

é

ë

ê
ê
ê
ê
ê
ê

ùh h h h

h h h h

h h h h

h h h h

3 2 1 0

3 2 1 0

3 2 1 0

1 0 3 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ûû

ú
ú
ú
ú
ú
ú

×

- -

- -

- -

- -

h h

h h

h h

h h

h h

h h

h h

0 2

1 3

2 0

3 1

2 0

3 1

2

0 0

0 0

0 0

0 0

0 0

0 0

0 0
11

3 2
0 0

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

h h

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

ûû

ú
ú
ú
ú

Similarly,

G H
D D

T

4 4 4 4
= 0× [ ] ´

- -

- -

- -

- -

é

ë

h h h h

h h h h

h h h h

h h h h

0 1 2 3

0 1 2 3

0 1 2 3

2 3 1 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

êê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

×

h h

h h

h h

h h g

h h

h h

h

3 1

2 0

1 3

0 2 0

1 3

0 2

1

0 0

0 0

0 0

0 0

0 0

0 0

0 0 hh

h h

3

0 2
0 0

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ùù

û

ú
ú
ú
ú

Also, G G I
D D4 4

’

4
=×

 

\

- -

- -

- -

- -

é h h h h

h h h h

h h h h

h h h h

0 1 2 3

0 1 2 3

0 1 2 3

2 3 1 2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

ëë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

×

- -

- -

- -

h h

h h

h h

h h

h h

h h

0 2

1 3

2 0

3 1

2 0

3 1

0 0

0 0

0 0

0 0

0 0

0 00

0 0

0 0

=

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0

2 1

3 2

- -

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

h h

h h
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é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

 (6.22)

We again confirm,

h h h h

h h h h

0

2

1

2

2

2

3

2

0 2 1 3

= 1

= 0

+ + +

+
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Now,

let us impose conditions so that ‘h’ is truly a low pass filter on [0,p ]

Being a LPF, it should pass frequencies at w = 0 and block frequencies at w p= .

Let H( )w  be the Fourier representation of h(n) in the form of series,

 
H h h e h e h e

j j j( ) =
0 1 2

2

3

3w w w w+ × + × + ×× ×  (6.23)

Let us impose first condition to pass frequencies at w = 0, and let the magnitude by ‘Unit’ be 

decided by us.

 
\ + × + × + ×H h h e h e h e( ,0) = =

0 1

0

2

0

3

0w Unit  (6.24)

we choose the unit carefully to normalize orthogonal system, thus making it orthonormal.

Recall the MRA framework we saw, h
k
 is linked with f ( )×  and s

k
 is linked with y ( )× . For set 

2 (2 )2

j

j
x kf -

ì
í
î

ü
ý
þ
, being orthonormal and linearly independent, it constitutes a basis for vector space V j 

at window of analysis W
a

j= 12 .

This is truly orthonormal on (-¥ ¥, ), since

 
-¥

¥

ò - × -
¹ì

í
î

2 (2 ) (2 ) =
0,

1, =
2

j

j j
x k x l dx

k l

k l
f f  (6.25)

This is condition for orthogonality,whole makes it orthonormal is normalizing factor of 22

j

 in 

2 (2 )2

j

j
x kf -

ì
í
î

ü
ý
þ
.

If we take norm of f (2 )j
x k- , we get that factor.

 
 f f f(2 ) = (2 ) =

1

2
(2 ) 22 2 2j j

j

j j
x k x k dx x k dx- - - ×

-¥

¥

-¥

¥

ò ò  (6.26)

Let us put 2 =j
x k a-

Differentiating both sides, we get

2 0 =j
dx da× -

\2 =j
dx da

 
 f f(2 ) =

1

2
( )2 2j

j
x k a dx-

-¥

¥

ò  (6.27)

Let us prove it for Haar, where

f (a)

2

1

0
0 1 2

a

 f (2 ) =
1

2
(1) =

1

2
(1) =

1

2

2

0

1
2j

j j j
x k da- ò
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Taking square root for positives,

 f (2 ) =
1

2

2j

j
x k-

\ We can divide f (2 )j
x k-  by its norm to get orthogonal basis coverted to orthonormal basis,

f f(2 ) = 2 ) = 2 (2 )2 2j

j j

j
x k x k x k- - -

1

2j

j

From the point of view of nested subspaces, we have to account for 2 every time we move from 

one subspace to another.

. . . . . .

. . . . . .

V
−2 ⊂

√2

⊂ ⊂ ⊂V
−1 V0 V1 V2

√2 √2 √2

This is a ‘dyadic’ style of realizing discrete wavelet filters.

\ We choose ‘Unit’ to be ‘ 2’ to maintain orthogonality.

We will put this in equation (6.23),

 
h h h h

0 1 2 3
= 2+ + + ±  (6.28)

We will use this as a final check whether the LPF coefficient satisfy this condition or not.

Let us impose second low pass condition of complete attenuation at w = p .

\   H h h e h e h e
j j j( ) = 0 =

0 1 2

2

3

3p p p p+ × + × + ×

Using euler’s identity e jp

 = −1

e j e
j2 2 2= ( ) = ( 1) = 1p p -

e j e
j3 3 3= ( ) = ( 1) = 1p p - -

 
H h h h h( ) = 0 =

0 1 2 3
p - + -  (6.29)

‘g
k
’ being a highpass filter, let’s impose conditions accordingly,

g g g g g
k

= , , ,
0 1 2 3{ }

\   G g g e g e g e
j j j( ) =

0 1 2

2

3

3w w w w+ × + × + ×

Put g g g g h h h h
0 1 2 3 3 2 1 0
, , , = , , ,{ } { }+

-
+

-



200 Multiresolution and Multirate Signal Processing

\   G h h e h e he
j j j( ) =

3 2 1

2 3w w w w- × + × - ×

G(0) = 0 -(block low frequencies)

\ h h h h
3 2 1 0

= 0- + -  (6.30)

G( )p = unit = 2

 
| |= 2

0 1 2 3
h h h h+ + +  (another check condition)

Let us combine two orthogonality conditions and one

LPF condition towords finding h
k
 From Eqs. (6.20), (6.21) and (6.29)

h h h h

h h h h

h h h h

0

2

1

2

2

2

3

2

0 2 1 3

0 1 2 3

= 1

= 0

= 0

+ + +

+

− + −

____________________(D )1

These are our design Equations!

let ’s start with Eq. (6.21)

h h h h
0 2 1 3

= 0+

This clearly implies [ ]
0 1

h h
Tand [ ]

2 3
h h

T  are orthogonal,

i.e. inner or dot product < [ ],[ ] >
0 1 2 3

h h h h  suggests

h h h h
0 2 1 3
+ + ® going to ‘0’

For example, h
0

= 1, h
1

= 1, h
2

= 1- , h
3

= 1 ensures

[ ] [ ]
1 2 3

h h h h
o

T T^

We can also prove graphically [ ] [ ]
2 3 1 0

h h c h h
T T^ -

(−1,1) = [h2 h3] (1,1) = [h0 h1]

orthogonal

Therefore, it is easy to see that

 
[ ] [ ]

2 3 1 0
h h c h h

T T^ -  (6.31)
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with c = 1 in this case!

For c ¹ 0, if we insert

h h c h h
T T

2 3 1 0[ ] ^ -[ ]  in Eq. (6.21)

We get

 
h h

c
0

2

1

2

2
=

1

1
+

+
 (6.32)

One way of looking at Eq. (6.31) is

h ch h ch
2 1 3 0

= =- and

Let’s plug these values in Eq. (6.29)

\ - - +h h ch ch
0 1 1 0 

= 0

\ - + +h c h c
0 1
(1 ) (1 ) = 0

 

h
c

c
h c l

1
=

1

1
=

0

-
+

æ

è
ç

ö

ø
÷ ¹{  (6.33)

Therefore Eq. (6.32) is clearly a equation of circle of radius 
1

1 2+ c
 and Eq. (6.33) is a equation of 

straight line with slope 
1

1

-
+

c

c

Graphically,

h2
0 + h2

1 =
h1

h0

h1 = . h0

1

1+c2

1+c

√2.(1+c2)

1−c

1+c
))

−(1+c)

√2.(1+c2)
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\ For any given c ¹ −1, the line with slope of 
1

1

-
+

c

c
 intersects circle of radius 

1

1 2+ c
 twice

\ For each ‘c’ there are 2 possible solutions, that will satisfy design conditions D
1
.

Let’s simplify

h h
c

0

2

1

2

2
=

1

1
+

+

h
c

c
h

c
0

2

2

0

2

2

1

1
=

1

1
+

-
+

æ

è
ç

ö

ø
÷ × +

h
c

c c
0

2

2

2
1

1

1
=

1

1
+

-
+

æ

è
ç

ö

ø
÷

æ

è
çç

ö

ø
÷÷ +

h
c c

c c
0

2
2

2 2

(1 ) (1 )

(1 )
=

1

1

+ -
+

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

+

+

h
c c c c

c
h

c

c
0

2
2 2

2 0

2
2

2

(1 2 1 2

(1 )
=

2(1 )

1

+ + + - +
+

æ

è
ç

ö

ø
÷

é

ë
ê

ù

û
ú

+
+

é

ë
ê

ù

û
ú

\
+

×
+
+

2 =
1

1

(1 )

1
0

2

2

2

2
h

c

c

c

\
+
+

h
c

c
0

2
2

2 2
=

1

2(1 )

\ ±
+

+
«h

c

c
0 2

=
1

2(1 )
the ‘two’ solutions!

Let us choose (+ve)root

 

h
c

c
0 2

=
1

2(1 )
+

+

+
 (6.34)

By plug and solve

h
c

c
0 2

=
1

2(1 )

-

+
, h

c c

c
2 2

=
(1 )

2(1 )
+
- -

+
, h

c c

c
3 2

=
(1 )

2(1 )
+
- +

+

D1 is a system of three equations where we have to figure out four unknowns

Let us add one more LP condition

H( ) = 0p

As ideal filtering is not possible, we impose

¢H ( ) = 0p

First-order difference (derivative) will give us,

H jh e jh e jh e
j j j"( ) | = 2 3 |

= 1 2

2

3

3

=
w w p

w w w

w p+ +
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0 = ( 1) 2 ( 1) 3 ( 1)
1 2

2

3

3
j h h h- + - + -( )

 
\ - +h h h

1 2 3
2 3 = 0 (6.35)

Let us add Eq. (6.35) in D1 to get complete set D2

h h h h

h h h h

h h h h

h h h

0

2

1

2

2

2

3

2

0 2 1 3

0 1 2 3

1 2 3

= 1

= 0

= 0

2 3 0

+ + +

+

− + −

− + =

______________________( )D2

Now, let us plug h ch h ch
2 1 3 0

= =- and  in Eq. (6.35)

h ch ch h c ch
1 1 0 1 0

2 = (1 2 ) 3 = 0+ + + +

\ h
c

c h
1

0

=
3

(1 2 )
-

+ ×

æ

è
ç

ö

ø
÷

we already know the slope matches with 
1

1

-
+

c

c

\ 
-
+

-
+

3

1 2
=

1

1

c

c

c

c

\ - - + - -3 3 = 1 2 22 2
c c c c c

\ - - + -3 3 = 1 22 2
c c c c

\ c c
2 4 1 = 0+ +  (6.36)

Roots of Eq. (6.36) will be

c = 2 3- ±

c = 2 3- -  makes system slow and sluggish, as the zero lies outside the unit circle and it ensures 

max-phase system.

\ we choose minimum phase c = 2 3- +  solution by backward substitution in D2

 

h h

h h

0 1

3 2

1 3

4 2

3 3

4 2

1 3

4 2

3 3

4 2

=
+

=
+

=
-

=
-



204 Multiresolution and Multirate Signal Processing

Now, g h k k
k

k= ( 1) , = 0,1,2,3
3

- -

g h g h

g h g h

0 3 1 2

2 1 3 0

1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

= =
-

= - = -
-

= =
+

= - -
+

Now let us repeat this for Daub-6 where

h h h= { }
0 5


g g g= { }
0 5


W

h h h h h h

h h h h h h

h h h h h h

h h

10

5 4 3 2 1 0

5 4 3 2 1 0

5 4 3 2 1 0

1 0

=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 00 0

0 0 0 0

0 0 0 0

0 0

5 4 3 2

3 2 1 0 5 4

5 4 3 2 1 0

5

h h h h

h h h h h h

g g g g g g

g g

- - - - - - - - - -

44 3 2 1 0

5 4 3 2 1 0

1 0 5 4 3 2

3 2 1 0 5

0 0

0 0 0 0

0 0 0 0

0 0 0 0

g g g g

g g g g g g

g g g g g g

g g g g g gg

H

G

D

D

4

4

4

=

é

ë

ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú
ú

- - -

é

ë

ê
ê
ê

ù

û

ú
ú
ú

We can extend D1 conditions directly 

h h h h h h

h h h h h h h h

h h h h

0

2

1

2

2

2

3

2

4

2

5

2

0 2 1 3 2 4 3 5

0 4 1 5

= 1

= 0

= 0

+ + + + +

+ + +

+

_________________(D )3

g h h h h h h= , , , , ,
5 4 3 2 1 0

\ H H G G I
D D

T

D D

T

10 10 10 10 5
= =× ×  and

\ H G G H
D D

T

D D

T

10 10 10 10 5
= = 0× ×

Low pass conditions

H h h h h h h( ) = 0 =
0 1 2 3 4 5

p - + - + -

H(0) = 2

h h h h h h
0 1 2 3 4 5

= 2+ + + + +
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additional conditions on H( )w  will be

¢H ( ) = 0p

and further flatten at w p=  by

¢¢H = 0

\ H h h e h e h e h e h e
j j j j j( ) =

0 1 2

2

3

3

4

4

5

5w w w w w w+ + + + +

\ ¢ × + × + × + × + ×H j h e j h e j h e j h e j h e
j j j j j( ) = 2 3 4 5

1 2

2

3

3

4

4

5

5w w w w w w

using j
2 2= ( 1) = 1- -

¢¢ - - - - -H h e h e h e h e h e
j j j j j( ) = 4 9 16 25

1 2

2

3

3

4

4

5

5w w w w w w

let us evaluate @ w p=

\ ¢ - + - +H h h h h h( ) = 0 = 2 3 4 5
1 2 3 4 5

p

\ ¢¢ - + - +H h h h h h( ) = 0 = 4 9 16 25
1 2 3 4 5

p

Therefore, complete set of design equations is:

h h h h h h

h h h h h h h h

h h h h

h

0

2

1

2

2

2

3

2

4

2

5

2

0 2 1 3 2 4 3 5

0 4 1 5

= 1

= 0

= 0

+ + + + +

+ + +

+

00 1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

2 3 4 5

4 9 16 25

- + - + -

- + - +

- + - +

h h h h h

h h h h h

h h h h h

____________________________(D )4

solving we get Daub-6 coefficients

h
0

=
2

32
1 10 5 2 10+ + +( )

h
1

=
2

32
5 10 3 5 2 10+ + +( )

h
2

=
2

32
10 2 10 2 5 2 10- + +( )

h
3

=
2

32
10 10 2 5 2 10- - +( )

h
4

=
2

32
5 10 3 5 2 10+ - +( )

h
5

=
2

32
1 10 5 2 10+ + +( )
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and g h k k
k

k= ( 1) , = 0, 5
5

- - 

g h
0 5

= =
2

32
1 10 5 2 10+ + +( )

g h
1 4

= =
2

32
5 10 3 5 2 10- - + - +( )

g h
2 3

= =
2

32
10 10 2 5 2 10- - +( )

g h
3

= 2 =
2

32
10 2 10 2 5 2 10- - - + +( )

g h
4 1

= =
2

32
5 10 3 5 2 10+ + +( )

g h
5 0

= =
2

32
1 10 5 2 10- + + +( )

6.5  Towards Searching Scaling and Wavelets Coefficients

This complete idea of looking at different members and variants of the family takes us to basic approach 

which aims at searching for scaling and wavelet coefficients.

In Chapter 2, we laid down a framework of multi resolution analysis which gave us the power to 

move up or down the ladder as required. This made the entire analysis ‘scalable’.

This framework led us to two important questions:

 1. How do we go about selecting the mother wavelet and scale of analysis?

 2. What is the procedure to calculate scaling and wavelet coefficients?

The first question will get answered subsequently.

Now, let us answer the second question here. We have discussed so far Haar and Daubechies  

wavelets families. The coefficients of low pass and high pass filters for these are well known. However, 

where exactly we get these coefficients from? Do we have a concrete procedure for finding them? What 

properties should the scaling equation obey? These are few questions we would try to answer now.

Quest to find scaling equation coefficients

We are familiar with Haar wavelet and scaling function, which is given as,

y ( ) =

1 0 <
1

2

1
1

2
< 1

0

t

x

x

£

- £

ì

í

ï
ï
ï

î

ï
ï
ï

otherwise

y ( ) =
1 0 < 1

0
t

x£ì
í
î otherwise
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However, important question is where did the above values come from?

The dilation equation in time domain is given as,

 

f f( ) = 2 (2 )t h t k
k

kå -  (6.37)

 

y f( ) = 2 (2 )t g t k
k

kå -  (6.38)

From Eqs. (6.37) and (6.38) we can see that f ( )
0

t VÎ , y ( )
0

t WÎ , f (2 )
1

t k V- Î  and y (2 )
1

t k W- Î . 

Also we know that, V V W
1 0 0

= Å . Thus once we know f (2 )t k-  we can find out y ( )t  and f ( )t , hence 

focus is on finding out scaling equation coefficients.

Now, in order to achieve this let us go through three guiding theorems.

Theorem I:

For the scaling equation f f( ) = 2 (2 )t h t k
k kå - , with nonvanishing coefficients { }

=
h

k k N

M  only for 

N k M£ £  its f ( )x  is with a compact support contained in the interval [N,M].

Theorem II:

If the scaling function f ( )x  has compact support on 0 1£ £ -x N  and if, { ( )}f x k-  are linearly  

independent, then h h n
n

= ( ) = 0, for n < 0 and n N> 1- . Hence, N is the length of the sequence.

Theorem III:

If the scaling coefficients { }h
k

 satisfy the condition for existence and orthogonality of f ( )t , then 

y f( ) = 2 (2 )x x t
kå -

where, g h
k

k

N k
= ( 1)± - -

and 
-¥

¥

ò - -y f( ) ( )x l x k dx  = d
1,

= 0,
k

l k¹

From these theorems, we will try to find out coefficients of scaling equation. To do that following are 

some properties that scaling coefficients have to obey,

 1. åh
k

= 2

 2. åh
k2

=
1

2

 3. å +h
k2 1

=
1

2

 4. å | | = 12
h

k

 5. å -h h
k l k l2 ,0

=d

 6. å - -2 =
2 2 ,

h h
k l k j l j

d

Where exactly do these properties came from? We would first delve on that and then we would solve 

one example with case study of Haar f ( )t .
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Consider property 1 of f ( )t ,

k

k
hå = 2

This property is dependent on the kind of normalization we make use of. Rest of the properties are 

in fact dependent on this property. So we would first understand from where this property comes from.

We know the dilation equation,

f f( ) = 2 (2 )t h t k
k

kå -

Integrating both the sides,

-¥

¥

-¥

¥

ò å ò -f f( ) = 2 (2 )t dt h t k dt
k

k

Put, 2 = =
2

t k x dt
dx

- Þ

-¥

¥

-¥

¥

ò å òf f( ) = 2
1

2
( )t dt h t dt

k

k

Let, 
-¥

¥

ò f ( )t dt , which has normalization 1. Then we are left with,

1 = 2
1

2k

k
hå

 k

k
hå = 2 (6.39)

The point to note is that Eq. (6.39) holds true if we consider the normalization to be 1.

At this point, let us assume that property 5 holds true and we would use it to derive the remaining 

properties. The property number 5 tells us that,

k

k l k lo
h hå -2

=d

Replacing l by −l we have,

d -
-¥

¥

+ålo

k

k l k
h h=

=

2

Separating ‘even’ and ‘odd’ terms,

d -
-¥

¥

+
-¥

¥

+ + +å å+lo

k

k l k

k

k l k
h h h h=

=

2 2 2

=

2 1 2 2 1

l

lo

l k

k l k k l k
h h h h

= = =

2 2 2 2 1 2 2 1
= [ ]

-¥

¥

-
-¥

¥

-¥

¥

+ + + +å å å +d

However, we know that

l

lo

=

= 1
-¥

¥

-åd

Thus,

 

1 = [ ] [ ]
=

2

=

2 2

=

2 1

=

2 1 2

k

k

l

k l

k

k

l

k l
h h h h

-¥

¥

-¥

¥

+
-¥

¥

+
-¥

¥

+ +å å å å+  (6.40)
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By substituting l l k= -  we can write,

 l

k l

l

l
h h A

=

2 2

=

2
= =

-¥

¥

+
-¥

¥

å å  (6.41)

 l

k l

l

l
h h B

=

2 1 2

=

2 1
= =

-¥

¥

+ +
-¥

¥

+å å  (6.42)

From Eqs. (6.40), (6.41) and (6.42) we can write,

 1 = AA BB+  (6.43)

 1 = 2 2
A B+  (6.44)

which clearly represents equation of a circle with radius 1. However, there are two unknowns A and 

B and we have just one equation. So we need another equation. This equation comes out of the first 

property, i.e.

k

k
hå = 2

Splitting ‘even’ and ‘odd’ terms,

2 =
2 2 1

k

k

k

k
h hå å+ +

 2 = A B+  (6.45)

At this point we have an interesting situation, i.e. Eq. (6.44) represents a circle and Eq. (6.45) a line. 

The situation is as shown in Fig. 6.2.

20.5

20.5

(1/20.5)

(1/20.5,1/20.5)

(1/20.5)

1

B

A

A2+B2=1

Figure 6.2  Scaling function and wavelet function of Daub-4

Hence from the figure we have,

A =
1

2

B =
1

2
Thus by substituting A we have,

 k

k
hå 2

=
1

2
 (6.46)
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which gives us property number 2. Also, substituting the value of B we have,

 k

k
hå +2 1

=
1

2
 (6.47)

which gives property number 3.

Now, consider property number 4 we have,

 k

k

k

k
h hå å| | = = 12 2  (6.48)

Now let us verify these properties in case of Haar scaling function. We know that in case of Haar f ( )t ,

h h
0 1

= =
1

2

Putting these values in property 1 we have,

0

1

0 1
= = 2å +h h h

k

Thus property 1 is obeyed.

Similarly, for property 2, 3 and 4,

k

k
h hå 2 0

= =
1

2

 
k

k
h hå +2 1 1

= =
1

2

{ } { } = = 1
2

2

2 1

2

0

2

1

2

k

k

k

k
h h h hå å+ ++

Hence, we can clearly see that these properties are obeyed. For property number 5 we have,

k

k l k l
h hå -2 0,

=d

We have only two indices, i.e. 0,1. Let us take the first case,

Case (i)

k l- 2 = 0 or k l= 2

if l ¹ 0, then k l= 2 2³ . Thus sum vanishes unless l = 0 and in that case k = 0.

Thus we can write,

 k

k k
h h h hå - 0 = =

1

2
0 0

 (6.49)

Also when k = 0, h h
k l l- -2 0 2

= , which is 0 unless l = 0. Thus,

 k

k k
h h hå = =

1

2
0

2  (6.50)

From Eqs. (6.49) and (6.50) we can see that the property 5 is obeyed since their results add up to give 1.
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Case (ii)

k l- 2 = 1, k l= 2 1+

if l ¹ 0, k ³ 3. Thus l has to be 0 and k = 1. Hence we have,

 k

k k
h h hå = =

1

2
1

2  (6.51)

Now for k = 1, l = 0 hence,

 k

k k
h h h hå - 0 = =

1

2
1 1

 (6.52)

Similar to case (i), Eqs. (6.51) and (6.52) add up to give 1, hence for case (ii) also property 5 is 

obeyed. It is important to note that the property 5 gives us idea about the orthogonality and not all the 

functions obey this property.

Hence, the Haar scaling coefficients obey all these different properties. Also once we find out these 

scaling coefficients we can find out coefficients of wavelet equation as follows,

g h k
k

k

N
= ( 1)- -

For N = 1 we have,

g h k
k

k= ( 1)
1

- -

For k = 0,

g h h
0

0

1 1
= ( 1) = =

1

2
-

For k = 1,

g h h
1

1

0 0
= ( 1) = =

1

2
- -

-

This is how we can find out coefficients of scaling and wavelet equation.

Exercise 6.1 

What is the condition for a system function to be Minimum Phase System?

Hint: A system function H z( ) is said to be a minimum phase if all of its poles and zeros are within 

the unit circle. Minimum Phase System have property that the system function and its inverse are 

causal and stable.

Exercises

Exercise 6.2 

Prove that autocorrelation of sequence h n[ ] has a z-transform of H z H z( ) ( )1- .

Hint: Autocorrelation of h n[ ] is defined as,

 r l h n h n l
hh

n

n

( ) = [ ] [ ]
=

=

-¥

+¥

å -  (6.53)
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Now, put n l k- -=  in Eq. (6.53), we get

r l h k l h k
hh

k

k

( ) = [ ] [ ]
=

=

-¥

+¥

å - + -

 r l h k h l k
hh

k

k

( ) = [ ] [ ]
=

=

-¥

+¥

å - -  (6.54)

RHS of above Eq. (6.54) can be written as convolution from given as follows,

 h l h l h k h l k
k

k

( ) ( ) = [ ] [ ]
=

=

´ - - -
-¥

+¥

å  (6.55)

Replacing variable l by n, we can write Eq. (6.55) as follows:

 h n h n h k h n k
k

k

( ) ( ) = [ ] [ ]
=

=

´ - - -
-¥

+¥

å  (6.56)

So, from Eqs. (6.53), (6.54) and (6.56), we can say that,

 r l h n h n
hh

( ) = ( ) ( )´ -  (6.57)

Now for calculating Z-transform of autocorrelation function. Let z-transform of h n[ ],

 h n H z[ ] ( )«  (6.58)

So by using property of Z-transforms, Z-transform of h n[ ]- ,

 h n H z[ ] ( )1- « -
 (6.59)

Also convolution property of Z-transform that is

 x n x n X z X z
1 2 1 2
[ ] [ ] ( ) ( )´ «  (6.60)

Now taking the Z-transform of Eq. (6.57), and using properties given in Eqs (6.58), (6.59) and 

(6.60), we can write Z-transform of autocorrelation function,

 
R z H z H z

hh
( ) = ( ) ( )1-  (6.61)

So, Eq. (6.61) gives the Z-transform of autocorrelation function.
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Exercise 6.3 

Why are the Daub series analysis LPF impulse responses orthogonal to its even shifted versions?

Hint: The basic equation for designing the analysis side LPF is,

 
k k0 0( ) ( ) =z z C+ -  (6.62)

where,

 
k 0 0 0

1( ) = ( ) ( )z H z H z
-  (6.63)

C is constant here. Taking inverse Z-transform of Eq. (6.63), we get,

 
k 0 ( ) = ( )n R n  (6.64)

where k 0 ( )n  is the Z-transform of k 0 ( )z  and R n( ) is the autocorrelation of the impulse response 

of H z
0
( ). So taking the inverse Z-transform on both sides of Eq. (6.62), we get

 R n R n C n
n( ) ( 1) ( ) = ( )+ - d  (6.65)

This equation implies only for n even, (n ¹ 0)

2 ( ) = 0R n

R n( ) = 0

Now R n( ) is the dot product of the impulse response of the analysis LPF with its shifted version. 

So, for even n, R n( ) = 0 implies that the dot product of the impulse response of the analysis LPF 

with its even shifted version is zero, i.e. impulse responses of these filters are orthogonal to its even 

shifted versions.

Exercise 6.4 

Why are the Daub series analysis LPF impulse response has even length?

Hint: Let a Daub analysis LPF is of odd length 5. So the impulse response is,

h n h h h h h h[ ] = [ ]
0 1 2 3 4 5

h n h h h h h h

n

[ 4] = [................. ]
0 1 2 3 4 5

4

-

=

Now, the dot product of h n[ ] and h n[ 4]-  should be 0 because of the orthogonality with respect to 

even shift. For this to be true, h h
0 4

= 0, which means either h
0
 or h

4
 is zero which effectively means 

that the filter length is even and our initial assumption was wrong.

↑

↑
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Exercise 6.5 

Plot the scaling function and wavelet function for Daub-4 MRA.

Low pass filter impulse response:

h h h h
0 1 2 3

= 0.4829, = 0.8364, = 0.2241, = 0.129

High pass filter impulse response:

g g g g
0 1 2 3

= 0.129, = 0.2241, = 0.8364, = 0.4829

Hint: Use MATLAB program to generate the plots of scaling function and wavelet function.



7.1  Introduction

In Chapter 6 we studied steps required to design conjugate quadrature filter-banks. We set out with the 

aim to achieve systematic design steps for building higher-order filter banks and learn  relationships 

between analysis and synthesis filters subject to alias cancellation and perfect reconstruction 

 conditions. Such analysis also enabled us to design higher and higher order filters of Daubechies  family 

by  incorporating more (1 )1+ -
z  terms in analysis of low pass filter transfer function for  achieving 

 regularity required for convergence.

Till this point, our analysis of scaling and wavelet functions has been either in time domain or 

in transform domain. However, several tasks require localization in both time and transform domain 

simultaneously. Wavelet transforms arrive from family of transforms, which provide  simultaneous 

localization known as multi-resolution analysis of the underlying signal. In this chapter, we analyze 

Haar scaling and wavelet functions for time and frequency localization. We analyze their frequency 

domain behaviors over the containment ladder. This analysis gives us a reason to move towards 

ideal aspirations for scaling and wavelet transforms and in turn towards the basic question of 

bound over simultaneous localization in time and frequency domain also known as the ‘uncertainty 

principle’.

7.2   Analysis of Haar Scaling Function in Time 
and Frequency Domain

Consider Haar scaling function as shown in Fig. 7.1.

Time-Frequency 
Joint Perspective

Chapter

Introduction

Analysis of Haar scaling function in time 
and frequency domain

Analysis of Haar wavelet function in time 
and frequency domain

Summary

Ideal Time-Frequency Behaviour

Frequency localization by f(t) and Y(t)

Time localization and frequency 
localization

7
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Figure 7.1  Haar scaling function

If we denote W as analog angular frequency variable and f̂ ( )Ω  as Fourier transform of scaling function 

then Fourier transform can be carried out in the following way: 

 
f̂ fW W( )

-¥

+¥ -ò= ( )t e dt
j t

  

f̂( ) =
1

W
W

W- -
e

j

j

ˆ
sin
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2

2
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W

e
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ö
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Magnitude for this scaling function is shown in Fig. 7.2. The above analysis of scaling function is 
 applicable to subspace V

0
 which is a subspace having piecewise constant approximation over standard 

unit interval ]n, n+1[. Consider a ladder of subspace ... ...
2 1 0 1 2

Ì Ì Ì Ì Ì- -V V V V V . By the scaling 

property of Fourier transform we have,
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Figure 7.2  Magnitude of Fourier transform for haar scaling function
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As translation only affects phase in frequency domain, we consider scaling function without translation 

in time domain without loss of generality (as our analysis is limited to magnitude only). In this case, 

above relationship may be represented in the following manner.

 
f f( ) | ( ) |

. .

t
F T

« ˆ W

f f(2 ) |
1

| 2 |
(
2

) |
. .

m
F T

m m
t « ˆ W

Using this relationship, scaling function in time and frequency domain across various subspaces may be 

sketched as shown in Fig. 7.3.
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Example 7.2.1 — Orthonormal basis.

For orthonormal basis at some subspace V
m
,

f f(2 ), (2 )m m
t n t l- -

Figure 7.3   Haar scaling function at various time and frequency resolutions.Scaling function and 
frequency domain characteristic in 3(a): V-1

 subspace, 3(b): V
0
 subspace, 3(c): V

1
 subspace 

and 3(d):V
2
 subspace. [Note how localization varies across different subspaces starting 

from coarse subspace V-1
.]

(d)

(c)
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As evident from Fig. 7.3, as we go from subspace V-1
 towards V

2
, subspace localization in time 

improves by factor of two, i.e. in V
0
 subspace scaling function lies in [0 1] interval (nonzero values), 

whereas in V
1
 subspace, scaling function lies in [0 0.5] interval. In this sense, we may say that time local-

ization gets better and better as we move from V-¥ to V+¥. Similarly, localization in frequency gets poorer 

by factor of two as we go from subspace V-1
 to V

2
, i.e. width of main lobe doubles each time we move to 

higher subspace. Hence, frequency localization gets poorer as we move from V-¥ to V+¥.This localization 

affects projection of some signal x t L( ) ( )
2

Î   on various subspaces.
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For understanding relationship between dot product in time and frequency domain we shall interpret 

what happens when we take Fourier transform and inverse Fourier transform.

If, x t x( ) ( )«
Ù
W  then x x t e dt

j tÙ
( ) = ( )W W

-¥

+¥ -ò . During this process, we take components of x t( ) along 

directions provided by complex exponentials e j t- W . Also, inverse Fourier transform gives x t( ) back from 
1

2
( )

p -¥

+¥

ò x e d
j t W WW , which may be interpreted as reconstruction of x t( ) from components along e j tW .

Now, from Parseval’s theorem:

x t y t x y( ), ( ) ( ), ( )= ∧ ∧Ω Ω
 

i.e. dot product is independent of basis we select and is equal in time and angular frequency domain 

within a factor of 2p . Using this relationship we may denote the relationship between projection of 

function x t( )  over subspace V
m

 in the following manner:

x t n x n

m

m

m

m( ),2 (2 ) =
1

2
( ),2 (2 )2 2f

p
f× - × -

Ù
W 

In Fig. 7.4, solid line shows Fourier transform of Haar scaling function and dotted line shows Fourier 

transform of signal under consideration, namely x t( ). Contribution of side lobes towards overall dot 

product is unsubstantial compared to contribution from main lobe. In other words, frequencies of x t( ) 

inside main lobe of fourier transform of scaling function are emphasized with respect to frequencies 

outside the main lobe. As we move across the subspace ladder different amount of frequencies are 

emphasized. To be more precise, as we go from V-¥ to V+¥, more and more frequencies are emphasized 

as peak always remains on zero frequency.

where, < , >a b  represents dot product between functions a and b. As mentioned, when n l¹ , scaling 

functions do not overlap with each other and hence yield zero dot product. We shall now check what 

happens when n l= . Norm of the scaling function is

f(2 ) = (1) = 2
2

2

0

2
2m

m
m

dt×
-

-ò

where,  ×
2

2 represents square of L
2
 norm and ‘×’ represents corresponding argument. Here, argument 

is used to denote that this relationship is true for any valid translation.

Using orthonormal bases we can write

V t n n m
m

m

m= {2 (2 )} ,2span f − ∀ ∈

Projection of signal x t( ) over this subspace may be denoted as x n

m

m( ),2 (2 )2× × -f .

R
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Figure 7.4   Pictorial representation of dot product in frequency domain of a signal x t( ) with haar 
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7.3   Analysis of Haar Wavelet Function in Time  
and Frequency Domain

Haar wavelet function is shown in Fig. 7.5. Haar wavelet may also be represented in y f f( ) = (2 ) (2 1)t t t- - .  

Fourier transform of Haar wavelet function is
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Using these relationships, we get
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Figure 7.5  Haar wavelet function in time domain

Using this relationship we may plot Haar wavelet function across various subspaces. Figure 7.6 shows 

Haar wavelet in subspaces W-1
 to W

2
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Figure 7.6   Haar wavelet function at various time and frequency resolutions. Wavelet function 
and frequency domain characteristic in 6(a): W-1

 subspace; 6(b): W
0
 subspace; 6(c): W

1
 

subspace and 6(d): W
2
 subspace.
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As in the case of Haar scaling function, here also localization in time improves as we move from 

W-1
 to W

2
 by factor of two. Similarly, localization in frequency degrades as we go in similar direction by 

factor of two. However, important thing to note here is along with the bandwidth, centre frequency also 

shifts, unlike in the case of Haar scaling function. Here different bands with increasing bandwidth are 

emphasized as we go from W-¥ to W+¥. This characteristic of Haar wavelet function is similar to aspirant 
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band pass filter. Again, similar notion of time and frequency localization applies here as in case of Haar 

scaling function, namely, localization in time gets better and localization in frequency gets poorer as we 

go from W-¥ to W+¥.

7.4  Summary

In this section we analyzed Haar scaling and wavelet functions in detail. Rather than analyzing functions in 

either time domain or in frequency domain, we consider them in joint domain, i.e. time and frequency 

domains simultaneously. Analysis reveals that time and frequency domain localization improves and 

deteriorates respectively as we go from left to right in subspace ladder and vice versa. Also, Haar scaling 

function aspires to become low pass filter and wavelet function aspires to be band pass filter. Through 

this analysis we may consider ideal frequency responses of scaling and wavelet functions, which may 

improve overall response and projections over approximation and detail subspaces (V and W subspaces 

respectively). Such findings allow us to consider fundamental question of bound over simultaneous 

localization in time and frequency domain, namely the ‘uncertainty principle’.

7.5  Ideal Time-Frequency Behaviour

In earlier sections we have looked at the Fourier Transform of the scaling function (Father wavelet) f( )t  

and the wavelet function (Mother wavelet) y ( )t  in the Haar Multiresolution Analysis. In next few  sections 

we will see, what is the ideal situation that we are driving towards. We have made some  observations 

about the nature of the magnitude of f̂( )W  and ŷ ( )W . When we take dot product of x t b ac( ) 42 -  and a 

translate of f( )t , the magnitudes of the Fourier Transforms of x( )×  and f( )×  are getting multiplied. When 

we cascade two Haar scaling functions it results into Triangular wave function as depicted in Figure 7.7. 

We have observed that the nature of the Fourier Transform of the f( )×  and also that of y ( )×  was such that 

it emphasizes some bands of frequencies of the underlying function x t( ).
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Figure 7.7  Triangular wave in time domain

7.6  Frequency Localization by f(t) and Y(t)

The magnitude of Fourier Transform of f( )t  is shown in Fig. 7.8.
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Magnitude of Fourier Transform of y ( )t  is
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Figure 7.8  Magnitude of Fourier transform of f( )t
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÷ and then we shall multiply these two 

waveforms. Function sin
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÷  has a monotonically increasing characteristics between 0 and 2p  and 

decreasing characteristics between 2p  and 4p . So one cannot possibly have a value of the product of 

sin
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÷  and 

sin
W

W
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÷
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 higher in the range 2p  to 4p  than the value of it at 2p . The product is zero at 

W = 0 and what is after 2p  is less than what is at 2p . So, somewhere in between 0 to 2p  that product is 

having maximum and after that the product monotonically decreases. Also the function is not symmetric 

in the range 4p  to 8p  around 6p . So the maximum of the product in 4p  to 8p  is not at 6p , but somewhere 

around 6p . Finally, the product would look like, as shown in Fig. 7.9. In range -4p  to 4p , f̂( )W  and 

ŷ ( )W  look like as shown in Fig. 7.10.
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Figure 7.11  Magnitude of Fourier Transforms of f̂( )W  (grey) and ŷ ( )W  (black) in the range -4p  to 4p

From Fig. 7.10, it is observed that f̂( )W  and ŷ ( )W  emphasizes those frequencies lying around zero and 

those frequencies lying around its maximum in the band 0 to 4p  respectively and de-emphasizes  frequencies 

on either sides. It is clear that ŷ ( )W  has a bandpass characteristic and hence acts as a bandpass function. 

Magnitude of Fourier Transforms of scaling and wavelet function is as shown in Fig. 7.11. A bandpass 

function emphasizes frequencies somewhere around its centre frequency, where its value is maximum and 

de-emphasizes both sides around zero and around infinity. We note that when we contract scaling or wavelet 

function in time, we go up the ladder in Haar MRA and when we expand, we go down the ladder. Thus, 

when we go up the ladder, we are expanding in frequency domain and contracting in time domain. And 

when we go down the ladder, we are expanding in time and,  therefore, contracting in frequency.

Example 7.6.1 — Quality factor.

When we go down the ladder, we are contracting in frequency and we are emphasizing smaller 

and smaller frequency band around zero and also, as we are contracting ŷ ( )×  , we are emphasizing 

 frequencies around smaller and smaller centre frequency. The centre frequency of ŷ ( )×  decreases 

geometrically or logarithmically as we go down the ladder in the Haar MRA and width of the 

band of ŷ ( )×  also decreases geometrically or logarithmically. Here the ratio of bandwidth to centre 

 frequency remains constant. We call this as constant quality factor. For a bandpass filter or bandpass 

function the quality factor can be defined as

Quality Factor
centre frequency

bandwidth
=

Typically, the term bandwidth is used to denote that range of frequencies within which the  magnitude 

remains within a certain percentage of maximum magnitude. More specifically, we often use half 
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Therefore two important observations can be made

 •  The ratio of bandwidth to centre frequency of | ( ) |ŷ ×  remains constant.

 •  As we go up the ladder of MRA, we deal with | ( ) |ŷ ×  having higher centre frequency and larger 

bandwidth. Similarly, as we go down the ladder, | ( ) |ŷ ×  possesses lower centre frequency and 

smaller bandwidth.

7.7  Time Localization and Frequency Localization

Now, we use bandwidth as a measure of the range of frequencies that are emphasized by the function. 

This is because in finding dot product of x t( ) with and translate of y ( )t  or any stretched or compressed 

version of it, Parseval’s theorem says that we are, in fact multiplying Fourier transform of x t( ) and 

Fourier Transform of particular translate or dilate of y ( )t  in frequency domain. The same argument is 

valid for f( )t  also.

Now, the translate does not have any effect on magnitude, but dilate does. Thus, when we take 

dot product of y ( )t  and x t( ), we are multiplying the part of | ( ) |x W  which lies within the band, by a 

larger number and other parts by a smaller number. So in effect a filtering effect is also being observed. 

Effectively f( )t  is doing a low pass filtering operation and y ( )t  is doing a bandpass filtering operation.

If we take f( )×  itself and we focus on main lobe of Fourier Transform then, we are emphasizing on 

signals ranging between 0 2- p , and we are doing it by an operation in time domain. f( )×  and y ( )×  are 

very precisely localized in time. So the product of f( )×  and y ( )×  or any of their dilate or translate with 

x t( ) is also localized in time.

In signal processing, we observe conflict between time and frequency. In this case, time localization 

is precise, but localization in frequency is somewhat suspended. We can roughly say that (focusing on 

the main lobe) these are in some sense localized. But there are side lobes also.

Ideally, we would like to have precise time as well as frequency localization simultaneously. Now 

lets consider the dot product of x( )×  with particular integer translates of f( )×  as a sampling problem

So the product is (assuming both functions are real):

-¥

¥

ò +x t t dt( ) ( )f t

From Parseval’s theorem

-¥

¥

-¥

¥

ò ò+ +x t t dt x t d( ) ( ) =
1

2
( ) ( )f t

p
f t� �W W

  
-¥

¥

-¥

¥

ò ò+x t t dt x e d
j( ) ( ) =

1

2
( ) ( )f t

p
f t W W WWˆ

power bandwidth, where the magnitude falls to 
1

2
 of its maximum value, is considered as the cut-

off point of that signal. The ratio 
1

2
 has a significance, at that point, where magnitude is 

1

2
 of 

maximum, power of a sine wave falls to 
1

2
 of the maximum value.

R
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This is the inverse Fourier Transform of x
Ù Ù
( ) ( )W Wf  at the point τ .

So when we multiply by f̂( )W , we are in effect doing some kind of low-pass filtering operation and 

when we take Inverse Fourier Transform, we are taking what comes out of the crude low-pass filter 

whose impulse response is very closely related to f( )t .

Now, we sample this, at t = n where nÎ. i.e., if we take a function y t( ) and sample it ideally for 

nÎ, its fourier transform would look like

C y k
k

0
( 2 )

Î
å +


Ù
W p

C
0
 is a constant which relates to the sampling process. We can ignore this constant for this moment. So, 

in order to reconstruct y t( ) from its samples these translates must not interfere with the original. So, we 

have to ensure that these y k
Ù

( 2 )W + p  are nonoverlapping with the original and that is ensured by ensur-

ing that the low pass filter cuts off at W = p . Had f̂( )W  been an ideal low pass function with a cut off of 

p , then this ‘aliasing’ C y k
k0

( 2 )
Îå +


Ù
W p  would leave y( )W  unaffected. This is the ideal situation we 

are looking for.

Now, we need to look at what is the ideal towards which we are driving, as far as y ( )t  goes. When we 

go from V
0
 to V

1
, we have noted that V

1
 is just like V

0
, but compressed by a factor of 2 in time and, therefore, 

expanded by a factor of 2 in frequency domain. So for V
1
 (Haar MRA ladder), we expanded by two 2 in 

frequency, that means we are asking for a low pass filter whose cut off is 2p , instead of p. Now we have 

interpretation for incremented subspace. Obviously, V
0
 is going to contain information between 0 and p  

and V
1
 between 0 and 2p . Then W

0
 will contain information between p and 2p . This is shown in Fig. 7.12.

Angular frequency (Ω)

f (2Ω)ˆ

0

1

4
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2
p p 2p

2
f (2Ω)ˆ

x (Ω)ˆ f (Ω)ˆ
f Ωˆ

Figure 7.12   f( )×  aspires to become low pass function. Ideally, information captured by it in different 
subspaces V-1

(dotted line), V
0
(black) and V

1
(solid grey)

So y ( )×  is aspiring to be a bandpass function between p  and 2p . Similarly, while going V-1
 to V

0
, we use 

corresponding dilate of y ( )×  that aspires to be a bandpass function between 
p

2
 and p  and when we go 

from V
1
 to V

2
, we use dilate of y ( )×  that aspires to be a bandpass function between 2p  and 4p , and so on. 

This is illustrated in Fig. 7.13. Now, we want to confine ourselves in a certain region of time and also 

want to focus or confine on a particular region of frequency. The first question that arises is, whether it 
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is possible or not. Can we be compactly supported in time and frequency simultaneously? The answer 

is no. We cannot be compactly supported in both the domains(time and frequency).

Angular frequency (Ω)
2p 4pppp

4
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x (Ω)
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ˆ

ˆ

ˆ
2
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Ω

Figure 7.13   y ( )×  aspires to become band pass function. Ideally, information captured by it in different 
subspaces W-1

(dotted line),W
0
(black) and W

1
(solid grey)

However, if we do not ask for compact support in both domains, it is possible to have a function 

most of whose energy is contained in the finite interval over time as well as frequency. Such functions 

can be said to have a compact support in a weaker sense. f( )×  and y ( )×  are bounded in both domains in 

a weaker sense as we focus on main lobe. Main lobe has certain amount of energy. Then f( )×  and y ( )×  

are localized in time and frequency both. Variance is an important statistical property that is very useful 

in calculating spread of a given function, which is indicative of concentration of energy of a function 

within certain band (in time as well as frequency domain).

The question arises that is it possible to have finite variances in both frequency as well as time domain 

simultaneously? The answer is yes. We can have both the variances to be of finite value. Now, how small can 

these variances be? To answer this question we introduce time-frequency uncertainty. In case of Haar wavelet, 

it is somewhat concentrated in frequency, but well-concentrated in time.For the Daubechies function, as we 

go to higher orders, we get a somewhat better filtering operation that gives us a better frequency localization.

In Chapter 8 we shall investigate the concept of uncertainty deeply.

Exercise 7.1 

Consider the problem of finding projection of triangular wave shown in Fig. 7.7 over approximation 

subspaces V-1
, V

0
, V

1
, V

2
 and over detail subspaces W-1

, W
0
, W

1
. Through this example one might show 

that projections of triangular wave over such subspaces follow time and frequency localization discus-

sion carried out in this chapter. That is, one might show that localization in both time and frequency is 

limited by time and frequency resolutions of dilated Haar scaling and wavelet functions, which enable 

us to analyze signal by looking at separate frequency bands.

Hint: In order to prove the mentioned claim, we shall first find projection of x t( ) over various 

 approximation (V  subspaces) and detail subspaces (W subspaces). After finding such projections, we 

might take Fourier transform of projections and by observation fulfill the claim. However, first let us 

look at the Fourier transform of triangular wave, which may be given in the following manner. We only 

consider magnitude response here as we are not interested in phase response at this level of analysis.

| ( ) |
2

2

. .

2

x t
F T

↔







sin
Ω

Ω

Exercises
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This relationship easily follows from convolution of two unit pulses, which renders to multiplication 

in Fourier domain. The frequency domain representation is shown in Fig. 7.14.

Projection of x t( ) over positive approximation subspaces ( , 0)V k
k

³  may be found in the following 

way:

C k l t dt
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where, C k l( , ) is an approximation coefficient at kth subspace with scaling function translated by l 

units in time. Note that triangular wave is symmetric, which allows us to compute coefficients on 

one side of the symmetry axis and mirror on the other side. For subspaces with k < 0, we may find 

coefficients in the following manner:

C k l t dt
k( , ) = 2 (1 )

0

1

ò -

             
= 2 (2 ) |1 2

0

1k
t t

- -

          
= 2 ; < 01k

k
-

Projections of x t( ) over subspaces V-1
, V

0
, V

1
, V

2
 along with respective Fourier transforms are shown 

in Fig. 7.16.

As evident from Fig. 7.16, localization in time improves as we go to finer subspaces. On 

the other hand, localization in frequency domain deteriorates increasingly as we move to finer 
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Figure 7.14  Fourier transform of Triangular wave
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Frequency domain representation of projection

of triangle wave on V2
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Figure 7.15   Projections of triangular wave over different approximation subspaces and their 
corresponding Fourier transforms. [See how localization in time and frequency domain 
changes as we go from coarser subspace to finer and finer subspaces.]

subspaces. Localization in time is governed by duration of corresponding scaling function in 

time, whereas, frequency localization is governed by frequency response of scaling function in 

that subspace. In V
0
, for example, maximum frequency content is upper-bounded by frequency 

content of scaling  function in this subspace. Similar conclusion holds for projection in all other 

subspaces.

Projections of x t( ) over detail subspaces may be found in the following manner:

d k l c k l c k l

l l
k k

k

( , ) = ( 1,2 ) ( , )

= 1 2 (2 0.5) 1 2 ( 0.5)

= 2

1

2

+ -

- + - + +- - -

- - ;; 0k ³

where, d k l( , ) depicts coefficients of detail subspace W
k
 when wavelet function is shifted by l units 

in time. As all approximation projections are symmetric, detail projections are also symmetric. For 

negative detail subspaces, coefficients may be found in the following way:

d k l c k l c k l

k

k k

k

( , ) = ( 1,2 ) ( , )

= 2 2

= 2 ; < 0

1

1

+ -

- -

-

Projections and corresponding frequency domain representations of triangular wave over W-1
, W

0
 

and W
1
 are depicted in Fig. 7.16.
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Again, it is evident from the figure that time and frequency details are not well localized 

 simultaneously. As resolution in one domain improves, resolution in other domain is bound to 

 deteriorate and vice versa. Also, frequency domain resolution is bounded by bandpass nature 

of wavelet function. As we move from W-1
 to W

1
, centre frequency shifts away from zero fre-

quency and band gets wider and wider. This leads to condition similar to constant-Q analysis in 

which ratio of centre frequency and band around it remain approximately constant throughout the 

analysis.

Exercise 7.2 

In continuation to the numerical example depicted, in Exercise 7.1 consider the signal

x t t r R t
r( ) = 1 | | ; 0 | | 1

= 0; .

- Î + £ £and

otherwise

Explain how projections and corresponding Fourier transforms evolve as r goes to infinity.

Hint: As r  goes to infinity, x t( )  approaches a rectangular pulse in - £ £1 1t  interval. Hence, 

in limit x t( )  will be in V
0
 subspace. In this case, projections on V

0
 to V+¥  will be the same, 

which explicitly implies no components of x t( )  in W
0

 to W+¥ . By induction, we may say that as 

r  increases components in V+ , subspaces become more and more similar and components in W+  

 subspaces become smaller and smaller. In this case, frequency domain representations will also 

follow similar trend, namely frequency responses of V+  subspaces will become more similar and 

frequency responses of W+  subspaces tend to vanish.
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Figure 7.16   Projections of triangle wave over different detail subspaces and their corresponding Fourier 
transforms. [See how localization in time and frequency domain changes as we go from 
coarser subspace to finer and finer subspaces.]

Exercise 7.3 

Briefly comment about Haar scaling and wavelet functions as analysis tools for joint time-frequency 

domain representation of a signal.

Hint: Haar scaling and wavelet functions have excellent time localization property as evident 

from Fig 7.3 and Fig 7.6. However, both have poor frequency localization property as both have 

frequency responses which are not compactly supported (zero outside some finite range). Hence, 

according to Parseval’s theorem, dot product in frequency domain contains contribution from 

all frequency components, which contributes to degradation in frequency localization. This very 

fact provides motivation to question whether simultaneous localization in time and frequency is 

possible or not, which is answered by the uncertainty principle to be discussed in following set 

of lectures.
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Figure 7.17    Magnitude Frequency Response; (a): Daub-4 LPF magnitude frequency responce;  
(b): Daub-6 LPF magnitude frequency responce.

Exercise 7.4 

The coefficient of Daub-4, Daub-6, are given, find the frequency response (magnitude only) of 

 corresponding LPF.

Daub-4 = 
1 3

4 2
,
3 3

4 2
,
3 3

4 2
,
1 3

4 2
,

+ + - -é

ë
ê

ù

û
ú

Daub-6 = 

1 10 5 2 10

16 2
,
5 10 3 5 2 10

16 2
,
10 10 2 5 2 10

16 2
,
10 2 10 5 2 10

1

+ + + + + + - + + - - +

66 2
,

é

ë
ê
ê

5 10 3 5 2 10

16 2
,
1 10 5 2 10

16 2

+ - + + - + ù

û
ú
ú

Hint: The frequency responses are as shown in Fig. 7.17.

Exercise 7.5 

Prove that a time-limited signal can not be band limited or vice versa, i.e. a signal can not be 

 time-limited and band-limited simultaneously.

Hint: Assume that a continuous signal f t( )  is band-limited and nonzero over a finite interval 

of time. Let f t( )  be zero in interval (a,b). So, we can write

f t t a b( ) = 0, ( , )Î
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Let Fourier transform of f t( ) be F f( ) which is zero outside the interval ( , )
0 0

- f f (assuming f t( )  

to be a real signal.)

We can write for t a bÎ ( , )  as

 
f t( ) = 0

 
= ( ) 2

-¥

¥

ò F f e df
j ftp

= ( )
0

0 2

-ò f

f
j ft

F f e df
p

Repeatedly differentiating the above expression with respect to t, we get

f t

j F f f e df
n

f

f
n j ft

( ) = 0

= (2 ) ( )
0

0 2p p

-ò
Picking t a b

0
( , )Î , we have

 
0 = (2 ) ( )

0

0 2
0p

p
j F f f e df

n

f

f
n j ft

-ò  (7.1)

Now, for any t  we can write (t  need not be in the interval ( , )a b ) ,

f t F f e df

F f e e df

f

f
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f

f j f t t j ft

f
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p

Note that, we have made use of Eq. (7.1), in step 3 above which we have already derived. Thus, f t( )  

is essentially zero for any value of t. So, we can extend interval ( , )a b  to cover entire time axis 

i.e. ( , )-¥ +¥ . Hence, f t( )  is zero function and can not be any other time-limited function. So, a 

function cannot be time-limited as well as band-limited simultaneously.



8.1  Introduction

We build in this chapter a very important principle, which is infact at the heart of the subject of Wavelets 

and Time frequency methods, namely, the uncertainty principle. The whole chapter is devoted to a 

discussion of uncertainty principle; laying the foundation of what the uncertainty means first, and then 

proceeding to obtain certain numerical bounds in two domains simultaneously.

8.2  Non-formal Introduction to the Idea of Containment

As we discussed in previous chapter, there is of course a very tight or strong notion of containment. Is it 

possible to have compact support in both time domain and frequency domain? So, both in the time and 

in frequency, we demand the function to be non-zero only over a finite part of the independent variable 

or the real axis; a very strong demand and of course that cannot be met. It is related to the fact that if the 

function was finitely supported (compactly supported) in the real axis, there were certain properties of 

that function, specifically the existence of an infinite number of derivatives, which make it impossible 

for the function to be compactly supported or be non-zero only over a finite interval of the independent 

variable in the natural domain. Natural domain can mean time, space or any other domain. But we had 

asked whether a weaker notion of containment could be admitted. So to be on the finite interval of the 

independent variable, which indexes it and simultaneously in the transformed domain, i.e. the frequency 

domain, we insisted that most of the content be in a finite interval of the frequency axis. This seems 

like more reasonable requirement and to a certain extent can be met too. Finally the focus remains on 

how much we can contain in the two domains simultaneously. There are several steps to reach this 

destination:

Th e Uncertainty 
Principle

Chapter

Introduction

Non-formal introduction to the idea of 
containment

Formalization of the idea of containment

Self Evaluation Quiz Examples 

The Time-Bandwidth Product

Signal transformations

Properties of the time bandwidth product

Evaluating and bounding the time band-
width product

Evaluation of time-bandwidth product 
σ

t
2 σΩ

2

Self evaluation quiz examples

8
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The first step is to put down in a nonformal way, what do we mean by ‘containment’? What do we 

mean by ‘most of the content being in certain finite range?’ The approach that we would take to do this 

has been discussed briefly in the previous chapter. There are two possible approaches to doing this. 

We should think of the magnitude-squared of the function and the magnitude-squared of the Fourier 

transform as a one-dimensional object and then we could talk about the centre of that object or “centre 

of mass”. We could talk about the spread of the object around the centre of mass, using the notion of 

“radius of gyration” or probability density, built from the squared magnitude of the function and another 

density built from the squared magnitude of the Fourier transform. We could then look at the “mean” 

and “variance” of these densities. The variances are indicative of the spread. So this was a nonformal 

introduction.

8.3  Formalization of the Idea of Containment

We are going to work in L
2
( ) . In fact, we must mention that sometimes we are actually going to work 

in the intersection of the space of square integrable functions and absolutely integrable functions.

x t L L( ) ( ) ( )
2 1

Î Ç 

Now, as the function belongs to L
2
( ) , its Fourier transform also belongs to L

2
( ) . Let, x t( ) have 

the fourier transform x̂( )W . Then, x̂ L( ) ( )
2

W Î   as well. So, we first define a density or a “one dimen-

sional mass”.

| ( ) | = ( )2

2

2
x t dt x t

-¥

¥

ò
which is finite. Therefore, we define the density as,

p t
x t

x t
x
( ) =

| ( ) |

( )

2

2

2

which is a probability density, because of the following reasons:

    1. p t
x
( ) 0³  " t (It is a density in t)

    2. 
-¥

¥

ò p t dt
x
( ) = 1 (from definition)

Similarly, let us define a density in the angular frequency domain.

p
x

x
x̂

ˆ

ˆ
( ) =

| ( ) |

( )

2

2

2
W

W
W 

This is also a probability density, because of the following reasons:

    1. p
x̂
( ) 0W ³  " W (It is a density in W)

    2. 
-¥

¥

ò p d
x̂
( ) = 1W W  (from definition)

Now we have taken the probability density perspective, but we could as well take the so-called 

one-dimensional mass perspective, i.e. we could think of the p t
x
( ) as a one-dimensional mass in t and 

similarly p
x̂
( )W  as one-dimensional mass in W. So, here, we have a simplified situation. We have a mass 

in one-dimensional space, which can be the space of t or the space of W.
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If we choose the “mass” perspective, consider the “centre of mass” and the “spread around the  

centre”. Spread around the centre in mechanics can be measured by a quantity called the “Radius of gyra-

tion”. If we choose the “probability density” perspective, we have the notion of “mean” and “variance”.

Now, we must assume that these quantities can be calculated. It is possible that the variance can be 

infinity, so we are not always guaranteed of a finite variance. Let us find a lower limit as to where these 

quantities go in the two domains simultaneously.

Considering the function x t( ), we prefer to take the probability density perspective. So we think of 

p t
x
( ) and p

x̂
( )W  as the probability densities and now we shall write down the “mean”.

Let, p t
x
( ) have the mean t

0
.

t tp t dt
x0

= ( )
-¥

¥

ò
Recognizing the definition to hold good for the “centre of mass” here, essentially, we are calculating 

the moment by choosing the fulcrum to be zero and, therefore, getting a different fulcrum or a point at 

which the moments are balanced.

Similarly, let p
x̂
( )W  have the mean W

0
.

W W W W
0

= ( )
-¥

¥

ò p d
x̂

Further, we assume the “means” are finite and normally they should be. In some deviant situations, 

we may have a problem. So, assuming these “means” are finite, let us look at the “variances”.

So, the variance in t is defined as,

s
t x

t t p t dt
2

0

2= ( ) ( )-
-¥

¥

ò
And similarly, the variance in angular frequency is defined as,

s W W W W W2

0

2= ( ) ( )
-¥

¥

ò - p d
x̂

Once again, we are assuming the variances to be finite. Even if the variances are infinite, we will 

accept it. If we choose to think of these as one-dimensional masses, it is very clear that the variance is 

an indication of the spread. So larger the variance, the more the density is said to have spread around the 

“mean” and the smaller the variance; the more the density or the mass is said to be concentrated around 

the mean. So, now we have a formal way to define containment.

We can say that the containment in a given domain refers to the variance in that domain. So contain-

ment in time is essentially s
t

2, and containment in angular frequency domain is essentially s W
2  quantity. 

How small can we make any one of these quantities for a valid function?

To justify this point, we will take the Haar scaling function as an example and calculate its variance.

Example 8.3.1 — Calculate mean and variance for the Haar scaling function.

We can see that the Haar scaling function f ( )t  is one between zero and one and zero elsewhere  

(Fig. 8.1). Its probability density is given as,

p t
t

t
f

f

f
( ) =

| ( ) |

( )

2

2

2 
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0

1f(t)

1 t

Figure 8.1  Haar scaling function

Now,

 f f( ) = | ( ) | = 1 = 1
2

2 2

0

1

t t dt dt
-¥

¥

ò ò
Hence, p tf ( ) is as shown in Fig. 8.2.

0

1pf(t)

1 t

Figure 8.2  Probability density 

function in time

Now, we will find the “mean”. In fact, even before finding the mean formally, we can find it 

graphically. The mean is going to be at the centre of 0 and 1, i.e, at 
1

2
. Let us do it formally,

t tp t dt

tdt

t

0

0

1

2

0

1

= ( )

=

=
2

=
1

2

-¥

¥

ò

ò

f
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Hence, mean is shown as shown in Fig. 8.3.
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Mean

pf(t)

11/2 t

Mean

Figure 8.3  Mean of p tf ( )
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Now, we will find the “variance”.

 s ft
t t p t dt

2

0

2= ( ) ( )
-¥

¥

ò -

= (
1

2
) ( )2

-¥

¥

ò -t p t dtf

= (
1

2
)

0

1
2ò -t dt

Let, t -
1

2
= l,

Þ dt d= l.

As limits of t are 0 to 1, we get limits of l  as 
-1

2
 to 

1

2
. Hence, integral becomes

 s l l
t

d
2 2

1

2

1

2= -ò

=
3

3

1

2

1

2
l

|-

=
1

3
(
1

8

1

8
)+

=
1
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Therefore, taking positive square root, we get

s
t

=
1

2 3

As we can be seen that, s
t
 is less than 

1

2
. In a certain sense, we do not really use the number half 

to denote the spread of f ( )t  around its mean. The variance does not say it goes all the way to half. 

It says the spread is a number slightly less than half. Most of the energy is contained in that region 

around the mean captured by the variance. In fact, to be very specific, the fraction of the energy 

contained here would be, i.e. the energy contained in [ , ]
0 0

t t
t t

- +s s  would essentially be given by,

t
t

t
t
p t dt

0

0
( )

-

+

ò s

s

f
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We are not looking for 100% of the energy, in lieu we are considering the significant part of it. 

Now, we will calculate this value. Substituting the values, the integral becomes,

 t
t

t
t
p t dt dt

0

0

1

2

1

2 3

1

2

1

2 3( ) = 1
-

+

-

+

ò òs

s

f

= (
1

2

1

2 3
) (

1

2

1

2 3
)+ - -

=
1

3

= 0.577

It is certainly not a large fraction like 90%, but it is more than 50%. This fraction varies for 

different functions and depends on the density. Hence, we can say that, the variance is an accepted 

measure of spread, and very often the variance actually tells us where most of the function is con-

centrated. Even in this case, if we look at it carefully, part of this function is between 
1

2

1

2 3
−







 

and 
1

2

1

2 3
+







.

Now, we will calculate the variance in the frequency domain of this same function. So, let us 

look at f̂ ( )W . Actually, we are interested in | ( ) |2f̂ W . And that is of the form,

| ( ) | =

(
2

)

(
2

)

2

2

ˆ
sin

f Ω

Ω

Ω

We could integrate this. Indeed we know that,

 f f
p

f( ) = | ( ) | =
1

2
| ( ) |

2

2 2 2
t t dt d

-¥

¥

-¥

¥

ò ò ˆ W W

which is equal to 1. Hence,

 ˆ ˆf f p( ) = | ( ) | = 2
2

2 2W W W
-¥

¥

ò d

Hence, p
f̂
( )W  is given as,

p ˆ

ˆ

ˆ

ˆ

f

f

f

f

p
( ) =

| ( ) |

( )
=

| ( ) |

2

2

2

2

2

W
W

W

W

 

It has an appearance as shown in Fig. 8.4.

Now, it is very easy to see that the mean of this function is zero. This function is symmetrical 

around W = 0. For all real functions x t( ), x̂( )W  is magnitude symmetric. Therefore, the mean W
0

= 0.

Now, let us find the variance. So, the variance of f̂ ( )W  is given as,
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The constant 
4

2p
 is not important, but |

2
|2sin

Ω





 is very important. We are trying to integrate 

the |
2

|2sin
Ω





 function, which is a periodic function with period 2p . We are trying to integrate a 

periodic function from -¥ to +¥, and obviously the integral is going to diverge. So the apprehension 

comes out to be true in the very simple case of scaling function that we know. The variance of f̂ ( )W  

is infinite! In other words, f ( )t  is not at all confined in the frequency domain, at least in this sense. 

When we discussed time and frequency together we had been concerned about presence of these 

side lobes. Besides, it is feasible to look at the main lobe and talk about the presence in the main 

lobe. However, these side lobes are falling off by the factor of 
1

W
 in magnitude and have created the 

problem after multiplication of W2 in the calculation of variance. The side lobe creates a periodic 

function, which is to be integrated, and that causes the trouble.
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Figure 8.5  Waveform of  | (
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This explains why we have to look much beyond the Haar and can’t be contented with the Haar 

multi-resolution analysis. If we look at the scaling function in the Haar multi-resolution analysis, its 

variance in the frequency domain analysis is infinite. It is not at all contained in the frequency domain in 

this sense. The question is what makes the variance infinity? Why did we have a divergent variance? In 

fact we can answer these questions, if we only make a slight adjustment of the expression of variance. 

The variance of f̂ ( )W  is given as,
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Now, jW Wf̂ ( ) has some significance and is essentially the Fourier transform of 
d t

dt

f ( )
.

Hence, energy in the derivative function is given as,
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Hence, the variance of f̂ ( )W  is given as,
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For a real x t( ), the frequency variance, i.e. the W variance is,
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As we can see, f ( )t  is discontinuous. So, when its derivative is considered, there are impulses in 

the derivative, which are not square integrable. So, the numerator diverges. The moment we have a 

discontinuous function, we have an infinite frequency variance. With this note, we realize that, if we 

want to get some meaningful uncertainty, some meaningful bound, we must at least consider continuous 

functions.

8.4  Self Evaluation Quiz Examples

Example 8.4.1 — What is the difference between | ( ) |2x t  and  x t( )
2

2
?

Ans.  x t( )
2

2 is the 
2
 norm of function x t( ) and it is given as,

 x t x t dt( ) = | ( ) |
2

2 2

-¥

¥

ò

 x t( )
2

2 is the scalar quantity, whereas | ( ) |2x t  is squared magnitude of function x t( ).

Example 8.4.2 — Why the frequency centre for real function is zero?

Ans. For real functions, its Fourier transform is magnitude symmetric. Therefore, frequency centre 

is zero for real function.

Example 8.4.3 — What operations are needed to shift the time centre and frequency 
centre without affecting its shape?

Ans. 

 1. Time translation (Frequency domain modulation)

 2. Frequency translation (Time domain modulation)

With these operations, we can shift the time centre and frequency centre without affecting the 

time and frequency variance, i.e. without affecting its shape.

8.5  The Time-bandwidth Product

In this and next few sections, we will study the time bandwidth product, and the effect of simple signal 

transformation on the time bandwidth product.

Let us revise some basic formulae that we have.
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8.5.1 The Time Centre t
0

The time centre of any waveform x t( ) is given by

 

t
t x t dt

x t dt
0

2

2
=

| ( ) |

| ( ) |

-¥

¥

-¥

¥

ò
ò

 (8.1)

Which has already been introduced.

The quantity 
-¥

¥

ò | ( ) |2x t dt is often represented as || ||
2

2
x  to indicate that it is the squared 

2
 norm of 

x t( ).

8.5.2 The Time Variance s
t

2

The time variance of a function x t( ) is defined as

 

s
t

t t x t dt

x

2 0

2 2

2

2
=

( ) | ( ) |

|| ||

-¥

¥

ò -
 (8.2)

8.5.3 The Frequency Centre W
0

The frequency centre of x̂( )W , where x̂( )W  is the Fourier transform of x t( ), is given by

 

W
W W W

W W
0

2

2
=

| ( ) |

| ( ) |
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¥

-¥

¥

ò
ò

ˆ

ˆ

x d

x d
 (8.3)

As before, the quantity 
-¥

¥

ò | ( ) |2x̂ dW W is expressed as || ||
2

2
x̂ . For real signals, | ( ) |2x̂ W  is an even 

function of W and hence W
0

= 0 due to symmetry.

8.5.4 The Frequency Variance sW
2

The frequency variance of a signal spectrum x̂( )W  given by

 

s W

W W W W
2 0

2 2

2

2
=

( ) | ( ) |

|| ||

-¥

¥

ò - ˆ

ˆ

x d

x
 (8.4)

8.6  Signal Transformations

In this section, we shall study the effect of some common signal transformations on the four quantities 

mentioned above.
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Example 8.6.1 — Shifting in time domain.

Let the signal x(t), with time centre t
0
 be shifted in time by amount t

1
, i.e. 

 
y t x t t( ) = ( )

1
-

 (8.5)

Effect on time centre
Since we are only shifting in time and not changing the magnitude, the 

2
 norm square in the 

denominator will remain unchanged. The new time centre will be given as
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 (8.6)

Now, substitute t t u-
1

= . Thus

dt du=

and

t u t=
1

+

The limits of integration remain unchanged. Thus, the new integral will be
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because,
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¥

ò | ( ) | =|| ||2

2

2
x u du x

Effect on time variance
From the new time centre, we can write the expression for the time variance as

s
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t t t x t t dt

x
( )

2 0 1
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substitute

t t u-
1

=
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Thus,

s
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u t x u du

x
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2
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( ) | ( ) |
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ò -

 
s s

t new t( )

2 2=  (8.8)

Thus, the time variance is unaffected by a shift in time.

Effect on frequency domain
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Since the magnitude of ŷ( )W  is same as x̂( )W , the frequency centre and frequency variance will 

remain same. The only change is in phase, which is of no consequence in calculating W
0
 and s W

2 .

Example 8.6.2 — Shifting in frequency domain (or modulation in time domain).

Shifting in frequency domain implies multiplication by a complex exponential in time domain. 

Thus,

 

y t e x t

y x

j t
( ) = ( )

 ( ) = ( )

1

1

W

W W WÞ -ˆ ˆ  (8.10)

Students may take it as an exercise to prove that frequency centre is shifted by +W
1
 and frequency 

variance is unchanged. Also note that, since

| ( ) | = | ( ) |y t x t

time centre and time variance also remain unchanged.The product s s
t

2 2

W remains unchanged by 

all these operations. This product is called the Time-Bandwidth Product and it is a characteristic 

(though not unique) of a waveform.
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Example 8.6.3 — Multiplication by a constant.

Let

 

y t C x t C

y t C x t

y C

( ) = ( )     ( 0)

| ( ) | = | | | ( ) |

| ( ) | = | |

0 0

2

0

2 2

2

0

2

¹

Þ

Þ ˆ W || ( ) |2x̂ W  (8.11)

Substituting y t( ) in Eqs. (8.1), (8.2), (8.3), and (8.4), we can see that the term | |
0

2
C  will come 

outside the integration in both denominator and numerator and will get cancelled, thus leaving both 

centres and variances unchanged.

Example 8.6.4 — Scaling of independent variable.

Let

 

y t x t

y x

( ) = ( )     ( , 0)

( ) =
1

| |

a a a

a a

Î ¹

Þ
æ

è
ç

ö

ø
÷



ˆ ˆW
W  (8.12)

Effect in time domain
The new time centre is given by

       Put 

t
t x t dt

x t dt

t

d dt

t

new

new

0( )

2

2

0( )

=
| ( ) |

| ( ) |

 =

=

=

-¥

¥

-¥

¥

ò
ò

Þ

Þ

a

a

l a

l a

11
| ( ) |

1
| ( ) |

=
1

2

2

2

0( ) 0

a
l l l

a
l l

a

-¥

¥

-¥

¥

ò

ò

Þ

x d

x d

t t
new

 (8.13)

Using similar reasoning, it can be proved that

 
s

a
s

t new t( )

2

2

2=
1

 (8.14)
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Note that even if a  is negative, the limits of integration would still remain same as there would 

be reversal of limits twice.

Effect in frequency domain

Starting with x̂
W
a

æ

è
ç

ö

ø
÷ it can be proved that

  
W W

0( ) 0
=

new
a  (8.15)

 
s a sW W( )

2 2 2=
new

 (8.16)

The multiplier 
1

a

æ

è
ç

ö

ø
÷ is not considered as it neither affects centre nor the variance. The students 

should verify the above results as an exercise.

Effect on time bandwidth product
The new time bandwidth product will be given by

 

s s
a
s a s

s s

t new new t

t

( )

2

( )

2

2

2 2 2

2 2

=
1

=

W W

W

æ

è
ç

ö

ø
÷( )

 (8.17)

Thus, the time-bandwidth product is invariant to scaling of the independent variable.

8.7  Properties of theTime Bandwidth Product

Thus, to summarize, the time bandwidth product is invariant to the following operations

●● Shifting waveform in time
●● Shifting waveform in frequency(modulation in time)
●● Multiplying the function by a constant
●● Scaling of independent variable

The time bandwidth product is thus a robust measure of combined time and frequency spread of a 

signal. It is essentially a property of the shape of the waveform.

Challenge: Can two differently shaped waveforms have the same time bandwidth product?

In the last chapter, we had noted that the time-bandwidth product of the Haar scaling function was 

∞ .  The above results prove that the time-bandwidth product of any gate/rectangular function is ∞ .

The next fundamental question which comes to mind is what is the minimum value of this product?

8.7.1  Simplification of the Time-bandwidth Formula

Without loss of generality,we can assume that a function has both time and frequency centre zero 

(because that does not affect the time bandwidth product).

R
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 s s
t

t x t dt

x

x d

x

2 2

2 2

2

2

2 2

2

2
=

| ( ) |

|| ||

| ( ) |

|| ||
W

W W W
-¥

¥

-¥

¥

ò ò ˆ

ˆ
 (8.18)

Now, we simplify the numerator of the frequency variance.

 

−∞

∞

−∞

∞

∫ ∫
→

Ω Ω Ω Ω Ω Ω2 2 2| ( ) | = | ( ) |

( ) (

ˆ ˆ

ˆ

x d j x d

x t xWe know that if 


ΩΩ

Ω Ω

Ω

)

( )
( )

|| ( ) || = 2 ||
2

2

dx t

dt
j x

x x

→


ˆ

ˆ’By Parseval s theorem, p (( ) ||

|| ( ) || = 2 ||
( )

||

2

2

2

2

2

2

t

j x
dx t

dt
Ω Ωˆ p

 (8.19)

Using above results in Eq. (8.18), we get

 

s s
t

tx t

x

dx t

dt

x

tx t
dx t

2 2 2

2

2

2

2

2

2

2

2

2

=
|| ( ) ||

|| ||

( )

|| ||

=

|| ( ) || .
(

Ω

))

|| ||

2

2

2

4

dt

x

 (8.20)

The next step is to minimize this product, which will be discussed in the next subsequent sections.

8.8  Evaluating and Bounding the Time-bandwidth Product

We have so far been working on how to evaluate a measure for the joint resolution of time and frequency. 

Given a wavelet function, the product of the time and frequency variances could give us a precise idea as 

to how well we can focus in both the domains simultaneously. This time-bandwidth product is invariant 

to translation and modulation in time domain. Also, the time-bandwidth product is invariant to scaling 

of the dependent and the independent variable and is a direct function of the shape. We have derived the 

necessary expressions for the time and frequency variances and will try to evaluate it further and find out 

the constraint induced by nature on this time-bandwidth product. We will essentially try to find the lower 

bound on the time-bandwidth product. This will also give us a mathematical proof of the uncertainty that 

exists in nature when we try to focus in both the domains simultaneously.

8.9  Evaluation of Time-bandwidth Product s s
t

2 2

W

Let us recall the expressions for the time and frequency variances which are given as:

 

s
t

t x t dt

x t dt

2

2 2

2
=

| ( ) |

| ( ) |

-¥

+¥

-¥

+¥

ò
ò

 (8.21)
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 =
( )

( )

2

2

2

2

tx t

x t
 (8.22)

 

sΩ
2

2

2
=

( )

( )

−∞

+∞

−∞

+∞

∫

∫

d

dt
x t dt

x t dt

  

=

( )

( )

2

2

2

2

 

 

d

dt
x t

x t
 (8.23)

The time-bandwidth product can therefore be obtained from Eqs (8.21) and (8.23) as:

 

Time band width product =
( )

( )

( )

( )

2

2

2

2

2

2

2

 

 

 

 

tx t

x t

d

dt
x t

x t
22

 (8.24)

NOTE: 

While stating the above equations we have put t
0

= 0 and s
0

= 0. We could do this because the 

time-bandwidth product is invariant to time and frequency domain shifts. Thus, without the loss of 

generality we can always obtain a function centred at origin in both the domains either by shifting 

or by modulation.

Let us now evaluate the numerator first:

 

Numerator = ( )  ( )
2

2

2

2

tx t
d

dt
x t  (8.25)

To simplify it further, we need to interpret the functions tx t( ) and 
d

dt
x t( ) as vectors 



v
1
 and 



v
2
 

respectively. Now, as per the basic principle of inner product of two vectors:

   

v v v v
1 2 1 2
, = ( = )cosq q angle between the two vectors

   

v v v v
1 2

2

1

2

2

2
2, = cos q

Therefore,  ,              (  1)
1 2

2

1

2

2

2 2   

v v v v≤ ≤as cos q

This principle can be generalized to the functions viewed as vectors and in fact is a very important 

theorem in functional analysis called Cauchy-Schwarz inequality. The theorem states that if there are 

two functions say f
1
 and f

2
 such that f f L

1 2 2
, ( )Î   then,

 
f f f f
1 2

2

1

2

2

2

, ≤  (8.26)

Thus, from Eq. (8.26) the numerator in Eq. (8.24) can be written as:

 

Numerator ³ tx t
d

dt
x t( ), ( )

2

 (8.27)

R
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NOTE: 

As per the inequality we are assuming that the functions belong to space L
2
( ) . Therefore to ensure 

validity of this inequality in our time-bandwidth evaluation it is important to choose x t( ) such that 

tx t L( ) ( )
2

Î   and 
d

dt
x t L( ) ( )

2
Î  . If this condition is not satisfied then the integral diverges and 

there cannot be a lower bound.

To illustrate the above condition let us consider an example as in Fig. 8.6:

Consider,

x t t( ) = 1             0 1£ £

The function 
d

dt
x t( ) will look like in Fig. 8.2.

Now the function in Fig. 8.7 is not square integrable because it contains two impulses which have 

infinite energy. This can be well understood by zooming the view a bit on the impulse. The zoomed view 

of the impulse will be as in Fig. 8.8.

x(t)

0 1

1

t

Figure 8.6  Function belonging to L
2
( )

x(t)

0

d

dt

1 t

Figure 8.7  Function 
d

dt
x t( )

Now,

D® -¥

+¥

Dò
0

2 ( )lim d t dt

diverges.

Therefore, for the time-bandwidth product to have a lower bound the function and its derivative both 

should belong to L
2
( ) .

The RHS of Eq. (8.27) can be written as:

 

tx t
d

dt
x t tx t

d

dt
x t dt( ), ( ) ( ) ( )

2 2

=
-¥

+¥

ò  (8.28)

R
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Now, for any complex number Z  we have the following relation:

| | | |Z Re Z
2 2{ }³

d∆(t)

∆

∆ t

1

Figure 8.8  Delta function

Therefore from Eqs. (8.27) and (8.28)

 

Numerator ³
ì
í
ï

îï

ü
ý
ï

þï-¥

+¥

òRe tx t
d

dt
x t dt( ) ( )

2

 (8.29)

REMARK:

t being a real variable 
d

dt
x t

d

dt
x t( ) = ( )

Thus,

Numerator ³
ì
í
î

ü
ý
þ-¥

+¥

òRe tx t
d

dt
x t dt( ) ( )

2

 

³
ì
í
î

ü
ý
þ-¥

+¥

ò tRe x t
d

dt
x t dt( ) ( )

2

 (8.30)

Now,

Re x t
d

dt
x t x t

d

dt
x t x t

d

dt
x t( ) ( ) =

1

2
( ) ( ) ( ) ( )









+







=
1

2
{ ( ) ( )}

d

dt
x t x t

 
=

1

2
( ) 2d

dt
x t| |  (8.31)

Therefore from Eqs. (8.30) and (8.31)

 

Numerator  
1

2
( ) 2

2

³
-¥

+¥

ò t
d

dt
x t dt| |  (8.32)

Solving the integral term by parts we get

 
-¥

+¥

-¥
+¥

-¥

+¥

ò ò-t
d

dt
x t dt t x t x t dt| | | | | |( ) = [ ( ) ] ( )2 2 2  (8.33)

 
= ( ) 2-

-¥

+¥

ò | |x t dt

R
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NOTE: 

We have agreed that 
-¥

+¥

ò t x t dt
2 2( )| |  should be finite for a bound to exist. Therefore for the integral to 

converge the function t x t
2 2( )| |  should decay to zero value as t ® +¥ and t → −∞. t x t

2 2( ) 0| | ®  

guarantees t x t| |( ) 02 ®  as t ® +¥ and t ® -¥. Thus, the term [ ( ) ]2
t x t| | -¥

+¥
 in Eq. (8.33) becomes 

zero.

Therefore

 
-¥

+¥

ò -t
d

dt
x t dt x| |( ) =2

2

2   (8.34)

Finally from Eqs. (8.32) and (8.34) we get;

Numerator of the time bandwidth product ³ -|
1

2
( ) |

2

2 2 x

 
³

1

4
2

2

2

2   x x  (8.35)

Substituting the value of the numerator in Eq. (8.24) of the time bandwidth product we get;

Time bandwidth product ³

1

4
2

4

2

4

 

 

x

x

 
³

1

4
 (8.36)

CONCLUSION:

The time-bandwidth product can never be less than 0.25. The result is fundamental to signal processing 

and has no relation with the technology and tools available at a particular time. The result tells us that, 

no matter what we do, we can never get a function with finite energy confined beyond a certain range in 

both time and frequency simultaneously.

Now, the optimal function in the sense of time-bandwidth product means that the Cauchy-Schwarz 

inequality becomes an equality. Recall that the inequality essentially arises due to the 
2

cos q  term in the 

vectorial interpretation of the functions. Thus to attain equality 
2

= 1cos q , i.e. we need the vectors tx t( ) 

and 
d

dt
x t( ) to be collinear.

NOTE:

    Two vectors being collinear means that they should be linearly dependent i.e. one of the two vectors 

should be a multiple of other.

Thus to get the optimal solution we need to satisfy the given condition:

d

dt
x t t x t( ) = . . ( )               ( = )

0 0
g g constant

R

R
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Therefore, solving the above equation

ln constant of integrationx
t

c c= .
2

                 ( = 
0

2

0 0
g + ))

e e
x

t
c

ln =
0

2

2 0
g +

x t e e
c

t

( ) = .0 0

2

2
g

 x t c e c

t

( ) = .                       ( = )
0

2

2
g

constant  (8.37)

REMARK:

For the function x t( ) to be in L
2
( ) , | | . | |0 2 0

2

2 2
e e

c
t

g

 should be integrable. This is possible only if 

g
0
 has a negative real part.

Thus, one optimal function with time bandwidth product 0.25 can be of the form e
t2

2
−

;  the Gaussian. 

Here h
0

= 1−  and c = 1 as in Eq. (8.37).

8.10  Self Evaluation Quiz Examples

R

Example 8.10.1 — Verify 
d

dt
x t

d

dt
x t( ) = ( ), where x t( ) is any complex function and t is real.

Ans. Let x t a t ib t( ) = ( ) ( )+  be a complex function.

d

dt
x t

d

dt
a t ib t( ) = ( ( ) ( ))+

d

dt
x t

d

dt
a t ib t( ) = ( ( ) ( ))+

  = ( ) ( )                { ( ) = ( )  ( ) =′ + ′ ′ ′a t jb t a t
d

dt
a t and b t

d

dt
b(( )}t  (8.38)

 
d

dt
x t a t jb t( ) = ( ) ( )¢ - ¢  (8.39)

d

dt
x t

d

dt
a t jb t( ) = ( ) ( )+
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= ( ) ( )

d

dt
a t jb t-

 
d

dt
x t a t jb t a t

d

dt
a t b t( ) = ( ) ( )              { ( ) = ( )  ( )′ − ′ ′ ′and == ( )}

d

dt
b t  (8.40)

Therefore from Eqs. (8.38) and (8.39) we get;

d

dt
x t

d

dt
x t( ) = ( )                ( )proved

Example 8.10.2 — Does d D ( )t  belong to L
1
( )  or L

2
( ) ?

Ans. The function d D ( )t  looks as in Fig. 8.8.

For a function x t( ) to be in L
1
( ) , 

-¥

+¥

ò | ( ) |x t dt should be finite.

Now,

D® -¥

+¥

D
D®

+D

ò ò D0 0 0
( ) =

1
lim limd t dt dt

= 1

Therefore, d D ( )t  belong to L
1
( ) .

For a function x t( ) to be in L
2
( ) , 

-¥

+¥

ò | ( ) |2x t dt should be finite.

D® -¥

+¥

D
D®

+D

ò ò D0

2

0 0 2
( ) =

1
lim limd t dt dt

The above integral does not converge, therefore, d D ( )t  does not belong to L
2
( ) .

Example 8.10.3 — What should be the constraint on function x t( ) so that the integral 

-¥

+¥

ò t x t dt| ( ) |2  converge?

Ans. For the integral to converge the function | ( ) |2x t  should decay to a zero value as t ® +¥ and 

t ® -¥, i.e.

t

x t
®±¥
lim | ( ) | = 02
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Exercise 8.1

Calculate the time variance and frequency variance for the function given in Fig. 8.9.

Hint: (i) Here, x t( ) is given as, x t t( ) = 1 | |- , for - £ £1 1t . Hence,

 x t x t dt( ) = | ( ) |
2

2 2

-¥

¥

ò
= 2 (1 )

0

1
2ò - t dt

Exercises
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Figure 8.9  Functions for Q

Let, 1 =- t l

Þ -dt d= l  and

limits are given as, x : 0 to 1 Þ l :1 to 0.

 x t t dt( ) = 2 (1 )
2

2

0

1
2ò -

= 2
1

0
2- ò l ld

= 2
0

1
2ò l ld

= 2
3

|
3

0

1l

=
2

3

Now, mean is given as

 
t tp t dt

x0
= ( )

-¥

¥

ò
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=
| ( ) |

( )

2

2

2-¥

¥

ò
t x t

x t
dt

 

By looking at the figure it can be assumed that, the mean would be at the centre of -1 and 1, i.e. at 

zero. Therefore, mean is given as

t
0

= 0

Now, we will find the time variance.
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Now, we will find the angular frequency variance.

s W W W W W2
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2= ( ) ( )
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ò - p d
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Now, 
dx t

dt

( )
 is shown in Fig. 8.10
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Figure 8.10  
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dt
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 for Exercise 8.1(i)
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Hence, the angular frequency variance is given as,
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= 3

(ii) Here, x t( ) is given as, x t t( ) = ( )sin p , for - £ £1 1t . Hence,

 x t x t dt( ) = | ( ) |
2

2 2
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Now, mean is given as,
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By looking at the diagram, the mean is assumed to be at the centre of -1 and 1, i.e. at zero. Therefore, 

mean is given as
t

0
= 0

Now, we will find the time variance.
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Now, we will find the angular frequency variance.
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Now, 
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dt
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= ( )p pcos  is shown in Fig. 8.11
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Figure 8.11  
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dt
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 for Exercise 8.1(ii)
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Hence, the angular frequency variance is given as,
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(iii) Here, x t( ) is given as
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Now, mean is given as
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Now, we will find the time variance.
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=
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1
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=
1
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Now, we will find the angular frequency variance.
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Now, dx t

dt

( ) is shown in Fig. 8.12

As, impulses are not square integrable, we get
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Hence, the angular frequency variance becomes ¥.
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Figure 8.12  
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dt

( )
 for Exercise 8.1(iii)

Exercise 8.2 

Probability density function is given as,

p t
x t

x t
x
( ) =

| ( ) |

( )

2

2

2 

Show that, it is satisfying all the properties of PDF.
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Hint: It satisfies the properties of PDF are as below:

 1. p t
x
( ) 0³  " t (It is a density in t).

 2. 
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 (( )
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t

x t



 
.

Exercise 8.3 

Is it possible for two differently shaped waveforms to have the same time-bandwidth product?

Hint: Yes. It is possible for two different shaped waveforms to have the same time-bandwidth  

product. It is due the duality property of Fourier transform. The property states that
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Thus, if instead of x t( ), the input signal is x̂ t( ), the time bandwidth product will be given by
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(8.40)

We see that Eq. (8.40) is same as Eq. (8.18) thus proving that the time bandwidth product is 

unchanged. Thus the time bandwidth product of x t( ) and x̂ t( ) is same.
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Exercise 8.4 

Find the time bandwidth product of the following functions

●● e
t-| |
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Calculating the numerator,
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Calculating the second term of numerator,
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 (8.43)

Thus, the time bandwidth product will be given by
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The Fourier transform of e t-| | is 
2

1 2+ t
. Thus, by use of duality property, the time bandwidth 

product of 
2

1 2+ t
 will be same as that of e t-| |. Also, since multiplying by a constant does not affect 

the product, the time-bandwidth product of 
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 will be same as 
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The waveform of such a function is as shown in Fig. 8.13.

Calculating the numerator terms
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1

-1 1 t

f(t)

Figure 8.13  f t t( ) = 1 | |-

Calculating norm-squared of the function
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Therefore, the time-bandwidth product is given by
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Figure 8.14  x t( ) = 1
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Figure 8.15  x x(t) = −1
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Exercise 8.5

Find the time-bandwidth product of the functions given by Eqs (8.21), (8.23) and (8.24) graphically 

shown in Figs 8.14, 8.15 and 8.16 respectively;

1

1 10 t

x(t)

Figure 8.16  x t x( ) = 1 2-

find which one is close to the optimum value of 0.25.

 x t t( ) = 1             0 1£ £  (8.49)

 x t x t( ) = 1 | |             1 1- - £ £  (8.50)

 x t x t( ) = 1              1 12- - £ £  (8.51)

Hint: The time-bandwidth product of a function can be found out as mentioned in Eq. 8.21 i.e.
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(i) For the function in Fig. 8.9, as discussed the term  
d

dt
x t( )

2

2 do not converge since it is an impulse 

with infinite energy. Therefore the function in Fig. 8.11 has no bound on the time-bandwidth 

product and its time-bandwidth product tends to ¥.

(ii) For the function in Fig. 8.10
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= ( 1)
1
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Therefore, the time band width product is given by:

Time-bandwidth product = 
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iii) For the function in Fig. 8.11

 x t t dt( ) = (1 )
2

2

1

1
2 2

-ò -

= 2 (1 )
0

1
2 2ò - t dt

=
16

15

 tx t t t dt( ) = (1 )
2

2

1

1
2 2 2

-ò -

= 2 (1 )
0

1
2 2 2ò -t t dt

=
16

105

 
d

dt
x t

d

dt
t dt( ) = ( (1 ))

2

2

1

1
2 2

-ò -

= ( 2 )
1

1
2

-ò - t dt

= 8
0

1
2ò t dt

=
8

3

Therefore, the time-bandwidth product is given by:

Time-bandwidth product = 
 

 

 

 

tx t

x t

d

dt
x t

x t

( )

( )

( )

( )
= 0.3572

2

2

2

2

2

2

2

Thus, from the results of (i), (ii) and (iii) we can conclude that the function in Fig. 8.10, i.e. 

x t x( ) = 1 | |- , where - £ £1 1t  having its time-bandwidth product equal to 0.3 is close to the optimum.



9.1  Introduction

Conclusions drawn from Chapter 8 are as follows:
●● Time-bandwidth product= time variance (s

t

2) ́  frequency variance (s W
2 )

●● Time-bandwidth product s
t

2 s W
2  for any function x Î ³L

2
( ) 0.25 .

●● We also showed that Gaussian function x t e
t( ) =
2 /2-  is an example of an optimal function in sense 

of time-bandwidth product. Other optimal functions can be obtained by modulating this x t( ) with 

a term of the form e j ta 2

.
●● A more general optimal function is of the form e

tg
0

2 /2
, where Re( )

0
g  is negative. g

0
 can be 

complex in general.
●● We know that the Gaussian is optimal. It brings us both good and bad news. Good news is that 

we were able to fi nd an optimal function, i.e. Gaussian. Bad news is that Gaussian is unrealisable 

in exact sense in a physical system.

Why do we say that the Gaussian is physically unrealisable? Take for example the exponential time 

waveform or the exponential time waveform modulated by a sinusoid. These are easily realizable. 

Circuits which comprise of resistors, inductors, capacitors when excited say with a step or a sinusoid 

give us either exponentially decaying sinusoids or exponentially decaying transients and therefore 

those are easy to generate with physical system. Unfortunately there is no meaningful physical system 

that can generate the Gaussian waveform. So Gaussian is good news in statistical density but bad news 

as far as the functions in time domain are concerned. In the field of digital communication when one 

talks of Gaussian mean shift keying or Gaussian minimum shift keying, the word Gaussian there refers 

to a Gaussian pattern in the impulse response whether it is phase or amplitude. But there again it is 

really hard to realize a Gaussian filter. So it is difficult to realize in a physical system and can only be 

approximated. 

R
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Now next question arises if not Gaussian, then, can we use a cascade of two simple systems to 

realize a function which is close to optimal?

LSI system

T T

LSI system

Figure 9.1  Cascade of two LSI system

In other words when we started with Haar we had a terrible time bandwidth product which was infinite. 

Now can we do a little better?. Suppose we took a cascade of two systems each of whose impulse 

response is essentially a pulse of width T, i.e., instead of taking one pulse take a cascade of them as shown 

in Fig. 9.1. This together forms a composite LSI system. The impulse response of this composite LSI 

system is the convolution of the two pulses which will result in a triangular pulse as shown in Fig. 9.2.

Triangular

pulse

2T

Figure 9.2  Triangular pulse obtained by convolution of two pulses

The physical interpretation is as follows:

When we have an LSI system with an impulse response equal to a pulse what we are essentially doing 

is a ’sample and hold process’. So if an impulse results in a pulse we are essentially sampling a point 

and holding it for the duration of the pulse. So if we have two such sample and hold then we are effec-

tively talking about a triangular impulse response. 

Now the natural question to ask is what can we say about the time-bandwidth product of this 

triangular pulse and how good or bad is it compared to the Gaussian?

The time bandwidth product of x t( ) = 1− | |t , where 0 1£ £t  as shown in Fig. 9.3.

x(t)
1

1
t

0−1

Figure 9.3  Triangular pulse centred at 0

We don’t need to worry where this triangular pulse lies. So we can as well make its centre = 0. We don’t 

need to worry how wide this triangular pulse is as long as we have kept it symmetric. So we can put this 

from −1 to +1. And we don’t need to worry what the height is, so we could as well make the height = 1. 

R
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All these are because of the invariance property of the time-bandwidth product. It is invariant to scaling 

of the dependent as well as independent variable and translation.

Now let us find the time-bandwidth product of this triangular pulse.

Let us call this a function of t. It is essentially x t t( ) = 1 | |- , where 0 1£ £t .

We shall first obtain the time variance:
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since x t( ) is centred at zero.

Let us begin by calculating the norm  x t( )
2

2 first, as we will require it frequently.
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∫ −

The factor of 2 comes due to symmetry around t = 0. So, essentially the area on the negative and positive 

sides are same.

Now, substitute l = 1- t in the above equation. Hence, d dtl = - , evaluating the integral
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Time variance = 
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Frequency variance is given by
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x t

( )

( )

2

2

2

2

and 
dx t

dt

( )
 is a simple function to evaluate as shown in Fig. 9.4.

0 1 t

dx(t)

dt

−1

Figure 9.4  
dx t

dt

( )

From Fig. 9.4 it can be seen that 
dx t

dt

( )
 has the appearance of a Haar wavelet.

Energy is given by

 
dx t

dt

( )
= 1 1 1 1 = 2

2

2 2 2´ + ´

We know x t( ) =
2

32

2
.

Therefore the frequency variance = 
2

2 / 3
= 3.

Now time-bandwidth product = time variance ́  frequency variance = 0.1 3 = 0.3´ .

This is good news as we know the minimum we can reach is 0.25 and we have come all the way 

from ¥ to 0.3 just by cascading the system with itself once again. But again we have bad news. The 

bad news is that if we want to go from 0.3 to 0.25 we must work really hard! i.e., to get closer to the 

uncertainty principle is not difficult but going any closer is very difficult. In fact one way to go closer to 

it is to repeatedly convolve the pulse with itself. So now we take cascade of 3 such LSI systems each of 

whose impulse response is essentially a pulse as shown in Fig. 9.5.

LSI

T T T

LSI LSI

Figure 9.5  Cascade of 3 LSI system
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Fourier

transform

sin Af

Bf

t

f







2

Figure 9.6  Fourier transform of the triangular pulse

Let us make one more remark. It is not just a compactly supported function like this one that has 

a time bandwidth product of 0.3. We can use a simple argument to show that the same result can come 

from non-compactly supported function. For that we use the principle of Fourier duality. Figure 9.6 

shows the fourier transform of the triangular pulse. Here A, B are constants. Now important question to 

ask is what is the fourier transform if the time function is of this form and that is what fourier duality 

will give us as shown in Fig. 9.7. So what we are calling time variance for triangular function becomes 

the frequency variance for this function and vice versa as is clear from the Fig. 9.7.

sin At

Bt

t
f

0

Fourier

transform







2

Figure 9.7  Fourier duality

In other words if we take Fourier transform of a function and ask what is its time-bandwidth 

product, the time-bandwidth product is the same as that of the function!

That is, for the function 
sin Af

Bf

æ

è
ç

ö

ø
÷

2

 the time variance = frequency variance of x t t( ) = 1 | |-  and  

frequency variance = time variance of x t t( ) = 1 | |- .

Therefore time-bandwidth product can easily be calculated. It is 0.3.

Now we have a partial answer for the question that we asked previously. Can you change the shape 

and maintain the same time-bandwidth product? The answer is Yes.

In fact, this brings up many different conclusions:

 (1) We have discovered one more kind of invariance of time bandwidth product. The time bandwidth 

product is invariant to Fourier transformation.

 (2) One more conclusion that we have drawn from this example is that we can have two functions 

one compactly supported and another NOT compactly supported to have same time-bandwidth 

product s s
t

2 2

W. With this remark we would like to take the idea of time-bandwidth product further. 

Now that we have identified the two domains, let us put the 2 domains together and bring out a 
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new domain which is a two-variable domain. So, we shall henceforth talk of what is called a ‘time-

frequency plane’ as shown in Fig. 9.8.

Frequency

Time

Figure 9.8  Time frequency plane

It is essentially a plane in which one axis, say horizontal axis represents time and other axis say 

vertical, represents frequency. ‘Occupancy’ of x t( )Î L
2
( )  in time-frequency plane can be thought as 

being from t
0
, the centre in time, to t

t0
+s  on one side and t

t0
-s  on the other side on the horizontal 

axis. On the vertical axis, we would like to centre it at W
0
, namely, the frequency centre and we would 

spread it to W W0
-s  below W W0

+s  above as shown in Fig. 9.9. So we could think of the function x t( ) 

as being located in a rectangle which is centred. at t
0 0
,W  and which has a horizontal width of 2s

t
 and 

vertical spread of 2s W, as shown in Fig. 9.9. 

Ω
0
+
σ
Ω

Ω
0
−
σ
Ω

t 0
+
σ

t
t 0
−
σ

t

t 0
, 
Ω

0

Figure 9.9  Time frequency plane centred at t
0
 and W

0

A function in L
2
( )  occupies a certain area in the time-frequency plane and what the uncertainty 

principle says is that, this area cannot be smaller than a certain number.

Uncertainty Principle
The rectangle area cannot be smaller than 2 2s s

t
´ W

= 4 4 0.25s s
t W ³

  = 4 0.5 = 2´ units

The area of the rectangle cannot be smaller than 2 units. Within limitations we can change the width 

and height which is the positive side of the uncertainty principle. Now we can talk of what is called as 

the tiling of the time frequency plane as shown in Fig. 9.10.
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Time-frequency
plane

2σΩ

2σt

(t0,σ0)

Figure 9.10  Tiling the time-frequency plane

Tiling the time-frequency plane
What this essentially means is covering this plane with rectangular tiles corresponding to such functions. 

Let us take any other function to be analyzed: y t( ). “Tool” function = x t( ). From Parseval’s theorem,

-¥

+¥

-¥

+¥

ò òy t x t dt Y X d( ) ( ) =
1

2
( ) ( )

P
W W W

Physical interpretation:

If we take the projection of the function y t( ) on such a “ Tool” function x t( ) in time, we are essentially 

extracting information about y t( ) in the time region between t
t0

+s  and t
t0

-s . Parseval’s theorem 

says that simultaneously we are also extracting information of the Fourier transform of y t( ) in a region 

captured between W W0
-s  and W W0

+s . So this is the minimum rectangular area over which we can 

view y t( ). There is a minimum resolution and we cannot go finer than that resolution when we look at 

the two domains together. But the good news is that there are many different ways in which you can 

look at the small domain when you are within that uncertainty limit.

But tiling has a different interpretation. If we wish to analyze a function we think of the function in the 

time and frequency domain together. Essentially we are viewing the function in the joint domain and 

we wish to see how the function looks in the joint domain. 

R

Example 9.1.1 — ‘Chirp’ function.

Let us take an example, consider “Chirp” function. The chirp function is named after the sound of 

the birds. When birds chirp crudely the chirp waveform has a pattern with a continuously changing 

instantaneous frequency in time. It is of the form = sinW( ).t t  where W is instantaneous frequency.

An important question in analyzing the chirp function that one encounters sometimes in RADAR 

or SONAR is, trace this variation of the instantaneous frequency in time and there the uncertainty 

principle hits hard.
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Time

Ωt = A + Bt

“Lighted” up

Linear chirp

Frequency

Figure 9.12  W( ) =t A Bt+

Frequency
Constant

Time

Figure 9.11  Chirp function

In the time frequency plane suppose W( ) =t a constant function of time, then we can graphically 

represent it as follows (see Fig. 9.11).

Suppose W( )t  is a linear function of time which is often true, then graphically what we do with 

the tool is to try to trace this pattern and that is where the uncertainty principle hits us. It says, we 

can only put rectangles which look, like the ones in Fig. 9.12 and we can never really trace what is 

happening within the rectangle.

Suppose, we think of putting many rectangles in this time frequency plane and see that these 

shaded rectangles are “ lighted up”. In other words, if we looked at the dot product of these func-

tions, y t( ), which has the linear chirp nature, with this set of tiles, the tiles in which the function 

essentially is prominent would be “ lighted up”. It means that the magnitude of the dot product will 

be large. So it will show us the discrete points.

Example: If we look into the time frequency plane, each of these rectangles would correspond 

to a single point here. So it would show points that lie on the line as lighted up.

But we cannot go closer than that. We wouldn’t know what has happened between these points. 

That is what the uncertainty principle says. We cannot get instantaneous frequency as a function of 

time exactly. But we could do it as closely as we desire by taking smaller rectangles and, the smaller 

the area we take, the better we can make this estimate. This is one of the meanings of the time-

frequency plane and its tiling.
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9.2  Short Time Fourier Transform (STFT) and Wavelets

The short time Fourier transform, we begin with choosing an appropriate window function: v t( ). What 

we desire from the window function is finite time variance and finite frequency variance. This is required 

to make a t-f tile of finite area in the t-f plane as will be seen later (Fig. 9.13).

Frequency

Time

2st

2sΩ

Figure 9.13  Tiling of time-frequency plane

For finite time variance we know that

tv t L R( ) ( )
2

Î

given v t L R( ) ( )
2

Î
also for finite frequency variance

dv t

dt
L R

( )
( )

2
Î

given v t L R( ) ( )
2

Î
The simplest window that can be chosen is a rectangular window. Such a window immediately 

disqualifies as it does not have finite frequency variance.

Example 9.2.1 — Examples of window function that have finite variance in time and 
frequency

●● Triangular Window: v t t( ) = 1 | |-

●● Gaussian Window: v t e

t

( ) =

2

2

-

●● Raised Cosine Window: v t t( ) = 1 ( )+ cos

The idea in the short time Fourier transform is to create a continuum of dot products of such a win-

dow function modulated by a sinusoid with the input function. Let,

 
x t L R( ) ( )

2
Î  (9.1)

Then the STFT (short time Fourier transform) is given as
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the above expression looks like the inverse Fourier transform evaluated at t
0
.

9.2.1 Duality Interpretation of Fourier Transform

The frequency interpretation term:
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 (9.9)

The time interpretation term:

 -¥

¥

ò -x t v t e dt
j t

( ) ( )
0

0t
W

 (9.10)

The STFT creates fixed shape tiles, where t
0
 is the movement along time and W

0
 is the movement 

along frequency.

 
STFT( , )( , ) = ( )

0 0 0
0X V v e

j t
t x t t tW

W
dot product of ( )with -  (9.2)

The arguments in the first bracket are the secondary arguments namely X , V  and the second bracket 

holds the primary arguments. Writing the STFT in equation format:

 
STFT( , )( , ) = ( ) ( )

0 0 0
0X V x t v t e dt

j t
t tW

W
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¥

ò -  (9.3)

The bar represents complex conjugation.

Hence the STFT extracts a piece of the function and takes its Fourier transform. Invoking the 

Parseval’s theorem, the above expression has an equivalent in the frequency domain i.e., the product of 

the Fourier transforms of x t( ) and v t e
j t

( )
0

0-t
W

 respectively, integrated from -¥ to +¥.

The Fourier transform of v t e
j t

( )
0

0-t
W
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t
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V ( )W  denotes the Fourier transform of the function v t( ), putting in the Parseval’s theorem expression
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So far we have seen only dyadic DWT and translations happen in unit steps in V
0
. The continuous 

version of the wavelet transform is essentially an inner product of x t( ) with translates and dilates of the 

wavelet y
tt

s
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ø
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0

0

.

Continuous wavelet transform (CWT)
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Problem of normalization is caused due to change in the norm of the wavelet function upon dila-

tion, hence the factor of 
1

0
s

 is required to normalize it. Interpreting in the frequency domain using the 

Parseval’s relationship implies that the above expression is equivalent to inner product of X( )W  with 

Fourier transform of y
t

( )0

0

t

s

-
. Fourier transform of y

t
( )0

0

t

s

-
, first taking care of the dilation, since
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Hence, the Fourier transform of
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The continuous wavelet transform (CWT) is both a function of t
0
 and s

0
 with t

0
Î and s

o
Î +
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or using the Parseval’s relation

CWT( , )( , ) =
2

( ) ( )
0 0
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0
0x s

s
X s e d

j
y t

p
Y

t

-¥

¥

ò W W W
W

●● Provided we recall the nature of the Fourier transform for y , considering the Haar case the 

magnitude pattern
●● We are multiplying X  by a bandpass function and taking the inverse Fourier transform, hence, we 

are extracting the frequency component of CWT which corresponds to the dilates of Y .
●● If we accept that Y  is a bandpass function, then
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BPF with impulse response

1
ψ

√s0

Output is the CWT of the
function at time t0 and at

scale s0

X(t)
t − t0

s0
( (

●● There is a continuum of such filters.

9.3  Reconstruction and Admissibility

We have devised Short Time Fourier Transform (STFT) and Continuous Wavelet Transform(CWT) to 

analyze a signal simultaneously in time and frequency domain. Basically STFT is taking the Fourier 

transform of the signal multiplied with a tempered weighted function (the window function) shifted in 

time and modulated in frequency. CWT is taking the Fourier transform of the signal multiplied with 

normalized wavelet.

In the following sections, we will study reconstruction methods of the signal from its STFT and CWT.

9.4  Reconstruction from STFT

●● How do we reconstruct a signal from its STFT?

STFT of a signal x t( ) with a window function v t( ) at time t  and frequency W is defined by

 
STFT( , )( , ) = ( ) ( )x v x t v t e dt

j tt tW W

-¥

¥

ò -  (9.13)

But this is equivalent to a dot product of the signal x t( ) with a translated and modulated window.

Or in other words, this operation is finding out the component of the signal along something. (May 

be some sort of space spanned by the window function)

With this idea, we try to reconstruct by taking each component multiplied with the unit vector in its 

direction and then summing it up.
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Expanding
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Now consider the integral on W first
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which is inverse Fourier transform of a function which is constant (= 2p ) for all W
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d (.) being continuous impulse function. So the original triple integral turns into
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= 2 ( )|| || = ( )2p x t v x tconstant ×  (9.22)

where || || =< , >=2

2
v v v L  norm of the window function v.

So we have reconstructed x t( ) from its STFT.

But STFT or CWT are continuous transforms which are performed over all values of time and 

frequency.

This means the choice is made among a continuum of time and frequency centres and the integral 

is calculated for each such function which is highly impractical.

Hence comes the natural question:

Can we discretize t  and w?

Answer is yes. It will become evident as we go along. 

9.5  Time Frequency Tiling: Comparison of STFT and CWT

Now, let us compare properties of STFT and CWT tiling of the time-frequency plane:

The STFT moves a tile of constant shape in the time-frequency plane (see Fig. 9.14). The minimum 

possible area of this STFT tile is governed by the time-bandwidth product which is limited by a bound 

(= 0.25) as we have seen in Uncertainty Principle.
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Time

Figure 9.14  STFT tiling of time frequency plane

R
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On the other hand, the CWT tiling is of a different kind. The tile is of a variable shape but constant 

area which is also governed by time-bandwidth product. The parameters defining the tiling are time cen-

tre t  and scaling parameter s
0
. When we increase s

0
 we are effectively expanding in time and compress-

ing in frequency; while when we decrease s
0
 we are effectively compressing in time and expanding in 

frequency. Movement along the frequency happens because the centre frequency is nonzero. The shape 

of tile remains rectangular but it keeps changing continuously with change in scaling parameter s
0
. This 

is shown in Fig 9.15.
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Time

Figure 9.15  CWT tiling of time frequency plane

We can clearly see that t  - time centre determines the location of tile on time frequency plane in 

a direct manner, but this is not true for scaling parameter s
0
. So we can not reconstruct similar to what 

we did for STFT but after allowing a scale factor (which depends on s
0
) reconstruction is achievable as 

presented in next section.

9.6  Reconstruction from CWT

Reconstruction of x(t) from CWT (x, y )(t , s
0
) should be:
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where f s( )
0

 is a weight factor which is dependent only on s
o
 as discussed earlier.

In Chapter 21, we used Parsevel’s Theorem to arrive at the following expression of CWT:
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where X( )W  is Fourier Transform of x t( ). Substituting this in the reconstruction formula we get a 

triple integral:
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Let’s solve the t  integral first:

Let’s say

 

I
t

s
e d

j=
0

-¥

¥

ò
-æ

è
ç

ö

ø
÷y

t
ttW  (9.26)
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which on observation (that integral is a Fourier integral) gives:
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Putting this back in the triple integral we get:
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Let us now solve and do away with s
0
 integral:
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If we can make this integral I
1
 independent of W then we will be done with the reconstruction since 

rest of the term is Inverse Fourier Transform giving x t( ). So the only objective left is to make the integral 

independent of W and that is where the freedom to choose f s( )
0

 comes in handy.

If we could make

s f s ds
ds

s
f s

s
0 0 0

0

0

0

0

2
( ) = ( ) =

1
or

we get a valid weight function which non negative for all values of s
0
.
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say s s
1 0

= W  which implies 
ds

s

ds

s

1

1

0

0

= ( 0)W ¹  when W is positive, limits of the integral I
1
 are 0 to 

¥ and when W is negative, limits of the integral I
1
 are 0 to -¥. In both cases, integral is independent of W 

and hence can be treated as a constant further. Remaining integral becomes:
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These two integrals must be finite for perfect reconstruction. We will take this idea (called admissibility) 

further in next few sections.

9.7  Admissibility in Detail and Discretization of Scales

In earlier sections we built up the idea of decomposition and reconstruction in STFT and CWT. The 

central theme in decomposition and reconstruction was to project the function to be decomposed on the 

basis of vectors and to reconstruct that function from its component by multiplying each component by 

the vector in that direction. STFT was indexed by translation and modulation while CWT was indexed 

by translation and scale. Translation can be dealt with easily but for scale we need an additional weigh-

ing factor to deal with whole reconstructing.

9.8  Admissibility

Important steps in reconstructing x t( ) from CWT( , )( , )x sy t : In this, the most important step is to 

evaluate the triple integral involved. The innermost integral involved is called component corresponding 

to CWT( , )( , )x sy t  and is given by
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The two outer integral take care of translation and scale parameters. The triple integral is as follows:
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Here, CWT( , )( , )x sy t  is the component, 
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÷  is a unit vector and f s( ) is the weighing 

function to deal with the scale. Writing all together, the triple integral becomes.
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The approach used to evaluate this integral is that we take dt  first, ds second and dW in the last. 

After taking care of 
-¥

¥

ò dt , what was left, by choosing f s
s

( ) =
1
2
 is
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We can observe that 
0
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W  is independent of W, it becomes a constant and comes out of 

the integral, hence we get
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This Cy  tells us the factor by which x t( ) is multiplied in the reconstruction. Now, consider the inte-
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We can see that the right hand side of the above equation is based on the function y  and independent of W.

Case-II: W < 0, : 0a ® -¥ when s : 0 ® +¥ so the integral becomes 
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Now making integral (on s) independent W means:
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The above integral must be positive as as the integration is on nonnegative integrands.

If y ( )t  is real then, ˆ ˆY b Y b( ) = ( )- . Therefore,

 
| ( ) | =| ( ) |2 2ˆ ˆY b Y b-  (9.42)

However, if y ( )t  is a complex wavelet then we need separately to take control of positive and the 

negative part of the spectrum.

If we use complex wavelet and insist that spectrum is one-sided then we must ensure the signal as no 

component on other side, therefore, in that case the particular condition can be removed. For example, 

we take a complex wavelet where we do not take care of the negative part of the spectrum, so the condi-

tion which involves | ( ) |2Ŷ b-  is not obeyed, then we may only deal with such ‘x’ which has nonzero 

components and therefore ‘x’ must be complex having non-zero components on the positive part of the 

spectrum i.e., W > 0. Conversely, for W < 0 original spectrum should have no part on positive side.
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Remark

Admissibility allows the function to be called a wavelet. It is the condition required for Reconstruction.
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9.9  Case-III W = 0 and Case-IV W = ¥

Let take W > 0 (with real y  this is enough). Now, according to admissibility condition 
0
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must be finite. We will, now, have a look at W = 0 and W = ¥

Example 9.9.1—W = 0 and W = ¥. Consider | ( ) |2Ŷ a  to be like:
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It is obvious that it cannot be a wavelet as:
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The above integral diverges. This trouble comes from region around W = 0

Let us take another e.g.

Ω

Here | ( ) |2Ŷ a  will be a constant (say C
0
) as a ® ¥, therefore
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9.10  Analysis of Gaussian Function

A important property of Gaussian function is that Gaussian in time domain is also a Gaussian in fre-

quency domain.

Here, also we observe that the integral diverges. This time the trouble comes from the region around 

W » ¥.

Point to remember: One should not have a spectrum giving a significant contribution around W = 0 

as well as W » ¥. The spectrum therefore should get vanish at zero and infinite frequency.

Can we allow following | ( ) |2Ŷ W ?
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This is finite and therefore acceptable.

A bandpass function is what we can accept for an admissible wavelet. 

Example 9.10.1 — Gaussian analysis.

Lets us consider the function:
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e
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 (9.48)

Fourier transform of Gaussian function will be of form e-W2

 which is also Gaussian.

The question which arises is whether Gaussian is admissible?

The answer is No.
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Ω

e
−Ω

2

As we can see from the graph, at zero frequency the graph does not vanish, therefore, even for a 

small area near zero frequency let us say, The integral

 
0

1 2 2| |ò
-

e
dW W

W
 (9.49)

diverges and hence Gaussian is not admissible.

Now, take the derivative of the Gaussian,

 

d

d
e e e

W
W WW W W( ) = 2 ( )

2 2 2- - -- » For consideration  (9.50)

e
−Ω

2

Ω

Their product will look like

Ωe
−Ω

2

Ω0

This is admissible as:

0

2 2

0

2 2 2

| |
¥

-
¥

-

ò òÞW
W

W
W

W

W
W W

e
d

e
d
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Þ
¥

-

ò0

2 2

W WW
e d

Put W2 = l , therefore d dl = 2W W , hence

 
0

2 1

2

¥
-

ò e d
l l (9.51)

We observe that this integral converges. Hence derivative of Gaussian is an admissible function. But 

this function is no longer optimal in the sense of time bandwidth product.

Now, 
d

dW
 is equivalent to multiply by t. The inverse Fourier transform of W W

e
- 2

 has the same form. 

(Try to show this as an exercise)

Try doing the same for the second derivative. The second derivative of Gaussian is known as Mexican 

Hat function.

9.11  Discretization of Scale

Admissibility is adequate when we talk about reconstructing from CWT. But its a difficult thing to do 

numerically, to construct a 2-dimensional continuous parameter ( , )t s  with 1-dimensional function x t( ). 

Hence we discretize the scale.

9.11.1 Condition of Scale Discretization

When we build CWT,

Frequency response

of the form y(sΩ).
The constants are
involved.

x(t) CWT (t   at s)

Ideal Band Pass function,

1

0 Ω1 Ω2 Ω

y (Ω)
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Therefore the graph of Ŷ ( )sW  will go from 
W

1

s
 to 

W
2

s
.

1

0 Ω1/s Ω2/s Ω

y (sΩ)

We know that W
1

> 0 and W
2

> 0 , therefore 
W

1

s
 and 

W
2

s
 will also be greater than Zero. With change 

of ‘s’, the band of Band Pass Filter will move along the positive part of the spectrum. Therefore the 

natural condition to discretize the scale parameter is to ensure that we are covering the whole spectrum. 

When we scale by the factor of ‘s’ we are also scaling the centre frequency and the band. So, there 

is logarithmic change. So the natural kind of discretization to consider for parameter is Logarithmic 

discretization. We could in general allow:

 
s a k a

k= ; ; > 1
0 0

Î  (9.52)

Exercises

Exercise 9.1

Find impulse response of 3 cascaded LSI systems and find its time-bandwidth product?

Ans. Figure 9.16 shows cascade of 3 systems each of whose impulse response is essentially a pulse 

of width T. Now consider T = 1, each pulse is extending from 0 to 1. This together form a composite 

LSI system whose impulse response is given by convolution of 3 pulses. When we convolve first two 

unit width pulses we get a triangular pulse of width 2 as shown in Fig. 9.17.

Now, the triangular pulse is again convolved with the pulse of unit width to get the impulse 

response of 3 cascaded system. On convolving we get.

T T T

LSI LSI LSI

Figure 9.16  3 cascaded LSI systems
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0 1

1

t

x(t)

−t+2

2
t

Figure 9.17  Result obtained by convolving 2 pulses of unit width

x t
t

t( ) =
2

0 1
2

£ £

= 3(
1

2
) 1 < 22- + - £t t t

=
2

3(
3

2
) 2 < 3

2
t

t t- - £

the impulse response is shown in Fig. 9.18.

Now, let us first calculate time variance given by 
( ) ( )

( )

0 2

2

2

2

t t x t

x t

- ´
.

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.5 1 1.5 2 2.5 3

Figure 9.18  Impulse response of 3 cascaded system

From Figure 9.15, time centre t
0
 can be seen as 

3

2
.

( ) ( ) = (
3

2
)

2
(

3

2
){ 3(

1

2
)}

0 2

2

0

1
2

1

2
2

t t x t t
t

dt t t t dt- ´ - + - - + -ò ò
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+ - - -ò2

3
2

(
3

2
){

2
3(

3

2
)}t

t
t dt

= 0.023 0.0232 0.0303+ +

= 0.07657

x t
t

dt t t dt
t

t dt( ) = (
2

) { 3(
1

2
)} {

2
3(

3

2
)}

2

2

0

1
2

2

1

2
2 2

2

3
2

2

ò ò ò+ - + - + - -

= 0.05 0.45 0.05+ +

= 0.55

so time variance = 
0.07657

0.55
Now frequency variance is given by 

 

 

d

dt
x t

x t

( )

( )

2

2

2

2

 
d

dt
x t

d

dt

t
dt

d

dt
t t dt

d

dt

t
( ) = (

2
) { 3(

1

2
)} {

2

2

0

1
2

2

1

2
2 2

2

3

ò ò ò+ - + - +
22

2

2
3(

3

2
)}- -t dt

= 0.333 0.333 0.333+ +

= 0.9990

Now frequency variance = 
0.9990

0.55

therefore time bandwidth product = 
0.07657

0.55

0.9990

0.55
= 0.2529´

Exercise 9.2

Why is Gaussian not realizable and why cant we approximate it by truncating?

Ans. Gaussian is defined for all time (-¥ to ¥) and it don’t tends to zero as t ®(¥ - ¥, ). Unfortunately 

there is no physical system which can generate such a waveform and so the Gaussian is not realizable.

We have chosen a Gaussian because of its optimality in terms of time-bandwidth product but when 

we approximate it by truncating, its derivative goes to ¥, therefore, frequency variance becomes ¥ 

and time-bandwidth product also becomes ¥.

Exercise 9.3

Find the time and frequency variance of raised cosine wave 1 ( )+ cos t , t Î -[ , ]p p  and compare its 

time bandwidth product to that of Gaussian wave.
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Ans. Since, we already know that Gaussian is an optimal function hence its time bandwidth product 

is 0.25 (also calculated in previous lectures), now let us calculate time bandwidth product of raised 

cosine wave defined as:

x t t t( ) = 1 ( ),+ - £ £cos p p

First, we shall obtain the time variance defined as

|| ( ) ||

|| ( ) ||

2

2

2

2

tx t

x t

=>
(1 ( ))

(1 ( ))

2 2

2

-

-

ò

ò

+

+

p

p

p

p

t t dt

t dt

cos

cos

=>
2 (1 ( ))

2 (1 ( ))

0

2 2

0

2

p

p

ò

ò

+

+

t t dt

t dt

cos

cos
bysymmetry

after solving and putting the limits we get,

=>
3

3p

p

=>
3

2p

Time variance = 
(3.14)

3

2

 = 3.29

Now let us obtain the frequency variance of raised cosine wave, which is defined as

||
( )

||

|| ( ) ||

2

2

2

2

dx t

dt

x t

=>
( ( ))

(1 ( ))

2

2

-

-

ò

ò

-

+

p

p

p

p

sin

cos

t dt

t dt

=>
2 ( ( ))

2 (1 ( ))

0

2

0

2

p

p

ò

ò

-

+

sin

cos

t dt

t dt
by symmetry

after solving and putting the limits we get,

=>
3

p

p
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Frequency variance = 
1

3
 = 0.333

Thus, time bandwidth product of raised cosine wave is:

s s
t

2 2 = 0.333 3.29 = 1.1 > 0.25W ×

Time bandwidth product for raised cosine, as can be seen, is greater than that of Gaussian which 

is an optimal function.

Exercise 9.4

What is the significance of W
0
 and t

0
 in the STFT expression?

Ans. In the STFT expression t
0
 represents translation along time axis and the quantity W

0
 represents 

dilation. We choose t
0
 and W

0
 and place the window, according to the time and frequency around 

which we want to take the Fourier transform.

Exercise 9.5

Explain filter bank interpretation of CWT.

Ans. Continuous Wavelet Transform (CWT) of a function is a dot product of the function x t( ) with 

dilated and translated versions of the wavelet function y ( )t .

W x s
s

x t
t

s
dt

s

y t y
t

( , ) =
1

( ) ( )ò
-

The wavelet function y ( )t  must obey admissibility condition to analyze and perfectly reconstruct 

the signal without any loss of information i.e.

0

2| ( ) |

| |
<

¥

ò +¥
y w

w
wd

This implies that the Fourier transform of the wavelet function goes to zero at 0 and ¥ frequency, 

hence wavelet function must have a band pass nature.

Filter bank implementation of CWT

At a particular time t , the dot product can be interpreted as series of filter banks dilated by sxw  

as shown in the fig. 9.19. Here, since s Î hence the number of filters required will be infinite.

Though CWT provides high time resolution for high frequencies and low time resolution for low 

frequencies, it cannot be realized and cannot be used on real data due to its infinite size. In order to 

achieve the above, it is necessary to discretize the dilation parameter.
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Exercise 9.6 — Scale Factor f(s
0
)].

Why do we need scale factor f s( )
0

 while reconstructing from CWT?

Ans. The scale factor of s is responsible for bringing in dilation to produce multi-resolution effect. 

Hence scale factor is essential to create multi-resolution effect.

Exercise 9.7 — Constraint of Window Function. 

What is the constraint on the window function for reconstruction from STFT ?

Ans. We can see in Eq. (9.22), while reconstructing from STFT we get || || ( )2
v x t×  , which will give 

perfect reconstruction only if L
2
 norm of window function v t( ) is finite i.e. v t L R( ) ( )

2
e

Exercise 9.8 

Prove by mathematical induction, that the ‘nth’ derivative of the Gaussian function is a polynomial 

of degree ‘n’ multiplied by the Gaussian function itself.

Ans. Let us consider the Gaussian function to be e x- 2

.

Now n = 1 i.e., the first derivative will be - -2
2

xe
x  which is a polynomial of degree 1 multiplied by 

the Gaussian function itself.

Let us now assume that the ‘nth’ derivative is also a polynomial of degree ‘n’ multiplied by a Gaussian 

itself. Hence, it will be of form x e
n x- -1 2

.

Now we can see that ‘( 1)n
th+ ’ derivative will be:

 ( 2 ( 1) )2 2 2

- + - - -
x n x e

n x  (9.53)

Figure 9.19  Dilated filter banks for implementation of CWT
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Exercise 9.9 

Is the linear combination of two admissible wavelets also admissible?

Ans. Yes, the linear combination of two admissible wavelets is also admissible.

Let y
1
 and y

2
 be two admissible wavelets, there linear combination y  is:

 
y y y=

1 1 2 2
a a+  (9.54)

The admissible integral for y  is:

0

2

1

2

0
1

2

2

2

0
2

2

1

2| ( ) | = | ( ) | | ( ) | 2
¥ ¥ ¥

ò ò ò+ +ˆ ˆ ˆY w
w

w
Y w

w

w
Y w

w

w

d
a

d
a

d
a a

22

2

0
1 2

| ( ) || ( ) |
¥

ò ˆ ˆY w Y w
w

w

d
 (55)

Now we see that the first two terms on the right hand side are finite as y
1
 and y

2
 are admissible. The 

third term consists of the product. Since the wavelet will be bounded in frequency domain, there-

fore, their product is also finite, hence the third term is finite. Therefore, admissible integral on y  

becomes finite. Hence it is an admissible wavelet.

Exercise 9.10 

Is admissibility a sufficient condition to construct filter bank MRA?

Ans. No. Admissibility is a ‘Necessary’ condition but not a ‘Sufficient’ condition to construct a filter 

bank MRA. For example, Mexican Hat Wavelet.

Exercise 9.11 

Given the spectrum of the complex wavelet function as in below figure, find the value of C
0
 (height) 

for it to be admissible.

We observe that the above expression is polynomial of degree ‘n +1’ multiplied by the Gaussian.

Hence by mathematical induction, we can say that the ‘nth’ derivative of the Gaussian is a polyno-

mial of degree n multiplied by Gaussian itself.
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1

Ω2pp−p−2p

Co

y (Ω)

Ans. Now apply the condition of admissibility:

For positive frequency, we get

 
p

p2

0

2

0

2= 2ò C
d

C
W

W
ln  (9.56)

For negative frequency we get:

 
p

p

p

p

p
p

p
p

3

2 2
3

2

2
2|

2
( ) | |

2
( 2 ) |ò ò

-
- + + - +W

W

W
W

W

W

d d
 (9.57)

Therefore, on equating them, we get

 
0.1219 0.1029 = 2 = 0.569

0

2

0
+ ÞC Cln  (9.58)





10.1  Introduction

In Chapter 9, we discussed the admissibility condition for the continuous wavelet transform (CWT) 

in depth. The admissibility condition was essentially the condition for the ability to reconstruct 

a signal from its continuous wavelet transform. The continuous wavelet transform was extremely 

redundant. To use a continuous scale and a continuous translation, that means a two-dimensional 

representation for a one-dimensional entity, is extremely redundant. Therefore, we exploit the pos-

sibilities of discretization of scale as well as the translation parameter. This chapter deals with dis-

cretization of the scale  parameter. It deals with Logarithmic Discretization (in general) and Dyadic 

Discretization (in particular). The continuous wavelet transform operates like a filter both on the 

synthesis side as well as on the analysis side.

The continuous wavelet transform at scale ‘s’ is a filtering operation with a frequency response 

Y( )sW  as shown in Fig. 10.1 (with some constants which are ignored).

input
ˆ

ˆ ˆ ˆˆ

output

y (sΩ) filter
X(Ω) Y (Ω) = X(Ω)y (sΩ)

Figure 10.1  CWT as fi ltering operation

The output independent variable ‘t ’ here can be interpreted as the translation. If we take an ideal filter 

or an ideal wavelet (real), the Y( )W  corresponding to that wavelet is essentially an ideal bandpass filter 

with cutoff frequencies W1  and W2 , as shown in the Fig. 10.2. Only the positive side of the frequency 

response is shown.

Dyadic MRA

Chapter

Introduction

Sum of dilated spectra (SDS)

The theorem of (Dyadic) MRA

Bi-orthogonal fi lter bank

Orthogonal fi lter bank

Dyadic multiresolution analysis

Theorem of multiresolution analysis

Proof of theorem of dyadic MRA

Proof of theorem of dyadic MRA

10
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0

1

ˆ

Ω1 Ω2 Ω

y (Ω)

Figure 10.2  Ideal wavelet bandpass response

Now, if we take the dilation of this band pass function, we again get a band pass function. So, for any 

s > 0 , Y( )W  would essentially be as shown in Fig. 10.3.

0

1

ˆ

Ω1/s Ω2/s Ω

y(sΩ)

Figure 10.3  Dilated wavelet response

Thus, there is contraction or expansion in both the band as well as the centre frequency. Now,  logarithmic 

discretization means, the parameter ‘s’ should be discretized as

s a
k=
0

where ‘k’ runs through the set of all integers and a
0

> 1.

Since, we are taking ‘k’ so as to run through the set of all integers (positive as well as negative), it is 

obvious that we need not consider the possibility of a
0
 to be less than 1. Now for each such ‘k’, we have 

a filter. In the ideal condition (we shall study ideal conditions initially and then degrade to the nonideal 

conditions eventually), the k th filter would have a frequency response as shown in Fig. 10.4.

0

1

k
th filter: s = a0

k 

Ω1/a0
k

Ω2/a0
k

Ω

Figure 10.4  k
th ideal filter responce
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Now, if we pass a signal x t( ) through this ideal filter and obtain the CWT, the reconstruction should 

also be done using the same process. In fact, x t( ) could be obtained, as shown in the Fig. 10.5.

CWT for the kth branch Same ideal kth filter

Sum over all k

x(t)

Figure 10.5  Reconstruction of x t( )

Thus, each particular k th branch extracts a particular band on the frequency axis and it is obvious that 

each branch should have a separate nonoverlapping band. This could be explained by an example.

0

1

p 2p Ω

y (Ω)ˆ

Figure 10.6  Ideal Y( )W  with ‘+’ side of W  axis

Example 10.1.1—Consider a wavelet having ideal frequency response  as shown in 
Fig .10.6. 

Then, if a
0

= 2, then the k th branch would be the following:

Thus for different integers k, these bands would be nonoverlapping as shown in Figs. 10.7 and 

10.8.

0

1

ˆ

p/2k 2p/2k Ω

y (2kΩ)

Figure 10.7  Y(2 )k W  with ‘+’ side of W

Y( )W
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K  = 1 K = 0 K   = −1

[p/2, p] [p, 2p]

Ω

[2p, 4p]

Figure 10.8  Nonoverlapping bands with different ‘k’

Now, the question is whether we obtain such discretization in the frequency domain by time-limited 

functions or not, and the answer is ‘NO’ because of the uncertainty principle.

This discretization of the scale parameter also explains the notion of filter banks. In fact, it is 

 equivalent to constructing a filter bank. A filter bank is a collection of filters either with a common input 

or with all the outputs summed together to get a common output and of course, more subtly, the filters 

are interrelated. All these qualities are satisfied in the k th branch filters that we are considering here.

Now, we look at the analysis and synthesis side. The analysis side is the one that creates the CWT. 

It is shown below, ignoring the constants

Thus on the analysis and synthesis side, as shown in Figs 10.9 and 10.10.

Output of the analysis branch conjugate of(th
k X X  ( ) ( ) (W W= Y aa X a

k X

k k

0 0
) ( ) ( )W W W=

=

 ( )Y

Output from the synthesis branchth  



( ) | ( ) |

(

0

2W WY a

k X

k

Overall output by summing over all ‘ ’ = WW W) | ( ) |
= 0

2

k

k
a

-¥

¥

å Y

Ideally, 
k

k
a

= 0

2| ( ) | = 1
-¥

¥

å Y W  for all W indicating a perfect reconstruction. The challenge here is to 

obtain 
k

k
a

= 0

2| ( ) | = 1
-¥

¥

å Y W  for all W using time-limited functions.

To meet this challenge, we need to relax in the frequency domain. The first step towards this is 

not to consider it as a constant. In fact, we can consider it to be lying between two strictly positive 

constants c1 and c2. Therefore for designability, we consider

0 < 1 | ( ) | 2 <
=

0

2
c a c

k

k£ £ ¥
-¥

¥

å Y W

Thus 0 < 1 2 <c c£ ¥ . Thus instead of this term being strictly constant we allow this term to lie 

between two constants c1 and c2. Of course, the term cannot go negative as it is obvious from the 

expression. Note that c1 is strictly greater than 0 and c2 is strictly less than ¥. By using this  condition, 

we can make a small change on the synthesis filter as follows and obtain a perfect  reconstruction. We 

define another function y�
�

( )Ω  in the frequency domain from y( )Ω  as

 

Y
Y

Y

�
�

�

�

( ) =
( )

| ( ) |
=

0

2

W
W

W
k

k
a

-¥

¥

å
 (10.1)
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X(Ω) X(Ω)(y(a0
k
Ω))

ˆ
(y(a0

k
Ω))ˆ

ˆ ˆ

Figure 10.9  Analysis filters

(y(a0
kΩ))

X(Ω)y(a0
kΩ)

2X(Ω)(y(a0
kΩ))ˆ ˆ

ˆ
ˆ ˆ

Figure 10.10  Synthesis filters

Since the condition of c1 is imposed on the denominator, it cannot go to 0. Hence, we can define such 

a function. We aim to show that Y( )W  could be used on the analysis side while Y�
�

( )W  can be used 

on the synthesis side. Before proving this, we first show Y  is automatically admissible (Y  is real). 

As discussed earlier, we consider the following integral for admissibility

Þ
¥

ò0

2| ( ) |Y a
a

a
 d

Let us break this integral as

 
0

2

= 0

0
1

2| ( ) | = | ( ) |
¥

-¥

¥ +

ò å òY a
a

a
Y a

a

a
 d d

k
a

k

a
k

 (10.2)

Put a b=
0

a
k

    

Þ
+

ò ò| ( ) | = | ( ) |2

0

0
1

1

0

0

2y a
a

a
y b

b

b
 d

a
d
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ak a
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k
 (10.3)

 

Þ
¥
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ò ò å
0

2

1

0

=

0

2| ( ) | = { | ( ) | }Y a
a

a
Y b

b

b
 d

a
da

k

k  (10.4)

From Eqs. (10.2), (10.3) and (10.4) reversing the order of summation and integration. Since the 

limits of integration are finite and the argument of integration is also upper bounded by c2 ,  integral 

is indeed convergent and hence Y W( )  is admissible. In fact, the admissibility integral is upper 

bounded by,

1

0

0
2 = 2 ( )

a

c
d

c ln aò
b

b
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10.2  Sum of Dilated Spectra (SDS)

The quantity

k

k
a

=

0

2| ( ) |
-¥

¥

å Y W

Analysis filter

Sum of over k branches

(y(a0
kΩ))

X(Ω)∑∞
k    = −∞y(a0

kΩ)
2

X(Ω)ˆ
X(Ω)(y(a0

kΩ))ˆ ˆ

ˆ

ˆ ˆ

Synthesis filter

(y(a0
kΩ))ˆ

Figure 10.11  Overall filter

is called as Sum of Dilated Spectra (SDS). SDS has primary as well as secondary arguments, where 

primary arguments a
0
, k are those which are important and change in a given context and the secondary 

argument ‘y ’ is used for the construction of continuous wavelet transform. The overall filter is shown in 

Fig 10.11. Therefore,

 

SDS( , )( ) = | ( ) |
0

=

0

2Y Y ba a
k

kW
-¥

¥

å   (10.5)

where

0 < 1 ( , ) ( ) 2 <
0

c a c≤ ≤ ∞SDS Y Ω

and c2 guarantees admissibility.

Now, let us check the admissibility condition for y W�
�

( ) . From Eqs. (10.1) and (10.5),
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 (10.6)

For this purpose, we need to consider SDS( , )
0

y a
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 SDS
SDS

SDS
( , )( ) =

( , )( )

{ ( , )( )}
0

0

0

2
Y

Y

Y
 a

a

a
Ω

Ω

Ω
 (10.10)

Cancellation from the numerator and denominator is valid because of the bounds c1, c2.

 

SDS
SDS

( , )( ) =
1

( , )( )
0

0

Y
Y

 a
a

Ω
Ω

 (10.11)

We know that, 0 < 1 ( , )( ) 2 <
0

c a c£ £ ¥SDSY W , hence

¥ ³ ³>
1

1

1

( , )( )

1

2
> 0

0
c a cSDSY W

i.e.,

0 <
1

2
( , )( )

1

1
<

0
c

a
c

£ £ ¥SDSY W

So, Y  is also an admissible wavelet.

Using Y  on the synthesis side, as shown in Fig 10.12, we have, for the k
th  branch,

X(Ω)(y (a0
k
Ω))y (a0

k
Ω)

y (a0
k
Ω)ˆ

ˆ ˆ ˆX(Ω)(y (a0
k
Ω))ˆ ˆ

Figure 10.12  Synthesis filter with Y�
�

( )t

the output of the analysis and synthesis filters together can be written as

   

= ( ) ( ) ( )
0 0x a a

k

k k
�

� �
�W W W´ ´åY Y

 

= ( ) ( )
( )

( , )(
0

0

0

x a
a

ak

k

k

 


W W
W

W
´ ´åY

Y

YSDS )

  

= ( )
( , )( )

( , )( )

0

0

x
a

a
 W

W

W
´

SDS

SDS

Y

Y

Because of the c1 and c2, we can cancel the second term for all W

= ( )x W

This gives perfect reconstruction.

This gives us a new dimension. If we allow SDS ( , )( )
0

Y a Ω  to lie between two constants c1 and c2,  

we need to generalize the notion of analysis and synthesis filters i.e., by allowing a different wavelet 

on the analysis side and on the synthesis side. Thus we have ‘Y ’ on the analysis side and ‘Y ’ on the 

synthesis side. We are in fact slowly leading to a different paradigm in the context of filter banks. Earlier, 
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we presumed that the wavelet on the analysis side and on the synthesis side was the same. Now, we are 

allowing them to be different to relax the condition on SDS for designability.

Important Note

If c c1 = 2 then Y , Y  are the same, that gives us orthogonal filter banks. However, here, we have not 

yet discretized the translation parameter. We have discretized only the scale. So it does not follow that 

Haar wavelet has SDS as a constant because the translation parameter is discrete in the Haar case. In 

particular, if a
0

= 2, we get a dyadic orthogonal filter bank. 

10.3  The Theorem of (Dyadic) MRA

As we had seen earlier, we are moving from continuous scaling and translation parameter to  discrete 

 scaling and translation. Till now, discretization of the scaling parameter has been discussed; the 

 translation parameter is still continuous. The scaling parameter had been discretized logarithmically. 

More  specifically, our aim is discretizing the translation parameter considering that the wavelet  transform 

is discretized with scaling parameter in powers of two.

Before proceeding to the discretization of translation parameter in the powers of two (i.e. in dyadic 

scale manner) let us see in short, what we had done earlier.

10.4  Bi-orthogonal Filter Bank

Filter banks with different analysis and synthesis wavelets and scaling functions are called Bi-orthogonal 

Filter Banks. When we talk about a filter bank given over here, there should be perfect reconstruction.

In general, the k th analysis branch takes input x t( ) and subjects it to filter Ŷ ( )
0

a
kW , where a

0
> 1 

and k runs over all integer. Output of k th analysis branch given as input to k th synthesis branch whose 

frequency response is Y�
�

( )
0

a
kW .

Output of kth

analysis branch
x(t) y(a0

k
Ω)ˆ

Figure 10.13  Analysis branch

Output of kth

analysis branch
ˆ

Output+

Summing all kth

branch

∼
y (a0

k
Ω)

Figure 10.14  Synthesis branch

R
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All synthesis branches are added together to get the output.

We have Y�
�

( )
0

a
kW  in frequency domain as

Y
Y

Y
�
�

�

( ) =
( , )( )

0

W
WSDS a

Where, SDS is the sum of dilated spectra.

SDS( , )( ) = | ( ) |
0

=

0

2Y Y Wa a
k

kW
-¥

+¥

å 

This SDS is bounded by C1 and C2 so that

0 < 1 ( , )( ) 2 <
0

C a C£ £ ¥SDSY W

We had guaranteed Y  is admissible because of C1. Y�
�

 was meaningful because of upper and lower 

bound. Y  is also admissible and the bound on SDS of Y  is 
1

1C
, 

1

2C
. In case SDS( , )( )

0
y a Ω  is a con-

stant for all W  then it is called an orthogonal filter bank.

10.5  Orthogonal Filter Bank 

When filters on analysis side and synthesis side are the same (i.e. same wavelet function with same 

 scaling parameter) then these are called Orthogonal Filter Bank.

10.5.1 Construction of Orthogonal Filter Bank

Example 10.5.1 — Orthogonal Filter Design.

 Let us define Y�
�
�

( )W  as

Y
Y

Y
�
�
�

�

( ) =
( )

( , )( )
0

W
W

W+ SDS a

Same as earlier, because of upper and lower bound there is meaning of putting SDS( , )( )
0

y a W  in 

denominator.

0 < 1 ( , )( ) 2 <
0

C a C£ £ ¥SDSY W

With above observation let us prove that the y


 is admissible, to prove it take SDS( , )( )
0

y


a W

SDS
SDS

( , )( ) =

| ( ) |

( , )( )
0

=

0

2

0

Y

Y

Y
�
�

�

a

a

a

k

k

W
W

W
-¥

+¥

å

Sum of dilated spectra is independent of the scaling parameter ak

0
, let us replace W  by a

k

0
W . It does 

not affect the value of SDS i.e.

SDS SDS( , )( ) = ( , )( )
0 0 0

Y Ya a a
mW W
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10.6  Dyadic Multiresolution Analysis

Examples of dyadic MRA constitute HAAR MRA, Daubechies MRA. These are essentially the special 

case of a
0

= 2. The wavelet obeys the requirement

0 < 1 2 < ,C C£ £ ¥SDS for all W

The wavelet may not obey this requirement for all a
0
, but it obeys this requirement for a

0
= 2. So these 

bounds, in general, depend on a
0
. Also, the wavelet admits discretizing the translation parameter. Now, 

the question is should we discretize the translation parameter in the same way in all the branches, or 

do it differently?

Let us look at the k th branch. On the k th analysis branch, the output is broadly a bandpass function, 

that is, it is significant in a certain band of frequencies, not around zero. For different values of k, there 

is a logarithmic variation of the band. We invoke a generalization of the sampling theorem for bandpass 

functions and illustrate it with an example.

Proof (in general):

SDS( , )( ) = | ( ) |
0 0

=

0 0

2Y Ya a a a
m

k

k mW W
-¥

+¥

å 

                            

= | ( ) |
=

0

2

k

k m
a

-¥

+¥
+å Y W

Here, m is a constant integer. Therefore, as k runs over all integers, k m+  will also run over all 

 integers i.e.

SDS
SDS

( , )( ) =

| ( ) |

( , )( )
0

=

0

2

0

Y

Y

Y
�
�

�

�

a

a

a

k

k

W
W

W
-¥

+¥

å

for all W .

We have a constant SDS in case of Y


. So, Y


 can be used as wavelet on both analysis side and 

synthesis side because Y
  is an admissible and orthogonal wavelet.

Y
  is admissible and its SDS has upper bound equal to lower bound and that is equal to one. 

Here, we have constructed an orthogonal wavelet function from a bi-orthogonal wavelet. But still 

the translation parameter is continuous.

For example in the HAAR wavelet, it does not satisfy the condition of upper bound being equal 

to lower bound. This is because, in case of HAAR the orthogonality is with respect to discrete shifts 

in time, not continuous shifts. This is a weaker requirement. However, this is desirable in implemen-

tation, as we do not want to retain the whole continuous translation parameter. Now, we are going to 

accept a wavelet Y  which has the property of admissibility and reconstructibility, i.e. it has a finite 

nonzero C1 and C2, and we are going to ask, can we discretize the translation parameter taking the 

dyadic case i.e. a
0
 = 2 to construct a dyadic multiresolution analysis.

= 1
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Consider a bandpass function where the band on W lies between p  and 2p  (Fig. 10.15).

1

0 p 2p Ω

Figure 10.15  Bandpass function

Discretizing the translation parameter basically talks about sampling the output of the k
th  analysis 

branch and feeding these samples to the k th  synthesis branch, instead of the continuous function. So 

“How do we sample the output of the k
th

 branch so that we do not lose anything”, is equivalent to the 

question “How do we discretize the translation parameter?”

We have two options:

 1. To sample the signal following the Nyquist criteria, and considering 2p  as the highest 

frequency.

 2. To sample it presuming that the band between o and p  is blank and signal occupancy is only 

between p  and 2p .

In the second case, we can use a sampling rate twice the band occupancy.

Here band occupancy = p
Therefore, we could use a sampling rate = 2p
If we simply use the Nyquist criteria, we should have sampling frequency f

s
 such that

2 = 4 , = 2p pf f
s s

Þ

But we can also do with a sampling frequency f
s
 such that

2 = 2p f
s

times the band occupancy

  = 2p

therefore,

 
f

s
= 1

Suppose we do use a sampling frequency of 1. Then we are adding all the aliases, which are shifts of 

the original spectrum by 2pk, for all integer k. Figure 10.16 shows the original spectrum along with the 

aliases due to shifting the spectrum by 2p  and -2p .

The translations by 2p  and -2p  do not affect the original spectrum. Similarly, translations by 4p  

and -4p  leave the original spectrum ‘unpolluted’. For higher translations of the original spectrum, the 

aliases move further away from the original spectrum, and hence insignificant. The original part of the 

signal is, therefore, unaffected. The original signal can be retrieved by putting a bandpass filter between 

p  and 2p . This is, therefore, the bandpass sampling which cannot, however, be generalized for any 
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position of the frequency band, i.e. wherever a band of p  is put, a sampling rate of 2p  may be used, this 

is not true in general but depends on the position of the band. That is why, the Bandpass Sampling theo-

rem is a little more complicated than the conventional low-pass sampling theorem. It certainly is more 

economical. In fact, in the dyadic MRA, we are essentially invoking the Bandpass Sampling theorem.

The same principle is applicable for bands between 2p  and 4p , 4p  and 8p , and so on. So for 

 different branches on the analysis side, we would need to use different sampling frequencies, which will 

also be related logarithmically. That is exactly what happens in Dyadic MRA. When we go from V
0
 to 

V
1
, or from V

1
 to V

2
, number of points are doubled. Going from V

0
 to V-1

, number of points is halved. All 

these are essentially manifestations of the Bandpass Sampling Theorem.

Let us now focus on a
0

= 2. We need to use a logarithmic change of the form 2k of sampling. On the 

k
th branch, the sampling rate relates to 2k. This is automatically ensured by the Dyadic MRA axioms.

10.6.1 Axioms of a Dyadic MRA

 1. Ladder axiom

 V V V V V- -Ì Ì Ì Ì Ì
2 1 0 1 2

V
0
 is the subspace where the functions are bandpass in a certain band, V

1
 is the subspace where 

functions are bandpass in the next higher band, V
2
 the next higher band and so on. Each time the 

frequency occupancy is doubled. As we go downwards, the frequency occupancy is halved. So, 

as we go upwards the sampling frequency is doubled, and as we go downwards the sampling 

 frequency is halved.

 2. Axiom of perfect reconstruction


m

m
V L

ÎZ

R= ( )
2

When all the incremental subspaces are collected together, we go back to the original input signal.

 3. We will   remain in L
2
( )  so as we go downwards we are going towards smaller and smaller bands 

and finally we are going to reach a band with zero power.


m

m
V

Î

= {0}

−4p −2p 2p 4p

Ω

0

Spectrum shifted by−2p
Original spectrum
Spectrum shifted by 2p

0

1

Figure 10.16  Frequency spectrum of bandpass function
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 4. If

x t V( )
0

Î

then

x t V
m

m
(2 )Î

Implicitly, this provides for logarithmic sampling. More specifically, logarithmic sampling with 

a order of 2.

 5. Axiom of translation

If

x t V( )
0

Î

then

x t n V n Z( ) ,
0

− ∈ ∈for all

It essentially says that we have a uniform sampling.

 6. Axiom of orthogonal basis

There exists a F ( )t  such that { ( )}F t n
n

- Î is a basis for V
0
. Given axioms 4 and 5, we have a 

 corresponding basis for each of the V
m
. This axiom gives us a way to reconstruct the function from 

samples. The coefficients in the expansion of the function with respect to { ( )}F t n
n

- Î are like 

generalized samples of the function after filtering.

Now, V
0
 is a collective subspace and we are sampling a collective subspace, not an incremental 

subspace. The theorem of multiresolution analysis would give us an incremental subspace.

10.7  Theorem of Multiresolution Analysis

Given axioms 1 to 6, there exists a function Y ( )t  ( ( ) ( )
2

Y t LÎ   and Y ( ) )
1

t VÎ  such that { (2 )}
,

Y m

m n
t n- Î Î 

forms an orthogonal basis for L
2
( ) .

10.8  Proof of Theorem of Dyadic MRA

In the last section, we conclude that one of the ways to interpret the whole question of discretization of the 

translation parameter is to raise the issue of sampling. But in generalized sampling note that we dealt with 

the High-Pass function instead of a band limited function and we also noted in brief that if we look into the 

discretization of the translation parameter, in space V  (V V V
0 1 2
, , , ladder) it amounted to a version of the 

band-limited sampling theorem. Because if we look into the spaces of V
0
 contained in V

1
, V

1
 contained in V

2
,  

and so on, in the ladder, we are talking of a band-limited function with the band doubling each time but 

the bands are around zero frequency, so it is all inclusive bank up to a certain frequency, then double, then 

four times and eight times as you go up the ladder. Obviously, the sampling frequency needs to be doubled.

On the other hand, we looked at the ideal case of the Bandpass function and we said that if the 

band was strategically placed for example, if we look at the band between p  and 2p , and sampled such 

a bandpass signal contained in this band at a sampling rate of 2 ( )× p  instead of 2 (2 )× p . We got the 

bandpass version of the sampling theorem.

We saw that the translates of spectrum created by sampling the bandpass function at the angular 

sampling frequency of two times band (2 )p  instead of (4 )p , which is the highest frequency, we still get 

R
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dilates of the original spectrum not overlapping with the original frequency spectrum. Therefore, we can 

put a Bandpass filter and reconstruct the signal even after sampling.

Now, the sampling functions in ideal sense, i.e. ideal Bandpass reconstruction filter has an impulse 

response, which is unrealizable and therefore, the use of wavelets is a way of bandpass sampling and 

reconstruction practically.

10.9  Proof of Theorem of Dyadic MRA

Example 10.9.1 

Look at the typical function f t( ) in the incremental subspace W
0
.

Characteristics of the function f t( ):

 1. f t( ) is orthogonal to every translate of f ( )t  i.e. f ( )t m- , where mÎ .

 2. f t m( )-  ÎV
1
. f t( ) can be expressed or expanded in terms of f (2 )t n- , where nÎ .

Combining these two properties and coming up with some interesting results.

Let f t f n t n
n

( ) = [ ] (2 )f -
=-¥

+¥

å  where f n[ ]  are the coefficients of expansion.

 
f ( )

0 1
t V VÎ Î

f ( )t  can be expanded in terms of f (2 )t n-

f f( ) = [ ] (2 )t h n t n
n

-
=-¥

+¥

å

where h n[ ] is the low-pass impulse response coefficient.

f f( ) = [ ] (2 2 )t m h n t m n
n

- - -
=-¥

+¥

å
Using the orthogonality property:

á - ñf t t m( ), ( ) = 0f

f n t n h l t m m
n l

[ ] ( ), [ ] ( )f f2 2 2 1 0- - - = "å å

We now invoke the orthogonality of f( )t  with its own translates:

á - - ñ - -
-¥

+¥

òf f f f(2 ), (2 ) = (2 ) (2 )
1 2 1 2

t k t k t k t k dt

Put 2 =t l

〈 − − 〉 − − −
−∞

+∞

∫f l f l f l f l l d( ), ( ) =
1

2
( ) ( ) =

1

2
[ ]

1 2 1 2 1 2
k k k k d k k

Thus,

á - ñ á - - - ñååf t t m f n h l t n t m l
n l

( ), ( ) = [ ] [ ] (2 ), (2 2 ) = 0f f f
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Only n m l= 2 +  survives.

á - ñ +åf t t m f m l h l
l

( ), ( ) =
1

2
[2 ] [ ]f

We are essentially looking at the cross-correlation of the sequences f [ ]×  and h[ ]× . Cross-correlation 

is often denoted by:

r p f p l h l
fh

l

[ ] = [ ] [ ]å +

Therefore, r p m
fh p m

[ ] = 0
2- " Î

The cross-correlation of f [ ]×  and h[ ]×  is evaluated at all even shifts. This is the orthogonality 

requirement. We know how to deal with the situation when we want to look at an even location; in 

fact, we know the operator that does that (downsampling by 2). So if you were to take notionally this 

cross-correlation sequence and down sample by 2, you will get an all-zero sequence, this is depicted 

in the figure below:

rfh[p] 2 Zero sequence

rfh[p] 2 2 All zero sequence

In Z -domain

r p R z
fh fh

[ ] ( )®

rfh[p] 2 2
Z-Transform 1

2
{Rfh(Z) + Rfh(−Z)}

 
R z R z

fh fh
( ) ( ) = 0+ -

 F z H z F z H z( ) ( ) ( ) ( ) = 01 1- -+ - -

                   

F z

F z

H z

H z

( )

( )
=

( )

( )

1

1-
-

- -

-

This typical function F belongs to the incremental subspace. In the ratio 
F z

F z

( )

( )-
, we have managed 

to cancel which is specific to F z( ). So, F z( ) must be of form:

        F z z H z( ) = ( ) ( )1- - -L  (10.12)

 F z z H z( ) = ( ) ( )1- -L  (10.13)

Put z z= -  in Eq. (10.12), we get:
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 F z z H z( ) = ( ) ( )1- - - -L  (10.14)

Comparing Eqs. (10.13) and (10.14) we have:

                       L L( ) = ( )z z- -

L L( ) ( ) = 0z z+ -

In terms of sequences, if L( )z  is the Z -transform of a sequence, then sequence should be zero at all 

even locations. Sequence could have been obtained by upsampling another sequence and shifting by 

one place. By upsampling by 2, zeros get introduced at odd positions. For making a zero sequence, 

shift by odd number of samples.

λ
∼

[n] 2
Shift by odd

samples
A[Z]

λ
∼

[n] 2
Shift by odd

samples
F [.]H(−Z)

−1
)

We could in particular choose odd number of samples: L -1, where L = Low Pass Analysis Filter 

length.

Recall that z H z
L- - --( 1) 1( ) is essentially the analysis High-Pass Filter (HPF).

λ
∼

[n] 2
Analysis HPF

Z
−(L−1)

H(−Z−1
)

F [n]

f t f n t n
n

( ) = [ ] (2 )
=-¥

+¥

å -f

Let g n[ ] be inverse Z -transform of z H z
L- - --( 1) 1( ).

Essentially g n[ ]: impulse response of the analysis HPF.

λ
∼

[n] 2
λintermediate[n] LSI System impulse

responce g[n]
F [n]

f [ ] = [ ] [ ]

= [ ] [ ]

n n g n

k g n k
k

l

l

intermediate

intermediate

*

-
=-¥

+¥

å

l
intermediate

[k]  is nonzero only at 2k (even).
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f n k g n k

k g n k

f

k

k

[ ] = [2 ] [ 2 ]

= [ ] [ 2 ]

(

=-¥

+¥

=-¥

+¥

å

å

-

-

l

l
~

intermediate

tt k g n k t n

k g n k

kn

k

) = [ ] [ 2 ] (2 )

= [ ] [ 2 ]

l
~

f

l
~

f

- -

-

=-¥

+¥

=-¥

+¥

=-¥

+¥

åå

å ((2 )t n
n

-
=-¥

+¥

å

Substitute n k q- 2 =

f t k g q t q k

k g q

k q

k

( ) = [ ] [ ] (2 2 )

= [ ] [ ] (2





l f

l f

=-¥

+¥

=-¥

+¥

=-¥

+¥

å å

å

- -

(( ) )t k q
q

- -
=-¥

+¥

å

Here, ( )t k-  denotes shift in continues variable t by k. Now, let us define

y f( ) = [ ] (2 )t g q t q
q

-
Î
å


It follows that f ( )× ÎV
1
. Thus, effectively we have,

f t k t k
k

( ) = [ ] ( )l y -å

The importance of this equation is that we have proved that this prototype function f t( ) is in the 

orthogonal complement of V
0
 in V

1
, i.e. W

0
 is expressible in terms of integer translates of function 

y ( )t  and that is exactly the goal. If you could capture single function y ( )t  and its entire integer 

 translate forms, this basis could span W
0
, i.e. ( ( ))y t k

k
- Î  spans W

0
.

The proof is almost complete except to demonstrate

 1. ( ( ))y t k
k

- Î forms orthogonal set.

 2. á - - ñ " Îy f( ), ( ) = 0 ,t k t k k m .

This will be taken up in the Chapter 11.
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Exercise 10.1 

The Fourier Transform | ( ) |y W s  of a real, continuous time, square integrable function y ( )t  has the 

squared magnitude shown only for the positive side of angular frequency axis, in Fig. 10.17. Show 

that y ( )t  is admissible as a wavelet and that it admits for dyadic discretization of its scale parameter.

0

2ˆ 1 1
Zero phase,
straight line
segments

9p/10 16p/5 32p/54p 8p
Ω

2p18p/10p

y (Ω)

Figure 10.17  | ( ) |2y W  (for ‘+’ W  axis)

Hint: Clearly 
0

2| ( ) |
¥

ò y a  is upper bounded by

9 /10

2

16 /5

8

1. 1. = (
2

9 / 10
) (

8

16 / 5
)

p

p

p

pW

W

W

W

p

p

p

pò ò+ +
d d

ln ln

which is finite. Hence y ( )t  is admissible.

| ( ) | =| ( ) | | ( ) |2

1

2

1

2y W y W y W� � �+

where | ( ) |
1

2y W  is the part of the spectrum between 9 / 10p  and 2p , | ( ) |
2

2y W  between 16 / 5p  and 8p .

We need to consider,

| (2 ) | | (2 ) | | (2 ) |2

1

2

2

2y W y W y W� � �k

k

k

k

k

k=-¥

¥

=-¥

¥

=-¥

¥

å å å= +

only over a logarithmic interval of 2.

From Fig. 10.18,

| (2 ) | = 1
1

2y W k

k=-¥

¥

å
everywhere.

From Fig. 10.19,

| (2 ) | = 1
2

2y W k

k=-¥

¥

å
everywhere.

Thus | (2 ) | = 22y W k

k=-¥

¥

å  everywhere which satisfies the condition for dyadic discretization.

Exercises
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9p/10 18p/10p

ˆˆˆ

2p Ω

2
y (Ω) 2

y (Ω) 1
2

2
y(  Ω)

Figure 10.18  Dilated spectra of  | ( ) |
1

2y W

16p/5 32p/54p 8p Ω

ˆˆˆ 2
y (Ω) 2

y (Ω) 1
2

2
y(  Ω)

Figure 10.19  Dilated spectra of  | ( ) |
2

2y W

Exercise 10.2 

The Fourier Transform F W( ) of a real, continuous time, square integrable function F ( )t  has the 

squared magnitude shown only for the positive side of angular frequency axis, in Fig. 10.20. 

Establish that the set { ( )F t n- , for all integers n} is orthogonal for some condition(s) on D
1
 

and D
2
 assuming that D

1
 and D

2
 are both nonnegative real numbers between 0 and p . Obtain the 

condition(s).

Hint: We consider | ( 2 ) |2f W p +
=-¥

¥

å k
k

 over interval of 2p  as shown in Fig. 10.21.

On adding the spectral components shown, we find that the sum is a constant if and only if D D
1 2

= .

Hence the condition is D D
1 2

=  for which | ( 2 ) |2f W p +
=-¥

¥

å k
k

 is a constant, whereupon 

{ ( )}f et n
n Z

-  is an orthogonal set.

0

Zero phase, straight
line segments

1ˆ̂̂

p − ∆1 p + ∆2 Ω

2
Φ(Ω)

Figure 10.20  Spectra of | ( ) |2F W
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Exercise 10.3 

The Fourier Transform y W( ) of a real, continuous time, square integrable function F ( )t  has the 

squared magnitude shown in Fig. 20.22. Find the maximum value of ‘a
0
’ for the discretization of 

scale so that the dilates cover entire spectrum for N e  Z and N ³ 2.

Hint: We consider 3-cases for the discretization of scale s a
k=
0
, i.e. a N

0
= , a N

0
<  and a N

0
> . The 

dilated spectra for these 3-cases considering the positive W axis are shown in Figs. 10.23, 10.24 and 

10.25 respectively.

By observing the dilated spectra it is obvious that for a N
0

>  holes are created in the spectrum, 

hence the maximum range of ‘a
0
’ is N.

Np0

Mirror
image k = 1

1

k = 0 k = 1

ΩN
2
pp/N p

2ˆ̂̂y (Ω)

Figure 10.23  | ( ) |2y W  for a N
0

=

0

Mirror image

Comes from ˆ̂̂ between−p and 0

Negative side

on

p − ∆1

2p − (p − ∆1)
        = p + ∆1

2p − (p + ∆2)
        = p − ∆2

p + ∆2p 2pΩ

2
f (kΩ)

Figure 10.21  Dilated spectra of | ( ) |2F W

0

Ω

1

ˆ̂̂

1

Np−Np p−p

2
y (Ω)

Figure 10.22  | ( ) |2y W
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Exercise 10.4 

For the Haar Wavelet y ( )t , shown in Fig. 10.26. Show that

0 < 1 ( , )( ) 2 <
0

c SDS a c£ £ ¥y W

(Hint: The upper bound c2 could be obtained from the admissibility

condition of Haar while the lower bound c1 is a bit tricky).

The Fourier transform y W( )  of y ( )t  can be obtained as

           

y W W W( ) =
0

1

2
1

2

1

e dt e dt
j t j t- -ò ò-

y W

W

W

W

( ) = . 4

4

2

2

j e

j- sin

Therefore | ( ) |2y W  is of the form,

y W

W

W

( ) = 4

4

2

4

2

sin

æ

è
ç

ö

ø
÷

Np0

Mirror
image

k = 1 k = 0 k = −1

ΩN
2
p/22p/N 2pNp/2π

2ˆ̂̂y (Ω)

Figure 10.24  | ( ) |2y W  for a N
0

<  with a specific case of a N
0

= / 2

0

1 1 1Mirror
image

Holes

k = 1 k = 0 k = −1

Ω 2N 2
pp/2N p/2 2NpNpp

2ˆ̂̂y (Ω)

Figure 10.25  | ( ) |2y W  for a N
0

>  with a specific case of a N
0

= 2



322 Multiresolution and Multirate Signal Processing 

Exercise 10.5 

Establish a procedure for Bandpass Sampling. Construct the spectrum after sampling (Fig. 10.28) 

with Bandpass Function with sampling frequency f
s

= 2´ Bandwidth. Is there any aliasing?

Hint: Suppose we consider a Bandpass Function where the band on W  lies between p  and 2p   

(Fig. 10.29).

1

0 1.1p 2.1p Ω

Figure 10.28  Bandpass function

Now consider the admissibility integral,

Þ
¥

ò0

2| ( ) |y W
W

W
 d

                                  

0

2

4

2
| ( ) | = 4

4
0

¥

ò
¥

ò æ
èç

ö
ø÷

y W
W

W

W

W

W

W
 d dsin

0
0

| ( ) | = 4

4

4

4

2

4

2

4

2

¥
¥

ò ò òæ
èç

ö
ø÷

+
æ
èç

ö
ø÷

y W
W

W

W

W

W

W

W

W

W

W
 d d d

D

D

sin sin

where D > 0.

It is easy to show that the above integral is convergent, hence the upper bound c2 is finite.

The | ( ) |2y W  is, as shown in Fig. 10.27.

The dilated spectra moves the nulls of | ( ) |2y W , in order to satisfy the lower bound c1, these 

nulls should not coincide.

Nulls

0 Ω

2ˆ̂̂y (Ω)

Figure 10.27  y W( )
2
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1

0 p 2p Ω

Figure 10.29  Bandpass function

What could be the sampling rate when we talk about discretizing the translation parameter. We 

are essentially talking about sampling the output of this filter on the k th analysis branch and feeding 

those samples instead of continuous function to the input of k th synthesis branch.

How do we sample in such a way that we don’t loose something. How do we discretize the 

translation parameter?

Band occupancy is p .

If we simply use Nyquist criteria and sampling frequency as f
s
.

Then 2 = 4p pf
s

.

Therefore, f
s

= 2.

But we can also do with a sampling rate

2 = 2 = 2p pf
s

´ band occupancy

Therefore, f
s

= 1.

In Bandpass sampling theorem, we decide the sampling frequency by looking at the bandpass 

occupancy and not the maximum frequency.

Suppose we use a sampling rate of 1. We are essentially adding all aliases, which are shifts of 

the original spectrum by (2 1 )p ´ ´ k  for all integer k.

Take the original spectrum, shift it by all multiples (2 1 )p ´ ´ k  for all integer k and add up these 

translates.

We can retrieve the original signal by putting any filter between p  and 2p . However, we can not general-

ize this. Whenever there is a band occupancy of p  we can not use sampling rate of 2p  (i.e. twice the band and 

not the maximum frequency). It is true, depending on the location of the band as well. That is why Bandpass 

Sampling theorem is more complicated than the conventional Low-Pass Sampling Nyquist theorem.

For the Bandpass function given in the question (Fig. 10.29), band occupancy is p . If we use the 

sampling rate as (2 )´ band occupancy  i.e. 2p . We will get the following spectrum as shown in Fig 10.30.

From the above spectrum it is clear that there will be aliasing and we cannot retrieve the original signal.

−6π−5π

−1.1π −2.1π 1.1π 2.1π

Ω

−4π−3π−2π 0

1 1

2π 3π 4π 5π 6π−π π

Original spectrum shifted by 4π forward

Original spectrum
Original spectrum shifted by 2π backward
Original spectrum shifted by 2π forward
Original spectrum shifted by 4π backward

Figure 10.30  Sampling of bandpass function
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Exercise 10.6 

Explain the concept of log periodicity. Prove that sum of dilated spectra is log periodic.

Hint: Generally in W  axis the translates are shifted by multiples of some frequency (a parameter).

Consider ( )k ´ p , where k can take any integer value. Therefore, the shifts will be p p p,2 ,3 , and 

so on.

But if we consider the ( )a
k ´ p , where a is any constant and k can take any integer value. Then 

shifts will be of the multiples of ak times p . i.e. a a a ap p p p, , ,2 3 4 .

Log periodic signal means the signal whose period is power of some constant, like ak where a 

is constant and k can take any integer value.

To prove that the Sum of Dilated Spectra (SDS) is log-periodic. i.e.

To show that,

SDS SDS( , )( ) = ( , )( )
0 0 0

Y W Y Wa a a
m

Proof (in general):

SDS( , )( ) = | ( ) |

= | ( ) |

0 0 0 0

2

0

2

Y W Y W

Y W

a a a a

a

m k m

k

k m

k





=-¥

+¥

+

=-¥

+¥

å

å

Here m is a constant integer. Therefore, as k runs over all integers, k m+  will also run over all integers.

Exercise 10.7 

What is the significance of closure in the Union Axiom of MRA?

Hint: Union Axiom


m

m
V L

ÎZ

R= ( )
2

This is essentially an Axiom of perfect reconstruction. When all incremental subspaces are  combined 

together, we get the whole input back.

Union over V
m
 should cover the entire space on L

2
( ) . But in some cases it may leave some 

patches on the boundary. While taking the closure also ensure covering the entire boundary as well.

UU VmVm

m∈Z

= L2(R )

m∈Z

Covers all the interior
of L2(R )

Covers all the interior
+ boundary on L2(R )

Figure 10.31  Closure on union of V
m



Dyadic MRA 325

Exercise 10.8

l[ ] = (1,2,4,2,1)n

l[n] 2
1−z−1

Analysis High Pass f[n]

Find f n[ ] and plot f t( ), show that f t f n t n
n

( ) = [ ] (2 )f -å  lies in W
0

Hint: l
intermediate

( ) = 1 2 4 22 4 6 8
z z z z z+ + + +- - - -

So F z( ) can be expressed as product of l
intermediate

( )z  with the Analysis High-Pass Filter.

F z z z

z z z z z

( ) = (1 )( ( ))

= (1 )(1 2 4 2

1

1 2 4 6

-

- + + + +

-

- - - - -

l
intermediate

88

1 2 3 4 5 6 7 8 9

)

= 1 2 2 4 4 2 2

[ ] = (1, 1,

- + - + - + - + -

-

- - - - - - - - -
z z z z z z z z z

f n 22, 2,4, 4,2, 2,1, 1)- - - -

Now f t f n t n
n

( ) = [ ] (2 )f -å , so f t( ) can be plotted as follows

0

f(t)

1 2 3 4 5

Again f t( ) can be expressed as a function of y ( )t  as follows

f t t t t t t( ) = ( ) 2 ( 1) 4 ( 2) 2 ( 3) ( 4)y y y y y+ - + - + - + -

and y ( )t  lies in W
0
 and so as f t( ).





11.1  Introduction

In this chapter we need to explore some more avenues of the concept of MRA. First let us complete few 

details of the proof of the theorem of MRA attempted in earlier chapters and then introduce different 

variants of MRA.

11.2  Inner Product of Wavelet Function y ( )t  and 
Scaling Function f( )t m–

We had already shown that, y ( )
1

t VÎ  and y ( )t  can be expanded as,

y f( ) = [ ] (2 )t g n t n
n ZÎ
å -

Where g n[ ] is the impulse response of the analysis high-pass filter and corresponds to the inverse 

Z-transform of z H z
L- - --( 1) 1( ), where H z( ) is analysis low-pass filter. Expressing f( )t  in terms of the 

basis of the V
1
 involves coefficients of low-pass analysis filter. Expressing wavelet y ( )t  in terms of the 

basis of the V
1
 involves coefficients of high-pass analysis filter.

MRA Variant 1:
Bi-orthogonal 
Filters

Chapter

Introduction

Inner product of wavelet function y(t) 
and Scaling function f(t – m)

Variants of MRA

Introduction of Bi-orthogonal filter banks

JPEG 2000 5/3 filter-bank and spline 
MRA

Description

Note

5/3 tap in nutshell

Filter design strategy

11

Example 11.2.1 — High-pass filter impulse response.

For example, in the Haar case, High-pass filter impulse response is given as,
[1 1]−

↑
And, accordingly Haar wavelet is given as,

y f f
Haar

( ) = 1. (2 ) 1. (2 1)t t t- -
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The wavelet and scaling functions in general are given as,

 y f( ) = [ ] (2 )t g n t n
n ZÎ
å -

f f( ) = [ ] (2 2 )

1

1 1
t m h n t m n

n Z

- - -
Î
å

The inner product between wavelet function y ( )t  and scaling function f( )t  shifted by m is given as,

 

< ( ), ( ) > = [ ] [ ] < (2 ), (2 2 ) >
1

1 1
y f f ft t m g n h n t n t m n

n n

- - - -åå  (11.1)

The inner product term on the right hand side can be evaluated as,

< (2 ), (2 2 ) > = (2 ) (2 2 )
1 1

f f f ft n t m n t n t m n dt- - - - - -
-¥

+¥

ò
Let 2 =t be l. It gives 2 =dt dl and t : =-¥ ® +¥ Þ -¥ ® +¥l  With this substitution the above 

integral turns out to be,

< (2 ), (2 2 ) > =
1

2
( ) ( 2 )

1 1
f f f l f l lt n t m n n m n d- - - - - -

-¥

+¥

ò

< (2 ), (2 2 ) > =
1

2
[ (2 )]

1 1
f f dt n t m n n m n- - - - +

Putting the value in Eq. (11.1) we get,

< ( ), ( ) > =
1

2
[ ] [ ] [ (2 )]

1

1 1
y f dt t m g n h n n m n

n n

- - +åå

Dropping 
nå , we get

 

< ( ), ( ) > =
1

2
[2 ] [ ]

1

1 1
y ft t m g m n h n

n

- +å  (11.2)

Equation (11.2) is the cross-correlation of g[.] and h[.] evaluated at 2m, " Îm Z . So the Z-transform 

of the cross-correlation of g[.] and h[.] is,

 G z H z z H z H z
L( ) ( ) = ( ) ( )1 ( 1) 1 1- - - - --  (11.3)

Since G z z H z
L( ) = ( )( 1) 1- - -- . For simplicity, let us assume that the impulse response is real. Consider

which gives us 

z H z H z z H z H z
L L

z z

- - - - - - - -
¬-- + -( 1) 1 1 ( 1) 1 1( ) ( ) ( ) ( ) |

z H z H z z H z H z
L L L- - - - - - - - -- + - -( 1) 1 1 1 ( 1) 1 1( ) ( ) ( 1) ( ) ( ) = 0

This happens because L is even. The cross-correlation of g[.] and h[.] is zero for all 2m. So

 
< ( ), ( ) > = 0y ft t m m Z- " Î  (11.4)
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Similarly, the inner product between scaling function and its translate by n is given as

< ( ), ( ) > =
1

2
[2 ] [ ]f ft t m h m n h n

n

- +å
The above expression shows the auto-correlation of impulse response of low-pass filter in the 

 analysis side. Now, the design equations for an orthogonal filter bank ensures that

H z H z H z H z( ) ( ) ( ) ( ) =1 1- -+ - - constant

Autocorrelation sequence is ‘0’ at all even locations 2m except when m = 0.

11.3  Variants of MRA

To know the variants of MRA, we need to ask certain questions regarding some other avenues of MRA.

 1. Should we have essentially the same analysis and synthesis filters?

  The answer is ‘No’, because JPEG-2000 standard for data compression employs bi-orthogonal 

filter banks in which the analysis and synthesis filter banks are different.

 2. Do the filters in filter banks need to be finite impulse response filters?

  The answer is ‘No, not necessarily’.

 3. Should we always iterate on the low-pass branch?

  The answer is again ‘No, not always’. In wave-packet transform we also iterate on the high-pass 

branch.

By Discrete wavelet transform generally we make a wavelet tree that looks like as in Fig. 11.1.

LPF

LPF

HPF

HPF

2

2

2

2

Figure 11.1  Discrete wavelet transform

While iterating on the high-pass branch as well, which is used in wavelet packet transform, it looks 

like as in Fig. 11.2.
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LPF

LPF

HPF

HPF

2

2

2

2

LPF

HPF

2

2

Figure 11.2  Wavelet packet transform

11.4  Introduction of Bi-orthogonal Filter Banks

Now, let us try to look for an elaborate answer for the first question using the Haar MRA. In the case of 

Haar, the dilation equation for f
0
( )t ,

f f f
0 0 0
( ) = (2 ) (2 1)t t t+ -

This can be seen in Fig. 11.3.

0 1

f0(2t)

f0(t)

f0(2t−1)

Figure 11.3  Dilation equation for f
0
( )t

Now, we want to calculate f f
0 0
( ) ( )t t× . Given that h t g t r t( ) ( ) = ( )×  then what is h at b g at c( ) ( )+ +× ?  

For same scaling a Î R(real),

h at b g at c h a b g a t c d( ) ( ) = ( ) [ ( ) ]+ + + - +
-¥

+¥

ò× l l l

Let a bl g+ = , a ¹ 0 and aÎR. If a > 0,

d adg l= , and l g: =-¥ ® +¥ Þ -¥ ® +¥
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If a < 0,

d adg l= , and l g: =-¥ ® +¥ Þ +¥ ® -¥

In general,

-¥

+¥

-¥

+¥

ò ò+ - + - + + +h a b g a t c d
a

h g at b c d( ) [ ( ) ] =
1

( ) ( )l l l g g g

-¥

+¥

-¥

+¥

ò ò+ - + + + -h a b g a t c d
a

h g at b c d( ) [ ( ) ] =
1

( ) ( )l l l g g g

     
-¥

+¥

+ +ò + - +h a b g a t c d
a
h g

at b c
( ) [ ( ) ] =

1
|
( )

l l l ×

Using this equation and denoting f f f
0 0 1
( ) ( ) = ( )t t t× , as shown in Fig. 11.4.

0 1

0 1

f0(t)

f0(t)

f1(t)

0 1 2

Figure 11.4  Convolution of  f
0
( )t  with itself gives f

1
( )t

The dilation equation of f
1
( )t  is,

f f f f
1 1 1 1
( ) =

1

2
[ (2 ) 2 (2 1) (2 2)]t t t t+ - + -

Also,

f f f f f
0 0 0 0 1
(2 ) (2 1) = (2 1) (2 ) =

1

2
(2 1)t t t t t× ×- - -

This dilation equation is also shown in Fig. 11.5.
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0 1 2

1
2
f1(2t−2)

1
2
f1(2t)

f1(2t−1)

f1(t)

1
2

3
2

Figure 11.5  Dilation equation of f
1
( )t

Coefficients in dilation equation: f f f f
1 1 1 1
( ) =

1

2
(2 ) (2 1)

1

2
(2 2)t t t t+ - + -  are

1

2
1

1

2

é

ëê
ù

ûú

And the corresponding filter is

H z z z( ) =
1

2
1.

1

2
.1 2+ +- -

H z z( ) =
1

2
(1 )1 2+ -

But this scaling function is not orthogonal to all its integer translates.

0 1 2 3

f1(t−1)f1(t)

Figure 11.6  f
1
( )t  is not orthogonal to its translate by 1

Figure 11.6 shows that f
1
( )t  is not orthogonal to its translate by 1, i.e the axiom of orthogonality is  

not obeyed.

11.5  JPEG 2000 5/3 Filter-bank and Spline MRA

We have already been introduced to variants of multi-resolution analysis (MRA). In particular, MRA 

with different analysis and synthesis filters such as, bi-orthogonal filter-banks in perfect reconstruction 
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framework, MRA with infinite impulse response (IIR) and MRA which iterates on high-pass branch 

along with the low-pass branch were discussed. In this, and the subsequent sections, we discuss these 

variants in detail. We start with bi-orthogonal filter-banks utilized in Joint Photographic Experts Group 

2000 (JPEG 2000) image compression standard. We use piece-wise linear function as a scaling function 

at synthesis side and apply alias cancellation and perfect reconstruction requirements to achieve transfer 

functions of the filters involved. This filter-bank differs from orthogonal MRA in nonorthogonality of 

scaling function to its integer translates. In this chapter, we see how JPEG 2000 filter-bank is derived 

for spline type (piece-wise linear with desirable interpolation characteristics) scaling function. In 

 subsequent chapters, extension to orthogonal MRA for piece-wise linear functions has been discussed, 

which explicitly reveals the simplicity offered by biorthogonal filter-banks by sacrificing orthogonality 

requirement of scaling and wavelet functions.

11.6  Description

Dilation equation for Haar scaling function is given as:

 
f f f

0 0 0
( ) = (2 ) (2 1)t t t+ -  (11.5)

Convolution of this function with itself yields another piece-wise linear function, which may be 

represented in the following manner (Eq. 11.6):

 
f f f f

1 1 1 1
( ) =

1

2
(2 ) (2 1)

1

2
(2 2)t t t t+ - + -  (11.6)

Clearly, this results in a triangular function, as shown in Fig. 11.7.

1.5

0.5

0
−1 −0.5 0 0.5 1 1.5

Time

A
m
p
li
tu
d
e

2 2.5 3

1

Figure 11.7  Triangular wave resulting from convolution of haar scaling function with itself
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This function comes from the class of piece-wise polynomial interpolants, also called as ’Splines’. 

Z -transform of this function may be depicted in the following manner:

 F( ) = (1 )1 2
Z Z+ -  (11.7)

Here, we can note that f
1
( )t  is a piece-wise linear function and is not orthogonal to its integer 

 translates. However, it is orthogonal to all its translates f
1
( )t m-  for m > 2. We need to obtain the follow-

ing filter-bank structure (Fig. 11.8) for this scaling function, which should be similar to orthogonal MRA.

H0(z)

H1(z)

G0(z)

G1(z)2

2

2

2

+

OutputInput

Analysis

Figure 11.8  Desired filter-bank structure from piecewise linear function

Example 11.6.1 — Bi-orthogonal coefficients.

Without the loss of generality, let us select G Z Z
0

1 2( ) = (1 )+ - . At this point, we may note that once 

the alias cancellation and perfect reconstruction conditions are met, we may interchange analysis 

and synthesis filters. Alias cancellation condition is given as:

 
H Z G Z H Z G Z

0 0 1 1
( ) ( ) ( ) ( ) = 0- + -  (11.8)

If we replace Z  by -Z , we get:

 
H Z G Z H Z G Z

0 0 1 1
( ) ( ) ( ) ( ) = 0- + -  (11.9)

which is indeed a requirement of alias cancellation for analysis and synthesis filters interchanged. 

Also, perfect reconstruction condition is given as:

 
H Z G Z H Z G Z C Z

D

0 0 1 1 0
( ) ( ) ( ) ( ) =+ -  (11.10)

If we replace G
0
 by H

0
 and G

1
 by H

1
 or vice versa, we get the same condition back, which indicates 

that perfect reconstruction condition is also satisfied for this new filter-bank. Hence, we may say that 

once the filter-bank satisfies alias cancellation and perfect reconstruction conditions, analysis and 

synthesis filters can be interchanged to get a new 2-band perfect reconstruction filter-bank. However, 

if there are two separate scaling functions at analysis and synthesis side, then the ‘smoother’ scaling 

function is preferred at the reconstruction side for more ‘appealing’ reconstruction.
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Let us continue with the construction of bi-orthogonal MRA from G Z Z
0

1 2( ) = (1 )+ - . Using alias 

cancellation condition for this case, relationship between various filter transfer functions can be 

obtained. Such a relationship is shown below:

H Z G Z H Z G Z
0 0 1 1
( ) ( ) ( ) ( ) = 0- + -

On rearranging, we get:

 

G Z

G Z

H Z

H Z

0

1

1

0

( )

( )
=

( )

( )
-

-

-
 (11.11)

For the simplest analysis, we equate the numerators and denominators and arrive at the following:

 
G Z H Z

0 1
( ) = ( )- -  (11.12)

 
G Z H Z

1 0
( ) = ( )-  (11.13)

Taking the perfect reconstruction condition into consideration, we can get an important relationship 

to obtain the analysis low-pass filter transfer function from the synthesis low-pass transfer function. 

From the perfect reconstruction condition, we have:

 
H Z G Z H Z G Z C Z

D

0 0 1 1 0
( ) ( ) ( ) ( ) =+ -  (11.14)

However, G Z H Z
1 0
( ) = ( )-  and G Z H Z

0 1
( ) = ( )- - . Substituting these value in Eq. (11.14), we have:

 
H Z G Z G Z H Z C Z

D

0 0 0 0 0
( ) ( ) ( ) ( ) =- - - -  (11.15)

Let us denote κ
0 0 0
( ) = ( ) ( )Z G Z H Z . Now, we have the following relationship:

 
κ κ

0 0 0
( ) ( ) =Z Z C Z

D− − −  (11.16)

This relationship indicates that we ‘kill’ all the even samples in the inverse Z -transform of κ
0
( )Z  

and out of the remaining odd samples, we find that only one sample (namely, the Dth sample) has a 

nonzero value (equal to C
0
). If we want the same degree of regularity (or smoothness) at analysis and 

synthesis sides, we may select H Z
0
( ) to have two zeros at Z = 1- . In other words, we select H Z

0
( ) 

to have (1 )1 2+ -
Z  factor in its transfer function.

In order to have a linear phase characteristics, we need symmetry in the transfer function. Taking 

note of this and without considering the effect of causality, we may parsimoniously extend H Z
0
( ) 

by introducing a factor (1 )
0

1 2+ +- -
h Z Z . We may note that by introducing this factor along with the 

factor (1 )1 2+ -
Z , we have retained symmetry and only one degree of freedom is introduced in terms 

of the parameter h
0
.

 
H Z Z h Z Z

0

1 2

0

1 2( ) = (1 ) (1 )+ + +- - -  (11.17)

In retaining symmetry, we could have used some constant, say h
1
, for coefficients of Z 0 and 

Z
-2 and retained h

0
 as coefficient of Z -1. Apparently, we would have had two degrees of freedom in 

such a case. However, the factor introduced here essentially scales the whole filter transfer function 

by a constant. Scale factor for a transfer function is not really important for magnitude and phase 

 characteristics. Hence, scaling can also be taken care of at the time of normalization.
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In other words, we introduce only as many degrees of freedom as required to get something 

novel in terms of nature of frequency response and not in terms of overall scaling, which can always 

be adjusted while normalizing the impulse response. Therefore, keeping only one degree of  freedom, 

let us now impose the condition on G Z H Z
0 0
( ) ( ), which may be depicted as:

G Z H Z Z Z h Z Z
0 0

1 2 1 2

0

1 2( ) ( ) = (1 ) (1 ) (1 )+ + + +- - - -

 
G Z H Z Z Z Z Z h Z Z

0 0

1 2 3 4

0

1 2( ) ( ) = (1 4 6 4 )(1 )+ + + + + +- - - - - -  (11.18)

which is in fact the convolution, as shown here

1 4 6 4 1 1 1

0 0

0↑ ↑
× h

Thus giving the following sequence:

 

1 (4 ) (7 4 ) (8 6 ) (7 4 ) (4 ) 1

0

0 0 0 0 0
↑

+ + + + +h h h h h  (11.19)

As discussed above, we do not have any knowledge about the even samples as they were ‘killed’ 

(according to Eq. 11.16). However, we have some information about the nature of odd samples. 

Accordingly, we need to retain only one sample out of them. Note that if we remove the two (4 )
0

+ h  

samples, we would achieve what we wanted. In other words, if we make (4 ) = 0
0

+ h , we retain only 

one sample out of all the odd samples. Therefore, we select h
0

= 4- .

Hence,

 
H Z Z Z Z

0

1 2 1 2( ) = (1 ) (1 4 )+ - +- - -  (11.20)

Again for expansion, if we want to denote H Z
0
( ) as a series, we can denote the relationship  

(Eq. 11.20) in terms of convolution of two series, given by:

1 2 1 1 4 1

0 0
↑ ↑

× −

Carrying out this convolution gives the following sequence:

 
1 2 6 2 1- - -  (11.21)

Therefore,

 
H Z Z Z Z Z

0

1 2 3 4( ) = 1 2 6 2- - - +- - - -  (11.22)

which is a low-pass filter of the analysis side. We note that length of this filter is 5. Hence, we started out with

G Z Z Z
0

1 2( ) = 1 2+ +- -

and obtained

H Z Z Z Z Z
0

1 2 3 4( ) = 1 2 6 2- - - +- - - -

Here, G Z
0
( ) is of length 3 and H Z

0
( ) is of length 5. This filter-bank is known as the JPEG 5/3 filter 

bank, where, 5/3 refers to lengths of impulse responses.
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11.7  Note

JPEG-2000 compression standard admits two kinds of filter banks: a 5/3 filter-bank and a 9/7 filter-

bank. As we have seen, 5/3 refers to lengths of impulse responses in a 5/3 filter-bank. Similarly, 9/7 

also refers to lengths of impulse responses of a 9/7 filter-bank.

Lengths of impulse responses in the JPEG 2000 5/3 filter bank may be represented, as shown 

in Fig. 11.9.

R

35

3 52

2

2

2

+

OutputInput

Analysis

Figure 11.9  JPEG 2000 5/3 filter-bank

We may use the above noted relationships between various filter transfer functions to get the  transfer 

functions of all the filters involved in JPEG 2000 5/3 filter bank. Now,

 
G Z H Z H Z G Z Z

0 1 1 0

1 2( ) = ( ) ( ) = ( ) = (1 )- - Þ - - - - -  (11.23)

Further,

 
G Z H Z G Z Z Z Z Z

1 0 1

1 2 3 4( ) = ( ) ( ) = 1 2 6 2- Þ + - + +- - - -  (11.24)

Filter transfer functions for JPEG 2000 may be summarized in the following manner:

 
H Z Z Z Z Z

0

1 2 3 4( ) = 1 2 6 2- - - +- - - -  (11.25)

 
G Z Z Z

0

1 2( ) = 1 2+ +- -  (11.26)

 
H Z G Z Z

1 0

1 2( ) = ( ) = (1 )- - - - -  (11.27)

 
G Z Z Z Z Z

1

1 2 3 4( ) = 1 2 6 2+ - + +- - - -  (11.28)

We may note that the individual sums of coefficients of high-pass filters on analysis and synthesis sides 

are zero. This simply indicates the presence of zero (null) at zero frequency. In fact, in both H Z
1
( ) and 

G Z
1
( ), there is a factor of (1 )1 2- -

Z , which indicates the presence of two zeros at zero frequency. This 

substantiates our intuition that both filters should be high-pass filters in nature.

As evident from our discussion throughout this chapter, our major aim was to achieve a perfect 

reconstruction filter-bank from a scaling function, which does not form an orthogonal basis set with its 

integer translates. Due to such a property, orthogonal MRA is not possible using such a scaling function. 
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In such a case, we could still achieve a perfect reconstruction filter-bank, however, we ended up getting 

different scaling functions at analysis and synthesis sides. In perfect reconstruction framework, such an 

MRA is known as bi-orthogonal MRA. Idea of a bi-orthogonal basis vectors may be explained more 

lucidly in a 2-D vector space, as explained next.

Consider a set of vectors consisting of û
1
 and û

2
, which are orthogonal to each other, i.e., their inner 

product is zero. One such representation is shown in Fig. 11.10.

ŷ

û2

û1

Figure 11.10  Orthogonal basis vectors (û
1
 and û

2
)

In this case, representing any other vector in this vector space involves projecting that vector over 

û
1
 and û

2
 by taking inner products with respect to such basis vectors. If vectors û

1
 and û

2
 are linearly 

 independent but not orthogonal to each other, even then they form a basis set for the corresponding 

 vector space. However, the ease of representation of vector ŷ with respect to such basis vectors is lost. 

This can be seen from Fig. 11.11, which denotes two linearly independent vectors in a 2-D vector space.

ŷ

O
û2

û1

Figure 11.11  Non-orthogonal basis vectors (û
1
 and û

2
)

We can note here that it is not impossible to obtain such a representation. In fact, one may solve a 

set of linear equations and come up with such representation. However, the ease with which coordinates 

may be obtained from orthogonal basis vectors (simply by taking inner products) is lost.

Bi-orthogonal basis vectors can help in such a case to restore the ease of representation. We want 

ŷ to be represented in terms of c u c u
1 1 2 2
ˆ ˆ+ . Consider a set of vectors u

1
 and u

2
, selected such that u

1
 is 

orthogonal to û
1
 and u

2
 is orthogonal to û

2
. Further, < , >= 0

1 1
û u  and < , >= 0

2 2
û u . These vectors may be 

represented as shown in Fig. 11.12.

We can now take the inner product of ŷ with u
1
 and obtain its projection over û

2
. Similarly, inner 

product of ŷ with u
2
 yields projection over û

1
. In this way, we can obtain representation of ŷ in terms of 

linearly independent basis vectors û
1
 and û

2
. This idea is extended to the generation of a bi-orthogonal 

filter-bank. We may compare similarity by noting that in biorthogonal filter-bank, two scaling  functions 

and two corresponding wavelet functions exist; one each at analysis and synthesis sides. However, 

 neither of them (scaling functions) form an orthogonal set with its integer translates.
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11.8  5/3 tap in Nutshell

In last few sections, we started with the piece-wise linear scaling function obtained by convolving 

Haar scaling function with itself. Such scaling function is a member of the broad class of functions 

known as splines. However, due to its nonorthogonality with its integer translates, we could not build 

orthogonal MRA. By imposing alias cancellation and perfect reconstruction properties, we came 

up with a filter-bank known as JPEG 2000 5/3 filter-bank, which is biorthogonal in nature. In this 

 specific MRA, both synthesis and analysis filters have different impulse response lengths, unlike 

in the case of orthogonal MRA. Apparently, we dropped orthogonality requirement from MRA and 

could construct perfect reconstruction bi-orthogonal MRA. One of the advantages of such MRA is the 

possibility of achieving nontrivial linear phase filters, which is not possible to achieve in orthogonal 

MRA (except in the case of simplest Haar MRA). In practice one may start with piece-wise linear 

scaling function and come up with an orthogonal MRA, which require infinite impulse response (IIR) 

filters for spline (piece-wise linear) type of scaling functions. However, it is computationally quite 

involved to construct such an MRA. This will be precisely dealt with in subsequent chapters. Such an 

exercise will lucidly indicate the advantages of bi-orthogonal MRA in context of perfect reconstruc-

tion filter-banks.

11.9  Filter Design Strategy

Haar filter is the only finite length, symmetric, orthogonal filter whose Fourier representation [H( )w ] 

satisfies zero derivative conditions at w p= , as was explained by Daubechies.

Researchers across the globe have confirmed that having symmetric filters is advantageous in 

 multiple ways for many real-life applications.

Another important characteristics of filters is orthogonality.It guarantees energy preservation and 

inverse of wavelet transform matrix. For orthogonal filter ‘h’ that gives orthogonal transform matrix 

W
N
, the implementation is straightforward.This is because W

N
 is ‘unitary’ which guarantees that for all 

real valued W
N
, W W

N N

T-1 = . This simple transpose gives us the inverse, which is really crucial in inverse 

calculations as as ‘separable’ multidimensional calculations.

For ’non-orthogonal’ filters, however, one desirable strategy to build the system could be to ensure 

that inverse of transform matrix is transpose of another transformation matrix.

û2

û1

ũ1ũ2

O

Figure 11.12  Idea of bi-orthogonal basis vectors
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{hk, gk} {h̃k, g̃k}

{hk, g̃k} is biorthogonal filter pair

iff

then

WN

WN 
−1

= W̃N
T

W̃N

Haar, though orthogonal, finite length and symmetric, has its own drawback, which we have already 

brought out. Going beyond filter length of ‘2’, we need to give up ‘orthogonality’ as requirement, which 

comes as filter constraint.

Let us try constructing 
5

3
 normalized tap:

Design problem:

 1. From symmetric h
k
 and g

k

 2. Construct wavelet transform W
N

 3. When inverse W
N

-1 is calculated.

 4. W
N

-1 should also be a transform matrix!

 5. Find such g h
k k

 &  (symmetric)!

Let ‘H
B
’ be 

N
N

2
´  matrix from h

k
.

Let ‘G
B
’ be 

N
N

2
´  matrix from g

k
.

Let ‘GB
 ’ be 

N
N

2
´  matrix from g

k
 .

Let ‘HB
 ’ be 

N
N

2
´  matrix from hk .

Forward wavelet matrix can be written as:

W
H

G
B

B

B

=
é

ë
ê

ù

û
ú

For synthesis part, similarly,

W
H

G
B

B

B







=
é

ë
ê
ê

ù

û
ú
ú



MRA Variant 1: Bi-orthogonal Filters 341

keeping in mind, we want to create dual filters in semi-orthogonal sense,

 
W W I

B B

T

N N
× ´
 =  (11.29)

Now, W W
H

G
H G

H H H G

G H G
B B

T B

B

B

T

B

T B B

T

B B

T

B B

T

B

×
é

ë
ê

ù

û
ú ×

é
ëê

ù
ûú

× ×

× ×

  

 



= =

GGB

T


é

ë

ê
ê

ù

û

ú
ú

Here,

 
H H G G I

B B

T

B B

T

N N
× × ´
 = =  (11.30)

 
H G G H

B B

T

B B

T

N N
× × ´
 = = 0

Now, h h h h h h
k

= , , , ,
2 1 0 1 2- -{ } & h h h hk

   = , ,1 0 1-{ } in the spirit of 
5

3
 tap.

Therefore, analysis low-pass filter has 5 coefficients and

synthesis low-pass filter has 3 coefficients, 

as ‘5’ is the bigger of the two

let 
N

N
2

= 5, = 10\

\ -

- -

- -

-H

h h h h h

h h h h h

h h h h h
B

=

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0 0

0 0 0

0 1 2 2 1

2 1 0 1 2

2 0 1 2

00 0

0 0 0 0 0

2 1 0 1 2

2 2 1 0 1

h h h h h

h h h h h

- -

- -

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

H

h h h

h h h

h h hB
�

� � �

� � �

� � �=

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0

0 1 1

1 0 1

1 0 1

-

-

-

00 0 0 0

0 0 0 0 0 0 0

1 0 1

1 0 1

h h h

h h h

� � �
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-

-

é

ë

ê
ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú
ú

Now, H H I
B B

T

× ´
 =

5 5
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h h h h h

h h h h h

h h h h h

h

0 1 2 2 1

2 1 0 1 2

2 0 1 2

2

0 0 0 0 0

0 0 0 0 0

0 0 1 0 0 0

0 0 0 0

- -

- -

-

-

-

hh h h h

h h h h h

h

h h

-

- -

-

é

ë

ê
ê
ê
ê
ê
ê

ù

û

ú
ú
ú
ú
ú
ú

×

1 0 1 2

2 2 1 0 1

0

1

0

0 0 0 0 0

0 0 0 0

 
11

0

1 1

0

1 1

0

1 1

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0 0 0

0 0 0

0 0

h

h h

h

h h

h

h h
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55

1 1 ,1 2 1st st st nd st
row column row column row last column´ ´ ´and  will give us three equations,

 
h h h h h h

0 0 1 1 1 1 = 1× + × + ×- -
    (11.31)

                 
h h h h

0 1 2 0 = 0× + ×   (11.32)

              
h h h h- -× + ×

2 0 1 1 = 0   (11.33)

Equation (11.31) can be written as,

 K

k kh h
= 1

1

= 1
-

å ×   (11.34)

Equations (11.32) and (11.33) can be written as,

 K

k m kh h m
= 1

1

2
= 0, = 1,1

-
-å × -  (11.35)

Similarly, G G I
B B

T

× ´
 =

5 5

Here,

g g g g g g g g g g
k k

= , , & = , , , ,
1 0 1 2 1 0 1 2− − −{ } { }

Therefore, analysis high-pass filter has ‘3’ coefficients,

synthesis high-pass filter has ‘5’ coefficients

N
N

2
= 5, = 10\
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G

g g g

g g g

g g g
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Now, G G I
B B

T

× ´
 =

5 5
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g g g g g g

0 0 1 1 1 1 = 1× + × + ×- -
    (11.36)

              
g g g g

0 2 1 1
= 0× + ×- -

   (11.37)

              
g g g g

0 2 1 1
= 0× + ×-

   (11.38)
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\ Equation (11.36) get written as:

 K

k k
g g

= 1

1

= 1
-

å ×   (11.39)

Equation (11.37) and (11.38) becomes

 K

K m k
g g m

= 1

1

2
= 0, = 1,1

-
-å × -  (11.40)

Now, design aspect demands H H
B B

T

×   to be an identity matrix, which demands h
k
 and hk  to be 

orthogonal.

For two filters to be orthogonal, let us derive the sufficient and necessary condition with, again, an 

example of Haar wavelet.

For Haar, if

h h h
k

= , = 2
1

2
,
1

2
0 1{ } ì

í
î

ü
ý
þ

\ + ×
æ

è
ç

ö

ø
÷ × ×H e e

j

j

( ) = 2
1

2

1

2
= 2 (

2
)2w

ww
w

cos

  
\ ×| | cosH( ) = 2 (

2
)w

w


 
(Note: Magnitude of e jw = 1 on interval of [ , ])-p p

We have already seen that when H z( ) becomes H(-z), the frequency band gets shifted by p  amount, 

which can be represented as: H( )w p+

\ + ×
+

| | cos( )H ( ) = 2
2

w p
w p

Now, if we add squared magnitudes of H( )w  and H( )w p+ , we get

 
| | cosH( ) = 2 (

2
)2 2

w
w

×  (11.41)
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ø
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\ + ×
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è
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ö

ø
÷| | sinH( ) = 2

2

2
w p

w
 (11.42)

Using (11.41) and (11.42),
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ø
÷ + ×
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This ‘2’ also comes as we are using normalized filters, in absence of normalization, the sum would 

be ‘1’.

Important thing to note is, a constant suggest orthogonality.

Using equations (11.41), (11.42) and (11.43), we can write

 H H H H( ) ( ) ( ) ( ) = 2w w w p w p× + + × +   (11.44)

When H( )w  and ( w)  satisfy (Eq. 11.44), we have,

 K Z

k kh h
Î
å ×  = 1 (11.45)

For m ZÎ , m ¹ 0,

 K Z

K m kh h
Î

-å ×
2

= 0  (11.46)

Similarly,

 G G G G( ) ( ) ( ) ( ) = 2w w w p w p× + + × +   (11.47)

When H( )w  and (w ) satisfy Eq. (11.44), we have,

 K Z

k k
g g

Î
å ×  = 1 (11.48)

For m ZÎ , m ¹ 0,

 K Z

K m k
g g

Î
-å ×

2
= 0  (11.49)

To ensure H G
B B

T

×  = 0

 H G H G( ) ( ) ( ) ( ) = 0w w w p w p× + + × +   (11.50)

for all m zÎ ,

 K Z

K m k
h g

Î
-å ×

2
= 0  (11.51)

To ensure, G H
B B

T

× 
 
= 0

 G H G H( ) ( ) ( ) ( ) = 0w w w p w p× + + × +   (11.52)

For all m ZÎ

 K Z

K sm k
g h

Î
-å ×  = 0 (11.53)
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Equations (11.44) to (11.53) give us definition for bi-orthogonal filter pairs. For example, if H( )w  

and H( )w of h
k
 and hk  respectively follow:

H H H H( ) ( ) ( ) ( ) = 2w w w p w p× + + × + 

then, h
k
 and hk  are called bi-orthogonal filter pair!

From (11.44), (11.47), (11.50) and (11.52)

G e H
i n b( ) = ( )(w w pw+ × + [Analysis high-pass connected with synthesis low pass] and

G e H
i n b( ) = ( )(w w pw+ × + [Synthesis high-pass connected with analysis low pass]

Let us confirm this by plugging in

 

G G e H e H

e H

j n b j n b

j n b

( ) ( ) = ( ) ( )

= (

( ) ( )

( )

w w w p w p

w

w w

w

× × + × × +

×

+ +

- +

 

 ++ × × +

+ × +

+p w p

w p w p

w) ( )

= ( ) ( )

( )
e H

H H

j n b



 (11.54)

\ Since they are equal, together they shall produce ‘2’!

By replacing ‘w’ with ‘w p+ ’ in Eq. (11.54)

  
G G H H As theseare periodic functions( ) ( ) = ( ) ( ) [ ‘2w p w p w w p+ × + × - ¢  ,,\ +w p w2 = ]  (11.55)

Adding Eqs. (11.54) and (11.55),

G G G G H H H H( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ) = 2w w w p w p w w w p w p× + + × + × + + × +   

Now,

 

H G H e H

H e H
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j n b

  

 

( ) ( ) = ( ) ( )

= ( ) ( )

( )

( )

w w w w p

w w p

w

w

× × × +

× × +

+

- +
 (11.56)

Let us replace ‘w’ by ‘w p+ ’ in Eq. (11.56)
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� -- + × - -j n b n
n( ) ) [‘ ‘ ,( 1) = 1]w w( � �� being odd

 

(11.57)

Adding Eqs. (11.56) and (11.57),

H G H G ( ) ( ) ( ) ( ) = 0w w w p w p× + + × +
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Readers should note, g
k
 is connected with hk  and g

k
  is connected with h

k
!

b can be ‘0’ or p  to keep filter real values and for n = 1,

 
g h
k

K
K= ( 1) 1- × -

  (11.58)

 
g h
k

K

K
 = ( 1)

1
- × -  (11.59)

Let us confirm this for normalized 
5

3
 tap.

 

h h h h h h= , , , , =
1

2
,1,

3

4
,

1

2
,
1

4
2

2 1 0 1 2- -{ } - -
ì
í
î

ü
ý
þ
×  (11.60)

and

 

h h h h   = , , =
1

4
,
1

2
,
1

4
21 0 1-{ } ì

í
î

ü
ý
þ
×  (11.61)

Plugging (11.60) and (11.61) in (11.58) and (11.59), we get,

 

g g g g g g

h h h h h

     = , , , ,

= , , , ,

=
1

4
,

1

2
,

3

4
,

1 0 1 2 3

2 1 0 1 2

−

− −
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− − − 11,
1

2
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⋅

 (11.62)

Similarly,

 

g g g g

h h h

= , ,

= , , =
1

4
,

1

2
,
1

4
2

0 1 2

1 0 1
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−{ } −







⋅−

� � �

 (11.63)

Let us approve these filters:

 
H e e e e

j j j j( ) =
2

2
2

3 2

4

2

2

2

4

2 2w w w w w- × + × + - × + ×- -  (11.64)

 
H e e

j j( ) =
2

4

2

2

2

4
w w w× + + ×-  (11.65)

Let us evaluate Eqs. (11.64) and (11.65), for w = 0 and w p=

H( ) = 2
1

2
1

3

4

1

2

1

4
= 2

=0
w w| - + + - +

æ

è
ç

ö

ø
÷

H( ) = 0
=

w w p|
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Similarly,

H( ) = 2
=0

w w|  & H( ) = 0
=

w w p|

Conjugating H( )w  we get,

H e e e e
j j j j( ) =
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2
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3 2

4
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w w
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 (11.66)

Replacing ‘w’ by ‘w p+ ’ in Eq. (11.66)

H H( ) ( )w p w p+ × +

=
1

8
1

9

8

1

4

3 ( ) ( ) 3 ( )× + + × - ×- + + +
e e e

j j jw p w p w p

=
1

8
1

9

8

1

4

3 3 3 3× × + + × × - × ×- -
e e e e e e

j j j j j jw p w p w p

Note, e e e e
j j j j3 3= = = = 1p p p p- - -  (Euler’s identity)

 
\ + × + - × + - × + ×-
H H e e e

j j j( ) ( ) =
1

8
1

9

8

1

4

3 3w p w p w w w (11.67)

Now let us create wavelet transormation matrix for bio-orthogonal 5/3 tap let us call it w
5/3

w
5/3

0 1 2 2 1

2 1 0 1 2

2 1 0 1 2

2 2
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ê
ê
ê
ê
ê
ê
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ú
ú
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ú
ú
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  Similarly,   w�

� � �
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it is clear, that

w w 
5/3

1
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- T

an extension:

using this approach different bi-orthogonal taps can be studied.

For example, let us design 6/2 tap tp produce w w
6/2 6/2and 

= 2
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Here,

h h h h h h h
k

= , , , , ,
2 1 0 1 2 3- -{ }

 
line of symmetry; 

h h hk
  = ,0 1{ }

 
(1.9,0.5) line of symmetry;

as the filters are symmetric, for h h hk
  , =0 1

for h h h h h h h
k
, = , = , =

0 1 1 2 2 3- -

 
H h h e h h e

j jw w w= . = .
0 1 0 0
+ +  (11.68)

and
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3. . . .w w w w
 (11.69)

from Eq. (11.68)

Now H h( ) | = 2 = 2
=0 0

w w

\
 

h h
0 1

= =
2

2
 (Haar!)

for h
k
, let us force low-pass conditions on H( )w .

H( ) = 2
=0

w w|

let us plug w = 0 (11 69)in Eq. .

\ + + \ + +2 2 2 = 2 =
2

2
1 2 3 1 2 3
h h h h h h

similarly,

H h h h h h h( ) = 0 = 0
= 3 2 1 1 2 3

w w p| \ - + - + -  -(holds good)

Using Eq. (11.45)

h h h h
0 0 1 1. . = 1 +

\ +
2

2

2

2
= 1,

0 1
h h  but h h

0 1
= !

   
2 = 1

0
h
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\h h
0 1

= =
1

2
 from Eq. (11.46),
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2 2
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Readers are encougraged to complete following steps:

 1. calculate g
k

 [1 6]´  from h
k

 2. calculate g
k
[1 2]´  from hk

 3. calculate w
6/2  

and w 6/2 
from h h h h

k k k k, , , 

Exercises

Exercise 11.1

Prove that < ( ), ( ) > =
1

2
[2 ]f ft t m r m

hh
-

Hint: As we know that, scaling function f( )t  can written as follows,

f f( ) = [ ] (2 )t h n t n
n ZÎ
å -

Similarly, f( )t m-  can be written as,

f f( ) = [ ] (2 2 )

1

1
t m h n t m n

n Z

- - -
Î
å

So dot product of f( )t  and f( )t m-  is given by,

 

< ( ), ( ) > = [ ] [ ] < (2 ), (2 2 ) >
1

1 1
f f f ft t m h n h n t n t m n

n n

- - - -åå  (11.70)

The inner product term on the right hand side can be evaluated as,

< (2 ), (2 2 ) > = (2 ) (2 2 )
1 1

f f f ft n t m n t n t m n dt- - - - - -
-¥

+¥

ò
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Let 2 =t l . It gives 2 =dt dl and t : =-¥ ® +¥ Þ -¥ ® +¥l . With this substitution the above 

integral turns out to be,

< (2 ), (2 2 ) > =
1

2
( ) ( 2 )

1 1
f f f l f l lt n t m n n m n d- - - - - -

-¥

+¥

ò

< (2 ), (2 2 ) > =
1

2
[ (2 )]

1 1
f f dt n t m n n m n- - - - +

Putting value in Eq. (11.70) we get,

 

< ( ), ( ) > =
1

2
[ ] [ ] [ (2 )]

1

1 1
f f dt t m h n h n n m n

n n

- - +åå  (11.71)

Dropping 
nå , we get

 

< ( ), ( ) > =
1

2
[2 ] [ ]

1

1 1
f ft t m h m n h n

n

- +å  (11.72)

The above expression is the autocorrelation of h[.] evaluated at 2m, " Îm Z . We can write  

Eq. (11.72) as,

< ( ), ( ) > =
1

2
[2 ]f ft t m r m

hh
-

Exercise 11.2

Show that 
k Z

k
Îå +y p ( 2 ) =

2

W Constant

Given that G e G e
j j( ) ( ) =

2
(

2W W+ +p Constant

and 
k Z

k
Îå +f p ( 2 ) =

2

W Constant

Here, G is analysis high-pass filter. 

Hint: We know, the dilation equation for y ( )t  is given as,

 

y f( ) = [ ] (2 )t g n t n
n ZÎ
å -  (11.73)

Taking Fourier transform both side in Eq. (11.73)

 

ŷ f( ) = [ ] (2 )W W

-¥

+¥

Î

-ò å -
n Z

j t
g n t n e dt (11.74)
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First evaluate term 
-¥

+¥ -ò -f(2 )t n e dt
j tW

Put 2 =t n- l, It gives 2 =dt dl and t : =-¥ ® +¥ Þ -¥ ® +¥l

-¥

+¥ -

-¥

+¥ -
+

ò ò-f f l l
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(2 ) =
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2
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(
2

)

t n e dt e d
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j
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W W

                 
=

1

2
(

2
)2e

j n-
W W
f̂

Putting value of term 
-¥

+¥ -ò -f(2 )t n e dt
j tW  in Eq. (11.74), we get

ˆ ˆy f( ) =
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2
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2
)2W

WW

n Z
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ˆ ˆy f( ) =
1

2
( ) (

2
)2W

WW

G e
j

 (11.75)

Now if we take term 
k Z

k
Îå +ŷ p( 2 )

2
W  and evaluate using Eq. (11.75), we get

 
k Z k Z
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k G e k
Î Î

+

å å+ +ˆ ˆy p f p
p
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2
( ) (
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(
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)
2 2

W
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 (11.76)

Above equation 11.76 can be also written as,

k Z k Z

j k

k Z

k G e k
Î Î

+

Î
å å å+ + +ˆ ˆy p f p
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 (11.77)

In Eq. (11.77) terms G e
j k

( )
(

2
2 )

2W
+ p

 and G e
j k

( )
(

2
2 )

2W
+ +p p

 are periodic. Also, terms f̂ p(
2

2 )

2
W

+ k  

and f̂ p p(
2

2 )

2
W

+ +k  are constant as given in question.

Let the constant be denoted by C
0
. So, now, Eq. (11.77) can be written as,
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j j

k
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G e
C

G e
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k
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( 2 ) =
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2 0

(
2

)
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Ω
Ω Ω

 (11.78)

But also in question given that power complementary property, i.e G e G e
j j( ) ( ) =

2
( )

2W W+ +p

Constant(C
1
). So by using this property RHS of Eq. (11.78) become a constant. Now we can write,

k Z

k
C C

Î
å +y p ( 2 ) =

4
=

2
0 1W Constant

Exercise 11.3

Find the dilation equation of f f f f
2 0 0 0
( ) = ( ) ( ) ( )t t t t´ ´ . Here f

0
( )t  is the Haar Scaling function.

Hint: For solving this question we are using property that has already been discussed in this chapter 

and is now given here also,

 

h at b g at c
a
h g

at b c
( ) ( ) =

1
|
( )

+ + + +´ ´  (11.79)

Dilation equation for f
0
( )t  is given as,

 
f f f

0 0 0
( ) = (2 ) (2 1)t t t+ -  (11.80)

Let f f f
1 0 0
( ) = ( ) ( )t t t´ , Using property of Eq. (11.79) dilation equation of f

1
( )t  can be written as,

f f f f f
1 0 0 0 0
( ) = ( (2 ) (2 1)) ( (2 ) (2 1))t t t t t+ - + -´

  
f f f f

1 1 1 1
( ) =

1

2
[ (2 ) 2 (2 1) (2 2)]t t t t+ - + -  (11.81)

Now f f f
2 1 0
( ) = ( ) ( )t t t´ , so dilation equation of f

2
( )t  given as,

 
f f f f f f

2 1 1 1 0 0
( ) =

1

2
[ (2 ) 2 (2 1) (2 2)] (2 ) (2 1))t t t t t t+ - + - + -´

f f f f f f f
2 2 2 2 2 2 2
( ) =

1

4
[ (2 ) (2 1) (2 2) (2 1) (2 2) (2t t t t t t t+ - + - + - + - + - 33)]

 
f f f f f

2 2 2 2 2
( ) =

1

4
(2 )

1

2
(2 1)

1

2
(2 2)

1

4
(2 3)t t t t t+ - + - + -  (11.82)

Equation (11.82) gives the dilation equation of f
2
( )t .
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Exercise 11.4

Explain, why Linear phase is not possible for Daubechies family other than Haar?

Hint: Linear phase means that phase response of filter is the linear function of frequency. This 

means delay introduced by filter is same at all frequency.

Linear phase requires symmetry in impulse response of filter. That means any filter in linear 

phase requires that its coefficients are symmetrical around the centre coefficients, i.e. first coef-

ficients is same as last coefficients; second is the same as second last, and so on. One other way to 

seeing this that zeros must be occur in reciprocal pairs.

So in Daubechies family this type of symmetry is not occurred so it does not give the linear phase.

Exercise 11.5

The two-band filter bank shown in Fig. 11.13, is the 5/3 filter bank used in JPEG 2000 standards. 

The filters are defined as follows:

H Z Z Z Z Z
0

1 2 3 4( ) =
1

8
( 1 2 6 2 )- + + + -- - - -

H Z Z
1

1 2( ) =
1

2
(1 )- - -

G Z Z Z
0

1 2( ) =
1

2
(1 2 )+ +- -

G Z Z Z Z Z
1

1 2 3 4( ) =
1

8
(1 2 6 2 )+ - + +- - - -

H0(z)

H1(z)

G0(z)

G1(z)2

2

2

2

+

OutputInput

Analysis

Figure 11.13  Two-band filter bank
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(a)  Obtain and sketch the magnitude and frequency responses of the low-pass synthesis and the 

 high-pass analysis filters.

(b) Obtain scaling and wavelet functions corresponding to synthesis filter bank.

Hint: (a) Low-pass synthesis filter transfer function:

G Z Z Z
0

1 2( ) =
1

2
(1 2 )+ +- -

            

=
1

2

1

1

2

1

2

2

Z Z Z
− −

+







Put Z e
jw= , hence frequency response is as follows:

=
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= 2
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2 2
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e
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Magnitude response is shown in Fig. 11.14.
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Figure 11.14  Magnitude response of low-pass filter
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G Z e
w

w

w G Z
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2

2

0

( ) = 2 (
2

= 2 (
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)

= 1 ( )
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−

+ ∠

−
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High-pass analysis filter transfer function:

H Z Z Z
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1 2( ) =
1

2
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Put Z e
jw= , hence frequency response is as follows:

=
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e e e
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Magnitude and phase of the above frequency response are shown in Fig. 11.15 and in Fig. 11.16.

H Z e
w

w H Z w

jw

1

2

1

( ) = 2
2

= 1 ( ) =

− 




− ∠ −

sin

cos

Hint: (b) The scaling function satisfies the dilation equation:

f f f f( ) =
1

2
( ( ) 2 ( 1) ( 2))

1 1 1
t t t t+ - + -

The wavelet function obtained from synthesis highpass filter impulse response:

1

8
( 1 2 6 2 1)

0

− − − −
↑

The wavelet function is given by following expression and shown in Fig. 11.17.

1

8
( ( ) 2 ( 1) 6 ( 2) 2 ( 3) ( 4))

1 1 1 1 1
- - - + - - - - -f f f f ft t t t t
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Figure 11.15  Magnitude response of high pass filter
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Figure 11.16  Phase response



MRA Variant 1: Bi-orthogonal Filters 359

6

8

−2

8

−2

8

1.5

1 2 30

Figure 11.17  Wavelet function for synthesis filter bank





12.1  Introduction

In this chapter, we shall continue to discuss one more variant on the idea of MRA. In earlier chapters, 

we had built an idea on the orthogonal or perfect reconstruction with one filter and also extended it to 

biorthogonal or perfect reconstruction with two filters. We had taken the example of a 5/3 filter bank in 

JPEG 2000. When we extend the MRA to 2 filters, it involved building a filter bank and not really the 

MRA. So, we had essentially built a perfect reconstruction filter bank where the filters were of unequal 

lengths. But we saw that we could get the advantage of linear phase and symmetry in the impulse 

response. Further, we could extend what we did in the Haar case to a piece-wise linear function. So, if 

we take 5/3 filter bank and if we look at the 3 length LPF, the filter has an impulse response of (1 )1 2+ −
z . 

It would essentially give us the triangular function as the scaling function. The disadvantage with the 

triangular function was that it was not orthogonal to all its integer translates; it was orthogonal when 

translated by two units or more, but it was not orthogonal when translated by one unit. Thus, we had to 

venture to other areas by looking at variants of the filter banks that we had already discussed and bring 

in the idea of a biorthogonal filter bank.

Now, in this chapter we shall take the same (1 )1 2+ −
z  again; the length 3 LPF that we have seen in 

the 5/3 filter bank. But we shall deal with it in a slightly different way, which would bring us to the idea 

of orthogonal MRA with splines. Here, we need to make a compromise in the nature of the scaling and 

the wavelet function that we construct and also in the nature of the filter bank that we would build. In 

fact, as a consequence of our demanding an orthogonal MRA we shall have to go from finite length to 

infinite length filters.

12.2  5/3 Filter Bank

If we look at the length-3 Low-pass filter in the 5/3 filter bank, it essentially has 
1

2
(1 )1 2+ −

z  as the 

system function. We know that the corresponding scaling function is f
1
( )t  and it obeys the dilation 

equation:

f f f f
1 1 1 1
( ) =

1

2
(2 ) (2 1)

1

2
(2 2)t t t t+ - + -  (12.1)
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f
1
( )t  has an appearance as shown in Fig. 12.1.
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Figure 12.1  The scaling function

Now, our main problem and the reason as to why we need to go for a bi-orthogonal filter bank, as 

opposed to an orthogonal filter bank, is that this scaling function is not orthogonal to its translates by 

unity. So, if we translate this by unity and take the dot product essentially between f
1
( )t  and f

1
( 1)t - , 

i.e., if we consider these two dot products,

 
� � � �f f f f

1 1 1 1
( ), ( 1) ( ), ( 1)t t t t− +and  (12.2)

we find that these two are nonzero. This was our main goal of contention because of which we would 

not be satisfied with this f
1
( )t  to construct an orthogonal MRA out of it. Now, we wish to explore that 

possibility. Even though f
1
( )t  is not orthogonal to its own integer translates, we wish to construct an 

orthogonal MRA from a function that looks similar to f
1
( )t , or in other words, out of a function that 

is piece-wise linear. We would build an orthogonal MRA with scaling functions, which are piece-wise 

linear even though not exactly f
1
( )t . So, what we are saying is, Can we build a multi-resolution analysis 

with a piece-wise linear function for f  and y ? We shall try to answer the question in this chapter and 

for that we must relax the requirement of orthogonality.

12.3  Derivation of Orthogonal MRA

The notion of orthogonality of f ( )t  to its integer translates, is expressed in terms of the autocorrelation 

of f , i.e. the autocorrelation function of f ( )t  at all the integers except at ‘0’ is 0, i.e. Rff t( ) = 0  for all 

t ∈  except for t = 0, where Rff t( ) is the autocorrelation function of f ( )t . This is the basic principle 

of a function being orthogonal to its integer translates.
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Example 12.3.1

Let the scaling function be f ( )t  and it is orthogonal to its integer translates f ( )t m− , where m ∈. 

Essentially, we mean to say that the autocorrelation function Rff t( )  when sampled at t = ,m m ∈  

(i.e., we sample at all integers, or at a sampling rate of 1) gives an impulse sequence. Mathematically, 

the sequence is a discrete impulse sequence. Now, we need to deal with it in the frequency domain. 

So, when we sample it, the Fourier transform of the autocorrelation function gets aliased. In fact, 

we know that the Fourier transform of the autocorrelation function is | ( |f W) 2 where f( )W  is the 

Fourier transform of the scaling function f ( )t . In other sense, we can say that the Fourier transform 

of the autocorrelation function is the power spectral density of the scaling function in the frequency 

domain. Now sampling Rff t( )  at t = m  for m ∈, means summing up all the aliases of | ( |f W) 2 in 

the Fourier domain. In other words, constructing the sum,

 

K k
k

0

=

2( 2 )
−∞

∞

∑ +| |f p Ω ,w

 

K k K| |f p ,where  is a constant.
0  (12.3)

Recall that when we sample a continuous function, its Fourier transform shifts on the frequency 

axis by every multiple of the sampling frequency and adds up all these translates or aliases. In a 

way, the sequence R
mff tt( )

=
|  is an impulse sequence, then its DTFT must be a constant. And, 

therefore, we now have a clear cut criterion in the frequency domain. In order that the f ( )t  is 

orthogonal to its integer translates, we require that the quantity, sum of aliases of the power spectral 

density must be a constant. In other words, K k
k0 =

2( 2 )
−∞

∞∑ +| |f p Ω  is a constant. We shall call 

K k
k0 =

2( 2 )
−∞

∞∑ +| |f p Ω  as the sum of translated spectra of f (.) . We shall abbreviate sum of trans-

lated spectra by STS. STS ( ,2 )( )f p Ω  has Ω  as the primary argument and f, 2p  as secondary 

arguments. In general,

 

STS ( , )( ) = ( )
0

=

2f fT K Tk
k

Ω Ω
−∞

∞

∑ +| |
 (12.4)

With this little notational introduction, we take the same strategy as we did when we relaxed the con-

dition for the sum of dilated spectra. We know that when we discretize the scale, we need to essen-

tially relax the requirement of sum of dilated spectra to be a constant, where it is between two positive 

constants. If one gets the sum of dilated spectra to be a constant, we shall be happy if it is between 

two positive (strictly non zero and finite) constants. Similar will be true for this case. In fact now, we 

also bring out a relationship between relaxation of this requirement in the t  domain or shift domain 

and frequency domain. Now, if we look back, it is easier to start from the f  domain. Next, we take 

the function f
1
( )t  which is as shown in Fig. 12.1. The dot product of f

1
( )t  with its integer translates 

is zero only when the translates are greater than 2. Hence, we need a relaxation when the translate is 

equal to 1 and –1. The relaxation that we are asking for is that the dot product is zero. We can even 

actually calculate the dot product. The dot product of f  with itself would have certain value and it is 

equal to the energy of the function. And if we take the dot product of f  with its translates by 1 and  

–1, they are expected intuitively to have a smaller value. So in other words the relaxation we are ask-

ing for is that the auto correlation of this function is not quite as an impulse, but close to an impulse. 

This means it is a nonzero for very few values around n = 0 and that manifests in the frequency domain 

 as the STS, which is not a constant but between two positive constants. We shall calculate these 

quantities now and prove mathematically. So, for f
1
( )t , by looking at Fig. 12.1, we can observe that,
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R Rf  f f  f1 1 1 1

(1) = ( 1)-  (12.5)

Let us now find 
-¥

¥

ò -f f
1 1
( ) ( 1)t t dt. In fact, this quantity can be easily calculated by shifting both 

the functions to left by 1 unit as shown in Fig. 12.2. Equation (12.5) now becomes,

0

1

(1 ) =
1

6∫ −t t dt

Now, in a similar way Rf  f1 1
(0) can be calculated,

R t dtf  f f
1 1

(0) = ( )
0

2

1

2

ò

=
2

3

Therefore,                                   
ì
í
î
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ý
þ

Î,R
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1 1
( ) =
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6
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6
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|


↑

Therefore, DTFT of R e e
m m

j j

f  f tt
1 1
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6
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W W . From this equation we can infer that
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Figure 12.2  Graphical representation of dot product between f
1
( )t  and f

1
( 1)t -
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(1

1

2
( ))

-¥
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+

| |

cos

f p   W

W
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 (12.6)

As expected, this sum is strictly positive and lies between two positive constants and it can be 

observed that the constants are 
1

3
 and 1, i.e.

 

1

3

2

3
(1

1

2
( )) 1≤ + ≤cos Ω  (12.7)

So relaxation of the requirement in time domain has also led to a corresponding relaxation in 

the frequency domain. And, now, we can employ the same strategy (as we did when we relaxed the 

requirement of the sum of dilated spectrum). We can see that the sum of translated spectrum lies 

between two positive bounds. We could say that even though f1
( )t  by itself gives us a multi-resolu-

tion analysis. The question arises, can we construct another function f1
( )t  out of f1

( )t  by using the 

sum of translated spectrum in such a way that f1
( )t  gives us an orthogonal MRA. Let us strategi-

cally define such a f1
( )t , as we did while taking inspiration from sum of dilated spectrum. So, let us 

define f1
( )t  in terms of its Fourier transform. Therefore,
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ˆ

f
f

f p
1

1

1
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W

W

W+ STS
 (12.8)

Let us justify this definition by noting that the denominator is between two positive bounds. 

Denominator is known to be between 1/3 and 1. So, this division will not go up towards infinity 

and neither it will go to zero. Now, consider the denominator, i.e., STS( ,2 )( )
1

f p W . This exhibits an 

important property of periodicity with period 2p , i.e.,
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(12.9)

As, k  runs from −∞  to ∞ , k +1  also has the same limits. Hence, the summation in Eq. (12.9) 

becomes STS( ,2 )( )f p Ω . Using this result we are going to find STS( ,2 )( )
1
f p Ω .

STS
STS

ST
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( 2 )
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From the above result it is clear that STS( ,2 )( )
1
f p W  is constant and is equal to one. Therefore, we 

can say that the underlying continuous function f1
( )t  is orthogonal to its integer translates. To character-

ize f1
( )t , let us consider its Fourier domain. We have,

 

̂
ˆ

f
f

f p
1

1

1

( ) =
( )

( ,2 )( )
W

W

W+ STS
 (12.10)

Substituting the value of STS( ,2 )( )
1

f p Ω  from Eq. (12.6), we get
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 (12.11)

Expanding Eq. (12.11) in the form of binomial expansion, i.e.,
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 (12.12)

This equation is of the form (1 ) , + ∈l R
R , we know that

 
(1 ) = 1 .

( 1)

2!

( 1)( 2)

3!
. . . 2 3+ + +

−
+

− −
+l l l lR

R
R R R R R

 (12.13)

Comparing Eqs. (12.12) and 12.13 and expanding Eq. (12.12) gives a typical p
th

 term, which can 

be represented as follows,
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p
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 (12.14)

We know that, cos( ) =
2

W
W W

p
j j

p

e e+æ

è
ç

ö

ø
÷

-

. Using this result in Eq. (12.14) and expanding it, we get a 

final expression which looks like
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1
( ) = ( )W WW
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j k
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-¥

¥

å  (12.15)

Now, from Eq. 12.15 we can find the Inverse DTFT to get f
1
( )t  easily. We know that multiplication 

by the term e j kΩ  in Fourier domain shifts the signal by k  in time domain. Therefore, f
1
( )t  turns out to be,

 

 f f
1

=

1
( ) = ( )t C t k

k

k

−∞

∞

∑ +  (12.16)
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From Eq. (12.16), f
1
( )t  turns out to be a linear combination of f

1
( )t  shifted by integer translates. 

When we shift a piece-wise linear function by integer translates and add them, we still get a piece-wise 

linear function. Hence, f
1
( )t  is a piece-wise linear function.

In subsequent chapters we shall study the nature of C s
k
’  and know how to construct an MRA out 

of f
1
( )t .

12.4  Building Piece-wise Linear Scaling Function, Wavelet

In earlier sections, we began with building piece-wise linear MRA. We also saw the piece-wise linear 

function obtained by convolving the Haar Scaling function with itself, as shown in Fig. 12.3.

 
f f f

1 0 0
( ) = ( ) ( )t t t×  (12.17)

This f
1
( )t  is not orthogonal to its integral translates. This led to Sum of Translated Spectra (STS) 

not being a constant. It was only 1 and -1 which were problematic translates. But as expected, the STS 

was a constant within two positive bounds. As a result, one could extract from f
1
( )t  another function, 

which was orthogonal to its own translates. This new function can be used to build MRA based on piece-

wise linear scaling function and wavelets.

12.5  Building of Piece-wise Linear Scaling Function

We saw that:

 

STS( ,2 )( ) = | ( 2 ) |
1

=

1

2f p f p W W
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K
-¥

¥
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This is not a constant as required but it lies between two positive bounds.

 
0 < ( ,2 )( ) <

1
A B£ £ ¥STS f p W

 (12.19)

 

B

A
= 3  (12.20)

1

1 |f1(t)|

0 2 t

Figure 12.3  The linear scaling function

If we scale a function by a constant, the STS is scaled by the square of that constant.
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In Chapter 11, we had already discussed that we can define a function f
1
( )W  as:
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Both numerator and denominator are greater than 0 and less than ¥ and hence cancellation is 

possible.

Therefore, f
1
( )t  is orthogonal to all its integer translates, i.e.,
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Now, we saw that it is of the form,
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Using binomial expansion or Taylor series expansion, i.e., (1 ) , , | |< 1+ ∈g gR
R 
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Therefore, we get
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Now, 
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Therefore,
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The calculation of Cl  is cumbersome as for each Cl  we have to write a series.

Now,  C C
l l

= −  from symmetry in expanding ( )cosΩ l . Therefore, if we take the Inverse Fourier 

transform of Equation 12.27, we get,
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Therefore, f
1
( )t  is a linear combination of f

1
( )t  and its integer translates, as shown in Fig. 12.4.

This shows that f
1
( )t  is piece-wise linear. For further clarity, one can calculate few C

l
, may be for 

l = 0, 1, 2± ±  and we will see that C
l
 and C

l−  decay as l → +∞ .

C0f1(t)
C

l
f1(t   + l) terms

~

f1(t)
~

t
−4 −3 −2 −1 0 1 2 3 4

Figure 12.4  Representing f
1
( )t  as a piecewise linear function

Example 12.5.1 — Properties of f
1
( )t :

 1. Piecewise linear: A sum of piecewise linear functions.

 2. f
1
( )t  should be orthogonal to all its integer translates, i.e.

 
< ( ), ( ) >= 0; , ;

1 1
f ft m t n m n Z m n- - " Î ¹  (12.29)

 3. f
1
( )×  obeys the dilation equation.

Property 3 is critical for MRA because it is this dyadic dilation equation which ensures that f1
( )t , 

when dilated by a factor of 2 and then translated by all the integers, constructs a basis for next subspace, 

V
0
. This subspace V

0
 is spanned by f

1
( )t  and its integer translates and then we have a subspace which is 

spanned by f
1
( )t  contracted by a factor of 2 and its integer translates.

We shall use the frequency domain to prove this. Time domain dyadic equation for a general scaling 

function f ( )⋅ :
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Taking Fourier transform:
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where H( )⋅  is the DTFT of h k[ ] .
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To establish a dyadic dilation equation on ̂f1
( )×  we essentially need to consider 
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Essentially, we need to establish that 
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 is a DTFT. That is, it is

 (i) Periodic with period 2p

 (ii) It is bounded on any interval of 2p , so that its IDTFT can be calculated.

Boundedness is needed, therefore:

1

2
( ) ,

p ò f e d
j nW WW must converge

       where

 

where f ( ) =
( )

2

1

1

Ω
Ω
Ω





ˆ

ˆ

f

f






 (12.33)

 





ˆ

ˆ

ˆ cos
f

f

f
1

1

1

1/2

( )

2

=

( )
2

3
1

1

2 2

2

3
1

1

2

W

W

W
W

æ

è
ç
ö

ø
÷

+
æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

+ ccos ˆW
Wæ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷

æ

è
ç
ö

ø
÷

1/2

1
2

f

 (12.34)

Now, we focus on the term inside the square root, i.e., 
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and hence it is periodic. This is definitely of the form 
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÷  with properties of H( )⋅  desired. Now, 

if we replace Ω  by 2Ω  in Eq. (12.34) (term inside the root), we get,
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In this expression, the numerator is periodic with period 2p  and the denominator is periodic with 

period p  and hence the overall expression is periodic with period 2p . Therefore the periodicity is 

established.
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Now, we look at the boundedness. Let us say that in the expression(inside the root):

 0 < <A B≤ ≤ ∞Numerator  (12.36)

and

 0 < <A B≤ ≤ ∞Denominator  (12.37)

Therefore, we can say that the fraction is also between two positive bounds as:
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So, let us write Equation 12.33 as:
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where Q  already obeys periodicity and boundedness as required.

Now, we know that the ratio 
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 obeys the requirement.

Hence f1
( )×  must obey a dyadic dilation equation:
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12.6  Summary

We have now established the existence as well as the method to calculate H k[ ] , though the calculation 

is highly cumbersome. If we have H k[ ] , we have the impulse response of the low-pass filter in orthogo-

nal MRA. Once we have the dyadic dilation equation, the coefficients of the equation give the low-pass 

filter response. Once we have the analysis low-pass filter, we can construct all the other filters.
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We can observe that IDTFT of H k[ ]  will be of ∞  length, will be infinitely noncasual and also 

irrational. This makes this a nonrealizable filter. So in general, we can say that to get an orthogonal 

piece-wise linear MRA, one requires an unrealizable filter.

Once we know impulse response of the low-pass filter of analysis side, we also know how to con-

struct the wavelet because analysis high-pass filter impulse response coefficients will construct the 

wavelet from the scaling function.

Exercises

Exercise 12.1

Prove that Fourier transform of autocorrelation of a real function f ( )t  is the power spectral density 

function of f ( )t  in frequency domain.

Hint: We have, by definition,

R t t dt kff t f f t t( ) = ( ) ( ) ,  
−∞

∞

∫ + +Now substituting = ,t
 

t k+ + = ,we get

R k k dkff t f f t( ) = ( ) ( )
-¥

¥

ò -

= ( ) ( ( ))
−∞

∞

∫ − −f f tk k dk

By observing the above equation, we can see that Rff t( )  is the convolution of f ( )t  with f ( )−t . We 

know that convolution in time domain is multiplication in frequency domain. Let the Fourier trans-

form of φ( )t  be φ̂( )Ω , then the Fourier transform of f ( )−t  is f̂ ( )−Ω . Therefore, Fourier transform 

of Rff t( )  is,

ˆ ˆ ˆRff f f( ) = ( ) ( )W W W-

      
= ( ) 2| |f Ω

| |f( ) 2Ω  is essentially the power spectral density function of f ( )t  in frequency domain. Hence 

proved.

Exercise 12.2

Prove that autocorrelation of any function f ( )t  is symmetric and has a maximum value at t = 0.

Hint: In Question 1, we have made an important observation that autocorrelation of a function f ( )t  

is convolution of f ( )t  with f( )  −t , i.e.

Rff t f t f t( ) = ( ) ( ),× − which implies

Rff t f t f t( ) = ( ) ( )− − ×
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We know that convolution follows commutative property. Therefore, the above two equations 

have the same values. Therefore,

R Rff fft t( ) = ( )−

Hence, symmetry is proved. Now, Rff (0)  is the area under the curve | |f( ) 2Ω  which is always 

positive. Therefore, Rff (0) 0≥  for any function f . Now, consider a new function f
1
( )t  where,

f f f t
1
( ) = ( ) ( )t t t− +

Now Rf  f1 1
(0) 0³

Þ ³
-¥

¥

òR t t dtf  f f f
1 1

(0) = ( ) ( ) 0
1 1

⇒ − + − + ≥
−∞

∞

∫ ( ( ) ( ))( ( ) ( )) 0f f t f f tt t t t dt

⇒ + + − + ≥
−∞

∞

−∞

∞

−∞

∞

∫ ∫ ∫f f t f f t( ) ( ) 2 ( ) ( ) 02 2
t dt t dt t t dt

⇒ + − ≥R R Rff ff ff t(0) (0) 2 ( ) 0

⇒ ≥R Rff ff t(0) ( )

Hence proved.

Exercise 12.3

Prove that if STS( ,2 )( )f p Ω  is constant, then f ( )t  is orthogonal to its integer translates.

Hint: Given STS( ,2 )( )f p Ω  is constant

Þ +
-¥

¥

å
k

k K K
=

2( 2 ) = ,| |f p W where isa constant

Now, Fourier transform of R m
mff tt( )

=
| ∈  is the Fourier transfom of Rff t( )  shifted by mul-

tiples of 2p  and added, i.e.,

k

k
=

2( 2 )
−∞

∞

∑ +| |f p Ω

But it is given as a constant. Therefore, Fourier transform of R m
mff tt( )

=
| ∈  is a constant 

which implies R m
mff tt( )

=
| ∈  is a discrete impulse sequence, which indeed implies f ( )t  is 

orthogonal to its integer translates.
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Exercise 12.4

We have  f f
1 = 1
( ) = ( )t C t k

k k-¥

¥

å + , then write down the series for C
0

.

Hint: We have from equation (12.12),

̂ ˆ cosf f
1 1

1

2

1

2

( ) = ( )
2

3
1

1

2
( )W W W

æ

è
ç
ö

ø
÷ +
æ

è
ç

ö

ø
÷

- -

Consider the term 1
1

2
( )

1

2

+
æ

è
ç

ö

ø
÷

-

cos W  in the above equation

1
1

2
( ) = 1

1

2
( )

1.3

2.2.2!

( )

2
. .

1

2
2

+
æ

è
ç

ö

ø
÷ - +

æ

è
ç

ö
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-

cos cos
cos

W W
W

  .

Using the expansion cos( ) =
2

W
W W

p
j j

p

e e+æ

è
ç

ö

ø
÷

-

, and substituting in the above equation we get the 

constant term only from the even powers of p, i.e. 

C
0

1

2

2 4 4
=

2

3
1

1.3

2.2.2!.2
.

2

1

1.3.5.7

2 .4!.2
.
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(NOTE: In a similar way, series for C
1

 can be found. It is left as an exercise to the readers).R

Exercise 12.5

f t a t k
k k

( ) = ( )
1å -f . Given a

k
= 1,2,0,1,2{ } , find f t( )  for f

0
 and f

1
. Plot f t( )

Hint:

 1. For f
0

1

1
f
0

t0
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1

1f
1

0 2 t

 2. For f1

2 3 4 51

2

1

0

f(t)

t

0 1

1

2

2 3 4 5 6

akf(t - k)
f(t)

f(t)

t

Exercise 12.6

Two function x t( ) , y t( )  are periodic with period t
1  and t

2  respectively. t
1  and t

2  are rational 

 nonzero numbers. Prove that x y/  is also periodic and find its period.

Hint: We know that, x t t x t( ) = ( )
1

+  and y t t y t( ) = ( )
2

+ . Let

 

g t
x t

y t
( ) =

( )

( )
 (12.44)

Assume the g(t) to be periodic with period t
3

, therefore,

 

g t t
x t t

y t t
g t( ) =

( )

( )
= ( )

3

3

3

+
+
+

 (12.45)

Now, if t
3  is equal to LCM of t

1  and t
2  and both x t t( )

3
+  and y t t( )

3
+  equal to x t( )  and y t( )  

respectively, hence g t( )  will be periodic with period t
3  where t

3  is LCM of t
1  and t

2.





13.1  Introduction

In the earlier chapters, we discussed the variants of the wavelet transform or of time-frequency analysis. 

We have so far discussed the short time Fourier transform (STFT) and continuous wavelet transform 

(CWT). We have also seen the discretization of CWT in scale and then in translation. We have studied 

the specific case of dyadic discretization (a
0

= 2) of scale and a corresponding uniform discretization of 

the translation parameter. Following that, we have brought in the possibility of bi-orthogonal multireso-

lution analysis (bi-orthogonal MRA) and we took inspiration for biorthogonal MRA by considering the 

need to construct ‘splines’ (piece-wise polynomial functions). Essentially, we looked at the possibility 

of piece-wise polynomial interpolation. When we moved from piece-wise constant, which gave us the 

Haar Multiresolution Analysis, to piecewise linear, we came across two options; either we use the same 

analysis and synthesis filters (i.e. same scaling and wavelet functions at analysis and synthesis side) or 

we make synthesis side different from the analysis side.

In Chapters 10 and 11, we realized that insisting on constructing in orthogonal MRA with piece-wise 

linear scaling functions and wavelets, puts a very difficult task before us. Indeed, it is achievable but it 

is extremely cumbersome to construct those scaling functions and wavelets. Moreover, these being of 

infinite length, there are chances of losing the compact support. If we wish to stick to compactly sup-

ported scaling functions and wavelets or rather we wish to stick correspondingly to the finite impulse 

response filters on the analysis and synthesis side, then we need to bring in a variant of the multireso-

lution analysis called ‘Bi-orthogonal MRA’. We have so far introduced the bi-orthogonal MRA only 

from the perspective of the filter bank and we intend to maintain the stand for the time being. Later, we 

shall look at its implication in continuous time or in iteration. In this lecture,we wish to look at one more 

variant of multiresolution analysis, but this time it is variant on the iteration of the filter bank, this is 

called a ‘Wave packet transform’ and, therefore, this chapter is appropriately titled, ‘The Wave Packet 

Transform’.

MRA Variant 3: 
Wave Packets

Chapter

Introduction

The wave packet transform

Notion of frequency inversion in 
 highpass filtering

Reconstruction of input X
0
 from wave

packet transform

Noble Identities

Haar wavepacket transform

Wavelet packets: framework

13
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13.2  The Wave Packet Transform

The idea behind the Wave Packet transform is very simple. Till now, when constructing the dyadic dis-

crete wavelet transform (DWT), the focus has been an decomposing the so-called approximation sub-

space. Let us put this notion graphically called ladder of subspaces about which we are speaking very 

often as shown in Fig. 13.1, every time we have pilled off an incremental subspace.

In the wave packet transform our objective is to get around this limitation, by decomposing the 

incremental subspace (i.e. detail subspace) as we do the approximation subspace. For example, we 

decompose V
1
 into V

0
 and W

0
, we also intend to decompose W

0
 in the next step.

In one sentence the idea behind the Wave Packet transform is:

Idea:

Decompose the incremental or detail subspace also.

Towards this objective, the simplest approach would be to look at the filter bank structure, instead 

of starting from the basis or the continuous time functions.

R

Approximation
subspace is
decomposed

Detail (incremental)
subspace is not
decomposed

Ladder of subspaces

.....V
−2 ⊂ V

−1 ⊂ V0 ⊂ V1 ⊂ V2.....

V0

V1

V2

W1

W0

Figure 13.1  Notion of decomposition of subspaces in DWT

Let us assume that you have a sequence representing the function in an approximation subspace. 

For simplicity, let us take the subspace V
2
, i.e. it is a sequence of coefficients in the expansion of given 

function in L R
2
( ) in terms of basis of V

2
. The filter bank operates on these coefficients and creates coef-

ficients of expansion in V
1
 and W

1
 using the low-pass and high-pass analysis filters. The filter bank is 

iterated on the low-pass branch and suppose we also choose to iterate the filter bank on the high-pass 

branch. Essentially, what is acquired is so-called Wave packet transform.

Let us first investigate from the ideal i.e. ideal frequency behaviour of the filter bank. In the DWT, 

as shown in Fig. 13.2, consider a sequence of coefficients, which is subjected to analysis low-pass and 
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high-pass filters (ideal with cutoff 
p

2
) and followed by a downsampling operation. At point ‘A’, we get 

coefficients in the lower approximation subspace and at point ‘B’ in the detail subspace.

Analysis
LPF
(AL)Sequence of

coefficients

Coefficients in `lower’
approximation space2

A

B

Coefficients in `detail’ space

Analysis
HPF
(AH)

2

Figure 13.2  One-level of DWT

Now, the next time we will take the entire structure of Fig. 13.2 and will put at point ‘A’ to get two-

level DWT as shown in Fig. 13.3. This gives us the two-level DWT, note that here the high-pass branch 

is not iterated.

Level-1

Level-2

B

2 A

AH

AH

AL

AL

Sequence of

coefficients

2

2

2

Figure 13.3  Two-level of DWT

What we will get is Wavepacket transform if high-pass branch is also iterated as shown in Fig. 13.4. 

Now, whatever we will get will be additional which we want to investigate. Consider that all the filters 

are ideal. Let ‘IAL’ and ‘IAH’ be ideal analysis low-pass and ideal analysis high pass filters with cutoff 
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p / 2 respectively. Let us analyze the above filter bank structure with ideal prototype spectrum X
0
 where 

we can see clearly the spectrum at every point (Fig. 13.5). The Spectra at points X
11

 and X
21

 are as shown 

in Fig. 13.6. Note that the Spectra X
11

 and X
21

 are periodic with period 2p .

Level-1

2

A

AH

AH

AL

AL

Sequence of

coefficients

Additional Highpass branch is

also iterated

2

2

2

Level-2

B

AH

AL 2

2

Figure 13.4  Wave packet transform

Ideal
prototype
spectrum

input

−p p0

1

IAH

IAL

X21

X11

X0(e
jw)

X2

X1
2

2

Figure 13.5  Ideal filter bank with prototype i/p spectrum
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SpectrumX11(e
jw)

1/2 1/2
1/2 1/2

1

0 p/2−p/2−p p 0 p/2−p/2−p p

w w

SpectrumX21(e
jw)

Figure 13.6  Spectrum at X
11
 and X

21

p/2−p/2
−p 0

1/4

1/2

Spectrum2 X2X1
Spectrum

1/41/4
1/4

p

w

p/2−p/2
−p 0 p

w

2

Figure 13.7  Upsampled spectra of X
1
 and X

2

X1(e
jw)1/2

1/4
1/4 1/4

1/4

X2(e
jw)

0 p/2−p/2−p p

w
w

0 p/2−p/2−p p

Figure 13.8  Spectra at X
1
 and X

2

Now, it is important to emphasize at this stage that we need to establish a correspondence between 

the segments of original spectrum X
0
 and the spectra X

1
 and X

2
. Let us divide the spectrum X

0
 into four 

segments as

 a p p= ( / 2 )Þ

b p= (0 / 2)Þ

b p² = ( / 2 0)- Þ

a p p² = ( / 2)- Þ -
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13.3  Notion of Frequency Inversion in Highpass Filtering

Frequency inversion means the reversal of order of frequencies. We notice that high-pass segments a , a²  

has gone to high-pass branch, but there is a frequency inversion. In original input spectrum X
0
 as we 

move from p / 2 to p, correspondingly in X
2
 it is from p to 0; While in original input spectrum X

0
 as we 

move from 0 to p / 2, correspondingly in X
1
 we are moving from 0 to p. The decomposition of input spec-

trum at each stage is shown Figs. 13.11 to 13.13. Figure 13.14 shows the summary of band distribution.

The segments are marked as shown in Fig. 13.9 and corresponding segments are marked in X
1
 and 

X
2
 as shown in Fig. 13.10.

1

0 p/2

bb ”a” a

−p/2−p p
w

X0(e
jw)

Figure 13.9  Segments of spectrum X
0

Expanded
Expanded1/2

1/4

1/4 1/4

1/4

0 p/2

a”abb ”

−p/2−p p 0 p/2−p/2−p p
ww

X1(e
jw)

X2(e
jw)

Figure 13.10  Segments of spectra X
1
 and X

2
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IAH

IAL 2

2

No inversion

[ 0 , π /2 ]

[ π , π /2 ]

[ 0 , π ]
Inversion

Input
X0

X1

X2

Figure 13.11  Decomposition of X
0

Inversion

Not inverted
IAH

IAL 2

2

X3

X1

X4 [ π /2, π /4]

No inversion
[ 0, π /4 ]

[ 0, π /2 ]

Figure 13.12  Decomposition of X
1

No
inversion

Inverted
IAH

IAL 2

2

X5

X2

X6 [ π /2, 3π /4]

Inversion
retained

[ π , 3π /4 ]

[ π , π /2 ]

Figure 13.13  Decomposition of X
2
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Not invertedX3   :   [ 0 , π /4 ]

X4   :   [ π /2, π /4 ]

X5   :   [ π , 3π /4 ]

X6   :   [ π /2, 3π /4 ]

Inverted

Inverted

Not inverted

Figure 13.14  Band distribution of spectra X
3
 to X

6

13.4  Reconstruction of Input X
0
 from Wave Packet Transform

In reconstruction we can use the same ideal filters (i.e. not separate synthesis filters) as synthesis filters 

along with upsampling operations. Even if it is not ideal and if we have a perfect reconstruction syn-

thesis filters then also reconstruction is possible. The reconstruction steps are as shown in Figs. 13.15, 

13.16 and 13.17.

1/2 X1

X4

X3

IAH

+

2

2 IAL

Figure 13.15  Reconstruction of X
1

1/2 X2

X6

X5

IAH

+

2

2 IAL

Figure 13.16  Reconstruction of X
2

1/2 X2

1/2 X1

X0
IAH

+

2

2 IAL

Figure 13.17  Reconstruction of X
0
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Now, let us see carefully what happens if we apply this structure to Haar MRA. We will consider the 

Fig. 13.18 to explain this, which shows the basis functions for respective subspaces. If we decompose 

W
0
 and W

1
 as in wave packet transform marked by question mark in Fig. 13.18, following are the few 

questions that need to be answered:

 1. What are the basis functions for W
0
 and W

1
?

 2. Can those basis functions, obtained from a single function, be called as generating function?

 3. Can we generalize this if we decompose the incremental subspaces?

We shall answer them later.

13.5  Noble Identities

In the preceding sections, we have introduced the idea of wavepacket transform. In wavepacket trans-

form, along with low-pass branch of filter bank, high-pass branch is also further decomposed. This 

decomposition of high-pass branch has some counter intuitive observations in frequency domain. Being 

observed Wavepacket transform in ideal filter bank, in this section we will see Haar Wavepacket trans-

form. Along with this, a concept of Noble Identities is also discussed in great detail.

Noble Identities occur frequently when we want to iterate the filter bank in which case we are often 

required to combine down- and up-samplers and different filters. Noble Identities are useful in dealing 

with cascade of sampling rate changes and cascade of filters.

V1

V2

V0

W0

{F(t−n)}
nŒZ

{F(2t−n)}
nŒZ

{F(4t−n)}
nŒZ

{y(t−n)}
nŒZ

{y(2t−n)}
nŒZ

W1

Figure 13.18  Basis functions for decomposed subspaces

Example 13.5.1 — Noble identity for downampler.

Consider a down-sampler by 2 followed by a filter, as shown in Fig. 13.19.

H(Z)2 ? 2

Figure 13.19  Interchanging the positions of down-sampler and filter to get noble identity
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H(Z)
h[n]

2 y[n]
x1[n]

x[n]

Figure 13.20  Output sequence as convolution of input sequence and impulse response

Noble identity illustrates how to interchange the positions of down-sampler and filter. When the 

positions of filter and down-sampler are interchanged, what will be the nature of new filter? In order 

to get the answer, consider Fig. 13.20, in which output y n[ ] is convolution of impulse response h n[ ] of 

filter and sequence x n
1
[ ]. Sequence x n

1
[ ] is related to input sequence x n[ ] as x n x n

1
[ ] = [2 ] for " În .

We can write,

y n x n h n[ ] = [ ] [ ]
1

´

                  

= [ ] [ ]
=

1

k

x k h n k
-¥

¥

å -  (13.1)

                

= [ ] [ ]
=

1

l

h l x n l
-¥

¥

å -  (13.2)

Equation (13.1) can be rewritten as

 

y n x k h n k
k

[ ] = [2 ] [ ]
=-¥

¥

å -  (13.3)

Here, we are trying to get an equivalent system in which, a filter is followed by a down-sampler and 

which will give the expression given by Eq. (13.3). Also, we can write Eq. (13.2) as

 

y n h l x n l
l

[ ] = [ ] [2 2 ]
=-¥

¥

å -  (13.4)

In Eq. (13.4), the index ‘2n’ is due to downsampling operation. If ‘2n’ is replaced by ‘n’, we arrive 

at a point after a filter in an equivalent system. So, we have expression

 l

h l x n l
=

[ ] [ 2 ]
-¥

¥

å -  (13.5)

which is a convolution in which h l[ ] is located at ‘2 ¢l th points and at other places it is zero.

h n n
1
[ ] = 0 isodd

                  
= [

2
]h

n
Otherwise

Hence,

 

y n h l x n l
l

[ ] = [ ] [2 ]
=

1

-¥

¥

å -  (13.6)
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This indicates that impulse response of an equivalent filter before downsampler is the impulse 

response of original filter but upsampled by two. This is shown in Fig. 13.21.

This is called as a Noble identity for down-sampler.

H(Z
2
) H(Z)2 2

Figure 13.21  Noble identity for down-sampler by 2

This equivalent structure, however, has disadvantage over the previous structure in terms of number of 

computations. In the new structure, the samples obtained after convolution are discarded by down-sampler 

which results in wastage of computations carried out during convolution process. However, in original struc-

ture, as down-sampling is done first, there is no question of wastage in number of computations in convolution.

Example 13.5.2 — Noble identity for upsampler.

The Noble Identity for Upsampler can be derived through the concept of ‘transposition’. In case of 

signal flow graph (with no up- and down-sampler), its transpose is obtained by reversing the direction 

of each arrow and keeping constant multiplier the same. The summing point and branching points in 

previous graph become branching points and summing points respectively. The similar operation can 

be done if signal flow graph contains up and down-sampler with only change, that down-sampler in 

original graph becomes up-sampler in transposed graph with same factor and vice versa.

So applying the rules of transposition to Noble identity of down-sampler, we get Noble identity 

for up-sampler as shown in Fig. 13.22.

According to noble identity of upsampler the operation of filtering followed by upsampling is 

same as the operation of upsampling followed by filtering (with impulse response of this filter being 

upsampled version of impulse response of original filter).

Transposition

H(Z)2 2

H(Z
2
)

H(Z
2
)

H(Z)2 2

Figure 13.22  Noble identity for upsampler
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13.6  Haar Wavepacket Transform

With the introduction of Noble identities, we will employ them in the Haar Wavepacket transform. 

Figure 13.23 shows filter bank corresponding to Haar Wavepacket transform. Now, considering one branch 

at a time, e.g. upper branch and applying Noble Identity we get an equivalent branch as shown in Fig. 13.24. 

In Fig. 13.24, we note that downsampler by 4 is the result of two cascaded downsamplers by two.

So, there are four filters highlighted in the process of Wavepacket transform. Figure 13.25 

shows that during the process subspace V
2
 is decomposed into subspaces V

1
 and W

1
; V

1
 is decomposed 

into V
0
 and W

0
; and the important feature is that W

1
 is also further decomposed into subspaces say 

W
10

 and W
11

.

Let us look at the filter on the upper branch. Use of Noble Identity results in a filter as

(1 )(1 ) = 11 2 1 2 3+ + + + +- - - - -
z z z z z

1 + z−1

1 + z−1

2

2

2

2

2

2

1 − z−1

1 − z−1

1 + z−1

1 − z-1

Figure 13.23  Filter bank employing Haar wavepacket transform

1 + z−1 1 + z−1

1 + z−2

1 + z−2

1 + z−1

1 + z−1

2

2

4

2

2

Figure 13.24  Application of noble identity for downsampler on the branch of Haar filter bank
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V
0

V
1

V
2

W
1

W
0

W
10

W
11

Figure 13.25  Decomposition of subspaces in wavepacket transform

The sequence corresponding to above expression, i.e. [1,1,1,1] tells us how to express the basis of V
0
 

in terms of bases of V
2
. In other words, f( )t  (basis of V

0
) can be expressed as linear combination of f(4 )t  

(basis of V
2
). Note that, down-sampling by 4 results in dilation of f( )t  by factor of 4, which effectively 

results in going from V
0
 to V

2
. So, we can write this as,

f f f f f( ) = (4 ) (4 1) (4 2) (4 3)t t t t t+ - + - + -

Similarly, we can write expressions for other filters such that corresponding sequences represent 

bases of W
0
,W

10
 and W

11
 in terms of bases of V

2
.

13.7  Wavelet Packets: Framework

In this section, we present framework of wavelet packets to understand how the analysis and synthesis 

is done systematically using packet technique. For this we shall use Wavelet Haar packets on following 

signal x n[ ] to perform following operations:

 (1) Decomposition or Analysis

 (2) Reconstruction or Synthesis

 
x n V[ ] = 1,2,3,4,5,6,7,8

3
Î { } (13.7)

The Wavelet packet transformation can be captured in mathematical formulas as follows:

 

W t h k W t k
n

k

n[2 ] [ ]( ) = 2 [ ] (2 )å × -  (13.8)

 

W t g k W t k
n

k

n[2 1] [ ]( ) = 2 [ ] (2 )+ å × -  (13.9)

These equations are governed by the typical dilation principles that we have demonstrated at various 

places in this book.

Here the normalized low ( [ ])h k  and high ( [ ])g k  pass filters used are,

 

h k[ ] =
1

2
,

1

2

ì
í
î

ü
ý
þ
 (13.10)
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V2→V1→W0

(1+z−1)(1+z−2) = 1+z−1
−z−2

−z−3

The s  equence      = [1,1,−1,−1]

(i.e Haar Wavelet)
Basis for W0 = f(4t) + f(4t−1) + f(4t−2) + f(4t−3)

↑

V2→W1→W10

(1−z−1)(1+z−2) = 1−z−1+z−2
−z−3

The s  equence      = [1,−1,1,−1]

Basis for W10 = f(4t) − f(4t−1) + f(4t−2) + f(4t−3)
↑

V2→W1→W11

(1−z−1)(1−z−2) = 1−z−1
−z−2+z−3

The  s  equence      = [1,−1,−1,1]

Basis for W11 = f(4t) − f(4t−1) − f(4t−2) + f(4t−3)

↑

V2→V1→V0

(1+z−1)(1+z−2) = 1+z−1+z−2+z−3

The sequence       = [1,1,1,1]

Basis for V0 = f(4t) + f(4t−1) + f(4t−2) + f(4t−3)
↑

0

1

1
4

10

1

4

10

1

4
1

1
t

2

3
4

3
1

−1

−1

10

1 1

4

1

1
t

2

3
4

−1

4
1
2

1
2

3 1
t

t

4

Figure 13.26  Bases for V
0
, W

0
, W

10
 and W

11
. Basis for V

2
 and its translations are shown in grey
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 g k[ ] =
1

2
,

1

2

-ì
í
î

ü
ý
þ
 (13.11)

Now, for Haar Wavelet

 
W t t
[0] ( ) = ( )f  (13.12)

 
W t t

[1] ( ) = ( )y  (13.13)

From the earlier framework of MRA we recall,

 
f x V

j j
( )Î  (13.14)

 

f x x k
j

k

j k

j

j( ) = 2 (2 )
,

2å × -a f  (13.15)

However, in wavelet packets we go beyond the realms of simple MRA style wavelet analysis. We 

note that every time we go pass a sub-space a normalizing factor of 2 gets added up. Thus, during 

transition from V
3
 to V

0
 a total factor of 2 2 2 = 2 2´ ´  gets added up. This is captured in equations 

below,

As x n V[ ]
3

Î  j = 3

 

x n x k x k
k

k

k

k
[ ] = 2 (2 ) = 2 2 (8 )

3,

3

2 3

3,å å× - -a f a f  (13.16)

therefore

 

x n t t t t

t

[ ] = {2 2 (8 ) 4 2 (8 1) 6 2 (8 2) 8 2 (8 3)

12 2 (8 5) 14 2

f f f f

f

+ - + - + -

+ - + ff f(8 6) 16 2 (8 7)}t t- + -
 (13.17)

Now, we shall evolve the basis to create bases in order to move across the sub-spaces. Readers 

should remember that these bases are essential as we shall split on the

for n = 1

 
W t W t W t

[2] [1] [1]( ) = (2 ) (2 1)+ -  (13.18)

 
W t W t W t

[3] [1] [1]( ) = (2 ) (2 1)- -  (13.19)

for n = 2

 
W t W t W t

[4] [2] [2]( ) = (2 ) (2 1)+ -  (13.20)

 
W t W t W t

[5] [2] [2]( ) = (2 ) (2 1)- -  (13.21)

for n = 3

 
W t W t W t

[6] [3] [3]( ) = (2 ) (2 1)+ -  (13.22)

 
W t W t W t

[7] [3] [3]( ) = (2 ) (2 1)- -  (13.23)
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Using Eqs. (13.18) to (13.23) we will get values of W as follows (Graphically):

w  [0]

w  [1]

w  [2]

w  [3]

w  [4]

w  [5]

t

t

t

t

t

y

0 1 2 3 4 5 6 7 8 9

t

t

w  [6]

w  [7]



MRA Variant 3: Wave Packets 393

Now, Let us decompose the given signal.

 1. Decompositition

            Decomposition is shown in Fig. 13.27.

V1

V2

V0

{5,13}

{−2,−2}

x[n]=
{1, 2, 3, 4, 5, 6, 7, 8} ∈V3

{0}

{0}

{0}

{0}

{−1,−1}

{0,0}

{9.   }

{−4.   }
3 ,

,

,

, ,

,
√2

√2 √2 √2 √2

√2
7

√2 √2

√2

√2

√2

√2

11 15

−1 −1 −1 −1

{−2.   }

{−    }

Figure 13.27  Decomposition of x n V[ ]
3

Î  using wavelet packets

We have decomposed the signal till we get single value (here ÎV
0
).

 2. Reconstruction

Using decomposed coefficients,We have to reconstruct original signal. We have the decomposed signal 

single leaf values ÎV
0
 and we also evolved bases; using a combination of these two, Let us reconstruct 

the original signal back now.

We begin with the reconstruction of the very first coefficient. Since the signal x n V[ ]
3

Î  the first coef-

ficient lasts from 0 to 
1

8
. We shall consider only this first interval:
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0

0

0

0

0

1 2 3 4 5 6 7 8 9

y  × 9√2

y  × −4√2

y  × −2√2

y  × −√2

w  [0]

w[1]

w[2]

w[3]

w[4]

w[5]

w[6]

w[7]

\ ´ - ´ - ´ + ´ - ´ + ´ + ´ + ´ ×9 2 1 4 2 1 2 2 1 0 1 2 1 0 1 0 1 0 1 = 2 2

                  = a
3,0

Similarly, for the second coefficient let us consider the second interval:
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0 1 2 3 4 5 6 7 8 9

t  × 0

t  × 0

t  × 0

t  × 0

t  × 9√2

t  × −4√2

t  × −2√2

t  × −√2

w  [0]

w[1]

w[2]

w[3]

w[4]

w[5]

w[6]

w[7]

9 2 1 4 2 1 2 2 1 0 1 2 1 0 1 0 1 0 1 = 4 2´ - ´ - ´ + ´ - - ´ - + ´ - + ´ - + ´ - ×

             = a
3,1

Similarly, for the third coefficient the third interval and it continues....
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0 1 2 3 4 5 6 7 8 9

t  × 0

t  × 0

t  × 0

t  × 0

t  × 9√2

t  × −4√2

t  × −2√2

t  × −√2

w  [0]

w[1]

w[2]

w[3]

w[4]

w[5]

w[6]

w[7]

9 2 1 4 2 1 2 2 1 0 1 2 1 0 1 0 1 0 1 = 6 2´ - ´ - ´ - + ´ - - ´ + ´ + ´ - + ´ - ×
              =a

3,2

For all the intervals, the reconstructed coefficients will look as follows:
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0 1 2 3 4 5 6 7 8 9

t

t

t

t

t

t

t

t

w[0]

w[1]

w[2]

w[3]

w[4]

w[5]

w[6]

w[7]

2 2 4 2 6 2 8 2 10 2 12 2 14 2 16 2

Thus, all the coefficients match with the projected values as depicted in Eq. (13.17). This clearly 

shows that the evolved bases were able to capture the packet decomposition and, thus, we get complete 

reconstruction of the decomposed signal using wavelet packets.
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Exercises

Exercise 13.1

For the 2-level wave packet transform with ideal analysis lowpass and highpass filters with cut-off 

p / 2, draw the spectra of X
1
, X

2
, X

3
, X

4
, X

5
 and X

6
 if the input spectrum is as shown below in Fig 13.28.

Hint: The spectra X
1
 to X

6
 for a 2-level wave packet transform shown in figure 13.29 for the given 

input spectrum X
0
 are as shown in figure 5. The X

11
 and X

21
 are the just outputs of lowpass and 

highpass filters respectively (Fig 13.30). But here the output of downsampler is tricky. In general 

downsampling operation by a factor of ‘M’ mathematically is given by,

Downsampling by a factor of M 

Y e
M

X e
jw

k

M j w k

M( ) =
1

( )
=0

1 ( 2 )- -

å
p

where k M= 0,1,2... 1- .

This can be graphically interpreted as:

 1. Original spectrum X e
jw( ) is translated by 

2p

M
k where k = 0,1,..,M -1.

 2. These translates are added and resulting spectrum is multiplied by 
1

M
 3. Frequency axis is stretched by factor of M.

Using the above steps, the spectra from X
1
 to X

6
 are as shown in Fig 13.31.

1
Input
spectrum

1/21/2

0 p/2−p/2−p p w

X0(e
jw)

Figure 13.28  Input spectrum X
0
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Level-1

2

AH

AH

AL

AL

2

2

2

Level-2

AH

AL 2

2

X
0

X
3

X
4

X
5

X
6

X
11

X
21

X
2

X
1

Figure 13.29  Two-level wave packet transform

p/2−p/2
−p 0

Note: All the spectrums are 2 p periodic

p

w

p/2−p/2
−p 0

1

1/2 1/2

p

w

X11(e
jw) X21(e

jw)

Figure 13.30  Spectra of X
11
 and X

21
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Exercise 13.2

Simplify the following system, shown in Fig. 13.32, using Noble Identities for up- and down-sampler.

Hint: Given system can be simplified using Noble identities for up and downsampler as shown in Fig. 13.33. 

In Step 1, the first downsampler of factor 2 is brought ahead of filter (given by 1 2 4+ +- -
z z ) and combined 

with second downsampler of factor 2 to give downsampler of factor 4. In Step 2, upsampler of factor 

4 is brought all the way to the end and the filters are changed according to Noble identities. Finally, 

up-sampler of factor 4 followed by down-sampler of factor 4 cancel each other, as shown in Step 3.

1 + z−4 1 − z−4

1 + z−2+z
−4

4 2

2

Figure 13.32  Tutorial 32.1: Given system

0 p/2−p/2−p p

w

1/2

Note : All the spectrums are 2 p periodic

0 p/2−p/2−p p
w

1/4

X1(e
jw)

X3(e
jw)

0 p/2−p/2−p p

w

1/8X5(e
jw)

0 p/2−p/2−p p

w

1/4

0 p/2−p/2−p p
w

1/4

X2(e
jw)

X4(e
jw)

0 p/2−p/2−p p
w

1/8X6(e
jw)

Figure 13.31  Spectra of X
1
 to X

6
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Exercise 13.3

Construct the basis functions for the subspaces V
0000

, V
0001

, V
0010

, V
0011

, V
0100

, V
0101

, V
0110

, V
0111

 as shown 

in Fig. 13.34 which are nonzero in an interval [0,8]

Hint: For each of the spaces we need to construct ‘defining system function’ using Noble identities.

V z z z
0000

1 1 1: (1 ) 2 (1 ) 2 (1 ) 2+ ®¯ ® + ®¯ ® + ®¯- - -

 (1 )(1 )(1 ) 81 2 4+ + + ®¯- - -
z z z

1 + z−4 1 − z−4

1 + z−4+z
−8

4 2

1 + z−4 1 − z−44

Given system

Step 1

Step 2

Step 3

4

1 + z−1+z
−21 + z−1 1 − z−1

1 + z−1 
− z

−3
−z

−4

4 4

2 1 + z−2+z
−4

Figure 13.33   Tutorial 32.1: Simplification of a given system using Noble identities for up and 
downsampler

V0

V00

V000

V0000

V0001

V0010

V0011

V0100

V0101

V0110

V0111

V001

V010

V011

V01

(1 + z−1) 2

2

2

2

2

2(1 + z−1)

(1 − z−1)

(1 − z−1)

(1 + z−1)

(1 − z−1)

Figure 13.34  Tutorial 32.2: 3 level Haar Wavepacket Transform
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So, defining system function is:

(1 )(1 )1 2 3 4 4+ + + + +- - - - -
z z z z z

1 1 2 3 4 5 6 7+ + + + + + +- - - - - - -
z z z z z z z

Corresponding primary basis function which is nonzero in interval ]0,8[ is shown in Figure 13.35.

Similarly, basis functions for other subspaces are as follows.

Basis for V
0001

Basis for V
0000

Basis for V
0010

Basis for V
0100

0

8

8640

2

0 1 2 3 4 5 6 8

t

Basis for V
0101

0 1

2

3 4 5 6 7

8 t

Basis for V
0110

0 1

3 4 5 7 8 t

Basis for V
0111

0

4 5

76 8

t

t

t

Basis for V
0011

864

0

2 t

0 4 8

Figure 13.35  Tutorial 32.2: Basis functions
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V z z z
0001

1 2 4: (1 )(1 )(1 )+ + -- - -

V z z z
0010

1 2 4: (1 )(1 )(1 )+ - +- - -

V z z z
0011

1 2 4: (1 )(1 )(1 )+ - -- - -

V z z z
0100

1 2 4: (1 )(1 )(1 )- + +- - -

V z z z
0101

1 2 4: (1 )(1 )(1 )- + -- - -

V z z z
0110

1 2 4: (1 )(1 )(1 )- - +- - -

V z z z
0111

1 2 4: (1 )(1 )(1 )- - -- - -

Figure 13.35 Shows basis function for different subspaces.

Exercise 13.4

Prove the Noble identities for up and downsampler for general case of any positive integer M.

Hint: Let us look at Noble identity for downsampler first. Consider downsampler by M as shown 

in Fig. 13.36.

We can write,

y n p n h n[ ] = [ ] [ ]´

               

= [ ] [ ]
=k

p k h n k
-¥

¥

å -

        

= [ ] [ ]
=l

h l p n l
-¥

¥

å -  (13.24)

        

y n h l x Mn Ml
l

[ ] = [ ] [ ]
=-¥

¥

å -  (13.25)

In Eq. (13.25), the index ‘Mn’ is due to down-sampling operation. If ‘Mn’ is replaced by ‘n’, we 

arrive at a point after a filter in an equivalent system. So, we have expression

w n h l x n Ml
l

[ ] = [ ] [ ]
=-¥

¥

å -

H(Z)
h[n]

y[n]p[n] x[n] w[n] y[n]x[n]

M ? M

Figure 13.36  Tutorial 32.3: Noble identity for downsampler by M
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which is a convolution in which h l[ ] is located at ‘Ml
th’ points and at other places it is zero.

h n n M
1
[ ] = 0 is not a multiple of

         
= [ ]h

n

M
n Mis a multiple of

Hence,

 

y n h l x Mn l
l

[ ] = [ ] [ ]
=

1

-¥

¥

å -  (13.26)

This indicates that impulse response of an equivalent filter before downsampler is the impulse 

response of original filter but upsampled by M. This is shown in Fig. 13.37.

Now, let us see Noble identity for Upsampler. We will prove this Noble Identity using 

Z-transform. Consider Fig. 13.38, in which a filter is followed by an upsampler of factor M. We 

have to find a system function H Z
1
( ) for a filter, which comes after an upsampler of factor M.

In Z-domain we can write output of a system in which a filter is followed by down-sampler by 

M as

Y Z X Z
M( ) = ( )

1

Y Z X Z H Z
M M( ) = ( ) ( )

H(Z)
h[n] H(ZM)

y[n]p[n] x[n] w[n] y[n]x[n]

M M

Figure 13.37  Tutorial 32.3: Noble identity for downsampler by M

H(Z) H1(Z)=?M M
y[n] x[n] y[n]x[n]

X[Z] Y  [Z] Y [Z]X[Z] X2[Z]X1[Z]

H(Z) H1(Z)=H(ZM)M M
y[n] x[n] y[n]x[n]

X[Z] Y  [Z] Y [Z]X[Z] X2[Z]X1[Z]

Figure 13.38  Tutorial 32.3: Noble identity for upsampler by M

Also, for a system in which down-sampler by M is followed by a filter, output is given by

Y Z X Z H Z( ) = ( ) ( )
2 1
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Y Z X Z H Z
M( ) = ( ) ( )

1

In order to have both systems equivalent, system function of a new filter must be H Z H Z
M

1
( ) = ( ). 

Thus, Noble identity of up sampler tells that the operation of filtering followed by upsampling is 

same as the operation of up-sampling followed by filtering, with impulse response of this filter being 

upsampled version of impulse response of original filter.





14.1  Introduction

In this chapter we need to explore another variant of MRA, in fact the variant 4, the lifting scheme. We 

have already discussed Bi-orthogonal filter, splines and wave packets in preceding chapters. First we 

need to understand the lattice structure for orthogonal filter banks.

14.2  The Lattice Structure for Orthogonal Filter Banks

Let us begin with Haar analysis filter bank (Fig. 14.1). The low-pass filter is given as

H Z Z
low

( ) = 1 1+ -

and the highpass filter is given as

Z H Z Z Z Z
low

- - - -- - - +1 1 1 1( ) = (1 ) = 1

Here, we perform convolution first and then pass through downsampler. Hence, actually, we are 

“wasting” half computation. Here, we are unnecessarily calculating odd samples which are finally 

washed off.

MRA Variant 4: 
Lifting Scheme

Chapter

Introduction

The lattice structure for orthogonal filter banks

Lattice structure and its variants

The lattice module

Inductive (recursive) lattice relation

The synthesis variant

Efficient deployment schemes for lifting 
structures

The lifting structures and polyphase matrices

The polyphase and the modulation 
approach

Towards building polyphase structures

Polyphase approach

Modulation approach

Modulation analysis and 3-band filter bank, 
application

Final step in polyphase approach

Modulation approach

14
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Let us generalize this structure (Fig. 14.4). This is the one stage or one module of lattice.

Hence, we must look for a more efficient structure, which downsamples first and then computes the 

convolution. We must invoke the “noble” identities and recast the analysis filters.

We can redraw the Haar analysis filter bank, as shown in Fig. 14.2.

The down-samplers ¯ 2 can “jump” across adders, constant multipliers and branch points. Hence, 

we can obtain structure as shown in Fig. 14.3. This is computationally efficient structure.

1 + Z
−1

−1 + Z
−1

2

2

Figure 14.1  Haar analysis filter bank

2

Z
−1

2

−1

Figure 14.2  Lattice structure for the Haar analysis filter bank

2

−1

2

Z
−1

Figure 14.3  Efficient structure for the Haar analysis filter bank

Z
−1

k

−k

Figure 14.4  One stage of lattice in generalized form
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Inductive Assumption
A conjugate quadrature pair has been created at the input of this module. It’s first stage is as shown in 

Fig. 14.5.

2

Following

modules

2
Z−1

k1

−k1

Figure 14.5  First stage

and its lth stage is as shown in Fig. 14.6.

Z
−1

kl

−kl

Figure 14.6  l
th stage

Inductive Step
The inductive step is essentially to prove that,

B Z Z A Z
L( ) = ( )( 2 1) 1- + - --

Here, Z L- + -( 2 1) indicates length of filter is increased by 2. Here, we will use noble identities to prove 

this (Fig. 14.7).

Z
−1

k

A(Z)

B(Z)

H(Z)CQF
Filter
pair

(length L)

Z
−(L−1)

H(−Z−1)

−k

Figure 14.7  Inductive step
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By, applying noble identity of down-samplers, we get, (Fig 14.8 (a & b))

2

−k

k

2

Z
−1

(a) Noble identity of down sampler

Z
−2

k

A(Z)

B(Z)

H(Z)

Z
−(L−1)

H(−Z−1)

−k

2

2

(b) Noble identity of down sampler inductive step

Figure 14.8  Inductive step - noble identity of down sampler

Now,

A Z H Z kZ Z H Z

H Z kZ H Z

L

L

( ) = ( ) ( )

= ( ) ( )

2 ( 1) 1

( 2 1) 1

+ -

+ -

- - - -

- + - -

B Z kH Z Z Z H Z

kH Z Z H Z

L

L

( ) = ( ) ( )

= ( ) ( )

2 ( 1) 1

( 2 1) 1

- + -

- + -

- - - -

- + - -

We, essentially, need to consider A Z( ) is low-pass filter and find Z A Z
L- + - --( 2 1) 1( ). Hence, it can 

given as,

Z A Z Z H Z k Z H Z

Z

L L L

L

- + - - - + - - + -

- + -

- - + -

=

( 2 1) 1 ( 2 1) 1 2 1

( 2

( ) = { ( ) ( ) ( )}

11) 1 2 1( ) ( 1) ( )H Z k H Z
L- + -- + -

By inductive assumption, L is even. Hence,

Z A Z Z H Z kH Z

B Z

L L− + − − − + − −− = − −( 2 1) 1 ( 2 1) 1( ) ( ) ( )

= ( )

The inductive step is complete. Hence,

B Z Z A Z
L( ) = ( )( 2 1) 1- + - --

Basis Step
We need to study the relation between the two outputs in the Fig 14.9.
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2

−k

k

2

Z
−1

Figure 14.9  Downsampler by factor of 2

By applying noble identity, we can obtain, (Fig 14.10)

2

Z
−1

2

−k

k

A1(Z)

B1(Z)

Figure 14.10  Noble identity applied to downsampler

Here,

A Z kZ
1

1( ) = 1+ -

B Z k Z
1

1( ) = - + -

And, indeed,

B Z Z A Z
1

1

1

1( ) = ( )- --

Basis step is also complete. Therefore, it is proved that the given structure generates the CQF on 

analysis side, by mathematical induction.

Now, ( 1)m
th+  stage is given as

H Z

H Z

Z H Z

m

H Z

H Z

m

m

m

m

m

( )

( )

( )

( )

( )

( )

⇒{

= −

+

+

− − −

1

1

2 1 1



Here

H Z H Z Z kH Z

H Z kZ Z H Z

H Z

m m m

m

m

m

m

+
-

- - - -

+

+ -

+

1

2

2 (2 1) 1

( ) = ( ) ( )
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and

 H Z kH Z Z H Z
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=
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Our objective in synthesis or construction is,

H Z

H Z

m

H Z

H Z

m

m
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+
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Þ{
1

1

( )

( )

( )
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Now,

H Z H Z kZ Z H Z
m m

m

m+
- - - -+ -

1

2 (2 1) 1( ) = ( ) ( )

Here, H Z
m

( ) is of length 2m. Hence,

H Z h h Z h Z
m m

m( ) =
0 1

1

2 1

(2 1)+ + +-
-

- -


Hence, H Z
m

( ) is essentially,

�
�H Z h h Z h Z

m m m

m( ) =
2 1 2 2

1

0

(2 1)

- -
- - -+ + +

Therefore, h k
0

 is the coefficient of the highest power of Z -1 in H Z
m+1

( ).

Now, we have a mechanism to obtain k. Once we have k, we should have a mechanism to peel off 

the last stage. We will complete the construction of lattice stage later.

14.3  Lattice Structure and Its Variants

In the last section, we saw that we can construct a modular lattice structure for implementing a filter 

bank. Repetition of the modules will lead to an increase of order by 2 for every module. In this section 

and subsequent sections, the idea is to go the opposite way, i.e. if we know the final filter response, 

is it possible to peel off the modules to know earlier system functions in order to construct the lattice 

structure.

14.4  The Lattice Module

A single lattice stage is shown in Fig. 14.11.
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Hm(z) Hm+1(z)

Hm+1(z)

km+1

z−2

−km+1

Hm(z)
∼ ∼

Figure 14.11  A stage in lattice structure

We have shown that the conjugate quadrature relationship is preserved, i.e. given that
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 (14.1)

In constructing a lattice structure, we have to go the other way, i.e.
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 (14.2)

14.5  Inductive (Recursive) Lattice Relation

The inductive lattice relation is given by

 
H z H z k z H z

m m m m+ +
-+

1 1

2( ) = ( ) ( )  (14.3)

 
H z z H z k H zm m m m
 

+
-

+-1
2

1
( ) = ( ) ( ) (14.4)

We will determine H z
m

( ) in terms of H z
m+1

( ) and H zm


+1( ) by solving Eqs. (14.3) and (14.4) for 

H z
m

( ). Solving, we get H z
m

( ) as given in Eq. (14.5)

 

H z
H z k H z

k
m

m m m

m

( ) =
( ) ( )

1

1 1 1

1

2

+ + +

+

-

+



 (14.5)

14.5.1 Obtaining k
m+1

In Eq. (14.3), H z
m+1

( ) is of length 2( 1)m +  and H z
m

( ) is of length 2m. The z-2 term increases length by 2. 

Now, we shall inductively show that the coefficient of z0 in H z
m

( ) is 1.

Basis step
The system function of first module of lattice is given as
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H z k z

1 1

1( ) = 1+ -  (14.6)

 
H z k z

1 1

1( ) = - + -  (14.7)

Thus, the coefficient of z0 is 1 in H z
1
( ). Now, let it also be true for H z

m
( ). According to Eq. (14.3), 

the z0 can come only from H z
m

( ) as the lowest power of z in the second term would be z-2. The the 

 coefficient of z
0 is “carried forward” from H z

m
( ) to H z

m+1
( ). Thus, it is proved by induction that 

 coefficient of z0 in H z
m+1

( ) " Îm  is 1. From Eq. (14.1), if
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m m

m

m m( ) = 1
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2
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(2 1)+ + + +- -
+
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  (14.8)

then H z

m ( ) isgiven by

 
H z h h z zm m

m m m m�
�( ) =

2 1 1

2 (2 1)- + - ++
- - -  (14.9)

Thus, coefficient of highest power of z, i.e z m- -(2 1) is 1. The highest negative power of z will come 

from the second term on the RHS of Eq. (14.3). Since k
m+1

 is the multiplier in this term, it is obvious that 

the coefficient of the highest negative power of z in the filter Z -transform is k
m+1

. Thus the last coefficient 

directly gives the value of k
m+1

. Once we know k
m+1

, we can peel off one module. Since H
m+1

 is known, 

we can construct H zm


+1( ). Thus we can determine H z
m

( ) from Eq. (14.5).

Example 14.5.1 — An example.

Consider the example of length 4 Daubechies filter with coefficients 1, h1, h2, h3. We have a 2-stage 

lattice structure to implement this filter. The analysis structure is shown in Fig. (14.12).

Given the length 4 filter, we have Eq. (14.10)
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 (14.10)

We can calculate H z
1
( ) from Eq. (14.5) as
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Consider the numerator only
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 (14.11)
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k1

−k1

k2

−k2

2

z−1

z−1

2

Figure 14.12  Lattice structure for Daubechies length 4 filter

The Daubechies filter bank impulse response is orthogonal to its even translates, i.e., the product of

1         
1 2 3

h h h

would be zero, i.e

h h h
2 1 3

= 0+

Hence,
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 (14.12)

This also gives us the value of k
1
.

k
h h h

h
1

1 2 3

3

2
=

1

-

+

The backward recursion in Eq. (14.5) is effected by

●● k
m+1

 is the coefficient of highest power of z-1.
●● As long as this coefficient is real, the denominator 1

1

2+ +k
m

 poses no problem.
●● The length of H z

m
( ) is reduced by 2, one due to cancelation of highest order coefficient, and 

one due to the orthogonality of the filter response to its even translates.

1      
1 2 3

h h h
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The inductive analysis stage is shown in Fig. 14.15.

14.6  The Synthesis Variant

The synthesis side of the lattice structure is essentially the transpose of analysis side. Hence for the first 

stage, shown in Fig. 14.13.

k1

−k1

2

z−1

2

Figure 14.13  Analysis lattice structure first stage

The corresponding synthesis stage is shown in Fig. 14.14.

k1

−k1

2

z−1

2

Figure 14.14  Synthesis lattice structure first stage

km+1

z−1

−km+1

Figure 14.15  Inductive analysis lattice structure stage

The corresponding inductive synthesis stage is shown in Fig. 14.16.

−km+1

z−1

km+1

Figure 14.16  Inductive synthesis lattice structure stage
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14.7  Efficient Deployment Schemes for Lifting Structures

In the last section we derived a computationally efficient structure to realize orthogonal filter banks, this 

structure are called as lattice.

Lattice is a periodic repetition of uniform modular piece. We also saw that complexity was more on 

the lattice structure, as it simultaneously works on two inputs to give two outputs.

For computationally efficient realization of orthogonal filter banks, we will go for further 

 simplification of lattice structure, i.e., we are going to decompose lattice stages into two sub stages 

which have more elementary operation that is called as lifting structure and this will lead to the idea of 

polyphase matrices.

14.8  The Lifting Structures and Polyphase Matrices

Figure 14.17 shows a simple lattice stage.

OUT1

−k

k

OUT2

IN1

IN2

Figure 14.17  Lattice stage

Here K is known as lattice parameter. It distinguishes one stage from the other. From Fig. 14.17 it is 

clear that two computations are performed simultaneously so basically a criss-cross is involved here.

x[n]

Z
−1

X0(Z)

X1(Z)

2

2

Figure 14.18  Operations performed in a lattice stage

Let us now relate IN1 and IN2 with OUT1 and OUT2 by method of a 2 ´ 2 matrix known as 

 polyphase matrix.

Let us introduce the idea of polyphase matrices.

At the beginning of every lattice stage, operation, as shown in Fig. 14.18, is performed. Now, we 

seek a relation between X Z( ), X Z
0
( ), X Z

1
( ).

Graphically

x x x x x
n- - - 

2 1 0 1
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The subscripts here represents the value of n.

On the X
0
 branch,

x n
0
[ ] we have ....x-4

 x-2
 x

0
 x

2
 x

4
........

On the X
1
 branch,

x n
1
[ ] we have ....x-3

 x-1
 x

1
 x

3
 x

5
........

x n[ ] is obtained by interleaving the sequence on x
0
 branch and than on x

1
 branch and continue this 

further.

x n x n n
0
[ ] = [2 ] " Î

x n x n n
1
[ ] = [2 1]+ " Î

It is easy to see

X z x n z
n

n
n( ) = [ ]

=

=
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¥
-å

can be decomposed into following two summations.
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=
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x n z x n z z
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¥
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-¥

¥
- -å å+

x n
0
[ ] and x n

1
[ ] are called the polyphase components of x n[ ], which means switching from one phase to 

another phase for one sample and the other phase for another sample and this continues for other  coming 

samples for constructing x n
0
[ ] and x n

1
[ ].

X z X z z X z( ) = ( ) ( )
0

2 1

1

2+ -

So the above equation gives a relationship between Z -transform of polyphase components and  

Z -transform of sequence.

Lattice performs operation on this polyphase components, therefore, we can say that the whole 

of analysis and synthesis filter bank is essentially a operation on polyphase components instead of an 

operation on sequence. It can be thought of as operation on 2 ́  2 sequence.

So, each stage of lattice is 2 ́  2 matrix operation on polyphase components.
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OUT1

−k

k

OUT2

IN1

IN2

op-1 op-2

Figure 14.19  Operation 1

Matrix corresponding to op-1 or operation 1 is shown in Fig. 14.19.
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Here, Int1 and Int2 stands for intermediate stages 1 and 2, respectively.

Matrix corresponding to op-2 or operation 2, as shown in Fig. 14.19,
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is known as a polyphase matrix.

1 0

0 1
z
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ê

ù

û
ú

cannot be further simplified.

But we can think of simplifying

1

1

k

k-

é

ë
ê

ù

û
ú

into an upper triangular matrix and a lower triangular matrix for reducing computational complexity.
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a

b

c
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Figure 14.20  Upper D and lower D computations
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Figure 14.20 shows the computation involve in upper D and lower D.

On solving matrix we get,

1

1
=

k

k

ap bq br

cq cr-

é

ë
ê

ù

û
ú
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On equating both sides,
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br k

cq k
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+

= -

=
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=

1

We exploit degree of freedom by choosing very simple variable.

p = 1, r = 1 where upon

a bq
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c
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1 2

So finally we get the following matrix. Structure is represented in Fig. 14.21.
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k
k

1+k2

Lower

−k

−k

Upper

Figure 14.21  Resulting structure after solving matrices

On redrawing and including delay factor as shown in Fig. 14.22.

k

k

1+k
2

Z
−1

Z
−1

−k

−k

Figure 14.22  Lifting stage

The idea of lifting is to lift from no-transform to a meaningful transform in case of up-samplers and 

down-samplers, as shown in Fig. 14.22.

X(z)

Z
−1 Z

−1

X0(z
2)X0(z)

Z
−1
X1(z)

Z
−2
X1(z

2)

Y

2

2

2

2

Figure 14.23  Lazy wavelet transform

This is called a lazy wavelet transform and has no action at all if no lattice stages are present. 

The structure is as shown in Fig. 14.23. So from a structure which does nothing at all a stage-by-

stage  structure, which has meaningful frequency response, is built. Lifting is used because it lifts the 

 inefficient wavelet transform to a transform which does great deal in time and frequency.

14.9  The Polyphase and the Modulation Approach

In earlier few sections we have discussed briefly the idea of polyphase decomposition. We will use it to 

construct different kinds of structure to carry out computation efficiency in a filter bank. In the reminder 

of this chapter we will put down formally the approach based on polyphase components for perfect 

reconstruction.
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We will discuss two approaches for perfect reconstruction:

 1. The Polyphase Approach

 2. The Modulation Approach

And we will generalized it for M-bank filter bank.

14.10  Towards Building Polyphase Structures

Consider two-bank filter bank.

x n X Z
Z Transform

[ ] ( )®
-

The Polyphase decomposition of order two is given as,

n m= 2

= 2 1,m m+ for all integer

Example 14.10.1 — Order 3.

To generalize it, consider the order 3.

n m= 3

= 3 1m +

= 3 2,m m+ for all integer

Example 14.10.2 — Order M.

In general, for order M

n Mm=

= 1Mm +



= ( 1),Mm M m+ - for all integer

So now let us put down explicitly the mechanism for the decomposition of X Z( ), the Z -transform 

of x n[ ], into the Z -transform of the polyphase component of the order M. For that we need to spilt the 

index M.

To decompose X Z( ) using polyphase decomposition of the order M.

X Z x n Z
n

n( ) = [ ]
=-¥

+¥
-å
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The term 
m

Mm
x Mm l Z

=

( )[ ]
-¥

+¥ -å +  is the Z -transform of all those points which lie at multiples of 

( )M l+ .

For example, l = 0 represents the Z -transform of all those points which lie at multiples of M. l = 1 

refers to all those points which lie at multiples of ( 1)M +  displaced by 1 from multiples of M . This can 

go up to ( 1)M -  and after this l again becomes zero.

We break X Z( ) into M disjoint parts.
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The term 
m

Mm
x Mm l Z

=

( )[ ]
-¥

+¥ -å +  can be represented by X Z
l M

M

,
( ). M th order polyphase component 

and lth of those component with the argument given by Z M is,

X Z x Mm l Z
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m

,
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X Z
l M,

( ) is essentially the Z -transform of lth polyphase component of sequence x[ ]× , order M .

Two important points order of decomposition and the component number. There will be as many 

components as the order.

When M = 2 then l = 0 or 1 When M = 3 then l = 0,1 or 2, and so on.

Relationship between Z -transform of the original sequence and Z -transform of its polyphase com-

ponent is given as,

X Z Z X Z
l

M
l

l M

M( ) = ( )
=0

1

,

-
-å

This is the manifestation of the polyphase decomposition in the Z-domain.
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Now, we would like to see how polyphase decomposition works when we have analysis and synthe-

sis side. A general relationship may be put down for analysis and synthesis polyphase components and 

their interaction, to give perfect reconstruction.

General analysis branch in M-Bank filter bank is as shown in Fig 14.24 and synthesis branch is as 

shown in Fig 14.25.

X(Z) Hk(Z) M

Figure 14.24  Analysis branch

Gk(Z)M

Figure 14.25  Synthesis branch

In a given M-Bank filter bank the number of analysis branches and synthesis branches must be same.

B is the number of branches and its value can be different from M  as depicted in Fig 14.26.

X(Z)

M

H0(Z)

Y(Z)

HB−1(Z)

G0(Z)

GB−1(Z)
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.
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.

.

.

.

.

.

Figure 14.26  M-bank filter bank structure

B M M= : critically sampled -Bank filter bank

B M M< : under sampled -Bank filter bank

B M M> : over sampled -Bank filter bank
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14.11  Polyphase Approach

Decompose the filters, both analysis and synthesis, into polyphase components and decompose the input 

and output also into its polyphase component of order M. Order of the polyphase decomposition is the 

same as the down- and up-sampling factors.

Consider the kth branch, as shown in Fig 14.27.

MHR(Z) GK(Z)
X(Z)

M

Figure 14.27  k
th branch in M-bank filter bank

Z  domain analysis,
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X(Z)Hk(Z)
M

Figure 14.28  0th Polyphase component of order M
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The 0th polyphase component, as shown in Fig 14.28, results when Z Z Z
l l l l- - - +
1 2

(
1 2

)
. =  contributes 

( ) 0Z
M l

 , l
0
Î.

Considering l
1
 and l

2
, when l

1
 is zero, l

2
 is also zero. When l

1
 is 1, l

2
 is M -1. Likewise, when l

1
 is 

M -1 l
2
 is 1.

With one l
1
 there is one unique l

2
. The relation for the l

2
 is,

l M l M
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So, when X Z H M
k

( ) ( ) is down-sampled with M , we will get
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Except for the first case (i.e. when l
1
 and l

2
, both are zero) ( )

1 2
l l+  gives M  as so after down-sampling 

by M , we get Z M-  as Z -1.

The kth row, as in Fig. 14.29, in the matrix (Fig. 14.30) is

k row H Z H Z H Z
th

k M k M M k M
= ( ). . ( ) ( )
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, 1,
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× ×-
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Analysis Outputs

Vectorkth M

B Branches
...

...

Figure 14.29  Analysis outputs of kth branches

Analysis

Vector

=
kth Row

X0,M

X0,M

XM−1,M

Figure 14.30  Analysis polyphase matrix

The size of the polyphase matrix will be as many branches times the polyphase decomposition 

B M´ .

Let us consider what happens to the kth branch after up-sampling by M  followed by filtering by G, 

as shown in Fig 14.31.

M Gk(Z) Yk(Z)

Figure 14.31  k
th Synthesis branch
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Decomposing Y Z
k
( ) into its polyphase components.
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Therefore,

Y Z G Z k
k l M

M

k l M

M th

, , , ,
( ) = ( ).{ }Output of the up sampler

Output of the kth up-sampler can be given, as given in Fig. 14.32.

kth row of analysis

polyphase matrix

X0,M

X1,M

XM−1,M

Figure 14.32  Output of the kth up sampler

Because of the up-sampler Z  has been replaced by Z M.

This is the polyphase approach to analyze the overall M-Bank filter Bank. We have seen the kth 

branch output is

           

Y Z Y Z B
k

B

k
( ) = ( )

=1

å where, is the Number of branches

Y Z G Z
l M

M

k

B

k l M

M

,

=1

, ,
( ) = ( )( )å Output of the k up-samplerth

We can write down the output of the polyphase vector component and input polyphase component 

and relate them (Fig. 14.33)

l
th Row of synthesis polyphase matrix is

[ ( ) ( )]
0, , 1, ,

G Z G Z
l M

M

B l M

M
 -

Now, we have M  such rows and each row has B elements. Whereas in analysis polyphase matrix we 

have B rows and M  elements in each row.
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The overall analysis of M-Bank filter bank with B-branches in terms of the polyphase components 

as be shown, as shown in Fig. 14.34.

Output

Polyphase

Components

=

Synthesis Polyphase

Matrix

M  × B polyphase

components of Gk

Y0,M

Y1,M

YM−1,M

Figure 14.33  Synthesis polymer matrix equated to output polyphase components

Output
Polyphase

Vector
(ZM)

=

M × 1 M × 1M × B B × M

Polyphase
Synthesis
Matrix
(ZM)

Polyphase
Analysis
Matrix
(ZM)

Input
Polyphase

Matrix
(ZM)

Figure 14.34  M-bank filter bank in terms of polyphase components

14.12  Modulation Approach

In this approach we treat down sampling as a sum of modulations. Consider an example of M = 2.

2
x[n] y[n]

2

The output y n[ ] obtained after first down-sampling the input x n[ ] by 2 and then up-sampling by 2 

can be considered as the multiplication of the input x n[ ] sequence by  101010 . Here, 1 is at every 

multiple of 2.

In general, for any positive integer M , the effect of first down-sampling by M  and then up-sampling 

by M  is same as multiplication by a sequence given below:

… � � …
� ��� ���

1 0 0 0 1 0 0 0

( 1)
-

-Multiples of M M

In the modulation approach, the idea is instead of decomposing the sequence in time we essentially 

treat the sequence as a sum of modulations. And we combine the down- and up-sampler when we treat 

it thus as a sum.
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Next, we shall go further and learn modulation approach and contrast it with the polyphase approach, 

bringing out the differences and the similarities between the two and establish condition for the perfect 

reconstruction based on both these approaches.

14.13  Modulation Analysis and 3-band Filter Bank, Application

In the previous section we have discussed one way to analyze the general system with analysis and 

synthesis filters, namely the approach of polyphase decomposition. Essentially, polyphase decomposi-

tion is a time decomposition approach where we recognize all sequences in question; whether the input 

sequence, the output sequence, filter impulse response, could be thought of comprising of as many 

subsequence as the number by which the sequence is decimated and interpolated, i.e., down-sampling 

factor and up-sampling factor. For example, if we have down-sampling and up-sampling by 2, we think 

of odd and even number points on all sequence of interest. Based on this decomposition we identify 

relation between output polyphase and input polyphase component through filter polyphase component.

Naturally, this is difficult to do in time domain, hence we use Z -domain. We also noted that  condition 

of perfect reconstruction amounts to a condition on product of polyphase matrix  corresponding to 

 analysis and synthesis side.

14.14  Final Step in Polyphase Approach

Output Polyphase

Vector

Synthesis

polyphase

Matrix

é

ë
ê

ù

û
ú =

é

ë

ê
ê
ê

ù

ûû

ú
ú
ú

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Analysis

Polyphase

Matrix

Input

Polyphase

vector

éé

ë

ê
ê
ê

ù

û

ú
ú
ú

All the matrices are of order M , which is the factor of down-sampling and up-sampling. Product of 

synthesis and analysis polyphase matrices of order M  is equal to square matrix of size M M´ .

Question to be answered is that what should this matrix be for a perfect reconstruction.

For a perfect reconstruction we require:

 
Y Z C Z X Z

D( ) = ( )
0

-  (14.13)

If we decompose Y Z( ) and X Z( ) we get,

 

Y Z Z Y Z
K

M
K

K M

M( ) = ( )
=0

1

,

-
-å  (14.14)

 

X Z Z X Z
K

M
K

K M

M( ) = ( )
=0

1

,

-
-å  (14.15)

Therefore,

 K

M

K M

M K D

K

M

K M

M K

K

M
D K

Y Z Z C Z X Z Z C Z
=0

1

, 0

=0

1

, 0

=0

1
(( ) = ( ) =

-
- -

-
-

-
- +å å å ))

,
( )X Z

K M

M  (14.16)
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We need to separate D K+ : D is fixed for all K , D K+  essentially carries out a rearrangement of 

polyphase component.

For example, M = 3, D = 5.

K K+D

0 5 2

1

2 7 1

º

º

º

6 0

Therefore 0th number polyphase component of input is mapped to 2nd number polyphase component 

of the output. Similarly, 1st and 2nd number polyphase component of input are mapped to 0th number and 

1st number polyphase component of the output, respectively.

What we have is the cyclic rearrangement of the polyphase component and, therefore, if we look 

at product matrix what we require is that every row and column must have only one nonzero entry, i.e., 

if we take every row and every column, there is exactly one nonzero entry and that is identical. The 

 constant factor in each of the entry is C
0
 and the additional delay depends on D.

14.14.1 Summary of the Method

For perfect reconstruction,

synthesis matrix ́  Analysis matrix = (following form) Each row and column has exactly one entry 

of the form C Z
L

0

- .

where, L depends on D.

For example, D = 5, M = 3

Polyphase matrices written in Z 3 , then L = 3.

Polyphase matrices written in Z  , then L = 1.

Think about: If we have to obtain perfect reconstruction but if the analysis–synthesis system 

together becomes linear shift invariant system, that means one can equivalently treat output as a result 

of input been acted upon by a LSI system with a certain transfer function. What can we say about the 

entries of this product matrix when this LSI invariance is present in overall analysis–synthesis structure? 

Can we attribute a certain structure to this product matrix?

14.15  Modulation Approach

It is frequency domain approach. Consider one of the branch:

MHl(Z)

lth  Branch

Gl(Z)

+ Yl(Z)

X(Z) M
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We wish to establish a relation across this branch. All these branches with different G Z
l
( ) will come 

together in summation to form Y Z
0
( ). Now look at

M M

This is essentially a multiplication by a periodic sequence P n
M

[ ]

P n n M
M

[ ] = 1,

= 0,

is a multiple of

else

Now, in modulation approach we think of the process of down-sampling followed by up-sampling 

as modulation by sequence and that sequence is broken into its component sequences each of which is 

exponential.

Consider one period i.e., P n
M

[ ] restricted to 0,1,...( 1)M - . Obtain its DFT.

 

P k P n W W e
M

n

M

M M

nk

M

j
M[ ] = [ ] ; =

=0

1 2-
-å

p

 (14.17)

This P k
M

[ ] is dot product of one period of the sequence with the exponential.

 
P k k M

M
[ ] = 1, = 0,1,.....( 1)-  (14.18)

Take inverse Fourier transform.

 

P k
M

W n
M

k

M

M

nk[ ] =
1

1. ;
=0

1-

å "  (14.19)

Now,

 

X Z H Z X Z H Z
M

W
l l

Modulated by

k

M

M

nk( ) ( ) ( ) ( )
1

=0

1

®[ ]® ®
-

å  (14.20)

When we modulate a sequence by a n, Z Z¬ -
a

1 in the Z -transform. Using this property repeatedly 

we note that Z -transform is the linear operator

MX(Z)Hl(Z)
1
M

X(ZWM
−k) H(ZWM

−k)
M−1

k=0
ΣM
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So we have M  modulates of input being acted upon by corresponding M  modulates of analysis 

filter.

 

Y Z G Z X ZW H ZW
l l

k

M

M

k

l M

k( ) = ( ) ( ) ( )
=0

1-
- -å  (14.21)

Vector of

Yl

Modulation

Matrix

Modulation

Vector

M×1

Size will be as many

as the no. of branch

=

l
th row of modulation matrix =

 G Z H ZW H ZW H ZW H ZW
l l M l M l M l M

M( )[ ( ). ( ). ( )...... ( )]0 1 2 ( 1)- - - - -  (14.22)

For perfect reconstruction, we first want alias cancellation.

Alias cancellation means, no contribution from X ZW
M

k( )- , k ¹ 0.

Essentially, we ask for: First column of modulation matrix is the only nonzero column. This is very 

stringent requirement. It is sufficient but not necessary. A more general condition is:

Sum of columns in the modulation matrix = 0 " ¹k 0.

Example: M = 3 and 3 channels.

G Z

G Z

G Z

H Z H ZW H ZW

H

0

1

2

0 0 3

1

0 3

2

1

0 0
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0 0

( )

( )

( )

( ) ( ) ( )

(

é

ë

ê
ê
ê

ù

û

ú
ú
ú
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What we need is this:

 l

l l

k
G Z H ZW k

=0

2

3
( ) ( ) = 0, = 1,2å -  (14.23)

Think about: Consider the ideal 3-band 3-channel filter bank where analysis 

and synthesis filters are each triple band filter. So lowpass filter is ideal filter 

with passband from 0 to 
p

3
, the middle filter is bandpass filter with passband 

from 
p

3
 to 

2

3

p
 and last is ideal highpass filter with passband from 

2

3

p
 to p . Work 

out modulation terms explicitly. 

R
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Exercises

M Y(Z)
Y1(Z)

X(Z) M

0

1X(ejw)

π−π

w

Figure 14.35  X(Z) for Q 1.

Exercise 14.1

For Fig. 14.35, show that,

Y Z
M

X Z e
k

M

M
j

M
k

1

=0

1 1 2

( ) =
1 − −

∑






p

For M = 3, obtain the output waveform of Y Z
1
( ) and Y Z( ), for the following X Z( ).

Hint: The down-sampling by M , followed by up-sampling by M  is essentially equivalent to 

 multiplication by a periodic sequence, p n
M

[ ], which is given as

p n n M
M

[ ] = 1,

= 0,

where ismultipleof

elsewhere

Consider one period of p n
M

[ ] restricted to 0 to M -1. Hence, obtain its Discrete Fourier 

Transform(DFT).

P k p n e
M

n

M

M

j kn

M[ ] = [ ]
=0

1 2- -

å
p

                    
= 1 = 0 1for tok M -

Take Inverse Discrete Fourier transform (IDFT).

p n
M

P k e
M

k

M

M

j kn

M[ ] =
1

[ ]
=0

1 2-

å 
p
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=
1

=0

1 2

M
e

k

M j kn

M

-

å
p

Consider, x n[ ], y n
1
[ ] and y n[ ] has Z -transform X Z( ), Y Z

1
( ) and Y Z( ), respectively. The translates 

of X Z( ) are shown in Fig 14.36. Hence, 

y n x n p n

x n
M

e

M
x n e

M

k

M j kn

M

k

M j k

[ ] = [ ] [ ]

= [ ]{
1

}

=
1

[ ](

=0

1 2

=0

1 2

´
-

-

å

å

p

p

MM n)

Using modulation property, we can obtain Z -transform of y n[ ] as,

 Y Z
M

X
Z

e
k

M

j k

M

( ) =
1

( )
=0

1

2

-

å p

                   

=
1

( )
=0

1 2

M
X Ze

k

M j k

M

- -

å
p

Using noble identity for up-sampler by M , we can obtain Y Z
1
( ) as follows,

Y Z Y Z

M
X Z e

M

k

M
M

j k

M

1

=0

1 2

( ) = ( )

=
1

( )

−

−
−

−

∑
p

For M = 3, Y Z( ) can be obtained as,

 Y Z X Ze
k

j k

( ) =
1

3
( )

=0

2 2

3∑
− p

=
1

3
{ ( ) ( ) ( )}

2

3

4

3X Z X Ze X Ze

j j

+ +
− −p p

On adding these translates, we get, Y Z( ), and by stretching w-axis, we can obtain Y Z
1
( ) , as 

shown in Fig. 14.37.
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−3π −2π

X(ejw) 1 k = 0

k = 1
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−π

w

−3π −2π −2π
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2π 3π−π

3
π

3
π0

−π

w

−3π −2π −2π
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2π
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2π 3π−π

3
π

3
π0

−π

Figure 14.36  Translates of X Ze

j k

( )
2

3

- p

 for k = 0,1,2 respectively

Exercise 14.2

Find lattice coefficients k
1
 and k

2
 for Daubechies family length 4 filter, given that the filter   

coefficients are
 
1, 3, 3 2 3, 3 2- + - .

Hint: As discussed above, the last coefficient of the filter directly reveals k
2
. Hence

k
2

= 3 2-

We have also calculated



436 Multiresolution and Multirate Signal Processing

5
9

4
9

−3π −2π −2π
3

2π
3

2π 3π

w

−π

3
π

3
π0

−π

w

Y(Z)

5
9

4
9

Y1(Z)

−3π −2π −2π
3

2π
3

2π 3π−π

3
π

3
π0

−π

Figure 14.37  Y Z( ) and Y Z
1
( )
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1 2 3
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2
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=
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=
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=
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1 (3

-

+
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-

4 3 4)

=
6 3 6

8 4 3

=
3 3 3

4 2 3

 (14.24)

The Daubechies 4 filter analysis side is shown in Fig. 14.38
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÷3 − 2

−(÷3−2)
−

3÷3−3

4−2÷3

2

2
z
−1

z
−1

3÷3−3

4−2÷3

Figure 14.38  Daubechies 4 filter analysis lattice structure

z
−2

km+1

Hm(z)Hm+1(z)

Hm+1(z) Hm(z)

−km+1

Figure 14.39  Synthesis lattice stage

Exercise 14.3 

Work out the recursive relations for synthesis lattice structure.

Hint: A lattice stage is after moving upsampler location prior to H z
m

( ) is shown in Fig. 14.39.

Thus, the recursive relations work out as follows

 
H z H z k H z

m m m m( ) = ( ) ( )
1 1 1+ + +-   (14.25)

 
H z z H z k H zm m m m
 ( ) = ( ( ) ( ))2

1 1 1

-
+ + ++  (14.26)

(NOTE: The readers should verify that H z
m

( ) length indeed decreases by 2 as compared to 

length of H z
m+1

( ) and H zm


+1( ) by taking example of Daub 4 filter).

R





15.1  Introduction

In this book, we have predominantly used the Daubechies N  wavelets, specifically Daub 1 (the Haar) 

and Daub 2 wavelets and few other higher order members in Daubechies family. The main reason 

behind illustrating with Haar was its simple form which brings out clarity in the computations. More 

global reason for using general Daub N  scaling functions and corresponding wavelets is the inherent 

orthonormal nature which suits the multiresolution analysis framework. This has been the scenario till 

Chapter 10.

In Chapters 11 and 12 we illustrated with the splines scaling functions as examples of bases that are 

not orthogonal and looked at the bi-orthogonal tap structures as well.

We illustrated the splines with the linear roof (triangular) function and the quadratic B-spline. In 

this chapter we wish to go beyond the splines and by virtue of doing orthogonalization we intend to 

make these splines orthogonal, which are known to us as the B-spline Battle-Lemaire scaling functions 

and wavelets.

In fact, in this chapter we wish to expose readers to following different families of wavelets:

●● Coifl ets (Extended vanishing moments)
●● Symlets (Nearly Symmetrical Wavelets)
●● Morlets (No scaling function f(.)  only y (.) )
●● Mexican Hat (belongs to derivation of gaussian wavelets)
●● Mayer (Wavelet and scaling functions defi ned in frequency domain)
●● Battle-Lemaire (Orthogonalized splines)

Other Wavelet 
Families

Chapter

Introduction

Coiflets

Symlet filters

Morlet filters

Mexican hat filters

Meyer filters

Battle-lemarie wavelets – orthogonalization 
of the B-splines

Gabor filters

Shannon filters

Biorthogonal filters

Summary

15
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●● Gabor wavelet
●● Shannon wavelet (example of Complex Wavelets)
●● Bi-orthogonal Filters

All these wavelet families have their own special characteristics and we shall bring those character-

istics out systematically.

15.2  Coiflets

In this section we present a very important set of orthonormal scaling functions and wavelets, namely, 

the Coiflets.

The Coiflets can be understood by its very important characteristics of vanishing higher moments 

for the scaling functions f(.) . In Chapter 18 while discussing interesting wavelet applications we shall 

demonstrate importance of the vanishing high number of moments for a wavelet y (.) function. A 

wavelet function with more and more vanishing moments is important for building applications like 

compression, denoising, detection of discontinuities to name a few. By the admissibility condition the 

zeroth moment (zeroth moment m
0

 is the mean value, any wavelet when integrated over its compact 

support produces a zero) of any wavelet always vanishes. The key lies in design of the filter to make 

higher moments vanish. For example, if a particular wavelet has m m m m m
0 1 2 3 4

= = = = = 0, then it 

has five vanishing moments. This indicates that up to fifth order derivative the analysis using such 

mother wavelet is possible and so decomposition does happen at these derivatives. As a consequence 

this mother wavelet does not per say “sense” these derivatives in the decomposed version of the signal 

and these very small values can be ignored at the time of reconstruction or synthesis of the signal. This, 

thus results into energy compaction thus providing compression.

Now, if we pose the question if the same rationale can be applied for the scaling function coeffi-

cients. Here, of course, we have 
-¥

¥

ò f( ) = 1 =
0

t dt M , so the zeroth moment of a typical scaling function 

does not vanish. This also has strong connection to the fact that scaling function is the ‘low pass filter’ 

and hence the zeroth moment will not vanish. However, we may follow up on vanishing higher moments

M t t dt
n

n= ( )
-¥

¥

ò f

for n = 1,2 , as an example.

This concept of allowing higher moments of scaling function to vanish was proposed by Prof.  

R. Coifman of Yale University in 1989. This idea was taken up by Dr. Ingrid Daubechies who not only 

very convincingly proposed solution to this intriguing problem but also came up with neat implementa-

tion scheme. She was gracious enough in constructing these wavelets and named these wavelets, after 

Coifman, as ‘coiflet’!

The readers may wonder what serious advantages these coiflets will have over traditional wavelets, 

say Daubechies family, and how these advantages are tangible in vivid applications. To understand this, 

let us recollect the framework of multiresolution that was introduced in Chapter 2 and has been used in 

subsequent chapters to explain various concepts. The framework suggests:

For function f x v
j j
( )Î , and for window of analysis w

a j
=

1

2

the span of the function using the orthonormal scaling function will be span 2 (2 )2

j

j
x kf -

ì
í
î

ü
ý
þ
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The function can be represented as:

 

f x x kj

k

j k

j

j( ) = 2 (2 ),
2∑ −a f  (15.1)

where, the a
j k,

 values are approximated values and are calculated as:

 
a f

j k j

j

j
f x x k

,
2= ( )2 (2 )

-¥

¥

ò -  (15.2)

The zeroth moment of scaling function never vanishes, hence the emphasis is on higher order 

moments of the scaling function getting vanished. Here for a scaling function with M M
1 2

= = 0, it is 

sufficient to consider only the first term f k
j(2 )-  in the above formula of a

j k,
.

Thus, with such scaling functions, the scaling coefficients

a f
j k

j

j
f t t k dt

,
2= ( )2 (2 )

-¥

¥

ò -

can be approximated at the scale level j J=  by

-¥

¥ - -

-¥

¥

ò òf k t dt f k t dt
J

J

J

J

J J(2 )2 (2 ) = 2 (2 ) (2 )2 2f f

= 2 (2 )
1

2
(2 ) (2 ),2

J

J

J

J J
f k t d t

-

-¥

¥

ò f

a
J k

J

J
f k

,
22 (2 )(1)»

- -

These equations can be written as functions of some independent variable, it could be x  or t  or any 

other variable of our choice. This means that such scaling functions do not ‘perceive’ the second- and 

third-order derivatives.

Thus, as was suggested by Coifman, for a scaling function with vanishing higher moments, an 

advantage exists. It is for a
J k,

, instead of using the samples of the signal in the integral, it is sufficient 

to use only the fine scale coefficients a
J k

J

J
f k

,
22 (2 )»

- -  with samples at 
k

J2
. The consequence of this, 

is that we have a “close match” between the average (trend) of the signal and the signal itself. This is 

so, since, here the scaling coefficients are found in terms of the more refined samples f
k

J
J2

,
æ

è
ç

ö

ø
÷  of the 

signal. Here J  could be any value more than 1, and larger this value gets closer we approach the actual 

signal in our quest to go ‘tantalizingly’ close to the signal under analysis.

The Coiflet scaling functions coefficients can be produced in a closed form. For example, those for 

Coif1 are

h
0

=
1 7

16 2

-
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h
1

=
5 7

16 2

+

h
2

=
14 2 7

16 2

+

h
3

=
14 2 7

16 2

-

h
4

=
1 7

16 2

-
and

h
5

=
3 7

16 2

+

The coefficients g n
n
, = 0,1,2,...,  for constructing the Coif1 wavelets are related to h

n
 of the associ-

ated scaling functions as

g h
n

n

n
= ( 1)

5
- -

y f( ) = 2 (2 )t g t k
k

kå -

g h
0 5

=

g h
1 4

= -

g h
2 3

=

g h
3 2

= -

g h
4 1

=

g h
5 0

= −

We have already seen in Chapters 3 and 4 the close relationship between the analysis filters to 

construct scaling and wavelet functions using iterative approach. The same approach can be used to 

construct these functions. This is depicted in Fig. 15.1.

In Coiflets, coifN  nomenclature is used where N  is the number of vanishing moments for both 

scaling as well as wavelet function. Another nomenclature makes use of the filter length to refer to these 

filters as 3N.

As more moments vanish, though more filter coefficients are required to be invested, it results into 

more regular scaling and wavelet filters. As more moments vanish they also ‘perceive’ more derivatives 

in the smoother parts of the signals thus producing better compression.

Figure 15.2 captures the analysis low and high pass filters along with Scaling ( (.))f  and wavelet 

( (.))y  functions of Coif 5. The Scaling ( (.))f  and wavelet ( (.))y  are smoother and more regular.
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Figure 15.1   Coif1 Wavelet. Analysis Low and High pass filters along with Sacling ( (.))f  and wavelet 
( (.))y  functions
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15.2.1  Design Strategy for Coiflet Filters

We have already studied design of Daub-4 and Daub-6 filters. We used combinations of conditions 

coming from W
N  

and lowpass conditions imposed on fourier representation H( )w  of h[n]

Therefore, for filter h h h h
l

= ,
0 1



 

H

m
L

m( ) ( ) = 0

= 0, ,
1

2

p

where 
−  (15.3)

Higher order helps in more and more suppression @ w p=  orthogonality conditions gave us

 k

L

k
h

=0

2 = 1å  (15.4)

and

 k m

L

k k m
h h m

L

=2

2
= , = 1,2, ,

1

2
.∑ ⋅

−
− 0   (15.5)

R. Coifman of yale university was also particularly interested in maximizing vanishing movements 

of scaling function f(.)

Dr. Ingrid Daubechies proposed solution to impose derivative conditions on H( )w , at w = 0, thus 

optimizing the low pass band as well.

Therefore, design focuses on constructing orthogonal filter ‘h’ such that

H
m( ) = 0, m = 1,2,

 Ronald Coifman

Ronald Raphael Coifman is the Phillips Professor of Mathematics at Yale University. Coifman gradu-

ated from the University of Geneva in 1965. Coifman is a member of the American Academy of Arts 

and Sciences, the Connecticut Academy of Science and Engineering, and the National Academy of 

Sciences, Washington, USA. He is a recipient of the 1996 DARPA Sustained Excellence Award, the 

1996 Connecticut Science Medal, the 1999 Pioneer Award of the International Society for Industrial 

and Applied Science, and the 1999 National Medal of Science.
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Now, typically binomial coefficient is defined as:
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Ingrid Daubechies used in Eq. (15.6) through an interesting identity:
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An informal proof of this identity is provided in Appendix (Chapter 19) using above identity,

Let k = 1,2,... and define the 2p -periodic H( )w as
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then,

H(0) = 2 (orthogonal unit chosen).

H m k
m( ) (0) = 0, = 0,1, ,2 1 -

H m k
m( ) ( ) = 0, = 0,1, ,2 1p  -

also,

| ( ) | | ( ) | = 22 2
H Hw w p+ +

The complete proof is given by Daubechies, however, we shall try and bring out only those parts 

which are intuitively important for signal processing.

To understand, H m k
m( ) ( ) = 0, = 0,1, ,2 1p  -
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We put Eqs (15.9) in (15.8)

H
e

e
k jk

j
k

( ) =
2

2
1

2

2

w
w

w

-
+( )

 

×
- +æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷ ×

- -

å å
j

k
j k

j

k

l

k j

j
a

=0

1
2 2

=0

2 11

2 2
sin sin

w w
ee

jlw
æ

è
ç

ö

ø
÷  (15.10)



446 Multiresolution and Multirate Signal Processing

Since this equation has ( )1 2+ e
j kw  factor, it has roof multiplicity at least 2K @ w p= .

Rewriting Eq. (15.10)
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again,
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putting Eq. (15.12) into Eq. (15.11), we get
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if f w w( ) = ( ) 2H - , we see

Q( )w  has ( )1 (2 )- e
j kw  factor!

Therefore, has roof multiplicity atleast 2k @ w = 0 ; Q
m( ) = 0, for m = 0, 1, ..., 2k – 1

for m = 0

Q(0) = H(0) – 2  = 0

∴ H(0) = 2

For m K= 1, ,2 1 -

Q H w
m m( ) = ( )

∴ H
m( ) (0) = 0!

coiflet filter for K = 1

from and for K = 1
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we put thus in Eq. (15.14),
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These filter coefficients suggest support from −[ ]2,3

Therefore, filter in non-causal,which can be made causal by introducing a delay train of two ele-

ments, in sense of convolution.

Let’s impose orthogonality conditions,
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Solving for unknown G
0
 and a

1
,

We get by plugin t
1
 in Eqs (15.17, 15.18, and 15.19)
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Simplifying we get
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Strategy
This strategy is exactly similar to the one we saw in finding the h k+  for Daub-6. This strategy imposes 

orthogonality and low and high pass conditions, along with flattening stop frequencies at w p=  by tak-

ing first and second order of derivatives of H( )w .

This gives us following equations to be solved.
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Readers are encouraged to use symbolic math toolbox of MATLAB to solve above system of 

equations.

Wavelet constructions for Coiflet

Since, (2 1K - ) will always remain an odd integer, we use

g h
k

K

K K
= ( 1)

(2 1)
- - -

When K = 1,

g h
k

K

K
= ( 1)

1
- -
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\ - - -- -g h g h g h g h g h g h
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= , = , = , = , = , =  (Plug in actual values too)

Wavelet transform matrix of Coiflet filter will look like:
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15.3  Symlet Filters

We have already seen in Chapters 2 to 6 how Daubechies filters got evolved and from Haar which is also 

the first member of Daubechies family ( 1)db -  we saw filters designs of few higher members with the 

likes of ( 2)db -  and ( 3)db - . Daubechies filters are orthogonal filters and they have compact support 

which makes them a natural choice for many practical applications. We have also seen the importance 

of filter coefficients being even. If the scaling coefficients are represented as h h h
p0 1 2 1

, ,..., - , then the 

normalized version of it will be 2 , ,...,
0 1 2 1

´ -h h h
p

. In chapter 4 we have also shown that by double 

shift of these coefficients 
n n n k k
h hå -2

= d  the orthogonality os maintained. The Haar case is depicted 

by p = 1, where filter length is 2 with only one vanishing moment. The function becomes smoother as 

p  increases, however length of the filter also increases thus demanding more hardware to be invested. 

These Daubechies filters with 2p  filter length have p vanishing moments and are orthogonal and depict 

compact support. These filters, however, lack symmetry for p > 1 . Haar filter are symmetric, however 

they have some inherent drawbacks and as we move higher in the family, the higher members lack 

symmetry. This is precise where ‘symlets’ play important role and they produce symmetric or near sym-

metric filters, thus producing scaling function f(.)  to be linear phase or nearly linear phase. Since these 

filters are ‘symmetric’ they are called as ‘symlets’.

Example 6.2.1 – D2 Calculations from Chapter 6 depicts the complete design of the D2 filter. It 

derives the h
k

 components from B
0
 and in Eq. (6.4) we have explained choice made by Daubechies 

to select B
0

= 2 3- + . This value keeps it inside the unit circle and when all the zeros are inside unit 

circle, such systems are called as minimum phase systems. These filters, however are very asymmetric 

and it can be shown that these filters have their energy concentrated close to the starting coefficients of 

the filter. Daubechies has shown that Haar filter is the only filter to have linear support though it belongs 

to the compactly supported conjugate mirror family. The ‘symmlets’ are obtained by selecting the B
0
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Figure 15.3   Symlet Wavelet (sym8). Analysis Low and High pass filters along with Sacling ( (.))f  and 
wavelet ( (.))y  functions

value for obtaining near linear phase. The resulting y (.)  has a minimum support [ 1, ]- +p p  with p  

vanishing moments, however they are near symmetric. The filters are depicted in Fig. 15.3. 

Figure 15.4 has three parts. (A) shows h  as analysis low pass filter, g  as analysis high pass filter, rh  

as synthesis low pass filter and rg  as synthesis high pass filter. (B) shows the magnitude response of all 

the four filters and (C) shows the phase response of these filters. From (C) it is clear that the ‘symmlets’ 

have near linear phase and near symmetric scaling and wavelet equations emerging out of h
k

 and g
k

.

Following MATLAB example depicts generation of discrete wavelet kernels, which is used for 

 different diagrams in this chapter.
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15.4  Morlet Filters

 Jean Morlet

J. Morlet (born 13 January 1931) is French geophysicist. He is considered to be the one who invented 

the term ‘wavelet’. In 1981 he worked with Grossman to develop what is known to us as ‘wavelet 

transform’. He was awarded in 1997 with the Reginald Fessenden Award for his contributions in the 

field of wavelets.
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Figure 15.4  Symlet filters and filter responses (Continued)
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Figure 15.4  (Continued)

J. Morlet for doing analysis of seismic data proposed the ‘Morlet Filters’ in 1983. This is a different 

mother basis function than what we have discussed so far. This mother wavelet does NOT have the 

corresponding scaling function and is a kernel meant for a typical continuous domain processing. This 

book emphasizes more on the Discrete Wavelet Transform (DWT) and seldom we have touched upon 

the Continuous Wavelet Transform (CWT). This is because the modern signal processing is predomi-

nantly digital or discrete in treating the signals for the numerous advantages of digital domain over 

analog, which are discussed in depths in basic texts on signal processing and hence we shall not discuss 

it here.

In DWT the signals are sampled and hence are discrete, thus f lÎ 2 ( )  (for non-periodic signals for 

whom we seek transform solutions). In DWT the dilation and translation parameters are also discrete. 

There is no harm, thematically at least, in keeping the dilation and translation parameters continuous. 

If we call these parameters as a  and b  respectively, then the the wavelets formulae is CWT sense can 

be written as:

 
y y

a b
t a a t b a a b

,
( ) = | | ( ( )),   0,  ,- ¹ Î  (15.21)

with y ÎL2 .

Morlet function is used in CWT analysis. This function does not have corresponding f(.)  scaling 

function and the y (.)  function satisfies the admissibility condition only approximately.

One way of looking at the Morlet function is it’s a modulated version of the Gaussian kernel. 

Mathematically it is represented as: y a( ) =
2 /2

t e e
i t t- , where the a  parameter needs to be chosen care-

fully. This wavelet does NOT satisfy the condition ŷ (0) = 0 , however for a ³ 5.5  the conditions gets 

almost satisfied with negligible error.
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The filters are depicted in Fig. 15.5(a).
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Continuous Wavelet Kernels

Figure 15.5   Continuous Wavelet Kernels. (a) depicts Morlet Wavelet and (b) depicts Mexican  
Hat Wavelet

Following MATLAB example demos continuous wavelet kernels.
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15.4.1  Morlet Wavelet Design Strategy

Morlet wavelet is a kernel for CWT. CWT W b a
x
( , )  of a continuous-time function x t( )  is defined as:

 

W b a a x t
t b

a
dt

x
( , ) =| | ( )

1

2
−

−∞

∞ ∗∫ ⋅
−




⋅y  (15.22)

Therefore, CWT is an ‘inner’ or ‘dot’ product between the signal to be analyzed x t( )  &  scaled 

and translated version of mother wavelet y ( )t . The ‘a’ scales the wavelet function and ‘b’ shifts or 

translates it.

One way of understanding CWT is to consider y ( )t  to be a bandpass impulse response and then 

CWT becomes a bandpass analysis. This D  change in a a:= D  will directly affect bandwidth and cen-

tral frequency (first two statistical parameters) of the bandpass.

For fixed values of ‘a’, the transform in Eq. (15.22) becomes time-reversed and scaled wavelet func-

tion convolved with the function x t( ) .
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Factor | |
1

2a
-

 is the normalizing factor and it makes the basis orthonormal. This ensures 

"
-æ

è
ç

ö

ø
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- *| |
1

2a
t

a
y  with a Î  IR the energy remains same. For wavelet transform,while doing effective 

representations of signal x t( ) , it is important to ensure perfect reconstruction from the representations.
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Mathematically,
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where,

y Y w( ) ( ).
t
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To Satisfy Eq. (15.24)

 
Y y(0) = ( ) = 0

-¥

¥

ò ×t dt  (15.25)

This is known to us as ‘admissibility condition’ of wavelet y ( )t .  The | ( ) |Y w  must decrease rapidly for 

| | 0w ®  approaching | |w ®¥ . Therefore, y ( )t  must have bandpass impulse response, which results 

into a small wave or a compactly supported ‘wavelet’.

One example of such type of wave is complex Morlet wavelet, which is nothing else but a plane 

wave modulated by a Gaussian envelope.
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2

2t e e
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×
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 (15.26)

Here, parameter ‘a’ is the wavenumber associated with Morlet wavelet. ‘a’ is connected with the num-

ber of oscillations of morlet mother wavelet.

The Fourier transform of Eq. (15.26) will be,

 
ŷ p

p a
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2
(2 )2

W
W
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e  (15.27)

For admissibility condition to get fulfilled at W = 0,

Eq. (15.27) should be ‘0’.

It is easy to see, however, that Eq. (15.27) doesn’t satisfy admissibility condition of wavelet.

\ The zeroth moment doesn’t vanish!.

In order to make this a wavelet, we enforce the admissibility condition by setting

 
y( = 0) = 0W  (15.28)

If we evaluate Eq. (15.27) at W = 0 , then it gives an additional factor of e
-
a2

2  because of which the 

admissibility is not met.

To compensate for the same, Eq. (15.27) can be modified as follows:
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When above Eq. (15.29) is evaluated at W = 0 , it gives us

 

y p
a a

( ) | = 2 = 0
=0

2

2

2

2 0Ω Ω e e e

− −

− ⋅












 (15.30)

The correction factor of e
-
a2

2  is important and also modifies the representation in time domain accord-

ingly. The Morlet wavelet adjusted for admissibility thus becomes,
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×
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 (15.31)

The admissibility is achieved as in Fourier domain (Eq. (15.29)) the correction decrease rapidly as we 

move away from W = 0  point on W -axis.

For the wavelet to have compact support at given dilation ‘a’, it’s frequency gets centered at: 

W
W

=
2

y

pa
,

where

 

W
W W W

W W
y

y

y
=

| ( ) |

| ( ) |

0

0

¥

¥

ò
ò

×

×

ˆ

ˆ

d

d

 (15.32)

For Complex Morlet, center frequency is controlled by ‘a ’.

∴

 
Ωy a=  (15.33)

Following MATLAB example depicts creation of the Morlet kernel.
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The outcome of the code above is shown in Fig. 15.6.

15.5  Mexican Hat Filters

This basis function is used in CWT analysis just like Morlet basis. Though the function and it’s Fourier 

transform do not have compact support in strict sense, the wavelet function satisfies the admissibility 

condition (unlike Morlet) and has two vanishing moments associated with it. The Mexican Har wavelet 

filter is depicted in Fig. 15.5(b).

This function in its appearance looks like a ‘Mexican Hat’ and hence has been named likewise.  

The Mexican hat basis function is derived from Gaussian function and in fact is second order derivative 

of e
t- 2

2 .

The wavelet has mathematical form as follows:

 
y ( ) = ( 1)2

1

2

2

t t e
t

-
-

 (15.34)

The Fourier transform of Eq. (15.34) will be

 
y w w w

w

( ) = ( ) ( ) =2 2 /2 2

2

2i e e
t


− −

−

 (15.35)

From Eqs. (15.34) and (15.35) it can be observed that neither the wavelet function nor its Fourier 

representation has compact support. Good news, however is, they both decay rapidly outside finite 

width. If Eq. (15.35) is evaluated at w = 0, it becomes 0, which ensures that this wavelet basis follows 

admissibility condition. We encourage the readers to solve the zeroth and first moments and confirm that 

they both vanish for Mexican Hat Wavelet function.
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15.6  Meyer Filters
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Figure 15.6  Designed Morlet Wavelet

 Yves Meyer

Y. Meyer (born 19 July 1939) is French mathematician and scientist. He along with Mallat gave 

the framework of multiresolution analysis. The wavelet constructed by him are named after his as 

‘Meyer Wavelet filters’. He is currently Professor Emeritus at the Ecole Normale Superieure de 

Cachan and has won many prestigious awards like 2010 Gauss award.

Yves Meyer was able to construct smooth orthogonal wavelet basis using the design strategy in Fourier 

domain.He was able to come with neat representation of Fourier transform ( f̂ w( ) ) of scaling function 

(f( )t ) as:
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Where x( × ) is a smooth function and

 

x t( ) =
0,

1,

if 0

if 1

t

t

≤
≥





 (15.37)

With another property

 x t x t( ) (1 ) = 1+ -  (15.38)

In Chapters 2 to 6,we have understood that in orthogonal filters,y ( )×  can be calculated from f( )× .

Therefore, Fourier representation of y  will be,
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 (15.39)

Inverse of Eq. (15.39) gives us y ( )t , as Eq. (15.39) is compactly supported.

The filters are depicted in Fig. 15.7.
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Figure 15.7   Meyer’s Wavelet. Analysis Low and High pass filters along with Scaling ( (.))f  and 
wavelet ( (.))y  functions
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15.7   Battle-Lemarie Wavelets – Orthogonalization  
of the B-Splines

We have already seen the roof scaling function in Chapter 12, which is a special case of an important 

family of scaling functions, namely, the B-splines. In Chapter 12 we have mentioned that the roof func-

tion is a linear spline, which can be constructed as a self convolution of the gate function (spline of 

degree zero). In general, the Rth convolution ( ( )p p t
a

R

a
   of the gate function p t

a
( )  is a B-spline 

of degree R +1, and it is written as f
R

a R t R a t R a+ + - + £ £ +
1
( ( 1), ), ( 1) ( 1) . It is identically zero 

outside this interval and provides, what we are seeking, a compact support. So, the roof function is 

f
2
(2 , ), 2 2a t a t a- £ £ , and the gate function p t

a
( )  is f

1
( , ), < <a t a t a- . The roof function is defined on 

the four subintervals: ( , 2 ],[ 2 ,0],[0,2 ]-¥ - -a a a , and [2 , )a ¥ . We also note that at the boundary points 

t a= 2 ,0- , and 2a  between these four subintervals, the first derivative has a jump discontinuity. These 

points are called the knots of this B-spline. It turned out that f
R

a R t+ +
1
( ( 1), )  is defined on R + 2  sub-

intervals with continuous derivatives up to the order R -1 at the knots. In the case of the roof function 

with R = 1 , only the zeroth derivative, i.e., the function itself is continuous.

Another example of the quadratic B-spline could be f
3

3

2
, t
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Differentiating again (i.e. the second order derivative of the original function), we see the jump discon-

tinuities of its second derivative at these four knots.
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As it is the case with the roof function, it is a usual practice that we translate the spline function such 

that the knots fall at integer multiples. In this case we translate (shift) f
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From the convolution theorem we get,
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and with the translation property of the Fourier transform, we have
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In Chapter 12 we showed that the roof function (B-spline of degree 1) satisfies the scaling equation with 

scaling coefficients h h h
0 1 2

=
1

2
, = 1, =

1

2
. Here, we can do the same verification for f
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2
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its four non-vanishing scaling coefficients h h h
0 1 2

=
1

4
, =

3

4
, =

3

4
 and h

3
=

1

4
. We leave this part to read-

ers for further investigation and confirmations of the details mentioned above.

15.7.1  Battle-Lemarie Design Details

In Chapter 12 we have shown that the B-splines make good scaling functions, with their important prop-

erty of compact support. Yet, as we had illustrated for the roof function, they are not orthogonal with 

respect to their translation by integers. Simplest way to understand this is when we translate the function 

by factor of 1 and take the dot product with the original function, it does NOT produce zero. Thus, they 

can not comply with the usual multiresolution analysis (MRA) framework, where the orthogonality is at 

the core. The design question is can they be made orthogonal. This brings us to the (orthogonal) Battle-

Lemarie scaling functions that are constructed using the B-splines.

While such new scaling functions are orthogonal with respect to translations by integers (including 

the shift by 1), they on the other hand, lose on account of having a compact support. The final result of 

the method for modifying the B-spline is to become the Battle-Lemarie (orthogonal) scaling functions.

This modification method relies heavily on the Fourier transform of F w
R+1

( )  of the f
R

t+1
( ) - 

B-spline, and the sum of the squares of its translates by 2 , ( 2 )
1

2p F w pk k
k Rå + +| | . The method starts by 

modifying the F w
R+1

( )  to F
R+1

( )w  as,
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2

( ) = ( ) 2 ( )| |  (15.40)

Then it is important to find the inverse Fourier transform of F
R

w+1
( )  as f

R
t+1

( ) , which is the desired 

orthogonal Battle-Lemarie scaling function.

As an example from Ten lectures by Daubechies, with the Fourier transform F w
2
( )  of the linear 

B-spline in Eq. (15.40), it is found that:
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That gives us,
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 (15.42)

What remains is to find f
2
( )t , the inverse Fourier transform of this F w

2
( ) . This works for having 

an orthogonal Battle-Lemarie scaling function. The next design quest is to find its scaling coefficients, 

more over their relation to coefficients of constructing the associated wavelet. The interested readers can 

divulge deeper into this and this certainly forms a very good topic to research on.
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The filters are depicted in Fig. 15.8.
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Figure 15.8  Battle-Lemarie Wavelet. Synthesis Sacling ( (.))f  and wavelet ( (.))y  functions

15.8  Gabor Filters

Gabor wavelets were invented by Denis Gabor. They are well known for their ability to capture oriented 

information from the signal or image to be analyzed. This salient feature makes them more useful in 

analysis of oriented images like fingerprint images. 2D  Gabor kernel can be looked upon as Gaussian 

kernel function modulated by sinusoidals (sin and cos waves).

The formulae for Gabor filters in 2D  sense is given as:

 
G i j C e f i j

c

i j

[ , ] = (2 ( ))
1

( 2 2 )

2 2

- +

+s p q qcos cos sin  (15.43)

 
G i j C e f i j

s

i j

[ , ] = (2 ( ))
2

( 2 2 )

2 2

- +

+s p q qsin cos sin
 (15.44)

Where, C
1
 and C

2
 are used for normalization. Variation in q  helps an engineer in analyzing the 

oriented information in a particular direction.

15.9  Shannon Filters

Shannon wavelet is also called an ‘Sinc’ wavelet.
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Its Fourier transform H( )w  is:

 

H( ) =
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 (15.45)

This is nothing else but an ideal low pass filter!

This leads the solution to normalizing factor of 2p
e.g. if
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Then, dilation equation f w w f w(2 ) = ( ) ( )c ×  gets satisfied.

In time domain,

 

y y( ) = (2 )t g t K
K

kå × -  (15.47)

If g
0

 = 1 and g
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= 0

and g
K

K
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(2 1)
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then,
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t
×
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 (15.48)

Since Eq. (15.45) is normalized, it‘s time domain representation will be

 
h t

t

t
( ) =

( )sin p

p
 (15.49)

This is sinc form of solution, Therefore, this filter is also called sinc wavelet.

 The filter coefficients will be (normalized),

h h n
n0 2

=
1

2
, = 0, 0¹
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h
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Wavelet function gets derived from corresponding high pass filter
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Therefore, filter coefficients will be,
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The filters are depicted in Fig. 15.9.
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Figure 15.9   Shannon wavelet. Analysis low and high pass filters along with Scaling ( (.))f  and 
wavelet ( (.))y  functions
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15.10  Bi-orthogonal Filters

The design strategy could be as under.

Haar filter is the only finite length, symmetric, orthogonal filter whose Fourier representation [ H( )w ] 

satisfies zero derivative conditions at w p= , as was explained by Daubechies.

Researchers across the globe have confirmed that having symmetric filters is advantageous in mul-

tiple ways for many real life applications.

Another important characteristics of filters is orthogonality. It guarantees energy preservation and 

inverse of wavelet transform matrix. For orthogonal filter ‘h’ that gives orthogonal transform matrix W
N

,  

the implementation is straight forward. This is because W
N

 is ‘unitary’ which guarantees that for all 

real valued W
N

, W W
N N

T-1 = . This simple transpose gives us the inverse,which is very crucial in inverse 

calculations as as ‘separable’ multidimensional calculations.

For ‘non-orthogonal’ filters, however, one strategy to build the system we desire could be to ensure 

that inverse of transform matrix is transpose of another transformation matrix.

WN
−1 = WN

T
∼

WN

∼

hk,gk
∼
∼

hk,kk
∼

hk,gk

WN

then

is biorthogonal filter pair

iff

Haar, though orthogonal, finite length and symmetric, has its own drawback the we have already 

brought out. Going beyond filter length of ‘2’,we shall give up ‘orthogonality’ as requirement coming 

as filter constraint.

Let us try constructing 
5

3
 normalized tap:

Design problem:

 1. From symmetric h
k

 and g
k

 2. Construct wavelet transform W
N

  3. When inverse W
N

-1  is calculated.

  4. W
N

-1  should also be a transform matrix!

  5. Find such g h
k k

 and  (symmetric)!

Let ‘ H
B

’ be 
N

N
2
´  matrix from h

k
.

Let ‘ G
B

’ be 
N

N
2
´  matrix from g

k
.

Let ‘ GB
 ’ be 

N
N

2
´  matrix from g

k
 .

Let ‘ H B
 ’ be 

N
N

2
´  matrix from hk

 .
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Forward wavelet matrix can be written as:
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For synthesis part, similarly,

W
H

G
B

B

B







=
é

ë
ê
ê

ù

û
ú
ú

keeping in mind,we want to create dual filters in semi-orthogonal sense,
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\ Analysis low pass filter has 5 coefficients and Synthesis low pass filter has 3 coefficients

as ‘5’ is bigger of them,
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1 1 ,1 2 1st st st nd st
row column row column row last column´ ´ ´and  will give us three equations,

 
h h h h h h

0 0 1 1 1 1 = 1× + × + ×- -
    (15.54)

 
h h h h
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2 0 1 1 = 0   (15.56)

Equation (15.54) can be written as,
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k kh h
= 1

1

= 1
-
å ×   (15.57)

Equation (15.55) and (15.56) can be written as,
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k m kh h m
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5 5

Here,

g g g g g g g g g g
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= , , = , , , ,
1 0 1 2 1 0 1 2− − −{ } { }and 

Therefore, analysis high pass filter has ‘3’ coefficients,

synthesis high pass filter has ‘5’ coefficients
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g g g g

0 2 1 1
= 0× + ×- -

   (15.60)

 
g g g g

0 2 1 1
= 0× + ×-

   (15.61)
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Therefore, equation (15.59) get written as:

 K

k k
g g

= 1

1

= 1
-
å ×   (15.62)

Equations (15.60) and (15.61) becomes

 K

K m k
g g m

= 1

1

2
= 0, = 1,1

−
−∑ ⋅ −  (15.63)

Now, Design aspect demands H H
B B

T

×   to be an identity matrix which demands h
k

 and hk
  to be 

orthogonal.

For two filters to be orthogonal, let us derive the sufficient & necessary condition with again an 

example of Haar wavelet.

For Haar, if

h h h
k

= , = 2
1

2
,
1

2
0 1{ } ì
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î

ü
ý
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∴
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| | cosH( ) = 2
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 (Note: Magnitude of e
jw = 1 on interval of [ , ])-p p

We have already seen that when H z( )  becomes H(-z), the frequency band gets shifted by p  amount, 

which can be represented as: H( )w p+

∴

 

∴ + ⋅
+





| | cosH( ) = 2
2

w p
w p

Now, if we add squared magnitudes of H( )w  and H( )w p+ , we get
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2 2w
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×
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Using Eqs. (15.64) and (15.65),

∴ | | | ( | cos sinH H( ) ) = 2
2

2
2

2 2 2 2
w w p

w w
+ + ⋅





+ ⋅ 



  (15.66)
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This ‘2’ also comes as we are using normalized filters, in absence of normalization, the sum would 

be ‘1’.

Important thing to note is, a constant suggest orthogonality.

Using Eqs. (15.66) and (15.52), we can write

 H H H H( ) ( ) ( ) ( ) = 2w w w p w p× + + × +   (15.67)

When H( )w  and ( w)  satisfy Eq. (15.67), we have,

 K Z

k kh h
Î
å ×  = 1  (15.68)

For m ZÎ , m ¹ 0 ,

 K Z

K m kh h
Î

-å ×
2

= 0  (15.69)

Similarly,

 G G G G( ) ( ) ( ) ( ) = 2w w w p w p× + + × +   (15.70)

When H( )w  and ( w)  satisfy Eq. (15.67), we have,

 K Z

k k
g g

Î
å ×  = 1 (15.71)

For m ZÎ , m ¹ 0 ,

 K Z

K m k
g g

Î
-å ×

2
= 0  (15.72)

To ensure H G
B B

T

×  = 0

 H G H G( ) ( ) ( ) ( ) = 0w w w p w p× + + × +   (15.73)

for all m zÎ ,

 K Z

K m k
h g

Î
-å ×

2
= 0  (15.74)

To ensure, G H
B B

T

×  = 0

 G H G H( ) ( ) ( ) ( ) = 0w w w p w p× + + × +   (15.75)

For all m ZÎ

 K Z

K sm kg h
Î

-å × = 0 (15.76)
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Equations (15.67) to (15.76) give us definition for bi-orthogonal filter pairs. e.g. If H( )w  and H( )w  of 

h
k

 and hk
  respectively follow:

H H H H( ) ( ) ( ) ( ) = 2w w w p w p× + + × + 

Then, h
k

 and hk
  are called bi-orthogonal filter pair!

From Eqs. (15.67), (15.70), (15.73) and (15.75)

G e H
i n b( ) = ( )(w w pw+ ⋅ + [Analysis high pass connected with synthesis low pass] and

G e H
i n b

( ) = ( )(w w pw+ ⋅ + [Synthesis high pass connected with analysis low pass]

Let’s confirm this by pluggin in
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 (15.77)

Since they are equal, together they shall produce ‘2’!

By replacing ‘w ’ with ‘w p+ ’ in Eq. (15.77)

     
G G H H Astheseare periodic functions( ) ( ) = ( ) ( ) [ `2w p w p w w p+ ⋅ + ⋅ − ′  .. 2 = ]∴ +w p w  (15.78)

Adding Eqs. (15.77) and (15.78),

G G G G H H H H( ) ( ) ( ) ( ) = ( ) ( ) ( ) ( ) = 2w w w p w p w w w p w p× + + × + × + + × +   

Now,
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Let’s replace ‘w ’ by ‘w p+ ’ in Eq. (15.79)
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Adding Eqs. (15.79) and (15.80),

H G H G ( ) ( ) ( ) ( ) = 0w w w p w p× + + × +



474 Multiresolution and Multirate Signal Processing

It should be noted that, g
k

 is connected with hk
  and g

k
  is connected with h

k
!

b can be ‘0’ or p  to keep filter real values and for n = 1,

 
g h

k

K
K= ( 1) 1- × -

  (15.81)
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Let’s confirm this for normalized 
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 tap.
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and
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Plugging Eqs. (15.82) and (15.83) in (15.80) and (15.81), we get,
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Similarly,
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Let’s approve these filters:
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Let’s evaluate Eqs. (15.87) and (15.88), for w = 0  and w p=

H( ) = 2
1

2
1

3

4

1

2

1

4
= 2

=0
w w| - + + - +

æ

è
ç

ö

ø
÷

H( ) = 0
=

w w p|



Other Wavelet Families 475

Similarly,

H( ) = 2=0w w|  and H( ) = 0=w w p|

Conjugating H( )w  we get,
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Replacing ‘w ’ by ‘w p+ ’ in Eq. (15.89)
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Now let’s create wavelet transormation matrix for bio-orthogonal 
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it is clear, that
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an extension:

using this approach different biorthogonal taps can be studied.

E.g let’s design 
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 tap tp produce w w
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and
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from Eq. (15.91)
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Readers are encougraged to complete following steps:

 1. calculate g
k

 [1 6]´  from h
k

 2. calculate g
k
[1 2]´  from hk



 3. calculate w
6

2

and w 6

2

from h h h h
k k k k, , , 

15.11  Summary

We saw many interesting wavelet families in this chapter. We can now take a look at bird’s eye view and 

try and understand big picture by bringing out peculiarities of every family design. We can probably 

understand different wavelet families from the perspective of parameters like orthogonality, compact 

support, symmetry, smoothness, interpolation, regularity, rational coefficients, linearity of filters etc.

●● Haar 
● (a) Orthogonal
● (b) Linear phase filters0
● (c) Compact support
● (d) Scaling function symmetric
● (e) Wavelet function anti-symmetric
● (f) One vanishing moment (admissible)
● (g) Only one to be linear, compactly supported, orthogonal and has symmetry.
●● Daubechies 
● (a) Most successful wavelet family
● (b) Orthogonal
● (c) Compactly supported
● (d) Only first member (Haar) is symmetric
● (e) Higher members are NOT symmetric
● (f) For filter length of 2N , N  moments vanish
● (g) For filter length of 2N , support width is 2 1N -
● (h) Regularity of around 0.2N  for large N  They also have bi-orthogonal form
●● Coifleets 
● (a) Orthogonal
● (b) Compactly supported
● (c) Almost asymmetric
● (d) Scaling function exhibit vanishing moments too
● (e) In coifN  filter, N  is number of vanishing moments for both y  as well as f
● (f) Typical filter length is 6N , for which y  has 2N  and f  has 2 1N -  vanishing moments
●● Symlets 
● (a) Orthogonal
● (b) The filters have adjusted symmetry
● (c) Compactly supported
● (d) For filter length of 2N,  y  has N  vanishing moments
● (e) f  is nearly linear phase
● (f) Also called Daubechies’ least asymmetric wavelets
● (g) For filter length of 2N,  support width is 2 1N -
● (h) They also have bi-orthogonal form
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●● Morlet 
● (a) Does not technically satisfy admissibility condition
● (b) Real-valued and complex-valued versions possible
● (c) Used in continuous analysis
● (d) The filters are symmetric
● (e) Though the effective support is from [– 4 4], the support width is infinite
●● Mexican Hat 
● (a) Continuous function
● (b) Satisfies admissibility condition
● (c) Two vanishing moments
● (d) Special case of DoG (Derivative of Gaussian) class of filters
● (e) No scaling function associated with this wavelet
● (f) These filters have infinite support width
●● Meyer 
● (a) Orthogonal
● (b) Scaling function is symmetric
● (c) Wavelet function is symmetric
● (d) Infinite support (decays faster than sinc though)
● (e) Both scaling and wavelet functions are defined in frequency domain
● (f) The wavelet is infinitely differentiable
● (g) The derivatives don’t have finite support but decay fast
● (h) Not compactly supported, yet approximation leads to good FIR type implementation
● (i) These filters are band-limited
●● Battle-Lemarie 
● (a) These are based on B-splines
● (b) Compact support
● (c) Filter coefficients are smooth
● (d) Orthogonality is enforced
● (e)  Typically obtained by convolution of zero order splines (box functions) and then made 

orthogonal
● (f)  Compactly supported splines are feasible only when orthogonality is relaxed to bi-orthogonality
●● Gabor 
● (a) Capable of capturing oriented information
● (b) Obtained from Gaussian kernel
● (c) More useful in 2D  applications
● (d) Variants like log-Gabor are popular
●● Shannon 
● (a) Orthogonal
● (b) Scaling function is symmetric
● (c) Wavelet function is symmetric
● (d) Finitely infinite support (lacks compact support)
● (e) Slowly decaying IIR type filters
● (f) Non-causal and hence difficult to deploy
● (g) Theoretically infinite vanishing moments
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●● Bi-orthogonal 
● (a) Bi-orthogonal is nature
● (b) Compactly supported
● (c) Symmetric filters possible
● (d) Arbitrary number of vanishing moments
● (e) Scaling function exists
● (f) Deployment as FIR filters
● (g) Perfect reconstruction possible

Exercise 15.1

Consider the signal f t t t t t( ) = 10 (1 ) 8 ,0 < < 12 2− cos p  on the interval (0,1).

We use the Wavelets Tool Box to compute the scaling levels a
1
 and a

2
 over the interval (0,1), 

for the Coif 6 and the Daub 2 scaling functions coefficients. We will compare the maximum error 

on the interval (0,0.2) between the above Coif 6 approximation and the exact sample values. The 

same is done with Daub 2 computing the error between its corresponding scaling coefficients and 

the above estimation, it is found that for level 1, the maximum error for the Coif 6 is an order of 

magnitude less, and the same is for level 2. It is left for an exercise to check this accuracy at higher 

levels, where it is expected to decrease.

Exercises

Exercise 15.2

As we did for the other scaling functions and wavelets, we call { }h
n

 the scaling coefficients, let us 

call h n
1
( )  as the corresponding wavelets coefficients. Show that the Coif 6 scaling coefficient satisfy 

the following equality,

n

n
h

=0

5
2 = 1å

Give the interpretation of this result in terms of the energy of the Coif 6 wavelet. Show that Coif 

6 scaling function satisfies the (new) relation,

- - + + +2 2 3 = 0
0 1 3 4 5

h h h h h

while f
D2

 does not.
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Exercise 15.3

For Example, consider the signal

f t t t t t( ) = 20 (1 ) 12 ,0 < < 32 4− cos p

Compute the scaling functions coefficients for Coif 6 and Daub 2, and compare the maximum 

error as done in Example 15.1 at the levels 1, 2, 3 and 4. Use very small scales of l
10

 then l
14

, and 

make your conclusion.

For the same problem try Coif 12 and Daub 3.



16.1  Introduction

In this chapter we shall introduce advanced concepts in the field of ‘Wavelet Analysis’. First few 

 sections will focus on the effective implementation strategies like ‘Fast Wavelet Transform (FWT)’, 

2 dimensional and going beyond M dimensional wavelet transform. We shall also discuss few interesting 

concepts like non-separable basis, self similar structures, regularity etc.

16.2  Fast Wavelet Transform

To bring out the Fast Wavelet Transform structure we shall need the multiresolution framework that we 

introduced in chapter 2 and have used it throughout this text.

As we had discussed already in Chapters 2 to 6, we shall use a values to denote approximations 

emerging out of low pass filtering and b values to denote the details emerging out of high pass filtering. 

Recollect this framework:

Let a function be,

       f
j
(x) Î V

j 
, scale = 

1

2 j
.

To span these space V
j
 the basis function would be 2 (2 )2

j

j

k
x kf −

Here k is the translational parameter and 22

j

 is the normalizing factor to convert orthogonal basis 

into an orthonormal basis.
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Thus we can write,

f x x k
j

k

j k

j

j( ) = ( 2 (2 ))
,

2∑ −a f

Alpha can be calculated by as,

a f
j k j

j

j
f x x k dx

,
2= ( )2 (2 )

−∞

+∞

∫ −

Similarly for W subspaces,

g x W
j j
( ) ∈ , scale = 

1

2 j

The basis would now be,

2 (2 )2

j

j

k
x ky −

Also we can write,

g x x k
j

k

j k

j

j( ) = ( 2 (2 ))
,

2∑ −b y

b y
j k j

j

j
g x x k dx

,
2= ( )2 (2 )

−∞

+∞

∫ −

b values here would give us the details which are required to move from one subspace to another.

Let’s start with 2n  samples 

s s s s s f

n k k

n

= { , , ,..... } = { }
0 1 2 2 1 =0

2 1

−

−
 and with the necessary periodic or 

aperiodic extensions (padding) we will have 2 ⋅ +2 = 2 1n n  samples to represent the function under consid-

eration. The Fast Wavelet Transform (FWT) uses the coefficients { }a
k

 in approximating the signal f t( ) ,

 

f t a t k
k

n

k
( ) = ( )

=0

2 2 1⋅ −

∑ −f  (16.1)

Now, { }
=0

2 2 1a
k k

n⋅ −  will be calculated as,

 

a f
k

k

i
f i k= ( )∑ −  (16.2)

Equation (16.2) is the discrete version of calculating a values from framework given in Chapter 2.

The translations in f( )k j−  may extend the span and scope of scaling functions beyond the length 

of the samples sequence. The extension of the sequence can be done:

 1. artificially by adding zeros to its both ends (or in one end)

 2. extending the sequence periodically, or as a mirror image
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The extrapolation of some order leads to spline like solution.

These 2 ⋅2n  sample coefficients (after extension) { }
=0

2 1 1a
k k

n+ −  can be looked upon as the output of the 

first low pass filter in the filter bank (corresponding to the scaling function). Let the low pass function 

is represented with following system function:

 

H
a a

( ) =
1,

0, .
w

w− ≤ ≤

 otherwise

 (16.3)

Now, let’s try and understand the periodicity and orthogonal addition across the scales to bring out the 

‘twiddle’ like factor to create the transform matrix.

The approximated values { }a
k

, corresponding to scaling functions { ( )}f t k−  with scale l
0

= 1, is 

in multiresolution sense an input to two parallel low pass and high pass filters at the larger scale l−1
= 2. 

This we have already seen in 2-band filter bank structures and we extended the philosophy to M-band 

filter bank structures. These correspond to the slower moving parts captured by the scaling function and 

the fast moving parts captured by the wavelet function, respectively in the lower sub-space. From the 

MRA (Multiresolution Analysis) axioms from Chapters 2 and 3, after down sampling, these parts add 

up to the same approximated signal:

 

f t a
t

k b
t

k
k

n

k n

k

n

k n
( ) =

2 2
1

=0

2 1

, 1

=0

2 1

, 1

−

−

−

−∑ ∑−




+ − −





f y   (16.4)

The instance of n −1  samples in a
k n, 1− , b

k n, 1−  indicates exactly twice the scale in a
k n,

. The sam-

pling rate plays vital role in multirate systems and it should be observed that the total samples of the 

scaling and wavelets series is 2 2 = 2 2 = 2 1n n n n+ ⋅ + , which is for same as those for the scaling coeffi-

cients { }
=0

2 1 1a
k k

n+ −  of (16.2). This is in line with transition while moving from V
j
 to V

j−1
. Here the number 

of samples should be double as input to two parallel filters with input of 2 1n+  samples produce an output 

of 2 1n+  each, a total of 2 2n+ . To bring this number to the original inputting number 2 1n+ , we use down 

sampler on these two outputs, where usually every odd indexed outputted sample is thrown away for 

down-sampling with factor of 2. In simpler words if we have n samples in V
j
, then we get 

n

2
 samples 

at the output of two parallel filters, and low pass filter produces 
n

2
 samples of V

j−1
 subspace and high 

pass filter produces 
n

2
 samples of W

j−1
 subspace. The normalized, cyclic and periodic version of the 

low pass filter modified from Eq. (16.3) will be,

 

H( ) =
1,

0,
w

p w p− ≤ ≤

 otherwise.

 (16.5)

This low pass filter blocks all higher frequencies outside its band − ≤ ≤p pw .

In contrast to this, a high(band) pass filter, passes higher frequencies than those of the low pass 

filter. Mathematically it can be encoded as:
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G( ) =

0, < 2

1, 2

0, <

1, < 2

0, 2 < < .

w

w p

p w p

p w p

p w p

p w

−∞ ≤ −
− ≤ ≤ −
− ≤

≤
∞















 (16.6)

H( )w  and G( )w  are shown in Figs 16.1 and 16.2 respectively.

H(w)

w

−3p 3p−2p 2p−p p0

Figure 16.1  Low pass filter H ( )w

G(w)

w

−3p 3p−2p 2p−p p0

Figure 16.2  High pass filter G ( )w

These two filters truly complement each other on the frequency band ( 2 ,2 )− p p . If we look at only 

positive frequencies, low pass filter H( )w  passes low frequencies from (0, )p  and high pass filter G( )w  

passes higher frequencies from ( ,2 )p p . Thus the two filters are dual of each other and can together form 

a complete band structure.

16.3   The Daubechies Fast Wavelet Transform (FDWT)  
and its Inverse (IFDWT)

In this book, we have used Haar filters multiple times to bring out the conceptual parts in crisp man-

ner. The Fast Discrete Wavelet Transform (FDWT) has its trick in appropriate creation of the transform 

matrix using the filter coefficients.

For the FDWT illustration, in lieu of Haar in this chapter we choose Daubechies scaling func-

tion f
D2

 with its four coefficients h
0

=
1 3

4 2

+
, h

1
=

3 3

4 2

+
, h

2
=

3 3

4 2

−
, h

3
=

1 3

4 2

−
, and its 
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associated wavelet y
D2

 with its coefficients ′
−

h h
0 3

= =
1 3

4 2
, ′ − −

−
h h

1 2
= =

3 3

4 2
, ′

+
h h

2 1
= =

3 3

4 2
, 

′ − −
+

h h
3 0

= =
1 3

4 2
, which are the building blocks of the associated scaling functions f

D2
. Readers can 

note that the presence of 2  in the denominator of above eight coefficients is cumbersome. We shall 

use the adjusted coefficients as: p h
0 0

= 2 =
1 3

4

+
, p h

1 1
= 2 =

3 3

4

+
, p h

2 2
= 2 =

3 3

4

−
, and 

p h
3 3

= 2 =
1 3

4

−
. We have already shown in chapter 6 that h h h h

0 1 2 3
, , ,  correspond to the normalized 

scaling functions of { 2 (2 )}f t k−  through iterative procedure in the scaling dilation equation,

 

f f( ) = 2 ( (2 ))t h t k
k

k∑ −  (16.7)

The modified coefficients p p p
0 1 2
, ,  and p

3
 correspond to the use of the not normalized scaling 

functions f(2 )}t k− in the same scaling dilation equation,

 

f f( ) = ( (2 ))t p t k
k

k∑ −  (16.8)

So, in order not to avoid nuisance of 2  in the computations for the fast Daubechies wavelet trans-

form, we shall adopt the notation of { }p
k

 as given in equation (16.8), however for our own convenience 

we will keep calling them { }h
k

 with understanding that the f(2 )t k−  used are not normalized. We stay 

with the use of { }h
k

 because the nomenclature symbolizes the filter structure, such as { , , , }
0 1 2 3

h h h h  and 

{ , , , }
3 2 1 0

h h h h− − , for the Daubechies 2 low pass and high pass filters, respectively.

The output produced by the coefficients { }
,

a
k n

 of the first low pass filter at the scale l
n n

=
1

2
 gets to 

those { , }
, 1 , 1

a b
k n k n− −  of the next sub-level low pass and high pass filters outputs at the scale l

n−1
. We have 

2 1n+  samples for coefficients { }
,

a
k n

 and the total samples together of the { , }
, 1 , 1

a b
k n k n− −  coefficients, 

after downsampling, will also be 2 1n+ .

Let us remember that for the averaging or low pass process with

a f
k

i

n

f i i k
,0

=0

2 1

= ( ) ( )
−

∑ −

We had extended the samples to have them match the given values of the scaling functions. We will 

assume here a periodic extension. So, if we start with four samples, for example, we have a period of 4, so 

that f f f f f f
4 0 5 1 6 2

= , = , = , and f f
7 3

= . (In case of Haar we would have cared for periodicity of only 2!)

The linear equation takes us from { }
,

a
k n

 to { , }
, 1 , 1

a b
k n k n− .  thus creating a matrix system where input 

is column vector of { }
,

a
k n

 and output results into alternate columns of { } { }
, 1 , 1

a b
k n k n- - and . This ensures 

the matrix W as square transformation matrix is sparse. From Chapter 6, we can now collect important 

properties of scaling coefficient of Daub-2.

 
h h h h

0

2

1

2

2

2

3

2 = 2+ + +  (16.9)

 
h h h h

2 0 3 1
= 0+  (16.10)
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The sparse nature of Ω  is captured via how, the inverse matrix Ω−1  is related to Ω  as follows:

 
Ω Ω−1 =

1

2

T  (16.11)

This inverse matrix will be needed for the reconstruction (synthesis) process of the signal as we construct 

from { , }
, 1 , 1

a b
k n k n− −  to { }

,
a

k n
. This is also in compliance with the fact that transform matrix should be a Unitary 

matrix and hence for real valued matrix A the condition that needs to be fulfilled thematically is A A
T−1 = .

Note that had we used the coefficients from Eq. (16.9) with a normalized scaling function in their 

scaling dilation equation. The summation in Eq. (16.9) becomes 1 because of the 
1

2
 in the denomina-

tor of our usual expressions for these coefficients.

In the next few examples we shall demonstrate that ΩΩT
I= . This will be the foundation for the 

fast wavelet constructs through the matrix calculations.

Example 16.3.1 — Decomposition (analysis) matrix Ω and its reconstruction (synthesis) matrix  W-1.

The transformation matrix of the scaling functions kernel associated with scale l
0

 to those of the  

scaling functions-wavelets associated with scale l−1
 is given as below:

 

Ω =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

h h h h

h h h h

h h h h

h h h h

− −

− −
hh h h h

h h h h

h h

h h

0 1 2 3

3 2 1 0

0 1

3 2

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

− −

−































.
 (16.12)

The transpose ΩT  of this matrix is

 
ΩT

h h

h h

h h h h

h h h h

h h h
=

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 3

1 2

2 1 0 3

3 0 1 2

2 1 0

−

− −
hh

h h h h

h h h h

h h h h

3

3 0 1 2

2 1 0 3

3 0 1 2

0 0

0 0 0

0 0 0 0

0 0 0 0

− −

− −































.
 (16.13)
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Now we shall calculate,

   

ΩΩT

h h h h

h h h h

h h h h

h h h h
=

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1 0

− −

− −
00 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 2 3

3 2 1 0

0 1

3 2

h h h h

h h h h

h h

h h

− −

−































                                       

            

×

−

− −

h h

h h

h h h h

h h h h

h h h h

0 3

1 2

2 1 0 3

3 0 1 2

2 1 0 3

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0 00 0

0 0 0

0 0 0 0

0 0 0 0

3 0 1 2

2 1 0 3

3 0 1 2

h h h h

h h h h

h h h h

− −

− −































=

....
0

2

1

2

2

2

3

2

0 3 1 2 1 2 0 3 0 2 1 3

0 3 1 2

h h h h h h h h h h h h h h h h

h h h h

+ + + − + − +
− + hh h h h h h h h h h h h

h h h h h h h h h

1 2 0 3 0

2

1

2

2

2

3

2

0 1 0 1

0 2 1 3 0 1 0 1 0

....− + + + −
+ − 22

1

2

2

2

3

2

3 2 3 2 1 3 0 2 0 3 1 2 1 2 0 3

...

...

0

+ + +
− + − + −

h h h

h h h h h h h h h h h h h h h h

00 0 ..

.. .. .. ..

























            

= 2

1 0 0

0 1 0

0 0 1

0 1

= 2 , 

..

..

..

.. .. .. ..

.. ..





















I

Thus,

 ΩΩT
I= 2  (16.14)
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ΩΩT

I
2

=  (16.15)

Hence,

 
Ω Ω−1 =

1

2

T  (16.16)

It is understood again that the constant of 2 in Eq. (16.14) is the result of using 

h h h h
0 1 2 3

=
1 3

4
, =

3 3

4
, =

3 3

4
, =

1 3

4

+ + − −
 instead of normalized coeffs with an added 

1

2
 factor.

This provides the basic foundation to carry out the fast calculations. Equations (16.14) to (16.16) 

confirm the unitary nature of transformation matrix which guarantees energy compaction and 

preservation.

To better illustrate the fast wavelet transform, we concentrate on the Daubechies, using Daubechies 

2 scaling functions and wavelets. We are considering the Daubechies scaling function f
D

t
2
( )  and the 

wavelet y
D2

 with the four scaling coefficients h h h
0 1 2
, , ,  and h

3
 with the 

1

2
 factor of our usual nota-

tion missing to simplify the illustration.

Example 16.3.2 — Decomposition and reconstruction with FDWT.

The FDWT emerges out of the scaling dilation equation,

 
f f f f f( ) = (2 ) (2 1) (2 2) (2 3)

0 1 2 3
t h t h t h t h t+ − + − + −  (16.17)

and constructing the associated wavelet from the scaling functions using wavelet dilation equation,

 
y f f f f( ) = (2 1) (2 ) (2 1) (2 2)

0 1 2 3
t h t h t h t h t− − + − + + +  (16.18)

In the decomposition (analysis) process we move towards the coarser scales. For example, in 

the first parallel low pass and high pass filters, we move from f t( )  to f
t

2







 and y
t

2







 and their 

translations. This is obtained from Eqs (16.17) and (16.18) by changing t  to 
t

2
,

 

f f f f f
t

h t h t h t h t
2

= ( ) ( 1) ( 2) ( 3)
0 1 2 3







+ − + − + −  (16.19)

 

y f f f f
t

h t h t h t h t
2

= ( 1) ( ) ( 1) ( 2)
0 1 2 3







− − + − + + +  (16.20)

The rest of the scaling functions translations are manifested towards wavelet series. Here 

y y
t t

2
1 =

2

2
−





−





 is obtained from y
t

2







 above by changing t to t − 2,

y y f f
t t

h t h t
2

1 =
2

2
= ( 2 1) ( 2)    

0 1
−





−





− − − + −
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   ( 2 1) ( 2 2)    
2 3

− − + + − +h t h tf f

= ( 3) ( 2) ( 1) ( ).
0 1 2 3

− − + − − − +h t h t h t h tf f f f

By virtue of placing the terms of this series in the same order as for f
t

2







 in (16.17) with the 

term f( )t  being the first, we have

 

y f f f f
t

h t h t h t h t
2

1 = ( ) ( 1) ( 2) ( 3)
3 2 1 0

−





− − + − − −  (16.21)

Similarly,

For f f
t t

2
1 =

2

2
−





−





, we have

f f f f
t t

h t h t
2

1 =
2

2
= ( 2) ( 2 1)

0 1
−





−





− + − −

     
   ( 2 2) ( 2 3)

2 3
+ − − + − −h t h tf f

                             
= ( 2) ( 3) ( 4) ( 5)

0 1 2 3
h t h t h t h tf f f f− + − + − + −

We can again write f
t

2
1−





 in the same way and continue to f
t

k
2

−





,

Where k denotes translation

   

f f f f f
t

k h t k h t k h t k h t k
2

= ( 2 ) ( 2 1) ( 2 2) ( 2 3)
0 1 2 3

−





− + − − + − − + − −               (16.22)

Similarly,

 

y y f f f f
t t

h t h t h t h t
2

1 1 =
4

2
= ( 2) ( 3) ( 4) (

3 2 1 0
− −





−





− − − + − − −− 5)  (16.23)

and

y y f f
t

k
t k

h t k h t k
2

1 =
2 2

2
= ( 2 ) ( 2 1)

3 2
− −





− −





− − − −

    
+ − − − − −h t k h t k

1 0
( 2 2) ( 2 3)f f

What we have in Eqs (16.22) and (16.23) is the scaling functions f
t

k
2

−













 and the wavelets 

y
t

k
2

1− −













 respectively with the coarser scale l−1
= 2  (projection in v

-1
, hence scale = =−

1

2
2

1
)  

as a linear combination of the scaling functions { ( )}f t j−  only at the smaller scale l
0

= 1
 
(projec-

tions in v
0
, hence scale = =

1

2
1

0
) .
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The approximate input signal,

 

f t t k
k

k n
( ) = ( )

,∑ −a f  (16.24)

is also at the finer scale of 1, where we associate the coefficients { }
,

a
k n

 with this scale. In comparison, 

the coefficients a
k n, 1−  and b

k n, 1−  of the low and high pass filters in Eq. (16.4) are associated with the 

coarser scale of 2 via the two series expansions in Eqs (16.22) and (16.23) in terms of y
t

k
2

1− −





.

The crux of the Daubechies 2 fast wavelet transform starts with concentrating on Eqs (16.22) and 

(16.23). As already explained we see that we are expressing the bases at the scale 2 in terms of the scal-

ing functions { ( )}f t j−  at the scale 1.

The scaling coefficients a
k n,

 were obtained as a linear combination of { ( )}f t j−  in Eq. (16.2). We 

are after the coefficients { }
, 1

a
k n−  and { }

, 1
b

k n− , where their linear combination is used, respectively to rep-

resent. So, we look at Eqs (16.19) and (16.20) for giving us the transformation of the bases { ( )}f t j− .  

Finding this transformation will lead to transforming the coefficients { }
,

a
k n

 to { , }
, 1 , 1

a b
k n k n− − .

Equations (16.19) and (16.20) can be represented in a compact form as a matrix equation:

 

f
t

h h h h

h h h h

2

...

...

=

0 0 ...

0 0 ...

0 1 2 3

3 2 1 0


























− −
00 0 ...

0 0 ...

0 0 0 0 ...

0 0 0 0 ...

..

0 1 2 3

3 2 1 0

0 1 2

3 2 1

h h h h

h h h h

h h h

h h h

− −

−
.. ... ... ... ... ... ... ...

... ... ... ... ... ... ... ...































−
−
−
−
−
−
−

f

f

f

f

f

f

f

f

( )

( 1)

( 2)

( 2)

( 3)

( 4)

( 5)

(

t

t

t

t

t

t

t

t 66)

( 7)

...

...

f t −









































 (16.25)

For example, from the first row we get f f f f f
t

h t h t h t h t
2

= ( ) ( 1) ( 2) ( 3)
0 1 2 3







+ − + − + −  and 

from the second row we get y f f f f= ( ) ( 1) ( 2) ( 3)
3 2 1 0

h t h t h t h t− − + − − −  and so forth. Stick to use 

Ω  for the Daubechies coefficients square matrix with 

f f f= [ ( ), ( 1),....]t t

T− , 

w f y=

2
, ....

t
T















  as 
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two column matrices, we may write the above matrix equation as 
 
w f= Ω . Since the basis 


f  are used 

for coefficients 

a

n n n

T= [ , ,...]
0, 1,

a a  and the basis 

w  for 


d

n n n n

T

− − − −1 0, 1 0, 1 1, 1
= [ , , ,.....]a b a . We can use the 

above transformation to have 
 
d a

n n−1
= Ω , i.e., Ω  will transform the coefficients { , ,....}

0, 1,
a a

n n
 at the 

scale l
n

 to { , , , .....}
0, 1 0, 1 1, 1 1, 1

a b a b
n n n n− − − −  at the lower scale l

n−1
.

This transformation is for the decomposition (analysis) process. What we also need is a transforma-

tion from 

d

n−1
 back to 


a

n
 for the reconstruction (synthesis) process, i.e., an inverse transform or the 

inverse of the matrix Ω .

We have already derived following properties of the Daubechies scaling coefficients,

 
h h h h

0

2

1

2

2

2

3

2 = 1+ + +  (16.26)

 
h h h h

2 0 3 1
= 0+  (16.27)

We have also brought out that the inverse matrix Ω−1  is related in a very simple way to Ω  as 

Ω Ω−1 =
1

2

T, i.e., as half its transpose. Intuitively it makes sense as the transformation matric is unitary 

nature and factor of 1/2 suggests normalization of 2  while moving from some scale into lower scale 

ln-1 and vice versa.

Analytically, the above coefficients relations can be verified easily by a simple substitution. With 

the existence of this inverse matrix, we can transform the basis 

w f y=

2
,

2
1 ,....

t t
T







−













  back to 


f f f= [ ( ), ( 1),....]t t

T− , 
  
f w w= =

1

2

1Ω Ω− T . In terms of the coefficients 

a

n n n

T= [ , ,...]
0, 1,

a a  and 

d

n n n n n− − − −1 0, 0, 1 1, 1 1, 1
= [ , , , ,....]a b a b , we use the matrix Ω  to go from 


a

n
 to 
 
d a

n n−1
= Ω ,

 


d

n

n

n

n

n

−

−

−

−

−














1

0, 1

0, 1

1, 1

1, 1

=
...

...

...

...

...

...

a

b

a

b

























=                                Ωa
n

 (16.28)
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d

h h h h

h h h h

h h h h

h h h h
n−

− −

− −
1

0 1 2 3

3 2 1 0

0 1 2 3

3 2 1
=

0 0 ...

0 0 ...

0 0 ...

0 0
00

0 1 2

3 2 1

...

0 0 0 0 ...

0 0 0 0 ...

... ... ... ... ... ... ... ...

..

h h h

h h h−

.. ... ... ... ... ... ... ...

0,

1,

2,































a

a

a

n

n

nn

n
a

3,

...

...

...

...

...

...

...









































,
 (16.29)

and to go back from 

d

n−1
 to 

a

n
 via 
  
a d d

n n

T

n
= =1

1 1
Ω Ω−

− − ,

 


a

n

n

n

n

n
=

...

...

...

...

=

0,

1,

2,

3,

a

a

a

a































Ω−−
− −

1

1 1
=

1

2
                                 

 
d d

n

T

n
Ω

 (16.30)

 


a

h h

h h

h h h h

h h h h

h h
n

=
1

2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0

0 0

0 3

1 2

2 1 0 3

3 0 1 2

2

−

− −

11 0 3

3 0 1 2

2 1 0 3

3 0 1 2

0 0

0 0 0

0 0 0 0

0 0 0 0

h h

h h h h

h h h h

h h h h

− −

− −



































−

−

−

−

a

b

a

b

0, 1

0, 1

1, 1

1, 1

...

...

...

...

...

...

n

n

n

n

































.
 (16.31)

If we refer to our nomenclature of h h h h
2 1 0 3
, , ,  with the 

1

2
 factor, the 

1

2
 factor in Eq. (16.31) 

becomes unity, i.e. 1. With this understanding of normalization factor we will not carry the factor of 
1

2
 in Eq. (16.31). Let us recall that the string of coefficients in the above matrices [ , , , ]

0 1 2 3
h h h h  and 
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[ , , , ]
3 2 1 0

h h h h− −  are those associated with the Daubechies f
D2

 and y
D2

, respectively. In the filters 

implementation of this wavelet transform, we refer to them as the low and high pass filters, respectively.

What we should note here is that in the decomposition (matrix) equation 
 
d a

n n−1
= Ω  of Eq. (16.29) 

we have the two full strings of the above coefficients in the first and second rows of Ω , followed by 

their translations to the right by two positions, and so on. So, the multiplication of Ωa
n
 proceeds as 

expected. However, for the inverse transformation 
 
a d

n n
= 1

1
Ω−

−  in Eq. (16.31), we first, and expect as 

we are doing construction with Ω−1  versus decomposition with Ω , see that we have the two strings of 

these coefficients in different order in their elements from those of the direct transformation. Second, 

they start as complete set of two filters in the third and fourth rows, then shifted by two instances to the 

right, and so on. The serious, apparent problem here is with the first two rows of Ω−1 , where the first two 

elements of the above two strings of coefficients are missing. The resolution of this problem, fortunately, 

is achieved by the periodicity of the coefficients, as we shall attend to the next.

Let us assume that we have the eight coefficients { , , , , , , , }
0,0 0,0 1,0 1,0 2,0 2,0 3,0 3,0

a a b a b a bb  in Eq. (16.31), 

and we extend them periodically with period 8. Then, we see in the above matrix Eq. (16.31) the first 

complete pair of filters { , , , }
2 1 0 3

h h h h  and { , , , }
3 0 1 2

h h h h− −  use the first four elements a b a b
0,0 0,0 1,0 1,0

, , ,  

in their matrix multiplication. The second full pair also uses a b a b
1,0 1,0 2,0 2,0

, , , . The third full pair uses 

a b a b
2,0 2,0 3,0 3,0

, , ,  and so does the fourth full pair.

Then we see in the matrix multiplication of Eq. (16.31) that the inner product of the first complete 

pair of filters { , , , }
2 1 0 3

h h h h  and { , , , }
3 0 1 2

h h h h− −  with the coefficients { , , , }
0, 1 0, 1 1, 1 1, 1

a b a b
n n n n− − − −  give 

following.

We shall also make a quick change for the simplicity of the notation. Let a =a  and b = b  and then,

a h a h b h a h b
n n n n n2, 2 0, 1 1 0, 1 0 1, 1 3 1, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n3, 3 0, 1 0 0, 1 1 1, 1 2 1, 1

= .− − − −− + −

In the same manner we get a
n4,
 and a

n5,
 from the inner product of the two complete filters, shifted 

by two positions, and the coefficients { , , , , },
1, 1 1, 1 2, 1 2, 1 2, 1

a b a b c
n n n n n− − − − −

a h a h b h a h b
n n n n n4, 2 1, 1 1 1, 1 0 2, 1 3 2, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n5, 3 1, 1 0 1, 1 1 2, 1 2 2, 1

= ,− − − −− + −

a
6
 and a

7
 are obtained, similarly, after shifting filters coefficients by two positions to the right

a h a h b h a h b
n n n n n6, 2 2, 1 1 2, 1 0 3, 1 3 3, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n7, 3 2, 1 0 2, 1 1 3, 1 2 3, 1

= .− − − −− + −

What is left is a
n0,
 and a

n1,
, in the first two rows of 


a

n
, because of the incomplete filters in the first 

two rows of the inverse matrix Ω−1  in Eq. (16.31). Thus, we are left with finding a
n0,
 and a

n1,
 to com-

plete the first period for the eight numbers sequence { , , , , , , , }
0, 1, 2, 3, 4, 5, 6, 7,

a a a a a a a a
n n n n n n n n

.

The next period uses, { , , , , , , , }
0, 1 0, 1 1, 1 1, 1 2, 1 2, 1 3, 1 3, 1

a b a b a b a b
n n n n n n n n− − − − − − − − , and that leads us to solution.

If we extend the size of the matrix from 8 8×  to 10 12×  and the column 

d

n−1
 to 12 1× , we can 

compute the first two elements a
n8,

 and a
n9,
 of the second period.
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a h a h b h a h b
n n n n n8, 2 3, 1 1 3, 1 0 0, 1 3 0, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n9, 3 3, 1 0 3, 1 1 0, 1 2 0, 1

= .− − − −− + −

But, by the periodicity with period 8, a a
n n8, 0,

=  and a a
n n9, 1,

= . So

a h a h b h a h b
n n n n n0, 2 3, 1 1 3, 1 0 0, 1 3 0, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n1, 3 3, 1 0 3, 1 1 0, 1 2 0, 1

= .− − − −− + −

This is also equivalent to filling the first and second row of the sqaure matrix by the first halves of 

their filters, { , }
2 1

h h  and { , }
3 0

h h− , at the far end of theirs first two rows, respectively, which we illustrate 

here for period 8 = (2) 2n , n = 2 :

 

a

a

a

a

a

a

a

a

h0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

=































00 3 2 1

1 2 3 0

2 1 0 3

3 0 1 2

2 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

h h h

h h h h

h h h h

h h h h

h h

− −

− −
hh h

h h h h

h h h h

h h h h

0 3

3 0 1 2

2 1 0 3

3 0 1 2

0 0

0 0 0

0 0 0 0

0 0 0 0

− −

− −














































a

b

a

b

a

b

a

b

0,1

0,1

1,1

1,1

2,1

2,1

3,1

3,1












,
 (16.32)

a h a h b h a h b
0,2 0 0,1 3 0,1 2 3,1 1 3,1

= ,+ + +

a h a h b h a h b
1,2 1 0,1 2 0,1 3 3,1 0 3,1

= .− + −

This is for period 8 = (2)22 , n = 2 . For period 4 = (2)21 , n = 1, we generate a period 8 from extend-

ing the union of { , }
0,0 1,0

a a  and { , }
0,0 1,0

b b  periodically with period 4 as { , , , , , , , }
1,0 1,0 0,0 0,0 1,0 1,0 0,0 0,0

a b a b a b a b . 

Here we appeal to a
n4,
 and a

n5,
, which are the same as a

n0,
 and a

n1,
,

a h a h b h a h b
n n n n n0, 2 3, 1 1 3, 1 0 0, 1 3 0, 1

= ,− − − −+ + +

a h a h b h a h b
n n n n n1, 3 3, 1 0 3, 1 1 0, 1 2 0, 1

= .− − − −− + −

This is obtained, in a similar way for the modified inverse matrix,

 

a

a

a

a

h h h h

h h h h

h h h h

h

0,1

1,1

2,1

3,1

0 3 2 1

1 2 3 0

2 1 0 3

3

=



















− −

−hh h h

a

b

a

b
0 1 2

0,1

0,1

1,1

1,1

.

−





































 (16.33)
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For example,

a h a h b h a h b
0,1 0 0,1 1 0,1 2 1,1 1 1,1

= ,+ + +

a h a h b h a h b
1,1 1 0,1 2 0,1 3 1,1 0 1,1

= ,− + −

This also means raising the last two elements { , }
1,1 1,1

a b  to the top of the column had we used the 

usual order of the first filter as { , , , }
2 1 0, 3

h h h h  and the second filter as { , , , }
3 0 1 2

h h h h− − . Readers can note 

and appreciate that these filters are dual of each other, which we will explore further in next section.

For period N = 16 , as another example, we look for the 18 20×  matrix, using the periodicity of the 

coefficients with period 16, where { , }
2 1

h h  and { , }
3 0

h h−  appear after 12 = 4N −  positions for N = 16  

of translations for the preceding rows. Thus, in the first modified two rows we see the first halves of the 

top two rows in the matrix appear after 12 positions of translations for the preceding rows. Hence, we 

must have { , }
2 1

h h  and { , }
3 1

h h−  separated from their respective second halves at the beginning of the 

first two rows by 12 zeros. Equivalently, we need only to place them at the end of the first two rows, 

respectively. Of course, in an application such as signal (or spikes) detection, we shall need high reso-

lution. So, period 16 is very modest, and we may have to go to a resolution of scale l
j
 = 

1

28
 = 

1

256
 , 

which needs 256 coefficients. However, a simple computer program with the above clear instructions 

should do it.

Another form for the inverse matrix

Another equivalent way to modify Eq. (16.31), which gives the same result, is to fill the first two rows 

as { , , , }
2 1 0 3

h h h h  and { , , , }
3 0 1 2

h h h h− − , move a
n3, 1−  and b

n3, 1−  from the bottom of their column to the top, 

but shift the remaining second, third, and so on, pairs of the filter’s two succeeding positions to the right. 

For our example with period 2 2 = 2 2 = 82⋅ ⋅n  with n = 2 , this alternative is

 

a

a

a

a

a

a

a

a

h0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

=































22 1 0 3

3 0 1 2

2 1 0 3

3 0 1 2

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

h h h

h h h h

h h h h

h h h h

− −

−
00 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2 1 0 3

3 0 1 2

2 1 0 3

3 0 1 2

h h h h

h h h h

h h h h

h h h h

− −

− −































a

b

a

b

a

b

a

b

a

3,1

3,1

0,1

0,1

1,1

1,1

2,1

2,1

33,1

3,1

.

b





































 (16.34)

Clearly, the first choice in Eq. (16.32) is better, even though both choices emphasize the importance 

of the periodicity of the coefficients (which is at the heart of fast computation).

16.4  Low and High Pass Effects: Dual Filters

For the matrix Ω  in Eq. (16.29), we should note that the pair of sets of coefficients { , , , }
0 1 2 3

h h h h  and 

{ , , , }
3 2 1 0

h h h h− −  in the first two rows do averaging (CLPF) and differencing (HPF), respectively, on the 
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column 

a

n
 to obtain the corresponding elements of the column 


d

n−1
. For example, by preforming the 

multiplication of the first row and the second row with the column 

a

n
, we have

a h a h a h a h a
n n n n n0, 1 0 0, 1 1, 2 2, 3 3,

= ,− + + +

b h a h a h a h a
n n n n n0, 1 3 0, 2 1, 1 2, 0 3,

= .− − + −

The first is definitely an average weighted by the scaling coefficients and is similar to moving aver-

age filter with window size of 2. The second row is adding weighted differences for the first two and 

second two elements of 

a

n
. Of course, this is much more clear with the shapes of the Haar scaling func-

tion and its associated wavelet using their corresponding filters 
1

2
,

1

2









 and 
1

2
,

1

2
−









 which 

show the sum and difference, respectively.

The Daubechies 2 coefficients are slightly more difficult to visualize and imagine, however, 

the + sign for the scaling function filter { , , , }
2 1 0 3

h h h h  and the alternating signs for the wavelet filter 

{ , , , }
3 0 1 2

h h h h− −  suggests averaging and differencing, respectively. In addition, if we look at the shape 

of f
D2

 and y
D2

 in Figures A16.1 and 16.2 if compared with Haar, we see that f
D2

 is more or less posi-

tive on almost all its compact support, while y
D2

 resembles to an extent that of the differencing in the 

Haar wavelet.

The above discussion becomes much more clear when we use the Haar scaling coefficients 

{ , } =
1

2
,

1

2
0 1

h h








 for the low pass filter and 
1

2
,

1

2
−









 for the high pass filter. Again, for a bet-

ter illustration of the usual averaging, we shall normalize these coefficients to 
1

2
,
1

2









 and 
1

2
,

1

2
−








, 

respectively.

We illustrate this in the following Example 16.4.1 using the Haar coefficients.

Example 16.4.1 — Illustration with the Haar wavelet matrix.

Consider the sequence of coefficients in the column matrix { , , , }
0,2 1,2 2,2 3,2

a a a a  = 

a

T

2
= [4,2,5, 3]− . 

We are to use 
 
d a

1 2
= Ω , where Ω  is the Haar wavelet matrix with h h

0 1
= =

1

2
,

 

Ω =
1

2

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

.
−

−



















 (16.35)

Now,

a

b

a

b

0,1

0,1

1,1

1,1

=
1

2

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1



















−

−

















 −



















4

2

5

3
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                     =
1

2

4 2

4 2

5 ( 3)

5 ( 3)

=

4 2

+
−

+ −
− −



















+
22

4 2

2

5 ( 3)

2

5 ( 3)

2

=

6

2

2

2

1

4

−

+ −

− −



















































 (16.36)

a a
0,1 1,1

=
4 2

2
=

6

2
, =

5 ( 3)

2
= 1

+ + −
; b b

0,1 1,1
=

4 2

2
=

2

2
, =

5 ( 3)

2
=

8

2
= 4

− − −
.

Hence, the a
0,1

 and a
1,1

 are obtained by averaging the first couple and the second couple of 

the sequence {4,2,5, 3}− . On the other hand, b
0,1

 and b
1,1

 are obtained by taking 
1

2
 the difference 

between the first two elements 4 and 2, and the second two elements 5 and –3, respectively.

Now, we show next that the above Ω , with h h
0 1

= =
1

2
, is its own inverse:

ΩΩ =
1

2

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

−

−



















−

−



















=
1

2

1 1 1 1 0 0

1 1 1 1 0 0

0 0 1 1 1 1

0 0 1 1 1 1

=
2

2

1 0 0 0

0 1 0 0

+ −
− +

+ −
− +



















00 0 1 0

0 0 0 1

= .



















I

Hence, ΩΩ = I , where Ω Ω= 1− , and we say that Ω  is self adjoint, i.e., Ω ΩT = . This can be 

seen clearly when we exchange the elements of Ω  across the diagonal, which gives ΩT  that results 

in Ω  itself. We show next that for the Haar case Ω Ω−1 = 2  (using h h
0 1
, =

1

2
) where we can use it 

on the above resulting sequence { , , , }
0,1 0,1 1,1 1,1

a b a b = 3 1 1 4 =
1

, , ,[ ]

d  to recover the original sequence 

{4,2,5, 3} = [ , , , ] = :
0,2 1,2 2,2 3,2 2

− a a a a a
T 
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16.5   Numerical Computations for the Fast Discrete Wavelets 
Transform and its Inverse

We now demonstrate the numerical computations of the FDWT process of decomposition and construc-

tion. [The Fast Daubechies Wavelet Transform for decomposition (analysis)]

Ω Ω− −

−

































1

1 1
= 2 =

2

2

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

3

1

1

4

 
d d 




                           

=

3 1

3 2

1 4

1 4

=
2

2

4

2

5

3

=

4

2

5

3

+
−
+
−

















 −

















 −



















,

which is the original sequence.

Example 16.5.1 — The fast Daubechies wavelet transform for decomposition (analysis).

 We illustrate the decompositions process of the (extended) coefficients using the fast Daubechies  

wavelet transform of Eq. (16.29). We will use the same sequence of sample { , , , } = {0,1,2,3}
0 1 2 3

s s s s .  

For the latter we will use the mirror image extension around t = 0  and t = 3  with the slope match-

ing of the sequence and its extensions at t = 0,3, . By virtue of this, we shall obtain the extended 

sequence { , , , , , , , , , , , } = 4,
7

3
,
2

3
, 1,0,1,2

4 3 2 1 0 1 2 3 4 5 6 7
s s s s s s s s s s s s− − − − − ,,3,4,

7

3
,
2

3
, 1−








 with its period 

of 8, for example 0,1,2,3,4,
7

3
,
2

3
, 1−








. From our understanding from previous section, we get, 

a a a a− −−
+ − − −

2 1 0 1
=

1 3

2
, =

1 3

2
, =

3 3

2
, =

5 3

2
, and a

2
=

7 3

2

−
. For the period 8, we will 

need { , , , , , , , }
0 1 2 3 4 5 6 7

a a a a a a a a . We have a a
6 2

= − , since by the periodicity of the coefficients with 

period 8, a a a− + −2 8 2 6
= = , a

6
=

1 3

2
−

+
. Also, a a

7 1
= − , since a a a− + −1 8 1 7

= = , a
7

=
1 3

2

−
. For 

illustration purpose a
3
, a

4
, and a

5
, computations are as follows.
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a f k f f f f
k

k3

=3

6

3 4 5 6
= ( 3) = (0) (1) (2) (3)∑ − + + +f f f f f

= (3)(0) (4)
1 3

2

7

3

1 3

2

2

3
(0)+

+
+ 





−
+ 





=
12 12 3 7 7 3

6
=

19 5 3

6

+ + − +

a f k f f f f
k

k4

=4

7

4 5 6 7
= ( 4) = (0) (1) (2) (3)∑ − + + +f f f f f

= (4)(0)
7

3

1 3

2

2

3

1 3

2
( 1)(0)+ 





+
+ 





−
+ −

=
7 7 3 2 2 3

6
=

9 5 3

6

+ + − +

a f k f f f f
k

k5

=5

8

5 6 7 8
= ( 5) = (0) (1) (2) (3)∑ − + + +f f f f f

=
7

3
(0)

2

3

1 3

2
( 1)

1 3

2
(0)(0)







+ 





+
+ −

−
+

=
2 2 3 3 3 3

6
=

1 5 3

6

+ − + − +

a a a
6 2 8 2

= = =
1 3

2
− + − −

+

a a a
7 1 8 1

= = =
1 3

2
− + −

−

With these (2)2 = (2)2 = 82n  coefficients of period 8, we are at the level n = 2  and we designate 

the first low pass filter coefficients as { } = { }
, ,2

a a
k n k

. After passing these eight coefficients through 

the first two parallel low and high pass filters, we end up with eight coefficients each { }
,1 =0

7
a

k k
 and 

{ }
,1 =0

7
b

k k
, and after down sampling these become four each.

The interpolated signal, using the eight coefficients { }
,2 =0

7
a

k k
, weighted by their corresponding 

translated scaling functions, is

f t a t k a t a t a t
k

k
( ) = ( ) = ( ) ( 1) ( 2)

=0

7

,2 0,2 1,2 2,2∑ − + − + −f f f f

            
    ( 3) ( 4) ( 5) ( 6)

3,2 4,2 5,2 6,2
+ − + − + − + −a t a t a t a tf f f f

    ( 7).
7,2

+ −a tf
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For our previous computation, we used a a
k n k,

= :

f t t t t( ) =
3 3

2
( )

5 3

2
( 1)

7 3

2
( 2)

−
+

−
− +

−
−f f f

                         
    

19 5 3

6
( 3)

9 5 3

6
( 4)

1 5 3

6
( 5)+

+
− +

+
− +

− +
−f f ft t t

                                            
    

1 3

2
( 6)

1 3

2
( 7).−

+
− +

−
−f ft t

Now, we substitute the eight coefficients for the column matrix on the right of Eq. (16.29) to 

obtain the eight coefficients { , , , , , , , }
0,1 0,1 1,1 1,1 2,1 2,1 3,1 3,1

a b a b a b a b  for the column on the left.

From the matrix multiplication, a
0,1

 for example, is obtained as the inner product of the first row 

of the matrix Ω  and the right column of 

a

n
,

a h h h h a a a a
T

0,1 0 1 2 3 0,2 1,2 2,2 3,2
= [ ][ ]

   

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

         

 
3 3

2

5 3

2

7 3

2

19 5 3

6

− − − +









T

               

=
1

24 2
[(1 3)(9 3 3) (3 3)(15 3 3)+ − + + −

             (3 3)(21 3 3) (1 3)(19 5 3)]+ − − + − +

                                                

=
14 4 3

3 2

−

b h h h h a a a a
T

0,1 3 2 1 0 0,2 1,2 2,2 3,2
= [ ][ ]− −

   

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

     
3 3

2

5 3

2

7 3

2

19 5 3

6

− − − +









T

            

=
1

24 2
[(1 3)(9 3 3) ( 3 3)(15 3 3)− − + − + −

          (3 3)(21 3 3) ( 1 3)(19 5 3)]+ + − + − − +

                                             

=
2

3 2

−
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a h h h h a a a a

T

1,1 0 1 2 3 2,2 3,2 4,2 5,2
= [ ][ ]

         

=
+ + − −







 ×

1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

 

    
7 3

2

19 5 3

6

9 5 3

6

1 5 3

6

− + + − +









T

 

=
1

24 2
[(1 3)(21 3 3) (3 3)(19 5 3)+ − + + +

      (3 3)(9 5 3) (1 3)( 1 5 3)]+ − + + − − +

 

=
10 8 3

3 2

+

b h h h h a a a a
T

1,1 3 2 1 0 2,2 3,2 4,2 5,2
= [ ][ ]− −

   

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

      

     
7 3

2

19 5 3

6

9 5 3

6

1 5 3

6

− + + − +









T

                

=
1

24 2
1 3 21 3 3 3 3 19 5 3−( ) −( ) + − +( ) +( )



    
    3 3 9 5 3 1 3 1 5 3+ +( ) +( ) + − −( ) − +( )

 

=
2

3 2

a h h h h a a a a
T

2,1 0 1 2 3 4,2 5,2 6,2 7,2
= [ ][ ]

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

   

     
9 5 3

6

1 5 3

6

1 3

2

1 3

2

+ − +
−

+ −









T

          

=
1

24 2
[(1 3)(9 5 3) (3 3)( 1 5 3)+ + + + − +

     (3 3)( 3 3 3) (1 3)(3 3 3)]+ − − − + − −

                                              

=
6 2 3

3 2

+
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b h h h h a a a a
T

2,1 3 2 1 0 4,2 5,2 6,2 7,2
= [ ][ ]− −

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

     
9 5 3

6

1 5 3

6

1 3

2

1 3

2

+ − +
−

+ −









T

             

=
1

24 2
[(1 3)(9 5 3) ( 3 3)( 1 5 3)− + + − + − +

         (3 3)( 3 3 3) ( 1 3)(3 3 3)]+ + − − + − − −

                                             

=
4 3

3 2

−

a h h h h a a a a
T

3,1 0 1 2 3 6,2 7,2 8,2 9,2
= [ ][ ]

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

     
1 3

2

1 3

2

3 3

2

5 3

2
−

+ − − −









T

=
1

24 2
[(1 3)( 1 3) (3 3)(1 3)+ − − + + −

     (3 3)(3 3) (1 3)(5 3)]+ − − + − −

=
2 2 3

2

−

b h h h h a a a a
T

3,1 3 2 1 0 6,2 7,2 8,2 9,2
= [ ][ ]− −

   

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

     
1 3

2

1 3

2

3 3

2

5 3

2
−

+ − − −









T

=
1

24 2
[(1 3)( 1 3) ( 3 3)(1 3)− − − + − + −

     (3 3)(3 3) ( 1 3)(5 3)]+ + − + − − −

                                             = 0
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The resulting four coefficients, { . , , }
0,1 1,1 2,1 3,1

a a a a , after down sampling the output of the low 

pass filter, are with period 4 and we will use this extension. They are passed again to another set of 

low and high pass filters to result in two samples for each filter. The four output coefficients of the 

high pass filter { , , , }
0,1 1,1 2,1 3,1

b b b b  are not split further in the spirit of MRA.

So, to obtain the two coefficients each of the output of these two filters, we repeat the same 

matrix multiplication as in Eq. (16.29),

a h h h h a a a a
T

0,0 0 1 2 3 0,1 1,1 2,1 3,1
= [ ][ ]

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

          

     
14 4 3

3 2

10 8 3

3 2

6 2 3

3 2

2 2 3

2

− + + −









T

         
=

1

24
[(1 3)(14 4 3) (3 3)(10 8 3)+ − + + +

      (3 3)(6 2 3) (1 3)(6 6 3)]+ − + + − −

                                              
=

23 8 3

6

+

b h h h h a a a a
T

0,0 3 2 1 0 0,1 1,1 2,1 3,1
= [ ][ ]− −

     

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

         

     
14 4 3

3 2

10 8 3

3 2

6 2 3

3 2

2 2 3

2

− + + −









T

           
=

1

24
[(1 3)(14 4 3) ( 3 3)(10 8 3)− − + − + +

        (3 3)(6 2 3) ( 1 3)(6 6 3)]+ + + + − − −

                                              
=

14 5 3

6

−

a h h h h a a a a
T

1,0 0 1 2 3 2,1 3,1 4,1 5,1
= [ ][ ]

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

         

     
6 2 3

3 2

2 2 3

2

14 4 3

3 2

10 8 3

3 2

+ − − +









T
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=

1

24
[(1 3)(6 2 3) (3 3)(6 6 3)+ + + + −

          (3 3)(14 4 3) (1 3)(10 8 3)]+ − − + − +

                                              
=

13 8 3

6

−

b h h h h a a a a
T

1,0 3 2 1 0 2,1 3,1 4,1 5,1
= [ ][ ]− −

     

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×

         

     
6 2 3

3 2

2 2 3

2

14 4 3

3 2

10 8 3

3 2

+ − − +









T

       
=

1

24
[(1 3)(6 2 3) ( 3 3)(6 6 3)− + + − + −

            (3 3)(14 4 3) ( 1 3)(10 8 3)]+ + − + − − +

                                              
=

10 3

6

− +

The { , }
0,0 1,0

b b  are not split and to be added to the previous four as

{ , | , , , }
0,0 1,0 0,1 1,1 2,1 3,1

b b b b b b

The { , }
0,0 1,0

a a  of the low pass filter are now input to the next pair of filters to end up (after down 

sampling) with one sample output for each of the two filters:

a h h h h a a a a
T

0, 1 0 1 2 3 0,0 1,0 2,0 3,0
= [ ][ ]−

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

+ + − −







 ×

                   

23 8 3

6

13 8 3

6

23 8 3

6

13 88 3

6

+ − + −









T

             

=
1

24 2
[(1 3)(23 8 3) (3 3)(13 8 3)+ + + + −

          (3 3)(23 8 3) (1 3)(13 8 3)]+ − + + − −

                                              = 3 2

b h h h h a a a a
T

0, 1 3 2 1 0 0,0 1,0 2,0 3,0
= [ ][ ]− − −

     

=
1 3

4 2

3 3

4 2

3 3

4 2

1 3

4 2

−
−

− +
−

+







 ×
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23 8 3

6

13 8 3

6

23 8 3

6

13 88 3

6

+ − + −









T

=
1

24 2
[(1 3)(23 8 3) ( 3 3)(13 8 3)− + + − + −

     (3 3)(23 8 3) ( 1 3)(13 8 3)]+ + + + − − −

=
5 8 3

3 2

+

b
0, 1−  is added to the previous ones to make

{ |, , |, , , , |}
0, 1 0,0 1,0 0,1 1,1 2,1 3,1

b b b b b b b− .

The significance of the coefficient a
0, 1−  output of the last low pass filter, that it is very close to 

the average of the extended sequence. The seven coefficient outputs of the three (in cascade) high 

pass filters are supposed to give the “details” of the sequence and its mirror image extension.

Now, we write the approximated signal f  decomposition in four equivalent ways: (i) V
0
, (ii) V

0
 =  

V W− −⊕
1 1

, (iii)V V W W
0 2 2 1

= − − −⊕ ⊕ , and (iv)V V W W W
0 3 3 2 1

= − − − −⊕ ⊕ ⊕ . These correspond to (i) 

the output of the first low pass filter at scale l
0

=1, (ii) the outputs of the first pair of the filters at scale 

l−1
=2, (iii) the output of the low pass filter at scale l−2

= 4  in the second filters pair plus the output 

of the second high pass filter. We add to those what was stored of the output of the first high pass 

filter. (iv) The output of the low pass filter at scale −3
= 8  of the third filters pair, plus the output of 

its parallel high pass filter, and what was stored as the outputs of the high pass filters from the first 

and second pairs of the filtering operations.

 (i) In V
0
: We have a

k n,
, with period N = (2)2n = (2)22 = 8,

f t a t a t a t a t( ) = ( ) ( 1) ( 2) ( 3)
0,2 1,2 2,2 3,2
f f f f+ - + - + -

           
          ( 4) ( 5) ( 6) ( 7).

4,2 5,2 6,2 7,2
+ − + − + − + −a t a t a t a tf f f f

Here we write a
k n,

 for n = 2  of the period N = (2)22  = 8.

 (ii) V V W
0 1 1

= − −⊕ : We have { }
, 1

a
k n− ={ }

,1 =0

4
a

k k
, { }

, 1
b

k n− ={ }
,1 =0

4
b

k k
 with period N = (2) 2 1n−  =  

(2) 21 = 4 for each sequence,

f t a
t

a
t

a
t

( ) =
2 2

2(1)
2

2(2)
0,1 1,1 2,1
f f f





+ −




+ −




+ aa

t
3,1

2
2(3)f −





           
2

1
2

1 2(1)
2

1
0,1 1,1 2,1

+ −




+ − −




+ −b

t
b

t
b

t
y y y −−





2(2)

           
2

1 2(3) .
3,1

+ − −





b
t

y

Note the translation by 2k  in the above scaling functions and wavelets for the purpose of down 

sampling. Also, there is an extra translation of the wavelet by 1 to accommodate matching the com-

pact support of the wavelet with its associated scaling function.
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 (iii) In V V W W
0 2 2 1

= − − −⊕ ⊕  we have { }
, 2

a
k n− ={ }

,0 =0

1
a

k k
, { }

, 1
b

k n− ={ }
,0 =0

1
b

k k
 with period N = (2)2 2n− =  

(2)20 =2 for each sequence,

f t a
t

a
t

b
t

( ) =
4 2

4(1)
4

1
0,0 1,0 0,0
f f y





+ −




+ −





    
4

1 4(1)
2

1
1,0 0,1

+ − −




+ −





b
t

b
t

y y

    
2

1 2(1)
2

1 2(2)
1,1 2,1

+ − −




+ − −





b
t

b
t

y y

    
2

1 2(3) .
3,1

+ − −





b
t

y

We note here the down sampling again in V W− −⊕
2 2

, of the first four terms, where the transla-

tions now are by steps of 4.

 (iv) In V V W W W
0 3 3 2 1

= − − − −⊕ ⊕ ⊕  we have { }
, 3

a
k n− ={ }

, 1 =0
a

k k−  and { }
, 3

b
k n− ={ }

, 1 =0
b

k k−  with period 

N = (2) 2 3n− =(2) 22 3− = (2)
1

2
=1,

f t a
t

b
t

b
t

( ) =
8 8

1
4

1
0, 1 0, 1 0,0− −






+ −




+ −





f y y

                                 

    
4

1 4(1)
2

1
2

1 2(1)
1,0 0,1 1,1

+ − −




+ −




+ − −


b

t
b

t
b

t
y y y 




           

    
2

1 2(2)
2

1 3(2) .
2,1 3,1

+ − −




+ − −





b
t

b
t

y y

The last step is to substitute all coefficients to compute back the signal:

f t
t t t

( ) = (3 2)
8

5 8 3

3 2 8
1

14 5 3

6
f y y





+

+





−




+

−




 44
1−





    
10 3

6 4
1 4

2

3 2 2
1+

− +





− −




+

−





−





y y
t t

    
2

3 2 2
1 2

4 3

3 2 2
1 4+







− −




+

−





− −





y y
t t

    (0)
2

1 6 .+ − −





y
t

We said that the decomposition in the V−3
 corresponds to a blurred picture or an average of the 

signal. This is seen above in the coefficients a
0, 1

= 3 2−  of f
t

8







.
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Example 16.5.2 —  Illustrating the inverse Daubechies wavelet transform for reconstruc-
tion (synthesis).

For this illustration we follow the reverse process of what we did for the Forward Daubechies wave-

let transform. We start with the sequence { , }
0, 1 0, 1

a b− − , which is periodic with period 2. We extend 

it as { , ; , }
0, 1 0, 1 0, 1 0, 1

a b a b− − − −  to fit the matrix multiplication by the ( 4 4× ) inverse matrix Ω−1  for 

 
a d

n n
= 1

1
Ω−

−  in Eqs (16.31) and (16.32) for obtaining a
0,0

 and a
1,0

.

a

a

a

a

h h h h

h h h h

h h h h

h

0,0

1,0

0,0

1,0

0 3 2 1

1 2 3 0

2 1 0 3

3

=



















− −

−hh h h

a

b

a

b
0 1 2

0, 1

0, 1

0, 1

0, 1−





































−

−

−

−

a h h h h a b a b
T

0,0 0 3 2 1 0, 1 0, 1 0, 1 0, 1
= [ ][ ]− − − −

 

=
1 3

4 2

1 3

4 2

3 3

4 2

3 3

4 2

+ − − +







 ×

  

    3 2
5 8 3

3 2
3 2

5 8 3

3 2

+ +









T

=
1

24
[(1 3)(18) (1 3)(5 8 3)+ + − +

     (3 3)(18) (3 3)(5 8 3)]+ − + + +

=
23 8 3

6

+

a h h h h a b a b
T

1,0 1 2 3 0 0, 1 0, 1 0, 1 0, 1
= [ ][ ]− − − − − −

=
3 3

4 2

3 3

4 2

1 3

4 2

1 3

4 2

+
-
- -

-
+é

ë
ê
ê

ù

û
ú
ú
´

     3 2
5 8 3

3 2
3 2

5 8 3

3 2

+ +









T

=
1

24
[(3 3)(18) ( 3 3)(5 8 3)+ + − + +

     (1 3)(18) ( 1 3)(5 8 3)]+ − + − − +

=
13 8 3

6

−

These a a
1,0 0,0

,  at n = 0  are now combined with their respective b b
1,0 0,0

,  to make a sequence 

{ , , , }
1,0 1,0 0,0 0,0

a b a b  of period 4, and we extend it to find a
0,1

 and a
1,1

 from Eq. (16.32). Here, we will 
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need a
1,0

 and b
1,0

 from the second period since the coefficients of the square matrix are shifted by 

two positions:

a

a

a

a

h h h h

h h h h

h h h h

h

0,1

1,1

2,1

3,1

0 3 2 1

1 2 3 0

2 1 0 3

3

=



















− −

−hh h h

a

b

a

b
0 1 2

0,0

0,0

1,0

1,0−





































 
a h h h h a b a b

T

0,1 0 3 2 1 0,0 0,0 1,0 1,0
= [ ][ ]

    

=
1 3

4 2

1 3

4 2

3 3

4 2

3 3

4 2

+ − − +







 ×

     
23 8 3

6

14 5 3

6

23 8 3

6

14 5 3

6

+ − + −









T

             

=
1

24 2
[(1 3)(23 8 3) (1 3)(14 5 3)+ + + − −

           (3 3)(13 8 3) (3 3)( 10 3 3)]+ − − + + − +

                                              

=
14 4 3

3 2

−

a h h h h a b a b
T

1,1 1 2 3 0 0,0 0,0 1,0 1,0
= [ ][ ]− −

     

=
3 3

4 2

3 3

4 2

1 3

4 2

1 3

4 2

+
−

− −
−

+







 ×

23 8 3

6

14 5 3

6

23 8 3

6

14 5 3

6

+ − + −









T

                

=
1

24 2
[(3 3)(23 8 3) ( 3 3)(14 5 3)+ + + − + −

             (1 3)(13 8 3) ( 1 3)( 10 3 3)]+ − − + − − − +

                                              

=
10 8 3

3 2

+

a h h h h a b a b
T

2,1 2 1 0 3 0,0 0,0 1,0 1,0
= [ ][ ]

=
3 3

4 2

3 3

4 2

1 3

4 2

1 3

4 2

− + + −







 ×

              

   
23 8 3

6

14 5 3

6

23 8 3

6

14 5 3

6

+ − + −









T
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=
1

24 2
[(3 3)(23 8 3) (3 3)(14 5 3)− + + + −

           (1 3)(13 8 3) (1 3)( 10 3 3)]+ + − + − − +

=
6 2 3

3 2

+

a h h h h a b a b
T

3,1 3 0 1 2 0,0 0,0 1,0 1,0
= [ ][ ]− −

     

=
1 3

4 2

1 3

4 2

3 3

4 2

3 3

4 2

−
−

+ +
−

−







 ×

              

   
23 8 3

6

14 5 3

6

23 8 3

6

14 5 3

6

+ − + −









T

               

=
1

24 2
[(1 3)(23 8 3) ( 1 3)(14 5 3)− + + − − −

              (3 3)(13 8 3) ( 3 3)( 10 3 3)]+ + − + − + − +

=
2 2 3

2

−

These { , , , }
0,1 1,1 2,1 3,1

a a a a  are now added to the stored { , , , }
0,1 1,1 2,1 3,1

b b b b  at the same level n = 1 

to make the sequence of period 8: { , , , , , , , }
0,1 0,1 1,1 1.1 2,1 2,1 3,1 3,1

a b a b a b a b . As we discussed in obtaining  

Eq. (16.32), the first two rows of the inverse matrix Ω  are completed equivalently by adding the 

first halves { , }
2 1

h h  and { , }
3 0

h h−  of the two filters at the end of the first and second row, respectively.

a

a

a

a

a

a

a

a

h0,2

1,2

2,2

3,2

4,2

5,2

6,2

7,2

=































00 3 2 1

1 2 3 0

2 1 0 3

3 0 1 2

2 1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0

h h h

h h h h

h h h h

h h h h

h h

− −

− −
hh h

h h h h

h h h h

h h h h

0 3

3 0 1 2

2 1 0 3

3 0 1 2

0 0

0 0 0 0

0 0 0 0

0 0 0 0

− −

− −














































a

b

a

b

a

b

a

b

0,1

0,1

1,1

1,1

2,1

2,1

3,1

3,1
















a h a h b h a h b
0,2 0 0,1 3 0,1 2 3,1 1 3,1

= + + +

=
1 3

4 2

14 4 3

3 2

1 3

4 2

2

3 2

+





−





+

−





−
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3 3

4 2

2 2 3

2

3 3

4 2
0+

−





−





+

+





( )

=
1

24
(1 3)(14 4 3) (1 3)( 2) (3 3)(6 6 3) 0+ − + − − + − − +





                           
=

3 3

2

−

                    
a h a h b h a h b

1,2 1 0,1 2 0,1 3 3,1 0 3,1
= − + −

                          

=
3 3

4 2

14 4 3

3 2

3 3

4 2

2

3 2

+





−





−

−





−





                    

          
1 3

4 2

2 2 3

2

1 3

4 2
0+

−





−





+

+





( )

                           
=

1

24
(3 3)(14 4 3) ( 3 3)( 2) (1 3)(6 6 3) 0+ − + − + − + − − +





                           
=

5 3

2

−

                    
a h a h b h a h b

2,2 2 0,1 1 0,1 0 1,1 3 1,1
= + + +

                           

=
3 3

4 2

14 4 3

3 2

3 3

4 2

2

3 2

−





−





+

+





−





                    

          
1 3

4 2

10 8 3

3 2

1 3

4 2

2

3 2
+

+





+





+

−











                           
=

1

24
(3 3)(14 4 3)− −



                       
       (3 3)( 2) (1 3)(10 8 3) (1 3)(2)+ + − + + + + − 



                           
=

7 3

2

−

                    
a h a h b h a h b

3,2 3 0,1 0 0,1 1 1,1 2 1,1
= − + −

                           

=
1 3

4 2

14 4 3

3 2

1 3

4 2

2

3 2

−





−





−

+





−





                    

          
3 3

4 2

10 8 3

3 2

3 3

4 2

2

3 2
+

+





+





−

−
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=

1

24
(1 3)(14 4 3) ( 1 3)( 2)− − + − − −



                       
       (3 3)(10 8 3) ( 3 3)(2)+ + + + − + 



                           
=

19 5 3

6

+

                     
a h a h b h a h b

4,2 2 1,1 1 1,1 0 2,1 3 2,1
= + + +

                            

=
3 3

4 2

10 8 3

3 2

3 3

4 2

2

3 2

−





+





+

+











 

          
1 3

4 2

6 2 3

3 2

1 3

4 2

4 3

3 2
+

+





+





+

−





−






=
1

24
(3 3)(10 8 3) (3 3)(2)− + + +



       (1 3)(6 2 3) (1 3)( 4 3)+ + + + − − 


=
9 5 3

6

+

a h a h b h a h b
5,2 3 1,1 0 1,1 1 2,1 2 2,1

= − + −

                           

=
1 3

4 2

10 8 3

3 2

1 3

4 2

2

3 2

−





+





−

+











                    

          
3 3

4 2

6 2 3

3 2

3 3

4 2

4 3

3 2
+

+





+





−

−





−






                           
=

1

24
(1 3)(10 8 3) ( 1 3)(2)− + + − −



                       
       (3 3)(6 2 3) ( 3 3)( 4 3)+ + + + − + − 



                           
=

1 5 3

6

− +

                    
a h a h b h a h b

6,2 2 2,1 1 2,1 0 3,1 3 3,1
= + + +

                           

=
3 3

4 2

6 2 3

3 2

3 3

4 2

4 3

3 2

−





+





+

+





−






                    

          
1 3

4 2

2 2 3

2

1 3

4 2
0+

+





−





+

−





( )
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=

1

24
(3 3)(6 2 3) (3 3)( 4 3)− + + + −



                       
       (1 3)(6 6 3) 0+ + − + 



                           
=

1 3

2
−

+

                    
a h a h b h a h b

7,2 3 2,1 0 2,1 1 3,1 2 3,1
= − + −

                           

=
1 3

4 2

6 2 3

3 2

1 3

4 2

4 3

3 2

−





+





−

+





−






                    

          
3 3

4 2

2 2 3

2

3 3

4 2
0+

+





−





−

−





( )

                           
=

1

24
(1 3)(6 2 3) ( 1 3)( 4 3)− + + − − −



                       
       (3 3)(6 6 3) 0+ + − + 



                           
=

1 3

2

−

Interested readers can try out following variations for further insights: 

 1. (a)  Follow above examples to illustrate the Haar wavelet transform and its inverse for the 

 coefficients sequence {1, 2,3,5}−  by showing the decomposition in V V W− ⊕
2 1 1

= , then the 

reconstruction to show that you recover the oringinal sequence.

  (b)  We note that this sequence in part (a) has a jump at t = 1, and we expect, with good resolu-

tion, that it can be detected by the wavelet part of the decomposition. Try V W W
2 0 1
⊕ ⊕  to see 

if the part in W W
0 1
⊕  shows it better than just the W

1
 in V V W

2 1 1
= ⊕  of part (a). If not, try 

V V W W W
3 0 0 1 2

= .⊕ ⊕ ⊕
 2. Consider the sequence of samples {0,1,4,9}. 

  (a)  Use extension with zeros to calculate its eight coefficients, and write its interpolation f t V( )
0

∈ .

  (b)  Use the first Daubechies wavelet transform, for the decomposition in:

       (i)  V V W
0 1 1

= − −⊕
      (ii)  V V W W

0 2 2 1
= − − −⊕ ⊕

     (iii)  V V W W W
0 3 3 2 1

= − − − −⊕ ⊕ ⊕
  (c)  Use the inverse Daubechies wavelet transform for the construction of the original signal to 

verify your results.

 3. Repeat (2) with the periodic extension with matching slopes at the ends. Compare your results 

with that of (2). How does the edge effect in (2) affect the comparison?
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 4. Repeat (2) and (3) for the sequence {1,3} , using the zeros extension for the Haar scaling function 

and wavelets.

 5. Repeat (2) for the sequence {0,1,4,9} with the zeros extension and the Haar scaling functions and 

wavelets.

16.6  Multi-dimensional Wavelets

A signal is a 1-D entity and often gets represented using function of independent variable time ‘t’. We 

represent images in space as they are 2D entities. If we can extend 1D wavelet analysis to 2D, then we 

should be able to extend it to M-dimensions.

2D wavelet analysis has two possible methods: 

 1. An easier approach in which we construct tensor product wavelets which are separable.

 2. Little difficult part of wavelet theory in which two variables are not separable in general. This 

means a wavelet function y ( , )x y  can not be written as product y y( ) ( )x y⋅  and requires more 

attention.

16.6.1 Separable Tensor Product Wavelets

A wavelet transform of M-dimensional vector can be obtained in easiest way by transforming array 

sequentially to first index,then to second index, going all the way till M
th  index. The order of indices 

hardly matters, as by associativity of matrix product, the result remains independent of the order. Each 

transformation boils down to multiplication with orthogonal matrix. An image is a good example of 2D 

information representation.

A 2D-wavelet analysis of an image upto scale 2 can be depicted as follows: 

(A) 

I

            original image

(B)

 

L H

  One step of 1D transform on each rows of image I, resulting in low resolution ‘L’ &  high reso-

lution ‘H’ part.
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(C) 

LL LH

HL HH

  One step of 1D transform on each of columns of image I, resulting in LL,LH,HL,HH (4 subbands).

(D) 

L H LH

HL HH

 For next scale,in spirit of MRA we process only energy rich LL band.

 1-D transform row-wise.

(E) 

LL LH

HL HH

LH

HL HH

 1-D transform column-wise

  

Nomenclature:

LL: Low pass filtering for rows and columns

LH: Low pass filtering for columns and high pass filtering for rows

HL: High pass filtering for columns and low pass filtering for rows

HH: High pass filtering for columns and high pass filtering for rows.

Typically, HH captures diagonal features, HL gives horizontal and LH gives vertical features, LL 

captures low pass features and has highest energy.

If ‘I’ is the image to be analyzed and   K H G=   is the transformation matrix in 1-D wavelet sense, then

LL LH

HL
I1 = = [K*] ⋅I⋅ [K*]T˜ ˜HH
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The rectangular transform corresponds to taking 1-D wavelet transform in x and y independently 

with K
1
 matrix exactly of half size (downsampled in x as well as y by 2) but of same class of K , we  

get second step,

I
K

I
I

K

I

T

2 1 1 1=
0

0

0

0

 ∗ ∗







 ⋅ ⋅











Rectangular division corresponds to,

V x y x y x y k
j j k j l j k j l j k j l

= { ( ) ( ), ( ) ( ), ( ) ( ) : ,
, , , , , ,

span f f f y y f⋅ ⋅ ⋅ ll Z∈ }

and

W x y k l Z
j j k j l

= { ( ) ( ); , }
, ,

span y y⋅ ∈

Thus,

( )( , ) = ( ) ( )h g x y h x g y⊗ ⋅

∴ ⊗∑∑I x y q x y
m l j k

m j l k ml jk
( , ) = ( )( , )

, ,

, , ,
y y

In MRA, the next step is applied only on LL band.

∴ Let’s take LL band separate and perform  K I K
LL

T

1

1

1

∗ ∗  ⋅   ⋅    which gives

V x y k l z
j j k j l
= ∈span{ ( ) ( ) : , }

, ,
f f

(LL square)

W
j
 is spanned by mixed basis.

  
W x y x y x y k l

j j k j l j k j l j k j l
= span f y y f y y

, , , , , ,
( ). ( ), ( ). ( ), ( ). ( ) : , ∈∈{ }z

(HL,LH,HH squares)

There is scaling of 2− j  for both x &  y directions.

V V V
j j

x

j

y

+ + +⊗
1 1

( )

1

( )=

= ( ) ( ) ( ) ( )
V W V W

j

x

j

x

j

y

j

y⊕  ⊗ ⊕ 
= ( ) ( ) ( ) ( ) ( ) ( ) ( ) (

V V V W W V W W
j

x

j

y

j

x

j

y

j

x

j

y

j

x

j
⊗  ⊕ ⊗  ⊕ ⊗  ⊕ ⊗ yy) 

The calculation of coefficients by recursion in matrix form can be now set:

V H V H
j j

T

-

* *
× × é

ëê
ù
ûú1

=   (LL sub-band)
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W H V G
j

x

j

T

-

* *
× × é

ëê
ù
ûú1

( ) =   (LH sub-band)

W G V H
j

y

j

T

-

* *
× × é

ëê
ù
ûú1

( ) =   (HL sub-band)

W G V G
j

xy

j

T

-

* *
× × é

ëê
ù
ûú1

( ) =   (HH sub-band)

Thus, reconstruction shall be:

V H V H G W H H W G G W G
j j

T

j

x T

j

y T

j

xy T

+ ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅
1

( ) ( ) ( )=

16.6.2 Non-Separable wavelets

If two variables are not separable then the row-wise and column-wise application in 1D style will not work.

Let’s derive this using conventional convolution mechanism.

In 1D sense

f
H

g

If ‘H’ is the impulse response of filter then ‘g’ is calculated using

g h f= *

This holds true for 2D filter as well. Let H
2
 be the 2D filter with impulse response 

h h k k z
k k2 1, 2 1 2

= { | , }∈ , and

g h f
2 2 2

= *

 

g K h f
n n

K

K K n k n k1, 2

1

2
1

,
2

1 1, 2 2
= ∑∑ − −  (16.37)

Convolution in time or sparse becomes multiplication in ‘Z’ domain.

∴ ⋅     ∴ ⋅G Z H Z F Z( ) = ( ) ( )

∴ ⋅
     

∴ ⋅ ⋅








 ⋅ ⋅ ⋅∑ ∑− − −

G Z h Z Z f Z Z
K K

K K

K K

K K

K K

K
( ) =

1
,

2

1
,

2
1

1
2

2

1
,

2

1
,

2
1

1
2

−−









K
2  (16.38)

Let ‘M’ describe subsampling in 2D sense. For separable case ‘M’ is diagonal, for non-seprable 

case it’s not.

 
( ) ( , ) = ( ) = (2 ,2 )

1 2 1 2
↓ M y n n y M y n n

n
 (16.39)

Equation (16.39) depicts downsampling by 2 (↓2) in every direction.

∴ Only these samples for which n n
1 2
+ = even are retained.



Advanced Topics 519

 

∴
− −
− −









M Z Z

H Z Z H Z Z

G Z Z G Z Z
( , ) =

( , ) ( , )

( , ) ( , )
1 2

1 2 1 2

1 2 1 2

 (16.40)

We choose simplest solution of form

 M M I⋅ ∗ = 2  (16.41)

For Eq. (16.41) to hold, G(Z Z
1 2
, ) should be an odd delay of H(− −− −

Z Z
1

1

2

1, ) For 1D MRA,with 

H h e
K k

ik( ) =w w∑ ⋅ −

 
the dialation equation was,

 

f f( ) = 2 (2 ) = 2 < , (2 ) >
2 ( )

t h t K h t
K

k
l Z

å × - * F
0

 (16.42)

we can generalize this to M-D

 

f f( ) = ( ) = < , ( ) >
2 ( 2 )

t M h M K M h Mt
K

k t
l Z

å × - * F
0

 (16.43)

where,F
0
( ) = ( ( )) ( )

0

2 2
t t l Z

k
f Î . For variable change of S Mt K= −

 
M Mt K dt dt s ds ds∫∫ ∫∫− ⋅ − ⋅ ⋅f f( ) = ( )

1 2 1 2
 (16.44)

There will be (M – 1) wavelet functions,

 

y f( ) ( )( ) = ( )m

K

K

m
t M g Mt K∑ ⋅ −  (16.45)

 
y ( ) ( )

0 2 ( 2 )
( ) = < , ( ) > , = 1, , 1m m

l Z
t M g Mt M M

* -F   (16.46)

From Eqs (16.43)-(16.46),

 
V t t K K Z

ok0

2= { ( ) = ( ) : }span f f − ∈  (16.47)

and orthogonally,

 
W t t k m M K Z

ok

m m

0

( ) ( ) 2= { ( ) = ( : = 1, , 1; }span y y − − ∈)   (16.48)

Taking all dilates and translates, of wavelet,

y y
n K

m

n

n
t M m M t K

,

( ) 2( ) = )( )( −

This is the orthonormal basis for entire L R
2 2( )  2-D wavelet examples: 

 1. Mexican Hat:

y ( ) = ( 2) (
1

2
)2 2

t t t   − −exp
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 2. Morlet:

y ( ) = ( )
1

2
( > 56 )2

t iK t At K
Texp exp⋅ −





→    admissible

16.7  The Two-Dimensional Haar Wavelet Transform

In this session we shall demonstrate the separable basis for doing the 2D wavelet analysis. We shall keep 

using Haar basis to ensure the readers will find it easy to grasp the 2D analysis steps and that will enable 

them to understand how to generalize the analysis that can be extended to M dimensional analysis.

The Haar wavelet transform, as has been demonstrated throughout the book, does a simple aver-

aging and differential to each pair of a one-dimensional sequence, for example, 

S s s s s= { , , , }

0 1 2 3
.  

So, now we have an idea about a two-dimensional Haar wavelet transform of a two dimensional 

sequence, lets take case of the four points in space: z f z f z f
0 1 2

= (0,0) = 9, = 0,
1

2
= 7, =

1

2
,0 = 5













 

and z f
3

=
1

2
,
1

2
= 3







. Even though this is a 2 2×  array, we hope that it will give some feeling about 

what we may expect in dealing with two-dimensional images. Here, we can take the values 9, 7, 5, and 

3 can be thought of as a measure of the luminance or chrominance in an image.

These samples are easily interpolated by using a two-dimensional Haar scaling function with an 

area of 
1

2

1

2
=

1

4
× , when using scale l

1
=

1

2
 in both the x  and y  directions. With scale l

0
= 1 , the double 

Haar scaling function can be written as:

 

F
(0,0)

(0) ( , ) =
1, 0 < 1  0 < 1

0, 
x y

x y£ £ì
í
î

and

otherwise
 (16.49)

as shown in Fig. 16.3,

0

1

1
1

1/2
1/2

1/21/2
(1, 1)

x

y

z

Figure 16.3  The Haar wavelet Φ
(0,0)

(0)
( , )x y (scaling function in two dimensions)

The expression in Eq. (16.49) we obtain from the tensor product of our usual scaling function,

 

f j( ) ( ) =
1, 0 < 1 , 0 < 1

0,
(0,0)

(0)
x x

x y
º

£ £ì
í
î otherwise

 (16.50)
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and a similar one in the y -direction,

 

f j( ) ( ) =
1, 0 < 1

0,
(0,0)

(0)
y y

y
≡

≤

 otherwise

 (16.51)

 

F
(0,0)

(0)

(0,0)

(0)

(0,0)

(0)( , ) = ( ) ( ) =
1, 0 < 1 , 0 < 1

0,
x y x y

x y
f f

£ £

otheerwise
.

ì
í
î

 (16.52)

We will use the subscript ( , )a b  in Φ
( , )

( ) ( , )
a b

j
x y  to indicate the top left corner of its base support in 

the x y−  plane. The superscript ( )j  is used to indicate the scale l
j
(in this case l

0
= 1 ) in both the x  

and y  directions, where we see that the base of the cube is 1 1×  in Fig. 16.3.

Reader will note that Φ
(0,0)

(0) ( , )x y  in Eq. (16.52) is asociated with “averaging” in the x  and y 

directions (LL). However, we expect more operations, such as average of differencing (LH), difference 

of averaging (HL), and difference of differencing (HH). As it may sound, this would involve other Haar 

wavelet actions in the y , x , and both (namely, diagonal) directions, to which we shall refer as Ψ
(0,0)

( , )h
x y , 

Ψ
(0,0)

( , )v
x y , and Ψ

(0,0)
( , )d
x y , respectively. The scale used will be spelled out, or we may write 

h
x yΨ

(0,0)

(1) ( , ) , 

v
x yΨ

(0,0)

(1) ( , )  and 
d

x yΨ
(0,0)

(1) ( , )  at scale l
1

=
1

2
, for example. Here h and v refer to the horizontal and vertical 

edges resulting from the differencing caused by the wavelets actions along the perpendicular direction 
to that particular edge. Such three mixed combinations that involve wavelets, are the reason behind 

using the symbol Ψ  instead of Φ , as the latter is reserved for the pure averaging as in Eq. (16.52).

We note that we are moving to the scale 
1

2
 for the four 

1

2

1

2
×  squares of the unit square, where we 

will also involve translations by 
1

2
. Reader should note that normalization happens in both the dimen-

sions and squeezing of area is not necessary. For the two-dimensional wavelet, such as Ψ
(0,0)

( , )h
x y , if 

we are to scale it with scale l
1

=
1

2
, and we want to indicate that, we use 

h
Ψ

(0,0)

(1) ; the same notation is 

used for the others. An example of scaling with l
1

=
1

2
 is

 

Φ Φ
(0,0)

(1)

(0,0)

(0)= (2 ,2 ) =
1, 0 <

1

2
,0 <

1

2

0,

x y
x y≤ ≤




 otherwise

 (16.53)

which is located at the top-left 
1

2

1

2
×  square, 0

1

2
, 0

1

2
≤ ≤ ≤ ≤x y  in Fig. 16.3. Its translation by 

1

2
 in 

the y-direction is

 

F F
(0,0)

(1)

(0,1)

(1)2 ,2
1

2
( , ) =

1, 0 <
1

2
,
1

2x y x y
x y

-
æ

è
ç

ö

ø
÷

æ

è
ç

ö

ø
÷ º

£ £ << 1

0, otherwise

ì

í
ï

îï
 (16.54)

which is located at the top-right 
1

2

1

2
×  square. The same thing is done for the other Φ

(0,0)

(1)  functions. 

Illustrative cases will be:

Φ Φ
(0,0)

(1)

(1,0)

(1)(2
1

2
, ) ( , ),x y x y−





≡
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Φ Φ
(0,0)

(0)

(1,1)

(1)2
1

2
,2

1

2
( , ).x y x y−





−




≡  (16.55)

These are shown in Fig. 16.4.

0
1/2

−1

−1

1

1/2
1

+1

1

z

x

y

Figure 16.4  
h
Ψ

(0,0)

(0)
( , )x y  - The horizontal wavelet

Two dimensional Haar bases will be written as:

 

Ψ
(0,0) (0,0)

(0)

(0,0)

(0)= ( ) ( ) =

1, 0 < 1,0 <
1

2

1, 0 < 1,
1

2

h
x y

x y

xf y

≤ ≤

− ≤ ≤≤















y < 1

0, ,otherwise

 (16.56)

as illustrated in Fig. 16.4.

This can be interpreted as the wavelet operation in the Y-direction, which results in differences, fol-

lowed by the scaling function operation in the X-direction, which averages these differences. Here, we 

are using the scale l
1

=
1

2
. So, from Figs 16.3 and 16.4, we may see that 

h
x yΨ

(0,0)

(0) ( , )  can be written in 

terms of the Φ(1)  basis at this scale as a sum of differences (in the x-direction).

 
Ψ Ψ Φ Φ Φ Φ

(0,0) (0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)( , ) = ( ) (h

h
x y≡ − + −

((1,1)

(1) ) (16.57)

This is a sum in the x -direction (due to the scaling function) of the differences in the Y-direction 

caused by the wavelet action. The action of differential causes the vertical edges parallel to the x -axis, 

hence the use of h  in 
h
Ψ

(0,0)

(0)  (or Ψ
(0,0)

h ). Next, we have 
v
Ψ

(0,0)

(0)  or just,
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Y
(0,0)

( , ) = ( ) ( ) =

1, 0 <
1

2
,0 < 1

1,
1

2
< 1,0 < 1

0,

v
x y x y

x y

x yy f

£ £

- £ £

otherwwise.

ì

í

ï
ï
ï

î

ï
ï
ï

 (16.58)

Here, the wavelet action in the x -direction causes the vertical edges parallel to the y -axis, as 

shown in Fig. 16.5.

z

x

y

1

−1

−1

−1

1

1/2

1/2

1

0

Figure 16.5  Ψ
(0,0)

v
( , )x y  - The vertical wavelet

Again we can see from Fig. 16.3 and 16.5 that this f
(0,0)

( , )v
x y  can be expressed in terms of the Φ(1)  

basis as a difference of sums in the y -direction,

 
Ψ Φ Φ Φ Φ

(0,0) (0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= ( ) ( ),v + − +  (16.59)

which can be seen clearly as we look at the back positive half versus the front negative half in Fig. 16.5.

Next is the diagonal wavelet,

 

d
x y

x y

x y

x
Y

(0,0)

(0) = ( ) ( ) =

1, 0 <
1

2
;0 <

1

2

1,
1

2
< 1;0 <

1

2

1,
1

2
<

y y

£ £

- £ £

£ 11;
1

2
< 1

1, 0 <
1

2
;
1

2
< 1

0,

£

- £ £

ì

í

ï
ï
ï
ï
ï

î

ï
ï
ï
ï
ï

y

x y

otherwise

 (16.60)
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is shown in Fig. 16.6,

x

y

z

1

−1

1
1

+1

+1

−1 −1

1
2

1

2

1

2

1

2

Figure 16.6  
d
Ψ

(0,0)
 - The diagonal wavelet

where we should be able to verify that it can be expressed as a differences of two differences. Here we 

have actions of the wavelets in both of the horizontal and vertical directions. So, we expect more edges,

d
Ψ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(1,0)

(1)

(1,1)

(1)

(0,1)

(1)= ( ) ( )− + −

 
Ψ Φ Φ Φ Φ

(0,0) (0,0)

(1)

(1,0)

(1)

(0,1)

(1)

(1,1)

(1)( ) ( )d ≡ − − +  (16.61)

and we see its action as difference of differences.

The first two terms in (16.51) are due to the wavelet action with scale l
1

=
1

2
 in the x -direction with 

base as the first back half (extending in the x -direction) of the 1 1×  square. The next two terms are due 

to the wavelet action in the opposite x -direction with base as the right half of the square. As seen in 

Fig. 16.6, the above two branches are two of the resulting four, the other two are with the same bases but 

in the opposite direction of the first two, and we left their tops and bottoms blank.

Last, we see from Fig. 16.3 that Φ
(0,0)

(0) ( , )x y  of (16.52),

 

F F F
(0,0)

(0)

(0,0)

(0)

(0,0)

(0)( , ) = ( ) ( ) =
1, 0 < 1;0 < 1

0,
x y x y

x y£ £

otheerwise

ì
í
î

 (16.62)

is the sum of the following four scaling functions Φ(1)  at the four 
1

2

1

2
×  squares,

 
Φ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= .+ + +  (16.63)

16.7.1 The Basis Transformation

Following our quest for the one-dimensional case, we have a possibility of exploring the relation between 

the above wavelets Φ(0)  at scale l
0

= 1  and those Φ(1)  at scale l
1

=
1

2
. We have already prepared for this 

in Eqs (16.57), (16.59), (16.61), and (16.64),

 
Φ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= + + +  (16.64)

 h
Ψ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= − + −  (16.65)
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 v
Ψ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= + − −  (16.66)

 
                       = ( ) (

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)Φ Φ Φ Φ+ − +
((1,1)

(1) )  (16.66a)

 d
Ψ Φ Φ Φ Φ

(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= + − −  (16.67)

 
                       = ( ) (

(0,0)

(1)

(1,1)

(1)

(0,1)

(1)Φ Φ Φ Φ+ − +
((1,0)

(1) ) (16.67a)

We can write these four equations as the following matrix transformation equation:

Φ
Ψ
Ψ
Ψ

(0,0)

(0)

(0,0)

(0,0)

(0,0)

=

1 1 1 1

1 1 1 1

1 1

h

v

d





















− −
−11 1

1 1 1 1

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)

−
− −



















Φ
Φ
Φ
Φ





















which we can rewrite symbolically as

 
Φ Ψ ΩΦ(0) (0) (1),( ) ≡  (16.68)

with Ω  as the above 4 4×  square matrix. We can find Ω−1 , the inverse, of this matrix Ω  so that 

we can write Φ Ω Φ Ψ(1) 1 (0) (0)= ( , )−  as follows,

 

Φ
Φ
Φ
Φ

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)

=
1

4

1 1 1 1

1





















−− −
− −

− −



















1 1 1

1 1 1 1

1 1 1 1

(0,0)

(0)

(0,0)

(0,0)

(0,0

Φ
Ψ
Ψ
Ψ

h

v

))

d





















 (16.69)

where we can easily show that Ω Ω−1 =
1

4

16.7.2 The Decomposition in 2D  sense

At the scale l
1

=
1

2
, our array

s s

s s

0,0 0,1

1,0 1,1









  of samples can be used with the mere Φ(1)  scaling functions 

to approximate the image as

 
f s s s s=

0,0 (0,0)

(1)

0,1 (0,1)

(1)

(1,0) (1,0)

(1)

1,1 (1,1)

(Φ Φ Φ Φ+ + + 11) , (16.70)

as can be seen from Fig. 16.3, where the four cubes of the Φ(1)  are given the s
0,0

, s
0,1

, s
1,0

, and 

s
1,1

 heights at their respective locations as indicated by the subscripts ( , )m n  in Φ
( , )

(1) , , = 0,1
m n

m n . For 

example, the array 
6 3

1 2









  gives the discontinuous surface for f  in Fig. 16.7,
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Figure 16.7  The array

 
f = 6 3 1 2

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)Φ Φ Φ Φ+ + +  (16.71)

where we recall from Eq. (16.63) that Φ Φ Φ Φ Φ
(0,0)

(0)

(0,0)

(1)

(0,1)

(1)

(1,0)

(1)

(1,1)

(1)= + + + . However, as we expect, 

this does not give much information, or, in particular, details about the image (array). It parallels what 

we used as a one low pass filter in the one-dimensional case.

Now comes the role of the above inverse transformation that gives us the decomposition (analysis) 

of the image. This is seen, where

Φ Φ Ψ Ψ Ψ
(0,0)

(1)

(0,0)

(0)

(0,0) (0,0) (0,0)
=

1

4
[ ]+ + +h v d

Φ Φ Ψ Ψ Ψ
(0,1)

(1)

(0,0)

(0)

(0,0) (0,0) (0,0)
=

1

4
[ ]− + −h v d

Φ Φ Ψ Ψ Ψ
(1,0)

(1)

(0,0)

(0)

(0,0) (0,0) (0,0)
=

1

4
[ ]+ − −h v d

Φ Φ Ψ Ψ Ψ
(1,1)

(1)

(0,0)

(0)

(0,0) (0,0) (0,0)
=

1

4
[ ].− − +h v d

Thus, the decomposition of the approximate surface f  in Eq. (16.70) in terms of Φ
(0,0)

(0) , Ψ
(0,0)

h , 

Ψ
(0,0)

v , and Ψ
(0,0)

d  is obtained by substituting in Eq. (16.55) for Φ Φ Φ((0,0)) , ((0,1)) , ((1,0))(1) (1) (1) , and 

Φ((1,1))(1)  from the above four equations to have
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            =
0,0 (0,0)

(1)

0,1 (0,1)

(1)

1,0 (1,0)

(1)f s s s sΦ Φ Φ+ + +
11,1 (1,1)

(1)Φ

   
   = [ ]

0,0 (0,0)

(0)

(0,0) (0,0) (0,0)
s

h v dΦ Ψ Ψ Ψ+ + +

  
          [ ]

0,1 (0,0)

(0)

(0,0) (0,0) (0,0)
+ − + −s

h v dΦ Ψ Ψ Ψ

  
            [ ]

(1,0) (0,0)

(0)

(0,0) (0,0) (0,0)
+ + − −s

h v dΦ Ψ Ψ Ψ

  
          [ ]

1,1 (0,0)

(0)

(0,0) (0,0) (0,0)
+ − − +s

h v dΦ Ψ Ψ Ψ

=
1

4
( )

0,0 0,1 1,0 1,1 (0,0)

(0)
s s s s+ + + Φ

     
1

4
( )

0,0 0,1 1,0 1,1 (0,0)
+ − + −s s s s

hΨ

          
1

4
(( ) ( ))

0,0 0,1 1,0 1,1 (0,0)
+ + − +s s s s

vΨ

     
        

1

4
(( ) ( )) .

0,0 0,1 1,0 1,1 (0,0)
+ − − −s s s s

dΨ  (16.72)

Here, we see that the coefficients of Φ
(0,0)

(0)  gives us the average 
1

4
( )

0,0 0,1 1,0 1,1
s s s s+ + +  of the four 

element sequence in the array. The coefficients of Ψ
(0,0)

h  give the sum of the differences in its two rows. 

The coefficients of Ψ
0,0

v  give the difference between the sums of the two rows, and that of Ψ
0,0

d  gives 

the difference between the difference of the two elements in the first row and the difference of the two 

elements in the second row. We can also see the latter as s s s s s s s s
0,0 0,1 1,0 1,1 0,0 1,1 0,1 1,0

= ( ) ( )− − + + − + , 

which is the difference between the sums of the two elements along the two diagonals of the array.

Example 16.7.1 — 2D decomposition 

For our simple example of 
s s

s s

0,0 0,1

1,0 1,1

=
6 3

1 2



















 , its decomposition is

f
h=

6 3 1 2

4

6 3 1 2

4
(0,0)

(0)

(0,0)

+ + +





+
− + −





Φ Ψ

       

         
6 3 (1 2)

4

6 3 1 2

4
(0,0) (0,0)

+
+ - +æ

è
ç

ö

ø
÷ +

- - +æ

è
ç

ö

ø
÷Y Yv d

 
=

12

4

2

4

6

4

4

4
.

(0,0)

(0)

(0,0) (0,0) (0,0)
Φ Ψ Ψ Ψ+ + +h v d  (16.73)

The first coefficient 
12

4
 in Eq. (16.73) is a large number 

1

4
(6 3 1 2)+ + +  compared to the others, 

and it tells about the average of the four samples being large and thus has highest energy. The next 

coefficient of the small 
2

4
=

(6 3) (1 2)

4

− + −
 tells that there are no drastic changes in the two rows. 

The third relatively large coefficient of 
6

4
=

(6 3) (1 2)

4

+ − +
 tells about a major difference between 

the sums of the two rows. The last coefficient of 
4

4
=

(6 2) (3 1)

4

+ − +
 sees no drastic change between 

the sums of the two elements (5 2)+  and (3 1)+  on the two diagonals, as seen in Eq. (16.67a).
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The readers encouraged to look at 
16 4

3 1−








  for drawing similar observations.

Looking at equation Eq. (16.72), we get a sense for the first term being the result of a Haar low 

pass filter on each of the two rows, as indicated by 
1

4
( ),

0,0 0,1
s s+  and 

1

4
( ),

1,0 1,1
s s+  followed by another 

low pass filter as indicated by adding 
1

4
( )

0,0 0,1
s s+  and 

1

4
( )

1,0 1,1
s s+ . The second term can be seen, as 

a Haar high pass filter on the two rows followed by a low pass filter. The third term would be two low 

pass filters on the two rows followed by a high pass filter. The fourth term with coefficients written as 

( ) ( )
0,0 1,0 0,1 1,1

s s s s− − −  is a high pass filter on both columns followed by another high pass filter.

What we expect from a double Haar wavelet transform is to filter with its one-dimensional filter in 

the x -direction and follow it by filtering in the y-direction. This resembles what we do in partial dif-

ferentiation, coming from the calculus of one variable to that of two or several variables.

Indeed, it turns out that if we operate on the 2 2×  array by the Haar filter 
1

2

1 1

1 1−








 in the  

x -direction, then follow it by the same operation in the y -direction for a 2 2×  array, we obtain a 

complete decomposition of the array. It is a bit different for the 2 2 , > 1n n n×  array. For our example of 

S =
6 3

2 1









 , the horizontal sweep (of a Haar low pass filter on each of the two rows) gives

6 3

1 2

6 3

2

6 3

2

  

1 2

2

1 2

2

=

9

2

3

2

  

3

2

1

2









→

+ −

+ −



















 −





H

















.

The vertical sweep (of a Haar low pass filter followed by a high pass filter on each of the two col-

umns) on the above result gives

 

9

2

3

2

3

2

1

2

9

2

3

2

2

3

2

1

2

2

  

9

2

3

2

2

3

2

1

2

2

−



















→

+ −

− +













V




































=

12

4

2

4

  

6

4

4

4

.  (16.74)

The horizontal sweep followed by a vertical sweep on S = 
s s

s s

0,0 0,1

1,0 1,1









  with the use of the two-

dimensional Haar wavelet transform follows. First, let us refer to the horizontal and vertical sweeps by 

Ω
H

 and Ω
V

 operations, respectively, then
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S
s s

s s

s s s s

s s

H

=
1

2
  

0,0 0,1

1,0 1,1

0,0 0,1 0,0 0,1

1,0 1,1









→

+ −

+

Ω

ss s
1,0 1,1

−

















 (16.75)

 

S
s s

s s

s s s s

s s

V

=
1

2
  

0,0 0,1

1,0 1,1

0,0 1,0 0,1 1,1

0,0 1,0









→

+ +

−

Ω

ss s
0,1 1,1

.

−

















 (16.76)

So, the horizontal sweep followed by the vertical sweep on S  follows from operating with Ω
V

 on 

the result in Eq. (16.75),

             
Ω Ω

V H
S                                                                            

=
1

4

( ) ( ) ( ) ( )

(

0,0 0,1 1,0 1,1 0,0 0,1 1,0 1,1

0,0 0,

s s s s s s s s

s s

+ + + − + −

+
11 1,0 1,1 0,0 0,1 1,0 1,1
) ( ) ( ) ( )− + − − −















s s s s s s

 

=
1

4
  

0,0 0,1 1,0 1,1 0,0 0,1 1,0 1,1

0,0 0,1 1,0

s s s s s s s s

s s s

+ + + − + −

+ − + ss s s s s
1,1 0,0 0,1 1,0 1,1

− − −

















 (16.77)

which is what we have in Eq. (16.72) with the use of the four wavelets basis, where the four ele-

ments of the above matrix w w w
0,0 0,1 1,0

, , ,  and w
1,1

 correspond to the coefficients of Φ Φ Φ
(0,0)

(0)

(0,0) (0,0)
, , ,h v  

and Φ
(0,0)

d  in Eq. (16.72).

16.7.3 Working with Bigger Arrays (4 ë 4 toy example)

What we did above was for a 2 2×  array, where we constructed the two dimensional (Haar) wavelets 

bases Φ
(0,0)

(0) , Ψ
(0,0)

h , Ψ
(0,0)

,v  and Ψ
(0,0)

d . There, we ended with pure averagings that gave us the average of 

the samples of the array as the coefficient of the pure two-dimensional low pass filter asociated with Φ
0,0

(0) .

The problem becomes more involved when we consider a 4 4×  array with its 16 elements. First, 

we go to scale l
2

=
1

4
, and we have to find 16 bases on the sixteen 

1

4

1

4
×  squares of the unit square in 

Fig. 11.1. Second, and most important, when we go to the 4 4×  array, the above horizontal and verti-

cal sweeps will not be enough, as we shall discuss in the following sections. This is so since instead of 

ending with pure averaging (where we stop) at the top left corner of the 2 2×  case, we will have four 

elements of averages mixed with differences at the top left corners of the resulting four 2 2×  matrices. 

These four elements must be operated on by the two sweeps to result in a pure averaging in the top 

left corner of the resulting 4 4×  matrix. The remaining 12 elements of the first two sweeps in the four 

2 2×  arrays are then distributed to the remaining three 2 2×  arrays according to their wavelet operation 

content. For example, those bottom right elements of the four 2 2×  arrays of the first two sweeps have 

the most differencing, so they are relegated to the bottom right 2 2×  array. This will be illustrated with 

complete details in the following Example 16.7.2.
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Example 16.7.2 — The double Haar transform of an array.

In this example we will consider a 4 4×  array

 

S =

9 7 6 2

5 3 4 4

8 2 4 0

6 0 2 2

.



















 (16.78)

The Haar wavelet matrix for this 4 4×  case is

 

Ω =
1

2

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

−

−



















 (16.79)

The horizontal sweep of this Haar filter matrix on the array S  in Eq. (16.78) will average then 

difference the first two elements of the first row of S , then does the same for next two elements. This 

is done on the rest of the three rows,

Ω Ω
H H

S =

9 7 6 2

5 3 4 4

8 2 4 0

6 0 2 2



















        

9 7

2

9 7

2

6 2

2

6 2

2

5 3

2

5 3

2

4 4

2

4 4

2

8 2

2

8 2

2

4 0

2

4 0

2

6

→

+ − + −

+ − + −

+ − + −

++ − + −





























0

2

6 0

2

2 2

2

2 2

2

 

=

8 1 4 2

4 1 4 0

5 3 2 2

3 3 2 0

.



















 (16.80)

This is followed by the vertical sweep as Ω Ω
V H

S. This averages then differences the first two ele-

ments of the first column of the above result of Ω
H

S, then does the same for the rest of the three columns,
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Ω Ω Ω
V H V

S =

8 1 4 2

4 1 4 0

5 3 2 2

3 3 2 0

      



















            =

8 4

2

1 1

2

4 4

2

2 0

2

8 4

2

1 1

2

4 4

2

2 0

2

5 3

2

3 3

2

2 2

2

2

+ + + +

− − − −

+ + + ++

− − − −































0

2

5 3

2

3 3

2

2 2

2

2 0

2

 

  =

6 1 4 1

2 0 0 1

4 3 2 1

1 0 0 1

.



















 (16.81)

Let us first note, as we have indicated above, that this result of the two sweeps is not the final one of 

decomposing the 4 4×  array S . The first indication is that the top left corner element 6  is not the aver-

age of the array, the latter is 
1

16
(9 7 6 2 5 3 4 4 8 2 4 0 6 0 2 2) =

64

16
= 4+ + + + + + + + + + + + + + + .  

We note from the middle steps leading to Eqs (16.80) and (16.81) that the four elements 
6 4

4 2









  

at the top left corners of the four 2 2×  submatrices are the result of two averagings. We also know 

from decomposing a 2 2×  array that the two sweeps there end with the final decomposition. Thus, 

we have to decompose this array 
6 4

4 2









  with the two sweeps,

 

6 4

4 2

1

2

6 4 6 4

4 2 4 2
=

5 1

3 1









→

+ −
+ −





















H

 (16.82a)

and

 

5 1

3 1

1

2

5 3 1 1

5 3 1 1
=

4 1

1 0
,









→

+ +
− −





















V

 (16.82b)

which gives the numbers 4 as the average of the whole 4 4×  array at its top left corner. This 

submatrix will take the top left corner for our final decomposition of the 4 4×  array.
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Now, the four top right corners elements in 
1 1

3 1









  of the four 2 2×  submatrices in Eq. (16.81) 

of the result of the two sweeps are the result of differencing followed by averaging, and will be 

placed in the top right corner of the final 4 4×  matrix as shown below in Eq. (16.83). The bottom 

left corner elements in 
2 0

1 0









  of Eq. (16.81) are the result of averaging followed by differencing, 

and will be relegated to the bottom left corner of the final 4 4×  matrix. The bottom right corner 

elements in 
0 1

0 1









  of (16.81) are the result of differencing followed by differencing, and will be 

placed in the bottom right corner of the final 4 4×  matrix of the decomposed array. This final result 

is termed the two-dimensional Haar wavelet transform Ω  of S ,

 

ΩS =

4 1 1 1

1 0 3 1

2 0 0 1

1 0 0 1

.























 (16.83)

We note that while the top left corner element 4 gives the average of the array S , the bot-

tom right element small value of 1 indicates that there is not much of a big surprise change 

1

4
[(9 3 4 2) (6 2 4 2)] =

1

4
(18 14) = 1+ + + − + + + −  along the diagonals of the array S  in (11.25). 

The interpretation of the five resulting zero elements are left for the reader. For example, such zeros 

indicate a relative smoothness inside of the array. It is also true that the above result in Eq. (16.83) 

with its many zeros is easier to transmit than the original S  array in (16.79). We see here that the ele-

ments of the bottom right corner submatrix in Eq. (16.83), are some of the relatively small value ele-

ments. The ones there, may be replaced by zeros, which results in compressing the array or image.

We leave it as an exercise to double Haar transform the Letter L as represented inside a 4 4×  

array with s s s s s s
0,1 2,1 3,1 4,1 4,2 4,3

= = = = = = 1  and the rest (placed on the 
1

4

1

4
×  remaining ten 

squares) are zeros.

The answer is 

3

8

1

4

1

2
0

1

4
0

1

4

1

4

0 0 0 0

1

4

1

4

1

4

1

4

−

− − − −































.
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We can easily see that 
3

8
 gives the average of the element of the array 

6

16
=

3

8
. This may represent 

an example of double Haar transforming a simple image. The question that remains is how to capture 

the original L-shaped image. So, we are against finding the transformation involved in such an inverse 

process.

Of course, we can backtrack what we did in previous Example 16.7.2, starting from the last opera-

tion, and undo what was done there followed by undoing the vertical then the horizontal sweep. Keeping 

track and accounting of this process may not be so easy. One way to resolve this is to use matrices and 

their familiar operations, which is what we shall attempt to do in the following section.

16.7.4 Inverse Transform: Matrix Notation

We shall need the transpose A
T

ji
= [ ]a  of the matrix A

ij
= [ ]a . Also, the fact that ( ) =AB B A

T T T
. 

Furthermore, for   =  A  

1

2

1

2

1

2

1

2
−



















 of the Haar filter, we have A A
T= . We will try to represent the 

full operation of the double Haar wavelet transform, as done in the Example 16.7.2, with the help of the 

matrix operation.

The horizontal sweep of S
s s

s s
=

0,0 0,1

1,0 1,1







 by the low and high pass filter 

1

2

1

2

1

2

1

2
−



















 can be accom-

plished via ( )AS
T T ,

 ( ) = ( ) = =AS S A SA SA
T T T T T T  (16.84)

where we used the fact that ( ) =BC C B
T T T , ( ) =B B

T T , and that we have A A
T= , since 

1

2

1

2

1

2

1

2

=

1

2

1

2

1

2

1

2
−

















 −



















T

.

So, the horizontal sweep becomes

SA
s s

s s
=

1

2

1

2

1

2

1

2

0,0 0,1

1,0 1,1











−



















         

=
2 2

2 2

0,0 0,1 0,0 0,1

1,0 1,1 1,0 1,1

s s s s

s s s s

+ −

+ −



















 (16.85)
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which is an averaging followed by differencing on each row. Thus,

S SA
H

=
9 7

5 3
=

9 7

5 3

1

2

1

2

1

2

1

2









→











−



















 

=

9 7

2

9 7

2

5 3

2

5 3

2

=
8 1

4 1
.        

+ −

+ −



























  (16.86)

We do this with matrices in order to have a chance at the inverse operation, preparation for the 

inverse double Haar transform. To find S  from SA , we multiply SA  from the right by A
−1 , where we 

can verify that A
−

−










1 =
1 1

1 1
,

AA
−

−



















−










+ −

− +

1 =

1

2

1

2

1

2

1

2

1 1

1 1

=

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2



























=

1 0

0 1

= I

where I  is he identity matrix.

So,

( ) =
8 1

4 1

1 1

1 1

=
8 1 8 1

4 1 4 1
=

9 7

5 3

1
SA A

− 







 −










+ −
+ −





















= S

as the original S  array.
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For the vertical sweep, its is obtained by

AS =

1

2

1

2

1

2

1

2

9 7

5 3

=

9 5

2

7 3

2

9 5

2

7 3

2

−





























+ +

− −



























=

7 5

2 2
.

The original array S  is recovered via multiplying the above AS  by A
−1  from the left,

 

S A AS= =
1 1

1 1

7 5

2 2

=
7 2 5 2

7 2 5 2

=
9 7

5 3

1−

−



















+ +
− −





















 (16.87)

as the original S .

So, if we had already done the horizontal then the vertical sweeps, such a result, as shown in  

Eqs. (16.80), (16.81), and (16.83), amounts to A SA( ), and in our example, we have

 

A SA( ) =

1

2

1

2

1

2

1

2

8 1

4 1

=

8 4

2

1 1

2

8 4

2

1 1

2

−





























+ +

− −



























=

6 1

2 0
.

 (16.88)
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To recover S , we operate on ASA  from the right and left with A
−1 ,

 

A ASA A
− −

−


















 −

















−




1 1( ) =
1 1

1 1

6 1

2 0

1 1

1 1

=
1 1

1 1


























7 5

2 2

=
9 7

5 3

 (16.89)

as the original array S .

Thus, in summary, our direct two-sweep transformation is accomplished by ASA S= ′, and the 

inverse operation A S A S
− −′1 1 =  on ′S  recovers S .

It should be easy to extend this matrix representation of the two horizontal and vertical sweeps to a 

4 4×  array of samples. In practice, for images we need a large size 2 2n n×  array, as n  that may reach 

6 or 7 for high resolution.

Now we return to the complete double Haar transform of the 4 4×  array. We know that the top left 

corner submatix 
4 1

1 0









  in Eq. (16.82b) of previous example was the result of the two sweeps on the 

four elements at the top left corners of the four submatrices. So, we must operate on this submatrix with 

A SA
− −1 1  to recover the original four elements, then return them to their respective four top left corners.

In our example, we have ′








S =

4 1

1 0
,

 

S A S A= =
1 1

1 1

4 1

1 0

1 1

1 1

=
1 1

1 1

1 1− −′
−



















 −


















−





























5 3

1 1

=
6 4

4 2
.

 (16.90)

We need to recall that the second submatrix on the first row of the final double Haar transform came from 

the top right corners elements of the four submatices before transforming the top right submatrix, the same 

for the remaining three. The third submatrix on the second row came from the bottom left corners elements 

of the four submatrices, and they should return to their original locations. The same with the fourth submatrix 

in the second row, where elements come form the original lower left corners of the four submatices.

Thus, we must distribute the elements of 
6 4

4 2









  to the four top left corners, 

1 1

3 1









  to the top right 

corners, 
2 0

1 0









  to the bottom left corners, and 

0 1

0 1









  to the bottom right corner to have the result of 

only the two horizontal followed by a vertical sweeps as ASA ,
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ASA =

6 1 4 1

2 0 0 1

4 3 2 1

1 0 0 1



















 (16.91)

This ASA  in Eq. (16.91) represents the result of the vertical sweep on the result of the horizon-

tal sweep, i.e., ASA S AS
V H

≡ = . So we should first free S
H

 with A S A AS S
V H H

− −1 1= = . Then, for 

S SA
H

= , the original array is freed with S A S
H

−1 = ,

 

S A S A ASA
H V

= = ( )

=

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

6 1 4 1

2 0 0 1

4 3

1 1− −

−

−



















22 1

1 0 0 1



















 (16.92)

 

S
H

=

6 2 1 0 4 0 1 1

6 2 1 0 4 0 1 1

4 1 3 0 2 0 1 1

4 1 3 0 2 0 1 1

+ + + +
− − − −
+ + + +
− − − −





































=

8 1 4 2

4 1 4 0

5 3 2 2

3 3 2 0

.

 (16.93)

Now,

 

S S A
H

=

=

8 1 4 2

4 1 4 0

5 3 2 2

3 3 2 0

1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

1-

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

-

-

é

ë

ê
ê
êê
ê

ù

û

ú
ú
ú
ú

+ - + -

+ - + -

+ - + -

+ - + -

=

8 1 8 1 4 2 4 2

4 1 4 1 4 0 4 0

5 3 5 3 2 2 2 2

3 3 3 3 2 0 2 0

éé

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

=

9 7 6 2

5 3 4 4

8 2 4 0

6 0 2 2

 (16.94)

which is our original array in Eq. (16.78) of prior example.
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Example 16.7.3 — Unitary nature of transform matrix.

For any transformation in signal or image processing, it is important to ensure that the transforma-

tion guarantees two things in particular:

(a)  Energy compaction

(b) Energy preservation

These important characteristics lead to compression of the data to be processed and also unique 

representation of the information for processing in further conveniently. The above characteristics 

are met if the transformation matrix is a ‘unitary’ matrix,which then results into a unitary transform.

A matrix ‘A’ is called unitary if A
−1 = A

T∗ , where A
T∗  is conjugate transpose. For real matrix A, 

it is unitary if A
−1 = A

T .

Let’s consider a Haar transformation matrix H
A

 

H
A

=
1

2

1 1

1 1−








  (16.95)

For this matrix,

 

H H
A A

T− −









1 =
1

2

1 1

1 1
=  (16.96)

∴ Haar matrix is unitary!

Let’s now check if this H
A

 can ‘decorrelate’ the information and help achieve energy preservation.

Case (I):

Let’s say we want to process


x =

3

4









  using H

A

Please note,

x  is highly correlated.

Given,

H
A

=
1

2

1 1

1 1−


















 and  = 

3

4


x

 

 
y A x= =

1

2

1 1

1 1

3

4
=

1

2

7

1
⋅

−



























  (16.97)

Now, let’s verify energy preservation.

Energy, i.e x  will be

 || || = 3 4 = 252 2 2
x +  (16.98)

Energy in y  will be,

 
|| || =

7 1

2
= 252

2 2

y

+
 (16.99)

as (16.98) and (16.100) match H
A

 preserves energy.
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Note that ‘3’ and ‘4’ in x  are highly correlated and ‘7’ and ‘1’ in y  are decorrelated. This can 

help us achieve energy compaction, as ‘1’ is weaker compared to ‘7’ we can drop that and achieve 

compression.

After dropping ‘1’, energy is y  will be

 
|| || =

7

2
=

49

2
= 24.52

2

y  (16.100)

Thus || ||2x  ≈  || ||2y  and compression of 50% was achieved as we dropped one out of two 

 elements of y .

Example 16.7.4 — Demonstration of de-correlation.

Demonstration of de-correlation, energy compaction and energy preservation for 2D case using 

transformation matrix H
A

, for given

H
A

=
1 2

3 4











It can be easily noted that,all the elements in ‘x’ are highly correlated.

Now,since H
A

 is ‘separable’ , we shall apply it row-wise and column-wise as ‘x’ is a 2D entity 

(matrix) and we shall obtain output y as:

 
y H x H H x H

A A

T

A A
= = 1⋅ ⋅ ⋅ ⋅ −  (16.101)

 

y =
1

2

1 1

1 1

1 2

3 4

1 1

1 1

1

2−








 ⋅









 ⋅

−







  (16.102)

 

y =
5 1

2 0

−
−









  (16.103)

∴ Energy in ‘x’ is:

|| || = 1 2 3 4 = 302 2 2 2 2
x + + +

Energy in ‘y’ is:

|| || = 5 ( 2) ( 1) 0 = 302 2 2 2 2
y + − + − +

∴ Energy preservation is proven.

If we drop all elements of ‘y’ except ‘5’ then the energy will be 25.

We dropped 3 out of 4 elements and therefore achieved 75%  compression and could retain 

83.33%  energy.

∴ This decorrelation is useful in energy compaction!
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Example 16.7.5 — De-correlation using Hadamard matrix.

Given, x = 100 98 98 100[ ] .

Apply Hadamard transformation matrix to prove decorrelation, energy compaction and preservation.

A Hadmard matrix is named after french mathematician Jacques Hadmard. It is also at times referred 

as  Walsh matrix, named after Jospeh Walsh who proposed it in 1923, and it emerges out of Walsh functions.

The natural ordered Hadmard matrix is governed by a recursive formulae. It is a unique square 

matrix with dimension of some power of 2, with all entries either +1 or –1 and property of orthogo-

nality by virtue of which dot product of any two distinct rows or columns is zero. Generalized 

 formula for Hadamard matrix is:

H
H H

H H
H H

K

K K

K K

K(2 ) =
(2 ) (2 )

(2 ) (2 )
= (2) (2 )

1 1

1 1

2

− −

− −
−

−









 ⊗

For 2 ≤ ∈K N , where ⊗ = Kronecker product.

∴ Members in family will be,

∴   −








 ⋅H H H H

N
(2 ) =

1 1

1 1
= , =

1

2

1

2 2 2

(Normalized)

H H H H
N

(2 ) =

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

= , =
1

2

2

4 4 4

− −
− −

− −



















⋅

(Normalized)

We shall use this H
N4

 to analyze given x .

Given question is 1D(vector).

 
y H x

N
=

4
⋅  (16.104)

∴ ∴
− −

− −
− −

































y =

1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

100

98

98

100























=

198

0

0

2

It is easy to observe ‘ x ’ is highly correlated and y  is extremely sparse or decorrelated. 

Energy in x

 x
2 2 2 2 2= 100 98 98 100 = 39208+ + +

Energy in y

 y
2 2 2= 198 2 = 39208+

If we drop ‘2’ and retain only ‘198’, energy will be 39204. 

∴ By 75% compression, we achieve 99.9898%  energy preservation !
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Example 16.7.6 — Energy compaction using Hadamard matrix.

Given,

x =



















100 100 98 99

100 100 94 96

98 97 99 100

100 99 97 94

We shall use Hadamard transformation matrix

∴ 
− −

− −
− −



















H
N4

=
1

2

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

Since ‘x’ is a matrix i.e. it is a 2D information and Since H
N4

 is separable,

We apply it rowwise and columnwise.

∴     ∴ ⋅ ⋅ ⋅ ⋅ −
y H x H H x H

N N

T

N N
= =

4 4 4 4

1  (16.105)

    y =

392.75 0.25 4.25 0.75

2.75 0.75 4.75 0.75

0.75 1.75 2.25 0.75

0.7

− −
−

55 1.25 1.25 1.25−



















 (16.106)

We leave it to readers to verify that if we retain only 392.75 from ‘y’ from (16.60), and leave out 

all others:

 (a) we achieve huge compression

 (b) We retain almost all energy.

This is because:

 (a) Transformation matrix is unitary.

 (b) y is extremely sparse!
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16.8  Wavelets and Self-Similarity

Wavelets are often used to determine self-similarity amongst signals. This makes sense as Wavelets 

themselves are structures depicting self-similar nature and hence are the natural choice for such type of 

applications.

Conventionally signal processing makes use of robust LSI (Linear Shift Invariant) structure for analyz-

ing various types of signals. For particular signals, which are self similar, a different approach is required.

When the signals in local segments are similar in specific way to the entire signal, they are called 

as self-similar signals. The temporal scaling of such signals produces the signal if it is deterministic 

else produces statistical characteristics in case of stochastic signals. In literature many examples of self-

similar structures have been reported with the likes of Fractional Gaussian noise, homogeneous signals, 

fractional Brownian motion etc.

Dilation provides the foundation to achieve scale changes in Wavelet analysis. In fact, ‘Dilation’ 

and ‘Dilation Equations’ are truly at the heart of the Multiresolution framework we have seen since 

chapter 2. It is through the dilation equation we create a linkage to use 2-band or M-band filter bank 

structure to create the deployment platform for wavelet filters.

For many computer vision problems it is desired to have scale invariance. There could be two differ-

ent images captured with different zoom or actual physical distance and yet the application may demand 

correct match and just the difference in the scales should not spoil the show.

Since dilation is inherent in any wavelet transformation, it leads to hidden self-similarity and in a 

way the fractals with self-similar structures lead to scale-invariant systems. One easier way of under-

standing scale-invariant systems is when an input is scaled by some scale, the output also gets scaled 

equally. Such scale-invariant systems (SIS) can be represented as:

 

S x
t

a
y

t

a























=  (16.107)

for a > 0 . The scaling happens with reference to the independent variable, which is time t  is this 

case. Thus, to gain scale-invariance, one has to give up time-invariance.

Let k t( , )t  be the system kernel which is function of t  and t  both and characterizes linear but time 

varying system. For this kernel function to correspond to linear and time varying system, the necessary 

and sufficient condition is:

 k t a k a t a( , ) = ( , )t t× ⋅ ⋅  (16.108)

System function can be written as,

 
y t k t x d( ) = ( , ) ( )

t
t t t∫ ⋅  (16.109)

Thus, the output is obtained by taking dot product between input and the kernel. For t ≠ 0  the ker-

nel k t( , )t  gets scaled at every instance, thus giving us,

 t t tk t h t( , ) = ( , )  (16.110)

Given this,

 

y t x h
t d

x
t

h
d

( ) = ( ) = ( )
− −∫ ∫









inf

inf

inf

inf

t
t

t

t t
t

t

t
 (16.111)
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For a deterministic signal x t( ), it is self-similar if

 x t a x at
H( ) = ( )−  (16.112)

OR

 

x
t

a
a x t

H





−= ( )  (16.113)

for a > 0

A random process X t( ) , is self-similar if the mean (zeroth moment) M t
X

( )  and autocorrelation 

R t s
X

( , )

 
M t E X t a M at

X

H

X
( ) [ ( )] = ( )≡ −  (16.114)

and

 
R t s E X t X s a R at as

X

H

X
( , ) [ ( ) ( )] = ( , )2≡ −  (16.115)

for a > 0

In the MRA framework we have already seen the scaling of the wavelet kernel through dilation 

equation. Through the wavelet dilation equation the wavelet function gets connected with father equa-

tion, which is also called as scaling equation.

This leads to many hidden structures in every wavelet and its scaling function which are scaled 

down versions of the bigger signal and make the complete structure self similar. This is illustrated in 

Fig. 16.8.
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Figure 16.8  Daub-4 scaling function with hidden self-similarity.
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Because of this very unique property, scaling and wavelet functions can be used to detect self-

similarity in signals. Interested readers can explore this further as this has started gaining importance in 

research community.

16.9   Wavelet Transform: In Perspective of Moving from 
Continuous to Discrete

Historically, continuous wavelet transform (CWT) was discovered first and physicists and seismic ana-

lyzers looked at it as an alternative to windowed Fourier Transform.

In CWT of signal f t( ),

 

W f F a b
C

t f t dt
a by

yp
y= ( , ) =

1

2
( ) ( )

,

∫  (16.116)

For the admissibility condition to be satisfied it was necessary to have 0 < <Cy inf, thus

 
C

d
y w

w

w
= | ( ) |

| |
<2∫ Ψ inf  (16.117)

which also means,

 
∫ y ( ) = 0t dt  (16.118)

The wavelet transform is an overcomplete representation of the signal f t( ) . Only if the y ( )t  of the 

CWT complies with the MRA norms, discretization is possible, but the transform remains redundant.

16.9.1 Overcomplete Wavelet Transform

The approximation of CWT can be understood in the sense of computing it in a subset plane and then 

the DWT emerges out of evaluating it at dyadic points,

 
( , ) = {( , ) : = 2 , = 2 }a b a b a b m

DWT n nm n

n

nm

n∈ −Γ  (16.119)

It is important for Γ  to have “regularity”. For example, the semilog regular sampling can be 

Γ ∆ ∆( , ) = { } { }
0 0

a a n
m × . The reconstruction is done by using the Riesz basis. When the grid moves 

from semilog to a complete grid without subsampling, the transform is referred as Redundant Discrete 

Wavelet Transform (RDWT).

16.10  Redundant Discrete Wavelet Transform

RDWT differs from Mallat’s FWT (Fast Wavelet Transform) in only one aspect and that is it lacks 

subsampling. There are no downsamplers involved in the analysis part of the structure. RDWT is also 

called as ‘stationary wavelet transform’ or more popularly ‘trous algorithm’. In RDWT as we double the 

samples at each step, it produces huge redundancy and computational time for DRWT is O N N( )log  

against O N( )  for FWT.

Few interesting advantages of DRWT are:
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●● DRWT is translation invariant, which is not true for FWT
●● DRWT is extendable to non-dyadic inputs

One serious limitation of DRWT is being redundant the reconstruction is not unique. Two indepen-

dent reconstructions are possible at every step.

 

w
p

y
nk

DRWT

n

n n N
f t t k dt=

2

2
( ) (2 2 )

2


∫ − −  (16.120)

This is again a very active area of research and interested readers can explore this further.

16.11  Regularity and Convergence

These important topics have a strong connection with the wavelet filter design and we have discussed 

these in depth in Chapter 15. The best way to implement DWT is through multirate orthogonal perfect 

reconstruction filters. If we, however, start with filters which guarantee perfect reconstruction by satis-

fying the necessary conditions and solve the equations across scales, will the solution yield smooth and 

continuous y  and f. Well, not necessarily!

16.11.1 Convergence

Orthogonal wavelets will satisfy,

 | ( ) | | ( ) | = 12 2
H Hw w p+ +  (16.121)

If we impose the necessary condition arriving out of dilation condition on filter coefficients we get,

 H(0) = 1  (16.122)

For the solution of n
th  iteration of the scaling function in frequency domain we have,

 

Φ Φ
n H n

i

n

H
i

( ) =
2 2=1

w
w w









∏  (16.123)

What we check as test for convergence is as n → inf , whether the function Φ
n
( )w  converges to a 

reasonable function.

Regularity

The more critical question is whether the convergence mentioned in the previous subsection is to a 

smooth and continuous function.

Daubechies has given two crisp necessary conditions for the same:

 (i) For point wise convergence | ( ) | 1H w ≤  for w ≠ 0

 (ii) Another requirement is if,

 

H
j

R

N

( ) =
1 ( )

2
( )w

w
w

+ −





exp
 (16.124)

the, max .| ( ) |< 2 1
R

Nw −
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The second condition stems out of the fact that more zeros at w p=  for H( )w  more chance for 

scaling and wavelet function to be smooth.

The smoothness which governs regularity is closely associated with the number of vanishing 

moments.

If the wavelet function satisfies admissibility such that,

 ∫y ( ) = 0t dt  (16.125)

the smoothness of this wavelet increases if it satisfies,

 ∫t t dt
ky ( ) = 0  (16.126)

for integer values of k  from 0  to K . The wavelet then has K  vanishing moments. More the vanish-

ing moments, smoother is the function.

Exercise 16.1

Demonstrate de-correlation, energy compaction and energy preservation for 2D case using any 

orthogonal transformation matrix for given H
A

,

H
A

=
28 29

32 33











Exercises

Exercise 16.2

Demonstrate de-correlation, energy compaction and energy preservation for 2D case using any 

orthogonal transformation matrix for given H
A

,

H
A

=
8 9

7 8











Exercise 16.3

Given,

104 110 98 99

120 110 98 96

98 98 99 100

100 99 97 97



















We shall use Hadamard transformation matrix.



17.1  Introduction

We have looked at various mechanism for creating the wavelets, implementing and deploying them with 

conventional as well as modern strategies. In this chapter we expose readers to various applications from 

different domains to bring out ability of wavelets to solve real challenging problems.

17.2  Application: Face Recognition Using Wavelet Packet Analysis

It is an application from image processing or in broader sense from computer vision. Face recognition 

is one of the biometric authentication problems. Face recognition involves extraction of critical features 

for the system to be able to recognize the face. A transform like wavelet transform, with an ability to 

look at the information locally as well as globally and create scalable constructs through the MRA 

framework is an apt choice for such kind of application.

Example 17.2.1 — Face detection in recognition.

Let us say we are looking at Surveillance application in which we have to monitor a particular region 

in which no person is allowed. In that case if we use face detection and recognition, we can get a 

very good analytics over a particular region. So we can say if somebody enters at a particular time in 

that restricted zone and what was he doing, with details like class of activity. This problem can also 

be looked from activity tracking and abnormality detection.

Wavelet 
Applications
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Application of wavelets in data mining

Application of wavelets in (Big) data analysis

Face Recognition through wavepacket 
analysis

Wavelet based denoising – application

Finding hidden discontinuity – application
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Compression and pattern recognition using 
wavelets

JPEG 2000 filter strategy

Two interesting techniques SPIHT and EZW
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The basic difference between face detection and face recognition is that in face detection we 

look of similar features in all the faces while in face recognition we look for features which are dif-

ferent across the faces. In this application we deal with face recognition, so we assume that some 

region of face which contains image is given.

A typical face contains nose, mouth, etc. These are in focus when we look in different scales in 

different subspaces because they contain different frequencies as well as facial regions. So we need to 

go for a decorrelation in spatial as well as frequency domain. Therefore this is the signal where we need 

to look into time as well as frequency localization and that is why we use wavelets as they give better 

representation in terms of time and frequency. With wavelet packet analysis we not decompose the low 

frequency band but also the high frequency band. This gives richer representation of the face image. So 

there are two things here, we are decorrelating face in time as well as frequency and we are getting bet-

ter face representation. So given an image we need to decompose it using wave packet analysis and then 

we can represent it by features and these features are well decorrelated so we can do good classification.

The only problem stands is with the dimensionality. If we decompose this image into multiple 

subbands (say 10-15 subbands), then the data we have for classification is huge which is difficult 

to manage. So we go for moment’s based approach and we take only 1st and 2nd moments, that is 

mean and variance of feature and then we can classify.

Face image

DetailDetail Detail

Level 1

DecompositionApproximation

Approx

subspace

Detail subspace

Level 2

Decomposition

Figure 17.1  Two-Level Wavelet packet decomposition

Face image is decomposed in approximation (Fig. 17.1) and detail subspace in level 1. In level 

2 decomposition we can decompose approximation and details of level 1 further and we will get 

around 16 subspaces in which 1 is approximation subspace and 15 are detail subspace. Now we 

need to generate features from this, we will use mean and variance only for features representation.

When we utilize euclidean distance we generally have features which are not mean and variance 

together because we are now looking at probability distribution function rather then individual val-

ues. So we need a distance matrix which takes care of mean as well as variance so normal euclidean 

distance will not perform better in that case.
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17.3  Application of Wavelets in Data Mining

Data mining is ensemble of tool which we use to deal with huge amount of data efficiently for our 

purpose.

Example 17.3.1 — Data mining.

Data mining involves two things. One is storing the data with the help of efficient data structure 

and second is the retrieval of data from data structure for own purpose. When we have to store and 

retrieve the data, the user basically interacts with the data structure by the help of some responses 

and queries. In practice when we have large amount of time series data, the queries that are generally 

encountered are not point queries but are spread over some larger duration of time. For example, if 

data is stock prices of a company for a particular period of time then queries which we encounter 

are generally like on which month the stock prices had a rising trend or on which week stock prices 

should deep dip.

In order to get this data we need to do some post processing on the raw data and we get the 

output of this query. This way we interact with the data structure and get the output.

Wavelet transform on a signal gives us the information at various levels of abstraction and with 

various translates and various scales. Raw data can be thought of a sequence or signal, i.e. daily 

stock price as a signal than depending upon the response or queries we can say that we are interested 

on various translates in the data such as we are interested in the data 2 months back or 6 months 

back. Also, we are interested in a data at different scales such as we are interested in a weekly data 

2 months back; therefore, 2 months become a translates and week becomes a scale. Wavelet can 

be used efficiently to deal with such problems. In this case, we need very little post-processing to 

analyze this type of data.

X

A1 D1

D2A2

A3 D3

Fig 17.2  Trent and surprise abstraction tree

Figure 17.2 is showing trend and surprise abstraction tree (TSA tree). Where ‘X’ is original 

sequence, ‘A’ and ‘D’ are are Discrete wavelet transform of the parent node (X).
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As we go down this tree, at each level we increase our abstraction by one level and we need 

a trend or surprise at any level, say at 2nd  level, first we need to extract out A
2

 node and then do 

post-processing to get trend information corresponding to this level. Similarly extract D
2

 node and 

post-process to get the surprise information corresponding to that level. The next part is to imple-

ment this in memory efficient manner. For this, we need to store the leaf nodes (i.e., D
1
, D

2
 .... 

D
n

 A
n+1

) and we can extract any other node.

Node dropping and coefficient dropping talk about further compressing the leaf node informa-

tion to get a better memory efficient implementation of this method.

17.4  Application of Wavelets in (Big) Data Analysis

Data mining is used for efficient way of representing data. The problem statement is, given a time 

series data, the time series data may be large, our aim is to improve the efficiency of Multilevel sur-

prise and trend queries. When we have a long time series data, generally we do not encounter point 

queries.

For example, if we record temperature of a particular city for an year we never ask what is the 

temperature at this particular day or time. We always ask for the trend how the temperature is varying 

in a particular month. Such queries are called trend queries. Surprise queries are those which deal with 

queries like sudden change in the temperature of a particular city in a particular month. Wavelets are 

effiecient in handling such queries. Multilevel indicates the various levels of abstraction of data whether 

the data is for a month, or an year, or a decade. So, our first problem is how to represent such a huge 

amount of data. One of the ways is representing the data in a matrix, i.e.

X M N= ´

Let X  be the whole data to be represented and N  for example be the stock prices of a company for 

a year. Then N  will be 365 and let M  be the total no.of companies for which we are storing the data. So 

each row of this matrix represents the stock prices of that particular company. This is how we represent 

data. Now the first thing we need to do is efficiently store this data. Secondly, we require to retrieve data 

efficiently and thirdly we require to modify data easily. If these three things could be done easily using 

wavelets then our job is done.

Firstly, let us see other methods in data mining namely, Singular Value Decomposition. We rep-

resent X  as follows,

X U V= L

where U  is a column orthogonal matrix with size M r´  and L  is a diagonal matrix of size r r´  

and V  is a row orthogonal matrix of size r N´  where r  is the rank of the matrix X . Now instead of 

storing data in a large M N´  matrix we are storing it in 3 small matrices out of which one is a diagonal 

matrix. Suppose now if we want to retrieve a data of particular company, i.e. a row of X  the complex-

ity required is of the size V  which is r N´ . If N  corresponds to a decade then it ends up with a huge 

complexity. One of the other disadvantages of this method is that if we want to modify the data we need 

to recompute all the three matrices again which is not the case with wavelets. This method is efficient 

when N  is small and there is no need to update data frequently.
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Now using wavelets first we take a row X  of the matrix X  and we decompose it as shown in  

Fig. 17.3. Initially it is decomposed into approximate and detail subspaces AX1 and DX1 and then AX1 

is further decomposed to its corresponding approximate and detail subspaces AX2 and DX2 and so on to 

the third level reducing the length of the data by 2 each time.

DX2
AX2

AX1 DX1

X

AX3 DX3

Figure 17.3  TSA tree

This representation is called as TSA (Trend surprise abstraction) tree. The approximate sub-

spaces store the trend data and the detailed subspace store the surprise data. So, wavelets naturally 

decompose the data into trend and surprise data. This is the main advantage of using wavelets. The 

split and merge operations of the data, i.e. decomposing into subspaces and reconstructing it from the 

subspaces is done according to methods we discussed in earlier chapters. Some important properties 

of this tree are:

 1. Perfect reconstruction of the original data using the approximate and detail level subspaces.

 2. Power complimentary property, i.e. the power of the signal is preserved as we decompose into 

lower levels.

 3. Size of each node reduces by 2 as we go down by one level.

The nodes which are not decomposed into lower levels are called leaf nodes. For example, in  

Fig. 17.3 DX1, DX2, AX3 and DX3 are leaf nodes. As we see the split and merge operations are of neg-

ligible complexity. The Data extraction operation is the costly operation of all and its cost is directly 

proportional to size of the data. So the third property is very useful in this case. The leaf nodes are suf-

ficient for surprise and trend queries. For example, if we require the trend query we just need the AX3 

level using which we can go to AX2 by passing AX3 through lowpass filter and upsampler and now 

using AX2 in the similar way we can go to AX1, by which we can get trend queries at different levels. 

Similarly, if we require surprise queries we use DX3 and pass it through a high pass filter and reach at 

the surprise queries at each level.
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An optimal TSF tree is that tree which stores only the leaf nodes and incurs minimum cost and 

minimum storage. So, there is no need to store other nodes. Now, can we further reduce some of the leaf 

nodes and still arrive at accurate results? The answer is yes. Wavelets are very good at compression. One 

of the method is node dropping in which we exploit the property of orthogonality of wavelets. Suppose 

we remove a leaf node DX3 and reconstruct the original signal without DX3. Let us call this signal as X̂ . 

 Now, orthogonality property states the result as follows:

 X – X̂  
2
 || node ||X X

DX

å
3

2=

which implies that the error between the original and reconstructed signal completely depends on the 

removed node. Now, we can calculate

norm (node)

size (node)

2

for each leaf node and we store only those nodes which we feel have a significant value in the above 

equation and rest of the nodes we may drop. The disadvantage of this method is that we may loose some 

important information in the dropped node. So, we have another method called coefficient dropping.

100 200 300 400

Original data

500 600

100 200 300 400 500 600

100 200 300 400 500 600

100 200 300 400 500 600

100 200 300 400 500 600 700

100 200 300 400 500 600 700

Figure 17.4  Results for trend query
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Figure 17.5  Results for surprise query

In coefficient dropping method we store the leaf nodes in a sequence such that only significant 

coefficients are stored. Since we are storing the coefficients we are supposed to store their index also as 

to identify to which node it belongs. Here we must be careful with the memory constraints because for 

each coefficient we are storing two values, one is the coefficent and other is its index. So if we do not 

drop any coefficient in a node it is better to store entire node without their indices. We store indices only 

when the coefficients and indices together added are less than the size of the entire node. This is about 

coefficient dropping method.

Let us look at some results. Figure 17.4 shows the trend graphs. The first graph is original 

data. It is taken from yahoo stock market and it is of SBI’s of 2 years. The second graph is of 2 day 

decomposition level, third graph is 4 day level and so on. As we go down we observe that averaging 

is increased.

Figure 17.5 shows the results for surprise queries. As we observe, in the original data there is a 

surprise data which is being averaged out in the subsequent levels. But as we go down subsequent levels 

we can observe more surprise data which we could not observe in original data.
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Figure 17.6 shows the results for node dropping method. As we observe the recovered data 

is almost similar to original data except for the small surprise data in the beginning of the original 

data. Here about 300 coefficients are removed out of 700 and yet we are able to achieve almost our 

original data.

Figure 17.7 shows the results for coefficent dropping method. Here we can see that even that small 

surprise data is also retained. Here Daubechies family of filters are used. As we increase the length of 

the filter the averaging is done more efficiently.

The reference used for this application is C. Shahabi, X. Tian, W. Zhao, TSA tree: A Wavelet-based 

Approach to Improve Multi-Level Surprise and Trend Queries on Time-Series Data. In Statistical and 

Scientific Database Management, pages 55-68, 2000.

17.5  Face Recognition Through Wavepacket Analysis

The two keywords in this presentation are face recognition and another is wave packet analysis. Firstly, 

why do we need wave packet analysis for face recognition? The answer is, we need decorrelation in 

spatial domain as well as frequency domain for the task of classification. However, for this wavlets meet 

the basic requirement. Then why do we go for wavepacket analysis? In wavepacket analysis we decom-

pose detail subspaces not only the approximate subspaces. When we do task of classification we should 

not miss any information from the underlying signal. The underlying signal here is a face image. The 

task of face recognition can be accomplished both by wavelets and wavepacket transform. Wavepacket 

transform is used for richer representation of image.

Original signal

Recovered signal after node dropping

100 200 300 400 500 600 700

100 200 300 400 500 600 700

Figure 17.6  Results for node dropping method
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Original signal

Recovered signal after coefficent dropping

100 200 300 400 500 600 700

100 200 300 400 500 600 700

Figure 17.7  Results for node dropping method

Why is face recognition required? One of the answer is for biometric authentication. Face can be 

easily morphed by covering with sun glasses or by growing a moustache. But some of the images like 

retina and fingerprints are difficult to be morphed. However, Face recognition is used in surveillance. In 

task of surveillance we may do activity tracking and recognition and also provide abnormal detection. 

Also, can be used in videos for automatic character(Actor) Recognition.

There are two approaches used for face recognition, one is geometric approach and the second is feature 

based recognition. In geometric based approach one goes on detecting basic features like nose, eyes, chin 

and generate face using those features. The problem here is these features are difficult to extract. So, feature 

based extraction is used for this application. The basic block diagram of this project is shown in Fig. 17.8.

Procedure for facial feature’s extraction

Procedure for face recognition

Input

image

Image

decomposition

Pattern

extraction

Feature

extraction

Add record

to database

Input

image

Image

decomposition

Pattern

extraction

Feature

extraction

Find match

in database

Figure 17.8  Block diagram for face recognition
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In this presentation we are not going to discuss about how face detection is done. After face is 

extracted we do subband decomposition using wavepacket transform. We already store some features 

in Learnt prototype and then we do matching with a given image. There are two types of applications 

based on face recognition: content based image retrieval and simple classification of image into different 

classes. Decomposition of image into subbands is done as shown in Fig. 17.9.

Original image

L1 LL1

LLL1 LL2 LH2

HL2 HH2

LH1

HH1HL1

HLL1
LH1

HL1 HH1

HL1

LH1

HH1H1

Figure 17.9  Decomposition of image into various subbands

In wavelet analysis we just decompose the LL subband. But in Wavepacket analysis we also decom-

pose the other subbands as well. So, when decompose using Wavepacket transform we get 16 subbands, 

Whereas in wavelets we just get 4 subbands. Here we are not bothered about perfect reconstruction so 

our analysis filters need to be good. We need filters which have good feature extraction capabilities. 

Filters used for this application are shown in Fig. 17.10.

The impulse responses of both LPF and HPF are also shown in the Fig. 17.10. We decompose the 

image upto two levels. We do not really need to further decompose image because the image becomes 

smaller and smaller as we decompose into subsequent levels. When we decompose a an approximate 

subspace we require a LPF and a BPF. Whereas, for decomposing a detail subspace we require a BPF 

and a HPF. All these filters are separable in nature and can be used for both dimension separately. 

Altogether we get 16 subspaces after two level decomposition. The Higher frequency features of face 

such as eyes can be seen when detail subspace is decomposed into its subbands. After all these 16 

bands are extracted, we can go for feature extraction. In each of the 16 images there are features 

required for face recognition. If we go for all the pixels in all 16 images, then our feature extraction 

vector becomes very large. So, we go for moments like first order moment and second order moment 

in all the 16 images giving rise to 32 features. But for detailed subspaces we have zero mean. So a 17 

dimensional feature vector is sufficient. But, the approximate and detail subspaces are different. Detail 

subspace have more information compared to approximate subspace. The feature vectors which are 

extracted are shown in Fig. 17.11.
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Figure 17.11  Feature vectors for different subspaces – improved figure to follow
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Figure 17.10  The filters used for this project – improved figure to follow



558 Multiresolution and Multirate Signal Processing

We had two boxes in approximate subspace and in each box we can extract mean and variance for 

each box. For Detail subspace we extract variance and altogether we get 19 feature vectors. We compare 

these features with already stored feature vectors. We use distance metric for matching. The distance 

is calculated using Bhattacharya distance for all the feature vectors extracted. The experimental results 

obtained are shown in Fig. 17.12.
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Figure 17.12  Various experimental results – improved figure to follow

17.6  Wavelet Based Denoising – Application

Denoising as the name suggests, is the operation of separation of wanted and unwanted in a mixture of 

signal and noise.

As expected, normally the noise or perturbation is unwanted and it is often the case when one goes 

in wavelet domain particularly in the context of biomedical signals, it is easier to separate the wanted 

signal from unwanted noise. We could have several instances of this, but what we have in this section is 

essentially a separation of respiratory artifacts described.

17.6.1  Wavelet Based Denoising for Suppression of Respiratory Artifacts in 
Impedance Cadiogram Signals (ICG)

The technique that is mentioned was developed by Dr. Vinod K Pandey and Prof. P. C. Pandey of IIT 

Bombay. First of all, let us divulge into what is meant by ‘Impedance cardiography’.

17.6.2  Impedance Cardiography (Definition)

It is a noninvasive technique for monitoring stroke volume (SV) and other cardiovascular indices, 

thereby obtaining diagnostic information on cardiovascular functioning by sensing variation in the tho-

racic impedance due to change in blood volume.

17.6.3 Structure and Functioning of Heart

The actual structure of the heart is as shown in Fig. 17.13. It essentially consists of four chambers namely:

 1. Right atrium

 2. Left atrium
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 3. Right ventricle

 4. Left ventricle

These four chambers can be visualized as a four pumps similar to mechanical pumps whose func-

tion is just pump the blood. The blood from the different part of the body enter into the heart.

There are two major vessels namely:

 1. Superior vena cava

 2. Inferior vena cava

Superior vena cava will be bringing the blood from the upper part of the body to the heart where as 

Inferior vena cava will be bringing the blood from the lower part. The names superior and inferior are 

not due to their functioning but as per their positions.

The right side of the heart deals with the deoxygenated blood and left side of the heart deals with the 

oxygenated blood. As soon as the right atrium filled with the blood, right atrium will pump the blood to 

right ventricle. There is valve separating the right atrium and right ventricle known as tricuspid valve. 

The right ventricle pumps the blood to lungs for getting oxygenated. As we know blood coming from 

different parts of the body to the heart has carbon-dioxide in it. We need oxygen in the blood for body 

functioning. Now, this blood will exchange, i.e. carbon-dioxide and oxygen, for that the right ventricle 

pumps the blood to the lungs through pulmonary artery. During this period pulmonary valve will be 

open and tricuspide valve will be closed. The blood will come back to the heart in left atrium through 

pulmonary vein. From this left atrium blood will be pumping in left ventricle. There is a valve separating 

left atrium and left ventricle known as mitral valve.
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Figure 17.13  Structure of Heart
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Out of the four chambers, left ventricle is the most important part because left ventricle is supplying 

the blood to all parts of the body. Since our body parts are far away from the heart, left ventricle has to do 

a lot of work. The left ventricle is contracting with maximum force and will pass through aortic valve to 

the aorta and blood will be supplied through different branches of aorta to the different parts of the body. 

Even though if atrium pumps are not working due to some problem, tricuspide valve and mitral valve 

will be opened due to gravitational force and weight, the 70%  of blood will automatically fall in ven-

tricle. So disorders related to atrium are not much dangerous compared to disorders related to ventricle.

Now look at the some waveforms related to heart blood cycle as shown in left side of Fig. 17.13. In the 

first waveform the upper doted line shows the aortic blood pressure, i.e. when we are measuring blood pres-

sure using pressure meters with the help of doctors, we will be getting this aortic blood pressure (80 to 120 for 

healthy persons). The related variations of other two pressures namely atrial pressure and ventricular pressure 

are shown in the same first waveform. The next waveform is aortic flow showing blood flow aorta which is 

pulsating in nature. The waveform shows electrocardiogram signal (ECG) which is a measure of electrical 

activities of the heart. The last waveform is phonocardiogram which are actually cardiac sounds of valves.

17.6.4 ICG Signal and Artifacts

In impedance cardiography, the four sensors are placed on the body, the corresponding region is known 

as thoracic region, as shown in Fig. 17.14.

Experimental  setup

Impedance cardiograph

Model HIC2000 from Bio-
impedance technology

Sampling frequency 500 Hz

Signals recorded under

(a) subject at resting condition and

(b) subject performing different physical activities

Figure 17.14  Experimental setup of ‘ICG’ recoding

A high frequency and low amplitude current is passed through upper and lower electrodes and 

voltage is measured between the two middle electrodes and hence the impedance. As shown in the 

Fig.17.13, the third waveform D( )Z  shows the impedance variation and forth waveform is the time 

derivative 
dZ

dt

æ

è
ç

ö

ø
÷  of it known as impedance cardiogram signal (ICG).

The stroke volume (SV) is the amount of blood pumped by the heart during one heart bit and is 

given by,

SV
L

Z

dz

dt
T=
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0

2
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max
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where,

SV =  Stroke volume (mL)

r  = Resistivity of the blood ( W -cm) @  150

L = Length of the modeled conductor (cm)

Z
0

 = Basal impedance( W ) @  25 (Varies from patient to patient)

−





dz

dt max

 = Maximum of the derivative of the impedance during the systole ( W /s)

T
lvet

 = Left ventricle ejection time (s)

Cardiac output = SV ´  HR (heart rate)

Basically impedance cardiogram signal (ICG) have few types of artifacts, these are manmade sig-

nals which are unnecessary in impedance cardiography point of view. We have two major artifacts, i.e. 

respiratory and motion artifacts. Respiratory artifacts are very low frequency (0.04 – 2 Hz) and motion 

artifacts (0.1 – 10 Hz). Figure 17.15 shows ICG signal during exorcize of a normal person. The baseline 

drift is due to the respiratory artifacts and peaks due to motion artifacts.

As shown, the ICG signal range is 0.8 to 20 Hz, therefore, respiratory and motion artifacts lie within 

same band. In this presentation particularly we are looking for respiratory artifacts suppression because 

these create difficulties in calculating stroke volume and other cardiovascular indices.
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Artifacts in ICG

Figure 17.15  Artifacts in ‘ICG’

17.6.5 Application Objective

●● Investigate the different denoising techniques for the suppression respiratory artifacts.
●● Study the wavelet based denoising for artifact suppression.
●● Study different wavelets and its applicability in artifact suppression.

There are few techniques of suppression of respiratory artifacts namely:

(a)  Breath Hold: Respiratory artifacts are because of respiration and the easiest way to suppress 

these artifacts is to hold the breath. The problem to hold breath is that when we are holding the 
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breath cardiac activity will always go down. Another problem is when we are recording ’ICG’ 

after exercise, it is difficult to hold the breath.

(b)  Ensemble averaging[8]: The bit-to-bit variability in the ‘ICG’ will be removed in ensemble 

averaging technique, so it blur the important points of ‘ICG’ waveform such as B, X points. 

Hence it will introduce errors in calculating stroke volume (SV).

(c)  Adaptive filtering[10]: Adaptive filtering is always good in biosignal de-noising if we have a 

reference signal, but obtaining a reference signal is a difficult task.

(d)  Wavelet based level dependent thresholding[5]: In wavelet based denoising selection of 

wavelet basis is an important task. In many denoising applications it is observed that if wavelet 

and waveform has some similar shape, then those wavelets gives better separation of noise and 

signal. Hence, selection of wavelet basis is an important step in wavelet based denoising. Here, 

we are using this technique for the suppression of respiratory artifacts in ‘ICG’ signal.

17.6.6 Wavelet Based Denoising

The basic wavelet decomposition is as shown in Figs 17.16 and 17.17. The original waveform is sampled at 

500 Hz. Each detail gives a bandpass signal and each approximation gives a low-pass signal when we are 

decomposing the signal into different levels. In this method, we are decomposing the signal into different lev-

els and artifacts into different levels and we are seeing up to what levels the signal is present and up to what 

levels the artifacts are present. We have used different wavelets for decomposition in this project. We have 

tested different wavelets such as Coif5, db6, demey (discrete meyer wavelet) and symlet wavelet in decom-

position of ‘ICG’ signal. Based on these results we will choose specific wavelets for denoising application.

The 10-level wavelet decomposition of an ‘ICG’ signal under breath hold condition is as shown in 

Figs 17.18, 17.19 and 17.20 by using ‘Coif5’, ‘db6’ and ‘demey’ wavelets respectively.

Orginal waveform

fs = 500 Hz

Wavelet

Decomposition

D1

125 − 250 Hz

A8

0 − 0.98 Hz

A2

0 − 62.5 Hz

A1

0 − 125 Hz

D8

0.98 − 1.95 Hz

D2

62.5 − 125 Hz

Figure 17.16  Wavelet decomposition
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Figure 17.17  Block diagram of DWT

In Fig.17.18, the details D1 to D3 has no signal content because they contains high frequency 

components and the signal has only components up to 20 Hz. The details D4 to D10 contains the signal 

content so we can not use this particular wavelet for separation of signal and artifacts since it is not 

capturing signal components in any particular details. As we can see D8-D9 has signal content and if 

artifacts are present along with the signal.

Decomposition of ICG using Coif 5 wavelet 
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Figure 17.18  10-level decomposition of ICG with ‘Coif 5’ wavelet
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Decomposition of ICG using dmey wavelet

20
−0.02

−0.05

0.02

−0.2

0.2

−0.02

0.02

−0.2

0.2

−0.2

0.2

0.05

4

20 4

20 4

20 420 4

20 4

20 4

20 4

20 4

2

Time(s)Time(s)
0

ICG

A10

D10

D9

D8

D7
−0.01

0.01
D1

−0.01

0.01
D2

−0.01

0.01
D3

−0.01

0.01
D4

−0.2

0.2
D5

−0.1

0.1
D6

420 4

20 4

Figure 17.20  10-level decomposition of ICG with ‘demey’ wavelet

Decomposition of ICG using db6 wavelet
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Figure 17.19  10-level decomposition of ICG with ‘db6’ wavelet
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In Fig. 17.19, the same 10-level wavelet decomposition of an ‘ICG’ signal using Daubechies wave-

let (db6), again we can see all the details and approximation contains the signal content, so this wavelet 

also will not serve the purpose of artifact separation from the ‘ICG’ signal.

In Fig. 17.20, we can see that there is no signal content in D1 to D3, but D4 to D8 have signal con-

tent, but one important observation here is that in D9-D10, we do not have signal components. The D9 

details contains frequency components in the range 0 to 0.98 Hz. In our denoising experiment we are 

adding the details D1 to D8 and removing D9, D10 and A10 for artifacts suppression.

By observing these results, we can see that the choice of wavelet basis plays a critical role for 

 artifacts suppression in ‘ICG’ signal.

17.6.7 Denoising Results

Further studies at SPI lab EE department at IITB showed that similar results can be achieved by using 

‘demey’ wavelet can also be achieved by using one more wavelet known as ‘sym26’ wavelet.

The first waveform in Fig. 17.21 is an ‘ICG’ signal under resting condition but with respiration.

The second waveform in Fig. 17.21 is an denoised ‘ICG’ signal using ‘demey’ wavelet, i.e. 

‘ICG’  signal is decomposed with 10-levels and the reconstruction is done using first 8 details.  

The third waveform is obtained by following the same procedure using ‘sym26’ wavelet. We can 

visually see that both the wavelets giving the same performance. The fourth waveform is the artifacts 

which are extracted from from ‘ICG’ waveform by using ‘demey’ wavelet. This is basically first 

waveform minus second waveform. The last waveform is the artifacts removed by using ‘sym26’ 

wavelet. Here, we can observe that both wavelets capturing exactly the same artifacts and same 

signal.

Respiratory artifact suppression
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Figure 17.21  Respiratory artifact suppression with ‘demey’ and ‘sym26’ wavelet
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The question may arise in one’s mind that why this is happened. The shapes of wavelet and scaling 

function of ‘demey’ and ‘sym26’ are as shown in Fig.17.22. We can see that both have same shapes and 

matches with the shape of ICG signal and hence these wavelets gives better artifacts suppression per-

formance over other wavelets. All the de-noising experiments are performed with Matlab using wavelet 

toolbox.
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Figure 17.22  Wavelet and scaling functions of ‘demey’ and ‘sym26’ wavelet

17.6.8 Possible Embellishments

●● ‘Sym26’ and ‘demey’ are better than other wavelets for respiratory artifacts suppression.
●● ‘Sym26’ reduces the calculation complexity compared to ‘demey’ wavelet.
●● Study the applicability of wavelet based techniques for motion artifact suppression in ‘ICG’ signal.
●● Study the wavelet based techniques in ‘ECG’ denoising applications.

17.7  Finding Hidden Discontinuity – Application

While authors were developing a solution for a mechanical industry to detect cracks in rotating gears, it 

was realized that the problem at crux was finding hidden discontinuities. 

In the following toy example, we will try to find out a hidden discontinuity. Consider the following 

function (Fig. 17.23),
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We can see that at t = 0.5 there is a clear discontinuity. However such discontinuities are easier to 

detect, we will slightly complicate the matter. We will smooth out this signal by integrating it.
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We can see that there is still a cusp jump at t = 0.5. Thus integrating again,

f t h t dt
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This appears absolutely smooth to eye. So we will solve this problem of finding out the discontinu-

ity using wavelets.

0.5 0.14 0.045

0.04

0.035

0.03

0.025

0.02

0.015

0.01

0.005

0

0.12

0.10

0.08

0.06

0.04

0.02

0

0.4

0.3

0.2

0.1

−0.1

−0.2

−0.3

−0.4

−0.5
0 100 200 300

g(t) h(t) f(t)

400 500 600 0 100 200 300 400 500 600 0 100 200 300 400 500 600

0

Figure 17.23  Plot of functions g(t), h(t), f(t)

Simulation Results

As can be seen from Fig. 17.24, Haar filter completely missed the discontinuity. This is because Haar 

has only one vanishing moment and can sense only up to first order derivative.

As can be seen from Fig. 17.25, higher members in Daubechies family can sense and detect the 

discontinuity. This is because filters like db-2 onwards have at least two vanishing moments and thus 

can sense up to second order derivative.
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Figure 17.24  Haar wavelet completely misses out the hidden discontinuity

17.8  Denoising the Underlying Signal – Application

The second applications we would be looking at is suppressing polynomials towards denoising the 

underlying signal. It is in a way dependent on scaling function f . We would work out this application 

with the help of a simulation.

Figure 17.26 shows a signal and same signal with noise added to it. The noise added is white 

Gaussian noise. The signal to noise ratio is 4. Thus a good enough strength disturbs the signal and not 

all the details are visible. Thus there is a need to clean up the signal to bring out its underlying charac-

teristics. We will try to complete this task using wavelets.

We know that any signal can be looked upon as a polynomial and if we suppose that its degree is 

two, then daub2 would not be able to do a neat analysis of the signal. This is because the moment cor-

responding to the second derivative does not vanish. Thus, in Figs. 17.27 and 17.28 we can see that the 

decomposition with Haar, i.e. db1 and db2 is not satisfactory.

However if we look at the decomposition with db3 wavelet shown in Fig. 17.29, we can see from 

analysis at d4 and d5 that the noise has started getting suppressed. If this happens we will eventually be 

left with noise. We can also subtract this noise and get back the original signal as shown in Fig. 17.30. 

Also, we can see that most of the details present in the original signal are restored. To what level we 

want to restore the details is once again a question of selecting an appropriate mother wavelet function 

and corresponding father or scaling function.
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17.9  Compression and Pattern Recognition Using Wavelets

Now, let us look at another application. So far we have only dealt with one dimensional applications, 

now we look at a two-dimensional application. Specifically, we will study compression and pattern 

recognition using wavelets.
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As far as two-dimensional signal or image analysis is concerned typically the basis function should 

be of unitary nature. Only then we can guarantee two important properties, energy compaction i.e. we 

must be able to represent the energy we have with us and energy conservation, i.e. we should be able to 

preserve most of the energy. Only then we can achieve compression.

A matrix A  is called unitary if,

A A
T-1 *=

For a real matrix A, it is unitary if,

 A A
T-1 =  (17.1)

When the basis matrix is unitary it guarantees de-correlation of the information. Once we  

de-correlate the information we can guarantee energy conservation and also energy compaction.

Now, let us look at an important question, can we preserve using wavelet transform?

Consider the following signal,

x n V[ ] = {3,2,5,1}
2

Î

Lets use Haar wavelet for analyzing this signal thus,
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Thus, the energy stored in details is about 22 percent. This is because the signal we have considered 

has many transitions. Now as against this if we consider a smooth signal,

x n V
1 2
[ ] = {4,6,10,12}Î
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Then the details would be,

a
1

= 5 2,11 2{ }
Its details would be,

d
1

= 2, 2- -{ }
Energies would be given as,

E
a
1

= 292

E
d
1

= 4

Hence, in this case the energy stored in the details is only about 1.4 percent and most of the energy 

would be stored in approximations. So we can conclude that for smooth looking signals most of the 

energy would be stored in approximations and for fairly rough looking signals for, e.g. a textured image 

the energy distribution is in a way even, however most of the energy would still be in approximations. 

Thus, indeed energy gets preserved in case of wavelet transform.

Now, let us carry out two important tasks, first is de-noising a two-dimensional toy image. Consider 

the following sample image, let's revisit example 16.7.2 from application perspective.
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We shall use following unitary Haar transform matrix,

A =
1

2
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We would carry out the analysis in two steps,

 1. To find out S in horizontal direction as, S SA
H

=

 2. To find out S in horizontal and vertical direction as, S AS ASA
HV H

= = .

Consider step 1,
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H
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S
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S
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=
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Consider step 2,

S AS
HV H

=

This results in,

S
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Now, consider first 2 ´ 2 matrix from S
HV

 and S let D and F be these matrices respectively then,

D =
6 1

2 0
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F =
9 7

5 3
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If we take the average of elements of F we would get element (1,1) of D, i.e.

1

4
[9 7 5 3] = 6+ + +

This is the low pass element. Also consider element (2,1) of D which can be obtained by vertical 

difference as,

1

4
[(9 5) (7 3)] = 2- + -

This would be a high pass element since it is obtained by taking an average of difference in rows. 

Correspondingly we can say that (1,2) element of D i.e. 1 is a high pass element which would be differ-

ence in horizontal direction. Also we can observe that element (2,2) of D i.e. 0 is a high pass element 

obtained by taking a difference in diagonals. Thus, we can conclude that D is actually a decomposed 

version of F.

These coefficients are of great importance since they help in building the final matrix when it comes 

to transforming an image into wavelet space. The transformed version in case of the matrix S can be 

written from S
HV

 by considering all the four 2 ´ 2 matrices similar to matrix D, obtained by dividing 

the matrix into four equal parts.
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The low pass coefficients in that case would be,
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Now, if we again analyze S
1
 using Haar MRA then we would have,
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Performing analysis also in vertical direction we have,
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Finally, the matrix in the wavelet domain would be,
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We can see from W that, 
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ú  has the maximum energy and 
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ú  has the minimum energy. 

Making this part zero, the resulting image would be,

W
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W
d

 is called as the denoised version. Using W
d

 we can calculate the inverse transform. Let B be the 

first 2 ´ 2 matrix of W
d

 thus,

B =
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We can use A BA
- -1 1  where, A

-

-

é

ë
ê

ù

û
ú

1 =
1 1

1 1
 thus we can write,
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This leads us to the denoised version of the image,
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Finally, the denoised image can be calculated as,
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If we compare this image with original image S, then we can see that first two rows of S were rela-

tively smooth. However, the last two rows needed denoising. In image S
d

 we can see that the first two 

rows are even better and problem is in a way solved for the third row. However, problem still exists for 

the fourth row. But we know what is the solution; we can go on pursuing this analysis for next couple 

of scales and probably instead of using Haar wavelet we can use db2 wavelet having three vanishing 

moments which will give us results much quicker.

So this was one application which showed how the two-dimensional analysis actually works. Next, 

we would look at an application regarding pattern recognition.

Let us say, we have three letters L, C and U.
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U =
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If we calculate W
L

, W
C

 and W
U

 and calculate mean squared error (M.S.E.) between all of them, 

then we would realize that L and C are closer than L and U and C and U. We leave it to the readers to 

explore further.

17.10  JPEG 2000 Filter Strategy

Cohen-Daubechies-Feauveau 
9

7
 biorthogonal filter pair is popularlty known as CDF97 in literature.

It got approved by the committee to becomd part of lossy JPEG 2000 compression standard. CDF97 is 

not a member of the biorthogonal spline filter pair family. In fact, it works better than 
9

7
 tap that can be 

designed using biorthogonal spline framework we have already seen.

In this filter, length of h
k

 and g
k
  is ‘g’ and hk

  & g
k

 is ‘7’.

Therefore H h e
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The filter needs to obey typical LPF conditions.

H H( ) = ( ) = 0’p p

Moreover,

H m
m
�

�

( )

( ) = 0, = 0, ,5p

The zeros at w p=  of H( )w  & H( )w  for CDF97 filter pair are equally balanced.

We shall start with condition necessary and sufficient for biorthogonal filters:

 H H H H ( ) ( ) ( ) ( ) = 2w w w p w p× + + × +  (17.2)

as h h h
L L

= , ,-{ }  is odd length and symmetric,

if h h
K K

= -  then,

H h e
K L

L

K

jK( ) =
=

w w

-
å ×
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is an even function. Furthermore,

 

H h h
K

L

k K
( ) = 2 ( )

0

=1

w w+ × ×å cos  (17.3)

The trick lies in expressing function cos( )Kw  as polynomial in cos( )w .

For example cos cos cos(3 ) = 4 ( ) 3 ( )3w w w× - ×

Therefore cos(3 )w  is written by composing cos( )w  and polynomial P(t) = 4 33× - ×t t !

For odd length symmetric filters,

 

H h e
K L

L

k

jK( ) =
=

w w

-
å ×  (17.4)

 

H Pl( ) = 2
2

( ( )2w
w

w×
æ

è
ç

ö

ø
÷ ×

æ

è
ç

ö

ø
÷cos cos  (17.5)

Here, P(1) = 1 and P(–1) ¹ 0

The even solution will be

 

H pl
�

�

�

( ) = 2
2

( ( ))2w
w

w×
æ
èç

ö
ø÷
×cos cos  (17.6)

l  = non-negative integer and p( 1) 0- ¹  and p(1) = 1

Equations (17.5) and (17.6) be characterized into,

 

P p
K j

jj

K

j( ( )) ( ( )) =
1

2=0

1
2cos cos sinw w

w
×

- +æ

èç
ö

ø÷
æ
èç

ö
ø÷

-

å  (17.7)

Where, K = l l+   and degree of p t p t K( ) ( ) <× 

Now, the important step is to choose ‘K’ and the factor

 

P t
K j

j
t

j

K
j( ) =

1

=0

1-

å
+ -æ

è
ç

ö

ø
÷  (17.8)

CDF97 crux lies in choosing K = 4 and l l= 2 -

Therefore P t
j

j
t t t t

j

j( ) =
3

= 1 4 10 20
=0

3
2 3∑ +





+ ⋅ + ⋅ + ⋅  (17.9)
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Roots of P(1) are,

r r j r j
1 2 3

= 0.3424, 0.0788 0.3733 , = 0.0788 0.3733− − − − +

Biggest coefficient of P(1) = 20,

Therefore
 

P t t r t r t r( ) = 20( )( )( )
1 2 3

− − −  (17.10)

Let us distribute as:

P t a t r p t
a

t r t r( ) = ( ) ( ) =
20

( ) ( )
1 2 3

 - - × -and

l= 2 , and P t( )  = a(t + 0.3424)

By substituting t =
2

2
sin

w





 

H a( ) = 2
2 3

0.34234 2w
w w

cos sin











+









  (17.11)

and

   

H
a

j( ) = 2
2

20

2
0.0786 0.37334 2 2w

w w
cos sin si
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÷ × nn
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2
0.0786 0.3733
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ø
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æ

è
ç

ö

ø
÷j       (17.12)

As H(0) = H(0) = 2

Solving for H , we get a = 2.9207

Solving for Eq.(17.4)

H h e
K

K
jK

� �( ) =
= 3

3

w w

−
∑ ⋅

 

h

h h

h h

h h



 



0

1 1

2 2

3 3

= 0.7884

= 0.4181 =

= 0.0406 =

= 0.0645 =

-

-

-

-

-

 (17.13)

and

H h e
K

k

jK( ) =
= 4

4

w w

-
å ×

 

h

h h

h h

h h

h

0

1 1

2 2

3 3

4

= 0.852

= 0.3775 =

= 0.1106 =

= 0.0238 =

= 0.037

-

-

-

-

-

- 88 =
4

h-

 (17.14)
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 (17.16)

g g h h
k K k K, , , 

 gives us W
CDF 97

 and W CDF


97

17.11  Two Interesting Techniques SPIHT and EZW

For those researchers working in the field of pattern recognition and computer vision, two very effec-

tive wavelet based techniques which have made a serious impact on the technological advancement are:

●● SPIHT (Set Partitioning in Hierarchical Trees)
●● EZW (Embedded Zerotrees of Wavelet transforms)

SPIHT is an image compression algorithm and harps on the ability to exploit inherent similar struc-

tures across the sub-bands in a specific hierarchy. This algorithm was developed by Pearlman et.al. and 

interested readers can explore this further.

EZW is lossy image compression algorithm. At the low bit rates the sub-band coding produces 

many near-zero coefficients, the subtrees created out of these are called zerotrees. EZW was developed 

by Shapiro in around 1993, and interested readers can explore this further.

Exercise 17.1

Consider the signal f t t t cos t t( ) = 10 (1 ) 8 ,0 < < 12 2- p  on the interval (0,1).

We use the Wavelets Tool Box to compute the scaling levels a
1
 and a

2
 over the interval (0,1), 

for the Coif 6 and the Daub 2 scaling functions coefficients. We will compare the maximum error 

on the interval (0,0.2) between the above Coif 6 approximation and the exact sample values. The 

same is done with Daub 2 computing the error between its corresponding scaling coefficients and 

the above estimation in. The readers are encouraged to find that for level 1, the maximum error for 

the Coif 6 is an order of magnitude less, and the same is for level 2. It is left for an exercise to check 

this accuracy at higher levels, where it is expected to decrease.

Exercises
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Exercise 17.3 

Consider the signal

f t t t t t( ) = 20 (1 ) 12 ,0 < < 32 4− cos p

Compute the scaling functions coefficients for Coif 6 and Daub 2, and compare the maximum 

error as done in Example 17.1 at the levels 1, 2, 3 and 4. Use very small scales of 
10

 then 
14

, and 

make your conclusion.

For the same problem try Coif 12 and Daub 3.

Exercise 17.2 

As we did for the other scaling functions and wavelets, we call { }h
n

 the scaling coefficients, let us 

call h n
1
( )  as the corresponding wavelets coefficients. Show that the Coif 6 scaling coefficient satisfy 

the following equality,

n

n
h

=0

5
2 = 1.å

Give the interpretation of this result in terms of the energy of the Coif 6 wavelet. Show that Coif 

6 scaling function satisfies the (new) relation,

- - + + +2 2 3 = 0
0 1 3 4 5

h h h h h

while f
D2

 does not.





18.1  Introduction

Classical Wavelets analysis has brought in a fresh perspective all together and yet researchers across the 

globe face limitations when it comes to using wavelet filters on highly oriented data and particularly 

in higher dimension. The building blocks of wavelet analysis offer isolation in time and frequency at 

depths greater than the conventional transforms, but only in rigid sense when it comes to dealing with 

angular information. Haar being the most primitive of all mother wavelets, represents the analysis in the 

form of first order difference. This gradient approach typically allows the analyzer to resolve the infor-

mation at multiple scales along only four angles in the spirit of gradient analysis. As the wavelet filters 

hold only fixed number of directional elements they struggle in capturing particularly anisotropic parts 

in images and higher dimensional data. As a consequence, in the last decade or so, we have witnessed 

orientation-specific multiscale and multiresolution structures, which have manifested themselves into 

modern transforms with the likes of ridgelets, curvelets, brushlets to name a few. These have led to 

interesting applications from various domains with different type of data.

A better representation always leads to optimum utilization of memory and resource resulting into 

compression. In section (16.7) of Chapter 16 and particularly in examples (16.7.3-16.7.6) we have also 

brought out significance of transformation matrix being unitary. Along with a transformation matrix 

being unitary, it is equally important for it to be enough sensitive towards relevant information pieces. 

Only then it leads to sparse representation thus producing compactness. The above mentioned trans-

forms are important from this important perspective.

Going Beyond 
the Realms

Chapter

Introduction

Ridgelets

Curvelets

Brushlets

Contourlets

Bandelets

Platelets

(W)Edgelets

Shearlets

Hilbert-Huang-Transform (HHT)

18
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David Donoho

David Donoho (born 5 March 1957) is a professor of statistics at Stanford University. He is very well 

known for his contributions in the field of multiscale geometric analysis which has led interesting off-

shoots of wavelet with the likes of ridgelets, curvelets etc. For his outstanding contributions in the field 

he has won many awards like 2010 Norbert Wiener Prize in Applied Mathematics etc.

18.2  Ridgelets

We use smooth and univariate function y : ® , to define two dimensional continuous ridgelet 

transform in 2  with characteristic of a compactly supported function, keeping sufficient decay and to 

satisfy basic admissibility condition,

 ∫ ∞| | | |y w w w^ ( ) / <2 2
d   (18.1)

The above equation (18.1) holds true if the basic admissibility condition is met, that is if zeroth 

statistical moment (mean) vanishes, i.e. òy ( ) = 0t dt . In a typical construct of such kind, a special nor-

malization about y  is proposed, such that 
0

2 2( ) = 1
∞

−∫ | |y w w w^ d . For a regular wavelet construct the 

Hallmark features are scaling, translation and dilation. In ridgelets the ‘orientations’ add the necessary 

ingredients of the transform.

The bivariate ridgelet y qa b
X

, ,

2( ) : ®  for every scale a > 0 , translate bÎ  and orientation 

q pÎ[0,2 )  can be defined as:

 
y y y q qq qa b a b

X x x a x x b a
, , , , 1 2

/2

1 2
( ) = ( , ) = . (( ) / )cos sin+ -   (18.2)

As typical wavelet has consistent pattern along x-axis translations, so does a typical ridgelet along 

x x
1 2
cos sinq q+ . The coefficients are calculated using the dot product concept again,

 


f a b
R

a b
a b f f x x dx( , , ) :=< , >= ( ) ( )

, , 2 , ,
q y yq qò   (18.3)

Equation (18.2) and (18.3) depict the transformation in the forward direction. The inverse recon-

struction formulae can be worked out as:

 
f x a b x

da

b
db

d
f a b

( ) = ( , , ) ( )
40

2

0
, ,

p

qq y
q

pò ò ò- inf

inf inf

   (18.4)

Parseval relation holds for equation (18.4). The energy analysis, in typical signal processing sense, 

is possible for functions which are integrable and square integrable.
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Hough transform for all the lines, also referred as ‘Radon Transform’ could be helpful in designing 

the deployment strategy for Ridgelets. In fact, a wavelet style of analysis of radon domain results into 

Ridgelet constructs. This has a strong connection with the fact that owing to uncertainty principle a line 

in an image space (which can be thought of to be made up of number of points) gets represented as a 

singular point in Hough space; and wavelet transform is known to provide ‘sparse’ representation for 

singular points. Hough transform for lines or radon transform of an object f  is the collection of line 

integrals indexed by ( , ) [0,2 )q pt Î ´  given by,

 

Rf t f x x x x t dx dx( , ) = ( , ) ( )
2

1 2 1 2 1 2
q d q qinf cos sin+ -   (18.5)

where, d  is the Dirac distribution function. The reader can very clearly see now that when 1- D  

wavelet transform is to indexed slices of Radon transform for consistent angular variable q  and varying 

t  (producing translates), it gets manifested into a ridgelet transform.

Two step recipe for ridgelet transform:

 1. Compute Radon Transform Rf t( , )q .

 2. Apply 1- D  wavelet transform to the slices Rf (., )q .

18.2.1 Digital Ridgelet Transform

There are different ways of constructing digital Ridgelets, however the most conventional one is what is 

known as ‘The RectoPolar Ridgelet transform’.

Owing to the projection-slice-theorem, a faster implementation of the Radon transform is feasible 

in Fourier domain. The 2D FFT-  (Fast Fourier Transform) of given image is computed first, and 

adjustments are made to bring the energy points together (using function like fftshift  in MATLAB) at 

the center. The frequency domain representation evaluates the frequency instances in a manner that lead 

the analysis from origin (where energy is concentrated) spreading out with uniform angular spread. This 

forms a polar grid like construct, and on the polar grid, each ray depicts a projection and each shift per 

the angle is marked by every sample on each ray. Through gridding used in Tomography, interpolation 

gives the way to map from the Cartesian to Polar grid. The readers should note here that interpolation, 

however, is extremely to sensitive, thus making the entire system less robust and inaccurate. Further 

radon projections are obtained by applying 1D IFFT-  (Inverse Fourier Transform) for each ray.

The pragmatic question is how can we implement such circular polar grid in 2D  discrete sense. 

The readers will realize that for all 2D  operations on an image the geometry is mapped in square or 

rectangular matrices. Any pixel of an image can have maximum 8 neighboring pixels. The structuring 

elements (SEs) for morphological operations or masks for filtering operations are square geometric with 

size of 3 3´ , 5 5´ , 7 7´  etc. The most practical deployment strategy for Fourier based Radon trans-

form is to replace polar-grid with pseudo-polar-grid.

The way pseudo-polar-grid manifests is presented in Fig. 18.1. We had concentric circles with lin-

early growing radius outwards in polar-grid. In pseudo-polar-grid these circles are replaced by concen-

tric squares of linear outward growing sides. Naturally the outward spread is not angular, but along slope 

of line slant with prefixed angle. The ‘pseudo’ constructs of such grid closely resemble the polar nature, 

and as a consequence one can think of implementing FFT  on this grid without interpolation. Thus, we 

get an interesting radon transform variation where the projection angles are not spaced uniformly. As a 

penalty, the pseudo-polar FFT should have at least twice as many samples as original image to maintain 
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robustness and stability. The advantage is the nature of grid now being of 2D  array it can be represented 

in matrix form, resulting into ease of implementation.

Now, the next step is to apply 1- D  wavelet transform along radial variable in Radon space to 

complete the Ridgelet transform in true sense. The circumstances, however give push to use ‘band-

limited-wavelet’ than the ‘compactly-supported-wavelet’. It could be decimated wavelet schemes used 

at critical sampling or hard-thresholds put on wavelet coefficients, we have witnessed (in video coding 

for example) how time-domain-compactly-supported wavelets when confronted with nonlinear pro-

cessing, results into artifacts. Owing to ‘Uncertainty Principle’, compactly supported wavelet kernels 

do not get isolation or compactness on frequency axis resulting in coarse-scale anomalies manifest-

ing at finer-scale. Hence, we use inverse radon transform to reconstruct Fourier theme. This pushes 

us to use frequency-domain approach and use of wavelet basis which is ‘band-limited’ rather than  

‘compactly-supported’. The wavelet transform algorithm makes use of scaling function f , which has limited  

band interval [ , ]-w w
c c

 and vanishes outside. Fourier transform of such scaling function can be  

re-normalized B3-spline:

4

3

2

1

0

−4

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

Figure 18.1  Illustration of the pseudo-polar grid in the frequency domain for an n  by n  image ( = 8)n

 
f̂ w( ) =

3

2
(4 )

3
B v   (18.6)

Consequently, ŷ  can be posed as first order difference between two consecutive scales,

 
ˆ ˆ ˆy w f w f w(2 ) = ( ) (2 )−   (18.7)

Using Sampling Theorem, one can build a pyramid of n n n+ + +/ 2 ... 1 = 2  elements for compactly 

supported ŷ .

Thus the transform depicts following properties:
●● The structure has optimum computational complexity. Computations of 1D  inverse Fourier 

Transform along each radial line is avoided, and rather wavelet coefficients are directly calculated 

in Fourier space.
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●● Perfect reconstruction is guaranteed. Wavelet coefficients can be added to reproduce the original 

signal and ridgelet coefficients are added to construct Fourier coefficients. For this to hold, it is 

necessary sample each sub-band above sampling rate prescribed by Shannon-Nyquist-Whittaker 

(sampling theorem).

Though the transform is computationally not complex, it introduces data redundancy. But, Ridgelets 

are not meant for data compression, in lieu they are geared up towards accurate data representation, use-

ful for better data analysis. Readers will also recollect that translation invariant over-complete mapping 

has interesting benefits.

All that has been discussed so far can be put together to form the complete schematic flowchart 

of discrete ridgelet transform (DRT) as shown in Fig. 18.2. The big picture is ridgelets are capable of 

sparse representation of images ridges which are not necessarily straight aligned only in known 4 gradi-

ent directions. We must also state that ridgelets:
●● Guarantee exact reconstruction
●● Reconstruction robust against delta changes in coefficients
●● Like many intermittent stages, they are irreversible

Radon

transform
Ridgelet transform

Frequency

WT1D

A
n

g
le

IMAGE

FFF1D−1

FFT2D

FFT

Figure 18.2  Discrete ridgelet transform flowchart. Each of the 2n radial lines in the Fourier domain 
is processed separately. The 1-D inverse FFT is calculated along each radial line followed by a 1-D 
nonorthogonal wavelet transform. In practice, the one-dimensional wavelet coefficients are directly 

calculated in the Fourier space
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18.3  Curvelets

In image processing applications, many times the decisions are based on mapping the objects correctly for 

detection, identification, tracking and other purposes. Any object is made up of shape, size, color, texture. The 

first defining characteristics of any object is shape and shape is made up of the boundary, boundary is made of 

ridges and ridges are made of edges. Most of the times the edges are in the form of curves and not necessarily 

straight lines. Yet, as engineers many times pose non-linear system as a piecewise linear system, curves can 

thought of made of very tiny straight lines. Then curves can be captured by deploying Ridgelets at local level 

of a very small scale. This concept leads us to the first generation curvelets (CurveletG1).

The emphasis of CurveletG1 transform is to use same transform (Ridgelet) at different scales with 

different block size. The idea behind CurveletG1 is as shown in Fig. 18.3. Local ridgelet transform is 

applied on every wavelet sub-band after decomposition of an image into sub-bands. Different levels of 

multiscale ridgelet pyramid are built to use them represent different sub-bands produced by wavelet filter.

In section (18.1), we discussed about importance of anisotropic parts. Taking clue from parabolic-

scaling-law, which gives relationship of width length» 2, during sub-band decomposition elements of 

critical frames are maintained roughly anisotropic.

The First Generation (G1) Discrete Curvelet Transform of function f x( )  uses dyadic scale sequences 

and by typical use of bandpass filter banks D
j
 can have dense representation in range [2 ,2 ]2 2 2j j+ , and,

 
D Y Y Y

j j j

j
f f( ) = , ( ) = (2 )

2 2

2* -w wˆ   (18.8)

It is only in compliance to use decomposition into dyadic sub-bands [2 ,2 ]1j j+  as per classical wave-

let theory. Quite the opposite, in discrete curvelet transform, the sub-bands used have non-dyadic range 

[2 ,2 ]2 2 2j j+ . This range has again its roots in the parabolic-scaling-law.

Curvelet decomposition: pseudo-code
●● Sub-band Decomposition: Object f  is decomposed into sub-bands.
●● Sub-band Partitioning: Each sub-band gets partitioned into “squares” of scale of side-length 

~ 2- j .
●● Ridgelet Step: Each square is subjected to Ridgelet Transform.

Filtering

∆j

Spatial partitioning

Bj

DRT

DRT

Unsignificant coeff
Significant coeff

Figure 18.3  First generation (G1) discrete curvelet transform



Going Beyond the Realms 589

For digital implementation the algorithm decomposes an n  by n  image f i i[ , ]
1 2

 as a superposition 

of the form:

 

f i i c i i i i
J

j

J

j
[ , ] = [ , ] [ , ]

1 2 1 2

=1

1 2
+åw   (18.9)

where, c
J

 is a coarse or smooth version of the original image f  and w
j
 represents ‘the details  

of f ’ at scale 2- j . Thus, the algorithm outputs J +1 sub-band arrays of size n n´ .

The algorithm snap shot is as follows:

For the given input n n´  image f i i[ , ]
1 2

:

 1. Apply isotropic 2D  wavelet transform with J  scales

 2. Set B B
min1

=

 3. for j J= 1,....,  while

 4. Partition the sub-band w
j
 with a block size B

j
 and apply the Ridgelet to each block

 5. if j modulo  2 = 1  then

 6. B
j j

B else+ =
1

2

 7. B
j j

B endif+ =
1

 8. end for

Keeping compliance with fundamental principle of curvelets of having elements of length of 2 /2- j  

to be used for the analysis (decomposition) and synthesis (reconstruction) of the has to double its side 

length at every dyadic sub-band; this also keeps coarse representation of image c
J

 intact.

18.4  Brushlets

Images which are rich in oriented textured ridge patterns require special type of filters for efficient fea-

ture extraction. E.g. Edges and textures in fingerprint images can exist at vivid possible locations, scales 

and orientations. The ability to efficiently analyze and extract features from textured patterns is thus of 

fundamental importance for building robust feature extractor.

The conventional model of patch of periodic and cyclic texture located at ( , )
0 0

x y  is provided by a 

windowed complex exponential,

 
w x h( , )

0 0

( )
x x y y e

i x y- - +   (18.10)

where w  is a functional localization around the origin. Local Fourier basis is used to get the most 

appropriate representation for texture analysis. First, the image is divided into local blocks of same fixed 

size and then Fourier bases ( )  are applied to encode the entire image by virtue of generating Fourier 

expansion within every block. The basic problems in this easiest approach are as follows:
●● The size of the block should be adapted to the image ridge map content. (a large geometric 

feature should NOT belong to several small blocks etc.)
●● The size of the blocks should be adapted to the frequencies of complex exponentials. (shorter 

blocks for higher frequencies etc.)
●● ‘Blocking’ artifacts at boundaries of blocks
●● Difficulty to superimpose blocks of different sizes

To solve these issues we replace Fourier framework with multiresolution framework. Two dimen-

sional wavelet bases are created using tensor product of one dimensional bases. Let f  be the scaling 

function and y  be the corresponding wavelet function, four wavelet functions can be written as:
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  (18.11)

The corresponding filter banks m k
k
( , ), = 1,2,3x h  can resolve 2.5  directions namely, horizontal, 

vertical and an undecided diagonal direction. We deploy wavelet packet strategy to adaptively construct 

an optimum tiling of the plane. The implementation of such scheme and its geometric interpretation, 

however, becomes very challenging as tensor product of two real valued wavelet packets gets associated 

with four symmetric peaks in the frequency plane. The main challenge lies with the fact that intensity in 

the image is either oscillating as a planar wave e
i w

x
x w

y
y( )+

 or with the conjugate frequency e
i w

x
x w

y
y( )-

. To 

remove the conjugate part, following filter is used:

 
m

3
( , ) = 0  > 0  < 0,   < 0  > 0x h x h x hif and or if and   (18.12)

To be able to construct such filters we use two wavelets y
g

 and y
h

 which form an approximate 

Hilbert pair:

 

y x
y x x

y x xg

h

h

i

i
( ) =

( ), > 0
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î

if

if
  (18.13)

with f f
h g
,  being the corresponding scaling functions. To avoid localization of Fourier transform 

to only one quadrant for tensor product like y y
h g

x y( ) ( ), tensor product for wavelet y
h

 is taken as 

follows:

 

y f y

y y f

y y y

h h h

h h h

h h h

x y x y

x y x y

x y x

,1

,2

,3

( , ) = ( ) ( )

( , ) = ( ) ( )

( , ) = ( ) (yy)

 (18.14)

Similar tensor products are used for y
g
. Sum and difference were calculated as:

 

y y y

y y y

i h i g i

i h i g i

x y x y x y

x y x y x y

( , ) = ( , ) ( , )

( , ) = ( , ) ( , ), 

, ,

3 , ,

+

-+    = 0,1,2i
     (18.15)

This transform gets resolved into 6  different directions with 4  directions of greater significance. 

This is further refined using steerable wavelet packets or brushlets. Basis functions for four quadrants 

and four directions is shown in Fig. 18.4.



Going Beyond the Realms 591

Figure 18.4  Brushlets coefficients being antisymmetric with respect to origin, imaginary part of coefficients 
for each quadrant gets distributed unevenly. As seen, upper right quadrant contains texture with patterns 

oriented along the direction 
p

4
; upper left window with patterns oriented along the direction 

3

4

p
 etc.

Biorthogonal bases generation

Let f LÎ 2 ( )  and let f̂  be the Fourier transform of f . Cover of the frequency axis will be,
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where, w
n
 is the center of intervals of size l

n
. As given in, unitary nature of Fourier transform can 

be used to obtain new pair of biorthogonal bases by applying inverse Fourier transform on local Fourier 

basis u
n k,
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In Eq. (18.17), y
n k

x
,

( )  is a complex valued function and has a phase component which captures the 

orientations, k  is the translation index and l
n

 is the analysis scaling factor. This theme is extended to a 

two dimensional kernel by partitioning the frequency plane through lattice cubes,
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( , )x h
m n

 is the center of each rectangle of size h l
m n
´ .

18.5  Contourlets

A special member of the emerging family of multiscale geometric transforms is the contourlet transform 

which was developed in the last few years in an attempt to overcome inherent limitations of traditional 

multistage representations such as curvelets and wavelets. For example, biomedical images were typically 

denoised using firstly wavelet then curvelets and finally contourlets transform and results show that contour-

lets transform outperforms the curvelets and wavelet transform in terms of signal noise ratio. Interested read-

ers can explore this algorithm in detail from the toolbox developed by the authors who invented contourlets.

18.6  Bandelets

Bandelets are wavelet style orthonormal basis which are better suited to problems like tracking object 

boundaries with specific geometric shape etc. Many researchers consider Bandelets as warped wavelet 

basis. This is an extension of the philosophy proposed in contourlets and curvelets. Smooth functions 

defined on smoothly bounded domains need the orthogonality mapped irrespective of preservation of 

compact nature of the problem. Bandelets typically give exciting results under such circumstances.

18.7  Platelets

Traditional wavelet based methods are out and out parametric. Platelets is a novel approach and provide 

non-parametric multi-scale algorithms. Platelets are localized functions at various scales, locations, 

and orientations that are capable of producing piecewise linear image approximations, and a new mul-

tiscale decomposition based on these functions. Platelet decompositions of Poisson distributed images 

or signals are tractable and computationally efficient and hence have started to become popular choice 

for denoising. In the modern era we have witnessed fast, platelet-based, maximum penalized likelihood 

methods for image denoising, deblurring and reconstruction problems.

18.8  (W)Edgelets

While conventional wavelets are good at capturing the point singularities, the Edgelet transform is good 

at capturing the linear singularities or edges and hence the name. Wedgelet transform takes all dyadic 

squares into consideration and thus forms wedges, hence the name. In Wedgelet transform the Wedgelet 

Dictionary is formed and Edgelet can be used for the said purpose. Edgelet chains and Wedgelets are 

useful in applications like noise removal with edges, scanning for segments, travelling salesman analy-

sis, curve compression to name a few.

18.9  Shearlets

Anisotropic diffusion plays vital role in noise modelling in image analysis. Shearlets are a multiscale 

framework which allows to efficiently encode anisotropic features in multivariate problem classes. 
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Shearlets are constructed by parabolic scaling, shearing and translation applied to a few generating 

functions and hence the name. This philosophy was introduced in 2006 by Guo et.al.

18.10  Hilbert-Huang-Transform (HHT)

HHT has become popular for the non-parametric natured problems of late. Though the transform lacks 

the formal structure and does not necessarily gives the characterization through the properties, due to its 

applicability it has become preferred choice for few of the applications.

18.10.1 Hilbert-Huang Analysis

Huang et. al. developed a signal analysis method, called as the Empirical Mode Decomposition (EMD) 

method. This method analyzes the signal under the consideration, by decomposing it into mono- 

components called Intrinsic Mode Functions (IMF). The empirical nature of the approach may be par-

tially attributed to a subjective definition of the envelope and the intrinsic mode function involved in its 

sifting process. The EMD method used in conjunction with Hilbert Transform is also known as ‘Hilbert-

Huang Transform’ (HHT). Because of its effectiveness in analyzing a nonlinear, non-stationary signal, 

the HHT was recognized as one of the most important discoveries in the field of applied mathematics 

in NASA history. By the EMD method, the obtained signal f t( ) can be represented in terms of IMFs as:

 

f t c t r
i

n

i n
( ) = ( )

=1

å +  (18.19)

where, c t
i
( ) is the ith intrinsic mode function and r

n
 is the residue.

A set of analytic functions can be constructed for these IMFs. The analytic function z t( ) of a typical 

IMF c t( ) is a complex signal having the original signal c t( ) as the real part and its Hilbert transform of 

the signal as its imaginary part. By representing the signal in the polar coordinate form one has
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j t( ) = ( ) [ ( )] = ( ) ( )+ f  (18.20)

where a t( ) is the instantaneous amplitude and f ( )t  is the instantaneous phase function. The instanta-

neous amplitude a t( ) and is the instantaneous phase function f ( )t  can be calculated as,
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The instantaneous frequency of a signal at time t can be expressed as the rate of change of phase 

angle function of the analytic function obtained by Hilbert Transform of the signal. The expression for 

instantaneous frequency is given in Eq. (18.23).

 
w

f
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( )
t

d t

dt
 (18.23)
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Because of a capability of extracting instantaneous amplitude a t( ) and instantaneous frequency 

w ( )t  from the signal, this method can be used to analyze an obtained non-stationary signal. In a special 

case of a single harmonic signal, the phase angle of its Hilbert transform is a linear function of time and 

therefore its instantaneous frequency is constant and is exactly equal to the frequency of the harmonic. 

In general, the concept of instantaneous frequency provides an insightful description as how the fre-

quency content of the signal varies with the time.

The empirical mode decomposition (EMD) method proposed by Huang decomposes a signal into IMFs 

by an innovative sifting process. The IMF is defined as a function which satisfy following two criterion:

●● The number of extrema and the number of zero crossings in the component must either equal or 

differ at most by one.
●● At any point, the mean value of the envelope defined by the local maxima and the envelope 

defined by local minima is zero.

A sifting process proposed to extract IMFs from the signal process the signal iteratively in order 

to obtain a component which satisfies above mentioned conditions. An intention behind application of 

these constraints on the decomposed components was to obtain a symmetrical mono-frequency com-

ponent to guarantee a well-behaved Hilbert transform. It is shown that the Hilbert transform behaves 

erratically if the original function is not symmetric with x-axis or there is sudden change in phase of the 

signal without crossing x-axis.

Although the IMFs are well behaved in their Hilbert Transform, it may not necessarily have any 

physical significance. For example, an impulse response of a simple linear damped oscillator, which is 

physically mono-component with a single frequency, may not be necessarily fit the definition of the IMF 

and envelope function. Moreover the empirical sifting process does not guarantee exact modal decom-

position. The EMD method may lead to mode mixture and the analyzing signal needs to pass through a 

bandpass filter before analysis by EMD method.

The sifting process separates the IMFs with decreasing order of frequency, i.e. it separates high fre-

quency component first and decomposes the residue obtained after separating each IMF till a residue of 

nearly zero frequency content does not obtained. Till date, there is no mathematical formulation derived 

for EMD method and the studies done in order to analyze the behaviour of this method in stochastic 

situations involving broadband noise shows that the method behaves a dyadic filter bank when applied 

to analyze a fractional Gaussian noise (see Fland). In this sense, the sifting process in the EMD method 

may be viewed as an implicit wavelet analysis and the concept of the intrinsic mode function in the 

EMD method is parallel to the wavelet details in wavelet analysis.

The wavelet packet analysis of the signal also can be seen as a filter bank with adjustable time and 

frequency resolution. It results in symmetrical orthonormal components when a symmetrical orthogonal 

wavelet is used as a decomposition wavelet. As a signal can be decomposed into symmetrical orthonor-

mal components with wavelet packet decomposition, they also guarantee well behaved Hilbert trans-

form. These facts motivated to formulate a sifting process based on wavelet packet decomposition to 

analyze a non-stationary signal obtained from the fingerprint images, and it may be used to detect what 

type fingerprint has generated the said signal.

18.10.2 Wavelet Packet Transform

A wavelet packet is represented as a function, y
j k

i

,
 where i is the modulation parameter, j is the dilation 

parameter and k is the translation parameter.
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Here i j
n= 1,2  and n is the level of decomposition in wavelet packet tree.

The wavelet packet coefficients c
j k

i

,
 corresponding to the signal f t( ) can be obtained as,

 
c f t t dt
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¥

ò y  (18.25)

The entropy E is an additive cost function such that E(0) = 0. The entropy indicates the amount of 

information stored in the signal, i.e. higher the entropy, more is the information stored in the signal and 

vice-versa. There are various definitions of entropy in the literature. Among them, two representative 

ones are used here, i.e. the energy entropy and the Shannon entropy. The wavelet packet node energy 

entropy at a particular node n in the wavelet packet tree of a signal is a special case of P = 2 of the 

P-norm entropy which is defined as,

 

e c P
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,å ³  (18.26)

where c
j k

i

,
 are the wavelet packet coefficients at particular node of wavelet packet tree. It was demonstrated 

that the wavelet packet node energy has more potential for use in signal classification as compared to 

the wavelet packet node coefficients alone. The wavelet packet node energy represents energy stored 

in a particular frequency band and is mainly used to extract the dominant frequency components of the 

signal. The Shannon entropy is defined as,
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Note that one can define his own entropy function if necessary. Here the entropy index (EI) is defined 

as a difference between the number of zero crossings and the number of extrema in a component cor-

responding to a particular node of the wavelet packet tree as,

 
EI = | |No of zero cross No of extrama−  (18.28)

Entropy index value greater than 1 indicates that the component has a potential to reveal more informa-

tion about the signal and it needs to be decomposed further in order to obtain simple frequency compo-

nents of the signal.

18.10.3 Wavelet Based Sieving

The overall algorithm first performs singularity point detection which filters noisy and partial images, 

and localizes the ridge information for further analysis. Next the localized ridges are interpolated with 

cubic splines. The interpolated data increases the time resolution of the signal which will in turn increase 

the regularity of the decomposed components. The cubic spline interpolation assures the conservation of 

signal data between sampled points without large oscillations.
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1

EMD Decomposition

Mode 1

Mode 2

Mode 3

Mode 4

Signal obtained from ’Live’ time series capture

Figure 18.5  EMD Decomposition for the live capture

The interpolated data is decomposed into different frequency components by using wavelet packet 

decomposition. A shape of the decomposed components by wavelet analysis depends on the shape of the 

mother wavelet used for decomposition. Daubechies wavelet of higher order (16) shows good symmetry 

and leads to symmetrical and regular shaped components.

In case of the binary wavelet packet tree, decomposition at level n results in 2n components. This 

number may become very large at a higher decomposition level and necessitate increased compu-

tational efforts. An optimum decomposition of the signal can be obtained based on the conditions 

required to be an IMF. A particular node ( )N  is split into two nodes N
1
 and N

2
 if and only if the entropy 

index of the corresponding node is greater than 1 and thus the entropy of the wavelet packet decompo-

sition is kept as least as possible. Other criteria such as the minimum number of zero crossings and the 

minimum peak value of components can also be applied to decompose only the potential components 

in the signal.
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1

Mode 1

EMD decomposition

Mode 2

Mode 3

Mode 4

Signal obtained from ’Cadaver’ time series capture

Figure 18.6  EMD Decomposition for the Cadaver fingerprint signal

Once the decomposition is carried out, the mono-frequency components of the signal can be sieved 

out from the components corresponding to the terminal nodes of the wavelet packet tree. The percentage 

energy contribution of the component corresponding to each terminal node to the original signal is used 

as sieving criteria in order to identify the potential components of the signal. This is obtained by sum-

ming up the energy entropy corresponding to the terminal nodes of the wavelet packet tree of the signal 

decomposition in order to get total energy content and then calculating the percentage contribution of 

energy corresponding to each terminal node to the total energy. Higher the percentage energy contribu-

tion, more significant is the component. Note that the decomposition is unique if the mother wavelet in 

the wavelet packet analysis is given and the sieving criteria are specified. Figures 18.5 and 18.6 depict 

the EMD decomposition of live and cadaver finger captures. From the various modes it can be seen how 

EMD is capable of brining out subtle descriptors which are further useful is building decision support 

systems (DSS).

Readers are left to divulge deeper.





Appendix    

This appendix provides extended notes to various discussion pointers across the various chapters in  

the book.

Extended Notes for Chapter 1

The very first chapter gave us inspirational pointers to study the very subject of ‘Wavelets’. The journey 

from Fourier transform through the realms of ‘Short term Fourier Transform’ lead us to Wavelets by 

making us understand the importance of joint time while frequency perspective remains the crux point. 

The following MATLAB example will bring this point and help enable the readers to go deeper.

Extended Notes

Example A1.1 — MATLAB code to simulate spectrograms.\\
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Exercise A2.1 

Verify that x t
1
( ) and x t

2
( ) belong to L

2
( )R . Also find their norms.

Ans. We will find norms of x t
1
( ) and x t

2
( ) and show that they are finite.

norm squared of x
1
 in L

2
( )R  =

-¥

¥

ò | ( ) |
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x t dt
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Figure A1.1   The chirp signal is a non-stationary signal. The STFT with lower window of 25 points 
and with higher window of 45 points is shown

The above MATLAB code gives following output as shown in Figure A1.1. The figure shows chirp 

signal which is a perfect case of a non-stationary signal. The two STFTs with different window sizes are 

plotted. Spectrogram gives us the joint time frequency perspective. The left STFT uses smaller window 

of 25 points to calculate Fourier coefficients compared to the larger window of 45 points in case of right 

STFT. The left STFT clearly has better temporal resolution compared to right STFT as can be clearly 

seen from the figure.

Extended Notes for Chapter 2

If x
1
(t) = (1 - t) and x

2
(t) = e–t, then,
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Exercise A2.2

Obtain the projections of x
1
 and x

2
 in the space V

0
 in the Haar MRA.

Ans. First, let us do the exercise for function x
1
.

It is easy to see that non zero projections will only be there in ]-1,1[ and by symmetry, projection 

of x t
1
( ) in ]-1,0[ = projection of x t

1
( ) in ]0,1[ = average of function in each of the intervals which is 

equal to

0

1

(1 ) = 0.5ò - t dt

We can plot this projection as shown in Figure A2.1. We will denote it by Proj
V
x

0
1
.

Now let us do the same exercise for function x
2
. Its projection will be non-zero in only positive 

half of real axis.

Consider the standard intervals of unit length ]n, n+1[. Projection of x
2
 in this interval will be

n

n
t n

e dt e e
+

- - -

ò -
1

1
= (1 )

Thus, we get exponentially decaying series of constants as depicted in Figure A2.2.

To verify that this projection also belongs to L
2
( )R , we will show finite value of 
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Hence, the projection also belongs to L
2
( )R .

|| || =
2

3
1 2
x

Similarly,

|| || = ( ) =
1

2
2 2

2

0

2
x e dt

t

¥
-

ò

|| || =
1

2
1 2
x

Since L
2
 norm is finite for both functions, they belong to L

2
( )R .
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Exercise A2.3

Obtain the projections of the functions x
1
 and x

2
 on the space V

1
 in the Haar MRA.

Ans. We need standard intervals of lenth 2 = 0.5
1-  to get projections in space V

1
.

By symmetry, We can evaulate only in ]0,1[.

In interval ]0,0.5[

1

1

2

(1 ) = 0.75
0

0.5

ò - t dt

In interval ]0.5,1[

1

1

2

(1 ) = 0.25
0.5

1

ò - t dt

This is denoted by Proj
V
x

1
1
 and is depicted in Figure A2.3.

To get the ideas of projections clear, we draw both Proj
V
x

1
1
 and Proj

V
x

0
1
 (shown in thick grey 

line) on the same graph in Figure A2.4.

Now, we can find the projection of x
1
 in incremental subspace W

0
:

Proj Proj Proj
W V V

x x x
0

1
1

1
0

1
= −

This shown in Figure A2.5.
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We can observe that

Proj x t t
W

0
1
= 0.25 ( ) 0.25 ( 1)y y- +

where y ( )t  is Haar Wavelet function.

Now let’s do the same for function x
2
.

In the interval ]0.5n, 0.5(n+1)[ where neZ and n ³ 0,
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which is an exponential sequence. We can see that exponnential nature of function replicates itself 

in the projection.

Now we will find Proj x
W
0

2
 in ]n, n+1[. It will be a multiple of y ( )t n- . The constant by which 

y ( )t n-  denoted by d
n
 can be found as following:

d
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 = average of x
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For exponentially decaying functions, the projections on V
m
 (meZ) and the projections on W

m
  

(meZ) are all exponentially decaying piecewise constants.
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Example A3.1 — MATLAB code: Haar filter response.
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A2.3  Self Evaluation Quizzes

Q 1. Show that d
n
 can also be obtained by < , ( ) >

2
x t ny - .

Ans.
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Extended Notes for Chapter 3

In Section (3.8) we analyzed the analysis filters by looking at their frequency domain behavior. We 

capture the same in the following MATLAB example.
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The outcome of the MATLAB code given above is shown in the Figure A3.1.

From Figure A3.1 following things can be noted: 
●● X-axis is w axis and ranges from 0 to 3.1416 which is the value of pi.
●● The low pass filters can be observed passing lower frequencies and high pass filter can be 

observed passing higher frequencies.
●● The phase of the filter can be observed to be linear
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Figure A3.1  Magnitude and Phase response of Haar analysis filter

A3.2  Three Different Types of Filters

It is important to note that while moving from a subspace to another either higher or lower subspace, we 

need to take into account factor of 
1

2

. The end result (cumulative result of decomposition or analysis 

and reconstruction or synthesis) will remain same for all the three different types of filters for a two-

band filter bank as depicted below:

To begin with, let the filters be as shown in Table A3.1.

Table A3.1  Type (I) filters

Filter Type Low Pass High Pass 

Analysis 1

2
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Table A3.2  Type (II) filters

Filter Type Low Pass High Pass 

Analysis 1,1{ } 1, 1-{ } 
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Table A3.3  Type (III) filters

Filter Type  Low Pass  High Pass 

Analysis 
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Synthesis  1,1{ }  1, 1-{ } 
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Second, let the filters be as shown in Table A3.2.

x[n] = {1, 2, 3, 4, 5, 6, 7, 8}
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Third, let the filters be as shown in Table A3.3.

x[n] = {1, 2, 3, 4, 5, 6, 7, 8}
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Extended Notes for Chapter 4

In Section (4.8) we saw iterative way of generating scaling function f(.) and wavelet function y (.). The 

following section presents the simulation for the same.

A4.1  Simulation of Iterative Way of Generating Scaling Functions

We use MATLAB to simulate and understand the recursive procedure to generate scaling and wavelet 

functions.

Example A4.1 — MATLAB code: Haar Recursive Process.\\
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The outcome of the MATLAB code given above is shown in the Figures A4.1 – A4.5 given 

below.

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
IMPULSE RESPONSE OF ANALYSIS SIDE LPF

0 100 200 300 400 500 600 700 800
0

0.2

0.4

0.6

0.8

1
SCALING FUNCTION FOR HAAR FILTER BANK

Figure A4.1  Haar scaling function after 1 iteration

0 100 200 300 400 500 600
0

0.2

0.4

0.6

0.8

1
IMPULSE RESPONSE OF ANALYSIS SIDE LPF

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1
SCALING FUNCTION FOR HAAR FILTER BANK

Figure A4.2  Haar scaling function after 4 iterations
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Figure A4.3  Haar scaling function after 6 iterations
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Figure A4.4  Haar scaling function after 9 iterations
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2
SCALING FUNCTION FOR HAAR FILTER BANK

Figure A4.5  Haar scaling function after 10 iterations

The recursive procedure to generate roof scaling function is given in the following MATLAB code.

Example A4.2 — MATLAB code: Roof recursive process.\\
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The output produced by MATLAB code above is shown in Figure A4.6.
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Figure A4.6  Roof scaling function: all 10 iterations
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The recursive procedure to generate daub-4 scaling function is given in the following MATLAB code.

Example A4.3 — MATLAB code: Daub-4 recessive process.



Appendix – Extended Notes 617

The output produced by MATLAB code above is shown in Figure A4.7.

The duab 4 Wavelet produced by the code is as shown in Figure A4.8.
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Figure A4.7  Daub-4 scaling function: all 10 iterations
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Figure A4.8  Daub-4 scaling function: all 10 iterations

Extended Notes for Chapter 5

A5.1  Two-Band Filter Bank – Tutorial

The two-band filter bank have two section. The analysis section and the synthesis section.

2

Analysis section

2

H0(Z)

X0

H1(Z)
Y2

Y1

Y4

Y3

H Z
0
( ) is a low pass filter with a cut off frequency 

p

2
 and H Z

1
( ) is a high pass filter with a cut off fre-

quency 
p

2
. Analysis section analyzes or breaks down the input in two components.
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2

 Synthesis section

2

G0(Z)

Y0

G1(Z)
Y4

Y3

Y6

Y3

Y8

Y7

G Z
0
( ) is a low pass filter with a cut off frequency 

p

2
 and G Z

1
( ) is a high pass filter with a cut off fre-

quency 
p

2
. Synthesis section re-synthesize output from the inputs. 

It is impossible situation as we can never reach ideal low pass or high pass filter. Even so, it is pos-

sible to build perfect reconstruction structure. For example, if we take Haar 2-band filter bank, we have 

set of filters H
0
, H

1
, G

0
 and G

1
 all of them have impulse response of length 2 which can create perfect 

reconstruction situation i.e., output Y
0
 is same as input X

0
 except for a constant multiplier and a shift.

A5.2  Haar 2-Band Filter Bank

 
H Z Z

0

1
( ) = (1 )+

-  (A5.1)

 
H Z Z

1

1
( ) = ( 1 )- +

-  (A5.2)

 
G Z

Z

0

1

( ) =
(1 )

2

+
-

 (A5.3)

 
G Z

Z

1

1

( ) =
(1 )

2

-

-

 (A5.4)

The factor of 
1

2
 can either be on the analysis or synthesis side.

Let us take x n[ ] be the input to this Haar 2-band filter bank.

x n[ ] = 7 5 4 6 3 8

0
↑

−

Analysis side:

x n[ ] denotes time domain, X Z( ) denotes complex frequency domain.

Now, H Z Z
0

1
( ) = (1 )+

-  , therefore corresponding impulse response h n
0
( ) is

h n
0

0

( ) = 1 1
↑
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Therefore y x h
1 0
= * ,

y n
1

0 0

( ) = 7 5 4 6 3 8 1 1
↑ ↑

− ∗

             

= 7 12 1 2 9 11 8 =

0

0
↑

∗x h

Hence, output at point Y
1
 is as expected of length 7. 

y x h
2 1
= *  and H Z Z

1

1
( ) = ( 1 )- +

- . Hence

h n
1

0

( ) = 1 1−
↑

Therefore,

x h∗ − − −
↑

1

0

= 7 2 9 10 3 5 8

Output at Y
2
 is as expected of length 7.

After Downsampling by 2:

2Y1 Y3

Y n
3

0

( ) = 7 1 9 8
↑

2Y2 Y4

Y n
4

0

( ) = 7 9 3 8−
↑

As expected, the result after downsampling are of length 4.

Synthesis side:

After Upsampling by 2:

2Y3 Y5

Y n
5

0

( ) = 7 0 1 0 9 0 8
↑
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2Y4 Y6

Y n
6

0

( ) = 7 0 9 0 3 0 8−
↑

Again as expected the result after upsample are back to length 7.

Now, Y
5
 is subjected to Low Pass Filter.

G0(Z)
Y5 Y7

 
G Z

Z

0

1

( ) =
(1 )

2

+
-

 (A5.5)

Y n
7

0

( ) =
7

2

7

2

1

2

1

2

9

2

9

2

8

2

8

2
↑

Y
6
 is subjected to High-Pass Filter.

G1(Z)
Y6 Y8

 
G Z

Z

1

1

( ) =
(1 )

2

-

-

 (A5.6)

 
y n

y n y n

8

6 6[ ] =
[ ] [ 1]

2

- -

 (A5.7)

Y n
8

0

( ) =
7

2

7

2

9

2

9

2

3

2

3

2

8

2

8

2
− − − −

↑

Now, Y Y Y
0 7 8
= +

Y n
0

0

( ) = 0 7 5 4 6 3 8 0
↑

−

We can observe that the output sequence is same as input sequence shifted by one sample. We notice that 

y n x n
0
[ ] = [ 1]- . The factor of 

1

2
 has taken care of the scaling. Delay has occurred on account of causality 

need. We want filter to be casual. Causality is needed because if we do not allow some delay i.e., time 

for the processing then we could not have real time processing. Causality is therefore required for a real 
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time processing. We could have done without the delay if we do Non-Casual filtering in at least one of 

analysis or synthesis side.

A5.3  Periodizing the Input

The periodic input %x n[ ] is:

 

%x n x n kN N

k

[ ] = [ ], 6
=-¥

¥

å + ³  (A5.8)

For simplicity we will take N=6, so

% K Kx n[ ] = 3 8 7 5 4 6 3 8 7 5 4

0
↑

− −

We will analyze the output only in the range (0-5).

Y
1

0

= 15 12 1 2 9 11 15K K

↑

Y
2

0

= 1 2 9 10 3 5 1K K

↑
− −

Now downsampling:

Y
3

0

= 15 1 9 15K K

↑

Y
4

0

= 1 9 3 1K K

↑

Period of Y
3
 and Y

4
 is ‘3’.

Now Upsampling:

Y
5

0

= 15 0 1 0 9 0 15K K

↑

Y
6

0

= 1 0 9 0 3 0 1K K

↑

Period of Y
5
 and Y

6
 is 6.

Y n
7
( ) =

15

2

15

2

1

2

1

2

9

2

9

2

15

2
K K

Y n
8
( ) =

1

2

1

2

9

2

9

2

3

2

3

2

1

2
K K

-

- -

Y
0

0

= 8 7 5 4 6 3 8K K

↑
−
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As expected output is delayed by one sample and is same as input. It it periodically repeated with 

a period of 6.

A5.4   Frequency-domain Analysis of Two-band Filter  
Bank - Tutorial

In the Previous session we have placed before you a tutorial on two-band filter bank from the point 

of view of the time domain. We want to understand in depth how a signal progress through a different 

stages of a two-band filter bank and emerges with perfect reconstruction subjected to a delay and some 

constant multiplication factor.

Now, we will see the frequency domain analysis of two-band filter bank. How do we see the sinu-

soidal being treated by different stages of the two-band filter bank? What does the two-band filter bank 

do in frequency domain? Now can we illustrate it with a use of a domain for looking a two-band filter 

bank. Each one of them has advantages and limitations.

The advantage of time domain precisely is to understand what filter bank does to the signal in the 

natural domain. When we have long-term signal in mind and we wish to look at the sinusoidal content, 

both at the input and output, it is the frequency characteristics of a two-band filter bank.

A5.5  Two-band Filter Bank

The deviation from the ideal two-band filter bank is that LPF and HPF are with cutoff 
2

3

pæ

è
ç

ö

ø
÷, as shown 

in Fig. A5.1.

We will consider the ‘Prototype’ input as shown in the Fig. A5.1. We consider this input because it’s 

amplitude is linear with the frequency scale.
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cut off
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cut off

2p
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Figure A5.1  Two-Band filter Bank
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G Z
out
( ) =

1

2
( )

1

2
( )Original DTFT Aliased DTFT+

Y e Y e Y e
j j j

6 2 2

( )
( ) =

1

2
( ) ( )

w w w p+{ }±

Essentially multiplication by -1 of variable Z  accounts of phase shift by p .

Aliased is obtained by replacing Z  by -Z ,Þ e e
j jw w

¬- .

Now subjecting to the action of high-pass filters of cutoff 
2

3

pæ

è
ç

ö

ø
÷, it retains the original spectra. HPF 

with cutoff 
p

3

æ

è
ç

ö

ø
÷ retains 

1

2
( )

2
Y e

jw  and destroy 
1

2
( )

2

( )
Y e

j w p±  (aliased), as captured in Figs. A5.3 to A5.6.

Y e Y e Y e
j j j

5 1 1

( )
( ) =

1

2
( )

1

2
( )

w w w p

+
±

Now, it illustrates very clearly in the frequency domain what the consequence of non-ideal cut-

off is, although the two filters are looked to be complementary because one of the filter did not  

obey the requirement of aliasing or rather had a passband beyond 
p

2
 when we observed the aliasing 

taking place.

As expected the aliasing takes place to the extend that we exceeded the 
p

2
 band. The excess was 

from 
p

2
 to 

2

3

p
 and therefore we have aliasing between 

p

2
 + 
p

3
 and 

p

2
 - 
p

3
.

Aliasing has occurred in a band of extent 
2

3 2
=
6

p p p
-  on either side of 

p

2
.
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2p

3

2p

3

1

3

p

3 0

p

3−p p
−−

Figure A5.2  Prototype Input
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1
 and Y

2
 in two-band filter bank

2
g[n]in g[n]out

2

Figure A5.4  Intermediate branch of two-band filter bank

2

Y2 Y6

2
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Figure A5.7  DTFT spectra

This is an example of frequency domain behavior where we are not adhering to the requirement of 

cutoff.

As we can see in the Fig. A5.7 the overlap between the original spectra and the aliased spectra 

resulted into a straight line.

Extended Notes for Chapter 6

A6.1  Exact Method for the Daubechies Scaling Coefficients

In Section 6.5, we used the Fourier transform for reducing the scaling equation

f f( ) = 2 (2 )
=0

t h t k

k

n

kå -

to the following algebraic equation in its Fourier transforms Φ( )w  and Φ
w

2







:

            
( )

2

= 2
=0

2
Φ

Φ

w

w
h e

k

n

k

iw
k






∑

−
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= 2 , =
=0

2

k

n

k

k

iw

h z z eå
-

 
= ( )P z

n
 (A6.1)

Here we continue this Fourier analysis with a theorem based on mutiresolution analysis, and an 

“ingenuous idea”, which will lead us to determine the Daubechies scaling coefficients.

We shall first start with the basic theorem. This development will also make very clear the impor-

tance of the “vanishing moments” of a wavelet to its quality in the computations.

The following Theorem (A6.1) addresses conditions on the polynomial P z
n
( ) in (A6.1), among which 

is the orthogonality of its resulting scaling functions of the scaling equation. So, we will move with P z
n
( ) 

minding a strict adherence to all conditions of this theorem. We will see that, in contrast to the attempt in 

Section 4.7 of the self-convolution of the Haar functions, an “ingenuous” attempt is done to guarantee the 

second of this theorem’s three conditions. This attempt will finally enable us to find the four coefficients of 

the Daubechies 2 scaling function f
D

t
2
( ). It also extends to those of higher order such as f

D
t

3
( ) and f

D
t

4
( ), 

etc. For more illustration we will present the details for finding the coefficients of f
D3

 in Example (A6.3)

In (A6.1) we had,

 

P z
w

w
h z

n

k

k

k
( ) =

( )

2

=
1

2
.

F

F
æ

è
ç

ö

ø
÷

å  (A6.2)

We will now state the important guiding theorem. Then we will try to satisfy all its conditions. This 

theorem will also expose us to its conditions that guarantee the convergence of the iterative process for 

solving the scaling equation that we covered with illustration in Section 4.7. In addition, this conver-

gence will guarantee that the limit of the iterative process,

 

f f
m

k

k m
t h t k( ) = 2 (2 ),

1å -
-  (A6.3)

is the sought-after orthogonal scaling functions, i.e., 
m m

t t
®¥lim  f f( ) = ( ) .

Theorem A6.1 “Consider the polynomial P z z e
n

iw

( ), = 2

-

 in (A6.1), which satisfies the following the three 

conditions:

 
P
n
(1) =1 (A6.4)

 
| ( ) | | ( ) | = 1,   | |= 1

2 2
P z P z z
n n

+ − for  (A6.5)

 
| ( ) |> 0,   

2
P e x

n

ix
for ≤

p
 (A6.6)

To start the iterative method for (A6.3), let f
0
( )x  be the Haar function as its zeroth approximation (in 

solving the scaling equation),

 

f f
m

k

k m
t h t k( ) =

1

2
( ).

1å -
-  (A6.7)
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Then the sequence f
m

t( ) converges ‘point-wise’ to a function f( )t  that is square integrable on ( , )-¥ ¥ , 

which satisfies the orthonormality of { ( )}f t k- , i.e.,

-¥

¥

ò - -
¹ì

í
î

f f( ) ( ) =
0,

1, =
t k t l dx

k l

k l

Before we try to use this theorem to find scaling functions that are orthonormal on ( , )-¥ ¥ , let us 

illustrate it with what we know, the Haar scaling function. This will also make a sort of simple review 

for working with the complex-valued polynomial P z z e
n

iw

( ), = 2

-

.

We note in the theorem that we need, for example, | ( ) |P z
n

 the absolute value (amplitude) of this 

complex-valued P z
n
( ).

In general, for the complex-valued function f z( ) we can write,

f z Re f z i Im f z( ) =  ( )   ( )+

f z R x y i I x y( ) = ( , )  ( , )+

where we used the real valued R x y( , ) and I x y( , ) for real f z( ) and imaginary f z( ), respectively.

As a simple example,

f z z x iy x y i xy( ) = = ( ) = ( ) 2
2 2 2 2

+ - +

where R x y x y( , ) =
2 2
-  and I x y xy( , ) = 2 . The complex conjugation f z( ) of f z( ) amounts to changing 

every imaginary number i in f z( ) to -i; so, for example,

f z z x y i xy x y i xy( ) = = ( ) 2 = ( ) 2
2 2 2 2 2

- + - -

Also,

| ( ) |= ( , ) ( , )
2 2

f z R x y I x y+

or

| ( ) | = ( , ) ( , )
2 2 2

f z R x y I x y+

This can be obtained as

| ( ) | = ( ) ( ),
2

f z f z f z

| ( ) | = ( ( , ) ( , ))( ( , ) ( , )) = ( , ) ( , ).
2 2 2

f z R x y iI x y R x y iI x y R x y I x y+ - +

In the example of f z z( ) =
2,

| ( ) | = ( ) ( ) = ( ) ( )
2 2 2

f z f z f z x iy x iy+ -

= [( )( )]
2

x iy x iy+ -
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= [ ( ) ]
2 2 2

x iy-

= [ ]
2 2 2

x y+

= 2 .
4 4 2 2

x y x y+ +

This could have been obtained from the direct computation of  | ( ) |
2

f z  with f z z x y i xy( ) = = ( ) 2
2 2 2

- +  

above,

| ( ) | = (  ) (  ) = ( ) 4
2 2 2 2 2 2 2 2

f z Re z Im z x y x y+ - +

= 2 4
4 4 2 2 2 2

x y x y x y+ - +

= 2 .
4 4 2 2

x y x y+ +

Example A6.1 Verifying theorem A6.1 for the haar scaling function.

Earlier, we had the polynomial P z
1
( ), associated with the Haar scaling function, as,

 

P z h h z z e

iw

1 0 1
2( ) =

1

2

1

2
,   =+

-

 (A6.8)

and now we want to verify Theorem (A6.1) for this very special case:

 (i)  P h h
1 0 1
(1) =

1

2

1

2
=

1

2

1

2

1

2

1

2
=
1

2

1

2
=1+ + +  (A6.9)

 (ii)  | ( ) | | ( ) | =| (1) | | ( 1) |   | |= 1
1

2

1

2

1

2

1

2
P z P z P P for z+ - + -

             

                       =
1

2

1

2

1

2

1

2
= 1 0 = 1

2 2

+
æ

è
ç

ö

ø
÷ + -

æ

è
ç

ö

ø
÷ -  (A6.10)

 (iii) | ( ) |=
1

2

1

2
=

1

2

1

2

1

2

1

2
1

P e e e e
it it it it+

æ

è
ç

ö

ø
÷ +

æ

è
ç

ö

ø
÷ +
æ

è
ç

ö

ø
÷

-

| ( ) |=
1

2
(1 )(1 )

1
P e e e

it it it
+ +

-

      =
1

2
2 ( )+ +

-

e e
it it

 

| ( ) |=
1

2
1 > 0,   | |

2
1

P e t for t
it

+ £cos
p

 (A6.11)

We also know one conclusion of the theorem: the final result of the iterative process is the ortho-

normal scaling functions { ( )}f t k-  on ( , )-¥ ¥ .

In moving towards our goal we shall consider the polynomial
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p w P e

eiw

iw

( ) ( ) =
1

2
º

+
-

-

 (A6.12)

instead of

 

P e
e

P z

iw

iw

-
-

æ

è
ç

ö

ø
÷

+
º2

2

1
=

1

2
( ), (A6.13)

and we explain our reason very shortly.

For this new polynomial p w( ) we show next that it satisfies the three conditions of Theorem 

(A6.1).

 (i)  p P e P
eiw

w
(0) ( ) | = (1) =

1

2
=1

=0

0

º
+

-  (A6.14)

 (ii)    | ( ) | | ( ) | =| ( ) | | ( ) |
2 2 2 2

P z P z p w p w+ - + + p

=
1

2
|1 |

2

( ) 2+
+ +

-

- +
e

e

iw

i w p

=
(1 )(1 )

4

(1 )(1 )

4

( ) ( )
+ +

+
+ +

- - + +

e e e e
iw iw i w i wp p

=
2

4

2

4

( ) ( )
+ +

+
+ +

- - + +

e e e e
iw iw i w i wp p

=
2 2

4

2 2 ( )

4

+
+

+ +cos cosw w p

=
2 2 2 2

4

+ + -cos cosw w

=
4

4

= 1,

 | ( ) | | ( ) | = 1
2 2

P z P z+ -  (A6.15)

 (iii)  | ( ) | | ( ) | = |
1

2
| =

1

2
| ( ) | = |

2
|2 2 2 2P z p w

e
e e e e

w
iw iw iw iw iw

=
+

+

−
− − −

cos

 

| ( ) | = | ( ) | =
2

> 1,     
2 2

P z p w
w

for wcos
−

≤ ≤
p p

 (A6.16)
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A6.1.1 Determining the Daubechies 2 Scaling Coefficients

We should note at this stage that in moving from the Haar scaling function polynomial

 
P e P z e

iw iw

( ) = ( ) =
1

2
[1 ]2

1
2

- -

+  (A6.18)

to the new one

 
p w P e e e

wiw iw

iw

( ) = ( ) =
1

2
[1 ] =

2
,2- -

-

+ cos  (A6.19)

results in scaling down by a factor of 2 in the w-frequency space, since we went from P e

iw

1
2

-æ

è
ç

ö

ø
÷ to 

P e P e

iw

iw
-
æ

è
ç

ö

ø
÷ -

æ

è
ç
ç

ö

ø
÷
÷

2
/
1

2 = ( ) with a smaller scale of 
1

2
. This, according to the Fourier transform pair, corre-

sponds to scaling up by a factor of 2 in the time space. Thus, P w( ) corresponds to a Haar scaling function 

with the larger compact support (0,2) . Note that this may be in the direction of our development, since, 

according to Theorem on scaling equation with non-vanishing coefficient, a larger compact support 

increases the number of non-vanishing coefficients.

As we mentioned above, the question may be raised: why did we move from 

P e
e

P z

iw

iw

( ) =
1

2

1

2
( )2

2

1

-

-

+
º  of Eq. (A6.8) in Example (A6.1) to the present P e p w

iw
( ) ( )

-

º ? The 

answer may be seen in having this p w( ) written as

 

p w e e e e e
wiw

iw
iw iw

iw

( ) =
1

2
(1 ) =

1

2
=

2
,2

2 2
2+ +

æ

è
ç

ö

ø
÷

-
- -

-

cos  (A6.17)

where, as we shall see soon, we will be working with this towards the ingenuous step of finding the 

Daubechies 2 scaling coefficients and more.

We have already indicated that considering the self convolution p w p w
1 1
( ) ( )*  of the Haar would 

result in the continuous roof function; however, its increased compact support to (0,2) denies it the 

orthogonality

-¥

¥

ò - - ¹f f( ) ( ) = 0,  w k w l dw k l

So, we repeat that our attempt in this direction seeking continuous orthogonal scaling functions 

failed.
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A6.1.2 Innovative Step

Now, the other possibility, for aiming at a continuous scaling function or better, is to consider the 

polynomial,

 
q w p w e e

wiw iw
( ) = ( ) =

1

4
(1 ) =

2
.

2 2 2
+

- -

cos  (A6.20)

Unfortunately, this polynomial does not satisfy Condition 2 of Theorem 10.4, since, in general, 

e
w

e
w w w w

iw

iw

-

-

+

-

+ ¹cos cos cos cos cos
2

2

2 2

2

4 4 4

2 2
=

2 2
= 2

2
1 . This is only true for p w( ) itself in 

(10.40) (as we showed in Example (A6.1)). So, there is no point in going further to consider p w n
n
( ), > 1.

We see from this and the above discussion that the crux of the matter in part of this attempt for satis-

fying Condition 2 of Theorem (A6.1), is the simple identity:

2 2

2 2
=1,cos sin

w w

+

which will ensure Condition 2. At this stage comes the promised crucial step, which is to stay with this 

identity and try high integer powers of it. For example, we start with cubing both sides of this identity,

            

2 2

3

2 2
=1cos sin

w w

+
é

ë
ê

ù

û
ú

    
=

2
3

2 2
3

2 2 2

6 4 2 2 4 6
cos cos sin cos sin sin

w w w w w w

+ + +

=
2

3
2 2

3
2

6 4 2 2
cos cos sin sin

w w w w

+




+

+










p

                                         

    
2 2

4 6
cos cos ,

w w+




+

+ 




p p

 (A6.21)

after using cos sinq q
p

=
2

+
æ

è
ç

ö

ø
÷ and sin cosq q

p
=

2
.- +

æ

è
ç

ö

ø
÷

The grouping of two parts in (A6.21) is done in the preparation of the first two terms in parenthesis, 

as a nominee for a polynomial Q w p w( ) =| ( ) |
2, where p w( ), and not | ( ) |p w , is the sought polynomial for 

P w( ) of Theorem (A6.1).

 
| ( ) | = ( ) =

2
3

2 2

2 6 4 2p w Q w
w w

cos cos sin
p
+  (A6.22)

The second part of two terms in (A6.20) makes the polynomial Q w p w( ) = | ( ) |
2

+ +p p ,

 

| ( ) | = ( ) = 3
2 2 2

2 2 4 6
p w Q w

w w w
+ +

+





+




+

+


p p

p p p

sin cos cos



.  (A6.23)
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This is done to ensure Condition 2 of Theorem (A6.1) is satisfied, in advance, where we have

                                 Q w Q w( ) ( ) = 1+ + p  

 
= | ( ) | | ( ) | = 1.

2 2
p w p w+ + p

 
(A6.24)

Condition 3 of Theorem A6.1 requires that | ( ) |> 0p w  for -
p p

2
< <

2
w , which is satisfied here, as we 

shall show next. From Eq. (A6.22), we have

 

| ( ) | =
2 2

3
2

2 4 2 3
p w

w w w
cos cos sin+









  (A6.25)

where we have cos
w

2

1

2

³  for - £ £
p p

2 2
w , and the sum of the two terms above is positive. Hence, 

| ( ) |> 0p w  for - £ £
p p

2 2
w .

We note that the above choice of p w( ) in (A6.22) for P e iw
( )

-  allows the latter to be P eiw( ) since if we 

change -iw by iw in Q w p w( ) =| ( ) |
2 of (10.48) we obtain the same result. Hence, we can speak of p w( ) 

as a function of eiw, which Condition 3 specifies for P eiw( ).

What remains is Condition 1 of Theorem (A6.1), which requires p(0) =1 for the above new polyno-

mial p w( ). However, we do not yet have p w( ), since in Eq. (A6.22) we only defined its absolute value 

| ( ) |p w ,

Q w p w
w w

( ) = ( ) | =
2

3
2 2

.
2 6 4 2cos cos sin

p
+

We need to find p w( ) from | ( ) |p w , where at the end we will show that p(0) =1.

Note that we can write a complex number in its polar form,

z x iy re r x y z
i

= = , = =| | .
2 2

+ +
q

So, in | |=| |=z re r
iq , we lose the phase factor eiq , which is what we must recover for p w( ) from hav-

ing | ( ) |p w  in Eq. (A6.22). We shall, for now, allow such a phase factor g ( )w  for p w p w w( ) =| ( ) | ( )g  to be 

determined in the sequel, in such a way that serves our purpose for determining the scaling coefficients.

Now, by factorizing the sum in Eq. (A6.25) and realizing that | |=| |=
2 2

x iy x iy x y- + +  that 

allows us to write cos sin cos sin
w

i
w w

i
w

2
3

2
=

2
3

2
- + , we have

| ( ) | =
2 2

3
2

2 4 2 2
p w

w w w
cos cos sin+











=
2 2

3
2 2

3
2

,4
cos cos sin cos sin

w w
i

w w
i

w
+





−
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=
2 2

3
2

,
4

2

cos
w w

i
w

cos sin+ 


 

p w
w w

i
w

( )
2 2

3
2

.2= + 


cos cos sin  (A6.26)

To write p w( ), as we mentioned, we must multiply its above absolute value by the phase factor g ( )w ,

p w p w w
w w

i
w

w( ) =| ( ) | ( ) =
2 2

3
2

( )2
g gcos cos sin+

                          

=
2 2

3
2

2
cos cos sin

w w
i

w
+









 (A6.27)

after writing cos sin cos sin
w

i
w

w
w

i
w

2
3

2
( ) =

2
3

2
+ +

é

ë
ê

ù

û
úg .

For the present case of cubing cos sin
2 2

2 2
=1

w w

+  in (A6.21), for the search of the scaling coef-

ficients of the Daubechies 2 wavelet, the phase factor g ( )w  in (A6.27) is chosen to make p w( ) a polyno-

mial of degree 3. This is to aim at the four coefficients of the polynomial P z
3
( ) in (A6.33).

We are after the four coefficients of p w P w P w a a z a z a z h( ) = ( ) = ( ) =
1

2
[ ] =

1

2
[

3 3 0 1 2

2

3

3

0
+ + + +  

h z h z h z
1 2

2

3

3
]+ + in z e

iw
=

- . So, we write the trigonometric functions in (A6.27) in terms of complex 

exponentials. After this, the phase factor is chosen such that the first term in our result is of degree zero 

in z e
iw

= ,

                        

p w e e
e e

i
e e

iw iw

iw iw iw iw

( ) =
1

4 2
32 2

2
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g  (A6.28)

                       

p w e e e e e e w
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p w e e e e

i w iw iw i w

( ) =
1

8
1 3 3 3 3 3 1 3 (

3

2 2 2

3

2+( ) + +( ) + -( ) + -( )é

ë
ê

ù

û
ú

- -
g ww) (A6.29)

after grouping the similar terms involving e
i w3

2 , e
iw

2 , e
iw

-

2 , and e
iw

-

3

2 .

Now to have the first term be of degree zero in z e
iw

=

- , we choose the phase factor g ( ) =

3

2w e

i w
-

,

            ( ) =
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8
1 3 3 3 3 3 3 1 3

2 3
p w e e e
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û
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z z z  (A6.30)

The last step is to equate coefficients of the same powers of z in the above polynomial and P z
3
( ) in 

Eq. (A6.2),

P z h h z h z h
3 0 1 2

2

3

3
( ) =

1

2
[ ],+ + +

to have the Daubechies 2 scaling coefficients

 

h h h h
0 1 2 3

=
1 3

4 2
, =

3 3

4 2
, =

3 3

4 2
,  =

1 3

4 2
.

+ + − −
and  (A6.31)

A6.1.3 Towards Determining the Daubechies N (or f
N
) Scaling Coefficients

For the above case of Daubechies N = 2, we raised the identity cos sin
2 2

= 1w w+  to power 

2 1= 2(2) 1= 3N - -  for the 2 = 2(2) = 4N  non-zero coefficients. It is tempting to generalize the above 

method for finding the scaling coefficients for Daubechies 3, 4, etc., which happened to be the course 

to follow, as was done by Daubechies. But, before that, let us note for the Haar (Daubechies 1) scaling 

function, we had a polynomial P z
1
( ) of degree 1, where the Haar scaling function is discontinuous. For 

the above Daubechies 2, we have a polynomial P z
3
( ) of degree 3, and we know that the scaling function 

f
2
( )t  is continuous.

We must sense from this observation that the higher degree polynomial has something to do with 

the quality of the scaling function. Indeed, there is another observation that such polynomial P z
N2 1

( )
-

, 

resulting from raising cos sin
2 2

= 1w w+  to power 2 1N -  for Daubechies N with 2N  non-zero coeffi-

cients, factorizes as

 
P z z Q z

N

N

N2 1 1
( ) = (1 ) ( ),

- -
+  (A6.32)

where Q z
N-1

( ) is another polynomial of degree N -1, and Q
N-

- ¹
1
( 1) 0.
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It is easy to verify (A6.32) for the Haar scaling function with P z h h z
1 0 1
( ) =

1

2

1

2
=

1

2

1

2
+ × +  

1

2

1

2
= (1 ).

1

2
× +z z  for N =1, where Q z

N-1
( ) is of degree zero, i.e., Q z

0
( ) =

1

2
.

Also, by a simple multiplication, we can verify that P z p z
3
( ) = ( ) in (A6.30) has the following 

factorization:

 

P z z Q z z z
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2
( ) = (1 ) ( ) = (1 )

1 3
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8
+ +

+
+
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è
çç
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 (A6.33)

as a special case of (A6.32) for N = 2 with Q z z
1
( ) =

1 3

8

1 3

8

+
+

-
, and Q

1
( 1) =

3

4
0- ¹ .

For Daubechies 3, we can parallel the above computations, done for the four scaling coefficients, by 

using 2 2

5

2 2
=1cos sin

w w

+








  to find the six non-zero coefficients, and show that p w p z( ) = ( )

5
 factorizes 

as a special case of (A6.32),

 
P z z Q z

5

3

2
( ) = (1 ) ( ).+  (A6.34)

A6.2  Vanishing Moments of a Wavelet: Towards Embellishment 

We know that this Daubechies 3 scaling function is smoother than that of Daubechies 2. Hence, it seems 

that the factor (1 )+ z
N  in (A6.32) plays a role in this direction. As we shall use it shortly, this role is that 

P
N2 1

( 1) = 0
-

- . Briefly, this will lead us to N “vanishing moments” for the Daubechies N wavelet. We 

will explain this term soon in the sense that the smoothness of these Daubechies scaling functions and 

wavelets N increases with the number N of vanishing moments.

In mechanics the integral 
-¥

¥

ò x x dx
k
r( )  defines the kth moment of the mass distribution 

r( ), ( , )x xÎ -¥ ¥ . But this term is used for any function f x( ), for example, the wavelet y ( )x  with its kth 

moment on ( , )-¥ ¥  as

 
M x x dx

k

k
= ( ) .

-¥

¥

ò y  (A6.35)

We start with a short cut towards a feeling for how the smoothness of y ( )x  is measured by its van-

ishing of high-order moments M x x dx
k

k
= ( ) = 0

-¥

¥

ò y  for k N= 0,1,2,..., 1- , which is the case, as we 

shall show for the Daubechies N wavelets.

We recall the Fourier transform operational property (A6.36) of reducing derivatives to algebraic 

operations,

 

F
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i w F w

n

n

n nì
í
î

ü
ý
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= ( ), (A6.36)



Appendix – Extended Notes 637

 

d f
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i
e w F w dw
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n n
n

iwt n
= { ( )} =

2
( ) .

1-

-¥

¥
-

ò
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 (A6.37)

From the existence of the above Fourier integral, we have the existence of the nth derivative 
d f t

dt

n

n

( )
 

at t = 0, since

 
f

i
w F w dw

i
M

n
n

n
n

n

( )
(0) =

2
( ) =

2
.

p p-¥

¥

ò  (A6.38)

This indicates the existence of the M
n
 moment of F w( ), which also indicates the smoothness of f t( ) 

about t
0
= 0 by ensuring its nth derivative there.

A6.2.1 Vanishing moments: saving in the computations and detecting defects

The question now is why the vanishing of k n= 1,2,...,  moments of f t( ) is of value. Part of the answer 

lies in the savings we obtain when computing for f t( ) via its Taylor series expansion about t
0
= 0, for 

example,

 
f t f tf

t f t f t f

n

n n

( ) = (0) (0)
(0)

2!

(0)

3!

(0)

!

2 3 3

+ ¢ +
¢¢

+ + + +L L (A6.39)

If t is very small, we may consider only the first four terms. So, if f t( ), for example, has vanishing 

moments of order 0, 1, and 2, the first three terms in the above series vanish, and we compute only the 

fourth term 
t

f
3

3

3!
(0).

We shall illustrate this further in the following example.

Example A6.2 — Vanishing moments: savings in computing the wavelet series 
coefficients.

We do take advantage of the vanishing moments M n N
n
, = 0,1,2,...,  for the Daubechies wavelet 

when we compute its series coefficients c
j k,

 for the signal f t( ) at very small scale l
j j
=

1

2
 for high j:

 

f t c t k
k

j k

j

j
( ) = 2 (2 ),

,
2å -y  (A6.40)

 
c f t t k dt

j k

j

j

,
2= ( )2 (2 ) .

-¥

¥

ò -y  (A6.41)

Let us consider, as an example, the Daubechies 2 wavelet, where for now we assume its vanishing 

moments of order 0, 1, and 2. The vanishing moment order 0 is clear from the admissibility condition,

 -¥

¥

ò y ( ) = 0t dt  (A6.42)
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A6.2.2 Vanishing moments - for Detecting Higher Derivatives

The second and more important advantage of vanishing higher order moments of certain wavelets, lies 

in the wavelets series detecting or seeing the higher order derivatives in the decomposed signal.

We can tell that from the expression of the wavelets coefficients c
j k,

 in (A6.47),

 
c f t t k dt

j k

j

j

,
2= ( )2 (2 ) .

-¥

¥

ò -y  (A6.47)

as the correlation between the wavelet and the signal at the scale level l
j
 and the position k. After the 

Taylor series expansion of f t( ) in (A6.46) of the above Example (A6.2), we can see that if the wavelet 

has, for example, vanishing moments M M
0 1
= = 0, then the wavelets coefficient c

j k,
 is a correlation 

The Daubechies 2 wavelet in the integral of (A6.41) has a compact support [0,3),

                                                  
c f t t k dt

j k

j

j

,
0

3
2= ( )2 (2 )ò -y  (A6.43)

 
= ( 2 )2 (2 ) ,

0

3 2
2

- -
-

ò +
j
k

j

j

j
f x k x dxy  (A6.44)

after the change of variable t x k
j

= 2+
- .

For high value of j, the term 2- j
k is very small, and if the signal has derivatives up to its second 

one, we approximate f x k
j

( 2 )+
-  about x k

j

0
= 2

-  using only the first three terms,

f x k f k x k x k f k
j j j j j

( 2 ) (2 ) ( 2 ) (2 )+ » + + - ¢
- - - - -

         
    

( 2 2 )

2
(2 )

2

+
+ -

¢¢

- -

-x k k
f k

j j
j

                   
= (2 ) (2 )

1

2
(2 )

2
f k xf k x f k

j j j- - -
+ ¢ + ¢¢  (A6.45)

in the integral of Eq. (A6.44),

 
c f k xf k x f k x dx

j k

j
j j j

j

j

,
0

3 2
2 2= [ (2 ) (2 )

1

2
(2 )]2 (2 ) .

× -
- - -

ò + ¢ + ¢¢ y  (A6.46)

So, if we have here y
2
(2 )

j
x  with its two M

0
 and M

1
 vanishing moments, the above integral over 

each of the first two terms vanish, and we only evaluate the third integral, which represents a saving 

in the computations.

In the following section we will discuss the other more important advantage, of the vanish-

ing higher moments of wavelet, in the search for hidden discontinuities, jumps in the derivatives. 

Examples are the jump discontinuities of the derivatives in the spline functions, or fault in structures 

such as defect in the rotor of power system.
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of that wavelet with the second and higher derivatives of the given signal. It also means that such a 

wavelet does not see the first derivative of the signal or its linear part. This, of course, besides not see-

ing the zeroth derivative or the flat part of the signal. We can continue this anlysis for a wavelet with 

M M M
0 1 2
= = = 0, which will see the third derivative and higher of the signal, and so on.

An example of a function g t( ) with jump discontinuity at t =
1

2
 is shown in Figure 17.23. But we can 

integrate it twice with some matching of its two branches to have a continuous function f t( ) as shown in 

Figure 12.3. So, in the general structure of this smooth looking f t( ), we know well that it has “a hidden 

trouble”, namely that its second derivative has a jump discontinuity. This is besides the worse trouble of 

a third derivative at t =
1

2
, which represents a very steep spike, or a Dirac delta function. Of course, in 

general, for a given signal, we don’t know if it has such a hidden trouble, but often those of much inter-

est do. Indeed, we consider such complexity of the signal as a desirable activity or more information. 

An example is the signal we receive in searching for oil, which we would like it to carry good activity 

or fine structure.

In Section 12.2. we also see that for detecting the discontinuity in the second derivative we should 

use a wavelet with at least M
1
= 0. Better yet we may consider one with M M M

0 1 2
= = = 0, where this 

one will see the third derivative with its very clear activity as a spike. In the case of using Daubechies 

wavelets, we know that y
N
 has vanishing moments up to M

N-1
. So for the above example we should use 

at least y
2
 with its four non-vanishing coefficients, or better yet y

3
 with its six coefficients. It may also 

become necessary to go to y
4
, giving attention to better resolution with small scale such as l

7
=

1

128
 or 

l
8
=

1

256
 to see the activity around t =

1

2
.

We shall return to this example and show how Matlab or the wavelet tool box is used for very fea-

sible computations. We may add here, that for detecting hidden discontinuities in a signal, we are after 

“details” and not the general picture of the signal. Hence, we will use only the wavelet series for this 

application. In contrast, when we decompose an image of a face, for example, we will definitely need 

the outline of the face which is accomplished by the scaling functions series, plus the details supplied by 

the wavelet series, to have a satisfactory picture of the face.

A6.2.3  The Daubechies Wavelets Fourier Transform Factorization - for Showing its 
Vanishing Moments

Now, we return to show the importance of the factorization of the polynomial P z
N2 1

( )
-

 in (A6.32)

 
P z z Q z Q

N

N

N N2 1 1 1
( ) = (1 ) ( ), ( 1) 0,

- - -
+ - ¹  (A6.48)

to the vanishing of the N first moments of the Daubechies N wavelet, M k N
k

= 0, = 0,1,2,..., 1-  in (A6.36).

This will take us back to our original polynomial P z
n
( ) of (6.49) in the result of Fourier transforming 

the scaling equation,
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If we repeat this identity for F
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where, symbolically, we write it as a finite product,
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where Õ refers to products as compared to å of the sum.

If we let m® 0, F F
w

t dt
m

2
(0) = ( ) =1

æ

è
ç

ö

ø
÷ ®

-¥

¥

ò f , and we have the infinite product expression for the 

Fourier transform of the scaling function f( )t ,
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 (A6.52)

After finding the result of the infinite product, we have F( )w , whose inverse Fourier transform gives 

us the sought scaling function f( )w . However, we must realize that it is not that easy to work with the 

infinite products, when compared to the much more familiar infinite series and its available tools and 

theorems.

For the wavelet y ( )t ,

 

y f( ) = ( 1) 2 (2 ),
1

1

2t h t k

k

k

kå - -
-

 (A6.53)



Appendix – Extended Notes 641

we can develop a parallel to equation (6.49) of the scaling function by considering a new polynomial 

R z zP z
n

( ) = ( )- - , to have
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where we used the fact that P z
n
( ) is with real coefficients, thus P z P z

n n
( ) = ( )- - .

To get to the stated results of the vanishing moments M k N
k

= 0, = 0,1,2,..., 1-  of the Daubechies N 

wavelet, we shall need the results in (A6.52) and (A6.54). So, we should derive the expression of Y ( )w  

in (A6.54), since we will need its derivatives 
d w

dw

k

k

Y( )
 to vanish at w = 0 for k N= 0,1,2,..., 1-  to prove 

the above result of M k N
k

= 0, = 0,1,2,.., 1-  for y ( )t .

From (A6.53), assuming real-valued coefficients, we have the scaling functions series of their asso-

ciated wavelet

y f( ) = ( 1) 2 (2 ).
1
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The Fourier transform of y ( )t , as we did for the scaling equation, is
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with the new polynomial,
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This polynomial is very much related to the polynomial P
n
 of the scaling equation in (6.49). Indeed, 

we shall show next that
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Now,
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Hence, from (A6.59) and (A6.60) we have the sought result (A6.57),
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With this result, (A6.55) becomes
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or (A6.57),
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We may note from (A6.32) that P
N2 1

( 1) = 0
-

- , and when combined with the above result, we have 

Y(0) = 0 = ( )
-¥

¥

ò y t dt, which means that such Daubechies N wavelets satisfy the admissibility condi-

tion. This also means that we have a vanishing moment M
0
= 0. What concerns us is having vanishing 

moments M
k
= 0 for k > 0. Indeed, it turns out that for y

N
t( ), M k N

k
= 0, = 0,1,2,..., 1- . We shall illus-

trate this in the following example for M
1
= 0, where the same method can be followed to show the rest 

of the vanishing moments M k N
k
, = 2,3,..., 1-  for the Daubechies y

N
t( ).
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A6.3  Determining the Daubechies 3 Coefficients

To further illustrate the exact method for determining the Daubechies scaling coefficients, which we did 

in (A6.21)-(A6.31) for f
D2

, we will do that for f
D3

 in the following example.

Example A6.4 determining the f
D3

 Coefficients.

As was mentioned above, we will start with the expansion of

[ ( ) ( )] = 12 2 5
cos sinw w+

From this expansion we will, as we did for f
D2

 in (A6.24)-(A6.25), take one part of the expansion as 

Q p( ) = | ( ) |
2

w w ; and we see that the other part reduces Q p( ) = | ( ) |
2

w p w p+ + . This helps to satisfy the 

basic condition of Theorem (A6.1) in Eq. (A6.5),
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Example A6.3 — Vanishing moment M
1
 for the Daubechies 2 wavelet.

Showing that M t t dt
1
= ( ) = 0
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¥

ò y  requires looking at the derivative of the Fourier transform Y( )w  

of y ( )t :
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So, we use Y( )w  in (A6.54) to find its first derivative,
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The first term on the right vanishes because of P
n
( 1) = 0-  from (A6.42). The second term vanishes 

because of Y(0) = 0, the vanishing of the M
0
 moment of y ( )t . In the second term we have P

n
( 1)-  and 

P
n
’( 1)-  are finite, since P z

n
( ) is a polynomial of degree n. Hence, ¢Y (0) = 0.
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We let
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The second part in (6.64) becomes Q p( ) = | ( ) |
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Similar to the way of the above writing of
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we can do it for
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Hence,
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We note here that we have a different situation from the case of f
D2

, as we move from | ( ) |p w  to the 

sought p( )w , since we have two absolute values. One is of the two terms above and the other for the first 

term there. For the first we will need a phase factor g w( ) to be decided later. For the other, an a w( ) phase 

factor can be applied, and we can choose it to be one, which will not affect the derivation.

So, in order to get p( )w  from | ( ) |p w  in (A6.71), we have to introduce a phase factor a w( ) for the 

inside term, and another phase factor g w( ) for the whole expresion. This means that we will have two 

degrees of freedom at our disposal to decide them as we come to equate the coefficients of p( )w  with 

those of P z P e

i

5 5
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w

 in Eq. (A6.1).

This is to be compared with the case of f
D2

, where we had one degree of freedom (phase factor g w( )) 

in (A6.27).

In reference to what we did in (A6.16)-(A6.17) for the Haar case, we did not need a phase factor. 

This means that for the Haar case we have zero degree of freedom. One may make the conclusion as we 

find f
DN

N, > 3 that there will be N -1 degrees of freedom.
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It turns out that we can assign a w( ) = 1 without affecting our derivation. The phase factor g w( ) will  

be chosen, similar to what we did for f
D,2

, to make the first term in the expansion of degree zero in 
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Next,
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From (A6.74) and (A6.75), we have,
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We still have to add the term 3 2

2 2
cos cos

w w
 of (E.8), then multiply by the phase factor g w( ).
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after a long multiplication.

Now we add (A6.77) to the result in (A6.76) and multiply by g w( ) to get p( )w . During that addition, 

we collect similar terms involving e e e e
i i i i5
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2 2 2, , , 

w w w w
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 and e
i-5
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. We will arrange the result to start 
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where z e
i

=

- w.
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Now, we equate coefficients of the similar powers of z with P z
5
( ) of Eq. (A6.1),
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Hence,
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Consider the following two functions:

 
lclx t t t

1
( ) = 1 | | 1 1- - £ £  (A6.83)

     
= 0 otherwise

                                                             
lclx t e t

t

2
( ) = 0

-

³  (A6.84)

     
= 0 otherwise

In Section (6.2), we saw impulse response of Daubechies analysis low pass filter. We also saw why 

the zero inside the circle was selected during the filter design. The following section provides simulation 

based understanding of the same concept.

A6.4  Impact of location of zeros

It should be noted that location of zeros impact the speed of the system. They do NOT have direct impact 

on the stability of the system. As can be seen from Figure A6.1, the system zeros are inside unit circle. 

The phase is low and hence the delay is less.

As zeros are on the unit circle as shown in Figure A6.2, the phase increases thus increasing the 

delay. With zeros outside the unit circle as shown in Figure A6.3, the phase further increases making the 

system further sluggish. Readers should note that the impulse response in converging for Figures A6.1, 

A6.2 and A6.3 ensuring the stability of the system. Thus, positioning of zeros does NOT impact system 

stability and it mainly affects the response time of the system.

The positioning of poles affect the system stability though. From the basic text on DSP we know 

that with poles inside unit circle systems are stable, with poles on the unit circle the systems are mar-

ginally stable (or unstable in strict sense) and for system poles outside the unit circle the systems have 

diverging impulse response and these are unstable systems.

Chapter 6 also discussed the importance of moving from Haar to Daub-x with added filter coeffi-

cients. Following MATLAB simulation depicts the same.
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Pole-zero plot

Impulse response Magnitude response

Pole location

H(z) =
1−0.83938z−1 + 0.35228z−2

1

Zero location

Gain

1

Phase response

1.5

1

0.5

−0.5

−1

−1
−1

−π −π/2 π/2 π0

Frequency

−π −π/2 π/2 π0

Frequency

0

1

−2

0

2
2

−0.5

0

0.5

1

−1.5
−1.5 −1 −0.5 0 0.5 1 1.5

0 5 10 15 20 25

Real part

Imaginary part

System:

Sstable

Real

Time

π

4

2
0

Figure A6.1  Impact of zeros inside unit circle
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Figure A6.2  Impact of zeros almost on the unit circle

A6.5  Moving from Haar to Daub-x

Readers will remember that Haar is the only orthogonal filter with compact support and linear phase, 

however the frequency response of the Haar was too far away from an ideal response. That is why we 

wanted to add filter coefficients and hoped to improve upon the frequency response thus trying to get 

closer to the ideal response. We shall examine that through the following MATLAB code (Example A6.4).
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Figure A6.3  Impact of zeros outside unit circle

Example A6.4 — MATLAB code: Analysis LPF  responses.
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The output produced by MATLAB code above is shown in Figure A6.4. It cab be observed that Db4 

response is better than Haar and it shown pattern to move towards ideal response by adding more and 

more filter coefficients.

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

1

1.5
Magnitude Response of Analysis LPF

Haar Response

Daub−4 Response

Figure A6.4  Comparison between Haar and Db4 Analysis LPF magnitude response
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Extended Notes for Chapter 7

A7.1  Hybrid Filter Bank

Now lets look at some of the variants of the two-band filter bank. This time not just the two-band filter 

bank but also the hybrid filter bank where we have a three-band and two-band combination, as shown 

in Fig. A7.1.

LPF

cut off

2p

3

3

2

Figure A7.1  Hybrid filter bank

We can interpret the operation ̄
3

2
 as two separate operations down-sampling by 3 and up- sampling 

by 2. The problem is downsampling operation is not reversible whereas upsampling operation is 

reversible.

Therefore we first do the upsampling by 2 and then downsampling by 3. Thus the loss is incurred at 

the end only. The reader can do calculations on exactly similar lines as 2-band structures.

A7.2  Wavelet Transform Hallmarks - Tutorial

Scaling and Translation parameters of wavelet transform lead us to Multi Resolution Analysis (MRA). 

Firstly MRA involves Piecewise constant approximation on UNIT intervals given by scaling equation. 

Secondly it involves filling in details i.e. zooming in or loosing details i.e. zooming out using wavelet 

eqaution. In case of a signal we need to zoom in to a particular part of a signal for the purpose of analy-

sis. For example, consider a case of ECG signal. Suppose we have a large recording of one hour and if 

only few samples show abnormality then we should be only able to focus on that part only. Hence the 

property of zooming in and zooming out is of great importance.

A7.3  How to Realize Zoom in and Zoom out Feature?

Let us define a linear space, V
0
 = x t( ) such that, x(.) belongs to L R2( ).

Where,

L2(R)-space of square integrable functions

x(.)-piecewise constant on all ]n, n+1[

For the space V0 the analysis window would be 2 =1
0 .

Similarly let us define a space V
1
 V

1
 = x(t) such that, x(.) belongs to L2(R).

Where,

L2(R)-space of square integrable functions

x(.)-piecewise constant on all ]2 ,2 1[
1 1- -

+n n

As we can see for the space V
1
 the analysis window is be 2 1- .

Similarly we can define V V
2 3
, ,...
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In general we can define, Vm=x(t) such that, x(.) belongs to L2(R).

Where,

L2(R)-space of square integrable functions

X(.)-piecewise constant on all ]2 ,2 1[
- -

+mn mn

For the space V0 the analysis window would be 2-m.

This leads us to a relationship called as nested subset. If we move up the window the analysis window 

becomes smaller and we would go on adding the detail and would eventually reach L2(R). Similarly if 

we move down the ladder the resolution shall become coarser and coarser and we would reach a trivial 

subspace containing no details.

Moving up we can write,

 m Z

m
V L R

Î

U = 2( ) (A7.1)

Moving down we can write,

 m Z

m
V

Î

I = 0 (A7.2)

The most important thing about wavelets is that we can be talking about a function and its projection in 

any subspace which can be neatly constructed using just one single function, i.e. y ( )t . We can do this 

using hallmarks of wavelet transform i.e. scaling, translation and also dilation. This would span W sub-

spaces but V subspaces would be spanned by scaling function f( )t  shown in Figure A7.2.

0

F(t)

t 21

1

0

Figure A7.2  Haar f( )t

The purpose of having a scaling function is to span that particular subspace V
m
. This guarantees the 

generation of ladder of subspaces which in turn leads us to MRA.

Let’s have a look at axioms of this MRA,

 1. UV L R
m
» 2( )

 2. 
m Z m
V

Î
I = 0

 3. There exists a f( )t  such that, V span t n
m n Z

m
= (2 )

Î
-f .

 4. f( )t n
n Z

-
Î

 is an orthogonal set.

 5. If, f t V
m

( )Î , then f t V m Z
m

(2 ) ,
0

-
Î " Î

 6. If, f t V( )
0

Î , then f t n V n Z( ) ,
0

- Î " Î
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There also exists a MRA theorem which states,

Given these axioms there exists y (.) 2( )ÎL R , such that { (2 )}y
-

-

m

t n  span L R2( )

One way of realizing MRA can be a two-band filter bank shown in Figure A7.3.

2

2

2

2

H0(Z) H1(Z)

y[n]
x[n]

G0(Z) G1(Z)

Figure A7.3  Two-band filter bank

However, major drawback of two-band filter bank is that we end up moving down the ladder and 

loosing information. But in many application moving up ladder is required.

A7.4  Vanishing Moments Significance - Tutorial

Now, since many a times we are interested in detecting spike or jumps discontinuities in the signal. We 

would like to know what kind of wavelets will be able to detect such activities. To find such wavelets 

which see discontinuities in linear, quadratic or higher order polynomial structures we would will first 

understand the concept of maximum order of vanishing moments.

Moments:

The moment of order m, M
m
 of f(x) on interval (a,b) is given as,

 
M x f x dx

m
a

b
m

= ( )ò  (A7.3)

From the above equation we can find the moment of order m, for m = 0,1,2,...

When these moments of higher order vanish, they convey important information regarding underly-

ing wavelet. We would analyze this fact but before that first let’s solve a problem with Haar wavelet to 

understand that these moments actually vanish. Let y ( )x  denote Haar which is same as daub1. Its first 

order moment would be,

  
M x x dx

0
0

1
0

= ( )ò y

            
M dx dx

0
0

1/2

1/2

1

= 1 1ò ò+ -

M x x
0 0

1/2

1/2

1

= +

                                                                      
M

0
= 0

Thus, we can say that 0th moment of the Haar mother wavelet vanishes. Let us check for 1st order moment.
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M x x dx
1

0

1
1

= ( )ò y

M xdx xdx
1

0

1/2

1/2

1

= ò ò+ -

M
x x

1

2

0

1/2
2

1/2

1

=
2 2

+

M
1
=

1

4
0

-
¹

Thus, we can say that 1st moment of the Haar mother wavelet does not vanish. Also as far as Haar mother 

wavelet is concerned it has only one moment i.e. oth moment which vanishes.

Extended Notes for Chapter 8

A8.1  Uncertainty Product

There is a bound on simultaneous time and frequency localization. So essentially one cannot localize as 

much as one wants simultaneously in time and frequency.

One can define for time centered function x t( ), time variance

s
t
x

tx t

x t

2 2

2

2

2
( ) =

( )

( )

P P

P P

Recall meaning of time center, time center

t
t x t

x t
dt

0

2

2

2
=

| ( ) |

( )
ò P P

By time centered, we mean t
0
= 0.

Similarly for frequency, frequency center or frequency mean

W
W W

W
W

0

2

2

2
=

| ( ) |

( )
ò

x

x

d

$

$P P

By frequency centered, we mean W
0
= 0.

Analogous to time variance, for frequency centered function x$( )W  frequency variance

s
W

W W

W

2 2

2

2

2
( ) =

( )

( )
x

x

x

P P

P P

$

$

If function is not time centered and frequency centered then one need to take second moment around 

respective centers.
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For an L
2
( )R  function the uncertainty product i.e. product of time and frequency variance is lower 

bounded by .

t
x x

2 2
( ). ( )

1

4
W

³

Example A8.1 — Calculate uncertainty product of t-| | for all t.

Solution First we need to verify if the function is L
2
( )R  and check if it is centered in time and 

frequency.

x t x t dt( ) = | ( ) |
2

2 2

-¥

+¥

ò

P Px t e dt
t

( ) = 2
2

2

0

2
+¥

-

ò
P Px t( ) = 1

2

2

From Figure A8.1 one can clearly say that x t( ) is symmetric about = 0 and is a real and even  function 

of t. Since it real and even function in time domain it should have real and even fourier transform too.

So obviously the function ( ) is time and frequency centered.

Time variance s
t

2:

s
t

t
x

t x t dt

x t dt

t e dt
2

2 2

2 0

2 2
( ) =

| ( ) |

| ( ) |

= 2 =
1

2

-¥

+¥
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+¥

+¥
-ò

ò
ò

Frequency variance 
W
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W W

W

2 2

2

2

2
( ) =

( )

( )
x

x

x

P P

P P

$

$

x(t)

t0

Figure A8.1  x(t) curve
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s
W

W W

W

2 2
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2
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x

j x
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P P

P P
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$

By applying Parseval’s Theorem it becomes

s
W

2 2

2

2

2
( ) =

( )

( )
x

dx t

dt

x tP P

Now

x t e
t

( ) =
| |-

So

dx t

dt
x t

( )
= ( )

2

2

2

2P P

s
W

2
( ) = 1x

Uncetrtainty Product:

s s
t
x x

2 2
( ). ( ) =

1

2
*1

W

s s
t
x x

2 2
( ). ( ) = 0.5(> 0.25)

W

Example A8.2 — Calculate uncertainty product of raised cosine function.

Solution

x t t t( ) = 1 < < = 0+ −cos p p otherwise

From Figure A8.2 it is clear that the function x t( ) is real and even, so it is already time and frequency 

centered. Since the function is real and even, hence

P Px t x t dt( ) = | ( ) |
2

2 2

-¥

+¥

ò

= 2 | ( ) |
0

2
+¥

ò x t dt

= 2 (1 )
0

2
p

∫ + cos t dt

 
= 2 (1 2 )

0

2
p

∫ + +cos cost t dt
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0

x(t)

p
−p

Figure A8.2  x(t) = 1 + cos(t)

Consider

ò ò+ + +
+

+(1 2 ) = (1
1 2

2
2 )2

cos cos
cos

cost t dt
t

t dt

Now let us sketch s t and cos2t

0 0p p

cos t cos 2t

Figure A8.3  cos(t) and cos(2t) curves

From Figure A8.3 it is clear that they have zero integral over ]0, [p

So the above integral becomes

P Px t dt( ) = 2 (1
1

2
) = 3

2

2

0

p

pò +

Frequency variance s
W
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W

2 2

2

2

2
( ) =
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( )
x

dx t

dt

x tP P

Now

d

dt
x t

d

dt
t t( ) = (1 ) =+ -cos sin



Appendix – Extended Notes 659

dx t

dt
tdt
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Let us consider the term
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t
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m

sin cos sin
+ -

Now our limit is 0 to p , therefore we do not need to look at the ‘sin’ term which are zero at t = 0 

and t = p. Again we do need terms containing ‘t’ at t = 0. We need only consider the term 2
2

0

t
mt

m

cos
p

For m=1, 2 | = 2 = 2
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t tcos cos
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Putting these values in above equation
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 Extended Notes for Chapter 9

The tiling planes on x-axis of time and y-axis of frequency (continuous or discrete) is the best way to 

picturise and understand the exact meaning of dealing with uncertainty principle and how the journey 

takes one from Fourier to Short term Fourier to Wavelets. In fact the Frequency tailings are called as 

‘Heisenberg Boxes’ and they do not provide any time domain resolution. The Heisenberg’s uncertainty 

principle in signal processing in captured by the the time bandwidth product and the fact that it remains 

greater than or equal to half for any slice of Heisenberg Box. This is shown in Figure A9.1, where 

(A) shows the time bandwidth product limitation and (B) depicts the Heisenberg Boxes in Fourier or 

Frequency domain. These boxes also indicate no resolution for from perspective of ‘time’.

st  sw ≥

st

t

t

s
w

w

w

.
1
2

(A)

(B)

One discrete FT coefficient

Figure A9.1  Time frequency tiling: heisenberg boxes

If the DFT (Discrete Fourier Transform) of signal x n[ ] is given as,

 

X k x n e
n

N j nk

N[ ] = [ ]
=0

1 2- -

å
p

 (A9.1)

then, from the frequency perspective Dw
p

=
2

N
 and from the time perspective Dt N= . Then the 

product D Dw p× t = 2  is limiting.

Figure A9.2 shows the STFT tiling in part (A). Part (B) shows that a single resolution of wavelet 

(shown Haar example) gives the timing like DFT without resolution advantages for time stamps.

Uncertainty Product:
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The wavelet style of tiling is shown in Figure A9.3. The scaling and dilation are the hallmarks of 

wavelet transform and they truly bring in the time resolution. The added scale brings time resolution as 

shown in (A) and the ladder gets formed across resolutions as shown in (B).

Extended Notes for Chapter 10

In Chapter 10 we discussed Dyadic MRA. The concept was first put forth by Stephan Mallat!

Single tile coefficient of STFT

Approximation
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t

Scaling
function

Φ0,0
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Figure A9.2  Time frequency tiling: STFT
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Figure A9.3  Time frequency tiling: wavelet style

 Stephane Mallat

Stephane Mallat (born 1962 in Paris France) made fundamental contributions is design and 

development of MRA (MultiResolution Analysis) framework in late 80’s and early 90’s. Particularly 

his association with Yves Meyer made use of wavelets practical and many fields of engineering got 

benefitted. Mallat is the author of A Wavelet Tour of Signal Processing. He taught course at New York 

University, Massachusetts Institute of Technology, etc.
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Extended Notes for Chapter 11

In Chapter 11 we have discussed the bi-orthogonal filters which are faster to deploy and have become part 

of many standards. Dr. Charles Chui has contributed in the advancements in this part of wavelet theory.

Extended Notes for Chapter 12

The B-spline complex wavelet can be a very good choice for many practical applications. The MATLAB 

code is modified from the toolbox and presented here:

 Charles K Chui

Charles K Chui is affiliated with Stanford University and Hong Kong Baptist University currently. 

Charles played a leading role in technology innovations, by applying mathematics to industrial 

applications, with other contributions that include development of two industry standards: JPEG-2000 

and MPEG-4, as well as several inventions with 38 U.S. patents. He has written more than 350 journal 

articles and 30 books. He co-founded ACHA with Daubechies and Coifman.

Example 12.1 — MATLAB code for complex B-Spline wavelet.
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The generated filter is shown in Figure A12.1.
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Figure A12.1  Complex B-spline wavelet with real and imaginary parts of the filter

Extended Notes for Chapter 13

Wavelet packet transform gives the analyzer the flexibility to also split the signal on the high pass 

branch. For this to happen, however we need to evolve the basis function and the new bases do the job 

for us. We have discussed this in detail in Chapter 13. Splitting up on low pass as well as high pass 
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branch may create a huge tree with many nodes not depicting the important information. This leads to 

redundancy and there are different criteria to select best basis to utilize the tree optimally. The one which 

many researchers prefer is use of Shannon entropy to decide upon the best basis.

One example of time frequency plot for the selected best basis is shown in Figure A13.1. The imple-

mentation scheme for the same selected best basis is shown in Figure A13.2.

Time (t)

F
re

q
u
en

cy
 (

f)
Time−frequency plot for selected basis

Figure A13.1  The time-frequency plot for the selected best basis

Filter bank scheme implementing wavelet packet transform for selected basis

Figure A13.2  The filter bank implementation for the selected best basis
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Extended Notes for Chapter 14

We saw lifting scheme in Chapter 14. The in-place calculations are shown in the section below:

A14.1  In-place Lifting Calculations

Example: Provide in-place lifting calculations for Haar decomposition and reconstruction for given 

signal.

x n[ ] = 6,8,4,2{ }

h
k

= 1,1{ }

g
k

=
1

2
,

1

2

-ì
í
î

ü
ý
þ

And also shows that structure is statistically stable & Perform reverse calculations to show perfect 

reconstruction.

Answer:

Typical lifting scheme can be implemented as follows:

{3}

{2,−2}

{−4}

{5}

{7, 3}

{7}

b    = {8, 2}

a    = {6, 4}

x[n]    = {6,8,4,2} Split

Split

Predict

Predict

Update

Update+

+

−

−

The reverse calculations are as follows:

{3}

{8, 2}

{7, 3}

{5}

{6, 4}

{7}

{−2,2}

{−4} {6,8,4,2}

Merge

Merge

PredictUpdate

+

+

−

−

Update Predict

Formulae:

s = a + d/2 (LPF) ∴ replace ‘a’ by ‘s’

d = b – a (HPF) ∴ replace ‘b’ by ‘d’
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d1 = b1 − a1

d2 = b2 − a2

s1 = a1 + d1/2

s2 = b2 + d2/2

d3 = b3 − a3

s3 = a3 + d3/2 5 2 −4 −2

7 2 −4 −2

7 2 3 −2

6 2 4 −2

6 8 4 2

a1 b1 a2 b2

a1 d1 a2 d2

s1 = a3 d1 s2 = b3 d2

a3 d1 d3 d2

s3 d1 d3 d2

Reconstruction:

s = a + d/2 ∴ a = s – d/2, replace ‘s’ by ‘a’

d = b – a ∴ b = a + d, replace ‘d’ by ‘b’

a3 = s3 − d3/2

b3 = a3 + d3

a1 = s1 − d1/2

a2 = s2 − d2/2

b2 = a2 + d2

b1 = a1 + d1

5 2 −4 −2

7 2 −4 −2

7 2 3 −2

6 2 4 −2

6 8 4 2

s3 d1 d3 d2

a3 d1 d3 d2

s1 = a3 d1 s2 = b3 d2

a1 d1 a2 d2

a1 b1 a2 b2
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Extended Notes for Chapter 15

In Chapter 15 we saw different Wavelet families. In the following MATLAN example we shall visualize 

the Gabor filter.

Example A15.1 — MATLAB Code to visualize Gabor filters.

The filters are visualized as shown in Figure A15.1. The l values indicate the wavelength and q  

values indicate the orientation. The visualization helps us understand that Gabor filters are powerful in 

capturing the oriented information.  values can vary from  to 180.
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Re[h(x,y)], l = 5, q = 0 Re[h(x,y)], l = 10, q = 0

Re[h(x,y)], l = 5, q = 90 Re[h(x,y)], l = 10, q = 90

Figure A15.1  Gabor filter visualization

Extended Notes for Chapter 16

In Chapter 16 we discussed many interesting points. The readers who are advanced users of wavelets 

techniques can explore the techniques further. For example, self-similar structures in wavelets can bring 

out many interesting applications. This self similarity can be observed in scaling functions f(.) as well 

as wavelet functions y (.). Interested users can create the db2 filter using

[phi,psi,t]=wavefun(‘db2’,10);

and then plot the respective filters using

plot(t,phi);

and

plot(t,psi);

Then by zooming onto appropriate parts users can study the self-similarity. This is depicted in 

Figure A16.1 for db2 scaling function and in Figure A16.2 for db2 wavelet function.
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Extended Notes for Chapter 17

A17.1  Critical Wavelet Analysis of Signal

Load the accompanying signal into the Matlab worksoace and perform proper time-frequency 

analysis(such as wavelet analysis) to describe the signal. Is this a stationary signal?

A17.1.1 Time Domain Presentation

The given signal in .mat format can be loaded in the Matlab work station, using the load command. Two 

matrices namely u and t each with a dimension of 401 1´  cab be obtained. The u matrix gives the actual 
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signal in the time domain, while t matrix gives the time instances. So, the sampled signal u t( ) has been 

given for the analysis. The sampling needs to be uniform. Thus, sampling time is to be obtained by tak-

ing difference between any two consecutive elements of the t matrix. It’s reciprocal gives the sampling 

period. Sampling time can be found out to be 3.7500 007e - , while the sampling period can be observed 

to be 2.6667 006e + .

Figure A17.1 shows the time domain representation of the signal. The signal is roughly 150mseconds 

long in duration.

A17.1.2 Frequency Domain Presentation

Frequency domain presentation of the signal can be obtained by using 401 points DFT. The sampling 

frequency should be used to calibrate the frequency axis.

Figure A17.2 shows the fourier representation of the signal. From this graph itself it can be seen that 

given signal is non-stationary.

A17.1.3 Time-Frequency Presentation

The scalogram of a function can be obtained by calculating a continuous wavelet transform of a given 

function and then sampling it at the given sampling rate. As per Morlet wavelet gives very good presen-

tation of the signal. Hence the Morlet wavelet is used as the prototype as analyzing function.
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x 10−4
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1.5
x 104

time

u(t)

Time domain representation of the given signal

Figure A17.1  Signal in time domain
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y ( ) = 0
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2t Ce e
jw t
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 (A17.1)

Windowed complex Eq. (A17.1) is used to find out its dilates and translates, thus forming Morlet 

family. If a is the dilation factor and b is the translation factor then

 

y y
a b
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t b

a
,
( ) =

1 -æ

è
ç

ö

ø
÷ (A17.2)

To obtain the scalogram, at every scale the samples of the signal to be analyzed are convolved with 

the samples of the analyzing wavelet. The resulting matrix will have each row representing scale values. 

Too low scale and sampling frequency are avoided to avoid excessive dilations. For 0.1 scale interval the 

scalogram obtained is given by Figure A17.3. The 3D time-frequency presentation is shown in Figure 

A17.4. From the plots it is clear that given signal is non-stationary.

Test stationary signal
As this was my first experience to analyze signal with scalogram, I thought of designing a stationary 

signal and use its scalogram to compare and confirm non-stationarity of the given signal. A simple sine 

wave of 50Hz was designed and was analyzed in time-frequency domain. This is shown in Figure 17.5. 

At low scales, good time-localization of the wavelet transform is seen.
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Figure A17.2  Signal in frequency domain
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Figure A17.5  Analysis of a stationary signal

A17.1.4 Fine Tuning of the Scalogram

Figure A17.6 shows the time-frequency presentation of the signal at the reduced analyzing scale. The 

effect of taking shorter time spans is depicted in Figure A17.7. It results in zooming out as well. The 

zooming in can be achieved by reducing the scale limits. This is shown in Figure A17.8. Thus it is pos-

sible to look at any specific part of the signal by zooming onto that portion. Thus, the use of the scalo-

gram depends on what kind of analysis is to be carried out.

A17.1.5 Conclusion

●● Given signal is described and analyzed in time-frequency domain.
●● Exact duration of the signal is 150.375000m seconds .
●● Given signal is non-stationary.
●● Using scalogram technique it is possible to zoom-on to any particular portion of the signal.

A17.2  Sine Fourier Transform

Define the ‘sine fourier transform’ of a given signal x t( ) as

 
C x t t dt( ) = ( ) ( )w w

−∞

∞

∫ sin  (A17.3)
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Determine the mathematical conditions under which this could be a well-posed definition. 

Under such conditions, derive an expression for the ‘Inverse Sine Fourier Transform’. Establish 

the effect of time domain mathematical operations such as time-shift, time-scaling, differentia-

tion, integration and multiplication in the w-domain. Compute sine fourier transform od basic 

signals such as d ( )t , cos t( )
0 0

w f+  and e ta .

A17.2.1 Sine Fourier Transform and Inverse of the Transform

The transformation definition is given as in Equation (A17.3). According to Euler’s identity

 
sin( ) =

2
w

w w

t
e e

i

i t i t
−

−

 (17.4)
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So, the transform gets modified as
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For the given definition to be a well-posed definition, the function under the consideration should 

follow the Dirichilet’s conditions. From the Fourier series theory the function x t( ) follows Dirichilet’s 

conditions in the given interval say -a t a< <  if 

●● x t( ) has only finite number of discontinuities in -a t a< <  and has no infinite discontinuities.
●● In the given limits x t( ) has finite maxima and minima.
●● The given function should be completely integrable in the given interval.

 -ò ¥
a

a

x t| ( ) |<  (A17.7)

From Fourier series
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Extending the limit from a®¥ we get the Fourier Integral Theorem
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Using this theorem for the given problem
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So, the modified equation would be
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As a®¥ the instances become continuous and d ( )k  becomes dt .
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Provided x t( ) is bounded
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∫ ∫ + − −cos cos  (A17.16)

Now,

 
cos cos sin sin( ) ( ) = 2 ( ) ( )x x x+ − − −t t t  (A17.17)

So, x t( ) is further represented as

 
x t dt f t( ) =
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∫ ∫ − sin sin  (A17.18)

From Eq. (A17.18) it is evident that if the function x t( ) is an odd function then it would not have any 

representation. This is because the right hand side of Eq. (A17.18) will become zero.

As against this, if the given function is odd i.e. x t x t( ) = ( )- - , then it will be represented as follows:

 
x t kt dt f k d( ) =

2
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∫ ∫sin sin  (A17.19)

Also, sine function forms a complete orthogonal set over interval [0, ]p .

Comparing equation (17.19) with the fourier sine series equation, we get following pair of sine 

fourier transform and its inverse.
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A17.2.2 Properties of the Sine Fourier Transform

Time shift property
Lets denote sine transform by F

s
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s
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∫ sin w  (A17.22)

Now either by doing t t-
0
= x  substitution and then solving for sin cos cos sin( ) ( ) ( ) ( )

0 0
wx w wx wt t+  

or by directly doing the substitution in Eq. (A17.23) we get
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Time-scaling property
Let us scale the time by some factor say a. Owing to the integration of the exponentials, it can be directly 

observed from the transform itself that

 

F x at
a
C

a
s
[ ( )] =

1 wæ

è
ç

ö

ø
÷ (A17.24)

Differentiation property
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Integration property
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Multiplication
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Using

 
sin sin cos cos( ) ( ) =
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2
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Final equation is as follows:
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where, ĝ
c
 are obtained from cosine fourier transform as given in Eq. (A17.28).

A17.2.3 Sine Transforms of Given Basic Signals

In this section, given three time domain signals are analyzed using sine transform.

Delta signal: d ( )t

By definition the delta signal exists only at time t = 0. As sin(0) = 0 the transform for this particular 

signal is 0.

Cosine signal: cos( )
0 0

w ft +

Assuming that f
0
 is independent of time, cosine function is an even function. So the transform for this 

function also reduces to 0.

Growing exponential: e ta

As the given signal is not bounded, i.e.

 -¥

¥

ò ¥e dt
ta :<  (A17.33)

So, this signal can not be presented by the sine fourier transform.

A17.3  Motion Estimation in Video Coding

Study and compare various motion estimation techniques suggested for wavelet-based video 

coding, including 

●● spatial domain
●● wavelet domain
●● mesh-based

Criticize these techniques along with their advantages and dis-advantages in terms of 

●● coding performance
●● scalability
●● complexity 
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17.3.1 Introduction

A scalable video coder is capable of producing a bit stream, such that it is decodable at different bit 

rates. Naturally, the encoding scheme is the most crucial one, and needs very careful designing of the 

parameters. This extra effort taken at the encoder side allows the decoding of the scalable video on a less 

powerful hardware platforms, where issues like ‘memory’ and ‘computational time’ are very critical and 

resources are limited. When it comes to sending the information on error-prone channels like internet, 

scalability can help enhance the video quality by limiting the degradation to minimum depending upon 

the availability of the bandwidth.

To achieve efficient compression the estimation of the motion parameters is very significant. 

Different motion estimation schemes are available and are used in different standards including MPEG-2,  

H.263, and JPEG 2000.

Given the aforementioned advantages, several scalable functionalities have been included in inter-

national image and video compression standards: JPEG contains the progressive and hierarchical modes 

for quality and resolution scalable coding. Using the wavelet transforms (to be discussed shortly), scal-

ability is greatly improved and expanded in the emerging JPEG 2000 standard. However, adopting a 

rate-distortion (R-D) based layering structure in the JPEG 2000 code stream, encoding and decoding 

still can not be completely decoupled. Containing an error-feed-back loop from hybrid coding, SNR 

and resolution scalable video coding standardized in MPEG-2, 4 and H.263 are troubled by ‘drift’, and 

a significant loss in compression.

In recent years, wavelets have proven to be successful in compressing still images. Compared to the 

classical DCT approach (JPEG), the wavelet based compression schemes have the advantage of much 

better image quality obtained at very high compression ratios.

The very basic motivation for wavelet-based video coding is to support scalability, i.e. partial 

decoding of the entire sequence at various quality levels. One of the most difficult problem to be 

dealt with in the conventional codecs, is the problem of “drift”. This problem occurs due to dif-

ferent resolutions. This can be addressed by using hierarchical backward motion compensation 

framework. But, for the practical implementation of a wavelet-based coder aliasing artifacts are 

needed to be dealt with. The backward/forward hybrid mode for motion compensation is suggested 

in. The coder adaptively regulates its motion bits investment according to motion complexity in 

each frame.

A17.3.2 Motion Estimation Techniques

This section describes different motion estimation techniques suggested for wavelet-based video cod-

ing. The invertibility requirement has restricted most of the approaches to either block based or global 

motion detection in spatial domain. Without motion estimation, temporal filtering produces visually 

disturbing ghosting artefacts in the low pass temporal sub bands. Such disturbances are definitely not 

desired where temporal scalability is of interest.

The motion estimation(ME) techniques for the wavelet-based coders can be divided into following 

three types 

●● ME in temporal domain
●● ME in wavelet domain
●● mesh-based ME
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ME in temporal domain
As the name suggests the estimation of the motion is performed in the spatial domain. The video signal 

is assumed to be made up of sequence of images. The motion estimation in the spatial domain by com-

paring the location of a specific pixel in frame k and the next frame k +1. The tracking of the pixel is 

taken into account to formulate the motion vector. The techniques are thus dependent on the pixel reso-

lution information. The spatial domain ME can be further divided into two clases of techniques namely, 

‘frame-warping techniques’, and ‘block-based ME’.

Frame warping techniques Invertible warping of the frames so as to align spatial features prior to 

application of separable Discrete wavelet transform (DWT) is known. While variety of frame operators 

are considered, the authors have shown that invertible warpings are unable to represent the localized 

expansion and contraction effects exhibited within most video sequences.

The most significant drawback of these warping techniques is that the motion stream violates the 

‘Nyquist rate’ due to expansions and contractions. This problem gets even serious while warping back 

to the original pixel due to the mismatched sampling rates. This essentially creates artefacts. Some other 

techniques are based on non-invertible frame warping. But these techniques produce very low bit-rate 

video, thus applicable only for low-quality environment.

Block-based techniques This class of spatial motion estimation was originally proposed by. The 

video frames are divided into blocks, where each block undergoes rigid motion, usually translation. 

The effect of expansions and contractions in the motion filed results in ‘disconnected’ pixels. Naturally, 

these can not be coded along the motion vector, and are required to be treated separately. This affects 

the coding efficiency very heavily. In most of the techniques the block size is maintained fixed thus not 

capturing the expansive or contractive motion. The perfect reconstruction or complete invertibility is 

obtained only with integer block displacements, although extensions to half pixel accuracy have also 

been demonstrated.

While sending the motion information the ‘disconnected’ pixels are not encoded. They are 

usually send as it is. If the video contains heavy motion fields, then block based methods pro-

duce reasonable number of ‘disconnected’ pixels. Adaptive block varying techniques take large 

memory space and computational time. Encoding such a frames need better techniques to handle 

the motion.

Temporal transforms based on either frame-warping or block displacement generally employ only 

the Harr wavelet kernel. Extension to longer temporal filters have been reported, with no significant 

improvement in the performance. This makes sense as the motion fields are not connected to the wavelet 

kernels but they are related to spatial displacements. Hence to see improvement it would be needed to 

have kernel based ME.

ME in wavelet domain
A straightforward approach to build a wavelet based video codec, is to replace the Discrete 

cosine transform (DCT) in a classical video coder by the Discrete wavelet transform (DWT).  

A drawback of this technique is that for inter-frame coding the wavelet transform is applied to  

the complete error image, which contains all the artefacts. To avoid this limitation, the DWT is 

taken out of the prediction loop which results in video architecture. The encoder is shown in Figure 

(A17.9).

Both motion estimation and compensation are performed in the wavelet domain i.e. in the average 

image of the highest level and in the detail images. This is feasible since the wavelet transformed image 
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contains not only the frequency information but also spatial information, which is not in the case of 

DCT. The advantages of such codecs are: 

●● the motion field blocking artefacts are no longer transformed to wavelet domain
●● inverse DWT is not always needed, so that from a hardware point of view the encoder can be 

simplified.

LIMAT
The Lifting based invertible motion adaptive transform (LIMAT) framework for highly scalable video 

compression is described in literature. The lifting technique is used to formulate wavelet filters. The 

lifting scheme is a novel method for constructing biorthogonal wavelets. The main difference with the 

classical construction is that it does not rely on the Fourier transform.

The advantages of the lifting scheme over traditional scheme are: 

 1. It allows faster implementation of the wavelet transform. The lifting scheme makes optimal use of 

similarities between high and low pass filters to speed up the calculations.
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Figure A17.9  Wavelet based scalable video coder
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 2. Without any auxiliary memory the original signal gets replaced wavelet transform.

 3. Inverse transform can be easily found by just undoing the calculations.

 4. This scheme is extremely handy in situations where Fourier transform is not available.

The basic idea behind the lifting scheme is very simple and is shown in Figure (17.10). It starts with 

trivial wavelet, the “Lazy wavelet”; which has the formal properties of wavelet, but is not capable of 

doing anything. The lifting scheme then gradually builds a new wavelet, with improved properties, by 

adding in new basis function. This itself is the inspiration behind the name of the scheme. The lifting 

scheme can be easily understood as an extension of the FIR (Finite Impulse Response) schemes.

Example: Harr wavelet

The sufficient and necessary lifting steps to conceptualize Harr wavelet transform are:

 
h n x n x n
k k k
[ ] = [ ] [ ]

2 1 2+
-  (17.34)

 
l n x n h n
k k k
[ ] = [ ]

1

2
[ ]

2
+  (17.35)

where x n x n n
k k
[ ] [ 1, 2]º  denotes the samples of frame k from video sequence and h n h n n

K k
[ ] [ 1, 2]º  

and l n l n n
k k
[ ] [ 1, 2]º  denote the high pass and low pass sub bands frames. This decomposition of the 

Harr transform into the two steps is also called as the S-transform.

Now, let n
k k1 2®

 denote a motion-compensated mapping of frame k1 onto the co-ordinate system of 

k2. The lifting steps are modified as follows:
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A17.3.3 Mesh Based ME

Drawbacks of the block based ME have already been discussed. Unlike block based ME, deformable 

meshes are capable of tracking complex motion, including local expansion and contraction, while main-

taining continuous motion field. A regular deformable mesh is created by partitioning the current frame 
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    Figure A17.10   The lifting scheme for wavelets. [It first calculates the Lazy wavelet transform, then 
calculates the a

j k-1,
, and finally lifts the b

j k-1,
]
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into the regular grid of patches, usually either triangles or quadrilaterals. The mesh node-points move 

to form a warped mesh on the reference frame, and the mapping is presented by the set of node dis-

placement vectors. The motion vector at any given location within a patch is approximated by linearly 

interpolating the motion vectors at the patch vertices. This corresponds to an affine transformation for 

triangular meshes, and a bilinear transformation for quadrilateral meshes.

Following are the advantages of the deformable meshes: 

●● Yield motion fields that are piecewise smooth and continuous at the patch boundaries.
●● These motion fields provide much better representation of the underlying motion field.
●● Local searches or gradient-based methods are used, thus reducing the computational cost.
●● Expansion in quantization error energy is directly related to expansion in the mesh itself.

A17.3.4 Points for Further Thinking:

●● Different motion estimation techniques for wavelet-based video coders are discussed
●● Different techniques are compared using coding performance, scalability and complexity.
●● Coding performance of the coder improves when ME is performed in the wavelet domain as 

against spatial domain.
●● The wavelet based coders are by default scalable. If the ME is also wavelet based it enhances the 

rate scalability performance.
●● The complexity of the encoder increases as the wavelet kernel gets more complicates. But it 

reduces hardware requirements at the decoder.
●● The mesh based designs do better job than block based designs, irrespective of whether ME is 

spatial based or wavelet based.
●● Wavelet based ME provides more flexibility in providing scalability as compared to spatial 

domain based ME.
●● If ME is wavelet based, only then improvement in the wavelet kernel improves the system 

performance, otherwise not.
●● Mesh based wavelet motion estimators with hybrid ME directionality gives best performance 

and is the most modern of all the designs.

A17.4  Wavelet Analysis Algorithm in Detail on Fingerprint Image

A17.4.1 Wavelet Analysis

The algorithm concentrates on time-frequency ‘energy localization’. This section discusses the filter 

design, wavelet transform implementation, maxima energy extraction, multiresolution, and wavelet 

packet analysis.

●● Filter design
●● Wavelet Transform Implementation
●● Maxima Energy Extraction
●● Multiresolution Analysis
●● Wavelet Packet Analysis
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Filter Design
For this particular exercise, Daubechies wavelet is selected as the mother wavelet. This is in accordance 

with the following properties of Daubechies wavelets:

●● orthonormality, having finite support.
●● optimal, compact representation of the original signal from a sub-band coding point of view, thus 

producing multiresolution effect.
●● capability to select maximum vanishing moments and minimum phase, so as to extract even 

minute details from smoother parts.
●● cascade algorithm which can zoom-in on particular features of f.

Daubechies filters used for this algorithm are designed so that the phase of the filter is minimum and 

the number of vanishing moments are maximum. This is of particular importance as not all the images 

are well focused and it is crucial to extract the changing information even from the smoother parts of 

the images.

The main focus of the implementation is to construct compactly supported wavelets y . The scaling 

function f itself is chosen to have compact support, hence it automatically ensures the compact support 

of wavelet y . Multiresolution analysis leads naturally to a hierarchial and fast scheme for the computa-

tion of the wavelet coefficients of a given function.

From the definition of h
n
:

 
h dx x x n
n
= 2 ( ) (2 )ò -f f  (A17.38)

It can be seen that only finite number of h
n
 could be non-zero, so that y  reduces to a finite linear 

combination of compactly supported functions. This ensures the compact support of y . Selecting both 

y  and f to have compact support, ensures that the corresponding subband filtering scheme uses only 

FIR type of filters.

For compactly supported f, the 2p  periodic function h
o
 becomes a trigonometric polynomial.
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The orthonormality of the f
0,n

 implies:

 
| ( ) | | ( ) | = 1.
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The Equation (17.40) in z domain is as follows:

 
| ( ) | | ( ) | = 1 | |= 1

2 2
H z H z z+ − all  (A17.41)

Thus, the initial task is to find out the trigonometric polynomial. Then, the roots of that polynomial 

produce the zeros. To maintain the minimum phase only zeros inside the unit circle are to be retained. 

This procedure is called as ‘cascade algorithm’.

Let N be the length of the filter to be designed. Then, ( / 2) 1N -  degrees of freedom are used to 

obtain maximum vanishing moments k N= / 2.
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To design a compactly supported f, the periodic function m
o
 in Eq. (A17.39) is, when transformed 

in ‘z’ domain, seen as trigonometric polynomial, say H z( )
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where,
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Since, k
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, we only need to find Q z( ) under constraints to formulate H(z) and ultimately h n[ ]. 
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The filter is designed for N = 16 and k = 8.
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The roots of this equation are found out to be 2.7367, 2.5296 + 0.8198i, 2.5296  – 0.8198i, 1.9388 + 

1.4558i, 1.9388 – 1.4558i, 1.0380 + 1.7304i, 1.0380 – 1.7304i, 0.2549 + 0.4250i, 0.2549 – 0.4250i, 

0.3298 + 0.2476i, 0.3298 - 0.2476i, 0.3577 + 0.1159i, 0.3577 – 0.1159i, 0.3654. For constructing Q from 

| |
2

Q  zeros inside the unit circle are retained, which gives minimum phase solution; z i1 = 0.2549 0.4250 ,+

z1* = 0.2549 – 0.4250i, z2 = 0.3298 + 0.2476i, z2* = 0.3298 – 0.2476i, z3 = 0.3577 + 0.1159i, z3* = 

0.3577 + 0.1159i, z4 = 0.3654. Value of the constant is calculated using Q e
jw

( ) = 1 at w = 0 and was 

found to be 0.0544 after scaling. Writing H z( ) back and reading off the coefficients gives the h n[ ] values.
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The roots of Eq. (17.47) and the retained roots to formulate the minimum phase filter are given in 

Table (17.1). The value of the constant is calculated using Q e
jw

( ) = 1 at w = 0 and was found to be 0.0544 

after scaling.

Table 17.1  Daubechies linear phase filter design

Roots of equation 1.68  Retained roots 

2.7367  -  

2.5296 0.8198+ i  -  

2.5296 0.8198- i  -  

1.9388 1.4558+ i  -  

1.9388 1.4558- i  - 

1.0380 1.7304+ i  - 

1.0380 1.7304- i  - 

0.2549 0.4250+ i  *  ( )
1
z  

0.2549 0.4250- i  * 
 ( )

1

*
z  

0.3298 0.2476+ i  *  ( )
2

z  

0.3298 0.2476- i  * 
 ( )

2

*
z  

0.3577 0.1159+ i  *  ( )
3
z  

0.3577 0.1159- i  * 
 ( )

3

*
z  

0.3654  * ( )
4

z  

* = retained roots  

In formulating S z( ), we have freedom in choosing r k K
k
, = 1,..., , which are real non zero values, 

and z l L
l
, = 1,..., , which are complex values. For any such choice, | ( ) |
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‘C’ is the constant, and the choices are made such that S(1) = 1. This choice of S z
m-1

( ), by selecting 

the zeros inside the unit circle, corresponds to what is called ‘minimum-phase digital filtering’, with 

‘transfer function’
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Once this trigonometric polynomial is obtained, then the low pass synthesis filter coefficients are 

obtained by using Eq. (A17.50).
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Q z( ) is substituted in Eq. (A17.51) to find H z( ) and ultimately h n( ), the analysis low pass filter. As 

these are the orthogonal filters, remaining filters are obtained from analysis low pass filter. For example, 

analysis high pass filter is obtained by inverting the analysis low pass, and negating the alternate values. 

Both synthesis filters are obtained by inverting the analysis filter vectors and cross labelling.

 These designed filters are shown in Figure A17.11. For our algorithm, the filters are designed for 

the number of coefficients to be 16. This number is found to be the best trade-off between smoothness 

of the filters and computational time.

As stated earlier, f and y  are compactly supported L2 functions, satisfying
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Designed f and y  functions are shown in Figure A17.12. The y y
j k

j

j
x x k j k Z

,
2( ) = 2 (2 ), ,
-

-

- Î  

forms a tight frame of L R
2
( ), which is an orthonormal basis.

Wavelet transform
The algorithm of wavelet transform implementation revolves around following equation,
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where, b f
k

f t t k dt= ( ) ( )
-¥
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Simpler way to see Eq. (A17.54) is that the wavelets ( )y
I

 arise from an m-regular multiresolution 

approximation. Let V
l
 denote the closed subspaces of L R

2
( ) which has the functions 2 (2 ),

/2l l
x k k Zf - Î ,  

as an orthonormal basis and let W
l
 be the orthogonal complement of V

l
 in V

l+1
. Then, Equation 17.54 

expresses that the functions 2 (2 ),
/2l l

x k k Zf - Î , form an orthonormal basis.

Equation (17.55) expresses that the functions 2 (2 ),
/2l l

x k k Zf - Î , form an orthonormal basis. The 

decomposition of Eq. (A17.55) is very flexible and decomposition of the fingerprint images result in 

orthogonal sub-bands. The resulting sub-bands are processed independently.
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Figure A17.11   Daubechies analysis filters. The left figure shows the low pass filter and the right figure 
shows high pass filter. [The filters are designed for the number of coefficients to be 16.  
X axis indicates the coefficient number, while the Y axis shows the value for that 
coeficient number. The filter is normalized so that sum of all the filter coefficients is  
equal to 2.]
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If y  and f have compact support, like in case of Daubechies wavelets, then Eq.( A17.54) 

gives a decomposition of any distribution of order less than m. The series on the right hand side of  

Eq.( A17.54) converges to f x( ) in the sense of distributions and the scalar products b
k
 and a( )I .

The 2-D wavelets are computed by applying 1-D algorithm over all the rows as well as columns of 

the input 2-D vector. Offsets are added and wavelet vector dimensions are adjusted. Thus, implementa-

tion of 2-D transform comes from the 1-D transform.

Maxima energy extraction
When an image is translated using these analysis wavelet filters the decomposition coefficients associ-

ated with these filters for this image get modified instead of undergoing similar translation. However, the 

maxima of the wavelet transform also undergoes translation, when an image is translated [?]. Because of 

this, the wavelet maxima energy points are capable of detecting sharp variation points, and of formulat-

ing a signal presentation that is well adapted for characterizing patterns.

So, the first step performed after transforming the images is ‘maxima energy extraction’ for each 

scale. Let y ( ) ( )
2

x L RÎ  be a function whose average is zero and
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Figure A17.12   Left figure indicates Daubechies scale function ( )f , middle figure indicates Daubechies 
wavelet function ( )y , and right figure shows the wavelet packet function. For all 
figures, the number of iterations are selected to be 5
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The wavelet transform of a function f x( ) at the scale 2 j and position x can be viewed as the convo-

lution product:

 
W f x f x

j j
2 2

( ) = ( )*y  (A17.57)

The ‘dyadic wavelet transform’ is the sequence of functions ( ( ))
2

W f x
j j ZÎ

. After the transform, the 

sub-bands are marked, and n maxima values are retained for each scale. 

Figure A17.13 shows reconstructed fingerprint images after maxima energy extraction for differ-

ent values of n, including 10, 100, 1000, and 10000, where n is the number indicating the total number 

of top values to be retained. The figure is generated by calculating the inverse transform from only the 

retained top n wavelet coefficients for each scale.
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Figure A17.13   Maxima energy extraction. The figure shows the inverse transform of sample fingerprint 
images after retaining the most significant 10,100,1000 and 10000 wavelet coefficients 
for each scale
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Multiresolution analysis
Multiresolution analysis (MRA) can analyze the image under consideration at different scales simulta-

neously. This analysis mainly focuses on the low-frequency content of the images. As the scale increases 

the image gets more blurred, adding to the low pass effect. For varying scales, by selecting the appropri-

ate type of analysis filters, segmentation into horizontal, vertical, and diagonal directions is possible. 

Figure A17.14 displays the images with the details embedded for varying scales. 

While analyzing 2 2
n n

´  images, the maximum decomposition that is possible is scale n. The basis 

applied for the scale selection is as follows:

●● Decompose given image into sub bands.
●● Calculate energy of each sub band and get maximum energy value e

max
 for that scale. For a sub 

band f x y( , ) with 1< <x X, and 1< <y Y , energy is defined as

Multiresolution analysis

50 100 150 200

50

100

150

200

250

Figure A17.14   Multiresolution analysis of a sample fingerprint image. The scale used is 2. The low 
pass band is seen in the left top corner. As seen, the transform steps are getting applied to 
the low pass data. Thus, MRA mainly analyzes low pass contents of the image
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●● If energy of a sub band is significantly small, such that e C e
max

< ´ , where C ranges from 0 to 1, 

stop the decomposition process.In this algorithm the criteria for stopping decomposition is that 

the energy content must be less than 40% of the total energy (C=0.4).

For this study the scale selected for MRA is 2. Within the second scale, four sub-bands are obtained, 

namely, low pass (LP), high pass (HP) diagonal, HP vertical and HP horizontal. These sub-bands are 

processed independently and are used for further analysis.

2-D wavelet packet analysis
This technique performs analysis on both high-pass as well as low-pass content. The basis selection is 

done in such a way so as to suppress low pass content, and to enhance and analyze high pass content. 

The scale selected for this analysis is 3, and the selection process is same as to one described in the last 

section for the case of MRA.

Wavelet packet expansion can be seen as algorithmically similar to a sub-band coding scheme. The 

entire collection of wavelet packets is matched effectively to the images for analysis and synthesis. An 

entropy based wavelet packet expansion called Coifman-Wickerhauser algorithm is used [?].

By introducing the notion of “distance”, it is possible to check how good the correlation is between 

basis and a function in terms of the Shannon entropy of the expansion. Let H  denote a Hilbert space, and 

let u uÎH, = 1P P  and assume that H  decomposes into an orthogonal direct sum given as:

 
H H
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Equation (A17.60) represents the measure of distance between u and the orthogonal decomposition. 

In particular, if u already lies in one of the H
i
, then e u

2
( ,{ }) = 0H

i
. This means that the decomposition 

is effective into 1 nonzero component, while all others are zero. For u having nonzero components in 

several H
i
, then e u

2
( ,{ }) > 0H

i
. Shannon equation helps in characterizing e 2 .

If
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This is called as Shannon’s equation for entropy. This equation is used to calculate the smallest 

entropy expansion of the signal. 
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As an example, Figure 17.15 shows the wavelet packet coefficient division, as per the log of the 

energy function used to calculate the weights of the nodes.

●● Weight analysis using log of the energy values.
●● Basis uses 202 elements of wavelet packet library.
●● Original signal weight: 40476.5
●● Transformed signal weight: 9932.2

As an example, Figure 17.16 shows the wavelet packet coefficient division, as per the norm values used 

to calculate the weights of the nodes.

Wavelet packet analysis
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Figure A17.15   Wavelet packet transform. The scale selected is 3, and all the sub-bands are shown. 
Only high pass scale 3 sub-bands are retained for further analysis. These are seen as the 
smallest four rectangles in the figure and magnified below
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●● Weight analysis using norm values.
●● Basis uses 226 elements of wavelet packet library.
●● Original signal weight: 595316
●● Transformed signal weight: 56715

The core wavelet packet design comes from the basic quadrature mirror filter (QMF) bank. The algo-

rithm works as follows:

●● Construct a vector containing the tree path as determined through the filter bank tree. The filter 

associated with the tree path is interpolated using 2 1
1i-
-  zeros between each sample. The value 

of i ranges from 2 1
j
-  and selects one node of j branch tree.

●● Interpolate and iterate the filters using the selected tree path, specified zeros, and selected scale.

For the specified or calculated basis, a wavelet packet transform is implemented. The algorithm 

works as follows:

●● Perform level analysis in the analysis tree. The weight is calculated at every node. The output 

at every level is divided into high pass and low pass information content. For this particular 

algorithm, as further iterations are to be computed on high pass data, low frequency data is 

suppressed.
●● Calculate points of division in accordance with the basis vector tree developed.
●● Zero pad the output, if necessary, to maintain the overall phase of the signal.

Wavelet packet analysis of the image under consideration using selected basis is shown in Figure 

A17.15. The designed tree and the corresponding wavelet packet sub bands are shown in Figure 

A17.16. The figure demonstrates wavelet packet transform for three scales. All the wavelet bands  

are seen clearly. The low pass data, seen in the top left corner is discarded. The bands of interest are the 

four smallest rectangles used for further analysis. Although most of the energy spectrum is observed 

associated with the low frequency band, the fast changing coefficients are embedded in the high fre-

quency band.

For this algorithm, norm values are used to calculate the weights of the node, and thus to formulate 

the basis vector. The best basis selected for the first image is used for the second image, such that there 

are similar sub-band divisions, in order to avoid any miss-match during further processing.

Further, post-processing steps are needed, which are not discussed here and are left as an exploration 

area.
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Designed tree for decomposition
Wavelet packet decomposition 

using the tree

Scale 2

(45)

(9)

(1) (2) (3) (4)

(10) (11) (12)

(46) (47) (48)

Scale 1

Scale 2

Original image

Figure A17.16   A tree designed using the best basis search and the corresponding wavelet packet 
decomposition images. The four sub bands at the end of the third scale are selected for 
further analysis
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