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Preface

This book is exclusively designed for use as a text for the course on Network

Analysis offered to first year undergraduate engineering students of Jawaharlal

Nehru Technological University (JNTU), Hyderabad. The primary goal of this

text is to establish a firm understanding to the basic laws of electric circuits

which develop a working knowledge of the methods of analysis used most

frequently in further topics of electrical and electronics engineering. This book

also provides a comprehensive insight into the principal techniques available for

characterising circuits and networks theoretically.

Illustrative examples are interspersed throughout the book at their natural

locations. With so many years of teaching, we have found that such illustrations

permit a level of understanding otherwise unattainable. As an aid to both, the

instructor and the student, objective questions and the tutorial problems provided

at the end of each chapter progress from simple to complex. Answers to selected

problems have been given to instill confidence in the reader. Due care is taken to

see that the reader can easily start learning circuit analysis without prior

knowledge of mathematics. As such, a student of first year B. Tech. will be able

to follow the book without any difficulty.

All the elements with definitions, basic laws and different configurations of

the resistive circuits have been introduced in the first chapter. Analysis of the

D.C. resistive circuits have been discussed in Chapter 2. Graph theory has been

written in an easy to understand manner. Network theorems on resistive circuits

have been presented in Chapter 3. A.C. fundamentals have been introduced in

Chapters 4 and 5 which include voltage-current relation of elements, complex

impedance. Power and power factor concept is discussed in Chapter 6. Due

emphasis has been laid on finding out the average and rms values of different

waveforms in Chapter 4. The steady state analysis of A.C. circuits including

network theorems have been discussed in Chapter 7. Problems, tutorials and

objective questions on dependent sources have been included in Chapters 1 to 7.

Resonance phenomena in series and parallel circuits and locus diagrams are

presented in Chapter 8. A brief study of coupled and tuned circuits is introduced

in Chapter 9. Magnetic circuits are also discussed in this chapter.



A brief discussion of differential equations is included in Chapter 10. The

necessary mathematical background for transient analysis, the transient behavior

of A.C and D.C circuits and their response has been discussed in Chapter 11.

Laplace transforms and their applications are presented in Chapters 12 and13,

respectively. Network functions and stability criteria have been discussed in

Chapter 14. The parameters of two-port network and their inter-relations have

been discussed in Chapter 15. A brief account of s-domain analysis is presented

in Chapter 16. Various types of basic filters, attenuators and equalizers have

been discussed in Chapter 17. The book also includes brief topics of Fourier

series, Fourier Transforms and operator j . Six Model Question Papers and

Solved May/June 2006 Question Papers (4 Sets) are provided at the end of the

book.

Many people have helped us in producing this book. We extend our gratitude

to them all for helping us in their own individual ways to shape the book into its

final form. We would like to express our gratitude to the Management of R.V.R

and J.C College of Engineering, particularly to the to the President Dr K. Basava

Punnaiah, Secretary and Correspondent Dr M. Gopal Krishna. The management

of Sir C. R. Reddy College of Engineering, particularly to the President M.

Subashchandra Bose, Secretary G. Subbarao, Correspondent Dr V.V.

Balakrishna Rao, Vice President Dr K.Sriramachandramurthy, Joint Secretary

Dr K. Madhavarao, and Treasurer Raghunadha Rao for providing us a conducive

work atmosphere. We are indebted to Dr P.S. Sankara Rao, Principal of R.V.R.

and J.C. College of Engineering and Prof. A. Anand Kumar, Principal of Sir C.R

Reddy College of Engineering for their support throughout the work. We are

thankful to Mr. M. Ravindra Reddy, Prof. D. Dakshina Murthy, Sri. P.S.

Somayajulu, D.S.R.K.V. Prasad, Ms. K. Swarna Sree, Sri. T. Sreerama Murthy,

Sri. C.V. Gopalkrishna, Sri. Y.V. Narayana and many other colleagues for their

invaluable suggestions. We also thank the students of the ECE Department,

particularly N. Anand, S. Suresh Kumar of R.V.R. and J.C. College of

Engineering and students of the EEE Department particularly P. Raghu Ram, N.

Krisnakishore, V. Ramya, N. Nalini Gandhi of Sir C R Reddy College of

Engineering who were involved directly or indirectly with the writing of this

book. We are thankful to Mr D.S.R. Anjaneyulu and K. Srinivas for the error �

free typing of the manuscript.

We wish to express our appreciation to the various members of

Tata McGraw-Hill Publishing Company Limited who handled the book at

different stages. We would like to express our sincere thanks to Vibha Mahajan,

Jacob Alexander, Mini Narayanan, Michael J.Cruz, D. Naresh, S. Girish, and

Anjili Razdan, for their valuable support.

Finally, we thank our family members Madhavi, Aparna and A.V. Yashwant,
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1

Circuit Elements and

Kirchhoff�s Laws

1.1 VOLTAGE

According to the structure of an atom, we know that there are two types of

charges: positive and negative. A force of attraction exists between these positive

and negative charges. A certain amount of energy (work) is required to overcome

the force and move the charges through a specific distance. All opposite charges

possess a certain amount of potential energy because of the separation between

them. The difference in potential energy of the charges is called the potential

difference.

Potential difference in electrical terminology is known as voltage, and is

denoted either by V or v. It is expressed in terms of energy (W) per unit charge

(Q); i.e.

V = 
W

Q
or v = 

dw

dq

dw is the small change in energy, and

dq is the small change in charge.

where energy (W ) is expressed in joules (J), charge (Q ) in coulombs (C), and

voltage (V) in volts (V). One volt is the potential difference between two points

when one joule of energy is used to pass one coulomb of charge from one point to

the other.

Example 1.1 If 70 J of energy is available for every 30 C of charge, what is the

voltage?

Solution V = 
W

Q
=

70

30
 = 2.33 V

Chapter
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1.2 CURRENT

There are free electrons available in all semiconductive and conductive materials.

These free electrons move at random in all directions within the structure in the

absence of external pressure or voltage. If a certain amount of voltage is applied

across the material, all the free electrons move in one direction depending on the

polarity of the applied voltage, as shown in Fig. 1.1.

V

Fig. 1.1

This movement of electrons from one end of the material to the other end

constitutes an electric current, denoted by either I or i. The conventional direction

of current flow is opposite to the flow of – ve charges, i.e. the electrons.

Current is defined as the rate of flow of electrons in a conductive or

semiconductive material. It is measured by the number of electrons that flow past

a point in unit time. Expressed mathematically,

I = 
Q

t

where I is the current, Q is the charge of electrons, and t is the time, or

i = 
dq

dt

where dq is the small change in charge, and dt is the small change in time.

In practice, the unit ampere is used to measure current, denoted by A. One

ampere is equal to one coulomb per second. One coulomb is the charge carried by

6.25 ¥ 1018 electrons. For example, an ordinary 80 W domestic ceiling fan on
230 V supply takes a current of approximately 0.35 A. This means that electricity
is passing through the fan at the rate of 0.35 coulomb every second, i.e. 2.187 ¥
1018 electrons are passing through the fan in every second; or simply, the current
is 0.35 A.

Example 1.2 Five coulombs of charge flow past a given point in a wire in 2 s.

How many amperes of current is flowing?

Solution I = 
Q

t
=

5

2
 = 2.5 A

1.3 POWER AND ENERGY

Energy is the capacity for doing work, i.e. energy is nothing but stored work.
Energy may exist in many forms such as mechanical, chemical, electrical and so
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on. Power is the rate of change of energy, and is denoted by either P or p. If
certain amount of energy is used over a certain length of time, then

Power (P) = 
energy

time
=

W

t
, or

p = 
dw

dt

where dw is the change in energy and dt is the change in time.

We can also write p = 
dw

dt

dw

dq

dq

dt
= ¥

= v ¥ i = vi W

Energy is measured in joules (J), time in seconds (s), and power in watts (W).
By definition, one watt is the amount of power generated when on joule of

energy is consumed in one second. Thus, the number of joules consumed in one
second is always equal to the number of watts. Amounts of power less than one
watt are usually expressed in fraction of watts in the field of electronics; viz.
milliwatts (mW) and microwatts (mW). In the electrical field, kilowatts (kW)
and megawatts (MW) are common units. Radio and television stations also use
large amounts of power to transmit signals.

Example 1.3 What is the power in watts if energy equal to 50 J is used in

2.5 s?

Solution P = 
energy

time
=

50

2 5.
 = 20 W

1.4 THE CIRCUIT

An electric circuit consists of three parts: (1) energy source, such as battery or
generator, (2) the load or sink, such as lamp or motor, and (3) connecting wires
as shown in Fig. 1.2. This arrangement represents a simple circuit. A battery is
connected to a lamp with two wires. The purpose of the circuit is to transfer
energy from source (battery) to the load (lamp). And this is accomplished by the
passage of electrons through wires around the circuit.

The current flows through the filament of the lamp, causing it to emit visible
light. The current flows through the battery by chemical action. A closed circuit
is defined as a circuit in which the current
has a complete path to flow. When the
current path is broken so that current
cannot flow, the circuit is called an open
circuit.

More specifically, interconnection of
two or more simple circuit elements (viz.
voltage sources, resistors, inductors and
capacitors) is called an electric network.

Battery

Lamp

Wire

+

Fig. 1.2
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If a network contains at least one closed path, it is called an electric circuit. By
definition, a simple circuit element is the mathematical model of two terminal
electrical devices, and it can be completely characterised by its voltage and
current. Evidently then, a physical circuit must provide means for the transfer of
energy.

Broadly, network elements may be classified into four groups, viz.

1. Active or passive
2. Unilateral or bilateral
3. Linear or nonlinear
4. Lumped or distributed

1.4.1 Active and Passive

Energy sources (voltage or current sources) are active elements, capable of
delivering power to some external device. Passive elements are those which are
capable only of receiving power. Some passive elements like inductors and
capacitors are capable of storing a finite amount of energy, and return it later to
an external element. More specifically, an active element is capable of delivering
an average power greater than zero to some external device over an infinite time
interval. For example, ideal sources are active elements. A passive element is
defined as one that cannot supply average power that is greater than zero over an
infinite time interval. Resistors, capacitors and inductors fall into this category.

1.4.2 Bilateral and Unilateral

In the bilateral element, the voltage-current relation is the same for current
flowing in either direction. In contrast, a unilateral element has different relations
between voltage and current for the two possible directions of current. Examples
of bilateral elements are elements made of high conductivity materials in general.
Vacuum diodes, silicon diodes, and metal rectifiers are examples of unilateral
elements.

1.4.3 Linear and Nonlinear Elements

An element is said to be linear, if its voltage-current characteristic is at all times
a straight line through the origin. For example, the current passing through a
resistor is proportional to the voltage applied through it, and the relation is
expressed as V µ I or V = IR. A linear element or network is one which satisfies
the principle of superposition, i.e. the principle of homogeneity and additivity.
An element which does not satisfy the above principle is called a nonlinear
element.

1.4.4 Lumped and Distributed

Lumped elements are those elements which are very small in size and in which
simultaneous actions takes place for any given cause at the same instant of time.
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Typical lumped elements are capacitors, resistors, inductors and transformers.
Generally the elements are considered as lumped when their size is very small
compared to the wave length of the applied signal. Distributed elements, on the
other hand, are those which are not electrically separable for analytical purposes.
For example, a transmission line which has distributed resistance, inductance
and capacitance along its length may extend for hundreds of miles.

1.5 RESISTANCE PARAMETER

When a current flows in a material, the free electrons move through the material
and collide with other atoms. These collisions cause the electrons to lose some of
their energy. This loss of energy per unit charge is the drop in potential across the
material. The amount of energy lost by the electrons is related to the physical

property of the material. These collisions restrict
the movement of electrons. The property of a
material to restrict the flow of electrons is called
resistance, denoted by R. The symbol for the
resistor is shown in Fig. 1.3.

R

Fig. 1.3

The unit of resistance is ohm (W). Ohm is defined as the resistance offered by
the material when a current of one ampere flows between two terminals with one
volt applied across it.

According to Ohm’s law, the current is directly proportional to the voltage
and inversely proportional to the total resistance of the circuit, i.e.

I = 
V

R

or i = 
v

R

We can write the above equation in terms of charge as follows.

V = R
dq

dt
, or i = 

v

R
 = Gv

where G is the conductance of a conductor. The units of resistance and
conductance are ohm (W) and mho (

W

) respectively.
When current flows through any resistive material, heat is generated by the

collision of electrons with other atomic particles. The power absorbed by the
resistor is converted to heat. The power absorbed by the resistor is given by

P = vi = (iR)i = i2 R

where i is the current in the resistor in amps, and v is the voltage across the
resistor in volts. Energy lost in a resistance in time t is given by

W = 
0

t

z pdt = pt = i2Rt = 
v

2

R
t
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where v is the volts
R is in ohms
t is in seconds and
W is in joules

Example 1.4 A 10 W resistor is connected across a 12 V battery. How much

current flows through the resistor?

Solution V = IR

I = 
V

R
=

12

10
 = 1.2 A

1.6 INDUCTANCE PARAMETER

A wire of certain length, when twisted into a coil becomes a basic inductor. If
current is made to pass through an inductor, an electromagnetic field is formed. A
change in the magnitude of the current changes the electromagnetic field.
Increase in current expands the fields, and decrease in current reduces it.
Therefore, a change in current produces change in the electromagnetic field,
which induces a voltage across the coil according to Faraday’s law of
electromagnetic induction.

The unit of inductance is henry, denoted by
H. By definition, the inductance is one henry
when current through the coil, changing at the
rate of one ampere per second, induces one volt
across the coil. The symbol for inductance is
shown in Fig. 1.4.

L

Fig. 1.4

The current-voltage relation is given by

v = L
di

dt

where v is the voltage across inductor in volts, and i is the current through
inductor in amps. We can rewrite the above equations as

di = 
1

L
 vdt

Integrating both sides, we get

0

t

z di = 
1

0
L

t

z vdt

i (t) – i (0) = 
1

0
L

t

z vdt

i (t) = 
1

0
L

t

z vdt + i (0)
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From the above equation we note that the current in an inductor is dependent
upon the integral of the voltage across its terminals and the initial current in the
coil, i (0).

The power absorbed by inductor is

P = v i = Li 
di

dt
 watts

The energy stored by the inductor is

W = 
0

t

z pdt

= Li
di

dt
dt

Li
t

0

2

2z =

From the above discussion, we can conclude the following.

1. The induced voltage across an inductor is zero if the current through it is
constant. That means an inductor acts as short circuit to dc.

2. A small change in current within zero time through an inductor gives an
infinite voltage across the inductor, which is physically impossible. In a
fixed inductor the current cannot change abruptly.

3. The inductor can store finite amount of energy, even if the voltage across
the inductor is zero, and

4. A pure inductor never dissipates energy, only stores it. That is why it is
also called a non-dissipative passive element. However, physical induc-
tors dissipate power due to internal resistance.

Example 1.5 The current in a 2 H inductor varies at a rate of 2 A/s. Find the

voltage across the inductor and the energy stored in the magnetic field after 2 s.

Solution v = L
d i

dt

= 2 ¥ 4 = 8 V

W = 
1

2
Li 2

= 
1

2
 ¥ 2 ¥ (4)2 = 16 J

1.7 CAPACITANCE PARAMETER

Any two conducting surfaces separated by an insulating medium exhibit the
property of a capacitor. The conducting surfaces are called electrodes, and the
insulating medium is called dielectric. A capacitor stores energy in the form of
an electric field that is established by the opposite charges on the two electrodes.
The electric field is represented by lines of force between the positive and
negative charges, and is concentrated within the dielectric. The amount of charge
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per unit voltage that is capacitor can store is its
capacitance, denoted by C. The unit of
capacitance is Farad denoted by F. By
definition, one Farad is the amount of
capacitance when one coulomb of charge is
stored with one volt across the plates. The
symbol for capacitance is shown in Fig. 1.5.

A capacitor is said to have greater capacitance if it can store more charge per
unit voltage and the capacitance is given by

C = 
Q

V
, or C = 

q

v

(lower case letters stress instantaneous values)
We can write the above equation in terms of current as

i = C
d

dt

v
Q i

dq

dt
=

F
HG

I
KJ

where v is the voltage across capacitor, i is the current through it

dv = 
1

C
 idt

Integrating both sides, we have

0

t

z  dv = 
1

0
C

t

z idt

v (t) – v(0) = 
1

0
C

t

z idt

v(t) = 
1

0
C

t

z idt + v(0)

where v(0) indicates the initial voltage across the capacitor.
From the above equation, the voltage in a capacitor is dependent upon the

integral of the current through it, and the initial voltage across it.
The power absorbed by the capacitor is given by

p = vi = vC 
d

dt

v

The energy stored by the capacitor is

W = 
0

t

z pdt = 
0

t

z vC 
d

dt

v
 dt

W = 
1

2
 Cv2

CC

Fig. 1.5
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From the above discussion we can conclude the following

1. The current in a capacitor is zero if the voltage across it is constant; that
means, the capacitor acts as an open circuit to dc.

2. A small change in voltage across a capacitance within zero time gives an
infinite current through the capacitor, which is physically impossible. In a
fixed capacitance the voltage cannot change abruptly.

3. The capacitor can store a finite amount of energy, even if the current
through it is zero, and

4. A pure capacitor never dissipates energy, but only stores it; that is why it
is called non-dissipative passive element. However, physical capacitors
dissipate power due to internal resistance.

Example 1.6 A capacitor having a capacitance 2 mF is charged to a voltage of

1000 V. Calculate the stored energy in joules.

Solution W = 
1

2
 Cv

2 = 
1

2
 ¥ 2 ¥ 10–6 ¥ (1000)2 = 1 J.

1.8 ENERGY SOURCES

According to their terminal voltage-current characteristics, electrical energy
sources are categorised into ideal voltage sources and ideal current sources.
Further they can be divided into independent and dependent sources.

An ideal voltage source is a two-terminal element in which the voltage vs is
completely independent of the current is through its terminals. The representation
of ideal constant voltage source is shown in Fig. 1.6(a).

Fig. 1.6

If we observe the v – i characteristics for an ideal voltage source as shown in
Fig. 1.6(c) at any time, the value of the terminal voltage vs is constant with
respect to the value of current is. Whenever vs = 0, the voltage source is the same
as that of a short circuit. Voltage sources need not have constant magnitude; in
many cases the specified voltage may be time-dependent like a sinusoidal
waveform. This may be represented as shown in Fig. 1.6(b). In many practical
voltage sources, the internal resistance is represented in series with the source as
shown in Fig. 1.7(a). In this, the voltage across the terminals falls as the current
through it increases, as shown in Fig. 1.7 (b).
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Fig. 1.7

The terminal voltage vt depends on the source current as shown in Fig. 1.7(b),
where vt = vs – is R.

An ideal constant current source is a two-terminal element in which the current
is completely independent of the voltage vs across its terminals. Like voltage
sources we can have current sources of constant magnitude is or sources whose
current varies with time is(t). The representation of an ideal current source is
shown in Fig. 1.8(a).

VVss

iiss
ii11

(b)(b)(a)(a)

is (is ( ) or) or ( )( )tt ii tt VVss

++

Fig. 1.8

If we observe the v – i characteristics for an ideal current source as shown in
Fig. 1.8(b), at any time the value of the current is is constant with respect to the
voltage across it. In many practical current sources, the resistance is in parallel
with a source as shown in Fig. 1.9(a). In this the magnitude of the current falls as
the voltage across its terminals increases. Its terminal v – i characteristics is
shown in Fig. 1.9(b). The terminal current is given by it = is – (vs/R), where R is
the internal resistance of the ideal current source.

iitt

iitt

vvss

iiss RR

(a)(a) (b)(b)

VVss

Fig. 1.9

The two types of ideal sources we have discussed are independent sources for
which voltage and current are independent and are not affected by other parts of
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the circuit. In the case of dependent sources, the source voltage or current is not
fixed, but is dependent on the voltage or current existing at some other location in
the circuit.

Dependent or controlled sources are of the following types

(i) voltage controlled voltage source (VCVS)
(ii) current controlled voltage source (CCVS)

(iii) voltage controlled current source (VCCS)
(iv) current controlled current source (CCCS)

These are represented in a circuit diagram by the symbol shown in Fig. 1.10.
These types of sources mainly occur in the analysis of equivalent circuits of
transistors.

Fig. 1.10

1.9 KIRCHHOFF�S VOLTAGE LAW

Kirchhoff’s voltage law states that the algebraic sum of all branch voltages
around any closed path in a circuit is always zero at all instants of time. When the
current passes through a resistor, there is a loss of energy and, therefore, a voltage
drop. In any element, the current always flows from higher potential to lower
potential. Consider the circuit in Fig. 1.11. It is customary to take the direction of
current I as indicated in the figure, i.e. it leaves the positive terminal of the vol-
tage source and enters into the negative terminal.

aa cc eebb dd ff
RR11 RR22 RR33

VV11

VVss

VV22

II

VV33

Fig. 1.11

As the current passes through the circuit, the sum of the voltage drop around
the loop is equal to the total voltage in that loop. Here the polarities are attributed
to the resistors to indicate that the voltages at points a, c and e are more than the
voltages at b, d and f, respectively, as the current passes from a to f.
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\ Vs = V1 + V2 + V3

Consider the problem of finding out the current supplied by the source V in the
circuit shown in Fig. 1.12.

Our first step is to assume the reference current direction and to indicate the
polarities for different elements. (See Fig. 1.13).

Fig. 1.12 Fig. 1.13

By using Ohm’s law, we find the voltage across each resistor as follows.

VR1 = IR1, VR2 = IR2, VR3 = IR3

where VR1, VR2 and VR3 are the voltages across R1, R2 and R3, respectively.
Finally, by applying Kirchhoff’s law, we can form the equation

V = VR1 + VR2 + VR3

V = IR1 + IR2 + IR3

From the above equation the current delivered by the source is given by

I = 
V

R R R1 2 3+ +

Example 1.7 For the circuit shown in Fig. 1.14, determine the unknown voltage

drop V1.

Fig. 1.14

Solution According to Kirchhoff’s voltage law, the sum of the potential drops is

equal to the sum of the potential rises;

Therefore, 30 = 2 + 1 + V1 + 3 + 5

or V1 = 30 – 11 = 19 V
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Example 1.8 What is the current in the circuit shown in Fig. 1.15? Determine

the voltage across each resistor.

Solution We assume current I in the

clockwise direction and indicate polarities

(Fig. 1.16). By using Ohm’s law, we find the

voltage drops across each resistor.

VIM = I, V3.1M = 3.1I

V500K = 0.5I, V400K = 0.4I

Now, by applying Kirchhoff’s voltage law, we

form the equation.

10 = I + 3.1 I + 0.5 I + 0.4 I

or 5 I = 10

or I = 2 mA

\ Voltage across each resistor is as follows

V1M = 1 ¥ 2 = 2.0 V

V3.1M = 3.1 ¥ 2 = 6.2 V

V400K = 0.4 ¥ 2 = 0.8 V

V500K = 0.5 ¥ 2 = 1.0 V

Example 1.9 In the circuit given in Fig. 1.17, find (a) the current I, and (b) the

voltage across 30 W.

Fig. 1.17

Solution We redraw the circuit as shown in Fig. 1.18 and assume current

direction and indicate the assumed polarities of resistors

Fig. 1.18

Fig. 1.15

Fig. 1.16

1 M1 MWW

3.1 M3.1 MWW

400 k400 kWW

500 k500 kWW

10 V10 V

1 M1 MWW 3.1 M3.1 MWW

400 k400 kWW

500 k500 kWW

10 V10 V
II
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By using Ohm’s law, we determine the voltage across each resistor as

V8 = 8I, V30 = 30I, V2 = 2I

By applying Kirchhoff’s law, we get

100 = 8I + 40 + 30I + 2I

40 I = 60 or I = 
60

40
 = 1.5 A

\ Voltage drop across 30 W = V30 = 30 ¥ 1.5 = 45 V

1.10 VOLTAGE DIVISION

The series circuit acts as a voltage divider. Since the same current flows through
each resistor, the voltage drops are proportional to the values of resistors. Using
this principle, different voltages can be obtained from a single source, called a
voltage divider. For example, the voltage across a 40 W resistor is twice that of
20 W in a series circuit shown in Fig. 1.19.

In general, if the circuit consists of a number of series resistors, the total
current is given by the total voltage divided by equivalent resistance. This is
shown in Fig. 1.20.

Fig. 1.19 Fig. 1.20

The current in the circuit is given by I = Vs /(R1 + R2 + K + Rm). The voltage
across any resistor is nothing but the current passing through it, multiplied by
that particular resistor.

Therefore, VR1 = IR1

VR2 = IR2

VR3 = IR3

M

VRm = IRm

or VRm = 
V R

R R R

s m

m

( )

1 2+ + +K

From the above equation, we can say that the voltage drop across any resistor,
or a combination of resistors, in a series circuit is equal to the ratio of that
resistance value to the total resistance, multiplied by the source voltage, i.e.

Vm = 
R

R
Vm

T
s
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where Vm is the voltage across mth resistor,
Rm is the resistance across which the voltage is to be determined and RT is the
total series resistance.

Example 1.10 What is the voltage across the 10 W resistor in Fig. 1.21.

Fig. 1.21

Solution Voltage across 10 W = V10 = 50 ¥ 
10

10 5

500

15+
= = 33.3 V

Example 1.11 Find the voltage between A and B in a voltage divider network

shown in Fig. 1.22.

1 k1 kWW

5 k5 kWW

4 k4 kWW

100 V100 V
AA

BB

Fig. 1.22

Solution Voltage across 9 kW = V9 = VAB = 100 ¥ 
9

10
 = 90 V

1.11 POWER IN SERIES CIRCUIT

The total power supplied by the source in any series resistive circuit is equal to
the sum of the powers in each resistor in series, i.e.

PS = P1 + P2 + P3 + K + Pm

where m is the number of resistors in series, PS is the total power supplied by
source and Pm is the power in the last resistor in series. The total power in the
series circuit is the total voltage applied to a circuit, multiplied by the total
current. Expressed mathematically,

PS = Vs I = I2
RT = 

V

R

s

T

2

where Vs is the total voltage applied, RT is the total resistance, and I is the total
current.
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Example 1.12 Determine the total amount of power in the series circuit in

Fig. 1.23.

Fig. 1.23

Solution Total resistance = 5 + 2 + 1 + 2 = 10 W

We know PS = 
V

R
s

T

2 2
50

10
=

( )
 = 250 W

Check We find the power absorbed by each resistor

Current = 
50

10
 = 5 A

P5 = (5)2 ¥ 5 = 125 W

P2 = (5)2 ¥ 2 = 50 W

P1 = (5)2 ¥ 1 = 25 W

P2 = (5)2 ¥ 2 = 50 W

The sum of these powers gives the total power supplied by the source PS =

250 W.

1.12 KIRCHHOFF�S CURRENT LAW

Kirchhoff’s current law states that the sum of the currents entering into any node
is equal to the sum of the currents leaving that node. The node may be an
interconnection of two or more branches. In any parallel circuit, the node is a
junction point of two or more branches. The total current entering into a node is
equal to the current leaving that node. For example, consider the circuit shown in
Fig. 1.24, which contains two nodes A and B. The total current IT entering node
A is divided into I1, I2 and I3. These currents flow out of node A. According to
Kirchhoff’s current law, the current into node A is equal to the total current out

of node A: that is, IT = I1 + I2 + I3. If we
consider node B, all three currents I1, I2,
I3 are entering B, and the total current IT

is leaving node B,  Kirchhoff’s current
law formula at this node is therefore the
same as at node A.

I1 + I2 + I3 = IT

Fig. 1.24

II11 II22

IITT

IITT

AA

BB

II33

VVss
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In general, sum of the currents entering any
point or node or junction equal to sum of the
currents leaving from that point or node or
junction as shown in Fig. 1.25.

I1 + I2 + I4 + I7 = I3 + I5 + I6

If all of the terms on the right side are
brought over to the left side, their signs
change to negative and a zero is left on the
right side, i.e.

I1 + I2 + I4 + I7 – I3 – I5 – I6 = 0

This means that the algebraic sum of all the currents meeting at a junction is
equal to zero.

Example 1.13 Determine the current in all resistors in the circuit shown in

Fig. 1.26.

Fig. 1.26

Solution The above circuit contains a single node ‘A’ with reference node ‘B’.

Our first step is to assume the voltage V at node A. In a parallel circuit the same

voltage is applied across each element. According to Ohm’s law, the currents

passing through each element are I1 = V/2, I2 = V/1, I3 = V/5.

By applying Kirchhoff’s current law, we have

I = I1 + I2 + I3

I = 
V V V

2 1 5
+ +

50 = V
1

2

1

1

1

5
+ +L

NM
O
QP
 = V [0.5 + 1 + 0.2]

V = 
50

17

500

17.
=  = 29.41 V

Once we know the voltage V at node A, we can find the current in any element by

using Ohm’s law.

The current in the 2 W resistor is I1 = 29.41/2 = 14.705 A.

Similarly I2 = 
V

R

V

2 1
=  = 29.41 A

Fig. 1.25
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I3 = 
29 41

5

.
 = 5.882 A

\ I1 = 14.7 A, I2 = 29.4 A, and I3 = 5.88 A

Example 1.14 For the circuit shown in Fig. 1.27, find the voltage across the

10 W resistor and the current passing through it.

Fig. 1.27

Solution The circuit shown above is a parallel circuit, and consists of a single

node A. By assuming voltage V at the node A w.r.t. B, we can find out the current
in the 10 W branch. (See Fig. 1.28)

Fig. 1.28

According to Kirchhoff’s current law,

I1 + I2 + I3 + I4 + 5 = 10

By using Ohm’s law we have

I1 = 
V

5
; I2 = 

V

10
, I3 = 

V

2
, I4 = 

V

1

V

5
 + 

V

10
 + 

V

2
 + V + 5 = 10

V
1

5

1

10

1

2
1+ + +L

NM
O
QP
 = 5

V [0.2 + 0.1 + 0.5 + 1] = 5

V = 
5

1 8.
 = 2.78 V

\ The voltage across the 10 W resistor is 2.78 V and the current passing through
it is

I2 = 
V

10

2 78

10
=

.
 = 0.278 A
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Example 1.15 Determine the current through resistance R3 in the circuit shown

in Fig. 1.29.

Fig. 1.29

Solution According to Kirchhoff’s current law,

IT = I1 + I2 + I3

where IT is the total current and I1, I2 and I3 are the currents in resistances R1, R2

and R3 respectively.

\ 50 = 30 + 10 + I3

or I3 = 10 mA

1.13 PARALLEL RESISTANCE

When the circuit is connected in parallel, the total resistance of the circuit
decreases as the number of resistors connected in parallel increases. If we
consider m parallel branches in a circuit as shown in Fig. 1.30, the current
equation is

IT = I1 + I2 + K + Im

RR11VVss RR22 RR33 RRmm

II11 II22

IITT

II33 IImm

Fig. 1.30

The same voltage is applied across each resistor. By applying Ohm’s law, the
current in each branch is given by

I1 = 
V

R

s

1

, I2 = 
V

R

s

2

, K Im = 
V

R

s

m

According to Kirchhoff’s current law,

IT = I1 + I2 + I3 + K + Im

V

R

s

T

= 
V

R

V

R

V

R

V

R

s s s s

m1 2 3

+ + + +K
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From the above equation, we have

1

RT

= 
1 1 1

1 2R R Rm

+ + +K

Example 1.16 Determine the parallel resistance between points A and B of

the circuit shown in Fig. 1.31.

Fig. 1.31

Solution
1

RT

= 
1 1 1 1

1 2 3 4R R R R
+ + +

1

RT

= 
1

10

1

20

1

30

1

40
+ + +

= 0.1 + 0.05 + 0.033 + 0.025 = 0.208

or  RT = 4.8 W

1.14 CURRENT DIVISION

In a parallel circuit, the current divides in all branches. Thus, a parallel circuit
acts as a current divider. The total current entering into the parallel branches is

divided into the branches currents
according to the resistance values. The
branch having higher resistance allows
lesser current, and the branch with
lower resistance allows more current.
Let us find the current division in the
parallel circuit shown in Fig. 1.32.

The voltage applied across each resistor is Vs. The current passing through
each resistor is given by

I1 = 
V

R

s

1

, I2 = 
V

R

s

2

If RT is the total resistance, which is given by R1R2/(R1 + R2),

Total current IT = 
V

R

V

R R

s

T

s=
1 2

 (R1 + R2)

or IT = 
I R

R R

1 1

1 2

 (R1 + R2) since Vs = I1R1

Fig. 1.32
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I1 = IT ◊
R

R R

2

1 2+

Similarly, I2 = IT ◊
R

R R

1

1 2+

From the above equations, we can conclude that the current in any branch is
equal to the ratio of the opposite branch resistance to the total resistance value,
multiplied by the total current in the circuit. In general, if the circuit consists of m
branches, the current in any branch can be determined by

Ii = 
R

R R
IT

i T
T

+

where Ii represents the current in the ith branch
Ri is the resistance in the ith branch
RT is the total parallel resistance to the ith branch and
IT is the total current entering the circuit.

Example 1.17 Determine the current through each resistor in the circuit shown

in Fig. 1.33.

Fig. 1.33

Solution I1 = IT ¥ 
R

R R
T

T( )1 +

where RT = 
R R

R R

2 3

2 3+
 = 2 W

\ R1 = 4 W

IT = 12 A

I1 = 12 ¥ 
2

2 4+
 = 4 A

Similarly, I2 = 12 ¥ 
2

2 4+
 = 4 A

and I3 = 12 ¥ 
2

2 4+
 = 4 A

Since all parallel branches have equal values of resistance, they share current

equally.
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1.15 POWER IN PARALLEL CIRCUIT

The total power supplied by the source in any parallel resistive circuit is equal to
the sum of the powers in each resistor in parallel, i.e.

PS = P1 + P2 + P3 + K + Pm

where m is the number of resistors in parallel, PS is the total power and Pm is the
power in the last resistor.

Additional Solved Problems

Problem 1.1 A resistor with a current of 3 A through it converts 500 J of
electrical energy to heat energy in 12 s. What is the voltage across the resistor?

Solution V = 
W

Q

Q = I ¥ t

= 3 ¥ 12 = 36 C

V = 
500

36
 = 13.88 V

Problem 1.2 A 5 W resistor has a voltage rating of 100 V. What is its power
rating?

Solution P = VI

I = V/R

P = 
V

R

2 2100

5
=

( )
 = 2000 W = 2 kW

Problem 1.3 Find the inductance of a coil through which flows a current of
0.2 A with an energy of 0.15 J.

Solution W = 
1

2
 LI2

L = 
2 2 0 15

0 22 2

¥
=

¥W

I

.

( . )
 = 7.5 H

Problem 1.4 Find the inductance of a coil in which a current increases
linearly from 0 to 0.2 A in 0.3 s, producing a voltage of 15 V.

Solution v = L
di

dt

Current in 1 s = 
0 2

0 3

.

.
 = 0.66 A
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The current changes at a rate of 0.66 A/s,

\ L = 
v

di

dt

F
HG

I
KJ

L = 
15

0 66

V

A/s.
 = 22.73 H

Problem 1.5 When a dc voltage is applied to a capacitor, the voltage across
its terminals is found to build up in accordance with vC = 50(1 – e–100 t ). After a
lapse of 0.01 s, the current flow is equal to 2 mA.

(a) Find the value of capacitance in microfarads
(b) How much energy is stored in the electric field at this time?

Solution

(a) i = C
d

dt

Cv

where vC = 50(1 – e–100t)

i = C
d

dt
 50(1 – e–100t)

= C ¥ 50 ¥ 100e–100 t

At t = 0.01 s, i = 2 mA

C = 
2 10

50 100

3

100 0 01

¥

¥ ¥

-

- ¥e .
 = 1.089 mF

(b) W = 
1

2
 Cv2

C

At t = 0.01 s, vC = 50 (1 – e–100 ¥ 0.01) = 31.6 V

W = 
1

2
 ¥ 1.089 ¥ 10–6 ¥ (31.6)2

= 0.000543 J

Problem 1.6 Determine the total current in the circuit shown in Fig. 1.34.

RR22

VVSS

RR11 RR33

RR44

44 WW

55 WW

22 WW

44 WW

30 V30 V
++
__

Fig. 1.34
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Solution Resistances R2, R3 and R4 are in parallel

\ Equivalent resistance R5 = R2 || R3 || R4

= 
1

1 1 12 3 4/ / /R R R+ +

\ R5 = 1 W

R1 and R5 are in series,

\ Equivalent resistance RT = R1 + R5 = 5 + 1 = 6 W

And the total current IT = 
V

R

s

T

=
30

6
 = 5 A

Problem 1.7 Find the current in the 10 W resistance, V1, and source voltage
Vs in the circuit shown in Fig. 1.35.

II55 II66

VV11

55 WW

1010 WW

66 WW

30 V30 V 4 A4 A

1 A1 A

++

__

AA
CC

DD
BB

VVSS

Fig. 1.35

Solution Assume voltage at node C = V

By applying Kirchhoff’s current law, we get the current in the 10 W resistance

I10 = I5 + I6

= 4 + 1 = 5 A

The voltage across the 6 W resistor is V6 = 24 V

\ Voltage at node C is VC = – 24 V.

The voltage across branch CD is the same as the voltage at node C.

Voltage across 10 W only = 10 ¥ 5 = 50 V

So VC = V10 – V1

– 24 = 50 – V1

\ V1 = 74 V

Now, consider the loop CABD shown in
Fig. 1.36

If we apply Kirchhoff’s voltage law we get

Vs = 5 – 30 – 24 = – 49 V Fig. 1.36

5 V5 V 30 V30 V

24 V24 VVVCC
VVSS

++

++
++

++––

––
––

––

AA CC

BB DD
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Problem 1.8 What is the voltage across A and B in the circuit shown in
Fig. 1.37?

AA

BB

6 V6 V 12 V12 V
12 V12 V

1010 WW44 WW44 WW

66 WW

Fig. 1.37

Solution The above circuit can be redrawn as shown in Fig. 1.38.

II11

II226 V6 V

12 V12 V

AA BB

12 V12 V

66 WW

44 WW
44 WW 1010 WW

Fig. 1.38

Assume loop currents I1 and I2 as shown in Fig. 1.38.

I1 = 
6

10
 = 0.6 A

I2 = 
12

14
 = 0.86 A

VA = Voltage drop across 4 W resistor = 0.6 ¥ 4 = 2.4 V
VB = Voltage drop  across 4 W resistor = 0.86 ¥ 4 = 3.44 V

The voltage between points A and B is the sum of voltages as shown in Fig. 1.39.

2.4 V2.4 V

AA BB

44 WW 44 WW

3.44 V3.44 V12 V12 V

Fig. 1.39

\ VAB = – 2.4 + 12 + 3.44 = 13.04 V

Problem 1.9 Determine the current delivered by the source in the circuit
shown in Fig. 1.40.

Fig. 1.40
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Solution The circuit can be modified as shown in Fig. 1.41, where R10 is the
series combination of R2 and R3.

\ R10 = R2 + R3 = 4 W

Fig. 1.41

R11 is the series combination of R4 and R5

\ R11 = R4 + R5 = 3 W

Further simplification of the circuit leads to Fig 1.42 where R12 is the parallel
combination of R10 and R9.

\ R12 = (R10 || R9) = (4 || 4) = 2 W

Similarly, R13 is the parallel combination of R11 and R8

\ R13 = (R11 || R8) = (3 || 2) = 1.2 W

In Fig. 1.42 as shown, R12 and R13 are in series, which is in parallel with R7

forming R14. This is shown in Fig. 1.43.

Fig. 1.42 Fig. 1.43

\ R14 = [(R12 + R13)//R7]

= [(2 + 1.2)//2] = 1.23 W

Further, the resistances R14 and R6 are in series, which is in parallel with R1 and
gives the total resistance

RT = [(R14 + R6)//R1]

= [(1 + 1.23)//(2)] = 1.05 W

The current delivered by the source = 30/1.05 = 28.57 A

Problem 1.10 Determine the current in the 10 W resistance and find Vs in the
circuit shown in Fig. 1.44.
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Fig. 1.44

Solution The current in 10 W resistance

I10 = total current ¥ (RT)/(RT + R10)

where RT is the total parallel resistance.

I10 = 4 ¥ 
7

17
 = 1.65 A

Similarly, the current in resistance R5 is

I5 = 4 ¥ 
10

10 7+
 = 2.35 A

or 4 – 1.65 = 2.35 A

The same current flows through the 2 W resistance.

\ Voltage across 2 W resistance, Vs = I5 ¥ 2

= 2.35 ¥ 2 = 4.7 V

Problem 1.11 Determine the value of resistance R and current in each branch
when the total current taken by the circuit shown in Fig. 1.45 is 6 A.

Solution The current in branch ADB

I30 = 50/(25 + 5) = 1.66 A

The current in branch ACB I10 + R = 50/(10 + R).

According to Kirchhoff’s current law

IT = I30 + I (10 + R)

6A = 1.66 A + I10 + R

\ I10 + R = 6 – 1.66 = 4.34 A

\
50

10 + R
= 4.34

10 + R = 
50

4 34.
 = 11.52

R = 1.52 W

Problem 1.12 Find the power delivered by the source in the circuit shown in
Fig. 1.46.

Fig. 1.45
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Solution Between points C(E) and D,
resistances R3 and R4 are in parallel, which
gives R8 = (R3//R4) = 2.5 W
Between points B and C(E), resistances R2

and R7 are in parallel, which gives

R9 = (R2 || R7) = 1.5 W

Between points C(E) and D, resistances R6

and R8 are in parallel and gives

R10 = (R6 || R8) = 1.25 W

The series combination of R1 and R9 gives

R11 = R1 + R9 = 3 + 1.5 = 4.5 W

Similarly, the series combination of R5 and R10 gives

R12 = R5 + R10 = 5.25 W

The resistances R11 and R12 are in parallel, which gives

Total resistance = (R11 || R12) = 2.42 ohms

These reductions are shown in Figs. 1.47 (a), (b), (c) and (d).

Current delivered by the source = 
10

2 42.
 = 4.13 A

Power delivered by the source = VI

= 10 ¥ 4.13 = 41.3 W

Fig. 1.47 (a, b, c and d)

Problem 1.13 Determine the voltage drop across the 10 W resistance in the
circuit as shown in Fig. 1.48.

Solution The circuit is redrawn as shown in Fig. 1.49.

Fig. 1.46
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Fig. 1.48 Fig. 1.49

This is a single node pair circuit. Assume voltage VA at node A. By applying
Kirchhoff’s current law at node A, we have

V V VA A A

20 10 5
+ +  = 10 + 15

VA 
1

20

1

10

1

5
+ +L

NM
O
QP

 = 25 A

VA [0.05 + 0.1 + 0.2) = 25 A

VA = 
25

0 35.
 = 71.42 V

The voltage across 10 W is nothing but the voltage at node A.

\ V10 = VA = 71.42 V

Problem 1.14 In the circuit shown in Fig. 1.50 what are the values of R1 and
R2, when the current flowing through R1 is 1 A and R2 is 5 A? What is the value
of R2 when the current flowing through R1 is zero?

RR11

RR22

II11

II55
II22

55 WW

50 V50 V

100 V100 V

30 V30 V

AA BB

Fig. 1.50

Solution The current in the 5 W resistance

I5 = I1 + I2 = 1 + 5 = 6 A

Voltage across resistance 5 W is V5 = 5 ¥ 6 = 30 V

The voltage at node A, VA = 100 – 30 = 70 V
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\ I2 = 
V

R R

A -
=

-30 70 30

2 2

R2 = 
70 30 40

52

-
=

I
 = 8 W

Similarly, R1 = 
70 50 20

11

-
=

I
 = 20 W

When VA = 50 V, the current I1 in resistance R1 becomes zero.

\ I2 = 
50 30

2

-

R

where I2 becomes the total current

\ I2 = 
100

5

100 50

5

-
=

-VA  = 10 A

\ R2 = 
20 20

102I
=  = 2 W

Problem 1.15 Determine the output voltage Vout in the circuit shown in
Fig. 1.51.

10 A10 A

5 A5 A

1010 WW 22 WW

RR44

RR66

RR11

RR55

33 WW

55 WW

11 WW

22 WW

RR11
RR33

VVoutout

Fig. 1.51

Solution The circuit shown in Fig. 1.51 can be redrawn as shown in Fig. 1.52.
In Fig. 1.52, R2 and R3 are in parallel, R4 and R5 are in parallel. The complete

circuit is a single node pair circuit. Assuming voltage VA at node A and applying
Kirchhoff’s current law in the circuit, we have

10A – 
VA

4 43.
 – 5A – 

VA

2 67.
 = 0

\ VA 
1

4 43

1

2 67. .
+

L
NM

O
QP

 = 5 A

VA [0.225 + 0.375] = 5
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RR11

AA

AA

RR22 RR33

RR44

RR66

RR55

10 A10 A 5 A5 A VVoutout

22 WW

33 WW

1010 WW

22 WW

11 WW
55 WW

Fig. 1.52

\ VA = 
5

0 6.
 = 8.33 V

Vout = VA = 8.33 V

Problem 1.16 Determine the voltage VAB in the circuit shown in Fig. 1.53.

RR11

RR22

RR66

RR55 RR77

RR33

RR44
RR88

1010 WW 22 WW

33 WW

66 WW

33 WW

44 WW55 WW

66 WW

100 V100 V

AA

BB

Fig. 1.53

Solution The circuit in Fig. 1.53 can be redrawn as shown in Fig. 1.54 (a).

RR11

RR22

RR44

RR55RR77

II44 II55

II1010

II33

RR66

RR33

RR88

1010 WW

22 WW

33 WW

33 WW
66 WW 66 WW

44 WW

55 WW

100 V100 V

AABB 33 11 22

Fig. 1.54 (a)

At node 3, the series combination of R7 and R8 are in parallel with R6, which
gives R9 = [(R7 + R8)//R6] = 3 W.

At node 2, the series combination of R3 and R4 are in parallel with R2, which
gives R10 = [(R3 + R4)//R2] = 3 W.

It is further reduced and is shown in Fig. 1.54 (b).
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RR11
RR55

RR99 RR101033 WW

55 WW

33 WW

1010 WW

100 V100 V

33 11 22

Fig. 1.54 (b) Fig. 1.54 (c)

Simplifying further we draw it as shown in Fig. 1.54 (c).

Total current delivered by the source = 
100

RT

= 
100

13 8( // )
 = 20.2 A

Current in the 8 W resistor is I8 = 20.2 ¥ 
13

13 8+
 = 12.5 A

Current in the 13 W resistor is I13 = 20.2 ¥ 
8

13 8+
 = 7.69 A

So I5 = 12.5 A, and I10 = 7.69 A
Current in the 4 W resistance I4 = 3.845 A

Current in the 3 W resistance I3 = 6.25 A

VAB = VA – VB

where VA = I3 ¥ 3 W = 6.25 ¥ 3 = 18.75 V

VB = I4 ¥ 4 W = 3.845 ¥ 4 = 15.38 V

\ VAB = 18.75 – 15.38 = 3.37 V

Problem 1.17 Determine the value of R in the circuit shown in Fig. 1.55,
when the current is zero in the branch CD.

Fig. 1.55

Solution The current in the branch CD is zero, if the potential difference
across CD is zero.

That means, voltage at point C = voltage at point D.
Since no current is flowing, the branch CD is open circuited. So the same

voltage is applied across ACB and ADB
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V10 = VA ¥ 
10

15

VR = VA ¥ 
R

R20 +

\ V10  = VR

and VA ¥ 
10

15
= VA ¥ 

R

R20 +

\ R = 40 W

Problem 1.18 Find the power absorbed by each element in the circuit shown
in Fig. 1.56.

RR11

RR22

2 A2 A

24 V24 V

14 V14 V10 V10 V

iixx
iixx11

7 A7 A
7
V

7
V

Fig. 1.56

Solution Power absorbed by any element = VI

where V is the voltage across the element and I is the current passing through that
element

Here potential rises are taken as (–) sign.

Power absorbed by 10 V source = – 10 ¥ 2 = – 20 W

Power absorbed by resistor R1 = 24 ¥ 2= 48 W

Power absorbed by resistor R2 = 14 ¥ 7 = 98 W

Power absorbed by resistor R3 = – 7 ¥ 9 = – 63 W

Power absorbed by dependent voltage source = (1 ¥ – 7) ¥ 9 = – 63 W

Problem 1.19 Show that the algebraic sum of the five absorbed power values
in Fig. 1.57 is zero.

44 VV
44 VV 22 VV2 A2 A 7 A7 A

22 VV22iixx

iixx

1 A1 A

3 A3 A

––

2 V2 V

Fig. 1.57
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Solution Power absorbed by 2 A current source = (– 4) ¥ 2 = – 8 W
Power absorbed by 4 V voltage source = (– 4) ¥ 10 = – 4 W
Power absorbed by 2 V voltage source = (2) ¥ 3 = 6 W
Power absorbed by 7 A current source = (7) ¥ 2 = 14 W
Power absorbed by 2 ix dependent current source = (– 2) ¥ 2 ¥ 2 = – 8 W
Hence, the algebraic sum of the five absorbed power values is zero.

Problem 1.20 For the circuit shown in Fig. 1.58, find the power absorbed by
each of the elements.

12 V12 V

11 WW

44 WW

33 WW

22 vv
11

vv
11

Fig. 1.58

Solution The above circuit can be redrawn as shown in Fig. 1.59.

11 WW

44 WW 33 WW

vv

12 V12 V 22 vv
11

II

Fig. 1.59

Assume loop current I as shown in Fig. 1.59.

If we apply Kirchhoff’s voltage law, we get

– 12 + I – 2v1 + v1 + 4I = 0

The voltage across 3 W resistor is v1 = 3I

Substituting v1 in the loop equation, we get I = 6 A

Power absorbed by the 12 V source = (– 12) ¥ 6 = – 72 W

Power absorbed by the 1 W resistor = 6 ¥ 6 = 36 W

Power absorbed by 2v1 dependent voltage source

= (2v1)I = 2 ¥ 3 ¥ 6 ¥ 6 = – 216 W

Power absorbed by 3 W resistor = v1 ¥ I = 18 ¥ 6 = 108 W

Power absorbed by 4 W resistor = 4 ¥ 6 ¥ 6 = 144 W

Problem 1.21 For the circuit shown in Fig. 1.60, find the power absorbed by
each element.
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Fig. 1.60

Solution The circuit shown in Fig. 1.60 is a parallel circuit and consists of a
single node A. By assuming voltage V at node A, we can find the current in each
element.

According to Kirchhoff’s current law

i3 – 12 – 2i2 – i2 = 0

By using Ohm’s law, we have

i3 = 
V

3
, i2 = 

-V

2

V
1

3
1

1

2
+ +L

NM
O
QP

 = 12

\ V = 
12

1 83.
 = 6.56

i3 = 
6 56

3

.
 = 2.187A; i2 = 

-6 56

2

.
 = – 3.28 A

Power absorbed by the 3 W resistor = (+ 6.56) (2.187) = 14.35 W

Power absorbed by 12 A current source = (– 6.56) 12 = – 78.72 W

Power absorbed by 2i2 dependent current source

= (– 6.56) ¥ 2 ¥ (– 3.28) = 43.03 W

Power absorbed by 2 W resistor = (– 6.52) (– 3.28) = 21.51 W

Practice Problems

1.1 (i) Determine the current in each of the following cases
(a) 75 C in 1 s (b) 10 C in 0.5 s
(c) 5 C in 2 s

(ii) How long does it take 10 C to flow past a point if the current is 5 A?
1.2 A resistor of 30 W has a voltage rating of 500 V; what is its power rating?
1.3 A resistor with a current of 2 A through it converts 1000 J of electrical

energy to heat energy in 15 s. What is the voltage across the resistor?
1.4 The filament of a light bulb in the circuit has a certain amount of resis-

tance. If the bulb operates with 120 V and 0.8 A of current, what is the
resistance of its filament?
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1.5 Find the capacitance of a circuit in which an applied voltage of 20 V gives
an energy store of 0.3 J.

1.6 A 6.8 kW resistor has burned out in a circuit. It has to be replaced with
another resistor with the same ohmic value. If the resistor carries 10 mA,
what should be its power rating?

1.7 If you wish to increase the amount of current in a resistor from 100 mA to
150 mA by changing the 20 V source, by how many volts should you
change the source? To what new value should you set it?

1.8 A 12 V source is connected to a 10 W resistor.
(a) How much energy is used in two minutes?
(b) If the resistor is disconnected after one minute, does the power ab-

sorbed in resistor increase or decrease?
1.9 A capacitor is charged to 50 mC. The voltage across the capacitor is 150 V.

It is then connected to another capacitor four times the capacitance of the
first capacitor. Find the loss of energy.

1.10 The voltage across two parallel capacitors 5 mF and 3 mF changes uni-
formly from 30 to 75 V in 10 ms. Calculate the rate of change of voltage
for (i) each capacitor, and (ii) the combination.

1.11 The following voltage drops are measured across each of three resistors in
series: 5.5 V, 7.2 V and 12.3 V. What is the value of the source voltage to
which these resistors are connected? If a fourth resistor is added to the
circuit with a source voltage of 30 V. What should be the drop across the
fourth resistor?

1.12 What is the voltage VAB across the resistor shown in Fig. 1.61?

Fig. 1.61 (a) Fig. 1.61 (b)

1.13 The source voltage in the circuit shown in Fig. 1.62 is 100 V. How much
voltage does each metre read?

Fig. 1.62
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1.14 Using the current divider formula, determine the current in each branch of
the circuit shown in Fig. 1.63.

1 k1 kWW

2.2 k2.2 kWW

3.3 k3.3 kWW

5.6 k5.6 kWW

10 mA10 mA

Fig. 1.63

1.15 Six light bulbs are connected in parallel across 110 V. Each bulb is rated
at 75 W. How much current flows through each bulb, and what is the total
current?

1.16 For the circuit shown in Fig. 1.64, find the total resistance between termi-
nals A and B; the total current drawn from a 6 V source connected from A
to B; and the current through 4.7 kW; voltage across 3 kW.

Fig. 1.64

1.17 For the circuit shown in Fig. 1.65, find the total resistance.

Fig. 1.65

1.18 The current in the 5 W resistance of the circuit shown in Fig. 1.66 is 5 A.
Find the current in the 10 W resistor. Calculate the power consumed by the
5 W resistor.
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2020 WW

3030 WW

55 WW 1010 WW

5 A5 A
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Fig. 1.66

1.19 A battery of unknown emf is connected across resistances as shown in
Fig. 1.67. The voltage drop across the 8 W resistor is 20 V. What will be
the current reading in the ammeter? What is the emf of the battery.

88 WW 1111 WW

1111 WW

1313 WW

1515 WW

VV

AA

VV

Fig. 1.67

1.20 An electric circuit has three terminals A, B, C. Between A and B is con-
nected a 2 W resistor, between B and C are connected a 7 W resistor and 5
W resistor in parallel and between A and C is connected a 1 W resistor. A
battery of 10 V is then connected between terminals A and C. Calculate
(a) total current drawn from the battery (b) voltage across the 2 W resistor
(c) current passing through the 5 W resistor.

1.21 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.68, find
Vin, Vs and power provided by the dependent source.

VVinin

VVss

ii44

44ii44

44 WW 22 WW

33 WW

30 V30 V

2 A2 A

6 A6 A

Fig. 1.68

1.22 Use Ohm’s law and Kirchhoff’s laws on the circuit given in Fig. 1.69, find
all the voltages and currents.

vv11 vv22

vv33

vvss
vv44

ii22

ii22

ii33

ii11
ii44 ii55

55 WW

2020 WW60 V60 V
3535

33

VV22

1212

Fig. 1.69
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1.23 Find the power absorbed by each element and show that the algebraic sum
of powers is zero in the circuit shown in Fig. 1.70.

Fig. 1.70

1.24 Find the power absorbed by each element in the circuit shown in Fig. 1.71.

Fig. 1.71

Objective-type Questions

1.1 How many coulombs of charge do 50 ¥ 1031 electrons possess?
(a) 80 ¥ 1012 C (b) 50 ¥ 1031 C
(c) 0.02 ¥ 10–31 C (d) 1/80 ¥ 1012 C

1.2 Determine the voltage of 100 J/25 C.
(a) 100 V (b) 25 V
(c) 4 V (d) 0.25 V

1.3 What is the voltage of a battery that uses 800 J of energy to move 40 C of
charge through a resistor?

(a) 800 V (b) 40 V
(c) 25 V (d) 20 V

1.4 Determine the current if a 10 coulomb charge passes a point in 0.5 sec-
onds.

(a) 10 A (b) 20 A
(c) 0.5 A (d) 2 A

1.5 If a resistor has 5.5 V across it and 3 mA flowing through it, what is the
power?

(a) 16.5 mW (b) 15 mW
(c) 1.83 mW (d) 16.5 W

1.6 Identify the passive element among the following
(a) Voltage source (b) Current source
(c) Inductor (d) Transistor
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1.7 If a resistor is to carry 1 A of current and handle 100 W of power, how
many ohms must it be? Assume that voltage can be adjusted to any re-
quired value.

(a) 50 W (b) 100 W
(c) 1 W (d) 10 W

1.8 A 100 W resistor is connected across the terminals of a 2.5 V battery.
What is the power dissipation in the resistor?

(a) 25 W (b) 100 W
(c) 0.4 W (d) 6.25 W

1.9 Determine total inductance of a parallel combination of 100 mH, 50 mH
and 10 mH.

(a) 7.69 mH (b) 160 mH
(c) 60 mH (d) 110 mH

1.10 How much energy is stored by a 100 mH inductance with a current of 1 A?
(a) 100 J (b) 1 J
(c) 0.05 J (d) 0.01 J

1.11 Five inductors are connected in series. The lowest value is 5 mH. If the
value of each inductor is twice that of the preceding one, and if the induc-
tors are connected in order ascending values. What is the total inductance?

(a) 155 mH (b) 155 H
(c) 155 mH (d) 25 mH

1.12 Determine the charge when C = 0.001 mF and v = 1 KV.
(a) 0.001 C (b) 1 mC
(c) 1 C (d) 0.001 C

1.13 If the voltage across a given capacitor is increased, does the amount of
stored charge

(a) increase (b) decrease
(c) remain constant (d) is exactly doubled

1.14 A 1 mF, a 2.2 mF and a 0.05 mF capacitors are connected in series. The
total capacitance is less than

(a) 0.07 (b) 3.25
(c) 0.05 (d) 3.2

1.15 How much energy is stored by a 0.05 mF capacitor with a voltage of
100 V?

(a) 0.025 J (b) 0.05 J
(c) 5 J (d) 100 J

1.16 Which one of the following is an ideal voltage source?
(a) voltage independent of current (b) current independent of voltage
(c) both (a) and (b) (d) none of the above

1.17 The following voltage drops are measured across each of three resistors in
series: 5.2 V, 8.5 V and 12.3 V. What is the value of the source voltage to
which these resistors are connected?

(a) 8.2 V (b) 12.3 V
(c) 5.2 V (d) 26 V

1.18 A certain series circuit has a 100 W, a 270 W, and a 330 W resistor in
series. If the 270 W resistor is removed, the current
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(a) increases (b) becomes zero
(c) decrease (d) remain constant

1.19 A series circuit consists of a 4.7 kW, 5.6 kW, 9 kW and 10 kW resistor.
Which resistor has the most voltage across it?

(a) 4.7 kW (b) 5.6 kW
(c) 9 kW (d) 10 kW

1.20 The total power in a series circuit is 10 W. There are five equal value
resistors in the circuit. How much power does each resistor dissipate?

(a) 10 W (b) 5 W
(c) 2 W (d) 1 W

1.21 When a 1.2 kW resistor, 100 W resistor, 1 kW resistor and 50 W resistor
are in parallel, the total resistance is less than

(a) 100 W (b) 50 W
(c) 1 kW (d) 1.2 kW

1.22 If a 10 V battery is connected across the parallel resistors of 3 W, 5 W,
10 W and 20 W, how much voltage is there across 5 W resistor?

(a) 10 V (b) 3 V
(c) 5 V (d) 20 V

1.23 If one of the resistors in a parallel circuit is removed, what happens to the
total resistance?

(a) decreases (b) increases
(c) remain constant (d) exactly doubles

1.24 The power dissipation in each of three parallel branches is 1 W. What is
the total power dissipation of the circuit?

(a) 1 W (b) 4 W
(c) 3 W (d) zero

1.25 In a four branch parallel circuit, 10 mA of current flows in each branch. If
one of the branch opens, the current in each of the other branches

(a) increases (b) decreases
(c) remains unaffected (d) doubles

1.26 Four equal value resistors are connected in parallel. Five volts are applied
across the parallel circuit, and 2.5 mA are measured from the source. What
is the value of each resistor?

(a) 4 W (b) 8 W
(c) 2.5 W (d) 5 W

1.27 Six light bulbs are connected in parallel across 110 V. Each bulb is related
at 75 W. How much current flows through each bulb?

(a) 0.682 A (b) 0.7 A
(c) 75 A (d) 110 A

1.28 A 330 W resistor is in series with the parallel combination of four 1 kW
resistors. A 100 V source is connected to the circuit. Which resistor has
the most current through it.

(a) 330 W resistor
(b) parallel combination of three 1 kW resistors
(c) parallel combination of two 1 kW resistors
(d) 1 kW resistor
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1.29 The current i4 in the circuit shown in Fig. 1.72 is equal to
(a) 12 A (b) – 12 A
(c) 4 A (d) None of the above

Fig. 1.72

1.30 The voltage V in Fig. 1.73 is equal to
(a) 3 V (b) – 3 V
(c) 5 V (d) None of the above

ii22

55 ii2222 WW

33 WW

4 V4 V

VV

5 V5 V

4 V4 V

––

Fig. 1.73

1.31 The voltage V in Fig. 1.74 is always equal to
(a) 9 V (b) 5 V
(c) 1 V (d) None of the above

Fig. 1.74

1.32 The voltage V in Fig. 1.75 is
(a) 10 V (b) 15 V
(c) 5 V (d) None of the above.

Fig. 1.75



Chapter2

Methods of Analysing

Circuits

2.1 INTRODUCTION

A division of mathematics called topology or graph theory deals with graphs of

networks and provides information that helps in the formulation of network

equations. In circuit analysis, all the elements in a network must satisfy

Kirchhoff ’s laws, besides their own characteristics. Based on these laws, we can

form a number of equations. These equations can be easily written by converting

the network into a graph. Certain aspects of network behaviour are brought into

better perspective if a graph of the network is drawn. If each element or a branch

of a network is represented on a diagram by a line irrespective of the character-

istics of the elements, we get a graph. Hence, network topology is network

geometry. A network is an interconnection of elements in various branches at

different nodes as shown in Fig. 2.1. The corresponding graph is shown in

Fig. 2.2 (a).

Fig. 2.1 Fig. 2.2 (a)
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The graphs shown in Figs 2.2 (b) and (c) are also graphs of the network in

Fig. 2.1.

It is interesting to note that the graphs shown in Fig. 2.2 (a), (b) and (c) may

appear to be different but they are topologically equivalent. A branch is

represented by a line segment connecting a pair of nodes in the graph of a

network. A node is a terminal of a branch, which is represented by a point. Nodes

are the end points of branches. All these graphs have identical relationships

between branches and nodes.

Fig. 2.2(b) Fig. 2.2(c)

A node and a branch are incident if the node

is a terminal of the branch. Nodes can be

incident to one or more elements. The number

of branches incident at a node of a graph

indicates the degree of the node. For example,

in Fig. 2.3 the degree of node 1 is three.

Similarly, the degree of node 2 is three. If each

element of the connected graph is assigned a

direction as shown in Fig. 2.3 it is then said to

be oriented. A graph is connected if and only if

The three graphs in Fig. 2.2 have six branches and four nodes. These graphs

are also called undirected. If every branch of a graph has a direction as shown in

Fig. 2.3, then the graph is called a directed graph.
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Fig. 2.3

there is a path between every pair of nodes. A path is said to exist between any

two nodes, for example 1 and 4 of the graph in Fig. 2.3, if it is possible to reach

node 4 from node 1 by traversing along any of the branches of the graph. A graph

can be drawn if there exists a path between any pair of nodes. A loop exists, if

there is more than one path between two nodes.

Planar and Non-Planar Graphs

A graph is said to be planar if it can be drawn on a plane surface such that no two

branches cross each other as shown in Fig. 2.2. On the other hand in a non-planar
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graph there will be branches which are not

in the same plane as others, i.e. a non-

planar graph cannot be drawn on a plane

surface without a crossover. Figure 2.4

illustrates a non-planar graph.

2.2 TREE AND CO-TREE

A tree is a connected subgraph of a

network which consists of all the nodes of

the original graph but no closed paths. The

graph of a network may have a number of

trees. The number of nodes in a graph is

equal to the number nodes in the tree. The

number of branches in a tree is less than

the number of branches in a graph. A

graph is a tree if there is a unique path

between any pair of nodes. Consider a

graph with four branches and three nodes

as shown in Fig. 2.5.

Fig. 2.4

Fig. 2.5

Five open-ended graphs based on  Fig. 2.5 are represented by Figs 2.6 (a) to

(e). Since each of these open-ended graphs satisfies all the requirements of a tree,

each graph in Fig. 2.6 is a tree corresponding to Fig. 2.5.

In Fig. 2.6, there is no closed path or loop; the number of nodes n = 3 is the

same for the graph and its tree, where as the number of branches in the tree is

only two. In general, if a tree contains n nodes, then it has (n – 1) branches.

Fig. 2.6
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In forming a tree for a given graph, certain branches are removed or opened.

The branches thus opened are called links or link branches. The links for

Fig. 2.6 (a) for example are a and d and for 2.6 (b) are b and c. The set of all links

of a given tree is called the co-tree of the graph. Obviously, the branches a, d are

a co-tree for Fig. 2.6 (a) and b, c are the co-tree. Similarly, for the tree in Fig. 2.6

(b), the branches b, c are the co-tree. Thus the link branches and the tree branches

combine to form the graph of the entire network.

Example 2.1 For the given graph shown in Fig. 2.7 draw the number of

possible trees.

Solution The number of possible trees for Fig. 2.7 are represented by Figs 2.8

(a) – (g).

Fig. 2.8

2.3 TWIGS AND LINKS

The branches of a tree are called its ‘twigs’. For a given graph, the

complementary set of branches of the tree is called the co-tree of the graph. The

branches of a co-tree are called links, i.e. those elements of the connected graph

that are not included in the tree links and form a subgraph. For example, the set of

branches (b, d, f) represented by dotted lines in Fig. 2.11 form a co-tree of the

graph in Fig. 2.9 with respect to the tree in Fig. 2.10.

Fig. 2.7
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The branches a, c and e are the twigs while

the branches b, d and f are the links of this tree.

It can be seen that for a network with b branches

and n nodes, the number of twigs for a selected

tree is (n – 1) and the number of links I with

respect to this tree is (b – n + 1). The number of

twigs (n – 1) is known as the tree value of the

graph. It is also called the rank of the tree. If a

link is added to the tree, the resulting graph

contains one closed path, called a loop. The

addition of each subsequent link forms one or

more additional loops. Loops which contain

only one link are independent and are called

basic loops.

Fig. 2.11

2.4 INCIDENCE MATRIX (A)

The incidence of elements to nodes in a connected graph is shown by the element

node incidence matrix (A). Arrows indicated in the branches of a graph result in

an oriented or a directed graph. These arrows are the indication for the current

flow or voltage rise in the network. It can be easily identified from an oriented

graph regarding the incidence of branches to nodes. It is possible to have an

analytical description of an oriented-graph in a matrix form. The dimensions of

the matrix A is n ¥ b where n is the number of nodes and b is number of branches.

For a graph having n nodes and b branches, the complete incidence matrix A is a

rectangular matrix of order n ¥ b.

In matrix A with n rows and b columns an entry aij in the ith row and jth column

has the following values.

aij = 1, if the jth branch is incident to and oriented away from the i th node.

aij = – 1, if the j
th

 branch is incident to and oriented towards the i
th

 node. (2.1)

aij = 0, if the jth branch is not incident to the i th node.

Figure 2.12 shows a directed graph.

Fig. 2.9 Fig. 2.10
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entries a11; a13 and a16 are + 1. Other entries in the 1st row are zero as they are

not connected to node 1. Likewise, we can complete the incidence matrix for the

remaining nodes 2, 3 and 4.

2.5 PROPERTIES OF INCIDENCE MATRIX A

Following properties are some of the simple conclusions from incidence

matrix A.

1. Each column representing a branch contains two non-zero entries + 1 and

– 1; the rest being zero. The unit entries in a column identify the nodes of

the branch between which it is connected.

2. The unit entries in a row identify the branches incident at a node. Their

number is called the degree of the node.

3. A degree of 1 for a row means that there is one branch incident at the node.

This is commonly possible in a tree.

4. If the degree of a node is two, then it indicates that two branches are

incident at the node and these are in series.

5. Columns of A with unit entries in two identical rows correspond to two

branches with same end nodes and hence they are in parallel.

6. Given the incidence matrix A the corresponding graph can be easily

constructed since A is a complete mathematical replica of the graph.

7. If one row of A is deleted the resulting (n – 1) ¥ b matrix is called the

reduced incidence matrix A1. Given A1, A is easily obtained by using the

first property.

It is possible to find the exact number of trees that can be generated from a

given graph if the reduced incidence matrix A1 is known and the number of

possible trees is given by Det (A1A1
T ) where A1

T is the transpose of the matrix A1.

Example 2.2 Draw the graph corresponding to the given incidence matrix.

A =

- + +

- - +

- - - -

- +

- + + +

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

Following the above convention its incidence

matrix A is given by

A = 

Nodes Branches Æ

B

- - -

-

- -

L

N

M
M
M
M

O

Q

P
P
P
P

a b c d e f
1

2

3

4

1 0 1 0 0 1

1 1 0 1 0 0

0 1 0 0 1 1

0 0 1 1 1 0

The entries in the first row indicates that three

branches a, c and f are incident to node 1 and they

are oriented away from node 1 and therefore the

11
22

33
aa bb

cc dd
ee

ff

44

Fig. 2.12
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Solution There are five rows and eight columns which indicate that there are

five nodes and eight branches. Let us number the columns from a to h and rows

as 1 to 5.

A = 

A b c d e f g h
1

2

3

4

5

1 0 0 0 1 0 1 0

0 1 0 0 0 0 1 1

0 0 1 1 0 1 0 1

0 0 0 0 1 1 0 0

1 1 1 1 0 0 0 0

-

- -

- - - -

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

Mark the nodes corresponding to the rows 1, 2, 3, 4 and 5 as dots as shown in

Fig. 2.13 (a). Examine each column of A and connect the nodes (unit entries) by

a branch; label it after marking an arrow.

For example, examine the first column of A. There are two unit entries one in
the first row and 2nd in the last row, hence connect branch a between node 1 and

5. The entry of A11 is – ve and that of A51 is + ve. Hence the orientation of the

branch is away from node 5 and towards node 1 as per the convention.

Proceeding in this manner we can complete the entire graph as shown in

Fig. 2.13 (b).

Fig. 2.13(a) Fig. 2.13(b)

From the incidence matrix A, it can be verified that branches c and d are in

parallel (property 5) and branches e and f are in series (property 4).

Example 2.3 Obtain the incidence matrix A from the following reduced

incidence matrix A1 and draw its graph.

[A1] = 

-

-

-

-

- -

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

Solution There are five rows and seven columns in the given reduced incidence

matrix [A1]. Therefore, the number of rows in the complete incidence matrix A will
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be 5 + 1 = 6. There will be six nodes and seven branches in the graph. The

dimensions of matrix A is 6 ¥ 7. The last row in A, i.e. 6th row for the matrix A can

be obtained by using the first property of the incidence matrix. It is seen that the

first column of [A1] has a single non-zero element – 1. Hence, the first element in

the 6th row will be + 1 (– 1 + 1 = 0). Second column of A1 has two non-zero
elements + 1 and – 1, hence the 2nd element in the 6th row will be 0. Proceeding

in this manner we can obtain the 6th row. The complete incidence matrix can

therefore be written as

[A] = 

a

b

c

d

e

f

-

-

-

-

- -

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

1 1 0 0 0 0 0

0 1 1 1 0 0 0

0 0 0 1 1 0 0

0 0 0 0 1 1 0

0 0 1 0 0 1 1

1 0 0 0 0 0 1

We have seen that any one of the rows of a complete incidence matrix can be

obtained from the remaining rows. Thus it is possible to delete any one row from

A without loosing any information in A1. Now the oriented graph can be

constructed from the matrix A. The nodes may be placed arbitrarily. The number

of nodes to be marked will be six. Taking node 6 as reference node the graph is

drawn as shown in Fig. 2.14.

Fig. 2.14

2.6 INCIDENCE MATRIX AND KCL

Kirchhoff’s current law (KCL) of a graph can be expressed in terms of the

reduced incidence matrix as A1 I = 0.

Fig. 2.15

A1, I is the matrix representation of KCL,

where I represents branch current vectors I1,

I2, L I6.

Consider the graph shown in Fig. 2.15. It

has four nodes a, b, c and d.

Let node d be taken as the reference node.

The positive reference direction of the branch

currents corresponds to the orientation of the

graph branches. Let the branch currents be i1,

i2, L i6. Applying KCL at nodes a, b and c.
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– i1 + i4 = 0

– i2 – i4 + i5 = 0

– i3 = i5 – i6 = 0

These equations can be written in the matrix form as follows

-

- -

- - -

L

N

M
M
M

O

Q

P
P
P

1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

 

I

I

I

I

I

I

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

 = 

0

0

0

L

N

M
M
M

O

Q

P
P
P

A1 Ib = 0 (2.2)
Here, Ib represents column matrix or a vector of branch currents.

Ib =

i

i

ib

1

2

M

L

N

M
M
M
M

O

Q

P
P
P
P

A1 is the reduced incidence matrix of a graph with n nodes and b branches.

And it is a (n – 1) ¥ b matrix obtained from the complete incidence matrix of A

deleting one of its rows. The node corresponding to the deleted row is called the

reference node or datum node. It is to be noted that A1 Ib = 0 gives a set of n – 1

linearly independent equations in branch currents I1, I2, L I6. Here n = 4. Hence,

there are three linearly independent equations.

2.7 LINK CURRENTS: TIE-SET MATRIX

For a given tree of a graph, addition of each link between any two nodes forms a

loop called the fundamental loop. In a loop there exists a closed path and a

circulating current, which is called the link current. The current in any branch of

a graph can be found by using link currents.

The fundamental loop formed by one link has a unique path in the tree joining

the two nodes of the link. This loop is also called f-loop or a tie-set.

Fig. 2.16
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Consider a connected graph shown in Fig. 2.16 (a). It has four nodes and six

branches. One of its trees is arbitrarily chosen and is shown in Fig. 2.16 (b). The

twigs of this tree are branches 4, 5 and 6. The links corresponding to this tree are

branches 1, 2 and 3. Every link defines a fundamental loop of the network.

No. of nodes n = 4

No. of branches b = 6

No. of tree branches or twigs = n – 1 = 3

No. of link branches I = b – (n – 1) = 3

Let i1, i2, L i6 be the branch currents with directions as shown in Fig. 2.16

(a). Let us add a link in its proper place to the tree as shown in 2.16 (c). It is seen

that a loop I1 is formed by the branches 1, 5 and 6. There is a formation of link

current, let this current be I1. This current passes through the branches 1, 5 and 6.

By convention a fundamental loop is given the same orientation as its defining

link, i.e. the link current I1 coincides with the branch current direction i1 in ab. A

tie set can also be defined as the set of branches that forms a closed loop in which

the link current flows. By adding the other link branches 2 and 3, we can form

two more fundamental loops or f-loops with link currents I2 and I3 respectively as

shown in Figs 2.16 (d) and (e).

11 11 22

66
66

66

55 44

33
1313

55
55

1212

44 44

1111

bb bb

bb

(c)(c) (d)(d)

(e)(e)

dd dd

dd

aa aa

aa

cc cc

cc

Fig. 2.16

Fig. 2.17

2.7.1 Tie-Set Matrix

Kirchhoff’s voltage law can be applied

to the f-loops to get a set of linearly

independent equations. Consider Fig.

2.17.
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There are three fundamental loops I1, I2 and I3 corresponding to the link

branches 1, 2 and 3 respectively. If V1, V2, L V6 are the branch voltages the

KVL equations for the three f-loops can be written as

V1 + V5 – V6 = 0

V2 + V4 – V5 = 0

U

V
|

W
|

(2.3)

V3 – V4 = 0

In order to apply KVL to each fundamental loop, we take the reference

direction of the loop which coincides with the reference direction of the link

defining the loop.

The above equation can be written in matrix form as

loop branchesÆ 3 ¥ 6 ¥ 6

Ø 1 2 3 4 5 6

I1 L

N

M
M

 1 0 0 0 1 – 1 O

Q

P
P

V1

I2 0 1 0 1 – 1 0

L

N

M
M
M
M
M
M
M

 V2 

O

Q

P
P
P
P
P
P
P

0

I3 0 0 1 – 1 0 0 V3 = 0

V4 0

V5

V6
B Vb = 0 (2.4)

where B is an I ¥ b matrix called the tie-set matrix or fundamental loop matrix

and Vb is a column vector of branch voltages.

The tie set matrix B is written in a compact form as B [bij] (2.5)

The element bij of B is defined as

bij = 1 when branch bj is in the f-loop Ii  (loop current) and their reference

directions coincide.

bij = -1 when branch bj is in the f-loop Ii (loop current) and their reference

directions are opposite.

bij = 0 when branch bj is not in the f-loop Ii.

2.7.2 Tie-set Matrix and Branch Currents

It is possible to express branch currents as a linear combination of link current

using matrix B.

If IB and II represents the branch current matrix and loop current matrix

respectively and B is the tie-set matrix, then

[Ib] = [BT ] [IL ] (2.6)

where [BT] is the transpose of the matrix [B]. Equation (6) is known as link

current transformation equation.

Consider the tie-set matrix of Fig. 2.17

B =

1 0 0 0 1 1

0 1 0 1 1 0

0 0 1 1 0 0

-

-

-

L

N

M
M
M

O

Q

P
P
P
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B
T
 =

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

-

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

The branch current vector [Ib] is a column vector.

[Ib] =

i

i

i

i

i

i

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

The loop current vector [IL] is a column vector

[IL] =

I

I

I

1

2

3

L

N

M
M
M

O

Q

P
P
P

Therefore the link current transformation equation is given by [Ib] = [BT] [IL]

i

i

i

i

i

i

1

2

3

4

5

6

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

 =

1 0 0

0 1 0

0 0 1

0 1 1

1 1 0

1 0 0

1

2

3

-

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

L

N

M
M
M

O

Q

P
P
P

I

I

I

The branch currents are

i1 = I1

i2 = I2

i3 = I3

i4 = I2 – I3

i5 = I1 – I2

i6 = – I1

Example 2.4 For the electrical network shown in Fig. 2.18 (a) draw its

topological graph and write its incidence matrix, tie-set matrix, link current
transformation equation and branch currents.
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100100 WW

55 WW 2525 WW10 mH10 mH

15 mH15 mH
15 V15 V

AA BB CC DD EE

FFGGHHIIJJ

5 A5 A22 FFmm

55 FFmm

Fig. 2.18 (a)

Solution

Voltage source is short circuited, current source is open circuited, the points
which are electrically at same potential are combined to form a single node. The

graph is shown in Fig. 2.18 (b).

bb c, dc, d

a, j, i, h, ga, j, i, h, g

ee

ff

Fig. 2.18 (b) Fig. 2.18 (c)

xx yy

zz

33

55

11

44 22

Combining the simple nodes and arbitrarily selecting the branch current
directions the oriented graph is shown in Fig. 2.18 (c). The simplified consists of

three nodes. Let them be x, y and z and five branches 1, 2, 3, 4 and 5. The
complete incidence matrix is given by

A =

Nodes branches Æ

B
-

-

- - -

L

N

M
M
M

O

Q

P
P
P

1 2 3 4 5
1 0 1 0 1

1 1 0 1 0

0 1 1 1 1

x

y

z

Let us choose node z as the reference or datum node for writing the reduced
incidence matrix A1 or we can obtain A1 by deleting the last row elements in A.

A1 =

nodes branches

B
-

-
L
NM

O
QP

1 2 3 4 5
1 0 1 0 1

1 1 0 1 0

x

y

For writing the tie-set matrix, consider the tree in the graph in Fig. 2.18 (c).
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shown with dashed lines. The tie-set matrix or fundamental loop matrix is given
by

B =

loop branches Æ

B

-
L

N

M
M
M

O

Q

P
P
P

1 2 3 4 5
1 0 0 1 1

0 1 0 1 0

0 0 1 0 1

1

2

3

I

I

I

To obtain the link current transformation equation and thereby branch currents
the transpose of B should be calculated.

BT =

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

The equation [Ib] = [BT] [IL]

i

i

i

i

i

1

2

3

4

5

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

 =

1 0 0

0 1 0

0 0 1

1 1 0

1 0 1

1

2

3-

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

L

N

M
M
M

O

Q

P
P
P

I

I

I

The branch currents are given by

i1 = I1
i2 = I2
i3 = I3
i4 = I1 – I2

i5 = I1 + I3

2.8 CUT-SET AND TREE BRANCH VOLTAGES

A cut-set is a minimal set of branches of a connected graph such that the removal

of these branches causes the graph to be cut into exactly two parts. The important

property of a cut-set is that by restoring anyone of the branches of the cut-set the

No. of nodes n = 3
No. of branches = 5

No. of tree branches or twigs
 = n – 1 = 2

No. of link branches
I = b – (n – 1)

= 5 – (3 – 1) = 3
The tree shown in Fig. 2.18 (d)

consists of two branches 4 and 5
shown with solid lines and the link

branches of the tree are 1, 2 and 3
Fig. 2.18 (d)
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graph should become connected. A cut-set consists of one and only one branch of

the network tree, together with any links which must be cut to divide the network

into two parts.

Consider the graph shown in Fig. 2.19 (a).

if the branches 3, 5 and 8 are removed from the graph, we see that the connected

graph of Fig. 2.19 (a) is separated into two distinct parts, each of which is

connected as shown in Fig. 2.19 (b). One of the parts is just an isolated node.

Now suppose the removed branch 3 is replaced, all others still removed. Figure

2.19 (c) shows the resultant graph. The graph is now connected. Likewise

replacing the removed branches 5 and 8 of the set {3, 5, 8} one at a time, all other

ones remaining removed, we obtain the resulting graphs as shown in Figs 2.19

(d) and (e). The set formed by the branches 3, 5 and 8 is called the cut-set of the

connected graph of Fig. 2.19 (a).

2.8.1 Cut-Set Orientation

(a) (b)

(c) (d)

A cut-set is oriented by arbitrarily selecting the

direction. A cut-set divides a graph into two

parts. In the graph shown in Fig. 2.20, the cut-

set is {2, 3}. It is represented by a dashed line

passing through branches 2 and 3. This cut-set

separates the graph into two parts shown as part-

1 and part-2. We may take the orientation either

from part-1 to part-2 or from part-2 to part-1.
Fig. 2.20

Fig. 2.19

bb

aa cc
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ee11
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22
77 88

4466

(e)
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While writing the KCL equation for a cut-

set, we assign positive sign for the current

in a branch if its direction coincides with

the orientation of the cut-set and a negative

sign to the current in a branch whose

direction is opposite to the orientation of

the cut-set. Consider the graph shown in

Fig. 2.21. It has five branches and four

The orientation of some branches of the cut-set may coincide with the

orientation of the cut-set while some branches of the cut-set may not coincide.

Suppose we choose the orientation of the cut-set {2, 3} from part-1 to part-2 as

indicated in Fig. 2.20, then the orientation of branch 2 coincides with the cut-set,

whereas the orientation of the branch 3 is opposite.

2.8.2 Cut-Set Matrix and KCL for Cut-Sets

KCL is also applicable to a cut-set of a network. For any lumped electrical

network, the algebraic sum of all the cut-set branch currents is equal to zero.

Fig. 2.21

nodes. The branches have been numbered 1 through 5 and their orientations are

also marked. The following six cut-sets are possible as shown in Fig. 2.22 (a)-(f).

Cut-set C1 : {1, 4}; cut-set C2 : {4, 2, 3}

Cut-set C3 : {3, 5}; cut-set C4 : {1, 2, 5}

Cut-set C5 : {4, 2, 5} ; cut-set C6 : {1, 2, 3}

55

55 55 55

55

(a)(a)

(d)(d)

(b)(b)

(e)(e)

(c)(c)

(f)(f)

55

44

44 44 44

44 44

33

33
33 33

33
3311

11 11 11

11 1122

22 22 22

22
22

bb

bb bb bb

bb
bbaa

aa aa aa

aa aa

dd

dd dd dd

dd ddcc

cc cc cc

cc cc

cc11

cc44

cc55

cc66

cc22

cc33

Fig. 2.22 (a to f)

Applying KCL for each of the cut-set we obtain the following equations. Let

i1, i2 L i6 be the branch currents.

C1 : i1 – i4 = 0

C2 : – i2 + i3 + i4 = 0

C3 : – i3 + i5 = 0

U

V

|
|
|

W

|
|
|

C4 : i1 – i2 + i5 = 0 (2.7)

C5 : – i2 + i4 + i5 = 0

C6 : i1 – i2 + i3 = 0
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These equation can be put into matrix form as

1 0 0 1 0 0

0 1 1 1 0 0

0 0 1 0 1 0

1 1 0 0 1 0

0 1 0 1 1 0

1 1 1 0 0 0

1

2

3

4

5

6

-

-

-

-

-

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

i

i

i

i

i

i

 = 

0

0

0

0

0

0

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

or
QIb = 0 (2.8)

where the matrix Q is called augmented cut-set matrix of the graph or all cut-set

matrix of the graph. The matrix Ib is the branch-current vector.

The all cut-set matrix can be written as Q = [qij].

where qij is the element in the ith row and jth column. The order of Q is number

of cut-sets ¥ number of branch as in the graph.

qij = 1, if branch j in the cut-set i and the orientation

coincides with each other

qij = – 1, if branch j is in the cut-set i and the orientation

U

V

|
||

W

|
|
|

(2.9)

is opposite.

qij = 0, if branch j is not present in cut-set i.

Fig. 2.23 (a) Fig. 2.23 (b)

Example 2.5 For the network-graph shown in Fig. 2.23 (a) with given orienta-

tion obtain the all cut-set (augmented cut-set) matrix.

Solution The graph has four nodes and eight branches. There are in all 12
possible cut-sets as shown with dashed lines in Figs 2.23 (b) and (c). The

orientation of the cut-sets has been marked arbitrarily. The cut-sets are

C1 : {1, 46}; C2 {1, 2, 3}; C3: {2, 5, 8}

C4 : {6, 7, 8}; C5 {1, 3, 5, 8}; C6: {1, 4, 7, 8}

C7 : {2, 5, 6, 7}; C8 : {2, 3, 4, 6} C9 : {1, 4, 7, 5, 2}

C10 : {2, 3, 4, 7, 8} ; C11 : {6, 4, 3, 5, 8}; C12 : {1, 3, 5, 7, 6}

11

22

33

22

44

66 88

55

77

ee
aa

bb

dd

cc22

cc55

cc77

cc44

cc66cc11

cc88 cc33
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11

22
33

44

66 88

77

55ee
aa

bb

dd

cc99

cc1010

cc1010

cc11

cc1111

cc1212

Fig. 2.23 (c)

Eight cut-sets C1 to C8 are shown if Fig. 2.23(b) and four cut-sets C9 to C11 are

shown in Fig. 2.23(c) for clarity.

As explained in section 2.8.2 with the help of equations 2.9, the all cut-set

matrix Q is given by

Cut-sets Branches Æ

Ø 1 2 3 4 5 6 7 8

C1 – 1 0 0 1 0 – 1 0 0

C2 1 – 1 – 1 0 0 0 0 0

C3 0 1 0 0 1 0 0 – 1

C4 0 0 0 0 0 1 1 1

C5 1 0 – 1 0 1 0 0 – 1

Q = C6

L

N

M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M

– 1 0 0 1 0 0 1 1

O

Q

P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P

C7 0 1 0 0 1 1 1 0

C8 0 – 1 – 1 1 0 – 1 0 0

C9 1 – 1 0 – 1 – 1 0 – 1 0

C10 0 1 1 – 1 0 0 – 1 – 1

C11 0 0 1 – 1 – 1 1 0 1

C12 – 1 0 1 0 – 1 – 1 – 1 0

Matrix Q is a 12 ¥ 8 matrix since there are 12 cut-sets and eight branches in the

graph.

2.8.3 Fundamental Cut-Sets

Observe the set of equation 2.7 in Section 2.8.2 with respect to the graph in Fig.

2.22. Only first three equations are linearly independent, remaining equations

can be obtained as a linear combination of the first three. The concept of

fundamental cut-set (f-cut-set) can be used to obtain a set of linearly independent

equations in branch current variables. The f-cut-sets are defined for a given tree

of the graph. From a connected graph, first a tree is selected, and then a twig is

selected. Removing this twig from the tree separates the tree into two parts. All

the links which go from one part of the disconnected tree to the other, together

with the twig of the selected tree will constitute a cut-set. This cut-set is called a
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fundamental cut-set or f-cut-set or the graph. Thus a fundamental cut-set of a

graph with respect to a tree is a cut-set that is formed by one twig and a unique

set of links. For each branch of the tree, i.e. for each twig, there will be a f-cut-

set. So, for a connected graph having n nodes, there will be (n – 1) twigs in a tree,

the number of f-cut-sets is also equal to (n – 1).

Fundamental cut-set matrix Qf is one in which each row represents a cut-set

with respect to a given tree of the graph. The rows of Q1 correspond to the

fundamental cut-sets and the columns correspond to the branches of the graph.

The procedure for obtaining a fundamental cut-set matrix is illustrated in

Example 2.6.

Example 2.6 Obtain the fundamental cut-set matrix Qf for the network graph

shown in Fig. 2.23 (a).

Solution A selected tree of the graph is shown in Fig. 2.24 (a).

The twigs of the tree are {3, 4, 5, 7}. The remaining branches 1, 2, 6 and 8 are

the links, corresponding to the selected tree. Let us consider twig 3. The

minimum number of links that must be added to twig 3 to form a cut-set C1 is {1,

2}. This set is unique for C1. Thus corresponding to twig 3. The f-cut-set C1 is {1,

2, 3}. This is shown in Fig. 2.24 (b). As a convention the orientation of a cut-set is

chosen to coincide with that of its defining twig. Similarly, corresponding to twig

4, the f-cut-set C2 is {1, 4, 6} corresponding to twig 5, the f-cut-set C3 is {2, 5, 8}

and corresponding to twig 7, the f-cut-set is {6, 7, 8}. Thus the f-cut-set matrix is

given by
f-cut-sets branches

Qf =

C

C

C

C

1

2

3

4

1 1 1 0 0 0 0 0

1 0 0 1 0 1 0 0

0 1 0 0 1 0 0 1

0 0 0 0 0 1 1 1

−

− −

+ −

L

N

M
M
M
M

O

Q

P
P
P
P

(2.11)

(a) (b)
Fig. 2.24
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2.8.4 Tree Branch Voltages and f-Cut-Set Matrix

From the cut-set matrix the branch voltages can be expressed in terms of tree

branch voltages. Since all tree branches are connected to all the nodes in the

graph, it is possible to trace a path from one node to any other node by traversing

through the tree-branches.

Let us consider Example 2.6, there are eight branches. Let the branch voltages

be V1, V2, L V8. There are, four twigs, let the twig voltages be Vt3, Vt4, Vt5 and

Vt7 for twigs 3, 4, 5 and 7 respectively.

We can express each branch voltage in terms of twig voltages as follows.

V1 = – V3 – V4 = – Vt3 – Vt4

V2 = + V3 + V5 = + Vt3 + Vt5

V3 = Vt3

V4 = Vt4

V5 = Vt5

V6 = V7 – V4 = Vt7 – Vt4

V7 = Vt7

V8 = V7 – V5 = Vt7 – Vt5

The above equations can be written in matrix form as

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

L

N

M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P

= 

- -

+ +

-

-

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P

1 1 0 0

1 0 1 0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 1

0 0 0 1

0 0 1 1

3

4

5

7

V

V

V

V

t

t

t

t

(2.12)

The first matrix on the right hand side of Eq. 2.12 is the transpose of the f-cut-

set matrix Qf given in Eq. 2.11 in Ex. 2.6. Hence, Eq. 2.12 can be written as

Vb = Q
T
f Vt. (2.13)

Where Vb is the column matrix of branch-voltages Vt is the column matrix of

twig voltages corresponding to the selected tree and QT
f in the transpose of f-cut-

set matrix.

Equation 2.13 shows that each branch voltage can be expressed as a linear

combination of the tree-branch voltages. For this purpose fundamental cut-set

(f-cut-set) matrix can be used without writing loop equations.

2.9 MESH ANALYSIS

Mesh and nodal analysis are two basic important techniques used in finding

solutions for a network. The suitability of either mesh or nodal analysis to a
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particular problem depends mainly on the number of voltage sources or current

sources. If a network has a large number of voltage sources, it is useful to use

mesh analysis; as this analysis requires that all the sources in a circuit be voltage

sources. Therefore, if there are any current sources in a circuit they are to be

converted into equivalent voltage sources, if, on the other hand, the network has

more current sources, nodal analysis is more useful.

Mesh analysis is applicable only for planar networks. For non-planar circuits

mesh analysis is not applicable. A circuit is said to be planar, if it can be drawn

on a plane surface without crossovers. A non-planar circuit cannot be drawn on a

plane surface without a crossover.

Figure 2.25 (a) is a planar circuit. Figure 2.25 (b) is a non-planar circuit and

Fig. 2.25 (c) is a planar circuit which looks like a non-planar circuit. It has

already been discussed that a loop is a closed path. A mesh is defined as a loop

which does not contain any other loops within it. To apply mesh analysis, our

first step is to check whether the circuit is planar or not and the second is to select

mesh currents. Finally, writing Kirchhoff’s voltage law equations in terms of

unknowns and solving them leads to the final solution.

Fig. 2.25

Observation of the Fig. 2.26 indicates that

there are two loops abefa, and bcdeb in the

network. Let us assume loop currents I1 and

I2 with directions as indicated in the figure.

Considering the loop abefa alone, we

observe that current I1 is passing through R1,

and (I1 – I2) is passing through R2. By

applying Kirchhoff’s voltage law, we can

write

Vs = I1R1 + R2(I1 – I2)

Similarly, if we consider the second mesh bcdeb, the current I2 is passing

through R3 and R4, and (I2 – I1) is passing through R2. By applying Kirchhoff’s

voltage law around the second mesh, we have

R2 (I2 – I1) + R3 I2 + R4 I2 = 0

By rearranging the above equations, the corresponding mesh current equations

are
I1(R1 + R2) – I2 R2 = Vs

– I1 R2 + (R2 + R3 + R4)I2 = 0

Fig. 2.26
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By solving the above equations, we can find the currents I1 and I2. If we

observe Fig. 2.26, the circuit consists of five branches and four nodes, including

the reference node. The number of mesh currents is equal to the number of mesh

equations.

And the number of equations = branches – (nodes – 1). In Fig. 2.26, the

required number of mesh currents would be 5 – (4 – 1) = 2.

In general, if we have B number of branches and N number of nodes including

the reference node then the number of linearly independent mesh equations M =

B – (N – 1).

Example 2.7 Write the mesh current equations in the circuit shown in Fig. 2.27,

and determine the currents.

Fig. 2.27 Fig. 2.28

Solution Assume two mesh currents in the direction as indicated in Fig. 2.28.
The mesh current equations are

5I1 + 2(I1 – I2) = 10

10I2 + 2(I2 – I1) + 50 = 0

We can rearrange the above equations as

7I1 – 2I2 = 10

– 2I1 + 12I2 = – 50

By solving the above equations, we have

I1 = 0.25 A, and I2 = – 4.125 A

Here the current in the second mesh, I2, is negative; that is the actual current

I2 flows opposite to the assumed direction of current in the circuit of Fig. 2.28.

Example 2.8 Determine the mesh current I1 in the circuit shown in Fig. 2.29.

50 V50 V

10 V10 V

5 V5 V

II11

II22

II33

1010 WW 22 WW

55 WW

33 WW

11 WW

Fig. 2.29

++

++

50 V50 V

10 V10 V

55 WW

22 WW
1010 WW

++

++

50 V50 V

10 V10 V II11 II22

55 WW

22 WW
1010 WW
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Solution From the circuit, we can form the following three mesh equations

10I1 + 5(I1 + I2) + 3(I1 – I3) = 50

2I2 + 5(I2 + I1) + 1(I2 + I3) = 10

3(I3 – I1) + 1(I3 + I2) = – 5

Rearranging the above equations we get

18I1 + 5I2 – 3I3 = 50

5I1 + 8I2 + I3 = 10

– 3I1 + I2 + 4I3 = – 5

According to Cramer’s rule

I1 =

50 5 3

10 8 1

5 1 4

18 5 3

5 8 1

3 1 4

1175

356

-

-

-

-

=

or I1 = 3.3 A

Similarly,

I2 =

18 50 3

5 10 1

3 5 4

18 5 3

5 8 1

3 1 4

355

356

-

- -

-

-

=
-

or I2 = – 0.997 A

I3 = 

18 5 50

5 8 10

3 1 5

18 5 3

5 8 1

3 1 4

525

356

- -

-

-

=

or I3 = 1.47 A

\ I1 = 3.3 A, I2 = – 0.997 A, I3 = 1.47 A
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2.10 MESH EQUATIONS BY INSPECTION METHOD

The mesh equations for a general planar network can be written by inspection

without going through the detailed steps. Consider a three mesh networks as

shown in Fig. 2.30.

Fig. 2.30

The loop equations are

I1R1 + R2(I1 – I2) = V1 (2.14)

R2(I2 – I1) + I2R3 = – V2 (2.15)

R4I3 + R5I3 = V2 (2.16)

Reordering the above equations, we have

(R1 + R2)I1 – R2I2 = V1 (2.17)

– R2I1 + (R2 + R3)I2 = – V2 (2.18)

(R4 + R5)I3 = V2 (2.19)

The general mesh equations for three mesh resistive network can be written as

R11I1 ± R12I2 ± R13I3 = Va (2.20)

± R21I1 + R22I2 ± R23I3 = Vb (2.21)

± R31I1 ± R32I2 + R33I3 = Vc (2.22)

By comparing the Eqs 2.17, 2.18 and 2.19 with Eqs 2.20, 2.21, and 2.22

respectively, the following observations can be taken into account.

1. The self resistance in each mesh.

2. The mutual resistances between all pairs of meshes and

3. The algebraic sum of the voltages in each mesh.

The self resistance of loop 1, R11 = R1 + R2, is the sum of the resistances

through which I1 passes.

The mutual resistance of loop 1, R12 = – R2, is the sum of the resistances

common to loop currents I1 and I2. If the directions of the currents passing

through the common resistance are the same, the mutual resistance will have a

positive sign; and if the directions of the currents passing through the common

resistance are opposite then the mutual resistance will have a negative sign.

Va = V1 is the voltage which drives loop one. Here, the positive sign is used if

the direction of the current is the same as the direction of the source. If the current

direction is opposite to the direction of the source, then the negative sign is used.
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Similarly, R22 = (R2 + R3) and R33 = R4 + R5 are the self resistances of loops

two and three, respectively. The mutual resistances R13 = 0, R21 = – R2, R23 = 0,

R31 = 0, R32 = 0 are the sums of the resistances common to the mesh currents

indicated in their subscripts.

Vb = – V2, Vc = V2 are the sum of the voltages driving their respective loops.

Example 2.9 Write the mesh equations for the circuit shown in Fig. 2.31.

10 V10 V

20 V20 V

5 V5 V

II11

II22

II33

22 WW11 WW

33 WW 55 WW

44 WW66 WW

Fig.  2.31

Solution The general equations for three mesh network are

R11I1 ± R12I2 ± R13I3 = Va (2.23)

±  R21I1 + R22I2 ±  R23I3 = Vb (2.24)

±  R31I1 ± R32I2 + R33I3 = Vc (2.25)

Consider Eq. 2.23

R11 = self resistance of loop 1 = (1 W + 3 W + 6 W) = 10 W

R12 = the mutual resistance common to loop 1 and loop 2 = – 3 W

Here, the negative sign indicates that the currents are in opposite direction

R13 = the mutual resistance common to loop 1 and 3 = – 6 W

Va = + 10 V, the voltage driving the loop 1.

Here, the positive sign indicates the loop current I1 is in the same direction as

the source element.

Therefore, Eq. (2.23) can be written as

10I1 – 3I2 – 6I3 = 10 V (2.26)

Consider Eq. (2.24)

R21 = mutual resistance common to loop 1 and loop 2 = – 3 W

R22 = self resistance of loop 2 = (3 W + 2 W + 5 W) = 10 W

R23 = 0, there is no common resistance between loop 2 and loop 3.

Vb = – 5 V, the voltage driving the loop 2.

Therefore, Eq. (2.24) can be written as

– 3I1 + 10I2 = – 5 V (2.27)

Consider Eq. (2.25)

R31 = mutual resistance common to loop 3 and loop 1 = – 6 W

R32 = mutual resistance common to loop 3 and loop 2 = 0
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R33 = self resistance of loop 3 = (6 W + 4 W) = 10 W

Vc = the algebraic sum of the voltages driving loop 3

= (5 V + 20 V ) = 25 V

Therefore, Eq. (2.25) can be written as

– 6I1 + 10I3 = 25 V (2.28)

The three mesh equation are

10I1 – 3I2 – 6I3 = 10 V

– 3I1 + 10I2 = – 5 V

– 6I1 + 10I3 = 25 V

2.11 SUPERMESH ANALYSIS

Suppose any of the branches in the network has a current source, then it is slightly

difficult to apply mesh analysis straight forward because first we should assume

an unknown voltage across the current source, writing mesh equations as before,

and then relate the source current to the assigned mesh currents. This is generally

a difficult approach. One way to overcome this difficulty is by applying the

supermesh technique. Here we have to choose the kind of supermesh. A

supermesh is constituted by two adjacent loops that have a common current

source. As an example, consider the network shown in Fig. 2.32.

Here, the current source I is in the common boundary for the two meshes 1 and

2. This current source creates a supermesh, which is nothing but a combination of

meshes 1 and 2.

RR11

VV

RR22

RR33 RR44II11 II22

II

II33

11 22 33

Fig. 2.32

R1I1 + R3(I2 – I3) = V

or R1I1 + R3I2 – R3I3 = V

Considering mesh 3, we have

R3(I3 – I2) + R3I3 = 0

Finally, the current I from current source is equal to the difference between

two mesh currents, i.e.

I1 – I2 = I

We have, thus, formed three mesh equations which we can solve for the three

unknown currents in the network.
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Example 2.10 Determine the current in the 5 W resistor in the network given in

Fig. 2.33.

II IIII

III III

aa bb

cc

ee

ff

dd

50 V50 V II11

II22

II33

1010 WW

33 WW

22 WW

11 WW55 WW

2 A2 A

Fig. 2.33

Solution From the first mesh, i.e. abcda, we have

50 = 10(I1 – I2) + 5(I1 – I3)

or 15I1 – 10I2 – 5I3 = 50 (2.29)

From the second and third meshes, we can form a supermesh

10(I2 – I1) + 2I2 + I3 + 5(I3 – I1) = 0

or – 15I1 + 12I2 + 6I3 = 0 (2.30)

The current source is equal to the difference between II and III mesh currents,

i.e.

I2 – I3 = 2A (2.31)

Solving 2.29, 2.30 and 2.31, we have

I1 = 19.99 A, I2 = 17.33 A, and I3 = 15.33 A

The current in the 5 W resistor = I1 – I3

= 19.99 – 15.33 = 4.66 A

\ The current in the 5 W resistor is 4.66 A.

Example 2.11 Write the mesh equations for the circuit shown in Fig. 2.34 and

determine the currents, I1, I2 and I3.

II IIII IIIIII

10 A10 A

10 V10 V
II11

II22 II33

33 WW

22 WW

11 WW

Fig. 2.34

Solution In Fig. 2.34, the current source lies on the perimeter of the circuit, and

the first mesh is ignored. Kirchhoff’s voltage law is applied only for second and

third meshes.
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From the second mesh, we have

3(I2 – I1) + 2(I2 – I3) + 10 = 0

or – 3I1 + 5I2 – 2I3 = – 10 (2.32)

From the third mesh, we have

I3 + 2(I3 – I2) = 10

or – 2I2 + 3I2 = 10 (2.33)

From the first mesh,

I1 = 10 A (2.34)

From the above three equations, we get

I1 = 10 A, I2 = 7.27 A, I3 = 8.18 A

2.12 NODAL ANALYSIS

In the Chapter 1 we discussed simple circuits containing only two nodes,

including the reference node. In general, in a N node circuit, one of the nodes is

choosen as reference or datum node, then it is possible to write N – 1 nodal

equations by assuming N – 1 node voltages. For example, a 10 node circuit

requires nine unknown voltages and nine equations. Each node in a circuit can be

assigned a number or a letter. The node voltage is the voltage of a given node

with respect to one particular node, called the reference node, which we assume

at zero potential. In the circuit shown in Fig. 2.35, node 3 is assumed as the

reference node. The voltage at node 1 is the voltage at that node with respect to

node 3. Similarly, the voltage at node 2 is the voltage at that node with respect to

node 3. Applying Kirchhoff’s current law at node 1; the current entering is equal

to the current leaving. (See Fig. 2.36).

Fig. 2.36Fig. 2.35

I1 = 
V

R

V V

R

1

1

1 2

2

+
-

where V1 and V2 are the voltages at node 1 and 2, respectively. Similarly, at node

2, the current entering is equal to the current leaving as shown in Fig. 2.37.
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V V

R

V

R

V

R R

2 1

2

2

3

2

4 5

-
+ +

+
 = 0

Rearranging the above equations, we have

V
R R

V
R

1
1 2

2
2

1 1 1+
L

NM
O

QP
-

L

NM
O

QP
 = I1

-
L

NM
O

QP
+ + +

+

L

N
M

O

Q
PV

R
V

R R R R
1

2
2

2 3 4 5

1 1 1 1
 = 0

From the above equations, we can find the voltages at each node.

Example 2.12 Write the node voltage equations and determine the currents in

each branch for the network shown in Fig. 2.38.

5 A5 A 10 V10 V1010 WW

33 WW 11 WW

55 WW

Fig. 2.38

Solution The first step is to assign voltages at each node as shown in Fig. 2.39.

Fig. 2.39

Applying Kirchhoff’s current law at node 1,

we have 5 =
V V V1 1 2

10 3
+

-

or V V1 2
1

10

1

3

1

3
+L

NM
O
QP

- L
NM

O
QP
 = 5 (2.35)

Applying Kirchhoff’s current law at node 2,

Fig. 2.37
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we have
V V V V2 1 2 2

3 5

10

1

-
+ +

-
= 0

or - L
NM

O
QP

+ + +L
NM

O
QP

V V1 2
1

3

1

3

1

5
1 = 10 (2.36)

From Eqs 2.35 and 2.36, we can solve for V1 and V2 to get

V1 = 19.85 V, V2 = 10.9 V

I10 = 
V1

10
 = 1.985 A, I3 = 

V V1 2

3

19 85 10 9

3

-
=

-. .
 = 2.98 A

I5 = 
V2

5

10 9

5
=

.
 = 2.18 A, I1 = 

V2 10

1

-
 = 0. 9 A

Example 2.13 Determine the voltages at each node for the circuit shown in

Fig. 2.40.

5 A5 A10 V10 V 55 WW

1010 WW 33 WW 22 WW

33 WW

11 WW
66 WW

VV11 VV22 VV33

11 22 33

Fig. 2.40

Solution At node 1, assuming that all currents are leaving, we have

V V V V V V1 1 2 1 1 210

10 3 5 3

-
+

-
+ +

-
= 0

or V V1 2
1

10

1

3

1

5

1

3

1

3

1

3
+ + +L

NM
O
QP

- +L
NM

O
QP

= 1

0.96V1 – 0.66V2 = 1 (2.37)

At node 2, assuming that all currents are leaving except the current from

current source, we have

V V V V V V2 1 2 1 2 3

3 3 2

-
+

-
+

-
= 5

- L
NM

O
QP

+ + +L
NM

O
QP

- L
NM

O
QP

V V V1 2 3
2

3

1

3

1

3

1

2

1

2
= 5

– 0.66 V1 + 1.16 V2 – 0.5V3 = 5 (2.38)
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At node 3, assuming all currents are leaving, we have

V V V V3 2 3 3

2 1 6

-
+ + = 0

– 0.5 V2 + 1.66 V3 = 0 (2.39)

Applying Cramer’s rule, we get

V1 =

1 0 66 0

5 1 16 0 5

0 0 5 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

7 154

0 887

-

-

-

-

- -

-

=

.

. .

. .

. .

. . .

. .

.

.
 = 8.06 V

Similarly,

V2 =

0 96 1 0

0 66 5 0 5

0 0 1 66

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

9 06

0 887

.

. .

.

. .

. . .

. .

.

.

- -

-

- -

-

=  = 10.2 V

V3 =

0 96 0 66 1

0 66 1 16 5

0 0 5 0

0 96 0 66 0

0 66 1 16 0 5

0 0 5 1 66

2 73

0 887

. .

. .

.

. .

. . .

. .

.

.

-

-

-

-

- -

-

=  = 3.07 V

2.13 NODAL EQUATIONS BY INSPECTION METHOD

The nodal equations for a general planar network can also be written by

inspection, without going through the detailed steps. Consider a three node

resistive network, including the reference node, as shown in Fig. 2.41.

Fig. 2.41
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In Fig. 2.41, the points a and b are the actual nodes and c is the reference node.

Now consider the nodes a and b separately as shown in Fig. 2.42 (a) and (b).

Fig. 2.42

In Fig. 2.42 (a), according to Kirchhoff’s current law, we have

I1 + I2 + I3 = 0

\
V V

R

V

R

V V

R

a a a b-
+ +

-1

1 2 3

= 0 (2.40)

In Fig. 2.42 (b), if we apply Kirchhoff’s current law, we get

I4 + I5 = I3

\
V V

R

V

R

V V

R

b a b b-
+ +

-

3 4

2

5

= 0 (2.41)

Rearranging the above equations, we get

1 1 1 1

1 2 3 3R R R
V

R
Va b+ +

F
HG

I
KJ

-
F
HG

I
KJ

 =
1

1R

F
HG

I
KJ

V1 (2.42)

-
F
HG

I
KJ

+ + +
F
HG

I
KJ

1 1 1 1

3 3 4 5R
V

R R R
Va b  =

V

R

2

5

(2.43)

In general, the above equations can be written as

Gaa Va + Gab Vb = I1 (2.44)

Gba Va + Gbb Vb = I2 (2.45)

By comparing Eqs 2.42, 2.43 and Eqs 2.44, 2.45 we have the self conductance

at node a, Gaa = (1/R1 + 1/R2 + 1/R3) is the sum of the conductances connected to

node a. Similarly, Gbb = (1/R3 + 1/R4 + 1/R5), is the sum of the conductances

connected to node b. Gab = (– 1/R3), is the sum of the mutual conductances

connected to node a and node b. Here all the mutual conductances have negative

signs. Similarly, Gba = (– 1/R3) is also a mutual conductance connected between

nodes b and a. I1 and I2 are the sum of the source currents at node a and node b,
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respectively. The current which drives into the node has positive sign, while the

current that drives away from the node has negative sign.

Example 2.14 For the circuit shown in Fig. 2.43, write the node equations by

the inspection method.

11 WW 33 WW 22 WW

55 WW 4 W4 W

22 WW
10 V10 V

2 V2 V 5 V5 V

aa bb

Fig. 2.43

Solution The general equations are

Gaa Va + Gab Vb = I1 (2.46)

Gba Va + Gbb Vb = I2 (2.47)

Consider Eq. 2.46

Gaa = (1 + 1/2 + 1/3) mho, the self conductance at node a is the sum of the

conductances connected to node a.

Gbb = (1/6 + 1/5 + 1/3) mho the self conductance at node b is the sum of the

conductances connected to node b.

Gab = – (1/3) mho, the mutual conductance between nodes a and b is the sum

of the conductances connected between nodes a and b.

Similarly, Gba = – (1/3), the sum of the mutual conductances between nodes b
and a.

I1 =
10

1
 = 10 A, the source current at node a,

I2 =
2

5

5

6
+F

H
I
K  = 1.23 A, the source current at node b.

Therefore, the nodal equations are

1.83 Va – 0.33 Vb = 10 (2.48)

– 0.33 Va + 0.7 Vb = 1.23 (2.49)

2.14 SUPERNODE ANALYSIS

Suppose any of the branches in the network has a voltage source, then it is slightly

difficult to apply nodal analysis. One way to overcome this difficulty is to apply

the supernode technique. In this method, the two adjacent nodes that are

connected by a voltage source are reduced to a single node and then the equations

are formed by applying Kirchhoff’s current law as usual. This is explained with

the help of Fig. 2.44.
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RR11II

RR22

RR33

VVXX

VV11 VV22 VV33

VVyy

RR44

RR55

11 22 33

44

Fig. 2.44

It is clear from Fig. 2.44, that node 4 is the reference node. Applying

Kirchhoff’s current law at node 1, we get

I = 
V

R

V V

R

1

1

1 2

2

+
-

Due to the presence of voltage source Vx in between nodes 2 and 3, it is slightly

difficult to find out the current. The supernode technique can be conveniently

applied in this case.

Accordingly, we can write the combined equation for nodes 2 and 3 as under.

V V

R

V

R

V V

R

V

R

y2 1

2

2

3

3

4

3

5

-
+ +

-
+  = 0

The other equation is

V2 – V3 = Vx

From the above three equations, we can find the three unknown voltages.

Example 2.15 Determine the current in the 5 W resistor for the circuit shown in

Fig. 2.45.

Fig. 2.45

Solution At node 1

10 = 
V V V1 1 2

3 2
+

-

or V
V

1
21

3

1

2 2
10+L

NM
O
QP

- - = 0

0.83 V1 – 0.5 V2 – 10 = 0 (2.50)
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At node 2 and 3, the supernode equation is

V V V V V2 1 2 3 3

2 1

10

5 2

-
+ +

-
+ = 0

or
-

+ +L
NM

O
QP

+ +L
NM

O
QP

V
V V1

2 3
2

1

2
1

1

5

1

2
= 2

– 0.5 V1 + 1.5 V2 + 0.7 V3 – 2 = 0 (2.51)

The voltage between nodes 2 and 3 is given by

V2 – V3 = 20 (2.52)

The current in the 5 W resistor I5 = 
V3 10

5

-

Solving Eqs 2.50, 2.51 and 2.52, we obtain

V3 = – 8.42 V

\ Current I5 = 
- -8 42 10

5

.
 = – 3.68 A (current towards node 3) i.e. the current

flows towards node 3.

2.15 SOURCE TRANSFORMATION TECHNIQUE

In solving networks to find solutions one may have to deal with energy sources. It

has already been discussed in Chapter 1 that basically, energy sources are either

voltage sources or current sources. Sometimes it is necessary to convert a voltage

source to a current source and vice-versa. Any practical voltage source consists

of an ideal voltage source in series with an internal resistance. Similarly, a

practical current source consists of an ideal current source in parallel with an

internal resistance as shown in Fig. 2.46. R
v
 and Ri represent the internal

resistances of the voltage source Vs, and current source Is, respectively.

Any source, be it a current source or a voltage source, drives current through

its load resistance, and the magnitude of the current depends on the value of the

load resistance. Figure 2.47 represents a practical voltage source and a practical

current source connected to the same load resistance RL.

Fig. 2.46
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Fig. 2.47

From Fig. 2.47 (a), the load voltage can be calculated by using Kirchhoff’s

voltage law as

Vab = Vs – IL Rv

The open circuit voltage VOC = Vs

The short circuit current ISC = 
V

R

s

v

From Fig. 2.47 (b)

IL = IS – I = IS – 
V

R

ab

I

The open circuit voltage Vac = IS RI

The short circuit current ISC = IS

The above two sources are said to be equal, if they produce equal amounts of

current and voltage when they are connected to identical load resistances.

Therefore, by equating the open circuit voltages and short circuit currents of the

above two sources we obtain

Vac = Is RI = VS

ISC = IS = 
V

R

s

v

It follows that R1 = RV = Rs \ Vs = IS RS

where RS is the internal resistance of the voltage or current source. Therefore,

any practical voltage source, having an ideal voltage VS and internal series

resistance RS can be replaced by a current source IS = VS/RS in parallel with an

internal resistance RS. The reverse transformation is also possible. Thus, a practi-

cal current source in parallel with an internal resistance RS can be replaced by a

voltage source VS = Is Rs in series with an internal resistance RS.

Example 2.16 Determine the equivalent voltage source for the current source

shown in Fig. 2.48.
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Fig. 2.48

Solution The voltage across terminals A and B is equal to 25 V. Since the

internal resistance for the current source is 5 W, the internal resistance of the

voltage source is also 5 W. The equivalent voltage source is shown in Fig. 2.49.

Fig. 2.49

Example 2.17 Determine the equivalent current source for the voltage source

shown in Fig. 2.50.

Solution The short circuit current at terminals A and B is equal to

I =
50

30
 = 1.66 A

Since the internal resistance for the voltage source is 30 W, the internal

resistance of the current source is also 30 W. The equivalent current source is

shown in Fig. 2.51.

Fig. 2.50 Fig. 2.51

3030 WW1.661.66 AA

AA

BB
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Additional Solved Problems

Problem 2.1 Determine the power dissipation in the 4 W resistor of the circuit

shown in Fig. 2.52 by using mesh analysis.

Fig. 2.52

Solution Power dissipated in the 4 W resistor is P4 = 4(I2 – I3)
2

By using mesh analysis, we can find the currents I2 and I3.

From Fig. 2.52, we can form three equations.

From the given circuit in Fig. 2.52, we can obtain three mesh equations in

terms of I1, I2 and I3

8I1 + 3I2 = 50

3I1 + 9I2 – 4I3 = 0

– 4I2 + 10I3 = 10

By solving the above equations we can find I1, I2 and I3.

I2 =

8 50 0

3 0 4

0 10 10

8 3 0

3 9 4

0 4 10

-

+

-

-

 = 
-1180

502
 = – 2.35 A

I3 =

8 3 50

3 9 0

0 4 10

8 3 0

3 9 4

0 4 10

-

-

-

 = 
30

502
 = 0.06 A

The current in the 4 W resistor = (I2 – I3)

=  (– 2.35 – 0.06 )A = – 2.41 A

Therefore, the power dissipated in the 4 W resistor, P4 = (2.41)2 ¥ 4 = 23.23 W.
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Problem 2.2 Using mesh analysis, determine the voltage VS which gives a

voltage of 50 V across the 10 W resistor as shown in Fig. 2.53.

II11
VVSSII22

II33

II44

33 WW

11 WW

55 WW

22 WW

44 WW

1010 WW

50 V50 V

50 V50 V

60 V60 V

Fig. 2.53

Solution Since the voltage across the 10 W resistor is 50 V, the current passing

through it is I4 = 50/10 = 5 A.

From Fig. 2.53, we can form four equations in terms of the currents I1, I2, I3

and I4, as

4I1 – I2 = 60

– I1 + 8I2 – 2I3 + 5I4 = 0

– 2I2 + 6I3 = 50

5I2 + 15I4 = VS

Solving the above equations, using Cramer’s rule, we get

I4 =

4 1 0 60

1 8 2 0

0 2 6 50

0 5 0

4 1 0 0

1 8 2 5

0 2 6 0

0 5 0 15

-

- -

-

-

- -

-

VS

D = 4

8 2 5

2 6 0

5 0 15

1

1 2 5

0 6 0

0 0 15

-

- +

- -

= 4{8(90) + 2(– 30) + 5(– 30)} + 1{– 1(90)}

D = 1950.
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D4 = 4

8 2 0

2 6 50

5 0

1

1 2 0

0 6 50

0 0

60

1 8 2

0 2 6

0 5 0

-

- +

- -

-

- -

-

V VS S

= 4{8(6 VS) + 2(– 2VS – 250)} + 1{– 1(6VS)} – 60 {– 1 (– 30)}

= 170 VS – 3800

I4 = 
170 3800

1950

VS -

\ VS = 
1950 3800

170

4¥ +I
 = 79.7 V

Problem 2.3 Determine the voltage V which causes the current I1 to be zero

for the circuit shown in Fig. 2.54. Use Mesh analysis.

Fig. 2.54

Solution From Fig. 2.54 we can form three loop equations in terms of I1, I2, I3

and V, as follows
13I1 – 2I2 – 5I3 = 20 – V

– 2I1 + 6I2 – I3 = 0

– 5I1 – I2 + 10I3 = V

Using Cramer’s rule, we get

I1 =

20 2 5

0 6 1

1 10

13 2 5

2 6 1

5 1 10

- - -

-

- +

- -

- + -

- - +

V

V

D1 = (20 – V) (+ 60 – 1) + 2(V) – 5(– 6V)

= 1180 – 27 V

we have D = 557

I1 =
D1

557

\ D1 = 0
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– 27 V + 1180 = 0

\ V = 43.7 V

Problem 2.4 Determine the loop currents for the circuit shown in Fig. 2.55

by using mesh analysis.

II11 II22

II33
II44

1010 WW

1616 WW 88 WW2
0
2
0
WW

11 WW 44 WW

AA

BB
EE

DD

CC

5 A5 A

10 A10 A

20 V20 V10 V10 V

15 A15 A 30 V30 V

Fig. 2.55

Solution The branches AE, DE and BC consists of current sources. Here we

have to apply supermesh analysis.

The combined supermesh equation is

10(I1 – I3) + I1 – 10 + 4I2 – 20

+ 8I4 – 30 + 20 (I4 – I3) = 0

or 11I1 + 4I2 – 30I3 + 28I4 = 60

In branch AE, I2 – I1 = 5 A

In branch BC, I3 = 15 A

In branch DE, I2 – I4 = 10 A

Solving the above four equations, we can get the four currents I1, I2, I3 and I4 as

I1 = 14.65 A

I2 = 19.65 A, I3 = 15 A, and I4 = 9.65 A

Problem 2.5 Determine the power delivered by the voltage source and the

current in the 10 W resistor for the circuit shown in Fig. 2.56.

II11

II22

II33

33 WW 22 WW

11 WW

1010 WW
55 WW

50 V50 V

10 A10 A

3 A3 A

AA BB

DD

CC

Fig. 2.56
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Solution Since branches AC and BD consist of current sources, we have to

use the supermesh technique.

The combined supermesh equation is

– 50 + 5I1 + 3I2 + 2I2 + 10(I2 – I3) + 1(I1 – I3) = 0

or 6I1 + 15I2 – 11I3 = 50

or I1 – I2 = 3 A or I3 = 10 A

From the above equations we can solve for I1, I2 and I3 follows

I1 = 9.76 A, I2 = 6.76 A, I3 = 10 A

Problem 2.6 Determine the voltage ratio Vout/Vin for the circuit shown in

Fig. 2.57 by using nodal analysis.

Fig.  2.57

Solution I10 + I3 + I11 = 0

I10 = 
V VA - in

10

I3 = 
VA

3

I11 = 
V VA

11 6
, or out

V V V VA A A-
+ +

in

10 3 11
 = 0

Also
VA

11
 =

Vout

6

\ VA = Vout ¥ 1.83

From the above equations Vout/Vin = 1/9.53 = 0.105

Problem 2.7 Find the voltages V in the circuit shown in Fig. 2.58 which

makes the current in the 10 W resistor zero by using nodal analysis.
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33 WW

22 WW 55 WW

1010 WW 77 WW

VV

VV11
VV22

50 V50 V

11 22

Fig. 2.58

Solution In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2.

At node 1, the current equation in Fig. 2.59 (a) is

Fig. 2.59 (a)

V V V V V1 1 1 2

3 2 10

-
+ +

-
 = 0

or 0.93 V1 – 0.1 V2 = V/3

At node 2, the current equation in Fig. 2.59 (b) is

55 WW

1010 WW

77 WW

50 V50 V

11 22

Fig. 2.59 (b)

V V V V2 1 2 2

10 5

50

7

-
+ +

-
 = 0

or – 0.1 V1 + 0.443 V2 = 7.143

Since the current in 10 W resistor is zero, the voltage at node 1 is equal to the

voltage at node 2.
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\ V1 – V2 = 0

From the above three equations, we can solve for V

V1 = 20.83 Volts and V2 = 20.83 volts

\ V = 51.87 V

Problem 2.8 Use nodal analysis to find the power dissipated in the 6 W

resistor for the circuit shown in Fig. 2.60.

33 WW

55 WW

11 WW

66 WW

22 WW

20 V20 V

11

22 33

5 A5 A

Fig. 2.60

Solution Assume voltage V1, V2 and V3 at nodes 1, 2 and 3 as shown in

Fig. 2.60.

By applying current law at node 1, we have

V V V V V1 1 2 1 320

3 1 2

-
+

-
+

-
 = 0

or 1.83V1 – V2 – 0.5V3 = 6.67 (2.53)

At node 2

V V V V2 1 2 3

1 6

-
+

-
 = 5 A

or – V1 – 1.167V2 – 0.167V3 = 5 (2.54)

At node 3,

V V V V V3 1 3 2 3

2 6 5

-
+

-
+  = 0

or – 0.5 V1 – 0.167 V2 + 0.867 V3 = 0 (2.55)

Applying Cramer’s rule to Eqs 2.53, 2.54 and 2.55, we have

V2 =
D

D

2

where D =

1 83 1 0 5

1 1 167 0 167

0 5 0 167 0 867

. .

. .

. . .

- -

- - -

- -

 = – 2.64
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D2 =

1 83 6 67 0 5

1 5 0 167

0 5 0 0 867

. . .

.

. .

-

- -

-

 = 13.02

\ V2 =
13 02

2 64

.

.-
 = – 4.93 V

Similarly,

V3 =
D

D

3

D3 =

1 83 1 6 67

1 1 167 5

0 5 0 167 0

. .

.

. .

-

- -

- -

 = 1.25

\ V3 =
1 25

2 64

.

.-
 = – 0.47 V

The current in the 6 W resistor is

I6 =
V V2 3

6

-

=
- +4 93 0 47

6

. .
 = – 0.74 A

The power absorbed or dissipated = I 2
6 R6

= (0.74)2 ¥ 6

= 3.29 W

Problem 2.9 Determine the power dissipated by 5 W resistor in the circuit

shown in Fig. 2.61.

66 WW

33 WW 55 WW

44 WW

40 V40 V

3 A3 A

5 A5 A

11 22 33

20 V20 V

Fig. 2.61
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Solution In Fig. 2.61, assume voltages V1, V2 and V3 at nodes 1, 2 and 3. At

node 1, the current law gives

V V V V1 3 1 240

4 6

- -
+

-
 – 3 – 5 = 0

or 0.42 V1 – 0.167 V2 – 0.25 V3 = 18

Applying the supernode technique between nodes 2 and 3, the combined

equation at node 2 and 3 is

V V V V V V2 1 2 3 3 1

6
5

3 5

40

4

-
+ + + +

+ -
 = 0

or – 0.42 V1 + 0.5 V2 + 0.45 V3 = – 15

Also V3 – V2 = 20 V

Solving the above three equations, we get

V1 = 52.89 V, V2 = – 1.89 V and

V3 = 18.11 V

\ The current in the 5 W resistor I5 = 
V3

5

=
18 11

5

.
 = 3.62 A

The power absorbed by the 5 W resistor P5 = I
2
5 R5

= (3.62)2 ¥ 5

= 65.52 W

Problem 2.10 Find the power delivered by the 5 A current source in the

circuit shown in Fig. 2.62 by using the nodal method.

33 WW

55 WW

11 WW

22 WW

2 A2 A

10 V10 V

11
22

33
5 A5 A

Fig. 2.62

Solution Assume the voltages V1, V2 and V3 at nodes 1, 2, and 3, respectively.

Here, the 10 V source is common between nodes 1 and 2. So applying the

supernode technique, the combined equation at node 1 and 2 is
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V V V V V1 3 2 3 2

3
2

1
5

5

-
+ +

-
- +  = 0

or 0.34 V1 + 1.2 V2 – 1.34 V3 = 3

At node 3,
V V V V V3 1 3 2 3

3 1 2

-
+

-
+  = 0

or – 0.34 V1 – V2 + 1.83 V3 = 0

Also V1 – V2 = 10

Solving the above equations, we get

V1 = 13.72 V; V2 = 3.72 V

V3 = 4.567 V

Hence the power delivered by the source (5 A) = V2 ¥ 5

= 3.72 ¥ 5 = 18.6 W

Problem 2.11 Using source transformation, find the power delivered by the

50 V voltage source in the circuit shown in Fig. 2.63.

Fig. 2.63

Solution The current source in the circuit in Fig. 2.63 can be replaced by a

voltage source as shown in Fig. 2.64.

VV

AA

55 WW 22 WW 33 WW

50 V50 V 20 V20 V 10 V10 V

Fig. 2.64
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V V V-
+

-
+

-50

5

20

2

10

3
 = 0

V [0.2 + 0.5 + 0.33] = 23.33

or V =
23 33

1 03

.

.
 = 22.65 V

\ The current delivered by the 50 V voltage source is (50 – V)/5

=
50 22 65

5

- .
 = 5.47 A

Hence, the power delivered by the 50 V voltage source = 50 ¥ 5.47 = 273.5 W

Problem 2.12 By using source transformation, source combination and

resistance combination convert the circuit shown in Fig. 2.65 into a single voltage

source and single resistance.

Fig. 2.65

Solution The voltage source in the circuit of Fig. 2.65 can be replaced by a

current source as shown in Fig. 2.66 (a).

Fig. 2.66 (a)

Here the current sources can be combined into a single source. Similarly, all the

resistances can be combined into a single resistance, as shown in Fig. 2.66 (b).

Figure 2.66 (b) can be replaced by single voltage source and a series resistance

as shown in Fig. 2.66 (c).
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Fig. 2.66 (b)

Fig. 2.66 (c)

Problem 2.13 For the circuit shown in Fig. 2.67 find the voltage across the

4 W resistor by using nodal analysis.

VV11
VV22

44VVxx

VVxx
5 V5 V

5 A5 A

44 WW

22 WW

11 WW33 WW

Fig. 2.67

Solution In the circuit shown, assume voltages V1 and V2 at nodes 1 and 2. At

node 1, the current equation is

5 + 
V V V V V1 1 2 1 2

3

5

4 2
+

+ -
+

-
 = 0

or 1.08 V1 – 0.75 V2 = – 6.25 (2.56)

At node 2, the current equation is

V V V V
V

V
x

2 1 2 1 25

4 2
4

1

- -
+

-
- +  = 0
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Vx = V1 + 5 – V2

or – 4.75 V1 + 5.75 V2 = 21.25 (2.57)

Applying Cramer’s rule to Eqs 2.56 and 2.57, we have

V2 =
D

D

2

where D =
1 08 0 75

4 75 5 75

. .

. .

-

-
 = 2.65

D2 =
1 08 6 25

4 75 21 25

. .

. .

-

-
 = – 6.74

\ V2 =
D

D

2 6 74

2 65
=
- .

.
 = – 2.54 V

Similarly, V1 =
D

D

1

D1 =
- -6 25 0 75

21 25 5 75

. .

. .
 = – 20

V1 =
D

D

1 20

2 65
=

-

.
 = – 7.55 V

The voltage across the 4 W resistor is

Vx = V1 + 5 – V2

= – .755 + 5 – (– 2.54)

Vx = 0.01 volts

Problem 2.14 For the circuit shown in Fig. 2.68, find the current passing

through the 5 W resistor by using the nodal method.

6I6I11

II11

30 V30 V

11

22 AA 36 V36 V

66 WW

55 WW

Fig. 2.68
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Solution In the circuit shown, assume the voltage V at node 1.

At node 1, the current equation is

V V I-
- +

- -30

5
2

36 6

6

1  = 0

where I1 =
V - 30

5

From the above equation

V = 48 V

The current in 5 W resistor is

I1 =
V - 30

5
 = 3.6 A

Problem 2.15 In the circuit shown in Fig. 2.69, find the power delivered by

4 V source using mesh analysis and voltage across the 2 W resistor.

II11

II22 II33

VV22

VV22

22

22 WW

55 WW
11 WW

44 WW
5 A5 A

CC
DD

AA

BB

4 V4 V

66 WW

Fig. 2.69

Solution Since branches BC and DE consists of current sources, we use the

supermesh technique.

The combined supermesh equation is

2I1 + 6I1 + 4(I1 – I3) – 4 + 5I2 + I2 – I3 + 4(I3 – I1) + I3 – I2 = 0

or
8I1 + 5I2 = 4

In branch BC, I2 – I1 = 5

In branch DE, I3 = 
V2

2

Solving the above equations

I1 = – 1.62A; I2 = 3.38 A

The voltage across the 2 W resistor V2 = 2I1 = – 3.24 V

Power delivered by 4 V source P4 = 4I2 = 4(3.38) = 13.52 W

Problem 2.16 For the circuit shown in Fig. 2.70, find the current through the

10 W resistor by using mesh analysis.
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II22

II11

2I2I11 II33

55 WW1010 WW 44 WW

22 AA15 V15 V

20 V20 V

40 V40 V

Fig. 2.70

Solution The parallel branches consist of current sources. Here we use

supermesh analysis. The combined supermesh equation is.

or – 15 + 10I1 + 20 + 5I2 + 4I3 – 40 = 0

and 10I1 + 5I2 + 4I3 = 35

I1 – I2 = 2

I3 – I2 = 2I1

Solving the above equations, we get

I1 = 1.96 A

The current in the 10 W resistor is I1 = 1.96 A

Practice Problems

2.1 In the circuit shown in Fig. 2.71, use mesh analysis to find out the power

delivered to the 4 W resistor. To what voltage should the 100 V battery be

changed so that no power is delivered to the 4 W resistor?

Fig. 2.71

2.2 Find the voltage between A and B of the circuit shown in Fig. 2.72 by mesh

analysis.
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44 WW

44 WW

11 WW

55 WW 44 WW

10 A10 A

10 V10 V

20 V20 V

AA

BB

Fig. 2.72

2.3 In the circuit shown in Fig. 2.73, use nodal analysis to find out the voltage

across 40 W and the power supplied by the 5 A source.

    5 A5 A

60 V60 V
4 A4 A

100 V100 V

2525 WW

2020 WW

4040 WW

Fig. 2.73

2.4 In the network shown in Fig. 2.74, the resistance R is variable from zero to

infinity. The current I through R can be expressed as I = a + bV, where V is

the voltage across R as shown in the figure, and a and b are constants.

Determine a and b.

Fig. 2.74

2.5 Determine the currents in bridge circuit by using mesh analysis in

Fig. 2.75.
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Fig. 2.75

2.6 Use nodal analysis in the circuit shown in Fig. 2.76 and determine what

value of V will cause V10 = 0.

22 WW 33 WW

1010 WW

20 V20 V

2 A2 A 2 A2 A

5 V5 V

VV

Fig. 2.76

2.7 For the circuit shown in Fig. 2.77, use mesh analysis to find the values of

all mesh currents.

11 WW

11 WW

11 WW

11 WW11 WW

11 WW

1 V1 V

1 A1 A

3 A3 A

3 V3 V

2 A2 A
5 V5 V

II11 II22

II33 II44

––

––

–– ++

++

++

Fig. 2.77
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2.8 For the circuit shown in Fig. 2.78, use node analysis to find the current

delivered by the 24 V source.

2020 WW

55 WW 1010 WW

36 V36 V24 V24 V

2 A2 A

++
––

Fig. 2.78

2.9 Using mesh analysis, determine the voltage across the 10 kW resistor at

terminals A and B of the circuit shown in Fig. 2.79.

Fig. 2.79

2.10 Determine the current I in the circuit by using loop analysis in Fig. 2.80.

22 WW

1010 WW 1.51.5 WW 88 WW

22 WW

11 WW

66 WW
30 A30 A

20 A20 A
II

Fig. 2.80

2.11 Write nodal equations for the circuit shown in Fig. 2.81, and find the

power supplied by the 10 V source.

VV33

44 VV33

44 WW

22 WW

22 WW

11 WW

1010VV

1010 AA

Fig. 2.81
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2.12 Use nodal analysis to find V2 in the circuit shown in Fig. 2.82.

VV22

44VV22

33 WW

22 WW

44 WW

55 WW

66 VV10 V10 V

Fig. 2.82

2.13 Use mesh analysis to find Vx in the circuit shown in Fig. 2.83.

VVxx

22VVxx
2525 WW

16.6716.67 WW 33.3333.33 WW

0.450.45 AA

30 V30 V

10 V10 V

Fig. 2.83

2.14 For the circuit shown in Fig. 2.84, find the value of V2 that will cause the

voltage across 20 W to be zero by using mesh analysis.

V2
V20

5 W10 W

20 W

2 A 0.1V

20

3 A

24 V

Fig. 2.84

Objective-type Questions

1. A tree has

(a) a closed path (b) no closed paths

(c) none

2. The number of branches in a tree is  the number of branches in

a graph.

(a) less than (b) more than

(c) equal to
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3. The tie-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and link currents

(c) branch currents and link voltages

(d) none of the above

4. The cut-set schedule gives the relation between

(a) branch currents and link currents

(b) branch voltages and tree branch voltages

(c) branch voltages and link voltages

(d) branch current and tree currents

5. Mesh analysis is based on

(a) Kirchhoff’s current law (b) Kirchhoff’s voltage law

(c) Both (d) None

6. If a network contains B branches, and N nodes, then the number of mesh

current equations would be

(a) B – (N – 1) (b) N – (B – 1)

(c) B – N – 1 (d) (B + N) – 1

7. A network has 10 nodes and 17 branches. The number of different node

pair voltages would be

(a) 7 (b) 9

(c) 45 (d) 10

8. A practical voltage source consists of

(a) an ideal voltage source in series with an internal resistance

(b) an ideal voltage source in parallel with an internal resistance

(c) both (a) and (b) are correct

(d) none of the above

9. A practical current source consists of

(a) an ideal current source in series with an impedance

(b) an ideal current source in parallel with an impedance

(c) both are correct

(d) none of the above

10. A circuit consists of two resistances, R1 and R2, in parallel. The total cur-

rent passing through the circuit is IT. The current passing through R1 is

(a)
I R

R R

T 1

1 2+
(b)

I R R

R

T 1 2

1

+a f

(c)
I R

R R

T 2

1 2+
(d)

I R R

R

T 1 2

2

+

11. A network has seven nodes and five independent loops. The number of

branches in the network is

(a) 13 (b) 12

(c) 11 (d) 10

12. The nodal method of circuit analysis is based on

(a) KVL and Ohm’s law (b) KCL and Ohm’s law

(c) KCL and KVL (d) KCL, KVL and Ohm’s law
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13. The number of independent loops for a network with n nodes and b

branches is

(a) n – 1 (b) b – n

(c) b – n + 1

(d) independent of the number of nodes

14. The two electrical sub networks N1 and N2 are connected through three

resistors as shown in Fig. 2.85. The voltage across the 5 W resistor and the

1 W resistor are given to be 10 V and 5 V respectively. The voltage across

the 15 W resistor is

(a) – 105 V (b) + 105 V

(c) – 15 V (d) + 15 V

Fig. 2.85

15. Relative to a given fixed tree of a network

(a) link currents form an independent set

(b) branch currents form an independent set

(c) link voltages form an independent set

(d) branch voltages form an independent set



3Chapter

Useful Theorems in

Circuit Analysis

3.1 STAR-DELTA TRANSFORMATION

In the preceding chapter, a simple technique called the source transformation

technique has been discussed. The star delta transformation is another technique
useful in solving complex networks. Basically, any three circuit elements, i.e.
resistive, inductive or capacitive, may be connected in two different ways. One
way of connecting these elements is called the star connection, or the Y

connection. The other way of connecting these elements is called the delta (D)
connection. The circuit is said to be in star connection, if three elements are
connected as shown in Fig. 3.1(a), when it appears like a star (Y ). Similarly, the
circuit is said to be in delta connection, if three elements are connected as shown
in Fig. 3.1(b), when it appears like a delta (D).

Fig. 3.1



3.2 Network Analysis

The above two circuits are equal if their respective resistances from the
terminals AB, BC and CA are equal. Consider the star connected circuit in
Fig. 3.1(a); the resistance from the terminals AB, BC and CA respectively are

RAB(Y ) = RA + RB

RBC(Y) = RB + RC

RCA(Y ) = RC + RA

Similarly, in the delta connected network in Fig. 3.1(b), the resistances seen
from the terminals AB, BC and CA, respectively, are

RAB(D) = R1 || (R2 + R3) = 
R R R

R R R

1 2 3

1 2 3

( )+

+ +

RBC (D) = R3 || (R1 + R2) = 
R R R

R R R

3 1 2

1 2 3

( )+

+ +

RCA (D) = R2 || (R1 + R3) = 
R R R

R R R

2 1 3

1 2 3

( )+

+ +

Now, if we equate the resistances of star and delta circuits, we get

RA + RB = 
R R R

R R R

1 2 3

1 2 3

( )+

+ +
(3.1)

RB + RC = 
R R R

R R R

3 1 2

1 2 3

( )+

+ +
(3.2)

RC + RA = 
R R R

R R R

2 1 3

1 2 3

( )+

+ +
(3.3)

Subtracting Eq. 3.2 from Eq. 3.1, and adding Eq. 3.3 to the resultant, we have

RA = 
R R

R R R

1 2

1 2 3+ +
(3.4)

Similarly, RB = 
R R

R R R

1 3

1 2 3+ +
(3.5)

and RC = 
R R

R R R

2 3

1 2 3+ +
(3.6)

Thus, a delta connection of R1, R2 and R3 may be replaced by a star connection
of RA, RB and RC as determined from Eqs 3.4, 3.5 and 3.6. Now if we multiply the
Eqs 3.4 and 3.5, 3.5 and 3.6, 3.6 and 3.4, and add the three, we get the final
equation as under:

RA RB + RB RC + RC RA = 
R R R R R R R R R

R R R

1
2

2 3 3
2

1 2 2
2

1 3

1 2 3
2

+ +

+ +( )
(3.7)

In Eq. 3.7 dividing the LHS by RA, gives R3; dividing it by RB gives R2, and
doing the same with RC, gives R1.
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Thus R1 = 
R R R R R R

R

A B B C C A

C

+ +

R2 = 
R R R R R R

R

A B B C C A

B

+ +

and R3 = 
R R R R R R

R

A B B C C A

A

+ +

From the above results, we can say that a star connected circuit can be
transformed into a delta connected circuit and vice-versa.

From Fig. 3.2 and the above results,
we can conclude that any resistance of
the delta circuit is equal to the sum of
the products of all possible pairs of star
resistances divided by the opposite
resistance of the star circuit. Similarly,
any resistance of the star circuit is
equal to the product of two adjacent
resistances in the delta connected
circuit divided by the sum of all
resistances in delta connected circuit.

Fig. 3.2

Example 3.1 Obtain the star connected equivalent for the delta connected

circuit shown in Fig. 3.3.

Fig. 3.3

Solution The above circuit can be replaced by a star connected circuit as

shown in Fig. 3.4 (a).

Fig. 3.4
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Performing the D to Y transformation, we obtain

R1 = 
13 12

14 13 12

¥

+ +
, R2 = 

13 14

14 13 12

¥

+ +

and R3 = 
14 12

14 13 12

¥

+ +

\ R1 = 4 W, R2 = 4.66 W, R3 = 4.31 W

The star-connected equivalent is shown in Fig. 3.4 (b).

Example 3.2 Obtain the delta-connected equivalent for the star-connected

circuit shown in Fig. 3.5.

Fig. 3.5

Solution The above circuit can be replaced by a delta-connected circuit as

shown in Fig. 3.6 (a).

Performing the Y to D transformation, we get from the Fig. 3.6 (a)

R1 = 
20 10 20 5 10 5

20

¥ + ¥ + ¥
 = 17.5 W

Fig. 3.6
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R2 = 
20 10 20 5 10 5

10

¥ + ¥ + ¥
 = 35 W

and R3 = 
20 10 20 5 10 5

5

¥ + ¥ + ¥
 = 70 W

The equivalent delta circuit is shown in Fig. 3.6 (b).

3.2 SUPERPOSITION THEOREM

The superposition theorem states that in any linear network containing two or
more sources, the response in any element is equal to the algebraic sum of the
responses caused by individual sources acting alone, while the other sources are
non-operative; that is, while considering the effect of individual sources, other
ideal voltage sources and ideal current sources in the network are replaced by
short circuit and open circuit across their terminals. This theorem is valid only
for linear systems. This theorem can be better understood with a numerical
example.

Consider the circuit which contains two sources as shown in Fig. 3.7.
Now let us find the current passing through the 3 W resistor in the circuit.

According to superposition theorem, the current I2 due to the 20 V voltage source
with 5 A source open circuited = 20/(5 + 3) = 2.5 A. (See Fig. 3.8)

  

Fig. 3.7 Fig. 3.8

The current I5 due to 5 A source with 20 V source short circuited is

I5 = 5 ¥ 
5

3 5( )+
 = 3.125 A

The total current passing through the 3 W resistor is

(2.5 + 3.125) = 5.625 A

Let us verify the above result by applying nodal analysis.
The current passing in the 3 W resistor due to both sources should be 5.625 A.
Applying nodal analysis to Fig. 3.10, we have

V V-
+

20

5 3
 = 5

V
1

5

1

3
+L

NM
O
QP
 = 5 + 4
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V = 9 ¥ 
15

8
 = 16.875 V

The current passing through the 3 W resistor is equal to V/3

i.e. I = 
16 875

3

.
 = 5.625 A

So the superposition theorem is verified.
Let us now examine the power responses.
Power dissipated in the 3 W resistor due to voltage source acting alone

P20 = (I20)2R = (2.5)2 3 = 18.75 W

Power dissipated in the 3 W resistor due to current source acting alone

P5 = (I5)2R = (3.125)2 3 = 29.29 W

Power dissipated in the 3 W resistor when both the sources are acting
simultaneously is given by

P = (5.625)2 ¥ 3 = 94.92 W

From the above results, the superposition of P20 and P5 gives

P20 + P5 = 48.04 W

which is not equal to P = 94.92 W
We can, therefore, state that the superposition theorem is not valid for power

responses. It is applicable only for computing voltage and current responses.

Example 3.3 Find the voltage across the 2 W resistor in Fig. 3.11 by using the

super-position theorem.

Fig. 3.11

Solution Let us find the voltage across the 2 W resistor due to individual

sources. The algebraic sum of these voltages gives the total voltage across the

2 W resistor.

   

Fig. 3.9 Fig. 3.10
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Our first step is to find the voltage across the 2 W resistor due to the 10 V

source, while other sources are set equal to zero.

The circuit is redrawn as shown in Fig. 3.12 (a).

22 WW

2020 WW 55 WW

1010 WW

10 V10 V

AA

(a)(a) (b)(b)

22 WW

2020 WW

20 V20 V

55 WW

1010 WW

AA

Fig. 3.12

Assuming a voltage V at node ‘A’ as shown in Fig. 3.12 (a), the current

equation is

V V V-
+ +

10

10 20 7
 = 0

V [0.1 + 0.05 + 0.143] = 1

or V = 3.41 V

The voltage across the 2 W resistor due to the 10 V source is

V2 = 
V

7
 ¥ 2 = 0.97 V

Our second step is to find out the voltage across the 2 W resistor due to the 20
V source, while the other sources are set equal to zero. The circuit is redrawn as
shown in Fig. 3.12 (b).

Assuming voltage V at node A as shown in Fig. 3.12 (b), the current equation is

V V V-
+ +

20

7 20 10
 = 0

V [0.143 + 0.05 + 0.1] = 2.86

or V = 
2 86

0 293

.

.
 = 9.76 V

The voltage across the 2 W resistor due to the 20 V source is

V2 = 
V -F

H
I
K

20

7
 ¥ 2 = – 2.92 V

The last step is to find the voltage across the 2 W resistor due to the 2 A

current source, while the other sources are set equal to zero. The circuit is

redrawn as shown in Fig. 3.12 (c).

Fig. 3.12
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The current in the 2 W resistor = 2 ¥ 
5

5 8 67+ .

= 
10

13 67.
 = 0.73 A

The voltage across the 2 W resistor = 0.73 ¥ 2 = 1.46 V

The algebraic sum of these voltages gives the total voltage across the 2 W

resistor in the network

V = 0.97 – 2.92 – 1.46 = – 3.41 V

The negative sign of the voltage indicates that the voltage at ‘A’ is negative.

3.3 THEVENIN�S THEOREM

In many practical applications, it is always not necessary to analyse the complete
circuit; it requires that the voltage, current, or power in only one resistance of a
circuit be found. The use of this theorem provides a simple, equivalent circuit
which can be substituted for the original network. Thevenin’s theorem states that
any two terminal linear network having a number of voltage current sources and
resistances can be replaced by a simple equivalent circuit consisting of a single
voltage source in series with a resistance, where the value of the voltage source is
equal to the open circuit voltage across
the two terminals of the network, and
resistance is equal to the equivalent
resistance measured between the
terminals with all the energy sources
are replaced by their internal
resistances. According to Thevenin’s
theorem, an equivalent circuit can be
found to replace the circuit in Fig. 3.13. Fig. 3.13

In the circuit, if the load resistance 24 W is connected to Thevenin’s equivalent
circuit, it will have the same current through it and the same voltage across its
terminals as it experienced in the original circuit. To verify this, let us find the
current passing through the 24 W resistance due to the original circuit.

I24 = IT ¥ 
12

12 24+

where IT = 
10

2 12 24

10

10+
=

( || )
 = 1 A

\ I24 = 1 ¥ 
12

12 24+
 = 0.33 A

The voltage across the 24 W resistor = 0.33 ¥ 24 = 7.92 V. Now let us find
Thevenin’s equivalent circuit.
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Thevenin’s equivalent circuit is shown in Fig. 3.14.
Now let us find the current passing through the 24 W resistance and voltage

across it due to Thevenin’s equivalent circuit.

I24 = 
8 57

24 1 71

.

.+
 = 0.33 A

The voltage across the 24 W resistance is equal to 7.92 V. Thus, it is proved
that RL (= 24 W) has the same values of current and voltage in both the original
circuit and Thevenin’s equivalent circuit.

Example 3.4 Determine the Thevenin’s equivalent circuit across ‘AB’ for the

given circuit shown in Fig. 3.15.

25 V25 V
AA

BB

1010 WW 55 WW

50 V50 V

Fig. 3.15

Solution The complete circuit can be replaced by a voltage source in series

with a resistance as shown in Fig. 3.16 (a)

where VTh is the voltage across terminals AB and

RTh is the resistance seen into the terminals AB.

To solve for VTh, we have to find the voltage drops around the closed path as

shown in Fig. 3.16 (b).

We have 50 – 25 = 10I + 5I

or 15I = 25

\ I = 
25

15
 = 1.67 A

Voltage across 10 W = 16.7 V

Voltage drop across 5 W = 8.35 V

The Thevenin voltage is equal to the open circuit voltage across the terminals
‘AB’, i.e. the voltage across the 12 W resistor. When the load resistance is
disconnected from the circuit, the Thevenin voltage

VTh = 10 ¥ 
12

14
 = 8.57 V

The resistance into the open circuit
terminals is equal to the Thevenin
resistance

RTh = 
12 2

14

¥
 = 1.71 W

Fig. 3.14
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or VTh = VAB = 50 – V10

= 50 – 16.7 = 33.3 V

AA

BB

VVThTh

RRThTh

(a)(a)

AA
II

BB

1010 WW 55 WW

50 V50 V 25 V25 V

(b)(b)

Fig. 3.16

To find RTh, the two voltage sources

are removed and replaced with short

circuit. The resistance at terminals AB
then is the parallel combination of the

10 W resistor and 5 W resistor; or

RTh = 
10 5

15

¥
 = 3.33 W

Thevenin’s equivalent circuit is shown

in Fig. 3.16 (c).
Fig. 3.16

3.4 NORTON�S THEOREM

Another method of analysing the circuit is given by Norton’s theorem, which
states that any two terminal linear network with current sources, voltage sources
and resistances can be replaced by an equivalent circuit consisting of a current
source in parallel with a resistance. The value of the current source is the short
circuit current between the two terminals of the network and the resistance is the
equivalent resistance measured between the terminals of the network with all the
energy sources are replaced by their internal resistance.

According to Norton’s theorem, an equivalent circuit can be found to replace
the circuit in Fig. 3.17.

Fig. 3.17

In the circuit if the load resistance 6 W is connected to Norton’s equivalent
circuit, it will have the same current through it and the same voltage across its
terminals as it experiences in the original circuit. To verify this, let us find the
current passing through the 6 W resistor due to the original circuit.
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I6 = IT ¥ 
10

10 6+

where IT = 
20

5 10 6+ ( || )
 = 2.285 A

\ I6 = 2.285 ¥ 
10

16
 = 1.43 A

i.e. the voltage across the 6 W resistor is 8.58 V. Now let us find Norton’s
equivalent circuit. The magnitude of the current in the Norton’s equivalent circuit
is equal to the current passing through short circuited terminals as shown in
Fig. 3.18.

    

Fig. 3.18 Fig. 3.19

Here IN = 
20

5
 = 4 A

Norton’s resistance is equal to the parallel combination of both the 5 W and
10 W resistors

RN = 
5 10

15

¥
 = 3.33 W

The Norton’s equivalent source is shown in Fig. 3.19.
Now let us find the current passing through the 6 W resistor and the voltage

across it due to Norton’s equivalent circuit.

I6 = 4 ¥ 
3 33

6 3 33

.

.+
 = 1.43 A

The voltage across the 6 W resistor = 1.43 ¥ 6 = 8.58 V
Thus, it is proved that RL (= 6 W) has the same values of current and voltage in

both the original circuit and Norton’s equivalent circuit.

Example 3.5 Determine Norton’s equivalent circuit at terminals AB for the

circuit shown in Fig. 3.20.

Fig. 3.20
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Solution The complete circuit can be

replaced by a current source in parallel with

a single resistor as shown in Fig. 3.21 (a),

where IN is the current passing through the

short circuited output terminals AB and RN is
the resistance as seen into the output

terminals.

To solve for IN, we have to find the current

passing through the terminals AB as shown

in Fig. 3.21 (b).

From Fig. 3.21 (b), the current passing through the terminals AB is 4 A. The

resistance at terminals AB is the parallel combination of the 10 W resistor and the

5 W resistor,

or RN = 
10 5

10 5

¥

+
 = 3.33 W

Norton’s equivalent circuit is shown in Fig. 3.21 (c).

Fig. 3.21

3.5 RECIPROCITY THEOREM

In any linear bilateral network, if a single voltage source Va in branch ‘a’
produces a current Ib in branch ‘b’, then if the voltage source Va is removed and
inserted in branch ‘b’ will produce a current Ib in branch ‘a’. The ratio of
response to excitation is same for the two conditions mentioned above. This is
called the reciprocity theorem.

Consider the network shown in Fig. 3.22. AA¢ denotes input terminals and BB¢

denotes output terminals.

AA¢¢ AA¢¢

AA

AA

(a)(a) (b)(b)

VV VVII II

BB

BB¢¢
BB¢¢

BB

N.WN.W N.WN.W

Fig. 3.22

The application of voltage V across AA¢ produces current I at BB ¢. Now if the
positions of the source and responses are interchanged, by connecting the voltage

Fig. 3.21
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source across BB¢, the resultant current I will be at terminals AA¢. According to
the reciprocity theorem, the ratio of response to excitation is the same in both
cases.

Example 3.6 Verify the reciprocity theorem for the network shown in Fig. 3.23.

Fig. 3.23

Solution Total resistance in the circuit = 2 + [3 || (2 + 2 || 2)] = 3.5 W.

The current drawn by the circuit (See Fig. 3.24 (a))

IT = 
20

3 5.
 = 5.71 W

Fig. 3.24

The current in the 2 W branch cd is I = 1.43 A.

Applying the reciprocity theorem, by interchanging the source and response

we get (See Fig. 3.24 (b)).

Fig. 3.24

Total resistance in the circuit = 3.23 W.

Total current drawn by the circuit = 
20

3 23.
 = 6.19 A

The current in the branch ab is I = 1.43 A

If we compare the results in both cases, the ratio of input to response is the

same, i.e. (20/1.43) = 13.99.



3.14 Network Analysis

3.6 COMPENSATION THEOREM

The compensation theorem states that any element in the linear, bilateral
network, may be replaced by a voltage source of magnitude equal to the current
passing through the element multiplied by the value of the element, provided the
currents and voltages in other parts of the circuit remain unaltered. Consider the
circuit shown in Fig. 3.25 (a). The element R can be replaced by voltage source
V, which is equal to the current I passing through R multiplied by R as shown in
Fig. 3.25 (b).

Fig. 3.25

This theorem is useful in finding the changes in current or voltage when the
value of resistance is changed in the circuit. Consider the network containing a
resistance R shown in Fig. 3.26 (a). A small change in resistance R, that is
(R + DR), as shown in Fig. 3.26 (b) causes a change in current in all  branches.
This current increment in other branches is equal to the current produced by the
voltage source of voltage I. DR which is placed in series with altered resistance
as shown in Fig. 3.26 (c).

II II

RR

(a)(a) (b)(b) (c)(c)

RR

RR

DDRR

DDRR

I.I. RRDD

NN WW◊◊ NN WW◊◊ NN WW◊◊

Fig. 3.26

Example 3.7 Determine the current

flowing in the ammeter having 1W

internal resistance connected in series

with a 3 W resistor as shown in Fig. 3.27.

Solution The current flowing through

the 3 W branch is I3 = 1.11 A. If we

connect the ammeter having 1 W

resistance to the 3 W branch, there is a

change in resistance. The changes in Fig. 3.27
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currents in other branches then result

as if a voltage source of voltage I3 DR
= 1.11 ¥ 1 = 1.11 V is inserted in the
3 W branch as shown in Fig. 3.28.

Current due to this 1.11 V source is

calculated as follows.

Current I ¢3 = 0.17 A

This current is opposite to the

current I3 in the 3 W branch.

Hence the ammeter reading = (1.11 – 0.17) = 0.94 A.

3.7 MAXIMUM POWER TRANSFER THEOREM

Many circuits basically consist of sources, supplying voltage, current, or power
to the load; for example, a radio speaker system, or a microphone supplying the

Fig. 3.28

input signals to voltage pre-amplifiers.
Sometimes it is necessary to transfer
maximum voltage, current or power
from the source to the load. In the
simple resistive circuit shown in Fig.
3.29, Rs is the source resistance. Our
aim is to find the necessary conditions
so that the power delivered by the
source to the load is maximum.

It is a fact that more voltage is delivered to the load when the load resistance is
high as compared to the resistance of the source. On the other hand, maximum
current is transferred to the load when the load resistance is small compared to
the source resistance.

For many applications, an important consideration is the maximum power
transfer to the load; for example, maximum power transfer is desirable from the
output amplifier to the speaker of an audio sound system. The maximum Power
Transfer Theorem states that maximum power is delivered from a source to a
load when the load resistance is equal to the source resistance. In Fig. 3.29,
assume that the load resistance is variable.

Current in the circuit is I = VS/(RS + RL)

Power delivered to the load RL is P = I2RL = V 2
S RL/(RS + RL)2

To determine the value of RL for maximum power to be transferred to the load,
we have to set the first derivative of the above equation with respect to RL, i.e.

when 
dP

dRL

 equals zero.

dP

dRL

= 
d

dR

V

R R
R

L

S

S L

L

2

2( )+

L

N
M

O

Q
P

Fig. 3.29
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= 
V R R R R R

R R

S S L L S L

S L

2 2

4

2( ) ( ) ( )

( )

+ - +

+

m r

\ (RS + RL)2 – 2RL (RS + RL) = 0

R2
S + R2

L + 2RS RL – 2R2
L – 2RS RL = 0

\ RS = RL

So, maximum power will be transferred to the load when load resistance is
equal to the source resistance.

Example 3.8 In the circuit shown in Fig. 3.30 determine the value of load
resistance when the load resistance draws maximum power. Also find the value

of the maximum power.

Fig. 3.30

Solution In Fig. 3.30, the source delivers the maximum power when load

resistance is equal to the source resistance.

RL = 25 W

The current I = 50/(25 + RL ) = 50/50 = 1 A

The maximum power delivered to the load P = I 2RL

= 1 ¥ 25 = 25 W

3.8 DUALS AND DUALITY

In an electrical circuit itself there are pairs of terms which can be interchanged to
get new circuits. Such pair of dual terms are given below.

Current — Voltage

Open — Short

L — C

R — G

Series — Parallel

Voltage source — Current source

KCL — KVL

Consider a network containing R—L—C elements connected in series, and
excited by a voltage source as shown in Fig. 3.31.
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VV

RR LL

CC
   

II

VV

LLCCGG

Fig. 3.31 Fig. 3.32

The integrodifferential equation for the above network is

R i + L
di

dt C
idt+ z1

 = V

Similarly, consider a network containing R—L—C elements connected in
parallel and driven by a current source as shown in Fig. 3.32.

The integrodifferential equation for the network in Fig. 3.32 is

i = Gv + C
d

dt L
dt

v
v+ z1

If we observe both the equations, the solutions of these two equations are the
same. These two networks are called duals.

To draw the dual of any network, the following steps are to be followed.

1. In each loop of a network place a node; and place an extra node, called the
reference node, outside the network.

2. Draw the lines connecting adjacent nodes passing through each element,
and also to the reference node, by placing the dual of each element in the
line passing through original elements.

For example, consider the network shown in Fig. 3.33.

II

LL

CC RR22

RR11

Fig. 3.33

Our first step is to place the nodes in each loop and a reference node outside
the network.

Drawing the lines connecting the nodes passing through each element, and
placing the dual of each element as shown in Fig. 3.34 (a) we get a new circuit as
shown in Fig. 3.34 (b).
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RR22CC CC

VV

RR11

II

LL
22

33

11

GG11

GG22

LL

(a)(a)

GG11 GG22VV

LL11 22

33

CC

(b)(b)

Fig. 3.34

Example 9.9 Draw the dual network for the given network shown in Fig. 3.35.

Fig. 3.35

Solution Place nodes in each loop and one reference node outside the circuit.

Joining the nodes through each element, and placing the dual of each element in

the line, we get the dual circuit as shown in Fig. 3.36 (a).

10 V10 V

10 A10 A

5 H5 H

5 H5 H

5 F5 F

5 F5 F

22 WW

22 11 WW

11

22

33

11

WW

WW

Fig. 3.36 (a)

The dual circuit is redrawn as shown in Fig. 3.36 (b)

Fig. 3.36 (b)
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3.9 TELLEGEN�S THEOREM

Tellegen’s theorem is valid for any lumped network which may be linear or non-
linear, passive or active, time-varying or time-invarient. This theorem states that
in an arbitrary lumped network, the algebraic sum of the powers in all branches
at any instant is zero. All branch currents and voltages in that network must
satisfy Kirchhoff’s laws. Otherwise, in a given network, the algebraic sum of the
powers delivered by all sources is equal to the algebraic sum of the powers
absorbed by all elements. This theorem is based on Kirchhoff’s two laws, but not
on the type of circuit elements.

Consider two networks N1 and N2, having the same graph with different types
of elements between the corresponding nodes.

Then
K

b

=

Â
1

 v1K i2K = 0

and
K

b

=

Â
1

 v2K i1K = 0

To verify Tellegen’s theorem, consider two circuits having same graphs as
shown in Fig. 3.37.

Fig. 3.37

In Fig. 3.37 (a)

i1 = i2 = 2 A; i3 = 2 A

and v1 = – 2 V, v2 = – 8 V, v3 = 10 V

In Fig. 3.37 (b)

i 1
1 = i2

1 = 4 A; i1
3 = 4 A

and v
1
1 = – 20 V; v2

1 = 0 V; v3
1 = 20 V

Now
K =

Â
1

3

vK i
1
K = v1 i

1
1 + v2 i

1
2 + v3 i

1
3

= (– 2) (4) + (– 8) (4) + (10) (4) = 0

and
K =

Â
1

3

v
1
K iK = v1

1 
i1 + v2

1
i2 + v1

3 i3

= (– 20) (2) + (0) (2) + (20) (2) = 0
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Similarly,

K =

Â
1

3

vK iK = v1i1 + v2i2 + v3i3

= (– 2) (2) + (– 8) (2) + (10) (2) = 0

and
K =

Â
1

3

v
1
K i

1
K = (– 20) (4) + (0) (4) + (20) (4) = 0

This verifies Tellegen’s theorem.

3.10 MILLMAN�S THEOREM

Millman’s Theorem states that in any network, if the voltage sources V1, V2, L
Vn in series with internal resistances R1, R2, L Rn, respectively, are in parallel,
then these sources may be replaced by a single voltage source V¢in series with R¢

as shown in Fig. 3.38.

RR11 RR¢¢

VV11 VV¢¢

VV22 VVnn

RR22 RRnn

fifi

Fig. 3.38

where V = 
V G V G V G

G G G

n n

n

1 1 2 2

1 2

+ +

+ + +

L

L

Here Gn is the conductance of the nth branch,

and R ¢ = 
1

1 2G G Gn+ + +L

A similar theorem can be stated for n current sources having internal
conductances which can be replaced by a single current source I ¢ in parallel with
an equivalent conductance.

II11

GG11 GG22 GGnn

II22 IInn II¢¢

GG¢¢

fifi

Fig. 3.39
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where I ¢ = 
I R I R I R

R R R

n n

n

1 1 2 2

1 2

+ +

+ + +

L

L

and G ¢ = 
1

1 2R R Rn+ + +L

Example 3.10 Calculate the current I shown in Fig. 3.40 using Millman’s

Theorem.

Fig. 3.40

Solution According to Millman’s Theorem, the two voltage sources can be

replaced by a single voltage source in series with resistance as shown in

Fig. 3.41.

We have V ¢ = 
V G V G

G G
1 1 2 2

1 2

+

+

= 
10 1 2 20 1 5

1 2 1 5

( / ) ( / )

/ /

+

+
 = 12.86 V

and R ¢ = 
1 1

1 2 1 51 2G G+
=

+/ /
 = 1.43 W

Therefore, the current passing through the 3 W resistor is

I = 
12 86

3 143

.

.+
 = 2.9 A

Additional Solved Problems

Problem 3.1 Determine the current drawn by the circuit shown in Fig. 3.42.

Fig. 3.42

Fig. 3.41
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Solution To simplify the network, the star circuit in Fig. 3.42 is converted into
a delta circuit as shown under.

Fig. 3.43

R1 = 
4 3 4 2 3 2

2

¥ + ¥ + ¥
 = 13 W

R2 = 
4 3 4 2 3 2

4

¥ + ¥ + ¥
 = 6.5 W

R3 = 
4 3 4 2 3 2

3

¥ + ¥ + ¥
 = 8.7 W

The original circuit is redrawn as shown in Fig. 3.43 (b).

Fig. 3.43

It is further simplified as shown in Fig. 3.43 (c). Here the resistors 5 W and 13
W are in parallel, 6 W and 6.5 W are in parallel, and 8.7 W and 2 W are in parallel.

50 V50 V

AA

BB
(c)(c)

33 WW 3.63.6 WW

3.13.1 WW 1.61.6 WW 66 WW

Fig. 3.43
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In the above circuit the resistors 6 W and 1.6 W are in parallel, the resultant of

which is in series with 3.6 W resistor and is equal to 3 6
6 1 6

7 6
.

.

.
+

¥L
NM

O
QP
 = 4.9 W as

shown in Fig. 3.43 (d).

50 V50 V

33 WW

3 .13 .1 WW 4.9 W4.9 W

(d)(d)

 

Fig. 3.43

In the above circuit 4.9 W and 3.1 W resistors are in parallel, the resultant of
which is in series with 3 W resistor.

Therefore, the total resistance RT = 3 + 
3 1 4 9

8

. .¥
 = 4.9 W

The current drawn by the circuit IT = 50/4.9 = 10.2 A (See Fig. 3.43 (e)).

Problem 3.2 In Fig. 3.44 determine the equivalent resistance by using star-
delta transformation.

Fig. 3.44

Solution In Fig. 3.44, we have two star circuits, one consisting of 5 W, 3 W
and 4 W resistors, and the other consisting of 6 W, 4 W and 8 W resistors. We
convert the star circuits into delta circuits, so that the two delta circuits are in
parallel.

In Fig. 3.45 (a)

R1 = 
5 3 4 3 5 4

4

¥ + ¥ + ¥
 = 11.75 W

R2 = 
5 3 4 3 5 4

3

¥ + ¥ + ¥
 = 15.67 W

R3  = 
5 3 4 3 5 4

5

¥ + ¥ + ¥
 = 9.4 W
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Fig. 3.45

Similarly, in Fig. 3.45 (b)

R1 = 
6 4 4 8 8 6

8

¥ + ¥ + ¥
 = 13 W

R2 = 
6 4 4 8 8 6

4

¥ + ¥ + ¥
 = 26 W

R3 = 
6 4 4 8 8 6

6

¥ + ¥ + ¥
 = 17.3 W

Fig. 3.45

The simplified circuit is shown in Fig. 3.45 (c)

Fig. 3.45

In the above circuit, the three resistors 10 W, 9.4 W and 17.3 W are in parallel.
Equivalent resistance = (10 || 9.4 || 17.3) = 3.78 W

Resistors 13 W and 11.75 W are in parallel
Equivalent resistance = (13 || 11.75) = 6.17 W
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Resistors 26 W and 15.67 W are in parallel

Equivalent resistance = (26 || 15.67) = 9.78 W

The simplified circuit is shown in Fig. 3.45 (d)

Fig. 3.45

From the above circuit, the equivalent resistance is given by

R eq = (9.78) || (6.17 + 3.78)

= (9.87) || (9.95) = 4.93 W

Problem 3.3 For the resistive network shown in Fig. 3.46, find the current in
each resistor, using the superposition principle.

Fig. 3.46

Solution The current due to the 50 V source can be found in the circuit shown
in Fig. 3.47 (a).

  
33 WW¢¢

1010 WW 55 WW

2525VV 2

++ +

–– –

ll ¢¢1010 ll 33¢¢ ll 55¢¢

(b)(b)

Fig. 3.47

Total resistance RT = 10 + 
5 3

8

¥
 = 11.9 W

Current in the 10 W resistor I10 = 
50

11 9.
 = 4.2 A
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Current in the 3 W resistor I3 = 4.2 ¥ 
5

8
 = 2.63 A

Current in the 5 W resistor I5 = 4.2 ¥ 
3

8
 = 1.58 A

The current due to the 25 V source can be found from the circuit shown in
Fig. 3.47 (b).

Total resistance RT = 5 + 
10 3

13

¥
 = 7.31 W

Current in the 5 W resistor I ¢5 = 
25

7 31.
 = 3.42 A

Current in the 3 W resistor I ¢3 = 3.42 ¥ 
10

13
 = 2.63 A

Current in the 10 W resistor I ¢10 = 3.42 ¥ 
3

13
 = 0.79 A

According to superposition principle

Current in the 10 W resistor = I10 -I ¢10 = 4.2 – 0.79 = 3.41 A

Current in the 3 W resistor = I3 + I ¢3 = 2.63 + 2.63 = 5.26 A

Current in the 5 W resistor = I ¢5 – I5 = 3.42 – 1.58 = 1.84 A

When both sources are operative, the directions of the currents are shown in
Fig. 3.47 (c).

33 WW

55 WW1010 WW

2525 VV5050VV

++ ++

–– ––

3.41 A3.41 A
3.26 A3.26 A

1.84 A1.84 A

(c)(c)

Fig. 3.47

Problem 3.4 Determine the voltage across the terminals AB in the circuit
shown in Fig. 3.48.

Fig. 3.48

Solution Voltage across AB is VAB = V10 + V5.

To find the voltage across the 5 W resistor, we have to use the superposition
theorem.
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Voltage across the 5 W resistor V5 due to the 6 V source, when other sources
are set equal to zero, is calculated using Fig. 3.49 (a).

Fig. 3.49

V 5 = 6 V

Voltage across the 5 W resistor V ¢5 due to the 10 V sources, when other sources
are set equal to zero, is calculated using Fig. 3.49 (b).

V ¢5 = 0

Voltage across the 5 W resistor V ¢¢¢5 due to the 5 A source only, is calculated
using Fig. 3.49 (c).

V ¢¢¢5 = 0

According to the superposition theorem,

Total voltage across the 5 W resistor

= 6 + 0 + 0 = 6 V.

So the voltage across terminals AB is

VAB = 10 + 6 = 16 V

Problem 3.5 Use Thevenin’s theorem to find the current in 3 W resistor in
Fig. 3.50.

Solution Current in the 3 W resistor can be found by using Thevenin’s
theorem.

33 WW1010 WW

55 WW 22 WW

5050 VV

++

––

Fig. 3.50

In circuit shown in Fig. 3.51 (a) can be replaced by a single voltage source in
series with a resistor as shown in Fig. 3.51 (b).

Fig. 3.49
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Fig. 3.51

VTh = V
AB

 = 
50

15
 ¥ 10 = 33.3 V

RTh = R
AB

, the resistance seen into the terminals AB

R
AB

= 2 + 
5 10

15

¥
 = 5.33 W

The 3 W resistor is connected to the Thevenin equivalent circuit as shown in

Fig. 3.51 (c).

Current passing through the 3 W resistor

I3 = 
33 3

5 33 3

.

. +
 = 4.00 A

Fig. 3.51

Problem 3.6 Use Thevenin’s theorem to find the current through the 5 W

resistor in Fig. 3.52.

Fig. 3.52
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Solution Thevenin’s equivalent circuit can be formed by obtaining the voltage
across terminals AB as shown in Fig. 3.53 (a).

Fig. 3.53

Current in the 6 W resistor I6 = 
100

16
 = 6.25 A

Voltage across the 6 W resistor V6 = 6 ¥ 6.25 = 37.5 V

Current in the 8 W resistor I8 = 
100

23
 = 4.35 A

Voltage across the 8 W resistor is V8 = 4.35 ¥ 8 = 34.8 V

Voltage across the terminals AB is V
AB

 = 37.5 – 34.8 = 2.7 V

The resistance as seen into the terminals R
AB

= 
6 10

6 10

8 15

8 15

¥

+
+

¥

+

= 3.75 + 5.22 = 8.97 W

Thevenin’s equivalent circuit is shown in Fig. 3.53 (b).

Current in the 5 W resistor I5 = 
2 7

5 8 97

.

.+
 = 0.193 A

Problem 3.7 Find Thevenin’s equivalent circuit for the circuit shown in
Fig. 3.54.

1010 WW 33 WW

66 WW

AA

BB

++

++
––

––

50 V50 V

10 V10 V

Fig. 3.54

Solution Thevenin’s voltage is equal to the voltage across the terminals AB.

\ V
AB

= V3 + V6 + 10

Here the current passing through the 3 W resistor is zero.
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Hence V3 = 0

By applying Kirchhoff’s law we have

Fig. 3.55

50 – 10 = 10I + 6I

I = 
40

16
 = 2.5 A

The voltage across 6 W is V6 with polarity as shown in Fig. 3.55 (a), and is
given by

V6 = 6 ¥ 2.5 = 15 V

The voltage across terminals AB is V
AB

 = 0 + 15 + 10 = 25 V.
The resistance as seen into the terminals AB

R
AB

= 3 + 
10 6

10 6

¥

+
 = 6.75 W

Thevenin’s equivalent circuit is shown in Fig. 3.55 (b).

Problem 3.8 Determine the Thevenin’s equivalent circuit across terminals
AB for the circuit in Fig. 3.56.

Fig. 3.56

Solution The given circuit is redrawn as shown in Fig. 3.57 (a).

Voltage V
AB

 = V2 + V1

Applying Kirchhoff’s voltage law to loop 1 and loop 2, we have the following

Voltage across the 2 W resistor V2 = 2 ¥ 
10

7
 = 2.85 V

Voltage across the 1 W resistor V1 = 1 ¥ 
5

5
 = 1 V
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\ V
AB

= V2 + V1

= 2.85 – 1 = 1.85 V

The resistance seen into the
terminals AB

R
AB

= (5 || 2) + (4 || 1)

= 
5 2

5 2

4 1

4 1

¥

+
+

¥

+

= 1.43 + 0.8 = 2.23 W

Thevenins’s equivalent circuit is shown in Fig. 3.57 (b).

Problem 3.9 Determine Norton’s equivalent circuit for the circuit shown in
Fig. 3.58.

44 WW

33 WW

5050 VV

++

––

AA

BB

Fig. 3.58

Solution Norton’s equivalent circuit is given by Fig. 3.59 (a).

where I
N

= Short circuit current at terminals AB

R
N

= Open circuit resistance at terminals AB

Fig. 3.57

Fig. 3.59

44 WW

55 WW

22 WW 11 WW

++ ++ ++

++

–– –– ––

––

10 V10 V 5 V5 Vll11 ll22VV22 VV11

(a)(a)

AA BB

2.232.23 WW

AA

BB

1.85 V1.85 V ++
––

(b)(b)
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The current I
N
 can be found as shown in Fig. 3.59 (b).

I
N

= 
50

3
 = 16.7 A

Norton’s resistance can be found from Fig. 3.59 (c)

R
N

= R
AB

 = 
3 4

3 4

¥

+
 = 1.71 W

Norton’s equivalent circuit for the given circuit is shown in Fig. 3.59 (d).

Fig. 3.59

Problem 3.10 Determine Norton’s equivalent circuit for the given circuit
shown in Fig. 3.60.

55 WW

44 WW33 WW

55 WW22 WW

AA

BB

25 A25 A

Fig. 3.60

Solution The short circuit current at terminals AB can be found from
Fig. 3.61 (a) and Norton’s resistance can be found from Fig. 3.61 (b).

Fig. 3.61



Useful Theorems in Circuit Analysis 3.33

The current I
N
 is same as the current in the 3 W resistor or 4 W resistor.

I
N

= I3 = 25 ¥ 
2

7 2+
 = 5.55 A

The resistance as seen into the terminals
AB is

R
AB

= 5 || (4 + 3 + 2)

= 
5 9

5 9

¥

+
 = 3.21 W

Norton’s equivalent circuit is shown in Fig. 3.61 (c).

Problem 3.11 Determine the current flowing through the 5 W resistor in the
circuit shown in Fig. 3.62 by using Norton’s theorem.

Fig. 3.62

Solution The short circuit current at terminals AB can be found from
the circuit as shown in Fig. 3.63 (a). Norton’s resistance can be found from
Fig. 3.63 (b).

Fig. 3.63

In Fig. 3.63 (a), the current I
N
 = 30 A.

The resistance in Fig. 3.68 (b)

R
AB

= 5 || 2
1 1

2
+

¥F
H

I
K

= 5 || (2.5) = 
5 2 5

7 5

¥ .

.
 = 1.67 W

Norton’s equivalent circuit is shown in Fig. 3.63 (c)

Fig. 3.61

Fig. 3.63
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.\ The current in the 5 W resistor

I5 = 30 ¥ 
1 67

6 67

.

.
 = 7.51 A

Problem 3.12 Replace the given network shown in Fig 3.64 by a single
current source in parallel with a resistance.

Fig. 3.64

Solution Here, using superposition technique and Norton’s theorem, we can
convert the given network.

We have to find a short circuit current at terminals AB in Fig. 3.65 (a) as
shown

The current I ¢
N
 is due to the 10 A source. I ¢

N
 = 10 A

The current I ¢¢
N
 is due to the 20 V source (See Figs 3.65 (b) and (c))

I ¢¢
N

= 
20

6
 = 3.33 A

The current I
N
 is due to both the sources

(c)(c)

33 WW

66 WW

20 V20 V

––

++
ll NN¢¢¢¢

Fig. 3.65

I
N

= I ¢
N
 + I¢ ¢

N

= 10 + 3.33 = 13.33 A
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The resistance as seen from terminals AB

R
AB

= 6 W (from the Fig. 3.65 (d))

Hence, the required circuit is as shown in Fig. 3.65 (e).

Fig. 3.65

Problem 3.13 Using the compensation theorem, determine the ammeter
reading where it is connected to the 6 W resistor as shown in Fig. 3.66. The
internal resistance of the ammeter is 2 W.

Solution The current flowing through the 5 W branch

I5 = 20 ¥ 
3

3 6 5+ .
 = 6.315 A

55 WW

33 WW 22 WW

66 WW

66 WW

20 A20 A

AA

Fig. 3.66

So the current in the 6 W branch

I6 = 6.315 ¥ 
2

6 2+
 = 1.58 A

If we connect the ammeter having 2 W internal resistance to the 6 W branch,
there is a change in resistance. The changes in currents in other branches results
if a voltage source of voltage I6 DR = 1.58 ¥ 2 = 3.16 V is inserted in the 6 W
branch as shown in Fig. 3.67.

55 WW66 WW

33 WW 22 WW22 WW

66 WW

++

––

3.16 V3.16 V

Fig. 3.67
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The current due to this 3.16 V source is calculated.
The total impedance in the circuit

R
T

= {[(6 || 3) + 5] || [2]} + {6 + 2}

= 9.56 W

The current due to 3.16 V source

I ¢6 = 
3 16

9 56

.

.
 = 0.33 A

This current is opposite to the current I6 in the 6 W branch.

Hence, the ammeter reading = (1.58 – 0.33)

= 1.25 A

Problem 3.14 Verify the reciprocity theorem for the given circuit shown in
Fig. 3.68.

Fig. 3.68

Solution In Fig. 3.68, the current in the 5 W resistor is

I5 = I2 ¥ 
4

8 4+
 = 2.14 ¥ 

4

12
 = 0.71 A

where I2 = 
10

RT

and R
T

= 4.67

\ I2 = 
10

4 67.
 = 2.14 A

We interchange the source and response as shown in Fig. 3.69.

Fig. 3.69
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In Fig. 3.69, the current in 2 W resistor is

I2 = I3 ¥ 
4

4 2+

where I3 = 
10

RT

and R
T

= 9.33 W

\ I3 = 
10

9 33.
 = 1.07 A

I2 = 1.07 ¥ 
4

6
 = 0.71 A

In both cases, the ratio of voltage to current is 
10

0 71.
 = 14.08.

Hence the reciprocity theorem is verified.

Problem 3.15 Verify the reciprocity theorem in the circuit shown in
Fig. 3.70.

Fig. 3.70

Solution The voltage V across the 3 W resistor is

V = I3 ¥ R

where I3 = 10 ¥ 
2

2 3+
 = 4 A

\ V = 4 ¥ 3 = 12 V

We interchange the current source and response as shown in Fig. 3.71.

Fig. 3.71



3.38 Network Analysis

To find the response, we have to find the voltage across the 2 W resistor

V = I2 ¥ R

where I2 = 10 ¥ 
3

5
 = 6 A

\ V = 6 ¥ 2 = 12 V

In both cases, the ratio of current to voltage is the same, i.e. it is equal to
0.833. Hence the reciprocity theorem is verified.

Problem 3.16 Determine the maximum power delivered to the load in the
circuit shown in Fig. 3.72.

Fig. 3.72

Solution For the given circuit, let us find out the Thevenin’s equivalent circuit
across AB as shown in Fig. 3.73 (a).

The total resistance is

R
T

= [{(3 + 2) || 5} + 10]

= [2.5 + 10] = 12.5 W

Total current drawn by the circuit is

I
T

= 
50

12 5.
 = 4 A

The current in the 3 W resistor is

I3 = I
T
 ¥ 

5

5 5

4 5

10+
=

¥
 = 2 A

Thevenin’s voltage V
AB

 = V3 = 3 ¥ 2 = 6 V
Thevenin’s resistance RTh = R

AB
 = [((10 || 5) + 2) || 3] W = 1.92 W

Thevenin’s equivalent circuit is shown in Fig. 3.73 (b).

1010 WW

33 WW

22 WW

55 WW50 V50 V

++

––

AA

BB

1.921.92 WW

6 V6 V

++

––

RRLL

(a)(a) (b)(b)

Fig. 3.73
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From Fig. 3.73 (b), and maximum power transfer theorem

R
L

= 1.92 W

\ Current drawn by load resistance R
L

I
L

= 
6

1 92 1 92. .+
 = 1.56 A

Power delivered to the load = I 2
L
 R

L

= (1.56)2 ¥ 1.92 = 4.67 W

Problem 3.17 Determine the load resistance to receive maximum power from
the source; also find the maximum power delivered to the load in the circuit
shown in Fig. 3.74.

Fig. 3.74

Solution For the given circuit, we find out the Thevenin’s equivalent circuit.
Thevenin’s voltage across terminals A and B

V
AB

= V
A
 – V

B

Fig. 3.75

Voltage at point A is V
A
 = 100 ¥ 

30

30 10+
 = 75 V

Voltage at point B is V
B
 = 100 ¥ 

40

40 20+
 = 66.67 V

\ V
AB

= 75 – 66.67 = 8.33 V

To find Thevenin’s resistance the circuit in Fig. 3.75 (a) can be redrawn as
shown in Fig. 3.75 (b).
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Fig. 3.75

From Fig. 3.75 (b), Thevenin’s resistance

R
AB

= [(30 || 10) + (20 || 40)]

= [7.5 + 13.33] = 20.83 W

Thevenin’s equivalent circuit is shown in Fig. 3.75 (c).

Fig. 3.75

According to maximum power transfer theorem

R
L

= 20.83 W

Current drawn by the load resistance

I
L

= 
8 33

20 83 20 83

.

. .+
 = 0.2 A

\ Maximum power delivered to load = I 2
L
R

L

= (0.2)2 (20.83) = 0.833 W

Problem 3.18 Draw the dual circuit for the given circuit shown in Fig. 3.76.

Fig. 3.76

Solution Our first step is to place nodes in each loop, and a reference node
outside the circuit.
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Join the nodes with lines passing through each element and connect these lines
with dual of each element as shown in Fig. 3.77 (a).

The dual circuit of the given circuit is shown in Fig. 3.77 (b).

(a)

Fig. 3.77

Problem 3.19 Draw the dual circuit of the Fig. 3.78 given below.

Fig. 3.78

Solution Our first step is to mark nodes in each of the loop and a reference
node outside the circuit.

Join the nodes with lines passing through each element and connect these lines
with dual of each element as shown in Fig. 3.79 (a).

The dual circuit of given circuit is shown in Fig. 3.79 (b).
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Fig. 3.79

Problem 3.20 For the circuit shown in Fig. 3.80, find the current i4 using the
superposition principle.

++

++

––

––

ii44

22ii44

44 WW 22 WW

5 A5 A
20 V20 V

Fig. 3.80

Solution The circuit can be redrawn as shown in Fig. 3.81 (a).

The current i ¢4 due to the 20 V source can be found using the circuit shown in
Fig. 3.81 (b).

Applying Kirchhoff’s voltage law

– 20 + 4i ¢4 + 2i ¢4 + 2i ¢4 = 0

i ¢4 = 2.5 A
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Fig. 3.81

The current i ¢¢4 due to the 5 A source can be found using the circuit shown in
Fig. 3.81 (c).

By assuming V ¢¢ at node shown in Fig. 3.81 (c) and applying Kirchhoff’s
current law

¢¢
- +

¢¢ - ¢¢V V i

4
5

2

2
4 = 0

I¢4 = 
- ¢¢V

4

From the above equations

i¢¢4 = – 1.25 A

\ Total current i4 = i¢4 + i¢¢4 = 1.25 A

Problem 3.21 Determine the current through the 2 W resistor as shown in the
Fig 3.82 by using the superposition theorem.

Fig. 3.82

Solution The current I ¢ due to the 5 V source can be found using the circuit
shown in Fig. 3.83 (a).

++

––

22 WW

33 WW 33 WW

++

––

VV 33¢¢

++ ––
5 V5 V

44VV¢¢33

II¢¢

++

––

44 AA

44 WW

22 WW

++

––

VV 33¢¢¢¢

VV 33¢¢¢¢

44VV¢¢¢¢33

II¢¢¢¢

(a)(a) (b)(b)

Fig. 3.83

Fig. 3.81

22ii44¢¢¢¢
++
––

5 A5 A44 WW

22 WW
ii44¢¢¢¢

VV ¢¢¢¢

(c)(c)
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By applying Kirchhoff’s voltage law, we have

3I ¢ + 5 + 2I¢ – 4V¢3 = 0

we know V ¢3 = – 3I ¢

From the above equations

I ¢ = – 0.294 A

The current I ¢¢ due to the 4 A source can be found using the circuit shown in
Fig. 3.83 (b).

By assuming node voltage V ¢¢3, we find

I¢ = 
¢¢+ ¢¢V V3 34

2

By applying Kirchhoff’s current law at node we have

¢¢
- +

¢¢+ ¢¢V V V3 3 3

3
4

4

2
 = 0

V ¢¢3 = 1.55 V

\ I ¢¢ = 
¢¢+ ¢¢V V3 34

2
 = 3.875 A

Total current in the 2 W resistor I = I ¢ + I ¢¢ = – 0.294 + 3.875

\ I = 3.581 A

Problem 3.22 For the circuit shown in Fig. 3.84, obtain Thevenin’s equivalent
circuit.

Fig. 3.84

Solution The circuit consists of a dependent source. In the presence of
dependent source RTh can be determined by finding v

OC
 and i

SC

\ RTh = 
vOC

SCi

Open circuit voltage can be found from the circuit shown in Fig. 3.85 (a)
Since the output terminals are open, current passes through the 2 W branch only.

v
x

= 2 ¥ 0.1 v
x
 + 4

v
x

= 
4

0 8.
 = 5 V

Short circuit current can be calculated from the circuit shown in Fig. 3.85 (b).
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Fig. 3.85

Since v
x
 = 0, dependent current source is opened.

The current i
SC

= 
4

2 3+
 = 0.8 A

\  RTh = 
v

OC

SCi
=

5

0 8.
 = 6.25 W

The Thevenin’s equivalent circuit is shown in
Fig. 3.85 (c).

Problem 3.24 For the circuit shown in Fig. 3.86, find the current i2 in the 2 W
resistor by using Thevenin’s theorem.

++

––
44VVii

22 WW

22 WW

++
––

II22

aa

bb

VVii

5 V5 V

Fig. 3.86

Solution From the circuit, there is open voltage at terminals ab which is

V
OC

= – 4 V
i

where V
i
= – 4V

i
 – 5

\ V
i
= – 1

Thevenin’s voltage V
OC

 = 4 V

From the circuit, short circuit current is determined by shorting terminals a and b.

Applying Kirchhoff’s voltage law, we have

4V
i
 + 2i

SC
= 0

We know V
i
= – 5

Substituting V
i
 in the above equation,

we get
i
SC

= 10 A

\ RTh = 
V

i

OC

SC

=
4

10
 = 0.4 W

The Thevenin’s equivalent circuit is as shown in Fig. 3.87.

Fig. 3.87

Fig. 3.85
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The current in the 2 W resistor i2 = 
4

2 4.
 = 1.67 A

Problem 3.25 For the circuit shown in Fig. 3.88, find Norton’s equivalent
circuit.

Fig. 3.88

Solution In the case of circuit having only dependent sources (without
independent sources), both V

OC
 and i

SC
 are zero. We apply a 1 A source

externally and determine the resultant voltage across it, and then find RTh = 
V

1
 or

we can also apply the 1 V source externally and determine the current through it
and then we find RTh = 1/i.

By applying the 1 A source externally as shown in Fig. 3.89 (a).

Fig. 3.89

and application of Kirchhoff’s current law, we have

V V Vx x x

5

4

2
+

+
 = 1

V
x
 = 0.37 V

The current in the 4 W branch is

V Vx -

4
 = – 1

Substituting V
x
 in the above equation, we get

V = 4.37 V

\ RTh = 
V

1
 = 4.37 W
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If we short circuit the terminals a and b we have

V Vx x- 4

2
= 0

V
x

= 0

I
SC

= 
Vx

4
 = 0

Therefore, Norton’s equivalent circuit is as shown in Fig. 3.89 (b).

Practice Problems

3.1 For the bridge network shown in Fig. 3.90, determine the total resistance
seen from terminals AB by using star-delta transformation.

3.2 Calculate the voltage across AB in the network shown in Fig. 3.91 and
indicate the polarity of the voltage using star-delta transformation.

 

Fig. 3.90 Fig. 3.91

3.3 Find the current I in the circuit shown in Fig. 3.92 by using the superposi-
tion theorem.

Fig. 3.92

3.4 Determine the current I in the circuit shown in Fig. 3.93 using the superpo-
sition theorem.
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Fig. 3.93

3.5 Calculate the new current in the circuit shown in Fig. 3.94 when the resis-
tor R3 is increased by 30%.

Fig. 3.94

3.6 Find the Thevenin’s and Norton’s equivalents for the circuit shown in
Fig. 3.95 with respect to terminals ab.

Fig. 3.95

3.7 Determine the Thevenin and Norton’s equivalent circuits with respect to
terminals ab for the circuit shown in Fig. 3.96.

Fig. 3.96

3.8 By using source transformation or any other technique, replace the circuit
shown in Fig. 3.97 between terminals ab with the voltage source in series
with a single resistor.
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Fig. 3.97

3.9 For the circuit shown in Fig. 3.98, what will be the value of R
L
 to get the

maximum power? What is the maximum power delivered to the load?
What is the maximum voltage across the load? What is the maximum cur-
rent in it?

Fig. 3.98

3.10 For the circuit shown in Fig. 3.99 determine the value of R
L
 to get the

maximum power. Also find the maximum power transferred to the load.
3.11 The circuit shown in Fig. 3.100 consists of dependent source. Use the su-

perposition theorem to find the current I in the 3 W resistor.

Fig. 3.99 Fig. 3.100

3.12 Obtain the current passing through 2 W resistor in the circuit shown in
Fig. 3.101 by using the superposition theorem.

22ii22

22 WW

11 WW

ii22

++
––

3 A3 A10 V10 V
++

––

Fig. 3.101
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3.13 Determine the current passing through 2 W resistor by using Thevenin’s
theorem in the circuit shown in Fig. 3.102.

3.14 Find Thevenin’s equivalent circuit for the network shown in Fig. 3.103
and hence find the current passing through the 10 W resistor.

4040 WW2020 WW

22 WW1010 II11

II11

––

++
50 V50 V

++
––

Fig. 3.102 Fig. 3.103

3.15 Obtain Norton’s equivalent circuit of the network shown in Fig. 3.104.

Fig. 3.104

Objective-type Questions

1. Three equal resistance of 3 W are connected in star. What is the resistance
in one of the arms in an equivalent delta circuit?

(a) 10 W (b) 3 W
(c) 9 W (d) 27 W

2. Three equal resistances of 5 W are connected in delta. What is the resis-
tance in one of the arms of the equivalent star circuit?

(a) 5 W (b) 1.33 W
(c) 15 W (d) 10 W

3. Superposition theorem is valid only for
(a) linear circuits
(b) non-linear circuits
(c) both linear and non-linear
(d) neither of the two

4. Superposition theorem is not valid for
(a) voltage responses (b) current responses
(c) power responses (d) all the three
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5. Determine the current I in the circuit shown in Fig. 3.105. It is

Fig. 3.105

(a) 2.5 A (b) 1 A
(c) 3.5 A (d) 4.5 A

6. Reduce the circuit shown in Fig. 3.106 to its Thevenin equivalent circuit
as viewed from terminal A and B.

(a) The circuit consists of 15 V
battery in series with 100 kW

(b) The circuit consists of 15 V
battery in series with 22 kW

(c) The circuit consists of 15 V
battery in series with paral-
lel combination of 100 kW
and 22 kW

(d) None of the above
Fig. 3.106

7. Norton’s equivalent circuit consists of
(a) voltage source in parallel with impedance
(b) voltage source in series with impedance
(c) current source in series with impedance
(d) current source in parallel with impedance

8. The reciprocity theorem is applicable to
(a) linear networks only (b) bilateral networks only
(c) linear/bilateral networks (d) neither of the two

9. Compensation theorem is applicable to
(a) linear networks only (b) non-linear networks only
(c) linear and non-linear networks (d) neither of the two

10. Maximum power is transferred when load impedance is
(a) equal to source impedance
(b) equal to half of the source impedance
(c) equal to zero
(d) none of the above

11. In the circuit shown in Fig. 3.107,
what is the maximum power
transferred to the load

(a) 5 W (b) 2.5 W
(c) 10 W (d) 25 W Fig. 3.107
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22 WW 33 WW

0.10.1 VVxx22 VV

++

––

VVxx
++
––

Fig. 3.108

Fig. 3.109

12. Indicate the dual of series network consists of voltage source, capacitance,
inductance in

(a) parallel combination of resistance, capacitance and inductance
(b) series combination of current source, capacitance and inductance.
(c) parallel combination of current source, inductance and capacitance
(d) none of the above

13. When the superposition theorem is applied to any circuit, the dependent
voltage source in that circuit is always

(a) opened (b) shorted
(c) active (d) none of the above

14. Superposition theorem is not applicable to networks containing.
(a) non-linear elements
(b) dependent voltage sources
(c) dependent current sources
(d) transformers

15. Thevenins voltage in the circuit
shown in Fig. 3.108 is

(a) 3 V
(b) 2.5 V
(c) 2 V
(d) 0.1 V

16. Norton’s current in the circuit
shown in Fig. 3.109 is

(a)
2

5

i

(b) zero
(c) infinite
(d) None

17. A dc circuit shown in Fig. 3.110 has a voltage V, a current source I and
several resistors. A particular resistor R dissipates a power of 4 W when V
alone is active. The same resistor dissipates a power of 9 W when I alone
is active. The power dissipated by R when both sources are active will be

++
––

VV RR

II

ResistiveResistive
NetworkNetwork

Fig. 3.110

(a) 1 W (b) 5 W
(c) 13 W (d) 25 W



4Chapter

Introduction to

Alternating Currents

and Voltages

4.1  THE SINE WAVE

Many a time, alternating voltages and currents are represented by a sinusoidal

wave, or simply a sinusoid. It is a very common type of alternating current (ac)

and alternating voltage. The sinusoidal wave is generally referred to as a sine

wave. Basically an alternating voltage (current) waveform is defined as the

voltage (current) that fluctuates with time periodically, with change in polarity

and direction. In general, the sine wave is more useful than other waveforms, like

pulse, sawtooth, square, etc. There are a number of reasons for this. One of the

reasons is that if we take any second order system, the response of this system is

a sinusoid. Secondly, any periodic waveform can be written in terms of sinusoidal

function according to Fourier theorem. Another reason is that its derivatives

and integrals are also sinusoids. A

sinusoidal function is easy to analyse.

Lastly, the sinusoidal function is easy

to generate, and it is more useful in

the power industry. The shape of

a sinusoidal waveform is shown in

Fig. 4.1.

The waveform may be either a

current waveform, or a voltage

waveform. As seen from the Fig. 4.1,

the wave changes its magnitude and

direction with time. If we start at time Fig. 4.1

+

–

0

Voltage ( )
OR

Current ( )

V

I

time (sec)t

T
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t = 0, the wave goes to a maximum value and returns to zero, and then decreases

to a negative maximum value before returning to zero. The sine wave changes

with time in an orderly manner. During the positive portion of voltage, the current

flows in one direction; and during the negative portion of voltage, the current

flows in the opposite direction. The complete positive and negative portion of the

wave is one cycle of the sine wave. Time is designated by t. The time taken for

any wave to complete one full cycle is called the period (T). In general, any

periodic wave constitutes a number of such cycles. For example, one cycle of a

sine wave repeats a number of times as shown in Fig. 4.2. Mathematically it can

be represented as f (t) = f (t + T) for any t.

Fig. 4.2

The period can be measured in the following different ways (See Fig. 4.3).

1. From zero crossing of one cycle

to zero crossing of the next

cycle.

2. From positive peak of one cycle

to positive peak of the next

cycle, and

3. From negative peak of one

cycle to negative peak of the

next cycle.

The frequency of a wave is defined as

the number of cycles that a wave

completes in one second.

In Fig. 4.4 the sine wave completes three cycles in one second. Frequency is

measured in hertz. One hertz is equivalent to one cycle per second, 60 hertz is

60 cycles per second and so on. In Fig. 4.4, the frequency denoted by f is 3 Hz,

t (sec)
Zero to Zero

Peak to Peak

Peak to PeakV (volts)

Fig. 4.3

t (sec)

1 sec

V (volts)

Fig. 4.4
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that is three cycles per second. The relation between time period and frequency is

given by

f = 
1

T
A sine wave with a longer period consists of fewer cycles than one with a

shorter period.

Example 4.1 What is the period of sine wave shown in Fig. 4.5?

6 (sec)4 (sec)2 (sec) t (sec)

V (volts)

Fig. 4.5

Solution From Fig. 4.5, it can be seen the sine wave takes two seconds to

complete one period in each cycle

T = 2 s

Example 4.2 The period of a sine wave is 20 milliseconds. What is the

frequency.

Solution f = 
1

T

= 
1

20 ms
 = 50 Hz

Example 4.3 The frequency of a sine wave is 30 Hz. What is its period.

Solution T = 
1

f

= 
1

30
 = 0.03333 s

= 33.33 ms

4.2 ANGULAR RELATION OF A SINE WAVE

A sine wave can be measured along the X-axis on a time base which is frequency-

dependent. A sine wave can also be expressed in terms of an angular

measurement. This angular measurement is expressed in degrees or radians. A

radian is defined as the angular distance measured along the circumference of a

circle which is equal to the radius of the circle. One radian is equal to 57.3°. In a

360° revolution, there are 2p radians. The angular measurement of a sine wave is

based on 360° or 2p radians for a complete cycle as shown in Figs. 4.6 (a)

and (b).
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Fig. 4.6

A sine wave completes a half cycle in 180° or p radians; a quarter cycle in 90°

or p /2 radians, and so on.

Phase of a Sine Wave

The phase of a sine wave is an angular measurement that specifies the position of

the sine wave relative to a reference. The wave shown in Fig. 4.7 is taken as the

reference wave.

When the sine wave is shifted left or

right with reference to the wave shown

in Fig. 4.7, there occurs a phase shift.

Figure 4.8 shows the phase shifts of a

sine wave.

In Fig. 4.8(a), the sine wave is

shifted to the right by 90° (p /2 rad)

shown by the dotted lines. There is a phase angle of 90° between A and B. Here

the waveform B is lagging behind waveform A by 90°. In other words, the sine

wave A is leading the waveform B by 90°. In Fig. 4.8(b) the sine wave A is

lagging behind the waveform B by 90°. In both cases, the phase difference is 90°.

V
(volts)

V
(volts)

A

A

B

B

90°

– 90°

q (degrees)

q (degrees)

(a)

(b)

Fig. 4.8

Fig. 4.7
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Example 4.4 What are the phase angles between the two sine waves shown

in Figs. 4.9(a) and (b)?

Solution In Fig. 4.9(a), sine wave A is in phase with the reference wave; sine

wave B is out of phase, which lags behind the reference wave by 45°. So we say

that sine wave B lags behind sine wave A by 45°.
In Fig. 4.9(b), sine wave A leads the reference wave by 90°; sine wave B lags

behind the reference wave by 30°. So the phase difference between A and B is

120°, which means that sine wave B lags behind sine wave A by 120°. In other

words, sine wave A leads sine wave B by 120°.

V
(volts)

V
(volts)

A
A

B B

90°45°
– 90° 30°

q (degrees)
q (degrees)

(a) (b)

Fig. 4.9

4.3 THE SINE WAVE EQUATION

A sine wave is graphically represented as shown in Fig. 4.10(a). The amplitude

of a sine wave is represented on vertical axis. The angular measurement (in

degrees or radians) is represented on horizontal axis. Amplitude A is the

maximum value of the voltage or current on the Y-axis.

In general, the sine wave is represented by the equation

v(t) = Vm sin w t

The above equation states that any point on the sine wave represented by an

instantaneous value v(t) is equal to the maximum value times the sine of the

angular frequency at that point. For example, if a certain sine wave voltage has

peak value of 20 V, the instantaneous voltage at a point p /4 radians along the

horizontal axis can be calculated as

v(t) = Vm sin w t

= 20 sin 
p

4

F
H

I
K  = 20 ¥ 0.707 = 14.14 V

When a sine wave is shifted to the left of the reference wave by a certain angle

f, as shown in Fig. 4.10 (b), the general expression can be written as

v(t) = Vm sin (w t + f)

When a sine wave is shifted to the right of the reference wave by a certain

angle f, as shown in Fig. 4.10(c), the general expression is

v(t) = Vm sin (w t - f)
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v t

i t

( )
or
( )

f or tw wt

(a) (b)

A

0

v t( )

f

v t( )

0
0 wt

(c)

f

Fig. 4.10

Example 4.5 Determine the instantaneous value at the 90° point on the X-axis

for each sine wave shown in Fig. 4.11.

Solution From Fig. 4.11, the equation

for the sine wave A

v(t) = 10 sin w t

The value at p /2 in this wave is

v(t) = 10 sin 
p

2
 = 10 V

The equation for the sine wave B

v(t) = 8 sin (w t - p /4)

At w t = p /2

v(t) = 8 sin 
p p

2 4
-F

H
I
K

= 8 sin 45° = 8 (0.707) = 5.66 V

4.4 VOLTAGE AND CURRENT VALUES OF
 A SINE WAVE

As the magnitude of the waveform is not constant, the waveform can be measured

in different ways. These are instantaneous, peak, peak to peak, root mean square

(rms) and average values.

Fig. 4.11
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4.4.1 Instantaneous Value

Consider the sine wave shown in Fig. 4.12. At any given time, it has some

instantaneous value. This value is different at different points along the

waveform.

In Fig. 4.12 during the positive cycle, the

instantaneous values are positive and

during the negative cycle, the instantaneous

values are negative. In Fig. 4.12 shown at

time 1 ms, the value is 4.2 V; the value is

10 V at 2.5 ms, – 2 V at 6 ms and – 10 V at

7.5 and so on.

4.4.2 Peak Value

The peak value of the sine wave is the

maximum value of the wave during

positive half cycle, or maximum value

of wave during negative half cycle.

Since the value of these two are equal

in magnitude, a sine wave is

characterised by a single peak value.

The peak value of the sine wave is shown in Fig. 4.13; here the peak value of the

sine wave is 4 V.

4.4.3 Peak to Peak Value

Fig. 4.12

Fig. 4.13

t (ms)

V t
V

( )
+ 4Vp

– 4V

The peak to peak value of a sine wave

is the value from the positive to the

negative peak as shown in Fig. 4.14.

Here the peak to peak value is 8 V.

4.4.4 Average Value

In general, the average value of any function v(t), with period T is given by

vav = 
1

0
T

T

z  v(t) dt

That means that the average value of a curve in the X-Y plane is the total area

under the complete curve divided by the distance of the curve. The average value

of a sine wave over one complete cycle is always zero. So the average value of a

sine wave is defined over a half-cycle, and not a full cycle period.

The average value of the sine wave is the total area under the half-cycle curve

divided by the distance of the curve.

t (ms)

V t( )
+ 4V

– 4V

Fig. 4.14

tt (ms)(ms)

2.12.1

– 2– 2

– 8– 8

– 10– 10

4.24.2

1010

11 1616

66

10107.57.52525

VV tt( ) volts( ) volts
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The average value of the sine wave

v(t) = VP sin w t is given by

vav = 
1

0
p

p

z  VP sin w t d (w t)

= 
1

p
 [- VP cos w t]p0

= 
2VP

p
 = 0.637 VP

The average value of a sine wave is shown by the dotted line in Fig. 4.15.

Example 4.6 Find the average value of a cosine wave f (t) = cos w t shown in

Fig. 4.16.

Solution The average value of a cosine wave

v(t) = VP cos w t

Vav = 
1

2

3 2

p
p

p

/

/

z  VP cos wt d (w t)

= 
1

p
 VP(- sin w t )

3p /2

p/2

= 
-VP

p
 [– 1 - 1] = 

2VP

p
 = 0.637 VP

4.4.5 Root Mean Square Value or Effective Value

The root mean square (rms) value of a sine wave is a measure of the heating

effect of the wave. When a resistor is connected across a dc voltage source as

shown in Fig. 4.17(a), a certain amount of heat is produced in the resistor in a

given time. A similar resistor is connected across an ac voltage source for the

same time as shown in Fig. 4.17(b). The value of the ac voltage is adjusted such

that the same amount of heat is produced in the resistor as in the case of the dc

source. This value is called the rms value.

+

–
V R Rv t( )

(a) (b)

Fig. 4.17

That means the rms value of a sine wave is equal to the dc voltage that

produces the same heating effect. In general, the rms value of any function with

period T has an effective value given by

wt (rad)

V t( )
volts VP

VPVav = 0.637

p 2p

Fig. 4.15

v t( )

Vp

–p

2
0 p/2 p 3 /2p 2p wt

Fig. 4.16
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Vrms = 
1 2

0
T

t dt

T

v( )z
Consider a function v (t) = VP sin w t

The rms value, Vrms = 
1 2

0
T

V t d tP

T

( sin ) ( )w wz

= 
1 1 2

2

2

0

2

T
V

t
d tP

p
w

wz
-L

NM
O
QP

cos
( )

= 
VP

2
 = 0.707 VP

If the function consists of a number of sinusoidal terms, that is

v(t) = V0 + (Vc1 cos w t + Vc2 cos 2 w t + L)

+ (Vs1 sin w t + Vs2 sin 2 w t + L)

The rms, or effective value is given by

Vrms = V V V V Vc c s s0
2

1
2

2
2

1
2

2
21

2

1

2
+ + + + + +( ) ( )L L

Example 4.7 A wire is carrying a direct current of 20 A and a sinusoidal

alternating current of peak value 20 A. Find the rms value of the resultant current

in the wire.

Solution The rms value of the combined wave

= 20
20

2

2
2

+

= 400 200 600+ =  = 24.5 A

4.4.6 Peak Factor

The peak factor of any waveform is defined as the ratio of the peak value of the

wave to the rms value of the wave.

Peak factor = 
V

V

P

rms

Peak factor of the sinusoidal waveform = 
V

V

P

P / 2
2=  = 1.414

4.4.7 Form Factor

Form factor of a waveform is defined as the ratio of rms value to the average

value of the wave.
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Form factor = 
V

V

rms

av

Form factor of a sinusoidal waveform can be found from the above relation.

For the sinusoidal wave, the form factor = 
V

V

P

P

/

.

2

0 637
 = 1.11

4.5 PHASE RELATION IN PURE RESISTOR

When a sinusoidal voltage of certain magnitude is applied to a resistor, a certain

amount of sine wave current passes through it. We know the relation between

v (t) and i (t) in the case of a resistor. The voltage/current relation in case of a

resistor is linear,

i.e. v (t) = i (t) R

Consider the function

i(t) = Im sin w t = IM [Im e jw t] or Im –0°

If we substitute this in the above equation, we have

v(t) = Im R sin w t = Vm sin w t

= IM [Vm e jw t] or Vm –0°

where Vm = Im R

If we draw the waveform for both voltage and current as shown in Fig. 4.18,

there is no phase difference between these two waveforms. The amplitudes of the

waveform may differ according to the value of resistance.

As a result, in pure resistive circuits,

the voltages and currents are said to be in

phase. Here the term impedance is

defined as the ratio of voltage to current

function. With ac voltage applied to

elements, the ratio of exponential voltage

to the corresponding current (impedance)

consists of magnitude and phase angles.

Since the phase difference is zero in case

of a resistor, the phase angle is zero. The impedance in case of resistor consists

only of magnitude, i.e.

Z = 
V

I

m

m

– ∞

– ∞

0

0
 = R

4.6 PHASE RELATION IN A PURE INDUCTOR

Ad discussed earlier in Chapter 1, the voltage current relation in the case of an

inductor is given by

Fig. 4.18

wt

Vm

Im

v t( )

i t( )
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v(t) = L
di

dt

Consider the function i(t) = Im sin w t = IM [Im e jw t] or Im –0°

v(t) = L
d

dt
 (Im sin wt)

= Lw Im cos w t = wL Im cos w t

v(t) = Vm cos w t, or Vm sin (w t + 90°)

= IM [Vm e j (w t + 90°)] or Vm –90°

where Vm = wL Im = XL Im

and e j90° = j = 1 –90°

If we draw the waveforms for both,

voltage and current, as shown in

Fig. 4.19, we can observe the phase

difference between these two waveforms.

As a result, in a pure inductor the

voltage and current are out of phase. The

current lags behind the voltage by 90° in a

pure inductor as shown in Fig. 4.20.

The impedance which is the ratio of

exponential voltage to the corresponding

current, is given by

Z = 
V t

I t

m

m

sin ( )

sin

w

w

+ ∞90

where Vm = wL Im

= 
I L t

I t

L I

I

m

m

m

m

w w

w

wsin ( )

sin

+ ∞
=

– ∞

– ∞

90 90

0

\ Z = jwL = jXL

where XL = wL and is called the inductive reactance.

Hence, a pure inductor has an impedance whose value is wL.

4.7 PHASE RELATION IN PURE CAPACITOR

As discussed in Chapter 1, the relation between voltage and current is given by

v (t) = 
1

C z i (t) dt

Consider the function i(t) = Im sin w t = IM [Im e jw t] or Im –0°

v(t) = 
1

C z Im sin w t d(t)

= 
1

wC
 Im [– cos w t]

wt

Vm

im

p
2p

v t( )

i t( )

p/2

v t( )

XLi t( )

Fig. 4.20

Fig. 4.19
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= 
I

C

m

w
 sin (w t – 90°)

\ v(t) = Vm sin (w t – 90°)

= IM [Im e j(w t – 90°)] or Vm – -90°

where Vm = 
I

C

m

w

\
V

I

m

m

– - ∞

– ∞

90

0
= Z = 

- j

Cw

Hence, the impedance is Z = 
- j

Cw
 = – jXC

where XC = 
1

wC
 and is called the capacitive reactance.

If we draw the waveform for both,

voltage and current, as shown in

Fig. 4.21, there is a phase difference

between these two waveforms.

As a result, in a pure capacitor, the

current leads the voltage by 90°. The

impedance value of a pure capacitor

XC = 
1

wC

Additional Solved Problems

Problem 4.1 Calculate the frequency for each of the following values of time

period.

(a) 2 ms (b) 100 ms (c) 5 ms (d) 5 s

Solution The relation between frequency and period is given by

f = 
1

T
 Hz

(a) Frequency f = 
1

20 10 3¥ -
 = 50 Hz

(b) Frequency f = 
1

100 10 3¥ -
 = 10 Hz

(c) Frequency f = 
1

5 10 6¥ -
 = 200 KHz

(d) Frequency f = 
1

5
 = 0.2 Hz

Fig. 4.21

wt– /2p 0 p 2p

v t( )

i t( )
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Problem 4.2 Calculate the period for each of the following values of

frequency.

(a) 50 Hz (b) 100 KHz (c) 1 Hz (d) 2 MHz

Solution The relation between frequency and period is given by

f = 
1

T
 Hz

(a) Time period T = 
1 1

50f
=  = 0.02 s

(b) Time period T = 
1 1

100 103f
=

¥
 = 10 ms

(c) Time period T = 
1 1

1f
=  = 1 s

(d) Time period T = 
1 1

2 106f
=

¥
 = 0.5 ms

Problem 4.3 A sine wave has a frequency of 50 KHz. How many cycles does

it complete in 20 ms?

Solution The frequency of sine wave is 50 KHz.

That means in 1 second, a sine wave goes through 50 ¥ 103 cycles.

In 20 ms the number of cycles = 20 ¥ 10–3 ¥ 50 ¥ 103

= 1 KHz

That means in 20 ms the sine wave goes through 103 cycles.

Problem 4.4 A sine wave has a peak value of 25 V. Determine the following

values.

(a) rms (b) peak to peak (c) average

Solution (a) rms value of the sine wave

Vrms = 0.707 VP

= 0.707 ¥ 25 = 17.68 V

(b) peak to peak value of the sine wave VPP = 2VP

VPP = 2 ¥ 25 = 50 V

(c) average value of the sine wave

Vav = 0.637 VP

= (0.637)25 = 15.93 V

Problem 4.5 A sine wave has a peak value of 12 V. Determine the following

values

(a) rms (b) average (c) crest factor (d) form factor

Solution (a) rms value of the given sine wave

= (0.707)12 = 8.48 V
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(b) average value of the sine wave = (0.637)12 = 7.64 V

(c) crest factor of the sine wave = 
Peak value

rms value

= 
12

8.48
 = 1.415

(d) Form factor = 
rms value

average value
=

8 48

7 64

.

.
 = 1.11

Problem 4.6 Sine wave ‘A’ has a positive going zero crossing at 45°. Sine

wave ‘B’ has a positive going zero crossing at 60°. Determine the phase angle

between the signals. Which of the

signal lags behind the other?

Solution The two signals drawn are

shown in Fig. 4.22.

From Fig. 4.22, the signal B lags

behind signal A by 15°. In other words,

signal A leads signal B by 15°.

Problem 4.7 One sine wave has a

positive peak at 75°, and another has a

positive peak at 100°. How much is

each sine wave shifted in phase from

the 0° reference? What is the phase

angle between them?

Solution The two signals are drawn

as shown in Fig. 4.23.

The signal A leads the reference signal by 15°

The signal B lags behind the reference signal by 10°

The phase angle between these two signals is 25°

Problem 4.8 A sinusoidal voltage is applied to the resistive circuit shown in

Fig. 4.24. Determine the following values.

(a) Irms (b) Iav (c) IP (d) IPP

Solution The function given to the circuit shown is

v (t) = VP sin w t = 20 sin w t

The current passing through the resistor

i (t) = 
v ( )t

R

i (t) = 
20

2 103¥
 sin w t

= 10 ¥ 10–3 sin w t

IP = 10 ¥ 10–3 A

Fig. 4.22

w qt ( )
45° 60°

v t( )
A

B

Fig. 4.23

2 kW

VP = 20 V

Fig. 4.24

qq0°0° 75°75° 90°90° 100°100°

vv tt( )( )

signalsignal AA
reference signalreference signal

signalsignal BB
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The peak value IP = 10 mA

Peak to peak value IPP = 20 mA

rms value Irms = 0.707 IP

= 0.707 ¥ 10 mA = 7.07 mA

Average value Iav = (0.637) IP

= 0.637 ¥ 10 mA = 6.37 mA

Problem 4.9 A sinusoidal voltage is applied to a capacitor as shown in

Fig. 4.25. The frequency of the sine wave is 2 KHz. Determine the capacitive

reactance.

Solution XC = 
1

2p f C

= 
1

2 2 10 0 01 103 6p ¥ ¥ ¥ ¥ -.

= 7.96 kW

Problem 4.10 Determine the rms current in the circuit

shown in Fig. 4.26.

Solution XC = 
1

2p f C

= 
1

2 5 10 0 01 103 6p ¥ ¥ ¥ ¥ -.

= 3.18 kW

Irms = 
V

XC

rms

K
=

5

3 18.
 = 1.57 mA

Problem 4.11 A sinusoidal voltage is applied to the circuit shown in

Fig. 4.27. The frequency is 3 KHz. Determine the inductive reactance.

Solution XL = 2p fL

= 2p ¥ 3 ¥ 103 ¥ 2 ¥ 10–3

= 37.69 W

Problem 4.12 Determine the rms current in the

circuit shown in Fig. 4.28.

Solution XL = 2p fL

= 2p ¥ 10 ¥ 103 ¥ 50 ¥ 10–3

XL = 3.141 kW

Irms = 
V

XL

rms

= 
10

3141 103. ¥
 = 3.18 mA

0.01 Fm

VS

0.01 Fm

Vrms
f

= 5 V
= 5 KHz

Fig. 4.25

Fig. 4.26

VS

2 mH

Fig. 4.27

Fig. 4.28

VS

2 mH
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Problem 4.13 Find the form factor of the half-wave rectified sine wave

shown in Fig. 4.29.

Fig. 4.29

Solution v = Vm sin w t, for 0 < w t < p

= 0, for p < w t < 2p

the period is 2p.

Average value Vav = 
1

2
0

2

0
p

w w w

p

pp

V t d t d tm sin ( ) ( )+
R
S
T

U
V
W

zz
= 0.318 Vm

V2
rms = 

1

2
0

p

p

z (Vm sin w t)2 d (w t)

= 
1

4
 V 2

m

Vrms = 
1

2
 Vm

Form factor = 
V

V

V

V

m

m

rms

av

=
0 5

0 318

.

.
 = 1.572

Problem 4.14 Find the average and effective values of the saw tooth wave-

form shown in Fig. 4.30 below.

Solution From Fig. 4.30 shown, the period is T.

Vav = 
1

0
T

V

T

m
T

z  t dt

= 
1

0
T

V

T

m
T

z  t dt

= 
V

T

t Vm m
2

2

2 2
=

Effective value Vrms = 
1 2

0
T

dt

T

vz

Fig. 4.30
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= 
1

2

0
T

V

T
t dtm

T

L
NM

O
QPz

= 
Vm

3
Problem 4.15 Find the average

and rms value of the full wave

rectified sine wave shown in

Fig. 4.31.

Solution Average value Vav = 
1

0
p

p

z  5 sin w t d (w t)

= 3.185

Effective value or rms value = 
1

5 2

0
p

w w

p

( sin ) ( )t d tz

= 
25

2
 = 3.54

Problem 4.16 The full wave rectified sine wave shown in Fig. 4.32 has a

delay angle of 60°. Calculate Vav and Vrms.

v

10 V

0 p 2p

w t

3p w t60∞

Fig. 4.32

Solution Average value Vav = 
1

0
p

p

z 10 sin (w t) d (w t)

= 
1

60
p

p

∞

z 10 sin w t d (w t)

Vav = 
10

p
 (– cos w t)

p
60 = 4.78

Effective value Vrms = 
1

10 2

0
p

w w

p

( sin ) ( )t d tz

= 100 1 2

2
0

p

w
w

p
-F

H
I
Kz

cos
( )

t
d t

= 6.33

Fig. 4.31

v

5V

0 p 2p 3p wt
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Problem 4.17 Find the form factor of the square wave as shown in Fig. 4.33.

Solution v = 20 for 0 < t < 0.01

= 0 for 0.01 < t < 0.03

The period is 0.03 sec.

Average value Vav = 
1

0 03
0

0 01

.

.

z  20 dt

= 
20 0 01

0 03

( . )

.
 = 6.66

Effective value Veff = 
1

0 03
20 2

0

0 01

.
( )

.

dtz  = 66.6 = 0.816

Form factor = 
0 816

6 66

.

.
 = 0.123

Practice Problems

4.1 Calculate the frequency of the following values of period.

(a) 0.2 s (b) 50 ms

(c) 500 ms (d) 10 ms

4.2 Calculate the period for each of the values of frequency.

(a) 60 Hz (b) 500 Hz

(c) 1 KHz (d) 200 KHz

(e) 5 MHz

4.3 A certain sine wave has a positive going zero crossing at 0° and an rms

value of 20 V. Calculate its instantaneous value at each of the following

angles.

(a) 33° (b) 110°

(c) 145° (d) 325°

4.4 For a particular 0° reference sinusoidal current, the peak value is 200 mA;

determine the instantaneous values at each of the following.

(a) 35° (b) 190°

(c) 200° (d) 360°

4.5 Sine wave A lags sine wave B by 30°. Both have peak values of 15 V. Sine

wave A is the reference with a positive going crossing at 0°. Determine the

Fig. 4.33

instantaneous value of sine

wave B at 30°, 90°, 45°, 180°

and 300°.

4.6 Find the average values of the

voltages across R1 and R2. In

Fig. 4.34 values shown are

rms.

5 W

2 W

20 V

100 V 50 V

R1 R2

Fig. 4.34



Introduction to Alternating Currents and Voltages 4.19

4.9 A sinusoidal voltage source in series with a dc source as shown in

Fig. 4.36

+

–
200 V

RL 100 W
150 V
or

– 150 V

Fig. 4.36

Sketch the voltage across RL. Determine the maximum current through RL

and the average voltage across RL.

4.10 Find the effective value of the resultant current in a wire which carries a

direct current of 10 A and a sinusoidal current with a peak value of 15 A.

4.11 An alternating current varying sinusoidally, with a frequency of 50 Hz,

has an rms value of 20 A. Write down the equation for the instantaneous

value and find this value at  (a) 0.0025 s  (b) 0.0125 s after passing through

a positive maximum value. At what time, measured from a positive maxi-

mum value, will the instantaneous current be 14.14 A?

4.12 Determine the rms value of the voltage defined by

v = 5 + 5 sin (314t + p /6).

4.13 Find the effective value of the function v = 100 + 50 sin w t.

4.14 A full wave rectified sine wave is clipped at 0.707 of its maximum value

as shown in Fig. 4.37. Find the average and effective values of the func-

tion.
v

20V

0 pp
4

2p 3p 4p wt3p
4

Fig. 4.37

4.15 Find the rms value of the function shown in Fig. 4.38 and described as

follows
0 < t < 0.1 v = 40 (1 – e

–100 t
)

0.1 < t < 0.2 v = 40 e–50(t – 0.1)

4.7 A sinusoidal voltage is applied to the cir-

cuit shown in Fig. 4.35, determine rms cur-

rent, average current, peak current, and

peak to peak current.

4.8 A sinusoidal voltage of v (t) = 50 sin (500t)

applied to a capacitive circuit. Determine

the capacitive reactance, and the current in

the circuit.

1 kW

Vp 10 V

Fig. 4.35
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v

40V

0 0.1 0.2 0.3 0.4 0.5 t (sec)

Fig. 4.38

4.16 Calculate average and effective values of the waveform shown in Fig. 4.39

and hence find from factor.

v

50V

–10V 1 2 3 4 t (sec)

Fig. 4.39

4.17 A full wave rectified sine wave is clipped such that the effective value is

0.5 Vm as shown in Fig. 4.40. Determine the angle at which the wave form

is clipped.

vv

00 pp 22pp 33pp 44pp

VVmm

– V– Vmm

Fig. 4.40

Objective-type Questions

1. One sine wave has a period of 2 ms, another has a period of 5 ms, and other

has a period of 10 ms. Which sine wave is changing at a faster rate?

(a) sine wave with period 2 ms (b) sine wave with period of 5 ms

(c) all are at the same rate (d) sine wave with period of 10 ms

2. How many cycles does a sine wave go through in 10 s when its frequency

is 60 Hz?

(a) 10 cycles (b) 60 cycles

(c) 600 cycles (d) 6 cycles

3. If the peak value of a certain sine wave voltage is 10 V, what is the peak to

peak value?

(a) 20 V (b) 10 V

(c) 5 V (d) 7.07 V
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4. If the peak value of a certain sine wave voltage is 5 V, what is the rms

value?

(a) 0.707 V (b) 3.535 V

(c) 5 V (d) 1.17 V

5. What is the average value of a sine wave over a full cycle?

(a) Vm (b)
Vm

2

(c) zero (d) 2 Vm

6. A sinusoidal current has peak value of 12 A. What is its average value?

(a) 7.64 A (b) 24 A

(c) 8.48 A (d) 12 A

7. Sine wave A has a positive going zero crossing at 30°. Sine wave B has a

positive going zero crossing at 45°. What is the phase angle between two

signals?

(a) 30° (b) 45°

(c) 75° (d) 15°

8. A sine wave has a positive going zero crossing at 0° and an rms value of

20 V. What is its instantaneous value at 145°.

(a) 7.32 V (b) 16.22 V

(c) 26.57 V (d) 21.66 V

9. In a pure resistor, the voltage and current are
(a) out of phase (b) in phase

(c) 90° out of phase (d) 45° out of phase

10. The rms current through a 10 kW resistor is 5 mA. What is the rms voltage

drop across the resistor?

(a) 10 V (b) 5 V

(c) 50 V (d) zero

11. In a pure capacitor, the voltage

(a) is in phase with the current (b) is out of phase with the current

(c) lags behind the current by 90° (d) leads the current by 90°

12. A sine wave voltage is applied across a capacitor; when the frequency of

the voltage is increased, the current

(a) increases (b) decreases

(c) remains the same (d) is zero

13. The current in a pure inductor

(a) lags behind the voltage by 90° (b) leads the voltage by 90°

(c) is in phase with the voltage (d) lags behind the voltage by 45°

14. A sine wave voltage is applied across an inductor; when the frequency of

voltage is increased, the current

(a) increases (b) decreases

(c) remains the same (d) is zero

15. The rms value of the voltage for a voltage function

v = 10 + 5 cos (628 t + 30°) volts through a circuit is

(a) 5 V (b) 10 V

(c) 10.6 V (d) 15 V
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16. For the same peak value, which is of the following wave will have the

highest rms value

(a) sine wave (b) square wave

(c) triangular wave (d) half wave rectified sine wave

17. For 100 volts rms value triangular wave, the peak voltage will be

(a) 100 V (b) 111 V

(c) 141 V (d) 173 V

18. The form factor of dc voltage is

(a) zero (b) infinite

(c) unity (d) 0.5

19. For the half wave rectified sine wave shown in Fig. 4.41, the peak factor is

vv

VVmm

00 pp 22pp 33pp 44pp ww tt

Fig. 4.41

(a) 1.41 (b) 2.0

(c) 2.82 (d) infinite

20. For the square wave shown in Fig. 4.42, the form factor is

Fig. 4.42

(a) 2.0 (b) 1.0

(c) 0.5 (d) zero

21. The power consumed in a circuit element will be least when the phase

difference between the current and voltage is

(a) 0° (b) 30°

(c) 90° (d) 180°

22. The voltage wave consists of two components: a 50 V dc component and a

sinusoidal component with a maximum value of 50 volts. The average

value of the resultant will be

(a) zero (b) 86.6 V

(c) 50 (d) none of the above
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Complex Impedance

5.1 IMPEDANCE DIAGRAM

So far our discussion has been confined to resistive circuits. Resistance restricts

the flow of current by opposing free electron movement. Each element has some

resistance; for example, an inductor has some resistance; a capacitance also has

some resistance. In the resistive element, there is no phase difference between the

voltage and the current. In the case of pure inductance, the current lags behind the

voltage by 90 degrees, whereas in the case of pure capacitance, the current leads

the voltage by 90 degrees. Almost all electric circuits offer impedance to the flow

of current. Impedance is a complex quantity having real and imaginary parts;

where the real part is the resistance and the imaginary part is the reactance of the

circuit.

Consider the RL series circuit shown in Fig. 5.1.

If we apply the real function Vm cos w t to the

circuit, the response may be Im cos w t. Similarly, if

we apply the imaginary function jVm sin w t to the

same circuit, the response is jIm sin w t. If we apply

a complex function, which is a combination of real

and imaginary functions, we will get a complex

response.

This complex function is Vm e jw t = Vm (cos w t + j sin wt).

Applying Kirchhoff’s law to the circuit shown in Fig. 5.1,

we get Vm e jw t = Ri(t) + L
di t

dt

( )

The solution of this differential equation is

i(t) = Im e jw t

Fig. 5.1
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By substituting i(t) in the above equation, we get

Vm e jw t = R Im e jw t + L
d

dt
 (Im e jw t)

Vm e jw t = RIm e jw t + L Im jw e jw t

Vm = (R + jwL) Im

Impedance is defined as the ratio of the voltage to current function

Z = 
V e

V

R j L
e

m
j t

m j t

w

w

w+

 = R + jwL

Complex impedance is the total opposition offered by the circuit elements to ac

current, and can be displayed on the complex plane. The impedance is denoted by
Z. Here the resistance R is the real part of the impedance, and the reactance XL is
the imaginary part of the impedance. The resistance R is located on the real axis.
The inductive reactance XL is located on the positive j axis. The resultant of R
and XL is called the complex impedance.

Figure 5.2 is called the impedance diagram
for the RL circuit. From Fig. 5.2, the impedance

Z = R L2 2+ ( )w , and angle q = tan–1 wL/R.

Here, the impedance is the vector sum of the
resistance and inductive reactance. The angle
between impedance and resistance is the phase
angle between the current and voltage applied
to the circuit.

Similarly, if we consider the RC series
circuit, and apply the complex function Vm e jw t

to the circuit in Fig. 5.3, we get a complex
response as follows.

Applying Kirchhoff’s law to the above
circuit, we get

Vm e jw t = Ri(t) + 
1

C z i (t) dt

Solving this equation we get,

i(t) = Im e jw t

Vm e jw t = R Im e jw t + 
1 1

C
I

j
m

+F
HG

I
KJw

 e jw t

= RI
j

C
Im m-

L
NM

O
QPw

 e jw t

Vm = R
j

C
Im-

F
HG

I
KJw

Fig. 5.2

Fig. 5.3
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The impedance

Z = 
V e

V R j C e

m
j t

m
j t

w

ww/ /-

= [R – ( j/wC)]

Here impedance Z consists of resistance (R),
which is the real part, and capacitive reactance (XC

= 1/wC ), which is the imaginary part of the
impedance. The resistance, R, is located on the real
axis, and the capacitive reactance XC is located on
the negative j axis in the impedance diagram in
Fig. 5.4.

Form Fig. 5.4, impedance Z = R XC
2 2+  or R C2 21+ ( / )w  and angle q =

tan–1 (1/wCR). Here, the impedance, Z, is the vector sum of resistance and
capacitive reactance.The angle between resistance and impedance is the phase
angle between the applied voltage and current in the circuit.

5.2 PHASOR DIAGRAM

A phasor diagram can be used to represent a sine wave in terms of its magnitude
and angular position. Examples of phasor diagrams are shown in Fig. 5.5.

Fig. 5.5

In Fig. 5.5(a), the length of the arrow represents the magnitude of the sine
wave; angle q represents the angular position of the sine wave. In Fig. 5.5(b), the

Fig. 5.4
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magnitude of the sine wave is one and the phase angle is 30°. In Fig. 5.5(c) and
(d), the magnitudes are four and three, and phase angles are 135° and 225°,
respectively. The position of a phasor at any instant can be expressed as a positive
or negative angle. Positive angles are measured counterclockwise from 0°,
whereas negative angles are measured clockwise from 0°. For a given positive
angle q, the corresponding negative angle is q – 360°. This is shown in
Fig. 5.6(a). In Fig. 5.6(b), the positive angle 135° of vector A can be represented
by a negative angle – 225°, (135° – 360°).

Fig. 5.6

A phasor diagram can be used to represent the relation between two or more sine
waves of the same frequency. For example, the sine waves shown in Fig. 5.7(a)
can be represented by the phasor diagram shown in Fig. 5.7(b).

Fig. 5.7

In the above figure, sine wave B lags behind sine wave A by 45°; sine wave C
leads sine wave A by 30°. The length of the phasors can be used to represent
peak, rms, or average values.

Example 5.1 Draw the phasor diagram to represent the two sine waves shown

in Fig. 5.8.

Solution The phasor diagram representing the sine waves is shown in Fig. 5.9.

The length of the each phasor represents the peak value of the sine wave.
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Fig. 5.8 Fig. 5.9

5.3 SERIES CIRCUITS

The impedance diagram is a useful tool for analysing series ac circuits. Basically
we can divide the series circuits as RL, RC and RLC circuits. In the analysis of
series ac circuits, one must draw the impedance diagram. Although the
impedance diagram usually is not drawn to scale, it does represent a clear picture
of the phase relationships.

5.3.1 Series RL Circuit

If we apply a sinusoidal input to an RL circuit, the current in the circuit and all
voltages across the elements are sinusoidal. In the analysis of the RL series
circuit, we can find the impedance, current, phase angle and voltage drops. In
Fig. 5.10 (a) the resistor voltage (VR) and current (I) are in phase with each
other, but lag behind the source voltage (VS). The inductor voltage (VL) leads the
source voltage (VS). The phase angle between current and voltage in a pure
inductor is always 90°. The amplitudes of voltages and currents in the circuit are
completely dependent on the values of elements (i.e. the resistance and inductive
reactance). In the circuit shown, the phase angle is somewhere between zero and
90° because of the series combination of resistance with inductive reactance,
which depends on the relative values of R and XL.

Fig. 5.10(a)
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The phase relation between current and voltages in a series RL circuit is shown
in Fig. 5.10(b).

Fig. 5.10(b)

Here VR and I are in phase. The amplitudes are arbitrarily chosen. From
Kirchhoff’s voltage law, the sum of the voltage drops must equal the applied
voltage. Therefore, the source voltage VS is the phasor sum of VR and VL.

\ VS = V VR L
2 2+

The phase angle between resistor voltage and source
voltage is

q = tan–1 (VL /VR)

where q is also the phase angle between the source
voltage and the current. The phasor diagram for the
series RL circuit that represents the waveforms in
Fig. 5.10(c).

Example 5.2 To the circuit shown in Fig. 5.11, consisting a 1 kW resistor
connected in series with a 50 mH coil, a 10 V rms, 10 kHz signal is applied. Find

impedance Z, current I, phase angle q, voltage across resistance VR, and the

voltage across inductance VL.

Fig. 5.11

Solution Inductive reactance XL = wL

= 2pfL = (6.28) (104) (50 ¥ 10–3) = 3140 W

In rectangular form,

Total impedance Z = (1000 + j 3140) W

Fig. 5.10(c)
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= R XL
2 2+

= ( ) ( )1000 31402 2+  = 3295.4 W

Current I = VS/Z = 10/3295.4 = 3.03 mA

Phase angle q = tan–1 (XL/R) = tan–1 (3140/1000) = 72.33°

Therefore, in polar form total impedance Z = 3295.4 –72.33°

Voltage across resistance VR = IR

= 3.03 ¥ 10–3 ¥ 1000 = 3.03 V

Voltage across inductive reactance VL = IXL

= 3.03 ¥ 10–3 ¥ 3140 = 9.51 V

Example 5.3 Determine the source voltage and the phase angle, if voltage

across the resistance is 70 V and voltage across the inductive reactance is 20 V

as shown in Fig. 5.12.

Solution In Fig. 5.12, the source voltage is
given by

VS = V VR L
2 2+

= ( ) ( )70 202 2+  = 72.8 V

The angle between current and source voltage is

q = tan–1 (VL/VR) = tan–1 (20/70) = 15.94°

5.3.2 Series RC Circuit

When a sinusoidal voltage is applied to an RC series circuit, the current in the
circuit and voltages across each of the elements are sinusoidal. The series RC
circuit is shown in Fig. 5.13 (a).

Fig. 5.12

Here the resistor voltage and current
are in phase with each other. The
capacitor voltage lags behind the
source voltage. The phase angle
between the current and the capacitor
voltage is always 90°. The amplitudes
and the phase relations between the
voltages and current depend on the
ohmic values of the resistance and the capacitive reactance. The circuit is a series
combination of both resistance and capacitance; and the phase angle between the
applied voltage and the total current is somewhere between zero and 90°,
depending on the relative values of the resistance and reactance. In a series RC
circuit, the current is the same through the resistor and the capacitor. Thus, the
resistor voltage is in phase with the current, and the capacitor voltage lags behind
the current by 90° as shown in Fig. 5.13(b).

Fig. 5.13(a)
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Fig. 5.13 (b)

Here, I leads VC by 90°. VR and I are in phase. From Kirchhoff’s voltage law, the
sum of the voltage drops must be equal to the applied voltage. Therefore, the
source voltage is given by

VS = V VR C
2 2+

The phase angle between the resistor voltage and the source voltage is

q = tan–1 (VC /VR)

Since the resistor voltage and the current are in phase, q also represents the phase
angle between the source voltage and current. The voltage phasor diagram for the
series RC circuit, voltage and current phasor diagrams represented by the
waveforms in Fig. 5.13(b) are shown in Fig. 5.13(c).

Fig. 5.13 (c)

Example 5.4 A sine wave generator supplies a 500 Hz, 10 V rms signal to a

2 kW resistor in series with a 0.1 mF capacitor as shown in Fig. 5.14. Determine

the total impedance Z, current I, phase angle q, capacitive voltage VC, and

resistive voltage VR.

Fig. 5.14
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Solution To find the impedance Z, we first solve for XC

XC = 
1

2

1

6 28 500 0 1 10 6pfC
=

¥ ¥ ¥ -. .

= 3184.7 W

In rectangular form,

Total impedance Z = (2000 – j 3184.7) W

Z = ( ) ( . )2000 3184 72 2+

= 3760.6 W

Phase angle q = tan–1 (– XC/R) = tan–1(– 3184.7/2000) = – 57.87°

Current I = VS/Z = 10/3760.6 = 2.66 mA

Capacitive voltage VC = IXC

= 2.66 ¥ 10–3 ¥ 3184.7 = 8.47 V

Resistive voltage VR = IR

= 2.66 ¥ 10–3 ¥ 2000 = 5.32 V

The arithmetic sum of VC and VR does not give the applied voltage of 10 volts. In

fact, the total applied voltage is a complex quantity. In rectangular form,

Total applied voltage VS = 5.32 – j 8.47 V

In polar form

VS = 10 –– 57.87° V

The applied voltage is complex, since it has a phase angle relative to the resistive

current.

Example 5.5 Determine the source voltage and phase angle when the voltage

across the resistor is 20 V and the capacitor is 30 V as shown in Fig. 5.15.

Solution Since VR and VC are 90° out of phase,

they cannot be added directly. The source

voltage is the phasor sum of VR and VC.

\ VS = V VR C
2 2 2 220 30+ = +( ) ( )  = 36 V

The angle between the current and source

voltage is

q = tan–1 (VC /VR) = tan–1 (30/20) = 56.3°

5.3.3 Series R-L-C Circuit

A series RLC circuit is the series combination of resistance, inductance and
capacitance. If we observe the impedance diagrams of series RL and series RC
circuits as shown in Fig. 5.16(a) and (b), the inductive reactance, XL, is displayed
on the + j axis and the capacitive reactance, XC, is displayed on the – j axis.
These reactance are 180° apart and tend to cancel each other.

Fig. 5.15
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Fig. 5.16

The magnitude and type of reactance in a series RLC circuit is the difference
of the two reactance. The impedance for an RLC series circuit is given by Z =

R X XL C
2 2+ -( ) . Similarly, the phase angle for an RLC circuit is

q = tan–1 
X X

R

L C-F
H

I
K

Example 5.6 In the circuit shown in Fig. 5.17, determine the total impedance,

current I, phase angle q, and the voltage across each element.

Solution To find impedance Z, we first solve for XC and XL

Fig. 5.17

XC = 
1

2

1

6 28 50 10 10 6p f C
=

¥ ¥ ¥
-.

= 318.5 W

XL = 2pf L = 6.28 ¥ 0.5 ¥ 50 = 157 W

Total impedance in rectangular form

Z = (10 + j 157 – j 318.5) W

= 10 + j (157 – 318.5) W = 10 – j161.5 W

Here, the capacitive reactance dominates the inductive reactance.

Z = ( ) ( . )10 161 52 2+

= 100 26082 2+ ◊  = 161.8 W

Current I = VS/Z = 
50

161 8.
 = 0.3 A
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Phase angle q = tan–1 [(XL – XC)/R] = tan–1 (– 161.5/10) = – 86.45°

Voltage across the resistor VR = IR = 0.3 ¥ 10 = 3 V

Voltage across the capacitive reactance = IXC = 0.3 ¥ 318.5 = 95.55 V

Voltage across the inductive reactance = IXL = 0.3 ¥ 157 = 47.1 V

5.4 PARALLEL CIRCUITS

The complex number system simplifies the analysis of parallel ac circuits. In
series circuits, the current is the same in all parts of the series circuit. In parallel
ac circuits, the voltage is the same across each element.

5.4.1 Parallel RC Circuits

The voltages for an RC series circuit can be expressed using complex numbers,
where the resistive voltage is the real part of the complex voltage and the
capacitive voltage is the imaginary part. For parallel RC circuits, the voltage is
the same across each component. Here the total current can be represented by a
complex number. The real part of the complex current expression is the resistive
current; the capacitive branch current is the imaginary part.

Example 5.7 A signal generator supplies a sine wave of 20 V, 5 KHz to the

circuit shown in Fig. 5.18. Determine the total current IT, the phase angle and
total impedance in the circuit.

Fig. 5.18

Solution Capacitive reactance

XC = 
1

2

1

6 28 5 10 0 2 103 6p fC
=

¥ ¥ ¥ ¥ -. .
 = 159.2 W

Since the voltage across each element is the same as the applied voltage, we

can solve for the two branch currents.
\ Current in the resistance branch

IR = 
V

R
S =

20

100
 = 0.2 A
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and current in the capacitive branch

IC = 
V

X
S

C

=
20

159 2.
 = 0.126 A

The total current is the vector sum of the two branch currents.

\ Total current IT = (IR + jIC) A = (0.2 + j 0.13) A

In polar form IT = 0.24 –33°

So the phase angle q between applied voltage and total current is 33°. It

indicates that the total line current is 0.24 A and leads the voltage by 33°. Solving

for impedance, we get

Z = 
V

I
S

T

=
– ∞

– ∞

20 0

0 24 33.
 = 83.3 –– 33° W

5.4.2 Parallel RL Circuits

In a parallel RL circuit, the inductive current is imaginary and lies on the – j axis.
The current angle is negative when the impedance angle is positive. Here also the
total current can be represented by a complex number. The real part of the
complex current expression is the resistive current; and inductive branch current
is the imaginary part.

Example 5.8 A 50 W resistor is connected in parallel with an inductive

reactance of 30 W. A 20 V signal is applied to the circuit. Find the total impedance

and line current in the circuit shown in Fig. 5.19.

Fig. 5.19

Solution Since the voltage across each element is the same as the applied

voltage,

current in the resistive branch,

IR = 
V

R
S =

– ∞

– ∞

20 0

50 0
 = 0.4 A

current in the inductive branch

IL = 
V

X
S

L

=
– ∞

– ∞

20 0

30 90
 = 0.66 –– 90°
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Fig. 5.20

Total current is IT = 0.4 – j 0.66

In polar form, IT = 0.77 –– 58.8°

Here the current lags behind the voltage by 58.8°

Total impedance Z = 
V

I
S

T

= 
20 0

0 77 58 8

– ∞

– - ∞. .
 = 25.97 –58.8° W

5.5 COMPOUND CIRCUITS

In many cases, ac circuits to be analysed consist of a combination of series and
parallel impedances. Circuits of this type are known as series-parallel, or
compound circuits. Compound circuits can be simplified in the same manner as a
series-parallel dc circuit consisting of pure resistances.

Example 5.9 Determine the equivalent impedance of Fig. 5.20.

Solution In the circuit, Z1 is in series

with the parallel combination of Z2

and Z3.

where Z1  = (5 + j10) W,

Z2 = (2 – j 4) W,

Z3 = (1 + j 3) W

The total impedance

ZT = Z1 + 
Z Z

Z Z
2 3

2 3+

= (5 + j10) + 
( ) ( )

( ) ( )

2 4 1 3

2 4 1 3

- +

- + +

j j

j j

= (5 + j10) + 
4 47 63 4 3 16 71 5

3 1

. . . .– - ∞ ¥ – + ∞

- j

= (5 + j10) + 
14 12 81

3 1

. – ∞

- j

= (5 + j10 + 
14 12 8 1

3 16 18

. .

.

– ∞

– - ∞

= 5 + j10 + 4.46 –26.1°

= 5 + j10 + 4 + j1.96

= 9 + j11.96

The equivalent circuit for the compound circuit shown in Fig. 5.20 is a series

circuit containing 9 W of resistance and 11.96 W of inductive reactance. In polar

form,
Z = 14.96 –53.03°
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The phase angle between current and applied voltage is

q = 53.03°

Example 5.10 In the circuit of Fig. 5.21, determine the values of the following

(a) ZT  (b) IT (c) q.

Fig. 5.21

Solution First, the inductive reactance is calculated.

XL = 2p f L

= 2p ¥ 50 ¥ 0.1 = 31.42 W

Fig. 5.22

In Fig. 5.22, the 10 W resistance is in series with the parallel combination of 20 W

and j 31.42 W

\ ZT = 10 + 
( ) ( . )

( . )

20 31 42

20 31 42

j

j+

= 10 + 
628 4 90

37 24 57 52

.

. .

– ∞

– ∞
 = 10 + 16.87 –32.48°

= 10 + 14.23 + j 9.06 = 24.23 + j 9.06

In polar form, ZT = 25.87 –20.5°
Here the current lags behind the applied voltage by 20.5°

Total current IT = 
V

Z
S

T

= 
20

25 87 20 5. .– ∞
 = 0.77 –– 20.5°

The phase angle between voltage and current is

q = 20.5°
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Additional Solved Problems

Problem 5.1 A signal generator supplies a 30 V, 100 Hz signal to a series
circuit shown in Fig. 5.23. Determine the impedance, the line current and phase
angle in the given circuit.

Fig. 5.23

Solution In Fig. 5.24, the resistances and inductive reactances can be
combined.

Fig. 5.24

First, we find the inductive reactance

XL = 2p f L

= 2p ¥ 100 ¥ 70 ¥ 10–3 = 43.98 W

In rectangular form, the total impedance is

ZT = (40 + j43.98) W

Current I = 
V

Z j

S

T

=
– ∞

+

30 0

40 43 98.

Here we are taking source voltage as the reference voltage

\ I = 
30 0

59 45 47 7

– ∞

–+ ∞. .
 = 0.5 –– 47.7° A

The current lags behind the applied voltage by 47.7°

Hence, the phase angle between voltage and current

q = 47.7°

Problem 5.2 For the circuit shown in Fig. 5.25, find the effective voltages
across resistance and inductance, and also determine the phase angle.
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Fig. 5.25

Solution In rectangular form,

Total impedance ZT = R + jXL

where XL = 2p f L

= 2p ¥ 100 ¥ 50 ¥ 10–3 = 31.42 W

\ ZT = (100 + j31.42) W

Current I = 
V

Z j

S

T

=
– ∞

+
=

– ∞

– ∞

10 0

100 31 42

10 0

104 8 17 44( . ) . .
 = 0.095 ––17.44°

Therefore, the phase angle between voltage and current

q = 17.44°

Voltage across resistance is VR = IR

= 0.095 ¥ 100 = 9.5 V

Voltage across inductive reactance is VL = IXL

= 0.095 ¥ 31.42 = 2.98 V

Problem 5.3 For the circuit shown in Fig. 5.26, determine the value of
impedance when a voltage of (30 + j50) V is applied to the circuit and the current
flowing is (– 5 + j15) A. Also determine the phase angle.

Fig. 5.26

Solution Impedance Z = 
V

I

j

j

S =
+

- +

30 50

5 15

= 
58 31 59

15 81 108 43

.

. .

– ∞

– ∞
 = 3.69 ––49.43°

In rectangular form, the impedance Z = 2.4 – j2.8
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Therefore, the circuit has a resistance of 2.4 W in series with capacitive
reactance 2.8 W.

Phase angle between voltage and current is q = 49.43°. Here, the current leads
the voltage by 49.43°.

Problem 5.4 A resistor of 100 W is
connected in series with a 50 mF capacitor.
Find the effective voltage applied to the
circuit at a frequency of 50 Hz. The effective
voltage across the resistor is 170 V. Also
determine voltage across the capacitor and
phase angle. (See Fig. 5.27)

Solution  Capacitive reactance XC = 
1

2p fC

= 
1

2 50 50 10 6p ¥ ¥ ¥
-

 = 63.66 W

Total impedance ZT = (100 – j63.66) W

Voltage across 100 W resistor is VR = 170 V

Current in resistor, I = 
170

100
 = 1.7 A

Since the same current passes through capacitive reactance, the effective
voltage across the capacitive reactance is

VC = IXC

= 1.7 ¥ 63.66 = 108.22 V

The effective applied voltage to the circuit

VS = V VR C
2 2+

= ( ) ( . )170 108 222 2+  = 201.5 V

Total impedance in polar form

ZT = 118.54 –– 32.48°

Therefore, the current leads the applied voltage by 32.48°.

Problem 5.5 For the circuit shown in Fig. 5.28, determine the total current,
impedance Z and phase angle.

Fig. 5.28

Fig. 5.27

100100 WW 5050 FFmm

VVSS
''
50 Hz50 Hz



5.18 Network Analysis

Solution Here, the voltage across each element is the same as the applied
voltage.

Current in resistive branch IR = 
V

R

S =
50

100
 = 0.5 A

Inductive reactance XL = 2p fL

= 2p ¥ 50 ¥ 0.5 = 157.06 W

Current in inductive branch

IL = 
V

X

S

L

=
50

157 06.
 = 0.318 A

Total current IT = I IR L
2 2+

or (0.5 – j0.318)A = 0.59 ––32.5°

For parallel RL circuits, the inductive susceptance is

BL = 
1 1

157 06XL

=
.

 = 0.0064 S

Conductance G = 
1

100
 = 0.01 S

\ Admittance = G BL
2 2 2 20 01 0 0064+ = +( . ) ( . )

= 0.0118 S

Converting to impedance, we get

Z = 
1 1

0 012Y
=

.
 = 83.33 W

Phase angle q = tan–1 
R

XL

F
HG

I
KJ

 = tan–1 
100

157 06.

F
HG

I
KJ

 = 32.48°

Problem 5.6 Determine the impedance and phase angle in the circuit shown
in Fig. 5.29.

Fig. 5.29

Solution Capacitive reactance XC = 
1

2p fC

= 
1

2 50 100 10 6p ¥ ¥ ¥
-

 = 31.83 W



Complex Impedance 5.19

Capacitive susceptance BC = 
1

XC

= 
1

31 83.
 = 0.031 S

Conductance G = 
1 1

50R
=  = 0.02 S

Total admittance Y = G BC
2 2+

= ( . ) ( . )0 02 0 0312 2+

= 0.037 S

Total impedance Z = 
1 1

0 037Y
=

.
 = 27.02 W

Phase angle q = tan–1 
R

XC

F
HG

I
KJ

= tan–1 
50

31 83.

F
HG

I
KJ

q = 57.52°

Problem 5.7 For the parallel circuit in Fig. 5.30, find the magnitude of
current in each branch and the total current. What is the phase angle between the
applied voltage and total current?

Fig. 5.30

Solution First let us find the capacitive reactances.

XC1 = 
1

2 1p fC

= 
1

2 50 100 10 6p ¥ ¥ ¥
-

 = 31.83 W

XC2 = 
1

2

1

2 50 300 102
6p pfC

=
¥ ¥ ¥

-

= 10.61 W

Here the voltage across each element is the same as the applied voltage.



5.20 Network Analysis

Current in the 100 mF capacitor IC = 
V

X

S

C1

= 
10 0

31 83 90

– ∞

– - ∞.
 = 0.31 –90° A

Current in the 300 mF capacitor IC2
 = 

V

X

S

C2

= 
10 0

10 61 90

– ∞

– - ∞.
 = 0.94 –90° A

Current in the 100 W resistor is IR1
 = 

V

R

S

1

10

100
=  = 0.1 A

Current in the 200 W resistor is IR2
 = 

V

R

S

2

10

200
=  = 0.05 A

Total current IT = IR1
 + IR2

 + j(IC1
 + IC2

)

= 0.1 + 0.05 + j(0.31 + 0.94) = 1.26 –83.2° A

The circuit shown in Fig. 5.30 can be simplified into a single parallel RC circuit
as shown in Fig. 5.31.

Fig. 5.31

In Fig. 5.30, the two resistances are in parallel and can be combined into a
single resistance. Similarly, the two capacitive reactances are in parallel and can
be combined into a single capacitive reactance.

R = 
R R

R R

1 2

1 2+
 = 66.67 W

XC = 
X X

X X

C C

C C

1 2

1 2
+

 = 7.96 W

Phase angle q between voltage and current is

q = tan–1 
R

XC

F
HG

I
KJ

 = tan–1 
66 67

7 96

.

.

F
HG

I
KJ

 = 83.19°

Here the current leads the applied voltage by 83.19°.

Problem 5.8 For the circuit shown in Fig. 5.32, determine the total
impedance, total current and phase angle.
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Fig. 5.32

Solution First, we calculate the magnitudes of the capacitive reactances.

XC1
= 

1

2 50 100 10 6p ¥ ¥ ¥
-

 = 31.83 W

XC2
= 

1

2 50 300 10 6p ¥ ¥ ¥
-

 = 10.61 W

We find the impedance of the parallel portion by finding the admittance.

G2 = 
1 1

502R
=  = 0.02 S

BC2
= 

1 1

10 61
2

XC

=
.

 = 0.094 S

Y2 = G BC2
2 2 2 2

2
0 02 0 094+ = +( . ) ( . )  = 0.096 S

Z2 = 
1 1

0 0962Y
=

.
 = 10.42 W

The phase angle associated with the parallel portion of the circuit

qP = tan–1 (R2/XC2
) = tan–1(50/10.61) = 78.02°

The series equivalent values for the parallel portion are

Req = Z2 cos qP = 10.42 cos (78.02°) = 2.16 W

 XC(eq) = Z2 sin qP = 10.42 sin (78.02°) = 10.19 W

The total resistance

RT = R1 + Req

= (10 + 2.16) = 12.16 W

XCT
= XC1

 + XC (eq)

= (31.83 + 10.19) = 42.02 W

Total impedance

ZT = R XT CT

2 2+

= ( . ) ( . )12 16 42 022 2+  = 43.74 W
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We can also find the total current by using Ohm’s law

IT = 
V

Z

S

T

=
100

43 74.
 = 2.29 A

The phase angle

q = tan–1 
X

R

C

T

T
F

HG
I

KJ

= tan–1 
42 02

12 16

.

.

F
HG

I
KJ

 = 73.86°

Problem 5.9 Determine the voltage across each element of the circuit shown
in Fig. 5.33 and draw the voltage phasor diagram.

Fig. 5.33

Solution First we calculate XL1
 and XL2

XL1
= 2p f L1 = 2p ¥ 50 ¥ 0.5 = 157.08 W

XL2
= 2p f L2 = 2p ¥ 50 ¥ 1.0 = 314.16 W

Now we determine the impedance of each branch

Z1 = R XL1
2 2 2 2

1
100 157 08+ = +( ) ( . )  = 186.2 W

Z2 = R XL2
2 2 2 2

2
330 314 16+ = +( ) ( . )  = 455.63 W

The current in each branch

I1 = 
V

Z

S

1

100

186 2
=

.
 = 0.537 A

and I2 = 
V

Z

S

2

100

455 63
=

.
 = 0.219 A

The voltage across each element

VR1
= I1R1 = 0.537 ¥ 100 = 53.7 V

VL1
= I1XL1

 = 0.537 ¥ 157.08 = 84.35 V

VR2
= I2R2 = 0.219 ¥ 330 = 72.27 V

VL2
= I2XL2

 = 0.219 ¥ 314.16 = 68.8 V

The angles associated with each parallel branch are now determined.
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q1 = tan–1 
X

R

L1

1

F
HG

I
KJ

 = tan–1 
157 08

100

.F
H

I
K  = 57.52°

q2 = tan–1 
X

R

L2

2

F
HG

I
KJ

 = tan–1 
314 16

330

.F
H

I
K  = 43.59°

i.e. I1 lags behind VS by 57.52° and I2 lags behind VS by 43.59°

Here, VR1
 and I1 are in phase and therefore, lag behind VS by 57.52°

VR2
 and I2 are in phase, and therefore lag behind VS by 43.59°

VL1
 leads I1 by 90°, so its angle is 90° – 57.52° = 32.48°

VL2
 leads I2 by 90°, so its angle is 90° – 43.59° = 46.41°

The phase relations are shown in Fig. 5.34.

Fig. 5.34

Problem 5.10 In the series parallel circuit shown in Fig. 5.35, the effective
value of voltage across the parallel parts of the circuits is 50 V. Determine the
corresponding magnitude of V.

Fig. 5.35

Solution Here we can determine the current in each branch of the parallel
part.

Current in the  j3 W branch, I1 = 
50

3
 = 16.67 A

Current in (10 + j30) W branch, I2 = 
50

31 62.
 = 1.58 A

Total current IT = 16.67 + 1.58 = 18.25 A
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Total impedance ZT = 8.5 –30° + 
3 90 10 30

10 30 3 90

– ∞ ¥ +

+ + – ∞

( )

( )

j

j

= 8.5 –30° + 
3 90 31 62 71 57

10 33

– ∞ ¥ – ∞

+

. .

j

= 7.36 + j4.25 + 
94 86 161 57

34 48 73 14

. .

. .

– ∞

– ∞

= 7.36 + j4.25 + 2.75 –88.43°

= 7.36 + j4.25 + 0.075 + j2.75

= (7.435 + j7) W

= 10.21 –43.27°

In polar form, total impedance is ZT = 10.21 –43.27°

The magnitude of applied voltage V = I ¥ ZT = 18.25 ¥ 10.21 = 186.33 V.

Problem 5.11 For the series parallel circuit shown in Fig. 5.36, determine
(a) the total impedance between the terminals a, b and state if it is inductive or
capacitive (b) the voltage across in the parallel branch, and (c) the phase angle.

Fig. 5.36

Solution Here the parallel branch can be combined into a single branch

ZP = (3 + j4) || (3 + j4) = (1.5 + j2) W

Total impedance ZT = 1 + j2 + 1.5 + j2 = (2.5 + j4) W

Hence the total impedance in the circuit is inductive
Total current in the circuit

IT = 
V

Z

j

j

S

T

=
+

+

10 20

2 5 4.

= 
22 36 63 43

4 72 57 99

. .

. .

– ∞

– ∞

\ IT = 4.74 –5.44° A

i.e. the current lags behind the voltage by 57.99°

Phase angle q = 57.99°

Voltage across in the parallel branch

VP = (1.5 + j2) 4.74 –5.44°
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= 2.5 ¥ 4.74 –(5.44° + 53.13°)

= 11.85 –58.57° V

Problem 5.12 In the series parallel circuit shown in Fig. 5.37, the two
parallel branches A and B are in series with C. The impedances are ZA = 10 + j8,
ZB = 9 – j6, ZC = 3 + j2 and the voltage across the circuit is (100 + j0) V. Find the
currents IA, IB and the phase angle between them.

Fig. 5.37

Solution Total parallel branch impedance,

ZP = 
Z Z

Z Z

A B

A B+

= 
( ) ( )10 8 9 6

19 2

+ -

+

j j

j

= 
12 8 38 66 10 82 33 7

19 1 6

. . . .

.

– ∞ ¥ – -

– ∞
 = 7.25 –– 1.04°

In rectangular form,
Total parallel impedance ZP = 7.25 – j0.13
This parallel impedance is in series with ZC

Total impedance in the circuit

ZT = ZP + ZC = 7.25 - j0.13 + 3 + j2 = (10.25 + j1.87) W

Total current IT = 
V

Z

S

T

= 
( )

( . . ) . .

100 0

10 25 1 87

100 0

10 42 10 34

+

+
=

– ∞

– ∞

j

j

= 9.6 –– 10.34°

The current lags behind the applied voltage by 10.34°

Current in branch A is

IA = IT 
Z

Z Z

B

A B+

= 9.6 –– 10.34° ¥ 
( )9 6

19 2

-

+

j

j
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= 
9 6 10 34 10 82 33 7

19 1 6

. . . .

.

– - ∞ ¥ – - ∞

– ∞

= 5.44 –– 50.04° A

Current in branch B is IB

IB = IT ¥ 
Z

Z Z

A

A B+

= 9.6 –– 10.34° ¥ 
10 8

19 2

+

+

j

j

= 
9 6 10 34 12 8 38 66

19 1 6

. . . .

.

– - ∞ ¥ – ∞

– ∞

= 6.43 –22.32° A

The angle between IA and IB,

q = (50.04° + 22.32°) = 72.36°

Problem 5.13 A series circuit of two pure elements has the following applied
voltage and resulting current.

V = 15 cos (200 t – 30°) volts

I = 8.5 cos (200 t + 15) volts

Find the elements comprising the circuit.

Solution By inspection, the current leads the voltage by 30° + 15° = 45°.
Hence the circuit must contain resistance and capacitance.

tan 45 = 
1

wCR

1 = 
1

wCR
, \ 

1

wC
 = R

V

I

m

m

= R
C

R R R2
2

2 21
2+

F
HG

I
KJ

= + =
w

\ R = 
15

8 5 2. ¥
 = 1.248 W

1

wC
= 1.248 W

and C = 
1

200 1 248¥ .
 = 4 ¥ 10–3 F

Problem 5.14 A resistor having a resistance of R = 10 W and an unknown
capacitor are in series. The voltage across the resistor is VR = 50 sin (1000 t +
45°) volts. If the current leads the applied voltage by 60° what is the unknown
capacitance C?
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Solution Here, the current leads the applied voltage by 60°.

tan 60° = 
1

wCR

Since R = 10 W

w = 1000 radians

tan 60° = 
1

wCR

C = 
1

60 1000 10tan ¥ ¥
 = 57.7 mF

Problem 5.15 A series circuit consists of two pure elements has the following
current and voltage.

v = 100 sin (2000 t + 50°) V

i = 20 cos (2000 t + 20°) A

Find the elements in the circuit.

Solution We can write i = 20 sin (2000 t + 20° + 90°)

Since cos q = sin (q + 90°)

Current i = 20 sin (2000 t + 110°) A

The current leads the voltage by 110° – 50° = 60°

and the circuit must consist of resistance and capacitance.

tan q = 
1

wCR

1

wC
= R tan 60° = 1.73 R

V

I

m

m

= R
C

2
2

1 100

20
+

F
HG

I
KJ

=
w

R 1 1 73)2+ ( . = 
100

20
R (1.99) = 5

R = 2.5 W

and C = 
1

1 73w ( . )R
 = 115.6 mF

Problem 5.16 A two branch parallel circuit with one branch of R = 100 W
and a single unknown element in the other branch has the following applied
voltage and total current.

v = 2000 cos (1000 t + 45°) V
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IT = 45 sin (1000 t + 135°) A

Find the unknown element.

Solution Here, the voltage applied is same for both elements.

Current passing through resistor is iR = 
v

R

\ iR = 20 cos (1000 t + 45°)

Total current iT = iR + iX
Where IX is the current in unknown element.

IX = iT – iR

= 45 sin (1000 t + 135°) – 20 cos (1000 t + 45°)

= 45 sin (1000 t + 135°) – 20 sin (1000 t + 135°)

Current passing through the unknown element.

IX = 25 sin (1000 t + 135°)

Since the current and voltage are in phase, the element is a resistor.
And the value of resistor

R = 
v

iX

=
2000

25
 = 80 W

Problem 5.17 Find the total current to the parallel circuit with L = 0.05 H
and C = 0.667 mF with an applied voltage of v = 200 sin 5000 t V.

Solution Current in the inductor iL = 
1

L z vdt

\ iL = 
1

0 05. z 200 sin 5000 t

= 
-

¥

200 5000

0 05 5000

cos

.

t

iL = – 0.8 cos 5000 t

Current in the capacitor iC = C
d

dt

v

\ iC = 0.667 ¥ 10–6 
d

dt
(200 sin 5000 t)

iC = 0.667 cos 500 t

Total current iT = iL + iC

= 0.667 cos 5000 t – 0.8 cos 5000 t

= – 0.133 cos (5000 t)

Total current iT = 0.133 sin (5000 t – 90°) A
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Practice Problems

5.1 For the circuit shown in Fig. 5.38, determine the impedance, phase angle
and total current.

Fig. 5.38

5.2 Calculate the total current in the circuit in Fig. 5.39, and determine the
voltage across resistor VR, and across capacitor VC.

Fig. 5.39

5.3 Determine the impedance and phase angle in the circuit shown in Fig. 5.40.

Fig. 5.40

5.4 Calculate the impedance at each of the following frequencies; also deter-
mine the current at each frequency in the circuit shown in Fig. 5.41.

(a) 100 Hz (b) 3 KHz
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Fig. 5.41

5.5 A signal generator supplies a sine wave of 10 V, 10 KHz, to the circuit
shown in Fig. 5.42. Calculate the total current in the circuit. Determine the
phase angle q for the circuit. If the total inductance in the circuit is doubled,
does q increase or decrease, and by how many degrees?

Fig. 5.42

5.6 For the circuit shown in Fig. 5.43, determine the voltage across each ele-
ment. Is the circuit predominantly resistive or inductive? Find the current
in each branch and the total current.

Fig. 5.43

5.7 Determine the total impedance ZT, the total current IT, phase angle q, volt-
age across inductor L, and voltage across resistor R3 in the circuit shown
in Fig. 5.44.
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Fig. 5.44

5.8 For the circuit shown in Fig. 5.45, determine the value of frequency of
supply voltage when a 100 V, 50 A current is supplied to the circuit.

Fig. 5.45

5.9 A sine wave generator supplies a signal of 100 V, 50 Hz to the circuit
shown in Fig. 5.46. Find the current in each branch, and total current.
Determine the voltage across each element and draw the voltage phasor
diagram.

Fig. 5.46

5.10 Determine the voltage across each element in the circuit shown in
Fig. 5.47. Convert the circuit into an equivalent series form. Draw the
voltage phasor diagram.

Fig. 5.47



5.32 Network Analysis

5.11 For the circuit shown in Fig. 5.48, determine the total current IT, phase
angle q and voltage across each element.

Fig. 5.48

5.12 For the circuit shown in Fig. 5.49, the applied voltage v = Vm cos w t.
Determine the current in each branch and obtain the total current in terms
of the cosine function.

Fig. 5.49

5.13 For the circuit shown in Fig. 5.50, the voltage across the inductor is vL =
15 sin 200 t. Find the total voltage and the angle by which the current lags
the total voltage.

vvTT

RR

LL

iiTT

v =v = sinsin tt1515 200200LL

Fig. 5.50

5.14 In a parallel circuit having a resistance R = 5 W and L = 0.02 H, the ap-
plied voltage is v = 100 sin (1000 t + 50°) volts. Find the total current and
the angle by which the current lags the applied voltage.

5.15 In the parallel circuit shown in Fig. 5.51, the current in the inductor is five
times greater than the current in the capacitor. Find the element values.
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Fig. 5.51

5.16 In the parallel circuit shown in Fig. 5.52, the applied voltage is v = 100 sin
5000 t V. Find the currents in each branch and also the total current in the
circuit.

Fig. 5.52

5.17 For the circuit shown in Fig. 5.53, find the total current and the magnitude
of the impedance.

Fig. 5.53

Objective-type Questions

1. A 1 kHz sinusoidal voltage is applied to an RL circuit, what is the fre-
quency of the resulting current?

(a) 1 kHz (b) 0.1 kHz
(c) 100 kHz (d) 2 kHz

2. A series RL circuit has a resistance of 33 kW, and an inductive reactance
of 50 kW. What is its impedance and phase angle?
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(a) 56.58 W, 59.9° (b) 59.9 kW, 56.58°

(c) 59.9 W, 56.58° (d) 5.99 W, 56.58°

3. In a certain RL circuit, VR = 2 V and VL = 3 V. What is the magnitude of
the total voltage?

(a) 2 V (b) 3 V
(c) 5 V (d) 3.61 V

4. When the frequency of applied voltage in a series RL circuit is increased
what happens to the inductive reactance?

(a) decreases (b) remains the same
(c) increases (d) becomes zero

5. In a certain parallel RL circuit, R = 50 W, and XL = 75 W. What is the
admittance?

(a) 0.024 S (b) 75 S
(c) 50 S (d) 1.5 S

6. What is the phase angle between the inductor current and the applied volt-
age in a parallel RL circuit?

(a) 0° (b) 45°

(c) 90° (d) 30°

7. When the resistance in an RC circuit is greater than the capacitive reac-
tance, the phase angle between the applied voltage and the total current is
closer to

(a) 90° (b) 0°

(c) 45° (d) 120°

8. A series RC circuit has a resistance of 33 kW, and a capacitive reactance
of 50 kW. What is the value of the impedance.

(a) 50 kW (b) 33 kW
(c) 20 kW (d) 59.91 W

9. In a certain series RC circuit, VR = 4 V and VC = 6 V. What is the magni-
tude of the total voltage?

(a) 7.2 V (b) 4 V
(c) 6 V (d) 52 V

10. When the frequency of the applied voltage in a series RC circuit is in-
creased what happens to the capacitive reactance?

(a) it increases (b) it decreases
(c) it is zero (d) remains the same

11. In a certain parallel RC circuit, R = 50 W and XC = 75 W. What is Y ?
(a) 0.01 S (b) 0.02 S
(c) 50 S (d) 75 S

12. The admittance of an RC circuit is 0.0035 S, and the applied voltage is
6 V. What is the total current?

(a) 6 mA (b) 20 mA
(c) 21 mA (d) 5 mA
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13. What is the phase angle between the capacitor current and the applied
voltage in a parallel RC circuit?

(a) 90° (b) 0°

(c) 45° (d) 180°

14. In a given series RLC circuit, XC is 150 W, and XL is 80 W, what is the total
reactance? What is the type of reactance?

(a) 70 W, inductive (b) 70 W, capacitive
(c) 70 W, resistive (d) 150 W, capacitive

15. In a certain series RLC circuit VR = 24 V, VL = 15 V, and VC = 45 V. What
is the source voltage.

(a) 38.42 V (b) 45 V
(c) 15 V (d) 24 V

16. When R = 10 W, XC = 18 W and XL = 12 W, the current
(a) leads the applied voltage
(b) lags behind the applied voltage
(c) is in phase with the voltage
(d) is none of the above

17. A current i = A sin 500 t A passes through the circuit shown in Fig. 5.54.
The total voltage applied will be

vv

RR LL

ii

Fig. 5.54

(a) B sin 500 t (b) B sin (500 t – q°)
(c) B sin (500 t + q°) (d) B cos (200 t + q°)

18. A current of 100 mA through an inductive reactance of 100 W produces a
voltage drop of

(a) 1 V (b) 6.28 V
(c) 10 V (d) 100 V

19. When a voltage v = 100 sin 5000 t volts is applied to a series circuit of L =
0.05 H and unknown capacitance, the resulting current is i = 2 sin (5000 t
+ 90°) amperes. The value of capacitance is

(a) 66.7 pF (b) 6.67 pF
(c) 0.667 mF (d) 6.67 mF

20. A series circuit consists of two elements has the following current and
applied voltage.

i = 4 cos (2000 t + 11.32°) A

v = 200 sin (2000 t + 50°) V
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The circuit elements are
(a) resistance and capacitance (b) capacitance and inductance
(c) inductance and resistance (d) both resistances

21. A pure capacitor of C = 35 mF is in parallel with another signal circuit
element. The applied voltage and resulting current are

v = 150 sin 300 t V

i = 16.5 sin (3000 t + 72.4°) A

The other element is
(a) capacitor of 30 mF (b) inductor of 30 mH
(c) resistor of 30 W (d) none of the above
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Power and Power Factor

6.1 INSTANTANEOUS POWER

In a purely resistive circuit, all the energy delivered by the source is dissipated in

the form of heat by the resistance. In a purely reactive (inductive or capacitive)

circuit, all the energy delivered by the source is stored by the inductor or

capacitor in its magnetic or electric field during a portion of the voltage cycle,

and then is returned to the source during another portion of the cycle, so that no

net energy is transferred. When there is complex impedance in a circuit, part of

the energy is alternately stored and returned by the reactive part, and part of it is

dissipated by the resistance. The amount of energy dissipated is determined by

the relative values of resistance and reactance.

Consider a circuit having complex impedance. Let v (t) = Vm cos w t be the

voltage applied to the circuit and let i (t) = Im cos (wt + q ) be the corresponding

current flowing through the circuit. Then the power at any instant of time is

P(t) = v (t) i(t)

= Vm cos w t Im cos (w t + q) (6.1)

From Eq. 6.1, we get

P(t) = 
V Im m

2
 [cos (2w t + q) + cos q] (6.2)

Equation 6.2 represents instantaneous power. It consists of two parts. One is a

fixed part, and the other is time-varying which has a frequency twice that of the

voltage or current waveforms. The voltage, current and power waveforms are

shown in Figs 6.1 and 6.2.

Here, the negative portion (hatched) of the power cycle represents the power

returned to the source. Figure 6.2 shows that the instantaneous power is negative
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whenever the voltage and current are of opposite sign. In Fig. 6.2, the positive

portion of the power is greater than the negative portion of the power; hence the

average power is always positive, which is almost equal to the constant part of

the instantaneous power (Eq. 6.2). The positive portion of the power cycle varies

with the phase angle between the voltage and current waveforms. If the circuit is

pure resistive, the phase angle between voltage and current is zero; then there is

no negative cycle in the P(t) curve. Hence, all the power delivered by the source

is completely dissipated in the resistance.

If q becomes zero in Eq. 6.1, we get

P(t) = v(t) i(t)

= Vm Im cos2 wt

= 
V Im m

2
 (1 + cos 2w t) (6.3)

The waveform for Eq. 6.3, is shown in Fig. 6.3, where the power wave has a

frequency twice that of the voltage or current. Here the average value of power is

VmIm/2.

When phase angle q is increased, the negative portion of the power cycle

increases and lesser power is dissipated.When q becomes p /2, the positive and

negative portions of the power cycle are equal. At this instant, the power

dissipated in the circuit is zero, i.e. the power delivered to the load is returned to

the source.

Fig. 6.1

Fig. 6.2
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6.2 AVERAGE POWER

To find the average value of any power function, we have to take a particular

time interval from t1 to t2; by integrating the function from t1 to t2 and dividing

the result by the time interval t2 – t1, we get the average power.

Average power P = 
1

2 1
1

2

t t
t

t

- z P(t) dt (6.4)

In general, the average value over one cycle is

Pav = 
1

0
T

T

z P(t) dt (6.5)

By integrating the instantaneous power P(t) in Eq. 6.5 over one cycle, we get
average power

Pav = 
1

2
2

0
T

V I
t dtm m

T

cos ( ) cosw q q+ +RST
UVWz

= 
1

2
0

T

V Im m
T

z [cos (2w t + q )] dt + 
1

2
0

T

V Im m
T

z cos q dt (6.6)

In Eq. 6.6, the first term becomes zero, and the second term remains. The
average power is therefore

Pav = 
V Im m

2
cos q W (6.7)

Fig. 6.3
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We can write Eq. 6.7 as

Pav = 
V Im m

2 2
F
H

I
K
F
H

I
K cos q (6.8)

In Eq. 6.8, Vm / 2  and Im / 2  are the effective values of both voltage and current.

\ Pav = Veff Ieff cos q

To get average power, we have to take the product of the effective values of both
voltage and current multiplied by cosine of the phase angle between voltage and
the current.

If we consider a purely resistive circuit, the phase angle between voltage and
current is zero. Hence, the average power is

Pav = 
1

2
Vm Im = 

1

2
I2

m R

If we consider a purely reactive circuit (i.e. purely capacitive or purely
inductive), the phase angle between voltage and current is 90°. Hence, the
average power is zero or Pav = 0.

If the circuit contains complex impedance, the average power is the power
dissipated in the resistive part only.

Example 6.1 A voltage of v(t) = 100 sin wt is applied to a circuit. The current

flowing through the circuit is i(t ) = 15 sin (w t – 30°). Determine the average

power delivered to the circuit.

Solution The phase angle between voltage and current is 30°.

Effective value of the voltage Veff = 
100

2

Effective value of the current Ieff = 
15

2

Average power Pav = Veff Ieff cos q

= 
100

2

15

2
¥  cos 30°

= 
100 15

2

¥
 ¥ 0.866 = 649.5 W

Example 6.2 Determine the average power delivered to the circuit consisting

of an impedance Z = 5 + j8 when the current flowing through the circuit is

I = 5–30°.

Solution The average power is the power dissipated in the resistive part only.

or Pav = 
Im

2

2
R

Current Im = 5 A

\ Pav = 
5

2

2

 ¥ 5 = 62.5 W
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6.3 APPARENT POWER AND POWER FACTOR

The power factor is useful in determining useful power (true power) transferred
to a load. The highest power factor is 1, which indicates that the current to a load
is in phase with the voltage across it (i.e. in the case of resistive load). When the
power factor is 0, the current to a load is 90° out of phase with the voltage (i.e. in
case of reactive load).

Consider the following equation

Pav = 
V Im m

2
 cos q W (6.9)

In terms of effective values

Pav = 
V Im m

2 2
 cos q

= Veff Ieff cos q W (6.10)

The average power is expressed in watts. It means the useful power transferred
from the source to the load, which is also called true power. If we consider a dc
source applied to the network, true power is given by the product of the voltage
and the current. In case of sinusoidal voltage applied to the circuit, the product of
voltage and current is not the true power or average power. This product is called
apparent power. The apparent power is expressed in volt amperes, or simply
VA.

\ Apparent power  = Veff Ieff

In Eq. 6.10, the average power depends on the value of cos q; this is called the
power factor of the circuit.

\ Power factor (pf) = cos q = 
P

V I

av

eff eff

Therefore, power factor is defined as the ratio of average power to the apparent
power, whereas apparent power is the product of the effective values of the
current and the voltage. Power factor is also defined as the factor with which the
volt amperes are to be multiplied to get true power in the circuit.

In the case of sinusoidal sources, the power factor is the cosine of the phase
angle between voltage and current

pf = cos q

As the phase angle between voltage and total current increases, the power factor
decreases. The smaller the power factor, the smaller the power dissipation. The
power factor varies from 0 to 1. For purely resistive circuits, the phase angle
between voltage and current is zero, and hence the power factor is unity. For
purely reactive circuits, the phase angle between voltage and current is 90°, and
hence the power factor is zero. In an RC circuit, the power factor is referred to as
leading power factor because the current leads the voltage. In an RL circuit, the
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power factor is referred to as lagging power factor because the current lags
behind the voltage.

Example 6.3 A sinusoidal voltage v = 50 sin w t is applied to a series RL circuit.

The current in the circuit is given by i = 25 sin (wt – 53°). Determine (a) apparent

power (b) power factor and (c) average power.

Solution (a) Apparent power P = Veff Ieff

= 
V Im m

2 2
¥

= 
50 25

2

¥
 = 625 VA

(b) Power factor = cos q

where q is the angle between voltage and current

q = 53°

\ Power factor = cos q = cos 53° = 0.6

(c) Average Power Pav = Veff Ieff cos q

= 625 ¥ 0.6 = 375 W

6.4 REACTIVE POWER

We know that the average power dissipated is

Pav = Veff [Ieff cos q] (6.11)

From the impedance triangle shown in Fig. 6.4

cos q = 
R

Z| |
(6.12)

and Veff = Ieff Z (6.13)

If we substitute Eqs (6.12) and (6.13) in
Eq. (6.11), we get

Pav = Ieff Z I
R

Z
eff

L
NM

O
QP

= I2
eff R watts (6.14)

This gives the average power dissipated in a resistive circuit.
If we consider a circuit consisting of a pure inductor, the power in the inductor

Pr = ivL (6.15)

= iL
di

dt

Consider i = Im sin (w t + q)

Then Pr = I 2
m sin (w t + q ) Lw cos (w t + q)

Fig. 6.4

qq

jXjXLL
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RR

XX

==

++22

22
22
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= 
Im

2

2
 (wL) sin 2 (w t + q)

\ Pr = I 2
eff (wL) sin 2(w t + q) (6.16)

From the above equation, we can say that the average power delivered to the
circuit is zero. This is called reactive power. It is expressed in volt-amperes
reactive (VAR).

Pr = I 2
eff XL VAR (6.17)

From Fig. 6.4, we have

XL = Z sin q (6.18)

Substituting Eq. 6.18 in Eq. 6.17, we get

Pr = I2
eff Z sin q

= (Ieff Z )Ieff sin q

= Veff Ieff sin q VAR

6.5 THE POWER TRIANGLE

A generalised impedance phase diagram is shown in Fig. 6.5. A phasor relation
for power can also be represented by a similar diagram because of the fact that
true power Pav and reactive power Pr differ from R and X by a factor I2

eff , as
shown in Fig. 6.5.

The resultant power phasor I 2
eff Z, represents the apparent power Pa.

At any instant in time, Pa is the total power that appears to be transferred between
the source and reactive circuit. Part of the apparent power is true power and part
of it is reactive power.

\ Pa = I 2
eff Z

The power triangle is shown in Fig. 6.6.

Fig. 6.5 Fig. 6.6

From Fig. 6.6, we can write
Ptrue = Pa cos q

or average power Pav = Pa cos q
and reactive power Pr = Pa sin q



6.8 Network Analysis

Additional Solved Problems

Problem 6.1 In the circuit shown in Fig. 6.7, a voltage of v(t) = 50 sin (w t +
30°) is applied. Determine the true power, reactive power and power factor.

Solution The voltage applied to the circuit is

v(t) = 50 sin (w t + 30°)

The current in the circuit is

I = 
V

Z j
=

– ∞

+
=

– ∞

– ∞

50 30

10 30

50 30

31 6 71 56. .

= 1.58 –– 41.56° A

The phasor diagram is shown in Fig. 6.8.
The phase angle between voltage and current q = 71.56°

Power factor = cos q = cos 71.56° = 0.32
True power or average power

Pav = Veff Ieff cos q

= 
50 1 58

2 2

¥

¥

.
 cos 71.56°

= 12.49 W

Reactive power = Veff Ieff sin q

= 
50 1 58

2 2

¥

¥

.
 sin 71.56°

= 37.47 VAR

Problem 6.2 Determine the circuit constants in the circuit shown in Fig. 6.9,
if the applied voltage to the circuit v (t) = 100 sin (50t + 20°). The true power in
the circuit is 200 W and the power factor is 0.707 lagging.

Solution Power factor = cos q = 0.707

\ The phase angle between voltage and current

q = cos–1 0.707 = 45°

Here the current lags behind the voltage by 45°.
Hence, the current equation is i(t) = Im sin (50t – 25°)
True power = Veff Ieff cos q = 200 W

Ieff = 
200

Veff cos q

= 
200

100 2 0 707( / ) .¥
 = 4 A

Im = 4 ¥ 2  = 5.66 A

Fig. 6.7

Fig. 6.8

Fig. 6.9
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\ The current equation is i(t) = 5.66 sin (50t – 25°)
The impedance of the circuit

Z = 
V

I
=

– ∞

– - ∞

( / )

( . / )

100 2 20

5 66 2 25

\ Z = 17.67 –45° = 12.5 + j12.5

Since Z = R + jXL = 12.5 + j12.5

\ R = 12.5 ohms, XL = 12.5 ohms

XL = wL = 12.5

L = 
12 5

50

.
 = 0.25 H

Problem 6.3 A voltage v(t) = 150 sin 250t is applied to the circuit shown in
Fig. 6.10. Find the power delivered to the circuit and the value of inductance in
Henrys.

Solution Z = 10 + j15 W

The impedance Z = 18 –56.3°

The impedance of the circuit Z = 
V

I

18 –56.3° = 
( / )150 2 0– ∞

I

\ Phasor current I = 
150 2

18 56 3

/

.– ∞
 = 5.89 –– 56.3°

The current equation is i(t) = 5.89 2  sin (250t – 56.3°)
= 8.33 sin (250t – 56.3°)

The phase angle between the current and the voltage

q = 56.3°

The power delivered to the circuit

Pav = VI cos q

= 
150

2

8 33

2
¥

.
cos 56.3°

= 346.6 W

The inductive impedance XL = 15 W

\ wL = 15

\ L = 
15

250
 = 0.06 H

Problem 6.4 Determine the power factor, true power, reactive power and
apparent power in the circuit in Fig. 6.11.

Fig. 6.10
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Fig. 6.11

Solution The impedance of the circuit

Z = R XC
2 2+

= ( ) ( )100 2002 2+  = 223.6 W

The current I = 
V

Z

S =
50

223 6.
 = 0.224 A

The phase angle

q = tan–1 
-F

H
I
K

X

R

C

= tan–1 
-F

H
I
K

200

100
 = – 63.4°

\ The power factor pf = cos q = cos (63.4°) = 0.448
The true power Pav = VI cos q

= 50 ¥ 0.224 ¥ 0.448 = 5.01 W

The reactive power P
v
 = I2 XC

= (0.224)2 ¥ 200 = 10.03 VAR

The apparent power

Pa = I 2Z = (0.224)2 ¥ 223.6 = 11.21 VA

Problem 6.5 In a certain RC circuit, the true power is 300 W and the reactive
power is 1000 W. What is the apparent power?

Solution The true power Ptrue or Pav = VI cos q

= 300 W

The reactive power Pr = VI sin q

= 1000 W

From the above results

tan q = 
1000

300
 = 3.33

The phase angle between voltage and current, q = tan–1 3.33 = 73.3°

The apparent power Pa = VI = 
300

73 3cos . ∞
 = 1043.9 VA
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Problem 6.6 A sine wave of v (t) = 200 sin 50t is applied to a 10 W resistor in
series with a coil. The reading of a voltmeter across the resistor is 120 V and
across the coil, 75 V. Calculate the power and reactive volt-amperes in the coil
and the power factor of the circuit.

Solution The rms value of the sine wave

V = 
200

2
 = 141.4 V

Voltage across the resistor, VR = 120 V
Voltage across the coil, VL = 75 V

\ IR = 120 V

The current in resistor, I = 
120

10
 = 12 A

Since IXL = 75 V

\ XL = 
75

12
 = 6.25 W

Power factor, pf = cos q = 
R

Z

where Z = 10 + j6.25 = 11.8 –32°

\ cos q = 
R

Z
=

10

11 8.
 = 0.85

True power Ptrue = I2 
R = (12)2 ¥ 10 = 1440 W

Reactive power Pr = I2 
XL = (12)2 ¥ 6.25 = 900 VAR

Problem 6.7 For the circuit shown in Fig. 6.12, determine the true power,
reactive power and apparent power in each branch. What is the power factor of
the total circuit?

Fig. 6.12

Solution In the circuit shown in Fig. 6.12, we can calculate Z1 and Z2.

Impedance Z1 = 
100 15

50 10

– ∞

– ∞
 = 2 –5° = (1.99 + j0.174) W

Impedance Z2 = 
100 15

20 30

– ∞

– ∞
 = 5 ––15° = (4.83 – j1.29) W

True power in branch Z1 is Pt1
 = I 2

1 R = (50)2 ¥ 1.99 = 4975 W
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Reactive power in branch Z1, Pr1
 = I 2

1 XL

= (50)2 ¥ 0.174 = 435 VAR

Apparent power in branch Z1, Pa1
 = I 2

1 Z

= (50)2 ¥ 2

= 2500 ¥ 2 = 5000 VA

True power in branch Z2, Pt2
 = I 2

2 R

= (20)2 ¥ 4.83 = 1932 W

Reactive power in branch Z2, Pr2
 = I 2

2 XC

= (20)2 ¥ 1.29 = 516 VAR

Apparent power in branch Z2, Pa2
 = I 2

2 Z

= (20)2 ¥ 5 = 2000 VA

Total impedance of the circuit, Z = 
Z Z

Z Z

1 2

1 2+

= 
2 5 5 15

1 99 0 174 4 83 1 29

– ∞ ¥ ¥ – - ∞

+ + -. . . .j j

= 
10 10

6 82 1 116

– - ∞

-. .j

= 
10 10

6 9 9 29

– - ∞

– - ∞. .
 = 1.45 –– 0.71°

The phase angle between voltage and current, q = 0.71°

\ Power factor pf = cos q

= cos 0.71° = 0.99 leading

Problem 6.8 A voltage of v(t) = 141.4 sin w t is applied to the circuit shown
in Fig. 6.13. The circuit dissipates 450 W at a lagging power factor, when the
voltmeter and ammeter readings are 100 V and 6 A, respectively. Calculate the
circuit constants.

AA

VV tt( ) = 141.4 sin( ) = 141.4 sin ww tt

6 A6 A
–– 2020jj WW

1010 WW

jxjx22

VV 100 V100 V

RR11 XX11

Fig. 6.13

Solution The magnitude of the current passing through (10 + jX2) W is

I = 6 A
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The magnitude of the voltage across the (10 + jX2) ohms, V = 100 V. The
magnitude of impedance (10 + jX2) is V/I.

Hence 10
100

6
2

2
2+ =X  = 16.67 W

\ X2 = ( . ) ( )16 67 102 2-  = 13.33 W

Total power dissipated in the circuit = VI cos q = 450 W

\ V = 
141 4

2

.
 = 100 V

I = 6 A

100 ¥ 6 ¥ cos q = 450

The power factor pf = cos q = 
450

600
 = 0.75

q = 41.4°

The current lags behind the voltage by 41.4°

The current passing through the circuit, I = 6 –– 41.4°

The voltage across (10 + j13.33) W, V = 6 –– 41.4° ¥ 16.66 –53.1°

= 100 –11.7°

The voltage across parallel branch, V1 = 100 –0° – 100 –11.7°

= 100 – 97.9 – j20.27

= (2.1 – j20.27)V = 20.38 –– 84.08°

The current in (– j20) branch, I2 = 
20 38 84 08

20 90

. .– - ∞

– - ∞
 = 1.02 –+ 5.92°

The current in (R1 – jX1) branch, I1

= 6 –– 41.4° – 1.02 –5.92° = 4.5 – j3.97 – 1.01 – j0.1

= 3.49 – j4.07 = 5.36 –– 49.39°

The impedance Z1 = 
V

I

1

1

20 38 84 08

5 36 49 39
=

– - ∞

– - ∞

. .

. .

= 3.8 –– 34.69° = (3.12 – j2.16) W

Since  R1 - jX1 = (3.12 – j2.16) W

R1 = 3.12 W

X1 = 2.16 W

Problem 6.9 Determine the value of the voltage source and power factor in
the following network if it delivers a power of 100 W to the circuit shown in
Fig. 6.14. Find also the reactive power drawn from the source.
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VV – 0∞– 0∞

55 WW

– j– j 55 WW

jj 22 WW

22 WW

Fig. 6.14

Solution Total impedance in the circuit,

Zeq = 5 + 
( ) ( )2 2 5

2 2 5

+ -

+ -

j j

j j

= 5 + 
10 10

2 3

-

-

j

j
 = 5 + 

14 14 45

3 6 56 3

.

. .

– - ∞

– - ∞
 = 5 + 3.93 –11.3°

= 5 + 3.85 + j0.77 = 8.85 + j0.77 = 8.88 –4.97°

Power delivered to the circuit, PT = I2
RT = 100 W

\ I
2 ¥ 8.85 = 100

Current in the circuit, I = 
100

8 85.
 = 3.36 A

Power factor pf = cos q = 
R

Z

= 
8 85

8 88

.

.
 = 0.99

Since VI cos q = 100 W

V ¥ 3.36 ¥ 0.99 = 100

\ V =
100

3 36 0 99. .¥
 = 30.06 V

The value of the voltage source, V = 30.06 V

Reactive power Pr = VI sin q

= 30.06 ¥ 3.36 ¥ sin (4.97°)

= 30.06 ¥ 3.36 ¥ 0.087 = 8.8 VAR

Problem 6.10 For the circuit shown in Fig. 6.15, determine the circuit
constants when a voltage of 100 V is applied to the circuit, and the total power
absorbed is 600 W. The circuit constants are adjusted such that the currents in
the parallel branches are equal and the voltage across the inductance is equal and
in quadrature with the voltage across the parallel branch.
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RR11

RR22

I/2I/2

II

I/2I/2

jxjx11

VV 90°90°–– VV 0°0°––

100 V100 V

Fig. 6.15

Solution Since the voltages across the parallel branch and the inductance are
in quadrature, the total voltage becomes 100–45° as shown in Fig. 6.16.
Total voltage is 100 –45° = V + j0 + 0 + jV
From the above result, 70.7 + j70.7 = V + jV

\ V = 70.7

If we take current as the reference, then
current passing through the circuit is
I –0°. Total power absorbed by the circuit
= VI cos q = 600 W

or 100 ¥ I ¥ cos 45° = 600 W

\ I = 8.48 A

Hence, the inductance, X1 = 
V

I

– ∞

– ∞
=

– ∞90

0

70 7 90

8 48

.

.
 = 8.33 –90°

\   X1 = 8.33 W

Current through the parallel branch, R1 is I/2 = 4.24 A

Resistance, R1 = 
V

I

–

–
=

0

2 0

70 7

4 24/

.

.
 = 16.67 W

Current through parallel branch R2 is I/2 = 4.24 A

Resistance is R2 = 
70 7

4 24

.

.
 = 16.67 W

Problem 6.11 Determine the average power delivered by the 500 –0°

voltage source in Fig. 6.17 and also dependent source.

++
––

++ ––
vv44

33vv44
II

44 WW 77 WW

500 cos 40500 cos 40tt

++

––

Fig. 6.17

Fig. 6.16
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Solution The current I can be determined by using Kirchhoff’s voltage law.

I = 
500 0 3

7 4
4– ∞ -

+

v

where v4 = 4I

I = 
500 0

11

12

11

– ∞
-

I

I = 21.73 –0°

Power delivered by the 500 –0° voltage source = 
500 21 73

2

¥ .
 = 5.432 kW

Power delivered by the dependent voltage source = 
3

2

3 4

2
4v ¥

=
¥ ¥I I I

 = 2.833 kW

Problem 6.12 Find the average power delivered by the dependent voltage
source in the circuit shown in Fig. 6.18.

Fig. 6.18

Solution The circuit is redrawn as shown in Fig. 6.19.

Fig. 6.19

Assume current I1 flowing in the circuit.
The current I1 can be determined by using Kirchhoff’s voltage law.

I1 = 
100 20 10 5

5 4
1– ∞ + ¥

+

I

j

I1 – 
50

5 4

100 20

5 4
1I

j j+
=

– ∞

+

I1 = 2.213 –– 154.9°

Average power delivered by the dependent source

= 
V Im m

2
 cos q
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= 
10

2
5 1V I

 cos q

= 
50 2 213)

2

2¥ ( .
 = 122.43 W

Problem 6.13 For the circuit shown in Fig. 6.20, find the average power
delivered by the voltage source.

++

––

––
5050 vvxx

vvxx

22 WW

11 WW++
++

––

100 cos100 cos
5050 tt

-- WWjj44

jj 33 WW

VV

Fig. 6.20

Solution Applying Kirchhoff’s current law at node

V V

j

V V

j

x- – ∞
+

+
+

-

-

100 0

2 1 3

50

4
 = 0

Vx = 
V

j1 3+
 volts

Substituting in the above equation, we get

V V

j

V

j j j

- – ∞
+

+
+

-
-

+ -

100 0

2 1 3 4

50

1 3) 4

V

( ( )
 = 0

V = 14.705 –157.5°

I = 
V - – ∞

=
– ∞ - – ∞100 0

2

14 705 157 5 100 0

2

. .

= 56.865 –177.18°

Power delivered by the source = 
100 56865 17718

2

¥ ∞. cos .

= 2.834 kW

Problem 6.14 For the circuit shown in Fig. 6.21, find the average power
delivered by the dependent current source.

1010 WW

2020 WW
++

++

––

––

20 cos20 cos
5050 tt 0.50.5 VV11

VV

VV11

Fig. 6.21
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Solution Applying Kirchhoff’s current law at node

V - – ∞20 0

10
 – 0.5V1 + 

V

20
 = 0

where V1 = 20 –0° – V

Substituting V1 in the above equation, we get

V = 18.46 –0°

V1 = 1.54 –0°

Average power delivered by the dependent source

V Im m cos . . .q

2

18 46 0 5 1 54

2
=

¥ ¥
 = 7.107 W

Practice Problems

6.1 For the circuit shown in Fig. 6.22, a voltage of 250 sin w t is applied.
Determine the power factor of the circuit, if the voltmeter readings are V1

= 100 V, V2 = 125 V, V3 = 150 V and the ammeter reading is 5 A.

Fig. 6.22

6.2 For the circuit shown in Fig. 6.23, a voltage v(t) is applied and the result-
ing current in the circuit i(t) = 15 sin (w t + 30°) amperes. Determine the
active power, reactive power, power factor, and the apparent power.

Fig. 6.23
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6.3 A series RL circuit draws a current of i(t) = 8 sin (50t + 45°) from the
source. Determine the circuit constants, if the power delivered by the
source is 100 W and there is a lagging power factor of 0.707.

6.4 Two impedances, Z1 = 10 –– 60° W and Z2 = 16 –70° W are in series and
pass an effective current of 5 A. Determine the active power, reactive
power, apparent power and power factor.

6.5 For the circuit shown in Fig. 6.24, determine the value of the impedance if
the source delivers a power of 200 W and there is a lagging power factor
of 0.707. Also find the apparent power.

Fig. 6.24

6.6 A voltage of v(t) = 100 sin 500 t is applied across a series R-L-C circuit
where R = 10 W, L = 0.05 H and C = 20 mf. Determine the power supplied
by the source, the reactive power supplied by the source, the reactive
power of the capacitor, the reactive power of the inductor, and the power
factor of the circuit.

6.7 For the circuit shown in Fig. 6.25 determine the power dissipated and the
power factor of the circuit.

33 WW jj 44 WW

jj 44 WW –– 1010jj WWVV tt tt( ) = 200 sin 1000( ) = 200 sin 1000

Fig. 6.25

6.8 For the circuit shown in Fig. 6.26, determine the power factor and the
power dissipated in the circuit.

Fig. 6.26
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6.9 For the circuit shown in Fig. 6.27, determine the power factor, active
power, reactive power and apparent power.

Fig. 6.27

6.10 In the parallel circuit shown in Fig. 6.28, the power in the 5 W resistor is
600 W and the total circuit takes 3000 VA at a leading power factor of
0.707. Find the value of impedance Z.

ZZ

55 WW jj 55 WW

VV 00––

Fig. 6.28

6.11 For the parallel circuit shown in Fig. 6.29, the total power dissipated is
1000 W. Determine the apparent power, the reactive power, and the power
factor.

22 WW

55 WW

jj 11 WW

jj 33 WW

VV 0°0°––

Fig. 6.29

6.12 A voltage source v(t) = 150 sin wt in series with 5 W resistance is supply-
ing two loads in parallel, ZA = 60 –30°, and ZB = 50 ––25°. Find the
average power delivered to ZA, the average power delivered to ZB, the av-
erage power dissipated in the circuit, and the power factor of the circuit.
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6.13 For the circuit shown in Fig. 6.30, determine the true power, reactive
power and apparent power in each branch. What is the power factor of the
total circuit?

ZZ11 ZZ22

II11 = 30= 30 25°25°–– II22 = 50= 50 °°–10–10

200200 °°–30–30

Fig. 6.30

6.14 Determine the value of the voltage source, and the power factor in the
network shown in Fig. 6.31 if it delivers a power of 500 W to the circuit
shown in Fig. 6.31. Also find the reactive power drawn from the source.

33 WW

–– 55jj WW

55 WW

jj 1010 WWVV °°–0–0 jj 44 WW

Fig. 6.31

6.15 Find the average power dissipated by the 500 W resistor shown in
Fig. 6.32.

++ ––
500500 WW

1 k1 kWW
50 mH50 mH11 FFmm

vv11
vv11/2/2

++

––

1010 coscos
1010

--33

44 tt

++

––

Fig. 6.32

6.16 Find the power dissipated by the voltage source shown in Fig. 6.33.

Fig. 6.33
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6.17 Find the power delivered by current source shown in Fig. 6.34.

11 00–– ∞∞AA 0.250.25 IIcc

IIcc

-- jj 22

jj 11
++
––

Fig. 6.34

6.18 For the circuit shown in Fig. 6.35, determine the power factor, active
power, reactive power and apparent power.

100100 00–– ∞∞ 0.10.1
++

++

–– –– vvxx

vvcc

2020 WW

-- jj33WW jj 22WW

Fig. 6.35

Objective-type Questions

1. The phasor combination of resistive power and reactive power is called
(a) true power (b) apparent power
(c) reactive power (d) average power

2. Apparent power is expressed in
(a) volt-amperes (b) watts
(c) volt-amperes or watts (d) VAR

3. A power factor of ‘1’ indicates
(a) purely resistive circuit, (b) purely reactive circuit
(c) combination of both, (a) and (b) (d) none of these

4. A power factor of 0 indicates
(a) purely resistive element (b) purely reactive element
(c) combination of both (a) and (b) (d) none of the above

5. For a certain load, the true power is 100 W and the reactive power is 100
VAR. What is the apparent power?

(a) 200 VA (b) 100 VA
(c) 141.4 VA (d) 120 VA

6. If a load is purely resistive and the true power is 5 W, what is the apparent
power?
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(a) 10 VA (b) 5 VA

(c) 25 VA (d) 50  VA
7. True power is defined as

(a) VI cos q (b) VI

(c) VI sin q (d) none of these
8. In a certain series RC circuit, the true power is 2 W, and the reactive

power is 3.5 VAR. What is the apparent power?
(a) 3.5 VA (b) 2 VA
(c) 4.03 VA (d) 3 VA

9. If the phase angle q is 45°, what is the power factor?
(a) cos 45° (b) sin 45°

(c) tan 45° (d) none of these
10. To which component in an RC circuit is the power dissipation due?

(a) capacitance (b) resistance
(c) both (d) none

11. A two element series circuit with an instantaneous current I = 4.24 sin
(5000 t + 45°) A has a power of 180 watts and a power factor of
0.8 lagging. The inductance of the circuit must have the value.

(a) 3 H (b) 0.3 H
(c) 3 mH (c) 0.3 mH

12. In the circuit shown in Fig. 6.36, if branch A takes 8 KVAR, the power of
the circuit will be

Fig. 6.36

(a) 2 kW (b) 4 kW
(c) 6 kW (d) 8 kW

13. In the circuit shown in Fig. 6.37, the voltage across 30 W resistor is
45 volts. The reading of the ammeter A will be

jj33 WW 3030 WW

1010 WW 10/710/7 WW

VV

AA

Fig. 6.37
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(a) 10 A (b) 19.4 A
(c) 22.4 A (d) 28 A

14. In the circuit shown in Fig. 6.38, V1 and V2 are two identical sources of
10 –90°. The power supplied by V1 is

Fig. 6.38

(a) 6 W (b) 8.8 W
(c) 11 W (d) 16 W



7Chapter

Steady State AC Analysis

7.1 MESH ANALYSIS

We have earlier discussed mesh analysis but have applied it only to resistive

circuits. Some of the ac circuits presented in this chapter can also be solved by

using mesh analysis. In Chapter 2, the two basic techniques for writing network

equations for mesh analysis and node analysis were presented. These concepts

can also be used for sinusoidal steady-state condition. In the sinusoidal steady-

state analysis, we use voltage phasors, current phasors, impedances and

admittances to write branch equations, KVL and KCL equations. For ac circuits,

the method of writing loop equations is modified slightly. The voltages and

currents in ac circuits change polarity at regular intervals. At a given time, the

instantaneous voltages are driving

in either the positive or negative

direction. If the impedances are

complex, the sum of their voltages

is found by vector addition. We

shall illustrate the method of writing

network mesh equations with the

following example.

Consider the circuit shown in

Fig. 7.1, containing a voltage source

and impedances.

The current in impedance Z1 is I1, and the current in Z2, (assuming a positive

direction downwards through the impedance) is I1 – I2. Similarly, the current in

impedance Z3 is I2. By applying Kirchhoff’s voltage law for each loop, we can

get two equations. The voltage across any element is the product of the phasor

current in the element and the complex impedance.

Fig. 7.1
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Equation for loop 1 is

I1Z1 + (I1 – I2)Z2 = V1 (7.1)

Equation for loop 2, which contains no source is

Z2(I2 – I1) + Z3I2 = 0 (7.2)

By rearranging the above equations, the corresponding mesh current equations
are

I1(Z1 + Z2) – I2Z2 = V1 (7.3)

– I1Z2 + I2(Z2 + Z3) = 0 (7.4)

By solving the above equations, we can find out currents I1 and I2. In general, if
we have M meshes, B branches and N nodes including the reference node, we
assume M branch currents and write M independent equations; then the number
of mesh currents is given by M = B – (N – 1).

Example 7.1 Write the mesh current equations in the circuit shown in Fig. 7.2,

and determine the currents.

I
1

I
2

j 4 W j 3 W

2 W6 W5–0∞ V

Fig. 7.2

Solution The equation for loop 1 is

I1( j 4) + 6(I1 – I2) = 5 –0° (7.5)

The equation for loop 2 is

6(I2 – I1) + ( j3)I2 + (2)I2 = 0 (7.6)

By rearranging the above equations, the corresponding mesh current

equations are

I1(6 + j4) – 6I2 = 5 –0° (7.7)

– 6I1 + (8 + j 3)I2 = 0 (7.8)

Solving the above equations, we have

I1 = 
( )8 3

6
2

+L
NM

O
QP

j
I

( ) ( )8 3 6 4

6

+ +L
NM

O
QP

j j
 I2 – 6I2 = 5 –0°

I
j j

2

8 3 6 4

6
6

( ) ( )+ +
-L

NM
O
QP
 = 5 –0°

I2 [10.26 –54.2° – 6 –0°] = 5 –0°
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I2 [(6 + j 8.32) – 6] = 5 –0°

I2 = 
5 0

8 32 90

– ∞

– ∞.
 = 0.6 –– 90°

I1 = 
8 54 20 5

6

. .– ∞
 ¥ 0.6 –– 90°

I1 = 0.855 –– 69.5°

Current in loop 1, I1 = 0.855 = –– 69.5°

Current in loop 2, I2 = 0.6 –– 90°

7.2 MESH EQUATIONS BY INSPECTION

In general, mesh equations can be written by observing any network. Consider
the three mesh network shown in Fig. 7.3.

Fig. 7.3

The loop equations are

I1 Z1 + Z2(I1 – I2) = V1 (7.9)

Z2 (I2 – I1) + Z3 I2 + Z4 (I2 – I3) = 0 (7.10)

Z4(I3 – I2) + Z5 I3 = – V2 (7.11)

By rearranging the above equations, we have

(Z1 + Z2)I1 – Z2 I2 = V1 (7.12)

– Z2 I1 + (Z2 + Z3 + Z4) I2 – Z4I3 = 0 (7.13)

– Z4 I2 + (Z4 + Z5) I3 = – V2 (7.14)

In general, the above equations can be written as

Z11 I1 ± Z12  I2 + Z13 I3 = Va (7.15)

± Z21 I1 + Z22 I2 ± Z23 I3 = Vb (7.16)

± Z31 I1 ± Z32 I2 + Z33 I3 = Vc (7.17)

If we compare the general equations with the circuit equations, we get the self
impedance of loop 1

Z11 = Z1 + Z2

i.e. the sum of the impedances through which I1 passes. Similarly, Z22 = (Z2 + Z3

+ Z4), and Z33 = (Z4 + Z5) are the self impedances of loops 2 and 3. This is equal
to the sum of the impedances in their respective loops, through which I2 and I3

passes, respectively.
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Z12 is the sum of the impedances common to loop currents I1 and I2. Similarly
Z21 is the sum of the impedances common to loop currents I2 and I1. In the circuit
shown in Fig. 7.3, Z12 = – Z2, and Z21 = – Z2. Here, the positive sign is used if
both currents passing through the common impedance are in the same direction;
and the negative sign is used if the currents are in opposite directions. Similarly,
Z13, Z23, Z31, Z32 are the sums of the impedances common to the mesh currents
indicated in their subscripts. Va, Vb and Vc are sums of the voltages driving their
respective loops. Positive sign is used, if the direction of the loop current is the
same as the direction of the source current. In Fig. 7.3, Vb = 0 because no source
is driving loop 2. Since the source, V2 drives against the loop current I3, Vc =
– V2.

Example 7.2 For the circuit shown in Fig. 7.4, write the mesh equations using

the inspection method.

5  W3  W

4  W

–j 4 W

–j 6 W

j 5 W

I
1

I
2

I
3

20 º50–

10–30º

Fig. 7.4

Solution The general equations are

Z11 I1 ± Z12 I2 ± Z13 I3 = Va (7.18)

± Z21 I1 + Z22 I2 ± Z23 I3 = Vb (7.19)

± Z31 I1 ± Z32 I2 + Z33 I3 = Vc (7.20)

Consider Eq. 7.18

Z11 = the self impedance of loop 1 = (5 + 3 – j4) W

Z12 = the impedance common to both loop 1 and loop 2 = – 5 W

The negative sign is used because the currents are in opposite directions.

Z13 = 0, because there is no common impedance between loop 1 and loop 3.

Va = 0, because no source is driving loop 1.

\ Equation 7.18 can be written as

(8 – j4)I1 – 5I2 = 0 (7.21)

Now, consider Eq. 7.19

Z21 = – 5, the impedance common to loop 1 and loop 2.

Z22 = (5 + j 5 – j6), the self impedance of loop 2.

Z23 = – (– j 6), the impedance common to loop 2 and loop 3.

Vb = – 10 –30°, the source driving loop 2.
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The negative sign indicates that the source is driving against the loop current,

I2.

Hence, Eq. 7.19 can be written as

– 5I1 + (5 – j1)I2 + ( j 6)I3 = – 10 –30° (7.22)

Consider Eq. 7.20

Z31 = 0, there is no common impedance between loop 3 and loop 1

Z32 = – (– j 6), the impedance common to loop 2 and loop 3

Z33 = (4 – j6), the self impedance of loop 3

Vb = 20 –50°, the source driving loop 3

The positive sign is used because the source is driving in the same direction as

the loop current 3. Hence, the equation can be written as

( j 6)I2 + (4 – j 6)I3 = 20 –50° (7.23)

The three mesh equations are

(8 – j4)I1 – 5I2 = 0

– 5I1 + (5 – j1)I2 + ( j 6)I3 = – 10 –30°

( j 6)I2 + (4 – j 6)I3 = 20 –50°

7.3 NODAL ANALYSIS

The node voltage method can also be used with networks containing complex
impedances and excited by sinusoidal voltage sources. In general, in an N node
network, we can choose any node as the reference or datum node. In many
circuits, this reference is most conveniently choosen as the common terminal or
ground terminal. Then it is possible to write (N – 1) nodal equations using KCL.
We shall illustrate nodal analysis with the following example.

Consider the circuit shown in Fig.7.5.

Fig. 7.5

Let us take a and b as nodes, and c as reference node. Va is the voltage between
nodes a and c. Vb is the voltage between nodes b and c. Applying Kirchhoff’s
current law at each node, the unknowns Va and Vb are obtained.

In Fig. 7.6, node a is redrawn with all its branches, assuming that all currents
are leaving the node a.



7.6 Network Analysis

Fig. 7.6

In Fig. 7.6, the sum of the currents leaving node a is zero.

\ I1 + I2 + I3 = 0 (7.24)

where I1 = 
V V

Z

a - 1

1

, I2 = 
V

Z

a

2

, I3 = 
V V

Z

a b-

3

Substituting I1, I2 and I3 in Eq. 1, we get

V V

Z

V

Z

V V

Z

a a a b-
+ +

-1

1 2 3

 = 0 (7.25)

Similarly, in Fig. 7.7, node b is redrawn with all its branches, assuming that
all currents are leaving the node b.

In Fig. 7.7, the sum of the currents leaving the node b is zero.

\ I3 + I4 + I5 = 0 (7.26)

where I3 = 
V V

Z

b a-

3

, I4 = 
V

Z

b

4

, I5 = 
V

Z Z

b

5 6+

Substituting I3, I4 and I5 in Eq. 7.26

Fig. 7.7

we get
V V

Z

V

Z

V

Z Z

b a b b-
+ +

+3 4 5 6

 = 0 (7.27)

Rearranging Eqs 7.25 and 7.27, we get

1 1 1 1 1

1 2 3 3 1
1

Z Z Z
V

Z
V

Z
Va b+ +

F
HG

I
KJ

-
F
HG

I
KJ

=
F
HG

I
KJ

(7.28)
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-
F
HG

I
KJ

+ + +
+

F
HG

I
KJ

1 1 1 1

3 3 4 5 6Z
V

Z Z Z Z
Va b  = 0 (7.29)

From Eqs 7.28 and 7.29, we can find the unknown voltages Va and Vb.

Example 7.3 In the network shown in Fig. 7.8, determine Va and Vb.

Va Vb

– 6j W

j 6 W
3 W

j 4 W

j 5 W

–j 4 W10–0º

Fig. 7.8

Solution To obtain the voltage Va at a, consider the branch currents leaving the
node a as shown in Fig. 7.9 (a).

In Fig. 7.9(a), I1 = 
V

j
a - – ∞10 0

6
, I2 = 

V

j
a

- 6
, I3 = 

V Va b-

3

Fig. 7.9(a)

Since the sum of the currents leaving the node a is zero,

I1 + I2 + I3 = 0

V

j

V

j

V Va a a b- – ∞
+

-
+

-10 0

6 6 3
 = 0 (7.30)

1

6

1

6

1

3

1

3

10 0

6j j
V V

j
a b- +

F
HG

I
KJ

- =
– ∞

\
1

3

1

3

10 0

6
V V

j
a b- =

– ∞
(7.31)

To obtain the voltage Vb at b, consider the branch currents leaving node b as
shown in Fig. 7.9 (b).

In Fig. 7.9(b), I3 = 
V Vb a-

3
, I4 = 

V

j
b

4
, I5 = 

V

j j
b

( )5 4-

Since the sum of the currents leaving node b is zero

I3 + I4 + I5 = 0
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V V V

j

V

j
b a b b-

+ +
3 4 1

 = 0 (7.32)

- + + +
F
HG

I
KJ

1

3

1

3

1

4

1

1
V

j j
Va b  = 0 (7.33)

From Eqs 7.31 and 7.33, we can solve for Va and Vb.

0.33Va – 0.33Vb = 1.67 –– 90° (7.34)

– 0.33Va + (0.33 – 0.25j – j)Vb = 0 (7.35)

Adding Eqs 7.34 and 7.35 we get (– 1.25j )Vb = 1.67 –– 90°

– 1.25 –90° Vb = 1.67 –– 90°

Vb = 
167 90

125 90

.

.

– - ∞

- – ∞

= – 1.34 ––180°

Substituting Vb in Eq. (7.34), we get

0.33Va – (0.33) (– 1.34 – –180°) = 1.67 – –90°

Va = 
167 90

0 33

.

.

– - ∞
 = – 1.31 V

Va = 5.22 ––104.5° V

Voltages Va and Vb are 5.22 ––104.5° V and – 1.34 ––180° V respectively.

7.4 NODAL EQUATIONS BY INSPECTION

In general, nodal equations can also be written by observing the network.
Consider a four node network including a reference node as shown in Fig. 7.10.

Va Vb Vc

Z1
I3 I

3

V1 V
2

I
2

I
5

I
4

I
5

I
7

I
6

Z
2

Z
3 Z

5
Z
7

Z
4

Z
6

I1

Fig. 7.10

Fig. 7.9(b)
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Consider nodes a, b and c separately as shown in Figs 7.11(a), (b) and (c).

Z
5

V
2Z

6I
6

I
5

I
7

Z
7VcVb

(c)

10 0– º

Fig. 7.11

Assuming that all the currents are leaving the nodes, the nodal equations at a,
b and c are

I1 + I2 + I3 = 0

I3 + I4 + I5 = 0

I5 + I6 + I7 = 0

V V

Z

V

Z

V V

Z

a a a b-
+ +

-1

1 2 3

 = 0 (7.36)

V V

Z

V

Z

V V

Z

b a b b c-
+ +

-

3 4 5

 = 0 (7.37)

V V

Z

V

Z

V V

Z

c b c c-
+ +

-

5 6

2

7

 = 0 (7.38)

Rearranging the above equations, we get

1 1 1 1 1

1 2 3 3 1
1

Z Z Z
V

Z
V

Z
Va a+ +

F
HG

I
KJ

-
F
HG

I
KJ

=
F
HG

I
KJ

(7.39)

-F
HG

I
KJ

+ + +
F
HG

I
KJ

-
F
HG

I
KJ

1 1 1 1 1

3 3 4 5 5Z
V

Z Z Z
V

Z
Va b c  = 0 (7.40)

-F
HG

I
KJ

+ + +
F
HG

I
KJ

=
F
HG

I
KJ

1 1 1 1 1

5 5 6 7 7
2

Z
V

Z Z Z
V

Z
Vb c (7.41)
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In general, the above equations can be written as

YaaVa + YabVb + YacVc = I1

YbaVa + YbbVb + YbcVc = I2

YcaVa + YcbVb + YccVc = I3

If we compare the general equations with the circuit equations, the self
admittance at node a is

Yaa = 
1 1 1

1 2 3Z Z Z
+ +

which is the sum of the admittances connected to node a.

Similarly, Ybb = 
1 1 1

3 4 5Z Z Z
+ + , and Ycc = 

1 1 1

5 6 7Z Z Z
+ +

are the self admittances at node b and node c, respectively. Yab is the mutual
admittance between nodes a and b, i.e. it is the sum of all the admittances
connecting nodes a and b. Yab = – 1/Z3 has a negative sign. All the mutual
admittances have negative signs. Similarly, Yac, Yba, Ybc, Yca and Ycb are also
mutual admittances. These are equal to the sums of the admittances connecting to
nodes indicated in their subscripts. I1 is the sum of all the source currents at node
a. The current which drives into the node has a positive sign, while the current
driving away from the node has a negative sign.

Example 7.4 For the circuit shown in Fig. 7.12, write the node equations by the

inspection method.

10 0– º

10 30º–

j 5 W–j 6 W

j 4 W

5 W

3 W a b

Fig. 7.12

Solution The general equations are

Yaa Va + Yab Vb = I1 (7.42)

Yba Va + Ybb Vb = I2 (7.43)

Consider Eq. 7.42

Yaa = 
1

3

1

4

1

6
+ +

-j j

The self admittance at node a is the sum of admittances connected to node a.

Ybb = 
1

6

1

5

1

5-
+ +

j j
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The self admittance at node b is the sum of admittances connected to node b.

Yab = -
-

F
HG

I
KJ

1

6j

The mutual admittance between nodes a and b is the sum of admittances

connected between nodes a and b. Similarly, Yba = – (– 1/j 6), the mutual
admittance between nodes b and a is the sum of the admittances connected

between nodes b and a.

I1 = 
10 0

3

– ∞

The source current at node a

I2 = 
- – ∞10 30

5

the source current leaving at node b.

Therefore, the nodal equations are

1

3

1

4

1

6

1

6

10 0

3
+ -

F
HG

I
KJ

-
-F

HG
I
KJ

=
– ∞

j j
V

j
Va b (7.44)

-
-F

HG
I
KJ

+ + -
F
HG

I
KJ

=
- – ∞1

6

1

5

1

5

1

6

10 30

5j
V

j j
Va b (7.45)

7.5 SUPERPOSITION THEOREM

The superposition theorem also can be used to analyse ac circuits containing
more than one source. The superposition theorem states that the response in any
element in a circuit is the vector sum of the responses that can be expected to
flow if each source acts independently of other sources. As each source is
considered, all of the other sources are replaced by their internal impedances,
which are mostly short circuits in the case of a voltage source, and open circuits
in the case of a current source. This theorem is valid only for linear systems. In a
network containing complex impedance, all quantities must be treated as complex
numbers.

Consider a circuit which contains two sources as shown in Fig. 7.13.

Z
1 Z

3

Z
2

V 0º– Ia 0º–

I

Fig. 7.13
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Now let us find the current I passing through the impedance Z2 in the
circuit. According to the superposition theorem, the current due to voltage source
V –0° V is I1 with current source Ia –0° A open circuited.

I1 = 
V

Z Z

– ∞

+

0

1 2

The current due to Ia –0° A is I2 with voltage source V –0° short circuited.

I
1

Z3Z1

Z2V 0º–

  

Z1 Z3

I2

Z2 Ia 0º A–

Fig. 7.14 Fig. 7.15

\ I2 = Ia –0° ¥ 
Z

Z Z

1

1 2+

The total current passing through the impedance Z2 is

I = I1 + I2

Example 7.5 Determine the voltage across (2 + j5) W impedance as shown in

Fig. 7.16 by using the superposition theorem.

50 0º– 20 30 Aº–

j 4 W – j3 W

2 W

j 5 W

Fig. 7.16

Solution According to the superposition theorem, the current due to the 50 –0°

V voltage source is I1 as shown in Fig. 7.17 with current source 20 –30° A open

circuited.

Current I1 = 
50 0

2 4 5

50 0

2 9

– ∞

+ +
=

– ∞

+j j j( )

= 
50 0

9 22 77 47

– ∞

– ∞. .
 = 5.42 – – 77.47° A
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50 0º–

j 4 W – j 3 W

2 W

j5 W

I1

        20 30 Aº–

j 4 W – j 3 W

2 W

j 5W

I2

Fig. 7.17 Fig. 7.18

Voltage across (2 + j 5) W due to current I1 is

V1 = 5.42 –– 77.47° (2 + j 5)

= (5.38) (5.42) –– 77.47° + 68.19°

= 29.16 –– 9.28°

The current due to 20 –30° A current source is I2 as shown in Fig. 7.18, with

voltage source 50 –0° V short circuited.

Current I2 = 20 –30° ¥ 
( )

( )

j

j

4

2 9

W

W+

= 
20 30 4 90

9 22 77 47

– ∞ ¥ – ∞

– ∞. .

\ I2 = 8.68 –120° – 77.47° = 8.68 –42.53°

Voltage across (2 + j5) W due to current I2 is

V2 = 8.68 –42.53° (2 + j 5)

= (8.68) (5.38) –42.53° + 68.19°

= 46.69 –110.72°

Voltage across (2 + j5) W due to both sources is

V = V1 + V2

= 29.16 –– 9.28° + 46.69 –110.72°

= 28.78 – j4.7 – 16.52 + j43.67

= (12.26 + j 38.97) V

Voltage across (2 + j 5) W is V = 40.85 –72.53°.

7.6 THEVENIN�S THEOREM

Thevenin’s theorem gives us a method for simplifying a given circuit. The
Thevenin equivalent form of any complex impedance circuit consists of an
equivalent voltage source VTh, and an equivalent impedance ZTh, arranged as
shown in Fig. 7.19. The values of equivalent voltage and impedance depend on
the values in the original circuit.
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ZTh

VTh  

Fig. 7.19 Fig. 7.20

Though the Thevenin equivalent circuit is not the same as its original circuit,
the output voltage and output current are the same in both cases. Here, the
Thevenin voltage is equal to the open circuit voltage across the output terminals,
and impedance is equal to the impedance seen into the network across the output
terminals.

Consider the circuit shown in Fig. 7.20.
Thevenin equivalent for the circuit shown in Fig. 7.20 between points A and B

is found as follows.
The voltage across points A and B is the Thevenin equivalent voltage. In the

circuit shown in Fig. 7.20, the voltage across A and B is the same as the voltage
across Z2 because there is no current through Z3.

\ VTh = V
Z

Z Z

2

1 2+

F
HG

I
KJ

The impedance between points A

and B with the source replaced by short
circuit is the Thevenin equivalent
impedance. In Fig. 7.20, the impedance
from A to B is Z3 in series with the
parallel combination of Z1 and Z2.

\ ZTh = Z3 + 
Z Z

Z Z

1 2

1 2+

The Thevenin equivalent circuit is shown in Fig. 7.21.

Example 7.6 For the circuit shown in Fig. 7.22, determine Thevenin’s

equivalent between the output terminals.

A

B

50 0º–

3 W

4 W

–j 4 W –j 4 Wj 5 W

j 6 W
 

Fig. 7.22 Fig. 7.23

Fig. 7.21

ZTh

VTh

A

B
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Solution The Thevenin voltage, VTh, is equal to the voltage across the (4 + j6) W

impedance. The voltage across (4 + j 6) W is

V = 50 –0° ¥ 
( )

( ) ( )

4 6

4 6 3 4

+

+ + -

j

j j

= 50 –0° ¥ 
4 6

7 2

+

+

j

j

= 50 –0° ¥ 
7 21 56 3

7 28 15 95

. .

. .

– ∞

– ∞

= 50 –0° ¥ 0.99 –40.35°

= 49.5 –40.35° V

The impedance seen from terminals A and B is

ZTh = ( j 5 – j 4) + 
( ) ( )

( ) ( )

3 4 4 6

3 4 4 6

+ +

- +

j j

j j

= j 1 + 
5 53 13 7 21 56 3

7 28 15 95

– ∞ ¥ – ∞

– ∞

. . .

. .

= j1 + 4.95 –– 12.78° = j1 + 4.83 – j1.095

= 4.83 – j0.095

\ ZTh = 4.83 – –1.13° W

The Thevenin equivalent circuit is shown in Fig. 7.23.

7.7 NORTON�S THEOREM

Another method of analysing a complex impedance circuit is given by Norton’s
theorem. The Norton equivalent form of any complex impedance circuit consists
of an equivalent current source IN and an
equivalent impedance ZN, arranged as
shown in Fig. 7.24. The values of equivalent
current and impedance depend on the values
in the original circuit.

Though Norton’s equivalent circuit is not
the same as its original circuit, the output
voltage and current are the same in both
cases; Norton’s current is equal to the
current passing through the short circuited

output terminals and the value of impedance is equal to the impedance seen into
the network across the output terminals.

Consider the circuit shown in Fig. 7.25.
Norton’s equivalent for the circuit shown in Fig. 7.25 between points A and B

is found as follows. The current passing through points A and B when it is short-
circuited is the Norton’s equivalent current, as shown in Fig. 7.26.

Fig. 7.24

A

B

V zN
IN
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A

B

V Z
2

Z1

Fig. 7.25 Fig. 7.26

Norton’s current IN = V/Z1

The impedance between points A and B, with the source replaced by a short
circuit, is Norton’s equivalent impedance.
In Fig. 7.25, the impedance from A to B,
Z2 is in parallel with Z1.

\ ZN = 
Z Z

Z Z

1 2

1 2+

Norton’s equivalent circuit is shown in
Fig. 7.27

Example 7.7 For the circuit shown in Fig. 7.28, determine Norton’s equivalent

circuit between the output terminals, AB.

Fig. 7.28

Solution Norton’s current IN is equal to the current passing through the short

circuited terminals AB as shown in Fig. 7.29.

A

B

25 0º–

3 W

4 W

j 4 W

–j 5 W

IN   

A

B

5 –53.13º– 4.53 9.92º–

Fig. 7.29 Fig. 7.30

The current through terminals AB is

IN = 
25 0

3 4

25 0

5 53 13

– ∞

+
=

– ∞

– ∞j .
 = 5 ––53.13°

Fig. 7.27

A

B

ZN
IN
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The impedance seen from terminals AB is

ZN = 
( ) ( )

( ) ( )

3 4 4 5

3 4 4 5

+ -

+ + -

j j

j j

= 
5 53 13 6 4 5134

7 07 8 13

– ∞ ¥ – - ∞

– - ∞

. . .

. .
 = 4.53 –9.92°

Norton’s equivalent circuit is shown in Fig. 7.30.

7.8 MAXIMUM POWER TRANSFER THEOREM

In Chapter 3, the maximum power transfer theorem has been discussed for
resistive loads. The maximum power transfer theorem states that the maximum
power is delivered from a source to its load when the load resistance is equal to
the source resistance. It is for this reason that the ability to obtain impedance
matching between circuits is so important. For example, the audio output
transformer must match the high impedance of the audio power amplifier output
to the low input impedance of the speaker. Maximum power transfer is not
always desirable, since the transfer occurs at a 50 per cent efficiency. In many
situations, a maximum voltage transfer is desired which means that unmatched
impedances are necessary. If maximum power transfer is required, the load
resistance should equal the given source resistance. The maximum power transfer
theorem can be applied to complex impedance circuits. If the source impedance is
complex, then the maximum power transfer occurs when the load impedance is
the complex conjugate of the source impedance.

Consider the circuit shown in Fig. 7.31, consisting of a source impedance
delivering power to a complex load.

Fig. 7.31

Current passing through the circuit shown

I = 
V

R j X R j X

s

s s L L( ) ( )+ + +

Magnitude of current I = | I | = 
V

R R X X

s

s L s L( ) ( )+ + +2 2
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Power delivered to the circuit is

P = I2 RL = 
V R

R R X X

s L

s L s L

2

2 2( ) ( )+ + +

In the above equation, if RL is fixed, the value of P is maximum when

Xs = – XL

Then the power P = 
V R

R R

s L

s L

2

2( )+

Let us assume that RL is variable. In this case, the maximum power is
transferred when the load resistance is equal to the source resistance (already
discussed in Chapter 3). If RL = Rs and XL = – Xs, then ZL = Z*

s. This means that
the maximum power transfer occurs when the load impedance is equal to the
complex conjugate of source impedance Zs.

Example 7.8 For the circuit shown in Fig. 7.32, find the value of load

impedance for which the source delivers maximum power. Calculate the value of

the maximum power.

Fig. 7.32

Solution In the circuit shown in Fig. 7.32, the maximum power transfer occurs
when the load impedance is complex conjugate of the source impedance

\ ZL = Z*
s = 15 – j20

When ZL = 15 – j20, the current passing through circuit is

I = 
V

R R j j

s

s L+
=

– ∞

+ + -
=

– ∞50 0

15 20 15 20

50 0

30
 = 1.66 –0°

The maximum power delivered to the load is

P = I 2RL = (1.66)2 ¥ 15 = 41.33 W

Additional Solved Problems

Problem 7.1 Using mesh analysis, determine the voltage Vs which gives a
voltage of 30 –0° V across the 30 W resistor shown in Fig. 7.33.
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5 W

4 W j8 W

30 W

3 W

j4 W – j5 W
l1

l3

l2 l4

Vs

50 0°–

60 30– ∞

Fig. 7.33

Solution By the inspection method, we can have four equations from four
loops.

(5 + j4)I1 – ( j4)I2 = 60 –30° (7.46)

(– j4)I1 + (3 – j1)I2 – 3I3 + ( j5)I4 = 0 (7.47)

– 3I2 + (7 + j8)I3 = 50 –0° (7.48)

( j5)I2 + (30 – j5)I4 = – Vs (7.49)

Solving the above equations using Cramer’s rule, we get

I4 = 

( ) ( )

( ) ( )

( )

( )
( ) ( )

( ) ( )

( )

( )

5 4 4 0 60 30

4 3 1 3 0

0 3 7 8 50 0

0 5 0
5 4 4 0 0

4 3 1 3 5

0 3 7 8 0

0 5 0 30 5

+ - – ∞

- - -

- + – ∞

-

+ -

- - - ( )

- +

-( )

j j

j j

j

j V

j j

j j J

j

j J

s

D = (5 + j 4) 

( ) ( )

( )

( ) ( )

3 1 3 5

3 7 8 0

5 0 30 5

- -

- +

-

j j

j

j j

+ ( j4) 

( ) ( )

( )

( )

- -

+

-

j j

j

j

4 3 5

0 7 8 0

0 0 30 5

= (5 + j4) {(3 – j1) (7 + j8) (30 – j5) + 3 [(– 3) (30 – j5)]

+ j5 [(– j5) (7 + j8)]} + ( j4) {(– j4) (7 + j8) (30 – j5)}

= (5 + j4) {[3.16 –– 18.4° ¥ 10.6 –48.8° ¥ 30.4 –– 9.46°]

– 9 ¥ 30.4 –– 9.46° + 25 (10.6 –48.8°)}

+ ( j4) {4 –– 90° ¥ 10.6 –48.8° ¥ 30.4 –– 9.46°}
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= (5 + j4) {1018.27 –20.94° – 273.6 –– 9.46° + 265 –48.8°}

+ j4 {1288.96 –– 50.66°}

= (5 + j4) {951 + j363.9 – 269.8 + j44.97 + 174.55 + j199.38}

+ 4 –90° {1288.96 –– 50.66°}

= (5 + j4) {855.75 + j608.25} + 4 –90° {1288.96 –– 50.66°}

= 6.4 –38.6° ¥ 1049.9 –35.4° + 4 –90° ¥ 1288.96 –– 50.66°

= 6719.36 –74° + 5155.84 –39.34°

= 1852.1 + j6459 + 3987.5 + j3268.3

= 5839.6 + j9727.3

= 11345.5 –59°

D4 = (5 + j 4) 

( )

( )

( )

3 1 3 0

3 7 8 50 0

5 0

- -

- + – ∞

-

j

j

j Vs

+ j4 

- -

+ – ∞

-

j

j

Vs

4 3 0

0 7 8 50 0

0 0

( )  – 60 –30° 

( ) ( )

( )

- - -

- +

j j

j

j

4 3 1 3

0 3 7 8

0 5 0

= (5 + j4) {[(3 – j1) (7 + j8) (– Vs)] + 3[(3Vs ) – ( j5) 50 –0°]}

+ ( j4) {( – j4) (7 + j8) (– Vs)} – 60 –30° {(– j4) (– j5) (7 + j8)}

= 6.4 –38.6° {[3.16 –– 18.4° ¥ 10.6 –48.8° (– Vs)]

+ [9Vs – (15j) 50 –0°]}

+ 4 –90° {4 –– 90° ¥ 10.6 –48.8°) (– Vs)}

– 60 –30° {4 –– 90° ¥ 5 –– 90° ¥ 10.6 –48.8°}

= 6.4 –38.6° {– 33.49 –30.4° Vs} + 6.4 –38.6° ¥ 9Vs

+ 4 –90° {– 42.4 –– 41.2° Vs} – 60 –30° {212 –– 131.2°}

– 6.4 –38.6° {+ 750 –90°}

= Vs {– 214.33 –69° + 57.6 –38.6° – 169.6 –48.8°}

– {12720 –– 101.2° + 4800 –128.6°}

= Vs {– 76.8 – j200 + 45 + j35.93 – 111.7 – j127.6}

– {– 2470.6 – j12477.75 – 2994.6 + j3751.2}

= Vs {– 143.5 – j291.67} – {– 5465.2 – j8726.55}

\ I4 = 
( . . ) ( . . )

.

- - + +

– ∞

143 5 291 67 5465 2 8726 5

11345 5 59

j V js

Since voltage across the 30 W resistor is 30 –0° V. Current passing through it
is I4 = 1 –0° A

\ 1 –0° = 
( . . ) ( . . )

.

- - + +

– ∞

143 5 291 67 5465 2 8726 5

11345 5 59

j V js

11345.5 –59° = 325 –– 116.19° Vs + 5465.2 + j8726.5
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Vs = 
- - + +

– - ∞

5465 2 8726 5 5843 36 9724 99

325 116 19

. . . .

.

j j

= 
37816 998 49

325 116 19

1067 7 69 26

325 116 19

. .

.

. .

.

+

– - ∞
=

+ ∞

– - ∞

j j

Vs = 3.29 –185.45°.

Problem 7.2 For the circuits shown in Fig. 7.34, determine the line currents
IR, IY and IB using mesh analysis.

5 10– ∞
5 10– ∞

5 – 10∞

IR

IB

IY

I3I1

I2

Z3Z1

Z2100 120– - ∞

B

Y

R

100 – 120∞

100 °– 0

Fig. 7.34

Solution From Fig. 7.34, the three line currents are

IR = I1 – I3

IY = I2 – I1

IB = I3 – I2

Using the inspection method, the three loop equations are

5 –10° I1 = 100 –0°

5 –10° I2 = 100 –120°

5 –10° I3 = 100 –– 120°

\ I1 = 
100 0

5 10

– ∞

– ∞
 = 20 –– 10°

I2 = 
100 120

5 10

– ∞

– ∞
 = 20 –+ 110°

I3 = 
100 120

5 10

–- ∞

– ∞
 = 20 –– 130°

The line currents are

IR = I1 – I3 = 20 –– 10° – 20 –– 130°

= 19.69 – j3.47 + 12.85 + j15.32

= 32.54 + j11.85 = 34.63 –20°

IY = I2 – I1 = 20 –110° – 20 – – 10°

= – 6.84 + j18.79 – 19.69 + j3.47

= – 26.53 + j22.26 = 34.63 –140°
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IB = I3 – I2 = 20 –– 130° – 20 –110°

= – 12.85 – j15.32 + 6.84 – j18.79

= – 6.01 – j34.11 = 34.63 –– 100°

Problem 7.3 For the circuit shown in Fig. 7.35, determine the value of V2

such that the current (3 + j4) W impedance is zero.

Fig. 7.35

Solution The three loop equations are

(4 + j3) I1 – ( j3)I2 = 20 –0°

(– j3)I1 + (3 + j2)I2 + j5I3 = 0

( j5)I2 + (5 – j5)I3 = – V2

Since the current I2 in (3 + j4) W is zero

I2 = 
D

D
2  = 0

\ D2 = 0

where D2 = 

(

(

( )

4 3) 20 0 0

3) 0 5

0 5 52

+ – ∞

-

- -

j

j j

V j

 = 0

 (4 + j3) V2 ( j5) – 20 –0° {(– j3) (5 – j5)} = 0

V2 = 
20 0 3) 5 5

5 4 3)

– ∞ - -{ }

+

( ( )

( ) (

j j

j j

= 20 –0° 
- -{ }

- +

15 15

15 20

j

j
= 20 –0° ¥ 

21 21 135

25 126 86

.

.

– - ∞

– ∞

V2 = 16.97 –– 261.85° V

Problem 7.4 For the circuit shown in Fig. 7.36, write the nodal equations
using the inspection method and express them in matrix form.

Solution The number of nodes and reference node are selected as shown in
Fig. 7.36, by assuming that all currents are leaving at each node.

At node a,
1

4

1

1

1

1 1

1

1

1

1 1

50 0

1 1
+

-
+

+

F
HG

I
KJ

-
-

F
HG

I
KJ

-
+

F
HG

I
KJ

=
- – ∞

+j j
V

j
V

j
V

j
a b c

At node b, -
-

F
HG

I
KJ

+ +
-

+
F
HG

I
KJ

-
F
HG

I
KJ

=
– ∞1

1

1

3

1

1

1

3

1

3

20 30

3j
V

j j
V

j
V

j
a b c
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At node c,

-
+

F
HG

I
KJ

-
F
HG

I
KJ

+ + +
+

F
HG

I
KJ

=
– ∞

+
-

– ∞1

1 1

1

3

1

2

1

3

1

1 1

50 0

1 1

20 30

3j
V

j
V

j j
V

j j
a b c

In matrix form, the nodal equations are

1

4

1

1 1

1

1

1

1

1

1 1

1

1

1

3

1

1

1

3

1

3

1

1 1

1

3)

1

2

1

3

1

1 1

+
+

- + -
+

- + -

-
+

- + +
+

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

( ) ( )

( ) (

j j j j

j j j j

j j j j

 

V

V

V

a

b

c

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

= 

- – ∞

+

– ∞

– ∞

+
-

– ∞F
HG

I
KJ

L

N

M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P

50 0

1 1

20 30

3

50 0

1 1

20 30

3

( )j

j

j j

Problem 7.5 For the circuit shown in Fig. 7.37, determine the voltage VAB, if
the load resistance RL is infinite. Use node analysis.

Solution If the load resistance is infinite, no current passes through RL. Hence
RL acts as an open circuit. If we consider A as a node and B as the reference node

V V

j

A A- – ∞

+
+

- – ∞

+

20 0

3 2

20 90

4 3
 = 0

V V

j j

A A

5 3 4

20 0

5

20 90

3 4
+

+
=

– ∞
+

– ∞

+( ) ( )

V
j

A
1

5

1

3 4
4 0

20 90

5 5313
+

+

L
NM

O
QP

= – ∞ +
– ∞

– ∞.

4 W

1 W

2 W
j 3 W

– 5j W

– 2j W

j3 W

j4 W
3 W 20 30°–

50 °– 0

ca

b

Fig. 7.36
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= 4 –0° + 4 –36.87° = 4 + 3.19 + j2.4 = 7.19 + j2.4

VA [0.2 + 0.12 – j0.16] = 7.19 + j2.4

VA = 
7 19 2 4

0 32 0 16

7 58 18 46

0 35 26 56

. .

. .

. .

. .

+

-
=

– ∞

–- ∞

j

j

Voltage across AB is VAB = VA = 21.66 –45.02° V

Problem 7.6 For the circuit shown in Fig. 7.38, determine the power output
of the source and the power in each resistor of the circuit.

3 W 2 W

j5 W–j4 W20 – ∞30

A

Fig. 7.38

Solution Assume that the voltage at node A is VA

By applying nodal analysis, we have

V V

j

V

j

A A A- – ∞
+

-
+

+

20 30

3 4 2 5
 = 0

V
j j

A
1

3

1

2 5

1

4

20 30

3
+

+
-

L
NM

O
QP

=
– ∞

VA [0.33 + 0.068 + j0.078] = 6.67 –30°

\ VA = 
6 67 30

0 41 11 09

.

. .

– ∞

– ∞
 = 16.27 –18.91°

Current in the 2 W resistor

I2 = 
V

j

A

2 5

16 27 18 91

5 38 68 19+
=

– ∞

– ∞

. .

. .

3 W

2 W 3 W

j4 W

20 °– 0 20 °– 90RL

B

A

Fig. 7.37
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\ I2 = 3.02 –– 49.28°

Power dissipated in the 2 W resistor

P2 = I 2
2 R = (3.02)2 ¥ 2 = 18.24 W

Current in the 3 W resistor

I3 = 
- – ∞ + – ∞20 30 16 27 18 91

3

. .

= – 6.67 –30° + 5.42 –18.91°

= – 5.78 – j3.34 + 5.13 + j1.76 = – 0.65 – j1.58

I3 = 1.71 –– 112°

Power dissipated in the 3 W resistor

= (1.71)2 ¥ 3 = 8.77 W

Total power delivered by the source

= VI cos f = 20 ¥ 1.71 cos 142° = 26.95 W

Problem 7.7 For the circuit shown in Fig. 7.39, determine the voltage VAB

using the superposition theorem.

5 W

5 j

A

B

– 2 j 4 0° A–

50 0° V–

Fig. 7.39

Solution Let source 50 –0° V act on the circuit and set the source 4 –0° A
equal to zero. If the current source is zero, it becomes open-circuited. Then the
voltage across AB is VAB = 50 –0°.

Now set the voltage source 50  –0° V is zero, and is short circuited, or the
voltage drop across AB is zero.

The total voltage is the sum of the two voltages.

\ VT = 50 –0°

Problem 7.8 For the circuit shown in Fig. 7.40, determine the current in
(2 + j3) W by using the superposition theorem.

4 W

2 W

j 3 W

– 4j W

50 0 V– ∞ 20 9 A– 0∞

Fig. 7.40



7.26 Network Analysis

Solution The current in (2 + j3) W, when the voltage source 50 –0° acting
alone is

I1 = 
50 0

6 3)

50 0

6 7 26 56

– ∞

+
=

– ∞

– ∞( . .j

\ I1 = 7.46 –– 26.56° A

Current in (2 + j3) W, when the current source 20 –90° A acting alone is

I2 = 20 –90° ¥ 
4

6 3)( + j

= 
80 90

6 7 26 56

– ∞

– ∞. .
 = 11.94 –63.44° A

Total current in (2 + j3) W due to both sources is

I = I1 + I2

= 7.46 –– 26.56° + 11.94 –63.44°

= 6.67 – j3.33 + 5.34 + j10.68

= 12.01 + j7.35 = 14.08 –31.46°

Total current in (2 + j3) W is I = 14.08 –31.46°.

Problem 7.9 For the circuit shown in Fig. 7.41, determine the load current by
applying Thevenin’s theorem.

j 4 W

j 3 W

j 5 W

j 5 W
100 0– ∞

IL

Fig. 7.41

Solution Let us find the Thevenin equivalent circuit for the circuit shown in
Fig. 7.42(a).

j 4 W

j 3 W

j 5 W j 6.71 W

100 0– ∞ 42.86–0∞

A A

B B
(a) (b)

Fig. 7.42
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Voltage across AB is the voltage across ( j3) W

\ VAB = 100 –0° ¥ 
(

( ( )

j

j j

3)

3) 4+

= 100 –0° 
( j

j

3)

7
 = 42.86 –0°

Impedance seen from terminals AB

ZAB = ( j5) + 
( ) (j j

j

4 3)

7

= j5 + j1.71 = j6.71 W

Thevenin’s equivalent circuit is shown in Fig. 7.42(b).
If we connect a load to Fig. 7.42(b), the current passing through ( j5) W

impedance is

IL = 
42 86 0

6 71 5

42 86 0

11 71 90

.

( . )

.

.

– ∞

+
=

– ∞

– ∞j j
 = 3.66 –– 90°

Problem 7.10 For the circuit shown in Fig. 7.43, determine Thevenin’s
equivalent circuit.

4 W

j 6 W – j 4 W

2 W

10 – 0∞

5 90– ∞

I

+ –
A

B

Fig. 7.43

Solution Voltage across (– j4) W is

V–j4 = 
5 90

2 2

– ∞

+( )j
 (– j4)

= 
20 0

2 83 45

– ∞

– ∞.
 = 7.07 –– 45°

Voltage across AB is VAB = –V10 + V5 – V–j4

= – 10 –0° + 5 –90° – 7.07 –– 45°

= j5 – 10 – 4.99 + j4.99

= – 14.99 + j 9.99

VAB = 18 –146.31°

The impedance seen from terminals AB, when all voltage sources are short
circuited is

ZAB = 4 + 
( ) ( )2 6 4

2 2

+ -

+

j j

j
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= 4 + 
6 32 71 56 4 90

2 83 45

. .

.

– ∞ ¥ – - ∞

– ∞

= 4 + 8.93 –– 63.44°

= 4 + 4 – j 7.98 = (8 – j7.98) W

Thevenin’s equivalent circuit is shown in
Fig. 7.44.

Problem 7.11 For the circuit shown in Fig. 7.11, determine the load current
IL by using Norton’s theorem.

j 3 W

5 W

–j 2 W

10 V–0∞ 5 V– 90∞

IL

A

B

Fig. 7.45

Solution Norton’s impedance seen from terminals AB is

ZAB = 
( ( )

( ( )

j j

j j j

3) 2

3) 2

6

1

-

-
=

\ ZAB = 6 –– 90°

Current passing through AB, when it is shorted

IN = 
10 0

3 90

5 90

2 90

– ∞

– ∞
+

– ∞

–- ∞

\ IN = 3.33 –– 90° + 2.5 –180°

= – j3.33 – 2.5

IN = 4.16 –– 126.8°

Norton’s equivalent circuit is shown in
Fig. 7.46

Load current is IL = IN ¥
–- ∞

+ – - ∞

6 90

5 6 90

= 4.16 – – 126.8° ¥ 
6 90

5 6

–- ∞

- j

= 
4 16 6 216 8

7 81 50 19

. .

. .

¥ – - ∞

– - ∞

= 3.19 –– 166.61°

Problem 7.12 For the circuit shown in Fig. 7.47, determine Norton’s
equivalent circuit.

Fig. 7.44

Fig. 7.46

4.16– – 126.8°A

5 W

IL

6 – 90∞–
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10 W

5 W

j 6 W

30 A– ∞30

A

B

   
30– 30°A (5 + 6j ) W

A

B

Fig. 7.47 Fig. 7.48

Solution The impedance seen from the terminals when the source is reduced
to zero

ZAB = (5 + j6) W

Current passing through the short circuited terminals, A and B, is

IN = 30 –30° A

Norton’s equivalent circuit is shown in Fig. 7.48.

Problem 7.13 Convert the active network shown in Fig. 7.49 by a single
voltage source in series with impedance.

3 W

j 4 W

5 ° A–0

10 ° A–90 20 ° V–0

A

B

Fig. 7.49

Solution Using the superposition theorem, we can find Thevenin’s equivalent
circuit. The voltage across AB, with 20 –0° V source acting alone, is V ¢AB, and
can be calculated from Fig. 7.50(a).

Since no current is passing through the (3 + j4) W impedance, the voltage

V ¢AB = 20 –0°

The voltage across AB, with 5 –0° A source acting alone, is V ¢AB, and can be
calculated from Fig. 7.50(b).

3 W

3 W

j 4 W

j 4 W

A A

B B

20 0° V–

5 0° A–

I

(a) (b)

Fig. 7.50
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V ¢¢AB = 5 –0° (3 + j4) = 5 –0° ¥ 5 –53.13° = 25 –53.13° V

The voltage across AB, with 10 –90° A source acting alone, is V ¢¢¢AB, and can
be calculated from Fig. 7.50 (c).

V ¢¢¢AB = 0

3 W

(3 + 4)j W

j 4 W
A

A

B B

10 90° A–

(c) (d)

40.3 29.73° V–

Fig. 7.50

According to the superposition theorem, the voltage across AB due to all
sources is

VAB = V ¢AB + V ¢¢AB + V ¢¢¢AB

\ VAB = 20 –0° + 25 –53.13° = 20 + 15 + j19.99

= (35 + j19.99) V = 40.3 –29.73° V

The impedance seen from terminals AB

ZTh = ZAB = (3 + j4) W

\ The required Thevenin circuit is shown in Fig. 7.50(d).

Problem 7.14 For the circuit shown in Fig. 7.51, find the value of Z that will
receive maximum power; also determine this power.

Solution The equivalent impedance at terminals AB with the source set equal
to zero is

ZAB = 
5 10

5 10

7 20

7 20

( ) ( )

( )

j

j

j

j+
+

-

-

= 
50 90

1118 63 43

140 90

2119 70 7

– ∞

– ∞
+

– - ∞

– - ∞. . . .

= 4.47 –26.57° + 6.6 –– 19.3°

= 3.99 + j1.99 + 6.23 – j2.18

= 10.22 – j0.19

The Thevenin equivalent circuit is shown in Fig. 7.52(a).
The circuit in Fig. 7.52(a) is redrawn as shown in Fig. 7.52(b).

Current I1 = 
100 0

5 10

– ∞

+ j

Fig. 7.51

A

B

Z

– 20j W

j10 W5 W

7 W
100 0°–
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= 
100 0

1118 63 43

– ∞

– ∞. .
 = 8.94 –– 63.43° A

VTh Z

(10.22 – 0.19)j W

5 W

j10 W

7 W

100 0°–
A B

– 20j W

I2I1

(a) (b)

Fig. 7.52

Current I2 = 
100 0

7 20

100 0

2119 70 7

– ∞

-
=

– ∞

–- ∞j . .
 = 4.72 –70.7°

Voltage at A, VA = 8.94 –– 63.43° ¥ j10 = 89.4 –26.57°

Voltage at B, VB = 4.72 –70.7° ¥ – j20 = 94.4 –– 19.3°

Voltage across terminals AB

VAB = VA – VB

= 89.4 –26.57° – 94.4 –– 19.3°

= 79.96 + j39.98 – 89.09 + j31.2

= – 9.13 + j71.18

VTh = VAB = 71.76 –97.3° V

To get maximum power, the load must be the complex conjugate of the source
impedance.

\ Load Z = 10.22 + j0.19

Current passing through the load Z

I = 
V

Z Z

Th

Th +
=

– ∞71 76 97 3

20 44

. .

.
 = 3.51 –97.3°

Maximum power delivered to the load is

= (3.51)2 ¥ 10.22 = 125.91 W

Problem 7.15 For the circuit shown in Fig. 7.53, the resistance Rs is variable
from 2 W to 50 W. What value of Rs results in maximum power transfer across
the terminals AB?

Solution In the circuit shown the resistance RL is fixed. Here, the maximum
power transfer theorem does not apply. Maximum current flows in the circuit
when Rs is minimum. For the maximum current

Rs = 2

But ZT = Rs – j5 + RL = 2 – j5 + 20 = (22 – j5) = 22.56 –– 12.8°
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RS

RL

– 5j W

20 W
50 0°–

A

B

Fig. 7.53

\ I = 
V

Z

s

T

= -
– ∞

– - ∞

50 0

22 56 12 8. .
 = 2.22 –12.8°

Maximum power P = I2R = (2.22)2 ¥ 20 = 98.6 W

Problem 7.16 Determine the voltage V which results in a zero current
through the 2 + j3 W impedance in the circuit shown in Fig. 7.54.

5 W 2 W 4 Wj3 W

j 5 W+ ++
– ––

30 0°– I1
I2

I32v4

+v4

V

Fig. 7.54

Solution Choosing mesh currents as shown in Fig. 7.54, the three loop
equations are

(5 + j5) I1 – j5 I2 = 30 –0°

– j5 I1 + (2 + j8) I2 = – 2V4

– 2V4 + V4 + V = 0

V4 = V

Since the current in (2 + j3) W is zero

I2 = 
D

D
2  = 0

Where D2 = 
5 5 30 0

5 2

+ – ∞

- -

j

j V
 = 0

(5 + j5) (– 2V) + ( j5) 30 –0° = 0

V = 
30 0 5

2 5 5

150 90

14 14 45

– ∞

+
=

– ∞

– ∞

( )

( ) .

j

j

V = 10.608 –45° volts
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Problem 7.17 Find the value of voltage V which results in V0 = 5 –0° V in
the circuit shown in Fig. 7.56.

3 W

2 W
j5 W– 2j W

– 2j W

5 W

+
–

2v5

v5 1 2+ –

V0V

Fig. 7.56

Solution Assuming all currents are leaving the nodes, the nodal equations are

V
j j

V
j

V

j
1 2

1

5 2

1

3

1

5

1

5 5 2-
+ +

L
NM

O
QP

-
L
NM

O
QP

=
-

-
L
NM

O
QP

+ +
-

L
NM

O
QP

=V
j

V
j j

V1 2 5
1

5

1

5

1

2 2
2

where V5 = 
V V

j

1
5

5 2

-

-

F
HG

I
KJ

The second equation becomes

V
j j

V
j j

V

j
1 2

1

5

10

5 2

1

5

1

2 2

10

5 2

-
-

-

L
NM

O
QP

+ +
-

L
NM

O
QP

=
-

-

V0 = V2 = 
D

D
2  = 5 –0°

1

5 2

1

3

1

5 5 2

1

5

10

5 2

10

5 2
1

5 2

1

3

1

5

1

5

1

5

10

5 2

1

5

1

2 2

-
+ +

-

-
-

-

-

-

-
+ +

-

-
-

-
+

-

j j

V

j

j j

V

j

j j j

j j j j

 = 5 –0°

The source voltage V = 2.428 –– 88.74° volts.

Problem 7.18 For the circuit shown in Fig. 7.57, find the current in the
j5 W inductance by using Thevenin’s theorem.
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j 2 W

– 10j W

+

–

+– a

9vi–
+

100 0°–

vi

Fig. 7.57

Solution From the circuit shown in Fig. 7.57 the open circuit voltage at
terminals a and b is

Voc = – 9 Vi

where Vi = – 9Vi – 100 –0°

10Vi = – 100 –0°

Vi = – 10 –0°

Thevenin’s voltage Voc = 90 –0°

From the circuit, short circuit current is determined by shorting terminals a
and b. Applying Kirchhoff’s voltage law, we have

9Vi – j10 isc = 0

isc = 90 –90°

\ ZTh = 
V

I

oc

sc

=
– ∞

– ∞

90 0

9 90

= 1 –– 90°

ZTh = – j1

The Thevenin’s equivalent circuit is shown in Fig. 7.58

The current in the j2 W inductor is = 
90 0

1

– ∞

j

= 90 ––90°

Problem 7.19 For the circuit shown in Fig. 7.59, find the value of Z that will
receive maximum power; also determine this power.

Fig. 7.59

Fig. 7.58



Steady State AC Analysis 7.35

Solution The equivalent impedance can be obtained by finding Voc and isc at
terminals a b. Assume that current i is passing in the circuit.

i = 
100 0 5

4 10
4– ∞ -

+

V

j

= 
100 0

4 10

5 4

4 10

– ∞

+
-

¥

+j

i

j

i = 3.85 –– 22.62°

Voc = 100 –0° – 4 ¥ 3.85 –– 22.62°

= 86 –3.94°

isc = 
100 0

4

– ∞
 = 25 –0°

Thevenin’s equivalent impedance

ZTh = 
V

i

oc

sc

 = 3.44 –3.94°

= 3.43 + j0.24

The circuit is drawn as shown in Fig. 7.60.
To get maximum power, the load must be the complex conjugate of the source

impedance.

\ Load Z = 3.43 – j0.24

Current passing through load Z

I = 
V

Z Z

Th

Th +
=

– ∞8 6 3 94

6 86

. .

.
 = 1.25 –3.94°

Maximum power delivered to the load is (1.25)2 ¥ 3.43 = 5.36 W.

Practice Problems

7.1 For the circuit shown in Fig. 7.61, determine the value of current Ix in the
impedance Z = 4 + j5 between nodes a and b.

4 W5 W j6 W j5 W

– 5j W 5 W50 0°–

a b
Ix

Fig. 7.61

7.2 Determine (i) the equivalent voltage generator and (ii) the equivalent cur-
rent generator which may be used to represent the given network in
Fig. 7.62 at the terminals AB.

Fig. 7.60
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Fig. 7.62

7.3 For the circuit shown in Fig. 7.63, find the value of Z that will receive the
maximum power. Also determine this power.

2 W

4 W

j5 W

– 3j W

Z
50 0°V–

Fig. 7.63

7.4 Determine the voltage Vab and Vbc in the network shown in Fig. 7.64 by

loop analysis, where source voltage e(t) = 2  ¥ 100 cos (314 t + 45°).

Fig. 7.64

7.5 Find the current in the 15 W resistor in the network shown in Fig. 7.65 by
Thevenin’s theorem.

4 W 4 W 2 W

2 W4 W

2 W

15 W4 W

– 5j W

– 3j W

– 3j W

– 3j W

j8 W

j8 W

j8 W

100 0°–

Fig. 7.65
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7.6 Determine the power output of the voltage source by loop analysis for the
network shown in Fig. 7.66. Also determine the power extended in the
resistors.

Fig. 7.66

7.7 In the circuit shown in Fig. 7.67, determine the power in the impedance
(2 + j5) W connected between A and B using Norton’s theorem.

2 W3 W j5 W j5 W

– 5j W 4 W10 0°–

A B

Fig. 7.67

7.8 Determine the value of source currents by loop analysis for the circuit
shown in Fig. 7.68 and verify the results by using node analysis.

100 0º V– 50 0º V–9

3 W j 4 W

4 W

– 8j W

Fig. 7.68

7.9 Convert the active network shown in Fig. 7.69 by a single voltage source
in series with an impedance, and also by a single current source in parallel
with the impedance.

2 W

j 3 W

–j 4 W

5 ° A–0

3 ° A–20 10 °–0

A

B

Fig. 7.69
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7.10 Determine the power out of the source in the circuit shown in Fig. 7.70 by
nodal analysis and verify the results by using loop analysis.

–j10 W

j5 W

3 W

2 W

10 °–0

Fig. 7.70

7.11 For the circuit shown in Fig. 7.71, find the current in each resistor using
the superposition theorem.

100 0º–

50 30º–

10 W 5 W

3 W

j 4 W

– 5j W

Fig. 7.71

7.12 Use Thevenin’s theorem to find the current through the (5 + j4) W imped-
ance in Fig. 7.72. Verify the results using Norton’s theorem.

Fig. 7.72

7.13 Determine Thevenin’s and Norton’s equivalent circuits across terminals
AB, in Fig. 7.73.

j2 W
–j W

5 W

4 W

10 0° V– 5 0° V–

A

B

Fig. 7.73

7.14 Determine Norton’s and Thevenin’s equivalent circuits for the circuit
shown in Fig. 7.74.
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Fig. 7.74

7.15 Determine the maximum power delivered to the load in the circuit shown
in Fig. 7.74.

– 10j W

j4 W

10 W 5 Wj15 W –j 6 W

3 W

50 °– A0 ZL

Fig. 7.75

7.16 For the circuit shown in Fig. 7.76, find the voltage across the dependent
source branch by using mesh analysis.

Fig. 7.76

7.17 Find Thevenin’s equivalent for the network shown in Fig. 7.77.

– 30j W

100 Wa

b

Vab Vab
166.7

–90°

+

–

Fig. 7.77

7.18 For the circuit shown in Fig. 7.78, obtain the voltage across 500 W resis-
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tor.

1 kW

500 kW

1 mF

+ –+ –
v1

0.5v1

50 mHcos 10000 t

1000

Fig. 7.78

7.19 For the circuit shown in Fig. 7.79, obtain the Thevenin’s equivalent circuit
at terminals ab.

+ –

j1 W
– 2j W

I/4

1 0°– A

a

b

I

Fig. 7.79

Objective-type Questions

1. The superposition theorem is valid
(a) only for ac circuits
(b) only for dc circuits
(c) For both, ac and dc circuits
(d) neither of the two

2. When applying the superposition theorem to any circuit
(a) the voltage source is shorted, the current source is opened
(b) the voltage source is opened, the current source is shorted
(c) both are opened
(d) both are shorted

3. While applying Thevenin’s theorem, the Thevenin’s voltage is equal to
(a) short circuit voltage at the terminals
(b) open circuit voltage at the terminals
(c) voltage of the source
(d) total voltage available in the circuit

4. Thevenin impedance ZTh is found
(a) by short-circuiting the given two terminals
(b) between any two open terminals
(c) by removing voltage sources along with the internal resistances
(d) between same open terminals as for VTh
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5. Thevenin impedance of the circuit at its terminals A and B in Fig. 7.80 is

5 H/m

2 W
20 30°–

A

B

Fig. 7.80

(a) 5 H (b) 2 W
(c) 1.4 W (d) 7 H

6. Norton’s equivalent form in any complex impedance circuit consists of
(a) an equivalent current source in parallel with an equivalent resis-

tance.
(b) an equivalent voltage source in series with an equivalent conduc-

tance.
(c) an equivalent current source in parallel with an equivalent imped-

ance.
(d) None of the above.

7. The maximum power transfer theorem can be applied
(a) only to dc circuits (b) only to ac circuits
(c) to both dc and ac circuits (d) neither of the two

8. In a complex impedance circuit, the maximum power transfer occurs when
the load impedance is equal to

(a) complex conjugate of source impedance
(b) source impedance
(c) source resistance
(d) none of the above

9. Maximum power transfer occurs at a
(a) 100% efficiency (b) 50% efficiency
(c) 25% efficiency (d) 75% efficiency

10. In the circuit shown in Fig. 7.81, the power supplied by the 10 V source is

Fig. 7.81

(a) 6.6 W (b) 21.7 W
(c) 30 W (d) 36.7 W
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11. The Thevenin equivalent impedance of the circuit in Fig. 7.82 is

j 4 W I

j 5 W
3 W 5 W

10 ° V–0

A

B

Fig. 7.82

(a) (1 + j5) W (b) (2.5 + j25) W
(c) (6.25 + j6.25) W (d) (2.5 + j6.25) W

12. A source has an emf of 10 V and an impedance of 500 + j100 W. The
amount of maximum power transferred to the load will be

(a) 0.5 mW (b) 0.05 mW
(c) 0.05 W (d) 0.5 W

13. For the circuit shown in Fig. 7.83, find the voltage across the dependent
source.

10 0°– 4 V

+

+
+

–
–

–
V

j 2 W

Fig. 7.83

(a) 8 –0° (b) 4 –0°

(c) 4 –90° (d) 8 –– 90°



8Chapter

Frequency Domain

Analysis

8.1 IMMITTANCE

Immittance is a general term used to represent both impedance and admittance.

The volt-ampere relations of R, L, C elements and their combinations can be

related by integro-differential equations, under sinusoidal steady state conditions.

The ratio of response phasor to the excitation phasor associated with the

sinusoidal voltage and current at a pair of terminals of a network is called

immittance.

8.2 COMPLEX IMMITTANCE

Let the voltage applied to a linear lumped circuit be v(t) = Vm sin (w t + fv) (8.1)

And the corresponding current under steady state condition be

i(t) = lm sin (wt + fi) (8.2)

Phasors may be used to represent the sinusoidal voltages and currents.

Immittance can be expressed as a ratio of two phasors which is a complex

quantity. Hence, immittance is represented by a complex number. The complex

number representing an immittance is invariant with respect to time.

The voltage phasor and current phasors of Eqs. 8.1 and 8.2 are given by

V = Ve
jfv

 = V fn  = V (cos fv + J sin fv) (8.3)

I = Iejfi = I fL  = I(cos fi + J sin fi) (8.4)

The excitation may be either voltage or current.

Consider the current excitation i(t) = I sin (wt + f) through R, L and C and the

response phasor of voltage of these elements are shown in Fig. 8.1.
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R

L

C

1–f

1–f

1–f

Fig. 8.1

VR = RI (cos f + J sin f)

VL = JwLI (cos f + J sin f)

VC =
I

J cw
 = (cos f + J sin f)

The complex immittance of the lumped elements R, L and C can be defined as

the ratio of response to excitation 
V

I
.

R + J0 for resistance (8.5)

0 + JwL for inductance (8.6)

0 – 
J

cw
 for capacitance (8.7)

Equations 8.5, 8.6 and 8.7 represents the immittances of single elements, they

are either purely real or purely imaginary. In general the immittance of combined

elements of R, L, C, is a complex number. Hence, the ratio of voltage phasor to

current phasor in a combined R, L, C network is defined as the impedance, Z.

From Eq. 8.3 and 8.4

Z =
Ve

Ie

J

J i

f

f

n

 = 
V

I
 eJ (fn – fi)

= | Z |eJf = Z–f = R + JX (8.8)

where |Z| is the magnitude of the complex impedance f = (fv – fi) is the phase
angle between voltage phasor and current phasor.

R is the effective resistance of the network and X is the effective reactance of
the network. The reciprocal of complex impedance is the complex admittance.

Y =
1

Z
 = 

Ie

Ve

J

J

if

fn
 = 

I

V
 eJ(fi – fn)

= |Y|eJq = Y–q = G + JB (8.9)

where Y is the magnitude of the complex admittance, G is the effective
conductance of the network and B is the effective susceptance of the network.
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8.3 LOCI OF RLC NETWORKS

Locus diagrams can be drawn for reactance, susceptance, impedance and
admittance when frequency of the sinusoidal excitation is varied. A phasor
diagram may be drawn and is expanded to develop a curve known as a locus.
Locus diagrams are useful in determining the behaviour or frequency response of
an RLC circuit. Loci of these parameters furnish important information for use in
circuit analysis. Such plots are particularly useful in the design of electric wave
filters. The path traced by the terminus of the current phasor or voltage phasor
when the frequency of the exciting source is changed is called the locus diagram.
The term circle diagram identifies locus plots that are either circular or
semicircular loci of terminus of a current phasor or voltage phasor. Circle
diagrams are often employed as aids in analyzing the operating characteristics of
circuits like equivalent circuit of transmission lines and some types of ac
machines.

8.4 IMMITTANCE LOCI OF SINGLE ELEMENTS

From Eqs. 8.6 and 8.7, we can write the impedance (immittances) associated with
inductance and capacitance respectively are

ZL = 0 + JwL (8.10)

ZC = 0 + 
1

J cw
(8.11)

It can be observed that ZL and ZC are complex numbers and functions of the
angular frequency (w) of the actuating source.

Table 8.1

w ZL ZC YL YC

0 0 – µ – µ 0
Ø Ø Ø Ø Ø
µ µ 0 0 µ

The admittances (immittances) associated with the inductance and capacitance
can also be represented by complex numbers and are also functions of angular
frequency w, given by

YL = 0 + 
1

J Lw
(8.12)

YC = 0 + JwC (8.13)

The impedances and admittances of single elements are purely imaginary even
though they are complex. Any change in angular frequency will move the
immittances along the y-axis in the x-y plane. The variations of the immittances,
when the frequency is varied from zero to infinity is shown in Table 8.1. The
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locus plots of the impedances and admittances of single elements are shown in
Fig. 8.2(a) through 8.2(d).

Z = •L

Y = •C

Z = 0C

Y = 0L

Z = •L

Y = •C

Z = •C

Y = •L

w 0

w •

w •

w •

w 0(0, 0)

w 0

w 0

w 0

Y

– jy

– jy

jy

X

X

(a) Impedance Loci of L

(c) Admittance Loci of C

(b) Impedance of C

(d) Admittance Loci of L

X

X

Fig. 8.2

8.5 IMMITTANCE LOCI OF COMBINED ELEMENTS

8.5.1 Impedance Locus

When a series combination of RL or RC is connected across a source, the complex
impedances (immittances) can be represented as follows

ZRL = R + JwL (8.14)

ZRC = R + 
1

J cw
(8.15)

The complex impedances represented by Eq. 8.14 and 8.15 have both real and
imaginary parts. The real parts of the equations are independent of the frequency
whereas the imaginary part varies with the frequency, similar to the impedances
of a single elements. Therefore, the locus ZRL moves parallel to the y axis in the 1st

quadrant of x-y plane with a constant real part as w varies from zero to infinite.
Similarly the locus of ZRC moves in the fourth quadrant parallel to the –y axis
with a constant real part as w varies from zero to infinite. These loci are shown in
Figs 8.3 (a) and (b).
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ZRL ZRC

ZRC
ZRL

w 0 w 0

w 0

w 0

jy

– jyX

X

(a) Impedance Loci of ZRL (b) Impedance Loci of ZRC

Fig. 8.3

8.5.2 Admittance Locus

The admittances of an RL and RC combination are given by

YRL =
1

ZRL

 = 
1

R J L+ w
(8.16)

YRC =
1

ZRC

 = 
1

1
R

J c
+

w

(8.17)

It can be shown that the admittance loci of series RL and RC circuits are
circles. Rationalizing the Eq. 8.16,

YRL =
R J L

R L

-

+

w

w2 2( )
 = 

R

R L
J

L

R L2 2 2 2+
-

+( ) ( )w

w

w
(8.18)

Let the real component of Eq. 8.18 be x and imaginary component by y

\ x =
R

R L2 2+ ( )w
(8.19)

y =
-

+

w

w

L

R L2 2( )
(8.20)

x

y
 =

- R

Lw
(8.21)

w =
-

¥
R

L

y

x
(8.22)

substituting the value of w in x.

x =
R

R
R

L

y

x
L2

2

2

2

2
2+ ¥ ¥

(8.23)

xR2 + 
y

x

2

 R2 = R

R2(x2 + y2) = xR
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x2 + y2 – 
x

R
 = 0 (8.24)

Add 
1

4 2R
 on both sides of the above equation

x2 + y2 – 
x

R R
+

1

4 2  =
1

4 2R
(8.25)

Above equation can be written as

x
R

-
F
HG

I
KJ

1

2

2

 + y2 =
1

2

2

R

F
HG

I
KJ

(8.26)

Equation 8.26 describes a circle equation as (x – a)2 + (y – b)2 = r2 where
(a, b) represents centre point of circle and r is the radius.

Equation 8.26 can be used to draw the admittance loci by fixing centre at

1

2
0

R
,

F
HG

I
KJ

 and radius 
1

2 R

F
HG

I
KJ

 in the xy plane. When w = 0 the magnitude of the

admittance assumes the maximum value of 
1

R
 with a phase angle of zero with

positive x-axis. As w is increased from zero, the magnitude traces the path of a
semi-circle in the fourth quadrant. When w tends to infinity the magnitude tends
to zero with a phase angle of – 90°, the locus diagram is shown in Fig. 8.4.

Y = 0Y = 0
Y = 1

1

R

2R
w 0 w 0w 0 w 0(0, 0)

– jy

X

Fig. 8.4

Rationalizing the Eq. 8.17, we can write the admittance of a series RC circuit
as

YRC =
R

R
c

J

c R
c

2

2

2

21 1+
F
HG

I
KJ

+

+
F
HG

I
KJ

F

H
G

I

K
J

L

N
M
M

O

Q
P
Pw

w
w

(8.27)

The above equation can be also represented as a circle equation by letting

x =
R

R
c

2

2
1

+
F
HG

I
KJw

(8.28)
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and y =
1

12

2

/w

w

c

R
c

+
F
HG

I
KJ

(8.29)

x

y
 = wRC fi w = 

x

y RC

1
(8.30)

substituting the value of win Eq. 8.28,

x
2 + y2 – 

x

R
 = 0

Adding 
1

4 2R
 on both sides, the above equation can be written as

x
R

-
F
HG

I
KJ

1

2

2

 + y2 =
1

2

2

R

F
HG

I
KJ

(8.31)

Above equation is identical to Eq. 8.26 which represents the equation of a
circle. The admittance locus diagram of a series RC circuit is shown in Fig. 8.5. It
is similar to the admittance locus of series RL except that it lies in the 1st quadrant
of x-y plane.

Y = 0Y = 0
Y =

1

1

R

2R

w 0w 0
w •

(0, 0)

– jy

X

Fig. 8.5

8.6 LOCUS DIAGRAMS OF SERIES,
PARALLEL CIRCUITS

Locus diagrams can also be drawn for series and parallel RLC circuits when one
of its parameters is varied while the frequency and voltage kept constant.

8.6.1 Series Circuits

To discuss the basis of representing a series circuit by means of a circle diagram
consider the circuit shown in Fig. 8.6(a). The analytical procedure is greatly
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simplified by assuming that inductance elements have no resistance and that
capacitors have no leakage current.

V

IY
IL

IX

I

0

R = • R = 0

q

V/XL

Fig. 8.6 (a) Fig. 8.6 (b)

The circuit under consideration has constant reactance but variable resistance.
The applied voltage will be assumed with constant rms voltage V. The power

factor angle is designated by q. If R = 0, IL is obviously equal to 
V

XL

 and has

maximum value. Also I lags V by 90°. This is shown in Fig. 8.6(b). If R is

increased from zero value, the magnitude of I becomes less than 
V

XL

 and q

becomes less than 90° and finally when the limit is reached, i.e. when R equals to
infinity, I equals to zero and q equals to zero. It is observed that the tip of the
current vector represents a semicircle as indicated in Fig. 8.6(b).

In general

IL = 
V

Z

sin q = 
X

Z

or Z = 
XL

sin q

I = 
V

XL

 sin q (8.32)

For constant V and X, Eq. 8.32 is the polar equation of a circle with diameter

V

XL

. Figure 8.6(b) shows the plot of Eq. 8.32 with respect to V as reference.

The active component of the current IL in Fig. 8.6(b) is OIL cos q which is
proportional to the power consumed in the RL circuit. In a similar way we can
draw the loci of current if the inductive reactance is replaced by a capacitive
reactance as shown in Fig. 8.6(c). The current semicircle for the RC circuit with
variable R will be on the left-hand side of the voltage vector OV with diameter
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V

XC

 as shown in Fig. 8.6(d). The current vector OIC leads V by q°. The active

component of the current ICX in Fig. 8.6(d) is OIC cos q which is proportional to
the power consumed in the RC circuit.

V

Ic Xc

R

V

O

Ic

R=•
R=0

q

V/Xc

XI

Fig. 8.6(c) Fig. 8.6(d)

Circle Equations for an RL Circuit

(a) Fixed reactance and variable resistance The X-coordinate and
Y-coordinate of IL in Fig. 8.6(b) respectively are IX = IL sin q ; Iy = IL cos q.

Where IL = 
V

Z
; sin q = 

X

Z

L ; cos q = 
R

Z
; Z = R XL

2 2+

\ IX = 
V

Z

X

Z
V

X

Z

L L◊ = ◊ 2
(8.33)

IY = 
V

Z

R

Z
V

R

Z
◊ = ◊

2
(8.34)

Squaring and adding Eqs. 8.33 and 8.34, we obtain

I2
X + I2

Y = 
V

R XL

2

2 2+
(8.35)

From Eq. 8.33

Z2 = R2 + X2
L = V

X

I

L

X

◊

\ Equation 8.35 can be written as I2
X + I2

Y = 
V

X
I

L
X◊

or I
2
X + I2

Y – 
V

X
I

L
X◊  = 0

Adding 
V

XL2

2
F
HG

I
KJ

 to both sides the above equation can be written as

I
V

X
I

V

X
X

L
Y

L

-
F
HG

I
KJ

+ =
F
HG

I
KJ2 2

2
2

2

(8.36)
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Equation 8.36 represents a circle whose radius is 
V

XL2
 and the co-ordinates

of the centre are 
V

XL2
, 0.

In a similar way we can prove that for a series RC circuit as in Fig. 8.6(c), with
variable R, the locus of the tip of the current vector is a semi-circle and is given by

I
V

X
I

V

X
X

C
Y

C

+
F
HG

I
KJ

+ =
2 4

2
2

2

2
(8.37)

The centre has co-ordinates of – 
V

XC2
, 0 and radius as 

V

XC2
.

(b) Fixed resistance, variable reactance Consider the series RL circuit with
constant resistance R but variable reactance XL as shown in Fig. 8.7(a).

IL

XL= 0

X =L •

IY

IX

V/R

q

0

V

Fig. 8.7(a) Fig. 8.7(b)

When XL = 0; IL assumes maximum value of 
V

R
 and q = 0, the power factor of

the circuit becomes unity; as the value XL is increased from zero, IL is reduced and
finally when XL is a, current becomes zero and q will be lagging behind the
voltage by 90° as shown in Fig. 8.7(b). The current vector describes a semicircle

with diameter 
V

R
 and lies in the right-hand side of voltage vector OV. The active

component of the current OIL cos q is proportional to the power consumed in the
RL circuit.

Equation of Circle

Consider Eq. 8.35 I
2
X + I2

Y = 
V

R XL

2

2 2+

From Eq. 8.34 Z2 = R2 + X2
L = 

VR

IY

(8.38)
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Substituting Eq. 8.38 in Eq. 8.35

I
2
X + I 2

Y = 
V

R
 IY (8.39)

I2
X + I 2

Y – 
V

R
 IY = 0

Adding 
V

R2

2
F
H

I
K  to both sides the above equation can be written as

I2
X + I

V

R

V

R
Y -F

H
I
K = F

H
I
K2 2

2 2

(8.40)

Equation 8.39 represents a circle whose radius is 
V

R2
 and the co-ordinates of

the centre are 0; 
V

R2
.

Let the inductive reactance in Fig. 8.7(a) be replaced by a capacitive reactance
as shown in Fig. 8.8(a).

Fig. 2.8(a) Fig. 2.8(b)

Ic

X =c 0

XL= •

IY

IX

q

0

V

V/R

The current semicircle of a RC circuit with variable XC will be on the left-hand

side of the voltage vector OV with diameter 
V

R
. The current vector OIC leads V

by q°. As before, it may be proved that the equation of the circle shown in
Fig. 8.8(b) is

I2
X + I

V

R

V

R
Y -F

H
I
K = F

H
I
K2 2

2 2

Example 8.1 For the circuit shown in Fig. 8.9(a) plot the locus of the current,

mark the range of I for maximum and minimum values of R, and the maximum

power consumed in the circuit. Assume XL = 25 W and R = 50 W. The voltage is
200 V; 50 Hz.
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j 25 W

50 W

200 V
50 Hz

A

B

V

8 Imax

27.76º

Imin

Fig. 8.9(a) Fig. 8.9(b)

Solution

Maximum value of current Imax = 
200

25
 = 8 A; q = 90°

Minimum value of current Imin = 
200

50 25)2 2( ) (+
 = 3.777 A; q = 27.76°

The locus of the current is shown in Fig. 8.9(b).

Power consumed in the circuit is proportional to I cos q for constant V. The

maximum ordinate possible in the semicircle (AB in Fig. 8.9(b)) represents the

maximum power consumed in the circuit. This is possible when q = 45°, under the

condition power factor cos q = cos 45° = 
1

2
.

Hence, the maximum power consumed in the circuit = V ¥ AB = V ¥ 
I

L
max

Imax = 
V

XL

 = 84 A

Pmax = 
V

XL

2

2
 = 

200

2 25

2a f
¥

 = 800 W

Example 8.2 For the circuit shown in Fig. 8.9(a), if the reactance is variable,

plot the range of I for maximum and minimum values of XL and maximum power

consumed in the circuit.

Solution

Maximum value of current Imax = 
200

50
 = 4 A; q = 0

Minimum value of current Imin = 
200

50 25)2 2( ) (+

= 3.777 A; q = 27.76°

The locus of current is shown in Fig. 8.23.

Maximum power will be when I = 4 A

Hence Pmax = 4 ¥ 200 = 800 W

Fig. 8.10

Imax

Imin27.76º4 A

0
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Example 8.3 For the circuit shown in Fig. 8.11(a) draw the locus of the current.

Mark the range of I for maximum and minimum values. Assume XC = 50 W;

R = 10 W; V = 400 V.

V
XC

R

Fig. 8.11(a) Fig. 8.11(b)

Solution Imax = 
400

10
 = 40 A; q = 0°

Imin = 
400

50 102 2( ) ( )+
 = 7.716 A. q = tan–1 5 = 77.8°

The locus of the current is shown in Fig. 8.11(b).

8.6.2 Parallel Circuits

Fig. 8.12(a)

VV

XXCC
XXLL

II

RRLL
RRCC

IILL IICC

(a) Variable XL Locus plots are drawn
for parallel branches containing RLC ele-
ments in a similar way as for series circuits.
Here we have more than one current locus.
Consider the parallel circuit shown in Fig.
8.12(a). The quantities that may be varied
are XL, XC, RL and RC for a given voltage
and frequency.

Let us consider the variation of XL from
zero to •. Let OV shown in Fig. 8.12(b), be
the voltage vector, taken as reference. A
current, IC, will flow in the condenser
branch whose parameters are held constant and leads V by an angle qC = tan–1

X

R

C

C

F
HG

I
KJ

, when XL = 0, the current IL, through the inductive branch is maximum

and is given by 
V

RL

 and it is in phase with the applied voltage. When XL is

increased from zero, the current through the inductive branch IL decreases and

lags V by qL = tan–1 
X

R

L

L

 as shown in Fig. 8.12(b). For any value of IL, the IL RL

drop and IL XL drop must add at right angles to give the applied voltage. These
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drops are shown as OA and AV respectively. The locus of IL is a semicircle, and

the locus of ILRL drop is also a semicircle. When XL = 0, i.e. IL is maximum, IL

coincides with the diameter of its semicircle and ILRL drop also coincides with the

diameter of its semi-circle as shown in the figure; both these semicircles are

shown with dotted circles as OILB and OAV respectively.

Since the total current is IC + IL. For example, a particular value of IC and IL

the total current is represented by OC on the total current semicircle. As XL is

varied, the locus of the resultant current is therefore, the circle IC CB as shown

with thick line in the Fig. 8.12(b).

V R/ L
B

V/RLqC

qL

A

B

IL

IL
IL RL

XL

IC

C

I Circle

IL Circle

I

0 V

Fig. 8.12(b)

(b) Variable XC A similar procedure can be adopted as outlined above to draw

the locus plots of Il and I when XC is varying while RL, RC, XL, V and f are held

constant. The curves are shown in Fig. 8.12(c).

OV presents the voltage vector, OB is the maximum current through RC branch

when XL = 0; OIL is the current through the RL branch lagging OV by an angle qL

= tan–1 
C

R

L

L

. As XC is increased from zero, the current through the capacitive

branch IC decreases and leads V by qC = tan–1 
X

R

C

C

. For a particular IC, the

resultant current I = IL + IC and is given by OC. The dotted semicircle OICB is the

locus of the IC, thick circle ILCB is the locus of the resultant current.
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qL

qC

IC

IC
IC

IC

IL

RC
XC

A

B

B

0

V

C

V/RL

V/RL

Fig. 8.12(c)

(c) Variable RL The locus of current for the variation of RL in Fig. 8.13(a) is
shown in Fig. 8.13(b). OV represents the reference voltage, OIL B represents the

locus of IL and IC CB represents the resultant current locus. Maximum IL = 
V

XL

 is

represented by OB.

(d) Variable RC The locus of currents for the variation of RC in Fig. 8.14(a) is
plotted in Fig. 8.14(b) where OV is the source voltage and semicircle OAB

represents the locus of IC. The resultant current locus is given by BCIL.

V

XC

XL

I

RL
RC

IL IC

IC

qL

qL

qC V

C

I XL L

I RL L

IL

A

O

B

B

I =V XL / L

Fig. 8.13(a) Fig. 8.13(b)
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V

Xc
XL

I

RL
Rc

IL Ic

B

BA

V

C

IL

O

qL

qC

I XC C

I RC C

Fig. 8.14(a) Fig. 8.14(b)

Example 8.4 For the parallel circuit shown in Fig. 8.15(a), draw the locus of I1
and I. Mark the range of values for R1 between 10 W and 100 W. Assume XL =

25 W and R2 = 25 W. The supply voltage is 200 V and frequency is 50 Hz, both

held constant.

Solution

Let us take voltage as reference; on the positive X-axis. I2 is given by I2 = 
200

25
 =

8A and is in phase with V.

II11 RR11

IILL

II

RRLL

XXLL

VV

Fig. 8.15(a)
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Fig. 8.15(b)

When R1 = 10 W I1 = 
200

100 625( )+
 = 7.42 A; q1 = tan–1 

25

10
 = 68.19°

when R2 = 100 W I1 = 
200

10000 625( )+
 = 1.94 A; q2 = tan–1 

25

100
 = 14.0°

The variation of I1 and I are shown in Fig. 8.15(b).

Example 8.5 Draw the locus of I2 and I for the parallel circuit shown in

Fig. 8.16(a).

V f;

I2

I1

R2

R1

XC2

XC1

I

Fig. 8.16(a)

Solution

I1 leads the voltage by a fixed angle q1 given by tan–1 
X

R
C

1

I2 varies according to the value of XC2

I2 is maximum when XC2
 = 0 and is in phase with V

I2 is zero when XC2
 = • as shown in Fig. 8.16(b).
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IL

I2 Locus

q1

XC2= •
XC2=0

V

II1

Fig. 8.16(b)

Example 8.6 For a parallel circuit shown in Fig. 8.17(a) plot the locus of

currents.

I3

I1

I2

q1

XL= • XL=0

I

B

CA

V0

Fig. 8.17(a) Fig. 8.17(b)

Current I1 leads the voltage by a fixed angle q1 given by tan–1 
X

R
C

1

, current I2

leads the voltage by 90°. I3 varies according to the value of XL, when XL = 0, I3 is

maximum and is given by 
V

RL

; is in phase with V; when XL = •, I3 is zero. Both

these extremities are shown in Fig. 8.17(b). For a particular value of I3 the total

current I is given by I1 + I2 + I3 = OA + AB + BC.

8.7 FREQUENCY RESPONSE OF RLC NETWORKS

The response of a circuit with sinusoidal excitation as a function of angular
frequency w is known as the frequency response. Frequency response means the
steady state response of a system to sinusoidal input. Sinusoidal analysis provides
us with the response of a network as a function of w.

The frequency response of RLC circuits provides useful information and is of
practical importance, as the RLC circuits possess filter properties.

The steady state response of a linear time-invariant RLC network to a
sinusoidal input is sinusoidal with the same frequency as that of excitation.

As already mentioned in the preceding chapter, a network function N(S), either
driving point or transfer, may be expressed as a ratio of two polynomials.
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Network functions describes the response of the circuits in the sinusoidal steady
state. By letting S = Jw, the network function can be expressed as a complex
function. Its value is specified either in rectangular coordinates as

N(Jw) = R(w) + JX(w)

or in polar form

N(Jw) = |N(Jw)| eJf(w) = N(Jw) –f(w)

where |N(Jw)| = [ ( )] [ ( )]R xw w2 2+  is the magnitude response function

and f(w) = tan–1 
x

R

( )

( )

w

w
 is the phase response function.

8.8 FREQUENCY RESPONSE PLOTS

Generally the frequency response is plotted as two curves (i) the magnitude plot
(ii) phase angle plot. Both the curves are obtained by varying the angular
frequency w, from zero to infinity. A typical frequency response plots of a low-
pass filter is shown in Fig. 8.18. The variation of w from – µ to + µ is considered
in this case.

N ( )

0

(a) Amplitude response

w

w ww––

(b) Phase response

w

( )w f

w

Fig. 8.18

Example 8.7 Draw the magnitude and phase plots of the voltage transfer

function for the network shown in Fig. 8.19.

R

SC
1V S( )1 V S( )2

Fig. 8.19

Solution The voltage transfer function G(S) = 
V S

V S
2

1

( )

( )

V S

V S
2

1

( )

( )
 =

1

1+ RCS

For sinusoidal steady state, put S = Jw

G(Jw) =
1

1+ J RCw
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= |G(Jw)| –G (Jw)

=
1

1 2+ ( )wRC
 –– tan–1 (wRC)

The variation of magnitude and phase angle for varying w from zero to µ is

shown in Fig. 8.20. For small w, the magnitude approaches unity while the phase
becomes nearly zero. For large value of w, the magnitude becomes 0, while the

phase is – 90°. When w = 
1

RC
, the magnitude is 0.707 and the phase is – 45°.

This point is the half power point of the amplitude response.

RC RC

(a) Magnitude plot (b) Phase plot

1 1

|G j( )|w

|G j( )w

w • w •

0.707

90°

45°

0

Fig. 8.20

Example 8.8 For the network shown in Fig. 8.21 draw the frequency response

of 
V

V
2

1

.

RCS
1

V S( )1 V S( )2

Fig. 8.21

Solution G(Jw) = 
V J

V J
2

1

( )

( )

w

w
 = 

J

J
RC

w

w +
1

when w = 0; |G(Jw)| = 0, –G(Jw) = 90°

when w =
1

RC
; |G(Jw)| = 0.707; –G(Jw) = 45°

when w Æ µ; |G(Jw)| = 1, –G(Jw) = 0°

The plots are shown in Fig. 8.22.
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RCRC

(b) Phase plot(b) Magnitude plot

101

|G j( )w

|G j( )|w

w •w •

45°

90°

0.707

1

Fig. 8.22

8.9 RESONANCE PHENOMENA

The most interesting part of the frequency response of RLC circuits is the
resonance. If a sinusoidal voltage is applied to a circuit consisting of resistive and
reactive elements under special circumstances, the impedance offered by the
network is purely resistive, this phenomenon is called resonance. At resonance,
the circuit voltage V and current I are in phase. The frequency at which resonance
takes place is called the resonance frequency. The resonance phenomenon is due
to the presence of energy storing elements L and C. The immittance loci are
subject of interest under the resonance condition. The resonance may be classified
into two groups.

(1) Series resonance (2) Parallel resonance

8.9.1 Series Resonance

In many electrical circuits, resonance is a very important phenomenon. The study
of resonance is very useful, particularly in the area of communications. For
example, the ability of a radio receiver to select a certain frequency, transmitted
by a station and to eliminate frequencies from other stations is based on the
principle of resonance. In a series RLC circuit, the current lags behind, or leads
the applied voltage depending upon the values of XL

 and XC. XL causes the total
current to lag behind the applied voltage, while XC causes the total current to lead
the applied voltage. When XL > XC, the circuit is predominantly inductive, and
when XC > XL, the circuit is predo-
minantly capacitive. However, if one of
the parameters of the series RLC circuit
is varied in such a way that the current
in the circuit is in phase with the
applied voltage, then the circuit is said
to be in resonance.

Consider the series RLC circuit
shown in Fig. 8.23.

R

I

L C

VS

VR VL VC

Fig. 8.23
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The total impedance for the series RLC circuit is

Z = R + j(XL – XC) = R + j w
w

L
C

-
F
HG

I
KJ

1
(8.41)

It is clear from the circuit that the current I = VS /Z
The circuit is said to be in resonance if the current is in phase with the applied

voltage. In a series RLC circuit, series resonance occurs when XL = XC. The
frequency at which the resonance occurs is called the resonant frequency.

Since XL = XC, the impedance in a series RLC circuit is purely resistive. At the
resonant frequency, fr, the voltages across capacitance and inductance are equal
in magnitude. Since they are 180° out of phase with each other, they cancel each
other and, hence zero voltage appears across the LC combination.

At resonance

XL = XC i.e. wL = 
1

wC

Solving for resonant frequency, we get

2p fr  L = 
1

2p f Cr

fr
2 = 

1

4 2p LC

\ fr = 
1

2p LC
(8.42)

In a series RLC circuit, resonance may be produced by varying the frequency,
keeping L and C constant; otherwise, resonance may be produced by varying
either L or C for a fixed frequency.

Example 8.9 For the circuit shown in Fig. 8.24, determine the value of

capacitive reactance and impedance at resonance.

VS

50 W + 25j - j Xc

Fig. 8.24
Solution At resonance

XL = XC

Since XL = 25 W

XC = 25 W \ 
1

wC
 = 25

The value of impedance at resonance is
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Z = R

\ Z = 50 W

Example 8.10 Determine the resonant frequency for the circuit shown in
Fig. 8.25.

VS

10 W 0.5 mH 10 Fm

Fig. 8.25

Solution The resonant frequency is

fr = 
1

2p LC

= 
1

2 10 10 0 5 106 3
p ¥ ¥ ¥- -.

fr = 2.25 kHz

8.9.2 Impedance and Phase Angle of a Series
Resonant Circuit

The impedance of a series RLC circuit is

|Z| = R L
C

2
2

1
+ -
F
HG

I
KJ

w
w

(8.43)

The variation of XC and XL with frequency is shown in Fig. 8.26.

XL
X LL=w

XC

R

Z

ff = fr

X
C

c = 1-
w

Fig. 8.26
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At zero frequency, both XC and Z are infinitely large, and XL is zero because at
zero frequency the capacitor acts as an open circuit and the inductor acts as a
short circuit. As the frequency increases, XC decreases and XL increases. Since
XC is larger than XL, at frequencies below the resonant frequency fr, Z decreases
along with XC. At resonant frequency fr, XC = XL, and Z = R. At frequencies above
the resonant frequency fr, XL is larger than XC, causing Z to increase. The phase
angle as a function of frequency is shown in Fig. 8.27.

ffr

q

90º
I Vlags s

0º

–90º capacitive
leadsI VsleadsI Vs

Inductive
lagsI Vs

Fig. 8.27

At a frequency below the resonant frequency, current leads the source voltage
because the capacitive reactance is greater than the inductive reactance. The
phase angle decreases as the frequency approaches the resonant value, and is 0°

at resonance. At frequencies above resonance, the current lags behind the source
voltage, because the inductive reactance is greater than capacitive reactance. As
the frequency goes higher, the phase angle approaches 90°.

Example 8.11 For the circuit shown in Fig. 8.28, determine the impedance at

resonant frequency, 10 Hz above resonant frequency, and 10 Hz below resonant

frequency.

VS

10 W 0.1 H 10 Fm

Fig. 8.28
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Solution Resonant frequency fr = 
1

2p LC

= 
1

2 0 1 10 10 6
p . ¥ ¥ -

 = 159.2 Hz

At 10 Hz below fr = 159.2 – 10 = 149.2 Hz

At 10 Hz above fr = 159.2 + 10 = 169.2 Hz

Impedance at resonance is equal to R

\ Z = 10 W

Capacitive reactance at 149.2 Hz is

XC1
= 

1 1

2 149 2 10 101
6w pC

=
¥ ¥ ¥-.

\ XC1
= 106.6 W

Capacitive reactance at 169.2 Hz is

XC2
= 

1 1

2 169 2 10 102
6w pC

=
¥ ¥ ¥ -.

\ XC2
= 94.06 W

Inductive reactance at 149.2 Hz is

XL1
= w2L = 2p ¥ 149.2 ¥ 0.1 = 93.75 W

Inductive reactance at 169.2 Hz is

XL2
= w2L = 2p ¥ 169.2 ¥ 0.1 = 106.31 W

Impedance at 149.2 Hz is

|Z | = R X XL C
2 2

1 1
+ -( )

= ( ) (93. .10 75 106 6)2 2+ -  = 16.28 W

Here XC1
 is greater than XL1

, so Z is capacitive.

Impedance at 169.2 Hz is

|Z| = R X XL C
2 2

2 2
+ -( )

= ( ) ( . .10 106 31 94 06)2 2+ -  = 15.81 W

Here XL1
 is greater than XC1

, so Z is inductive.

8.9.3 Voltages and Currents in a Series
 Resonant Circuit

The variation of impedance and current with frequency is shown in Fig. 8.29.
At resonant frequency, the capacitive reactance is equal to inductive reactance,

and hence the impedance is minimum. Because of minimum impedance, maximum
current flows through the circuit. The current variation with frequency is plotted.
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Z,I

|Z | Impedance

l Current

f
r

f

Fig. 8.29

The voltage drop across resistance, inductance and capacitance also varies
with frequency. At f = 0, the capacitor acts as an open circuit and blocks current.
The complete source voltage appears across the capacitor. As the frequency
increases, XC decreases and XL increases, causing total reactance XC – XL to
decrease. As a result, the impedance decreases and the current increases. As the
current increases, VR also increases, and both VC and VL increase.

When the frequency reaches its resonant value fr, the impedance is equal to R,
and hence, the current reaches its maximum value, and VR is at its maximum
value.

As the frequency is increased above resonance, XL continues to increase and
XC continues to decrease, causing the total reactance, XL – XC to increase. As a
result there is an increase in impedance and a decrease in current. As the current
decreases, VR also decreases, and both VC and VL decrease. As the frequency
becomes very high, the current approaches zero, both VR and VC approach zero,
and VL approaches Vs.

The response of different voltages with frequency is shown in Fig. 8.30.
The drop across the resistance reaches its maximum when f = fr. The maximum

voltage across the capacitor occurs at f = fc. Similarly, the maximum voltage
across the inductor occurs at f = fL.
The voltage drop across the inductor is

VL = IXL

where I = 
V

Z

\ VL = 
w

w
w

LV

R L
C

2
2

1+ -
F
HG

I
KJ

(8.44)
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Fig. 8.30

To obtain the condition for maximum voltage across the inductor, we have to
take the derivative of the above equation with respect to frequency, and make it
equal to zero.

\
dV

d

L

w
= 0

If we solve for w, we obtain the value of w when VL is maximum.

dV

d

d

d
LV R L

C

L

w w
w w

w
= + -

F
HG

I
KJ

L

N
M

O

Q
P

R
S
|

T|

U
V
|

W|

-

2
2 1 2

1
/

LV R L
L

C C

LV
R L

L

C C
L

C

R L
L

C C

2 2 2
2 2

1 2

2 2 2
2 2

2
3 2

2 2 2
2 2

2 1

2

2 1
2

2

2 1

+ - +F
H

I
K

- + - +
F
HG

I
KJ

-
F
HG

I
KJ

+ - +

-

w
w

w
w

w
w

w

w
w

/

 = 0

From this

R
2

– 
2L

C
 + 2/w2

C
2 = 0

\ wL = 
2

2

1 2

2
2 2 2LC R C LC R C

L

-
=

-

fL = 
1

2

1

1
2

2p LC R C

L
-

(8.45)
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Similarly, the voltage across the capacitor is

VC = IXC = 
I

Cw

\ VC = 
V

R L
C

C
2

2
1

1

+ -
F
HG

I
KJ

¥

w
w

w

To get maximum value 
dV

d

C

w
 = 0

If we solve for w, we obtain the value of w when VC is maximum.

dV

d
C R L

C
L

C
L

C

C

w
w w

w
w

w w
= + -

F
HG

I
KJ

L

N
M

O

Q
P -

F
HG

I
KJ

+
F
HG

I
KJ

L

NM
O

QP

-
1

2

1
2

1 12
2 1 2

2

/

   + + -
F
HG

I
KJ

=R L
C

C2
2

1
0w

w

From this

w 2
C = 

1

2

2

LC

R

L
-

wC = 
1

2

2

LC

R

L
-

\ f C = 
1

2

1

2

2

p LC

R

L
- (8.46)

The maximum voltage across the capacitor occurs below the resonant
frequency; and the maximum voltage across the inductor occurs above the
resonant frequency.

Example 8.12 A series circuit with R = 10 W, L = 0.1 H and C = 50 mF has an

applied voltage V = 50 – 0° with a variable frequency. Find the resonant

frequency, the value of frequency at which maximum voltage occurs across the

inductor and the value of frequency at which maximum voltage occurs across the

capacitor.

Solution The frequency at which maximum voltage occurs across the inductor

is

fL = 
1

2

1

1
2

2p LC R C

L
-

F

HG
I

KJ

= 
1

2 0 1 50 10

1

1
10 50 10

2 0 1

6 2 6
p . ( )

.

¥ ¥ -
¥ ¥

¥

F

HG
I

KJ
- -

 = 72.08 Hz
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Similarly, fC = 
1

2

1

2

2

p LC

R

L
-

= 
1

2

1

0 1 50 10

10

2 0 16

2

p .

( )

.¥ ¥
-

¥-

= 
1

2
200000 500

p
-

= 71.08 Hz

Resonant frequency fr = 
1

2

1

2 0 1 50 10 6p pLC
=

¥ ¥ -.
 = 71.18 Hz

It is clear that the maximum voltage across the capacitor occurs below the

resonant frequency and the maximum inductor voltage occurs above the resonant

frequency.

8.9.4 Bandwidth of an RLC Circuit

The bandwidth of any system is the range of frequencies for which the current or
output voltage is equal to 70.7% of its value at the resonant frequency, and it is
denoted by BW. Figure 8.31 shows the response of a series RLC circuit.

Here the frequency f1 is the frequency at which the current is 0.707 times the
current at resonant value, and it is called the lower cut-off frequency. The
frequency f2 is the frequency at which the current is 0.707 times the current at
resonant value (i.e. maximum value), and is called the upper cut-off frequency.
The bandwidth, or BW, is defind as the frequency difference between f2 and f1.

V lor

l

0.707
P
1

P

P2

ff
2
= f

L
f
r

f
1
= f

c

Fig. 8.31

\ BW = f2 – f1

The unit of BW is hertz (Hz).
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If the current at P1 is 0.707Imax, the impedance of the circuit at this point is

2 R, and hence
1

1w C
 – w1L = R (8.47)

Similarly, w2L – 
1

2w C
= R (8.48)

If we equate both the above equations, we get

1

1w C
 – w1L = w2L – 

1

2w C

L (w1 + w2) = 
1 1 2

1 2C

w w

w w

+F
HG

I
KJ

From Eq. 8.3, we get

w1w2 = 
1

LC

we have w2
r = 

1

LC
\ w2

r = w1w2 (8.49)

If we add Eqs 8.47 and 8.48, we get
1

1w C
 – w1L + w2L – 

1

2w C
 = 2R

(w2 – w1)L + 
1 2 1

1 2C

w w

w w

+F
HG

I
KJ

 = 2R

Since C = 
1
2w r L

and w1w2 = w2
r

(w2 – w1)L + 
w w w

w

r

r

L
2

2 1
2

( )-
 = 2R (8.50)

From Eq. 8.50, we have

w2 – w1 = 
R

L
(8.51)

\ f2 – f1 = 
R

L2p
(8.52)

or BW = 
R

L2p
(8.53)

From Fig. 8.31, we have

f2 – f1 = R

L2p

\ fr – f1 = R

L4p

f2 – fr = 
R

L4p
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The lower frequency limit f1 = fr – 
R

L4p
(8.54)

The upper frequency limit f2 = fr + 
R

L4p
(8.55)

If we divide the equation on both sides by fr, we get

f f

f

R

f Lr r

2 1

2

-
=

p
(8.56)

Here an important property of a coil is defined. It is the ratio of the reactance of
the coil to its resistance. This ratio is defined as the Q of the coil. Q is known as a
figure of merit, it is also called quality factor and is an indication of the quality of
a coil.

Q = 
X

R

f L

R

L r=
2p

(8.57)

If we substitute Eq. (8.56) in Eq. (8.57), we get

f f

f Qr

2 1 1-
= (8.58)

The upper and lower cut-off frequencies are sometimes called the half-power

frequencies. At these frequencies the power from the source is half of the power
delivered at the resonant frequency.

At resonant frequency, the power is

Pmax = I 2
max R

At frequency f1, the power is P1 = 
I

R
I Rmax max

2 2

2 2
F
H

I
K =

Similarly, at frequency f2, the power is

P2 = 
Imax

2

2
F
H

I
K  R

= 
I Rmax

2

2

The response curve in Fig. 8.31 is also called the selectivity curve of the
circuit. Selectivity indicates how well a resonant circuit responds to a certain
frequency and eliminates all other frequencies. The narrower the bandwidth, the
greater the selectivity.

Example 8.13 Determine the quality factor of a coil for the series circuit

consisting of R = 10 W, L = 0.1 H and C = 10 mF.

Solution Quality factor Q = 
f

BW
r

fr = 
1

2

1

2 0 1 10 10 6p pLC
=

¥ ¥ -.
 = 159.2 Hz
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At lower half power frequency, XC > XL

1

2 1p f C
 – 2pf1L = R

From which f1 = 
- + +R R L C

L

2 4

4

/

p

At upper half power frequency XL > XC

2p f2L – 
1

2 2pf C
 = R

From which f2 = 
+ + +R R L C

L

2 4

4

/

p

Bandwidth BW = f2 – f1 = 
R

L2p

Hence Q0 = 
f

BW

f L

R
r r= =

¥ ¥ ¥2 2 159 2 0 1

10

p p . .

Q0 = 
f

BW
r  = 10

8.9.5 The Quality Factor (Q) and its
 Effect on Bandwidth

The quality factor, Q, is the ratio of the reactive power in the inductor or capacitor
to the true power in the resistance in series with the coil or capacitor.

The quality factor

Q = 2p ¥ 
maximum energy stored

energy dissipated per cycle

In an inductor, the max energy stored is given by 
LI2

2

Energy dissipated per cycle = 
I

2

2
F
H

I
K  R ¥ T = 

I RT2

2

\ Quality factor of the coil Q = 2p ¥ 

1

2

2

1

2

2

LI

I R

f
¥

= 
2p wf L

R

L

R
=

Similarly, in a capacitor, the max energy stored is given by 
CV 2

2
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The energy dissipated per cycle = (I/ 2 )2 R ¥ T
The quality factor of the capacitance circuit

Q = 

2
1

2

2

1

2

2

p
w

C
I

C

I
R

f

F
HG

I
KJ

¥
 = 1

w CR

In series circuits, the quality factor Q = 
w

w

L

R CR
= 1

(8.59)

We have already discussed the relation between bandwidth and quality factor,

which is Q = 
f

BW

r .

A higher value of circuit Q results in a smaller bandwidth. A lower value of Q
causes a larger bandwidth.

Example 8.14 For the circuit shown in Fig. 8.32, determine the value of Q at

resonance and bandwidth of the circuit.

10 V

10 W

5 H

100 Fm90 W

Fig. 8.32

Solution The resonant frequency,

fr = 
1

2p LC

= 
1

2 5 100 10 6
p ¥ ¥ -

= 7.12 Hz

Quality factor Q = XL/R = 2p fr L/R

= 
2 7 12 5

100

p ¥ ¥.
 = 8.24

Bandwidth of the circuit is BW = 
f

Q
r =

7 12

2 24

.

.
 = 3.178 Hz

8.9.6 Magnification in Resonance

If we assume that the voltage applied to the series RLC circuit is V, and the
current at resonance is I, then the voltage across L is VL = IXL = (V/R) wr L
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Similarly, the voltage across C

VC = IXC = 
V

R Crw

Since Q = 1/wrCR = wr L/R

where wr is the frequency at resonance.

Therefore VL = VQ

VC = VQ

The ratio of voltage across either L or C to the voltage applied at resonance can
be defined as magnification.
\ Magnification = Q = VL/V or VC /V (8.60)

8.10 PARALLEL RESONANCE

Basically, parallel resonance occurs when XC = XL. The frequency at which
resonance occurs is called the resonant frequency. When XC = XL, the two branch
currents are equal in magnitude and 180° out of phase with each other. Therefore,
the two currents cancel each other out, and the total current is zero. Consider the

Rc Xc

RL XLV

circuit shown in Fig. 8.33. The condition
for resonance occurs when XL = XC.
In Fig. 8.33, the total admittance

Y = 
1 1

R j L R j CL C+
+

-w w( / )

= 
R j L

R L

R j C

R
C

L

L

C

C

-
+

+
+

+

w

w

w

w

2 2 2 2
2 2
1

( / )

= 
R

R L

R

R
C

j
C

R
C

L

R L

L

L

C

C C
L

2 2 2 2
2 2

2
2 2

2 2 21
1
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+

+
+

+
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N

M
M
M

O

Q

P
P
P

-
+

L

N
M

O

Q
P
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S
|

T
|

U

V
|

W
|w

w

w

w

w

w

/
(8.61)

At resonance the susceptance part becomes zero

\
w

w

r

L r

L

R L
2 2 2+

= 

1

12
2 2

w

w

r

C
r

C

R
C

+
(8.62)

wr L R
C

C
r

2
2 2

1+
L

N
M

O

Q
P

w
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1

w rC
 [RL

2 + wr
2L2]

w
2
r R

C
C

r

2
2 2

1+
L

N
M

O

Q
P

w
= 

1

LC
 [RL

2 + w 2
r L

2]

w 2
r RC

2 – 
w r L

C

2

= 
1 12

2LC
R

C
L -

Fig. 8.33
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w 2
r R

L

C
C
2 -L

NM
O
QP

= 
1 2

LC
R

L

C
L -L

NM
O
QP

wr = 
1

2

2LC

R L C

R L C

L

C

-

-

( / )

( / )
(8.63)

The condition for resonant frequency is given by Eq. 8.63. As a special case, if
RL = RC, then Eq. 8.63 becomes

wr = 
1

LC

Therefore fr = 
1

2p LC

Example 8.15 Find the resonant frequency in the ideal parallel LC circuit shown

in Fig. 8.34.

Fig. 8.34

Solution fr = 
1

2

1

2 50 10 0 01 103 6p pLC
=

¥ ¥ ¥- -.
 = 7117.6 Hz

8.10.1 Resonant Frequency for a Tank Circuit

The parallel resonant circuit is generally called a tank circuit because of the fact
that the circuit stores energy in the magnetic field of the coil and in the electric
field of the capacitor. The stored energy is transferred back and forth between the
capacitor and coil and vice-versa. The tank circuit is shown in Fig. 8.35. The
circuit is said to be in resonant condition when the susceptance part of admittance
is zero.

Fig. 8.35

The total admittance is Y = 
1 1

R jX jXL L C+
+

-
(8.64)
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Simplifying Eq. 8.64, we have

Y = 
R jX

R X

j

X

L L

L L C

-

+
+

2 2

= 
R

R X
j

X

X

R X

L

L L C

L

L L
2 2 2 2

1

+
+ -

+

L

N
M

O

Q
P

To satisfy the condition for resonance, the susceptance part is zero.

\ 1

XC

= 
X

R X

L

L L
2 2+

(8.65)

wC = 
w

w

L

R LL
2 2 2+

(8.66)

From Eq. 8.66, we get

RL
2 + w2L2 = 

L

C

w2L2 = 
L

C
 – RL

2

w2 = 
1

2

2LC

R

L

L-

\ w = 
1

2

2LC

R

L

L- (8.67)

The resonant frequency for the tank circuit is

fr = 
1

2

1
2

2p LC

R

L

L- (8.68)

Example 8.16 For the tank circuit shown in Fig. 8.36, find the resonant

frequency.

Fig. 8.36

Solution The resonant frequency

fr = 
1

2

1 2

2p LC

R

L

L-

= 
1

2

1

0 1 10 10

10

0 16

2

2p .

( )

( . )¥ ¥
--

= 
1

2
10 10

1

2

6 2

p p
( ) ( )- =  (994.98) = 158.35 Hz
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8.10.2 Variation of Impedance with Frequency

The impedance of a parallel resonant circuit is maximum at the resonant
frequency and decreases at lower and higher frequencies as shown in Fig. 8.37.

Fig. 8.37

At very low frequencies, XL is very small
and XC is very large, so the total impedance
is essentially inductive. As the frequency
increases, the impedance also increases, and
the inductive reactance dominates until the
resonant frequency is reached. At this point
XL = XC and the impedance is at its
maximum. As the frequency goes above
resonance, inductive reactance dominates
and the impedance decreases.

8.10.3 Q Factor of Parallel Resonance

Consider the parallel RLC circuit shown in Fig. 8.38.

Fig. 8.38

In the circuit shown, the condition for resonance occurs when the susceptance
part is zero.

Admittance Y = G + jB (8.69)

= 
1

R
 + jw C + 

1

j Lw

= 
1 1

R
j C

L
+ -

F
HG

I
KJ

w
w

(8.70)

The frequency at which resonance occurs is

wrC – 
1

w r L
= 0 (8.71)

wr = 
1

LC
(8.72)

The voltage and current variation with frequency is shown in Fig. 8.39. At
resonant frequency, the current is minimum.
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Fig. 8.39

The bandwidth, BW = f2 – f1

For parallel circuit, to obtain the lower half power frequency,

w1C – 
1 1

1w L R
= - (8.73)

From Eq. 8.73, we have

w2
1 + 

w1 1

RC LC
-  = 0 (8.74)

If we simplify Eq. 8.74, we get

w1 = 
-

+ F
H

I
K +

1

2

1

2

12

RC RC LC
(8.75)

Similarly, to obtain the upper half power frequency

w2C – 
1 1

2w L R
= (8.76)

From Eq. 8.76, we have

w2 = 
1

2

1

2

12

RC RC LC
+ F

H
I
K + (8.77)

Bandwidth BW = w2 – w1 = 
1

RC

The quality factor is defined as Qr = 
w

w w

r

2 1-

Qr = 
w r

RC1/
 = wr RC
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In other words,

Q = 2p ¥ 
maximum energy stored

Energy dissipated/cycle

In the case of an inductor,

The maximum energy stored = 
1

2
 LI2

Energy dissipated per cycle = 
I

2

2
F
H

I
K  ¥ R ¥ T

The quality factor Q = 2p ¥ 
1 2

2

1

2

2

/ ( )LI

I
R

f
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2 2
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w w

f LR

L

R

L
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For a capacitor, maximum energy stored = 1/2 (CV2)

Energy dissipated per cycle = P ¥ T = 
V

R f

2

2

1

¥
¥

The quality factor Q = 2p ¥ 
1 2

2

1

2

2

/ ( )CV

V

R f
¥

= 2p fCR = w CR

8.10.4 Magnification

Current magnification occurs in a parallel resonant circuit. The voltage applied to
the parallel circuit, V = IR

Since IL = 
V

L

IR

Lr rw w
=  = IQr

For the capacitor, IC = 
V

Cr1/w
 = IRwrC = IQr

Therefore, the quality factor Qr = IL /I or IC/I

8.10.5 Reactance Curves in Parallel Resonance

The effect of variation of frequency on the reactance of the parallel circuit is
shown in Fig. 8.40.
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Fig. 8.40

The effect of inductive susceptance,

BL = 
-1

2p f L

Inductive susceptance is inversely proportional to the frequency or w. Hence it
is represented by a rectangular hyperbola, MN. It is drawn in fourth quadrant,
since BL is negative. Capacitive susceptance, BC = 2pf C. It is directly
proportional to the frequency f or w. Hence it is represented by OP, passing
through the origin. Net susceptance B = BC – BL. It is represented by the curve JK,
which is a hyperbola. At point wr, the total susceptance is zero, and resonance
takes place. The variation of the admittance Y and the current I is represented by
curve VW. The current will be minimum at resonant frequency.

8.11 FREQUENCY RESPONSE FROM
POLES AND ZEROS

The amplitude and phase response with respect to angular frequency can be
obtained from the pole-zero diagram of a system function. Any network function
G(S) can be expressed in the form of a quotient of polynomials in S, each
numerator and denominator polynomial can be expressed as a product of factors
of the form (S – Sx), where Sx may be either a pole or a zero. In sinusoidal steady
state S = Jw, then the factor becomes (Jw – Sx).

In complex S-plane, both Jw and Sx are phasor. The phasor difference (Jw –
Sx) also represents another phasor. Let us consider a complex zero Sx and an
imaginary phasor Jw as shown in Fig. 8.41.

It is seen from Fig. 8.41, the phasor difference (Jw – Sx) is a phasor directed
from Sx to Jw. As we increase the value of w, the phasor (Jw – Sx) also changes
its length and the angle it subtends with positive x axis in counter clockwise
direction. Generally, any network function G(S) contains such factors, some in
the numerator and some in the denominator as given by the system function.

G(Jw) =
K J Zo J Z J Zn

J Po J P J Pm

( ) ( ) ( )

( ) ( ) ( )

w w w

w w w

- - -

- - -
1

1

K

K
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jw
jwj – SXw

J J

j – SXw

(a) (b)

SX

– SX

SX

Fig. 8.41

Each one of the factors (Jw – Zi), i = 0, 1, 2 K n; (Jw – Pj), j = 0, 1, 2, K m
corresponds to a vector from the zero Zi or pole Pi directed to a point Jw on the
imaginary axis. The variation of the function G(Jw) with w may be obtained by
studying the variation of the individual factors. (Jw -Zi) and (Jw-Pj), each chang-
ing in a pattern determined by the position of Sx with respect to the imaginary
axis.

In general, the amplitude response N(w) can be expressed in terms of the
following equation.

N(w) = 

vector magnitudes from zeros to the point on the  axis

vector magnitudes from the poles to the point on the  axis
= 0

J

J

i

n

J

m

w

w

=

’

’

0

Similarly the phase response f(w) can be expressed as

f(w) =
i

n

=

Â
0

 angles of the vectors from zero to Jw axis

-
=

Â
J

m

0

 angles of the vectors from the poles to the Jw axis.

Example 8.17 Draw the frequency response for the admittance of the RC
network shown in Fig. 8.42 using pole zero concept.

Solution The admittance of the network is given by

YRC =
CS

RCS( )1+
 = 

S

R S
RC

+
F
HG

I
KJ

1

= K 
S

S
RC

+
F
HG

I
KJ

1
; where K = 

1

R

The admittance function has a zero at origin and a pole at -
1

R
 as shown in

Fig. 8.43(a).

R

CS
1

Fig. 8.42
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jw        •

j =w

j •w

A

A

A

(a) (b)

(c)

C

C

B

B

q1

q1

q2

q2

RC

RC

RC

RC

– 1

– 1

– 1

– 1

Fig. 8.43

Consider the variation of frequency from Jw = 0 to Jw = 
1

RC
 to Jw = µ.

For every value of w, the phasors are to be constructed from poles and zeroes

of the function. The magnitude of the admittance function can be represented by

N(w) = K 
| |

| |

a

b

Where |a| is the length of the phasor drawn from zero at S = 0 to Jw under

consideration. |b| is the length of the phasor drawn from pole at S = -
1

RC
 to Jw

under consideration. The phase angle f(w) of the admittance function can

represented by

f(w) =
–

–

q

q
1

2

–q1 is the angle between zero and positive x-axis.

–q2 is the angle between pole and positive x-axis.

From Fig. 8.43(a) when Jw = 0

|a| = 0; –q1 = 90° N(w) = 0

|b| =
1

RC
–q2 = 0° f(w) = 90°

From Fig. 8.43(b) when Jw = 
1

RC

|a| =
1

RC
–q1 = 90° N(w) =

1

2R

|b| =
2

RC
–q2 = 45° f(w) = 45°
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From Fig. 8.43(c) when w Æ µ

|a| = Æ µ q1 = 90° N(w) =
1

R

|b| = Æ µ q2 = 90° f(w) = 0

It can be observed that the magnitude changes from 0 to 
1

R
 as w changes

from zero to infinity. The complex locus of this variation is shown in Fig. 8.44.

(0, 0)

1

R

w = 0

w =
1

RC

w •

y

45%

X

Fig. 8.44

This is similar to the one shown in Fig. 8.5.

Example 8.18 Find the amplitude and phase response from the poles and

zeros of the network function given by

N(S) =
2

4 52

S

S S+ +

Solution N(S) = 
2

2 1 2 1

S

S J S J( ) ( )+ + + -

The poles are at S = – 2 – J 1 and S = – 2 + J1 and zero at origin as shown in

Fig. 8.45.

jw

1
45°

– 2

45°
– 1

Fig. 8.45 (a)

Let us find the amplitude and phase at w = 0. Draw the vectors from poles and

zeros of N(S) to the point w = 0 as shown in Fig. 8.45(a). Let the length of vector

from zero to Jw be a, from pole (– 2 + J1) to Jw be b and from (– 1 – J1) to Jw be

c and the corresponding angles be q1, q2 and q3 respectively.
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From the pole zero diagram of Fig. 8.45(a), we can find

N(J0) = 2
a

b c¥

F
HG

I
KJ

 = 2
0

5 5¥

F

HG
I

KJ
 = 0

f(J0) = q1 – q2 – q3 = 90° – 45° +  45° = 90°

Similarly, we can find the amplitude and phase from pole zero diagram for

different values of w as explained below.

For w = 1, the vectors are shown in Fig. 8.45(b).

Jw

1

– 2

45°

– 1

– 1

w

w

w•

•

•

1

– 2

90°

90°

90°

– 1

– 1

Fig. 8.45 (b) Fig. 8.45 (c)

N(J1) = 2
1

2 2 2¥

F

HG
I

KJ
 = 0.3535

f(J1) = 90° – 0° – 45° = 45°

For w = µ, the vectors are shown in Fig. 8.45(c). At very high frequency as w
tends to infinity all vectors are approximately equal to infinity, the magnitude tends

to zero.

N(w µ) ª 
2

2

w

w
µ

µ

 =
2

w µ

whereas the phase would be

f(wµ) = 90° – 90° – 90° = – 90°

With the information available for three points, we can roughly estimate the
frequency response of the network function. The sketch is shown in Fig. 8.46.

Extending the analysis further, the values are given in Table 8.2.

Table 8.2

w N(w) q(w)

0 0 90°

1 0.3535 45°

2 0.49 7.6°

4 0.37 – 23°

µ 0 – 90°
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N( j )w

f w( )

w

1

0.5

0.4

0.3

0.2

0.1

0

90°

– 90°

60°

– 60°

30°

– 30°

0

1

2

2

3

3

5

5

4

4

6

6

7

7

8

8

9

9

10

10

Fig. 8.46

8.12 BODE PLOTS

The Bode plot or corner plot of a function GH(Jw) is a graphical representation of
the magnitude and phase angle of GH(Jw) with respect to frequency w. This
techniques is used in the analysis of feedback control systems. The Bode plot is
also known as the asymptotic plot of GH(Jw). Because these plots can be
constructed by using straight line approximations that are asymptotic to the actual
plots. Bode plots consist of two graphs. Logarithmic scales are used for the
frequency w and for the magnitude of GH(Jw) to simplify their construction and
manipulation. The use of logarithmic scale facilitates the representation of the
magnitude and phase of the function over wide range of frequencies.
Multiplication of magnitudes can be converted to addition. Both the low
frequency and high frequency characteristics of a transfer function can be easily
studied. Because of logarithmic scale, it is not possible to represented the
frequency scale right down to zero.

The magnitude |GH(Jw)| of a transfer function of any value of frequency w is
plotted on a logarithmic scale in decible (db) units. Hence the magnitude of
GH(Jw) in db is obtained by multiplying the logarithm to the base 10 of |GH(Jw)|
by 20 where db = 20 log10 |GH(Jw)|. Since, open loop or closed loop transfer
functions of a control system are usually expressed in terms of Products of factors
like S±n, (1 + ST)±n. It is convenient to draw the plots as the logarithm of a product
of factors is equal to the sum of the db magnitudes of the individual factors.

8.12.1 Factors of GH (Jwwwww)

In general GH(Jw) can contain the following factors.
1. Constant factor K.



8.46 Network Analysis

2. Integral and derivative factors of order m: (Jw)mm

3. First order factors of order n: (1 + JwT)mn

4. Quadratic factors 1 2

1

+ +
F
HG

I
KJ

L

N
M
M

O

Q
P
P

x
w
w

w
wn n

n

J

m

Let us sketch the Bode plot of different factors.

8.12.2 Constant Factor (K)

Real constant K has a magnitude |K|, a phase angle of 0°. If K is positive, and
– 180° if K is negative. Therefore, the Bode plots for K are simply horizontal
straight lines as shown in Fig. 8.47.

The effect of varying the gain is to raise or lower the log magnitude but has no
effect on phase angle.

KdB = 20 log10 K = constant

–K = 0 If K > 0

= – 180° If K < 0

| |K

–K0°

20 log 10 | |K

K > 0

K < 0

log 10 w

log |10 w |

Fig. 8.47

8.12.3 Integral and Derivative Factors (Jwwwww)mm

Poles and zeroes at the origin: (Jw)m1

The magnitude of (Jw)–1 in dB is given by

20 log 
1

Jw
 = – 20 log w dB

Phase angle of 
1

Jw
 = – 90° constant at all values of w

For w = 1, log magnitude is 0 dB

For w = 10 log magnitude is – 20 dB

For w = 100 log magnitude is – 40 dB

For w = 0.1 log magnitude is 20 dB
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Thus, the log magnitude plot for the function 
1

Jw
 is a straight line with a slope

of – 20 dB per decade of frequency. The Bode plot for the function is shown in
Fig. 8.48.

1 10
0.120

10

– 20 dB/dec

1

Magnitude plot Phase angle plot

100

Angle
in degrees

0°

90°0dB

180°– 20

100

w

Fig. 8.48

Similarly, the magnitude of (Jw) = 20 log w dB and phase angle of (Jw) = 90°

constant at all values of w.

for w = 0.1 log magnitude is – 20 dB

for w = 1 log magnitude is 0 dB

for w = 10 log magnitude is 20 dB

for w = 100 log magnitude is 40 dB

Thus, the log magnitude plot for the function (Jw) is a straight line with a slope
of 20 dB per decade of frequency. The Bode plot for the function is shown in
Fig. 8.49.

1 100.1

60

10

+ 20 dB/decade

1

Phase angle plotMagnitude plot

100

90°

40

dB

0°

180°

20

0.01

– 40

– 20
100

w
w

Fig. 8.49

If the transfer function contain the 
1

J

m

w

F
H

I
K  or (Jw)m, that is the multiple poles

and zeroes at origin. The log magnitude becomes as follows:
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20 log 
1

( )J
mw

 = – m ¥ 20 log |Jw | = – 20 m log w dB

20 log (Jw) = m ¥ 20 log |Jw | = + 20 m log w dB

The Bode plots for various values of m is shown in Figs. 8.50 and 8.51

respectively for the functions 
1

J

m

w

F
HG

I
KJ

 and (Jw)m.

1 10

60

10

Phase angle plot

Angle in
degrees

Magnitude plot

20 log10
1

(Jw)m

m = 1 m = 1

m = 2 m = 2

m = 3 m = 3

– 90°

40

dB
0°

– 180°

– 270°

20

0
0.1

– 40

– 60

– 20

100
w

w

Fig. 8.50

1 10

60

101

Phase angle plotMagnitude plot

m = 1

m = 1

m = 2

m = 2

m = 3

m = 3

90°

40

dB
0

180°

270°

20

0
0.1

– 40

– 60

– 20
100

w
w

20 log10| |Jwm

Fig. 8.51

8.12.4 First Order Factors (1 + JwwwwwT)m1

Simple Pole Consider the function 
1

1( )+ J Tw
; the log magnitude in dB is given

by

20 log10 
1

1 + J Tw
 = – 20 log10 1 2 2+ w T  dB
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In order to obtain asymptotic approximations of the above function, we have to
consider both very large and very small values of w.

For very low frequencies w << 
1

T
 we can approximate

– 20 log10 1 2 2+ w T  as – 20 log10 1 = 0 dB

For high frequencies w >> 
1

T
 we can approximate

– 20 log10 1 2 2+ w T  as – 20 log wT dB

At w = 
1

T
 known as corner frequency or break point frequency; – 20 log 1 dB = 0

At w =
10

T
; – 20 log 10 dB = – 20 dB

At w =
100

T
; – 20 log 100 dB = – 40 dB

Thus, an approximate log magnitude plot consists essentially of 2 straight lines

meeting at corner frequency w = 
1

T
; the value of – 20 log wT dB decreases by 20

dB for every decade of w for w >> 
1

T
. Hence, the log magnitude curve is zero up

to the corner frequency w = 
1

T
 and is a straight line with a slope of – 20 dB/

decade from w = 
1

T
. The phase angle f of

1

1( )+ J Tw
 = – tan–1 wT

For wT >> 1; f = – tan–1 µ = – 90°

For w = 0 the phase angle f = 0°

At corner frequency w = 
1

T
; f = – 45°

Thus, the phase angle f plot varies from 0 to 90°, its value is 45° at corner

frequency. The exact plot has the value of log magnitude of ª – 3 dB at w = 
1

T
.

Thus, the error between the straight-line approximation and the actual magnitude

curve is – 3 dB. The Bode plot of 
1

1( )+ J Tw
 is shown in Fig. 8.52.
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w

40
(1 + )J Tw

(1 + )J Tw
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0
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– 45°

0
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Fig. 8.52

8.12.5 Simple Zero

Consider the function (1 + JwT). The magnitude in dB is 20 log10 1 2 2+ w T  =

10 log (1 + w2
 T

2) dB. The phase angle f = tan–1 (wT ). In a similar manner to
simple pole, for very low frequencies, log magnitude is approximated as zero, and
phase angle f = 0. Also for high frequencies, the log magnitude is approximated

as 20 log wT and phase angle f = 90°.At corner frequency w = 
1

T
; the phase

angle f = 45°. The Bode plot of (1 + JwT) is shown in Fig. 8.52. The corner
frequency is the intersect of the high frequency approximate plot and the low
frequency approximate plot which is the 0 dB axis. The actual plot of (1 + JwT) is
a smooth curve, and deviates only slightly from the straight line. A straight line
approximation is a reasonable one. The error between the actual magnitude curve
and the straight-line asymptotes is symmetrical with respect to the corner

frequency w = 
1

T
 and the error is 3 dB. At the corner frequency and 1 dB at 1

octave above w =F
H

I
K

2

T
 and 1 octave below w =

F
HG

I
KJ

1

2 T
, the corner frequency. The

actual magnitude curve can be obtained by adding the errors to the asymptotic
plot at the corner frequency and one octave above and below the corner frequency.

Example 8.19 Draw the asymptotic Bode plot for the transfer function

GH(S) =
10 1 0 5

1 0 1 1 0 2

( . )

( . ) ( . )

+

+ +

S

S S S
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Solution G(Jw) = 
10 1 0 5

1 01 1 0 2

+

+ +

.

. .

J

J J J

w

w w w

b g
b g b g

Identify the corner frequencies:

Positive corner frequency (p.c.f.) = 
1

0 5.
 = 2

Negative corner frequencies (n.c.f.) = 
1

0 1.
 = 10; 

1

0 2.
 = 5

Magnitude of constant K = 10

Log magnitude of K = 20 log10 10 = 20 dB

There are five factors in the function (1) constant factor (2) simple pole (3).

First order factor in numerator with p.c.f. of 2(4) first order factor in denominator
with n.c.f. of 5 and (5) first order factor in denominator with n.c.f. of 10.

The Bode plots of all the factor are shown in dashed lines and total plot is

shown in solid line in Fig. 8.53.
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2010 50

Fig. 8.53

From the figure it can be observed that, the curve starts at – 90° at low frequency

and has the values of – 45° at w = 2; – 95° at w = 5; – 135° at w = 10 and reaches

– 180° at higher values of w ; as w tending to infinity.

8.12.6 Gain Cross Over and Phase Cross Over

Gain crossover The point at which the magnitude of GH(Jw) is unity, i.e. log
magnitude of GH(Jw) = 0 db, is called the gain cross over frequency. From the
Bode magnitude plot, it is the point at which the curve crosses the 0 dB axis as
shown in Fig. 8.54.

Phase crossover It is the frequency at which the Bode phase angle curve
crosses the – 180° axis as shown in Fig. 8.54.
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w

+ dB

0

Magnitude plot

Phase angle plot

Phase cross over point

Phase margin

Gain margin
Gain cross over frequency

(In semilog scale)

0°

– 180°

90°

180°

– dB

Magnitude
in dB

– 270°

– °90

Fig. 8.54

8.12.7 Gain Margin and Phase Margin

Gain margin It is the amount of gain in dBs, that can be allowed to increase in
the loop before the closed loop system reaches instability. It can be obtained from
the Bode plot. The gain measured at the phase cross over frequency (wc) in dBs as
shown in Fig. 8.54.

G.M. = – |GH(Jw c)| dB

Phase margin It is the angle in degrees between phase curve and –180° axis at
the gain cross over frequency as shown in Fig. 8.54.

Phase margin is the angle by which the phase curve must be shifted so that it
will pass through the –180° axis at the gain cross over frequency. If the phase
angle curve never crosses the –180° axis, the system is always stable. The
problem in Example 8.17 is a stable system.

Solved Problems

Problem 8.1 For the circuit shown in Fig. 8.55, determine the frequency at
which the circuit resonates. Also find the voltage across the inductor at resonance
and the Q factor of the circuit.

Solution The frequency of resonance
occurs when XL = XC

wL = 
1

wC

\ w = 
1

LC
 radians/sec

100 rmsV

10 W 0.1 H 50 Fm

Fig. 8.55
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= 
1

0 1 50 10 6. ¥ ¥ -
 = 447.2 rad/sec

fr = 
1

2p
 (447.2) = 71.17 Hz

The current passing through the circuit at resonance,

I = 
V

R
=

100

10
 = 10A

The voltage drop across the inductor

VL = IXL = IwL

= 10 ¥ 447.2 ¥ 0.1 = 447.2 V

The quality factor Q = 
w L

R
=

¥447 2 0 1

10

. .
 = 4.47

Problem 8.2 A series RLC circuit has a quality factor of 5 at 50 rad/sec. The
current flowing through the circuit at resonance is 10 A and the supply voltage is
100 V. The total impedance of the circuit is 20 W. Find the circuit constants.

Solution The quality factor Q = 5
At resonance the impedance becomes resistance.

The current at resonance is I = 
V

R

10 = 
100

R

\ R = 10 W

Q = 
w L

R

Since Q = 5, R = 10

wL = 50

\ L = 
50

w
 = 1 H

Total impedance is Z = R X XL C
2 2+ -( )

(20) = ( ) ( )10 2 2+ -X XL C

\ XL – XC = ± -( ) ( )20 102 2 = ± 17.3 W
So XC – XL = 17.3 W
\ XC = 17.3 + wL = 17.3 + 50 = 67.3 W

\
1

2p f C
= 67.3

\ C = 
1

50 67 3¥ .
 = 2.97 ¥ 10– 4 F
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Problem 8.3 A voltage v(t) = 10 sin w t is applied to a series RLC circuit. At
the resonant frequency of the circuit, the maximum voltage across the capacitor is
found to be 500 V. Moreover, the bandwidth is known to be 400 rad/sec and the
impedance at resonance is 100 W. Find the resonant frequency. Also find the
values of L and C of the circuit.

Solution The applied voltage to the circuit is

Vmax = 10 V

Vrms = 
10

2
 = 7.07 V

The voltage across capacitor VC = 500 V

The magnification factor Q = 
V

V

C =
500

7 07.
 = 70.7

The bandwidth BW = 400 rad/sec

w2 – w1 = 400 rad/sec

The impedance at resonance Z = R = 100 W

Since Q = 
w

w w
r

2 1-

wr = Q (w2 – w1) = 28280 rad/sec

fr = 
28280

2p
 = 4499 Hz

The bandwidth w2 – w1 = 
R

L

\ L = 
R

w w2 1

100

400-
=  = 0.25 H

Since fr = 
1

2p LC

C = 
1

2

1

2 4499 0 252 2( ) ( ) .p pf Lr ¥
=

¥ ¥
 = 5 mF

Problem 8.4 Find the value of L at which
the circuit resonates at a frequency of 1000
rad/sec in the circuit shown in Fig. 8.56.

Solution Y = 
1

10 12

1

5-
+

+j jXL

Y = 
10 12

10 12

5

252 2 2

+

+
+

-

+

j jX

X

L

L

= 
10

10 12

5

25

12

10 12 252 2 2 2 2 2+
+

+
+

+
-

+

L

N
M

O

Q
P

X
j

X

XL

L

L

Fig. 8.56

5 W 10 W

- Wj12L
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At resonance the susceptance becomes zero.

Then
X

X

L

L25

12

10 122 2 2+
=

+

12XL
2 – 244 XL + 300 = 0

From the above equation

XL
2 – 20.3 XL + 25 = 0

XL = 
+ ± - ¥20 3 20 3) 4 25

2

2. ( .

= 
20 3 412 100

2

. + -
 or 

20 3 412 100

2

. - -

= 18.98 W or 1.32 W

\ XL = wL = 18.98 or 1.32 W

L = 
18 98

1000

.
 or 

1 32

1000

.

L = 18.98 mH or 1.32 mH

Problem 8.5 Two impedances Z1 = 20 + j10 and Z2 = 10 – j30 are connected
in parallel and this combination is connected in series with Z3 = 30 + jX. Find the
value of X which will produce resonance.

Solution Total impedance is

Z = Z3 + (Z1 || Z2)

= (30 + jX) + 
( ) ( )20 10 10 30

20 10 10 30

+ -

+ + -

R
S
T

U
V
W

j j

j j

= (30 + jX ) + 
200 600 100 300

30 20

- + +

-

j j

j

= 30 + jX + 
500 500

30 20

-

-

F
HG

I
KJ

j

j

= 30 + jX + 
500 1 30 20

30 202 2

( ) ( )

( ) ( )

- +

+

L
NM

O
QP

j j

= (30 + jX ) + 
500 30 20 30 20

900 400

( )+ - +

+

L
NM

O
QP

j j

= 30 + jX + 
5

13
 (50 – j10)

= 30
5

13
50

5

13
10+ ¥F

H
I
K + - ¥F

H
I
Kj X
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At resonance, the imaginary part is zero

\ X – 
50

13
= 0

X = 
50

13
 = 3.85 W

Problem 8.6 A 50 W resistor is connected in series with an inductor having int-
ernal resistance, a capacitor and 100 V variable frequency supply as shown in
Fig. 8.57. At a frequency of 200 Hz, a maximum current of 0.7 A flows through the
circuit and voltage across the capacitor is 200 V. Determine the circuit constants.

Solution At resonance, current in the circuit is maximum

I = 0.7 A

Voltage across capacitor is VC = IXC

Since VC = 200, I = 0.7

XC = 
1

wC

wC = 
0 7

200

.

\ C = 
0 7

200 2 200

.

¥ ¥p
 = 2.785 mF

At resonance

XL – XC = 0

\ XL = XC

Since XC = 
1 200

0 7wC
=

.
 = 285.7 W

XL = wL = 285.7 W

\ L = 
285 7

2 200

.

p ¥
 = 0.23 H

At resonance, the total impedance

Z = R + 50

\ R + 50 = 
V

I
=

100

0 7.
R + 50 = 142.86 W

\ R = 92.86 W

Problem 8.7 In the circuit shown in Fig. 8.58, a maximum current of 0.1A
flows through the circuit when the capacitor is at 5 mF with a fixed frequency and
a voltage of 5 V. Determine the frequency at which the circuit resonates, the
bandwidth, the quality factor Q and the value of resistance at resonant frequency.

Solution At resonance, the current is maximum in the circuits

Fig. 8.57
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I = 
V

R

\ R = 
V

I
=

5

0 1.
 = 50 W

The resonant frequency is

wr = 
1

LC

= 
1

0 1 5 10 6. ¥ ¥ -
 = 1414.2 rad/sec

fr = 
1414 2

2

.

p
 = 225 Hz

The quality factor is Q = 
w L

R
=

¥1414 2 0 1

50

. .
= 28

Since
f

BW

r = Q

The bandwidth BW = 
f

Q

r =
225

2 8.
 = 80.36 Hz

Problem 8.8 In the circuit shown in Fig. 8.59, determine the circuit constants
when the circuit draws a maximum current at 10 mF with a 10 V, 100 Hz supply.
When the capacitance is changed to 12 mF, the current that flows through the
circuit becomes 0.707 times its maximum value. Determine Q of the coil at 900
rad/sec. Also find the maximum current that flows through the circuit.

Fig. 8.59

Solution At resonant frequency, the circuit draws maximum current. So, the
resonant frequency fr = 100 Hz

fr = 
1

2p LC

L = 
1

2 2C fr¥ ( )p

Fig. 8.58
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= 
1

10 10 2 1006 2¥ ¥- ( )p
 = 0.25 H

We have wL – 
1

wC
 = R

900 ¥ 0.25 – 
1

900 12 10 6¥ ¥ -  = R

\ R = 132.4 W

The quality factor Q = 
w L

R
=

¥900 0 25

132 4

.

.
 = 1.69

The maximum current in the circuit is I = 
10

132 4.
 = 0.075 A

Problem 8.9 In the circuit shown in Fig. 8.60, the current is at its maximum
value with capacitor value C = 20 mF and 0.707 times its maximum value with C
= 30 mF. Find the value of Q at w = 500 rad/sec, and circuit constants.

Fig. 8.60

Solution The voltage applied to the circuit is V = 20 V. At resonance, the
current in the circuit is maximum. The resonant frequency wr = 500 rad/sec.

Since w r = 
1

LC

\ L = 
1 1

500 20 102 2 6w r C
=

¥ ¥ -( )
 = 0.2 H

Since we have

wL – 
1

w C
 = R

500 ¥ 0.2 – 
1

500 30 10 6¥ ¥ -  = R

\ R = 100 – 66.6 = 33.4

The quality factor is Q = 
w L

R
=

¥500 0 2

33 4

.

.
 = 2.99
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Problem 8.10 In the circuit shown in Fig. 8.61, an inductance of 0.1 H having
a Q of 5 is in parallel with a capacitor. Determine the value of capacitance and
coil resistance at resonant frequency of 500 rad/sec.

Solution The quality factor Q = 
w r L

R

Since L = 0.1 H, Q = 5 and

wr = 500 rad/sec

Q = 
500 0 1¥ .

R

\  R = 
500 0 1

5

¥ .
 = 10 W

Since w2
r = 

1

LC

(500)2 = 
1

0 1. ¥ C

\ The capacitance value C = 
1

0 1 500 2. ( )¥
 = 40 mF

Problem 8.11 A series RLC circuit consists of a 50 W resistance, 0.2 H
inductance and 10 mF capacitor with an applied voltage of 20 V. Determine the
resonant frequency. Find the Q factor of the circuit. Compute the lower and upper
frequency limits and also find the bandwidth of the circuit.

Solution Resonant frequency

fr = 
1

2

1

2 0 2 10 10 6p pLC
=

¥ ¥ -.
 = 112.5 Hz

Quality factor Q = 
w pL

R
=

¥ ¥2 112 5 0 2

50

. .
 = 2.83

Lower frequency limit

f1 = fr – 
R

L4p
 = 112.5 – 

50

4 0 2¥ ¥p .
 = 92.6 Hz

Upper frequency limit

f2 = fr + 
R

L4p
 = 112.5 + 

50

4 0 2p ¥ .
 = 112.5 + 19.89 = 132.39 Hz

Bandwidth of the circuit

BW = f2 – f1 = 132.39 – 92.6 = 39.79 Hz

Fig. 8.61
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Practice Problems

8.1  For the circuit shown in Fig. 8.62, determine the frequency at which the
circuit resonates. Also find the voltage across the capacitor at resonance,
and the Q factor of the circuit.

Fig. 8.62

8.2 A series RLC circuit has a quality factor of 10 at 200 rad/sec. The current
flowing through the circuit at resonance is 0.5 A and the supply voltage is
10 V. The total impedance of the circuit is 40 W. Find the circuit constants.

8.3 The impedance Z1 = (5 + j3) W and Z2 = (10 – j30) W are connected in
parallel as shown in Fig. 8.63. Find the value of X3 which will produce
resonance at the terminals a and b.

R – jX3 3

(5 + 3)j W (10 30)- j W

a

b

Fig. 8.63

8.4 A RLC series circuit is to be chosen to produce a magnification of 10 at
100 rad/sec. The source can supply a maximum current of 10 A and the
supply voltage is 100 V. The power frequency impedance of the circuit
should not be more than 14.14 W. Find the values of R, L and C.

8.5 A voltage v (t) = 50 sin w t is applied to a series RLC circuit. At the
resonant frequency of the circuit, the maximum voltage across the
capacitor is found to be 400 V. The bandwidth is known to be 500 rad/
sec and the impedance at resonance is 100 W. Find the resonant
frequency, and compute the upper and lower limits of the bandwidth.
Determine the values of L and C of the circuit.

8.6 A current source is applied to the parallel arrangement of R, L and C where
R = 12 W, L = 2 H and C = 3 mF. Compute the resonant frequency in
rad/sec. Find the quality factor. Calculate the value of bandwidth.Compute
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the lower and upper frequency of the bandwidth. Compute the voltage
appearing across the parallel elements when the input signal is i(t) = 10
sin 1800 t.

8.7 For the circuit shown in Fig. 8.64, determine the value of RC for which the
given circuit resonates.

3 W

j12 W - Wj12.5

Rc

Fig. 8.64

8.8 For the circuit shown in Fig. 8.65, the applied voltage v (t) = 15 sin 1800t.
Determine the resonant frequency. Calculate the quality factor and band-
width. Compute the lower and upper limits of the bandwidth.

Fig. 8.65

8.9 In the circuit shown in Fig. 8.66, the current is at its maximum value with
inductor value L = 0.5 H, and 0.707 times of its maximum value with
L = 0.2 H. Find the value of Q at w = 200 rad/sec and circuit constants.

Fig. 8.66

8.10 The voltage applied to the series RLC circuit is 5 V. The Q of the coil is
25 and the value of the capacitor is 200 PF. The resonant frequency of the
circuit is 200 kHz. Find the value of inductance, the circuit current and the
voltage across the capacitor.
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Objective-type Questions

1. What is the total reactance of a series RLC circuit at resonance?
(a) equal to XL (b) equal to XC

(c) equal to R (d) zero
2. What is the phase angle of a series RLC circuit at resonance?

(a) zero (b) 90°

(c) 45° (d) 30°

3. In a series circuit of L = 15 mH and C = 0.015 mF and R = 80 W, what is
the impedance at the resonant frequency?
(a) (15 mH) w (b) (0.015 F) w
(c) 80 W (d) 1/(w ¥ (0.015))

4. In a series RLC circuit operating below the resonant frequency, the current
(a) I leads VS (b) I lags behind VS

(c) I is in phase with VS

5. In a series RLC circuit, if C is increased, what happens to the resonant
frequency?
(a) It increases (b) It decreases
(c) It remains the same (d) It is zero

6. In a certain series resonant circuit, VC = 150 V, VL = 150 V and VR = 50 V.
What is the value of the source voltage?
(a) zero (b) 50 V
(c) 150 V (d) 200 V

7. A certain series resonant circuit has a bandwidth of 1000 Hz. If the exist-
ing coil is replaced by a coil with a lower Q, what happens to the band-
width?
(a) It increases (b) It decreases
(c) It is zero (d) It remains the same

8. In a parallel resonance circuit, why does the current lag behind the source
voltage at frequencies below resonance?
(a) because the circuit is predominantly resistive
(b) because the circuit is predominantly inductive
(c) because the circuit is predominantly capacitive
(d) none of the above

9. In order to tune a parallel resonant circuit to a lower frequency, the capaci-
tance must
(a) be increased (b) be decreased
(c) be zero (d) remain the same

10. What is the impedance of an ideal parallel resonant circuit without resis-
tance in either branch?
(a) zero (b) inductive
(c) capacitive (d) infinite

11. If the lower cut-off frequency is 2400 Hz and the upper cut-off frequency
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is 2800 Hz, what is the bandwidth?
(a) 400 Hz (b) 2800 Hz
(c) 2400 Hz (d) 5200 Hz

12. What values of L and C should be used in a tank circuit to obtain a reso-
nant frequency of 8 kHz? The bandwidth must be 800 Hz. The winding
resistance of the coil is 10 W.
(a) 2 mH, 1 mF (b) 10 H, 0.2 mF
(c) 1.99 mH, 0.2 mF (d) 1.99 mH, 10 mF



Chapter 9

Coupled Circuits

9.1 INTRODUCTION

Two circuits are said to be ‘coupled’ when energy transfer takes place from one

circuit to the other when one of the circuits is energised. There are many types of

couplings like conductive coupling as shown by the potential divider in

Fig. 9.1(a), inductive or magnetic coupling as shown by a two winding trans-

former in Fig. 9.1(b) or conductive and inductive coupling as shown by an auto

transformer in Fig. 9.1(c). A majority of the electrical circuits in practice are

conductively or electromagnetically coupled. Certain coupled elements are

frequently used in network analysis and synthesis. Transformer, transistor and

electronic pots, etc. are some among these circuits. Each of these elements may

be represented as a two port network as shown in Fig. 9.1(d).

VV

VV11 VV22

1111 2211

11 22

(a)(a)

(d)(d)

(b)(b) (c)(c)

RR11

RRLL

VV
VV

Fig. 9.1



9.2 Network Analysis

9.2 CONDUCTIVITY COUPLED CIRCUIT AND
MUTUAL IMPEDANCE

A conductively coupled circuit which does not involve magnetic coupling is
shown in Fig. 9.2(a).

In the circuit shown the impedance Z12 or Z21 common to loop 1 and loop 2 is
called mutual impedance. It may consists of a pure resistance, a pure inductance,
a pure capacitance or a combination of any of these elements. Mesh analysis,
nodal analysis or Kirchhoff’s laws can be used to solve these type of circuits as
described in Chapter 7.

The general definition of mutual impedance is explained with the help of
Fig. 9.2 (b).

    

Fig. 9.2(a) Fig. 9.2(b)

The network in the box may be of any configuration of circuit elements with
two ports having two pairs of terminals 1-1' and 2-2' available for measurement.
The mutual impedance between port 1 and 2 can be measured at 1-1' or 2-2'. If it
is measured at 2-2'. It can be defined as the voltage developed (V2) at 2–2' per
unit current (I1) at port 1-1'. If the box contains linear bilateral elements, then the
mutual impedance measured at 2-2' is same as the impedance measured at 1-1'
and is defined as the voltage developed (V1) at 1-1' per unit current (I2) at port
2-2¢.

Example 9.1 Find the mutual impedance for the circuit shown in Fig. 9.3.

Solution Mutual impedance is given by

V

I

V

I
2

1

1

2

or

V2 = 
3

2
1

2

1

I
V

I
or  = 1.5 W

or V1 = 5 ¥ I
V

I
2

2

2

3

10
¥ or  = 1.5 W

9.3 MUTUAL INDUCTANCE

The property of inductance of a coil was introduced in Section 1.6. A voltage is
induced in a coil when there is a time rate of change of current through it. The

Fig. 9.3
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inductance parameter L, is defined in terms of the voltage across it and the time

rate of change of current through it v (t) = L
di t

dt

( )
, where v (t ) is the voltage

across the coil, I (t) is the current through the coil and L is the inductance of the
coil. Strictly speaking, this definition is of self-inductance and this is considered
as a circuit element with a pair of terminals. Whereas a circuit element “mutual
inductor” does not exist. Mutual inductance is a property associated with two or
more coils or inductors which are in close proximity and the presence of common
magnetic flux which links the coils. A transformer is such a device whose
operation is based on mutual inductance.

Let us consider two coils, L1 and L2 as shown in Fig. 9.4(a), which are
sufficiently close together, so that the flux produced by i1 in coil L1 also link coil
L2. We assume that the coils do not move with respect to one another, and the
medium in which the flux is established has a constant permeability. The two
coils may be also arranged on a common magnetic core, as shown in Fig. 9.4(b).
The two coils are said to be magnetically coupled, but act as a separate circuits.
It is possible to relate the voltage induced in one coil to the time rate of change of
current in the other coil. When a voltage v1 is applied across L1, a current i1 will
start flowing in this coil, and produce a flux f. This flux also links coil L2. If i1

were to change with respect to time, the flux ‘f ’ would also change with respect
to time. The time-varying flux surrounding the second coil, L2 induces an emf, or
voltage, across the terminals of L2; this voltage is proportional to the time rate of
change of current flowing through the first coil L1. The two coils, or circuits, are
said to be inductively coupled, because of this property they are called coupled
elements or coupled circuits and the induced voltage, or emf is called the voltage/

emf of mutual induction and is given by v2(t) = M
di t

dt
1

1 ( )
 volts, where v2 is the

voltage induced in coil L2 and M1 is the coefficient of proportionality, and is
called the coefficient of mutual inductance, or simple mutual inductance.

Fig. 9.4
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If current i2 is made to pass through coil L2 as shown in Fig. 9.4(c) with coil L1

open, a change of i2 would cause a voltage v1 in coil L1, given by v1(t) =

M
di t

dt
2

2 ( )
.

VV22

ii22

LL11

LL22

ff

VV11

MM

Fig. 9.4(c)

In the above equation, another coefficient of proportionality M2 is involved.
Though it appears that two mutual inductances are involved in determining the
mutually induced voltages in the two coils, it can be shown from energy
considerations that the two coefficients are equal and, therefore, need not be
represented by two different letters. Thus M1 = M2 = M.

\ v2 (t ) = M
di t

dt

1( )
 Volts

v1(t ) = M
di t

dt

2 ( )
 Volts

In general, in a pair of linear time invariant coupled coils or inductors, a non-
zero current in each of the two coils produces a mutual voltage in each coil due to
the flow of current in the other coil. This mutual voltage is present independently
of, and in addition to, the voltage due to self induction. Mutual inductance is also

measured in Henrys and is positive, but the mutually induced voltage, M
di

dt
 may

be either positive or negative, depending on the physical construction of the coil
and reference directions. To determine the polarity of the mutually induced
voltage (i.e. the sign to be used for the mutual inductance), the dot convention is
used.

9.4 DOT CONVENTION

Dot convention is used to establish the choice of correct sign for the mutually
induced voltages in coupled circuits.

Circular dot marks and/or special symbols are placed at one end of each of
two coils which are mutually coupled to simplify the diagrammatic representation
of the windings around its core.
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Fig. 9.5

Let us consider Fig. 9.5, which shows
a pair of linear, time invariant, coupled
inductors with self inductances L1 and L2

and a mutual inductance M. If these
inductions form a portion of a network,
currents i1 and i2 are shown, each
arbitrarily assumed entering at the dotted
terminals, and voltages v1 and v2 are
developed across the inductors. The
voltage across L1 is, thus composed of two
parts and is given by

v1(t) = L
di t

dt
M

di t

dt
1

1 2( ) ( )
±

The first term on the RHS of the above equation is the self induced voltage due
to i1, and the second term represents the mutually induced voltage due to i2.

Similarly, v2 (t ) = L
di t

dt
M

di t

dt
2

2 1( ) ( )
±

Although the self-induced voltages are designated with positive sign, mutually
induced voltages can be either positive or negative depending on the direction of
the winding of the coil and can be decided by the presence of the dots placed at
one end of each of the two coils. The convention is as follows.

If two terminals belonging to different coils in a coupled circuit are marked
identically with dots then for the same direction of current relative to like
terminals, the magnetic flux of self and mutual induction in each coil add
together. The physical basis of the dot convention can be verified by examining
Fig. 9.6. Two coils ab and cd are shown wound on a common iron core.

aa cc

dd

ff

ff

++

–– ––

++

XX YY

ii11
ii22LL22LL11

bb

Fig. 9.6

It is evident from Fig.9.6 that the direction of the winding of the coil ab is
clock-wise around the core as viewed at X, and that of cd is anti-clockwise as
viewed at Y. Let the direction of current i1 in the first coil be from a to b, and
increasing with time. The flux produced by i1 in the core has a direction which
may be found by right hand rule, and which is downwards in the left limb of the
core. The flux also increases with time in the direction shown at X. Now suppose
that the current i2 in the second coil is from c to d, and increasing with time. The
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The other possible location of the dots is the other ends of the coil to get
additive fluxes in the core, i.e. at b and d. It can be concluded that the mutually
induced voltage is positive when currents i1 and i2 both enter (or leave) the
windings by the dotted terminals. If the current in one winding enters at the dot-
marked terminals and the current in the other winding leaves at the dot-marked
terminal, the voltages due to self and mutual induction in any coil have opposite
signs.

Example 9.2 Using dot convention, write voltage equations for the coils shown

in Fig. 9.8.

Fig. 9.8

Solution Since the currents are entering at the dot marked terminals the

mutually induced voltages or the sign of the mutual inductance is positive; using

the sign convention for the self inductance, the equations for the voltages are

v1 = L
di

dt
M

di

dt
1

1 2+

v2 = L
di

dt
M

di

dt
2

2 1+

Example 9.3 Write the equation for voltage v0 for the circuits shown in Fig. 9.9.

Solution v0 is assumed positive with respect to terminal C and the equation is

given by

application of the right hand rule indicates
that the flux produced by i2 in the core has an
upward direction in the right limb of the core.
The flux also increases with time in the
direction shown at Y. The assumed currents
i1 and i2 produce flux in the core that are
additive. The terminals a and c of the two
coils attain similar polarities simultaneously.
The two simultaneously positive terminals
are identified by two dots by the side of the
terminals as shown in Fig. 9.7.

MM

ccaa

ddbb

LL22LL11

ii11 ii22++ ++
ff

Fig. 9.7
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(a) v0 = M
d i

dt
(b) v0 = -M

d i

dt

(c) v0 = -M
d i

dt
(d) v0 = M

d i

dt

9.5 COEFFICIENT OF COUPLING

The amount of coupling between the inductively coupled coils is expressed in

terms of the coefficient of coupling, which is defined as K = M/ L L1 2

where M = mutual inductance between the coils
L1 = self inductance of the first coil, and
L2 = self inductance of the second coil

Coefficient of coupling is always less than unity, and has a maximum value of 1
(or 100%). This case, for which K = 1, is called perfect coupling, when the entire
flux of one coil links the other. The greater the coefficient of coupling between
the two coils, the greater the mutual inductance between them, and vice-versa. It
can be expressed as the fraction of the magnetic flux produced by the current in
one coil that links the other coil.

For a pair of mutually coupled circuits shown in Fig. 9.10, let us assume
initially that i1, i2 are zero at t = 0.

Fig. 9.9
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then v1(t) = L
di t

dt
M

di t

dt
1

1 2( ) ( )
+

and v2(t) = L
di t

dt
M

di t

dt
2

2 1( ) ( )
+

Initial energy in the coupled circuit at t = 0 is also zero. The net energy input
to the system shown in Fig. 9.10 at time t is given by

W (t ) = 
0

t

z [v1(t) i1(t) + v2(t) i2(t)] dt

Substituting the values of v1(t) and v2(t) in the above equation yields

W (t) = 
0

1 1
1

2 2
2

t

L i t
di t

dt
L i t

di t

dt
z +

L
NM

( )
( )

( )
( )

+ M i t
di t

dt
i t

di t

dt
( ( ))

( )
( )

( )
1

2
2

1+
O
QP

 dt

From which we get

W (t) = 
1

2
 L1[i1(t)]2 + 

1

2
 L2[i2(t)]2 + M [i1(t)i2(t)]

If one current enters a dot-marked terminal while the other leaves a dot marked
terminal, the above equation becomes

W (t ) = 
1

2
 L1[i1(t)]2 + 

1

2
 L2[i2(t)]2 – M[i1(t)i2(t)]

According to the definition of passivity, the net electrical energy input to the
system is non-negative. W (t) represents the energy stored within a passive net-
work, it cannot be negative.

\ W (t) ≥ 0 for all values of i1, i2; L1, L2 or M

The statement can be proved in the following way. If i1 and i2 are both positive
or negative, W(t) is positive. The other condition where the energy equation could
be negative is

Fig. 9.10
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W (t) = 
1

2
 L1[i1(t)]2 + 

1

2
 L2 [i2 (t)]2 – M [i1(t) i2(t)]

The above equation can be rearranged as

W (t) = 
1

2

1

2
1 1

1
2

2

2

2

1
2
2L i

M

L
i L

M

L
i-

F
HG

I
KJ

+ -
F
HG

I
KJ

The first term in the parenthesis of the right side of the above equation is
positive for all values of i1 and i2, and, thus, the last term cannot be negative;
hence

L2 – 
M

L

2

1

≥  0

L L M

L

1 2
2

1

-
≥  0

L1L2 – M 2 ≥ 0

L L1 2 ≥  M

M £ L L1 2

Obviously the maximum value of the mutual inductance is L L1 2 . Thus, we

define the coefficient of coupling for the coupled circuit as

K = 
M

L L1 2

The coefficient, K, is a non negative number and is independent of the
reference directions of the currents in the coils. If the two coils are a great
distance apart in space, the mutual inductance is very small, and K is also very
small. For iron-core coupled circuits, the value of K may be as high as 0.99, for
air-core coupled circuits, K varies between 0.4 to 0.8.

Example 9.4 Two inductively coupled coils have self inductances L1 = 50 mH

and L2 = 200 mH. If the coefficient of coupling is 0.5 (i), find the value of mutual

inductance between the coils, and (ii) what is the maximum possible mutual

inductance?

Solution (i) M = K L L1 2

= 0.5 50 10 200 103 3¥ ¥ ¥- -  = 50 ¥ 10–3 H

(ii) Maximum value of the inductance when K = 1,

M = L L1 2  = 100 mH
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9.6 IDEAL TRANSFORMER

Transfer of energy from one circuit to another circuit through mutual induction is
widely utilised in power systems. This purpose is served by transformers. Most
often, they transform energy at one voltage (or current) into energy at some other
voltage (or current).

A transformer is a static piece of apparatus, having two or more windings or
coils arranged on a common magnetic core. The transformer winding to which
the supply source is connected is called the primary, while the winding connected
to load is called the secondary. Accordingly, the voltage across the primary is
called the primary voltage, and that across the secondary, the secondary voltage.
Correspondingly i1 and i2 are the currents in the primary and secondary windings.
One such transformer is shown in Fig. 9.11(a). In circuit diagrams, ideal
transformers are represented by Fig. 9.11(b). The vertical lines between the coils
represent the iron core; the currents are assumed such that the mutual inductance
is positive. An ideal transformer is characterised by assuming (i) zero power
dissipation in the primary and secondary windings, i.e. resistances in the coils
are assumed to be zero, (ii) the self inductances of the primary and secondary are
extremely large in comparison with the load impedance, and (iii) the coefficient
of coupling is equal to unity, i.e. the coils are tightly coupled without having any
leakage flux. If the flux produced by the current flowing in a coil links all the
turns, the self inductance of either the primary or secondary coil is proportional
to the square of the number of turns of the coil. This can be verified from the
following results.

Fig. 9.11

The magnitude of the self induced emf is given by

v = L
di

dt

If the flux linkages of the coil with N turns and current are known, then the self
induced emf can be expressed as

v = N
d

dt

f
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L
di

dt
= N

d

dt

f

L = N
d

di

f

But f = 
Ni

reluctance

\ L = N
d

di

Ni

reluctance
F
H

I
K

L = 
N 2

reluctance
LaN

2

From the above relation it follows that

L

L

2

1

= 
N

N

2
2

1
2

 = a2

where a = N2/N1 is called the turns ratio of the transformer. The turns ratio, a,
can also be expressed in terms of primary and secondary voltages. If the magnetic
permeability of the core is infinitely large then the flux would be confined to the
core. If f is the flux through a single turn coil on the core and N1, N2 are the
number of turns of the primary and secondary, respectively, then the total flux
through windings 1 and 2, respectively, are

f1 = N1 f ; f2 = N2 f

Also we have v1 = 
d

dt

f1 , and v2 = 
d

dt

f 2

so that
v

v

2

1

= 

N
d

dt

N
d

dt

N

N

2

1

2

1

f

f
=

Figure 9.12 shows an ideal transformer to
which the secondary is connected to a load

impedance ZL. The turns ratio 
N

N

2

1

 = a.

The ideal transformer is a very useful
model for circuit calculations, because with
few additional elements like R, L and C, the
actual behaviour of the physical transformer
can be accurately represented. Let us
analyse this transformer with sinusoidal Fig. 9.12

MM

ii11

k =k = 11

ii22

++++

––

vv11 vv22ZZLLLL22LL11
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excitations. When the excitations are sinusoidal voltages or currents, the steady
state response will also be sinusoidal. We can use phasors for representing these
voltages and currents. The input impedance of the transformer can be determined
by writing mesh equations for the circuit shown in Fig. 9.12.

V1 = jwL1I1 – jwMI2 (9.1)

0 = – jwMI1 + (ZL + jwL2)I2 (9.2)

where V1, V2 are the voltage phasors, and I1, I2 are the current phasors in the two
windings. jw L1 and jwL2 are the impedances of the self inductances and jw M is
the impedance of the mutual inductance, w is the angular frequency.

from Eq. 9.2 I2 = 
j M I

Z j LL

w

w
1

2( )+

Substituting in Eq. 9.1, we have

V1 = I1 jwL1 + 
I M

Z j LL

1
2 2

2

w

w+

The input impedance  Zin = 
V

I

1

1

\ Zin = jwL1 + 
w

w

2 2

2

M

Z j LL( )+

When the coefficient of coupling is assumed to be equal to unity,

M = L L1 2

\ Zin = jwL1 + 
w

w

2
1 2

2

L L

Z j LL( )+

We have already established that 
L

L

2

1

 = a2

where a is the turns ratio N2/N1

\ Zin = jwL1 + 
w

w

2
1
2 2

2

L a

Z j LL( )+

Further simplication leads to

Zin = 
( )

( )

Z j L j L L a

Z j L

L

L

+ +

+

w w w

w
2 1

2
1
2 2

2

Zin = 
j L Z

Z j L

L

L

w

w
1

2( )+

As L2 is assumed to be infinitely large compared to ZL

Zin = 
j L Z

j a L

Z

a

N

N
ZL L

L

w

w
1
2

1
2

1

2

2

= =
F
HG

I
KJ
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The above result has an interesting interpretation, that is the ideal transformers
change the impedance of a load, and can be used to match circuits with different

impedances in order to achieve maximum
power transfer. For example, the input
impedance of a loudspeaker is usually
very small, say 3 to 12 W, for connecting
directly to an amplifier. The transformer
with proper turns ratio can be placed
between the output of the amplifier and
the input of the loudspeaker to match the
impedances as shown in Fig. 9.13.

Fig. 9.13

Example 9.5 An ideal transformer has N1 = 10 turns, and N2 = 100 turns. What

is the value of the impedance referred to as the primary, if a 1000 W resistor is

placed across the secondary?

Solution The turns ratio a = 
100

10
 = 10

Zin = 
Z

a

L

2

1000

100
=  = 10 W

The primary and secondary currents can also be expressed in terms of turns

ratio. From Eq. 9.2, we have

I1 jwM = I2 (ZL + jw L2)

I

I
1

2

= 
Z j L

j M
L + w

w
2

When L2 is very large compared to ZL,

I

I
1

2

= 
j L

j M

L

M

w

w
2 2=

Substituting the value of M = L L1 2  in the above equation 
I

I

L

M
1

2

2=

I

I
1

2

= 
L

L L

L

L
2

1 2

2

1

=

I

I
1

2

= 
L

L
a

N

N
2

1

2

1

= =

Example 9.6 An amplifier with an output impedance of 1936 W is to feed a

loudspeaker with an impedance of 4 W.

(a) Calculate the desired turns ratio for an ideal transformer to connect the

two systems.

(b) An rms current of 20 mA at 500 Hz is flowing in the primary. Calculate the

rms value of current in the secondary at 500 Hz.

(c) What is the power delivered to the load?
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Solution (a) To have maximum power transfer the output impedance of the

amplifier = 
Load impedance

a2

\ 1936 = 
4
2a

\ a = 
4

1936

1

22
=

or
N

N
2

1

= 
1

22

(b) I1 = 20 mA

We have 
I

I
1

2

 = a

RMS value of the current in the secondary winding

= 
I

a
1

3
20 10

1 22
=

¥ -

/
 = 0.44 A

(c) The power delivered to the load (speaker)

= (0.44)2 ¥ 4 = 0.774 W

The impedance changing properties of an ideal transformer may be utilised to
simplify circuits. Using this property, we can transfer all the parameters of the
primary side of the transformer to the secondary side, and vice-versa. Consider
the coupled circuit shown in Fig. 9.14(a).

Fig. 9.14

To transfer the secondary side load and voltage to the primary side, the
secondary voltage is to be divided by the ratio, a, and the load impedance is to be
divided by a2. The simplified equivalent circuits is shown in Fig. 9.14(b).

Example 9.7 For the circuit shown in Fig. 9.15 with turns ratio, a = 5, draw the

equivalent circuit referring (a) to primary and (b) secondary. Take source

resistance as 10 W.
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1010 WW 1: 51: 5

10001000 WWVVss

100 V100 V
rrmsms

VV11 VV22

II11 II11

++

++ ++

Fig. 9.15

Solution (a) Equivalent circuit referred to primary is as shown in Fig. 9.16(a).

VVss

100 V100 V

II11

1010 WW 4040 WW 1 : 11 : 1

VV = 80 V= 80 V11

vv VV¢¢11 = a= a 11

== 400 V400 V

VV == 400 V400 V22

Fig. 9.16(a)

(b) Equivalent circuit referred to secondary is as shown in Fig. 9.16(b)

II22

II == 0.4 A0.4 A22 VV == 400 V400 V22

250250 WW

10001000 WW

1 : 11 : 1

500 V500 V

VV22

Fig. 9.16(b)

9.7 ANALYSIS OF MULTI-WINDING
COUPLED CIRCUITS

Inductively coupled multi-mesh circuits can be analysed using Kirchhoff’s laws
and by loop current methods. Consider Fig. 9.17, where three coils are
inductively coupled. For such a system of inductors we can define a inductance
matrix L as
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L = 

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P

where L11, L22 and L33 are self inductances of the coupled circuits, and L12 = L21;
L23 = L32 and L13 = L31 are mutual inductances. More precisely, L12 is the mutual
inductance between coils 1 and 2, L13 is the mutual inductance between coils 1
and 3, and L23 is the mutual inductance between coils 2 and 3. The inductance
matrix has its order equal to the number of inductors and is symmetric. In terms
of voltages across the coils, we have a voltage vector related to i by

Fig. 9.17

[v] = L
di

dt

L
NM

O
QP

where v and i are the vectors of the branch voltages and currents, respectively.
Thus, the branch volt-ampere relationships of the three inductors are given by

v

v

v

1

2

3

L

N

M
M
M

O

Q

P
P
P

= 

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P
 

di dt

di dt

di dt

1

2

3

/

/

/

L

N

M
M
M

O

Q

P
P
P

Using KVL and KCL, the effective inductances can be calculated. The polarity
for the inductances can be determined by using passivity criteria, whereas the
signs of the mutual inductances can be determined by using the dot convention.

Example 9.8 For the circuit shown in Fig. 9.18, write the inductance matrix.
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Solution Let L1, L2 and L3 be the self inductances, and L12 = L21, L23 = L32 and

L13 = L31 be the mutual inductances between coils, 1, 2, 2, 3 and 1, 3,

respectively.

L12 = L21 is positive, as both the currents are entering at dot marked terminals,

whereas L13 = L31 and L23 = L32 are negative.

\ The inductance matrix is L = 
L L L
L L L

L L L

1 12 13

21 2 23

31 32 3

-
-

- -

L

N

M
M

O

Q

P
P

Fig. 9.18

9.8 SERIES CONNECTION OF COUPLED INDUCTORS

Let there be two inductors connected in series, with self inductances L1 and L2

and mutual inductance of M. Two kinds of series connections are possible; series
aiding as in Fig. 9.19(a), and series opposition as in Fig. 9.19(b).

Fig. 9.19

In the case of series aiding connection, the currents in both inductors at any
instant of time are in the same direction relative to like terminals as shown in
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Fig. 9.19(a). For this reason, the magnetic fluxes of self induction and of mutual
induction linking with each element add together.

In the case of series opposition connection, the currents in the two inductors at
any instant of time are in opposite direction relative to like terminals as shown in
Fig. 9.19(b). The inductance of an element is given by L = f /i, where f is the flux
produced by the inductor.

\ f = Li

For the series aiding circuit, if f1 and f2 are the flux produced by the coils 1 and
2, respectively, then the total flux

f = f1 + f2

where f1 = L1i1 + Mi2

f2 = L2i2 + Mi1

\ f = Li = L1i1 + Mi2 + L2i2 + Mi1
Since i1 = i2 = i

L = L1 + L2 + 2M

Similarly, for the series opposition

f = f1 + f2

where f1 = L1i1 – Mi2

f2 = L2i2 – Mi1

f = Li = L1i1 – Mi2 + L2i2 – Mi1
Since i1 = i2 = i

L = L1 + L2 – 2M

In general, the inductance of two inductively coupled elements in series is
given by L = L1 + L2 ± 2M.

Positive sign is applied to the series aiding connection, and negative sign to
the series opposition connection.

Example 9.9 Two coils connected in series have an equivalent inductance of

0.4 H when connected in aiding, and an equivalent inductance 0.2 H when the

connection is opposing. Calculate the mutual inductance of the coils.

Solution When the coils are arranged in aiding connection, the inductance of

the combination is L1 + L2 + 2M = 0.4; and for opposing connection, it is L1 + L2 –

2M = 0.2. Solving the two equations, we get

4M = 0.2 H

M = 0.05 H

9.9 PARALLEL CONNECTION OF COUPLED COILS

Consider two inductors with self inductances L1 and L2 connected parallel which
are mutually coupled with mutual inductance M as shown in Fig. 9.20.
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Fig. 9.20

Let us consider Fig. 9.20(a) where the self induced emf in each coil assists the
mutually induced emf as shown by the dot convention.

i = i1 + i2

di

dt
= 

di

dt

di

dt

1 2+ (9.3)

The voltage across the parallel branch is given by

v = L1 
di

dt
M

di

dt

1 2+  or L
di

dt
M

di

dt
2

2 1+

also L
di

dt
M

di

dt
L

di

dt
M

di

dt
1

1 2
2

2 1+ = +

di

dt

1  (L1 – M ) = 
di

dt

2  (L2 – M )

\
di

dt

1  = 
di

dt

L M

L M

2 2

1

( )

( )

-

-
(9.4)

Substituting Eq. 9.4 in Eq. 9.3, we get

di

dt
= 

di

dt

L M

L M

di

dt

di

dt

L M

L M

2 2

1

2 2 2

1

1
( )

( )

( )-

-
+ =

-

-
+

L

NM
O

QP
(9.5)

If Leq is the equivalent inductance of the parallel circuit in Fig. 9.20 (a) then v
is given by

v = L
di

dt
eq

L
di

dt
eq = L

di

dt
M

di

dt
1

1 2+

di

dt
= 

1 1 2

L
L

di

dt
M

di

dteq
1 +

L
NM

O
QP



9.20 Network Analysis

Substituting Eq. 9.4 in the above equation we get

di

dt
= 

1 2 2

2

2

L
L

di L M

dt L M
M

di

dteq
1

( )

( )

-

-
+

L

N
M

O

Q
P

= 
1 2

1

2

L
L

L M

L M
M

di

dteq
1

( )

( )

-

-
+

L

N
M

O

Q
P (9.6)

Equating Eq. 9.6 and Eq. 9.5, we get

L M

L M

2

2

1
-

-
+ = 

1
1

2

1L
L

L M

L M
M

eq

-

-

F

HG
I

KJ
+

L

N
M
M

O

Q
P
P

Rearranging and simplifying the above equation results in

Leq = 
L L M

L L M

1 2
2

1 2 2

-

+ -

If the voltage induced due to mutual inductance oppose the self induced emf in
each coil as shown by the dot convention in Fig. 9.20(b), the equivalent
inductance is given by

Leq = 
L L M

L L M

1 2
2

1 2 2

-

+ +

9.10 TUNED CIRCUITS

Tuned circuits are, in general, single tuned and double tuned. Double tuned
circuits are used in radio receivers to produce uniform response to modulated
signals over a specified bandwidth; double tuned circuits are very useful in
communication system.

9.10.1 Single Tuned Circuit

Consider the circuit in Fig. 9.21. A tank circuit (i.e. a parallel resonant circuit)
on the secondary side is inductively coupled to coil (1) which is excited by a
source, vi. Let Rs be the source resistance and R1, R2 be the resistances of coils, 1
and 2, respectively. Also let L1, L2 be the self inductances of the coils, 1 and 2,
respectively.

Let Rs + R1 + jw L1 = Rs

with the assumption that Rs >> R1 >> jw L1

The mesh equations for the circuit shown
in Fig. 9.21 are

i1Rs – jwMi2 = vi

– jwMi1 + R j L
j

C
2 2+ -

F
HG

I
KJ

w
w

 i2 = 0

RR11

RRss

LL11 LL22

11 22

++

––

vvii

MM

ii11 ii22
++

–

vv22

RR22

Fig. 9.21
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i2 = 
R

j M

R j M

j M R j L
j

C

s i
s

v

-

-

- + -
F
HG

I
KJw

w

w w
w

0 2 2

( )

( )

or i2 = 
j M

R R j L
j

C
M

i

s

v w

w
w

w2 2
2 2+ -

F
HG

I
KJ

+

The output voltage vo = i
j C

2
1

◊
w

vo = 
j M

j C R R j L
C

M

i

s

v w

w w
w

w2 2
2 21

+ -
F
HG

I
KJ

L
NM

O
QP

+
R
S
T

U
V
W

The voltage transfer function, or voltage amplification, is given by

v

v

o

i

= A = 
M

C R R j L
C

Ms 2 2
2 21

+ -
F
HG

I
KJ

L
NM

O
QP

+
R
S
T

U
V
W

w
w

w

When the secondary side is tuned, i.e. when the value of the frequency w is such
that wL2 = 1/w C, or at resonance frequency wr, the amplification is given by

A = 
v

v

o

i

 = 
M

C R R Ms r2
2 2+ w

the current i2 at resonance i2 = 
j M

R R M

i r

s r

v w

w2
2 2+

Thus, it can be observed that the output voltage, current and amplification
depends on the mutual inductance M at resonance frequency, when M =

K L L1 2 . The maximum output voltage or the maximum amplification depends

on M. To get the condition for maximum output voltage, make dvo /dM = 0.

d

d M

ov = 
d

d M

M

C R R M

i

s r

v

2
2 2+

L

N
M

O

Q
P

w

= 1 – 2M 2 w2
r [RsR2 + w2

r M2]–1 = 0

From which, Rs R2 = w 2
r M

2

or M = 
R Rs

r

2

w

From the above value of M, we can calculate the maximum output voltage.
Thus

voM = 
vi

r sC R R2 2w
,
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or the maximum amplification is given by

Am = 
1

2 2w r sC R R
 and i2 = 

j

R R

i

s

v

2 2

The variation of the amplification factor or output voltage with the coefficient
of coupling is shown in Fig. 9.22.

Fig. 9.22

Example 9.10 Consider the single tuned circuit shown in Fig. 9.23 and

determine (i) the resonant frequency (ii) the output voltage at resonance (iii) and

the maximum output voltage. Assume Rs >> w r L1, and K = 0.9.

11 HHmm 100100 HHmm
0.10.1 FFmm

LL11 LL22

1010 WW 1010 WW

15 V15 V

MM

vv00

Fig. 9.23

Solution M = K L L1 2

= 0 9 1 10 100 106 6◊ ¥ ¥ ¥- -

= 9 mH

(i) Resonance frequency

wr = 
1 1

100 10 0 1 102
6 6L C

=
¥ ¥ ¥- -.
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= 
10

10

6

 rad/sec.

or fr = 50.292 kHz

The value of wr L1 = 
10

10

6

1 ¥ 10–6 = 0.316

Thus the assumption that w r  L1 << R1 is justified.

(ii) Output voltage

vo = 
M

C R R M

i

s r

v

2
2+ w

= 
9 10 15

0 1 10 10 10
10

10
9 10

6

6
6 2

6

¥ ¥

¥ ¥ +
F
HG

I
KJ

¥ ¥
L

N
M
M

O

Q
P
P

-

- -.

= 1.5 mV

(iii) Maximum value of output voltage

voM = 
vi

r sC R R2 2w

= 
15

2
10

10
0 1 10 100

6
6

¥ ¥ ¥ -.

voM = 23.7 V

9.10.2 DOUBLE TUNED COUPLED CIRCUITS

Figure 9.24 shows a double tuned transformer circuit involving two series
resonant circuits.

Fig. 9.24

For the circuit shown in the figure, a special case where the primary and
secondary resonate at the same frequency wr, is considered here,
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i.e w2
r = 

1 1

1 1 2 2L C L C
=

The two mesh equations for the circuit are

vin = i R R j L
j

C
s1 1 1

1

+ + -
F
HG

I
KJ

w
w

 – i2 jwM

0 = – jw Mi1 + i2 R j L
j

C
2 2

2

+ -
F
HG

I
KJ

w
w

From which

i2 = 
vin j M

R R j L
C

R j L
C

Ms

w

w
w

w
w

w( )+ + -
F
HG

I
KJ

L

NM
O

QP
+ -

F
HG

I
KJ

L

NM
O

QP
+1 1

1
2 2

2

2 21 1

also wr = 
1 1

1 1 2 2L C L C
=  at resonance

vo = 
vin M

C R R R Ms r2 1 2
2 2( )+ + w

or vo = Avin

where A is the amplification factor given by

A = 
M

C R R R Ms r2 1 2
2 2( )+ + w

The maximum amplification or the maximum output voltage can be obtained
by taking the first derivative of vo with respect to M, and equating it to zero.

\
d

d M

ov = 0, or
d A

d M
 = 0

d A

d M
= (R1 + Rs)R2 + w2

r M
2 – 2M 2w2

r = 0

w2
r M

2 = R2(R1 + Rs)

Mc = 
R R Rs

r

2 1( )+

w

where Mc is the critical value of mutual inductance. Substituting the value of Mc

in the equation of vo, we obtain the maximum output voltage as

|vo| = 
v vin in

22 2
2 2 2 1w wr c r sC M C R R R

=
+( )

and | i2| = 
v vin in

2 2 2 1w r c sM R R R
=

+( )
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By definition, M = K L L1 2 , the coefficient of coupling, K at M = Mc is called

the critical coefficient of coupling, and is given by Kc = Mc / L L2 1 .

The critical coupling causes the secondary current to have the maximum
possible value. At resonance, the maximum value of amplification is obtained by
changing M, or by changing the coupling coefficient for a given value of L1 and
L2. The variation of output voltage with frequency for different coupling
coefficients is shown in Fig. 9.25.

kk11

KK KK>>22 11

KK KK<<33 11

kk33

kk22

KK = K= K criticalcritical11

vvoo

Fig. 9.25

9.11 ANALYSIS OF MAGNETIC CIRCUITS

The presence of charges in space or in a medium creates an electric field,
similarly the flow of current in a conductor sets up a magnetic field. Electric field
is represented by electric flux lines, magnetic flux lines are used to describe the
magnetic field. The path of the magnetic flux lines is called the magnetic circuit.
Just as a flow of current in the electric circuit requires the presence of an
electromotive force, so the production of magnetic flux requires the presence of
magneto-motive force (mmf). We now discuss some properties related to
magnetic flux.

(i) Flux density (B)

The magnetic flux lines start and end in such a way that they form closed loops.
Weber (Wb) is the unit of magnetic flux (f). Flux density (B) is the flux per unit
area. Tesla (T) or Wb/m2 is the unit of flux density.

B = 
F

A
 Wb/m2 or Tesla

where B is a quantity called magnetic flux density in teslas, f is the total flux in
webers and A is the area perpendicular to the lines in m2.

(ii) Magneto-motive force MMF ( ¡¡¡¡¡)

A measure of the ability of a coil to produce a flux is called the magneto-motive

force. It may be considered as a magnetic pressure, just as emf is considered as
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an electric pressure. A coil with N turns which is carrying a current of I amperes
constitutes a magnetic circuit and produces an mmf of NI ampere turns. The
source of flux (f) in the magnetic circuit is the mmf. The flux produced in the
circuit depends on mmf and the length of the circuit.

(iii) Magnetic field strength (H)

The magnetic field strength of a circuit is given by the mmf per unit length.

H = 
¡

=
l

NI

l
 AT/m

The magnetic flux density (B) and its intensity (field strength) in a medium can
be related by the following equation

B = m H

where m = m0 mr is the permeability of the medium in Henrys/metre (H/m),

m0 = absolute permeability of free space and is equal to 4p ¥ 10–7 H/m

and mr = relative permeability of the medium.

Relative permeability is a non-dimensional numeric which indicates the
degree to which the medium is a better conductor of magnetic flux as compared
to free space. The value of mr = 1 for air and non-magnetic materials. It varies
from 1,000 to 10,000 for some types of ferro-magnetic materials.

(iv) Reluctance (¬)

It is the property of the medium which opposes the passage of magnetic flux. The
magnetic reluctance is analogous to resistance in the electric circuit. Its unit is
AT/Wb. Air has a much higher reluctance than does iron or steel. For this reason,
magnetic circuits used in electrical machines are designed with very small air
gaps.

According to definition, reluctance = 
mmf

flux

The reciprocal of reluctance is known as permeance 
1

¬
=

¡

f

Thus reluctance is a measure of the opposition offered by a magnetic circuit to
the setting up of the flux. The reluctance of the magnetic circuit is given by ¬ =

1

m

l

a
.

where I is the length, a is the cross-sectional area of the magnetic circuit and m is
the permeability of the medium.

From the above equations

1

m
◊

l

a
= 

¡

f

or
¡

1
= 

1

m

f
◊

a
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NI

l
 = 

1

m
◊ B

H = 
1

m
◊ B

or B = m H

9.12 SERIES MAGNETIC CIRCUIT

A series magnetic circuit is analogous to a series electric circuit. Kirchhoff’s
laws are applicable to magnetic circuits also. Consider a ring specimen having a
magnetic path of l meters, area of cross-section (A)m2 with a mean radius of R
meters having a coil of N turns carrying I amperes wound uniformly as shown in
Fig. 9.26. MMF is responsible for the establishment of flux in the magnetic
medium. This mmf acts along the magnetic lines of force. The flux produced by
the circuit is given by

f = 
MMF

Reluctance

II

II

RR

NN turturnnss

Fig. 9.26

The magnetic field intensity of the ring is given by H = 
mmf

l

NI

l
=  = AT/m

Where l is the mean length of the magnetic path and is given by 2pR.

Flux density B = mo mr H = mo mr 
NI

l
 Wb/m2

Flux f = mHA Webers

= m0 mr 
NI

l
 ¥ A Wb

f = 
NI

l Ar/m m0

 Wb

NI is the mmf of the magnetic circuit, which is analogous to emf in electric circuit.
l/m0 mr A is the reluctance of the magnetic circuit which is analogous to resistance
in electric circuit.
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9.13 COMPARISON OF ELECTRIC AND
MAGNETIC CIRCUITS

A series electric and magnetic circuits are shown in Figs. 9.27(a) and (b)
respectively.

VV22

RR22

RR11 EEII

(a)(a) (b)(b)

NN

RR33

VV33 11 22

33

ff

VV11

Fig. 9.27

Figure 9.27(a) represents an electric circuit with three resistances connected
in series, the dc source E drives the current I through all the three resistances
whose voltage drops are V1, V2 and V3. Hence, E = V1 + V2 + V3, also E = I (R1 +

R2 + R3). We also know that R = 
rl

a
, where r is the specific resistance of the

material, l is the length of the wire of the resistive material and a is the area of
cross-section of the wire.

The drop across each resistor V = RI = rl
I

a

or
V

l

I

a
= r

Voltage drop per unit length = specific resistance ¥ current density.
Let us consider the magnetic circuit in Fig. 9.27(b). The MMF of the circuit is

given by ¡ = NI, drives the flux f around the three parts of the circuit which are

in series. Each part has a reluctance ¬ = 
1

m
◊

l

a
, where l is the length and a is the

area of cross-section of each arm. The mmf of the magnetic circuit is given by
¡ = ¡1 + ¡2 + ¡3. ¡ = f (¬1 + ¬2 + ¬3) where ¬1 ¬2 and ¬3 are the reluctances
of the portion 1, 2 and 3 respectively.

Also ¡ = 
1

m
f◊ ◊

l

a

¡

l
= 

1

m

f
◊

a

H = 
1

m
◊ B .
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1

m
 can be termed as reluctance of a cubic metre of magnetic material from

which, the above equation gives the mmf per unit length (intensity) which is
analogous to the voltage per unit length. Parallels between electric-circuit and
magnetic-circuit quantities are shown in Table 9.1.

Thus, it is seen that the magnetic reluctance is analogous to resistance, mmf is
analogous to emf and flux is analogous to current. These analogies are useful in
magnetic circuit calculations. Though we can draw many parallels between the
two circuits, the following differences do exists.

The electric current is a true flow but there is no flow in a magnetic flux. For
a given temperature, r is independent of the strength of the current, but m is not
independent of the flux.

In an electric circuit energy is expended so long as the current flows, but in a
magnetic circuit energy is expended only in creating the flux, and not in
maintaining it. Parallels between the quantities are shown in Table 9.1.

Table 9.1 Analogy between magnetic and electric circuit

Electric circuit Magnetic circuit

Exciting force = emf in volts mmf in AT
Response = current in amps flux in webers
Voltage drop = VI volts mmf drop = ¬f AT

Electric field density = 
V

l
 volt/m Magnetic field Intensity = 

¡

1
 AT/m

Current(I) = 
E

R
 A Flux (f) = 

¡

R
 Web

Current density(J ) = 
I

a
 Amp/m2 Flux density (B) = 

f

A
 Web/m2

Resistance (R) = 
r l

a
 ohm Reluctance (¬) = 

1

m
◊

l

a
 AT/Web

Conductance (G) = 
1

R
 Mho Permeance = 

1

¬
= ◊

m

m

a l

a
 Web/AT

9.14 MAGNETIC LEAKAGE AND FRINGING

Figure 9.28 shows a magnetised iron ring with a narrow air gap, and the flux
which crosses the gap can be regarded as useful flux. Some of the total flux
produced by the ring does not cross the air gap, but instead takes a shorter route
as shown in Fig. 9.28 and is known as leakage flux. The flux while crossing the
air gap bulges outwards due to variation in reluctance. This is known as fringing.
This is because the lines of force repel each other when passing through the air as
a result the flux density in the air gap decreases. For the purpose of calculation it
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Useful fluxUseful flux

(A)(A)

(B)(B)Leakage fluxLeakage flux

Fig. 9.28

is assumed that the iron carries the whole of the total flux throughout its length.
The ratio of total flux to useful flux is called the leakage coefficient or leakage
factor.

Leakage factor = Total flux/useful flux.

Example 9.11 A coil of 100 turns is wound uniformly over a insulator ring with

a mean circumference of 2 m and a uniform sectional area of 0.025 cm2. If the

coil is carrying a current of 2 A. Calculate (a) the mmf of the circuit, (b) magnetic

field intensity (c) flux density (d) the total flux.

Solution

(a) mmf = NI = 100 ¥ 2 = 2000 AT

(b) H = 
mmf

l
 = 

2000

2
 = 1000 AT/m

(c) B = m0H = 4p ¥ 10–7 ¥ 1000 = 1.2565 mWb/m2.

(d) f = B ¥ A = 1.2565 ¥ 10–3 ¥ 0.025 ¥ 10–4 = 0.00314 ¥ 10–6 Wb

Example 9.12 Calculate the mmf required to produce a flux of 5 mWb across

an air gap of 2.5 mm of length having an effective area of 100 cm2 of a cast steel

ring of mean iron path of 0.5 m and cross-sectional area of 150 cm2 as shown in

Fig. 9.29. The relative permeability of the cast steel is 800. Neglect leakage flux.

Solution

Area of the gap = 100 ¥ 10–4 m2

Flux density of the gap = 
5 10 10

100

3 4¥ ¥-

 = 0.5 T

H of the gap = 
B

m p0
7

0 5

4 10
=

¥ -

.

= 0.39 ¥ 106 A/m

Length of the gap = 2.5 ¥ 10–3 m

mmf required for the gap = 0.39 ¥ 106 ¥ 2.5 ¥ 10–3 = 975 AT

Flux density in the cast steel ring is = 
f

Area

II

Fig. 9.29
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= 
5 10 10

100

3 4¥ ¥-

= 0.333 T

\ H = 
B

rm m p0
7

0 333

4 10 800
=

¥-

.
 = 332 A T/m

Length of the cast steel path = 0.5 m

The required mmf for the cast steel to produce the necessary flux = 0.5 ¥ 332

= 166 AT

Therefore total mmf = 975 + 166 = 1141 AT

9.15 COMPOSITE SERIES CIRCUIT

Consider a toroid composed of three different magnetic materials of different
permeabilities, areas and lengths excited by a coil of N turns.

Fig. 9.30

With a current of I amperes as shown in Fig. 9.30. The lengths of sections AB,
BC and CA are I1, I2 and I3 respectively. Each section will have its own
reluctance and permeability. Since all of them are joined in series, the total
reluctance of the combined magnetic circuit is given by

¬Total = 
1

mA

= 
l

A

l

A

l

A

1

1 1

2

2 2

3

3 3m m m
+ +

The flux produced in the circuit is given by f = 
mmf

Total reluctance
 Wb

\ f = 
NI

l

A

l

A

l

A

1

1 1

2

2 2

3

3 3m m m
+ +

L

N

M
M
M
M

O

Q

P
P
P
P

 Wb
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9.16 PARALLEL MAGNETIC CIRCUIT

We have seen that a series magnetic circuit carries the same flux and the total
mmf required to produce a given quantity of flux is the sum of the mmf’s for the
separate parts. In a parallel magnetic circuit, different parts of the circuit are in
parallel. For such circuits the Kirchhoff’s laws, in their analogous magnetic form
can be applied for the analysis. Consider an iron core having three limbs A, B and
C as shown in Fig. 9.31(a). A Coil with N turns is arranged around limb A which
carries a current I amperes. The flux produced by the coil in limb A. fA is divided
between limbs B and C and each equal to fA/2. The reluctance offered by the two
parallel paths is equal to the half the reluctance of each path (Assuming equal
lengths and cross sectional areas). Similar to Kirchhoff’s current law in an
electric circuit, the total magnetic flux directed towards a junction in a magnetic
circuit is equal to the sum of the magnetic fluxes directed away from that
junction. Accordingly fA = fB + fC or fA – fB – fC = 0. The electrical equivalent
of the above circuit is shown in Fig. 9.31(b). Similar to Kirchhoff’s second law,
in a closed magnetic circuit, the resultant mmf is equal to the algebraic sum of the
products of field strength and the length of each part in the closed path. Thus
applying the law to the first loop in Fig. 9.31(a), we get

NI = HA lA + HB lB

or NI = fA ¬A + fB ¬B

The mmf across the two parallel paths is identical.
Therefore NI is also equal to

NI = fA ¬A + fC ¬C

IIAA

AA
AA

NN

ffAA

11 22

VV

BB

BB
CC

(b)(b)(a)(a)

CC

IIAA IICC

II

ffBB

ffCC

Fig. 9.31

Additional Solved Problems

Problem 9.1 In the circuit shown in Fig. 9.32, write the equation for the
voltages across the coils ab and cd; also mention the polarities of the terminals.
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Fig. 9.32

Solution Current i1 is only flowing in coil ab, whereas coil cd is open.
Therefore, there is no current in coil cd. The emf due to self induction is zero on
coil cd.

\ v2(t ) = M
di t

dt

1( )
 with C being positive

Similarly the emf due to mutual induction in coil ab is zero.

\ v1(t) = L
di t

dt

1( )

Problem 9.2 In the circuit shown in Fig. 9.33, write the equation for the
voltages v1 and v2. L1 and L2 are the coefficients of self inductances of coils 1
and 2, respectively, and M is the mutual inductance.

Fig. 9.33

Solution In the figure, a and d are like terminals.
Currents i1 and i2 are entering at dot marked terminals.

v1 = L
di t

dt

M di t

dt
1

1 2( ) ( )
+

v2 = L
di t

dt

M di t

dt
2

2 1( ) ( )
+

Problem 9.3 In Fig. 9.34, L1 = 4 H; L2 = 9 H, K = 0.5, i1 = 5 cos (50t – 30°)
A, i2 = 2 cos (50t – 30°) A. Find the values of (a) v1; (b) v2, and (c) the total
energy stored in the system at t = 0.
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Fig. 9.34

Solution Since the current in coil ab is entering at the dot marked terminal,
whereas in coil cd the current is leaving, we can write the equations as

v1 = L
di

dt
M

di

dt
1

1 2-

v2 = - +M
di

dt
L

di

dt

1
2

2

M = K L L1 2 0 5 36= .  = 3

(a) v1 = 4 
d

dt
 [5 cos (50t – 30°) – 3

d

dt
 [2 cos (50t – 30°)]

v1 = 20 [– sin (50t – 30°) ¥ 50]– 6 [– sin (50t – 30°) 50]

at t = 0

v1 = 500 – 150 = 350 V

(b) v2 = –3 
d

dt
 [5 cos (50t – 30°)] + 9

d

dt
 [2 cos (50t – 30°)]

= – 15 [– sin (50t – 30°) ¥ 50] + 18 [– sin (50t – 30°) 50]

at t = 0

v2 = – 375 + 450 = 75 V

(c) The total energy stored in the system

W (t) =
1

2
 L1[i1(t)]

2 + 
1

2
 L2[i2(t)]

2 – M [i1(t)i2(t)]

=
1

2
 ¥ 4[5 cos (50t – 30°)]2 + 

1

2
 ¥ 9[2 cos (50t – 30°)]2

– 3 [5 cos (50t – 30°) ¥ 2 cos (50t – 30°)]

at t = 0 W(t) = 28.5 j

Problem 9.4 For the circuit shown in Fig. 9.35, write the mesh equations.

Solution There exists mutual coupling between coil 1 and 3, and 2 and 3.
Assuming branch currents i1, i2 and i3 in coils 1, 2 and 3, respectively, the
equation for mesh 1 is
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v = v1 + v2

v = i1 j2 – i3 j4 + i2 j4 – i3 j6 (9.7)

j4i3 is the mutual inductance drop between coils (1) and (3), and is considered
negative according to dot convention and i3 j6 is the mutual inductance drop
between coils 2 and 3.

For the 2nd mesh 0 = – v2 + v3

= – ( j4i2 – j6i3) + j3i3 – j6i2 – j4i1 (9.8)

= – j4i1 – j10i2 + j9i3 (9.9)

i1 = i3 + i2

Problem 9.5 Calculate the effective inductance of the circuit shown in
Fig. 9.36 across terminals a and b.

8 H8 H

aa

bb

10 H10 H

6 H6 H

++

––

vv vv22
5 H5 H

4 H4 H

Fig. 9.36

Solution Let the current in the circuit be i

v = 8 4 10 4 5 6 5
di

dt

di

dt

di

dt

di

dt

di

dt

di

dt

di

dt
- + - + + +

or
di

dt

di

dt
34 8 26- =  = v

Fig. 9.35
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Let L be the effective inductance of the circuit across ab. Then the voltage

across ab = v = L
di

dt

di

dt
= 26 .

Hence, the equivalent inductance of the circuit is given by 26 H.

Problem 9.6 For the circuit shown in Fig. 9.37, find the ratio of output
voltage to the source voltage.

Fig. 9.37

Solution Let us consider i1 and i2 as mesh currents in the primary and
secondary windings.

As the current i1 is entering at the dot marked terminal, and current i2 is
leaving the dot marked terminal, the sign of the mutual inductance is to be
negative. Using Kirchhoff’s voltage law, the voltage equation for the first mesh
is

i1(R1 + jwL1) – i2 jw M = v1

i1(10 + j500) – i2 j250 = 10 (9.10)

Similarly, for the 2nd mesh

i2(R2 + jw L2) – i1 jwM = 0

i2(400 + j5000) – i1 j250 = 0 (9.11)

i2 = 

( )

( )

(

10 500 10

250 0
10 500 250

250 400 5000

+

-
+ -

- +

j

j

j j

j j

i2 = 0.00102 –– 84.13°

v2 = i2 ¥ R2

= 0.00102 –– 84.13° ¥ 400

= 0.408 –– 84.13°

v

v

2

1

= 
0 408

10

.
 –– 84.13°

v

v

2

1

= 40.8 ¥ 10–3 –– 84.13°
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Problem 9.7 Calculate the effective inductance of the circuit shown in
Fig. 9.38 across AB.

Fig. 9.38

Solution The inductance matrix is

L L L

L L L

L L L

11 12 13

21 22 23

31 32 33

L

N

M
M
M

O

Q

P
P
P
 = 

5 0 2

0 6 3

2 3 17

-

-

- -

L

N

M
M
M

O

Q

P
P
P

From KVL v = v1 + v2 (9.12)

and v2 = v3 (9.13)

From KCL i1 = i2 + i3 (9.14)

v

v

v

1

2

3

L

N

M
M
M

O

Q

P
P
P

= 

5 0 2

0 6 3

2 3 17

-

-

- -

L

N

M
M
M

O

Q

P
P
P
 

di dt

di dt

di dt

1

2

3

/

/

/

L

N

M
M
M

O

Q

P
P
P

v1 = 5 21 3di

dt

di

dt
- (9.15)

and v2 = 6 32 3di

dt

di

dt
- (9.16)

v3 = - - +2 3 171 2 3di

dt

di

dt

di

dt
(9.17)

From Eq. 9.12, we have

v = v1 + v2

= 5 2 6 31 3 2 3di

dt

di

dt

di

dt

di

dt
- + -

v = 5 6 51 2 3di

dt

di

dt

di

dt
+ - (9.18)
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From Eq. 9.14,

di

dt

1 = 
di

dt

di

dt

2 3+ (9.19)

Substituting Eq. 9.19 in Eq. 9.17, we have

v3 = - +
L
NM

O
QP

-
L
NM

O
QP

+
L
NM

O
QP

2 3 172 3 2 3di

dt

di

dt

di

dt

di

dt

or - +5 152 3di

dt

di

dt
 = v3 (9.20)

Multiplying Eq. 9.16 by 5, we get

30 152 3di

dt

di

dt
-  = 5v2 (9.21)

Adding Eqs. (9.20) and (9.21), we get

25 2di

dt
= v3 + 5v2

25 2di

dt
= 6v2

= 6v3, since v2 = v3

or v2 = 
25

6
2di

dt

From Eq. 9.16

25

6
2di

dt
= 6 32 3di

dt

di

dt
-

from which
di

dt

2 = 
18

11
3di

dt

From Eq. 9.19

di

dt

1 = 
di

dt

di

dt

di

dt

2 2 211

18

29

18
+ =

Substituting the values of 
di

dt

2  and 
di

dt

3  in Eq. 9.18 yields

v = 5 6
18

29
5

11

18
1 1 2di

dt

di

dt

di

dt
+ -

= 5
108

29

55

18

18

29
1 1 1di

dt

di

dt

di

dt
+ -
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v = 
198

29
1di

dt
 = 6.827 

di

dt

1

\ equivalent inductance across AB = 6.827 H

Problem 9.8 Write the mesh equations for the network shown in Fig. 9.39.

vv11

ii11

(1)(1)

ii22 ii33

33 WW

55 WW

(2)(2)jj33

–– jj22

jj44 jj55

Fig. 9.39

Solution The circuit contains three meshes. Let us assume three loop currents
i1, i2 and i3.

For the first mesh

5i1 + j3(i1 – i2) + j4(i3 – i2) = v1 (9.22)

The drop due to self inductance is j3(i1 – i2) is written by considering the
current (i1 – i2) entering at dot marked terminal in the first coil, j4(i3 – i2) is the
mutually induced voltage in coil 1 due to current (i3 – i2) entering at dot marked
terminal of coil 2.
Similarly, for the 2nd mesh,

j3(i2 – i1) + j5(i2 – i3) – j2 i2 + j4(i2 – i3) + j4(i2 – i1) = 0 (9.23)

j4(i2 – i1) is the mutually induced voltage in coil 2 due to the current in coil 1,
and j4(i2 – i3) is the mutually induced voltage in coil 1 due to the current in coil 2.

For the third mesh,

3i3 + j5(i3 – i2) + j4(i1 – i2) = 0 (9.24)

Further simplification of Eqs. 9.22, 9.23 and 10.24 leads to

(5 + j3)i1 – j7i2 + j4i3 = v1 (9.25)

– j7i1 + j14i2 – j9i3 = 0 (9.26)

j4i1 – j9i2 + (3 + j5)i3 = 0 (9.27)

Problem 9.9 The inductance matrix for the circuit of three series connected
coupled coils is given in Fig. 9.40. Find the inductances, and indicate the dots for
the coils.

Fig. 9.40
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L = 

4 4 1

4 2 3

1 3 6

-

- -

-

L

N

M
M
M

O

Q

P
P
P

All elements are in henrys

Solution The diagonal elements (4, 2, 6) in the matrix represent the self
inductances of the three coils 1, 2 and 3, respectively. The second element in the
1st row (– 4) is the mutual inductance between coil 1 and 2, the negative sign
indicates that the current in the first coil enters the dotted terminal, and the cur-
rent in the second coil enters at the undotted terminal. Similarly, the remaining
elements are fixed. The values of inductances and the dot convention is shown in
Fig. 9.41.

AA BB

4 H4 H

11 22 33

2 H2 H 6 H6 H

3 H3 H

4 H4 H
1 H1 H

Fig. 9.41

Problem 9.10 Find the voltage across the 10 W resistor for the network
shown in Fig. 9.42.

1010 WW

1010 0º0º––

vv11

jj44 jj22

jj33

ii
11

ii
22

–– jj1515 vv22

Fig. 9.42

Solution From Fig. 9.42, it is clear that

v2 = i2 10 (9.28)

Mesh equation for the first mesh is

j4i1 – j15 (i1 – i2) + j3i2 = 10 –0°

– j11i1 + j18i2 = 10 –0° (9.29)

Mesh equation for the 2nd mesh is

j2i2 + 10i2 – j15(i2 – i1) + j3i1 = 0
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j18i1 – j13i2 + 10i2 = 0

j18i1 + i2(10 – j13) = 0 (9.30)

Solving for i2 from Eqs. 9.29 and 9.30, we get

i2 = 
- – ∞L
NM

O
QP

-

-

L
NM

O
QP

j

j

j j

j j

11 10 0

18 0

11 18

18 10 3

= 
- – ∞

-

180 90

291 110j

= 
- – ∞

– ∞

180 90

311 20 70.
 = – 0.578 –110.7°

\ v2 = i2 10 = – 5.78 –110.7°

|v2| = 5.78

Problem 9.11 The resonant frequency of the tuned circuit shown in Fig. 9.43
is 1000 rad/sec. Calculate the self inductances of the two coils and the optimum
value of the mutual inductance.

Fig. 9.43

Solution From Section 9.7, we know that

w 2
r = 

1 1

1 1 2 2L C L C
=

L1 = 
1 1

1000 1 102
1

2 6w r C
=

¥ -( )
 = 1 H

L2 = 
1 1

1000 2 102
2

2 6w r C
=

¥ ¥ -( )
 = 0.5 H

Optimum value of the mutual inductance is given by

Moptimum = 
R R

r

1 2

w

where R1 and R2 are the resistances of the primary and secondary coils

M = 
15

1000
 = 3.87 mH
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RR11
RR22

CC22

CC11

22 VV

1010
44
radrad//secsec

MM

Fig. 9.44

Problem 9.12 The tuned frequency of a double tuned circuit shown in
Fig. 9.44 is 104 rad/sec. If the source voltage is 2 V and has a resistance of
0.1 W, calculate the maximum output voltage at resonance if R1 = 0.01 W, L1 =
2 mH; R2 = 0.1 W, and L2 = 25 mH.

Solution

The maximum output voltage v0 = 
vi

r cC M2 2
2w

where Mc is the critical value of the mutual inductance given by

Mc = 
R R Rs

r

2 1( )+

w

Mc = 
0 1 0 01 0 1

104

. ( . . )+
 = 10.48 mH

At resonance w 2
r = 

1

2 2L C

C2 = 
1 1

10 25 102
2

4 2 6w r L
=

¥ ¥ -( )
 = 0.4 ¥ 10–3 F

v0 = 
2

2 10 0 4 10 10 48 104 2 3 6( ) . .¥ ¥ ¥ ¥- -

= 2.385 V

Problem 9.13 An iron ring 10 cm dia and 15 cm2 in cross-section is wound
with 250 turns of wire for a flux density of 1.5 Web/m2 and permeability 500.
Find the exciting current, the inductance and stored energy. Find corresponding
quantities when there is a 2 mm air gap.
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Solution

(a) Without air gap

Length of the flux path = p D = p ¥ 10 = 31.41 cm

= 0.3141 m

Area of flux path = 15 cm2 = 15 ¥ 10–4 m2

mmf = A.T

A = 
mmf

T

H = 
B

rm m0

 = 
1 5

4 10 5007

.

p ¥ ¥-
 = 2387

mmf = H ¥ l = 2387 ¥ 0.3141 = 750 AT

Exciting current = 
mmf

T
=

750

250
 = 3 A

Reluctance = 
l

Arm m p0
7 4

0 3141

4 10 500 15 10
=

¥ ¥ ¥- -

.

= 333270

Self Inductance = 
N 2 2250

333270Reluctance
=

( )
 = 0.1875 H

Energy = 
1

2
LI2 = 

1

2
 ¥ 0.1875 ¥ (3)2

= 0.843 Joules

(b) With air gap

Reluctance of the gap = 
l

Am p0

3

7 4

2 10

4 10 15 10
=

¥

¥ ¥ ¥

-

- -

= 1.06 ¥ 106 A/Wb

Total reluctance = (0.333 + 1.06) 106 = 1.393 ¥ 106 A/Wb

mmf = f ¥ reluctance

= 1.5 ¥ 15 ¥ 10–4 ¥ 1.393 ¥ 106

= 3134 AT

Exciting current = 
3134

250
 = 12.536 A

L = 
N 2 2

6

250

1 393 10¬
=

¥

( )

.
 = 44.8 mH
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Energy = 
1

2
2LI

= 
1

2
 ¥ 44.8 ¥ 10–3 ¥ (12.536)2

= 3.52 Joules

Problem 9.14 A 700 turn coil is wound on the central limb of the cast steel
frame as shown in Fig. 9.45. A total flux of 1.8 m Wb is required in the gap.
What is the current required? Assume that the gap density is uniform and that all
lines pass straight across the gap. All dimensions are in centimeters. Assume mr

as 600.

2424

Fig. 9.45

Solution Each of the side limbs carry half the total flux as their reluctances
are equal.

Total mmf required is equal to the sum of the mmf required for gap, central
limb and side limb.

Reluctance of gap and central limb are in series and they carry the same flux.

Air gap

fg = 1.8 ¥ 10–3 Wb

Ag = 4 ¥ 4 ¥ 10–4 m2

Bg = 
1 8 10

16 10

3

4

. ¥

¥

-

-
 = 1.125 Wb/m2

Hg = 
Bg

m p0
7

1125

4 10
=

¥ -

.
 = 8.95 ¥ 105 AT/m

Required mmf for the gap = Hg lg

= 8.95 ¥ 105 ¥ 0.001 = 895 AT

Central Limb

fc = 1.8 ¥ 10–3 Wb

Ac = 4 ¥ 4 ¥ 10–4 m2
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Bc = 1.125 Wb/m2

Hc = 
Bc

rm m p0
7

1125

4 10 600
=

¥ ¥-

.
 = 1492 AT/m

Required mmf for central limb = Hc lc

= 1492 ¥ 0.24 = 358 AT

Side Limb:

fs = 
1

2
 ¥ flux in central limb

= 
1

2
 ¥ 1.8 ¥ 10–3 = 0.9 ¥ 10–3 Wb

Bs = 
0 9 10

16 10

3

4

. ¥

¥

-

-
 = 0.5625 Wb/m2

Hs = 
Bs

rm m p0
7

0 5625

4 10 600
=

¥ ¥-

.
 = 746 AT/m

Required mmf for side limb = Hs ls

= 746 ¥ 0.6 = 447.6 @  448

Total mmf = 895 + 358 + 448 = 1701 AT

Required current = 
1701

700
 = 2.43 A

Practice Problems

9.1 Using the dot convention, write the voltage equations for the coils shown
in Fig. 9.46.

Fig. 9.46

9.2 Two inductively coupled coils have self inductances L1 = 40 mH and L2 =
150 mH. If the coefficient of coupling is 0.7, (i) find the value of mutual
inductance between the coils, and (ii) the maximum possible mutual in-
ductance.

9.3 For the circuit shown in Fig. 9.47 write the inductance matrix.
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Fig. 9.47

9.4 Two coils connected in series have an equivalent inductance of 0.8 H when
connected in aiding, and an equivalent inductance of 0.5 H when the con-
nection is opposing. Calculate the mutual inductance of the coils.

9.5 In Fig. 9.48, L1 = 2 H; L2 = 6 H; K = 0.5; i1 = 4 sin (40t – 30°) A; i2 = 2 sin
(40t – 30°) A. Find the values of (i) v1 and (ii) v2.

Fig. 9.48

9.6 For the circuit shown in Fig. 9.49, write the mesh equations.

jj22

jj22jj11

jj66

jj33

vv11

1010 0º0º––

jj33

jj55
jj44

jj33

DD

DD

Fig. 9.49
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9.7 Calculate the effective inductance of the circuit shown in Fig. 9.50 across
XY.

Fig. 9.50

9.8 For the circuit shown in Fig. 9.51, find the ratio of output voltage to the
input voltage.

Fig. 9.51

9.9 Calculate the effective inductance of the circuit shown in Fig. 9.52.

Fig. 9.52

9.10 Write the mesh equations for the network shown in Fig. 9.53.
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Fig. 9.53

9.11 Find the source voltage if the voltage across the 100 ohms is 50 V for the
network in the Fig. 9.54.

Fig. 9.54

9.12 The inductance matrix for the circuit of a three series connected coupled
coils is given below. Find the inductances and indicate the dots for the
coils.

L = 

8 2 1

2 4 6

1 6 6

-

- -

-

L

N

M
M
M

O

Q

P
P
P

Objective-type Questions

1. Mutual inductance is a property associated with
(a) only one coil
(b) two or more coils
(c) two or more coils with magnetic coupling

2. Dot convention in coupled circuits is used
(a) to measure the mutual inductance
(b) to determine the polarity of the mutually induced voltage in coils
(c) to determine the polarity of the self induced voltage in coils
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3. Mutually induced voltage is present independently of, and in addition to,
the voltage due to self induction.

(a) true (b) false
4. Two terminals belonging to different coils are marked identically with

dots, if for the different direction of current relative to like terminals the
magnetic flux of self and mutual induction in each circuit add together.

(a) true (b) false
5. The maximum value of the coefficient of coupling is

(a) 100% (b) more than 100%
(c) 90%

6. The case for which the coefficient of coupling K = 1 is called perfect cou-
pling

(a) true (b) false
7. The maximum possible mutual inductance of two inductively coupled coils

with self inductances L1 = 25 mH and L2 = 100 mH is given by
(a) 125 mH (b) 75 mH
(c) 50 mH

8. The value of the coefficient of coupling is more for aircored coupled cir-
cuits compared to the iron core coupled circuits.

(a) true (b) false
9. Two inductors are connected as shown in Fig. 9.55. What is the value of

the effective inductance of the combination.

3 H3 Hii

5 H5 H

2 H2 H

Fig. 9.55

(a) 8 H (b) 10 H
(c) 4 H

10. Two coils connected in series have an equivalent inductance of 3 H when
connected in aiding. If the self inductance of the first coil is 1 H, what is
the self inductance of the second coil (Assume M = 0.5 H)

(a) 1 H (b) 2 H
(c) 3 H
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11. For Fig. 9.56 shown below, the inductance matrix is given by

Fig. 9.56

(a)

2 3 1

3 1 2

1 2 3

L

N

M
M
M

O

Q

P
P
P

(b)

2 3 1

3 1 2

1 2 3

-

- -

-

L

N

M
M
M

O

Q

P
P
P

(c)

2 3 1

3 1 2

1 2 3

-

-

L

N

M
M
M

O

Q

P
P
P



10Chapter

Differential Equations

10.1 BASIC CONCEPTS

Differential equations which denote rates of change, occur in various branches of

science and engineering. We make use of differential equations, for example, to

determine the motion of a rocket or a satellite, to determine the charge or current

in an electric circuit, or to determine the vibrations of a wire or membrane. The

mathematical formulation of the above problems gives rise to differential

equations.

A differential equation is one which involves derivatives of one or more

dependent variables with respect to one or more independent variables.

Differential equations are classified according to the variables and derivatives

involved in them. Ordinary differential equations are those which involve

ordinary derivatives of one or more dependent variables with respect to a single

independent variable. For example,

dy = sin x dx (10.1)

d x

dt

d x

dt

3

4

2

2
3+  + 5x = cos t (10.2)

In Eq. 10.1, x is an independent variable, and y is a dependent variable. In

Eq. 10.2, variable t is an independent variable and x is a dependent variable.

Partial differential equations are those which involve partial derivatives of one

or more dependent variables with respect to more than one independent variables.

For example,

∂

∂
+

∂

∂

v v

u t
= v (10.3)

∂

∂
+

∂

∂
+

∂

∂

2

2

2

2

2

2

v v v

x y z
= 0 (10.4)
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In Eq. 10.3, variables u and t are independent, and v is a dependent variable.

In Eq. 10.4, variables x, y, and z are independent, whereas v is a dependent

variable.

The order of differential equation is the order of the highest derivative in it.

Equation 10.1 is a first order differential equation, since the highest derivative

involved is the first order. Similarly, Eq. 10.2 is of the 3rd order. Equations 10.3

and 10.4 are of the first and second order, respectively.

The degree of a differential equation is the degree of the derivative of the

highest order; for example,

d x

dt

d x

dt

2

2

2 1 2

1= +
F
HG

I
KJ

L

N
M

O

Q
P

/

(10.5)

Equation 10.5 is of the second degree, since when the radical is removed, it

becomes

d x

dt

d x

dt

2

2

2 2

1
F
HG

I
KJ

= +
F
HG

I
KJ

L

N
M

O

Q
P (10.6)

Differential equations are further classified as linear and non-linear.

A linear ordinary differential equation of the order n, in the dependent variable

x and the independent variable t, is given in the form

a t
d x

dt
a t

d x

dt
a t

d x

dt
a t x

n

n

n

n n n0 1

1

1 1( ) ( ) ( ) ( )+ + + +
-

- -K  = c(t) (10.7)

where a0 is not identically zero. The order of the equation is n. The term c(t) is

the forcing function and is independent of x(t). When c (t) is zero, the equation is

said to homogeneous; otherwise, it is non-homogeneous. A differential equation

is said to be linear, when the dependent variable x and its derivatives occur in the

first degree only, and no products of x and its derivatives are present in the

equation.

For example,

d x

dt

d x

dt
x

2

2
10 5+ +  = 0 (10.8)

In Eq. 10.8, the dependent variable, x, and its derivatives are of the first degree

only. A non-linear ordinary differential equation is defined as an equation which

is not linear.

For example,

d x

dt

d x

dt
x

2

2
210 5+ +  = 0 (10.9)

d x

dt

d x

dt
x

2

2

2

5 7+
F
HG

I
KJ

+  = 0 (10.10)



Differential Equations 10.3

In Eq. 10.7, if a0(t), a1(t) K an(t) are constants, the equation is said to be

linear with constant coefficients; otherwise, the equation is said to be linear with

variable coefficients.

10.2 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS

Consider an nth order homogeneous linear differential equation with constant

coefficients,

a
d x

dt
a

d x

dt
a

d x

dt
a x

n n

n n n0 1

1

1 1+ + + +
-

- -K  = 0 (10.11)

where a0, a1 K an are real constants.

Now we shall find the solution of Eq. 10.11 of the form x = emt. By assuming

that x = emt is a solution for certain m, we have

d x

dt
= memt

d x

dt

2

2
= m2emt

 M

d x

dt

n

n
= mnemt

Substituting in Eq. 10.11, we get

a0mnemt + a1mn – 1emt + K + anemt = 0

or emt(a0mn + a1m
n – 1 + K + an) = 0

where a0mn + a1m
n – 1 + K + an = 0 (10.12)

This is called the auxiliary, or the characteristic equation of the given

differential equation. Three cases might occur in the auxiliary equation which

are, subject to the roots of Eq. 10.12 being real and distinct, real and repeated, or

complex.

Case 1 Distinct real roots

If the roots of the Eq. 10.12, m1, m2 K mn are real and distinct, the general

solution of Eq. 10.11 is

x = k1em1t + k2e
m2t + K + knemnt

where k1, k2 K kn are arbitrary constants.

k1, k2 K kn values can be determined by using initial conditions.

Example 10.1 Find the solution for the following equation

d x

d t

d x

dt

d x

dt

3

3

2

2
2+ -  – 2x = 0
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given the initial conditions

x¢¢(0) = 0, x ¢(0) = 2, x(0) = 1

Solution The characteristic equation is

m3 + 2m2 – m – 2 = 0

By taking factors, we have

(m + 1) (m2 + m – 2) = 0

or (m + 1) (m – 1) (m + 2) = 0

Thus, the roots are distinct, real numbers

m1 = 1, m2 = – 1, m3 = – 2

The general solution is

x = k1 e– t + k2et + k3e –2t

At t = 0, k1 + k2 + k3 = 1 (10.13)

x ¢ = – k1 e –t + k2et – 2k3 e –2t

At t = 0, – k1 + k2 – 2k3 = 2 (10.14)

x ¢¢ = k1e – t + k2et + 4k3 e –2t

At t = 0, k1 + k2 + 4k3 = 0 (10.15)

Solving Eqs. 10.13, 10.14 and 10.15 we get

k3 = -
1

3

k2 = 
4

3
 and k1 = 0

The solution for the differential equation is therefore

x = 
4

3

1

3

2e et t
-

-

Case 2 Roots are real and repeated

If the roots of Eq. 10.12 are the double real root m, and (n – 2) distinct real roots.

m1, m2 K mn – 2

then the linearly independent solutions of Eq. 10.11 are

emt, temt, em1t, em2t K emn – 2t

And the general solution may be written as

x = k1e
mt

 + k2te
mt

 + k3e
m1t

 + k4e
m2t

 + K + kne
mn – 2t

Similarly, if Eq. 10.12 has a triple real root m, the general solution is

(c1 + c2t + c3t
2) emt.

Example 10.2 Find the general solution for the differential equation

d x

d t

d x

d t

d x

dt
x

3

3

2

2
11 35 25+ + +  = 0

Solution The auxiliary equation is
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m3 + 11m2 + 35m + 25 = 0

By taking factors, we have
(m + 1) (m + 5)2 = 0

or (m + 1) (m + 5) (m + 5) = 0

\ The general solution is

x(t) = (k1 + k2t) e–5t + k3e– t

Case 3 Roots are Complex Conjugate

Consider the auxiliary equation which has the complex number a + jb as a non-

repeated root. The corresponding part of the general solution is p1e
(a + jb) t

 +

p2e(a – jb)t, where p1 and p2 are arbitrary constants.

p1e(a + jb)t + p2e(a – jb)t = p1eat e jbt + p2eat e– jbt

= eat [ p1e
jbt + p2e– jbt]

= eat [p1(cos bt + j sin bt) + p2 (cos bt – j sin bt)]

= eat [(p1 + p2) cos bt + j( p1 – p2) sin bt]

= e
at 

[k1 sin bt + k2 cos bt]

where k1 = j(p1 – p2) and k2 = (p1 + p2)

are the new arbitrary constants.

If however, (a + jb) and (a – jb) are each n roots of the auxiliary equation, the

corresponding general solution may be written as

x = eat [(k1 + k2t + k3t
2 + K + kntn – 1) sin bt

+ (kn + 1 + kn+2 t + kn +3t
2
 + K + k2nt

n–1
) cos bt]

Example 10.3 Find the general solution of

d x

dt

d x

dt
x

2

2
5 20- +  = 0

Solution The auxiliary equation is

m2 – 5m + 20 = 0

The roots are  m = 
5 25 80

2

± -

m = 2.5 ± j3.7

Here the roots are conjugate complex numbers a + jb

where a = 2.5, b = 3.7

The general solution may be written as

x = e2.5t (c1 sin 3.7t + c2 cos 3.7t)

10.3 NON-HOMOGENEOUS DIFFERENTIAL EQUATIONS

Now let us consider the following non-homogeneous differential equation,

a
d x

dt
a

d x

dt
a

d x

dt
a x

n

n

n

n n n0 1

1

1 1+ + + +
-

- -K  = f(t)
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where the coefficients a0, a1, K, an are constants, and f(t) is a function of time.

The general solution may be written

x = xc + xp

where xc is the complementary function, and xp is the particular integral. Since xc

is the general solution of the corresponding homogeneous equation with f(t)

replaced by zero, we have to find out the particular integral xp. The particular

integral can be calculated by the method of undetermined coefficients. This

method is useful to equations

a
d x

dt
a

d x

dt
a x

n

n

n

n n0 1

1

1
+ + +

-

-
K  = c (t)

when c(t) is such that the form of a particular solution xp of the above equation

may be guessed. For example, c(t) may be a single power of t, a polynomial, an

exponential, a sinusoidal function, or a sum of such functions. The method

consists in assuming for xp an expression similar to that of c(t), containing

unknown coefficients which are to be determined by inserting xp and its

derivatives in the original equation.

Example 10.4 Find the particular integral for the differential equation

d x

dt

d x

dt
x

2

2 10 5- +  = 10e–3t

Solution By assuming xp = ke–3t, and

substituting x ¢¢p, x ¢p, and xp into the differential equation

9ke –3t + 30ke –3t + 5ke –3t = 10e–3t

\ 9k + 30k + 5k = 10

or k = 
10

44
= 0.23

Therefore, the particular integral is xp = 0.23e –3t

Example 10.5 Find the particular integral for the differential equation

d x

dt

2

2
 + 2x = 5t2

Solution If the driving function is the power of t, then we have to assume the

particular solution as

xp = k1t2 + k2t + k3

Then x ¢¢p = 2k1

Substituting x ¢¢p and xp in the given differential equation, we have

2k1 + 2k1t
2 + 2k2t + 2k3 = 5t2

Comparing the coefficients

2k1 = 5 and 2k2 = 0, 2k1 + 2k3 = 0

k1 = 2.5 and k3 = – 2.5, k2 = 0
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\ The particular integral

xp = 2.5t2 – 2.5

Example 10.6 Find the particular integral for the differential equation

d x

dt

d x

dt
x

2

2
3+ +  = 20 sin t

Solution If the driving function is sine or cosine function, the particular solution

is to be assumed as

xp = k1 cos t + k2 sin t

Then x ¢p = – k1 sin t + k2 cos t

x ¢¢p = – k1 cos t – k2 sin t

– k1 cos t – k2 sin t – k1 sin t + k2 cos t + 3k1 cos t + 3k2 sin t = 20 sin t
Comparing the cosine terms and sine terms in the above equation, we have

2k1 + k2 = 0

– k1 + 2k2 = 20

From which k1 = – 4, k2 = 8

Substituting the values of k1 and k2 in particular integral

\ xp = – 4 cos t + 8 sin t

This method of undetermined coefficients may be applied to forcing functions

of the following.

1. c(t ) = A

2. c(t ) = A(k1tn + k2t n – 1 + k3t n – 3 + K + kn)

3. c(t ) = emt; m is real or complex

4. Any function formed by multiplying terms of type 1, 2, or 3.

10.4 APPLICATIONS TO ELECTRICAL CIRCUITS

In this section, we consider the application of differential equations to circuits

containing a source, resistors, inductors and capacitors. Before discussing the

formation of differential equation for the circuits, let us discuss the v-i

relationships for basic network elements.

Resistor The resistor shown in Fig. 10.1(a) has the following relation between

voltage and current.

vvcc (0)(0)

Fig. 10.1
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v (t) = Ri(t)

where R is given in ohms.

Capacitor For the capacitor shown in Fig. 10.1(b), the v–i relationships are

i(t) = C
d t

dt

v( )

or v (t) = 
1

0
C

t

z  i(t) dt + vC (0)

where vC(0) is the initial voltage across the capacitor. The capacitor can be

represented as shown in Fig. 10.1(c).

Inductor For the inductor shown in Fig. 10.2(a), the v–i relationships are

i (t) = 
1

0
L

t

z  v(t)dt + iL(0)

or v (t) = L
di

dt

where iL(0) is the initial current passing through the circuit. The inductor can be

represented as shown in Fig. 10.2(b).

Fig. 10.2

We now consider the circuit shown in Fig. 10.3

Fig. 10.3

By applying Kirchhoff’s law to the circuit in Fig. 10.3, we have

v = Ri + L
di

dt C
i dt

t

C+ +z1
0

0

v ( )
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If the capacitor has no initial charge, the above equation becomes

Ri L
di

dt C
+ + z

1
i dt = v

Differentiating the above equation, we get

L
d i

dt
R

di

dt

i

C

d

dt

2

2
+ + =

v

This is a second order linear differential equation in the single dependent

variable, i.

Example 10.7 The circuit shown in Fig. 10.4 consists of series R, L elements

which are 5 W and 0.1 H, respectively. If the initial current is zero, find the current

at time t > 0.

Fig. 10.4

Solution By applying Kirchhoff’s laws, we have

1

10

d i

dt
+ 5i = 50 sin 20t

or
d i

d t
 + 50i = 500 sin 20t

(D + 50)i = 500 sin 20t

i = ic + ip

ic = ce–50t

and ip = A cos 20t + B sin 20t

i ¢p = – 20 A sin 20t + 20B cos 20t

Substituting in the differential equation, we get

– 20A sin 20t + 20B cos 20t + 50A cos 20t + 50B sin 20t = 500 sin 20t

Comparing the coefficients, we have

– 20A + 50B = 500

50A + 20B = 0

From which, A = – 3.45 and B = 8.62

\ ip = – 3.45 cos 20t + 8.62 sin 20t



10.10 Network Analysis

The complete solution is

i = ic + ip

= ce –50t – 3.45 cos 20t + 8.62 sin 20t

Applying the condition i = 0 when t = 0, we find

c = 3.45

Thus the solution is

i = 3.45 e–50t – 3.45 cos 20t + 8.62 sin 20t

Example 10.8 The circuit shown in Fig. 10.5 has series R, L, C elements which

are 2
1

10
W, H and 

1

260
F  respectively. If the initial current and initial charge on

the capacitor are both zero, find the charge on the capacitor at any time t > 0.

Fig. 10.5

Solution By applying Kirchhoff’s laws, we have

1

10
2 260

d i

dt
i+ + z idt = 100 sin 60t

Since i = 
dq

dt
, this reduces to

1

10
2 260

2

2

d q

d t

dq

dt
q+ + = 100 sin 60t

or
d q

dt

d q

dt
q

2

2 20 2600+ + = 1000 sin 60t

Since the charge on the capacitor is zero,

q (0) = 0

Since the initial current is zero and i = 
dq

dt

q ¢(0) = 0

The complete solution is q = qc + qp

The roots of characteristic equation are – 10 ± j50

\ The complementary function becomes

qc = e –10t(c1 sin 50t + c2 cos 50t)
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By assuming a particular integral, we have

qp = A sin 60t + B cos 60t

Differentiating and substituting in the differential equation, we get

A = 
-25

61
 and B = 

-30

61

The general solution is

q = e–10t (c1 sin 50t + c2 cos 50t) – 
25

61
 sin 60t 

-30

61
 cos 60t

Differentiating once, and substituting initial conditions, we get

c1 = 
36

61
 and c2 = 

30

61

\ The complete solution is

q = e t t t tt-
+

F
H

I
K - -

10 36

61
50

30

61
50

25

61
60

30

61
60sin cos sin cos

Additional Solved Problems

Problem 10.1 Determine the general solution for the differential equation.

d x

dt

d x

dt

d x

dt
x

3

3

2

2
3 3- - +  = 0

given the initial conditions

x¢¢(0) = 3; x ¢(0) = 1, x(0) = 0

Solution The auxiliary equation is

m3 – 3m2 – m + 3 = 0

By taking factors, we have

 (m + 1) (m2 – 4m + 3) = 0

or (m + 1) (m – 1) (m – 3) = 0

Thus, the roots are distinct and real numbers

m1 = – 1, m2 = 1, m3 = 3

The general solution is

x = k1e
– t

 + k2e
t
 + k3e

3t

At t = 0, k1 + k2 + k3 = 0 (10.16)

x¢ = – k1e– t + k2e
t + 3k3e3t

At t = 0, – k1 + k2 + 3k3 = 1 (10.17)

x¢¢ = k1e
– t + k2et + 9k3e

3t

At t = 0 k1 + k2 + 9k3 = 3 (10.18)
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Solving Eqs 10.16, 10.17 and 10.18, we get

k1 = 
-1

8
, k2 = 

-1

4
, k3 = 

3

8

Thus, the solution for the differential equation is

x = 
-

- +
-1

8

1

4

3

8

3e e e
t t t

Problem 10.2 Find the general solution for the differential equation

d x

dt

d x

dt
x

3

3

2

2
6 32- +  = 0

Solution The auxiliary equation is

m3 – 6m2 + 32 = 0

By taking factors, we have

(m + 2) (m – 4)2 = 0

or (m + 2) (m – 4) (m – 4) = 0

Thus, the roots are real and repeated

m1 = – 2, m2 = 4, m3 = 4

The general solution is

x(t) = (k1 + k2t)e
+4t + k3e–2t

Problem 10.3 Find the general solution for the differential equation

d x

dt

d x

dt

d x

dt

d x

dt
x

4

4

3

3

2

2
4 14 20 25- + - +  = 0

Solution The auxiliary equation is

m4 – 4m3 + 14m2 – 20m + 25 = 0

The roots of the characteristic equation are

(1 + j2), (1 – j2), (1 + j2) (1 – j2)

Since each pair of conjugate complex roots is double, the general solution is

x (t) = et [(k1 + k2t) sin 2t + (k3 + k4t) cos 2t]

or x (t) = k1et sin 2t + k2t et sin 2t + k3et cos 2t + k4t e
t cos 2t

Problem 10.4 Determine the general solution for the differential equation

d x

dt

d x

dt
x

2

2
6 25- + = 0

x(0) = 0, x¢(0) = – 1

Solution The auxiliary equation is

m
2

– 6m + 25 = 0

The roots are m = 
6 36 100

2

± -
 = 3 ± j4
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Here the roots are the conjugate complex numbers.

The general solution of the differential equations

x(t) = e3t(k1 sin 4t + k2 cos 4t) (10.19)

Differentiating once, we get

x¢(t) = e3t [(3k1 – 4k2) sin 4t + (4k1 + 3k2) cos 4t] (10.20)

At t = 0, x(0) = 0

Substituting in Eq. 10.19, we get

(k1 sin 0 + k2 cos 0) e0 = 0

k2 = 0 (10.21)

Similarly, at t = 0 x¢(0) = – 1

Substituting in Eq. 10.20, we get

e0 [4k1 + 3k2] = – 1 (10.22)

Solving Eqs 10.21 and 10.22, we get

4k1 = – 1 i.e., k1 = -
1

4

The solution for the differential equation is

x(t) = -
1

4
e3t sin 4t

Problem 10.5 Find the general solution for the differential equation

d x

dt

d x

dt
x

2

2
2 3- -  = 20et – 50 cos t

Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
2 3- -  = 0

The complementary function is

xc = k1e– t + k2e3t

If the driving function is 20et – 50 cos t, then we assume

xp = Ae
t
 + B sin t + C cos t

as a particular solution, or

x¢p = Aet + B cos t – C sin t

x¢¢p = Aet – B sin t – C cos t

Substituting the above in differential equation, we get

(Aet – B sin t – C cos t) – 2(Aet + B cos t – C sin t)

– 3(Aet + B sin t + C cos t) = 20 et – 50 cos t

Comparing exponential, sine and cosine terms on both sides

A – 2A – 3A = 20 (10.23)
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– B + 2C – 3B = 0 (10.24)

– C – 2B – 3C = – 50 (10.25)

From the above equations, we get

A = – 5, B = 5, C = 10

Thus, the particular solution is

xp = – 5et + 5 sin t + 10 cos t

Therefore, the complete solution is

x = xc + xp

= k1e
– t

 + k2e
3t

 – 5e
t
 + 5 sin t + 10 cos t

Problem 10.6 Find the general solution of the differential equation,

d x

dt

d x

dt
x

2

2
6- -  = 2t2 + et + 2tet + 4e3t

Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
6- -  = 0

The auxiliary equation is

(m2 – m – 6) = 0

The roots of the equation are

(m – 3) (m + 2) = 0

Thus, the complementary function is

xc = k1e3t + k2e–2t

To find the particular solution, we assume

xp = p1t
2 + p2t + p3 + p4e

3t + p5t
2et + p6tet

From this, we have

x ¢p = 2tp1 + p2 + 3p4e
3t + 2p5te

t + p5t
2et + p6tet + p6et

x ¢¢p = 2p1 + 9p4e3t + 2p5et + 2p5tet + p5t2et + 2p5tet

+ p6te
t + p6et + p6et

Substituting xp, x ¢p and x ¢¢p into differential equation and equating coefficients

of like terms, we get

p1 = 1, p2 = 3, p3 = 3.5, p4 = 2, p5 = – 1, p6 = – 3

Thus, the particular integral is

xp = t
2
 + 3t + 3.5 + 2e

3t
 – t

2
e

t
 – 3te

t

Therefore, the general solution is

x = xc + xp = k1e3t + k2e–2t + t2 + 3t + 3.5 + 2e3t – t2et – 3tet

Problem 10.7 Find the general solution of differential equation

d x

dt

d x

dt
x

2

2
2 35- -  = t sin t
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where x(0) = 5; x ¢(0) = 3

Solution The corresponding homogeneous equation is

d x

dt

d x

dt
x

2

2
2 35+ - = 0

The auxiliary equation is

(m2 + 2m – 35) = 0

The roots of the equation are

(m + 7) (m – 5) = 0

Thus the complementary function is

xc = k1e
–7t

 + k2e
+5t

x ¢c = – 7k1e –7t + 5k2e+5t

At t = 0, xc(0) = 5

k1 + k2 = 5

At t = 0, x¢c(0) = 3

– 7k1 + 5k2 = 3

Solving the above equations, we get

k1 = 1.83, k2 = 3.17

Therefore, the complementary function is

xc = 1.83 e–7t + 3.17 e–5t

To find the particular solution, we assume

xp = p1t sin t + p2t cos t + p3 sin t + p4 cos t

Then x ¢p = p1 sin t + p1t cos t + p2 cos t – p2 t sin t + p3 cos t – p4 sin t

x¢¢p = p1 cos t – p1t sin t + p1 cos t – p2 sin t – p2 sin t

– p2t cos t – p3 sin t – p4 cos t

Substituting xp, x¢p and x¢¢p into differential equation and equating coefficients

of like terms, we get

p1 = 1.01; p2 = 0.056; p3 = 0.05; p4 = 0.062

Thus the particular integral is

xp = 1.01t sin t + 0.056t cos t + 0.05 sin t + 0.062 cos t

Therefore, the complete solution is

x = xc + xp = 1.83e–7t + 3.17e–5t + 1.01t sin t + 0.056t cos t

+ 0.05 sin t + 0.062 cos t

Problem 10.8 For the series RL circuit shown in Fig. 10.6, find the current at

time t > 0. The switch is closed at t = 0. Assume the initial current in the circuit is

zero.
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ii

1010 WW

20 V20 V 0.5 H0.5 H

ss

Fig. 10.6

Solution By applying Kirchhoff’s law to the circuit, we have

0 5.
di

dt
 + 10i = 20

or
di

dt
 + 20i = 40

The auxiliary equation is

(m + 20) = 0

Therefore, the complementary function

ic = k1e–20t

The particular integral is

ip = 20e–20t z e20t dt = 
20

20
 = 1

Therefore, the complete solution is

i = ic + ip = k1e
–20t

 + 1

At t = 0, i(0) = 0

\ k1 = – 1

The complete solution is

i = (1 – e–20t) A

Problem 10.9 For the circuit shown in Fig. 10.7, find the current at t > 0. The

switch is closed at t = 0. Assume no initial charge on the capacitor.

ii

1010 WW

50 V50 V 22 10 F10 F¥¥ –4–4

ss

Fig. 10.7
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Solution By applying Kirchhoff’s law to the circuit, we have

10
1

2 10 4
i +

¥
-

 idt = 50

Differentiating the above equation, we get

10
2 10 4

di

dt

i
+

¥
-

= 0

di

dt
 + 0.5 ¥ 103i = 0

The auxiliary equation is

(m + 500) = 0

Since, the equation is a linear homogeneous one, there is no particular integral.

Therefore, the complementary function is

i = k1e–500t

At t = 0, the current passing through the circuit is i
V

R
= =

50

10
 = 5A

\ i (0) = 5

At t = 0, k1 = 5

The current equation becomes

i = 5e–500t

Problem 10.10 For the circuit shown in Fig. 10.8, determine the current at

any time t > 0. The switch is closed at t = 0. Assume that initial current and initial

charge on the capacitor are zero.

ii

3030 WW

100 V100 V

ss

0.2 H0.2 H

4040 FFmm

Fig. 10.8

Solution By applying Kirchhoff’s law, we have

30i + 0 2
1

40 10 6
.

di

dt
+

¥
- z idt = 100

Differentiating the above equation, we have

d i

dt

di

dt
i

2

2 6
150

1

8 10
+ +

¥
-

 = 0
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The roots of the auxiliary equation are

m1 = – 75 + j345.5

m2 = – 75 – j345.5

Hence, the current is

i = e
–75t

(c1 cos 345.5t + c2 sin 345.5t)A

At t = 0, i(0) = 0

\ c1 = 0

i¢ = c2{e–75t(345.5) cos 345.5t + e–75t (– 75) sin 345.5t}

At t = 0, the complete voltage appears across inductor

0 2.
di

dt
= 100

\
di

dt
= 500

\ At t = 0, i¢ (0) = 500

500 = c2 (345.5)

c2 = 1.45

Thus the required current is

i = 1.45e–75t sin 345.5t A

Practice Problems

10.1 Find the general solution of each of the following differential equations.

(a) 4 
d x

dt

d x

dt
x

2

2
12 5- +  = 0

(b) 4
2

2

d x

dt
x+  = 0

10.2 Find the general solution of each of the following differential equations.

(a)
d x

dt

d x

dt

d x

dt

5

5

4

4

3

3
2- +  = 0

(b)
d x

dt

d x

dt

d x

dt

d x

dt
x

4

4

3

3

2

2
6 15 20 12+ + + +  = 0

(c)
d x

dt

4

4
 = 0
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10.3 Find the general solution of each of the following differential equations.

(a)
d x

dt

d x

dt
x

2

2
6 8- +  = 0

where x(0) = 2 x¢(0) = 4

(b) 9 6
2

2

d x

dt

d x

dt
x- +  = 0

x (0) = 4; x ¢(0) = – 1

(c) 4 4 37
2

2

d x

dt

d x

dt
x+ +  = 0

where x (0) = 3, x¢(0) = – 2

(d)
d x

dt

d x

dt

d x

dt
x

3

3

2

2
5 9 5- + -  = 0

x (0) = 0, x¢(0) = 1, x¢(0) = 3

10.4 Solve the following differential equations

(a)
d x

dt

2

2
 + 

dx

dt
 + x = sin 2t

(b)
d x

dt

3

3
+ 3

d x

dt

dx

dt
x

2

2
3+ +  = e

–t

(c)
d x

dt

d x

dt

dx

dt
x

3

3

2

2
3 4 2- + -  = et + cos t

(d)
d x

dt

d x

dt
x

2

2
4 4- +  = 3t2 e2t sin 2t

(e)
d x

dt

d x

dt

4

4

2

2
2+  + x = t2 cos2 t

10.5 Solve the following differential equations

(a)
d x

dt

dx

dt
x

2

2
4 3− +  = 4te–3t

x(0) = 6x¢(0) = 3

(b)
d x

dt

2

2
 + 4x = 3te

t
 + 2e

t
 – sin t

x(0) = 1, x¢(0) = 0, x¢(0) = 2

(c)
d x

dt

dx

dt
x

2

2
6 9− +  = 8t2 + 3 – 6e2t

x¢¢(0) = 3, x¢(0) = 0, x(0) = 3

(d)
d x

dt

d x

dt

dx

dt
x

3

3

2

2
6 9 4- + -  = 2te2t + 6et

x(0) = 1, x¢(0) = 0
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10.6 For the circuit shown in Fig. 10.9, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

ii

1010 WW

100 V100 V

ss

1 F1 F

Fig. 10.9

10.7 For the circuit shown in Fig. 10.10, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial current in the circuit.

ii

1010 WW

50 V50 V

ss

1 H1 H

Fig. 10.10

10.8 For the circuit shown in Fig. 10.11, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

ii

1010 WW

100 V100 V

ss

0.2 H0.2 H

2020 FFmm

Fig. 10.11

10.9 For the circuit shown in Fig. 10.12, determine the current at any time t > 0.

The switch is closed at t = 0.

Fig. 10.12
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10.10 For the circuit shown in Fig. 10.13, determine the current at any time t > 0.

The switch is closed at t = 0. Assume no initial charge on the capacitor.

Fig. 10.13

Objective-type Questions

1. The degree of the differential equation 1
2 3 2

+
F
H

I
K

L

N
M

O

Q
P

dy

dx

/

 = 5
2

2

d y

dx
 is

(a) two (b) three

(c) one (d) four

2. The particular integral of the equation 
d y

dx
y

4

4
4+  = x4 will be

(a)
1

4
 (x4 – 6) (b)

1

4
 (x6 – 6)

(c)
1

4
 (x6 + 6) (d)

1

4
 (x + 6)

3. The differential equation 
d y

dx

a

x

dy

dx
k y

2

2

2
+ +  = 0, where a is any con-

stant, can be expressed as y(x) = xn[c1Jn(kx) + c2J–n(kx)] where n is

(a) an odd integer (b) an integer

(c) an even integer (d) a fraction

4. The Bessal’s differential equation xy≤ + xy¢ + xy = 0 is a

(a) linear non-homogeneous equation

(b) non-linear equation

(c) non-linear homogeneous equation with constant coefficients

(d) linear homogeneous with variable coefficients

5. The general solution of (D2 + 4)y = 0 is

(a) y = A cos (2x + B) (b) y = Ae2x + Be–2x

(c) y = A cos 2x + B sin 2x (d) y = e2x (A – Bx)
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6. The complementary function of (D2 + 9)y = 1 is

(a)
1

9
(b)

− 1

9

(c) c1e
3x

 + c2e
–3x

(d) c1 sin 3x + c2 cos 3x

7. The solution of the differential equation

y≤(t) – 2y¢(t) + y(t) = 1 is

(a) y(t) = c1e
t
 + c2e

–t
 + 1 (b) y(t) = (c1 + c2t)e

t
 + 1

(c) y(t) = (c1 + c2t)e–t + 1 (d) y(t) = (c1 + c2)te
t – 1

8. The differential equation of an electric current containing resistance R and

a capacitor C in series with the voltage source V is

(a)
dV

dt
 = Ri

C
idt+ z 1

(b)
dV

dt
 = R

di

dt C
idt+ z 1

(c)
dV

dt
 = R

di

dt

i

C
+ (d) V = R

di

dt

i

C
+

9. The particular integral of differential equation

3 2
2

2
x

d y

dx
x

dy

dx
y+ +  = x is

(a) x (b)
x

2

(c)
x

3
(d) x4

10. The differential equation of an electric current containing resistance R and

an inductor L in series with a constant voltage source V is

(a) V = R z idt + Li (b) V = Ri + L 
di

dt
dtF

H
I
Kz

(c) V = Ri + L z  idt (d)
d i

dt

R

L

di

dt

2

2
+  = 0
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Transients

11.1 STEADY STATE AND TRANSIENT RESPONSE

A circuit having constant sources is said to be in steady state if the currents and

voltages do not change with time. Thus, circuits with currents and voltages

having constant amplitude and constant frequency sinusoidal functions are also

considered to be in a steady state. That means that the amplitude or frequency of

a sinusoid never changes in a steady state circuit.

In a network containing energy storage elements, with change in excitation,

the currents and voltages change from one state to other state. The behaviour of

the voltage or current when it is changed from one state to another is called the

transient state. The time taken for the circuit to change from one steady state to

another steady state is called the transient time. The application of KVL and

KCL to circuits containing energy storage elements results in differential, rather

than algebraic, equations. When we consider a circuit containing storage

elements which are independent of the sources, the response depends upon the

nature of the circuit and is called the natural response. Storage elements deliver

their energy to the resistances. Hence the response changes with time, gets

saturated after some time, and is referred to as the transient response. When we

consider sources acting on a circuit, the response depends on the nature of the

source or sources. This response is called forced response. In other words, the

complete response of a circuit consists of two parts: the forced response and the

transient response. When we consider a differential equation, the complete

solution consists of two parts: the complementary function and the particular

solution. The complementary function dies out after short interval, and is referred

to as the transient response or source free response. The particular solution is the

steady state response, or the forced response. The first step in finding the

complete solution of a circuit is to form a differential equation for the circuit. By

obtaining the differential equation, several methods can be used to find out the

complete solution.
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11.2 DC RESPONSE OF AN R-L CIRCUIT

Consider a circuit consisting of a resistance and inductance as shown in

Fig. 11.1. The inductor in the circuit is initially uncharged and is in series with

the resistor. When the switch S is closed, we can find the complete solution for

the current. Application of Kirchhoff’s voltage law to the circuit results in the

following differential equation.

V i

s R

L
+
–

Fig. 11.1

V = Ri + L
di

dt
(11.1)

or
di

dt

R

L
i+ = 

V

L
(11.2)

In the above equation, the current i is the solution to be found and V is the

applied constant voltage. The voltage V is applied to the circuit only when the

switch S is closed. The above equation is a linear differential equation of first

order. Comparing it with a non-homogeneous differential equation

dx

dt
 + Px = K (11.3)

whose solution is

x = e–pt z Ke+Pt dt + ce–Pt (11.4)

where c is an arbitrary constant. In a similar way, we can write the current

equation as

i = ce–(R/L)t + e–(R/L)t 
V

L
z  e(R/L)t dt

\ i = ce–(R/L)t + 
V

R
(11.5)

To determine the value of c in Eq. 11.5, we use the initial conditions. In the

circuit shown in Fig. 11.1, the switch S is closed at t = 0. At t = 0–, i.e. just before

closing the switch S, the current in the inductor is zero. Since the inductor does

not allow sudden changes in currents, at t = 0+ just after the switch is closed, the

current remains zero.

Thus at t = 0, i = 0
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Substituting the above condition in Eq. 11.5, we have

0 = c + 
V

R

Hence c = −
V

R

Substituting the value of c in Eq. 5, we get

i = 
V

R

V

R

R

L
t- -FH
I
Kexp

i = 
V

R

R

L
t1 − −

F
H

I
K

F
H

I
Kexp (11.6)

Equation 11.6 consists of two parts, the steady state part V/R, and the transient

part (V/R)e–(R/L)t. When switch S is closed, the response reaches a steady state

value after a time interval as shown in Fig. 11.2.

Fig. 11.2

time at which the exponent of e is unity, where e is the base of the natural

logarithms. The term L/R is called the time constant and is denoted by t

\ t = 
L

R
 sec

\ The transient part of the solution is

i = − −
F
H

I
K

V

R

R

L
texp  = − −V

R
e t /t

At one TC, i.e. at one time constant, the transient term reaches 36.8 percent of

its initial value.

i(t) = − −V

R
e t /t  = − −V

R
e 1  = − 0 368.

V

R

Similarly,

i(2t) = − −V

R
e 2  = – 0.135 

V

R

Here the transition period is defined as

the time taken for the current to reach its

final or steady state value from its initial

value. In the transient part of the solution,

the quantity L/R is important in describing

the curve since L/R is the time required for

the current to reach from its initial value

of zero to the final value V/R. The time

constant of a function 
V

R
e

R
L

t- d i
 is the
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i(3t) = − −V

R
e 3  = – 0.0498 

V

R

i(5t) = − −V

R
e 5  = – 0.0067 

V

R

After 5 TC, the transient part reaches more than 99 percent of its final value.

In Fig. 11.1, we can find out the voltages and powers across each element by

using the current.

Voltage across the resistor is

vR = Ri = R
V

R

R

L
t× − −

F
H

I
K

L
NM

O
QP1 exp

\ vR = V
R

L
t1 − −

F
H

I
K

L
NM

O
QPexp

Similarly, the voltage across the inductance is

vL = L
di

dt

= L
V

R

R

L

R

L
t V

R

L
t¥ -FH

I
K = -FH

I
Kexp exp

The response are shown in Fig. 11.3

Power in the resistor is

pR = vR i = V
R

L
t1 - -FH
I
K

F
H

I
Kexp 1 - -FH

I
K

F
H

I
Kexp

R

L
t

V

R

= 
V

R

R

L
t

R

L
t

2

1 2
2

- -FH
I
K + -FH

I
K

F
H

I
Kexp exp

Power in the inductor is

pL = vL i = V exp -FH
I
K ¥ - -FH

I
K

F
H

I
K

R

L
t

V

R

R

L
t1 exp

= 
V

R

R

L
t

R

L
t

2 2
exp exp-FH

I
K - -FH

I
K

F
H

I
K

The responses are shown in Fig. 11.4.

Fig. 11.3 Fig. 11.4
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Example 11.1 A series RL circuit with R = 30 W and L = 15 H has a constant

voltage V = 60 V applied at t = 0 as shown in Fig. 11.5. Determine the current i,

the voltage across resistor and the voltage across the inductor.

Fig. 11.5

Solution By applying Kirchhoff’s voltage law, we get

15
d i

dt
 + 30i = 60

\
d i

dt
 + 2i = 4

The general solution for a linear differential equation is

i = ce-Pt + e-Pt z  KePt dt

where P = 2, K = 4

\ i = ce-2t + e-2t z  4e2t dt

\ i = ce-2t + 2

At t = 0, the switch S is closed.

Since the inductor never allows sudden changes in currents. At t = 0+ the

current in the circuit is zero.

Therefore at t = 0+, i = 0

\ 0 = c + 2

\ c = - 2

Substituting the value of c in the current equation, we have

i = 2(1 - e-2t) A

Voltage across resistor vR = iR

= 2(1 - e-2t ) ¥ 30 = 60 (1 - e-2t ) V

Voltage across inductor vL = L
d i

dt

= 15 ¥ 
d

dt
 2(1 - e-2t ) = 30 ¥ 2e-2t = 60e-2t V
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V = Ri + 
1

C
 z i dt (11.7)

By differentiating the above equation, we get

0 = R
d i

dt

i

C
+ (11.8)

or
di

dt RC
i+

1
= 0 (11.9)

Equation 11.9 is a linear differential equation with only the complementary

function. The particular solution for the above equation is zero. The solution for

this type of differential equation is

i = ce-t/RC (11.10)

Here, to find the value of c, we use the initial conditions.

In the circuit shown in Fig. 11.6, switch S is closed at t = 0. Since the capacitor

never allows sudden changes in voltage, it will act as a short circuit at t = 0+. So,

the current in the circuit at t = 0+ is V/R

\ At t = 0, the current i = 
V

R

Substituting this current in Eq. 11.10, we get

V

R
 = c

\ The current equation becomes

i = 
V

R
e t RC- / (11.11)

Consider a circuit consisting of resistance and

capacitance as shown in Fig. 11.6. The

capacitor in the circuit is initially uncharged,

and is in series with a resistor. When the switch

S is closed at t = 0, we can determine the

complete solution for the current. Application

of the Kirchhoff’s voltage law to the circuit

results in the following differential equation.

11.3 DC RESPONSE OF AN R-C CIRCUIT

Fig. 11.6

When switch S is closed, the

response decays with time as shown in

Fig. 11.7.

In the solution, the quantity RC is

the time constant, and is denoted by t,

where t = RC sec
Fig. 11.7
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After 5 TC, the curve reaches 99 per cent of its final value. In Fig. 11.6, we

can find out the voltage across each element by using the current equation.

Voltage across the resistor is

vR
 
= Ri = R ¥ 

V

R
 e
-(1/RC)t 

; vR = V e

t

RC
-

Similarly, voltage across the capacitor is

vC = 
1

C z  i dt

= 
1

C z V

R
 e-t/RC dt

= - ¥F
H

I
K

-V

RC
RC e

t RC/  + c = - Ve-t/RC + c

At t = 0, voltage across capacitor is zero

\ c = V

\ vC = V(1 - e-t/RC)

The responses are shown in Fig. 11.8.

Power in the resistor

pR = vRi = Ve
-t/RC

 ¥ 
V

R
e

V

R
et RC t RC- -=/ /

2
2

Power in the capacitor

pC = vCi = V(1 - e-t/RC) 
V

R
e t RC- /

= 
V

R

2

 (e-t/RC - e-2t/RC)

The responses are shown in Fig. 11.9.

Example 11.2 A series RC circuit consists of resistor of 10 W and capacitor of

0.1 F as shown in Fig. 11.10. A constant voltage of 20 V is applied to the circuit at

t = 0. Obtain the current equation. Determine the voltages across the resistor and
the capacitor.

Fig. 11.9Fig. 11.8
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ii

ss 1010 WW
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ss 1010 WW

Fig. 11.10

Solution BY applying Kirchhoff’s law, we get

10
1

0 1
i i dt+ z.

 = 20

Differentiating with respect to t we get

10
0 1

d i

dt

i
+

.
= 0

\
d i

dt
i+ = 0

The solution for the above equation is i = ce-t

At t = 0, switch S is closed. Since the capacitor does not allow sudden changes

in voltage, the current in the circuit is i = V/R = 20/10 = 2 A.

At t = 0, i = 2 A.

\ The current equation i = 2e-t

Voltage across the resistor is vR = i ¥ R = 2e-t ¥ 10 = 20e-t V

Voltage across the capacitor is vC = V e

t

RC1-
F
HG

I
KJ

-

= 20 (1 - e-t ) V

11.4 DC RESPONSE OF AN R-L-C CIRCUIT

Consider a circuit consisting of resistance, inductance and capacitance as shown

in Fig. 11.11. The capacitor and inductor are initially uncharged, and are in series

with a resistor. When switch S is closed

at t = 0, we can determine the complete

solution for the current. Application of

Kirchhoff’s voltage law to the circuit

results in the following differential

equation.

V = Ri L
di

dt C
idt+ + z1

(11.12)

By differentiating the above equation, we have

0 = R
di

dt
L

d i

dt C
i+ +

2

2

1
(11.13)

Fig. 11.11
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or
d i

dt

R

L

di

dt LC
i

2

2

1
+ +  = 0 (11.14)

The above equation is a second order linear differential equation, with only

complementary function. The particular solution for the above equation is zero.

Characteristic equation for the above differential equation is

D
R

L
D

LC

2 1
+ +F

H
I
K  = 0 (11.15)

The roots of Eq. 11.15 are

D1, D2 = - ± F
H

I
K -

R

L

R

L LC2 2

1
2

By assuming K1 = -
R

L2
 and K2 = 

R

L LC2

1
2F

H
I
K -

D1 = K1 + K2 and D2 = K1 - K2

Here K2 may be positive, negative or zero.

K2 is positive, when 
R

L2

2F
H

I
K  > 1/LC

The roots are real and unequal, and give the over damped response as shown

in Fig. 11.12. Then Eq. 11.14 becomes

[D – (K1 + K2)] [D – (K1 – K2)] i = 0

The solution for the above equation is

i = c1e
(K1 + K2) t + c2 e(K1 – K2)t

Fig. 11.12

The current curve for the overdamped

case is shown in Fig. 11.12.

K2 is negative, when (R/2L)2 < 1/LC

The roots are complex conjugate, and

give the underdamped response as shown

in Fig. 11.13. Then Eq. 11.14 becomes

[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

i = eK1t [c1 cos K2t + c2 sin K2t]

The current curve for the underdamped case is shown in Fig. 11.13.

K2 is zero, when (R/2L)
2
 = 1/LC

The roots are equal, and give the

critically damped response as shown in

Fig. 11.14. Then Eq. 11.14 becomes

(D – K1) (D – K1)i = 0

The solution for the above equation is

i = eK1t (c1 + c2t)
Fig. 11.13
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The current curve for the critically damped case is shown in Fig. 11.14.

Fig. 11.14

Example 11.3 The circuit shown in Fig. 11.15 consists of resistance,

inductance and capacitance in series with a 100 V constant source when the

switch is closed at t = 0. Find the current transient.

Solution At t = 0, switch S is closed when the 100 V source is applied to the

circuit and results in the following differential equation.

100 = 20i + 0.05 
di

dt
idt+

¥ - z1

20 10 6
(11.16)

i

s R

20 W

C

L 0.05 H

20 Fm

100 V

Fig. 11.15

Differentiating the Eq. 11.16, we get

0 05 20
1

20 10

2

2 6
.

d i

dt

di

dt
i+ +

¥ -
= 0

d i

dt

di

dt
i

2

2
6400 10+ + = 0

\ (D2 + 400D + 106)i = 0

D1, D2 = - ± F
H

I
K -

400

2

400

2
10

2
6

= – 200 ± ( ) -200 102 6

D1 = – 200 + j 979.8

D2 = – 200 – j 979.8

Therefore the current

i = e+k1 t [c1 cos K2t + c2 sin K2t)]

i = e–200t [c1 cos 979.8t + c2 sin 979.8t)] A

At t = 0, the current flowing through the circuit is zero

i = 0 = (1) [c1 cos 0 + c2 sin 0]
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\ c1 = 0

\ i = e–200t c2 sin 979.8t A

Differentiating, we have

di

dt
 = c2 [e–200t 979.8 cos 979.8t + e–200t (– 200) sin 979.8t)]

At  t = 0, the voltage across inductor is 100 V

\ L
di

dt
= 100

or
di

dt
= 2000

At  t = 0
di

dt
= 2000 = c2 979.8 cos 0

\ c2 = 
2000

979 8.
 = 2.04

The current equation is

i = e–200t (2.04 sin 979.8t) A

11.5 SINUSOIDAL RESPONSE OF R-L CIRCUIT

Consider a circuit consisting of resistance and inductance as shown in Fig. 11.16.

The switch, S, is closed at t = 0. At t = 0, a sinusoidal voltage V cos (w t + q) is

applied to the series R-L circuit,

where V is the amplitude of the wave

and q is the phase angle. Application

of Kirchhoff’s voltage law to the

circuit results in the following

differential equation.

V cos (w t + q) = R i + L 
di

dt
(11.17)

\
di

dt

R

L
i+ = 

V

L
 cos (w t + q)

The corresponding characteristic equation is

D
R

L
i+F

H
I
K  = 

V

L
 cos (w t + q) (11.18)

For the above equation, the solution consists of two parts, viz. complementary

function and particular integral.

The complementary function of the solution i is

ic = ce–t (R/L) (11.19)

The particular solution can be obtained by using undetermined co-efficients.

Fig. 11.16
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By assuming ip = A cos (w t + q) + B sin (w t + q) (11.20)

i¢p = – Aw sin (w t + q) + Bw cos (w t + q) (11.21)

Substituting Eqs 11.20 and 11.21 in Eq. 11.18, we have

{– Aw sin (w t + q) + Bw cos (w t + q) + 
R

L
 {A cos (w t + q)

+ B sin (w t + q )} = 
V

L
 cos (w t + q)

or - +F
H

I
KA

BR

L
w  sin (w t + q) + B

AR

L
w +F

H
I
K  cos (w t + q) = 

V

L
 cos (w t + q)

Comparing cosine terms and sine terms, we get

– Aw + 
BR

L
= 0

Bw + 
AR

L
= 

V

L
From the above equations, we have

A = V
R

R L2 2+ ( )w

B = V
L

R L

w

w2 2+ ( )

Substituting the values of A and B in Eq. 11.20, we get

ip = V
R

R L2 2+ ( )w
 cos (w t + q) + V

L

R L

w

w2 2+ ( )
 sin (w t + q) (11.22)

Putting M cos f = 
VR

R L2 2+ ( )w

and M sin f = V
L

R L

w

w2 2+ ( )
,

to find M and f, we divide one equation by the other

M

M

sin

cos

f

f
 = tan f = 

wL

R

Squaring both equations and adding, we get

M2 cos2 f + M 2 sin2 f = 
V

R L

2

2 2+ ( )w

or M = 
V

R L2 2+ ( )w

\ The particular current becomes

ip = 
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan (11.23)
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The complete solution for the current i = ic + ip

i = ce–t(R/L) + 
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan

Since the inductor does not allow sudden changes in currents, at t = 0, i = 0

\ c = – 
V

R L

L

R2 2

1

+
-F

H
I
K

( )

-

w
q

w
cos tan

The complete solution for the current is

i = e–(R/L) t 
-

+
-F

H
I
K

L

N
M
M

O

Q
P
P( )

-V

R L

L

R2 2

1

w
q

w
cos tan

+ 
V

R L
t

L

R2 2

1

+
+ -F

H
I
K

( )

-

w
w q

w
cos tan

Example 11.4 In the circuit shown in Fig. 11.17, determine the complete

solution for the current, when switch S is closed at t = 0. Applied voltage is v(t) =
100 cos (103t + p/2). Resistance R = 20 W and inductance L = 0.1 H.

Fig. 11.17

Solution By applying Kirchhoff’s voltage law to the circuit, we have

20i + 0.1 
di

dt
= 100 cos (103 t + p/2)

di

dt
 + 200i = 1000 cos (1000t + p/2)

(D = 200)i = 1000 cos (1000t + p/2)

The complementary function ic = ce–200t

By assuming particular integral as

ip = A cos (w t + q) + B sin (w t + q )

we get

ip = 
V

R L
t

L

R2 2

1

+ ( )
+ -F

H
I
K

-

w
w q

w
cos tan

where w = 1000 rad/sec V = 100 V

q = p/2

L = 0.1 H, R = 20 W
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Substituting the values in the above equation, we get

ip = 
100

20 1000 0 1
1000

2

100

202 2

1

( ) + ¥( )
+ -F

H
I
K

-

.
cos tant

p

= 
100

101 9
1000

2
78 6

.
cos .t + - ∞F

H
I
K

p

= 0.98 cos 1000
2

78 6t + - ∞F
H

I
K

p
.

The complete solution is

i = ce–200t + 0.98 cos 1000
2

78 6t + - ∞F
H

I
K

p
.

At t = 0, the current flowing through the circuit is zero, i.e. i = 0

\ c = – 0.98 cos 
p

2
78 6- ∞F

H
I
K.

\ The complete solution is

i = - - ∞F
H

I
K

L
NM

O
QP0 98

2
78 6. cos .

p
 e–200t + 0.98 cos 1000

2
78 6t + - ∞F

H
I
K

p
.

11.6 SINUSOIDAL RESPONSE OF R-C CIRCUIT

Consider a circuit consisting of resistance and capacitance in series as shown in

Fig. 11.18. The switch, S, is closed at t = 0. At t = 0, a sinusoidal voltage V cos

i

s R

CV tcos ( + )w q

(w t + q) is applied to the R-C circuit,

where V is the amplitude of the wave

and q is the phase angle. Applying

Kirchhoff’s voltage law to the circuit

results in the following differential

equation.

V cos (w t + q) = Ri
C

idt+ z1
(11.24)

R
di

dt

i

C
+ = – Vw sin (w t + q)

D
RC

i+F
H

I
K

1
= – 

V

R

w
 sin (w t + q) (11.25)

The complementary function iC = ce–t/RC (11.26)

The particular solution can be obtained by using undetermined coefficients.

ip = A cos (w t + q) + B sin (w t + q) (11.27)

i ¢P = – Aw sin (w t + q) + Bw cos (w t + q) (11.28)

Substituting Eqs 11.27 and 11.28 in Eq. 11.25, we get

{ – Aw sin (w t + q) + Bw cos (w t + q)}

+ 
1

RC
 {A cos (w t + q) + B sin (w t + q)}

Fig. 11.18
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= – 
V

R

w
 sin (w t + q)

Comparing both sides, - +A
B

RC
w  = – 

V

R

w

Bw + 
A

RC
 = 0

From which,

A = 
VR

R
c

2
2

1
+ F

H
I
Kw

and B = 
-

+
F
HG

I
KJ

L

N
M

O

Q
P

V

C R
c

w
w

2

2
1

Substituting the values of A and B in Eq. 11.27, we have

ip = 
VR

R
c

2
2

1
+ F

H
I
Kw

 cos (w t + q) + 
-

+ F
H

I
K

L
NM

O
QP

V

C R
C

w
w

2
2

1
 sin (w t + q)

Putting M cos f = 
VR

R
C

2
2

1
+ F

H
I
K

L
NM

O
QPw

and M sin f = 
V

C R
C

w
w

2
2

1
+ F

H
I
K

L
NM

O
QP

To find M and f, we divide one equation by the other,

M

M

sin

cos

f

f
 = tan f = 

1

wCR

Squaring both equations and adding, we get

M 2 cos2 f + M2 sin2 f = 
V

R
C

2

2
2

1
+ F

H
I
K

L
NM

O
QPw

\ M = 
V

R
C

2
2

1
+ F

H
I
Kw

The particular current becomes

ip = 
V

R
C

t
CR

2
2

1

1

1

+ F
H

I
K

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (11.29)
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The complete solution for the current i = ic + ip

\  i = ce–(t/RC) + 
V

R
C

t
CR

2
2

1

1

1

+ F
H

I
K

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (11.30)

Since the capacitor does not allow sudden changes in voltages at t = 0, i = 
V

R

cos q

\
V

R
cos q = c

V

R
C

CR
+

+
F
HG

I
KJ

+
F
HG

I
KJ

-

2
2

1

1

1

w

q
w

cos tan

c = 
V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
F
HG

I
KJ

+
F
HG

I
KJ

-

2
2

1

1

1

The complete solution for the current is

i = e–(t/RC) V

R

V

R
C

CR
cos cos tanq

w

q
w

-

+
F
HG

I
KJ

+
F
HG

I
KJ

L

N

M
M
M
M
M

O

Q

P
P
P
P
P

-

2
2

1

1

1

+ 
V

R
C

t
CR

2
2

1

1

1

+
F
HG

I
KJ

+ +
F
HG

I
KJ

-

w

w q
w

cos tan (11.31)

Example 11.5 In the circuit shown in Fig. 11.19, determine the complete

solution for the current when switch S is closed at t = 0. Applied voltage is

v(t) = 50 cos 10
4

2t +F
H

I
K

p
. Resistance R = 10 W and capacitance C = 1 m F.

i (t)

s 10 W

1 Fm50 cos (100 + /4)t p

Fig. 11.19

Solution By applying Kirchhoff’s voltage law to the circuit, we have

10
1

1 10 6
i idt+

¥ - z = 50 cos 100
4

t +F
H

I
K

p
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10
1 10 6

di

dt

i
+

¥ -
= – 5(10)3 sin 100

4
t +F

H
I
K

p

di

dt

i
+

-10 5
= – 500 sin 100

4
t +F

H
I
K

p

D +F
H

I
K-

1

10
5

i = – 500 sin 100
4

t +F
H

I
K

p

The complementary function is iC = ce–t/10–5

. By assuming particular integral

as ip = A cos (w t + q) + B sin (w t + q),

we get ip = 
V

R
C

t
CR

2
2

1

1

1

+
F
HG

I
KJ

+ +
F
HG

I
KJ

-

w

w q
w

cos tan

where w = 100 rad/sec q = p/4

C = 1mF R = 10 W

Substituting the values in the above equation, we have

ip = 
50

10
1

100 10

4

1

100 10 10
2

6

2

1

6

( ) +
¥

F
HG

I
KJ

+ +
¥ ¥

F
HG

I
KJ

-

-

-
cos tanw

p
t

ip = 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞F
H

I
K

p
.

At t = 0, the current flowing through the circuit is

V

R
 cos q = 50

10
 cos p/4 = 3.53 A

i = 
V

R
 cos q = 3.53 A

\ i = ce–t/10–5

 + 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞F
H

I
K

p
.

At t = 0

c = 3.53 – 4.99 ¥ 10–3 cos 
p

4
89 94+ ∞F

H
I
K.

Hence the complete solution is

i = 3 53 4 99 10
4

89 943. . cos .- ¥ + ∞F
H

I
K

L
NM

O
QP

- p
 e–(t/10–5)

+ 4.99 ¥ 10–3 cos 100
4

89 94t + + ∞F
H

I
K

p
.

11.7 SINUSOIDAL RESPONSE OF R-L-C CIRCUIT

Consider a circuit consisting of resistance, inductance and capacitance in series

as shown in Fig. 11.20. Switch S is closed at t = 0. At t = 0, a sinusoidal voltage
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V cos (w t + q) = Ri + L
di

dt C
idt+ z1

(11.32)

Differentiating the above equation, we get

R
di

dt
L

d i

dt
i C+ +

2

2
/ = – V w sin (w t + q)

D
R

L
D

LC
i2 1

+ +F
H

I
K = – 

V

L

w
 sin (w t + q) (11.33)

The particular solution can be obtained by using undetermined coefficients.

By assuming

ip = A cos (w t + q) + B sin (w t + q) (11.34)

i¢p = – Aw sin (wt + q) + Bw cos (w t + q) (11.35)

i¢¢p = – Aw2 cos (w t + q) – Bw2 sin (w t + q) (11.36)

Substituting ip, i¢p and i¢¢p in Eq. 11.33, we have

{– Aw
2
 cos (w t + q) – Bw

2
 sin (w t + q)}

+ 
R

L
 {– Aw sin (w t + q) + Bw cos (w t + q)}

+ 
1

LC
 {A cos (w t + q) + B sin (w t + q)} = – 

V

L

w
 sin (w t + q) (11.37)

Comparing both sides, we have

Sine coefficients.

– Bw
2
 – A

R

L

B

LC

w
+ = -

V

L

w

A
R

L
B

LC

w
wF

H
I
K + -F

H
I
K

2 1
= 

V

L

w
(11.38)

Cosine coefficients

– Aw2 + B
R

L

A

LC

w
+ = 0

A
LC

B
R

L
w

w2 1
-F

H
I
K -

F
H

I
K = 0 (11.39)

Solving Eqs 11.38 and 11.39, we get

V cos (w t + q) is applied to the RLC

series circuit, where V is the

amplitude of the wave and q is the

phase angle. Application of

Kirchhoff’s voltage law to the

circuit results in the following

differential equation.
Fig. 11.20

ii tt( )( )

ss RR

CC

LL

VV t +t +cos (cos ( ))ww qq
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A = 

V
R

L

R

L LC

¥

F
H

I
K - -F

H
I
K

L
NM

O
QP

w

w
w

2

2

2
2

2
1

B = 

w w

w
w

2

2
2

2

1

1

-F
H

I
K

F
H

I
K - -F

H
I
K

L
NM

O
QP

LC
V

L
R

L LC

Substituting the values of A and B in Eq. 11.34, we get

ip = 

V
R

L

R

L LC

w

w
w

2

2

2
2

2
1F

H
I
K - -F

H
I
K

L
NM

O
QP

 cos (w t + q)

+ 

w w

w
w

2

2
2

2

1

1

-F
H

I
K

F
H

I
K - -F

H
I
K

L
NM

O
QP

LC
V

L
R

L LC

 sin (w t + q) (11.40)

Putting M cos f = 

V
R

L

R

L LC

w

w
w

2

2

2
2

2
1F

H
I
K - -F

H
I
K

and M sin f = 

V
LC

L
R

L LC

w w

w
w

2

2
2

2

1

1

-F
H

I
K

F
H

I
K - -F

H
I
K

L
NM

O
QP

To find M and f we divide one equation by the other

or
M

M

sin

cos

f

f
= tan f = 

w
w

L
C

R

-
F
HG

I
KJ

1

f = tan–1 w
w

L
C

R-
F
HG

I
KJ

L
NM

O
QP

1

Squaring both equations and adding, we get

M2 cos2 f + M2 sin2 f = 
V

R
C

L

2

2

2
1

+ -
F
HG

I
KJw

w
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\ M = 
V

R
C

L2
2

1
+ -

F
HG

I
KJw

w

The particular current becomes

ip = 
V

R
C

L

t
C

L

R
2

2

1

1

1

+ -
F
HG

I
KJ

+ +

-
F
HG

I
KJ

L

N

M
M
M
M

O

Q

P
P
P
P

-

w
w

w q
w

w

cos tan (11.41)

The complementary function is similar to that of DC series RLC circuit.

To find out the complementary function, we have the characteristic equation

D
R

L
D

LC

2 1
+ +F

H
I
K  = 0 (11.42)

The roots of Eq. 11.42, are

D1, D2 = 
-

± F
H

I
K -

R

L

R

L LC2 2

1
2

By assuming K1 = -
R

L2
 and K2 = 

R

L L C2

1
2F

H
I
K -

\ D1 = K1 + K2 and D2 = K1 – K2

K2 becomes positive, when (R/2L)2 > 1/LC

The roots are real and unequal, which gives an overdamped response. Then

Eq. 11.42 becomes

[D – (K1 + K2)] [D – (K1 – K2)]i = 0

The complementary function for the above equation is

ic = c1e
(K1 + K2)t + c2e(K1 – K2) t

Therefore, the complete solution is

i = ic + ip

= c1e(K1 + K2) t + c2e
(K1 – K2)t

+ 
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
F
HG

I
KJ

+ + -
F
HG

I
KJ

L
NM

O
QP

-

w
w

w q
w

w
cos tan

K2 becomes negative, when 
R

L LC2

1
2F

H
I
K <

Then the roots are complex conjugate, which gives an underdamped response.

Equation 11.42 becomes
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[D – (K1 + jK2)] [D – (K1 – jK2)]i = 0

The solution for the above equation is

ic = eK1t [c1 cos K2t + c2 sin K2t]

Therefore, the complete solution is

i = ic + ip

\ i = eK1t [c1 cos K2t + c2 sin K2t]

+ 
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
F
HG

I
KJ

+ + -
F
HG

I
KJ

L
NM

O
QP

-

w
w

w q
w

w
cos tan

K2 becomes zero, when 
R

L
LC

2
1

2F
H

I
K = /

Then the roots are equal which gives critically damped response. Then,

Eq. 11.42 becomes (D – K1) (D – K1)i = 0.

The complementary function for the above equation is

ic = eK1t (c1 + c2t)

Therefore, the complete solution is i = ic + ip

\ i = eK1t [c1 + c2t]

+ 
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
F
HG

I
KJ

+ + -
F
HG

I
KJ

L
NM

O
QP

-

w
w

w q
w

w
cos tan

Example 11.6 In the circuit shown in Fig. 11.21, determine the complete
solution for the current, when the switch is closed at t = 0. Applied voltage is v(t)

= 400 cos 500
4

t +F
H

I
K

p
. Resistance R = 15 W, inductance L = 0.2 H and

capacitance C = 3mF.

Fig. 11.21

Solution By applying Kirchhoff’s voltage law to the circuit,

15 0 2
1

3 10 6
i t

di t

dt
( ) +

( )
+

¥ - z. i(t)dt = 400 cos 500
4

t +F
H

I
K

p

Differentiating the above equation once, we get
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15 0 2
3 10

2

6

di

dt

d i

dt

i
+ +

¥ -
.  = – 2 ¥ 105 sin 500

4
t +F

H
I
K

p

(D2 + 75D + 16.7 ¥ 105)i = 
- ¥2 10

0 2

5

.
 sin 500

4
t +F

H
I
K

p

The roots of the characteristic equation are

D1 = – 37.5 + j1290 and D2 = – 37.5 – j1290

The complementary current

ic = e–37.5t (c1 cos 1290t + c2 sin 1290t)

Particular solution is

ip = 
V

R
C

L

t
CR

L

R
2

2

1

1

1

+ -
F
HG

I
KJ

+ + -
F
HG

I
KJ

L
NM

O
QP

-

w
w

w q
w

w
cos tan

\ ip = 0.71 cos 500
4

88 5t + + ∞F
H

I
K

p
.

The complete solution is

i = e–37.5t (c1 cos 1290t + c2 sin 1290t) + 0.71 cos (500t + 45° + 88.5°)

A t t = 0, i0 = 0

\ c1 = – 0.71 cos (133.5°) = + 0.49

Differentiating the current equation, we have

di

dt
 = e–37.5t (– 1290c1 sin 1290t + c2 1290 cos 1290t)

– 37.5e–37.5t (c1 cos 1290t + c2 sin 1290t)

– 0.71 ¥ 500 sin (500t + 45° + 88.5°)

At t = 0, 
di

dt
 = 1414

\ 1414 = 1290c2 – 37.5 ¥ 0.49 – 0.71 ¥ 500 sin (133.5°)

1414 = 1290c2 – 18.38 – 257.5

\ c2 = 1.31

The complete solution is

i = e–37.5t (0.49 cos 1290t + 1.31 sin 1290t) + 0.71 cos (500t + 133.5°)

Solved Problems

Problem 11.1 For the circuit shown in Fig. 11.22, find the current equation

when the switch is changed from position 1 to position 2 at t = 0.
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20 W

2

1 30 W

0.2 H100 V

Fig. 11.22

Solution When the switch is at position 2, the current equation can be written

by using Kirchhoff’s voltage law as

30i(t) + 0.2 
di t

dt

( )
= 0

D i+
F
HG

I
KJ

30

0 2.
= 0

(D + 150)i = 0

\ i = c1e–150t

At t = 0, the switch is changed to position 2, i.e. i(0) = c1.

At t = 0, the initial current passing through the circuit is the same as the current

passing through the circuit when the switch is at position 1. At t = 0
–
, the switch

is at position 1, and the current passing through the circuit i = 100/50 = 2 A.

At t = 0+, the switch is at position 2. Since the inductor does not allow sudden

changes in current, the same current passes through the circuit. Hence the initial

current passing through the circuit, when the switch is at position 2 is i (0+) = 2A.

\ c1 = 2 A

Therefore the current i = 2e–150t

Problem 11.2 For the circuit shown in Fig. 11.23, find the current equation

when the switch is opened at t = 0.

Fig. 11.23

Solution At t = 0, switch S is opened. By using Kirchhoff’s voltage law, the

current equation can be written as

20i + 20i + 2 
di

dt
= 0

40i + 2 
di

dt
= 0
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\ D + 20i = 0

The solution for the above equation is

i = c1 e–20t

When the switch has been closed for a time, since the inductor acts as short

circuit for dc voltages, the current passing through the inductor is 2.5 A.

That means, just before the switch is opened, the current passing through the

inductor is 2.5 A. Since the current in the inductor cannot change instantaneously,

i(0+) is also equal to 2.5 A.

At t = 0 c1 = i(0+) = 2.5

Therefore, the final solution is i(t) = 2.5e–20t

Problem 11.3 For the circuit shown in Fig. 11.24, find the current equation

when the switch is opened at t = 0.

5050 WW55 FFmm200 V200 V

ss

ii tt( )( )

Fig. 11.24

Solution By using Kirchhoff’s voltage law, the current equation is given by

1

5 10 6¥ - z idt + 50i = 0

Differentiating the above equation once, we get

50
1

5 10 6

di

dt
+

¥ -
i = 0

\ D i+
¥

F
HG

I
KJ-

1

250 10 6
= 0

\ i = c1 exp 
-

¥

F
HG

I
KJ-

1

250 10 6
t (11.43)

At t = 0–, just before the switch S is opened, the voltage across the capacitor is

200 V. Since the voltage across the capacitor cannot change instantly, it remains

equal to 200 V at t = 0+. At that instant, the current through the resistor is

i(0
+
) = 

200

50
 = 4A

In Eq. 11.43, the current is i(0+) at t = 0

\ c1 = 4 A
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Therefore, the current equation is

i = 4 exp 
-

¥

F
HG

I
KJ-

1

250 10 6
t A

Problem 11.4 For the circuit shown in Fig. 11.25, find the current equation

when the switch S is opened at t = 0.

1010 WW

55 WW

1010 WW

50 V50 V

22 FFmm

ss

ii tt( )( )

Fig. 11.25

Solution By using Kirchhoff’s voltage law, the current equation is given by

1

2 10 6¥ - z idt + 5i + 10i = 0

Differentiating the above equation, we have

15
2 10 6

di

dt

i
+

¥ -
 = 0

D i+
¥

F
HG

I
KJ-

1

30 10 6
 = 0

\ i = c1 exp 
-

¥

F
HG

I
KJ-

1

30 10 6
t

At t = 0
–
, just before switch S is opened, the current through 10 ohms resistor

is 2.5 A. The same current passes through 10 W at t = 0+

\ i(0+) = 2.5 A

At  t = 0 i(0+) = 2.5 A

\ c1 = 2.5

The complete solution is i = 2.5 exp 
-

¥

F
HG

I
KJ-

1

30 10 6
t

Problem 11.5 For the circuit shown in Fig. 11.26, find the complete

expression for the current when the switch is closed at t = 0.

Solution By using Kirchhoff’s law, the differential equation when the switch

is closed at t = 0 is given by

20i + 0.1 
di

dt
= 100



11.26 Network Analysis

(D + 200)i = 1000
ss

3030 WW2020 WW

0.1 H0.1 H100 V100 V

Fig. 11.26

i = c1e
–200t + e–200t z 1000e200t dt

\ i = c1 e–200t + 5

At t = 0–, the current passing through the circuit is i(0–) = 
100

50
 = 2 A. Since,

the inductor does not allow sudden changes in currents, at t = 0+, the same current

passes through circuit.

\ i(0+) = 2 A

At  t = 0 i(0+) = 2

\ c1 = – 3

The complete solution is i = – 3e–200t + 5 A

Problem 11.6 The circuit shown in Fig. 11.27, consists of series RL elements

with R = 150 W and L = 0.5 H. The switch is closed when f = 30°. Determine the

resultant current when voltage V = 50 cos (100t + f) is applied to the circuit at

f = 30°.

Fig. 11.27

Solution By using Kirchhoff’s laws, the differential equation, when the switch

is closed at f = 30° is

150i + 0.5 
di

dt
= 50 cos (100t + f)

0.5Di + 150i = 50 cos (100t + 30°)

(D + 300)i = 100 cos (100t + 30°)

The complementary current ic = ce–300t

To determine the particular current, first we assume a particular current

ip = A cos (100t + 30°) + B sin (100t + 30°)
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Then i¢p = – 100 A sin (100t + 30°) + 100 B cos (100t + 30°)

Substituting ip and i¢p in the differential equation and equating the coefficients,

we get

– 100 A sin (100t + 30°) + 100B cos (100t + 30°) + 300 A cos

(100t + 30°) + 300B sin (100t + 30°) = 100 cos (100t + 30°)

–100 A + 300 B = 0

300 A + 100 B = 100

From the above equation, we get

A = 0.3 and B = 0.1

The particular current is

ip = 0.3 cos (100t + 30°) + 0.1 sin (100t + 30°)

\ ip = 0.316 cos (100t + 11.57°) A

The complete equation for the current is i = ip + ic

\ i = ce
–300t

 + 0.316 cos (100t + 11.57°)

At t = 0, the current i0 = 0

\ c = – 0.316 cos (11.57°) = – 0.309

Therefore, the complete solution for the current is

i = – 0.309e
–300t

 + 0.316 cos (100t + 11.57°) A

Problem 11.7 The circuit shown in Fig. 11.28, consists of series RC elements

with R = 15 W and C = 100 m F. A sinusoidal voltage v = 100 sin (500t + f) volts

is applied to the circuit at time corresponding to f = 45°. Obtain the current

transient.

Solution By using Kirchhoff’s laws, the differential equation is

15
1

100 10 6
i +

¥ - z idt = 100 sin (500t + f)

Fig. 11.28

Differentiating once, we have

15
1

100 10 6

di

dt
i+

¥ -
= (100) (500) cos (500t + f)

D i+
¥

F
HG

I
KJ-

1

1500 10 6
= 3333.3 cos (500t + f)

(D + 666.67)i = 3333.3 cos (500t + f)
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The complementary function ic = ce–666.67t

To determine the particular current, first we assume a particular current

ip = A cos (500t + 45°) + B sin (500t + 45°)

i¢p = – 500 A sin (500t + 45°) + 500 B cos (500t + 45°)

Substituting ip and i¢p in the differential equation, we get

– 500 A sin (500t + 45°) + 500 B cos (500t + 45°)

+ 666.67A cos (500t + 45°) + 666.67B sin (500t + 45°)

= 3333.3 cos (500t + f)

By equating coefficients, we get

500 B + 666.67 A = 3333.3

666.67B – 500 A = 0

From which, the coefficients

A = 3.2; B = 2.4

Therefore, the particular current is

ip = 3.2 cos (500t + 45°) + 2.4 sin (500t + 45°)

ip = 4 sin (500t + 98.13°)

The complete equation for the current is

i = ic + ip

i = ce–666.67t + 4 sin (500t + 98.13°)

At t = 0, the differential equation becomes

15i = 100 sin 45°

i =
100

15
 sin 45° = 4.71 A

\ At t = 0

4.71 = c + 4 sin (98.13°)

\ c = 0.75

The complete current is

i = 0.75 e–666.67t + 4 sin (500t + 98.13°)

Problem 11.8 The circuit shown in Fig. 11.29 consisting of series RLC

elements with R = 10 W, L = 0.5 H and C = 200 mF has a sinusoidal voltage v =

150 sin (200t + f). If the switch is closed when f = 30°, determine the current

equation.

ss 1010 WW

200200 FFmm

150 sin (200150 sin (200 ++ ))tt ff ii tt(( ))
0.5 H0.5 H

Fig. 11.29
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Solution By using Kirchhoff’s laws, the differential equation is

10 0 5
1

200 10 6
i

di

dt
idt+ +

¥ - z.  = 150 sin (200t + f)

Differentiating once, we have

(D2 + 20D + 104)i = 60000 cos (200t + f)

The roots of the characteristics equation are

D1 = – 10 + j99.49 and D2 = – 10 – j99.49

The complementary function is

ic = e–10t (c1 cos 99.49t + c2 sin 99.49)

We can find the particular current by using the undetermined coefficient

method.

Let us assume

ip = A cos (200t + 30°) + B sin (200t + 30°)

i¢p = – 200 A sin (200t + 30°) + 200 B cos (200t + 30°)

i¢¢p = – (200)2 A cos (200t + 30°) – (200)2 B sin (220t + 30°)

Substituting these values in the equation, and equating the coefficients, we get

A = 0.1 B = 0.067

Therefore, the particular current is

ip = 1.98 cos (200t – 52.4°) A

The complete current is

i = e–10t (c1 cos 99.49t + c2 sin 99.49t) + 1.98 cos (200t – 52.4°) A

From the differential equation at t = 0, i0 = 0 and 
di

dt
 = 300

\ At t = 0

c1 = – 1.98 cos (– 52.4°) = – 1.21

Differentiating the current equation, we have

di

dt
 = e–10t (– 99.49c1 sin 99.49t + 99.49c2 cos 99.49t)

– 200 (1.98) sin (200t – 52.4°) – 10e–10t (c1 cos 99.49t + c2 sin 99.49t)

At t = 0, 
di

dt
 = 300 and c1 = – 1.21

300 = 99.49 c2 – 396 sin (– 52.4°) – 10 (– 1.21)

300 = 99.49 c2 + 313.7 + 11.1

c2 = – 25.8

Therefore, the complete current equation is

i = e–10t (0.07 cos 99.49t – 25.8 sin 99.49t) + 1.98 cos (200t – 52.4°) A

Problem 11.9 For the circuit shown in Fig. 11.30, determine the transient

current when the switch is moved from position 1 to position 2 at t = 0. The
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circuit is in steady state with the switch in position 1. The voltage applied to the

circuit is v = 150 cos (200t + 30°) V.
ss

11 22 200200 WW

150 cos (200150 cos (200 ++ 30º30º))tt
0.5 H0.5 H

Fig. 11.30

Solution When the switch is at position 2, by applying Kirchhoff’s law, the

differential equation is

200i + 0 5.
di

dt
= 0

(D + 400)i = 0

\ The transient current is

i = ce–400t

At t = 0, the switch is moved from position 1 to position 2. Hence the current

passing through the circuit is the same as the steady state current passing through

the circuit when the switch is in position 1.

When the switch is in position 1, the current passing through the circuit is

i = 
v

z R j L
=

– ∞

+

150 30

w

= 
150 30

200 200 0 5

150 30

223 6 26 56

– ∞

+ ( )
=

– ∞

– ∞( )j . . .
 = 0.67 –3.44°

Therefore, the steady state current passing through the circuit when the switch

is in position 1 is

i = 0.67 cos (200t + 3.44°)

Now substituting this equation in transient current equation, we get

0.67 cos (200t + 3.44°) = ce–400t

At t = 0; c = 0.67 cos (3.44°) = 0.66

Therefore, the current equation is i = 0.66e–400t

Problem 11.10 In the circuit shown in Fig. 11.31, determine the current

equations for i1 and i2 when the switch is closed at t = 0.

Fig. 11.31
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Solution By applying Kirchhoff’s laws, we get two equations

35i1 + 20i2 = 100 (11.44)

20i1 + 20i2 + 0.5 
di

dt

2 = 100 (11.45)

From Eq. 11.44, we have

35i1 = 100 – 20i2

i1 = 
100

35

20

35
2- i

Substituting i1 in Eq. 11.45, we get

20
100

35

20

35
2-F

H
I
Ki  + 20i2 + 0.5 

di

dt

2  = 100 (11.46)

57.14 – 11.43i2 + 20i2 + 0.5 
di

dt

2  = 100

(D + 17.14)i2 = 85.72

From the above equation,

i2 = ce–17.14t + 5

Loop current i2 passes through inductor and must be zero at t = 0

At t = 0, i2 = 0

\ c = – 5

\ i2 = 5(1 – e–17.14t) A

and the current i1 = 2.86 – {0.57 ¥ 5(1 – e–17.14t)}

= (0.01 + 2.85 e–17.14t) A

Problem 11.11 For the circuit shown in Fig. 11.32, find the current equation

when the switch is changed from position 1 to position 2 at t = 0.

500 V500 V 1010 ii 0.4 H0.4 H

4040 WW 6060 WW

22 ii

++
––

Fig. 11.32

Solution By using Kirchhoff’s voltage law, the current equation is given by

60i + 0.4 
di

dt
 = 10i

At t = 0–, the switch is at position 1, the current passing through the circuit is

i(0–) = 
500

100
 = 5 A
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0.4 
di

dt
 + 50i = 0

D +
F
HG

I
KJ

50

0 4.
i = 0

i = ce
–125t

At t = 0, the initial current passing through the circuit is same as the current

passing through the circuit when the switch is at position 1.

At t = 0, i(0) = i(0–) = 5 A

At t = 0, c = 5 A

\ The current I = 5e–125t

Problem 11.12 For the circuit shown in Fig. 11.33, find the current equation

when the switch S is opened at t = 0.

100 V
5 i

4 Fm

10 W

S

10 W

i

+
–

Fig. 11.33

Solution When the switch is closed for a long time,

At t = 0–, the current i(0–) = 
100

20
 = 5 A

When the switch is opened at t = 0, the current equation by using Kirchhoff’s

voltage law is given by

1

4 10 6¥ - z i dt + 10i = 5i

1

4 10 6¥ - z i dt + 5i = 0

Differentiating the above equation

5
1

4 10 6

di

dt
i+

¥ -
= 0

D i+
¥

F
HG

I
KJ-

1

20 10 6
= 0

\ i = ce
t

-

¥ -

1

20 10 6

At t = 0–, just before switch S is opened, the current passing through the 10 W
resistor is 5 A. The same current passes through 10 W at t = 0.
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\ At t = 0, i(0) = 5 A

At t = 0, c1 = 5 A

The current equation is i = 5 20 10 6

e

t-

¥ -

Problem 11.13 For the circuit shown in Fig. 11.34, find the current in the

20 W when the switch is opened at t = 0.

50 V

10 i

i (t)2i (t)1

20 W
30 W

i

+
– 2 H

Fig. 11.34

Solution When the switch is closed, the loop current i1 and i2 are flowing in

the circuit.

The loop equations are 30(i1 – i2) + 10i2 = 50

    30(i2 – i1) + 20i2 = 10i2

From the above equations, the current in the 20 W resistor i2 = 2.5 A.

The same initial current is flowing when the switch is opened at t = 0.

When the switch is opened the current equations

30i + 20i + 2 
di

dt
= 10i

40i + 
2di

dt
= 0

(D + 20)i = 0

i = ce–20t

At t = 0, the current i(0) = 2.5 A

\ At t = 0, c = 2.5

The current in the 20 W resistor is i = 2.5 e–20t.

Problem 11.14 For the circuit shown in Fig. 11.35, find the current equation

when the switch is opened at t = 0.

100 V

20 i

10 W

10 W

20 W
i

+
– 2 Fm

Fig. 11.35

Solution When the switch is closed, the current in the 20 W resistor i can be

obtained using Kirchhoff’s voltage law.
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10i + 20i + 20i = 100

50i = 100, \ i = 2 A

The same initial current passes through the 20 W resistor when the switch is

opened at t = 0.

The current equation is

20i + 10i + 
1

2 10 6¥ - z idt = 20i

10i + 
1

2 10 6¥ - z idt = 0

Differentiating the above equation, we get

10
1

2 10 6

di

dt
i+

¥ -
= 0

D i+
¥

F
HG

I
KJ-

1

20 10 6
= 0

The solution for the above equation is

i = ce
t

-

¥ -

1

20 10 6

At t = 0, i(0) = i(0–) = 2 A

\ At t = 0, c = 2 A

The current equation is

i = 2

1

20 10 6

e
t

-

¥ -

Practice Problems

11.1 (a) What do you understand by transient and steady state parts of re-

sponse? How can they be identified in a general solution?

(b) Obtain an expression for the current i(t) from the differential equa-

tion

d i t

dt

di t

dt
i t

2

2
10 25

( ) ( )
( )+ +  = 0

with initial conditions

i(0+) = 2
0di

dt

+c h
 = 0

11.2 A series circuit shown in Fig. 11.36, comprising resistance 10 W and in-

ductance 0.5 H, is connected to a 100 V source at t = 0. Determine the

complete expression for the current i(t).
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10 W

100 V

s

0.5 H

Fig. 11.36

11.3 In the network shown in Fig. 11.37, the capacitor c1 is charged to a voltage

of 100 V and the switch S is closed at t = 0. Determine the current expres-

sion i1 and i2.
2 k2 kWW

11 FFmm 11 FFmm

ss

CC11 CC22

ii11 ii22
1 k1 kWW

Fig. 11.37

11.4 A series RLC circuit shown in Fig. 11.38, comprising R = 10 W, L = 0.5 H

and C = 1 m F, is excited by a constant voltage source of 100 V. Obtain the

expression for the current. Assume that the circuit is relaxed initially.

10 W

100 V 1 Fm

s

i t( )

0.5 H

Fig. 11.38

11.5 In the circuit shown in Fig. 11.39, the initial current in the inductance is 2

A and its direction is as shown in the figure. The initial charge on the

capacitor is 200 C with polarity as shown when the switch is closed. De-

termine the current expression in the inductance.

10 W

10 W50 V

s 2 H

2 F

200 C

I = 20 A

Fig. 11.39



11.36 Network Analysis

11.6 In the circuit shown in Fig. 11.40, the switch is closed at t = 0 with zero

capacitor voltage and zero inductor current. Determine V1 and V2 at t = 0+.

10 W

10 W

100 V

s

V1

V2

0.1 H
1 Fm

Fig. 11.40

11.7 In the network shown in Fig. 11.41, the switch is moved from position 1 to

position 2 at t = 0. The switch is in position 1 for a long time. Determine

the current expression i(t).

i t( )

R

20 V 50 V

10 W

2 H

3 F

1
2

Fig. 11.41

11.8 In the network shown in Fig. 11.42, determine the current expression for

i1(t) and i2(t) when the switch is closed at t = 0. The network has no initial

energy.

i1
i2

s

3 H

10 W

10 W

1 Fm

100 V

Fig. 11.42

11.9 In the network shown in Fig. 11.43, the switch is closed at t = 0 and there

is no initial charge on either of the capacitances. Find the resulting current

i(t).

s
20 W

10 W10 W

100 V

0.5 F 0.25 F

Fig. 11.43
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11.10 In the RC circuit shown in Fig. 11.44, the capacitor has an initial charge q0

= 25 ¥ 10–6 C with polarity as shown. A sinusoidal voltage v = 100 sin

(200t + f) is applied to the circuit at a time corresponding to f = 30°.

Determine the expression for the current i(t).

i t( )

250 W

100 sin (200 + )t f

s

0.5 Fm

Fig. 11.44

11.11 In the network shown in Fig. 11.45, the switch is moved from position 1 to

position 2 at t = 0. The switch is in position 1 for a long time. Initial charge

on the capacitor is 7 ¥ 10–4 coulombs. Determine the current expression

i(t).

50 W

50 W

20 Fm

s
2

100 sin ( + 30º)w t

1

Fig. 11.45

11.12 In the network shown in Fig. 11.46, the switch is moved from position 1 to

position 2 at t = 0. Determine the current expression.

100 W

50 Fm

s
2

200 V

1

0.1 H

Fig. 11.46

11.13 In the network shown in Fig. 11.47, find i2(t) for t > 0, if i1(0) = 5 A.

Fig. 11.47
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11.14 For the circuit shown in Fig. 11.48, find v5, if the switch is opened for

t > 0.

5 W50 V v5

2 W 4 W

0.2 F 0.1v5

Fig. 11.48

11.15 Calculate the voltage v1(t) across the inductance for t > 0 in the circuit

shown in Fig. 11.49.

12 V12 V

11 WW 22 WW11 WW

10 F10 F–4–4

vv11( )( )tt10 H10 H

tt = 0= 0

Fig. 11.49

11.16 The network shown in Fig. 11.50 is initially under steady state condition

with the switch in position 1. The switch is moved from position 1 to posi-

tion 2 at t π 0. Calculate the current i(t) through R1 after switching.

10 V

R 2= 5 W

R1= 5 W

L= 2 H

1

2 i t( )

Fig. 11.50

Objective-type Questions

1. Transient behaviour occurs in any circuit when

(a) there are sudden changes of applied voltage.

(b) the voltage source is shorted.

(c) the circuit is connected or disconnected from the supply.

(d) all of the above happen.

2. The transient response occurs

(a) only in resistive circuits (b) only in inductive circuits

(c) only in capacitive circuits (d) both in (b) and (c).

3. Inductor does not allow sudden changes

(a) in currents (b) in voltages

(c) in both (a) and (b) (d) in none of the above
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4. When a series RL circuit is connected to a voltage V at t = 0, the current

passing through the inductor L at t = 0+ is

(a)
V

R
(b) infinite

(c) zero (d)
V

L

5. The time constant of a series RL circuit is

(a) LR (b)
L

R

(c)
R

L
(d) e–R/L

6. A capacitor does not allow sudden changes

(a) in currents (b) in voltages

(c) in both currents and voltages (d) in neither of the two

7. When a series RC circuit is connected to a constant voltage at t = 0, the

current passing through the circuit at t = 0+ is

(a) infinite (b) zero

(c)
V

R
(d)

V

Cw

8. The time constant of a series RC circuit is

(a)
1

RC
(b)

R

C

(c) RC (d) e–RC

9. The transient current in a loss-free LC circuit when excited from an ac

source is an  sine wave

(a) undamped (b) overdamped

(c) under damped (d) critically damped.

10. Transient current in an RLC circuit is oscillatory when

(a) R = 2 L C/ (b) R = 0

(c) R > 2 L C/ (d) R < 2 L C/

11. The initial current in the circuit shown in Fig. 11.51 when the switch is

opened for t > 0 is
1010 WW

0.2 H0.2 H

22 iiii

20 V20 V

Fig. 11.51

(a) 1.67 A (b) 3 A

(c) 0 A (d) 2 A
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12. The initial current in the circuit shown in Fig. 11.52 below when the switch

is opened for t > 0 is
5 W

2 Fm

10 ii

100 V

Fig. 11.52

(a) 1.5 A (b) 0 A

(c) 2 A (d) 10 A

13. For the circuit shown in Fig. 11.53 the current in the 10 W resistor when

the switch is changed from 1 to 2 is

10 W
50 V

0.5 H

i2

20 i

1

Fig. 11.53

(a) 5 e+20t (b) 5 e–20t

(c) 20 e+5t (d) 20e–5t

14. For the circuit shown in Fig. 11.54, the current in the 5 W resistor when the

switch is changed from 1 to 2 is

20 W
50 V

2 Fm

i2

10 i

1

Fig. 11.54

(a) 2 5

1

2 10 6

. e ¥ -

(b) 0

(c) 2.5 e–10t (d) 5e–5t



12Chapter

Introduction to the

Laplace Transform

12.1 DEFINITION OF THE LAPLACE TRANSFORM

The Laplace transform is a powerful analytical technique that is widely used to

study the behaviour of linear, lumped parameter circuits. Laplace transforms are

useful in engineering, particularly when the driving function has discontinuities

and appears for a short period only.

In circuit analysis, the input and output functions do not exist forever in time.

For causal functions, the function can be defined as f(t) u(t). The integral for the

Laplace transform is taken with the lower limit at t = 0 in order to include the

effect of any discontinuity at t = 0.

Consider a function f (t) which is to be continuous and defined for values of

t ≥ 0. The Laplace transform is then

L [f (t)] = F(s) = 

-•

•

z  e–st f(t) u(t) dt = 

0

•

z  f (t)e–st dt (12.1)

f (t) is a continuous function for t ≥ 0 multiplied by e–st which is integrated with
respect to t between the limits 0 and •. The resultant function of the variables is
called Laplace transform of f (t). Laplace transform is a function of independent
variable s corresponding to the complex variable in the exponent of e–st. The
complex variable S is, in general, of the form S = s + jw and s and w being the
real and imaginary parts respectively. For a function to have a Laplace transform,

it must satisfy the condition 
0

•

z  f (t) e–st dt < •. Laplace transform changes the time

domain function f (t) to the frequency domain function F(s). Similarly, inverse
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Laplace transformation converts frequency domain function F(s) to the time
domain function f (t) as follows.

L
–1[F(s)] = f (t) = 

1

2p j
j

j

-

+

z  F(s) est ds (12.2)

Here, the inverse transform involves a complex integration. f(t) can be
represented as a weighted integral of complex exponentials. We will denote the
transform relationship between f (t) and F(s) are

f(t) L
¨ Ææ  F(s).

In Eq. 8.1, if the lower limit is 0 then the transform is referred to as one-sided,
or unilateral, Laplace transform. In the two-sided, or bilateral, Laplace
transform, the lower limit is – •.

In the following discussion, we divide the Laplace transforms into two types:
functional transforms and operational transforms. A functional transform is the
Laplace transform of a specific function, such as sinwt, t, e–at, and so on. An
operational transform defines a general mathematical property of the Laplace
transform, such as binding the transform of the derivative of f (t). Before
considering functional and operational transforms, we used to introduce the step
and impulse functions.

12.2 THE STEP FUNCTION

In switching operations abrupt changes may occur in current and voltages. On
some functions discontinuity may appear at the origin. We accommodate these
discontinuities mathematically by introducing the step and impulse functions.

Figure 12.1 shows the step function. It is zero for t < 0. It is denoted by k u(t).

f t( )

k

0 t

Fig. 12.1

Mathematically it is defined as

k u(t) = 0, t < 0

k u(t) = k, t > 0 (12.3)

If k is 1, the function defined by Eq. (8.3) is the unit step. The step function is
not defined at t = 0. In situations where we need to define the transition between
0– and 0+, we assume that it is linear and that

k u(0) = 0.5 K (12.4)
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Figure 12.2 shows the linear transition from 0– to 0+.

f t( )

k

0.5 K

0– 0+ t

Fig. 12.2

A discontinuity may occur at sometime other than t = 0, for example, in
sequential switching. The step function occuring at t = a when a > 0 is shown in
Fig. 12.3. A step occurs at t = a is expressed as k u(t – a). Thus

f t( )

k

0 a t

Fig. 12.3

k u(t – a) = 0, t < a
k u(t – a) = k, t > a (12.5)

If a > 0, the step occurs to the right of the origin, and if a < 0, the step occurs
to the left of the origin. Step function is 0 when the argument t – a is negative, and
it is k when the argument is positive.

A step function equal to k for t < a is written as k u(a – t). Thus

k u(a – t) = k, t < a
k u(a – t) = 0, t > 0 (12.6)

The discontinuity is to the left of the
origin when a < 0. A step function
k u(a – t) for a > 0 is shown in Fig. 12.4.

Step function is useful to define a
finite-width pulse, by adding two step

functions. For example, the function
k[u(t – 1) – u(t – 3)] has the value k for 1
< t < 3 and the value 0 everywhere else,
so it is a finite-width pulse of height k initiated at t = 1 and terminated at t = 3.
Here, u(t – 1) is a function “turning on” the constant value k at t = 1, and the step
function – u(t = 3) as “turning off” the constant value k at t = 3. We use step

functions to turn on and turn off linear functions.

Example 12.1 Use step functions to write an expression for the function shown

in Fig. 12.5.

f t( )

k

0 a t

Fig. 12.4
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f t( )

10

0
1 2 3 4 t (sec)

–10

Fig. 12.5

Solution The function shown in Fig. 12.5 is made up of linear segments with

break points at 0, 1, 3 and 4 seconds. The above Fig. 8.5 consists of three linear

segments as shown in Fig. 12.6.

f t( )

20

10

0
1 2 3 4 t (sec)

–10

Fig. 12.6

(i) f1(t ) = 10t for 0 < t < 1

(ii) f2(t ) = – 10t + 20 for 1 < t < 3

(iii) f3(t ) = 20t – 40 for 3 < t < 4 (12.7)

We use the step function to initiate and terminate these linear segments at the

proper times.

(i) f1(t ) = 10t[u(t ) – u(t – 1)], this function turn on at t = 0, turn off at t = 1.

(ii) f2(t ) = (– 10t + 20) [u(t – 1) – u(t – 3)], this function turn on at t = 1, turn off

at t = 3.

(iii) f3(t ) = (20t – 40) [u(t – 3) – u(t – 4)], this function turn on at t = 3, turn off

at t = 4.
The expression for f(t) is
f(t ) = 10t [u(t ) – u(t – 1)] + (– 10t + 20) [u(t – 1) – u(t – 3)]

 + (20t – 40) [u(t – 3) – u(t – 4)] (12.8)

Example 12.2 Use step function to write the expression for the following

function.

Solution The function shown in Fig. 12.7 is a combination of linear segments at

break points 0, 2, 6, 8. To construct this function, we must add and subtract linear

functions of the proper slope. We use the step function to start and terminate
these linear segments at the proper times.
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f t( )

t (sec)620

10

8

Fig. 12.7

Figure 12.7 consists of the three linear segments with the following equations.

f1(t) = 5t for 0 < t < 2

f2(t) = 10 for 2 < t < 6 (12.9)

f3(t ) = – 5t + 40 for 6 < t < 8

using step function, the above equations can be written as

f1(t) = 5t [u(t ) – u(t – 2)]

f2(t) = 10 [u(t – 2) – u(t – 6)]

f3(t) = (– 5t + 40) [u(t – 6) – u(t – 8)] (12.10)

The expression for f(t) is

f(t) = f1(t) + f2(t ) + f3(t )

f(t ) = 5t [u(t ) – u(t – 2)] + 10 [u(t – 2) – u(t – 6)]

+ (– 5t + 40) [u(t – 6) – u(t – 8)] (12.11)

Example 12.3 Use step function to write the

expression for the following waveform.

Solution The waveform shown in Fig. 12.8

starts at t = 0 and ends at t = 5 sec. The

equation for the above waveform is f(t ) = 4t.
Interms of unit function the waveform can be

expressed as

f(t) = 4t [u(t ) – u(t – 5)] (12.12)

Example 12.4 Use step function to write the expression for the following

sinusoidal waveform.

Solution The sine wave shown in Fig. 12.9 originates at t = 0 and ends at

t = 2 sec. The wave equation

f t( )

t (sec)0.5
0

10

1.51 2.0

Fig. 12.9

f t( )

t (sec)0

20

5

Fig. 12.8
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f(t) = 10 sin w t for 0 < t < 2

Interms of unit step functions, the equation

f(t) = 10 sin wt [u(t) – u(t – 2)] (12.13)

Example 12.5 Use step function to write the expression for the function shown

in Fig. 12.10.

f t( )

120

–120

0–4 4 8 12 t(sec)

Fig. 12.10

Solution The waveform in Fig. 12.10 consists of three linear segments. The

function f(t ) is defined as follows.

f1(t ) = 80t + 120 for – 4 < t < 0

f2(t ) = – 30t + 120 for 0 < t < 8

f3(t ) = 30t – 360 for 8 < t < 12 (12.14)

Interms of unit step function

f1(t ) = (80t + 120) [u(t + u) – u(t)]

f2(t ) = (– 30t + 120) [u(t) – u(t – 8)]

f3(t ) = (30t – 360) [u(t – 8) – u(t – 12)] (12.15)

The expression for f(t ) is

f(t) = f1(t ) + f2(t) + f3(t)

f(t ) = (80t + 120) [u(t + 4) – u(t )] + (– 30t + 120) [u(t) – u(t – 8)]

+ (30t – 360) [u(t – 8) – u(t – 12)] (12.16)

12.3 THE IMPULSE FUNCTION

An impulse is a signal of infinite amplitude and zero duration. In general, an
impulse signal doesn’t exist in nature, but some circuit signals come very close to
approximating this definition. Due to switching operations impulsive voltages
and currents occur in circuit analysis. The impulse function enables us to define
the derivative at a discontinuity, and thus to define the Laplace transform of that
derivative.

To define derivative of a function at a discontinuity, consider that the function
varies linearly across the discontinuity as shown in Fig. 12.11.
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f t( )

1.0

0.5

e t–a( – )e

–e e t0

0.5t
+ 0.5

e

Fig. 12.11

In the Fig. 12.11 shown as e Æ 0, an abrupt discontinuity occurs at the origin.
When we differentiate the function, the derivative between – e and + e is constant

at a value of 
1

2e
. For t > e, the derivative is – ae–a(t – e). The derivative of the

function shown in Fig. 12.11 is shown in Fig. 12.12.

1

2e

f t¢ ( )

–a

–ae
a t( – )e

– e e0

Fig. 12.12

As e approaches zero, the value of f ¢(t) between ± e approaches infinity. At
the same time, the duration of this large value is approaching zero. Furthermore,
the area under f ¢(t) between ± e remains constant as e Æ 0. In this example, the
area is unity. As e approaches zero, we say that the function between ± e
approaches a unit impulse function; denoted d(t). Thus the derivative of f(t) at
the origin approaches a unit impulse function as e approaches zero, or

f ¢(0) Æ d (t) as e Æ 0

If the area under the impulse function curve is other than unity, the impulse
function is denoted by K d (t), where K is the area. K is often referred to as the
strength of the impulse function.

Mathematically, the impulse function is defined

-•

•

z  K d (t) dt = k (12.17)

d (t) = 0, t π 0 (12.18)
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Equation (12.17) states that the area
under the impulse function is constant. This
area represents the strength of the impulse.
Equation (8.18) states that the impulse is
zero everywhere except at t = 0. An
impulse that occurs at t = a is denoted
K d (t – a). The graphical symbol is shown
in Fig. 12.13. The impulse K d (t – a) is also
shown in Fig. 12.13.

An important property of the impulse function is the shifting property, which
is expressed as

-•

•

z  f (t) d(t – a) dt = f(a) (12.19)

Equation 12.19 shows that the impulse function shifts out everything except
the value of f(t) at t = a. The value of d (t – a) is zero everywhere except at t = a,
and hence the integral can be written

I = 
-•

•

z  f (t) d (t – a) dt = 
a

a

-Œ

+Œ

z  f(t) d (t – a) dt (12.20)

But because f (t) is continuous at a, it takes on the value f (a) as t Æ a, so

I = 
a

a

-Œ

+Œ

z  f (a) d (t – a) dt = f(a) 
a

a

-Œ

+Œ

z  d (t – a) dt = f (a) (12.21)

We use the shifting property of the impulse function to find its Laplace
transform.

L [d(t)] = 
0-

•

z  d (t) e–st dt = 
0-

•

z  d (t) dt = 1 (12.22)

which is an important Laplace transform pair that we make good use of the circuit
analysis.

We can also define the derivatives of the impulse function and the Laplace
transform of these derivatives.

The function illustrated in Fig. 12.14(a) generates an impulse function as
e Æ 0. Figure 8.14(b) shows the derivative of the impulse generating function,
which is defined as the derivative of the impulse [d¢(t)] as Œ Æ 0. The derivative
of the impulse function sometimes is referred to as a moment function, or unit
doublet.

To find the Laplace transform of d¢(t), we simply apply the defining integral to
the function shown in Fig. 12.14 (b) and, after integrating, let e Æ 0. Then,

L{d¢(t)} = lim
e

e

e
e eÆ

- -

-

+
-F

H
I
K

L

N

M
M

O

Q

P
P

+

-

zz0
2 2

0

0
1 1

e dt e dt
st st

f t( )

K td( ) K t – a( )d

0 a t

Fig. 12.13
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= lim
e

e e

eÆ

-
+ -

0 2

2e e

s

s s

= lim
e

e e

eÆ

-
-

0 2

se se

s

s s

= lim
e

e e

Æ

-
+

0

2 2

2

s e s e

s

s s

= s (12.23)

Fig. 12.14(a) Fig. 12.14(b)

For the nth derivative of the impulse function, we find that its Laplace
transform simply is sn; that is,

L{d n(t)} = sn (12.24)

An impulse function can be thought of as a derivative of a step function, that is

d (t) = 
du t

dt

( )
(12.25)

Figure 12.15(a) approaches a unit step function as e Æ 0. The function shown
in Fig. 8.15(b), the derivative of the function in 12.15 (b), approaches a unit
impulse as e Æ 0.

f t( ) f t¢( )

–e –e0 0

1.0
1
2e

t te e

Fig. 12.15(a) Fig. 12.15(b)

The impulse function is an extremely useful concept in circuit analysis where
discontinuities occur at the origin.

Example 12.6 (a) Find the area under the function shown in Fig. 12.16.

(b) What is the duration of the function when e = 0? (c) What is the magnitude of

f(0) when e = 0?
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Solution (a) Area under the function is

A = 

-

z
e

e

 f(t ) dt (12.26)

= 

-

z
e

0

 f(t ) dt + 

0

e

z  f(t) dt

= 
t

e e
e

2

0
1

+
F
H

I
K

-

z  dt + 
-

+
F
H

I
Kz 1 1

2
0

e e

e

t  dt

= 
t t t t2

2

0 2

02

1

2e e e ee

e

+
L

NM
O

QP
+

-
+

L

NM
O

QP-

 = 1 (12.27)

(b) As e Æ 0, the above function shown in Fig. 8.16 becomes an impulse

function. The duration of the function becomes zero.

(c) For an impulse function, the magnitude becomes infinite. Therefore as

e Æ 0, the magnitude of the above function becomes infinite.

12.4 FUNCTIONAL TRANSFORMS

A functional transform is simply the Laplace transform of a specified function of
t. Because we are limiting our introduction to the unilateral, or one-sided,
Laplace transform, we define all functions to be zero for t < 0–.

(i) The unit step function f (t) = u(t) (12.28)

where u(t) = 1 for t > 0

= 0 for t < 0

L [ f(t)] = 
0

•

z  f(t) e–st dt

= 
0

•

z  1e–st dt = 
e

s s

st- •

-
=

0

1

L [u(t)] = 
1

s
(12.29)

(ii) Exponential function f (t) = e–at (12.30)

L (e–at) = 
0

•

z  e–at ◊ e–st dt

= 
0

•

z  e–(s + a)t = 
-

+

- + •1
0s a

e s a t( )  = 
1

s a+

f t( )

–e 0 te

e
1

Fig. 12.16
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L [e–at] = 
1

s a+
(12.31)

(iii) The cosine function: cos wt (12.32)

L (cos wt) = 
0

•

z  cos wt e–st dt

= 
0

•

z  e–st 
e e

j t j tw w
+L

NM
O
QP

-

2
dt

= 
1

2
0 0

e dt e dt
s j t s j t- -

•

- +

•

z z+
L

N
M

O

Q
P

( ) ( )w w

= 
1

2

1

20 0

-
-

L
NM

O
QP

+ -
+

L
NM

O
QP

- - • - + •

e

s j

e

s j

s j t s j t( ) ( )w w

w w

= 
1

2

1 1

s j s j-
+

+

L
NM

O
QPw w

 = 
s

s2 2
+w

\ L (cos w t) = 
s

s2 2
+w

(12.33)

(iv) The sine function: sin w t (12.34)

L (sin wt) = 
0

•

z  sin wt e–st dt

= 
0

•

z  e–st 
[ ]e e

j

j t j tw w
-

-

2
 dt

= 
1

2
0 0

j
e dt e dts j t s j t- -

•

- +

•

z z-
L

N
M

O

Q
P

( ) ( )w w

= 
1

2 0 0j

e

s j

e

s j

s j t s j t

-
-

L
NM

O
QP

+
+

L
NM

O
QP

R
S
T

U
V
W

- • - + •( ) ( )w w

w w

= 
1

2

1 1

j s j s j-
-

+

L
NM

O
QPw w

 = 
w

ws2 2
+

\ L (sin w t) = 
w

ws2 2
+

(12.35)

(v) The function tn, where n is a positive integer

L (tn) = 
0

•

z  tn ◊ e–st dt (12.36)

= 
t e

s

e

s

n st st- • -•

-

L
NM

O
QP

-
-

z
0 0

 n t n – 1 dt
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= 
n

s
e t dtst n- -

•

z 1

0

= 
n

s
 L (tn – 1) (12.37)

Similarly L (tn – 1) = 
n

s

-1
 L (tn – 2)

By taking Laplace transformations of tn – 2, tn – 3 ... and substituting in the
above equation, we get

L (tn) = 
n

s

n

s

n

s

- -1 2
...... 

2

s s

1
 L (tn – m)

= 
–n

s
n

 L (tº) = 
–

¥
n

s sn

1
 = 

–
+

n

s
n 1

\ L (t) = 
1
2s

(12.38)

(vi) The hyperbolic sine and cosine function

L (cosh at) = 
0

•

z  cosh at e–st dt (12.39)

=  
e e

at at
+L

NM
O
QP

-•

z 2
0

e–st dt

= 
1

2
 

0

•

z e–(s – a)t dt + 
1

2
0

•

z e–(s + a)t dt

= 
1

2

1 1

2

1

s a s a-
+

+
 = 

s

s a2 2
-

(12.40)

Similarly,

L (sinh at) = 
0

•

z  sinh (at) e–st dt (12.41)

= 
e e

at at
-L

NM
O
QP

-•

z 2
0

 e–st dt

= 
1

2

1

2( ) ( )s a s a-
-

+
 = 

a

s a2 2
-

(12.42)

List of Laplace Transform Pairs See Table 12.1

Table 12.1

Type f(t) F(s)

Impulse d(t) 1

Step U(t)
1

s



Introduction to the Laplace Transform 12.13

Table 12.1 (Contd.)

Type f(t) F(s)

ramp t
1
2s

exponential e–at 1

s a+

sine sin w t
w

ws2 2
+

cosine cos wt
s

s2 2
+ w

Hyperbolic sine sinh at
a

s a2 2
-

Hyperbolic cosine cosh at
s

s a2 2
-

damped ramp te–at 1
2( )s a+

damped sine e–at sin wt
w

w( )s a+ +
2 2

damped cosine e–at cos wt
s a

s a

+

+ +( )2 2
w

12.5 OPERATIONAL TRANSFORMS

Operational transforms indicate how mathematical operations performed on
either f (t) or F(s) are converted into the opposite domain. The operations of
primary interest are

(1) multiplication by a constant
(2) addition (subtraction)
(3) differentiation
(4) integration
(5) translation in the time domain
(6) translation in the frequency domain and
(7) scale charging.

Multiplication by Constant

From the defining integral, if

L [ f(t)] = F(s),

then L {K f(t)} = K F(s) (12.43)

Consider a function f(t) multiplied by a constant K.
The Laplace transform of this function is given by

L {K f(t)] = 
0

•

z  K f(t) e–st dt (12.44)
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= K 
0

•

z  f(t) e–st dt = KF(s) (12.45)

This property is called linearity property.

Addition (Subtraction)

Addition (subtraction) in the time domain translates into addition (subtraction) in
the frequency domain.

Thus if

f1(t) L
¨ Ææ  F1(s) and

f2(t) L
¨ Ææ  F2(s), then

L [ f1(t) ± f2(t)] = F1(s) ± F2(s) (12.46)

Consider two functions f1(t) and f2(t). The Laplace transform of the sum or
difference of these two functions is given by

L { f1(t) ± f2(t)} = 
0

•

z { f1(t) ± f2(t)} e–st dt

= 
0

•

z  f1(t) e–st dt ± 
0

•

z f2(t) e
–st dt

= F1(s) ± F2(s)

\ L { f1(t) ± f2(t)} = F1(s) ± F2(s) (12.47)

The Laplace transform of the sum of the two or more functions is equal to the
sum of transforms of the individual function. This is called superposition
property.

If we can use the linearity and superposition properties jointly, we have

L [K1 f1(t) + K2 f2(t)] = K1 L [ f1(t)] + K2 L [F2(t)]

= K1 F1(s) + K2 F2(s) (12.48)

Example 12.7 Find the Laplace transform of the function

f(t) = 4t3 + t2 – 6t + 7 (12.49)

Solution

L (4t3 + t2 – 6t + 7) = 4L (t3) + L (t2) – 6L (t) + 7L (1)

= 4
3 2

6
1

7
1

4 3 2
¥
–

+
–

-
–

+
s s s s

= 
24 2 6 7

4 3 2s s s s
+ - + (12.50)

Example 12.8 Find the Laplace transform of the function

f(t) = cos2 t. (12.51)
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Solution L (cos2 t) = L 
1 2

2

+F
H

I
K

cos t

= L 
1

2
F
H

I
K  + L 

cos2

2

tF
H

I
K  = 

1

2
 [L (1) + L (cos 2t)]

= 
1

2 2 42s

s

s
+

+( )
 = 

2 4

2 4

2

2

s

s s

+

+( )
(12.52)

Example 12.9 Find the Laplace transform of the function

f(t) = 3t 4 – 2t3 + 4e–3t – 2 sin 5t + 3 cos 2t (12.53)

Solution L (3t 4 – 2t3 + 4e–3t – 2 sin 5t + 3 cos 2t)

= 3L (t 4) – 2L (t3) + 4L (e–3t) – 2L (sin 5t) + 3L (cos 2t)

= 3
4

2
3

4
1

3
2

5

25
3

45 4 2 2

–
-

–
+

+
- ¥

+
+ ¥

+s s s s

s

s

= 
72 12 4

3

10

25

3

45 4 2 2s s s s

s

s

-
+

+
-

+
+

+
(12.54)

Differentiation: If a function f(t) is piecewise continuous, then the Laplace

transform of its derivative 
d

dt
 [ f(t)] is given by

L 
df t

dt

( )L
NM

O
QP

= SF(s) – f(0) (12.55)

By definition

L 
d

dt
f t( )L

NM
O
QP

= 
df t

dt

( )L
NM

O
QP

•

z
0

 e–st dt

= 
0

•

z  e–st d{ f (t)} (12.56)

Integrating by parts, we get

= [e–st f(t)]•0 + 
0

•

z  se–st f (t) dt

= – f(0) + SF(s) (12.57)

Hence we have

L [ f¢(t)] = SF(s) – f (0) (12.58)

This is applicable to higher order derivatives also. The Laplace transform of
second derivative of f(t) is

L [ f ≤(t)] = L 
d

dt
f t( ( ))¢

L
NM

O
QP
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= SL [f ¢(t)] – f ¢(0) = S{SF(s) – f(0)} – f ¢(0)
= S2 F(s) – Sf (0) – f ¢(0) (12.59)

where f ¢(0) is initial value of first derivative of f (t). We find the Laplace
transform of the nth derivative by successively applying the proceeding process,
which leads to the general result.

L 
d f t

dt

n

n

( )R
S
T

U
V
W

= Sn F(s) – S n – 1 f(0–) – S n – 2 
df

dt

( )0

– S n – 3 
d f

dt

2

2

0( )-

 – ... – 
d

dt

n

n

-

-

1

1
 f (0–) (12.60)

Example 12.10 Using the formula for Laplace transform of derivatives, obtain

the Laplace transform of (a) sin 3t (b) t3.

Solution (a) Let f(t) = sin 3t

f¢(t) = 3 cos 3t

f≤(t) = – 9 sin 3t

L [f ≤(t)] = s2[L f(t)] – sf(0) – f¢(0) (12.61)

f(0) = 0, f¢(0) = 3

L [f ≤(t)] = L [– 9 sin 3t ]

Substituting in Eq. 12.61, we get

L [– 9 sin 3t ] = s2 L [f(t)] – 3

L [– 9 sin 3t ] – s2 [L (sin 3t)] = – 3

L [(s2 + 9) sin 3t ] = 3 \ L (sin 3t) = 
3

92s +
(12.62)

(b) Let f(t) = t3 (12.63)

Differentiating successively, we get

f¢(t) = 3t2, f ≤(t) = 6t, ¢¢¢f (t) = 6

By using differentiation theorem, we get

L [ ¢¢¢f (t)] = s3 L [f(t)] – s2 f(0) – sf¢(0) – f ≤(0) (12.64)

Substituting all initial conditions, we get

L [ ¢¢¢f (t)] = s3 L [f(t)]

L [6] = s3 L [f(t)]

6

s
= s3 L [f(t)]

F(s) = L [f(t)] = 
6
4s

(12.65)

Integration

If a function f(t) is continuous, then the Laplace transform of its integral z  f (t) dt

is given by
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L f t dt

t

( )
0

z
L

N
M

O

Q
P = 

1

s
 F(s) (12.66)

By definition

L f t dt

t

( )
0
z

L

N
M

O

Q
P = f t dt

t

( )
00
zz

L

N
M

O

Q
P

•

e–st dt (12.67)

Integrating by parts, we get

= 
e

s
f t dt

s

st t-
• •

-

L

N
M

O

Q
P +z z( )

0 0 0

1
 e–st f(t) dt (12.68)

Since, the first term is zero, we have

L f t dt

t

( )
0

z
L

N
M

O

Q
P = 

1

s
 L [ f(t)] = 

F s

s

( )
(12.69)

Example 12.11 Find the Laplace transform of ramp function r(t) = t.

Solution We know that 

0

t

z u(t) = r(t) = t (12.70)

Integration of unit step function gives the ramp function.

L [r(t)] = L u t dt

t

( )

0
z

L

N
M
M

O

Q
P
P

Using the integration theorem, we get

L u t dt

t

( )

0
z

L

N
M
M

O

Q
P
P

= 
1

s
 L [u(t)] = 

1
2s

Since L [u(t)] = 
1

s
(12.71)

Differentiation of Transforms It the Laplace transform of the function f (t)
exists, then the derivative of the corresponding transform with respect to s in the
frequency domain is equal to its multiplication by t in the time domain.

i.e. L [t f(t)] = 
-d

ds
 F(s) (12.72)

By definition

d

ds
 F(s) = 

d

ds
0

•

z f (t) e–st dt (12.73)
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Since s and t are independent variables, and the limits 0, • are constants not
depending on s, we can differentiate partially with respect to s within the
integration and then integrate the function obtained with respect to t.

d

ds
 F(s) = 

d

ds
0

•

z  [ f (t) e–st] dt

= 
0

•

z f (t) [– te–st] dt

= -
•

z
0

{tf (t)} e–st dt = – L [tf(t)]

Hence L [t f (t)] = 
-d

ds
 F(s) (12.74)

Example 12.12 Find the Laplace transform of function

f(t) = t sin 2t (12.75)

Solution Let f1(t) = sin 2t

L [f1(t)] = L [sin 2t ] = F1(s)

where F1(s) = 
2

42s +

L [t f1(t)] = L [t sin 2t ] = 
-

+

L
NM

O
QP
= +

+

d

ds s

s

s

2

4

4

4
2 2 2

( )
(12.76)

Integration of Transforms

If the Laplace transform of the function f (t) exists, then the integral of
corresponding transform with respect to s in the complex frequency domain is
equal to its division by t in the time domain.

i.e. L 
f t

t

( )L
NM

O
QP

= 
s

•

z F(s) ds (12.77)

i.e. f(t) ´ F(s)

F(s) = L [ f (t)] = 
0

•

z f (t) e–st dt (12.78)

Integrating both sides from s to •

s

•

z F(s) ds = f t e dtst

s

( ) -

••

zz
L

N
M

O

Q
P

0

 ds (12.79)

By changing the order of integration, we get



Introduction to the Laplace Transform 12.19

= f t e ds dtst

s

( ) -

••

zz
L

N
M

O

Q
P

0

(12.80)

= 
0

•

z f(t) 
e

t

st-F
H

I
K

 dt

= 
f t

t

( )L
NM

O
QP

•

z
0

 e–st dt = L 
f t

t

( )L
NM

O
QP

(12.81)

0

•

z F(s) ds = L 
f t

t

( )L
NM

O
QP

(12.82)

Example 12.13 Find the Laplace transform of the function

f(t) = 
2 2 2
-

-e

t

t

Solution Let f1(t) = 2 – 2e–2t then

L [f1(t)] = L [2 – 2e–2t] (12.83)

= L (2) – L (2e–2t) = 
2 2

2s s
-

+

= 
2 4 2

2

s s

s s

+ -

+( )
 = 

4

2s s( )+

Hence L 
2 2

2
-L

NM
O

QP
-e

t

t

= 

0

•

z F1(s) ds

= 

s

•

z 4

2s s( )+
ds (12.84)

By taking the partial fraction expansion (discussed in later section), we get

4

2s s( )+
= 

A

s

B

s
+

+ 2
 = 

2 2

2s s
-

+

\ L 
2

2
-L

NM
O

QP
-e

t

t

= 

s

•

z L [2 – 2e–2t]ds

= 

s

•

z
2 2

2s
ds

s
s

-
+

•

z ds

= [2 log s – 2 log (s + 2)]•S
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= 2
1

1
2

log
+

L

N
M
M

O

Q
P
P

•

s s

 = – 2 log 
s

s +

F
H

I
K2

L 
2 2 2
-L

NM
O
QP

-e

t

t

= 2 log 
s

s

+F
H

I
K

2
(12.85)

Translation in the Time Domain

If the function f (t) has the transform F(s), then the Laplace transform of
f(t – a) (t – a) is e–as F(s). By definition

L [ f (t – a) u(t – a)] = 
0

•

z [ f(t – a) u(t – a)] e–st dt (12.86)

Since f(t – a) u(t – a) = 0 for t < a

= f(t – a) for t > a

\ L [ f(t – a) u(t – a)] = 
w

•

z f(t – a) e–st dt (12.87)

Put t – a = t then t + a = t

dt = dt

Therefore, the above becomes

L [f(t – a) u(t – a)] = 
0

•

z f (t) e–s(t + a) dt (12.88)

= e–as 
0

•

z f (t) e–st dt = e–as F(s)

\ L [ f(t – a) u(t – a)] = e–as F(s) (12.89)

Translation in the time domain corresponds to multiplication by an exponential
in the frequency domain.

Example 12.14 If u(t ) = 1 for t ≥ 0 and u(t) = 0 for t < 0, determine the Laplace

transform of [u(t) – u(t – a)].

Solution The function f(t) = u(t) – u(t – a) is shown in Fig. 12.17.

L [f(t)] = L [u(t) – u(t – a)] (12.90)

= L [u(t)] – L [u(t – a)]

= 
1

s
 – e–as 

1 1

s s
=  (1 – e–as)

L [f(t)] = 
1

s
 (1 – e–as) (12.91)

f t( )

t0

1

a

Fig. 12.17
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Translation in the Frequency Domain

If the function f (t) has the transform F(s), then Laplace transform of e–at f(t) is
F(s + a).

By definition, F(s) = 
0

•

z f(t) e–st dt (12.92)

and therefore, F(s + a) = 
0

•

z f(t) e–(s + a)t dt (12.93)

= 
0

•

z e–at f (t) e–st dt = L [e–at f(t)] (12.94)

\ F(s + a) = L [e–at f(t)] (12.95)

Similarly, we have

L [eat f(t)] = F(s – a) (12.96)

Translation in the frequency domain corresponds to multiplication by an
exponential in the time domain.

Example 12.15 Find the Laplace transform of eat sin bt.

Solution Let f(t) = sin bt (12.97)

L [f(t)] = L [sin bt] = 
b

s b2 2
+

Since L [eat f(t)] = F(s – a)

L [eat sin bt] = 
b

s a b( )- +
2 2

(12.98)

Example 12.16 Find the Laplace transform of (t + 2)2 et

Solution Let f(t) = (t + 2)2 = t2 + 2t + 4 (12.99)

L [f(t)] = L [t 2 + 2t + 4] = 
2 2 4
3 2s s s
+ +

Since L [eat f(t)] = F(s – a)

L [et f(t)] = 
2

1

2

1

4

13 2( ) ( )s s s-
+

-
+

-
(12.100)

Scale Changing

The scale change property gives the relationship between f(t) and F(s) when the
time variable is multiplied by a positive constant.

L { f (at)} = 
1

a
F

s

s

F
H

I
K , a > 0 (12.101)
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By definition

L [ f (at)] = 
0

•

z f (at) e–st dt (12.102)

Put at = t

dt = 
1

a
 dt

L [f (at)] = f e
a

d

s

a( )t t
t-

•

◊z 1

0

= 
1

0
a

f e d

s

a( )t t
t-

•

z

= 
1

a
F

s

a

F
H

I
K (12.103)

List of Operational Transforms See Table 12.2

Table 12.1

Operation f(t) F(s)

Multiplication by a constant K f(t) K F(s)

Addition/Subtraction f1(t) ± f2(t) F1(s) ± F2(s)

First derivative (time)
df t

dt

( )
SF(s) – f (0)

Second derivative (time)
d f t

dt

2

2

( )
S2F(s) – Sf (0) – 

df

dt

( )0

nth derivative (time)
d f t

dt

n

n

( )
Sn F(s) – S n – 1 f (0) – S n – 2 f ¢(0)

– S n – 3 f ≤(0) ... f (0)
n – 1

Operation f (t) F(s)

Time integral

0

t

z f (t) dt
F s

s

( )

Translation in time f (t – a) u(t – a), a > 0 e–as F(s)

Translation in frequency e–at f (t) F(s + a)

Scale changing f(at), a > 0
1

a
F

s

a

F
H

I
K

First derivative (s) t f (t) -
dF s

ds

( )

nth derivative (s) tn f (t) (– 1)n 
d F s

ds

n

n

( )

S integral
f t

t

( )

s

•

z F(u) du
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12.6 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

Periodic functions appear in many practical problems. Let function f (t) be a
periodic function which satisfies the condition f (t) = f (t + T) for all t > 0 where T
is period of the function.

L [ f (t)] = 
0

T

z f(t) e–st dt + 
T

T2

z f (t) e–st dt + ...

+ 
nT

n T( )+

z
1

 f(t) e–st dt + ... (12.104)

= 
0

T

z f(t) e–st dt + 
0

T

z f(t) e–st e–sT dt + ...

+ 
0

T

z f (t) e–st e–nsT dt + ...

= (1 + e–sT + e–2sT + ... + e–nsT + ...) 
0

T

z f(t) e–st dt

(12.105)

= 
1

1- -e
sT

 
0

T

z  f (t) e–st dt (12.106)

Example 12.17 Find the transform of the waveform shown in Fig. 12.18.

f t( )

T 2T 3T 4T t

A

–A

Fig. 12.18

Solution Here the period is 2T

L [f(t)] = 
1

1 2
-

-e sT
0

2T

z f(t) e–st dt (12.107)

= 
1

1
2

0

2

-
+ -

L

N
M
M

O

Q
P
P-

- -z ze
Ae dt A e dt

sT
st

T
st

T

T

( )
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= 
1

1 2
0

2

-
-

I
K +

I
K

L

N
M

O

Q
P-

- -

e

A

s
e

A

s
e

sT
st

T
st

T

T

= 
1

1
1

2

2

-
- - + -L

NM
O
QP-

- - -

e

A

s
e

A

s
e e

sT
sT sT sT( ) ( )

= 
1

1
1

2

2

-
-L

NM
O
QP-

-

e

A

s
e

sT
sT( )  = 

A

s

e

e

sT

sT

1

1

-

+

F
HG

I
KJ

-

-

\ L [f(t)] = 
A

s

e

e

sT

sT

1

1

-

+

F
HG

I
KJ

-

-
(12.108)

12.7 INVERSE TRANSFORMS

So far, we have discussed Laplace transform of a functions f (t). If the function is
a rational function of s, which can be expressed in the form of a ratio of two
polynomial in s such that no non-integral powers of s appear in the polynomials.
Infact, for linear, lumped parameter circuits whose component values are
constant, the s-domain expressions for the unknown voltages and currents are
always rational functions of s. If we can inverse transform rational functions of s,
we can solve for the time domain expressions for the voltages and currents.

In general, we need to find the inverse transform of a function that has the
form.

F(s) = 
N s

D s

( )

( )
 = 

a s a s a s a

b s b s b s b

n
n

n
n

m
m

m
m

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

...

...
(12.109)

The coefficients a and b are real constants, and the exponents m and n are

positive integers. The ratio 
N s

D s

( )

( )
 is called a proper rational function if m > n,

and an improper rational function if m £ n. Only a proper rational function can be
expanded as a sum of partial fractions.

Partial Fraction Expansion: Proper Rational Functions

A proper rational function is expanded into a sum of partial fractions by writing
a term or a series of terms for each root of D(s). Thus D(s) must be in factored
form before we can make a partial fraction expansion. The roots of D(s) are
either (1) real and distinct (2) complex and distinct (3) real and repeated or (H)
complex and repeated.

(i) When the roots are real and distinct

In this case F(s) = 
N s

D s

( )

( )
(12.110)

where D(s) = (s – a) (s – b) (s – c) (12.111)
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Expanding F(s) into partial fractions, we get

F(s) = 
A

s a

B

s b

C

s c-
+

-
+

-
(12.112)

To obtain the constant A, multiplying Eq. (12.112) with (s – a) and putting
s = a, we get

F(s) (s – a)|s = a = A

Similarly, we can get the other constants.

B = (s – b) F(s)|s = b

C = (s – c) F(s)|s = c

Example 12.18 Determine the partial fraction expansion for

F(s) = 
s s

s s s

2
1

5 3

+ +

+ +( )( )

Solution F(s) = 
s s

s s s

2
1

5 3

+ +

+ +( )( )
(12.113)

s s

s s s

2
1

5 3

+ +

+ +( )( )
= 

A

s

B

s

C

s
+

+
+

+5 3
(12.114)

A = sF(s)|s = 0 = 
s s

s s s

2

0

1

5 3

1

15

+ +

+ +
=

=
( )( )

B = (s + 5) F(s)|s = –5 = 
s s

s s s

2

5

1

3

+ +

+
= -

( )
 = 2.1

C = (s + 3) F(s)|s = – 3 = 
s s

s s s

2

3

1

5

+ +

+
= -

( )
 = – 1.17

s s

s s s

2
1

5 3

+ +

+ +( )( )
= 

1

15

2 1

5

117

3s s s
+

+
-

+

. .
(12.115)

(ii) When roots are real and repeated

In this case F(s) = 
N s

D s

( )

( )

where D(s) = (s – a)n D1(s)

The partial fraction expansion of F(s) is

F(s) = 
A

s a

A

s an n
0 1

1( ) ( )-
+

-
-

 +...+ 
A

s a

N s

D s

n-

-
+1 1

1

( )

( )
(8.115)

where 
N s

D s

1

1

( )

( )
 represents the remainder terms of expansion.

To obtain the constant A0, A1, ... An – 1, let us multiply both sides of Eq.
(12.115) by (s – a)n.
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Thus

(s – a)n F(s) = F1(s) = A0 + A1 (s – a) + A2 (s – a)2 + ...

+ An – 1 (s – a)n – 1 + R(s) (s – a)n (12.117)

where R(s) indicates the remainder terms

Putting s = a, we get

A0 = (s – a)n F(s)|s = a

Differentiating Eq. (12.116) with respect to s, and putting s = a, we get

A1 = 
d

ds
 F1(s)|s = a

Similarly A2 = 
1

2

2

2!

d

ds
 F1(s)|s = a

In general, An = 
1 1

n

d F s

ds

n

n

s a
!

( )

=

(12.118)

Example 12.19 Determine the partial fraction expansion for

F(s) = 
s

s s

-

+

5

2 2( )

Solution F(s) = 
s

s s

-

+

5

2 2( )
 = 

A

s

B

s

B

s
+

+
+

+( )2 22
1

A = F(s) S|s = 0 = 
s

s s

-

+
=

5

2 2
0( )
 = -

5

4
 = – 1.25

N1(s) = (s + 2)2 F(s) = 
s

s

- 5

B0 = F(s) (s + 2)2|s = 2 = 
s

s s

-

= -

5

2

 = 3.5

B1 = 
d

ds
 F1(s)|s = – 2

= 
d

ds s
1

5

3 2
-

F
H

I
K

= -

 = 
5
2

2s s = -

 = 
5

4
 = 1.25

(iii) When roots are distinct complex roots of D(s)

Consider a function F(s) = 
N s

D s s j s j

( )

( )( )( )- + - -a b a b
(8.118)

The partial fraction expansion of F(s) is

F(s) = 
A

s j

B

s j

N s

D s- -
+

- +
+

a b a b
1

1

( )

( )
(12.120)
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where 
N s

D s

1

1

( )

( )
 is the remainder term.

Multiplying Eq. (12.118) by (s – a – jb) and putting
S = a + jb, we get

A = 
N j

D j j

( )

( )( )

a b

a b b

+

+ +1 2
(12.121)

Similarly B = 
N j

j D j

( )

( ) ( )

a b

b a b

-

- -2 1

(12.122)

In general, B = A* where A* is complex conjugate of A.
If we denote the inverse transform of the complex conjugate terms as f (t)

f(t) = L –1 
A

s j

B

s j- -
+

- +

L
NM

O
QPa b a b

= L –1 
A

s j

A

s j- -
+

- +

L
NM

O
QPa b a b

*

(12.123)

where A and A* are conjugate terms.

If we denote A = C + jD, then

B = C – jD = A*

\ f(t) = ea t (Ae
jb t + A* e–jb t) (12.124)

Example 12.20 Find the inverse transform of the function

F(s) = 
s

s s s

+

+ +

5

2 5)2(

Solution F(s) = 
s

s s s

+

+ +

5

2 5)2(
(12.125)

By taking partial fractions, we have

F(s) = 
s

s s s

A

s

B

s j

B

s j

+

+ +
= +

+ −
+

+ +

5

2 5) 1 2 1 22
(

*
(12.126)

A = F(s) s|s = 0 = 
s

s s

+

+ +

5

2 52
 = 1

B = F(s) (s + 1 – j2)|s = – 1 + j 2 = 
s

s s j
s j

+

+ +
= - +

5

1 2
1 2

( )
|

= 
4 2

1 2 4

2

2 1 2

2

2 4

1

2

+

− +
=

+

− +
=

+

− −
=
−j

j j

j

j j

j

j( ) ( )

B* = F(s) (s + 1 + j2)|s = – 1 – j 2 = 
s

s s j
s j

+

+ -
= - -

5

1 2
1 2

( )
|
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= 
− − +

− − − − + −

1 2 5

1 2) 1 2 1 2)

j

j j j( (

= 
4 2

1 2 4

4 2

4 8

2 2

4 2

1

2

−

− +
=

−

−
=

−

− −
=
−j

j j

j

j

j

j( ) ( )

( )

( )

\ F(s) = 
1 1

2 1 2)

1

2 1 2)s s j s j
−

+ −
−

+ +( (
(12.127)

The inverse transform of F(s) is f(t)

f(t) = L –1 [F(s)] = L –1 
1 1

2 1 2)

1

2 1 2)s s j s j
−

+ −
−

+ +

L
N
M

O
Q
P

( (

= L –1 
1 1

2s
L
NM

O
QP

-  L 
–1 

1

1 2)(s j+ −

L
N
M

O
Q
P −

1

2
 L

–1 
1

1 2s j+ +

L
N
M

O
Q
P

= 1−
1

2
 e(– 1 + j2)t −

1

2
 e(– 1 – j2)t (12.128)

(iv) when roots are repeated and complex of D(S)
The complex roots always appear in conjugate pairs and that the coefficients

associated with a conjugate pair are also conjugate, so that only half the Ks need
to be evolved.

Consider the function F(s) = 
768

6 22 2( )s s s+ +
(12.129)

By factoring the denominator polynomial, we have

F(s) = 
768

3 4 3 42 2( ) ( )s j s j+ − + +

= 
K

s j

K

s j
1

2
2

3 4 3 4( )+ −
+

+ −

   + 
K

s j

K

s j

*

( )

*1
2

2

3 4 3 4+ +
+

+ +
(12.130)

Now we need to evaluate only K1 and K2, because K1* and K2* are conjugate
values.
The value of K1, is

K1 = 
768

3 4

768

82 3 4 2( )
|

( )s j j
s j

+ +
== − +  = – 12 (12.131)

The value of K2 is

K2 = 
d

ds s j
s j

768

3 4 2

3 4
( )+ +

L
NM

O
QP = − +

= −
+ +

= −= − +

2 768

3 4

2 768

83 3 4 3

( )

( )
|

( )

( )s j j
s j

= – j3 = 3 –– 90º (12.132)
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From Eq. (12.131) and (12.132)

K1* = – 12, K2* = j3 = 3 –90º (12.133)

are now group f  the partial fraction expansion by conjugate terms to obtain

F(s) = 
−

+ −
+

−

+ +

L
NM

O
QP

12

3 4

12

3 42 2( ) ( )s j s j

+
∠ −

+ −
+

∠

+ +

F
HG

I
KJ

3 90

3 4

3 90

3 4

º º

s j s j
(12.134)

Inverse transform of the above function is

f(t) = [–24t e–3tcos 4t + 6e
–3t cos (4t – 90º)] u(t) (12.135)

Table 12.3 Useful transform pairs

Nature of roots F(s) f(t)

Distinct real k

s a+
Ke–at u(t)

Repeated real
k

s a( )+
2

Kt e–at u(t)

Distinct complex
k

s j

k

s j+ -
+

+ +a b a b

*
2|k|e–at cos (bt + q) u(t)

Repeated complex
k

s j

k

s j( + -
+

+ +a b a b)

*

( )2 2
2t|k|e–at cos (bt + q) u(t)

Partial Fraction Expansion: Improper Rational Function

An improper rational function can always be expanded into a polynomial plus a
proper rational function. The polynomial is then inverse-transformed into impulse
functions and derivatives of impulse functions.

Consider a function

F(s) = 
s s s s

s s

4 3 2

2

13 66 200 300

9 20

+ + + +

+ +
(12.136)

Dividing the denominator into the numerator until the remainder is proper
rational function gives

F(s) = s2 + 4s + 10 + 
30 100

9 202

s

s s

+

+ +
(12.137)

Now we expand the proper rational function into a sum of partial fractions

30 100

9 202

s

s s

+

+ +
= 

30 100

4 5

s

s s

+

+ +( ) ( )
=

−

+
+

+

20

4

50

5s s
(12.138)

Substituting Eq. (12.137) into Eq. (12.136) yields

F(s) = s2 + 4s + 10 – 
20

4

50

5s s+
+

+
(12.139)
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By taking inverse transform, we get

f (t) = 
d t

dt

d t

dt

2

2
4

δ δ( ) ( )
+  + 10 d(t) – (20e–4t– 50e–5t) u(t) (12.140)

12.8 INITIAL AND FINAL VALUE THEOREMS

The initial and final value theorems are useful because they enable us to
determine from F(s) the behaviour of f(t) at 0 and •. Hence we can check the
initial and final values of f(t) to see if they conform with known circuit behaviour,
before actually finding the inverse transform of F(s).

The initial-value theorem states that

lim
t→0

 f(t) = lim
s→∞

 SF(s) (12.141)

and the final-value theorem states that

lim
t→∞

 f(t) = lim
s→0

 SF(s) (12.142)

The initial-value theorem is based on the assumption that f(t) contains no
impulse functions.

To prove, initial value theorem, we start with the operational transform of the
first derivative.

L 
d f

dt

L
NM

O
QP

= SF(s) – f (0)

= 
d f

dt
0

∞

z  e–st dt (12.143)

Now we take the limit as s Æ •

lim
s→∞

 [SF(s) – f (0)] = lim
s

d f

dt→∞

∞

z
0

 e–stdt (12.144)

The right hand side of the above equation becomes zero as s Æ •

\ lim
s→∞

 [SF(s) – f(0)] = 0

lim
s→∞

SF(s) = f (0) = lim
t→0

 f (t) (12.145)

The proof of the final value theorem also starts with Eq. (12.142). Here we
take the limit as s Æ 0.

lim
s→0

 [SF(s) – f (0)] = lim
s

std f

dt
e dt

→

−

∞

z
F
HG

I
KJ0

0

(12.146)

lim
s→0

 [SF(s) – f (0)] = [f(t)]•

0 (12.147)

lim
s→0

 SF(s) – f (0) = lim
t→∞

f (t) – f (0)
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Since f (0) is not a function of s, it gets cancelled from both sides.

\ lim
t→∞

f(t) = lim
s→∞

 SF(s) (12.148)

The final-value theorem is useful only if f(•) exists.

The Application of Initial and Final Value Theorems

Consider the transform pair given by

100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +
↔  [–12e–6t + 20e–3t cos (4t – 53.13º)] u(t) (12.149)

The initial value theorem gives

lim
s→∞

 SF(s) = lim
s

s
s

s
s s s

→∞

+
F
H

I
K

+
L
NM

O
QP

+ +
L
NM

O
QP

100 1
3

1
6

1
6 25

2

3
2

 = 0 (12.150)

lim
t→0

f(t) = [–12 + 20 cos (–53.13º)] (1) = –12 + 12 = 0 (12.151)

The final value theorem gives

lim
s→0

 SF(s) = lim
(

( ) ( )s

s s

s s sÆ

+

+ + +0 2

100 3)

6 6 25
 = 0 (12.152)

lim
t→∞

 f(t) = lim
t→∞

 [– 12e–6t + 20e–3t cos (4t – 53.13º)] u(t) = 0

(12.153)

Example 12.21 Verify the initial value theorem for the following functions

(i) 5e–4t (ii) 2 – e5t

Solution (i) Let f(t) = 5e–4t (12.154)

then F(s) = 
5

4s +

SF(s) = 
5

4

s

s +

lim
s→∞

SF(s) = lim
s sÆ• +

5

1 4
 = 5

lim
t→0

 f(t) = lim
t→0

 5e–4t = 5 (12.155)

Hence the initial value theorem is proved.

(ii) Let f(t) = 2–e5t (12.156)

then F(s) = L(2 – e5t) = L(2) – L(e5t)

= 
2 1

5

10

5)s s

s

s s
−

−
=

−

−(
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SF(s) = 
s

s

−

−

10

5

lim
s→∞

 SF(s) = 

1
10

1
5

−
F
H

I
K

−
F
H

I
K

s

s

 = 1

lim
t→0

 f(t) = lim
t→0

 (2 – e5t) = 1 (12.157)

Hence the initial value theorem is proved.

Example 12.22 Verify the final value theorem for the following functions

(i) 2 + e–3t cos 2t (ii) 6(1 – e–t)

Solution (i) Let f(t) = 2 + e–3t cos 2t (12.158)

then F(s) = 
2 3

3 42s

s

s
+

+

+ +( )

SF(s) = 2 + 
s

s

s

s

2

2 2
3 4

3

3 4( ) ( )+ +
+

+ +

lim
s→0

 SF(s) = lim
( )

( )s

s s

s→

+
+

+ +

L

N
M

O

Q
P

0
2

2
3

3 4
 = 2

lim
t→∞

 f(t) = lim
t→∞

 [2 + e–3t cos 2t ] = 2 (12.159)

Hence the final value theorem is proved.

(ii) Let f(t) = 6(1 – e–t) (12.160)

then F(s) = 
6 6

1

6

1s s s s
−

+
=

+( )

SF(s) = 
6

1s +

lim
s→0

 SF(s) = 6

lim
t→∞

 f(t) = lim
t→∞

6(1 – e–t) = 6 (12.161)

Hence the final value theorem is proved.

Solved Problems

Problem 12.1 For the waveform shown in Fig. 12.19, write the expression
and find the Laplace transform.
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f t( )

t0

A

p

Fig. 12.19

Solution The waveform shown in Fig. 12.19 starts at t = 0 and ends at t = p.
The equation for the above waveform is f (t) = A sin t. In terms of unit function
the waveform can be expressed as

f(t) = A sin t [u(t) – u(t – p)] (12.162)

By definition, we have

L [ f(t)] = f t( )
0

∞

z  e–st dt

= 
0

∞

z  A sin t [u(t) – u(t – p)] e–st dt (12.163)

= 
0

∞

z  A sin t u(t) e–st dt –
0

∞

z  A sin u(t – p)–st edt

Since f (t) = 0 for t > p , the second term becomes zero

\ L [ f(t)] = 
0

π

z A sin t e–st dt (12.164)

= A 
e

s

st−

+( )2
1

 [– s sin t – cos t]p0

= 2A 
e

s

s−
−

+

π
1

1
2( )

(12.165)

Problem 12.2 For the waveform shown in Fig. 12.20 write the expression
using step functions and obtain the Laplace transform.

f t( )

t0

1

1

Fig. 12.20
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Solution The waveform shown in Fig. 12.20 starts at t = 0 and ends t = 1 sec.
The equation for the above waveform is f(t) = t. In terms of unit functions, the
waveform can be expressed as

f(t) = t[u(t) – u(t – 1)] (12.166)

By definition

L [f(t)] = 
0

∞

z f(t) e–st dt

= 
0

∞

z t[u(t) – u(t – 1)] e–st dt (12.167)

Since  f (t)= 0 for t > 1, the second term becomes zero

L [ f (t)] = 
0

∞

z  t u(t) e–st dt

= 
0

1

z  t e–st dt

= t 
0

1

z  e–st dt – 
0

1

z e

s

st−

−
 dt (12.168)

= t
e

s

e

s

st st− −

−

I
KJ

−
I
KJ

0

1

2

0

1

= 
e

s

e

s s

s s− −

−
− +

2 2

1

= 
1 1 1
2 2s

e
s s

s
− +

L
NM

O
QP

− (12.169)

Problem 12.3 Determine the Laplace transform of 
d y

dt

2

2
 if y = t2.

Solution From the differentiation property

L 
d y

dt

2

2

R
S
T

U
V
W

= s2y – sy(0) – 
d y

dt

( )0
(12.170)

L(y) = L (t2) = 
2
3s

d y

dt
= 

d

dt
 (t2) = 2t

d y

dt

( )0
= 0

From the function y = t2
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y(0) = 0

L 
d y

dt

2

2

R
S
T

U
V
W

= s2 
2
3s

RST
UVW

 – s(0) – 0

= 
2

s
(12.171)

Problem 12.4 Determine the Laplace transform of y = e–6t + t

Solution L [ y] = L [e–6t + t]

= L [e–6t] + L [t]

= 
1

6

1
2s s+

+

= 
s s

s s

s s

s s

2

2

2

3 2

6

6

6

6

+ +

+
=

+ +

+( )
(12.172)

Problem 12.5 Determine the inverse Laplace transform of

6

1

14

s s+
+

R
S
T

U
V
W

Solution L
–1 

6

1

14

s s+
+

R
S
T

U
V
W

 = L –1 
6

1s +

R
S
T

U
V
W

 + L –1 
14

s

RST
UVW

(12.173)

= 6 L –1 
1

1s +

R
S
T

U
V
W

 + L –1 
14

s

RST
UVW

= 6e–t + 14 (12.174)

Problem 12.6 Determine the inverse Laplace transform of

4

64
2

s +

R
S
T

U
V
W

Solution
4

64
2s +

= 
4

8
2 2s +

(12.175)

= 
( )4

8

8

8
2 2

s +

R
S
T

U
V
W

= 
1

2

8

8
2 2

s +

R
S
T

U
V
W

L
–1 

4

64
2

s +

R
S
T

U
V
W

= L –1 
1

2

8

8
2 2

F
H

I
K +

R
S
T

U
V
Ws

(12.176)
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= 
1

2
 L –1 

8

8
2 2

s +

R
S
T

U
V
W

= 
1

2
 sin 8t (12.177)

Problem 12.7 Determine the inverse Laplace transform of the function

F(s) = 
s

s s
s

−

+ +

3

4 13

Solution F(s) = 
s

s s

s

s

s

s

−

+ +
=

−

+ +
=

+ −

+ +

3

4 13

3

2 9

2 5

2 9
2 2 2( )

( )

( )
(12.178)

We can write the above equation as

s

s s

+

+ +
−

+ +

2

2 9

5

2 9
2 2( ) ( )

By taking the inverse transform, we get

L
–1 F(s) = L –1 

s

s

+

+ +

L
NM

O
QP

2

2 9
2( )

 – L –1 
5

2 9
2( )s + +

L
NM

O
QP

= e–2t cos 3t –
5

3
 e–2t sin 3t

= 
e

t−2

3
 [3 cos 3t – 5 sin 3t] (12.179)

Problem 12.8 Find the inverse transform of the following

(a) log 
s

s

+

+

F
HG

I
KJ

5

6
(b)

1

5
2 2 2( )s +

Solution (a) Let F(s) = log 
s

s

+

+

F
HG

I
KJ

5

6
(12.180)

Then
d

ds
 [F(s)] = 

d

ds

s

s s s
log

+

+

F
HG

I
KJ

L

N
M

O

Q
P =

+
−

+

5

6

1

5

1

6

We know that

L
–1 

d

ds
F s( )

L
NM

O
QP

= – t f(t) (12.181)

\ L
–1 

d

ds
F s( )

L
NM

O
QP

= L –1 
1

5

1

6s s+
−

+

L
NM

O
QP
 = e–5t – e–6t

Hence – t f (t) = e–5t – e–6t

f (t) = 
e e

t

t t− −
−

6 5

(12.182)
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(b) Let F(s) = 
1

5
2 2 2( )s +

(12.183)

1

52 2 2( )s +
= 

1

52 2 2s

s

s
⋅

+( )

Therefore   L –1 
1

52 2 2( )s +

L
NM

O
QP

 = L –1 
1

52 2 2s

s

s( )+

L
NM

O
QP

(12.184)

According to integration theorem

L
–1 

1

52 2 2s

s

s( )+

L
NM

O
QP

= L
−

+

L
N
M

O
Q
Pz 1

2 2
0

5

s

s

t

( )
 dt (12.185)

if L
–1 1

52 2 2s

s

s( )+

L
NM

O
QP

= L
1−

+

L
NM

O
QPz s

s

t

( )2 2 2
0

5
 dt

if L [f(t)] = F(s), then L 
f t

t
F

s

( )L
NM

O
QP
=

∞

z (s) ds

Here
s

s
s

( )2 2 25+

∞

z  ds = 
−

+

L
N
M

O
Q
P
∞

1

2

1

52 2s
s

= 
1

2

1

52 2s +

Therefore
f t

t

( )
= L –1 

1

2

1

52 2⋅
+

F
HG

I
KJs

 = 
1

10
 sin 5t

\ f (t) = 
t

10
 sin 5t

or L
–1 

1

52 2 2s

s

s( )+

L
N
M

O
Q
P = 

t t
t

sin 5

10
0
z  dt (12.186)

= 
1

10

5

5

5

25 0

t
t t

f
−F

H
I
K +

L
NM

O
QP

cos sin

= 
1

250
 [sin 5t – 5t cos 5t] (12.187)

Problem 12.9 Find the Laplace transform of the full wave rectified output as
shown in Fig. 12.21.

f t( )

tp 2p 3p

w w w

10

Fig. 12.21
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Solution We have

f(t) = 10 sin wt for 0 < t < 
π

ω
(12.188)

Hence L [ f (t)] = 
e f t dt

e

st

s

w

−

−

−

z
( )/ d i

10

π

π ω

(12.189)

= 
e t dt

e

st

s

w -

-

-

z
10

10

sin/ w
p

w

p d i

= 
10

1−

−

e

sπ

ω

e

s
s t t

st-

+
- -

L
NM

O
QP2 2

0w
w w w

p w

( sin cos )
/

= 
10

1 2 2
−

F
HG

I
KJ

+

−

e s

sπ

ω ω( )

ω ω

π

ωe

s−

+
L

N
M
M

O

Q
P
P

= 
10

1

1

2 2

ω

ω

π

ω

π

ω
s

e

e

s

s+

+
F
HG

I
KJ

−
F

HG
I

KJ

−

−

= 
10

2 2

2 2

2
2

ω

ω

π

ω

π

ω

π

ω

π

ω
s

e e

e

s s

s
e

s
+

+

−

−

−

= 
10

2 2

ω

ωs +
 cosh 

sπ

ω2
F
H

I
K (12.190)

Problem 12.10 Find the Laplace transform of the square wave shown in
Fig. 12.22.

f t( )

a 2a 3a 4a t

A

–A

Fig. 12.22
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Solution We have

f(t) = A, 0 < t < a

= – A, a < t < 2a (12.191)

L [ f (t)] = 
1

1 2

2

0
−

+ −
L

N
M
M

O

Q
P
P−

− −zz
e

Ae dt A e dt
as

st st

a

aa

( )

= 
A

s

e e

e

as as

as

1 2

1

2

2

− +

−

− −

−

d i

= 
A

s

e

e e

A

s

as
as

as as

1

1 1 2

2
−

+ −
=

F
H

I
K

−

− −

d i
d i d i

tanh (12.192)

Problem 12.11 Determine the form of the partial fraction expansion for the
proper fraction.

s

s s s s s

−

+ + + + +

1

9 4 3 2 72 2 2( ) ( ) ( ) ( )

Solution

s

s s s s s

−

+ + + + +

1

9 4 3 2 72 2 2( ) ( ) ( ) ( )
 = 

K

s

K

s
1

2
2

9 9( )+
+

+

+
+

+
+

+ +
+

+
+

+

K

s

K s K

s s

K

s

K

s

3 4 5
2

6
2

7

4 3 2 7 7( )
(12.193)

Alternatively (s2 + 3s + 2) can be factored and written as (s + 2) (s + 1), and
the resulting partial fraction expansion can be written as

s

s s s s s

−

+ + + + +

1

9 4 2 1 72 2( ) ( ) ( ) ( ) ( )
 = 

K

s

K

s

K

s
1

2
2 3

9 9 4( ) ( ) ( )+
+

+
+

+
+

+

K

s
4

2

K

s

5

1+
 +

+
+

+

K

s

K

s

6
2

7

7 7( )
(12.194)

Problem 12.12 Determine the form for a partial fraction expansion for the
improper fraction.

6 100 85 52

7 14 8

3 2

3 2

s s s

s s s

+ + +

+ + +

Solution Because the expression is not a proper fraction, it cannot be
expanded into partial fractions. However, if the denominator is divided into the
numerator, part of the expression becomes a proper fraction, and that part can be
expanded.

6 100 85 52

7 14 8

3 2

2 2

s s s

s s s

+ + +

+ + +
= 6 + 

58 4

7 14 8

2

3 2

s s

s s s

+ +

+ + +
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= 6 + 
58 4

1 2 4

2s s

s s s

+ +

+ + +( ) ( ) ( )
(12.195)

\           
6 100 85 52

7 14 8

3 2

3 2

s s s

s s s

+ + +

+ + +
= 6

1 2 4
1 2 3

+
+

+
+

+
+

K

s

K

s

K

s
(12.196)

Problem 12.13 Determine the inverse Laplace transform of F(s), where

F(s) = 
s

s s( ) ( )+ +1 42

Solution From the rules given for expanding proper fractions

s

s s( ) ( )+ +1 42 = 
K

s

K

s

K

s
1

2
2 3

1 1 4( )+
+

+
+

+
(12.197)

K1 = F(s) (s + 1)2|s = 1

= 
s

s
s

+
=
−

= −
4

1

3
1|

K3 = F(s) (s + 4)|s = – 4

= 
s

s( )+
=
−

1

4

92

We can determine K2 by putting the right side of the equation on a common
denominator and equating numerators.

s

s s( ) ( )+ +1 42  = 
K s K s s K s

s s

1 2 3
2

2

4 1 4 1

1 4

( ) ( ) ( ) ( )

( ) ( )

+ + + + + +

+ +
(12.198)

Since K1 = 
−1

3
 and K3 = 

−4

9
equating numerators results in

s = 
−

+
F
H

I
K + −

F
H

I
K +

−
+

F
H

I
K

11

9
5

4

9

16

9
42 2

2
2K s K s K

equating coefficients results in

−11

9
 + 5K2 = 1

K2 = 
4

9

F(s) = 
s

s s( ) ( )+ +1 42 = 

−F
H

I
K

+
+

+
+

−

+

1

3
1

4 9

1

4 9

42( )

( / ) ( / )

s s s

L
–1 {F(s)} = L –1 

−

+
+

+
+

−

+

R
S
|

T
|

U
V
|

W
|

1

3
1

4 9

1

4 9

42( )

( / ) ( / )

s s s
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From the rules

f (t) = 
−1

3
t e–t + 

4

9
 e–t – 

4

9
 e–4t (12.199)

Problem 12.14 Expand the following proper fraction into partial fraction.

F(s) = 
1

3 2 42( ) ( )s s s+ + +

Solution By expanding proper fractions

1

3 2 42( ) ( )s s s+ + +
= 

K s K

s s

K

s
1 2

2
3

3 4 4

+

+ +
+

+( )
(12.200)

K3 = F(s) (s + 4)|s = – 4

= 
1

3 22( )s s+ +
|s = – 4

K3 = 
1

6

Putting the right hand side of the expanded equation over a common
denominator to determine K1 and K2 results in

1

3 2 42( ) ( )s s s+ + +
= 

K s K

s s s
1 2

2 3 4

1 6

4

+

+ +
+

+( )

/

= 

K s s K K s K s s

s s s

1
2

1 2 2
2

2

4 4
1

6

1

2
1 3

3 2 4

+ + + +
F
H

I
K +

F
H

I
K +

+ + +

/

( ) ( )

= 

K s K K s K

s s s

1
2

1 2 2

2

1

6
4 4

1

2
4 1 3

3 2 4

+
F
H

I
K + + +

F
H

I
K + +

+ + +

/

( ) ( )

b g
(12.201)

Equating numerators, we get

K1 + 
1

6
= 0

4K1 + K2 + 
1

2
= 0

4K2 + 
1

3
= 1

From the above equations, we get

K1 = 
−1

6
, K2 = 

1

6

The required partial fraction expansion is
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F(s) = 

−F
H

I
K +

F
H

I
K

+ +
+

+

1

6

1

6
3 2

1 6

42

s

s s s

/a f
(12.202)

Problem 12.15 Determine the inverse Laplace transform of the following
function

F(s) = 
96 17 60

14 48

2

3 2

( )s s

s s s

+ +

+ +

Solution The function F(s) can be factorised as given

F(s) = 
96 5 12

8 6

( ) ( )

( ) ( )

s s

s s s

+ +

+ +
(12.203)

F(s) = 
K

s

K

s

K

s
1 2 3

8 6
+

+
+

+

To find K1, we multiply both sides by s and then put s = 0

K1 = F(s) s|s = 0 = 
96 5 12

8 6 0

( ) ( )

( ) ( )
|

s s

s s
s

+ +

+ +
=  = 120

To find the value of K2, we multiply both sides by s + 8 and then evaluate both
sides at s = – 8

K2 = F(s) (s + 8)|s = – 8 = 
96 5 12

6 8

( ) ( )

( )
|

s s

s s
s

+ +

+
= −  = – 72

Then K3 is

96 5 12

8 6

( ) ( )

( )
|

s s

s s
s

+ +

+
= − = K3 = 48

Therefore

96 5 12

8 6

( ) ( )

( ) ( )

s s

s s s

+ +

+ +
= 

120 48

6

72

8s s s
+

+
−

+
(12.204)

By taking inverse transform of the above function, we get

L
–1 

96 5 12

8 6

( ) ( )

( ) ( )

s s

s s s

+ +

+ +

R
S
T

U
V
W

= L –1 
120 48

6

72

8s s s
+

+
−

+

R
S
T

U
V
W

= 120 + 48e–6t – 72e–8t (12.205)

Problem 12.16 Determine the inverse Laplace transform of the following
function

F(s) = 
100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +

Solution By factoring denominator, we have

100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +
= 

K

s

K

s j

K

s j
1 2 3

6 3 4 3 4+
+

+ −
+

+ +
(12.206)
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To find K1, K2 and K3, we use the same process as before:

K1 = 
100 3

6 252 6

( )
|

s

s s
s

+

+ +
= −  = 

100 3

25

( )−
 = – 12

K2 = 
100 3

6 3 4

100 4

3 4 82 3 4

( )

( ) ( )
|

( )

( )( )

s

s s j

j

j j
s j

+

+ + +
=

+
= − +

K3 = 
100 3)

6 3 4

100 4

3 4 82 3 4

(

( ) ( )
|

( )

( )( )

s

s s j

j

j j
s j

+

+ + -
=

-

- -
= - -

Then
100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +
= 

−

+
+

∠ −

+ −
+

∠

+ +

12

6

10 5313

3 4

10 5313

3 4s s j s j

. º . º
(12.207)

By taking inverse Laplace transform, we get

L
–1 

100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +

R
S
T

U
V
W

 = – 12e–6t + 10e–j53.13º ◊ e–(3 – j4)t

+ 10e j53.13º ◊ e–(3 + j4)t

By simplifying, we get

L
–1 

100 3

6 6 252

( )

( ) ( )

s

s s s

+

+ + +

R
S
T

U
V
W

 = {– 12e–6t + 20e–3t cos (4t – 53.13º)}   (12.208)

Problem 12.17 Obtain inverse Laplace transform of the following function

F(s) = 
100 25

5 3

( )

( )

s

s s

+

+

Solution By factorising the denominator, we have

100 25

5 3

( )

( )

s

s s

+

+
= 

K

s

K

s

K

s

K

s
1 2

3
3

2
4

5 5 5
+

+
+

+
+

+( ) ( )
(12.209)

we find K1, as

K1 = 
100 25

5 3 0

( )

( )
|

s

s
s

+

+
=  = 20

To find K2, we multiply both sides by (s + 5)3 and then evaluate both sides at – 5.

100 25
5

( )
|

s

s
s

+
= −

 = 
K s

s
K K s K ss s s

1
3

5 2 3 5 4
2

5

5
5 5

( )
| ( )| ( ) |

+
+ + + + += − = − = −

\ K2 = – 400

To find K3, we first multiply both sides by (s + 5)3. Next we differentiate both
sides once with respect to s and then evaluate at s = – 5.

d

ds

s

s s

100 25

5

( )+L
NM

O
QP = −

= 
d

ds

K s

s
s

1
3

5

5( )+L
N
M

O
Q
P

= −
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+
d

ds
 [K2]s = – 5

+ 
d

ds
 [K3(s + 5)]s = – 5

+ 
d

ds
 [K4(s + 5)2]s = – 5

100
25

2
5

s s

s s

− +L
NM

O
QP = −

( )
= K3 = – 100

To find K4, we first multiply both sides by (s + 5)3. Next we differentiate both
sides twice with respect to s and then evaluate both sides at s = – 5. After
simplifying the first derivative, the second derivative becomes

100 
d

ds s s

−L
NM

O
QP = −

25
2

5

= K1 
d

ds

s s

s
s

( ) ( )+ −L
NM

O
QP = −

5 2 52

2
5

+ + = −0 3 5
d

ds
K s[ ]

+ + = −

d

ds
K s s[ ( )]2 54 5

or
– 40 = 2K4

K4 = – 20

Then
100 25

5 3

( )

( )

s

s s

+

+
= 

20 400

5

100

5

20

53 2s s s s
−

+
−

+
−

+( ) ( )
(12.210)

By taking inverse transform we get

L
–1 

100 25

5 3

( )

( )

s

s s

+

+

R
S
T

U
V
W

= 20 – 200t2 e–5t – 100te–5t – 20e–5t (12.211)

Problem 12.18 Verify the initial and final value theorems for the function
f(t) = e–t (sin 3t + cos 5t)

Solution f (t) = e–t (sin 3t + cos 5t) (12.212)

F(s) = L [ f (t)] = L [e–t (sin 3t + cos 5t)] (12.213)

Since L(e–t sin 3t) = 
3

1 32 2( )s + +

and L(e–t cos 5t) = 
s

s

+

+ +

1

1 52 2( )

\  F(s) = L [ f (t)] = 
3

1 3

1

1 52 2 2 2( ) ( )s

s

s+ +
+

+

+ +
(12.214)

According to initial value theorem

Lt
t→0

 f (t) = L t
s→∞

 SF(s)



Introduction to the Laplace Transform 12.45

F(s) = 
3

2 10

1

2 262 2s s

s

s s+ +
+

+

+ +

SF(s) = 
3

1
2 10

1
2 262

2

2

2
2

s

s
s s

s s

s
s s

+ +
F
H

I
K

+
+

+ +
F
H

I
K

= 
3

1
2 10

1

1
2

8

26
1

1
2 26

2 2 2
s

s s s
s

s s
+ +

F
H

I
K

+

+ +

+

+ +
F
H

I
K

(12.215)

lim
s→∞

SF(s) = 1

f(t) = e–t (sin 3t + cos 5t)

lim
t→0

 f (t) = 1

Hence the initial value theorem is proved.
According to the final value theorem

lim
t→∞

 f(t) = lim
s→0

 SF(s)

lim
s→0

 SF(s) = 0

lim
t→∞

 f(t) = 0

Hence the final value theorem is proved.

Problem 12.19 Find the value of i(0+) using the initial value theorem for the
function given

I(s) = 
2 3

1 3

s

s s

+

+ +( ) ( )

Verify the result by solving it for i(t).
Solution The initial value theorem is given by

lim
t→0

 i(t) = lim
s→∞

 SI(s)

= lim
( )

( ) ( )s

s s

s s→∞

+

+ +

2 3

1 3
(12.216)

Taking S common and putting S = •, we get

lim
s

s
s

s
s s

→∞

+
F
H

I
K

+
F
H

I
K +

F
H

I
K

2

2

2
3

1
1

1
3

= 2 (12.217)

To verify the result, we solve for i(t) and put t Æ •.
Taking partial fractions

I(s) = 
A

s

B

s+
+

+1 3
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where A = (s + 1) 
2 3

1 3)

1

2
1

s

s s
s

+

+ +
=

= -
( ) (

B = (s + 3) 
2 3

1 3)

3

2
3

s

s s
s

+

+ +
=

= -
( ) (

\ I(s) = 
1

2 1

3

2 3( ) ( )s s+
+

+
(12.218)

Taking inverse transform, we get

i(t) = 
1

2
e–t + 

3

2
e–3t (12.219)

Practice Problems

12.1 Use step functions to write the expression for the function shown in
Fig. 12.23.

f t( )

t s( )1
0

50

–50

32 4

Fig. 12.23

12.2 Step functions can be used to define a window function. Thus
u(t – 1) – u(t – u) defines a window 1 unit high and 3 units wide located on
the time axis between 1 and 4.
A function f(t) is defined as follows

f(t) = 0, t £ 0

= 30t, 0 £ t £ 2s

= 60, 2s £ t £ 4s

= 60, cos 
π

π
4

t −F
H

I
K , 4s £ t £ 8s

= 30t – 300, 8s £ t £ 10s

= 0 10s £ t £ •

Sketch f(t) over the internal – 2s £ t £ 12s.
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12.3 Find f(t) if f(t) = 
1

2π
−∞

∞

z  F(w) e j t w dw

F(w) = 
4

9

+

+

j

j

ω

ω
 p d(w)

12.4 Make a sketch of f(t) for – 25s £ t £ 25s when f(t) is given by the following
expression:

f (t) = – (20t + 400) u(t + 20) + (40t + 400) u(t + 10)

+ (400 – 40t) u(t – 10) + (20t – 400) u(t – 20)
12.5 Evaluate the following integrals

(a) I = 
−

z
1

3

 (t3 + 2) [d(t) + 8d(t – 1)] dt

(b) I = 
−

z
1

2

 t2 [d(t) + d (t + 1.5) + d (t – 3)] dt

12.6 Explain why the following function generates an impulse function as
e Æ 0

f(t) = 
ε π

ε

/
2 2
+ t

, –• £ t £ •

12.7 Find the Laplace transforms of the following functions
(a) t3 + at2 + bt + 3 (b) sin2 5t

(c) e5t + 6 (d) cosh2 3t

12.8 Find the Laplace transform of each of the following functions
(a) te–at (b) sin wt

(c) sin (w t + q) (d) cosht
(e) cosh (t + q)

12.9 Use the appropriate operational transform to find the Laplace transform of
each function

(a) t2 e–at (b)
d

dt
 (e–at sinh b t)

(c) t cos w t

12.10 Find the inverse transforms of the following functions

(a)
1

92s +
(b)

2π

πs +

(c)
8

3 5( ) ( )s s+ +
(d)

5

92s +

(e)
K

s

K

s

K

s

1 2
2

3
3+ +
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12.11 Find the inverse transforms of the following functions

(a)
5 4

1 2 52

s

s s s

+

− + +( ) ( )
(b)

4 2

2 52

s

s s

+

+ +

(c)
s

s s2 2 5− +
(d)

s s

s s

( )+

+ +

1

4 52

12.12 Find the Laplace transform for (a) and (b)

(a) f (t) = 
d

dt
 (e–at sin w t)

(b) f(t) = 
0−
z
t

 e–ax cos wx dx

(c) Verify the results obtained in (a) and (b) by first carrying out the
mathematical operation and the finding the Laplace transform.

12.13    (a) Show that L [f(at)] = 
1

a
F

s

a

F
H

I
K

(b) Show that if F(s) = L [ f (t)] and 
f t

t

( )L
NM

O
QP

 is Laplace-transformable,

then

s

∞

z F(u) du = L 
f t

t

( )RST
UVW

Hint: Use the determing integral to write

s

∞

z F(u) du = 
s

∞

z f t e dt
ut( ) −

∞

z
F
HG

I
KJ0

du

and then reverse the order of integration.
12.14 Find the transforms of the following functions

(a) t e–2t sin 2t + 
cos 2t

t
(b) log 

s

s s

2 1

1

−

+

L
NM

O
QP( )

(c) (1 + 2t e–5t)3 (d)
s

s s

+

+ +

4

5 122 2( )

12.15 Find f (t) if F(s) = 
10 119

5 10 169

2

2

( )

( ) ( )

s

s s s

+

+ + +

12.16 Find f(t) for each of the following functions

(a) F(s) = 
18 66 54

1 2 3

2s s

s s s

+ +

+ + +( ) ( ) ( )
(b) F(s) = 

11 172 700

2 12 100

2

2

s s

s s s

+ +

+ + +( ) ( )

(c) F(s) = 
56 112 5000

14 625

2

2

s s

s s s

+ +

+ +( )
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12.17 Find the Laplace transform of a sawtooth waveform f(t) which is periodic,
with period equal to unity, and is given by f(t) = at for 0 < t < 1.

12.18 Find the Laplace transform of the periodic waveform shown in Fig. 12.24.

i t( )

tp0 2p 3p 4p

w w w w

2

Fig. 12.24

12.19 Find f(t) of the following functions

(a) F(s) = 
40

4 52 2( )s s+ +
(b) F(s) = 

5 29 32

2 4

2s s

s s

+ +

+ +( ) ( )

(c) F(s) = 
2 8 2 4

5 4

3 2

2

s s s

s s

+ + -

+ +

12.20 Apply the initial and final value theorems to each transform pair in
Problem 12.16.

12.21 Use the initial and final value theorems to find the initial and final values
of f(t) for the following functions.

(a) F(s) = 
7 63 134

3 4 5

2s s

s s s

+ +

+ + +( ) ( ) ( )
(b) F(s) = 

4 7 1

1

2

2

s s

s s

+ +

+( )

(c) F(s) = 
40

4 52 2( )s s+ +

12.22 For the given function f(t) = 3u(t) + 2e
–t, find its final value f (•) using

final value theorem.

Objective-type Questions

1. Laplace transform analysis gives
(a) time domain response only
(b) frequency domain response only
(c) both (a) and (b)
(d) none

2. The Laplace transform of a unit step function is

(a)
1

s
(b) 1
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(c)
1
2s

(d)
1

s a+

3. The Laplace transform of the first derivative of a function f(t) is
(a) F(s)/s (b) SF(s) – f(0)
(c) F(s) – f(0) (d) f(0)

4. The Laplace transform of the integral of function f(t) is

(a)
1

s
 F(s) (b) SF(s) – f(0)

(c) F(s) – f(0) (d) f ¢(0)
5. The Laplace transform of e5t f(t) is

(a) F(s) (b) F(s – 1)

(c) F 
s

5
F
H

I
K (d) F(s – 5)

6. The inverse Laplace transform of 1

s
 (1 – e–as) is

(a) u(t) – u(t – a) (b) u(t)
(c) u(t – a) (d) zero

7. The inverse transform of 
6
4s

 is

(a) 3 (b) t2

(c) t3 (d) 3t

8. The inverse transform of 2 log 
s

s

+F
H

I
K

2
 is

(a)
2 2
−

−e

t

t

(b)
e

t

t−2

(c)
2

t
(d)

2 2
+

−e

t

t

9. The Laplace transform of a square wave with amplitude of peak value A
and period T is

(a)
1

1

+

−

−

−

e

e

sT

sT (b)
A

s

e

e

sT

sT

1

1

−

+

F
HG

I
KJ

−

−

(c)
A

s

e

e

sT

sT

1

1

+

−

F
HG

I
KJ

(d)
A

s

e

e

sT

sT

1

1

−

+

F
HG

I
KJ

10. The inverse Laplace transform of the function 
s

s s

+

+ +

5

1 3( ) ( )
 is

(a) 2et – e–3t (b) 2e–t + e–3t

(c) e–t – 2e–3t (d) e–t + 2e–3t
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11. The Laplace transform of a unit ramp function at t = a is

(a)
1

2( )s a+
(b)

e

s a

as−

+( )2

(c)
e

s

as−

2 (d)
a

s2

12. The initial value of 
2 1

8 164 3 2

s

s s s s

+

+ + +
 is

(a) 2 (b) infinite
(c) zero (d) 1

13. The initial value of 20 – 10 t – e25t 1 is
(a) 20 (b) 19
(c) 10 (d) 25

14. L [ f(t)] = 
2 1

2 52

( )s

s s

+

+ +
, then f(0+) and f(•) are given by

(a) 0, 2 respectively (b) 2, 0 respectively

(c) 0, 1 respectively (d)
2

5
, 0 respectively

15. The final value theorem is used to find the
(a) steady state value of the system output
(b) initial value of the system output
(c) transient behaviour of the system output
(d) none of these



13Chapter

Application of the

Laplace Transform in

Circuit Analysis

The Laplace transform is an attractive tool in circuit analysis. It transforms a set

of linear constant-coefficient differential equations into a set of linear polynomial

equations. It automatically introduces into the polynomial equations the initial

values of the current and voltage variables. In the circuit analysis, we can develop

the s-domain circuit models for various elements and s-domain equations can be

written directly.

13.1 CIRCUIT ELEMENTS IN THE S-DOMAIN

For any element, we write the time-domain equation that relates the terminal

voltage to the terminal current. Then, we take the Laplace transform of the

time-domain equation. This gives an algebraic relation between s-domain current

and voltage. The dimensions of a transformed voltage is volt-seconds, and the

dimension of a transformed current is ampere-seconds. A voltage to current ratio

in the s-domain carries the dimension of volts per ampere. An impedance in the s-

domain is measured in ohms, and admittance is measured in Siemens.

A Resistor in the s-Domain

Consider the resistive element shown in Fig. 13.1 From ohm’s law,

v = Ri (13.1)

The Laplace transform of Eq. (13.1) is

V = RI (13.2)
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where V = L[v] and I = L [i]

Equation (13.2) states that the s-domain equivalent circuit of a resistor is
simply resistance of R ohms that carries a current of I ampere seconds and has a
terminal voltage of V volt-seconds.

Figures 13.1 (a) and (b) show the time and frequency domain circuits of the
resistor respectively.

i I

a ab b+ +– –v V

R R

(a) (b)

Fig. 13.1

The resistance element does not change while going from the time domain to
the frequency domain.

An Inductor in the s-Domain

Consider an inductor shown in Fig. 13.2
with an initial current of I0 amperes.

The time domain relation between
voltage and current is

v = L 
di

dt
(13.3)

The Laplace transform of Eq. (13.3) gives

V = L [SI – i(0)] = SLI – LI0 (13.4)

The above equation satisfies two
circuits. The first consists of an impedance
of SL ohms in series with an independent
voltage source of LI0 volt-seconds as
shown in Fig. 13.3(a).

The second s-domain equivalent circuit
that satisfies Eq. (13.4) consists of an
impedance of SL ohms in parallel with an
independent current source of I0/S ampere-
seconds, as shown in Fig. 13.3(b).

By solving Eq. (13.4) for the current I,
we can construct the circuit shown in Fig.
(13.3(b))

I = 

V LI

SL

V

SL

I

S

+
= +0 0 (13.5)

i I0L

a b+ –v

Fig. 13.2

I V

SL LIo

a b

+ –

Fig. 13.3(a)

I0

I

S
SL

+

V

Fig. 13.3(b)
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If the initial energy stored in the inductor is
zero, i.e. if I0 = 0, the s-domain equivalent
circuit of the inductor reduces to an inductor
with an impedance of SL ohms as shown in
Fig. 13.4.

A Capacitor in the s-domain

Consider an initially charged capacitor shown in
Fig. 13.5. The initial voltage on the capacitor
is V0 volts.

The voltage current relation in the time
domain is

i = c
d

dt

v
(13.6)

By taking Laplace transforms both sides, we get

I = C [SV – v(0)]

I = SCV – CV0 (13.7)

The Eq. (13.7) represents two circuits.
First, the parallel equivalent circuit for
capacitor initially charged to V0 volts is shown
in Fig. 13.6.

Secondly, the series equivalent circuit can
be derived for the charged capacitor by
solving Eq. (13.7) for V.

V = 
1 0

SC
I

V

S

F
H

I
K + (13.8)

Figure (13.7) shows the circuit that satisfies Eq. (13.8)
The s-domain circuit for a capacitor when the initial voltage is zero is shown

in Fig. 13.8.

I

a b

+

1

SC

–
V

V So /

I

a b
+

V

1/SC

–

Fig. 13.7 Fig. 13.8(a)

13.2 APPLICATIONS

In this section we illustrate how to use the Laplace transform to determine the
transient behaviour of several linear lumped parameter circuits. In analysis
familiar circuits, the Laplace transform approach yields the same results like the

V

SL
I

a b

+ –

Fig. 13.4

vi

a b

+

+
V0

–

–

Fig. 13.5

CV0

I
a

b

1

SC

+

-

V

Fig. 13.6
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time domain analysis. In all the examples, the ease of manipulating algebraic
equations instead of differential equations should be apparent.

The Natural Response of an RC Circuit

In this section, we find the natural response of an RC circuit through Laplace
transform techniques. Consider the capacitor discharge circuit shown in
Fig. 13.8b. Assume the capacitor is initially charged to V0 volts. The series
equivalent s-domain circuit is shown in 13.9.

+ +
V0 v

t = 0

R

id

C
– –

+

V0

S

VR

I

–

1

SC

Fig. 13.8(b) Fig. 13.9

From the circuit shown in Fig. 13.9, applying Kirchhoff’s voltage law around
the loop, we have

V

S

0 = 
1

SC
 I + RI (13.9)

Solving for the above equation yields

I = 
C V

RCS

V R

S
RC

0 0

1 1+
=

+
F
HG

I
KJ

/
(13.10)

By taking the inverse transform of the Eq. (13.10), we get

i = 
V

R
e

t

RC0
-

(13.11)

we can determine v by simply applying ohm’s law from the circuit

v = Ri = V e

t

RC
0

-

(13.12)

Now we can use the parallel equivalent
circuit of Fig. 13.8b. Figure 13.10 shows
the new s-domain equivalent circuit.

By taking mode voltage equation, we get

V

R
 + SCV = CV0 (13.13)

Solving Eq. (9.13) for V gives

V = 
V

S
RC

0

1
+

(13.14)

+
CV0 RV

–

1

SC

Fig. 13.10
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By taking inverse transform, we get

v = V e V e

t

RC

t

0 0

- -

= t (13.15)

where t is the time constant t  = RC

The Step Response of a Parallel Circuit

Consider the parallel RLC circuit shown in Fig. 13.11. We can find the
expression for iL after the constant current source is switched across the parallel
elements. The initial energy stored in the circuit is zero.

t = 0
C R

iL

L
Idc

Fig. 13.11

The s-domain equivalent circuit is
shown in Fig. 13.12. Here, an inde-
pendent source can be transformed
easily from the time domain to the
frequency domain. Opening the
switch results in a step change in the
current applied to the circuit.

By applying Kirchhoff’s current law, we get

SCR + 
V

R

V

SL

I

S
+ = dc

. (13.16)

Solving Eq. (13.16) for V gives

V = 
I c

S
RC

S
LC

dc /

2 1 1
+

F
HG

I
KJ +

(13.17)

We know the current in inductor IL

IL = 
V

SL
(13.18)

Substituting Eq. (13.17) into Eq. (13.18) gives

IL = 
I LC

S S
RC

S
LC

dc /

2 1 1
+

F
HG

I
KJ +

L
NM

O
QP

(13.19)

By taking the inverse transform, we can obtain iL.

R V

IL

SL
Idc

S

1

SC

+

–

Fig. 13.12



13.6 Network Analysis

The Transient Response of a Parallel RLC Circuit

The transient behaviour of a circuit arises from replacing the dc current source in
the circuit shown in Fig. 13.11 with a sinusoidal current source. The new current
source is

ig = Im cos w t (13.20)

The s-domain expression for the source current is

Ig = 
SI

S

M
2 2+ w

(13.21)

The voltage across the parallel elements is

V = 
( / )I C S

S
RC

S
LC

g

2 1 1
+

F
HG

I
KJ +

F
HG

I
KJ

(13.22)

Substituting Eq. (13.21) into Eq. (13.22) results in

V = ( / )I C S

S S
RC

S
LC

m
2

2 2 2 1 1
+ + F

H
I
K + F

H
I
K

L
NM

O
QPwb g

(13.23)

from which

IL = V

SL

I LC S

S S
RC

S
LC

m=
+ + F

H
I
K + F

H
I
K

L
NM

O
QP

( / )

2 2 2 1 1
wb g

(13.24)

The Use of Thevenin�s Equivalent

In this section we show how to use Thevenin’s equivalent in the s-domain.
Consider a circuit shown in Fig. 13.13. We find the capacitor current that results
from closing the switch. The energy stored in the circuit prior to closing is zero.

60 W a

b

20 W

2 mH 5 Fm vc

+

–
480 V

t = 0

ic

Fig. 13.13

To find ic, we first construct the s-domain equivalent circuit and the find the
Thevenin equivalent of this circuit with respect to the terminals of the capacitor.
Fig. 13.14 shows the s-domain circuit.
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60 W a

b

20 W

0.002S 2 10¥ 6

S

+

–

480 VC
S

IC

Fig. 13.14

The open circuit voltage across terminals a, b is

 VTh = 

480
0 0025

20 0 002

480

104

S

S S

F
HG

I
KJ

+
=

+

( . )

.
(13.25)

The Thevenin impedance seen from terminals a and b equals the 60 W resistor
in series with the parallel combination of the 20 W resistor and the 2 mH inductor.
Thus

ZTh = 60
0 0025 20

20 0 002

80 7500

104
+

+
=

+

+

. ( )

.

( )

S

S

S
(13.26)

A simplified version of the Thevenin equivalent circuit is shown in Fig. 13.15.

a

b

2 10¥ 6

S

+

–

480

80( + 7500)S

S + 104
VC

S + 104

Ic

Fig. 13.15

Thus the capacitor current IC equals the Thevenin voltage divided by the total
series impedance.

Thus,

IC = 
480 10

80 7500 10 2 10

4

4 5

/

( )/ /

S

S S S

+

+ + + ¥

d i

d i d i
(13.27)

We simplify Eq. (13.27) to

IC = 
6

10 000 25 102 6

S

S S+ + ¥,

= 
6

5000 2

S

S( )+
(13.28)
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By taking partial fraction expansion, we get

IC = 
-

+
+

+

3000

5000

6

50002( ) ( )S S
(13.29)

By taking inverse transform, we get

ic = (– 30,000t e–5000t + 6 e–5000t) A (13.30)

Now the voltage across capacitors is

VC = 
I

SC S

S

S S

C =
¥

+
=

¥

+

2 10 6

5000

12 10

5000

5

2

5

2( ) ( )
(13.31)

By taking inverse transform, we get

vc = 12 ¥ 105 t e-5000t (13.32)

A Circuit with Mutual Inductance

In this section we illustrate example how to use the Laplace transform to analyze
the transient response of a circuit that contains mutual inductance as shown in
Fig. 13.16.

a9 W

t = 0

3 W 2 W

10 W

b

2 H 8 H

2 H

i1
i2

60 V

Fig. 13.16

To make-before break switch has been in position ‘a’ for a long time. At t = 0,
the switch moves instantaneously to position b. The problem is to derive the
time-domain expression for i2.

We begin by redrawing the circuit in Fig. 13.16, with the switch in position b
and the magnetically coupled coils replaced with a T equivalent circuit as shown
in Fig. 13.17.

3 W 2 WL H1 – L H2 –

10 W

6 H0 H

2 H( )M

i2i1
b

Fig. 13.17
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The s-domain equivalent circuit for the circuit of Fig. 13.17 is shown in
Fig. 13.18.

3 W 6S 2 W

10 W

2S

10

i2i1
b

Fig. 13.18

The initial currents are

i1(0) = 
60

12
5= A (13.33)

i2(0) = 0 (13.34)

The initial value of the current in the 2H inductor is

i1(0) + i2(0) = 5 A (13.35)

The S domain mesh equations in Fig. 13.18 are

(3 + 2S) I1 + 2SI2 = 0 (13.36)

2SI1 + (12 + 8S)I2 = 10 (13.37)

Solving for I2 yields

I2 = 
2.5

1 3( ) ( )S S+ +
(13.38)

By taking partial fraction expansion gives

I2 = 
1 25

1

1 25

3

. .

S S+
-

+
(13.39)

By taking inverse transform of Eq. (13.39) gives

i2 = (1.25 e–t – 1.25 e–3t) A (13.40)

The Use of Superposition

Consider a circuit shown in Fig. 13.19 having two sources and the inductor is

carrying and initial current iL(0) amperes and the capacitor is carrying an initial
voltage of vc(0) volts. The desired response of the circuit is the voltage across the
resistor R2, labeled v2.
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L

CR1

R2

i2(0)
+
vc(0)

vg ig

-

Fig. 13.19

The s-domain equivalent circuit for the Fig. 13.19 is shown in Fig. 13.20.
Here, we have taken parallel equivalents for L and C into consideration. Now we
find V2 using node-voltage method.

SL

R1

V2 R2

i2(0)

vc(0)C

1/SC

S
Vg Ig

+

–

Fig. 13.20

To find V2 by superposition, we calculate the voltage V2 resulting from each

source acting alone, and then we sum the voltages. We consider with Vg acting
alone by setting other three current sources set equal to zero. Figure 13.21 shows
the resulting circuit.

SL

R1

V¢2V¢1 R2

1/SC

Vg

++

––

Fig. 13.21

V1¢ and V2¢ are the voltages across inductor and resistor when Vg acting alone.
The two equations the describe the circuit in Fig. 13.21 are
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1 1

1R SL
SC+ +

F
HG

I
KJ

 V1¢ – SCV2¢ = 
V

R

g

1

(13.41)

– SC V1¢ + 
1

2R
SC+

F
HG

I
KJ

 V2¢ = 0 (13.42)

The above equations can be written as

Y11 V1¢ + Y12 V2¢ = 
V

R

g

1

(13.43)

Y12 V1¢ + Y22 V2¢ = 0 (13.44)

where Y11 = 
1 1

1R SL
+  + SC

Y12 = – SC

Y22 = 
1

2R
 + SC

Solving Eqs (13.43) and (13.44) for V2¢ gives

V2¢ = 
-

-

Y R

Y Y Y
Vg

12 1

11 22 12
2

/
(13.45)

With the current source Ig acting alone, the circuit shown in Fig. 13.20 reduces
to the one shown in Fig. 13.22.

SL

R1

V ¢
2
¢V ¢

1
¢ R2

1/SC

Ig

++

––

Fig. 13.22

The two node voltages, equations are given by

Y11 V1≤ + Y12 V2≤ = 0 (13.46)

Y12 V1≤ + Y22 V2≤ = Ig (13.47)

Solving for V2≤ yields

V2≤ = 
Y

Y Y Y
I g

11

11 22 12
2-

(13.48)

The circuit shown in Fig. 13.23 gives when the energized inductor acting alone
on the circuit of Fig. 13.20.
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SL
i2(0)

S

R1

V ¢
2
¢¢V ¢

1
¢¢ R2

1/SC

++

––

Fig. 13.23

The two node voltage equations are given by

Y11 ¢¢¢V1 + Y12 ¢¢¢V2  = -
i

S

L ( )0
(13.49)

Y12 ¢¢¢V1  + Y22 ¢¢¢V2  = 0 (13.50)

Thus

¢¢¢V2 = 
Y S

Y Y Y
iL

12

11 22 12
2

0
/

( )
-

- (13.51)

The circuit shown in Fig. 13.24 gives when the energy stored in the capacitor
acting alone.

SL

R1

V2¢¢¢V1¢¢¢ R2

1/SC

vc(0)C

++

––

Fig. 13.24

The node-voltage equations describing this circuit are

Y11 ¢¢¢V1  + Y12 ¢¢¢V2  = vc(0)C (13.52)

Y12 ¢¢¢V1  + Y22 ¢¢¢V2  = – vc(0)C (13.53)

Solving for ¢¢¢V2 yields

¢¢¢V2 = 
- +

-

Y Y C

Y Y Y

11 12

11 22 12
2

b g
 vc(0) (13.54)

The expression for V2 is

V2 = ¢ + ¢¢ + ¢¢¢+ ¢¢¢¢V V V V2 2 2 2
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= 
-

-
+

-

Y R

Y Y Y
V

Y

Y Y Y
Ig g

12 1

11 22 12
2

11

11 22 12
2

/b g

+ 
Y S

Y Y Y
i

C Y Y

Y Y Y
L

12

11 22 12
2

11 12

11 22 12
2

0
/

( )
-

+
- +

-

b g
 vc(0) (13.55)

By taking inverse transform, we can obtain time domain voltage across
resistor R2.

13.3 THE TRANSFER FUNCTION

The transfer function is defined as the s-domain ratio of the Laplace transform of
the output (response) to the Laplace transform of the input (source). In computing

the transfer function, we restrict our attention to circuits where all initial condi-
tions are zero. If a circuit has a multiple independent sources, we can find the transfer
function for each source and use superposition to find the response to all sources.

The transfer function is

H(S) = 
Y S

X S

( )

( )
(13.56)

where Y(S) is the Laplace transform of the output signal, and X(S) is the Laplace
transform of the input signal. Note that the transfer function depends on what is
defined as the output signal. Consider a series circuit shown in Fig. 13.25.

R

I

SL

V1/SCVg
+

–

Fig. 13.25

If the current is defined as the response signal of the circuit, then the transfer
function

H(S) = 
I

V R SL
SC

SC

S LC RCSg

=
+ +

=
+ +

1
1 12 (13.57)

In the above equation, we recognized that I corresponds to the output Y(S) and
Vg corresponds to the input X(S). If the voltage across the capacitor is defined as
the output signal of the circuit in Fig. 13.25, the transfer function is

H(S) = 
V

V

SC

R SL
SC

S LC RCSg

=

+ +

=
+ +

1

1

1

12

/
(13.58)
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Thus, because circuits may have multiple sources and because the definition
of the output signal of interest can vary, a single circuit can generate many
transfer functions. When multiple sources are involved, no single transfer
function represent the total output-transfer functions associated with each source
must be combined using superposition to yield the total response. We can write
the circuit output as the product of the transfer function and the driving function

Y(S) = H(S) ¥ (S) (13.59)

H(S) is a rational function of S and X(S) is also a rational function of S for the
excitation functions of most interest in circuit analysis. We can expand the right
hand side of Eq. (13.58) into a sum of partial fractions.

13.4 USE OF TRANSFER FUNCTION IN
CIRCUIT ANALYSIS

Consider the response of the circuit to a delayed input. If the input is delayed by
a seconds

L [x(t – a) u(t – a)] = e–as ¥ (S) (13.60)

The response becomes

Y(S) = H(S) ¥ (S)e–as (13.61)

If y(t)= L–1 [H(S) ¥ (S)], then from Eq. (13.61),

y(t – a)) u(t – a) = L–1 [H(S) ¥ (S) e–as] (13.62)

Therefore, delaying the input by a seconds simply delays the response function
by a seconds. A circuit the exhibits this characteristic is said to be time invariant.

If a unit impulse source drives the circuit, the response of the circuit equals the
inverse transform of the transfer function. Thus if

x(t) = d(t), then X(S) = 1

and Y(S) = H(S) (13.63)

Hence y(t) = h(t) (13.64)

where the inverse transform of the transfer function equals the unit impulse
response of the circuit. The unit impulse response of the circuit h(t) contains
enough information to compute the response to any source that drives the circuit.

13.5 THE TRANSFER FUNCTION AND THE
CONVOLUTION INTEGRAL

The convolution integral relates the output y(t) of a linear time invariant circuit
to the input x(t) of the circuit and the circuits impulse response h(t). The
convolution integral is defined as

y(t) = 

-•

•

z  h(t) x(t – t) dt = 

-•

•

z  h(t – t) x(t) dt (13.65)
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The above equation is based on the
assumption that the circuit is linear and
time invariant. Because the circuit is linear,
the principle of superposition is valid, and
because it is time invariant, the amount of
the response delay is exactly the same as that of the input delay. Consider block
diagram of a general circuit shown in Fig. 13.26 in which h(t) represents any
linear time-invariant circuit whose impulse response is known, x(t) represents
the excitation signal and y(t) represents the desired output signal.

We assume that x(t) is the general excitation signal shown in Fig. 13.27(a).
Also assume that x(t) = 0 for t < 0.

x t( )

x t( )

x t( )

x(
)
1t

tD

x(
)
2t

tD

x(
)
3t

tD

x(
)it

tD

x( )0 Dt t

x( )t0

t0

t0

t1

t1

t2

t2

t3 t i

t i

t

t

x( )1t

x( )2t

x( )it

(a)

(b)

(c)

0 t

Fig. 13.27

h t( )x t( ) y t( )

Fig. 13.26
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Now we see approximate x(t) by a series of rectangular pulses of uniform
width Dt as shown in Fig. 13.27 (b). Thus

x(t) = x0(t) + x1(t) + ... + xi(t) + ... (13.66)

where xi(t) is a rectangular pulse that equals x(ti) between ti and ti + 1 and is
zero elsewhere. Note that the ith pulse can be expressed interms of step
functions; that is

xi(t) = x(t i) [u(t – ti) – u(t – (ti + Dt))] (13.67)

The next step in the approximation of x(t) is to make Dt small enough that the
ith component can be approximated by an impulse function of strength x(ti) Dt.
Fig. 13.27 (c) shows the impulse representation, with the strength of each impulse
shown in brackets beside each arrow. The impulse representation of x(t) is

x(t) = x(t0) Dt d(t – t0) + x(t1) Dt d(t – t1) + ....

+ x(ti) Dt d(t – ti) + .... (13.68)

Now when x(t) is represented by a series of impulse functions, the response
function y(t) consists of the sum of a series of uniformly delayed impulse
responses. The strength of each response depends on the strength of the impulse
driving the circuit. For example, let’s assume that the unit impulse response of
the circuit contained with in the box in Fig. 13.26 is the exponential decay
function shown in Fig. 13.28 (a). Then the approximation of y(t) is the sum of the
impulse responses shown in Fig. 13.28(b).

h t( )

y t( )

0 t

tt1t0 t2 t3

(a)

(b)

Approximation of ( )y t

Fig. 13.28
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Analytically, the expression for y(t) is

y(t) = x(t0) Dt h(t – t0) + x(t1) Dt h(t – t1)

 + x(t2) Dt h(t – t2) + ...

 + x(ti) Dt h(t – ti) + ... (13.69)

As Dt Æ 0, the summation in Eq. (13.69) approaches a continuous integration, or

i =

•

Â
0

x(ti) h(t – ti) Dt Æ 

0

•

z x(t) h(t - t)dt (13.70)

Therefore,

y(t) = 

0

•

z x(t) h(t – t) dt (13.71)

If x(t) exists over all time, then the lower limit on Eq. (13.71) becomes –•,
thus, in general

y(t) =

-•

•

z x(t) h(t – t) dt (13.72)

The integral relation between y(t), h(t) and x(t) is written in a shorthand
notation

y(t) = h(t) * x(t) = x(t) * h(t) (13.73)

Thus h(t) * x(t) is read as “h(t) is convolved with x(t)” and implies that

x(t) * h(t) =

-•

•

z x(t) h(t – t) dt (13.74)

The above integral gives the most general relation for the convolution of two
functions. However, in our applications, we can change the lower limit to zero
and the upper limit to t. Then the above equation can be written as

y(t) = 

0

t

z x(t) h(t – t) dt = 

0

t

z h(t) x(t – t) dt (13.75)

For physically realizable circuits, h(t) is zero for t < 0. In other words, there
can be no impulse response before an impulse is applied. We start measuring
time at the instant the excitation x(t) is turned on, therefore x(t) = 0 for t < 0.

A graphical interpretation of the convolution integrals contained in Eq. (13.75)
is important in the use of integral as a computational tool. Consider the impulse
response of our circuit is the exponential decay function shown in Fig. 13.29 (a)

and the excitation function has the waveform shown in Fig. 13.29(b).
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Replacing t with –t simply folds the excitation function over the vertical axis
and replacing – l with t – l slides the folded function to the right. This folding
and sliding operation gives rise to the term convolution. At any specified value of
t, the response function y(t) is the area under the product function l(t) x(t – t) as
shown in Fig. 13.29 (c). For t < 0, the product l(t) x(t – t) is zero because h(t)
is zero. For t > t, the product h(t) x(t – t) is zero because x(t – t) is zero.
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13.6 THE TRANSFER FUNCTION AND THE STEADY
STATE SINUSOIDAL RESPONSE

We use the transfer function to relate the steady state response to the excitation
source. First we assume that

x(t) = A cos (w t + f) (13.76)

and we use the equation

Y(S) = H(S) ¥ (S) (13.77)

to find the steady state solution of Y(t).
To find the Laplace transform of x(t), we first write x(t) as

x(t) = A cos w t cos f – A sin w t sin f (13.78)

from which

X(S) = 
A S

S

A

S

cos sinf

w

f w

w2 2 2 2+
-

+

= 
A S

S

( cos sin )f w f

w

-

+2 2
(13.79)

Substituting Eq. (13.79) into Eq. (13.77) gives the s-domain expression for
the response

Y(S) = H(s) 
A S

S

( cos sin )f w f

w

-

+2 2
(13.80)

By taking partial fractions

Y(S) = 
k

S j

k

S j

1 1

-
+

+w w

*

+ S terms generated by the poles of H(S) (13.81)

In Eq. (13.81), the first two terms result from the complex conjugate poles of
the deriving source. However, the terms generated by the poles of H(s) do not
contribute to the steady-state response of y(t), because all these poles lie in the
left half of the s plane, consequently, the corresponding time-domain terms
approach zero as t increases.

Thus the first two terms on the right hand side of Eq. (13.81) determine the
steady-state response. Now K1 can be determined

k1 = 
H S A S

S j S j

( ) ( cos sin )f w f

w w

-

+ =

= 
H j A j

j

( ) ( cos sin )w w f w f

w

-

2
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= H j
A j

H j Ae
i( )

(cos sin )
( )w

f f
w f+

=
2

1

2
(13.82)

In general, H( jw) is a complex quantity, thus

H( jw) = |H( jw)| eiq (w) (13.83)

where |H( jw) | is the magnitude, and phase angle is (w) of the transfer function
vary with the frequency w, the expression for K1 becomes

K1 = 
A

2
 |H( jw)| ei[q (w) + f] (13.84)

we obtain the steady state solution for y(t) by taking inverse transform of

Eq. (13.81) ignoring the terms generated by the poles of H(S). Thus

yss(t) = A |H( jw) | cos [w t + f + q (w)] (13.85)

which indicates how to use the transfer function to find the steady state sinusoidal
response of a circuit.

13.7 THE IMPULSE FUNCTION IN CIRCUIT ANALYSIS

Impulse functions occur in circuit analysis either because of a switching

operation or because a circuit is excited by an impulse source. The Laplace
transform can be used to predict the impulsive currents and voltages created
during switching and the response of a circuit to an impulsive source.

Switching Operation

We use two different circuits to illustrate how an impulse function can be created
with a switching operation. A capacitor circuit and a series inductor circuit.

Capacitor Circuit

In the circuit shown in Fig. 13.30, the capacitor C1 is charged to an initial voltage

of V0 at the time the switch is closed.
In the circuit, the initial charge on C2 is zero. Figure 13.31 shows the s-domain

equivalent circuit.

t = 0

R
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V0 C1 C2

–

I
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1

1

R

Fig. 13.30 Fig. 13.31
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From Fig. 13.31,

I = 
V S

R
SC SC

0

1 2

1 1

/

+
F
HG

I
KJ

+
F
HG

I
KJ

= 
V R

S
RCe

0

1

/

+
F
HG

I
KJ

(13.86)

where the equivalent capacitance 
C C

C C

1 2

1 2+
 is replaced by Ce.

By taking inverse transform of Eq. (13.86), we obtain

i = 
V

R

0  e–t/RCe (13.87)

which indicates that as R decreases, the initial current 
V

R

0F
HG

I
KJ  increases and the

time constant (RCe) decreases. Thus R gets smaller, the current starts from a
larger initial value and then dropped off more rapidly. Figure 13.32 shows these
characteristics of i.

The characteristics shows, i is
approaching an impulse function as R

approaching to zero because the initial
value of i is approaching infinity and
time duration of i is approaching zero.
We still have to determine whether the
area under the current function is
independent of R. Physically the total
area under the i versus t curve represents
the total charge transferred to C2 after
the switch is closed. Thus

Area = q = 
V

R

0

0-

•

z  e–t/RCe dt = V0 Ce (13.88)

which says that the total charge transferred to C2 is independent of time and
equals V0Ce coulombs. Thus, as R approaches zero, the current approaches an
impulse strength V0Ce.

i Æ V0Ce d(t) (13.89)

when R = 0, a finite amount of charge is transferred to C2 instantaneously. When
the switch is closed, the voltage across C2 does not jump to V0 but its final value of

v2 = 
C V

C C

1 0

1 2+
(13.90)
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Fig. 13.32
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If we set R equal to zero, the Laplace transform analysis will predict the
impulsive current response.

Thus,

I = 
V S

SC SC

C C V

C C
C Ve

0

1 2

1 2 0

1 2
0

1 1

/

F
HG

I
KJ

+
F
HG

I
KJ

=
+

= (13.91)

The inverse transform of the above equation is

i = Ce V0 d(t) (13.92)

Series Inductor Circuit

The circuit shown in Fig. 13.33 illustrates a second switching operation that
produces an impulsive response. The problem is to find the time-domain
expression for v

0
– after the switch has been opened. Note that opening the switch

forces an instantaneous change in the current of L2, which courses v0 to contain
an impulsive component.

t = 0
2 H

i2

L2

v0100 V

10 W 3 H

15 W

L1i1

+
–

+

–

Fig. 13.33

Figure 13.34 shows the s-domain equivalent with the switch open. The current
in the 3H inductor at t = 0 is 10 A, and the current in 2H inductor at t = 0 is zero.

2S

V0
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S
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+
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Fig. 13.34

Applying Kirchhoff’s current law, we get

V

S

0

2 15+
+ 

V S

S

0 100 30

3 10
0

- +

+
=

[( / ) ]
(13.93)
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Solving for V0 yields

V0 = 
40 7.5

5

12 7.5

5

( )

( )

S

S S

S

S

+

+
+

+

+

b g
(13.94)

By taking partial fractions, we get

V0 = 
60 20

5
12

30

5S S S
-

+
+ +

+

= 12
60 10

5
+ +

+S S
(13.95)

By taking inverse transform, we have

v0 = 12 d(t) + (60 + 10e–5t) u(t) volts (13.96)

Lets derive the expression for the current when t > 0. After the switch has been
opened, the current in L1 is the same as the current in L2. The current equation is

I = 

100
30

5 25

20

5

6

5

S

S S S S

F
HG

I
KJ +

+
=

+
+

+( )

= 
4 4

5

6

5S S S
-

+
+

+

= 
4 2

5S S
+

+
(13.97)

By taking inverse transform gives

i = (4 + 2e–5t) u(t) (13.98)

Before the switch is opened, the current in L1 is 10 A, and the current in L2 is
0A. We know that at t = 0, the current in L1 and in L2 is 6A. Then, the current in
L1 changes instantaneously from 10 to 6A, while the current in L2 changes
instantaneously from 0 to 6A. From this value of 6A, the current decreases
exponentially to a final value of 4A. Figure 13.35 shows these characteristics of
i1 and i2.

2
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i2
t

4

6
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i i1 2, A

i i1 2= = i

Fig. 13.35
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Impulse Sources

Impulse functions can occur in sources as well as responses. Such sources are
called impulsive sources. An impulse source driving a circuit imparts a finite
amount of energy into the system instantaneously. In the circuit shown in
Fig. 13.36a, an impulsive voltage source having a strength of V0 volt-seconds is
applied to a series connection of a resistor and an inductor. When the voltage
source is applied, the initial energy in the inductor is zero, therefore the initial
current is zero. There is no voltage drop across R. So the impulse voltage source
appears directly across L. An impulse voltage at the terminals of an inductor
establishes an instantaneous current. The current is

i = 
1

0

0
L

V

t

z  d (x) dx (13.99)

The integral of d(t) over any interval that
includes zero is one, thus we have

i(0) = 
V

L

0  A (13.100)

For an infinitesimal moment, the impulsive voltage source has stored

W = 
1

2

1

2
0

2
0
2

L
V

L

V

L

F
HG

I
KJ = J (13.101)

in the inductor.

The current 
V

L

0  decays to zero in accordance with the natural response of the

circuit, that is,

i =
V

L

0
 e–t/t u(t) (13.102)

where t = 
L

R
.

When a circuit is driven by only an impulsive source, the total response is
completely defined by the natural response. The duration of the impulse source is
so infinitesimal that it does not contribute to any forced response.

We may also obtain Eq. (13.102) by direct application of the Laplace transform
method. Figure 13.37 shows the s-domain equivalent of the circuit in Fig. 13.36a.

The current I in the circuit is

I = 
V

R SL

V L

S R L

0 0

+
=

+

/

/
(13.103)

Taking inverse Laplace transform, we get

i = 
V

L
e

V

L
e u t

R

L t

t

0 0
-

F
HG

I
KJ -= / ( )t (13.103a)

Thus the Laplace transform method gives
the correct solution for i ≥ 0.

V0

I

R

SL
+
–

Fig. 13.36(b)

V t0d( )

20 W

L
+
–

Fig. 13.36(a)
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Solved Problems

Problem 13.1 A 500 W resistor, a 16 mH inductor, and a 25 mF capacitor

are connected in parallel. Express the admittance of this parallel combination of

elements as a rational function of S.

Solution The circuit represented in s-domain of the above problem is shown

in Fig. 13.37.

SLR

a

b

1

SC

Fig. 13.37

The admittance of terminals ab is

Y(S ) = 
1 1

R SL
+  + SC (13.104)

Substituting the numerical values in the above equation

Y(S) = 
1

500

1

16 10 3
+

× ×
−S

 + S ¥ 25 ¥ 10–9 (13.105)

Simplifying the above equation, we have

Y(S) = 
25 10 9

×
−

S
 (S2 + 80,000 S + 25 ¥ 108) (13.106)

Problem 13.2 The switch in the circuit shown has been in position a for a
long time. At t = 0, the switch is thrown to position b. Find the current I as
rational function of s. Find the time-domain expression for the current i.

5 kW

i
V1

t = 0

a b

V20.8 Fm

0.2 Fm

10 kW

100 V

Fig. 13.38

Solution When the switch is at position for a long time both the capacitors are
charged to 100 V.
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When the switch is at position b, the s domain circuit is shown in Fig. 13.39.

1

1

I

C S1

C S2

S

S

V1

V2

5 kW

Fig. 13.39

By applying Kirchhoff’s voltage law, we have

V

S

V

S
1 2
+ = 

1 1
5

1 2C S
I

C S
I I K+ + ( ) (13.107)

1
1 2

S
V V( )+ = 

I

S

1
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0 8 10
5 106 6

3
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+

×
+ ×

L
NM

O
QP− −

I

S
100 = 

I

S

1

0 16 10
5 106

3

. ×
+ ×

L
NM

O
QP−

I = 
0 02

1250

.

S +
(13.108)

By taking inverse transform, we get the time domain expression for i

i = 0.02 e–1250 t A. (13.109)

Problem 13.3 Obtain the current s-domain expression for current IL in the
circuit shown in Fig. 13.40. Also obtain the time domain expression for inductor
current. The switch is opened at t = 0. Assume initial energy stored in the circuit
is zero.

625 kW 25 mH

i2

Idc

24 mA

t = 0

25 mF

Fig. 13.40

Solution The s-domain equivalent circuit for the circuit shown in Fig. 13.40 is
shown in Fig. 13.41.
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625 W SL

V

R

iL

Idc
24 10¥ –3

S ¥ 25 –9¥ 10
S ¥ 25 –3¥ 10

S

1
1/SC

+

–

Fig. 13.41

By applying Kirchhoff’s current law, we get

SCV + 
V

R

V

SL
+ = 

I

S

dc (13.110)

V = 
I C

S
RC

S
LC

dc /

2 1 1
+
F
H

I
K +

(13.111)

We know IL = 
V

SL
(13.112)

Substituting Eq. (13.111) into Eq. (13.112), we get

IL = I LC

S S
RC

S
LC

dc /

2 1 1
+ F
H

I
K + F

H
I
K

L
NM

O
QP

(13.113)

Substituting the numerical values yields

IL = 
384 10

64000 16 10

5

2 8

×

+ + ×S S S( )
(13.114)

By taking partial fractions, we get

IL = 
384 10

32000 24000 32000 24000

5
×

+ − + +S S j S j( ) ( )
(13.115)

IL = 
K

S

K

S j

K

S j

1 2 2

32000 24000 32000 24000
+

+ -
+

+ -

*

(13.116)

The partial fraction coefficients are

K1 = 
384 10

16 10

5

8

×

×
 = 24 ¥ 10–3

K2 = 
384 10

32000 24000 48000

5
×

− +( ) ( )j j

= 20 ¥ 10–3 –126.87° (13.117)
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Substituting the numerical values of K1 and K2 into Eq. (13.116) and inverse
transforming the resulting expression yields

iL = [24 + 40 e–32,000 t cos (24000 t + 126.87°)] mA
(13.118)

Problem 13.4 Obtain the s-domain expression for the current IL in the circuit
shown in Fig. 13.40 when the dc current source is replaced by sinusoidal current
source ig = Im cos w t. Where Im = 24 mA and w = 40,000 rod/s. Assume initial
energy stored in the circuit is zero.
Solution The s-domain expression for the source current is

Ig = 
SI

s

m
2 2
+ ω

(13.119)

The voltage across the parallel elements is

V = 
( / )I C s

s
RC

s
LC

g

2 1 1
+
F
H

I
K +

(13.120)

Substituting Eq. (13.119) into Eq. (13.120) results in

V = 
( / )

( )

I C s

s s
RC

s
LC

m
2

2 2 2 1 1
+ +

F
H

I
K +

F
H

I
K

F
HG

I
KJω

(13.121)

from which

IL = 
V

SL

I LC s

s s
RC

s
LC

m
=

+ +
F
H

I
K +

F
H

I
K

L
NM

O
QP

( / )

( )2 2 2 1 1
ω

(13.122)

Substituting the numerical values of Im, w, R, L, and C in Eq. (13.122) gives

IL = 
384 10

16 10 64000 16 10

5

2 8 2 8

¥

+ ¥ + + ¥

s

s s s( ) ( )
(13.123)

By factoring the denominator, we get

I2 = 
384 105

2

¥

- + + - + +

s

s j s j s j s j( ) ( ) ( ) ( )w w a b a b
(13.124)

where w = 40000, a = 32000 and b = 24000

By taking partial fractions, we get

IL =
K

s j

K

s j

K

s j

K

s j

1 1 2 2

40000 40000 32000 24000 32000 24000-
+

+
+

+ -
+

+ +

* *

(13.125)

The coefficients K1 and K2 are

K1 = 
384 10 40000

80000 32000 16000 32000 64000

5
×

+ +

( )

( ) ( ) ( )

j

j j j
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= 7.5 ¥ 10–3 ––90° (13.126)

K2 = 
384 10 32000 24000

32000 16000 32000 64000 48000

5
× − +

− − − +

( )

( ) ( ) ( )

j

j j j

= 12.5 ¥ 10–3 –90° (13.127)

Substituting the numerical values from (13.126) and (13.127) into (13.125) and
inverse-transforming the resulting expression yields

iL = [15 cos (40000 t – 90°) + 25 e–32000 t cos (24000 t + 90°)] mA

iL = [15 sin 40000 t – 25 e–32000 t sin 24000 t] mA (13.128)

Problem 13.5 Obtain the expression for i1 and i2 in the circuit shown in
Fig. 13.42 when dc voltage source is applied suddenly. Assume that the initial
energy stored in the circuit is zero.

42 W 48 W336 V

t = 0

8.4 H 10 H

i1 i2

Fig. 13.42

Solution The Fig. 13.43 shows the s-domain equivalent circuit for the circuit
shown in Fig. 13.42.

42 W 48 W336

s

8.4S 10S

I1 I2

Fig. 13.43

The two mesh current equations are

336

s
= (42 + 8.4 s) I1 – 42 I2 (13.129)

0 = –42 I1 + (90 + 10 s) I2 (13.130)

Using Cramer’s method to solve for I1 and I2, we get

D = 
42 8 4 42

42 90 10
+ −

− +

. s
s
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= 84 (s2 + 14 s + 24)

= 84 (s + 2) (s + 12) (13.131)

N1 = 
336 42

0 90 10
/ s

s
−

+
 = 

3360 9( )s

s

+
(13.132)

N2 = 
42 8 4 336

42 0
14112+

-
=

. /s s

s
(13.133)

Based on Eqs (13.131) to (13.133)

I1 = 
N s

s s s
1 40 9

2 12∆
=

+

+ +

( )

( ) ( )
(13.134)

I2 = 
N

s s s
2 168

2 12∆
=

+ +( ) ( )
(13.135)

Expanding I1 and I2 into a sum of partial fractions gives

I1 = 
15 14

2

1

12s s s
−

+
−

+
(13.136)

I2 = 
7 8 4

2

1 4

12s s s
−

+
+

+

. .
(13.137)

We obtain the expressions for i1 and i2 by inverse transforming Eq. (13.136) and
(13.137) respectively

i1 = (15 – 14 e–2t – e–12t) A (13.138)

i2 = (7 – 8.4 e–2t + 1.4 e–12t) A (13.139)

Problem 13.6 Transform the circuit shown in Fig. 13.44 to the s domain and
determine the Laplace impedance.

4 W

1 Hz 1
4

a

b

F

Fig. 13.44

Solution The transformed circuit for the above circuit is shown in Fig. 13.45.
3 W

1S 4/S

a

b

z

Fig. 13.45
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The parallel combination of inductor and capacitor is in series with the resistor.

z = 3 + ( )/s
s

4F
H

I
K{ }= 3 + 

s

s
s

4

5
4

F
H

I
K

+

z = 
3 4 12

4

2

2

s s

s

+ +

+
(13.140)

Problem 13.7 Determine the current i if the circuit is driven by a voltage
source as shown in Fig. 13.46. The initial value of the voltage across the
capacitor and the initial current through the inductor are both zero.

3 W

1 H

1/2 F

i

40e– t4 V

+

-

Fig. 13.46

Solution The transformed circuit is as shown in Fig. 13.47

3 W

1s

2/S

I

40

s + 4

+

-

Fig. 13.47

Total Laplace impedance across the voltage source is

Z = 3 + s + 
2

s

Z = 
s s

s

2 3 2+ +
(13.141)

Thus, the current is

I = 
V

Z
 = 

40 4

3 22

/( )

( )/

s

s s s

+

+ +
(13.142)

I = 
40

4 3 22
s

s s s( ) ( )+ + +
(13.143)
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By taking partial fractions

I = 
K

s

K

s

K

s
1 2 3

1 2 4+
+

+
+

+
(13.144)

The coefficients K1, K2 and K3 are

K1 = I  (s +1)|s = –1
−40

3
K2 = I  (s +2)|s = –2 = 40

K3 = I ¥ (s + 4)|s = –4 = 
−80

3

Substituting the coefficients and taking inverse Laplace transform, we get

i = 40 e–2t – 
40

3

80

3
4e et t− −

− (13.145)

Problem 13.8 Determine the current i for t ≥ 0 if initial current i(0) = 1 for
the circuit shown in Fig. 13.48.

4 W

2 H

i

10 V

+

-

Fig. 13.48

Solution The s domain circuit with series initial current in the inductor is
shown in Fig. 13.49.

4 W

2s
I

10/s

+
+

-
-

2 (0) = 2i

Fig. 13.49

Applying Kirchhoff’s voltage law, results in

10

s
 –4I–2sI + 2 = 0 (13.146)

10 –4sI – 2s
2
I+2s =0

I = 
10 2

2 2

+

+

s

s s( )
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I = 
5

2

+

+

s

s s( )
(13.147)

Taking partial fractions

I = 
K

s

K

s
1 2

2
+

+
(13.148)

The coefficients K1 and K2 are

K1 = 5

2
; K2 = 

−3

2

Substituting coefficients and taking inverse Laplace transform of Eq. (13.148)
gives

i = 
5

2

3

2
2

−
−e

t (13.149)

Alternatively, the inductor initial condition can be represented parallelly as
shown in Fig. 13.50.

4 W

2s

I

10/s I1 I2

+

+

a

b

+

-

-

-

i(0) 1

s s
=

Fig. 13.50

By inspection,

I2 = 
1
s

By applying Kirchhoff’s voltage law to mesh results in

10

s
 –4 I1 – 2sI1 + 2sI2 = 0 (13.150)

From the figure I1 = I and I2 = 
1

s

10

s
–4 I –2sI + 2s 

1F
H

I
Ks

 = 0

I = 
s

s s

+

+

4

2( )
(13.151)

Taking partial fractions and inverse Laplace transform, we get

i = 
5

2

3

2
2

−
−e

t (13.152)
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Problem 13.9 Determine the current i for t ≥ 0 if Vc (0) = 4 V for the circuit
shown in Fig. 13.51.

4 W i

20 V vc1/8F

+ +

- -

Fig. 13.51

Solution The transformed s domain circuit is shown in Fig. 13.52
4 W I

20/s

8/s

v(0) 4

s s
=

+

+ +

+
-

-

-

-

Fig. 13.52

Application of Kirchhoff’s voltage law gives

20
4

8

5

4
0

s
I I

s
− −

F
H

I
K − = (13.153)

I = 
4

2s +

Taking inverse Laplace transform gives

i = 4 e–2t (13.154)

Alternatively, the initial condition can be represented as shown in Fig. 13.53.
4 WI

20/s 8/sI1 I2
cv(0)

1

2
=

Fig. 13.53

By inspection, we have

I2 = 
−1

2
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Applying Kirchhoff’s voltage law to mesh 1 results in

20
4

8

5

8 1

2
01 1

s
I I

s
− − +

F
H

I
K

−F
H

I
K = (13.155)

Because I1 = I and I2 = 
−1

2
20

4
8 8 1

2
0

s
I

s
I

s
- - + F

H
I
K

-FH IK =

I = 
4

2s +
(13.156)

Taking inverse transform, we get

i = 4 e–2t (13.157)

Problem 13.10 Convert the current source in Fig. 13.54 to a voltage source
in the s domain.

I

20

s + 1
4/s

a

b

V

+

–

Fig. 13.54

Solution Converting the circuit Fig. 13.54 into the voltage source results in
the circuit shown in Fig. 13.55.

I

20 80

4/s

4 +

–
s + 1 s s( + 1)s

=

a

b

V

+

–

Fig. 13.55

Problem 13.11 Convert the voltage source in Fig. 13.56 to a current source
in the s domain.

I2s 7 W

6

s
V

+

–

Fig. 13.56
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Solution Converting Fig. 13.56 into a current source in the s domain results in
the circuit shown in Fig. 13.57.

I

2s

7 W

6/s 3

2
7

=
2 + 7s

s s +
V

+

–

Fig. 13.57

Problem 13.12 Determine v0 for the circuit shown in Fig. 13.58.

2 H

v0

vc1/2F

4 W

v =
1

2
e– t4

i(0) = 0

vc(0) = 0

Fig. 13.58

Solution The circuit in Fig. 13.58 in the s domain is as shown in Fig. 13.59.

V0

V =
1/2

s + 4

Z1 = 4 W

I

Z S2 = 2

Z s3 = 2/

Fig. 13.59

Total impedance in the circuit

Zeq = Z1 + Z2 + Z3 (13.158)

V0 = 
Z

Z Z Z
1

1 2 3+ +

F
HG

I
KJ V
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= 
4

2 4
2

1

2
4s

s
s+ +

R
S|

T|

U
V|

W|
+

R
S|

T|

U
V|

W|
(13.159)

= 
s

s s s( ) ( )+ + +4 2 12

= 
s

s s( ) ( )+ +4 1 2 (13.160)

Taking partial fractions

V0 =  
K

s

K

s

K

s
1

2
2 3

1 1 4( )+
+

+
+

+
(13.161)

The coefficients K1, K2 and K3 are

K1 = 
−1

3
, K2 = 

4

9
, K3 = 

−4

9
Thus

V0 = 
−

+
+

+
+

−

+

1 3

1

4 9

1

4 9

42

/

( )

/ ( / )a f
s s s

Taking inverse transform both sides

v0 = 
1

3

4

9

4

9
4t e e et t t− − −

+ − (13.162)

Problem 13.13 Determine i1, i2, V and V1 for the circuit in Fig. 13.60.

i = 6

i2 i1

v

1/4 H

i1(0) = 0

3/4 HV1

Fig. 13.60

Solution The transformed circuit in the s domain is shown in Fig. 13.61.

I s= 6/

I2 I1

V
Z3

3s

s

4

4

= Z2

= Z1

4 W

V1

Fig. 13.61
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Applying current division to the circuit in the s domain

Zeq = 4
4

3

4
/ /

s s
+

F
H

I
K (13.163)

I1 = 
Z

Z Z s

eq

1 2

6

+

RST
UVW
F
H

I
K

= 
24

4s s( )+
(13.164)

By taking partial fraction expansion

I1 = 
K

s

K

s
1 2

4
+

+

K1 = 6; K2 = –6

I1 = 
6 6

4s s
+

−

+

( )
(13.165)

Taking inverse transform, we get

i1 = 6 – 6 e–4t (13.166)

From Kirchhoff’s current law

6

s
= I2 + I1 (13.167)

= I2 + 
24

4s s( )+

I2 = 
6 24

4s s s
−

+( )

I2 = 
6

4s +
(13.168)

We know

V = 4 I2 = 
24

4s +
(13.169)

V1 = 3

4

sRST
UVW

 I1

= 
3

4

24

4

s

s s

RST
UVW +

RST
UVW( )

(13.170)

V1 = 
18

4s +

Taking inverse transforms

i2 = L–1 {I2} = L–1 
6

4s+

RST
UVW

 = 6 e–4t (13.171)
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v = L–1 {V} = L–1 
24

4s+

RST
UVW

 = 24 e–4t (13.172)

v1 = L –1 {V1} = L –1 
18

4s+

RST
UVW

 = 18 e–4t (13.173)

Problem 13.14 Determine the voltage v for the circuit shown in Fig. 13.62.

12 V

1F

vc v

i

1 W 1 H

1 W

vc(0) = 4 V

i(0) = 2 A

Fig. 13.62

Solution The circuit in Fig. 13.62 is transformed into s domain as shown in
Fig. 13.63.

V

1 W

1 W

12/s

1/s

VC

S

vc(0) 4

s s
=

I1
I2

Li(0) = 2

Fig. 13.63

By using mesh analysis, the current I2 in the circuit is

I2 = 

1
1 12 4

1 2

1
1

1

1 1 1

+ −

−

+ −

− + +

s s s

s
s

(13.174)

I2 = 

2 1
1 8

1
1

2 1

+
F
H

I
K +

F
H

I
K

+
F
H

I
K + −

s s

s
s( )

 = 
2 10

2 22

s

s s

+

+ +
(13.175)

The voltage across 1 W resistor
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V = R I2 = 
2 10

2 22

s

s s

+

+ +
(13.176)

The above equation can be written as

V = 
2 2 8

2 22

s

s s

+ +

+ +

= 2
1

2 2
8

1

2 22 2

s

s s s s

+

+ +

RST
UVW
+

+ +

RST
UVW

= 2
1

1 1
8

1

1 12 2

s

s s

+

+ +

RST
UVW
+

+ +

RST
UVW( ) ( )

(13.177)

Taking inverse Laplace transform both sides

v = 2L –1
s

s

+

+ +

RST
UVW

1

1 12( ) + 8L–1
1

1 12( )s + +

RST
UVW

v = 2 e–t cos t + 8 e–t sin t (13.178)

Problem 13.15 Determine the voltage v for the circuit in Fig. 13.64. Assume
vc(0) = 0.

1 W

1/4 F

1/2 W 4 A1 A

vC

v

Fig. 13.64

Solution The circuit in Fig. 13.64 is transformed into the s domain results in
the circuit in Fig. 13.65.

1 W

4/s

1/2 W 4/s1/s V

Fig. 13.65

Replacing the Laplace impedance for R and C with Laplace admittance, we
get
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1s

s/4V1 V2

2s 4/s1/s V

Fig. 13.66

By using modal analysis, we get

V1 = 

1

4
4

2
4

1
4 4

4
2

4

s

s

s

s

s s

s s

−

+

+
−

−
+

(13.179)

V1 = 

1
2

4

4

4

1
4

2
4 4 4

s

s

s

s

s s s s

F
H

I
K +

F
H

I
K

RST
UVW
−
F
H

I
K

−F
H

I
K

+
F
H

I
K

RST
UVW

+
F
H

I
K

RST
UVW
−

−F
H

I
K

−F
H

I
K

(13.180)

= 

5

3

8

3
8

3

F
H

I
K +

F
H

I
K

+
F
H

I
K

s

s s

(13.181)

Taking partial fraction expansion

V1 = 
K

s

K

s

1 2

8

3

+

+

The coefficients K1 and K2 are

K1 = 1; K2 = 
2

3

V1 = 
1 2 3

8

3
s s
+

+

/
(13.182)

Taking the inverse Laplace transform of each side of the equation results in

L
–1 {V1} = L –1 1 2 3

8

3

s
s

+

+
F
H

I
K

R
S
||

T
||

U
V
||

W
||

( / )
(13.183)
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v1 = L –1 
1 2

3s

F
H

I
K +  L–1

1

8 3s +

RST
UVW/

v1 = 1 + 
2

3

8

3e
t−

and because v = v1

v = 1 + 2

3

8

3e
t−

F
H

I
K (13.184)

Problem 13.16 Determine the voltage v for the circuit shown in Fig. 13.67
using Thevemin’s theorem.

1 W 1/2 W

4/s

4/s1/s

a

b

V

Fig. 13.67

Solution We have to find out open circuit voltage as shown in Fig. 13.68.

1/2 W

4/s

4/s1/s

a

b

VT

Fig. 13.68

Applying the superposition method results in the circuits in Figs 13.69 and
13.70, where V ¢T and V≤T are the contributions to VT from the Laplace transformed

sources 
1

s

F
H

I
K  and 

4

s

F
H

I
K  respectively

1/2 W 1/2 W

4/s 4/s

Open Open1/s 4/s

a a

b b

V ¢
T V ¢

T
¢

Fig. 13.69 Fig. 13.70
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From Fig. 13.69, the open circuit voltage

V ¢T = IZ = 
1 4 1

2s s

F
H

I
K +
F
H

I
K  = 

8

2 2

+ s

s
(13.185)

From Fig. 13.70, the open circuit voltage

V≤T = IZ = 
4 1

2

2

s s

F
H

I
K
F
H

I
K = (13.186)

because no current flows through the capacitor
From the superposition method

VT = V¢T + V≤T

= 
8

2

2
2

+
+

s

s s
(13.187)

= 
8 4

2 2

+ +s s

s

VT = 
5 8

2 2

s

s

+
(13.188)

Replacing both convert sources by opens, as required Thevenin’s theorem to
determine the Thevenin impedance results in Fig. 13.71.

1/2 W

4/S

Open OpenZT

a

b

Fig. 13.71

The impedance seen into the terminals ab

ZT = 
4 1

2s
+

= 
s

s

+ 8

2
(13.189)

and the Thevenin equivalent circuit for terminals a–b is shown in Fig. 13.72.

5 + 8s

a

b

( + 8)/2s s

2s2

Fig. 13.72
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If the 1 W resistor is reconnected across terminals ab, then V can be
determined in Fig. 13.73.

5 + 8s

a

b

( + 8)/2s s

2s2
1 W

+

V

–

Fig. 13.73

V = 
1

1
8

2

5 8

2 2

+
+

R
S|

T|

U
V|

W|
+RST

UVWs

s

s

s

= 
2

3 8

5 8

3 2

s

s

s

s+

RST
UVW

+RST
UVW (13.190)

V = 
5 8

3 8

s

s s

+

+( )
(13.191)

The inverse Laplace transform of V is

v = 1
2

3

8

3
+
F
H

I
K

−
F
H

I
K

e
t

(13.192)

Problem 13.17 Determine the voltage V for the circuit shown in Fig. 13.72,
using Norton’s theorem.

1/s 1/2 W1 W 4/s

4/s

+

V

–

Fig. 13.74

Solution The application of Norton’s theorem in the s domain requires the
removal of the 1 W resistor as shown in Fig. 13.75 and the determination of
resulting short-circuited current.

1/s

a IN

Short

b

1/2 W 4/s

4/s

Fig. 13.75
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Applying the superposition method results in the circuits in Figs. 13.76 and
13.77, where IN¢ and IN≤ are the contributions to IN from the Laplace transformed

current sources 
1

s

F
H

I
K  and 

4

s

F
H

I
K  respectively

1/s
a

IN¢ short Open
b

1/2 W

4/s

4/s

a

IN≤Open

b

1/2 W

4/s

Fig. 13.76 Fig. 13.77

By inspection of the circuit in Fig. 13.76

I¢N = 
1

s
(13.193)

Applying current division to the circuit in Fig. 13.77 results in

I ≤N = 

1

2
1

2

4
4 4

8

F
H

I
K

F
H

I
K +

F
H

I
K

R
S
||

T
||

U
V
||

W
||

RST
UVW = +

s

s s
(13.194)

From the superposition method

IN = I ¢N + IN≤

= 
1 4

8s s
+

+

IN = 
5 8

8

s

s s

+

+( )
(13.195)

Because Thevenin and Norton impedances are equal

ZN = 
s

s

+ 8

2
(13.196)

The Norton equivalent circuit for terminals a–b is as shown in Fig. 13.78.

5 + 8s s + 8

s s( + 8) 2s

a

b

Fig. 13.78
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If the 1 W resistor is reconnected across terminals ab, the voltage V can be
determined in the circuit shown in Fig. 13.79.

5 + 8s s + 8 +

V

–
s s( + 8) 2s

1 W

Z

a

b

Fig. 13.79

Z = 
s

s

+F
H

I
K

8

2
1/ / ( )  = 

s

s
s

s

+F
H

I
K

+
+

8

2
1

1
8

2

k p
(13.197)

Z = 
s

s

+

+

8

3 8
(13.198)

We know V = ZI

= 
s

s

s

s s

+

+

RST
UVW

+

+

RST
UVW

8

3 8

5 8

8( )

V = 
5 8

3 8

s

s s

+

+( )
(13.199)

Taking inverse Laplace transform of V, we get

v = 1 + 
2

3

8

3F
H

I
K

−
F
H

I
K

e
t

(13.200)

Problem 13.18 The initial charge on the capacitor in the circuit shown in
Fig. 13.80 is zero.

(a) Find the s-domain Thevenin equivalent circuit with respect to terminals a
and b.

(b) Find the s-domain expression for the current that the circuit delivers to a
load consisting of a 1 H inductor in series with a 2 W resistor.

20 ( )u t Vx

0.5 F

a

b

5 W 1 W

1 H

2 W

0.2Vx

Fig. 13.80
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Solution First we have to find out
the Thevenins equivalent circuit from
the s-domain circuit shown in
Fig. 13.81.

Thevenins voltage across terminals
ab is

Vab = Vx + 0.2 Vx – I(1) (13.201)

By applying Kirchhoff’s voltage law
we can determine the current I

0.2 Vx = I 1
1

0 5
+

L
NM

O
QP. s

I = 
0 1

1 0 5

.

( . )

s V

s

x

+
(13.202)

Since no current is passing through 5W resistor.

The voltage Vx = 
20

s
(13.203)

Substituting Vx and I in Eq. (13.201), we get

Vab = 1 2
20 01

1 0 5

20
.

.

.s

s

s s

F
H

I
K − +

F
H

I
K (13.204)

Vab = 
20 2 4

2s

s

s

+

+

L
NM

O
QP

.
(13.205)

The Thevenin’s impedance
after short circuiting the voltage
sources shown in Fig. 13.82.

Zab = 
1

0 5
1 5

.
/ / ( )

s

F
H

I
K

RST
UVW
+

Zab = 
5 2 4

2

( . )s

s

+

+
(13.206)

The Thevenin’s equivalent circuit is shown in Fig. 13.83.

20 s + 2.4

5( + 2.4)s

s + 2

s + 2
I

2 Wa

b

s
s

Fig. 13.83

1/0.5s

Zab

a

b

5 W

1 W

Fig. 13.82

20/s

(1/0.5 )s

a

b

5 W

5 W

1 W0.2Vx

Vx

I

Fig. 13.81
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The current I in the circuit of Fig. 13.83 is

I = 

20 2 4

2
5 2 4

2
2

s

s

s
s

s
s

+

+

F
H

I
K

+

+
+ +

.

( . )
(13.207)

= 
20 2 4

5 12 4 4
2s

s

s s s

( . )+

+ + + +

L
NM

O
QP

(13.208)

I = 
20 2 4

9 16
2s

s

s s

+

+ +

L
NM

O
QP

.
(13.209)

Problem 13.19 The voltage source vg drives the circuit shown in Fig. 13.84.

The response signal is the voltage across the capacitor vo.

(a) Calculate the numerical expression for the transfer function.

Vg

+

–

1000 W

v0

250 W

50 mH

1 Fm

Fig. 13.84

Solution The s-domain equivalent circuit is shown in Fig. 13.85.

Vg

+

–

1000 W

v0

250 W

0.05s

106

s

Fig. 13.85

By definition transfer function is the ratio vo/vg.

By applying Kirchhoff’s current law, we get

V Vg0

1000

-
+ 

V

s

V s0 0

6250 0 05 10+
+

.
 = 0 (13.210)

Solving for V0 yields

V0 = 
1000 5000

6000 25 102 6

( )s V

s s

g+

+ + ¥
(13.211)
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Hence the transfer function is

H(s) = 
V

V

s

s sg

0
2 6

1000 5000

6000 25 10
=

+

+ + ¥

( )
(13.212)

Problem 13.20 The circuit shown in Fig. 13.86 is driven by a voltage source

whose voltage increases linearly with time, namely v0 = 50 t u(t).

(a) Use the transfer function to find v0.

(b) Indentify by transient component of the response.

(c) Indentify the steady state component of the response.

Vg

+

–

1000 W

v0

250 W

50 mH

1 Fm

Fig. 13.86

Solution From the previous example

H(S) = 
1000 5000

6000 25 10
2 6

( )s

s s

+

+ + ¥
(13.213)

The transform of the driving voltage is 50/s2, therefore, the s domain

expression for the output voltage is

V0 = 
1000 5000

6000 25 10

50
2 6 2

( )

( )

s

s s s

+

+ + ¥
(13.214)

The partial fraction expansion of V0 is

V0 = 
K

s j

K

s j

K

s

K

s

1 1 2

2

3

3000 4000 3000 4000+ -
+

+ +
+ +

*

(13.215)

The involves of coefficients are

K1 = 5 5  ¥ 10–4 –79.70°

K1
* = 5 5  ¥ 10–4 ––79.70°

K2 = 10

K3 = –4 ¥ 10–4

The time domain expression for v0 is

v0 = [10 5  ¥ 10–4 e–3000t cos (4000 t + 79.70°)

+ 10 t – 4 ¥ 10–4] V (13.216)

(b) The transient component of v0 is

10 5 ¥ 10–4 e–3000t cos(4000t + 79.70°)V (13.217)

(c) The steady state component of the response is

(10 t – 4 ¥ 10–4) V (13.218)
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Problem 13.21 The excitation voltage vi for the circuit shown in Fig. 13.87

is shown in Fig. 13.88.

(a) Use convolution integral to find v0.

(b) Plot v0 over the range of 0 £ t £ 15 s.

vi

1 H

v01 W

vi

20 V

0 5 10 t s( )

Fig. 13.87 Fig. 13.88

Solution The first step in using the convolution integral is to find the unit

impulse response of the circuit use obtain the expression for V0 from the s-domain

equivalent of the circuit in Fig. 13.87.

V0 = 
V

s

i

+ 1
(1) (13.219)

When vi is a unit impulse function d (t)

vo = h(t)

= e–t u(t) (13.220)

from which

h(l) = e–l u(l) (13.221)

The impulse response and the folded excitation function is shown in

Fig. 13.89.

20 V

v(– )l

1.0

0 l

l

–10 –5

Folded excitation

Impulse response
e– l

h( )l

Fig. 13.89
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Sliding the bolded excitation function to the right requires breaking the

integration into intervals: 0 £ t £ 5; 5 £ t £ 10; and 10 £ t £ •. The breaks in the

excitation function at 0.5, and 10s dictate these break points. Figure 13.90 shows

the positioning of the folded excitation for each of these intervals. The analytical

expression for vi in the time interval 0 £ t £ 5 is

vi = 4t; 0 £ t £ 5s (13.222)

Hence, the analytical expression for the folded excitation function in the

interval t – 5 £ l £ t is

vi (t – l) = 4 (t – l), t – 5 £ l £ t (13.223)

20

20

20

vi( – )t d

vi t( – )l

vi t( – )l

1.0

0

l

l

( 10)t –

t – 10

( 10)t –

t – 5

t – 5

t

t

5

5

0

0

10

10

( 5)t – 5 10t0

0 £ t £ 5

10 £ t £ •

h( )l

l

Fig. 13.90



13.52 Network Analysis

We can now set up the three integral expression for v0.

For 0 £ t £ 5s,

v0 = 
0

t

z 4(t – l)e–l dl

= 4(e–t + t – 1) V (13.224)

For 5 £ t £ 10s,

v0 = 20 4

0

5

5

e d t e d

t

t

t

-

-

-

-

z z+ -l l
l l l( )

= 4 (5 + e
–t

 – e
–(t – 5)

) V (13.225)

For 0 £ t £ • s

v0 = 20 4
10

5

5

e d t e d
t

t

t

t
-

-

-
-

-

+ -z zl l
l l l( )

= 4 (e–t – e–(t–5) + 5e–(t–10)) V (13.226)

Table 13.1 Numerical Values of v0(t)

t v0 t v0 t v0

1 1.47 6 18.54 11 7.35

2 4.54 7 19.56 12 2.70

3 8.20 8 19.8 13 0.99

4 12.07 9 19.93 14 0.37

5 16.03 10 19.97 15 0.13

The results are computed for v0 and tabulated in Table 13.1. The voltage

response is shown graphically in Fig. 13.91.

V0(0)

20

100 t s( )12 14

Fig. 13.91

Problem 13.22 For the circuit shown in Fig. 13.92, the sinusiodal source

voltage is vg = 120 cos (5000 t + 30°) V. Find the steady state expression for V0.

Solution From the Problem 13.19:

H(S) = 
1000 5000

6000 25 10
2 6

( )s

s s

+

+ + ¥
(13.227)
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vg

+

–

1000 W

v0

250 W

50 mH

1 Fm

Fig. 13.92

The frequency of the voltage source is 5000 rod/s;

Hence we evaluate H(S) at H( j5000).

H( j5000) = 
1000 5000 5000

25 10 5000 6000 25 106 6

( )

( )

+

- ¥ + + ¥-

j

j

= 
1 1

6

+ j

j
 = 

1 1

6

- j
 = 

2

6
 –– 45º

Then the steady state voltage is

v0ss = 
120 2

6
 cos (5000t + 30° – 45°)

= 20 2  cos (5000t – 15°) V.

Practice Problems

13.1 A 500 W resistor, a 16 mH inductor, and a 25 nF capacitor are connected

in parallel which is placed in series with a 2000 W resistor. Express the

impedance of this series combination as a rational function of s.

Ans.: 2000(s + 50,000)2/(s2 + 80,000 s + 25 ¥ 108)

13.2 A 1 kW resistor is in series with a 500 mH inductor. This series combina-

tion is in parallel with a 0.4 mF capacitor. Express the equivalent s-domain

impedance of these parallel branches as a rational function.

13.3 The energy stored in the circuit shown is zero at the time when the switch

is closed.

4.8 W 4 H

Vt = 0

160 V 0.25 F

+

i

–

Fig. 13.93
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(a) Find the s-domain expression for I.

(b) Find the s-domain expression for i when t > 0.

(c) Find the s-domain expression for V.

(d) Find the time-domain expression for v when t > 0.

Ans.: (a) I = 40/(s2 + 12 s + 1) (b) i = 50e–0.6t sin 0.8t A

(c) V = 16s/(s2 + 1.2 s + 1) (d) v = 200 e–0.6t cos (0.8 t + 36.87°) V

13.4 The dc current and voltage sources are applied simultaneously to the cir-

cuit shown. No energy is stored in the circuit at the instant of application.

(a) Derive the s-domain expressions for V1 and V2.

(b) For t > 0, derive the time-domain expressions for v1 and v2.

(c) Calculate v1(0+) and v2(0+).

(d) Compute the steady state value of v1 and v2.

1 H 15 W

t = 0

t = 0+ +

– –

1 F 3 WV1 V2160 V 15 V

Fig. 13.94

13.5 The energy stored in the circuit shown is zero at the instant the two sources

are turned on

(a) Find the component of v for t > 0 owing to the voltage source.

(b) Find the component of v for t > 0 owing to the current source.

(c) Find the expression for v when t > 0.

2 W

+

–

1.25 H 50 mFV20 ( )u t 5 ( )u t

Fig. 13.95

Ans.: (a) (100/3) e–2t – 
100

3

F
H

I
K  e–8t V

(b) 
50

3
 e–2t – 

50

3
 e–8t V

(c) 50e–2t – 50 e–8t V.

13.6 In the circuit shown in Fig. 13.96, there is no energy stored at the time the

current source turns on. Given that ig = 100 u(t) A;
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(a) Find I0(s)

(b) Use the initial and final value theorem to find i0(0+) and i0(•).

(c) Determine if the results obtained in (b) agree with known circuit

behaviour.

(d) Find i0(t).

20 mF

is

i0 20is

25 H 25 W

5 W

Fig. 13.96

13.7 Derive the numerical expression for the transfer function v0/Ig for the cir-

cuit shown.

ig 0.1 F v0

2 W

1 H

+

–

Fig. 13.97

Ans.: H(S) = 10(s + 2)/s2 + 2s + 10

13.8 There is no energy stored in the circuit seen in Fig. 13.98 at the time the

two sources are energized.

(a) Use the principle of superposition to find V0.

(b) Find v0 for t > 0.

0.5 Fm 4 kW12 ( ) Au tV0

+

–

2 K 1 H

60 ( ) Vu t

Fig. 13.98

13.9 Find (a) the unit step and (b) the unit impulse response of the circuit shown

in Fig. 13.99.
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ig 0.1 F V0

2 W

1 H

+

–

Fig. 13.99

Ans.: (a) 2 + 
10

3
 e–t cos (3t – 126.87°) V

(b) 10.54 e–t cos (3t – 18.43°) V.

13.10 The unit impulse response of a circuit is

v0(t) = 10,000 e–70t cos (240 t + q) u(t) V

where tan q = 
7

24

(a) Find the transfer function of the circuit.

(b) Find the unit step response of the circuit.

13.11 A rectengular voltage pulse v
i
 = [u(t) – u(t – 1)] V is applied to the circuit

shown in Fig. 13.100. Use convolution to find v0.

v0vi 1 W

1 H

++

––

Fig. 13.100

Ans.: v = (1 – e
–t

)V 0 £ t £ 1

v0 = (e – 1)e
–t

 V 1 £ t £ •

13.12 Interchange the inductor and resistor in the Problem 13.12 and again use

the convolution integral to find v0.

13.13 The current source in the circuit shown is delivering 10 cos 4t A. Use the

transfer function to compute the steady-state expression for v0.

v0
ig 0.1 F

2 W

1 H

+

–

Fig. 13.101

Ans.: 44.7 cos (4t – 63.43°) V.
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13.14 There is no energy stored in the circuit shown in Fig. 13.102 at the time the

impulse voltage is applied. Find v0(t) for t ≥ 0.

v0

100 W 5 mH

20 mH

+

–

750 ( )

mV

d t

Fig. 13.102

13.15 The switch in the circuit shown in Fig. 13.103 has been in position a for a

long time. At t = 0, the switch moves to position b. Compute (a) v1(0)

(b) v1(0–) (c) v3(0–) (d) i(t) (e) v1 (0+) (f) v2 (0+) (g) v3 (0+).

V1

t = 0 i t( )

a b

V2

V3

2.0 Fm

0.5 Fm
1.5 Fm

20 kW

Fig. 13.103

Ans.: (a) 80 V (b) 20 V (c) 0 V (d) 32 d (t) mA (e) 16 V (f) 4 V (g) 20 V.

Objective-type Questions

1. An inductor in the s-domain consists of

(a) Current source in series with an inductor

(b) Voltage source in parallel with an inductor

(c) Voltage source of LI0 in series with an inductor

(d) Current source I0/s in series with an inductor

2. A capacitor in the s-domain consists of

(a) Current source CV0 in parallel with capcitor

(b) Current source in series with capacitor

(c) Voltage source 
V

s

0  in parallel with capacitor

(d) Voltage source CV0 in parallel with capacitor

3. The current in the circuit when the switch is closed at t = 0.

(a) 10 e–100t (b) 0.01 e–1000 t

(c) 0.1 e–1000 t (d) 10 e–0.1 t
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t = 0

1 kW

i

+
10 V 1 Fm

–

Fig.  13.104

4. The initial voltage across the capacitor when the switch s is opened at

t = 0.

R
Idc C

Fig. 13.105

(a) zero (b) C
I

s
. dc (d)

1

CS
Idc (d) CS (Idc)

5. Thevenins equivalent circuit across terminals ab.

10 V

20 W

2 W

a

b

2 H

Fig. 13.106

(a) The voltage source 10 V with (20 + 2s) impedance in series

(b) The voltage source 10 V in parallel with (20 + 2s) W in parallel

(c) The voltage source 
10

s
 in series with an impedance of (20 + 2s) W

(d) The voltage source 
10

s
 in series with an impedance of 22 W

6. The transfer function of multiple independent sources can easily be ob-

tained by

(a) Superposition theorem

(b) Thevenin’s theorem

(c) Norten’s theorem

(d) Reciprocity
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7. In the circuit shown in Fig.13.107, the current is defined as the response

signal, then the transfer function

10 V

1 W 1 H

I

1 F

Fig. 13.107

(a)
10

10 1

6

12 2

-

- + +

s

s s
(b)

s

s s
2 1+ +

(c)
s

s
2 1+

(d)
s

s + 1

8. The circuit is driven by an unit impulse source, then the response equals to

(a) transfer function (b) one

(c) zero (d) Inverse of transfer function

9. If the input of a circuit is represented by series of impulse functions, the

response consists of

(a) sum of the series of uniformly delayed impulse responses

(b) sum of the series of responses

(c) one

(d) zero

10. For physically realizable circuit, impulse response is

(a) zero for t < 0 (b) zero for t > 0

(c) one for t < 0 (d) infinite for t > 0

11. The instantaneous current in an inductor when an impulse voltage V0 ap-

plied to the terminals of an inductor

(a) zero (b) unity (c)
V

L

0 (d)
V

L

0
d (t)
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Network Functions

14.1 SINGULARITY FUNCTIONS

So far we have discussed the response of networks to simple waveforms, such as

dc, exponential or sinusoidal. Another class of signals is defined by singularity

functions. These are step, ramp and impulse functions. These functions are

divided into the following two groups.

1. Non-recurring type These functions appear for a particular time interval

and become zero for all other times, and

2. Recurring type These functions appear for all time, that is, the wave-

form exists for t > 0.

Singularity functions are continuous time functions, and their derivatives,

except one, are also continuous. Singularity functions can be obtained from one

another by successive differentiation or integration. Our analysis of general

networks can be enhanced by the utilisation of singularity functions.

14.2 UNIT FUNCTIONS

(a) Unit step function This function has already been discussed in the preceding

chapter. It is defined as one that has magnitude of one for time greater than zero,

and has zero magnitude for time less than zero.

A unit step function is defined mathematically as

u(t) = 0 for t < 0

= 1 for t > 0

The function is represented as shown in Fig. 14.1

The Laplace transform of the unit step function is

L [ f (t)] = L [u(t)] = 

0

•

z u(t)e–stdt
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= 
0

•

z 1e–stdt

= -
L
NM

O
QP

=

- •
e

s s

st

0

1

(b) Unit ramp function If the unit step function is integrated with respect to
time t, then the unit ramp function results. It is symbolised by r(t). A unit ramp
function increases linearly with time. A unit ramp function may be defined
mathematically as

r (t) = 
- •

z
t

u(t) dt

= 
- •

z
0

u(t) + 
0

t

z u(t) dt

= 0 + 
0

t

z u(t) dt = t

\ r (t) = 0 for t < 0

= t for t > 0

The function is represented as shown in Fig. 14.2.
The Laplace transform of the unit ramp function is

L [ f(t)] = L [r (t)] = L u t dt

t

( )
0
zLNM

O
Q
P

Fig. 14.1

Fig. 14.2
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= 
0

•

z te–st dt

L [r (t)] = 
1
2s

(c) Unit impulse function If a unit step function u(t) is differentiated with
respect to t, the derivative is zero for time t greater than zero, and is infinite for
time t equal to zero. Mathematically, the function is defined as

d (t) = 0 for t π 0

and
- •

•

z d (t) dt = 1

where the symbol d (t) (delta) is used to represent the unit impulse. An impulse of
unity amplitude occurring at t = 0 gives that it has an area ‘d ’ equal to unity. The
unit impulse function is represented as shown in Fig. 14.3.

ff tt( )( )

dd ( )( )tt

00 tt

Fig. 14.3

The Laplace transform of the unit impulse function is

L [ f (t)] = L [d (t)] = L
d

dt
u t( )

L
NM

O
QP
 = s L [u(t)] = s ¥ 

1

s
 = 1

Therefore L [d (t)] = 1

(d) Unit doublet function If a unit impulse function d (t) is differentiated with
respect to t, we get

d ¢(t) = 
d

dt
[d (t)] = + • and – • for t = 0

= 0 for t π 0

This function is called unit doublet, where d ¢(t) is the symbol used to represent
the unit doublet.

The unit doublet is shown in Fig. 14.4.
The Laplace transform of the unit doublet is

L [d ¢(t)] = L
d

dt
td ( )

L
NM

O
QP

where d (t) is a unit impulse occurring at t = 0.
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L
d

dt
td ( )

L
NM

O
QP

= s{L [d (t)]}

= s ¥ 1 = s

\ L [d ¢(t)] = s

14.3 SHIFTER FUNCTIONS

Consider unit functions such as unit step, ramp and impulse functions as
discussed in Section 14.2. If these functions are displaced by ‘a’ second or
delayed by ‘a’ second then these functions are said to be delayed functions. These
are represented as shown in Fig. 14.5.

Fig. 14.5

The delayed unit step function shown in Fig. 14.5(a) is defined as

u (t – a) = 0 for t < a

= 1 for t > a

The delayed unit ramp function shown in Fig. 14.5(b) is defined as

r (t – a) = 0 for t < a

= t for t > a

The delayed unit impulse function is defined as

d (t – a) = 0 for t π a

and
- •

•

z d (t – a) dt = 1

ff tt( )( )

00 tt

++ ••

–– ••

Fig. 14.4
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14.4 GATE FUNCTION

By the use of step functions, any pulse of unit height can be realised. The pulse of
width a can be generated by combining unit step function u(t) and delayed
inverted unit step function by a time interval a as shown in Fig. 14.6.

Fig. 14.6

In Fig. 14.6(a), the unit step function u(t) combined with – u(t – a), the
inverted unit step function, delayed by a results in the waveform shown in
Fig. 14.6(c).

G (T) = u(t) – u(t – a)

The gate function is only for 0 < t < a.
A periodic pulse train with pulse width a and pulse repetition period T1 may

be generated by combining a sequence of positive unit step functions u(t),
u(t – T1), u(t – 2T1)..., with negative unit step functions u(t – a), u(t – T1 – a),
u(t – 2T1 – a)..., as shown in Fig. 14.7.

ff tt( )( )

ff tt( )( )

uu tt( )( ) uu t – Tt – T(( ))11

uu t – at – a(( )) uu t –Tt –T –a–a(( ))11 uu t –Tt –T –a–a(( ))22 uu t –Tt –T –a–a(( ))33

uu t – Tt – T(( ))22 uu t – Tt – T(( ))33

TT11 TT22 TT33 tt

aa aa aa aa

TT11 TT22 TT33 tt

Fig. 14.7

Therefore, the periodic pulses may be defined as,

f (t) = u(t) – u(t – a) + u(t – T1) – u(t – T1 – a) + ...

14.5 NETWORK FUNCTIONS

Network functions give the relation between the transform of the excitation to the
transform of the response. Consider the network shown in Fig. 14.8.
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Fig. 14.8

For the network shown in Fig. 14.8(a), only one voltage and one current exist
and only one network function is defined. It constitutes of one pair of terminals
called a port. Generally, a driving source is connected to the pair of terminals.
For the two terminal pair network shown in Fig. 14.8(b), two currents and two
voltages must exist. Normally in Fig. 14.8(b), 1–1¢ and 2–2¢ are called ports.
Hence, it is called two-port network. If the driving source is connected across
1–1¢, the load is connected across 2–2¢. Otherwise, if the source is connected
across 2–2¢, the output is taken across 1–1¢.

14.6 TRANSFER FUNCTIONS OF TWO-PORT NETWORK

For a one-port network, the driving point impedance or impedance of the network
is defined as

Z (s) = 
V s

I s

( )

( )

The reciprocal of the impedance function is the driving point admittance
function, and is denoted by Y(s).

For the two-port network without internal sources, the driving point impedance
function at port 1–1¢ is the ratio of the transform voltage at port 1–1¢ to the
transform current at the same port.

\ Z11(s) = 
V s

I s

1

1

( )

( )

Similarly, the driving point impedance at port 2–2¢ is the ratio of transform
voltage at port 2–2¢ to the transform current at the same port.

Z22(s) = 
V s

I s

2

2

( )

( )

For the two-port network, the driving point admittance is defined as the ratio
of the transform current at any port to the transform voltage at the same port.

Therefore Y11(s) = 
I s

V s

1

1

( )

( )

or Y22(s) = 
I s

V s

2

2

( )

( )
, which is the driving point admittance.

The four other network functions are called transfer functions. These functions
give the relation between voltage or current at one port to the voltage or current
at the other port as shown hereunder.
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(i) Voltage transfer ratio This is the ratio of voltage transform at one port
to the voltage transform at the other port, and is denoted by G(s)

G21(s) = 
V s

V s

2

1

( )

( )

and G12(s) = 
V s

V s

1

2

( )

( )

(ii) Current transfer ratio This is the ratio of current transform at one port
to current transform at other port, and is denoted by a (s)

a12(s) = 
I s

I s

1

2

( )

( )

and a21(s) = 
I s

I s

2

1

( )

( )

(iii) Transfer impedance It is defined as the ratio of voltage transform at one
port to the current transform at the other port, and is denoted by Z(s).

\ Z21(s) = 
V s

I s

2

1

( )

( )

and Z12(s) = 
V s

I s

1

2

( )

( )

(iv) Transfer admittance It is defined as the ratio of current transform at one
port to the current transform at the other port, and is denoted by Y(s).

Y21(s) = 
I s

V s

2

1

( )

( )

and Y12(s) = 
I s

V s

1

2

( )

( )

The above network functions are found by forming the system of equations
using node or mesh analysis, and taking the transforms of equations by setting
the initial conditions to zero and solving for ratio of the response to excitation.

14.7 POLES AND ZEROS

In general, the network function N(s) may be written as

N(s) = 
P s

Q s

a s a s a s a

b s b s b s b

n n
n n

m m
m m

( )

( )
=

+ + + +

+ + + +

-
-

-
-

0 1
1

1

0 1
1

1

K

K

where a0, a1,..., an and b0, b1, ..., bm are the coefficients of the polynomials P(s)
and Q(s); they are real and positive for a passive network. If the numerator and
denominator of polynomial N (s) are factorised, the network function can be
written as

N(s) = 
P s

Q s

a s z s z s z

b s p s p s p

n

m

( )

( )

( ) ( ) ( )

( ) ( ) ( )
=

- - -

- - -

0 1 2

0 1 2

K

K
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where z1, z2, ..., zn are the n roots for P(s) = 0

and p1, p2, ..., Pm are the m roots for Q (s) = 0

and a0/b0 = H is a constant called the scale factor.

z1, z2,..., zn in the transfer function are called zeros, and are denoted by 0.
Similarly, p1, p2,..., pm are called poles, and are denoted by ¥. The network
function N (s) becomes zero when s is equal to anyone of the zeros. N(s) becomes
infinite when s is equal to any one of the poles. The network function is
completely defined by its poles and zeros. If the poles or zeros are not repeated,
then the function is said to be having simple poles or simple zeros. If the poles or
zeros are repeated, then the function is said to be having multiple poles multiple
zeros. When n > m, then (n – m) zeros are at s = •, and for m > n,
(m – n) poles are at s = •.

Consider, the network function

N (s) = 
( ) ( )

( ) ( ) ( )

s s

s s j s j

+ +

+ + + + -

1 5

2 3 2 3 2

2

that has double zeros at s = – 1 and a
zero at s = – 5; and three finite poles
at s = – 2, s = – 3 + j2, and s = – 3 – j2
as shown in Fig. 14.9.

The network function is said to be
stable when the real parts of the poles
and zeros are negative. Otherwise,
the poles and zeros must lie within the
left half of the s-plane.
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Fig. 14.9

14.8 NECESSARY CONDITIONS FOR
DRIVING POINT FUNCTION

The restrictions on pole and zero locations in the driving point function with
common factors in P(s) and Q (s) cancelled are listed below.

1. The coefficients in the polynomials P(s) and Q(s) of network function
N (s) = P(s)/Q (s) must be real and positive.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.
3. (a) The real parts of all poles and zeros must be zero, or negative.

(b) If the real part is zero, then the pole and zero must be simple.
4. The polynomials P(s) and Q(s) may not have any missing terms between

the highest and the lowest degrees, unless all even or all odd terms are
missing.

5. The degree of P(s) and Q(s) may differ by zero, or one only.
6. The lowest degree in P(s) and Q (s) may differ in degree by at the most one.
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14.9 NECESSARY CONDITIONS FOR
TRANSFER FUNCTIONS

The restrictions on pole and zero location in transfer functions with common
factors in P(s) and Q (s) cancelled are listed below.

1. (a) The coefficients in the polynomials P(s) and Q (s) of N (s) = P(s)/Q(s)
must be real.

(b) The coefficients in Q(s) must be positive, but some of the coefficients
in P(s) may be negative.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.
3. The real part of poles must be negative, or zero. If the real part is zero,

then the pole must be simple.
4. The polynomial Q (s) may not have any missing terms between the highest

and the lowest degree, unless all even or all odd terms are missing.
5. The polynomial P(s) may have missing terms between the lowest and the

highest degree.
6. The degree of P(s) may be as small as zero, independent of the degree of

Q (s).
7. (a) For the voltage transfer ratio and the current transfer ratio, the maxi-

mum degree of P(s) must equal the degree of Q (s).
(b) For transfer impedance and transfer admittance, the maximum degree

of P(s) must equal the degree of Q (s) plus one.

14.10 TIME DOMAIN RESPONSE FROM
POLE ZERO PLOT

For the given network function, a pole zero plot can be drawn which gives useful
information regarding the critical frequencies. The time domain response can
also be obtained from pole zero plot of a network function. Consider an array of
poles shown in Fig. 14.10.
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Fig. 14.10

In Fig. 14.10 s1 and s3 are complex conjugate poles, whereas s2 and s4 are real
poles. If the poles are real, the quadratic function is

s
2 + 2dwns + w2

n for d > 1

where d is the damping ratio and wn is the undamped natural frequency.
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The roots of the equation are

s2, s4 = – dwn ± wn d 2 1- ; d > 1

For these poles, the time domain response is given by

i(t) = k2es2 t + k4es4 t

The response due to pole s4 dies faster compared to that of s2 as shown in
Fig. 14.11.

Fig. 14.11

s1 and s3 constitute complex conjugate poles. If the poles are complex
conjugate, then the quadratic function is

s2 + 2dwn s + w 2
n for d < 1

The roots are s1, s1
* = – dwn ± jwn 1 2

- d  for d < 1

For these poles, the time domain response is given by

i(t) = k1e
–dwn t + j tnw d1 2

-e j  + k1
*
e

–dwn t – j tnw d1 2
-e j

= ke
–dwn t sin w dn t1 2

-e j
From the above equation, we can conclude that the response for the conjugate

poles is damped sinusoid. Similarly, s3, s3
* are also a complex conjugate pair.

Here the response due to s3 dies down faster than that due to s1 as shown in
Fig. 14.12.

Consider a network having transfer admittance Y(s). If the input voltage V(s)
is applied to the network, the corresponding current is given by

I (s) = V(s) Y(s) = 
P s

Q s

( )

( )

Fig. 14.12
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This may be taken as

I(s) = H 
( ) ( ) ( )

( ) ( ) ( )

s s s s s s

s s s s s s

a b n

m

- - -

- - -

K

K1 2

where H is the scale factor.
By taking the partial fractions, we get

I(s) = 
k

s s

k

s s

k

s s

m

m

1

1

2

2-
+

-
+ +

-
K

The time domain response can be obtained by taking the inverse transform

i(t) = L -

-
+

-
+ +

-

L
NM

O
QP

1 1

1

2

2

k

s s

k

s s

k

s s

m

m

K

Any of the above coefficients can be obtained by using Heavisides method.
To find the coefficient kl

kl = H 
( ) ( ) ( )

( ) ( ) ( )
( )

s s s s s s

s s s s s s
s sa b n

m
l

s sl

- - -

- - -

L
NM

O
QP

-

=

K

K1 2

Here sl, sm, sn are all complex numbers, the difference of (sl – sn) is also a
complex number.

\ (sl – sn) = Mln e
jf ln

Hence kl = H 
M M M

M M M

la lb ln

l l lm

K

K1 2

 ¥ e j (fla + f lb + K + f ln) – (fl1 + fl2 + K + flm)

Similarly, all coefficients k1, k2, K, km may be obtained, which constitute the
magnitude and phase angle.

The residues may also be obtained by pole zero plot in the following way.

1. Obtain the pole zero plot for the given network function.
2. Measure the distances Mla, Mlb, K, Mln of a given pole from each of the

other zeros.
3. Measure the distances Ml1, Ml2, K, Mlm of a given pole from each of the

other poles.
4. Measure the angle fla, flb, ..., fln of the line joining that pole to each of the

other zeros.
5. Measure the angle fl1, fl2, ..., flm of the line joining that pole to each of the

other poles.
6. Substitute these values in required residue equation.

14.11 AMPLITUDE AND PHASE RESPONSE FROM
POLE ZERO PLOT

The steady state response can be obtained from the pole zero plot, and it is given
by

N( jw) = M(w)e jf (w)
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where M(w) is the amplitude

f (w) is the phase

These amplitude and phase responses are useful in the design and analysis of
network functions. For different values of w, corresponding values of M (w) and
f(w) can be obtained and these are plotted to get amplitude and phase response
of the given network.

14.12 STABILITY CRITERION FOR ACTIVE NETWORK

Passive networks are said to be stable only when all the poles lie in the left half of
the s-plane. Active networks (containing controlled sources) are not always
stable. Consider transformed active network shown in Fig. 14.13.

Fig. 14.13

By applying Millman Theorem, we get

V2(s) = 
V s k V s

s s

1 2

6 5

( ) ( )

/

+

+ +

= 
s V s k V s

s s

[ ( ) ( )]1 2
2 6 5

+

+ +

V2(s) [s2 + 6s + 5] – ksV2(s) = sV1(s)

V2(s) [s2 + (6 – k)s + 5] = sV1(s)

\  
V s

V s

s

s k s

2

1
2 6 5

( )

( ) ( )
=

+ - +

From the above transformed equation, the poles are dependent upon the value
of k.

The roots of the equation are

s = 
- - ± - - ¥( ) ( )6 6 4 5

2

2k k

For k = 0, the poles are at – 1, – 5, which lie on the left half of the s-plane. As
k increases, the poles move towards each other and meet at a point

( )6 202
- -k  = 0, when k = 1.53 or 10.47. The root locus plot is shown in

Fig. 14.14.
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Fig. 14.14

The root locus is obtained from the characteristic equation s2 + (6 – k)s + 5
= 0. As the value of k increases beyond 1.53, the locus of root is a circle. The
poles are located on the imaginary axis at ± j2.24 for k = 6. At – 2.24, poles are
coincident for k = 1.53 while at + 2.24, poles are coincident for k = 10.47. When
k > 10.47, the poles again lie on the real axis but remain on the right half  of the
s-plane, one pole moving towards the origin and the other moving towards
infinity. From this we can conclude, as long as k is less than 6, the poles lie on the
left half of the s-plane and the system is said to be stable. For k = 6, the poles lie
on the imaginary axis and the system is oscillatory in nature. For values of
k greater than 6, the poles lie on the right half of the s-plane. Then the system is
said to be unstable.

14.13 ROUTH CRITERIA

The locations of the poles gives us an idea about stability of the active network.
Consider the denominator polynomial

Q(s) = b0 s
m + b1s m – 1 + K + bm (14.1)

To get a stable system, all the roots must have negative real parts. There
should not be any positive or zero real parts. This condition is not sufficient.

Let us consider the polynomial

s3 + 4s2 + 15s + 100 = (s + 5) (s2 – s + 20)

In the above polynomial, though the coefficients are positive and real, the two
roots have positive real parts. From this we conclude that the coefficients of Q(s)
being positive and real is not a sufficient condition to get a stable system.
Therefore, we have to seek the condition for stability which is necessary and
sufficient.

Consider the polynomial Q (s) = 0. After factorisation, we get

b0 (s – s1) (s – s2) K (s – sm) = 0 (14.2)
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On multiplication of these factors, we get

Q(s) = b0sm – b0(s1 + s2 + K + sm)s m – 1

+ b0(s1s2 + s2s3 + K ) sm – 2

+ b0 (–1)m (s1s2 K sm) = 0 (14.3)

Equating the coefficients of Eqs 14.1 and 14.3, we have

b

b

1

0

= – (s1 + s2 + K + sm) (14.4)

= – sum of the roots

b

b

2

0

= 1(s1s2 + s2s3 +K) (14.5)

= sum of the products of the roots taken two at a time

b

b

3

0

= – (s1 s2 s3 + s2 s3 s4 +K) (14.6)

= – sum of the products of the roots taken three at a time.

(– 1)m 
b

b

m

0

= (s1 s2 s3 K sm) = product of the roots (14.7)

If all the roots have negative real parts, then from the above equations it is
clear that all the coefficients must have the same sign. This condition is not
sufficient due to the fact that the zero value of a coefficient involves cancellation,
which requires some root to have positive real parts.

The Routh criterion for stability is discussed below. Consider a polynomial

Q(s) = b0s
m + b1s

m – 1 + b2s
m – 2 + K + bm

Taking first row coefficients and second row coefficients separately, we have

b0 b2 b4 K

b1 b3 b5 K

Now we complete the Routh array as follows.
For m = 5

s5 b0 b2 b4

s4 b1 b3 b5

s3 c1 c2

s2 d1 d2

s1 e1

s0 f1

where c1, c2, d1, d2, el, f1 are determined by the algorithm given below.

b0 b2

c1 = 
b b

b

b b b b

b

1 3

1

1 2 0 3

1

=
-
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b0 b4

c2 = 
b b

b

b b b b

b

1 5

1

1 4 0 5

1

=
-

b1 b3

d1 = 
c c

c

c b b c

c

1 2

1

1 3 1 2

1

=
-

b1 b5

d2 = 
c

c

b c

c

1

1

5 1

1

0 0
=

-

c1 c2

e1 = 
d d

d

c d c d

d

1 2

1

2 1 1 2

1

=
-

d1 d2

f1 = 
e

e

d e

e

1

1

2 1

1

0 0
=

-

In order to find out the element in kth row and jth column, it is required to
know the four elements. These elements in the row (k – 1) and row (k – 2) just
above the elements are in column 1 of the array and (J + 1) column of the array.
The product of the elements joined by a line with positive slope has positive sign
while the product of elements joined with a line with negative slope has a
negative sign. The difference of these products is divided by the element of
column 1 and row (k – 1). The above process is repeated till m + 1 rows are found
in the Routh array.

According to the Routh-Hurwitz theorem, the number of changes in the sign of
the first column to the right of the vertical line in an array moving from top to
bottom is equal to the number of roots of Q (s) = 0 with positive real parts. To get
a stable system, the roots must have negative real parts.

According to the Routh-Hurwitz criterion, the system is stable, if and only if,
there are no changes in signs of the first column of the array. This requirement is,
both the necessary and sufficient condition for stability.

Additional Solved Problems

Problem 14.1 For the circuit shown in Fig. 14.15, determine the curent i(t)
when the switch is closed at t = 0. Assume that the initial current in the inductor
is zero.
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Fig. 14.15

Solution By applying Kirchhoff’s laws to the circuit

2i(t) + 1 
di

dt
 = 2d (t – 3)

Taking Laplace transform on both sides, we get

2I (s) + 1[sI(s) – i(0)] = 2e–3s

Since the initial current through inductor is zero,

i(0) = 0

The equation becomes

2I (s) + 2I (s) = 2e–3s

I (s) [s + 2] = 2e
–3s

\ I (s) = 
2

2

3e

s

s-

+

Taking inverse transform, we get

i(t) = 2e–2(t – 3) u(t – 3)

Problem 14.2 For the circuit shown in Fig. 14.16, determine the current i(t)
when the switch is closed at t = 0. Assume that the initial charge on the capacitor
is zero.

Fig. 14.16

Solution By applying Kirchhoff’s law to the circuit, we have

5i (t) + 1
di

dt
 + 6 z idt = 5r (t – 1)
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Taking Laplace transforms on both sides, we get

5I(s) + 1[sI (s) – i(0)] + 6 
I s

s

q

s

e

s

s( ) ( )
+L

NM
O
QP =

-0 5
2

Since the initial current in the inductor and initial charge on the capacitor is
zero

i (0) = 0, q(0) = 0

Therefore, the above equation becomes

I(s) s
s

e

s

s

+ +L
NM

O
QP =

-

5
6 5

2

I(s) = 
5

5 6

5

3) 22

e

s s s

e

s s s

s s- -

+ +
=

+ +( ) ( ( )

By taking partial fraction, we have

1

3) 2 3 2s s s

A

s

B

s

C

s( ( )+ +
= +

+
+

+

Applying Heavyside rule, we get the coefficients

\ I (s) = 5e–s 
1

6

1

3 3)

1

2 2s s s
+

+
-

+

L
NM

O
QP( ( )

I (s) = 5 
e

s

e

s

e

s

s s s- - -

+
+

-
+

L
NM

O
QP6 3 3) 2 2( ( )

Taking inverse transform on both sides, we have

i(t) = 
5

6
1

5

3
1

5

2
13 1 2 1u t e u t e u t A

t t( ) ( ) ( )( ) ( )
- + - - -

L
NM

O
QP

- - - -

Problem 14.3 A rectangular voltage pulse of unit height and T seconds
duration is applied to a series R-C combination at t = 0, as shown in Fig. 14.11.
Determine the current in the capacitor as a function of time. Assume the capacitor
to be initially uncharged.

ii tt( )( )

ss RR

CCVV tt( )( )

VV tt( )( )

TT
tt

(a)(a) (b)(b)

Fig. 14.17

Solution The input voltage can be written as a combination of two steps, i.e.

v (t) = u(t) – u(t – T )



14.18 Network Analysis

Applying Kirchhoff’s law to the circuit, we get

Ri(t) + 
1

C z i(t) dt = [u(t) – u(t – T )]

Taking Laplace transforms on both sides, we get

RI (s) + 
1 0 1

C

I s

s

q

s s

( ) ( )
+L

NM
O
QP =  (1 – e–sT)

Since the initial charge on the capacitor is zero

q(0) = 0

Therefore, I(s) R
Cs

+
L
NM

O
QP

1
= 

1
1

s
e sT( )-

-

or I (s) = 
1

1

-

+
F
H

I
K

-e

R s
RC

sT

= 
1 1

1 1R s RC

e

s RC

sT

+
-

+

L
NM

O
QP

-

/ /

Taking inverse transform on both sides, we get

i(t) = 
1

R
{u(t)e–t/RC – u(t – T) e– (1/RC )(t – T) }

Problem 14.4 For the network shown in Fig. 14.18, determine the transform
impedance Z(s).

Fig. 14.18

Solution The transform network for the network shown in Fig. 14.18 is shown
in Fig. 14.19.

Fig. 14.19
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From Fig. 14.19, the equivalent impedance at port 1–1¢ is

Z (s) = 10 2 20
1

5
+ +

F
H

I
K

L
NM

O
QPs

s
||{ }

= 10 + 
2 20 1 5

2 20 1 5

s s

s s

( / )

/

+

+ +

= 
20 200 2 40 2 5

10 100 1

5

2

s s s

s s

s

+ + + +

+ +

/ /

= 
100 1000 10 200 2

10 100 1

2 2

2

s s s s

s s

+ + + +

+ +

Therefore, the network transform impedance is

Z(s) = 
300 1002 10

10 100 1

2

2

s s

s s

+ +

+ +

Problem 14.5 For the two port network shown in Fig. 14.20, determine the
driving point impedance Z11(s) and the driving point admittance Y11(s). Also find
the transfer impedance Z21(s).

Fig. 14.20

Solution By applying Kirchhoff’s law to the circuit, we have

V1(s) = 10I1(s) + 2s I1(s) (14.8)

The voltage across port 2–2¢ is

V2(s) = I1(s) ¥ (2s) (14.9)

From Eq. 14.8, the driving point impedance is

Z11(s) = 
V s

I s

1

1

( )

( )
 = (2s + 10)

Similarly, the driving point admittance is

Y11(s) = 
I s

V s s

1

1

1

2 10

( )

( )
=

+

From Eq. 14.9, the transfer impedance is

Z21(s) = 
V s

I s

2

1

( )

( )
 = 2s
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Problem 14.6 For the network shown in Fig. 14.21, determine the transfer
functions G21(s) and Z21(s) and the driving point admittance Y11(s).

Fig. 14.21

Solution By applying Kirchhoff’s voltage law at the ports, we get

V1(s) = I1(s) 5
1

2
s

s
+L

NM
O
QP

V2(s) = 
1

2s
 I1(s)

Therefore, the voltage transfer ratio

G21(s) = 
V s

V s s s s

2

1

1

2 5 1 2

( )

( ) ( / )
=

+

G21(s) = 
1

10 12s +

The transform impedance is

Z21(s) = 
V s

I s s

2

1

1

2

( )

( )
=

The driving point admittance is

Y11(s) = 
I s

V s s s

2

1

1

5 1 2

( )

( ) /
=

+

\ Y11(s) = 
2

10 12

s

s( )+

Problem 14.7 For the network shown in Fig. 14.22, determine the transfer
functions G21(s) and Z21(s). Also find the driving point impedance Z11(s).
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Fig. 14.22
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Solution From Fig. 14.23, by application of Kirchhoff’s laws, we get the
following equations

The driving point impedance

Z11(s) = 
V s

I s

1

1

( )

( )
 = [20 || (10 + 1/2s)] = 

20 10 1 2

20 10 1 2

¥ +

+ +

( / )

/

s

s

Z11(s) = 
20 10 1 2

30 1 2

( / )

/

+

+

s

s

Z11(s) = 
400 20

60 1

s

s

+

+

VV ss11 (( ))
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VV ss22 (( ))2020 WW

1010 WW

1/21/2ss

II ss11(( )) II ss33(( )) II ss22(( ))

Fig. 14.23

From the above figure, by application of Kirchhoff’s laws, we get

V1(s) = 20I1(s) – 20I3(s) (14.10)

10I3(s) + 20[I3(s) – I1(s)] + 
1

2s
[I3(s) + I2(s)] = 0 (14.11)

V2(s) = [I2(s) + I3(s)]
1

2s
(14.12)

From Eq. 14.11, we get

30
1

2
+

F
H

I
Ks

I3(s) – 20 I1(s) = 0

I3(s) = 
40

60 1

s

s +
 I1(s) (14.13)

From Eq. 14.12, since I2 = 0 we get

V2(s) = + I3(s) 
1

2s
F
H

I
K (14.14)

The transfer impedance at port 2 is

Z21(s) = 
V s

I s

s

s s s

2

1

40

60 1

1

2

20

60 1

( )

( ) ( ) ( )
=

+
¥ =

+

The voltage transfer ratio

G21(s) = 
V s

V s

I s s

I s I s

s

s s

s

s

2

1

3

1 3

1 2

20 20

1 2
60 1 40

2

1

20 1

( )

( )

( ) ( / )

( ) ( )

( / )
=

-
=

+ -
=

+
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Problem 14.8 Draw the pole zero diagram for the given network function
I(s) and hence obtain i(t).

I(s) = 
20

5 2

s

s s( ) ( )+ +

Solution In the network function

P(s) = 20s

and Q(s) = (s + 2)(s + 5) = 0

By taking partial fractions, I (s) can be written as

I (s) = 
k

s

k

s

1 2

2 5+
+

+

Therefore, the time domain response is

i(t) = k1e
–2t + k2e

–5t

Here, the coefficients k1 and k2 are determined by using the pole zero plot as
shown in Fig. 14.24.

Fig. 14.24

Consider a pole at – 2
The distance between zero to pole at – 2 is

M02 = 2

The angle between the line joining to the pole at – 2 to the zero is

f02 = 180°

Similarly, the distance between pole at – 5 to pole at – 2 is

M52 = 3

The angle between the line joining the pole at – 2 to the pole at – 5 is

f52 = 0°

Hence k1 = H 
M e

M e

j

j
02

52

02

52

f

f

= 20 ¥ 
2

3

180

0

e

e

j

j
 = 13.33 e j180 = – 13.33

Similarly, k2 = H 
M e

M e

j

j
05

25

05

25

f

f
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where M05 = 5, f05 = 180°

M25 = 3, f25 = 180°

Hence k2 = 
20 5

3

¥
 e j(180 – 180)

= 
100

3
 = 33.3

Substituting these values, we get

i(t) = (– 13.33e–2t + 33.3 e–5t) A

Problem 14.9 Draw the pole zero diagram for the given network function
and hence obtain v(t)

V(s) = 
4 2

1 3)

( )

( ) (

s s

s s

+

+ +

Solution In the network function

p(s) = 4s(s + 2)

and Q(s) = (s + 1) (s + 3) = 0

By taking partial fractions, we have

V(s) = 
k

s

k

s

1 2

1 3+
+

+

The time domain response can be obtained by taking the inverse transform

v(t) = k1 e–t + k2 e–3t

Here, the coefficients k1 and k2 may be determined by using the pole zero plot
as shown in Fig. 14.25.

To determine k1, we have to find out the distances and phase angles from other
zeros and poles to that particular pole.

Fig. 14.25

Hence k1 = H 
M M e

M e

j

j
01 21

31

01 21

31

( )

( )

f f

f

+

where M01 and M21 are the distances between the zeros at 0 and – 2 to the pole at
– 1, f01, f21 are the phase angle between the corresponding zeros to the pole.

Similarly, M31 and f31 are the distance and phase angle, respectively, from
pole at – 3 to pole at – 1.
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\ M01 = 1; f01 = 180°

M21 = 1; f21 = 0

M31 = 2; f31 = 0°

\ k1 = 4 ¥ 
1 1

2

¥
e j(180°)

k1 = – 2

Similarly,

k2 = H 
M M

M

03 23

13

 e+ j(f03 + f23 – f13)

where M03 = 3, f03 = 180°

M23 = 1, f23 = 180°

M13 = 2, f13 = 180°

\ k2 = 
4 3 1

2

¥ ¥
 e 

j(180 + 180 – 180)

k2 = – 6

Substituting the values, we get

v(t) = (– 2e– t – 6e–3t )V

Problem 14.10 For the given network function, draw the pole zero diagram
and hence obtain the time domain response i(t).

I (s) = 
5

1 4 82

s

s s s( ) ( )+ + +

Solution In the network function

P(s) = 5s

Q (s) = (s + 1) (s2 + 4s + 8) = 0

By taking the partial fraction expansion of I (s), we get

I (s) = 
k

s

k

s j

k

s j

1 2 3

1 2 2 2 2+
+

+ +
+

+ -( ) ( )
(14.15)

The time domain response can be obtained by taking the inverse transform as
under,

i(t) = k1e
– t + k2 e

– (2 +  j2)t + k2 e– (2 – j2)t (14.16)

To find the value of k1, we have to find out the distances, and phase angles
from other zeros and poles to that particular pole as shown in Fig. 14.26.

Hence k1 = 
H M e

M M e

j

p p

j p p

01

11 21

01

11 21

( )f

f f+

M01 = 1; f01 = 180°

Mp11 = 5 ; fp11 = – 63.44°

Mp21 = 5 ; fp21 = 63.44°
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\ k1 = 
5 1

5 5

180

63 44 63 44

¥

¥

∞

- ∞ + ∞

e

e

j

j ( . . )

k1 = – 1

Similarly k2 = 
H M e

M M e

p

j

p p p

j

p

p p p

0

1

1

0 1

1 2 1

1 1 2 1

f

f f( )+

M0p1
= 8 ; f0p1

 = 135°

M1p1
= 5 ; f1p1

 = 116.56°

Mp1 p2
= 4;fp2 p1

 = 90°

Hence k2 = 
5 8

5 4

¥

¥
 e j(135° – 116.56° – 90°)

= 1.58 e–j(71.56°)

k2
* = 

H M e

M M e

p

j

p p p

j

p

p p p

0

1

2

0 2

2 1 2

1 2 1 2

f

f f( )+

= 
5 8

5 4 116 56 90

¥

¥

- ∞

- ∞ - ∞

e

e

j

j

(135 )

( . )

= 1.58e j71.56°

If we substitute the values in Eq. 14.16, we get

i(t) = [– 1e– t + 1.58 e– j(71.56°) e– (2 + j2)t

+ 1.58e j (71.56°) e– (2 – j2)t]A
Problem 14.11 For the given denominator polynomial of a network function,
verify the stability of the network by using the Routh criterion.

Q(s) = s3 + 2s2 + 8s + 10
Solution Routh array for this polynomial is given below

s3 1 8

s2 2 10

s1 3

s0 10

jjww

ss
xx

xx

xx

–2–2 –1–1––33

PP11

PP22

Fig. 14.26
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There is no change in sign in the first column of the array. Hence, there are no
roots with positive real parts. Therefore, the network is stable.

Problem 14.12 For the given denominator polynomial of a network function,
verify the stability of the network using the Routh criterion.

Q (s) = s3 + s2 + 3s + 8
Solution Routh array for this polynomial is given below.

s3 1 3

s
2 1 8

s
1

– 5

s0 + 8

There are two changes in sign of the first column, one from 1 to – 5 and the
other from – 5 to + 8. Therefore, the two roots have positive real parts. Hence the
network is not stable.

Problem 14.13 For the given denominator polynomial of a network function,
determine the value of k for which the network to stable.

Q (s) = s3 + 2s
2 + 4s + k

Solution Routh array for the given polynomial is given below.

s3 1 4

s2 2 k

s1 8

2

- k

s0 k

When k < 8, all the terms in the first column are positive. Therefore, there is
no sign change in the first column. Hence, the network is stable. When k > 8, the
8 – k/2 is negative. Therefore, there are two sign changes in the first column.
There are two roots which have positive real parts. Hence, the network is
unstable.

When k = 8, the Routh array becomes

s3 1 4

s2 2 8

s1 a

s0 8

The element in the first column and third row is zero. But we can take it as a
small number. In this case there are no changes in the sign of the first column.
Hence, the network is stable.

Problem 14.14 Apply Routh criterion to the given polynomial and determine
the number of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts.

Q (s) = s4 + 4s3 + 8s2 + 12s + 15
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Solution The Routh array for the polynomial is

s4 1 8 15

s3 4 12

s2 5 15

s1 0 0

s0 ? ?

In this case, all the elements in the 4th row have become zero and the array
cannot be completed.

The given equation is reduced by taking the new polynomial from the 3rd row

5s2 + 15 = 0

5(s2 + 3) = 0

Hence the other polynomial

Q2(s) = 
s s s s

s

4 3 2

2

4 8 12 15

5 3)

+ + + +

+(

The equation reduces to the following polynomial

(s2 + 3) (s2 + 4s + 5) = 0

The roots of the equation s2 + 3 = 0 are s = ± j 3
There two roots have zero real parts.
Again forming Routh array for the polynomial

s2 + 4s + 5 = 0

s2 1  5

s1 4 0

s0 5

There are no changes in the sign of the first column. Hence, all the two roots
have negative real parts. Therefore, out of four roots, two roots have negative
real parts and two roots have zero real parts.

Practice Problems

14.1 For the circuit shown in Fig. 14.27, determine the current i (t), when the
switch is closed at t = 0. Assume that there is no initial charge on the
capacitor.

Fig. 14.27
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14.2 For the circuit shown in Fig. 14.28, determine the voltage across capaci-
tor, when the switch is closed at t = 0. Assume that there is no initial
charge on the capacitor.

ii tt( )( )

55 WW

55 ( – 2)( – 2)rr tt

ss

2 H2 H

1/5 F1/5 F
VV tt( )( )

Fig. 14.28

14.3 For the circuit shown in Fig. 14.29(b), determine the current when the
switch is closed at t = 0. The waveform shown in Fig. 14.29(a) is applied
to the circuit. Assume that there is no initial charge on the capacitor.

Fig. 14.29

14.4 The waveform shown in Fig. 14.30(a) is applied to the circuit in Fig.
14.30(b) when the switch is closed at t = 0. Assume no initial current in the
circuit. Determine the current i(t) in the circuit.

ii tt( )( )

55 WWss

55VV

VV tt( )( )

VV tt( )( )

33

(a)(a) (b)(b)

tt22

2 H2 H

Fig. 14.30

14.5 For the two-port network shown in Fig. 14.31, determine the driving point
impedance Z11(s), the transfer impedance Z21(s) and the voltage transfer
ratio G21(s).



Network Functions 14.29

VV ss11 (( ))

II ss11 (( )) II ss22 (( ))

VV ss22 (( ))

22 WW

2 H2 H

5 W5 W

1/2 F1/2 F

11 22

11¢¢ 2¢2¢

Fig. 14.31

14.6 For the network shown in Fig. 14.32, determine the following transfer
functions. (a) G21 (s), (b) Y21 (s) and (c) a21(s).

VV ss11 (( ))

II ss11 (( )) II ss22 (( ))

VV ss22 (( ))1 F1 F

22 WW2 H2 H

11

11¢¢

1 H1 H

Fig. 14.32

14.7 For the network shown in Fig. 14.33, determine the following transfer
functions (a) G21(s), (b) Z21(s).

Fig. 14.33

14.8 For the network shown in Fig. 14.34, determine the following functions
(a) Z11(s), (b) Y11(s), (c) G21(s) and (d) a21(s).

Fig. 14.34
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14.9 For the network shown in Fig. 14.35, determine transfer impedance Z21(s)
and Y21(s). Also find the transfer voltage ratio G21(s) and the transfer cur-
rent ratio a21(s).

VV ss11 (( )) VV ss22 (( ))5 H5 H 1/5 F1/5 F

11 22

11¢¢ 2¢2¢

Fig. 14.35

14.10 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

V(s) = 
5 5

2 7

( )

( ) ( )

s

s s

+

+ +

14.11 For the given network function draw the pole zero diagram and hence ob-
tain the time domain response. Verify this result analytically.

I (s) = 
3

1 3)

s

s s( ) (+ +

14.12 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

I (s) = 
5

3) 2 22

s

s s s( ( )+ + +

14.13 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.

Q(s) = s5 + 3s4 + 4s3 + 5s2 + 6s + 1

14.14 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.

Q (s) = s4 + s3 + 2s
2 + 2s + 12

14.15 Apply Routh criterion to the following equations and determine the num-
ber of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts

(a) 6s3 + 2s2 + 5s + 2 = 0

(b) s6 + 5s5 + 13s4 + 21s3 + 20s2 + 16s + 8 = 0

(c) s
6 – s5 – 2s

4 + 4s
3 

– 5s
2 + 21s + 30 = 0
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Objective-type Questions

1. The function is said to be non-recurring when it
(a) appears for a particular time interval
(b) appears for all time
(c) both a and b
(d) neither of the two

2. The inverse transform of 1/S is
(a) d (t) (b) u (t)
(c) u (t – a) (d) t

3. The Laplace transform of a ramp function is
(a) 1 (b) 1/s
(c) 1/s2 (d) 1/s3

4. The inverse transform of S is
(a) impulse (b) ramp
(c) step (d) unit doublet

5. The driving point impedance is defined as
(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the transform current at

the other port
(c) both (a) and (b)
(d) none of the above

6. The transfer impedance is defined as
(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the current transform at

the other port
(c) both (a) and (b)
(d) none of the above

7. The function is said to be having simple poles and zeros and only if
(a) the poles are not repeated
(b) the zeros are not repeated
(c) both poles and zeros are not repeated
(d) none of the above

8. The necessary condition for a driving point function is
(a) the real part of all poles and zeros must not be zero or negative
(b) the polynomials P(s) and Q(s) may not have any missing terms be-

tween the highest and lowest degree unless all even or all odd terms
are missing.

(c) the degree of P(s) and Q (s) may differ by more than one
(d) the lowest degree in P(s) and Q(s) may differ in degree by more than

two.
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9. The necessary condition for the transfer functions is that
(a) the coefficients in the polynomials P(s) and Q (s) must be real
(b) coefficients in Q(s) may be negative
(c) complex or imaginary poles and zeros may not conjugate
(d) if the real part of pole is zero, then that pole must be multiple

10. The system is said to be stable, if and only if
(a) all the poles lie on right half of the s-plane
(b) some poles lie on the right half of the s-plane
(c) all the poles does not lie on the right half of the s-plane
(d) none of the above.
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Two-Port Networks

15.1 TWO-PORT NETWORK

Generally any network may be represented schematically by a rectangular box.

A network may be used for representing either source or load, or for a variety of

purposes. A pair of terminals at which a signal may enter or leave a network is

called a port. A port is defined as any pair of terminals into which energy is

supplied, or from which energy is withdrawn, or where the network variables

may be measured. One such network having only one pair of terminals (1–1¢ ) is
shown in Fig. 15.1.

Fig. 15.1

A two-port network is simply a network inside a black box, and the network
has only two pairs of accessible terminals; usually one pair represents the input
and the other represents the output. Such a building block is very common in
electronic systems, communication systems, transmission and distribution
systems. Figure 15.1 (b) shows a two-port network, or two terminal pair network,
in which the four terminals have been paired into ports 1–1¢  and 2–2¢ . The
terminals 1–1¢  together constitute a port. Similarly, the terminals 2–2¢  constitute
another port. Two ports containing no sources in their branches are called passive

ports; among them are power transmission lines and transformers. Two ports
containing sources in their branches are called active ports. A voltage and
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current assigned to each of the two ports. The voltage and current at the input
terminals are V1 and I1; whereas V2 and I2 are specified at the output port. It is
also assumed that the currents I1 and I2 are entering into the network at the upper
terminals 1 and 2, respectively. The variables of the two-port network are V1, V2,
and I1, I2. Two of these are dependent variables, the other two are independent
variables. The number of possible combinations generated by the four variables,
taken two at a time, is six. Thus, there are six possible sets of equations
describing a two-port network.

15.2 OPEN CIRCUIT IMPEDANCE (Z) PARAMETERS

A general linear two-port network defined in Section 15.1 which does not contain
any independent sources is shown in Fig. 15.2.

Fig. 15.2

The Z parameters of a two-port for the positive directions of voltages and
currents may be defined by expressing the port voltages V1 and V2 in terms of the
currents I1 and I2. Here V1 and V2 are dependent variables, and I1, I2 are
independent variables. The voltage at port 1–1¢  is the response produced by the
two currents I1 and I2. Thus

V1 = Z11 I1 + Z12 I2 (15.1)

Similarly, V2 = Z21 I1 + Z22 I2 (15.2)

Z11, Z12, Z21 and Z22 are the network functions, and are called impedance (Z)
parameters, and are defined by Eqs. 15.1 and 15.2. These parameters can be
represented by matrices.

We may write the matrix equation [V] = [Z] [I ]

where V is the column matrix = 
V

V

1

2

L
NM

O
QP

Z is the square matrix = 
Z Z

Z Z

11 12

21 22

L
NM

O
QP

and we may write |I | in the column matrix = 
I

I

1

2

L
NM

O
QP

Thus,
V

V

1

2

L
NM

O
QP
 =

Z Z

Z Z

11 12

21 22

L
NM

O
QP
 

I

I

1

2

L
NM

O
QP
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The individual Z parameters for a given network can be defined by setting
each of the port currents equal to zero. Suppose port 2–2¢ is left open-circuited,
then I2 = 0

Thus Z11 =
V

I I

1

1 02 =

where Z11 is the driving-point impedance at port 1–1¢ with port 2–2¢ open
circuited. It is called the open circuit input impedance

Similarly, Z21 =
V

I I

2

1 02 =

where Z21 is the transfer impedance at port 1–1¢ with port 2–2¢ open circuited. It
is also called the open circuit forward transfer impedance. Suppose port 1–1¢ is
left open circuited, then I1 = 0

Thus, Z12 =
V

I
I

1

2 01 =

where Z12 is the transfer impedance at port 2–2¢, with port 1–1¢ open circuited. It
is also called the open circuit reverse transfer impedance.

Z22 =
V

I I

2

2 01 =

where Z22 is the open circuit driving point impedance at port 2–2¢ with port 1–1¢

open circuited. It is also called the open circuit output impedance. The equivalent
circuit of the two-port networks governed by the Eqs. 15.1 and 15.2, i.e. open
circuit impedance parameters is shown in Fig. 15.3.

1

2¢1¢

I1 I2
2

V1

Z11 Z22

Z I12 2 Z I21 1

V2

Fig. 15.3

If the network under study is reciprocal or bilateral, then in accordance with
the reciprocity principle

V

I
I

2

1 02 =

 =
V

I
I

1

2 01 =

or Z21 = Z12



15.4 Network Analysis

It is observed that all the parameters have the dimensions of impedance.
Moreover, individual parameters are specified only when the current in one of
the ports is zero. This corresponds to one of the ports being open circuited from
which the Z parameters also derive the name open circuit impedance parameters.

Example 15.1 Find the Z parameters for the circuit shown in Fig. 15.4.

b¢

+ b

a¢

I1 I2Za Zc

Zb
V2V1

a +

Fig. 15.4

Solution The circuit in the problem is a T network. From Eqs. 15.1 and 15.2

we have

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

When port b-b¢ is open circuited, Z11 = 
V

I
1

1

where V1 = I1(Za + Zb)

\ Z11 = (Za + Zb)

Z21 =
V

I I

2

1 02 =

where V2 = I1 Zb

\ Z21 = Zb

When port a-a¢ is open circuited, I1 = 0

Z22 =
V

I I

2

2 01 =

where V2 = I2(Zb + Zc)

\ Z22 = (Zb + Zc)

Z12 =
V

I I

1

2 01 =

where V1 = I2 Zb

\ Z12 = Zb
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It can be observed that Z12 = Z21, so the network is a bilateral network which

satisfies the principle of reciprocity.

15.3 SHORT CIRCUIT ADMITTANCE (Y) PARAMETERS

A general two-port network which is considered in Section 15.2 is shown in
Fig. 15.5.

1

2¢
1¢

I1

V2V1

I2
2

Linear
network

Fig. 15.5

The Y parameters of a two-port for the positive directions of voltages and
currents may be defined by expressing the port currents I1 and I2 in terms of the
voltages V1 and V2. Here I1, I2 are dependent variables and V1 and V2 are
independent variables. I1 may be considered to be the superposition of two
components, one caused by V1 and the other by V2. Thus,
Thus,

I1 = Y11 V1 + Y12 V2 (15.3)

Similarly, I2 = Y21 V1 + Y22 V2 (15.4)

Y11, Y12, Y21 and Y22 are the network functions and are also called the
admittance (Y ) parameters. They are defined by Eqs 15.3 and 15.4. These
parameters can be represented by matrices as follows

[I ] = [Y ] [V ]

where I =
I

I

1

2

L
NM

O
QP

; Y = 
Y Y

Y Y

11 12

21 22

L
NM

O
QP

and V =
V

V

1

2

L
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O
QP

Thus,
I

I
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 =

Y Y

Y Y
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The individual Y parameters for a given network can be defined by setting
each port voltage to zero. If we let V2 be zero by short circuiting port 2–2¢, then

Y11 =
I

V V

1

1 02 =

Y11 is the driving point admittance at port 1–1¢, with port 2–2¢ short circuited.
It is also called the short circuit input admittance.
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Y21 =
I

V
V

2

1 02 =

Y21 is the transfer admittance at port 1–1 with port 2–2¢ short circuited. It is
also called short circuited forward transfer admittance. If we let V1 be zero by
short circuiting port 1–1¢, then

Y12 =
I

V
V

1

2 01 =

Y12 is the transfer admittance at port 2–2¢ with port 1–1¢ short circuited. It is
also called the short circuit reverse transfer admittance.

Y22 =
I

V V

2

2 01 =

Y22 is the short circuit driving point admittance at port 2–2¢ with port 1–1¢

short circuited. It is also called the short circuit output admittance. The equivalent
circuit of the network governed by Eqs. 15.3 and 15.4 is shown in Fig. 15.6.

1

2¢1¢

I1 I2
2

V1 Y V12 2 Y22Y V21 1Y11
V2

Fig. 15.6

If the network under study is reciprocal, or bilateral, then

I

V V

1

2 01 =

 =
I

V V

2

1 02 =

or Y12 = Y21

It is observed that all the parameters have the dimensions of admittance which
are obtained by short circuiting either the output or the input port from which the
parameters also derive their name, i.e. the short circuit admittance parameters.

Example 15.2 Find the Y parameters for the network shown in Fig. 15.7.

V1 V2

I2I1

2 W

2 W
1 W

4 W

a¢ b¢

ba

Fig. 15.7
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Solution Y11 =
I

V V

1

1 02 =

When b-b ¢ is short circuited, V2 = 0 and the network looks as shown in
Fig. 15.8(a)

V1

I2I1

Zeq V2 = 02 W

2 W
1 W

a¢ b¢

ba

Fig. 15.8(a)

V1 = I1 Zeq

Zeq = 2 W

\ V1 = I1 2

Y11 =
I

V
1

1

1

2
=  

W
Y21 =

I

V V

2

2 02 =

With port b-b ¢ short circuited, – I2 = I1 ¥ 
2

4 2
1

=
I

\ – I2 =
V1

4

Y21 =
I

V V

2

1 02

1

4
=

= -  

W

Similarly, when port a-a ¢ is short circuited, V1 = 0 and the network looks as
shown in Fig. 15.8(b).

V2V1 = 0 Zeq

I2I1

2 W 4 W

2 W
1 W

a¢ b¢

ba

Fig. 15.8(b)
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Y22 =
I

V V

2

2 01 =

V2 = I2 Zeq

where Zeq is the equivalent impedance as viewed from b-b ¢.

Zeq =
8

5
 W

V2 = I2 ¥ 
8

5

Y22 =
I

V V

2

2 01 =

 = 
5

8
 

W

Y12 =
I

V V

1

2 01 =

With a-a ¢ short circuited, – I1 = 
2

5
 I2

Since I2 =
5

8
2V

– I1 =
2

5

5

8 4
2

2
¥ =V

V

\ Y12 =
I

V
1

2

1

4
= -  

W

The describing equations in terms of the admittance parameters are

I1 = 0.5 V1 – 0.25 V2

I2 = – 0.25 V1 + 0.625 V2

15.4 TRANSMISSION (ABCD) PARAMETERS

Transmission parameters, or ABCD parameters, are widely used in transmission
line theory and cascade networks. In describing the transmission parameters, the
input variables V1 and I1 at port 1-1¢, usually called the sending end, are
expressed in terms of the output variables V2 and I2 at port 2-2 ¢, called the
receiving end. The transmission parameters provide a direct relationship
between input and output. Transmission parameters are also called general circuit
parameters, or chain parameters. They are defined by

V1 = AV2 – BI2 (15.5)

I1 = CV2 – DI2 (15.6)
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The negative sign is used with I2, and not for the parameter B and D. Both the
port currents I1 and – I2 are directed to the right, i.e. with a negative sign in Eqs
15.5 and 15.6 the current at port 2-2 ¢ which leaves the port is designated as
positive. The parameters A, B, C and D are called the transmission parameters.
In the matrix form, Eqs 15.5 and 15.6 are expressed as

V

I

1

1

L
NM

O
QP

 =
A B

C D

V

I

L
NM

O
QP -

L
NM

O
QP

2

2

The matrix 
A B

C D

L
NM

O
QP

 is called the transmission matrix.

Fig. 15.9

For a given network, these parameters can be determined as follows. With port
2-2 ¢ open, i.e. I2 = 0; applying a voltage V1 at the port 1-1¢, using Eq. 15.5, we
have

A =
V

V
I

1

2 02 =

 and C = 
I

V
I

1

2 02 =

1

A
 =

V

V
g

I I

2

1 0
21

02 2= =

=

1/A is called the open circuit voltage gain, a dimensionless parameter. And 
1

C

= 
V

I I

2

1 02 =

 = Z21, which is the open circuit transfer impedance. With port

2-2 ¢ short circuited, i.e. with V2 = 0, applying voltage V1 at port 1-1¢, from Eq.
15.6, we have

– B =
V

I V

1

2 02 =

and – D = 
I

I V

1

2 02 =

- =

=

1 2

1 02
B

I

V
V

 = Y21, which is the short circuit transfer admittance



15.10 Network Analysis

- = =

=

=

1 2

1 0
21 0

2

2D

I

I V
Va , which is the short circuit current gain, a

dimensionless parameter.

15.4.1 Cascade Connection

The main use of the transmission matrix is in dealing with a cascade connection
of two-port networks as shown in Fig. 15.10.

11

22¢¢

11¢¢

II11

VV22xx

AAxx
AAyyBBxx BByy

DDyyCCxx

NNxx NNyy

CCyyDDxx

II22xx

22

3¢3¢

II11yy

VV22yy
VV11yy

II22yy

33

VV11 VV22

XX YY

Fig. 15.10

Let us consider two two-port networks Nx and Ny connected in cascade with
port voltages and currents as indicated in Fig. 15.10. The matrix representation
of ABCD parameters for the network X is as under.

V

I

A B

C D

V

I

x x

x x

x

x

1

1

2

2

L
NM

O
QP

=
L
NM

O
QP -

L
NM

O
QP

And for the network Y, the matrix representation is

V

I

A B

C D

V

I

y

y

y y

y y

y

y

1

1

2

2

L

N
M

O

Q
P =

L

N
M

O

Q
P -

L

N
M

O

Q
P

It can also be observed that at for 2–2 ¢

V2x = V1y and I2x = – I1y.

Combining the results, we have

V

I

1

1

L
NM

O
QP
 =

A B

C D

A B

C D

V

I

x x

x x

y y

y y

L
NM

O
QP

L

N
M

O

Q
P

-

L
NM

O
QP

2

1

V

I

1

1

L
NM

O
QP
 =

A B

C D

V

I

L
NM

O
QP -

L
NM

O
QP

2

2

where 
A B

C D

L
NM

O
QP

 is the transmission parameters matrix for the overall network.

Thus, the transmission matrix of a cascade of a two-port networks is the
product of transmission matrices of the individual two-port networks. This
property is used in the design of telephone systems, microwave networks, radars,
etc.
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Example 15.3 Find the transmission or general circuit parameters for the circuit

shown in Fig. 15.11.

Fig. 15.11

Solution From Eqs 15.5 and 15.6 in Section 15.4, we have

V1 = AV2 – BI2

I1 = CV2 – DI2

When b-b ¢ is open, I2 = 0; A = 
V

V I

1

2 02 =

where V1 = 6I1 and V2 = 5I1

\ A =
6

5

C =
I

V I

1

2 02

1

5
=

=  

W

When b-b ¢ is short circuited; V2 = 0 (See Fig. 15.12)

Fig. 15.12

B =
-

=

V

I
V

1

2 02

; D = 
-

=

I

I
V

1

2 02

In the circuit, – I2 =
5

17
 V1

\ B =
17

5
 W
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Similarly, I1 =
7

17
1V  and – I2 = 

5

17
1V

\ D =
7

5

15.5 INVERSE TRANSMISSION (A¢¢¢¢¢ B¢¢¢¢¢ C¢¢¢¢¢ D¢¢¢¢¢ )
PARAMETERS

In the preceding section, the input port voltage and current are expressed in terms
of output port voltage and current to describe the transmission parameters. While
defining the transmission parameters, it is customary to designate the input port
as the sending end and output port as receiving end. The voltage and current at
the receiving end can also be expressed in terms of the sending end voltage and
current. If the voltage and current at port 2-2 ¢ is expressed in terms of voltage
and current at port 1-1¢, we may write the following equations.

V2 = A¢V1 – B ¢I1 (15.7)

I2 = C ¢V1 – D ¢I1 (15.8)

The coefficients A¢, B ¢, C ¢

and D ¢ in the above equations
are called inverse transmission
parameters. Because of the
similarities of Eqs. 15.7 and
15.8 with Eqs. 15.5 and 15.6 in
Section 15.4, the A ¢, B ¢, C ¢, D ¢

parameters have properties
similar to ABCD parameters.
Thus when port 1-1¢ is open,
I1 = 0.

A¢ =
V

V
I

2

1 01 =

; C ¢ = 
I

V
I

2

1 01 =

If port 1-1¢ is short circuited, V1 = 0

B ¢ =
-

=

V

I V

2

1 01

; D = 
-

=

I

I V

2

1 01

15.6 HYBRID (h) PARAMETERS

Hybrid parameters, or h parameters find extensive use in transistor circuits. They
are well suited to transistor circuits as these parameters can be most conveniently
measured. The hybrid matrices describe a two-port, when the voltage of one port
and the current of other port are taken as the independent variables. Consider the
network in Fig. 15.14.

Fig. 15.13
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Fig. 15.14

If the voltage at port 1-1¢ and current at port 2-2 ¢ are taken as dependent
variables, we can express them in terms of I1 and V2.

V1 = h11 I1 + h12 V2 (15.9)

I2 = h21 I1 + h22 V2 (15.10)

The coefficients in the above equations are called hybrid parameters. In matrix
notation

V

I

1

2

L
NM

O
QP
 =

h h

h h

I

V

11 12

21 22

1

2

L
NM

O
QP
L
NM

O
QP

From Eqs. 15.9 and 15.10, the individual h parameters may be defined by letting
I1 = 0 and V2 = 0.

When V2 = 0, the port 2-2 ¢ is short circuited.

Then h11 = 
V

I V

1

1 02 =

 Short circuit input impedance 
1

11Y

F
HG

I
KJ

h21 = 
I

I V

2

1 02 =

 Short circuit forward current gain 
Y

Y

21

11

F
HG

I
KJ

Similarly, by letting port 1-1¢ open, I1 = 0

h12 = 
V

V I

1

2 01 =

 Open circuit reverse voltage gain 
Z

Z

12

22

F
HG

I
KJ

h22 = 
I

V I

2

2 01 =

 Open circuit output admittance 
1

22Z

F
HG

I
KJ

Since the h parameters represent dimensionally an impedance, an admittance,
a voltage gain and a current gain, these are called hybrid parameters. An
equivalent circuit of a two-port network in terms of hybrid parameters is shown
in Fig. 15.15.

I1 I2

V1

h V12 2

h I21 1
h22

h11

V2

+
–

Fig. 15.15
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Example 15.4 Find the h parameters of the network shown in Fig. 15.16.

V1 V2

I2I1

2 W

2 W
1 W

4 W

a¢ b¢

ba

Fig. 15.16

Solution From Eqs. 15.9 and 15.10, we have

h11 = 
V

I V

1

1 02 =

; h21 = 
I

I V

2

1 02 =

; h12 = 
V

V I

1

2 01 =

; h22 = 
I

V I

2

2 01 =

If port b-b ¢ is short circuited, V2 = 0. The circuit is shown in Fig. 15.17(a).

V1

I2I1

Zeq

V2 = 02 W 4 W

2 W
1 W

a¢ b¢

ba

Fig. 15.17(a)

h11 =
V

I V

1

1 02 =

; V1 = I1 Zeq

Zeq the equivalent impedance as viewed from the port a-a ¢ is 2 W

\ V1 = I1 2V

h11 =
V

I
1

1

 = 2 W

h21 =
I

I V

2

1 02 =

 when V2 = 0; – I2 = 
I1
2

\ h21 = -
1

2

If port a-a¢ is let open, I1 = 0. The circuit is shown in Fig. 15.17(b). Then

h12 =
V

V I

1

2 01 =
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I2

Ix

Iy

I1 = 0

2 W 4 W

2 W
1 W

V2V1

Fig. 15.17(b)

V1 = IY 2; IY = 
I2

2

V2 = IX 4; IX = 
I2

2

\ h12 =
V

V I

1

2 01

1

2
=

=

h22 =
I

V I

2

2 01

1

2
=

=  

W
15.7 INVERSE HYBRID (g) PARAMETERS

Another set of hybrid matrix parameters can be defined in a similar way as was
done in Section 15.6. This time the current at the input port I1 and the voltage at
the output port V2 can be expressed in terms of I2 and V1. The equations are as
follows.

I1 = g11 V1 + g12 I2 (15.11)

V2 = g21 V1 + g22 I2 (15.12)

The coefficients in the above equations are called the inverse hybrid
parameters. In matrix notation

I

V

1

2

L
NM

O
QP
 =

g g

g g

V

I

11 12

21 22

1

2

L
NM

O
QP

L
NM

O
QP

It can be verified that 
h h

h h

11 12

21 22

1
L
NM

O
QP

-

 = 
g g

g g

11 12

21 22

L
NM

O
QP

The individual g parameters may be defined by letting I2 = 0 and V1 = 0 in
Eqs 15.11 and 15.12.
Thus, when I2 = 0

g11 = 
I

V I

1

1 02 =

 = Open circuit input admittance 
1

11Z

F
HG

I
KJ
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g21 = 
V

V I

2

1 02 =

 = Open circuit voltage gain

When V1 = 0

g12 = 
I

I V

1

2 01 =

 = Short circuit reverse current gain

g22 = 
V

I V

2

2 01 =

 = Short circuit output impedance 
1

22Y

F
HG

I
KJ

15.8 INTER RELATIONSHIPS OF DIFFERENT
PARAMETERS

15.8.1 Expression of Z-parameters in Terms of

y-parameters and Vice-versa

From Eqs 15.1, 15.2, 15.3 and 15.4, it is easy to derive the relation between the
open circuit impedance parameters and the short circuit admittance parameters
by means of two matrix equations of the respective parameters. By solving
Eqs 15.1 and 15.2 for I1 and I2, we get

I1 =
V Z

V Z
z

1 12

2 22

D ; and I2 = 
Z V

V V
z

11 1

21 2

D

where Dz is the determinant of Z matrix

Dz =
Z Z

Z Z

11 12

21 22

L
NM

O
QP

I1 =
Z

V
Z

V
z z

22
1

12
2

D D
- (15.13)

I2 =
-

+
Z

V
Z

V
z z

21
1

11
2

D D
(15.14)

Comparing Eqs. 15.13 and 15.14 with Eqs. 15.3 and 15.4 we have

Y11 =
Z

z

22

D
; Y12 = 

- Z

z

12

D

Y21 =
Z

z

21

D
; Y22 = 

Z

z

11

D

In a similar manner, the Z parameters may be expressed in terms of the
admittance parameters by solving Eqs. 15.3 and 15.4 for V1 and V2

V1 =
I Y

I Y
y

1 12

2 22

D  and V2 = 
Y I

Y I
y

11 1

21 2

D
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where Dy is the determinant of the Y matrix

Dy =
Y Y

Y Y

11 12

21 22

V1 =
Y

I
Y

I
y y

22
1

12
2

D D
- (15.15)

V2 =
-

+
Y

I
Y

I
y y

21
1

11
2

D D
(15.16)

Comparing Eqs. 15.15 and 15.16 with Eqs. 15.1 and 15.2, we obtain

Z11 =
Y

y

22

D
; Z12 = 

- Y

y

12

D

Z21 =
- Y

y

21

D
; Z22 = 

Y

y

11

D

Example 15.5 For a given, Z11 = 3 W, Z12 = 1 W; Z21 = 2 W and Z22 = 1 W, find

the admittance matrix, and the product of Dy and Dz.

Solution The admittance matrix = 
Y Y

Y Y

Z Z

Z Z
z z

z z

11 12

21 22

22 12

21 11

L
NM

O
QP

=

-

-

L

N

M
M
M
M

O

Q

P
P
P
P

D D

D D

given Z = 
3 1

2 1

L
NM

O
QP

\ Dz = 3 – 2 = 1

\ Dy = 
- -

-

L
NM

O
QP

1 1

2 3
 = 1

(Dy) (Dz) = 1

15.8.2 General Circuit Parameters or ABCD Parameters
in Terms of Z Parameters and Y Parameters

We know that

V1 = AV2 – BI2; V1 = Z11 I1 + Z12 I2; I1 = Y11 V1 + Y12 V2

I1 = CV2 – DI2; V2 = Z21 I1 + Z22 I2; I2 = Y21 V1 + Y22 V2

A = 
V

V I

1

2 02 =

; C = 
I

V I

1

2 02 =

; B = 
-

=

V

I V

1

2 02

; D = 
-

=

I

I V

1

2 02

Substituting the condition I2 = 0 in Eqs 15.1 and 15.2 we get

V

V I

1

2 02 =

 = 
Z

Z

11

21

 = A
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Substituting the condition I2 = 0 in Eq. 15.4 we get,

V

V I

1

2 02 =

 = 
-Y

Y

22

21

 = A

Substituting the condition I2 = 0 in Eq. 15.2

we get
I

V I

1

2 02 =

= 
1

21Z
 = C

Substituting the condition I2 = 0 in Eqs 15.3 and 15.4, and solving for V2 gives

- I Y

y

1 21

D

where Dy is the determinant of the admittance matrix

I

V I

1

2 02 =

 = 
- Dy

Y21

 = C

Substituting the condition V2 = 0 in Eq. 15.4, we get

V

I YV

1

2 0 212

1

=

= -  = B

Substituting the condition V2 = 0 in Eqs. 15.1 and 15.2 and solving for I2

= 
- V Z

z

1 21

D

– 
V

I ZV

z1

2 0 212 =

=
D

 = B

where Dz is the determinant of the impedance matrix.
Substituting V2 = 0 in Eq. 15.2

we get – 
I

I

Z

ZV

1

2 0

22

212 =

=  = D

Substituting V2 = 0 in Eqs. 15.3 and 15.4, we get

-
=

-

=

I

I

Y

YV

1

2 0

11

212

 = D

The determinant of the transmission matrix is given by

– AD + BC

Substituting the impedance parameters in A, B, C and D, we have

BC – AD = 
Dz

Z Z

Z

Z

Z

Z21 21

11

21

22

21

1
-
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= 
Dz

Z

Z Z

Z21
2

11 22

21
2a f a f

-

BC – AD = 
- Z

Z

12

21

For a bilateral network, Z12 = Z21

\ BC – AD = – 1

or AD – BC = 1

Therefore, in a two-port bilateral network, if three transmission parameters
are known, the fourth may be found from equation AD – BC = 1.

In a similar manner the h parameters may be expressed in terms of the
admittance parameters, impedance parameters or transmission parameters.
Transformations of this nature are possible between any of the various
parameters. Each parameters has its own utility. However, we often find that it is
necessary to convert from one set of parameters to another. Transformations
between different parameters, and the condition under which the two-port
network is reciprocal are given in Table 15.1.

Example 15.6 The impedance parameters of a two port network are Z11 = 6W;

Z22 = 4 W; Z12 = Z21 = 3 W. Compute the Y parameters and ABCD parameters

and write the describing equations.

Solution ABCD parameters are given by

A =
Z

Z
11

21

6

3
=  = 2; B = 

Z Z Z Z

Z
11 22 12 21

21

-
 = 5 W

C =
1 1

321Z
=  

W

; D = 
Z

Z
22

21

4

3
=

Y parameters are given by

Y11 =
Z

Z Z Z Z
22

11 22 12 21

4

15-
=  

W

; Y12 = 
-

-
=

-Z

Z Z Z Z
12

11 22 12 21

1

5
 

W

Y21 = Y12 = 
-

=
-Z

z
12 1

5D
 

W

; Y22 = 
Z

Z Z Z Z
11

11 22 12 21

2

5-
=  

W

The equations, using Z parameters are

V1 = 6I1 + 3I2

V2 = 3I1 + 4I2

Using Y parameters

I1 =
4

15

1

5
1 2V V-

I2 =
-

+
1

5

2

5
1 2V V
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Table 15.1

Z Y ABCD A¢B ¢C ¢D¢ h g

Z11 Z12

Y Y

y y

22 12

D D

- A

C C

TD ¢

¢ ¢

D

C C

1 D h

h

h

h22

22

22

1

11

12

11g

g

g

-

Z

Z21 Z22

- Y Y

y y

21 11

D D

1

C

D

C

D
¢

¢

¢

¢

T

C

A

C

- h

h h

21

22 22

1 g

g g

g21

11 11

D

Z Z

z z

22 12

D D

-
Y11 Y12

D

B B

T- D ¢

¢

-

¢

A

B B

1 1

11

12

11h

h

h

- D g

g

g

g22

12

22Y

- Z

z

Z

z

21 11

D D
Y21 Y22

-1

B

A

B

-

¢

¢

¢

¢
DT

B

D

B

h

h h

h21

11 11

D -g

g g

21

22 22

1

AB
Z

Z

z

Z

11

21 21

D - -Y

Y Y

22

21 21

1
A B

¢ ¢

¢ ¢

D B

T TD D

D h

h

h

h21

11

21

1

21

22

21g

g

g

CD
1

21

22

21Z

Z

Z

DY

Y

Y

Y21

11

21

-
C D

¢ ¢

¢ ¢

C A

T TD D

- -h

h h

22

21 21

1 g

g g

g11

21 21

D

A ¢ B ¢
Z

Z

z

Z

22

12 12

D - -Y

Y Y

11

12 12

1 D B

T TD D
A¢ B ¢

1

12

11

12h

h

h

- -D g

g

g

g12

22

12

C ¢ D ¢
1

12

11

12Z

Z

Z

- -DY

Y

Y

Y12

22

12

C A

T TD D
C ¢ D ¢

h

h h

h22

12 12

D - -g

g g

11

12 12

1

D z

Z

Z

Z22

12

22

1

11

12

11Y

Y

Y

- B

D D

TD ¢

¢ ¢

B

A A

1
h11 h12

g g

g g

22 12

D D

-

h

- Z

Z Z

21

22 22

1 Y

Y Y

Y21

11 11

D -1

D

C

D

D
¢

¢

¢

¢

T

A

C

A
h21 h22

- g g

g g

21 11

D D

1

11

12

11Z

Z

Z

- DY

Y

Y

Y22

12

22

C

A A

T- D ¢

¢

-

¢

C

D D

1 h h

h h

22 12

D D

-
g11 g12

g

Z

Z Z

Z21

11 11

D - Y

Y Y

21

22 22

1 1

A

B

A

D
¢

¢

¢

¢

T

D

B

D

- h h

h h

21 11

D D
g21 g22

The Z12 = Z21 Y12 = Y21 The deter- The deter- h12 = – h21 g12 = – g21

two minant minant
port of the of the
is trans- inverse
reci- mission trans-
procal matrix = 1 mission
If (D T = 1) matrix = 1

Using ABCD parameters

V1 = 2V2 – 5I2

I1 =
1

3

4

3
2 2V I-
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15.9 INTER CONNECTION OF TWO-PORT NETWORKS

15.9.1 Series Connection of Two-port Network

It has already been shown in Section 15.4.1 that when two-port networks are
connected in cascade, the parameters of the interconnected network can be
conveniently expressed with the help of ABCD parameters. In a similar way, the
Z-parameters can be used to describe the parameters of series connected two-
port networks; and Y parameters can be used to describe parameters of parallel
connected two-port networks. A series connection of two-port networks is shown
in Fig. 15.18.

II22

II22II11

II22

II11 II11xx

VV11xx VV22xx

II22xx

II22yyII11yy

VV11yy VV22yy

II11

VV22VV11

XX

YY

++ ++

–– ––

Fig. 15.18

Let us consider two two-port networks, connected in series as shown. If each
port has a common reference node for its input and output, and if these references
are connected together then the equations of the networks X and Y in terms of Z
parameters are

V1X = Z11X I1X + Z12X I2X

V2X = Z21X I1X + Z22X I2X

V1Y = Z11Y I1Y + Z12Y I2Y

V2Y = Z21Y I1Y + Z22Y I2Y

From the inter-connection of the networks, it is clear that

I1 = I1X = I1Y; I2 = I2X = I2Y

and V1 = V1X + V1Y; V2 = V2X + V2Y

\ V1 = Z11X I1 +Z12X I2 + Z11Y I1 + Z12Y I2

= (Z11X + Z11Y)I1 + (Z12X + Z12Y) I2

V2 = Z21X I1 + Z22X I2 + Z21Y I1 + Z22Y I2

= (Z21X + X21Y)I1 + (Z22X + Z22Y)I2

The describing equations for the series connected two-port network are

V1 = Z11 I1 + Z12 I2
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V2 = Z21 I1 + Z22 I2

where Z11 = Z11X + Z11Y; Z12 = Z12X + Z12Y

Z21 = Z21X + Z21Y; Z22 = Z22X + Z22Y

Thus, we see that each Z parameter of the series network is given as the sum of
the corresponding parameters of the individual networks.

15.9.2 Parallel Connection of Two Two-port Networks

Let us consider two two-port networks connected in parallel as shown in
Fig. 15.19. If each two-port has a reference node that is common to its input and
output port, and if the two ports are connected so that they have a common
reference node, then the equations of the networks X and Y in terms of Y

parameters are given by

II22II11

II11xx

VV1x1x VV22xx

II2x2x

VV22VV11

++ ++

++++

––

––––

––

II11yy II2y2y

VV22yyVV11yy

xx

yy

Fig. 15.19

I1X = Y11X V1X + Y12X V2X

I2X = Y21X V1X + Y22X V2X

I1Y = Y11Y V1Y + Y12Y V2Y

I2Y = Y21Y V1Y + Y22Y V2Y

From the interconnection of the networks, it is clear that

V1 = V1X = V1Y; V2 = V2X = V2Y

and I1 = I1X + I1Y; I2 = I2X + I2Y

\ I1 = Y11X V1 + Y12X V2 + Y11Y V1 + Y12Y V2

= (Y11X + Y11Y) V1 + (Y12X + Y12Y) V2

I2 = Y21X V1 + Y22X V2 + Y21Y V1 + Y22Y V2

= (Y21X + Y21Y) V1 + (Y22X + Y22Y) V2

The describing equations for the parallel connected two-port networks are

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

where Y11 = Y11X + Y11Y; Y12 = Y12X + Y12Y
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Y21 = Y21X + Y21Y; Y22 = Y22X + Y22Y

Thus we see that each Y parameter of the parallel network is given as the sum
of the corresponding parameters of the individual networks.

Example 15.7 Two networks shown in Figs. 15.20(a) and (b) are connected in

series. Obtain the Z parameters of the combination. Also verify by direct

calculation.

22 WW 55 WW

11 WW 2020 WW11 WW 1010 WW

XX11
YY11XX22 YY22

XX¢¢22 YY¢¢22XX¢¢11 YY¢¢11

(a)(a) (b)(b)

Fig. 15.20

Solution The Z parameters of the network in Fig. 15.20(a) are

Z11X = 3 W Z12X = Z21X = 2 W Z22X = 3 W

The Z parameters of the network in Fig. 15.20 (b) are

Z11Y = 15 W Z21Y = 5 W Z22Y = 25 W Z12Y = 5 W

The Z parameters of the combined network are

Z11 = Z11X + Z11Y = 18 W

Z12 = Z12X + Z12Y = 7 W

Z21 = Z21X + Z21Y = 7 W

Z22 = Z22X + Z22Y = 28 W

Check If the two networks are connected in series as shown in Fig. 15.20(c),

the Z parameters are

Fig. 15.20(c)

Z11 =
V

I I

1

1 02 =

 = 18 W
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Z21 =
V

I I

2

1 02 =

 = 7 W

Z22 =
V

I I

2

2 01 =

 = 28 W

Z12 =
V

I I

1

2 01 =

 = 7 W

Example 15.8 Two identical sections of the network shown in Fig. 15.21 are

connected in parallel. Obtain the Y parameters of the combination.

V1

I2I1

2 W 4 W

2 W
1 W

V2

++

Fig. 15.21

Solution The Y parameters of the network in Fig. 15.21 are (See Ex. 15.2).

Y11 =
1

2
 

W

 Y21 = 
-1

4
 

W

 Y22 = 
5

8
 

W

 Y12 = 
-1

4
 

W

If two such networks are connected in parallel then the Y parameters of the

combined network are

Y11 =
1

2

1

2
+  = 1 

W

Y21 = 
-

¥ =
-1

4
2

1

2
 

W

Y22 =
5

8
2

5

4
¥ =  

W

Y12 = 
-

¥ =
-1

4
2

1

2
 

W

15.10 T AND PPPPP REPRESENTATION

A two-port network with any number of elements may be converted into a two-
port three-element network. Thus, a two-port network may be represented by an
equivalent T network, i.e. three impe-
dances are connected together in the
form of a T as shown in Fig. 15.22.

It is possible to express the
elements of the T-network in terms of
Z parameters, or ABCD parameters as
explained below.

Fig. 15.22

II11 ZZaa ZZbb

ZZccVV11 VV22

II22

++ ++

–– ––

11 22

11¢¢ 22¢¢
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Z parameters of the network

Z11 =
V

I I

1

1 02 =

 = Za + Zc

Z21 =
V

I I

2

1 02 =

 = Zc

Z22 =
V

I
I

2

2 01 =

 = Zb + Zc

Z12 =
V

I
I

1

2 01 =

 = Zc

From the above relations, it is clear that

Za = Z11 – Z21

Zb = Z22 – Z12

Zc = Z12 = Z21

ABCD parameters of the network

A =
V

V

Z Z

Z
I

a c

c

1

2 02 =

=
+

B =
-

=

V

I
V

1

2 02

When 2-2 ¢ is short circuited

– I2 =
V Z

Z Z Z Z Z

c

b c a b c

1

+ +a f

B = (Za + Zb) + 
Z Z

Z

a b

c

C =
I

V Z
I c

1

2 02

1

=

=

D =
-

=

I

I
V

1

2 02

When 2-2¢ is short circuited

– I2 = I1 

Z

Z Z

c

b c+

D =
Z Z

Z

b c

c

+
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From the above relations we can obtain

Za =
A

C

- 1
; Zb = 

D

C

- 1
; Zc = 

1

C

Example 15.9 The Z parameters of a two-port network are Z11 = 10 W; Z22 =

15 W; Z12 = Z21 = 5 W. Find the equivalent T network and ABCD parameters.

Solution The equivalent T network is shown in Fig. 15.23,

where Za = Z11 – Z21 = 5 W

Zb = Z22 – Z12 = 10 W

and Zc = 5 W

The ABCD parameters of the network are

A =
Z

Z
a

c

 + 1 = 2; B = (Za + Zb) + 
Z Z

Z
a b

c
 = 25 W

C =
1

Z c

 = 0.2 

W

  D = 1 + 
Z

Z
b

c

 = 3 Fig. 15.23

In a similar way, a two-port network

may be represented by an equivalent

p-network, i.e. three impedances or

admittances are connected together in

the form of p as shown in Fig. 15.24.
It is possible to express the

elements of the p-network in terms of

Y parameters or ABCD parameters as

explained below. Fig. 15.24

Y parameters of the network

Y11 =
I

V V

1

1 02 =

 = Y1 + Y2

Y21 =
I

V V

2

1 02 =

 = – Y2

Y22 =
I

V V

2

2 01 =

 = Y3 + Y2

Y12 =
I

V V

1

2 01 =

 = – Y2

From the above relations, it is clear that

Y1 = Y11 + Y21

Y2 = – Y12
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Y3 = Y22 + Y21

Writing ABCD parameters in terms of Y parameters yields the following

results.

A =
-

=
+Y

Y

Y Y

Y
22

21

3 2

2

B =
-

=
1 1

21 2Y Y

C =
- Dy

Y21

 = Y1 + Y3 + 
Y Y

Y
1 3

2

D =
-

=
+Y

Y

Y Y

Y
11

21

1 2

2

From the above results, we can obtain

Y1 =
D

B

- 1

Y2 =
1

B

Y3 =
A

B

- 1

Example 15.10 The port currents of a two-port network are given by

I1 = 2.5V1 – V2

I2 = – V1 + 5V2

Find the equivalent p-network.

Solution Let us first find the Y parameters of the network

Y11 =
I

V V

1

1 02 =

 = 2.5 

W

; Y21 = 
I

V V

2

1 02 =

 = – 1 

W

Y12 =
I

V V

1

2 01 =

 = – 1 

W

; Y22 = 
I

V V

2

2 01 =

 = 5 

W

The equivalent p-network is shown

in Fig. 15.25.

where Y1 = Y11 + Y21 = 1.5 

W

;

Y2 = – Y12 = – 1 

W

and Y3 = Y22 + Y12 = 4 

W

Fig. 15.25
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15.11 TERMINATED TWO-PORT NETWORK

15.11.1 Driving Point Impedance at the Input
Port of a Load Terminated Network

Figure 15.26 shows a two-port network connected to an ideal generator at the

input port and to a load impedance at the output port. The input impedance of this

network can be expressed in terms of parameters of the two port network.

I2I1

ZL

Z11

1¢ 2¢

2¢1

V1 V2

Fig. 15.26

(i) In Terms of Z Parameters

The load at the output port 2-2 ¢ impose the following constraint on the port

voltage and current,

i.e., V2 = – ZL I2

Recalling Eqs 15.1 and 15.2, we have

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Substituting the value of V2 in Eq. 15.2, we have

– ZL I2 = Z21 I1 + Z22 I2

from which I2 =
-

+

I Z

Z ZL

1 21

22

Substituting the value of I2 in Eq. 15.1 gives

V1 = Z11 I1 – 
Z Z I

Z ZL

12 21 1

22+

V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

F
HG

I
KJ

Hence the driving point impedance at 1-1¢ is

V

I

1

1

 = Z11 – 
Z Z

Z ZL

12 21

22+

If the output port is open, i.e. ZL Æ •, the input impedance is given by V1/I1

= Z11

If the output port is short circuited, i.e. ZL Æ 0,
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The short circuit driving point impedance is given by

Z Z Z Z

Z

11 22 12 21

22

-
 = 

1

11Y
(ii) In Terms of Y Parameters

If a load admittance YL is connected across the output port. The constraint

imposed on the output port voltage and current is

– I2 = V2 YL, where YL = 
1

ZL

Recalling Eqs 15.3 and 15.4 we have

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting the value of I2 in Eq. 15.4, we have

– V2 YL = Y21 V1 + Y22 V2

V2 = – 
Y

Y YL

21

22+

F
HG

I
KJ

 V1

Substituting V2 value in Eq. 15.3, we have

I1 = Y11 V1 – 
Y Y V

Y YL

12 21 1

22+

From which
I

V

1

1

 = Y11 – 
Y Y

Y YL

12 21

22+

Hence the driving point impedance is given by

V

I

1

1

 =
Y Y

Y Y Y Y Y

L22

11 1 22 12 21

+

+ -a f
If the output port is open, i.e., YL Æ 0

V

I

1

1

  =
Y

y

22

D
 = Z11

If the output port is short circuited, i.e. YL Æ •

Then Yin = Y11

In a similar way, the input impedance of the load terminated two port network

may be expressed in terms of other parameters by simple mathematical

manipulations. The results are given in Table 15.2.

15.11.2 Driving Point Impedance at the Output Port

with Source Impedance at the Input Port

Let us consider a two-port network connected to a generator at input port with a

source impedance Zs as shown in Fig. 15.27. The output impedance, or the driving

point impedance, at the output port can be evaluated in terms of the parameters of

two-port network.
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I2I1

Vs

Zs

1¢ 2¢

2f1

V1
V2

Fig. 15.27

(i) In terms of Z parameters

If I1 is the current due to Vs at port 1-1¢

From Eqs. 15.1 and 15.2, we have

V2 = Z21I1 + Z22I2

V1 = Vs – I1Zs

= Z11 I1 + Z12I2 – (I1) (Zs + Z11) = Z12I2 – Vs

– I1 =
Z I V

Z Z

s

s

12 2

11

-

+

Substituting I1 in Eq. 15.2, we get

V2 = – Z21 
Z I V

Z Z

s

s

12 2

11

-

+

a f
 + Z22 I2

With no source voltage at port 1-1¢, i.e. if the source Vs is short circuited

V2 =
-

+

Z Z

Z Zs

21 12

11

 I2 + Z22I2

Hence the driving point impedance at port 2-2¢ = 
V

I

2

2

V

I

2

2

 =
Z Z Z Z Z Z

Z Z

s

s

22 22 11 21 12

11

+ -

+
 or 

D z s

s

Z Z

Z Z

+

+

22

11

If the input port is open, i.e. Zs Æ •

Then
V

I

2

2

 =

DZ

s

s Z

Z
Z

Z

Z
s

+

+

L

N

M
M
M
M

O

Q

P
P
P
P

= •

22

111

 = Z22

If the source impedance is zero with a short circuited input port, the driving

point impedance at output port is given by

V

I

2

2

 =
D Z

Z Y11 22

1
=
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(ii) In terms of Y parameters

Let us consider a two-port network connected to a current source at input port

with a source admittance Ys as shown in Fig. 15.28.

I2I1

Is

Ys

1¢ 2¢

2
1

V1
V2

Fig. 15.28

At port 1-1¢ I1 = Is – V1 Ys

Recalling Eqs. 15.3 and 15.4, we have

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Substituting I1 in Eq. 15.3, we get

Is – V1Ys = Y11V1 + Y12V2

– V1(Ys + Y11) = Y12 V2 – Is

– V1 =
Y V I

Y Y

s

s

12 2

11

-

+

Substituting V1 in Eq. 15.4, we get

I2 = – Y21 
Y V I

Y Y

s

s

12 2

11

-

+

F
HG

I
KJ

 + Y22 V2

With no source current at 1-1¢, i.e. if the current source is open circuited

I2 =
-

+

Y Y V

Y Ys

21 12 2

11

 + Y22 V2

Hence the driving point admittance at the output port is given by

I

V

2

2

 =  
Y Y Y Y Y Y

Y Y

s

s

22 22 11 21 12

11

+ -

+
 or 

D y s

s

Y Y

Y Y

+

+

22

11

If the source admittance is zero, with an open circuited input port, the driving

point admittance at the output port is given by

I

V

2

2

 =
D y

Y Z11 22

1
=  = Y22

In a similar way, the output impedance may be expressed in terms of the other

two port parameters by simple mathematical manipulations. The results are given

in Table 15.2.



1
5

.3
2

N
e

tw
o

rk
 A

n
a

ly
sis

Table 15.2

In terms of

Driving point Z parameters Y parameters ABCD A¢B ¢C ¢D ¢ h parameter g parameter

impedance at input

port, or input impedance

V

I

1

1

F
HG

I
KJ

D z L

L

Z Z

Z Z

+

+

11

22

Y Y

Y Y

L

y L

22

11

+

+D

AZ B

CZ D

L

L

+

+

¢ - ¢

¢ - ¢

B D Z

C Z A

L

L

D h L

L

Z h

h Z

+

+

11

221

1 22

11

+

+

g Y

g

L

gYLD

Driving point

impedance at output

port, or output impedance

V

I

2

2

F
HG

I
KJ

D z sZ Z

Z Z

+

+

22

1 11

Y Y

Y Y

s

y s

11

22

+

+D

DZ B

CZ A

s

s

+

+

¢ + ¢

¢ + ¢

A Z B

C Z D

s

s

h Z

h Z

s

h s

11

22

+

+D

g

g Z

s

s

22

111

+

+

D

Note The above relations are obtained, when Vs = 0 and Is = 0 at the input port.
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Example 15.11 Calculate the input impedance of the network shown in

Fig. 15.29.

II22II11

VVss 22 WW 44 WW 44 WW

22 WW
11 WW

11¢¢ 22¢¢

11

22

VV11

Fig. 15.29

Solution Let us calculate the input impedance in terms of Z parameters. The Z
parameters of the given network (see Solved Problem 15.1) are Z11 = 2.5 W; Z21

= 1 W; Z22 = 2 W; Z12 = 1 W

From Section 15.11.1 we have the relation

V

I
1

1

 = Z11 – 
Z Z

Z ZL

12 21

22+

where ZL is the load impedance = 2 W

V

I
1

1

 = 2.5 – 
1

2 2+
 = 2.25 W

The source resistance is 1 W

\ Zin = 1 + 2.25 = 3.25 W

Example 15.12 Calculate the output impedance of the network shown in
Fig. 15.30 with a source admittance of 1 

W

 at the input port.

II22II11

IIss 22 WW 44 WW

22 WW
11 WW

11
WW

22¢¢

22

VV11 VV22

Fig. 15.30

Solution Let us calculate the output impedance in terms of Y parameters. The

Y parameters of the given network (see Ex. 15.2) are

Y11 =
1

2
 

W

; Y22 = 
5

8
 

W

, Y21 = Y12 = 
-1

4
 

W
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From Section 15.11.2, we have the relation

I

V
2

2

 =
Y Y Y Y Y Y

Y Y
s

s

22 22 11 21 12

11

+ -

+

where Ys is the source admittance = 1 mho

Y22 =
I

V
2

2

 = 

5

8
1

5

8

1

2

1

16

1
1

2

7

12

¥ + ¥ -

+

=  

W

or Z22 =
12

7
 

W

15.12 LATTICE NETWORKS

One of the common four-terminal two-port network is the lattice, or bridge

network shown in Fig. 15.31(a). Lattice networks are used in filter sections and

are also used as attenuaters. Lattice structures are sometimes used in preference

to ladder structures in some special applications. Za and Zd are called series arms,

Zb and Zc are called the diagonal arms. It can be observed that, if Zd is zero, the

lattice structure becomes a p-section. The lattice network is redrawn as a bridge

network as shown in Fig. 15.31(b).

Za

ZaZc
Zc

Zb
Zb

Zd

Zd

V1 V1

I1

V2

2

2

1
1

2¢

2¢

1¢

1¢

++

––

V2

(a) (b)

Fig. 15.31

Z Parameters

Z11 =
V

I I

1

1 02 =

When I2 = 0; V1 = I
Z Z Z Z

Z Z Z Z

a b d c

a b c d
1

+ +

+ + +

a fa f
(15.17)

\ Z11 =
Z Z Z Z

Z Z Z Z

a b d c

a b c d

+ +

+ + +

a fa f

If the network is symmetric, then Za = Zd and Zb = Zc
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\ Z11 =
Z Za b+

2

Z21 =
V

I I

2

1 02 =

When I2 = 0, V2 is the voltage across 2–2 ¢

V2 = V
Z

Z Z

Z

Z Z

b

a b

d

c d
1

+
-

+

L
NM

O
QP

Substituting the value of V1 from Eq. 15.17, we have

V2 =
I Z Z Z Z

Z Z Z Z

Z Z Z Z Z Z

Z Z Z Z

a b d c

a b c d

b c d d a b

a b c d

1 + +

+ + +

L
NM

O
QP

+ - +

+ +

L
NM

O
QP

a fa f a f a f
a fa f

V

I

2

1

 =
Z Z Z Z Z Z

Z Z Z Z

Z Z Z Z

Z Z Z Z

b c d d a b

a b c d

b c a d

a b c d

+ - +

+ + +
=

-

+ + +

a f a f

\ Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-

+ + +

If the network is symmetric, Za = Zd, Zb = Zc

Z21 =
Z Zb a-

2

When the input port is open, I1 = 0

Z12 =
V

I
I

1

2 01 =

The network can be redrawn as shown in Fig. 15.31(c).

ZZbb

ZZdd

VV11

II22
22

11

22¢¢

11¢¢

++

––

ZZaa

ZZcc

VV11

II11

Fig. 15.31(c)

V1 = V
Z

Z Z

Z

Z Z

c

a c

d

b d
2

+
-

+

L
NM

O
QP

(15.18)

V2 = I
Z Z Z Z

Z Z Z Z

a c d b

a b c d
2

+ +

+ + +

L
NM

O
QP

a fa f
(15.19)
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Substituting the value of V2 in Eq. 15.18, we get

V1 = I
Z Z Z Z Z Z

Z Z Z Z

c b d d a c

a b c d
2

+ - +

+ + +

L
NM

O
QP

a f a f

V

I

1

2

 =
Z Z Z Z

Z Z Z Z

c b a d

a b c d

-

+ + +

If the network is symmetric, Za = Zd; Zb = Zc

V

I

1

2

 =
Z Z

Z Z

b a

a b

2 2

2

-

+a f

\ Z12 =
Z Zb a-

2

Z22 =
V

I I

2

2 02 =

From Eq. 15.19, we have

V

I

2

2

 =
Z Z Z Z

Z Z Z Z

a c d b

a b c d

+ +

+ + +

a fa f

If the network is symmetric,

Za = Zd; Zb = Zc

Z22 =
Z Za b+

2
 = Z11

From the above equations, Z11 = Z22 = 
Z Za b+

2

and Z12 = Z21 = 
Z Zb a-

2

\ Zb = Z11 + Z12

Za = Z11 – Z12.

Example 15.13 Obtain the lattice equivalent of a symmetrical T network shown

in Fig. 15.32.

2 W

1 W 1 W

1 2

1¢ 2¢

Fig. 15.32
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Solution A two two-port network can be realised as a symmetric lattice if it is

reciprocal and symmetric. The Z parameters of the network are (see Ex. 15.1).

Z11 = 3 W; Z12 = Z21 = 2 W; Z22 = 3 W .

Since Z11 = Z22; Z12 = Z21, the given network is symmetrical and reciprocal

\ The parameters of the lattice network are

Za = Z11 – Z12 = 1 W

Zb = Z11 + Z12 = 5 W

The lattice network is shown in Fig. 15.33.

Fig. 15.33

Example 15.14 Obtain the lattice equivalent of a symmetric p-network shown

in Fig. 15.34.

Solution The Z parameters of the given network are

Z11 = 6 W = Z22; Z12 = Z21 = 4 W

Hence the parameters of the lattice network are

Za = Z11 – Z12 = 2 W

Zb = Z11 + Z12 = 10 W

The lattice network is shown in Fig.15.35

5 W

10 W 10 W

1 2

1¢ 2¢

Fig. 15.34 Fig. 15.35

21

2¢1¢

2 W

2 W

10 W

10 W

15.13 IMAGE PARAMETERS

The image impedance ZI 1 and ZI 2 of a two-port network shown in Fig. 15.36 are

two values of impedance such that, if port 1–1¢ of the network is terminated in

ZI 1, the input impedance of port 2-2 ¢ is ZI2; and if port 2-2 ¢ is terminated in ZI 2,

the input impedance at port 1-1¢ is ZI 1.
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V1

I2
I1

V2

21

2¢1¢

ZI1 ZI2

Fig. 15.36

Then, ZI 1 and ZI2 are called image impedances of the two port network shown

in Fig. 15.36. These parameters can be obtained in terms of two-port parameters.

Recalling Eqs 15.5 and 15.6 in Section 15.4, we have

V1 = AV2 – BI2

I1 = CV2 – DI 2

If the network is terminated in ZI 2 at 2-2¢ as shown in Fig. 15.37.

V1

I2
I1

V2

2

2¢
1¢

1

ZI2

ZI1

Fig. 15.37

V2 = – I2 ZI 2

V

I

1

1

 =
AV BI

CV DI

2 2

2 2

-

-
 = ZI1

ZI 1 =
- -

- -

AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

ZI 1 =
- -

- -

AZ B

CZ D

I

I

2

2

or ZI1 =
AZ B

CZ D

I

I

2

2

+

+

Similarly, if the network is terminated in ZI 1 at port 1-1¢ as shown in

Fig. 15.38, then
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V1

I2I1

V2 ZI2

2

2¢
1¢

1

ZI1

Fig. 15.38

V1 = – I1ZI 1

V

I

2

2

 = ZI 2

\ –ZI1 =
V

I

AV BI

CV DI

1

1

2 2

2 2

=
-

-

– ZI 1 =
AI Z BI

CI Z DI

I

I

2 2 2

2 2 2

-

-

– ZI 1 =
AZ B

CZ D

I

I

2

2

-

-

From which ZI 2 =
DZ B

CZ A

I

I

1

1

+

+

Substituting the value of ZI 1 in the above equation

 ZI2 C
AZ B

CZ D
AI

I

- +

-
+

L
NM

O
QP

2

2

a f
a f

 = D 
- +

-

L
NM

O
QP
+

AZ B

CZ D
BI

I

2

2

From which ZI2 = 
BD

AC

Similarly, we can find ZI 1 = 
AB

CD

If the network is symmetrical, then A = D

\ ZI 1 = ZI2 = 
B

C

If the network is symmetrical, the image impedances ZI1 and ZI 2 are equal to

each other; the image impedance is then called the characteristic impedance, or

the iterative impedance, i.e. if a symmetrical network is terminated in ZL, its

input impedance will also be ZL, or its impedance transformation ratio is unity.

Since a reciprocal symmetric network can be described by two independent

parameters, the image parameters ZI 1 and ZI 2 are sufficient to characterise
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reciprocal symmetric networks. ZI1 and ZI 2 the two image parameters do not

completely define a network. A third parameter called image transfer constant f
is also used to describe reciprocal networks. This parameter may be obtained

from the voltage and current ratios.

If the image impedance ZI 2 is connected across port 2-2¢, then

V1 = AV2 – BI2 (15.20)

V2 = – I2 ZI 2 (15.21)

\ V1 = A
B

Z
V

I

+
L
NM

O
QP2

2 (15.22)

I1 = CV2 – DI 2 (15.23)

I1 = – [CZI 2 + D]I2 (15.24)

From Eq. 15.22

V

V

1

2

 = A
B

ZI

+
L
NM

O
QP2

 = A + B 
AC

BD

V

V

1

2

 = A + 
ABCD

D
(15.25)

From Eq. 15.24

- I

I

1

2

 = [CZI 2 + D] = D + C 
BD

AC

- I

I

1

2

 = D + 
ABCD

A
(15.26)

Multiplying Eqs. 15.25 and 15.26 we have

-
¥

V

V

I

I

1

2

1

2

 =
AD ABCD

D

AD ABCD

A

+F
HG

I
KJ

+F
HG

I
KJ

-
¥

V

V

I

I

1

2

1

2

 = AD BC+c h
2

or AD BC+  =
-

¥
V

V

I

I

1

2

1

2

AD AD+ - 1  =
-

¥
V

V

I

I

1

2

1

2

(Q AD – BC = 1)

Let cos h f = AD ; sin h f = AD - 1

tan h f =
AD

AD

BC

AD

-
=

1

\ f = tan h–1 
BC

AD
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Also ef = cos h f + sin h f = -
V I

V I

1 1

2 2

f = log loge e

V I

V I

V

V

I

I
-

F
HG

I
KJ
=

F
HG

I
KJ

1 1

2 2

1

2

1

2

1

2

Since V1 = ZI 1 I1; V2 = – I2 ZI 2

f =
1

2

1

2

1

2

log loge
I

I

Z

Z

I

I

L
NM

O
QP
+

L
NM

O
QP

For symmetrical reciprocal networks, ZI 1 = ZI 2

f = loge

I

I

1

2

L
NM

O
QP
= g

where g is called the propagation constant.

Example 15.15 Determine the image parameters of the T network shown in

Fig.15.39.

Fig. 15.39

Solution The ABCD parameters of the network are

A =
6

5
; B = 

17

5
; C = 

1

5
; D = 

7

5
 (See Ex. 15.3)

Since the network is not symmetrical, f, ZI1 and ZI 2 are to be evaluated to

describe the network.

ZI1 =
AB

CD
=

¥

¥

6

5

17

5
1

5

7

5

 = 3.817 W

ZI 2 =
BC

AC
=

¥

¥

17

5

7

5
6

5

1

5

 = 4.453 W

f = tan h–1 
BC

AD
 = tan h–1 

17

42
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or f = In AD AD+ - 1

f = 0.75

Additional Solved Problems

Problem 15.1 Find the Z parameters for the circuit shown in Fig. 15.40.

V1

I2I1

2 W 4 W

2 W
1 W

V2

a b

a¢ b¢

Fig. 15.40

Solution Z11 =
V

I
I

1

1 02 =

When I2 = 0; V1 can be expressed in terms of I1 and the equivalent impedance of

the circuit looking from the terminal a-a ¢ as shown in Fig. 15.41(a).

2 W 4 W

2 W1 W

V1Zeq

Fig. 15.41(a)

Zeq = 1 + 
6 2

6 2

¥

+
 = 2.5 W

V1 = I1 Zeq = I1 2.5

Z11 =
V

I
I

1

1 02 =

 = 2.5 W

Z21 =
V

I I

2

1 02 =

V2 is the voltage across the 4 W impedance as shown in Fig. 15.41(b).



Two-Port Networks 15.43

V1

I2 = 0I1
Ix

2 W 4 W

2 W
1 W

V2

Fig. 15.41(b)

Let the current in the 4 W impedance be Ix

Ix = I1 ¥ 
2

8 4

1=
I

V2 = Ix4 = 
I1

4
 ¥ 4 = I1

Z21 =
V

I I

2

2 02 =

 = 1 W

Z22 =
V

I I

2

2 01 =

When port a-a ¢ is open circuited the voltage at port b-b¢ can be expressed in

terms of I2, and the equivalent impedance of the circuit viewed from b-b¢ as

shown in Fig. 15.41(c).

V1

I2I1 = 0

2 W 4 W

2 W
1 W

V2 Zeq

Fig. 15.41(c)

V2 = I2 ¥ 2

\ Z22 =
V

I
I

2

2 01 =

 = 2 W

Z12 =
V

I
I

1

2 01 =

V1 is the voltage across the 2 W (parallel) impedance, let the current in the 2 W

impedance is IY as shown in Fig. 15.41(d).
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V1

I2IyI1 = 0

2 W 4 W

2 W
1 W

V2

Fig. 15.41(d)

IY =
I2

2

V1 = 2 IY

V1 = 2 
I2

2

\ Z12 =
V

I
I

1

2 01 =

 = 1 W

Here Z12 = Z21, which indicates the bilateral property of the network. The

describing equations for this two-port network in terms of impedance parameters

are

V1 = 2.5I1 + I2

V2 = I1 + 2I2

Problem 15.2 Find the short circuit admittance parameters for the circuit

shown in Fig. 15.42.

I2I1

V2V1 YA

YB

YC

++
a b

a¢ b¢

Fig. 15.42

Solution The elements in the branches of the given two-port network are

admittances. The admittance parameters can be determined by short circuiting

the two-ports.

When port b-b ¢ is short circuited, V2 = 0. This circuit is shown in

Fig. 15.43(a).
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YA

YB

I1 I2

a b

a¢ b¢

Fig. 15.43(a)

V1 = I1 Zeq

where Zeq is the equivalent impedance as viewed from a-a ¢.

Zeq =
1

Yeq

Yeq = YA + YB

V1 =
I

Y YA B

1

+

Y11 =
I

V V

1

1 02 =

 = (YA + YB)

With port b-b¢ short circuited, the nodal equation at node 1 gives

– I2 = V1 YB

\ Y21 =
I

V
V

2

1 02 =

 = – YB

when port a-a ¢ is short circuited; V1 = 0 this circuit is shown in Fig. 15.43(b).

YC

YB

I1 I2

b

b¢

V2V1 = 0

Fig. 15.43(b)

V2 = I2 Zeq

where Zeq is the equivalent impedance as viewed from b-b¢

Zeq =
1

Yeq

Yeq = Yb + Yc

\ V2 =
I

Y YB C

2

+
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Y22 =
I

V
V

2

2 01 =

 = (YB + YC)

With port a-a ¢ short circuited, the nodal equation at node 2 gives

– I1 = V2 YB

Y12 =
I

V
V

1

2 01 =

 = – YB

The describing equations in terms of the admittance parameters are

I1 = (YA + YB)V1 – YBV2

I2 = – YBV1 + (YC + YB)V2

Problem 15.3 Find the Z parameters of the RC ladder network shown in

Fig. 15.44.

I S1 ( ) I S2 ( )
a b

a¢ b¢

1/s 1/s

V S2 ( )V S1 ( ) 11

Fig. 15.44

Solution With port b-b ¢ open circuited and assuming mesh currents with V1(S)

as the voltage at a-a ¢, the corresponding network is shown in Fig. 15.45(a).

The KVL equations are as follows

V2(S) = I3(S) (15.27)

I3(S) ¥ 2
1

+F
H

I
KS

 = I1(S) (15.28)

1
1

+F
H

I
KS

 I1(S) – I3(S) = V1(S) (15.29)

Fig. 15.45(a)
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From Eq. 15.28, I3(S) = I1(S) 
S

S1 2+

F
HG

I
KJ

From Eq. 15.29
S

S

+F
H

I
K

1
 I1(S) – I1(S) 

S

S1 2+
 = V1(S)

I1(S) 
1

1 2

+
-

+

F
HG

I
KJ

S

S

S

S
 = V1(S)

I1(S) 
S S

S S

2 3 1

1 2

+ +

+( )

F
HG

I
KJ

 = V1(S)

Z11 =
V S

I S

S S

S SI

1

1 0

2

2

3 1

1 2

( )

( )
=

=
+ +

+( )

c h

Also V2(S) = I3(S) = I1(S) 
S

S1 2+

Z21 =
V S

I S

S

S
I

2

1 02
1 2

( )

( )
=

=
+

With port a-a ¢ open circuited and assuming mesh currents with V2(S) as the

voltage as b-b ¢, the corresponding network is shown in Fig. 15.45(b).

I S1 ( ) = 0

I S3 ( )

I S2 ( )1/s 1/s

V S2 ( )V S1 ( ) 11

+ +

Fig. 15.45(b)

The KVL equations are as follows

V1(S) = I3(S) (15.30)

2
1

+F
H

I
KS

 I3(S) = I2(S) (15.31)

V2(S) = I2(S) – I3(S) (15.32)

From Eq. 15.31 I3(S) = I2(S) 
S

S2 1+

F
HG

I
KJ

From Eq. 15.32 V2(S) = I2(S) – I2(S) 
S

S2 1+

F
HG

I
KJ

V2(S) = I2(S) 1
2 1

-
+

F
HG

I
KJ

S

S
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Z22 =
V S

I S

S

S
I S

2

2 01

1

2 1

( )

( )
( ) =

=
+

+

Also V1(S) = I3(S) = I2(S) 
S

S2 1+

F
HG

I
KJ

Z12 =
V S

I S

S

SI S

1

2 01
2 1

( )

( )
( ) =

=
+

F
HG

I
KJ

The describing equations are

V1(S) =
S S

S
I

S

S
I

2

1 2

3 1

3 2 1 2 1

+ +

+( )

L
NM

O
QP

+
+

L
NM

O
QP

V2(S) =
S

S
I

S

S
I

2 1

1

2 1
1 2

+

L
NM

O
QP

+
+

+

L
NM

O
QP

Problem 15.4 Find the transmission parameters for the circuit shown in

Fig. 15.46.

I2I1

V2V1

++
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.46

Solution Recalling Eqs 15.5 and 15.6, we have

V1 = AV2 – BI2

I1 = CV2 – DI2

When port b-b¢ is short circuited with V1 across a-a ¢, V2 = 0 B = 
-V

I

1

2

 and the

circuit is as shown in Fig. 15.47(a)

I2I1

V2 = 0
V1

+
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.47(a)
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– I2 =
V1

2
 I1 = V1

\ B = 2 W

D =
- I

I

1

2

 = 2

When port b-b¢ is open with V1 across a-a ¢, I2 = 0

A = V1/V2 and the circuit is as shown in Fig. 15.47(b), where V1 is the voltage

across the 2 W resistor across port a-a ¢ and V2 is the voltage across the 2 W

resistor across port b-b¢ when I2 = 0.

I2 = 0I1

Ix Iy

V1 V2

+
a b

a¢ b¢

2 W

2 W 2 W

Fig. 15.47(b)

From Fig. 15.47(b), IY =
V1

4

V2 = 2 ¥ IY = 
V1

2
A = 2

From Fig. 15.47(b) Ix =
V1

2

C =
I

V

1

2

where I1 =
3

4

1V

Therefore C =
3

2
 

W

Problem 15.5 Find h parameters for the network in Fig. 15.48.

I2
I1

V1 V2

2 W

4 W

Fig. 15.48
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Solution When V2 = 0 the network is as shown in Fig. 15.49.

I1

V1
V2

2 W
+

Fig. 15.49

h11 =
V

I
V

1

1 02 =

 = 2 W

h21 =
I

I V

2

1 02 =

; I2 = – I1

\ h21 = – 1

When I1 = 0; h12 = 
V

V
I

1

2 01 =

; h22 = 
I

V
I

2

2 01 =

V1 = I2 4, V2 = I2 4

\ h12 = 1 h22 = 
1

4
 

W

Problem 15.6 For the hybrid equivalent circuit shown in Fig. 15.50,

(a) determine the current gain, and (b) determine the voltage gain.

2525II11

VV11

II11

VV22VVss ZZ11

II22

15001500 WW

500500 WW

0
.0
5
x
1
0

0
.0
5
x
1
0
66
WW

22

22¢¢

2
x
1
0

V
2
x
1
0

V
–
4

–
4

22

11

11

Fig. 15.50

Solution From port 2-2 ¢ we can find

I2 =
25 0 05 10

1500 0 05 10

1
6

6

Ia fc h
c h

.

.

¥

+ ¥

(a) current gain 
I

I

2

1

 = 
1 25 10

0 0515 10

6

6

.

.

¥

¥
 = 24.3

(b) applying KVL at port 1-1¢
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V1 = 500 I1 + 2 ¥ 10–4 V2

I1 =
V V1

4
22 10

500

- ¥ -

(15.33)

Applying KCL at port 2-2¢

I2 = 25I1 + 
V2

0 05.
 ¥ 10–6

also I2 =
-V2

1500
-V2

1500
 = 25I1 + 

V2

0 05.
 ¥ 10–6

Substituting the value of I1 from Eq. 15.33, in the above equation, we get

-V2

1500
 = 25

2 10

500 0 05
101

4
2 2 6V V V- ¥F

HG
I
KJ
+ ¥

-
-

.

– 6.6 ¥ 10–4 V2 = 0.05V1 – 0.1 ¥ 10–4 V2 + 0.2 ¥ 10–4 V2

\
V

V

2

1

 = – 73.89

The negative sign indicates that there is a 180° phase shift between input and

output voltage.

Problem 15.7 The hybrid parameters of a two-port network shown in

Fig. 15.51 are h11 = 1 K; h12 = 0.003; h21 = 100; h22 = 50 m

W

. Find V2 and Z

parameters of the network.

V1

I2I1

V2

2

2¢
1¢

2 K

1

500 W

10 0º x 10 V– –3

Fig. 15.51

Solution V1 = h11 I1 + h12 V2 (15.34)

I2 = h21 I1 + h22 V2 (15.35)

At port 2-2¢ V2 = – I2 2000

Substituting in Eq. 15.35, we have

I2 = h21I1 – h22I2 2000

I2 (1 + h22 2000) = h21 I1

I2(1 + 50 ¥ 10–6 ¥ 2000) = 100 I1
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I2 =
100

1 1

1I

.
Substituting the value of V2 in Eq. 15.34, we have

V1 = h11 I1 – h12 I2 2000

Also at port 1-1¢, V1 = VS – I1 500

\ VS – I1 500 = h11 I1 – h12 
100

1 1

1I

.
 ¥ 2000

(10 ¥ 10–3) – 500 I1 = 1000 I1 – 0.003 ¥ 
100

1 1
1

.
I  ¥ 2000

954.54I1 = 10 ¥ 10–3

I1 = 10.05 ¥ 10–6 A

V1 = VS – I1 ¥ 500

= 10 ¥ 10
–3

 – 10.5 ¥ 10
–6

 ¥ 500 = 4.75 ¥ 10
–3

 V

V2 =
V h I

h

1 11 1

12

-

V2 =
4 75 10 1000 10 5 10

0 003

3 6. .

.

¥ - ¥ ¥- -

 = – 1.916 V

(b) Z parameters of the network can be found from Table 15.1.

Z11 =
Dh

h

h h h h

h22

11 22 21 12

22

=
-

 = 
1 10 50 10 100 0 003

50 10

3 6

6

¥ ¥ ¥ - ¥

¥

-

-

.

= – 5000 W

Z12 =
h

h

12

22
6

0 003

50 10
=

¥ -

.
 = 60 W

Z21 =
-

=
-

¥ -

h

h

21

22
6

100

50 10
 = – 2 ¥ 106 W

Z22 =
1

22h
 = 20 ¥ 103 W

Problem 15.8 The Z parameters of a two port network shown in Fig. 15.52

are Z11 = Z22 = 10 W; Z21 = Z12 = 4 W. If the source voltage is 20 V, determine I1,

V2, I2 and input impedance.

V1

I2I1

V2VS

2

2¢
1¢

1

20 W

Fig. 15.52
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Solution Given V1 = VS = 20 V

From Section 15.11.1, V1 = I Z
Z Z

Z ZL
1 11

12 21

22

-
+

F
HG

I
KJ

where ZL = 20 W

\ 20 = I1 10
4 4

20 10
-

¥

+

F
HG

I
KJ

I1 = 2.11 A

I2 = – I1 
Z

Z ZL

21

22+
 = – 2.11 ¥ 

4

20 10+
 = – 0.281 A

At port 2-2 ¢
V2 = – I2 ¥ 20 = 0.281 ¥ 20 = 5.626 V

Input impedance =
V

I

1

1

20

2 11
=

.
 = 9.478 W

Problem 15.9 The Y parameters of the two-port network shown in Fig. 15.53

are Y11 = Y22 = 6 

W

; Y12 = Y21 = 4 

W

(a) determine the driving point admittance at port 2-2¢ if the source voltage is

100 V and has an impedance of 1 ohm.

V1

I2
I1

V2VS

2

2¢1¢

1

1 W

Fig. 15.53

Solution From Section 15.11.2,

I

V

2

2

 =
Y Y Y Y Y Y

Y Y

S

S

22 22 11 21 12

11

+ -

+

where YS is the source admittance = 1 

W

\ The driving point admittance = 
6 1 6 6 4 4

1 6

¥ + ¥ - ¥

+
 = 3.714 

W

Or the driving point impedance at port 2-2¢ = 
1

3 714.
W

Problem 15.10 Obtain the Z parameters for the two-port unsymmetrical

lattice network shown in Fig. 15.54.
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V1
V2

2

2¢1¢

1

1 W

3 W

2 W

5 W

Fig. 15.54

Solution From Section 15.12, we have

Z11 =
Z Z Z Z

Z Z Z Z

a b d c

a b c d

+ +

+ + +
=

+( ) +( )

+ + +

a fa f 1 3 2 5

1 3 5 2
 = 2.545 W

Z21 =
Z Z Z Z

Z Z Z Z

b c a d

a b c d

-

+ + +
=

¥ - ¥3 5 1 2

11
 = 1.181 W

Z21 = Z12

Z22 =
Z Z Z Z

Z Z Z Z

a c d b

a b c d

+ +

+ + +
=

+( ) +( )
=

a fa f 1 5 2 3

11
2 727. W

Problem 15.11 For the ladder two-port network shown in Fig. 15.55, find

the open circuit driving point impedance at port 1-2.

AA

11 WW 11 WW 11 WW1 H1 H 1 H1 H 1 H1 H

VV11 VV22

II11 II22

1 F1 F 1 F1 F 1 F1 F

++++

––––

11

22

33

44

Fig. 15.55

Solution The Laplace transform of the given network is shown in Fig. 15.56.

A

V1 V2

I1

Z1 Z2

Y1 Y2 Y3

Z3

I2

++

––

1

2

3

4

S+1 S+1 S+1

S S S

+

–

Fig. 15.56
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Then the open circuit driving point impedance at port 1-2 is given by

Z s

s

s

s
s

s

11 1
1

1

1
1

1

1
1

= +( ) +
+

+( ) +

+
+( ) +

=
s s s s s s

s s s s s

6 5 4 3 2

5 4 3 2

3 8 11 11 6 1

2 5 4 3

+ + + + + +

+ + + +

Problem 15.12 For the bridged T network shown in Fig. 15.57, find the

driving point admittance y11 and transfer admittance y21 with a 2 W load resistor

connected across port 2.

V2V1

2

2 W

1 W 1 W

1F

1F

1

1¢
2¢

Fig. 15.57

Solution The corresponding Laplace transform network is shown in

Fig. 15.58.

VV11 II22

II33

II11

++

––

22

11 11

11

11

ss

ss

VV22

Fig. 15.58

The loop equations are

I
s

I
s

I1 2 31
1 1

+F
H

I
K + F

H
I
K -  = V1

I
s

I
s

I1 2 3

1
1

1F
H

I
K + +F

H
I
K +  = 0
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I1 (–1) + I2 + I3 2
1

+F
H

I
Ks

 = 0

Therefore,

D =

1
1 1

1

1
1

1
1

1 1 2
1

2
2

+F
H

I
K -

+

- +

=
+

s s

s s

s

s

s

Similarly, D11 =

1
1 1

1 2
1

3 12

2

+F
H

I
K

+F
H

I
K

=
+ +s s

s

s s

s

and D12 =

1
1

1 2
1

2 12

2
s

s

s s

s

+

+ +F
H

I
K

=
+ +

Hence, y11 =
D

D

11
2 3 1

2
=

+ +

+

s s

s

and y21 =
D

D

12

2 2 1

2
=

- + +

+

s s

s

c h

Problem 15.13 For the two port network shown in Fig. 15.59, determine the

h-parameters. Using these parameters calculate the output (Port 2) voltage, V2,

when the output port is terminated in a 3 W resistance and a 1V (dc) is applied at

the input port (V1 = 1 V).

I1

V1 V2

+

– –

1 W

2 W 2ix

3ix

++ –

Fig. 15.59

Solution The h parameters are defined as

V

I

1

2

L
NM

O
QP
 =

h h

h h

I

V

11 12

21 22

1

2

L
NM

O
QP
L
NM

O
QP

For V2 = 0, the circuit is redrawn as shown in Fig. 15.60(a)
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V1

1 W

2 W
2ix

3ix

+ –

i = ix 1 I2

Fig. 15.60(a)

h11 =
V

I

i i

i
V

1

1 0

1 1

12

1 3

=

=
¥ +

 = 4

h21 =
I

I

i

i

i i

i
V

2

1 0

2

1

1 1

12

2

=

= =
-

 = 1

For I1 = 0, the circuit is redrawn as shown in Fig. 15.60(b).

V1 V2

1 W

2 W

3ix = 0

+ –
I2

i i1= 0 = x

Fig. 15.60(b)

h12 =
V

V

1

2

 = 1; h22 = 
I

V

2

2

1

2
=  = 0.5

Hence, h =
4 1

1 0 5.

L
NM

O
QP

V1 = 1 V

V1 = 4I1 + V2

I2 = I1 + 0.5 V2

Eliminating I1 from the above equations and putting

V1 = 1 and I2 = 
- V2

3
 we get, V2 = 

- 3

7
 V

Problem 15.14 Find the current transfer ratio 
I

I

2

1

 for the network shown in

Fig. 15.61.
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1 W1 W 1 W

2 W

I1

I3
I2

I1

2 I3

2

+ –

Fig. 15.61

Solution By transforming the current source into voltage source, the given

circuit can be redrawn as shown in Fig. 15.62.

1 W

1 W 1 W

2 W

I + 2I1 3
I1

I3
I2

V1 V2

2

Fig. 15.62

Applying Kirchhoff’s nodal analysis

V I I V V V1 1 3 1 1 22

1 1 2

- +
+ +

-a f
 = 0

and
V V I

I2 1 1
2

2 2

-
- -  = 0

Putting V1 = – I3 and V2 = – I2

The above equations become

– I3 – I1 – 2I3 – I3 + 
I I2 3

2

-
 = 0

and
I I I2 3 1

2 2

-
-  – I2 = 0

or I1 0.5I2 – 4.5 I3 = 0

and – 0.5 I1 – 1.5I2 + 0.5I3 = 0

By eliminating I3, we get

I

I

2

1

 =
- 5 5

13

.
 = – 0.42
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Practice Problems

15.1 Find the Z parameters of the network shown in Fig. 15.63.

YA YB

YC

Fig. 15.63

15.2 Find the transmission parameters for the R–C network shown in Fig. 15.64.

2 W

2 F 2 F

Fig. 15.64

15.3 Find the inverse transmission parameters for the network in Fig. 15.65.

1 W

2 W

1 W

Fig. 15.65

15.4 Calculate the overall transmission parameters for the cascaded network

shown in Fig. 15.66.

1 W 2 W 2 W 4 W

10 W5 W

Fig. 15.66
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15.5 For the two-port network shown in Fig. 15.67, find the h parameters and

the inverse h parameters.

4 W

2 W

V2V1

+ +

– –

Fig. 15.67

15.6 Determine the impedance parameters for the T network shown in

Fig. 15.68 and draw the Z parameter equivalent circuit.

2 W j 5 W

– j 3W

Fig. 15.68

15.7 Determine the admittance parameters for the p-network shown in

Fig. 15.69 and draw the Y parameter equivalent circuit.

+ +

BL = 0.2 x 10
–3

G = 0.5 x 10–3
Bc = 0.22 x 10

–3

Fig. 15.69

15.8 Determine the impedance parameters and the transmission parameters for

the network in Fig. 15.70.

2 W 2 W

3 W

4 W

Fig. 15.70
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15.9 For the hybrid equivalent circuit shown in Fig. 15.71, determine (a) the

input impedance (b) the output impedance.

40 I1

I1 I21.5 K

30 kW
1 kW0.003V2

Fig. 15.71

15.10 Determine the input and output impedances for the Z parameter equivalent

circuit shown in Fig. 15.72

600I1

I1 I2

V2

500 W

500 W

500 W

4 K

3000 90º– I2

Fig. 15.72

15.11 The hybrid parameters of a two-port network shown in Fig. 15.73 are h11

= 1.5 K; h12 = 2 ¥ 10–3; h21 = 250; h22 = 150 ¥ 10–6 

W

 (a) Find V2 (b).

Draw the Z parameter equivalent circuit.

V1

I2
I1

V2

2

2¢
1¢

1

2.5 KVS

1000 W

100 0º m.v–

Fig. 15.73

15.12 The Z parameters of a two-port network shown in Fig. 15.74 are Z11 = 5 W;

Z12 = 4 W; Z22 = 10 W; Z21 = 5 W. If the source voltage is 25 V, determine

I1, V2 I2, and the driving point impedance at the input port.
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V1
VS

I2
I1

V2

2

2¢
1¢

1

15 W
+

+ +

–

Fig. 15.74

15.13 Obtain the image parameters of the symmetric lattice network given in

Fig. 15.75.

2

2¢1¢

1

4 W

5 W

5 W

4 W

Fig. 15.75

15.14 Determine the Z parameters and image parameters of a symmetric lattice

network whose series arm impedance is 10 W and diagonal arm impedance

is 20 W.

15.15 For the network shown in Fig. 15.76, determine all four open circuit im-

pedance parameters.

V1 V2V2
6 W

20 W

20 W

27

90

+ +

– –

Fig. 15.76

15.16 For the network shown in Fig. 15.77, determine y12 and y21
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V20.1I1
V2

100 W

5 W

100 W

100

+

–

+
–

40 W 40 W

I1

Fig. 15.77

15.17 For the network shown in Fig.15.78, determine h parameters at w = 108

rad/sec.

+

–

V2
V1

V1 2 kW 2 kW
4 PF

2 PF

100

Fig. 15.78

15.18 For the network shown in Fig. 15.79, determine y parameters.

+

+

–
–

V2V1

V2

I1

I1

I2

5 W

5

+
–

2
520 W

Fig. 15.79

Objective-type Questions

1. A two-port network is simply a network inside a black box, and the net-

work has only

(a) two terminals

(b) two pairs of accessible terminals

(c) two pairs of ports
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2. The number of possible combinations generated by four variables taken

two at a time in a two-port network is

(a) four (b) two (c) six

3. What is the driving-point impedance at port one with port two open cir-

cuited for the network in Fig. 15.80?

3 W

1 W 2 W

1 2

1¢ 2¢

Fig. 15.80

(a) 4 W (b) 5 W (c) 3 W
4. What is the transfer impedance of the two-port network shown in

Fig. 15.80?

(a) 1 W (b) 2 W (c) 3 W
5. If the two-port network in Fig. 15.80 is reciprocal or bilateral then

(a) Z11 = Z22 (b) Z12 = Z21 (c) Z11 = Z12

6. What is the transfer admittance of the network shown in Fig. 15.81.

2 3

4

W W

W
1 2

1¢ 2¢

Fig. 15.81

(a) – 2 

W

(b) – 3 

W

(c) – 4 

W

7. If the two-port network in Fig. 15.81 is reciprocal then

(a) Y11 = Y22 (b) Y12 = Y22 (c) Y12 = Y11

8. In describing the transmission parameters

(a) the input voltage and current are expressed in terms of output voltage

and current

(b) the input voltage and output voltage are expressed in terms of output

current and input current.

(c) the input voltage and output current are expressed in terms of input

current and output voltage.

9. If Z11 = 2 W; Z12 = 1 W; Z21 = 1 W and Z22 = 3 W, what is the determinant

of admittance matrix.

(a) 5 (b) 1/5 (c) 1
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10. For a two-port bilateral network, the three transmission parameters are

given by A = 
6

5
; B = 

17

5
 and C = 

1

5
, what is the value of D?

(a) 1 (b)
1

5
(c)

7

5

11. The impedance matrices of two, two-port networks are given by 
3 2

2 3

L
NM

O
QP

and 
15 5

5 25

L
NM

O
QP
. If the two networks are connected in series. What is the

impedance matrix of the combination?

(a)
3 5

2 25

L
NM

O
QP

(b)
18 7

7 28

L
NM

O
QP

(c)
15 2

5 3

L
NM

O
QP

12. The admittance matrices of two two-port networks are given by

1 2 1 4

1 4 5 8

/ /

/ /

-

-

L
NM

O
QP

 and 
1 1 2

1 2 5 4

-

-

L
NM

O
QP

/

/ /
. If the two networks are connected in

parallel, what is the admittance matrix of the combination?

(a)
1 1 2

1 2 5 4

-

-

L
NM

O
QP

/

/ /
(b)

2 1

1 5 2

-

-

L
NM

O
QP/

(c)
3 2 3 4

3 4 15 8

/ /

/ /

-

-

L
NM

O
QP

13. If the Z parameters of a two-port network are Z11 = 5 W Z22 = 7 W; Z12 =

Z21 = 3 W then the A, B, C, D parameters are respectively given by

(a)
5

3

26

3

1

3

7

3
; ; ; (b)

10

3

52

3

2

3

14

3
; ; ; (c)

15

3

78

3

3

3

21

3
; ; ;

14. For a symmetric lattice network the value of the series impedance is 3 W
and that of the diagonal impedance is 5 W, then the Z parameters of the

network are given by

(a) Z11 = Z22 = 2 W
Z12 = Z21 = 1/2 W

(b) Z11 = Z22 = 4 W
Z12 = Z21 = 1 W

(c) Z11 = Z22 = 8 W
Z12 = Z21 = 2 W

15. For a two-port network to be reciprocal.

(a) Z11 = Z22 (b) y21 = y22

(c) h21 = – h12 (d) AD – BC = 0

16. Two-port networks are connected in cascade. The combination is to be

represented as a single two port network. The parameters of the network

are obtained by adding the individual

(a) Z parameter matrix (b) h parameter matrix

(c) A1 B1 C 1 D1 matrix (d) ABCD parameter matrix
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17. The h parameters h11 and h12 are obtained

(a) By shorting output terminals (b) By opening input terminals

(c) By shorting input terminals (d) By opening output terminals

18. Which parameters are widely used in transmission line theory

(a) Z parameters (b) Y parameters

(c) ABCD parameters (d) h parameters



16.1 THE CONCEPT OF COMPLEX FREQUENCY

The solution of differential equations for networks is of the form

i(t) = Kn e
Snt (16.1)

where Sn is a complex number which is a root of the characteristic equation and

may therefore be expressed as

Sn = sn + jwn (16.2)

The complex number consists of two parts, the real part sn and the imaginary

part wn. The real part of the complex frequency sn is neper frequency, while

imaginary part wn is the radian frequency. The neper frequency has dimensions

neper per second. In the time domain equations, wn is in the form of sin wn t or

cos wn t. The radian frequency wn is expressed in radian/sec and is related to the

frequency fn in cycles/sec or the periodic time T (in seconds) by the relation.

wn = 2pfn = 
2p

T
(16.3)

From the Equation (16.2), we see that the real part sn and the imaginary part wn

must have identical dimensions. Radian frequency wn is 
2p

T
 has dimensions

(time)–1. Therefore, the dimensions of sn must also be (time)–1 or the unit of sn

must be “Something per unit time”. Since sn appears as an exponential factor

I = Io esnt (16.4)

Such that

sn =
1

t
 ln 

I

Io

F
HG

I
KJ (16.5)

16Chapter

S-Domain Analysis
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It is fact that “something per unit time” should be nondimensional logarithmic
unit. The usual unit for the natural logarithm is the neper, making the dimensions
for s the neper per second. The complex quantity

Sn = sn + jwn (16.6)

is defined as the complex frequency. Thus, complex frequency consists of a real
part sn called the neper frequency and an imaginary part wn is called radian
frequency (or real frequency).

16.2 PHYSICAL INTERPRETATION OF
COMPLEX FREQUENCY

The complex frequency appears in the exponential form eSnt. Let us consider the
physical significance of complex frequency and a number of special cases for the
values of Sn.

Case (i): Let Sn = sn + jo having zero radian frequency. The exponential function
becomes

Kn e
Snt = Knesnt (16.7)

The above exponential function increases exponentially for sn > 0 and decreases
exponentially for sn < 0. For sn = 0, the exponential function reduces to Kn and it
is a time-invariant resulting current i(t) which is a dc current. Figure 16.1 shows
the variation of exponential term Kn esnt with time t for the cases of sn > 0, sn <
0 and sn = 0.

sn > 0

snt

sn = 0

sn < 0

Kn

K en

t

Fig. 16.1

Case (ii): Let Sn = 0 ± jwn having radian frequency and zero neper frequency.
The exponential becomes

i(t) = Kn e±jwnt

= Kn (cos wn t ± j sin wn t) (16.8)

The exponential e±jwnt may be interpreted in terms of the physical model of a
rotating phasor of unit length. A positive sign of exponential e±jwnt implies counter
clockwise or positive rotation, while a negative sign e–jwnt implies clockwise or
negative rotation.

For positive or counter-clockwise rotation, the real part of e+jwnt or the
projection on the real axis equals cos wnt, while the imaginary part of e+jwnt or the
projection on the imaginary axis equals sin wnt (Fig. 16.2).
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Re

Im

w tn

sin twn

c
o
s

t
w
n

w t

w
t

i –

– 1

1

Fig. 16.2

The variation of exponential function e+jwnt with time is thus sinusoidal and
hence constitutes the case of sinusoidal steady state.

Case (iii): Let Sn = sn + jwn is the general case and the frequency is complex and
the exponential is given by

i(t) = Kn e
Snt = Kn e(sn + jwn)t

i(t) = Kn e
snt ◊ ejwnt (16.9)

Equation (16.9) shows that with complex frequency, the time variation of
response i(t) is the product of the response for Sn = sn + jo and the response for
Sn = 0 + jwn. The response esnt for the case of neper frequency alone, Sn = sn + jo

is an exponentially increasing or decaying function. The response ejwnt for the
case of radian frequency alone Sn = 0 + jwn may be represented by a rotating
phasor. The product esnt ◊ ejwnt may then be visualized as a rotating phasor whose
magnitude is not constant at unity but changes continuously with time. Such
phasors are illustrated in Fig. 16.3.

Re

s = 0nIm

wnt

Re

s = 0n

Im

w tn

Fig. 16.3(a) Fig. 16.3(b)
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The real and imaginary projections of this phasor are

Re(eSnt) = esnt cos wnt (16.10)

and Im(eSnt) = esnt sin wnt

Consider the projections of this rotating phasor on the real and imaginary axes
for the two cases. These projections for the case sn < 0 are known as a damped

sinusoid and for sn > 0, the increasing oscillations are shown in Figs. 16.4 (a)
and (b) respectively.

w t w t

s < 0n s < 0n

ImRe eS tn eS tn

o

Fig. 16.4(a)

wt wt

ImRe eS tn eS tn

Fig. 16.4(b)

From the above discussion it is clear that the imaginary part of complex
frequency governs sinusoidal oscillations and the real part of complex frequency
governs the exponential decay or rise.

The roles of two types of frequency are similar even though the variations
caused by them are different. This is the justification of unifying the two concepts
under the name of complex frequency.

16.3 TRANSFORM IMPEDANCE AND
TRANSFORM CIRCUITS

In this section, we determine the transform impedance and admittance
representations for each of the elements and initial condition sources.
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Resistance For a resistance, the voltage and current are related in the time
domain by ohm’s law.

VR(t) = RiR(t) or iR(t) = GVR(t); G = 
1

R
(16.11)

The corresponding transform equations are

VR(S) = RIR(S)

IR(S) = GVR(S) (16.12)

The ratio of transform voltage VR(S) to the transform current IR(S) is defined
as the transform impedance of the resistor, expressed as

ZR(S) =
V S

I S

R

R

( )

( )
 = R (16.13)

Similarly, the reciprocal of this ratio is the transform admittance for the
resistor, expressed as

YR(S) =
I S

V S

R

R

( )

( )
 = G (16.14)

From the above results, we can say that the resistor is frequency insensitive to
the complex frequency.

Figure 16.5 (a) shows a network representing resistor R current iR(t) and
voltage VR(t) in time domain. Fig. 16.5 (b) gives the network representation of the
same resistor and also transform current IR(S) and voltage VR(S).

v ( )tR

i t( )R

R

+

–

V s( )RZ =R R

I s( )R

+

–

Fig. 16.5 (a) Fig. 16.5 (b)

Inductance For inductance, the time domain relation between the current in
inductance iL(t) and the voltage VL(t) across it is expressed as

nL(t) = L 
di t

dt

L( )

and iL(t) =
1

L

t

-•

z nL(t) dt (16.15)

The equivalent transform equation for the voltage expression is

VL(s) = L [SIL(S) – iL(0 +)] (16.16)

which, on rearranging, results

LS IL (S) = VL(S) + LiL(0 +) (16.17)
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In the Eqs (16.15) and (16.16), VL(S) is the transform of the applied voltage
vL(t) and LiL(0 +) is the transform voltage caused by the initial current iL(0 +)
present in the inductor at time t = 0 +.

Considering the sum of the transform voltage and the initial current voltage as
V1(S) we have the transform impedance for the inductor.

ZL(S) =
V S

I SL

1( )

( )
 = LS (16.18)

Figure 16.6(a) shows the time domain network representation of inductor L,
current iL(t) through it and applied voltage VL(t). Figure 16.6(b) gives the
transform representation of same inductor in terms of impedance using
Eq. (16.16).

v ( )tL

i t( )L

i IL L(0 )+

+

–

V s( )L

I s( )L

L +(0 )i

Z s L( ) =L S

Fig. 16.6 (a) Fig. 16.6 (b)

The transform equation for the current expression of Eq. (16.17) is

IL(S) =
V S

S

t dt

S L

L

L

( )
( )

+

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

-•

+

zn

0

1
(16.19)

But

-•

+

z
0

nL(t) dt = LiL(0 +) (16.20)

Hence, Eq. (16.19) becomes

IL(S) =
1 0

L

V S

S

i

S

L L◊
( ) ( )

+
+

(16.21)

or
1

LS
VL(S) = IL(S) – 

i

S

L( )0+
(16.22)

In the above equation iL(0 +)/S is the transform caused by the initial current
iL(0 +) in the inductor.

Let I1(S) = IL(S) – 
i

S

L( )0+
(16.23)

Then the Eq. (16.22) becomes

1

LS
VL(S) = I1(S) (16.24)
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where I1(S) is the total transform current through the inductor L. The transform
admittance becomes

YL(S) =
I S

V SL

1( )

( )
 = 

1

LS
(16.25)

Figure 16.7(a) shows the time domain representation of inductor L with initial
current iL(0 +). Figure 16.7(b) shows equivalent transform circuit thus contains

an admittance of value 
1

LS
 and equivalent transform current source.

v ( )tL

i t( )L

iL(0 )+ V s( )L

I s( )L

I s( )L

S

i +(0 )L
I

LS
Y s( ) =L

Fig. 16.7 (a) Fig. 16.7 (b)

Capacitance For capacitance, the time domain relation between voltage and
current is expressed as

ic(t) = c 
d t

dt

cn ( )

and vc(t) =
1

C
 

-•

z
t

ic(t) dt (16.26)

The equivalent transform equation for the voltage expression is

VC (S) =
1 0

C

I S

S

q

S

C ( ) ( )
+

+L
NM

O
QP (16.27)

where 
q

C

( )0+
 = nC(0 +) is the initial voltage across the capacitor.

The above equation becomes

1

CS
IC(S) = VC(S) – 

n C

S

( )0+
(16.28)

Considering the total transform voltage across the capacitor as V1(S).

V1(S) = VC(S) – 
nC

S

( )0+
(16.29)

Then, the Eq. (16.28) becomes

1

CS
IC(S) = V1(S) (16.30)

The transform impedance of the capacitor is the ratio of transform voltage
V1(S) to the transform current IC(S) and is
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ZC (S) =
V S

I SC

1 ( )

( )
 = 

1

CS
(16.31)

Figure 16.8(a) shows the time domain representation of capacitor C with initial
voltage VC(0 +) across it. Voltage V1(S) includes the initial voltage VC(0 +).
Figure 16.8(b) gives the transform representation of the same capacitor in terms
of transform impedance.

vc( )t

i t( )c

v (0 )+c

+

–
C

V s( )c

Z s( )c

I s( )c

I

CS

v ( )o+c

S

+
–

Fig. 16.8 (a) Fig. 16.8 (b)

Considering the current expression, the transform equation corresponding to
Eq. (16.26) is

IC (S) = C [SVC(S) – nC (0 +)] (16.32)

on rearranging

CSVC(S) = IC(S) + CVC (0 +) (16.33)

Considering the transform current through YC (S) as I1(S).
Equation (16.32) may be put as

CSVC (S) = I1(S) (16.34)

Then the transform admittance of the capacitor C is the ratio of transform
current l1(S) to transform voltage VC (S) is

YC (S) =
I S

V SC

1 ( )

( )
 = CS (16.35)

Figure 16.9 (a) shows the time domain representation of capacitor C with
initial voltage VC (0 +) across it. Figure 16.9(b) gives the transform representation
of the same capacitor in terms of admittance.

vc( )t

i t( )c

v (0 )+c
+

–
V s( )C

I s( )CI s( )i

C +(0 )vCY S = CSC( )

Fig. 16.9 (a) Fig. 16.9 (b)
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16.4 SERIES AND PARALLEL COMBINATION
OF ELEMENTS

In general, any network can be connected in series, parallel and series parallel
combination. Consider the series combination of elements shown in Fig. 16.10.

i t( )

v( )t

+

–

R1 L1 C1 C2R2 L2

Fig. 16.10

Assuming that all initial conditions are zero, i.e. the current in all inductors is
zero and that the initial voltage of all capacitors is also zero. By application of
Kirchhoff’s voltage law, we get

n (t) = nR1
 + nR2

 + K + nL1
 + nL2

 + K + nC1
 + nC2

 + K (16.36)

Taking transform for the above equation, we get

V(S) = VR1
(S) + K + VL1

(S) + K + VC1
(S) + K (16.37)

Dividing the equation by I(S), the transform current through the series circuit,
we get

Z(S) = ZR1
(S) + K + ZL1

(S) + K + ZC1
(S) (16.38)

or

Z(S) =
k

n

=

Â
1

ZK (S) (16.39)

where n is the total number of elements of all kinds in series.
Figure 16.11 shows the transform representation of the series circuit and

represents Eq. (16.38).

I s( )

V s( )
ZR1

ZL1 ZC1
ZR2

ZL2 ZC2

Fig. 16.11

Consider parallel combination of resistors, inductors and capacitors as shown
in Fig. 16.12. Here, we assume that the inductors have zero initial currents and
capacitors have zero initial voltages. Let v(t) is the common voltage applied to all
the elements in the circuit.

i t( )

v( )t

+

–

G1 L1 L2G2 C1 C2

Fig. 16.12
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Applying Kirchhoff’s current law to the above circuit yields.

i(t) = iG1
(t) + iG2

(t) + K + iL1
(t) + iL2

(t) + K + iC1
(t)

+ iC2
(t) + K (16.40)

and the corresponding transform equation is

I(S) = IG1
(S) + IG2

(S) + K + IL1
(S) + IL2

(S) + K + IC1
(S)

+ IC2
(S) + K (16.41)

If this equation is divided by V(S), we get transform admittance which is the
ratio of the current transform to the voltage transform and is

Y(S) = YG1
(S) + YG2

(S) + K + YL1
(S) + YL2

(S) + K + YC1
(S)

+ YC2
(S) + K (16.42)

or

Y(S) =
k

n

=

Â
1

YK(S) (16.43)

where n is the total number of all kinds of elements in parallel.
Figure 16.13 gives the transform representation of the parallel network and

represents the Eq. 16.42.

I ( )s

V s( )

+

–

YG1
YL1 YL2 YC1

YG2
YC2

Fig. 16.13

For a series-parallel, rules for the combination of impedance and of admittance
can be used to reduce a network to a single equivalent impedance or admittance.

Example 16.1 In the circuit shown, switch K is moved from position 1 to position

2 at time t = 0. At time t = 0–, the current through inductor L is I0 and the voltage

across capacitor is V0. Find the transform current I(S).

V t( )
CVo

i t( )
IoV

1

2+
+–

–
+
–

R L

Fig. 16.14

Solution The inductor has an initial current of I0. It is represented by a transform

impedance LS in series with a voltage source LI0 as shown in Fig. 16.15. The

capacitor has an initial voltage V0 across it. It is represented by a transform
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impedance of 
1

CS
 with an initial voltage 

V

S
0 . The transform circuit derived from

the circuit of Fig. 16.14 is shown in Fig. 16.15.

Vo

V s( )i

CS

S

LI0

I ( )s
I

+

+

+

–

–

–

R LS

Fig. 16.15

The current I(S) is given as the total transform voltage in the circuit divided by

the total transform impedance. Then

I(S) =
V S

Z S

( )

( )
 = 

V S LI
V

S

R LS
CS

1 0
0

1

( ) + -

+ +

 = 
SV S LI V

LS RS
C

1 0 0

2 1

( ) + -

+ +

(16.44)

Example 16.2 The network shown in Fig. 16.16 is a parallel combination of L, R
and C connected across a current source I. At time t = 0–, the current through

inductor L is I0 and the voltage across capacitor C is V0. At time t = 0+, the current

source I1(t) is connected to the parallel RLC circuit. Find the transform voltage

V(S).

V0

I0

I i t( )1

+

–

R

1 2

L C

Fig. 16.16

Solution Figure 16.17 gives the transform network corresponding to the given

network with switch K moved to position 2.

CV0 CSI1(s) G I0

s

I

LS

Fig. 16.17

From the above transform circuit, the transform voltage V(S) may be obtained by

taking the ratio of the total transform current to the total transform admittance.

The total transform current in the network is given by
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I(S) = I1(S) – 
I

S
0  + CV0

Total transform admittance is given by

Y(S) = G + 
1

LS
 + CS

Hence, the transform voltage is given by

V(S) =
I S

Y S

( )

( )
 = 

I s CV
I

S

G
LS

CS

1 0
0

1

( ) + -

+ +

Example 16.3 Obtain the transform impedance of the network shown in

Fig. 16.18.

2F

2W 4W

1F

Fig. 16.18

Solution The transform network of the Fig. 16.18 is shown in Fig. 16.19.

2S
I

2 4

I/S

Fig. 16.19

The admittance of the last two elements is the parallel combination.

Y1(S) = 4 + S

Therefore impedance is Z1(S) = 
1

4S +

Series combination of last elements

Z2(S) =
1

2

1

4S S
+

+
 = 

S S

S S

+ +

+

4 2

2 4( )
 = 

3 4

2 4

S

S S

+

+( )

Parallel combination of elements

Y2(S) =
1

2

2 4

3 4
+

+

+

S S

S

( )
 = 

( ) ( )3 4 4 4

6 8

S s S

S

+ + +

+
 = 

4 19 4

6 8

2S S

S

+ +

+

Hence, the impedance Z(S) = 
1

2Y S( )
 = 

6 8

4 19 42

s

S S

+

+ +



S-Domain Analysis 16.13

Example 16.4 In the given network in Fig. 16.20, switch S is opened at t = 0, the

steady state having established previously. With switch S open, draw the

transform network for analysis on the loop basis representing all elements and all

initial conditions. Write transform equation for current in the loop.

IFIH

S

10V

2W 4W

Fig. 16.20

Solution Under steady state conditions, the capacitor is open circuited and

inductor is short circuited. The current through the inductor is i0 = 
10

2
 = 5A. The

voltage across the capacitor is V0 = 10 V. Hence, the corresponding transform

network is shown in Fig. 16.21.

I
I ( )s

+
+–

–

S
S

10
5

2 4

S

Fig. 16.21

Hence, I(S) =
V S

Z S

( )

( )
 = 

5
10

2 4
1

+

+ + +

S

S
S

 = 
5 2)

6 12

(S

S S

+

+ +

16.5 TERMINAL PAIRS OR PORTS

Consider an arbitrary network made up of passive elements. It can be represented
by a rectangular box shown in Fig. 16.22.

One
port
N.W

Two
port
N.W

I1
I1 I2

1 1 2

1¢ 1¢ 2¢

V1 V1 V2

(a) (b)

Fig. 16.22

For the network shown in Fig. 16.22(a) only one voltage and one current exist
and only one network function is defined. It constitutes one pair of terminals
called a port. Generally, a driving source is connected to the pair of terminals.
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For the two terminal pair network shown in Fig. 16.22(b), two currents and two
voltages must exists. Normally in Fig. 16.22(b), 1-1¢ and 2-2¢ are called ports.
Hence, it is called two port network. If the driving source is connected across
1-1¢, the load is connected across 2-2¢. Otherwise, if the source is connected
across 2-2¢, the output is taken across 1-1¢.

16.6 NETWORK FUNCTIONS FOR THE
ONE-PORT AND TWO-PORT

For a one-port network, the driving point impedance or impedance of the network
is defined as

Z (s) = 
V s

I s

( )

( )
(16.45)

The reciprocal of the impedance function is the driving point admittance
function, and is denoted by Y (s).

For the two-port network without internal sources, the driving point impedance
function at port 1–1¢ is the ratio of the transform voltage at port 1–1¢ to the
transform current at the same port.

\ Z11(s) = 
V s

I s

1

1

( )

( )
(16.46)

Similarly, the driving point impedance at port 2–2¢ is the ratio of transform
voltage at port 2–2¢ to the transform current at the same port.

Z22(s) = 
V s

I s

2

2

( )

( )
(16.47)

For the two-port network, the driving point admittance is defined as the ratio of
the transform current at any port to the transform voltage at the same port.

Therefore Y11(s) = 
I s

V s

1

1

( )

( )
(16.48)

or Y22 (s) = 
I s

V s

2

2

( )

( )
, which is the driving point admittance.

The four other network functions are called transfer functions. These functions
give the relation between voltage or current at one port to the voltage or current at
the other port as shown hereunder.

(i) Voltage Transfer Ratio This is the ratio of voltage transform at one port
to the voltage transform at the other port, and is denoted by G(s)

G21(s) = 
V s

V s

2

1

( )

( )

and G12(s) = 
V s

V s

1

2

( )

( )
(16.49)

(ii) Current Transfer Ratio This is the ratio of current transform at one port
to current transform at other port, and is denoted by a (s)
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a12(s) = 
I s

I s

1

2

( )

( )

and a21(s) = 
I s

I s

2

1

( )

( )
(16.50)

(iii) Transfer Impedance It is defined as the ratio of voltage transform at one
port to the current transform at the other port, and is denoted by Z (s).

\ Z21(s) = 
V s

I s

2

1

( )

( )

and Z12(s) = 
V s

I s

1

2

( )

( )
(16.51)

(iv) Transfer Admittance It is defined as the ratio of current transform at one
port to the current transform at the other port, and is denoted by Y(s).

Y21(s) = 
I s

V s

2

1

( )

( )

and Y12(s) = 
I s

V s

1

2

( )

( )
(16.52)

The above network functions are found by forming the system of equations
using node or mesh analysis, and taking the transforms of equations by setting the
initial conditions to zero and solving for ratio of the response to excitation.

Example 16.5 For the network shown in Fig. 16.23, obtain the driving point

impedance.

S

1S

1

1

1

2W

V S( )
Z S( ) I ( )s

Fig. 16.23

Solution Applying Kirchhoff’s law at port 1-1¢

Z(S) =
V S

I S

( )

( )

where V(S) is applied at port 1-1¢ and I(S) is the current flowing through the

network. Then

Z(S) =
V S

I S

( )

( )
 = 2 + S + 

1

S

Z(S) =
S S

S

2 2 1+ +
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Example 16.6 For the network shown in Fig. 16.24, obtain the transfer functions

G21(S) and Z21(S) and the driving point impedance Z11(S).

2S

1

1¢

2

2¢

2W

I 1( )s V S2( )V S2( )V S1( )

Fig. 16.24

Solution Applying Kirchhoff’s law

V1(S) = 2I1(S) + 2SI1(S)

V2(S) = I1(S) × 2S

Hence

G21(S) =
V S

V S
2

1

( )

( )
 = 

2

2 2

S

S+
 = 

S

S + 1

Z21(S) =
V S

I S
2

1

( )

( )
 = 2S

Z11(S) =
V S

I S
1

1

( )

( )
 = 2(S + 2)

Example 16.7 For the network shown in Fig. 16.25, obtain the transfer functions

G21(S), Z21(S) and driving point impedance Z11(S).

2

+ +

– –

2

I 1( )s V S2( )V S2( )V S1( )

2S

1

Fig. 16.25

Solution From the circuit, the parallel combination of resistance and

capacitance can be combined into equivalent impedance.

Zeq(S) =
1

2
1

2
S +

 = 
2

4 1S +

Applying Kirchhoff’s laws, we have

V2(S) = 2I1(S)
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and V1(S) = I1(S) 
2

4 1
2

S +
+

L
NM

O
QP

= I1(S) 
8 4

4 1

S

S

+

+

L
NM

O
QP

The transfer functions

G21(S) =
V S

V S
2

1

( )

( )
 = 

2

8 4

4 1

1

1

I S

S

S
I S

( )

( )
+

+

F
HG

I
KJ

 = 
8 2

8 4

S

S

+

+

Z21(S) =
V S

I S
2

1

( )

( )
 = 2

The driving point function is

Z11(S) =
V s

I S
1

1

( )

( )
 = 

8 4

4 1

S

S

+

+

16.7 POLES AND ZEROS OF NETWORK FUNCTIONS

In general, the network function N(s) may be written as

N(s) = 
P s

Q s

a s a s a s a

b s b s b s b

n n
n n

m m
m m

( )

( )
=

+ + + +

+ + + +

-
-

-
-

0 1
1

1

0 1
1

1

K

K

(16.53)

where a0, a1,..., an and b0, b1, ..., bm are the coefficients of the polynomials P(s)
and Q(s); they are real and positive for a passive network. If the numerator and
denominator of polynomial N(s) are factorised, the network function can be
written as

N(s) = 
P s

Q s

a s z s z s z

b s p s p s p

n

m

( )

( )

( ) ( ) ( )

( ) ( ) ( )
=

- - -

- - -

0 1 2

0 1 2

K

K

(16.54)

where z1, z2, ..., zn are the n roots for P(s) = 0

and p1, p2, ..., Pm are the m roots for Q (s) = 0

and a0/b0 = H is a constant called the scale factor.

z1, z2,..., zn in the transfer function are called zeros, and are denoted by 0.
Similarly, p1, p2,..., pm are called poles, and are denoted by ¥. The network
function N (s) becomes zero when s is equal to anyone of the zeros. N(s) becomes
infinite when s is equal to any one of the poles. The network function is completely
defined by its poles and zeros. If the poles or zeros are not repeated, then the
function is said to be having simple poles or simple zeros. If the poles or zeros are
repeated, then the function is said to be having multiple poles multiple zeros.
When n > m, then (n – m) zeros are at s = •, and for m > n, (m – n) poles are at
s = •.
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Consider, the network function

N (s) = 
( ) ( )

( ) ( ) ( )

s s

s s j s j

+ +

+ + + + -

1 5

2 3 2 3 2

2

(16.55)

that has double zeros at s = – 1 and a zero at s = – 5; and three finite poles at s =
– 2, s = – 3 + j2, and s = – 3 – j2 as shown in Fig. 16.26.

jw

s

– 3 + 2j

– 3 2j–

x

x

x

– 5 – 4 – 3 – 2 – 1

Fig. 16.26

The network function is said to be stable when the real parts of the poles and
zeros are negative. Otherwise, the poles and zeros must lie within the left half of
the s-plane.

16.8 SIGNIFICANCE OF POLES AND ZEROS

Poles and zeros are critical frequencies. At poles, the network function become
infinite, while at zeros, the network function becomes zero. At other complex
frequencies, the network function has a finite non-zero value.

Poles and zeros provide useful information in network functions. Consider the
following cases.

(a) Driving Point Impedance

Z(S) =
V S

I S

( )

( )
(16.56)

A pole of Z(S) implies zero current for a finite voltage which means an
open circuit. A zero of Z(S) implies no voltage for a finite current or a
short circuit.

Consider Z(S) =
1

CS
(16.57)

The above function has a pole at S = 0 and zero at S = •.
Therefore, the above function represented by capacitor acts an open circuit
at pole frequency and acts as short circuit at zero frequency.

(b) Driving Point Admittance

Y(S) =
I S

V S

( )

( )
(16.58)
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A pole of Y(S) implies zero voltage for a finite value of current which
gives a short circuit. A zero of Y(S) implies zero current for a finite value
of voltage which gives an open circuit.

(c) Voltage Transform Ratio

G21(S) =
V S

V S

2

1

( )

( )
(16.59)

V2(S) = G21(S) V1(S)

To obtain output voltage, we require the product of input and transfer func-
tion. The expression for G21(S). V1(S) is obtained in the form of a ratio of
polynomials in S.
By making use of partial fractions, we can obtain a pole of either G21 (S)
or V1(S) and no repeated roots.

G21(S) V1(S) =
A

S a

A

S aii

n

jj

m

-
+

-
= =

Â Â
1 1

(16.60)

where n and m are the number of poles of G21(S) and V1(S) respectively.
The frequencies ai from the natural complex frequencies corresponding to
free oscillations and depend on the network function G21(S). While fre-
quencies aj constitute the complex frequencies corresponding to the forced
oscillations and depend on the driving force V1(S). From the above discus-
sion, we can say that the poles determine the time variation of the response
whereas the zeros determine the magnitude response.

(d) Other Network Functions

Significance of poles and zeros in other transfer functions is the same as
discussed above. In each of the cases, poles determine the time domain
behaviour and zeros determine the magnitude of each of the terms of the
response.

16.9 PROPERTIES OF DRIVING POINT FUNCTIONS

(a) The driving point function is a ratio of polynomials in S. Polynomials are
obtained from the transform impedances of the elements and their combi-
nations.

Let P(S) = a0 S
n + a1 Sn–1 + K + an–1 S + an

and Q(S) = b0 S
m + b1 S

m–1 + K + bm–1 S + bm
(16.61)

be the numerator and the denominator polynomials respectively. The
above equations can be factorized and therefore written as

P(S) = (S – Z1) (S – Z2) K (S – Zn)

Q(S) = (S – P1) (S – P2) K (S – Pm) (16.62)

U
V|
W|

U
V|
W|
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The driving point function N(S) may be written as

N(S) =
P S

Q S

( )

( )
 = 

( ) ( ) ( )

( ) ( ) ( )

S Z S Z S Z

S P S P S P

n

m

- - -

- - -

1 2

1 2

K

K

(16.63)

The quantities Z1, Z2 K Zn are called zeros of N(S) as N(Z1) = N(Z2) = º
N(Zn) = 0.
The quantities P1, P2 K Pm are called poles of N(S) as N(P1) = N(P2) = K
= N(Pm) = •
That is, pole is that finite value of S for which N(S) becomes infinity.
If the zeros and poles are not repeated then the poles or zeros are said to be
distinct or simple.
A zero or a pole is said to be of multiplicity ‘r’ if (S – Z)r or (S – P)r is a
factor of P(S) or Q(S). A function N(S) is said to have a pole (or zero) at

infinity, if the function N
1

S

F
H

I
K  has a pole (or zero) at S = 0.

Consider the function

N(S) =
S

S S

+

+ +

1

2 4( ) ( )
(16.64)

N
1

S

F
H

I
K  =

1
1

1
2

1
4

S

S S

+

+
F
H

I
K +
F
H

I
K

 = 
S S

S S

( )

( ) ( )

+

+ +

1

1 2 1 4
(16.65)

i.e. N
1

S

F
H

I
K  has a zero at S = 0

N(S) has a zero at S = •
From the above example, we say that the number of zeros including zeros
at • equals the number of poles including poles at •.

(b) (i) N(S) be a driving point impedance, i.e. Z(S)

Z(S) =
V S

I S

( )

( )
(16.66)

A zero of N(S) is a zero of V(S), it signifies a short circuit. Similarly,
a pole of Z(S) is a zero of I(S). The poles of Z(S) are those frequencies
corresponding to open circuit conditions.

(ii) Consider a driving point admittance function

Y(S) =
I S

V S

( )

( )
(16.67)

A zero of Y(S) means a zero of I(S), i.e. the open circuit condition and
a pole of Y(S) means a zero of V(S) signifies a short circuit.

(c) Since all the elements in the circuit are real positive quantities the coeffi-
cients a0, a1, a2, K an and b0, b1, b2 K bm are real and positive. Therefore,
any zeros or poles, if complex, must occur in conjugate pairs.



S-Domain Analysis 16.21

(d) The real parts of all zeros and poles must be negative or zero. Consider a
pole ‘P’ of N(S), i.e. (S – P) is a factor of the denominator of N(S). Using

partial fractions, we know that this gives rise to a term of the form 
A

S P-

whose inverse Laplace transform contains the term ept. The real part of ept

tends to zero as t tends to infinity if the real part P is negative. Therefore,
for a finite input the response is finite as t tends to infinity if the real part of
P is negative. A network function whose response is finite for all t, for a
given finite input is said to be stable. Thus, a driving point impedance Z(S)
is stable if all the poles lie in the negative half of the S-plane.

Since Y(S) = 
1

Z S( )
, poles of Y(S) are zeros of Z(S). Therefore Y(S) is stable

if all the zeros of Z(S) also lie in the negative half of the S-plane. Thus, the
real parts of all zeros and poles of a driving point function must be nega-
tive or zero.

(e) Poles or zeros lying on the jw-axis must be simple. Consider a pole ‘P’

lying on the jw-axis. If it is not simple then in the time response of the
function of which it is a pole contains the term tk ejwt which tends to infin-
ity as t tends to infinite. Therefore, the function becomes unstable. Since,
zeros of one function will be poles of the other. Therefore, the zeros of
driving point function should also satisfy this condition.

(f) The degree of P(S) and Q(S) may differ by zero or one only.
At very high frequencies, the term a0 Sn dominates over the other terms in
the numerator and the term b0 Sm dominates over other terms in the de-
nominator.

Lt
SÆ •

N(S) = Lt
S

a

bÆ •

0

0

 S
n – m (16.68)

Consider the network elements R, L, C and M. R is independent of fre-
quency.

\ If n = m, then the function behaves as a resistance R = 
a

b

0

0

 at high

frequency. The impedance LS of an inductor increases linearly with the
complex frequency S and therefore is an open circuit at S = •. Thus if n =
m + 1, the function N(S) behaves as an inductance as S approaches infin-
ity. A capacitor is a short circuit at infinite frequencies. Thus, N(S) be-
haves as a capacitance if m = n + 16.
Now, consider the driving point impedance Z(S). Z(S) will behave as an

inductor as LS increases with increasing S while 
1

CS
 decreases with in-

creasing S and therefore the impedance of an inductance dominates over
the capacitive impedance. If inductors are not present in the circuit, then R
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dominates over 
1

CS
 as S tends to infinity. Thus, Z(S) = LS or R as S tends

infinity.

\ n – m = 0 or 1

If N(S) is a driving point impedance.

On the other hand the admittance of an inductance 
1

LS
 tends to zero as S

tends to infinity. Similarly, the admittance of a capacitance CS tends to

infinity as S tends to infinity. Therefore, CS dominates over 
1

LS
 as S tends

to infinity. If the network does not contain capacitors then the resistance R

dominates over 
1

LS
 at higher frequencies.

\ If N(S) is a driving point admittance function m – n = 0 or 1.
Therefore, |n – m| = 0 or 1

(g) The lowest degree terms in P(S) and Q(S) may differ in degree by zero or
one only.
As S approaches zero, the higher power of S tends to zero faster than S,
therefore N(S) can be approximated by

N(S) =
a S a

b S b

n n

m n m

-

-

+

+

1
(16.69)

The impedance of an inductance ‘LS’ approaches zero as S tends to zero

while that of a capacitor 
1

CS
 approaches infinity as S tends to zero. 

1

CS

dominates over LS as S tends to zero. Therefore, for Z(S), the capacitance
dominates over an inductance as S tends to zero. If the network does not
contain capacitors then R dominates over LS and S tends to zero. Thus, the

network can be replaced by R or 
1

CS
 if Z(S) is of interest. Similarly, for

Y(S); 
1 1

R LS
,  dominate over CS as S tends to zero. Therefore, for purposes

of Y(S), the network is just a conductance or an inductance. Thus, the net-
work is just one inductor or one capacitance or one resistance as S tends to
zero.

\ N(S) is of the form K1 or K2 S or 
K

S

3  where K1, K2, K3 are constants.

Hence, the lowest degree of P(S) and Q(S) can differ at most in one degree.
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(h) P(S) and Q(S) cannot have missing terms unless all even or all odd degree
terms are absent.
We know that

P(S) = a0 S
n + a1 Sn – 1 + K + ai + 1 S

n – i – 1 + ai S
n – i

+ K + an – 1 S + an

and Q(S) = b0 S
m + b1 Sm – 1 + K + bi + 1 S

m – i – 1 + bi S
m – i

+ K + bm – 1 S + bm (16.70)

The above requirement means that for any i, ai or bi cannot be zero unless
aj = 0 or bj = 0 for all i ≥ j. The only exception to this rule is when all even
or all odd powers of S are missing. To understand this, consider the net-
work under study contains only elements like R, L, C, M whose transfer

impedances are R, LS, 
1

CS
, MS respectively.

Also, R, L, C, M are positive quantities. A combination of RL or RC will

give rise to a term of the form (aS + b) or a + 
b

S
. Since a

b

S
+

F
H

I
K  = 

aS b

S

+

means (aS + b) in the numerator and S in the denominator. Similarly, R, L,
C give rise terms of the form (aS2 + bS + C) and a combination of only L
and C gives rise to a term of the form (aS2 + b). Therefore, when two such
factors are multiplied, since all the coefficients in each term are positive,
in the expansion of the product no term can be zero. If all the terms are of
the form (aS2 + b), then their product contains only even powers of S. If
this is multiplied by S, the resulting function contains only odd powers of
S. Given a ratio of polynomials N(S), these properties can therefore be
used to find out if N(S) represents a driving point function of a network.

16.10 PROPERTIES OF TRANSFER FUNCTIONS

(a) The transfer function is a ratio of polynomials in S.
(b) The coefficients of P(S), the numerators polynomial and of Q(S), the de-

nominator polynomial must be real. Therefore, all poles and zeros, if com-
plex, must occur in conjugate pairs.

(c) The real parts of all poles must be negative and any pole on the jw-axis
must be simple. As in the case of driving point functions, this follows from
the stability considerations.

(d) Since poles of the transfer function are zeroes of Q(S), it follows that the
zeroes of Q(S) must lie in the negative half plane and any zero lying on the
jw-axis must be simple.
Let P1, P2, K Pm be the zeros of Q(S)

Then Q(S) = K ◊ (S – P1) (S – P2) (S – P3) K (S – Pm)

Since all poles have negative real parts and complex poles occur in conju-
gate pair the product of these factors contains all powers of S whose coef-
ficients are positive. Therefore, Q(S) does not have missing terms unless
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all even or all odd powers are missing. Since there are no restrictions on
the zeroes of the transfer function, P(S) can have missing terms. Also co-
efficients of powers of S in P(S) can be negative.

(e) For G(S) and a(S), the degree of the numerator polynomial P(S) is less
than or equal to the degree of Q(S).

To prove this, we use the fact that a two port can be represented by an
equivalent T(star) or P (delta) shown in Fig. 16.27.

+

–

21

2¢1¢

I 1( )s I 1( )s

V S2( )Z S2( )

(a) T-equivalent network

Z S3( )Z S1( )

V S1( )

21

2¢1¢

Y S2( ) Y S3( )

(b) -equivalent networkp

Y S1( )I1( )S I2( )S

V S1( )

Fig. 16.27

Let a source of known voltage V1(S) be applied to a T-network of the port 11¢.
Let a source of known current I1(S) be applied to the p-network at 111 and 221 be
short circuited, then assuming I2(S) = 0.

G(S) =
V S

V S

2

1

( )

( )
 = 

Z S

Z S Z S

2

1 2

( )

( ) ( )+
(16.71)

and a(S) =
I S

I S

2

1

( )

( )
 = 

Y S

Y S Y S

2

1 2

( )

( ) ( )+
(16.72)

Since Z1(S), Z2(S), Z3(S); Y1(S), Y2(S) and Y3(S) can be thought off as the
driving point functions of some one ports, they have to satisfy the properties of
driving point immittance functions.

Since Z1(S) and Z2(S) are ratio of polynomials.

Let Z1(S) = K 
( ) ( ) ( )

( ) ( ) ( )

S S S

S S S

n

m

+ + +

+ + +

a a a

b b b
1 2 1

1 2 1

K

K

(16.73)

Z2(S) =
K S r S r S r

S S S S

n

m

2 1 2 2

1 2 2

( ) ( ) ( )

( ) ( ) ( )

+ + +

+ + +

K

Kd d
(16.74)

Substituting these expression in G(S)

G(S) =
Z S

Z S Z S

2

1 2

( )

( ) ( )+
(16.75)
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= 
K S S S S S

S S S S S S

S S S S S

n m

n m

n m

1 1 2 1 1 2

1 2 1 1 2 1

2 3 2 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

+ + + + +

+ + + + + +

+ + + + +

a a a d d

a a a d d g

g g g b b

K K

K K

K K

Let P(S) denote the numerator polynomial of G(S) and Q(S) the denominator
polynomial of G(S).

Then degree of P(S) = n1 + m2 and degree of Q(S) = n1 + m2 or n2 + m1,
whichever is greater.

Thus if n1 + m2 > n2 + m1, the degree of P(S) equals the degree of Q(S).
If n1 + m2 < n2 + m1, degree of Q(S) = n2 + m1 and the degree of P(S) is less

than the degree of Q(S).
Similarly assuming Y1(S) and Y2(S) as ratios of polynomials and substituting

those expressions in a(S), it can be shown that the degree of the numerator of
a(S) is less than or equal to the degree of the denominator.

(f) The degree of the numerator polynomial of Z21(S) or Y21(S) is less than or
equal to the degree of the denominator polynomial plus one.
Referring to the T and p equivalent networks of two port network shown in
Fig. 16.27

Z21(S) =
V S

I S
I

2

1 02

( )

( )
=

 = 
Z S I S

I S

2 1

1

( ) ( )

( )
 = Z2(S) (16.76)

and Y21(S) =
I S

V S
V

2

1 02

( )

( )
=

 = 
- V S I S

I S

2 1

1

( ) ( )

( )
 = – Y2(S) (16.77)

Thus, the highest degree of the numerator of Z21(S) equals the highest de-
gree of the numerator of Z2(S). But as Z2(S) is a driving point impedance,
the highest degree of the numerator of Z2(S) is the degree of denominator
plus one. Therefore, the highest degree of the numerator of Z12(S) is the
degree of its denominator plus one. Similarly, since Y2(S) is a driving point
admittance, the highest degree of the numerator or Y21(S), which is also the
numerator of Y2(S) is equal to the degree of the denominator plus one.

16.11 NECESSARY CONDITIONS FOR
DRIVING POINT FUNCTION

The restrictions on pole and zero locations in the driving point function with
common factors in P(s) and Q (s) cancelled are listed below.

1. The coefficients in the polynomials P(s) and Q (s) of network function
N (s) = P(s)/Q (s) must be real and positive.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.
3. (a) The real parts of all poles and zeros must be zero, or negative.

(b) If the real part is zero, then the pole and zero must be simple.
4. The polynomials P(s) and Q (s) may not have any missing terms between

the highest and the lowest degrees, unless all even or all odd terms are
missing.
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5. The degree of P(s) and Q(s) may differ by zero, or one only.
6. The lowest degree in P(s) and Q (s) may differ in degree by at the most one.

16.12 NECESSARY CONDITIONS FOR
TRANSFER FUNCTIONS

The restrictions on pole and zero location in transfer functions with common
factors in P(s) and Q(s) cancelled are listed below.

1. (a) The coefficients in the polynomials P(s) and Q (s) of N (s) = P(s)/Q(s)
must be real.

(b) The coefficients in Q(s) must be positive, but some of the coefficients
in P(s) may be negative.

2. Complex or imaginary poles and zeros must occur in conjugate pairs.
3. The real part of poles must be negative, or zero. If the real part is zero,

then the pole must be simple.
4. The polynomial Q (s) may not have any missing terms between the highest

and the lowest degree, unless all even or all odd terms are missing.
5. The polynomial P(s) may have missing terms between the lowest and the

highest degree.
6. The degree of P(s) may be as small as zero, independent of the degree of

Q (s).
7. (a) For the voltage transfer ratio and the current transfer ratio, the maxi-

mum degree of P(s) must equal the degree of Q (s).
(b) For transfer impedance and transfer admittance, the maximum degree

of P(s) must equal the degree of Q (s) plus one.

16.13 TIME DOMAIN RESPONSE FROM
POLE ZERO PLOT

For the given network function, a pole zero plot can be drawn which gives useful
information regarding the critical frequencies. The time domain response can also
be obtained from pole zero plot of a network function. Consider an array of poles
shown in Fig. 16.28.

jw

s

¥

¥

¥

¥

¥

¥S3

S4
S2

S*3
S*1

S1

Fig. 16.28

In Fig. 16.28 s1 and s3 are complex conjugate poles, whereas s2 and s4 are real
poles. If the poles are real, the quadratic function is

s2 + 2dwns + w2
n for d > 1
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where d is the damping ratio and wn is the undamped natural frequency.
The roots of the equation are

s2, s4 = – dwn ± wn d 2 1- ; d > 1

For these poles, the time domain response is given by

i(t) = k2es2 t + k4e
s4t

The response due to pole s4 dies faster compared to that of s2 as shown in
Fig. 16.29.

i( )ti t( )

t t

due to S4 due to S2

Fig. 16.29

s1 and s3 constitute complex conjugate poles. If the poles are complex
conjugate, then the quadratic function is

s2 + 2dwn s + w 2
n for d < 1

The roots are s1, s1
* = – dwn ± jwn 1 2- d  for d < 1

For these poles, the time domain response is given by

i(t) = k1e
–dwn t + j tnw d1 2-e j  + k1

*e–dwn t – j tnw d1 2
-e j

= ke–dwn t sin w dn t1 2-e j
From the above equation, we can conclude that the response for the conjugate

poles is damped sinusoid. Similarly, s3, s3
* are also a complex conjugate pair.

Here the response due to s3 dies down faster than that due to s1 as shown in
Fig. 16.30.

Consider a network having transfer admittance Y(s). If the input voltage V(s)
is applied to the network, the corresponding current is given by

I (s) = V(s) Y(s) = 
P s

Q s

( )

( )

i t( )

due to s1 due to s3

i t( )

t t

Fig. 16.30
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This may be taken as

I(s) = H 
( ) ( ) ( )

( ) ( ) ( )

s s s s s s

s s s s s s

a b n

m

- - -

- - -

K

K1 2

where H is the scale factor.
By taking the partial fractions, we get

I(s) = 
k

s s

k

s s

k

s s

m

m

1

1

2

2-
+

-
+ +

-
K

The time domain response can be obtained by taking the inverse transform

i(t) = L -

-
+

-
+ +

-

L
NM

O
QP

1 1

1

2

2

k

s s

k

s s

k

s s

m

m

K

Any of the above coefficients can be obtained by using Heavisides method.
To find the coefficient kl

kl = H 
( ) ( ) ( )

( ) ( ) ( )
( )

s s s s s s

s s s s s s
s sa b n

m
l

s sl

- - -

- - -

L
NM

O
QP

-
=

K

K1 2

Here sl, sm, sn are all complex numbers, the difference of (sl – sn) is also a
complex number.

\ (sl – sn) = Mln e
jf ln

Hence kl = H 
M M M

M M M

la lb ln

l l lm

K

K1 2

 ¥ e j (fla + f lb + K + fln) – (fl1 + fl2 + K + flm)

Similarly, all coefficients k1, k2, K, km may be obtained, which constitute the
magnitude and phase angle.

The residues may also be obtained by pole zero plot in the following way.

1. Obtain the pole zero plot for the given network function.
2. Measure the distances Mla, Mlb, K, Mln of a given pole from each of the

other zeros.
3. Measure the distances Ml1, Ml2, K, Mlm of a given pole from each of the

other poles.
4. Measure the angle fla, flb, ..., fln of the line joining that pole to each of the

other zeros.
5. Measure the angle fl1, fl2, ..., flm of the line joining that pole to each of the

other poles.
6. Substitute these values in required residue equation.

16.14 AMPLITUDE AND PHASE RESPONSE FROM
POLE ZERO PLOT

The steady state response can be obtained from the pole zero plot, and it is given
by

N( jw) = M(w)e jf (w)
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where M(w) is the amplitude

f (w) is the phase

These amplitude and phase responses are useful in the design and analysis of
network functions. For different values of w, corresponding values of M (w) and
f(w) can be obtained and these are plotted to get amplitude and phase response of
the given network.

16.15 STABILITY CRITERION FOR ACTIVE NETWORK

Passive networks are said to be stable only when all the poles lie in the left half of
the s-plane. Active networks (containing controlled sources) are not always
stable. Consider transformed active network shown in Fig. 16.31.

6 W V s2( )kV2V s1( ) s5/s

1

1¢

Fig. 16.31

By applying Millman Theorem, we get

V2(s) = 
V s k V s

s s

1 2

6 5

( ) ( )

/

+

+ +

= 
s V s k V s

s s

[ ( ) ( )]1 2
2 6 5

+

+ +

V2(s) [s2 + 6s + 5] – ksV2(s) = sV1(s)

V2(s) [s2 + (6 – k)s + 5] = sV1(s)

\  
V s

V s

s

s k s

2

1
2 6 5

( )

( ) ( )
=

+ - +

From the above transformed equation, the poles are dependent upon the value
of k.

The roots of the equation are

s = 
- - ± - - ¥( ) ( )6 6 4 5

2

2k k

For k = 0, the poles are at – 1, – 5, which lie on the left half of the s-plane. As
k increases, the poles move towards each other and meet at a point

( )6 202- -k  = 0, when k = 1.53 or 10.47. The root locus plot is shown in

Fig. 16.32.
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X X
–5 –2.24 –1 +2.24

s

jw

+ 2.24j

– 2.24j

Fig. 16.32

The root locus is obtained from the characteristic equation s2 + (6 – k)s + 5
= 0. As the value of k increases beyond 1.53, the locus of root is a circle. The
poles are located on the imaginary axis at ± j2.24 for k = 6. At – 2.24, poles are
coincident for k = 1.53 while at + 2.24, poles are coincident for k = 10.47. When
k > 10.47, the poles again lie on the real axis but remain on the right half  of the s-
plane, one pole moving towards the origin and the other moving towards infinity.
From this we can conclude, as long as k is less than 6, the poles lie on the left half
of the s-plane and the system is said to be stable. For k = 6, the poles lie on the
imaginary axis and the system is oscillatory in nature. For values of k greater than
6, the poles lie on the right half of the s-plane. Then the system is said to be
unstable.

16.16 ROUTH CRITERIA

The locations of the poles gives us an idea about stability of the active network.
Consider the denominator polynomial

Q(s) = b0 s
m + b1s

m – 1 + K + bm (16.78)

To get a stable system, all the roots must have negative real parts. There should
not be any positive or zero real parts. This condition is not sufficient.

Let us consider the polynomial

s3 + 4s2 + 15s + 100 = (s + 5) (s2 – s + 20)

In the above polynomial, though the coefficients are positive and real, the two
roots have positive real parts. From this we conclude that the coefficients of Q(s)
being positive and real is not a sufficient condition to get a stable system.
Therefore, we have to seek the condition for stability which is necessary and
sufficient.

Consider the polynomial Q (s) = 0. After factorisation, we get

b0 (s – s1) (s – s2) K (s – sm) = 0 (16.79)
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On multiplication of these factors, we get

Q(s) = b0sm – b0 (s1 + s2 + K + sm)sm – 1

+ b0(s1s2 + s2s3 + K ) sm – 2

+ b0 (–1)m (s1s2 K sm) = 0 (16.80)

Equating the coefficients of Eqs 16.78 and 16.80, we have

b

b

1

0

= – (s1 + s2 + K + sm) (16.81)

= – sum of the roots

b

b

2

0

= 1(s1s2 + s2s3 +K) (16.82)

= sum of the products of the roots taken two at a time

b

b

3

0

= – (s1 s2 s3 + s2 s3 s4 +K) (16.83)

= – sum of the products of the roots taken three at a time.

(– 1)m 
b

b

m

0

= (s1 s2 s3 K sm) = product of the roots (16.84)

If all the roots have negative real parts, then from the above equations it is
clear that all the coefficients must have the same sign. This condition is not
sufficient due to the fact that the zero value of a coefficient involves cancellation,
which requires some root to have positive real parts.

The Routh criterion for stability is discussed below. Consider a polynomial

Q(s) = b0sm + b1s m – 1 + b2s
m – 2 + K + bm

Taking first row coefficients and second row coefficients separately, we have

b0 b2 b4 K

b1 b3 b5 K

Now we complete the Routh array as follows.
For m = 5

s5 b0 b2 b4

s
4

b1 b3 b5

s
3

c1 c2

s
2

d1 d2

s1 e1

s0 f1

where c1, c2, d1, d2, el, f1 are determined by the algorithm given below.

b0 b2

c1 = 
b b

b

b b b b

b

1 3

1

1 2 0 3

1

=
-
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b0 b4

c2 = 
b b

b

b b b b

b

1 5

1

1 4 0 5

1

=
-

b1 b3

d1 = 
c c

c

c b b c

c

1 2

1

1 3 1 2

1

=
-

b1 b5

d2 = 
c

c

b c

c

1

1

5 1

1

0 0
=

-

c1 c2

e1 = 
d d

d

c d c d

d

1 2

1

2 1 1 2

1

=
-

d1 d2

f1 = 
e

e

d e

e

1

1

2 1

1

0 0
=

-

In order to find out the element in kth row and jth column, it is required to know
the four elements. These elements in the row (k – 1) and row (k – 2) just above the
elements are in column 1 of the array and (J + 1) column of the array. The product
of the elements joined by a line with positive slope has positive sign while the
product of elements joined with a line with negative slope has a negative sign.
The difference of these products is divided by the element of column 1 and row (k
– 1). The above process is repeated till m + 1 rows are found in the Routh array.

According to the Routh-Hurwitz theorem, the number of changes in the sign of
the first column to the right of the vertical line in an array moving from top to
bottom is equal to the number of roots of Q (s) = 0 with positive real parts. To get
a stable system, the roots must have negative real parts.

According to the Routh-Hurwitz criterion, the system is stable, if and only if,
there are no changes in signs of the first column of the array. This requirement is,
both the necessary and sufficient condition for stability.

Solved Problems

Problem 16.1 For the network shown in Fig. 16.33, determine the transform
impedance Z(s).

5 F

10 W 20 W

1

1¢

Z s( ) 2 H

Fig. 16.33
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Solution The transform network for the network shown in Fig. 16.33 is shown
in Fig. 16.34.

1/5 s

10 W 20 W

1

1¢

Z s( ) 2 s

Fig. 16.34

From Fig. 16.34, the equivalent impedance at port 1–1¢ is

Z (s) = 10 2 20
1

5
+ +F

H
I
K

L
NM

O
QPs

s
||{ }

= 10 + 
2 20 1 5

2 20 1 5

s s

s s

( / )

/

+

+ +

= 
20 200 2 40 2 5

10 100 1

5

2

s s s

s s

s

+ + + +

+ +

/ /

= 
100 1000 10 200 2

10 100 1

2 2

2

s s s s

s s

+ + + +

+ +

Therefore, the network transform impedance is

Z(s) = 
300 1002 10

10 100 1

2

2

s s

s s

+ +

+ +

Problem 16.2 For the two port network shown in Fig. 16.35, determine the
driving point impedance Z11(s) and the driving point admittance Y11(s). Also find
the transfer impedance Z21(s).

10 W

1

1¢

2 sV s1 ( ) V s2 ( )I s1 ( )

2

2¢

Fig. 16.35

Solution By applying Kirchhoff’s law to the circuit, we have

V1(s) = 10I1(s) + 2s I1(s) (16.85)
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The voltage across port 2–2¢ is

V2(s) = I1(s) ¥ (2s) (16.86)

From Eq. 16.85, the driving point impedance is

Z11(s) = 
V s

I s

1

1

( )

( )
 = (2s + 10)

Similarly, the driving point admittance is

Y11(s) = 
I s

V s s

1

1

1

2 10

( )

( )
=

+

From Eq. 16.86, the transfer impedance is

Z21(s) = 
V s

I s

2

1

( )

( )
 = 2s

Problem 16.3 For the network shown in Fig. 16.36, determine the transfer
functions G21(s) and Z21(s) and the driving point admittance Y11(s).

1/2sV s1 ( ) V s2 ( )I s1 ( )

5 s

Fig. 16.36

Solution By applying Kirchhoff’s voltage law at the ports, we get

V1(s) = I1(s) 5
1

2
s

s
+L

NM
O
QP

V2(s) = 
1

2s
 I1(s)

Therefore, the voltage transfer ratio

G21(s) = 
V s

V s s s s

2

1

1

2 5 1 2

( )

( ) ( / )
=

+

G21(s) = 
1

10 12s +

The transform impedance is

Z21(s) = 
V s

I s s

2

1

1

2

( )

( )
=

The driving point admittance is

Y11(s) = 
I s

V s s s

2

1

1

5 1 2

( )

( ) /
=

+
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\ Y11(s) = 
2

10 12

s

s( )+

Problem 16.4 For the network shown in Fig. 16.37, determine the transfer
functions G21(s) and Z21(s). Also find the driving point impedance Z11(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )20 W

10 W

1/2s

Fig. 16.37

Solution From Fig. 16.38, by application of Kirchhoff’s laws, we get the
following equations

The driving point impedance

Z11(s) = 
V s

I s

1

1

( )

( )
 = [20 || (10 + 1/2s)] = 

20 10 1 2

20 10 1 2

¥ +

+ +

( / )

/

s

s

Z11(s) = 
20 10 1 2

30 1 2

( / )

/

+

+

s

s

Z11(s) = 
400 20

60 1

s

s

+

+

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )20 W

10 W

1/2s

I s1( ) I s3( ) I s2( )

Fig. 16.38

From the above figure, by application of Kirchhoff’s laws, we get

V1(s) = 20I1(s) – 20I3(s) (16.87)

10I3(s) + 20[I3(s) – I1(s)] + 
1

2s
[I3(s) + I2(s)] = 0 (16.88)

V2(s) = [I2(s) + I3(s)]
1

2s
(16.89)

From Eq. 16.88, we get

30
1

2
+F

H
I
Ks

I3(s) – 20 I1(s) = 0
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I3(s) = 
40

60 1

s

s +
 I1(s) (16.90)

From Eq. 16.89, since I2 = 0 we get

V2(s) = + I3(s) 
1

2s
F
H

I
K (16.91)

The transfer impedance at port 2 is

Z21(s) = 
V s

I s

s

s s s

2

1

40

60 1

1

2

20

60 1

( )

( ) ( ) ( )
=

+
¥ =

+

The voltage transfer ratio

G21(s) = 
V s

V s

I s s

I s I s

s

s s

s

s

2

1

3

1 3

1 2

20 20

1 2
60 1 40

2

1

20 1

( )

( )

( ) ( / )

( ) ( )

( / )
=

-
=

+ -
=

+

Problem 16.5 Draw the pole zero diagram for the given network function I(s)
and hence obtain i(t).

I (s) = 
20

5 2

s

s s( ) ( )+ +

Solution In the network function

P(s) = 20s

and Q(s) = (s + 2)(s + 5) = 0

By taking partial fractions, I(s) can be written as

I (s) = 
k

s

k

s

1 2

2 5+
+

+

Therefore, the time domain response is

i(t) = k1e
–2t + k2e–5t

Here, the coefficients k1 and k2 are determined by using the pole zero plot as
shown in Fig. 16.39.

jw

s
x x

– 4– 5 – 3 – 2 – 1

Fig. 16.39

Consider a pole at – 2
The distance between zero to pole at – 2 is

M02 = 2
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The angle between the line joining to the pole at – 2 to the zero is

f02 = 180°

Similarly, the distance between pole at – 5 to pole at – 2 is

M52 = 3

The angle between the line joining the pole at – 2 to the pole at – 5 is

f52 = 0°

Hence k1 = H 
M e

M e

j

j
02

52

02

52

f

f

= 20 ¥ 
2

3

180

0

e

e

j

j
 = 13.33 e j180 = – 13.33

Similarly, k2 = H 
M e

M e

j

j
05

25

05

25

f

f

where M05 = 5, f05 = 180°

M25 = 3, f25 = 180°

Hence k2 = 
20 5

3

¥
 e j(180 – 180)

= 
100

3
 = 33.3

Substituting these values, we get

i(t) = (– 13.33e–2t + 33.3 e–5t) A

Problem 16.6 Draw the pole zero diagram for the given network function and
hence obtain v(t)

V(s) = 
4 2

1 3)

( )

( ) (

s s

s s

+

+ +

Solution In the network function

p(s) = 4s(s + 2)

and Q(s) = (s + 1) (s + 3) = 0

By taking partial fractions, we have

V(s) = 
k

s

k

s

1 2

1 3+
+

+

The time domain response can be obtained by taking the inverse transform

v(t) = k1 e
–t + k2 e–3t

Here, the coefficients k1 and k2 may be determined by using the pole zero plot
as shown in Fig. 16.40.

To determine k1, we have to find out the distances and phase angles from other
zeros and poles to that particular pole.
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jw

s
x x

–2 –1–3

Fig. 16.40

Hence k1 = H 
M M e

M e

j

j
01 21

31

01 21

31

( )

( )

f f

f

+

where M01 and M21 are the distances between the zeros at 0 and – 2 to the pole at
– 1, f01, f21 are the phase angle between the corresponding zeros to the pole.

Similarly, M31 and f31 are the distance and phase angle, respectively, from
pole at – 3 to pole at – 1.

\ M01 = 1; f01 = 180°

M21 = 1; f21 = 0

M31 = 2; f31 = 0°

\ k1 = 4 ¥ 
1 1

2

¥
e j(180°)

k1 = – 2

Similarly,

k2 = H 
M M

M

03 23

13

 e+ j(f03 + f23 – f13)

where M03 = 3, f03 = 180°

M23 = 1, f23 = 180°

M13 = 2, f13 = 180°

\ k2 = 
4 3 1

2

¥ ¥
 e j(180 + 180 – 180)

k2 = – 6

Substituting the values, we get

v(t) = (– 2e– t – 6e–3t )V

Problem 16.7 For the given network function, draw the pole zero diagram
and hence obtain the time domain response i(t).

I(s) = 
5

1 4 82

s

s s s( ) ( )+ + +

Solution In the network function

P(s) = 5s
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Q(s) = (s + 1) (s2 + 4s + 8) = 0

By taking the partial fraction expansion of I (s), we get

I(s) = 
k

s

k

s j

k

s j

1 2 3

1 2 2 2 2+
+

+ +
+

+ -( ) ( )
(16.92)

The time domain response can be obtained by taking the inverse transform as
under,

i(t) = k1e
– t + k2 e– (2  +  j2)t + k2 e

– (2 – j2)t (16.93)

To find the value of k1, we have to find out the distances, and phase angles
from other zeros and poles to that particular pole as shown in Fig. 16.41.

Hence k1 = 
H M e

M M e

j

p p

j p p

01

11 21

01

11 21

( )f

f f+

M01 = 1; f01 = 180°

Mp11 = 5 ; fp11 = – 63.44°

Mp21 = 5 ; fp21 = 63.44°
jw

s
x

x

x

–2 –1–3

P1

P2

Fig. 16.41

\ k1 = 
5 1

5 5

180

63 44 63 44

¥

¥

∞

- ∞ + ∞

e

e

j

j ( . . )

k1 = – 1

Similarly k2 = 
H M e

M M e

p

j

p p p

j

p

p p p

0

1

1

0 1

1 2 1

1 1 2 1

f

f f( )+

M0p1
= 8 ; f0p1

 = 135°

M1p1
= 5 ; f1p1

 = 116.56°

Mp1 p2
= 4;fp2 p1

 = 90°

Hence k2 = 
5 8

5 4

¥

¥
 e j (135° – 116.56° – 90°)

= 1.58 e–j(71.56°)

k2
* = 

H M e

M M e

p

j

p p p

j

p

p p p

0

1

2

0 2

2 1 2

1 2 1 2

f

f f( )+

= 
5 8

5 4 116 56 90

¥

¥

- ∞

- ∞ - ∞

e

e

j

j

(135 )

( . )
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= 1.58e j71.56°

If we substitute the values in Eq. 16.93, we get

i(t) = [– 1e– t + 1.58 e– j(71.56°) e– (2 + j2)t

+ 1.58e j (71.56°) e– (2 – j2)t ]A
Problem 16.8 For the given denominator polynomial of a network function,
verify the stability of the network by using the Routh criterion.

Q(s) = s3 + 2s2 + 8s + 10
Solution Routh array for this polynomial is given below

s3 1 8

s2 2 10

s1 3

s0 10

There is no change in sign in the first column of the array. Hence, there are no
roots with positive real parts. Therefore, the network is stable.

Problem 16.9 For the given denominator polynomial of a network function,
verify the stability of the network using the Routh criterion.

Q (s) = s3 + s2 + 3s + 8
Solution Routh array for this polynomial is given below.

s
3 1 3

s2 1 8

s
1

– 5

s0 + 8

There are two changes in sign of the first column, one from 1 to – 5 and the
other from – 5 to + 8. Therefore, the two roots have positive real parts. Hence the
network is not stable.

Problem 16.10 For the given denominator polynomial of a network function,
determine the value of k for which the network to stable.

Q (s) = s3 + 2s2 + 4s + k

Solution Routh array for the given polynomial is given below.

s3 1 4

s2 2 k

s1 8

2

- k

s0 k

When k < 8, all the terms in the first column are positive. Therefore, there is no
sign change in the first column. Hence, the network is stable. When k > 8, the 8 –
k/2 is negative. Therefore, there are two sign changes in the first column. There
are two roots which have positive real parts. Hence, the network is unstable.

When k = 8, the Routh array becomes
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s3 1 4

s
2 2 8

s
1 a

s0 8

The element in the first column and third row is zero. But we can take it as a
small number. In this case there are no changes in the sign of the first column.
Hence, the network is stable.

Problem 16.11 Apply Routh criterion to the given polynomial and determine
the number of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts.

Q (s) = s4 + 4s
3 + 8s

2 + 12s + 15

Solution The Routh array for the polynomial is

s4 1 8 15

s
3 4 12

s2 5 15

s1 0 0

s0 ? ?

In this case, all the elements in the 4th row have become zero and the array
cannot be completed.

The given equation is reduced by taking the new polynomial from the 3rd row

5s2 + 15 = 0

5(s2 + 3) = 0

Hence the other polynomial

Q2(s) = 
s s s s

s

4 3 2

2

4 8 12 15

5 3)

+ + + +

+(

The equation reduces to the following polynomial

(s2 + 3) (s2 + 4s + 5) = 0

The roots of the equation s2 + 3 = 0 are s = ± j 3
There two roots have zero real parts.
Again forming Routh array for the polynomial

s2 + 4s + 5 = 0

s
2 1  5

s1 4 0

s0 5

There are no changes in the sign of the first column. Hence, all the two roots
have negative real parts. Therefore, out of four roots, two roots have negative real
parts and two roots have zero real parts.
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Practice Problems

16.1 For the two-port network shown in Fig. 16.42, determine the driving point
impedance Z11(s), the transfer impedance Z21(s) and the voltage transfer
ratio G21(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )

2 W

2 H

5 W

1/2 F

1 2

1¢ 2¢

Fig. 16.42

16.2 For the network shown in Fig. 16.43, determine the following transfer
functions. (a) G21 (s), (b) Y21 (s) and (c) a21(s).

V s1 ( )

I s1 ( ) I s2 ( )

V s2 ( )1 F

2 W2 H

1 2

2¢1¢

1 H

Fig. 16.43

16.3 For the network shown in Fig. 16.44, determine the following transfer
functions (a) G21(s), (b) Z21(s).

V s1 ( ) V s2 ( )
1/2 F

1/2 F
1/2 F

1 2

1¢ 2¢

2 H

Fig. 16.44

16.4 For the network shown in Fig. 16.45, determine the following functions
(a) Z11(s), (b) Y11(s), (c) G21(s) and (d) a21(s).
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V s1 ( ) V s2 ( )

1 F
1 H

1 2

1¢ 2¢

1/2 F

2 H

Fig. 16.45

16.5 For the network shown in Fig. 16.46, determine transfer impedance Z21(s)
and Y21(s). Also find the transfer voltage ratio G21(s) and the transfer cur-
rent ratio a21(s).

V s1 ( ) V s2 ( )5 H 1/5 F

1 2

1¢ 2¢

Fig. 16.46

16.6 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

V(s) = 
5 5

2 7

( )

( ) ( )

s

s s

+

+ +

16.7 For the given network function draw the pole zero diagram and hence ob-
tain the time domain response. Verify this result analytically.

I (s) = 
3

1 3)

s

s s( ) (+ +

16.8 For the given network function, draw the pole zero diagram and hence
obtain the time domain response. Verify the result analytically.

I (s) = 
5

3) 2 22

s

s s s( ( )+ + +

16.9 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.

Q(s) = s5 + 3s4 + 4s3 + 5s2 + 6s + 1

16.10 For the given denominator polynomial of a network function, verify the
stability of the network using Routh criteria.

Q (s) = s4 + s3 + 2s2 + 2s + 12
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16.11 Apply Routh criterion to the following equations and determine the num-
ber of roots (i) with positive real parts (ii) with zero real parts (iii) with
negative real parts

(a) 6s
3 + 2s

2 + 5s + 2 = 0

(b) s6 + 5s5 + 13s4 + 21s3 + 20s2 + 16s + 8 = 0

(c) s6 – s5 – 2s4 + 4s3 – 5s2 + 21s + 30 = 0

Objective-type Questions

1. The driving point impedance is defined as
(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the transform current at

the other port
(c) both (a) and (b)
(d) none of the above

2. The transfer impedance is defined as
(a) the ratio of transform voltage to transform current at the same port
(b) the ratio of transform voltage at one port to the current transform at

the other port
(c) both (a) and (b)
(d) none of the above

3. The function is said to be having simple poles and zeros and only if
(a) the poles are not repeated
(b) the zeros are not repeated
(c) both poles and zeros are not repeated
(d) none of the above

4. The necessary condition for a driving point function is
(a) the real part of all poles and zeros must not be zero or negative
(b) the polynomials P(s) and Q(s) may not have any missing terms be-

tween the highest and lowest degree unless all even or all odd terms
are missing.

(c) the degree of P(s) and Q (s) may differ by more than one
(d) the lowest degree in P(s) and Q (s) may differ in degree by more than

two.
5. The necessary condition for the transfer functions is that

(a) the coefficients in the polynomials P(s) and Q (s) must be real
(b) coefficients in Q (s) may be negative
(c) complex or imaginary poles and zeros may not conjugate
(d) if the real part of pole is zero, then that pole must be multiple

6. The system is said to be stable, if and only if
(a) all the poles lie on right half of the s-plane
(b) some poles lie on the right half of the s-plane
(c) all the poles does not lie on the right half of the s-plane
(d) none of the above.
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Filters and Attenuators

17.1 CLASSIFICATION OF FILTERS

Wave filters were first invented by G.A. Campbell and O.I. Lobel of the Bell

Telephone Laboratories. A filter is a reactive network that freely passes the

desired bands of frequencies while almost totally suppressing all other bands. A

filter is constructed from purely reactive elements, for otherwise the attenuation

would never becomes zero in the pass band of the filter network. Filters differ

from simple resonant circuits in providing a substantially constant transmission

over the band which they accept; this band may lie between any limits depending

on the design. Ideally, filters should produce no attenuation in the desired band,

called the transmission band or pass band, and should provide total or infinite

attenuation at all other frequencies, called attenuation band or stop band. The

frequency which separates the transmission band and the attenuation band is

defined as the cut-off frequency of the wave filters, and is designated by fc.

Filter networks are widely used in communication systems to separate various

voice channels in carrier frequency telephone circuits. Filters also find

applications in instrumentation, telemetering equipment, etc. where it is

necessary to transmit or attenuate a limited range of frequencies.

A filter may, in principle, have any number of pass bands separated by

attenuation bands. However, they are classified into four common types, viz. low

pass, high pass, band pass and band elimination.

Decibel and Neper

The attenuation of a wave filter can be expressed in decibels or nepers. Neper is

defined as the natural logarithm of the ratio of input voltage (or current) to the

output voltage (or current), provided that the network is properly terminated in

its characteristic impedance Z0.



17.2 Network Analysis

I1

V2V1

I2

Two Port
N.W.

Fig. 17.1 (a)

From Fig. 17.1(a) the number of nepers, N = log e 
V

V

1

2

 or loge 
I

I

1

2

.

A neper can also be expressed in terms of input power, P1 and the output

power P2 as N = 1/2 loge P1/P2.

A decibel is defined as ten times the common logarithms of the ratio of the

input power to the output power.

\ Decibel D = 10 log10 
P

P

1

2

The decibel can be expressed in terms of the ratio of input voltage (or current)

and the output voltage (or current.)

D = 20 log10 
V

V

1

2

 = 20 log10 
I

I

1

2

\ One decibel is equal to 0.115 N.

Low Pass Filter

By definition, a low pass (LP) filter is one which passes without attenuation all

frequencies up to the cut-off frequency fc, and attenuates all other frequencies

greater than fc. The attenuation characteristic of an ideal LP filter is shown in

Fig. 17.1(b). This transmits currents of all frequencies from zero up to the cut-off

frequency. The band is called pass band or transmission band. Thus, the pass

band for the LP filter is the frequency range 0 to fc. The frequency range over

which transmission does not take place is called the stop band or attenuation

band. The stop band for a LP filter is the frequency range above fc.

High Pass Filter

A high pass (HP) filter attenuates all frequencies below a designated cut-off

frequency, fc, and passes all frequencies above fc. Thus the pass band of this filter

is the frequency range above fc, and the stop band is the frequency range below

fc. The attenuation characteristic of a HP filter is shown in Fig. 17.1(b).

Band Pass Filter

A band pass filter passes frequencies between two designated cut-off frequencies

and attenuates all other frequencies. It is abbreviated as BP filter. As shown in

Fig. 17.1(b), a BP filter has two cut-off frequencies and will have the pass band
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f2 – f1 f1 is called the lower cut-off frequency, while f2 is called the upper cut-off

frequency.

Band Elimination Filter

A band elimination filter passes all frequencies lying outside a certain range,

while it attenuates all frequencies between the two designated frequencies. It is

also referred as band stop filter. The characteristic of an ideal band elimination

filter is shown in Fig. 17.1(b).

Pass
Band Pass

Band

Pass
Band

Pass
Band

Pass
Band

Attenuation
Band

Attenuation
Band

Attenuation
Band

Attenuation
Band

Attenuation
Band

a a

aa

fc
fc

fcf2f1 f1

f f

f f

Low Pass Filter High Pass Filter

Band Pass Filter Band Elimination Filter

Fig. 17.1(b)

All frequencies between f1 and f2 will be attenuated while frequencies below

f1 and above f2 will be passed.

17.2 FILTER NETWORKS

Ideally a filter should have zero attenuation in the pass band. This condition can

only be satisfied if the elements of the filter are dissipationless, which cannot be

realized in practice. Filters are designed with an assumption that the elements of

the filters are purely reactive. Filters are made of symmetrical T, or p sections. T

and p sections can be considered as combinations of unsymmetrical L sections as

shown in Fig. 17.2.

2Z2 2Z2 Z2

Z1 Z1 Z1 Z1
2 2 2 2

(a) (b)
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2Z22Z2 2Z2 2Z2

Z1Z1
Z122

(c) (d)

Fig. 17.2

The ladder structure is one of the commonest forms of filter network. A

cascade connection of several T and p sections constitutes a ladder network. A

common form of the ladder network is shown in Fig. 17.3.
Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z1

Z2

2Z2 2Z2

Z2

Z2 Z2

Z2

Z2

Z2

(a)

(b)

Fig. 17.3

Figure 17.3(a) represents a T section ladder network, whereas Fig. 17.3(b)

represents the p section ladder network. It can be observed that both networks

are identical except at the ends.

17.3 EQUATIONS OF FILTER NETWORKS

The study of the behaviour of any filter requires the calculation of its propagation

constant g, attenuation a, phase shift b and its characteristic impedance Z0.

T-Network

Consider a symmetrical T-network as shown in Fig. 17.4.
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Z1Z1

Z2 Z0

21

2¢1¢

22

Fig. 17.4

As has already been mentioned in Section 15.13, if the image impedances at

port 1-1¢ and port 2-2¢ are equal to each other, the image impedance is then called

the characteristic, or the iterative impedance, Z0. Thus, if the network in Fig.

17.4 is terminated in Z0, its input impedance will also be Z0. The value of input

impedance for the T-network when it is terminated in Z0 is given by

Zin = 
Z

Z
Z

Z

Z
Z Z

1
2

1
0

1
2 0

2

2

2

+
+F

H
I
K

+ +

also Zin = Z0

\ Z0 = 
Z

Z
Z

Z

Z Z Z

1
2

1
0

1 2 02

2
2

2 2
+

+F
H

I
K

+ +

Z0 = 
Z Z Z Z Z

Z Z Z

1 1 2 2 0

1 2 02

2

2 2
+

+

+ +

( )

Z0 = 
Z Z Z Z Z Z Z Z Z

Z Z Z

1
2

1 2 1 0 1 2 0 2

1 2 0

2 2 2 4

2 2 2

+ + + +

+ +( )

4Z 2
0 = Z 2

1 + 4Z1Z2

Z 2
0 = 

Z1
2

4
 + Z1Z2

The characteristic impedance of a symmetrical T-section is

Z0T = 
Z

Z Z1
2

1 2
4

+ (17.1)

Z0T can also be expressed in terms of open circuit impedance Z0c and short circuit

impedance Zsc of the T-network. From Fig. 17.4, the open circuit impedance Z0c

= 
Z1

2
 + Z2 and

Zsc = 
Z

Z
Z

Z
Z

1

1
2

1
2

2

2

2

+
¥

+
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Zsc = 
Z Z Z

Z Z

1
2

1 2

1 2

4

2 4

+

+

Z0c ¥ Zsc = Z1Z2 + 
Z1

2

4

= Z 2
0 T or Z0T = Z Zc sc0 (17.2)

Propagation Constant of T-Network

By definition the propagation constant g of the network in Fig. 17.5 is given by g
= loge I1/I2

Vs

I1 I2

Z2

Z1 Z1

Z0

1 2

1¢ 2¢

2 2

Fig. 17.5

Writing the mesh equation for the 2nd mesh, we get

I1Z2 = I2 
Z

Z Z1
2 0

2
+ +F

H
I
K

I

I

1

2

 = 

Z
Z Z

Z

1
2 0

2

2
+ +

= eg

\
Z1

2
 + Z2 + Z0 = Z2 e

g

Z0 = Z2 (eg – 1) – 
Z1

2
(17.3)

The characteristic impedance of a T-network is given by

Z0T = 
Z

Z Z1
2

1 2
4
+ (17.4)

Squaring Eqs. 17.3 and 17.4 and subtracting Eq. 17.4 from Eq. 17.3, we get

Z 2
2 (e

g – 1)2 +
Z1

2

4
 – Z1Z2 (e

g – 1) – 
Z1

2

4
 – Z1Z2 = 0

Z 2
2 (e

g – 1)2 – Z1Z2 (1 + eg – 1) = 0

Z 2
2 (eg – 1)2 – Z1Z2 e

g = 0
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Z2 (e
g – 1)2 – Z1eg = 0

(eg – 1)2 = 
Z e

Z

1

2

g

e2g + 1 – 2eg = 
Z

Z e

1

2
- g

Rearranging the above equation, we have

e–g (e2g + 1 – 2eg ) = 
Z

Z

1

2

(e
g + e

–g
 – 2) = 

Z

Z

1

2

Dividing both sides by 2, we have

e eg g+ -

2
= 1 + 

Z

Z

1

22

cosh g = 1 + 
Z

Z

1

22
(17.5)

Still another expression may be obtained for the complex propagation constant in

terms of the hyperbolic tangent rather than hyperbolic cosine.

sinh g = cos h2 1g −

= 1
2

1
2

1

2

2

1

1

1

2

2

+
F
HG

I
KJ

- = +
F
HG

I
KJ

Z

Z

Z

Z

Z

Z

sinh g = 
1

42
1 2

1
2

Z
Z Z

Z
+  = 

Z

Z

T0

2

(17.6)

Dividing Eq. 17.6 by Eq. 17.5, we get

tanh g = 
Z

Z
Z

T0

2
1

2
+

But Z2 + 
Z1

2
= Z0c

Also from Eq. 17.2, Z0T = Z Zc sc0

tanh g = 
Z

Z

sc

c0
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Also sinh 
g

2
= 

1 2

1 2 1 2 11 2

/ cos

/ /

h – 1g( )

+ -Z Za f

= 
Z

Z

1

24
(17.7)

ppppp-Network

Consider asymmetrical p-section shown in Fig. 17.6. When the network

2Z2 2Z2

Z1

I2II1

Z0

1
2

1¢
2¢

Fig. 17.6

is terminated in Z0 at port 2-2¢, its input impedance is given by

Zin = 

2
2

2

2

2
2

2 1
2 0

2 0

1
2 0

2 0
2

Z Z
Z Z

Z Z

Z
Z Z

Z Z
Z

+
+

L
NM

O
QP

+
+

+

By definition of characteristic impedance, Zin = Z0

Z0 = 

2
2

2

2

2
2

2 1
2 0

2 0

1
2 0

2 0
2

Z Z
Z Z

Z Z

Z
Z Z

Z Z
Z

+
+

L
NM

O
QP

+
+

+

Z0Z1 + 
2

2

2 0
2

2 0

Z Z

Z Z+
 + 2Z0Z2 = 

2 2 2

2

2 1 2 0 1 0 2

2 0

Z Z Z Z Z Z Z

Z Z

+ +

+

a f
a f

2Z0Z1Z2 + Z1Z
2
0 + 2Z0Z 2

2 + 4Z2Z
2
0 + 2Z2Z 2

0

= 4Z1Z 2
2 + 2Z0Z1Z2 + 4Z0Z 2

2

Z1Z
2
0 + 4Z2Z

2
0 = 4Z1Z

2
2

Z2
0(Z1 + 4Z2) = 4Z1Z

2
2

Z 2
0 = 

4

4

1 2
2

1 2

Z Z

Z Z+

Rearranging the above equation leads to
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Z0 = 
Z Z

Z Z

1 2

1 21 4+ /
(17.8)

which is the characteristic impedance of a symmetrical p-network,

Z0p = 
Z Z

Z Z Z

1 2

1 2 1
2 4+ /

From Eq. 17.1 Z0T = 
Z

Z Z1
2

1 2
4
+

\ Z0p = 
Z Z

Z T

1 2

0

(17.9)

Z0p can be expressed in terms of the open circuit impedance Z0c and short

circuit impedance Zsc of the p network shown in Fig. 17.6 exclusive of the load

Z0.

From Fig. 17.6, the input impedance at port 1-1¢when port 2-2¢ is open is given

by Z0c = 
2 2

4

2 1 2

1 2

Z Z Z

Z Z

+

+

a f

Similarly, the input impedance at port 1-1¢ when port 2-2¢ is short circuited is

given by Zsc = 
2

2

1 2

2 1

Z Z

Z Z+

Hence Z0c ¥ Zsc = 
4

4

1 2
2

1 2

Z Z

Z Z+
 = 

Z Z

Z Z

1 2

1 21 4+ /

Thus from Eq. 17.8

Z0p = Z Zc sc0 × (17.10)

Propagation Constant of ppppp-Network

The propagation constant of a symmetrical p-section is the same as that for a

symmetrical T-section.

i.e. cosh g = 1 + 
Z

Z

1

22

17.4 CLASSIFICATION OF PASS BAND AND STOP

BAND

It is possible to verify the characteristics of filters from the propagation constant

of the network. The propagation constant g, being a function of frequency, the

pass band, stop band and the cut-off point, i.e. the point of separation between the

two bands, can be identified. For symmetrical T or p-section, the expression for
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propagation constant g in terms of the hyperbolic functions is given by Eqs. 17.5

and 17.7 in Section 17.3. From Eq. 17.7, sinh 
g

2 4

1

2

=
Z

Z
.

If Z1 and Z2 are both pure imaginary values, their ratio, and hence Z1/4Z2, will

be a pure real number. Since Z1 and Z2 may be anywhere in the range from – jµ t0

+ jµ, Z1/4Z2 may also have any real value between the infinite limits. Then sinh

g /2 = Z Z1 24/  will also have infinite limits, but may be either real or

imaginary depending upon whether Z1/4Z2 is positive or negative.

We know that the propagation constant is a complex function g = a + jb, the

real part of the complex propagation constant a, is a measure of the change in

magnitude of the current or voltage in the network, known as the attenuation

constant. b is a measure of the difference in phase between the input and output

currents or voltages, known as phase shift constant. Therefore a and b take on

different values depending upon the range of Z1/4Z2. From Eq. 17.7, we have

sinh 
g

2
= sinh 

a b

2 2
+

F
H

I
K

j
 = sinh 

a

2
 cos 

b

2
 + j cosh 

a

2
 sin 

b

2

= 
Z

Z

1

24
(17.11)

Case A If Z1 and Z2 are the same type of reactances, then 
Z

Z

1

24
 is real and

equal to say + x.

The imaginary part of the Eq. 17.11 must be zero.

\ cosh 
a

2
 sin 

b

2
= 0 (17.12)

sinh 
a

2
 cos 

b

2
= x (17.13)

a and b must satisfy both the above equations.

Equation 17.12 can be satisfied if b /2 = 0, or np where n = 0, 1, 2, K, then

cos b /2 = 1 and sinh a/2 = x = 
Z

Z

1

24
.

That x should be always positive implies that

Z

Z

1

24
 > 0 and a = 2 sinh–1 

Z

Z

1

24
(17.14)

Since a π 0, it indicates that the attenuation exists.

Case B Consider the case of Z1 and Z2 being opposite type of reactances, i.e.

Z1/4Z2 is negative, making Z Z1 24/  imaginary and equal to say Jx
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\ The real part of the Eq. 17.11 must be zero.

sinh 
a

2
 cos 

b

2
= 0 (17.15)

cosh 
a

2
 sin 

b

2
= x (17.16)

Both the above equations must be satisfied simultaneously by a and b.

Equation 17.15 may be satisfied when a = 0, or when b = p. These conditions are

considered separately hereunder.

(i) When a = 0; from Eq. 17.15, sinh a/2 = 0. And from Eq 17.16 sin b /2 = x

= Z Z1 24/ . But the sine can have a maximum value of 1. Therefore, the above

solution is valid only for negative Z1/4Z2, and having maximum value of unity. It

indicates the condition of pass band with zero attenuation and follows the

condition as

– 1 ≤ ≤
Z

Z

1

24
0

b = 2 sin
–1

 
Z

Z

1

24
(17.17)

(ii) When b = p, from Eq. 17.15, cos b /2 = 0. And from Eq. 17.16, sin b /2 =

± 1; cosh a/2 = x = Z Z1 24/ .

Since cosh a/2 ≥ 1, this solution is valid for negative Z1/4Z2, and having

magnitude greater than, or equal to unity. It indicates the condition of stop band

since a π 0.

– a ≤ ≤
Z

Z

1

24
 – 1

a = 2 cosh–1 
Z

Z

1

24
(17.18)

It can be observed that there are three limits for case A and B. Knowing the

values of Z1 and Z2, it is possible to determine the case to be applied to the filter.

Z1 and Z2 are made of different types of reactances, or combinations of

reactances, so that, as the frequency changes, a filter may pass from one case to

another. Case A and (ii) in case B are attenuation bands, whereas (i) in case B is

the transmission band.

The frequency which separates the attenuation band from pass band or vice

versa is called cut-off frequency. The cut-off frequency is denoted by fc, and is

also termed as nominal frequency. Since Z0 is real in the pass band and imaginary

in an attenuation band, fc is the frequency at which Z0 changes from being real to

being imaginary. These frequencies occur at
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Z

Z

1

24
= 0 or Z1 = 0

Z

Z

1

24
= – 1 or Z1 + 4Z2 = 0

(17.18 (a))

The above conditions can be represented graphically, as in Fig. 17.7.

Stop
Band

Pass
Band

Stop
Band

a (nepers)

–2 –1
–1

0 Z1

Z1

4Z2

4Z2

b (rad)

p

p/2

Fig. 17.7

17.5 CHARACTERISTIC IMPEDANCE IN THE PASS AND
STOP BANDS

Referring to the characteristic impedance of a symmetrical T-network, from

Eq. 17.1 we have

Z0T = 
Z

Z Z Z Z
Z

Z

1
2

1 2 1 2
1

24
1

4
+ = +

F
HG

I
KJ

If Z1 and Z2 are purely reactive, let Z1 = jx1 and Z2 = jx2, then

Z0T = − +
F
HG

I
KJ

x x
x

x
1 2

1

2

1
4

(17.19)

A pass band exists when x1 and x2 are of opposite reactances and

– 1 < 
x

x

1

24
 < 0

Substituting these conditions in Eq. 17.19, we find that Z0T is positive and

real. Now consider the stop band. A stop band exists when x1 and x2 are of the

same type of reactances; then x1/4x2 > 0. Substituting these conditions in Eq.

17.19, we find that Z0T is purely imaginary in this attenuation region. Another

stop band exists when x1 and x2 are of the same type of reactances, but with x1/

4x2 < – 1. Then from Eq. 17.19, Z0T is again purely imaginary in the attenuation

region.

Thus, in a pass band if a network is terminated in a pure resistance R0(Z0T =

R0), the input impedance is R0 and the network transmits the power received from

the source to the R0 without any attenuation. In a stop band Z0T is reactive.

U

V
||

W
|
|
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Therefore, if the network is terminated in a pure reactance (Z0 = pure reactance),

the input impedance is reactive, and cannot receive or transmit power. However,

the network transmits voltage and current with 90∞ phase difference and with

attenuation. It has already been shown that the characteristic impedance of a

symmetrical p-section can be expressed in terms of T. Thus, from Eq. 17.9, Z0p =

Z1Z2/Z0T.

Since Z1 and Z2 are purely reactive, Z0p is real if Z0T is real, and Z0x is

imaginary if Z0T is imaginary. Thus the conditions developed for T-sections are

valid for p sections.

17.6 CONSTANT�K LOW PASS FILTER

A network, either T or p, is said to be of the constant-k type if Z1 and Z2 of the

network satisfy the relation

Z1Z2 = k2 (17.20)

where Z1 and Z2 are impedances in the T and p sections as shown in Fig. 17.8.

Equation 17.20 states that Z1 and Z2 are inverse if their product is a constant,

independent of frequency. k is a real constant, that is the resistance. k is often

termed as design impedance or nominal impedance of the constant k-filter.

Z2 2Z2 2Z2

Z1 Z1
Z12 2

L/2 L/2 L

c c/2 c/2

(a) (b)

Fig. 17.8

The constant k, T or p type filter is also known as the prototype because other

more complex networks can be derived from it. A prototype T and p-sections are

shown in Fig. 17.8(a) and (b), where Z1 = jwL and Z2 = 1/jwC. Hence Z1Z2 = 
L

C

= k2 which is independent of frequency.

Z1Z2 = k2 = 
L

C
 or k = 

L

C
(17.21)

Since the product Z1 and Z2 is constant, the filter is a constant-k type. From

Eq. 17.18(a) the cut-off frequencies are Z1/4Z2 = 0,

i.e.
− w 2

4

LC
= 0
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i.e. f = 0 and 
Z

Z

1

24
= – 1

− w 2

4

LC
= – 1

or fc = 
1

p LC
(17.22)

The pass band can be determined graphically. The reactances of Z1 and 4Z2

will vary with frequency as drawn in Fig. 17.9. The cut-off frequency at the

intersection of the curves Z1 and – 4Z2 is indicated as fc. On the X-axis as

Z1 = – 4Z2 at cut-off frequency, the pass band lies between the frequencies at

which Z1 = 0, and Z1 = – 4Z2. All the frequencies above fc lie in a stop or

attenuation band. Thus, the network is called a low-pass filter. We also have

from Eq. 17.7 that

ReactanceReactance

PassPass
BandBand

AttenuationAttenuation
BandBand

ZZ11

ZZ22

– 4– 4ZZ22

ffffcc

Fig. 17.9

sin h 
g

2
= 

Z

Z

LC J LC1

2

2

4 4 2
=

−
=

w w

From Eq. 17.22 LC = 
1

fcp

\ sinh 
g

2
= 

j f

f
j

f

fc c

2

2

p

p
=

We also know that in the pass band

– 1 < 
Z

Z

1

24
 < 0

– 1 < 
− w 2

4

LC
 < 0
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– 1 < – 
f

fc

F
HG

I
KJ

2

 < 0

or
f

fc

 < 1

and b = 2 sin–1 
f

fc

F
HG

I
KJ

; a = 0

In the attenuation band,

Z

Z

1

24
 < – 1, i.e. 

f

fc

 < 1

a = 2 cosh–1 
Z

Z

1

24

L
NM

O
QP

 = 2 cos h–1 
f

fc

F
HG

I
KJ

; b = p

The plots of a and b for pass and stop bands are shown in Fig. 17.10.

p
b

a

0.5 1 1.5 2 2.5
fc

f

Fig. 17.10

Thus, from Fig. 17.10, a = 0, b = 2 sinh–1 
f

fc

F
HG

I
KJ

 for f < fc

a = 2 cos h
–1

 
f

fc

F
HG

I
KJ

; b = p for f > fc

The characteristic impedance can be calculated as shown below.

Z0T = Z Z
Z

Z

L

C

LC
1 2

1

2

2

1
4

1
4

+
F
HG

I
KJ
= −

F
HG

I
KJ

w
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Z0T = k 1

2

−
F
HG

I
KJ

f

f c

(17.23)

From Eq. 17.23, Z0T is real when f < fc, i.e. in the pass band at f = fc, Z0T = 0;

and for f > fc, Z0T is imaginary in the attenuation band, rising to infinite reactance

at infinite frequency. The variation of Z0T with frequency is shown in Fig. 17.11.

AttenuationAttenuationPassbandPassband

ZZ00pp

ZZ00pp ZZ00TT

ZZ00TT

aa

KK

0.50.5 11 f/ff/fcc

Fig. 17.11

Similarly, the characteristic impedance of a p-network is given by

Z0p = 
Z Z

Z

k

f

f

T

c

1 2

0
2

1

=

−
F
HG

I
KJ

(17.24)

The variation of Z0p with frequency is shown in Fig. 17.11. For f < fc, Z0p is

real; at f = fc, Z0p is infinite, and for f > fc, Z0p is imaginary. A low pass filter can

be designed from the specifications of cut-off frequency and load resistance.

At cut-off frequency, Z1 = – 4Z2

jwcL = 
− 4

j Ccw

p2f c
2LC = 1

Also we know that k = L C/  is called the design impedance or the load

resistance

\ k2 = 
L

C

p2f c
2 k2C2 = 1

C = 
1

p f kc

 gives the value of the shunt capacitance.

and L = k2C = 
k

fcp
 gives the value of the series inductance.
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Example 17.1 Design a low pass filter (both p and T-sections) having a cut-off

frequency of 2 KHz to operate with a terminated load resistance of 500 W.

Solution It is given that k = 
L

C
 = 500 W, and fc = 2000 Hz

We know that L = 
k

fcp
 = 

500

3 14 2000. ×
 = 79.6 mH

C = 
1 1

3 14 2000 500p f kc

=
× ×.

 = 0.318 mF

The T and p-sections of this filter are shown in Fig. 17.12(a) and (b) respe-

ctively.

L

c
/2
=
0
.1
5
9
f

m

c
/2
=
0
.1
5
9
f

m

(a) (b)

C = 0.3189 fm

L/2 = 39.8 m.H L/2 = 39.8 m.H L = 79.6 m.H

Fig. 17.12

17.7 CONSTANT K-HIGH PASS FILTER

Constant K-high pass filter can be obtained by changing the positions of series

and shunt arms of the networks shown in Fig. 17.8. The prototype high pass

filters are shown in Fig. 17.13, where Z1 = – j/wC and Z2 = jwL.

L 2 L 2 L

(a) (b)

2Z2 2Z2 2Z2

Z1 Z1
Z1

2 2

2 C C2 C

Fig. 17.13

Again, it can be observed that the product of Z1 and Z2 is independent of

frequency, and the filter design obtained will be of the constant k type. Thus,

Z1Z2 are given by

Z1Z2 = 
− J

Cw
 jwL = 

L

C
 = k2

k = 
L

C
The cut-off frequencies are given by Z1 = 0 and Z1 = – 4Z2.
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Z1 = 0 indicates 
− j

Cw
 = 0, or w Æ µ

From Z1 = – 4Z2

− j

Cw
= – 4jw L

w2LC = 
1

4

or fc = 
1

4p LC
(17.25)

The reactances of Z1 and Z2 are sketched as functions of frequency as shown

in Fig. 17.14.

Z2

Z1

–4Z2

fc f

R
e
a
c
ta
n
c
e

Passband

Fig. 17.14

As seen from Fig. 17.14, the filter transmits all frequencies between f = fc and

f = µ. The point fc from the graph is a point at which Z1 = – 4Z2.

From Eq. 17.7,

sinh
g

2
= 

Z

Z LC

1

2
24

1

4
=

−

w

From Eq. 17.25, fc = 
1

4 p LC

\ LC = 
1

4 p fc

\ sinh
g

2
= 

−
=

4

4

2 2

2

p

w

a f a ff
j

f

f

c c

In the pass band, – 1 < 
Z

Z

1

24
 < 0, a = 0 or the region in which 

f

f

c  < 1 is a

pass band b = 2 sin
–1

 
f

f

cF
HG

I
KJ

In the attenuation band 
Z

Z

1

24
 < – 1, i.e. 

f

f

c  > 1
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a = 2 cosh–1 
Z

Z

1

24

L
NM

O
QP

 = 2 cos–1 
f

f

cF
HG

I
KJ

; b = – p

The plots of a and b for pass and stop bands of a high pass filter network are

shown in Fig. 17.15.

0

a

b

–p

f / fc
f

Fig. 17.15

A high pass filter may be designed similar to the low pass filter by choosing a

resistive load r equal to the constant k, such that R = k = L C/

fc = 
1

4p L C/

fc = 
k

L Ck4

1

4p p
=

Since C = 
L

k
,

L = 
k

fc4p
 and C = 

1

4p f kc

The characteristic impedance can be calculated using the relation

Z0T = Z Z
Z

Z

L

C LC
1 2

1

2
2

1
4

1
1

4
+

F
HG

I
KJ
= −

F
HG

I
KJw

Z0T = k 1

2

−
F
HG

I
KJ

f

f

c

Similarly, the characteristic impedance of a p-network is given by

Z0p = 
Z Z

Z

k

Z

k

f

f

T T
c

1 2

0

2

0
2

1

= =

-
F
HG

I
KJ

(17.26)
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The plot of characteristic impedances with respect to frequency is shown in

Fig. 17.16.

KK

00

ZZ00

ZZ00pp

ffcc

ZZOTOT

ff

Fig. 17.16

Example 17.2 Design a high pass filter having a cut-off frequency of 1 KHz

with a load resistance of 600 W.

Solution It is given that RL = K = 600 W and fc = 1000 Hz

\ L = 
K

fc4

600

4 1000p p
=

× ×
 = 47.74 mH

C = 
1

4

1

4 600 1000p pKfc

=
× ×

 = 0.133 mF

The T and p-sections of the filter are shown in Fig. 17.17.

(a)(a) (b)(b)

22 = 0.266= 0.266 FFCC mm 22 = 0.266= 0.266 FFCC mm CC = 0.133= 0.133 FFmm

LL = 47.74 m.H= 47.74 m.H 95.48 m.H95.48 m.H

9
5
.4
8
m
.H

9
5
.4
8
m
.H

22 LL22 LL

Fig. 17.17

17.8 m-DERIVED T-SECTION

It is clear from Figs 17.10 and 17.15 that the attenuation is not sharp in the stop

band for k-type filters. The characteristic impedance, Z0 is a function of

frequency and varies widely in the transmission band. Attenuation can be

increased in the stop band by using ladder section, i.e. by connecting two or more

identical sections. In order to join the filter sections, it would be necessary that

their characteristic impedances be equal to each other at all frequencies. If their

characteristic impedances match at all frequencies, they would also have the

same pass band. However, cascading is not a proper solution from a practical

point of view. This is because practical elements have a certain resistance, which

gives rise to attenuation in the pass band also. Therefore, any attempt to increase
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attenuation in stop band by cascading also results in an increase of ‘a’ in the pass

band. If the constant k section is regarded as the prototype, it is possible to design

a filter to have rapid attenuation in the stop band, and the same characteristic

impedance as the prototype at all frequencies. Such a filter is called m-derived

filter. Suppose a prototype T-network shown in Fig. 17.18(a) has the series arm

modified as shown in Fig. 17.18(b), where m is a constant. Equating the

characteristic impedance of the networks in Fig. 17.18, we have

(a) (b)

Z1/2 mZ1/2 mZ1/2Z1/2

Z2
Z¢2

Fig. 17.18

where Z ¢0I is the characteristic impedance of the modified (m-derived) T-network.

Z0T = Z0T ¢

Z
Z Z1

2

1 2
4
+ = 

m Z
mZ Z

2
1
2

1 2
4

+ ′

Z1
2

4
 + Z1Z2 = 

m Z2
1
2

4
 + mZ1Z ¢2

mZ1Z 2¢ = 
Z1

2

4
 (1 – m2) + Z1Z2

Z ¢2 = 
Z

m

1

4
 (1 – m2) + 

Z

m

2 (17.27)

It appears that the shunt arm Z ¢2 consists of two impedances in series as shown

in Fig. 17.19.

Z m2/

Z m1
2(1– )

mZ1/2 mZ1/2

4m

Fig. 17.19
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From Eq. 17.27, 
1

4

2
− m

m
 should be positive to realize the impedance Z ¢2

physically, i.e. 0 < m < 1. Thus m-derived section can be obtained from the

prototype by modifying its series and shunt arms. The same technique can be

applied to p section network. Suppose a prototype p-network shown in

Fig. 17.20(a) has the shunt arm modified as shown in Fig. 17.20(b).

(a) (b)

Z1 Z¢1

2Z2 2Z2 2 /mZ2 2 /mZ2

Fig. 17.20

The characteristic impedances of the prototype and its modified sections have

to be equal for matching.

Z0p = Z ¢0p

where Z ¢0p is the characteristic impedance of the modified (m-derived) p-network.

\
Z Z

Z

Z

1 2

1

2

1
4

+

 = 

′

+
′

×

Z
Z

m
Z

Z m

1
2

1

2

1
4 /

Squaring and cross multiplying the above equation results as under.

(4Z1Z2 + mZ ¢1 Z1) = 
4 1 2 1 1′ + ′Z Z Z Z

m

¢ + -F
H

I
KZ

Z

m

Z

m
mZ1

1 2
1

4
= 4Z1Z2

or Z ¢1 = 
Z Z

Z

m

Z

m

mZ
1 2

1 2 1

4 4
+ -

= 
Z Z

Z

m

Z

m
m

1 2

2 1 2

4
1+ -c h

Z ¢1 = 

Z Z
m

m

Z m

m m
Z m

1 2

2

2

2
2

2 1

4

1

4

1

×
−

−
+

c h

c h

 = 

mZ
Z m

m

mZ
Z m

m

1
2

2

1
2

2

4

1

4

1

−

+
−

c h

c h

(17.28)
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It appears that the series arm of the m-derived p section is a parallel

combination of mZ1 and 4mZ2/1 – m2. The derived m section is shown in

Fig. 17.21.

2 /mZ2Z22 /mZ2

mZ1

4m

1–m2

Fig. 17.21

(i) m-Derived Low Pass Filter

In Fig. 17.22, both m-derived low pass T and p filter sections are shown. For the

T-section shown in Fig. 17.22(a), the shunt arm is to be chosen so that it is

resonant at some frequency fµ above cut-off frequency fc.

(a) (b)

mL/2 mL/2

mL

mc

mc/2mc/2
1–m2

1–m2

4m

4m

L

C

Fig. 17.22

If the shunt arm is series resonant, its impedance will be minimum or zero.

Therefore, the output is zero and will correspond to infinite attenuation at this

particular frequency. Thus, at fµ

1 1

4

2

m C

m

mrw
=

−
 wr L, where wr is the resonant frequency

w 2
r = 

4

1 2
− m LCc h

fr = 
1

1 2p LC m−c h
 = fµ

Since the cut-off frequency for the low pass filter is fc = 
1

p LC
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fµ = 
f

m

c

1 2
−

(17.29)

or m = 1

2

−
F
HG

I
KJ

∝

f

f

c (17.30)

If a sharp cut-off is desired, fµ should be near to fc. From Eq. 17.29, it is clear

that for the smaller the value of m, fµ comes close to fc. Equation 17.30 shows

that if fc and fµ are specified, the necessary value of m may then be calculated.

Similarly, for m-derived p section, the inductance and capacitance in the series

arm constitute a resonant circuit. Thus, at fµ a frequency corresponds to infinite

attenuation, i.e. at fµ

mwrL = 
1

1

4

2
−F

HG
I
KJ

m

m
Crw

w 2
r = 

4

1 2LC m−c h

fr = 
1

1 2p LC m−c h

Since, fc = 
1

p LC

fr = 
f

m

c

1 2
−

 = fµ (17.31)

Thus for both m-derived low pass networks for a positive value of m (0 < m

<1), fµ > fc. Equations 17.30 or 17.31 can be used to choose the value of m,

knowing fc and fr. After the value of m is evaluated, the elements of the T or p-

networks can be found from Fig. 17.22. The variation of attenuation for a low

pass m-derived section can be verified from a = 2 cosh–1 Z Z1 24/  for fc < f

< fµ. For Z1 = jwL and Z2 = – j/w C for the prototype.

\ a = 2 cosh
–1

 

m
f

f

f

f

c

1

2

−
F
HG

I
KJ

∝

and b = 2 sin–1 
Z

Z

1

14
 = 2 sin–1 

m
f

f

f

f
m

c

c

1 1

2
2

−
F
HG

I
KJ

−a f
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Figure 17.23 shows the variation of a, b and Z0 with respect to frequency for

an m-derived low pass filter.

a

a

0

(a) (b) (c)

0

0
fa

fa ffc
fc

Z0p

Z0T

Z0

fc

p

– p

b

K

Fig. 17.23

Example 17.3 Design a m-derived low pass filter having cut-off frequency of

1 kHz, design impedance of 400 W, and the resonant frequency 1100 Hz.

Solution k = 400 W, fc = 1000 Hz; fµ = 1100 Hz

From Eq. 17.30

m = 1 1
1000

1100

2 2

−
F
HG

I
KJ

= −
F
H

I
K

∝

f

f
c  = 0.416

Let us design the values of L and C for a low pass, K-type filter (prototype

filter). Thus,

L = 
k

fcp p
=

¥

400

1000
 = 127.32 mH

C = 
1 1

400 1000p pk fc
=

¥ ¥
 = 0.795 mF

The elements of m-derived low pass sections can be obtained with reference

to Fig. 17.22.

Thus the T-section elements are

mL

2
= 

0 416 127 32 10

2

3
. .× ×

−

 = 26.48 mH

mC = 0.416 ¥ 0.795 ¥ 10–6 = 0.33 mF

1

4

2
− m

m
 L = 

1 0 416

4 0 416

2
−

×

.

.

a f
 ¥ 127.32 ¥ 10–3 = 63.27 mH

The p-section elements are

mC

2
= 

0 416 0 795 10

2

6
. .× ×

−

 = 0.165 mF
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1

4

2
− m

m
 ¥ C = 

1 0 416

4 0 416

2
−

×

.

.

a f
 ¥ 0.795 ¥ 10–6 = 0.395 mF

mL = 0.416 ¥ 127.32 ¥ 10–3 = 52.965 mH

The m-derived LP filter sections are shown in Fig. 17.24.

(a) (b)

26.48 m.H. 26.48 m.H.

52.965 m.H.

63.27 m.H.

0.33 Fm

0.395 Fm

0
.1
6
5
F

m

0
.1
6
5
F

m

Fig. 17.24

(ii) m-derived high pass filter

In Fig. 17.25 both m-derived high pass T and p-sections are shown.

(a) (b)

2C/m 2C/m

L/m

2L/m

2L/m
c/m

4m

4m

1–m2

1–m2

C

L

Fig. 17.25

If the shunt arm in T-section is series resonant, it offers minimum or zero

impedance. Therefore, the output is zero and, thus, at resonance frequency, or the

frequency corresponds to infinite attenuation.

wr 
L

m
 = 

1

4

1 2
w r

m

m
C

−

w r
2 = w2

µ = 
1

4

1

1

4
2

2

L

m

m

m
C

m

LC

−

=
−

wµ = 
1

2

2
− m

LC
 or fµ = 

1

4

2
− m

LCp
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From Eq. 17.25, the cut-off frequency fc of a high pass prototype filter is given

by

fc = 
1

4p LC

fµ = f mc 1 2- (17.32)

m = 1

2

−
F
HG

I
KJ

∝f

fc

(17.33)

Similarly, for the m-drived p-section, the resonant circuit is constituted by the

series arm inductance and capacitance. Thus, at fµ

4

1 2

m

m−
 wrL = 

1

w r

m
C

w 2
r = w 2

µ = 
1

4

2
− m

LC

wµ = 
1

2

2
− m

LC
or fµ = 

1

4

2
− m

LCp

Thus, the frequency corresponding to infinite attenuation is the same for both

sections.

Equation 17.33 may be used to determine m for a given fµ and fc. The elements

of the m-derived high pass T or p-sections can be found from Fig. 17.25. The

variation of a, b and Z0 with frequency is shown in Fig. 17.26.
••

aa

00

00

00

ffµµ

ffµµ

ff

ff

ff

ZZ00pp

––pp

ZZ00TT

ZZ00

ffcc

ffcc

ffcc

bb

KK

PPaassss bbaanndd

PPaassss bbaanndd

((aa)) ((bb))

((cc))

Fig. 17.26
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Example 17.4 Design a m-derived highpass filter with a cut-off frequency of

10 kHz; design impedance of 5 W and m = 0.4.

Solution For the prototype high pass filter,

L = 
k

fc4

500

4 10000p p
=

× ×

 = 3.978 mH

C = 
1

4

1

4 500 10000p pkfc
=

× ×

 = 0.0159 mF

The elements of m-derived high pass sections can be obtained with reference

to Fig. 17.25. Thus, the T-section elements are

2C

m
= 

2 0 0159 10

0 4

6
× ×

−.

.
 = 0.0795 mF

L

m
= 

3 978 10

0 4

3.

.

×
−

 = 9.945 mH

4

1
2

m

m−

 C = 
4 0 4

1 0 4
2

×

−

.

.a f
 ¥ 0.0159 ¥ 10–6 = 0.0302 mF

The p-section elements are

2L

m
= 

2 0 0159 10

0 4

3
× ×

−.

.
 = 19.89 mH

4

1
2

m

m−

 ¥ L = 
4 0 4

1 0 4
2

×

−

.

.a f
 ¥ 3.978 ¥ 10–3 = 7.577 mH

C

m
= 

0 0159

0 4

.

.
 ¥ 10–6 = 0.0397 mF

T and p sections of the m-derived highpass filter are shown in Fig. 17.27.

(a) (b)

0.0795 Fm 0.0795 Fm

0.0397 Fm

7.5777 m.H.

9.945 m.H.

1
9
.8
9
m
.H
.

1
9
.8
9
m
.H
.

0.0302 Fm

Fig. 17.27
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17.9 BAND PASS FILTER

As already explained in Section 17.1, a band pass filter is one which attenuates

all frequencies below a lower cut-off frequency f1 and above an upper cut-off

frequency f2. Frequencies lying between f1 and f2 comprise the pass band, and are

transmitted with zero attenuation. A band pass filter may be obtained by using a

low pass filter followed by a high pass filter in which the cut-off frequency of the

LP filter is above the cut-off frequency of the HP filter, the over lap thus allowing

only a band of frequencies to pass. This is not economical in practice; it is more

economical to combine the low and high pass functions into a single filter section.

Consider the circuit in Fig. 17.28, each arm has a resonant circuit with same

resonant frequency, i.e. the resonant frequency of the series arm and the resonant

frequency of the shunt arm are made equal to obtain the band pass characteristic.

(a) (b)

L1

L2

L1
L12 22 1C 2 1C

C2/2 C2/22L2 2L2C2

C1

Fig. 17.28

For this condition of equal resonant frequencies.

w 0 
L1

2
= 

1

2 0 1w C
 for the series arm

from which, w2
0 L1C1 = 1 (17.34)

And 
1

0 2w C
 =w0L2 for the shunt arm

from which, w 2
0 L2C2 = 1 (17.35)

w 2
0 L1C1 = 1 = w 2

0 L2C2

L1C1 = L2C2 (17.36)

The impedance of the series arm, Z1 is given by

Z1 = j L
j

C
w

w
1

1

−
F
HG

I
KJ

 = j
w

w

2
1 1

1

1L C

C

−F
HG

I
KJ

The impedance of the shunt arm, Z2 is given by

Z2 = 

j L
j C

j L
j C

w
w

w
w

2
2

2
2

1

1
+

 = 
j L

L C

w

w

2

2
2 21 −
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Z1Z2 = j
L C

C

j L

L C

w

w

w

w

2
1 1

1

2
2

2 2

1

1

−F
HG

I
KJ −

F
HG

I
KJ

= 
− −

−

F
HG

I
KJ

L

C

L C

L C

2

1

2
1 1

2
2 2

1

1

w

w

From Eq. 17.36, L1C1 = L2C2

Z1Z2 = 
L

C

L

C

2

1

1

2

=  = k
2

where k is constant. Thus, the filter is a constant k-type. Therefore, for a constant

k-type in the pass band.

– 1 < 
Z

Z

1

24
 < 0, and at cut-off frequency

Z1 = – 4Z2

Z2
1 = – 4Z1Z2 = – 4k2

\ Z1 = ± j2k

i.e. the value of Z1 at lower cut-off frequency is equal to the negative of the value

of Z1 at the upper cut-off frequency.

\
1

1 1
1 1

j C
j L

w
w+

F
HG

I
KJ

= – 
1

2 1
2 1

j C
j L

w
w+

F
HG

I
KJ

or w
w

1 1
1 1

1
L

C
−

F
HG

I
KJ

= 
1

2 1
2 1

w
w

C
L−

F
HG

I
KJ

(1 – w 2
1L1C1) = 

w

w
1

2

 (w 2
2 L1C1 – 1) (17.37)

From Eq. 17.34, L1C1 = 
1

0
2w

Hence Eq. 17.37 may be written as

1 1
2

0
2

−

F
HG

I
KJ

w

w
= 

w

w

w

w

1

2

2
2

0
2

1−

F
HG

I
KJ

(w 2
0 – w 2

1)w2 = w1 w w2
2

0
2

−c h
w 2

0 w2 – w 2
1 w2 = w1w 2

2 – w1w 2
0

w 2
0 (w1 + w2) = w1w2(w2 + w1)

w 2
0 = w1w2

f0 = f f1 2 (17.38)

Thus, the resonant frequency is the geometric mean of the cut-off frequencies.

The variation of the reactances with respect to frequency is shown in Fig. 17.29.
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Design If the filter is terminated in a load resistance R = K, then at the lower

cut-off frequency

Z1 = – 2jk

ff1 f2f0

R
e
a
c
ta
n
c
e

Pass band

–4Z2

–4Z2

Z1

Fig. 17.29

1

1 1
1 1

j C
j L

w
w+

F
HG

I
KJ

= – 2jk

1

1 1w C
 – w1L1 = 2k

1 – w 2
1C1L1 = 2kw1C1

Since L1C1 = 
1

0
2w

1 – 
w

w

1
2

0
2

= 2 kw1C1

or 1 – 
f

f

1

0

2F
HG

I
KJ

= 4p k f1C1

1 – 
f

f f

1
2

1 2

= 4p k f1C1 (Q f0 = f f1 2 )

f2 – f1 = 4pk f1 f2C1

C1 = 
f f

k f f

2 1

1 24

−

p
(17.39)

Since L1C1 = 
1

0
2w

L1 = 
1

0
2

1w C
= 

4 1 2

0
2

2 1

p

w

k f f

f f−a f



17.32 Network Analysis

L1 = 
k

f fp 2 1−a f
(17.40)

To evaluate the values for the shunt arm, consider the equation

Z1Z2 = 
L

C

L

C

2

1

1

2

=  = k2

\ L2 = C1k
2 = 

f f k

f f

2 1

1 24

−a f
p

(17.41)

and C2 = 
L

k f f k

1

2
2 1

1
=

−p a f
(17.42)

Equations 17.39 through 17.42 are the design equations of a prototype band

pass filter. The variation of a, b with respect to frequency is shown in Fig. 17.30.

ff

ff

ff11
ff11ff22

ff22ff00
ff00

aa
pp

–– pp

bb

00

Fig. 17.30

Example 17.5 Design k-type band pass filter having a design impedance of

500 W and cut-off frequencies 1 kHz and 10 kHz.

Solution k = 500 W; f1 = 1000 Hz; f2 = 10000 Hz

From Eq. 17.40,

L1 = 
k

f fp p p2 1

500

9000

55 55

−

= =

a f
.

 mH = 17.68 mH

From Eq. 17.39,

C1 = 
f f

kf f
2 1

1 24

9000

4 500 1000 10000

−

=

× × × ×p p
 = 0.143 mF

From Eq. 17.41,

L2 = C1k2 = 3.57 mH

From Eq. 17.42,

C2 = 
L

k

1

2
 = 0.0707 mF
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Each of the two series arms of the constant k, T-section filter is given by

L1

2
= 

17 68

2

.
= 8.84 mH

2C1 = 2 ¥ 0.143 = 0.286 mF

And the shunt arm elements of the network are given by

C2 = 0.0707 mF and L2 = 3.57 mH

For the constant-k, p section filter the elements of the series arm are

C1 = 0.143 mF and L1 = 17.68 mH

The elements of the shunt arms are

C2

2
= 

0 0707

2

.
 = 0.035 mF

2L2 = 2 ¥ 0.0358 = 0.0716 H

17.10 BAND ELIMINATION FILTER

A band elimination filter is one which passes without attenuation all frequencies

less than the lower cut-off frequency f1, and greater than the upper cut-off

frequency f2. Frequencies lying between f1 and f2 are attenuated. It is also known

as band stop filter. Therefore, a band stop filter can be realized by connecting a

low pass filter in parallel with a highpass section, in which the cut-off frequency

of low pass filter is below that of a high pass filter. The configurations of T and p
constant k band stop sections are shown in Fig. 17.31. The band elimination filter

is designed in the same manner as is the band pass filter.

(a) (b)

L1/2 L1L1/2

L2

C2/2C2/2

2L2 2L2

C2

C12C1
2C1

Fig. 17.31

As for the band pass filter, the series and shunt arms are chosen to resonate at

the same frequency w0. Therefore, from Fig. 17.31(a), for the condition of equal

resonant frequencies

w 0 1

2

L
= 

1

2 0 1w C
 for the series arm
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or w 2
0 = 

1

1 1L C
(17.43)

w0 L2 = 
1

0 2w C
 for the shunt arm

w 2
0 = 

1

2 2L C
(17.44)

1

1 1L C
= 

1

2 2L C
 = k

Thus L1C1 = L2C2 (17.45)

It can be also verified that

Z1Z2 = 
L

C

L

C

1

2

2

1

=  = k2 (17.46)

and f0 = f f1 2 (17.47)

At cut-off frequencies, Z1 = – 4Z2

Multiplying both sides with Z2, we get

Z1Z2 = – 4Z 2
2 = k2

Z2 = ± j
k

2
(17.48)

If the load is terminated in a load resistance, R = k, then at lower cut-off

frequency

Z2 = j 
1

1 2
1 2

w
w

C
L−

F
HG

I
KJ

 = j 
k

2

1

1 2w C
 – w1L2 = 

k

2

1 – w 2
1C2L2 = w1C2 

k

2

From Eq. 17.44, L2C2 = 
1

0
2w

1 – 
w

w

1
2

0
2

= 
k

2
w1C2

1 – 
f

f

1

0

2F
HG

I
KJ

= kp f1C2

C2 = 
1

1
1

1

0

2

k f

f

fp
−

F
HG

I
KJ

L

N
M
M

O

Q
P
P
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Since f0 = f f1 2

C2 = 
1 1 1

1 2k f fp
−

L
NM

O
QP

C2 = 
1 2 1

1 2k

f f

f fp

−L
NM

O
QP

(17.49)

From Eq. 17.44, w 2
0 = 

1

2 2L C

L2 = 
1

0
2

2

1 2

0
2

2 1w

p

wC

k f f

f f
=

-a f

Since f0 = f f1 2

L2 = 
k

f f4 2 1p −a f
(17.50)

Also from Eq. 17.46,

k2 = 
L

C

L

C

1

2

2

1

=

\ L1 = k2C2 = 
k f f

f fp
2 1

1 2

−F
HG

I
KJ

(17.51)

and C1 = 
L

k k f f

2
2

2 1

1

4
=

-p a f
(17.52)

The variation of the reactances with respect to frequency is shown in Fig.

17.32.

PassPass

PassPassAttenuationAttenuation

ZZ11

– 4– 4ZZ11

ff11 ff22 ffff00

Fig. 17.32
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Equation 17.49 through Eq. 17.52 are the design equations of a prototype

band elimination filter. The variation of a, b with respect to frequency is shown

in Fig. 17.33.

f1
f1 f2f2 ff0f0

p

b

a

Fig. 17.33

Example 17.6 Design a band elimination filter having a design impedance of

600 W and cut-off frequencies f1 = 2 kHz and f2 = 6 kHz.

Solution (f2 – f1) = 4 kHz

Making use of the Eqs 17.49 through 17.52 in Section 17.10, we have

L1 = 
k f f

f fp p
2 1

2 1

600 4000

2000 6000

−F
HG

I
KJ
=

×

× ×

 = 63 mH

C1 = 
1

4

1

4 600 40002 1p pk f f−

=

× ×a f a f
 = 0.033 mF

L2 = 
1

4

600

4 40002 1p pk f f−

=

a f a f
 = 12 mH

C2 = 
1 1

600

4000

2000 6000

2 1

1 2k

f f

f fp p

−L
NM

O
QP
=

× ×

L
NM

O
QP

 = 0.176 mF

Each of the two series arms of the constant k, T-section filter is given by

L1

2
= 31.5 mH

2C1 = 0.066 mF

And the shunt arm elements of the network are

L2 = 12 mH and C2 = 0.176 mF

For the constant k, p-section filter the elements of the series arm are

L1 = 63 mH, C1 = 0.033 mF

and the elements of the shunt arms are

2L2 = 24 mH and 
C2

2
 = 0.088 mF
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17.11 ATTENUATORS

An attenuator is a two-port resistive network and is used to reduce the signal

level by a given amount. In a number of applications, it is necessary to introduce

a specified loss between source and a matched load without altering the

impedance relationship. Attenuators may be used for this purpose. Attenuators

may be symmetrical or asymmetrical, and can be either fixed or variable. A fixed

attenuator with constant attenuation is called a pad. Variable attenuators are

used as volume controls in radio broadcasting sections. Attenuators are also used

in laboratory to obtain small value of voltage or current for testing circuits.

The increase or decrease in power due to insertion or substitution of a new

element in a network can be conveniently expressed in decibels (dB), or in

nepers. In other words, attenuation is expressed either in decibels (dB) or in

nepers. Accordingly, the attenuation offered by a network in decibels is

Attenuation in dB = 10 log10 
P

P

1

2

F
HG

I
KJ

(17.53)

where P1 is the input power and P2 is the output power

For a properly matched network, both terminal pairs are matched to the

characteristic resistance, R0 of the attenuator.

Hence,
P

P

1

2

= 
I R

I R

I

I

1
2

0

2
2

0

1
2

2
2

= (17.54)

where I1 is the input current and I2 is the output current leaving the port.

or
P

P

1

2

= 
V

V

1
2

2
2

(17.55)

where V1 is the voltage at port 1 and V2 is the voltage at port 2

Hence, attenuation in dB = 20 log10 
V

V

1

2

F
HG

I
KJ

(17.56)

= 20 log10 
I

I

1

2

F
HG

I
KJ

(17.57)

If
V

V

1

2

= 
I

I

1

2

 = N (17.58)

then
P

P

1

2

= N2

and dB = 20 log10 N (17.59)

or N = antilog 
dB

20

F
H

I
K (17.60)
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17.12 T-TYPE ATTENUATOR

Basically, there are four types of attenuators, T, p, lattice and bridged T-type.

The basic design principles are discussed in the following Sections. Figure 17.34

shows the symmetrical T-attenuator. An attenuator is to be designed for desired

values of characteristic resistance, R0 and attenuation.

I2I1 I1–I2

R0R0 R2

R1R1

Fig. 17.34

The values of the arms of the network can be specified in terms of

characteristic impedance, Z0, and propagation constant, g, of the network. The

network in the figure is a symmetrical resistive circuit; hence Z0 = R0 and g = a.

The design equations can be obtained by applying Kirchhoff’s law to the network

in Fig. 17.34.

R2 (I1 – I2) = I2 (R1 + R0)

I2 (R2 + R1 + R0) = I1R2

I

I

1

2

 = 
R R R

R

1 0 2

2

+ +
= N (17.61)

The characteristic impedance of the attenuator is R0 when it is terminated in a

load of R0

Hence, R0 = R1 + 
R R R

R R R

2 1 0

1 0 2

+

+ +

a f

Substituting Eq. 17.61, we have

R0 = R1 + 
R R

N

1 0+a f

NR0 = NR1 + R1 + R0

R0(N – 1) = R1 (N + 1)

R1 = 
R N

N

0 1

1

−

+

a f
(17.62)

From Eq. 17.61, we have

NR2 = R1 + R0 + R2

(N – 1)R2 = (R1 + R0)

Substituting the value of R1 from Eq. 17.62, we have



Filters and Attenuators 17.39

(N – 1) R2 = R0 
N

N

−

+

1

1

a f
a f

 + R0

(N – 1) R2 = 
2

1

0NR

N +a f

R2 = 
2

1

0

2

NR

N −

(17.63)

Equations 17.62 and 17.63 are the design equations for the symmetrical T-

attenuator.

Example 17.7 Design a T-pad attenuator to give an attenuation of 60 dB and

to work in a line of 500 W impedance.

Solution N = 
I

I
1

2

 = antilog 
D

20

= antilog 
60

20
 = 1000

Each of the series arm is given by

R1 = 
R N

N
0 1

1

−

+

a f
 = 500 

1000 1

1000 1

−

+

a f
a f

 = 499 W

The shunt arm resistor R2 is given by

R2 = 
2

1
2

N

N −

 R0 = 
2 1000

1000 1
2

×

−a f
 ¥ 500 = 1 W

17.13 ppppp-TYPE ATTENUATOR

Figure 17.35 shows symmetrical attenuator. The series and shunt arm of the

attenuator can be specified in terms of Z0 and propagation constant g. In this case

also, the network is formed by resistors and is symmetrical, hence Z0 = R0 and g
= a. From the fundamental equations, we have

R0R0 R2R2

R1

Fig. 17.35
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R1 = R0 sinha (17.64)

R2 = R0 coth a/2 (17.65)

\ R1 = R0 
e ea a- -

2
(17.66)

By definition of propagation constant

eg = 
I

I

1

2

 = N

Here g = a and ea = N

Therefore, Eq. 17.66 can be written as

R1 = R0 

N
N

−
1

2
= R0 

N

N

2 1

2

−
(17.67)

Similarly, from Eq. 17.65,

R2 = R0 
cos

sin

h /2

h /2

a

a
 = R0 

e e

e e

a a

a a

/ /

/ /

2 2

2 2

+

−

−

−

R2 = R0 
e

e

a

a

+

−

1

1
 = R0 

N

N

+

−

1

1

a f
a f

(17.68)

Equations 17.67 and 17.68 are the design equations for the symmetrical p-

attenuator.

Example 17.8 Design a p-type attenuator to give 20 dB attenuation and to

have a characteristic impedance of 100 W.

Solution Given R0 = 100 W, D = 20 dB.

N = Antilog 
D

20
 = 10

R1 = R0 
N

N

2
1

2

−d i
 = 100 

10 1

2 10

2
−

×

d i
 = 495 W

R2 = R0 
N

N

+

−

1

1

a f
a f

 = 100 
10 1

10 1

+

−

F
HG

I
KJ  = 122.22 W

17.14 LATTICE ATTENUATOR

A symmetrical resistance lattice is shown in Fig. 17.36. The series and the

diagonal arm of the network can be specified in terms of the characteristic

impedance Z0 and propagation constant g.
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R0R0

R2
R2

R1

I2

R1

A B

C D

2
1¢

1
2¢

Fig. 17.36

It has already been stated and proved that characteristic impedance of

symmetrical network is the geometric mean of the open and short circuit

impedance. The circuit in Fig. 17.36 is redrawn as in Fig. 17.37 to calculate the

open and short circuit impedances.

RR00

RR00

RR22

VV11

RR22

RR11

RR11

AA

CC

DD

11¢¢

22¢¢ 22

11
II

II – I– I11II11

II – I –– I –11 II22

I +I + II22

BB

II22

Fig. 17.37

Thus, Zsc = 
2 1 2

1 2

R R

R R+

Z0c = 
R R1 2

2

+

Hence, Z0 = R0 = Z Zc sc0

R0 = R R1 2

In Fig. 17.37 the input impedance at 1-1¢ is R0 when the network is terminated

in R0 at 2-2¢. By applying Kirchhoff’s voltage law, we get

V1 = I1R0 = (I1 – I )R1 + I2R0 + (1 + I2)R1

I1R0 = R1(I1 + I2) + I2R0

I1(R0 – R1) = I2(R1 + R0)

I

I

1

2

= 
R R

R R

R

R

R

R

1 0

0 1

1

0

1

0

1

1

+

−

=

+

−

(17.69)
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N = e
a
 = 

I

I

R

R

R

R

1

2

1

0

1

0

1

1

=

+

−

(17.70)

ea = 
1

1

1 2

1 2

+

−

R R

R R

/

/

The propagation constant a = log 

1

1

1

2

1

2

+

−

L

N

M
M
M
M

O

Q

P
P
P
P

R

R

R

R

(17.71)

From Eq. 17.70

N 1 1

0

−
F
HG

I
KJ

R

R
= 1 1

0

+
F
HG

I
KJ

R

R

R1 = R0 
N

N

−

+

1

1

a f
a f

(17.72)

Similarly, we can express R2 = R0 
N

N

+

−

1

1

a f
a f

(17.73)

Equations 17.72 and 17.73 are the design equations for lattice attenuator.

Example 17.9 Design a symmetrical lattice attenuator to have characteristic

impedance of 800 W and attenuation of 20 dB.

Solution Given R0 = 800 W and D = 20 dB

N = Antilog 
D

20
 = Antilog 

20

20
 = 10

From the design equations of lattice attenuator

Series arm resistance R1 = R0 
N

N

−

+

1

1

a f
a f

= 800 
10 1

10 1

−

+

a f
a f

 = 654.545 W

Diagonal arm resistance R2 = R0 
N

N

+

−

1

1

a f
a f

= 800 
10 1

10 1

+

−

a f
a f

 = 977.777 W

The resulting lattice attenuator is shown in Fig. 17.38.
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977.777 W 977.777 W

654.545 W

654.545 W

Fig. 17.38

17.15 BRIDGED-T ATTENUATOR

A bridged-T attenuator is shown in Fig. 17.39. In this case also since the

attenuator is formed by resistors only, Z0 = R0 and g = a. The bridged-T network

may be designed to have any characteristic resistance R0 and desired attenuation

by making RA RB = R 2
0. Here RA and RB are variable resistances and all other

resistances are equal to the characteristic resistance R0 of the network.

RR00RR00 RRBB

RR00RR00

RRAA

22
11

22¢¢
11¢¢

Fig. 17.39

A symmetrical resistance lattice network can be converted into an equivalent

T, p or bridged-T resistance network using the bisection theorem. We can obtain

the design equations of the bridged-T attenuator by bisection theorem. A bisected

half sections is shown in Fig. 17.40. According to the bisection theorem, a

network having mirror image symmetry can be reduced to an equivalent lattice

structure. The series arm of the equivalent lattice is found by bisecting the given

network into two parts, short circuiting all the cut wires and equating the series

impedance of the lattice to the input impedance of the bisected network; the

diagonal arm is equal to the input impedance of the bisected network when cut

wires are open circuited.

22RRBB

RR00

RRAA/2/2

11

11¢¢

AA

BB

CC

Fig. 17.40
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From Fig. 17.40, when the cut wires A, B, C are shorted, the input resistance

of the network is given by

Rsc = 
R R

R R

R R

R R

A

A

A

A

0 2

0 2

0

02

×

+

=

+

/

/

(17.74)

This resistance is equal to the series arm resistance of the lattice network

shown in Fig. 17.36.

\
R R

R R

A

A

0

02 +

 = R1 (17.75)

From Eq. 17.72, we have

R1 = R0 
N

N

−

+

1

1

a f
a f

Hence,
R R

R R

A

A

0

02 +a f
= R

N

N
0

1

1

−

+

a f
a f

From which RA = R0 (N – 1) (17.76)

From Fig. 17.40, when the cut wires A, B, C are open, the input resistance of

the network is given by

R0c = (R0 + 2RB) (17.77)

This resistance is equal to the diagonal arm resistance of the lattice network

shown in Fig. 17.36.

\ R0 + 2RB = R2 (17.78)

From Eq. 17.73, we have

R2 = R0 
N

N

+

−

1

1

a f
a f

Hence (R0 + 2RB) = R0 
N

N

−

+

1

1

a f
a f

From which RB = 
R

N

0

1−

(17.79)

Equations 17.76 and 17.79 are the design equations for bridged-T attenuator.

Example 17.10 Design a symmetrical bridged-T attenuator with an

attenuation of 20 dB and terminated into a load of 500 W.

Solution D = 20 dB; R0 = 500 W

N = Antilog 
D

20
 = Antilog 

20

20
 = 10

RA = R0 (N – 1) = 500 (10 – 1) = 4500 W
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RB = 
R

N
0

1

500

10 1−

=

−a f a f
 = 55.555 W

The desired configuration of the attenuator is shown in Fig.17.41.

500 W 500 W

4500 W

500 W
500 W 55.555 W

Fig. 17.41

17.16 L-TYPE ATTENUATOR

An L-type asymmetrical attenuator is shown in Fig. 17.42. The attenuator is con-

nected between a source with source resistance Rs = R0 and load resistance RL =

R0.

RRss

RR22

II11 II22

II11–I–I22

RRLL = R= R00

RR11

RR00

VVss

VV11 VV11

11 22

11¢¢ 22¢¢

Fig. 17.42

The design equations can be obtained by applying simple laws.

V2 = (I1 – I2)R2 = I2RL

or I1R2 = I2(R2 + RL)

I

I

1

2

= 
R R

R

L2

2

+
 = N (17.80)

1 + 
R

R

L

2

= N

R2 = 
R

N

L

− 1
(17.81)

As RL = R0, Eq. 17.81 can be written as

R2 = 
R

N

0

1−

(17.82)
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The resistance of the network as viewed from 1-1¢ into the network is

R0 = R1 + 
R R

R R

2 0

2 0+

R1 = 
R

R R

0
2

2 0+

(17.83)

Substituting the value of R2 from Eq. 17.82, we have

R1 = 
R

R

N
R

R N

R R N

0
2

0
0

0
2

0 0

1

1

1

−

+

=

−

+ −

a f
a f

R1 = R0 
N

N

− 1a f
(17.84)

Equations 17.82 and 17.84 are the design equations. Attenuation N of the
network can be varied by varying the values of R1 and R2.

Example 17.11 Design a L-type attenuator to operate into a load resistance of
600 W with an attenuation of 20 dB.

Solution N = Antilog 
dB

20
 = Antilog 

20

20
 = 10

The series arm of the attenuator is given by

R1 = R0 
N

N

−F
H

I
K

1
 = 600 

10 1

10

−F
H

I
K  = 540 W

The shunt arm of the attenuator is given by

R2 = 
R

N
0

1

600

9−

=  = 66.66 W

The desired configuration of the network is shown in Fig. 17.43.
540 W

600 W
66.66 WR0

1

1¢

Fig. 17.43

17.17 EQUALIZERS

Equalizers are networks designed to provide compensation against distortions
that occur in a signal while passing through an electrical network. In general, any
electrical network has attenuation distortion and phase distortion. Attenuation
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distortion occurs due to non-uniform attenuation against frequency characteris-
tics. Phase distortion occurs due to phase delay against frequency characteristics.
An attenuation equalizer is used to compensate attenuation distortion in any net-
work. These equalizers are used in medium to high frequency carrier telephone
systems, amplifiers, transmission lines and speech reproduction, etc. A phase
equalizer is used to compensate phase distortion in any network. These equaliz-
ers are used in TV signal transmission lines and in facsimile.

17.18 INVERSE NETWORK

The geometrical mean of two impedances Z1 and Z2 is a real number and they are
said to be inverse if

Z1Z2 = R 2
0

where R0 is a resistance

Consider Z1 = R1 and Z2 = R2

The product Z1 Z2 is a real number
Therefore, the two impedances are said to be inverse if

they satisfy the relation Z1Z2 = R1R2 = R2
0.

In another case, consider Z1 = jwL and Z2 = 
1

j Cw

Z1Z2 = 
j L

j C

L

C

w

w
=

The product Z1Z2 is a real number
Therefore, the two impedances are inverse.
Similarly,

Let Z1 = R1 + jwL (17.85)

and Z2 = 

R
j C

R
j C

jR

CR j

CR j

CR j

2

2

2

2

2

2

1

1

w

w
w

w

w
+

=
−

−

⋅
+

+

(17.86)

= 
R j CR

C R

2 2
2

2 2
2
21

−

+

w

w

Z1Z2 = (R1 + jwL) 
R j CR

C R

2 2
2

2 2
2
21

-

+

F
HG

I
KJ

w

w

= 
R R R LC j LR CR R

C R

1 2
2

2
2

2 1 2
2

2 2
2
21

+ + -

+

w w w

w

c h
(17.87)

The imaginary part of the above equation must be zero.

R1 R2

Z2Z1

Fig. 17.44

Fig. 17.45

Z2Z1

L C
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Therefore, we get wLR2 = wCR1R 2
2

L

C
 = R1R2 = R 2

0 (17.88)

The two impedances Z1 and Z2 are inverse, when the above condition is satis-
fied.

An inverse network may be obtained by
(i) Converting each series branch into parallel branch and vice-versa.

(ii) Converting each resistance element R into a corresponding resistive ele-

ment 
R

R

0
2

.

(iii) Converting each inductance L into capacitance C1 = 
L

R0
2

.

(iv) Converting each capacitance C into inductance L1 = CR
2
0.

Example 17.12 Obtain the inverse network of the network shown in
Fig. 17.46.

LL11

CC11

LL22

LL33

RR33

RR11

CC22

Fig. 17.46

Solution The parallel branch is converted into a series branch and vice-versa.

The capacitance is replaced by inductance and vice-versa. The resistance is

replaced by another resistance as shown in Fig. 17.47.

CC11
11

CC22
11

LL11
11

LL22
11 CC33

11 RR22
11

RR11
11

Fig. 17.47

Where C1
1 = 

L

R

1

0
2

, iL1
1 = C1R2

0, R1
1 = 

R

R
0
2

1

C1
2 = 

L

R

2

0
2

, L1
2 = C2R2

0, R1
2 = 

R

R

0
2

2
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C1
3 = 

L

R

3

0
2

 and R0 = design impedance.

17.19 SERIES EQUALIZER

The series equalizer is a two terminal network connected in series with a network
to be corrected. (see Fig. 17.48)

Let N = Input to output power ratio of the load.

D = Attenuation in decibels.

R0 = Resistance of the load as well as source.

P1 = Input power.

P1 = Load power.

2X1 = Reactance of the equalizer.

Vmax = Voltage applied to the network.

R0
R0

V

2x1

Fig. 17.48

Attenuation D = log10 N

or N = antilog 
D

10
F
H

I
K (17.89)

N = 

Maximum power delivered to the load
when equlizer is not present

Power delivered to the load
when equalizer is present

N = 
P

P

i

l

Pi = 
V

R

max

2 0

2F
HG

I
KJ

 R0 = 
V

R

max
2

04

When the equalizer is connected,

l1 = 
V

R X

max

2 20
2

1
2a f a f+
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Pl = 
V

R X

max

2 20
2

1
2

2

a f a f+

L

N
M
M

O

Q
P
P

 R0

= 
V

R X

max
2

0
2

1
24 +

L

N
M

O

Q
P

c h
 R0 (17.90)

Therefore, N = 
P

P

V R

V R

R X

i

l

=

+

max

max

/2
0

2
0

0
2

1
2

4

4 c h

 = 1 + 
X

R

1
2

0
2

(17.91)

By knowing the values of R0 and N, X1 can be determined.

17.20 FULL SERIES EQUALIZER

Figure 17.49 shows the configuration of full series equalizer.

Fig. 17.49

The circuit is a constant resistance equalizer satisfying the relation Z1Z2 = R0
2.

The input impedance is given by

Zi = 
R Z

R Z

R Z

R Z

0 1

0 1

0 2

0 2+

+

+

= 
R Z Z R Z Z

R R Z Z Z Z

0 1 2 0 1 2

0
2

0 1 2 1 2

2 + +

+ + +

a f
a f

(17.92)

If we substitute Z1Z2 = R0
2 in the above equation

Zi = R0

|Vi| = Ii Zi = Ii R0

|Vl| = Ii Zi = Ii 
R Z

R Z

0 2

0 2+

(17.93)

N = 
V

V

R Z

Z
i

l

2
0 2

2

2

=
+

 = 1 + 
R

X

0
2

2
2

(17.94)

= 1 + 
X

R

1
2

0
2
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Since Z1 and Z2 are pure reactances and X1X2 = R0
2

(i) When X1 = wL,

X2 = 
1

1wC
 since both are inverse

The full series equalizer is shown in Fig. 17.50.

R0

C1
R0

L1

1

1¢

Fig. 17.50

Where
L

C

1

1

= R0
2

From the equation N = 1 + 
X

R

1
2

0
2

= 1 + 
w 2

1
2

0
2

L

R

By knowing the values of N and R0, the elemental values of L1, C1 may be
obtained.

(ii) When X1 = 
1

1wC
,

X2 = wL1

The full series equalizer is shown in Fig. 17.51.

R0

C1

R0L1

1

1¢

Fig. 17.51
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Here
L

C

1

1

= R 2
0

From the equation N = 1 + 
R

X

0
2

2
2

 = 1 + 
R

L

0
2

2
1
2w

By knowing the values of N and R0, the values of L1, C1 may be obtained.

17.21 SHUNT EQUALIZER

The shunt equalizer is a two terminal network connected in shunt with a network
to be corrected.

Let N = Input to output power ratio.

D = Attenuation in decibels.

R0 = Source resistance/load resistance.

Is = Source current.

Il = Load current.

Pi = Input power.

Pl = Load power.

X1

2
= Reactance of shunt equalizer

The shunt equalizer connected to the network is shown in Fig. 17.52.

RR00

IIss IIll

RR00

VVmaxmax

xx11
22

Fig. 17.52

Source current Is = 
V

R R
jX

max

0 0
1

2
+ F

H
I
K

(17.95)

= 
V

R
jX R

R jX

max

0
1 0

0 12
+

+

L
NM

O
QP

= 
V R jX

R R jX

max 2

2
0 1

0 0 1

+

+a f
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Load current Il = Is 
jX

R
jX

1

0
1

2

2

/

+

 = Is 
jX

R jX

1

0 12 +

(19.96)

Substituting Is in the above equation

Il = 
V jX

R R jX

max ⋅

+

1

0 0 12 a f
(17.97)

Power delivered to the load

Pl = | Il |
2 R0 = 

V X

R R X

max
2

1
2

0 0
2

1
24 +c h

(17.98)

and Pi = V2
 max/4R0

Therefore, N = 
P

P

i

l

 = 

V

R

V X

R R X

max

max

2

0
2

1
2

0 0
2

1
2

4

4 +c h

\ N = 1 + 
R

X

0

1

2F
HG

I
KJ

(17.99)

By knowing the values of R0 and N, X1 can be determined.

17.22 FULL SHUNT EQUALIZER

Figure 17.53 shows the full shunt equalizer. It is also a constant resistance equal-
izer which satisfied the equation Z1Z2 = R2

0.

VVii RR00

RR00

IIii

ZZii

ZZii

ZZ22

11¢¢
22¢¢

11
22

IIll

VVll

Fig. 17.53

The input impedance is given by

Zi = 
R Z R Z

R Z Z

0 2 0 1

0 1 22

+ +

+ +

a f a f
(17.100)

= 
Z Z R R Z Z

R Z Z

1 2 0
2

0 1 2

0 1 22

+ + +

+ +

a f
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Zl = R0

Since Z1Z2 = R0
2,

Vi = IiZi = IiR0

Vl = Il R0

V

V

i

l

= 
I

I

i

l

But Il = Ii 
R Z

R Z Z

0 2

0 1 22

+

+ +

a f
(17.101)

I

I

i

l

= 
Z Z R

R Z

1 2 0

0 2

2+ +

+

(17.102)

Multiplying both numerator and denominator by Z1, we get

I

I

i

l

= 
Z Z Z R Z

Z R Z Z

1
2

1 2 0 1

1 0 1 2

2+ +

+

I

I

i

l

= 
Z R

R Z R

1 0
2

0 1 0

+

+

a f
a f

 = 
Z R

R

1 0

0

+

Therefore, N = 
V

V

i

l

2

 = 
I

I

R Z

R

i

l

2

0 1

0

2

=
+

N = 1 1
2

0
2

+
X

R
 = 1 0

2

2
2

+
R

X
(17.103)

since Z1 and Z2 are pure reactances and are equal to X1 and X2 respectively.
By knowing the values or R0 and N1 the elemental values X1 and X2 can be

obtained.
(i) When X1 = wL1

X2 becomes 
1

1wC

The circuit is shown in Fig. 17.54.

Vi R0

R0

Ii

C1

1¢ 2¢

1
2

L1 X1

Vl

Fig. 17.54
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(ii) When X1 = 
1

1wC

X2 becomes wL1

The circuit is shown in Fig. 17.55

R0

R0

C1

1¢ 2¢

1
2

LX2

Fig. 17.55

17.23 CONSTANT RESISTANCE EQUALIZER

The disadvantage of a reactance equalizer either in a shunt equalizer or a series
equalizer, the variation of impedance with frequency causes impedance mismatch
which results in reflection losses. A four terminal equalizer which offers a con-
stant resistance at all frequencies avoids reflection loss when terminated in its
design impedance. Constant resistance equalizer is a four terminal network which
can be T, p, lattice and bridged-T network type. All these types have characteris-
tic impedance satisfying the relation Z1Z2 = R0

2.

17.24 BRIDGE-T ATTENUATION EQUALIZER

The network shown in Fig. 17.56 is a bridged-T attenuation equalizer. Let Z1 be
a parallel combination of resistor R1 and inductance L1. To provide a constant
resistance the impedance Z2 must be an inverse of Z1 which is a series combina-
tion of R2 and a capacitor C1. Let R0 be the design resistance.

Then, Z1Z2 = R0
2

RR00

RR22

RR00

ZZ22
CC11

11¢¢ 22¢¢

11 22
LL11

RR11 ZZ11

Fig. 17.56 Bridged-T attenuation equalizer

The propagation constant for a bridged-T network is given by
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g = ln 1 1

0

+
L
NM

O
QP

Z

Z
 = ln 1 0

2

+
L
NM

O
QP

Z

Z
(17.104)

But Z0 = R0

And Z1 = 
jR L

R L

1 1

1 1

w

w+
(17.105)

Therefore, the propagation constant

g = ln 1 1 1

0 1 1

+
+

L
NM

O
QP

jR L

R R j L

w

wa f
(17.106)

 a + jb = ln
R R j L R R

R R j L R

0 1 1 0 1

0 1 1 0

+ +

+

L
NM

O
QP

w

w

a f
(17.107)

Equating real parts on both sides

a = ln

/
R R L R L R L R R

R R L R

0 1
2 2

1
2

0
2 2

1
2

1
2 2

1
2

0 1

0
2

1
2 2

1
2

0
2

1 2
2a f + + +

+

L

N
M

O

Q
P

w w w

w

= 
1
2

1
22

1
2

1 0 1

0
2

1
2 2

1
2

ln +
+

+

L

N
M

O

Q
P

w

w

L R R R

R R L

a f
c h

(17.108)

and R1R2 = R0
2 = 

L

C

1

1

(17.109)

The elements may be calculated from the above design Eqs. (17.108) and
(17.109).

17.25 BRIDGED-T PHASE EQUALIZER

A bridged-T phase equalizer is shown in Fig. 17.57.
It consists of only pure reactances.

11¢¢ 22¢¢

11 22

ZZ11 ZZ11

ZZ ==22 jjxx22

ZZ ==33 jjxx
33

jj 11 /2/2xx jj 11 /2/2xx

22 22

Fig. 17.57

The characteristics impedance is given by
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Z0 = 
Z Z Z Z

Z Z

1 3 1 2

1 3

1 2
4

4

+

+

L
NM

O
QP

a f
a f

/

(17.110)

From the Fig. 17.57, Z3 = jX3, 
Z1

2
 = jX1, Z2 = jX2 and Z0 = R0.

R2
0 = 

2 2 4

4 2 4
1 3 1 2

1 3

jX jX jX jX

jX jX

◊ +

+

a f
a f

(17.111)

= 
- +

+

X X X X

X X

1 3 1 2

1 3

2

2

a f

Let X1 and X3 be made inverse

jX1. jX3 = R2
0

– X1X3 = R2
0 (17.112)

Substituting this in the above equation, we get

X2 = 
X X1 3

2

+
(17.113)

The propagation constant is given by

e
g

= 
Z Z Z Z Z

Z Z Z Z Z

0 1 3 1 3

0 1 3 1 3

2

2

+ +

+ -

a f a f
a f a f

/

/
(17.114)

eg – 1 = 
Z Z

Z Z Z Z Z

1 3

0 1 3 1 3 2+ -a f a f/

and similarly,

eg + 1 = 
2

2

0 1 3

0 1 3
1 3

Z Z Z

Z Z Z
Z Z

+

+ - F
H

I
K

a f

a f

From the above equations

e

e

g

g

-

+

1

1
 = tanh 

g

2
= 

Z Z

Z Z Z

jX jX

R jX jX

1 3

0 1 3

1 3

0 1 32

2

2 2+
=

◊

+a f a f

= 
2

2 2

0
2

0 1 3

R

R j X X+a f
(17.115)

tanh 
g

2
= 

2

2 2

0
2

0 1
0
2

1

R

R j X
R

X
-

F
HG

I
KJ

g

2
= tanh–1 

jR X

R X

0 1

0
2

1
22-
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\ a + jb = 2j tanh–1 
R X

R X

0 1

0
2

1
22-

Equating the real and imaginary parts, we get

a = 0

b = 2 tan–1 
R X

R X

0 1

0
2

1
22-

F
HG

I
KJ

(17.116)

Equations 17.112, 17.113 and 17.116 are the design equations of a bridged-T

phase equalizer.

17.26 LATTICE ATTENUATION EQUALIZER

The constant resistance lattice attenuation equalizer is shown in Fig. 17.58. The

element Z1 represents series arm and Z2 represents diagonal arm as shown in

Fig. 17.58. The equalizer is a constant resistance equalizer such that Z1 must be

inverse of Z2 to the design resistance R0.

11¢¢ 22¢¢

11 22

ZZ22
RR22

RR22

RR11

RR11

LL11

LL11

CC22

CC22

ZZ11

Fig. 17.58

Z1Z2 = R0
2

R1R2 = 
L

C
R1

1
0
2 (17.117)

The propagation constant of a lattice network is given by

g = ln

1

1

1

0

1

0

+

-

F

H

G
G
G

I

K

J
J
J

Z

R

Z

R

 = ln

1

1

2

0

2

0

+

-

F

H

G
G
G

I

K

J
J
J

Z

R

Z

R

(17.118)

a + jb = ln

1

1

1 1

0

1 1

0

+
+

−
+

F

H

G
G
G

I

K

J
J
J

R j L

R

R j L

R

w

w
(17.119)

a + jb = ln
R R j L

R R j L

0 1 1

0 1 1

+ +

- -

L
NM

O
QP

a f
a f

w

w
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Equating real parts on both sides

a = ln

/
R R L

R R L

0 1
2 2

1
2

0 1
2 2

1
2

1 2
+ +

- +

L

N
M

O

Q
P

a f
a f

w

w

N = ea = 
R R L

R R L

0 1
2 2

1
2

0 1
2 2

1
2

1 2
+ +

- +

L

N
M

O

Q
P

a f
a f

w

w

/

(17.120)

On the other hand if X1 = 
1

1wC

N = e
a
 = 

R R
C

R R
C

0 1
2

2
1
2

0 1
2

2
1
2

1 21

1

+ +

- +

L

N

M
M
M
M

O

Q

P
P
P
P

a f

a f

w

w

/

(17.121)

Equations (17.117) and (17.121) are called design equations for the lattice

attenuator network.

17.27 LATTICE PHASE EQUALIZER

The lattice phase equalizer is shown in Fig. 17.59. It consists of only reactive

components. This is also a constant resistance equalizer which satisfies the equa-

tion Z1Z2 = R
2
0.

Z1 is the series arm impedance and Z2 is the shunt arm impedance as shown in

Fig. 17.59.

11¢¢
22¢¢

11 22

RR00 RR00

CC22CC22

CC11

CC11

LL11

LL11

LL22 LL22

Fig. 17.59

The propagation constant is given by
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tanh 
g

2

F
H

I
K = 

j L

R L C

w

w

1

0
2

1 11 −c h

g = 2 tanh–1 
j L

R L C

w

w
1

0
2

1 11 −

L

N
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O

Q
P
Pc h

= 2j tan–1 
w

w

L

R L C

1

0
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1 11 −

L

N
M
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O
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a + jb = 2j tan–1 
w

w

L

R L C

1

0
2

1 11 −

L

N
M
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O
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Here a = 0

b = 2 tan–1 
w

w

L

R L C

1

0
2

1 11 −

L

N
M
M

O

Q
P
Pc h

The above expression gives the phase delay in a lattice phase equalizer.

Additional Solved Problems

Problem 17.1 Determine the cut-off frequency for the low pass filter shown

in Fig. 17.60.

(a)(a) (b)(b)

0.50.5 FFmm 0.50.5 FFmm 0.50.5 FFmm

80/2 m.H.80/2 m.H. 80/2 m.H.80/2 m.H. 10 m.H.10 m.H.

Fig. 17.60

Solution (a) For the T-network given L/2 = 40 mH, C = 0.5 mF

k = 
L

C
=

×

×

−

−

80 10

0 5 10

3

6.
 = 400 W

Cut-off frequency fc = 
k

Lp p
=

× ×
−

400

80 10 3
 = 1591 Hz

or fc = 
1 1

400 0 5 10 6p pkC
=

× × ×
−.

 = 1591 Hz
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(b) For the p-network, given C/2 = 0.5 mF, L = 10 mH

k = 
L

C
=

×

×

−

−

10 10

1 10

3

6
 = 100 W

Cut-off frequency fc = 
k

Lp p
=

× ×
−

100

10 10 3
 = 3183 Hz

or fc = 
1 1

100 1 10 6p pkC
=
¥ ¥ ¥ -

 = 3183 Hz

Problem 17.2 Determine the cut-off frequency for the high pass filter shown

in Fig. 17.61.

(a) (b)

0.2 Fm 8 Fm0.2 Fm

36 m.H. 160 m.H. 160 m.H.

Fig. 17.61

Solution (a) For the T-network, given 2C = 0.2 mF, L = 36 mH

k = 
L

C
=

×

×

−

−

36 10

0 1 10

3

6.
 = 600 W

Cut-off frequency fc = 
1

4 4p pLC

k

L
=

= 
600

4 36 10 3p × ×
−

 = 1326 Hz

or fc = 
1

4

1

4 600 0 1 10 6p pkC
=

× × ×
−.

 = 1326 Hz

(b) For the p-section, given 2L = 160 mH, C = 8 mF

k = 
L

C
=

×

×

−

−

80 10

8 10

3

6
 = 100 W

Cut-off frequency fc = 
1

4

1

4 100 8 10 6p pkC
=

× × ×
−

 = 99.47 Hz

or fc = 
k

L4

1

4 80 10 3p p
=

× ×
−

 = 99.47 Hz
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Problem 17.3 For the low pass filter shown in Fig. 17.60, find the m-derived

section to have a resonant frequencies of 1700 Hz and 3300 Hz for T and p
networks respectively.

Solution For the T-network the value of m = 1

2

−
F
HG

I
KJ

f

f

c

r

= 1
1591

1700

2

−
F
H

I
K  = 0.352

For the p network the value of m = 1

2

−
F
HG

I
KJ

f

f

c

r

= 1
3183

3300

2

−
F
H

I
K  = 0.2639

Corresponding m-derived sections are shown in Fig. 17.62(a) and (b).

(a) (b)

Fig. 17.62

The value of the series element for the m-derived T-section is given by

m
L

2
= 0.352 ¥ 40 ¥ 10–3 = 14.08 mH

The values of the shunt elements are given by mC = 0.352 ¥ 0.5 ¥ 10–6 = 0.176 mF

and
1

4

2
− m

m
 ¥ L = 49.778 mH

The values of the series elements for the m-derived p section are given by

mL = 0.2639 ¥ 10 ¥ 10–3 = 2.639 mH

and
1

4

2
− m

m
 ¥ C = 0.88 mF

The value of the shunt element is given by

mC

2
= 0.13195 mF
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The corresponding m-derived sections are shown in Fig. 17.63(c) and (d).

(a) (b)

14.08 mH 14.08 mH

49.778 mH

2.639 mH

0.176 Hm

0.88 Hm

0.1319 Hm

0
.0
1
3
1
9

F
m

Fig. 17.63

Problem 17.4  Design an m-derived T-section filter (high pass) with a cut-

off frequency 10 kHz, design impedance of 200 W and m = 0.4.

Solution It is given that fc = 10 ¥ 103 Hz; k = 200 W, m = 0.4

For a prototype highpass

L = 
1

4

200

4 10 103p pfc

=

× ×

 = 1.59 mH

C = 
1

4

1

4 200 10 103p pk fc

=

× × ×

 = 0.0397 mF

The series element of the m-derived highpass T-section is given by

2C

m
= 

2 0 0397 10

0 4

6¥ ¥.

.
 = 0.1985 mF

The elements in the shunt arm are given by

L

m
= 

159 10

0 4

3.

.

×
−

 = 3.975 mH

4

1 2

m

m
C

−

= 
4 0 4

1 0 4 2

¥

- ( )

.

.
 ¥ 0.0397 ¥ 10–6 = 0.0756 mF

The m-derived highpass T-section is shown in Fig. 17.64,

3.975 mH

0.0756 Hm

0.1985 Hm 0.1985 Hm

Fig. 17.64
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Problem 17.5 Find the frequency at which a prototype T-section lowpass

filter having a cut-off frequency fc have an attenuation of 15 dB.

Solution We have a = 15 dB

= 
15

8 696.
 nepers = 1.724 nepers

If f is the desired frequency for 15 dB attenuation, then a = 2 cosh
–1

 
f

fc

F
HG

I
KJ

1.724 = 2 cosh–1 
f

fc

F
HG

I
KJ

f

fc

= cosh (0.862)

f = 1.395 fc

The frequency at which lowpass T section filter has an attenuation of 15 dB

will be 1.395 times the cut-off frequency.

Problem 17.6 Design an m-derived LPF (T-section) having a cut-off fre-

quency of 6 KHz and a design impedance of 500 W. The frequency of infinite

attenuation should be 1.75 times the cut-off frequency.

Solution We have fc = 6000 Hz; k = 500 W, and fµ = 1.75 fc.

For the prototype lowpass section L = 
k

fcp

= 
500

6000p ×
 = 26.525 mH

and C = 
1 1

500 6000p pk fc

=

× ×

= 0.106 mF

For an m-derived section the value of m = 1

2

−
F
HG

I
KJ

∝

f

f

c

= 1
6000

1 75 6000

2

−

×

F
HG

I
KJ.

 = 0.820

Now each of the series element of lowpass T-section is given by

m
L

2
= 

0 820 26 525 10

2

3. .× ×
−

 = 10.68 mH

The shunt arm elements are mC = 0.82 ¥ 0.106 ¥ 10–6 = 0.087 mF
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and
1

4

2
−

×
m

m
L = 

1 0 82

4 0 82

2
−

×

.

.

a f
 ¥ (26.525 ¥ 10–3) = 2.65 mH

The required m-derived network is shown in Fig. 17.65

10.88 mH 10.88 mH

2.65 mH

0.087 Hm

Fig. 17.65

Problem 17.7 A p-section filter network consists of a series arm inductance

of 10 mH and two shunt arm capacitances of 0.16 mF each. Calculate the cut-off

frequency and attenuation and phase shift at 12 kHz. What is the value of nomi-

nal impedance in the pass band.

Solution The given filter is shown in Fig. 17.66, it is a low pass filter given L

= 10 mH; C/2 = 0.16 mF; C = 0.32 mF.

For p-section lowpass filter

fc = 
1

p LC

= 
1

10 10 0 32 103 6p × × ×
− −.

= 5.627 kHz

Nominal terminating impedance is given by

k = 
L

C

= 
10 10

0 32 10

3

6

×

×

−

−.
 = 176.77 W

The attenuation constant = 2 cosh–1 
w

w c

F
HG

I
KJ

 nepers

= 2 cosh–1 
f

fc

F
HG

I
KJ

= 2 cosh–1 
12 10

5 627 10

3

3

×

×

F
HG

I
KJ.

 = 2.78 nepers

The phase shift introduced by the LPF will be p rad in the attenuation band.

Problem 17.8 Each of the two series elements of a T-type low pass filter

consists of an inductance of 30 mH having negligible resistance and a shunt

Fig. 17.66

(a)(a)

LL= 10 mH= 10 mH

0.160.16 F =F = /2/2mm CC CC/2 =/2 = 0.160.16 FFmm
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element having capacitance of 0.16 mF. Calculate the value of cut-off frequency

and determine the iterative impedance and the phase shift of the network at 2

kHz.

Solution We have L/2 = 30 mH fi L = 60 mH, C = 0.16 mF

The cut-off frequency fc = 
1

p LC

= 
1

60 10 016 103 6p × × ×
− −.

fc = 3.24 kHz

The characteristic impedance is given by

Z0T = 
L

C c

1

2

−
F
HG

I
KJ

w

w

= 
L

C

f

fc

1

2

−
F
HG

I
KJ

= 
60 10

016 10
1

2 10

3 248 10

3

6

3

3

×

×

−
×

×

−

−. .
 = (612) (0.619) = 379.05 W

Since f < fc the attenuation a = 0 and the phase shift in the pass band is given
by

b = 2 sin–1 
w

w c

F
HG

I
KJ

 = 2 sin–1 
2

3 248.

F
HG

I
KJ

 = 76°

Problem 17.9 Design the full series equalizer shown in Fig. 17.67. The

design resistance R0 = 600 W and attenuation of 12 dB at 800 Hz. Compute the

elemental values.

Solution D = 10 log N

12 = 10 log N

N = Antilog 
12

10
F
H

I
K

= 15.85

We know that N = 1
2

1
2

0
2

+
w L

R

L1 = 
R N0 1−

w

L1 = 
600 15 58 1

2 800

× −

×

.

p
 = 0.46 henry

R0
R0

L1

C1

1

1¢

Fig. 17.67
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L

C

1

1

= R2
0

C1 = 
L

R

1

0
2

0 46

600 600
=

×

.
 = 1.28 mF

Problem 17.10 Design the full shunt equalizer shown in Fig. 17.68 for a

design resistance R0 = 600 W and attenuation of 10 dB at 600 Hz. Calculate the

elemental values.

Solution

D = 10 log N

D = 10 dB

N = Antilog 1 = 10

N = 1 11
2

0
2

0
2

1
2

+ = +
X

R

R

X

X1 = R0 N − 1

wL1 = R0 N − 1

L1 = 
R N

f

0 1

2

−

p
 = 

600 10 1

2 600

−

×p

L1 = 0.48 H

X2 = 
R

N

0

1

600

3−

=

1

1wC
= 

600

3

C1 = 
3

2 600 600p ¥ ¥
 = 1.33 mF

Problem 17.11 Design a constant resistance lattice attenuation equalizer

shown in Fig. 17.69. The series arm consists of R1 = 2 kW in series with L1 = 30

mH. If R2 = 300 W, calculate the values of R0 and capacitance C1 of the shunt

arm.

1¢ 2¢

1 2

R2 R2

R1

R1

L1

L1

C1 C1

Fig. 17.69

R0
R0

L1

C1

1
2

1¢

2¢

Fig. 17.68
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Solution R1 = 2000 W L1 = 30 mH

R2 = 300 W

R1R2 = R0
2

R = R R1 2  = 774.6 W

C1 = 
L

R

1

0
2 2

0 03

774 6
=

.

.a f
 = 0.049 mF

Problem 17.12 Determine the series arm of a constant resistance lattice at-

tenuation equalizer shown in Fig. 17.70 having design impedance of 2 W, the

shunt arm consists of R2 = 2 W in series with a capacitor C2 = 0.1 F.

11¢¢ 22¢¢

11 22

RR22
RR22

RR11

CC22CC22

LL11

LL11

RR11

Fig. 17.70

Solution The shunt arm values are given as follows

R2 = 2 W

C2 = 0.1 F

R0 = 2 W

R1 R2 = 
L

C

1

2

 = R2
0

R1 = 
4

2
 = 2 W

L1 = C2 R0
2

= (0.1) (2)
2
 = 0.4 H

Problem 17.13 Obtain the inverse network for the network shown in

Fig. 17.71.

LL11

LL33

LL22

CC11

CC33CC22RR11

RR22

RR33

AA

Fig. 17.71
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Solution The elements of the inverse network are given by

C1
1 = 

L

R

1

0
2

C1
3 = 

L

R

3

0
2

L1
2 = C2 R0

2 R1
1 = 

R

R

0
2

1

C2
1

= 
L

R

2

0
2

L1
1
 = C1 R

2
0 L

1
3 = C3 R

2
0 R

1
2 = 

R

R

0
2

2

R
1
3 = 

R

R

0
2

3

The inverse network is shown in Fig. 17.72.

R2¢

R3¢

L1¢C1¢

R1¢

C2¢ C3¢

L3¢

L2¢

Fig. 17.72

Practice Problems

17.1 Design a low pass T-section filter having a cut-off frequency of 1.5 kHz to

operate with a terminated load resistance of 600 W.

17.2 Design a low pass p-section filter with a cut-off frequency of 2 kHz to

operate with a load resistance of 400 W.

17.3 Design a high pass filter with a cut-off frequency of 1 kHz with a termi-

nated design impedance of 800 W.

17.4 Design a m-derived low pass filter having cut-off frequency of 1.5 kHz

with a nominal impedance of 500 W, and resonant frequency is 1600 Hz.

17.5 Design a m-derived high pass filter with a cut-off frequency of 10 kHz,

design impedance of 600 W and m = 0.3.

17.6 For a p section filter network shown in Fig. 17.73, calculate the cut-off

frequency and the value of nominal impedance in the pass band.

15 mH

0.14 Fm0.14 Fm

Fig. 17.73
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17.7 Determine the cut-off frequency and design impedance for the T-section

shown in Fig. 17.74.

1 Fm 1 Fm

4 mH

Fig. 17.74

17.8 Determine the band width and cut-off frequency for the filter shown in

Fig. 17.75.

0.50.5 FFmm 0.50.5 FFmm

0.20.2 FFmm

20 mH20 mH20 mH20 mH

80 mH80 mH

22 11CC 22 11CC

LL1/21/2LL1/21/2

LL22 CC22

Fig. 17.75

17.9 Design a band elimination filter having a design impedance of 500 W and

cut-off frequencies f1 = 1 kHz and f2 = 5 kHz.

17.10 A p-section filter network is shown in Fig. 17.76. Calculate the cut-off

frequency and phase shift at 10 kHz. What is the value of nominal imped-

ance in the pass band.

0.16 Fm 0.16 Fm

10 mH

Fig. 17.76

17.11 A T-section filter is shown in Fig. 17.77. Calculate the value of cut-off

frequency and determine the iterative impedance and the phase shift of the

network at 1.5 kHz.

0.12 Fm

20 mH 20 mH

C

L/2 L/2

Fig. 17.77
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17.12 Find the frequency at which a prototype p-section low pass filter having a

cut-off frequency fc has an attenuation of 20 dB.

17.13 Design full series equalizer for a design resistance R0 = 600 W and attenu-

ation of 20 dB at 400 Hz. Calculate the attenuation M at 1000 MHz.

17.14 Design the full shunt equalizer, for design resistance R0 = 600 W and at-

tenuation at frequencies of 600 Hz and 1200 Hz.

17.15 Design a constant resistance lattice attenuation equalizer to produce an

attenuation of 20 dB at 50 Hz and 3 dB at 3000 Hz. Calculate its loss at

500 Hz. The equalizer is working between two impedances of 500 W each.

Objective-type Questions

1. A low pass filter is one which

(a) passes all low frequencies

(b) attenuates all high frequencies

(c) passes all frequencies up to cut-off frequency, and attenuates all

other frequencies.

2. A high pass filter is one which

(a) passes all high frequencies

(b) attenuates all low frequencies

(c) attenuates all frequencies below a designated cut-off frequency, and

passes all frequencies above cut-off.

3. A band pass filter is one which

(a) attenuates frequencies between two designated cut-off frequencies

and passes all other frequencies

(b) passes frequencies between two designated cut-off frequencies, and

attenuates all other frequencies.

(c) passes all frequencies

4. An ideal filter should have

(a) zero attenuation in the pass band

(b) infinite attenuation in the pass band

(c) zero attenuation in the attenuation band

5. The propagation constant of a symmetrical T-section and p-section are the

same.

(a) true (b) false

6. The values of L and C for a low pass filter with cut-off frequency of

2.5 kHz to operate with a terminated load resistance of 450 ohms are given

by

(a) 57.32 mH; 0.283 mF (b) 28.66 mH; 0.14 mF

(c) 114.64 mH; 0.566 mF

7. The attenuation is sharp in the stop band for K-type filter.

(a) true (b) false

8. The attenuation is not sharp in the stop band for an m-derived filter.

(a) true (b) false
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9. In the m-derived low pass filters, the resonant frequency is to be chosen so

that it is

(a) above the cut-off frequency (b) below the cut-off frequency

(c) none of the above

10. In the m-derived high pass filters, the resonant frequency is to be chosen so

that it is

(a) above the cut-off frequency (b) below the cut-off frequency

(c) none of the above

11. A band pass filter may be obtained by using a high pass filter followed by

a low pass filter

(a) true (b) false

12. A band elimination filter is one

(a) which attenuates all frequencies less than lower cut-off frequency f1

(b) which attenuates all frequencies greater than upper cut-off frequency

f2

(c) frequencies lying between f1 and f2 are attenuated and all other fre-

quencies are passed.
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Appendix A

Fourier Series

A.1 INTRODUCTION

In most of the cases, the response of linear circuits to sinusoidal excitations can

be found easily. A function f (t) is said to be periodic, if the process repeats itself

every T sec, so that we have

f (t + T ) = f (t)

If a periodic function f (t) is to have a Fourier series, it must satisfy the

following Dirichlet conditions.

(i) f (t) must be bounded and possess a finite number of discontinuities.

(ii) f (t) must have a finite number of maxima and minima, and

(iii) f (t) must have a finite average value.

The function f (t) can be represented over a complete period from t = – • to

t = + •, except at the discontinuities, by a series of simple harmonic functions,

the frequencies of which are integral multiples of the fundamental frequency. A

series in this form is called a Fourier Series.

A.2 DEFINITIONS AND DERIVATIONS

A periodic function f (t) can be expressed in the complex form

f (t) = a0 + a1 e jw t + a2 e2 jw t + L + an e
njw t + L

+ a–1 e–jw t + a–2 e
–2jw t + L + a–n e–njw t + L

or f (t) =
n = -•

•

Â an ejnw t (1)

where w =
2p

T

To determine a0, integrating both sides of Eq. 1 over one complete period, we get
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0

2p w/

z  f (t)dt =

0

2p w

w

/

z Â
= -•

•F

HG
I

KJn

n
jn t

a e  dt

=
n

na
= -•

•

Â z
0

2p w/

 ejnw t dt (2)

0

2p w/

z  f (t)dt =

0

2p w/

z a0 dt = a0 
2p

w

 = a0T (3)

or a0 =
1

0
T

T

z  f (t) dt (4)

To determine the other term, an, we multiply both sides of Eq. 1 by e–jnw t, and

integrate from 0 to 2p /w to obtain

0

T

z f (t) e–jnw t dt = an T (5)

an =
1

0
T

T

z f (t) e–jnw t dt (6)

Similarly, we have from Eq. 6, the relation

a–n =
1

0
T

T

z f (t) ejnw t dt (7)

Then Eq. 1 may be written in the form,

f (t) = a0 + 
n =

•

Â
1

(an ejnw t + a–n e–jnw t) (8)

By using Euler’s relation, the function f (t) may be written in the form

f (t) = a0 + 
n =

•

Â
1

(an + a–n) cos nw t + 
n =

•

Â
1

j(an – a–n) sin nw t (9)

Now let

An = an + a–n  ; Bn = j(an – a–n) ;
A0

2
 = a0

We get

f (t) =
A0

2
 + 

n =

•

Â
1

 An cos nw t + 
n =

•

Â
1

Bn sin nw t (10)

Therefore, we have

An = an + a–n = 
1

0
T

T

z f (t) (ejnw t + e–jnw t) dt
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=
2

0
T

T

z f (t) cos nw t dt (11)

Bn = j(an – a–n)

=
1

0
T

T

z f (t) j (ejnw t – e–jnw t) dt

=
2

0
T

T

z f (t) sin nw t dt (12)

Example of Fourier Series

To determine the Fourier series for the square wave shown in Fig. A.1.

Fig. A.1

The function f (t) is represented as

f (t) = 20, 0 < w t < p

= – 20, p < w t < 2p

Since the average value of the wave is zero, the term A0/2 = 0

The cosine coefficients are obtained as follows.

an =
1

20 20

0

2

p

w w w w

p

p

p

z z( ) + -( ) ( )
R
S
T

cos cosn t d t n t d t

=
20 1 1

0

2

p

w w

p

p

p

n
n t

n
n tsin sinL

NM
O
QP

- L
NM

O
QP

R
S
T

U
V
W

 = 0 for all n

Thus, the series contains no cosine terms.

To determine the sine terms

bn =
1

20 20

0

2

p

w w w w

p

p

p

z z( ) + -( ) ( )
R
S
T

cos cosn t d t n t d t

=
20 1 1

0

2

p

w w

p

p

p-L
NM

O
QP

+ L
NM

O
QP

R
S
T

U
V
Wn

n t
n

n tcos cos
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=
20

pn
 [– cos np + cos 0 + cos n2p – cos np] = 

40

pn
 (1 – cos np)

Then

bn =
80

pn
 for n = 1, 3, 5, L

= 0 for n = 2, 4, 6, L

The series for the square wave is

f (t) =
80

p

 sin w t + 
80

3p
 sin 3w t + 

80

5
 sin 5w t + L

The Fourier series contains only odd harmonic sine terms.
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Fourier Transforms

B.1 FOURIER INTEGRAL

In this section, the limiting form of the Fourier series as the period T is made to

approach infinity. Then the resulting function is called the Fourier integral

representation, or simply, the Fourier integral of f (t).

Consider the complex Fourier-series expansion of the periodic function f (t);

f (t) =
n = -•

•

Â  an e
jnw t T = 

2p

w

(1)

where an =
1

0
T

T

z f (x) e–jnwx dx

or an =
1

2

2

T
T

T

-

z
/

/

f (x) e–jnwx dx, w = 
2p

T
(2)

Substituting this into Eq. 1, we get

f (t) =
n T

T
jn x

T
f x e d x

= -•

•

-

-Â z
L

N
M
M

O

Q
P
P

1

2

2

/

/

a f w
 ejnw t

=
n T

T

T
f x

n j

T
t x d x

= -•

•

-

Â z ( ) F
H

I
K -( )L

NM
O
QP

L

N
M
M

O

Q
P
P

1 2

2

2

/

/

exp
p

(3)

Let 1/T = Ds

Then

f (t) =
n = -•

•

Â  Ds 
-

z
T

T

/

/

2

2

f (x) e2p nj(t – x)Ds dx (4)

Now the definite integral 

0

•

z t (s) ds may be defined as the limit, as Ds

approaches zero, of the sum.

n =

•

Â
0

t (n Ds) Ds (5)
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Also we have

-•

•

z t (s) ds =

-•

z
0

t (s) ds + 

0

•

z t (s) ds

= Lim
s 0D Æ

= -•

•

Â
n

t (n Ds) Ds (6)

From this it follows that as T grows beyond all bounds, the expression in

Eq. 4 passes over into the Fourier integral, or

f (t) =

-•

•

z ds 

-•

•

z f (x) e2p js (t – x) dx

=

-•

•

z e2p js t ds 

-•

•

z f (x) e–2p jsx dx (7)

This is the general Fourier integral representation. Another form of the Fourier

integral may be obtained from Eq. 7 by using Euler’s relation on the complex

exponentials. We thus obtain the real form of the Fourier integral.

f (t) = 2 

0

•

z ds 

-•

•

z f (x) cos 2p s (t – x) dx (8)

B.2 FOURIER TRANSFORMS

Equation 7 can be written in slightly different form. Let us introduce another

variable
w = 2p s

In terms of the variable w, Eq. 7 is transformed to

f (t) =
1

2p
-•

•

z ejw t dw 

-•

•

z f (x) e–jw x dx (1)

If we write

g(w) =
1

2p
-•

•

z f (x) e–jw x dx (2)

Then Eq. 1 can be written as

f (t) =

-•

•

z g(w) ejw t dw (3)

The relations in Eqs. 2 and 3 are known as Fourier transforms. The expression

g(w) in Eq. 2 is usually called the Fourier transform of the function f (t).
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The j Factor

C.1 DEFINITION OF j FACTOR

j is used in all electrical circuits to denote imaginary numbers. Alternate symbol

for j is -1 , and is known as j factor or j operator.

Thus

-1  = -( ) ( )1 1  = j(1)

-2  = -( )1 2  = j 2

- 4  = -( )1 4  = j2

-5  = -( )1 5  = j 5

Since j is defined as -1 , it follows that ( j ) ( j) = j2 = - -1 1c h c h  = – 1

\ ( j3) (j3) = j232

Since j2 = – 1

( j3) (j3) = – 9

(i.e.) the square root of – 9 is j3

Therefore j3 is a square root of – 9

The use of j factor provides a solution to an equation of the form x2 = – 4

Thus x = - = -( )4 1 4

x = -1c h2

With j = -1 , x = j2

The real number 9 when multiplied three times by j becomes – j9.

( j) ( j) ( j) = ( j)2 j = (– 1)j = – j

Finally when real number 10 is multiplied four times by j, it becomes 10

j = + j

j2 = ( j) ( j) = – 1

j3 = ( j2) ( j) = (– 1)j = – j
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j4 = (j2) ( j)2 = (– 1) (– 1) = + 1

Example C.1 Express the following imaginary numbers using the j factor

(a) -13 (b) -9 (c) -29 (d) -49

Solution

(a) - = -( ) ( ) =13 1 13 13j

(b) - = -( )9 1 9  = j3

(c) - = -( ) =29 1 29 29j

(d) - = -( ) ( )49 1 49  = j 7

C.2 RECTANGULAR AND POLAR FORMS

A complex number (a + jb) can be represented by a point whose coordinates are

(a, b). Thus, the complex number 3 + j4 is located on the complex plane at a point

having rectangular coordinates (3, 4).

Fig. C.1

This method of representing complex numbers is known as the rectangular

form. In ac analysis, impedances, currents and voltages are commonly

represented by complex numbers that may be either in the rectangular form or in

the polar form. In Fig. C.1 the complex number in the polar form is represented.

Here R is the magnitude of the complex number and f is the angle of the complex

number. Thus, the polar form of the complex number is R –f. If the rectangular

coordinates (a, b) are known, they can be converted into polar form. Similarly, if

the polar coordinates (R, f) are known, they can be converted into rectangular

form.

In Fig. C.1, a and b are the horizontal and vertical components of the vector R,

respectively. From Fig. C.1, R can be found as R = a b2 2+ .

Also from Fig. C.1,

sin f =
b

R
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cos f =
a

R

tan f =
b

a

f = tan–1 
b

a

R = a b2 2+

Example C.2 Express 10 –53.1° in rectangular form.

Solution

a + jb = R (cos f + j sin f)

R = 10 –f = 53.1°

a + jb = R cos f + jR sin f

R cos f = 10 cos 53.1° = 6

R sin f = 10 sin 53.1° = 8

a + jb = 6 + j 8

Example C.3 Express 3 + j4 in polar form

Solution

R cos f = 3 (1)

R sin f = 4 (2)

Squaring and adding the above equations, we get

R2 = 32 + 42

R = 3 42 2+  = 5

From (1) and (2), tan f = 4/3

f = tan–1 
4

3
 = 53.13°

Hence the polar form is 5 –53.13°

C.3 OPERATIONS WITH COMPLEX NUMBERS

The basic operations such as addition, subtraction, multiplication and division

can be performed using complex numbers.

Addition It is very easy to add two complex numbers in the rectangular form.

The real parts of the two complex numbers are added and the imaginary parts of

the two complex numbers are added. For example,

(3 + j4) + (4 + j5) = (3 + 4) + j(4 + 5)

= 7 + j9
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Subtraction Subtraction can also be performed by using the rectangular form.

To subtract, the sign of the subtrahand is changed and the components are added.

For example, subtract 5 + j3 from 10 + j6:

10 + j6 – 5 – j3 = 5 + j3

Multiplication To multiply two complex numbers, it is easy to operate in polar

form. Here we multiply the magnitudes of the two numbers and add the angles

algebraically. For example, when we multiply 3 –30° with 4 –20°, it becomes

(3) (4) –30° + 20° = 12 –50°.

Division To divide two complex numbers, it is easy to operate in polar form.

Here we divide the magnitudes of the two numbers and subtract the angles. For

example, the division of

9 –50° by 3 –15° = 
9 50

3 15

– ∞

– ∞
 = 3 –50° – 15° = 3 –35°
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Answers

ANSWERS TO OBJECTIVE-TYPE QUESTIONS

Chapter 1

1. (a) 2. (c) 3. (d) 4. (b) 5. (a)

6. (c) 7. (b) 8. (d) 9. (a) 10. (c)

11. (a) 12. (b) 13. (a) 14. (c) 15. (a)

16. (a) 17. (d) 18. (a) 19. (d) 20. (c)

21. (b) 22. (a) 23. (b) 24. (c) 25. (c)

26. (b) 27. (a) 28. (a) 29. (b) 30. (a)

31. (d) 32. (a)

Chapter 2

1. (b) 2. (a) 3. (a) 4. (b) 5. (b)

6. (a) 7.  (c) 8. (a) 9. (b) 10. (c)

11. (c) 12. (b) 13. (c) 14. (a) 15. (a), (d)

Chapter 3

1.  (c) 2. (b) 3. (a) 4. (c) 5. (c)

6. (a) 7. (d) 8. (c) 9. (c) 10. (a)

11. (c) 12. (c) 13. (c) 14. (a) 15. (b)

16. (a) 17. (d)

Chapter 4

1. (a) 2. (c) 3. (a) 4. (b) 5. (c)
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6. (a) 7. (d) 8. (b) 9. (b) 10. (c)

11. (c) 12. (a) 13. (a) 14. (b) 15. (c)

16. (d) 17. (d) 18. (c) 19. (c) 20. (b)

21. (c) 22. (c)

Chapter 5

1. (a) 2. (b) 3. (d) 4. (c) 5. (a)

6. (c) 7. (b) 8. (d) 9. (a) 10. (b)

11. (a) 12. (c) 13. (a) 14. (b) 15. (a)

16. (a) 17. (c) 18. (c) 19. (c) 20. (d)

21. (c)

Chapter 6

1. (b) 2. (a) 3. (a) 4. (b) 5. (c)

6. (b) 7. (a) 8. (c) 9. (a) 10. (b)

11. (c) 12. (d) 13. (b) 14. (c)

Chapter 7

1. (c) 2. (a) 3. (b) 4. (d) 5. (b)

6. (c) 7. (c) 8. (a) 9. (b) 10. (d)

11. (d) 12. (c) 13. (a)

Chapter 8

1. (d) 2. (a) 3. (c) 4. (a) 5. (b)

6. (b) 7. (a) 8. (b) 9. (a) 10. (d)

11. (a) 12. (c)

Chapter 9

1. (c) 2. (b) 3. (a) 4. (b) 5. (a)

6. (a) 7. (c) 8. (b) 9. (c) 10. (a)

11. (b)

Chapter 10

1. (a) 2. (b) 3. (b) 4. (a) 5. (c)

6. (d) 7. (b) 8. (c) 9. (b) 10. (d)

Chapter 11

1. (d) 2. (d) 3. (a) 4. (c) 5. (b)

6. (b) 7. (c) 8. (c) 9. (a) 10. (d)

11. (a) 12. (b) 13. (a) 14. (a)
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Chapter 12

1. (a) 2. (a) 3. (b) 4. (a) 5. (d)

6. (a) 7. (b) 8. (b) 9. (a) 10. (a)

11. (c) 12. (d) 13. (b) 14. (b) 15. (a)

Chapter 13

1. (c) 2. (a) 3. (b) 4. (a) 5. (c)

6. (a) 7. (b) 8. (d) 9. (a) 10. (a)

11. (c)

Chapter 14

1. (a) 2. (b) 3. (c) 4. (d) 5. (a)

6. (b) 7. (c) 8. (b) 9. (a) 10. (c)

Chapter 15

1. (b) 2. (c) 3. (a) 4. (c) 5. (b)

6. (c) 7. (b) 8. (a) 9. (c) 10. (c)

11. (b) 12. (c) 13. (a) 14. (b) 15. (c)

16. (a) 17. (a) 18. (c)

Chapter 16

1. (a) 2. (b) 3. (c) 4. (d) 5. (a)

6. (b) 7. (c) 8. (b) 9. (a) 10. (c)

Chapter 17

1. (c) 2. (c) 3. (b) 4. (a) 5. (a)

6. (a) 7. (b) 8. (b) 9. (a) 10. (b)

11. (b) 12. (c)

ANSWERS TO SELECTED PRACTICE PROBLEMS

Chapter 1

1.1 (a) 75 A (b) 20 A (c) 2.5 A; 2 S

1.3 3.33 V

1.5 1.5 mF

1.7 10 V; 30 V

1.9 0.3 ¥ 10–2 J

1.11 25 V; 5 V

1.13 V1 = V2 = V3 = 100 V
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1.15 0.682 A; 4.092 A

1.17 150 W

1.19 0.7 A; 67.3 V

1.21 – 4 V, 12 V, 192 W

1.23 P0.2 = – 148.8 W, P20 = – 1090.9 W, P4 = 743.8 W, P6 = 495.9 V

Chapter 2

2.1 2580 W; – 32 V

2.3 – 60.9 V; 195.7 W

2.5 I2 = I4 = 6.25 A; I3 = 0; I1 = I5 = 1.25 A; I = 7.5 A

2.9 1.2 A; 4.2 A; 2 A; 3.2 A

2.9 2.65 V

2.11 1.25 V1 – 0.72 V2 = – 12.5

– 0.75 V1 + 1.75 V2 = – 2.5 + 4 V3

36.8 W

2.13 18.5 V

Chapter 3

3.1 1.182 W

3.3 0.82 A

3.5 I1 = 4.6 a; I2 = 2.6 A; I3 = 2 A

3.7 32 V, 4 W, 8 A

3.9 12 W, 0.75 W, 6 V, 0.5 A

3.11 4 A

3.13 0.5 A

3.15

Chapter 4

4.1 5 Hz; 20 Hz; 2 KHz; 100 KHz

4.3 15.4 V; 26.57 V; 16.22 V; – 16.22 V

4.5 12.99 V; 12.99 V; 14.49 V; – 7.5 V; – 7.5 V

4.7 7.07 mA; 6.37 mA; 10 mA; 20 mA

4.9 VRL is 300 V peak to peak sine wave riding on a 200 V dc level.

Imax = 3.5 A, Vav = 200 V
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4.11 2.82 cos 100 p t; 20 A; – 20 A; 1/300 sec

4.13 106.06

4.15 27.57

4.17 55.25°

Chapter 5

5.1 157.4 – – 17.6°; 17.6° lead, 0.635 A

5.3 55.85 – – 57.5°; 57.5°

5.5 0.074 A; 41.9°; increases by 19°

5.7 944.2 W; 0.053 A; 3.67°; 16.3 V; 30.7 V

5.9 (0.3 – j3.15) A; (0.48 + j3.1) A; (0.044 – j0.66) A

V3 = 9.5 V; V5 = 15.7 V; V10 = 6.61 V; V0.1H = 99.35 V;

V100 mF = 99.8 V; V0.5H = 103.93 V V500 mF = 4.21 V

I2

I1I3

81.2º

84.5º86.2º V

Fig. 5.9

5.11 1.44 A; 7.05°; V100 mF = 22.9 V; V10 W = 14.4 V

V30 W = 38.93 V; V0.1H = 38.93 V

5.13 VT = R L l t
L

R
m

2 2 1+ +F
H

I
K( ) -w w

w
sin tan

q = tan-1 wL

R
, where w = 200 rad/sec

5.15 L = 6.67 mH; C = 3.33 mF

5.17 iT = 1.74 sin (100t + 67.4°) A

q = 67.4°; Z = 115 W

Chapter 6

6.1 0.97

6.3 3.12 W, 9.93 H

6.5 (0.28 + j0.78) W; 282.7 VA

6.7 486.5; 0.27

6.9 0.891; 1587.7 W; 806.2 VAR; 1781.9 VA

6.11 1136.36 VA; 529.6 VAR; 0.88
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6.13 15.396 kW; 3944 VAR; 15.87 KVA; 0.97

6.15 0.0812 mW

6.17 – 0.114 W

Chapter 7

7.1 3.39 – – 97.3°

7.3 (3.82 – j1.03) W; 15.11 W

7.5 4.37 A

7.7 2.69 W

7.9 (20 – j5) V in series with (2 – j) W

(8.99 + j2) A in parallel with (2 – j) W

7.11 I10 = 7.34 – – 21.84°; I5 = 1.65 – 33.69°; I3 = 8.39 – – 12.5°

7.13 (1.1 + j4.7) V in series with (0.93 + j0.75) W

(3.2 + j2.4) A in parallel with (0.93 + j0.75) W

7.15 1874.9 W

7.17 (– 0.18 – j0.6)V1 volts in series with (100 – j30) W

7.19 0.894 – – 63.4° in series with (0.4 + j1.25) W

Chapter 8

8.1 50.3 Hz; 63.2 V; 3 (approx.)

8.3 2.07 W

8.5 875.35 Hz; 914.42 Hz; 836.28 Hz; 0.2H; 0.165 mF

8.7 1.77

8.9 Q = 1; R = 60 W; C = 50 mF

Chapter 9

9.1 v1 = L1 
di

dt
M

di

dt

1 2+ ; v2 = L2 
di

dt
M

di

dt

2 1+

9.3

2 5 2

5 4 0

2 0 6

-

-

L

N

M
M
M

O

Q

P
P
P

9.5 v1 = 181.44 cos (40t – 30°)

v2 = 202.88 cos (40t – 30°)

9.7 L = 13 H
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9.9 L = 
2

3
 M

9.11 1 –– 90 V

Chapter 11

11.1 i(t) = (2 + 10t)e–5t

11.3 i1(t) = 9.99 – 8.49 e–5 ¥ 104
 t; i2(t) = 5e–5 ¥ 104 t

11.5 i(t) = 101.2 + 30.9 e–0.1t – 52.11 e–4.94t

11.7 i(t) = 5.06 [e–0.033t – e–4.966t]

11.9 i(t) = 3.8 + e–0.05t + 0.12 e–0.31t

11.11 i(t) = – 0.35 e–500t

11.13 5e–5.71t

11.15 V1(t) = – 4e–0.4t + 4e–4999.8t

Chapter 14

14.1 i(t) = e–2.5(t – 5) [cos h 2.46 (t – 5) – 1.01 sin h 2.46 (t – 5)]

14.2 1
1

3

2

15

3

1

3 5- +-

-

- -( )
e e

t t/ /

14.5 Z11(s) = 
7 7 5

1

2

2

s s

s s

+ +

+ +
; Z12(s) = 

2

12

s

s s+ +
;

G21(s) = 
2

7 7 52

s

s s+ +

14.7 G12(s) = 
s

s

2

2

1

2 1

+

+
; Z12(s) = 

s

s s

2

2

1

3 1

+

+c h

14.9 Z12(s) = 
5

12

s

s +
; Y12(s) = 

s

s

2 1

5

+
; G12(s) = G12(s) = 1

14.11 i(t) = 4.5e–3t – 1.5e–t

14.13 Unstable

14.15 (a) 2, 0, 1 (b) 0, 2, 4 (c) 2, 2, 2

Chapter 15

15.1 Z11 = 
Y Y

Y

B C+

D
; Z12 = Z21 = 

Y

Y

C

D
; Z22 = 

Y Y

Y

A C+

D

DY = YA YB + YB YC + YCYA
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15.3 A¢ = 3; B ¢ = 2; C ¢ = 4; D ¢ = 3

15.5 h11 = 
4

3
; h21 = 

-2

3
; h22 = 

1

6
; h12 = 

2

3

g11 = 
1

4
; g12 = – 1; g21 = 1; g22 = 2

15.7 Y11 = (0.5 – j0.2)10–3; Y12 = Y21 = (j0.2 ¥ 10–3)

Y22 = j(0.02 ¥ 10
–3

)

I1 I2

V1 y11

V2

V1

Y12

y21
y22 V2

Fig. 15.7

15.9 Zi = 1.5 k W; Z0 = 0.033 ¥ 10–3 W

15.15
5 71 4 29

2 14 2 14

. .

. .

-L
NM

O
QP

15.17
0 857 31 0 17 59

8 58 32 1 1 89 61 1

. .

. . . .

– - ∞ – ∞

– - ∞ – ∞

L
NM

O
QP

k

m

W

Chapter 16

16.1 i(t) = e–2.5(t – 5) [cos h 2.46 (t – 5) – 1.01 sin h 2.46 (t – 5)]

16.2 1
1

3

2

15

3 3 5
− +

− − −

e e
t t/ /a f

16.5 Z11(s) = 
7 7 5

1

2

2

s s

s s

+ +

+ +
; Z12(s) = 

2

12

s

s s+ +
;

G21(s) = 
2

7 7 52

s

s s+ +

16.7 G12(s) = 
s

s

2

2

1

2 1

+

+
; Z12(s) = 

s

s
s

2

2

1

3

2
1

+

+
F
HG

I
KJ

16.9 Z12(s) = 
5

12

s

s +
; Y12(s) = 

s

s

2 1

5

+
; G12(s) = G12(s) = 1
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16.11 i(t) = 4.5e–3t – 1.5e–t

16.13 Unstable

16.15 (a) 2, 0, 1 (b) 0, 2, 4 (c) 2, 2, 2

Chapter 17

17.1 L = 0.127 H; C = 0.35 mF

17.3 0.09 mF; 0.06 H

17.5 For T section; series arm component 6.66 ¥ 10–9 F; shunt arm 0.015 mH,

1.3 ¥ 10–9 F.

For p section series arm 6.19 mH: 3.33 ¥ 10
–9

 F; shunt arm 0.031 H.

17.7 1.779 kHz; 89.44 W

17.9 For the T-section, series arm components are 63.5 mH; 0.08 mF and shunt

arm components are 9.9 mH; 0.5 mF.

For the p-section; series arm components are 0.04 mF; 127 mH and shunt

arm components are 19.8 mH, 0.25 mF.

17.11 4.6 Hz; 545.5 W; 38°.
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Appendix E

Model Question Papers

PAPER 1

1. (a) Obtain the response of R-L-C series circuit for impulse excitations.

(b) Define reluctance of a magnetic circuit and derive an expression for

reluctance.

Solution Refer section 10.11 in the textbook.

2. In an electrical circuit R, L and C are connected in parallel. R = 10 W,

L = 0.1H, C=100 mF. The circuit is energized with a supply at 230 V,

50 Hz. Calculate

(a) Impedance

(b) Current taken from supply

(c) p.f. of the circuit

(d) Power consumed by the circuit

Solution The circuit is as shown in figure.

The impedance of 3 branches are

Z1 = 10 W

Z2 = j2 p f L= 2 ¥ 50 ¥ 0.1 = j31.41 W
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Z
j

fc

j
j3 2 2 50 100
31 84=

-
=

-
¥ ¥

= -
p m

. W

(a) Impedance of circuit Z
Z Z Z

j j

= + +L
NM

O
QP

= + +
-

L
NM

O
QP

ª

-

-

1 1 1

1

10

1

31 41

1

31 84

10

1 2 3

1

1

. .

W

(b) Current taken from supply I
V

Z
A= =

– ∞
= – ∞

230 0

10
23 23 0. i.e. A

(c) p.f. of the circuit = cos q = 1

(d) Power consumed by the circuit

Real power consumed = I 2R = 232 ¥ 10 = 5.3 kW

Reactive power consumed = 0 KVAR

3. A constant voltage at a frequency of 1 MHz is applied to an inductor in

series with a variable capacitor when the capacitor is set to 500 PF, the

current has the max. value, while it is reduced to one half when capacitance

(i) 600 PF, find (i) resistance (ii) inductance (iii) Q factor of inductor.

Solution Given f = 1 MHz

Let the max. current be Imax.

Given at 1 MHz, for C = 500 Pf

I = Imax

\ Imaginary part of impedance is

zero, i.e. XL = XC

2
1

2
p

p
fL

fc
=

6.283 ¥ 106 ¥ L = 318.31

L = 50.66 mH

Now also given I
I

= max

2
 at C = 600 PF

I
I V

R j L
= =

+ ¥ -
max

.283 .252 6 10 2656c h (1)

QX
fcC = =

¥ ¥ ¥
=F

H
I
K-

1

2

1

2 10 600 10
265

6 12p p
.25

and  I
V

Rmax = (2)

Dividing Equation (2) by Equation (1)
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Z
R j L

R
=

+ ¥ -6 10 2656.283 .25c h

fi 2R = R + j (6.283 ¥ 10
6
 L – 265.25)

R = j (318.31 – 265.25)

R = 53.06 W
\ (i) R = 53.06 W

(ii) L = 50.66 mH

(iii) G
L

R
= = ª
w

5 6.999

4. For the given graph and tree shown in the figure, write the tie-set matrix

and obtain the relation between branch currents and link currents.

Solution Number of link branches = b – (n – 1)

Where b is number of branches and n is number of nodes

\ Link branches = 4 – (3 – 1) = 2

The link branches are a and b.

Let the branch currents are ia, ib, ic and id
The two link currents are i1 and i2 as shown in the figure.

There are two fundamental loops corresponding to the link branches a and

b. If Va and Vb are branch voltages, the KVL equations for the two f-loops

can be written as

Va + Vd – Vc = 0

Vb + Vd – Vc = 0

The above equation can be written in matrix form as
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Loop branches

Currents

Ø Æ
i

i

1

2

a b c d

1 0 1 1

0 1 1 1

-

- +
L
NM

O
QP

V

V

V

V

a

b

c

d

L

N

M
M
M
M

O

Q

P
P
P
P

= 0

5. Find the equivalent resistance between AB in the circuit shown in the

figure. All resistances are equal to R.

Solution Converting the Y point C

into D

Æ The equivalent circuit now is

The equivalent circuit for this is as shown below.

\ Resistance between AB is R R R= =
10

15
0 666.
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6. Find the Thevenins equivalent for the circuit in figure

Solution The Thevenins equivalent resistance is calculated assuming all

voltage sources shorted and as seen from AB, the circuit will be as

shown below:

RTh = [{(5//6) – 7}//8] + 5

30

11
7 8 5

107

11
8

107

11
8

5 4 389 5 9 389+ + =
¥

+

L

N
M
M
M

O

Q
P
P
P
+ = + ={ }/ / . . W

Let us assure voltages at nodes (1) and (2) be V1 and V2.

Now writing node equations.

V V V1 1 28

8 7
0

-
+

-
=

7V1 – 56 + 8V1 – 8V2 = 0 fi 15 V1 – 8V2 = 56 (1)

V V V V
V V2 2 1 2

1 26 7

5

5
0 30 107 210+

-
+

-
= fi - + = (2)

on solving equations (1) and (2) we get

V1 = 5.6 V fi VOC = 5.6

\ Thevenins equivalent circuit is
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7. The switch in the circuit shown in figure is in position (1) for two time

constants and then charged to position (2) find transient response.

Solution When the switch is in position (1)

Convert equation in laplace transform is given as

I S
V S

R LS

S

S S
( )

( ) /

.
=

+
=

+
=

+( )

5

5 0 001

5000

5000 3

Assuming initial conditions be zero.

I S
S S

( ) = -
+

1 1

5000

Taking inverse Laplace transform

i(t ) = 1 – e–5000t

the switch is cosed for two time constants

\ i (t) after two time constants i

i = 1 – e–2 = 0.864 A

Now when switch is moved to

position (2) the mesh equation

is given by

 L
di

dt
Ri t+ =( ) 0

fi i (t) = C1 e
–5000t

initially i (o) = 0.864 A

C1 = 0.864 A

\ i(t) = 0.864 e–5000t

The response can be plotted as

8. Derive phase and line voltage, current relations in a balanced star and

delta connected loads.

Solution Refer Sections 9.7.1, 9.7.2, 9.7.3, and 9.8.1, 9.8.2, and 9.8.3.
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PAPER 2

1. (a) Discuss Kirchhoff’s Laws.

Solution Refer Sections 1.9 and 1.12.

(b) Derive the expression for self, mutual inductance and coefficient of

coupling.

Solution Refer Sections 10.3. and 10.5.

(c) Explain source transformation with example.

Solution Refer Section 2.15.

2. (a) What is the use of operator j ?

Solution Refer Appendix C.

(b) For the circuit shown in figure, find the current I drawn from the

source.

The impedance as seen by the source is

Z = (10 + j20) // (8 – j15)

=
380 10

18 5
19 742 4

+

+
= -

j

j
j. .928

\ Current drawn from source I
V

Z j
= =

-

100

19 742 4. .928

= 4.768 + j1.19

= 4.914 14.01°

or I1 =
100

10 20
2 4

+
= -

j
j

I2 =
100

8 15
2 768 5 1903

-
= +

j
j. .

I = I1 + I2 = 4.768 + j1.19

= 4.914 14.01°
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3. (a) A series RLC circuit with Q = 250 is resonant at 1.5 MHZ. Find the

frequencies at half power points and also bandwidth.

Solution Given Q = 250

Q =
w o L

R

250 =
2 2 1 10

250
37 7 10

6
3p p¥ ¥

fi =
¥ ¥

= ¥
f L

R

R

L
o .5

.

Lower half power frequency f f
R

Lr1 4
= -

p

= 1 10
37 7 106

3

.5
.

¥ -
¥

Dp

= 1.5 ¥ 106 – 3 ¥ 103

= 1.496 MHz

Upper half power frequency f f
R

Lr2 4
= +

p

= 1 10
37 7 10

4
6

3

.5
.

¥ +
¥

p

= 1.5M + 3k = 1.53 MHz

Bandwidth = f2 – f1 = 1.53 M – 1.496 M = 6 kHz

(b) Distinguish between the average value and rms value of an

alternating current.

Solution Refer Section 4.4.

4. Write and solve the equation for Mesh Current in the network shown.



Appendix E E.9

Solution By source transformation technique transform 5A and 4A current

sources into voltage sources.

5A current source in parallel with 3 W can be transformed to 15V

in series with 3 W and 4A current source in parallel with 3 W can

be transformed to 12 volts in series with 3 W. The equivalent

circuit is as shown below:

The mesh equations are

5I1 + 1(I1 – I2) = 15

1(I2 – I1) + 4I2 = 41

fi – I1 + 5I2 = 41 (1)

6I1 – I2 = 15 (2)

on solving equations (1) and (2) we get

I1 = 4 Amps

I2
 = 9 Amps

5. Determine the line currents for the unbalanced delta connected load of  the

figure given. Assume phase sequence RYB.

Solution The phaser diagram

will be as shown:

VRY = 200 0°

VYB = 200 120− °

VBR = 200 240− °

IRY =
200 0

30 40j

°

+
 53.13− °
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IYB = 
200 120

22.36 93.43
8 4j

− °
= − °

+

IBR = 
200 240

10.41 278.65
15 12j

− °
= − °

+

The line currents are IR = IBR – IRY

IY = IRY – IYB

IB = IYB – IBR

6. The circuit shown in the figure below has resistance R which absorbs

maximum power. Compute the value of R and maximum power.

Solution According to maximum power transfer theorem, maximum power

can be transferred when load resistance is equal to the interval

resistance of the source which can be calculated as the resistance

seen from AB with source open.

\ =

= =

Rth 3 7

21

10
2 1

/ /

. W

Now the circuit can be drawn as
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According to current dividing rule

I1 =
20 5

5 3
12 14

¥

+
=

( ).235
. A

I2 =
I1 3

5 1

12 14 3

5
7 14

¥
=

¥
=

.

.
. A

So the maximum power that can be delivered to resistor R is

I2R = (7.14)2 ¥ 2.1 = 107 watts.

7. In the figure shown below v(t) = 10 V, find i2(t). Assume all initial

conditions to be zero. Use Laplace transform technique.

Solution Writing mesh equation

10
0 1

2

0
2

2 0

1 1 1 2

2 1 2

S
S I s I s

s
I s I s

S
I s I s I s

= + + -

= - + =

. ( ) ( ) ( ) ( )

( ) ( ) ( )

a f

a f
2

0 1 1
2 10

1 2s
s I s

s
I s

s
+ + - =. ( ) ( )e j (1)

- + + =
2 2

2 01 2s
I s

s
I s( ) ( )e j (2)

on solving equations (1) and (2) we get

I s
s s s

2 2

100

11 60
( )

( )
=

+ +

1

11 60 11 602 2S S S

AS B

S S

C

S( )+ +
=

+

+ +
+

A B C=
-

=
-

=
1

60

11

60

1

60
; ;

\
+ +

L
N
M

O
Q
P= -

+ +
-

+ +

L
NM

O
QP

- -L
S S S

L
S

S

S S S S

1
2

1
2 2

1

11 60

1

60

1 1

60 11 60

11

60

1

11 60c h
.

= -
+

+ +
F
HG

I
KJ

+

+ +
F
HG

I
KJ

L

N

M
M
M
M

O

Q

P
P
P
P

-1

60

1
11

2

11

2

199

2

319

11

2

119

2

1

2 2 2 2
L

S

S

S S

e j

e j e j
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\ = - - ¥
L
NM

O
QP

i t e t e t
t t

2

11

2

11

2100

60
1

119

2
319

2

119

119

2
( ) cos .sin

\ = - -
-i t e t e t

t t
2

5 5 5 51 667 1 667 5 45 97 47 5 45( ) . . cos . . sin .. .

8. (a) In a two-port bilateral network show that AD – BC = 1.

Solution Refer Section 15.8.2.

(b) Derive an expression for DC response in an RC circuit.

Solution Refer Section 12.3.
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PAPER 3

1. (a) State the voltage current relationships for (i) resistance

(ii) inductance and (iii) capacitance.

Solution Refer Sections 1.5, 1.6 and 1.7.

(b) Two coupled coils with self inductances L1=0.8H and L2=0.2H have

a coupling coefficient of 0.6 has 500 turns. If the current in coil 1 is

I1(t) = 10 sin 200t; determine the voltage at coil 2 and the maximum

flux set up by the coil 1.
Solution

M K L L=

= ¥
=

1 2

0 6 0 8 0

240

. . .2

mH

The voltage across the coil 2 v2
1( )
( )

t M
di t

dt
= ±

v

v

2

2

10 200

2000 200

( ) sin

( )

t
d

dt
t

t t

= ( )

= C is volts

(c) A torroid is made of steel rod of 2 cm diameter. The mean radius of

torroid is 20 cm relative permeability of steel is 2000. Compute the

current required to produce 1 m web of flux and 1000 turns in the

torroid.

Solution Length of the flux path = pD = p ¥ 20 = 62.83 cm = 0.6283 m

Area of flux path = = =( )p p

4 4
2 3 1412 2d . cm2

Magnetic field intensity H
B

o r

=
m m

B

H

= =
¥

=
¥ ¥

=

-

-

-

f

p

Area
web / m

AT / m

210

3141 10
3 1

3 1

4 10 2000
1233 45

3

4

7

.
.

.
.

mmf = H ¥ l = 1233.45 ¥ 0.6283

= 775 A.T.
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Exciting current =
mmf

T

=
775

1000
0 775= . A

2. (a) If I1=10 0° , I2 = 20 60°  and I3 = 12 30− °  find I1 + I2 + I3.

Solution I1 + I2 + I3 = 10 0°  + 20 60°  + 12 30− °

= 30.392 + j11.32

= 32.432 20.429

(b) Prove that the form factor for a sinusoidal current wave form is 1.11.

Solution Refer Section 4.4.7.

3. (a) Derive an expression for resonance frequency of a series R-L-C

circuit.

Solution Refer Section 8.1.

(a) A coil of resistance 10l and an inductance of 0.1 H is connected in

series with a capacitor of capacitance 150 mF a cross at 200V, 50Hz

supply. Calculate (i) Impedance (ii) Current (iii) Power and power

factor of the circuit

Solution (i) Total impedance

Z = R j L
j

c
+ -w

w

= 10 + j31.45 – j21.22

= 10 + j10.194

= 14.279 45.55

(ii) Current 

200 0

14.279 45.55

14 45.55

V
I

Z
=

°
=

°

= − °

(iii) Power factor = cos (45.55o)

= 0.7 lagging
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Real power = VI cos f

= 200 ¥ 14 ¥ 0.7

= 1.9 kW

Reactive power = VI sin f

= 200 ¥ 14 ¥ sin (– 45.55)

= –1.998 KVAR

“–1” Sign indicates that it absorbs the reactive power.

4. (a) Define cut set and tie set

Solution Refer Sections 2.7 and 2.8.

(b) Determine the current in the 10 W resistor in the circuit shown in the

figure below.

Solution Apply nodal analysis at point (1), we get

50 0 50 30
0

4 5 10 5 5

V VV

j j

− ° − °
+ + =

− +

50 0 50 301 1 1

4 5 10 5 5 4 5 5 5
V

j j j j

° ° 
+ + = + − + − + 

V [0.297 + j0.0219] = 11.708 + j4.267

[ ]0.298 4.219 12.46 20.02V ° = °

fi V = 41.812 15.801°

Current through the 10 W resistor I
V

R10 =

= 
41.812 15.801

10

°

= 4.1812 15.80°  Amp

5. (a) Draw the dual network for the given network as in the following

figure.
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Solution

Dual network

(b) A balanced star connected load of 8 + 6j W/phase is connected to a

3f 230V, 50Hz supply. Find the line current, power factor, total

Active and Reactive powers.

Solution VRY = 230 0°

VYB = 230 120− °

VBR = 230 240− °
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3

230

3 10 36.86

10.623 36.86

RY
R

V
I

Z
=

×

=
× °

= − °

230 120

3 10 36.86

10.623 156.86

YI
− °

=
× °

= − °

230 240

3 10 36.86

10.623 276.86

BI
− °

=
× °

= °

P.f. = cos f = cos (36.86o) = 0.8 (lagging)

Active power = 3I2R

= 3(10.623)2 8

= 2.708 kW

Reactive power = 3VI sin f

= 3(320) (10.623) sin (–36.86)

= 4.396 KVAR

6. (a) Obtain the Norton’s equivalent circuit at the terminals A, B for the

following figure.

For finding the Nortons resistance, replace the voltage sources by the

short circuit.
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Req = {[(1ΩΩ10)+2]ΩΩ10}

= 2.253 W
For finding the IN short the terminals A and B and find current IN. Apply

superposition

(i) with 100 V source

 Z = + =[( ) ] .2 10 1 2 67

Total current I
Z

=

= =

100

100

2 67
37 45

.
. A

(ii) With 20 V source

ISN 2
20

2
6 872= =

.91
. A

\ = +I I ISN SN SN1 2

= 31.21 + 6.872

= 38.08 A

\ Nortons equivalent circuit is given by
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(b)

For the 2 port network, find h-parameters.

Solution We know that

V1= h11I1 + h12V2

I2 = h21I1 + h22V2

h11 =
V

I V

1

1 02 =

h21 =
I

I V

2

1 02 =

\ h11 =
1 33

1 331

1

.
.

I

I
= W

h21 = - = -4

6
0 661

1

I

I
. V1 = (2ΩΩ4)I1

= 1.33 I1

I2 = - ¥I1
4

6

h12 =
V

V I

1

2 01=

h12 =
I

V I

21

2 01=
If I1 = 0

h22 =
I

I
2

26

= 0 166. v

V1 = 4I2

h12 =
4

6
2

2

I

I
V2 = 6I2

= 0.66

7. A series RLC circuit with R = 5 W, L = 0.1H and C = 500 mF has a D.C.

voltage of 100V applied at t = 0 through a switch. Find the resulting

current transient.
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Solution 5 0 1
1

500 10
100

6
i t

di t

dt
i t dt( ) .

( )
( )+ +

¥
=- zL

d i

dt

di

dt

2

2
50 2000 0+ + =

D2 + 50D + 2000 = 0

D = –25 ± j37.08

\i (t) = e–25t [K1cos 37.08t + K2 sin 37.08t] (1)

1st initial condition is that current through the inductor cannot change

instantaneously.

Also voltage drop across capacitor cannot change instantaneously

Hence at t = 0+

di

dt

V

L
o( )

.
0

100

0 1
1000+ = = =

Substituting initial conditions i (0+) = 0

\ 0 = K3

On differentiating equation (1), we get

di

dt
e K t Kt= - +-25

1 237 08 37 08 37 08 37 08. sin . . cos .

- +-25 37 08 37 0825
1 2e K t Kt cos . sin .a f

= - - + --e t K K t K Kt25
1 2 2 137 08 37 08 25 37 08 37 08 25sin . . cos . .a f a f

di

dt
K K( ) .0 37 08 252 1

+ = -

fi = =K2
1000

37 08
26

.
.96

\ i(t) = e
–25t

 (26.96 sin 37.08t)

8. (a) Explain Dot convention.

Solution Refer Section 10.4.

8. (b) Explain briefly about the locus diagrams.

Solution Refer Section 8.13.
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PAPER 4

1. (a) Explain about dot convention.

Solution Refer Section 10.4.

(b) An iron ring of mean length 50 cm has an air gap of 1 mm and a

winding of 200 turns. If the permeability of iron is 400 when a

current of 1.25 A flows through the coil. Find the flux density.

Solution AT1 required for iron path in the ring = H l
B

li i
o r

i¥ = ¥
m m

=
¥ ¥

¥-
B

4 10 400
0

7p
.5

AT2 required for air gap of 1 mm = H l
B

lg g
o

g= ¥
m

=
¥

¥ ¥-
-B

4 10
1 10

7
3

p

Total ampere turns = AT1 + AT2

200 1
0

4 10 400 4 10
10

7 7
3¥ = ¥

¥ ¥
+

¥
¥L

NM
O
QP- -

-.25
.5B B

p p

250
4 10

1 10 10
7

3 3=
¥

¥ +-
- -B

p
.25

B = 0.314 web/m2.

2. Derive the expressions for half power frequencies, Q factor f Bandwidth

of a series resonant circuit.

Solution Refer Sections 8.4. and 8.5.

3. (a) For the parallel network shown below, determine the value of R at

10 W resonance.

Solution Z = (10 + j10) ΩΩ(R – j2)
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=
10 10 2

10 10 2

+( ) -( )
+ + -

j R j

j R j

=
10 20 10 4

10 8

R j j R

R j

- + +
+ +

=
10 4 10 20

10 8

R j R

R j

+ + -
+ +

( )

=
10 4 10 20 10 8

10 642

R j R R j

R

+ + - + -
+ +

( ) ( )

( )

= [(10R + 4)(10 + R) + 8 (10R – 20) – j8(10R + 4) +j (10 + R)

(10R –20)] 
1

10 642( )+ +R

At resonance imaginary part = 0

fi 8 (10R + 4) – (10 + R) (10R – 20)

fi 100R – 200 + 10R2 – 20R = 80R + 32

10R2 = 232

R = 4.8166 W
(b) Define average value, rms value and form factor in a circuit.

Solution Refer Section 4.4.

4. Determine the current in all branches of the following network and the

voltage across for resistor using loop method.

Solution Applying mesh equation to the loops (1), (2) and (3)

We get
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5(I1 – I3) + 7(I1 – I2) = 5

12I1 – 7I2 – 5I3 = 5 (1)

7(I2 – I1) + 6 (I2 – I3) + 5I2 = –25

–7I1 + 18I2 – 6I3 = –25 (2)

10I3 + 5(I3 – I1) + 6(I3 – I2) = 0

–5I1 – 6I2 + 21I3 = 0 (3)

By solving above 3 equations, we get

I1 = –1.231 A

I2 = –2.172 A

I3 = –0.9138 A

Current in 5 W resistor is –0.3172 A

7 W resistor is –1.231 A

6 W resistor is –1.2882 A

10 W resistor is –0.9138 A

5 W resistor is –2.172 A

5. A 440V, 3f, 3-wire system is connected to an unbalanced star connected

load shown in the figure. Determine the line currents and power I/P to the

network.

VRY = 440

IR =
440

3 10
25 4

¥
= . A

IY =
440 120

3 15

− °

×

 = 16.93 120 A− °

IB =
440 240

3 20

− °

×

= 12.7 240 A− °

P = IR
2 RR + IY

2 RY + IB
2 RB

= 13.976 kW

6. (a) Verify reciprocity theorem in circuit shown in the following figure.

Solution Let us find current in 3 W resistor.
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I3 = 10
2

2 3
¥

+
= 4 A

Vab = 3 ¥ 4 = 12

According to reciprocity theorem the voltage across ab Vab = 12

Now connect the current source across ab and find the voltage across m

and n.

I2 10
3

5
6= ¥ = A

The voltage across mn = 2 ¥ 6 = 12 volts, same as Vab. Hence, the

reciprocity theorem is proved.

(b) State and explain compensation theorem.

Solution Refer Section 3.6.

7. Find transfer function 
V S

V S
o

i

( )

( )
 for the circuit shown in the following figure.

Also
V V

V S
V VA i

A
A O-

+ +
-

=
1 2

0

V S V
V

A i
o( .5 )1

2
+ = +

V
V

V

SA

i
o

=
+

+
2

1.5

Also V
V

o

A

=
¥

+

2

5

2
2

5
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 =
+

V

S
A

1

V
V V

S So
i o=
+

+ +( )( )

2

2 3 1

V
S S

V

S So
i1

1

2 3 1

2

2 3 1
-

+ +
L
NM

O
QP
=

+ +( )( ) ( )( )

V S S Vo i2 3 1 1 2+ + - =( )( )

V

V S S

o

i

=
+ +
2

2 5 22

8. (a) In the circuit shown find the expression for transient current.

Solution 5 3 100i t
di t

dt
( )

( )+ =

5 3 0
100

I S SI S i
S

( ) ( ) ( )+ - =

i(0) = – 6

100 5 3 1 0= + + ∞I
di

dt
( )

100
5 3 18

S
S I S= + +( ) ( )

I S
S

S S

S S

( )
( )

= -
+

= -
+

100 18

3 5

20 78

3 5

= -
+

20 26
5

3
S S

i(t) = 20 – 26 e5/3t

8. (b) Obtain the lattice equivalent of a symmetrical T-network.

Solution Refer Example 15.13.
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PAPER 5

1. (a) Obtain the expressions for star-delta equivalence of resistive

networks.

Solution

Refer Section 3.1 (Chapter 3).

(b) Determine the voltage appearing across terminals y–z, if a d.c. volt-

age of 100V is applied across x–y terminals in the figure below.

Solution Converting delta network to star network

Current, i =
100

1 3846 0 77 2+ + +. .
 = 

100

7 616.
 = 13.13A

Voltage across y Vz
N

z,  = –13.13 ¥ (2 + 0.77)

 = –36.37 V

2. (a) State and explain Faraday’s law of electromagnetic induction. What

are statically and dynamically induced emfs.

Solution

Refer Section 1.6 (Chapter 1).

First law : It states that whenever the magnetic flux linked with

a circuit changes an emf is always induced in it.

Second law : It states that the magnitude of the induced emf is

equal to the rate of change of flux linkage.

Explanation : Suppose a coil with 100 turns undergoes a change of

flux from zero refers to 2 mwb in one millisecond.
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Initial flux linkages = 0

Final flux linkages = 100 ¥ 2 ¥ 10–3 wb.T

Induced emf = 
100 2 10 0

1 10

3

3

¥ ¥ -

¥

-

-
 = 2000 V

Induced emf can be expressed as e = 
d

d t
 (NQ) = N

dQ

dt
 v

Generally, a minus sign is associated with the N
dQ

dt
 to signify the

fact that the induced emf sets up current in a such a direction that the

magnetic effect produced by it opposes the very cause producing it.

It is called Lenz’s law

\ e = – N
dQ

dt

Statically induced EMF

EMF induced in a coil due to the change of its own flux linked with it

or emf induced in one coil by the influence of the other coil is known

as statically induced emf.
Dynamically Induced EMF:

When a coil with certain number of turns or a conductor is rotated in

a magnetic filed (as in d.c. generator’s), an emf is induced in it which

is known as dynamically induced emf.

2. (b) An iron ring 15 cms in diameter and 10 cm2 in area of cross section is

wound with a coil of 200 turns. Determine the current in the coil to

establish a flux density of  1 wb/m2 if the relative permeability of iron

is 500. In case if an air gap of 2 mm is cut in the ring, what is the

current in the coil to establish the same flux density.

Solution

Refer Example 10.12, Chapter 10: Refer Problem 10.13 Chapter 10

(i) Without air gap

Diameter of Iron ring = 15 (cm) = 15 ¥ 10–2 m

Area of Iron ring = 10 cm2 = 10 ¥ 10–4 m2

Number of turns (N) = 200

Reluctance of Iron ring (¬i) =
l

A

i

rm m0 .

Length of Iron path (li) = p.d

= p ¥ 15 ¥ 10–2 m

¬i =
15 10

4 10 500 10 10

2

7 4

p

p

¥

¥ ¥ ¥ ¥

-

- -
 = 7.5 ¥ 105 AT/Wb

mmf = Flux ¥ reluctance

I ¥ 200 = B.A. ¬i

1
5
c
m

2m.n
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I =
1 10 10 7 5 10

200

4 5
¥ ¥ ¥ ¥

- .
 = 3.75 A

(ii) With 2 mm air gap cut in the iron ring reluctance of air gap

(¬g) =
2 10

4 10 10 10

3

7 4

¥

¥ ¥ ¥

-

- -
p

= 15.915 ¥ 105 AT/Wb

With 2 mm air gap the length of the Iron path is reduced by 2 mm.

\ li = 15p ¥ 10–2 – 2 ¥ 10–3

But this is negligibly small.

\ Total reluctance = ¬i + ¬g = 23.415 ¥ 105 AT/Wb

\ I =
f .¬

N
 = 

B A

N

. .¬

=
1 10 10 23 415 10

200

4 5
¥ ¥ ¥ ¥

- .

Required current (I ) = 11.707A

If the gap length is taken into consideration:

Total emf =
B l B l

i i

r

i g

m m m0 0

+

=
1 15 10 2 10

4 10 500

1 2 10

4 10

2 3

7

3

7

( )p

p p

¥ ¥ - ¥

¥ ¥
+

¥ ¥

¥

- -

-

-

-
 2338.35 AT

\ I =
2338 35

200

.
 = 11.691A

3. (a) Find the form factor for the following waveform.

Solution

Refer Section 4.4.7 (Chapter 4)

Form factor =
R.M.S. value

Average value

Average value of the triangular waveform 0 to 2 sec
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Vav =
1

2
V t d t V t d t. ( )

0

1

1

2

2z z+ - -

L

N
M
M

O

Q
P
P

=
1

2 2 2
2

2

0

1 2

1

2

1

2
V

t
V

t
V t+ - +

L

N
M
M

O

Q
P
P

.

=
1

2 2

3

2
2

V
V V- +

L
NM

O
QP

 = V/2

R.M.S. value, (Vr.m.s.) =
1

2
22 2

0

1

2 2

1

2
1 2

V t dt V t dtz z+ -
R
S
|

T|

L

N

M
M

O

Q

P
P

( )

/

=
1

2 3 3
4 4

2

2
3

0

1

2
3

1

2

2

1

2 2
2

1

2
1 2

V
t

V
t

V t V
t

+ + -
R
S
|

T|

U
V
|

W|

L

N
M
M

O

Q
P
P

/

=
1

2 3

7

3
2

2 2
2

1 2

V V
V+ -

R
S
T

U
V
W

L

N
M
M

O

Q
P
P

/

=
1

2

8 6

3

2 2
1 2

V V-R
S
T

U
V
W

L

N
M
M

O

Q
P
P

/

=  
V

3

Form factor = V/ 3 /V/2 = 
2

3
 = 1.155

3. (b) Find the branch currents, total current and the total power in the cir-

cuit shown below:

Solution

Branch currents I1 =
100 0

5 5

+

-

j

j
 = 10 + j10

I2 =
100 0

4 3

+

-

j

j
 = 16 – j12
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I3 =
100 0

10

+ j
 = 10 + j0

Total current (I) = I1 + I2 + I3

= 36 – J2

= 36.055 3.179− °

Total power = VI ¥ cos Q

= 100 ¥ 36.055 ¥ cos 3.179°

= 3599.95 watts.

4. (a) Obtain the expression for the frequency at which maximum voltage

occurs across the capacitance in series resonance circuit in terms of

the Q-factor and resonance frequency.

Solution

Refer Section 8.3 (Chapter 8)

From Section 8.3 we know that

The frequency at which Vc is maximum is given by

fc =
1

2

1

2

2

2p LC

R

L
-

fc =
1

2

1
1

2

2

p LC

R C

L
-

L

N
M

O

Q
P

L

N
M
M

O

Q
P
P

=
1

2

1

2

2

2p

R

LC R

C

L
-

F
HG

I
KJ

L

N
M
M

O

Q
P
P

=
1

2

1

22p

R

LC R

C

L
-

L

N
M

O

Q
P

=
1

2

1

22p

R

LC

C

L

L

CR
-

L
NM

O
QP

L

N
M
M

O

Q
P
P

=
1

2

1

22

1 2

p LC
R

C

L

L

CR
◊ -

L
NM

O
QP

/

fo =
1

2p LC
; Q = 

1

R

L

C
 fi 

1

Q
R

C

L
=

\ fc =
f

Q

L

CR

o
2

1 2
1

2
-

L
NM

O
QP

/

4. (b) In a series RLC circuit if the applied voltage is 10V, and resonance

frequency is 1 kHz, and Q factor is 10, what is the maximum voltage

across the inductance.
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Solution

Resonance freq (fr) =
1

2p LC
 = 1000 (1)

Quality factor (Q) =
1

R

L

C
 = 10 (2)

LC  =
1

2 1000p ¥
 = 6283.18

LC = 39.47 ¥ 106

From 1,
1

2p
 = LC  1000 (3)

From 2,
1

R
 =

C

L
 10 (4)

From 3 and 4

1

2p R
 = 104 LC

C

L

1

2p RC
 = 10000

RC = 1.59154 ¥ 10
–5

  1.6 ¥ 10
–5

◊

The maximum voltage across the inductance occurs at frequency

greater than the resonance frequency which is given by

fL =
1

2
2

2

p LC
RC

-
( )

fL =
1

2 39 47 10
1 6 10

2

6
5 2

p .
( . )

¥ -
¥

-
 = 1002.5

It can be observed that, the above frequency is approximately equal

to resonance frequency,

fr =
1

2p LC
 = 

1

2 39 47 106p . ¥

Hence we can take the voltage across the inductor

= Q ¥ V

= 10 ¥ 10

= 100 volts

(c) In a parallel resonance circuit shown in figure find the resonance

frequency, dynamic resistance and bandwidth.
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Solution

The circuit shown in the above figure is the most common form of

parallel resonant circuit in practical use and is also called the tank

circuit.

The admittance of the circuit is

Y =
1 1 1

z z ZC L

= +

Y =
1 1

-
+

+j X R j XC L

= jwC + 
1

R j L+ w

= jwC + 
R j L

R L

-

+

w

w
2 2 2

=
R

R L2 2 2
+ w

 + jw C
L

R L
-

+

F
HG

I
KJ2 2 2

w

At resonance the susceptance part is zero.

Hence at w = wr, C = 
L

R Lr
2 2 2

+ w
 = 0

R2 + wr
2 L2 =

L

C

wr
2 L2 =

L

C
 – R2 fi wr = 

1 2

2LC

R

L
- (1)

Resonance frequency, fr = 
1

2

1 2

2p LC

R

L
- (2)

\

fr =
1

2

1 2

2p LC

R

L
-  = 

1

2

2

p L

L

C
R-

=
1

2 1 10

1 10

10 10
4

3

3

6p ¥ ¥

¥

¥
-

-

-

-

= 1559.4 Hz
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Dynamic impedance:

The input admittance at resonance is given by

Yr =
R

R Lr
2 2 2

+ w

The impedance at resonance is

Zr =
1

yr

 = 
R L

R

r
2 2 2

+ w
 = R + 

w r L

R

2 2

Substituting wr2L2 from Eq. 1 gives,

Zr = R + 

L

C
R

R

-
2

 = R + 
L

CR
 – R

Zr = 
L

CR
 which is called dynamic impedance.

This is a pure resistance because it is independent of the frequency.

Here, dynamic resistance = 
1 10

10 10 2

3

6

¥

¥ ¥

-

-

= 50 W

Bandwidth of the parallel resonance circuit = 
w r

Q

wr =
1 2

L

L

C
R-

= 9797.95

Qo =
woL

R
 = 

9797 95 1 10

2

3. ¥ ¥
-

 = 4.898

Bandwidth =
1559 4

4 898

.

.
 = 318.311 + Z

5. (a) A symmetrical 440V, 3 phase system supplies a star connected load

with the following branch impedances: Zr = 10W Zy=j5W ZB=j5W.

Calculate voltage drop across each branch and the potential differ-

ence between neutral and star point. The phase sequence is RYB.

Draw phasor diagram.

Solution

Refer Problem 9.12 (Chapter 9)

Applying KVL for the two loops

VRY = 440–0 V

VYB = 440 ––120V



E.34 Network Analysis

10I1 – J5I2 = 440–0 (1)

j5I2 + (I1 + I2) (–J5) = 440 ––120°

– j5I1 + ( j5 – j5)I2 = –220 – J 381.05 (2)

I1 =
- -

-

220 381 05

5

j

j

.

I1 = (76.21 – j44)

Substituting the value of I1 in Eq.1

10 [76.21 – j44] – j5 I2 = 440

–j5 I2 = –322.1 + j440

I2 =
- +

-

322 1 440

5

. j

j

I2 = [–88 – j64.42]

Drop in the R-phase = 10 [76.21 – j44]

VRO¢ = 880 ––30°

Drop in the Y-phase = j5 [–88 – j64.42]

VYO¢ = 545.3 ––53.7°

Drop in the B-Phase = j5[I1 + I2]

= j5 (–11.79 – J108.42]

= 542.1 – J58.98

VBO¢
 = 545.3 –-6.2
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Neutral shift can be found by Millman’s theorem

Taking VRY as reference,

VRY = 440–0

VRO =
440

30
 ––30° = 254 ––30°

VYO = 254––150°; VBO = 254–90°

YR =
1

ZR

 = 
1

10 0–
 = 0.1–0°,

YY =
1

ZY

 = 
1

5j
 = 0.2 ––90°

YB =
1

ZB

 = 
1

5- j
 = 0.2 –90°.

Neutral to star point voltage Vo¢o = 
V Y V Y V Y

Y Y Y

RO R YO y BO B

R Y B

+ +

+ +

Vo¢o = 254 
0 1 30 0 2 240 0 2 180

0 1 0 0 2 90 0 2 90

. . .

. . .

– - ∞ + – - ∞ + – ∞

– ∞ + – - ∞ + – ∞

= 625.8 –150°

Vo¢o = 625.8 –150°.

The phasor diagram follows

Phasor Diagram
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5. (b) A balanced star connected load is supplied from a symmetrical

3 phase, 440V, 50Hz supply. The current in each phase is 20A and

lags behind its phase voltage by an angle of 40°. Calculate (i) load

parameters (ii) total power and (iii) readings of two wattmeters con-

nected in the load circuit to measure total power.

(i) Let the phase sequence be RYB.

The line voltage, VRY = 440–0° V

Phase voltage, VR =
440 0

3

–
 = 254–0°

ZR =  
254 0

20 40

–

– -
= 12.7–4°

= (9.72 + j8.16) W

Load parameters are R = 9.72 W

xL = 8.16; f = 50 H; L = 
8 16

2 50

.

¥ ¥p
 = 25.9 mH

(ii) Total active power = 3  VL IL cosf

= 3  ¥ 440 ¥ 20 ¥ cos 40°

= 11676.08 watts

(iii) Reading of first watt meter W1 = VL IL cos (30 + f)

= 440 ¥ 20 cos (30 + 40) = 3009.777 W

Reading of second watt meter, Wz = VL ILcos (30 – f)

= 440 ¥ 20 cos (30 – 40) = 8666.308 W

Total power, w1 + w2 = 11676.08 watts

(a) Define the following

(i) Oriented graph

(ii) Tree of a graph

(iii) Cut set and basic cut set

(iv) Tie set and Basic Tie set

Solution

Refer Sections 2.1, 2.2, 2.7 and 2.8 (Chapter 2)

6. (b) For the topological graph shown in figure, obtain the fundamental Tie

set matrix choosing the tree containing two elements 5 and 6.

A B

C

1

2

3

4

5

6
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Solution

Refer Section 2.7 (Chapter 2)

The tree of the graph is shown with solid lines (5 and 6) and the links

are shown with dashed lines (1, 2, 3, 4).

For a given tree of a graph, addition of each link between any two

nodes forms a loop called the fundamental loop. In a loop there exists

a closed path and a circulating current, which is called the link cur-

rent.

The fundamental loop formed by one link at a time, has a unique

path in the tree rolling the two nodes of the link. This loop is also

called f-loop or a tie-set. Every link defines a fundamental loop of

the network.

No. of nodes in the graph n = 3 = (A, B, C)

No. of branches, b = 6 = (1, 2, 3, 4, 5, 6)

No. of tree branches or twigs = n – 1 = 2 = (5, 6)

No. of link branches, l = b – (n – 1) = 4 (1, 2, 3, 4)

The following are the figures of the Tie-sets.

Tie set Matrix can be formed by considering the four fundamental

loops. Corresponding to the link branches 1, 2, 3, 4.

If V1, V2, V3, V4, V5 and V6 are the respective branch voltages.

The KVL equations for the three f-loops can be written as
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V1 + V5 + V6 = 0

V2 – V5 = 0

V3 – V6 = 0

V4 + V5 + V6 = 0

In order to apply KVL to each loop, we take the reference direction

of the loop which coincides with the reference direction of the link

defining the loop.

The above equations can be written in matrix form as

[B][Vb] = 0, where B is a 4 ¥ 6 Tie-set matrix.

Therefore, Tie-set Matrix, B = 

1 0 0 0 1 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 1

-

-

L

N

M
M
M
M

O

Q

P
P
P
P

7. (a) State and explain the superposition theorem.

Solution

Refer Section 3.2 (Chapter 3)

7. (b) Is superposition valid for power? Explain.

Solution

Superposition theorem is valid only for linear systems.

Superposition cannot be applied for power because the equation for

power is non linear.

Let us consider a network with a voltage source and current source

as shown below and find the power consumed in 9W resistor by su-

per position.
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When 14V source is acting the current in 9W is 1A

The power = i2 ¥ 9 = 9 watts

When 14A source is acting the current in 9W is 5A

The power  = i2 ¥ 9 = 225 watts

Total power = 225 + 9 = 234 Watts

When both are acting the KVL for loop 1 and 2

are 14 = 5i1 + 9(i1 + i2)

14i1 = –112

i1 = –8A; i2 = 14A

Current in 9W resistor is i1 + i2 = 6A

Power = (6)2 ¥ 9 = 324 watts

Since power is not the same in both the cases, the superposition theo-

rem does not hold true.

Consider the circuit shown below.

+ +

Va
Ra Rb

RL

Vb

I

When Va is acting.

I1 be the current through RL; and Power = (I)2RL

When Vb is acting I ¢¢ be the current

Ra Rb

RL

Vb

I ¢¢

through BL and Power = (I ¢¢)2RL

Total current through RL by superposition

I = I ¢ + I ¢¢, and power = I2 RL
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(I ¢)2 RL + (I ¢¢)2 RL π I2 RL

because I2 = (I ¢ + I ¢¢)2 = (I¢)2 + (I ¢¢)2 + 2I ¢ I ¢¢

Hence, (I¢ )2 + (I ¢¢)2 π I2 and therefore  superposition theorem is not

valid for power.

7. (c) Using superposition theorem, find VAB.

Solution

When 4V source is acting

When 2 V source is acting.

When 2A source is acting

Voltage across AB = VAB1 + VAB2 + VAB2

= –2 + 1 –4

= –5 volts
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8. (a) Explain why the voltage across capacitor cannot change instanta-

neously?

Solution

Refer Section 1.7 (Chapter 1)

8. (b) What is the significance of time constant for R-L circuit? What are

the difficult ways of defining time constant?

Solution

Refer Section 12.2 (Chapter 12)

8. (c) Switch S is closed at t = 0. Find initial conditions for voltage across

capacitor.

i, i2, 
di

d t
1   and 

di

d t
2

Solution

At t = 0 ; i = i1 + i2

Since i2 = 0, i = i1 (0+) = 
V

R R1 2+
 = 

100

15
 = 6.67A

i1(0+) = iL(0–) = iL(0+) = 6.667A

VC(0+) = VC(0+) = 
100

10 5+
 ¥ 5 = 33.33V

At t = 0
+
;

20i2 + Vc(0
+) = 100
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i2 (0+) =
100 33 33

20

- .

i2(0+) = 3.33A

Applying KVL for the loops at t = 0
+

5i1 + 3
di

d t
1  = 100

3
di

d t
1  = 100 – 5i1

di

d t
t

1

0=
+

 =
100 5 0

3
1-

+i ( )
 = 

100 5 6 667

3

- ¥ .

di

dt

1 (0+) = 22.21 A/sec.

20i2 + 
1

C z i2 dt = 100

20
di

d t

i

C
2 2
+  = 0

di

d t
t

2

0= +

 =
−

× ×

+

−

i2
6

0

20 10 10

( )
 = 

−

×
−

3 33

2 10 4

.

di

d t
2  (0+) = –16.65 ¥ 103 A/sec.
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PAPER 6

1. (a) Explain  KCL and KVL.

Solution

Refer Sections 1.12 and 1.9 (Chapter 1)

1. (b) A capacitor is charged to 1 volt at t = 0. A resistor of 1 ohm is con-

nected across its terminals. The current is known to be of the form

i(t) = e–t amperes for t > 0. At a particular time the current drops to

0.37A at that instant determine.

(i) At what rate is the voltage across the capacitor changing?

(ii) What is the value of the charge on the capacitor?

(iii) What is the voltage across the capacitor?

(iv) How much energy is stored in the electric field of the capacitor?

(v) What is the voltage across the resistor?

Solution

Refer Problem 12.3 (Chapter 12).

The current equation is

given as i(t) =i(0+) e–t|RC; given i(t) = e–t|RC

i(0+) = 1A; RC=1; C=1F

When i(t)=0.37 amperes

i(t) = 0.37 = e–t/1

–t logee = loge 0.37

t = 0.9942 sec

i(t) = C
dV t

d t

( )
 fi 

dV t

d t

( )
 = 

i t

C

( )
 = 

0 37

1

.
 = 0.37 V/sec

or Vi(t) =
1

0
C

t

z i (t) dt + V0

= − z
1

0
C

t

e
–t

 dt + V0 [\ i(t) = – i(t)]

=
−

−

−1

1 1

e t

( )
 + 1 = e–t
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Vc(t) = e–t for t > 0

\
dV t

d t

C ( )
 = –e–t = –e–0.9942 = –0.37 V/sec

(ii) Charge on the capacitor

Q = C Vc = 1.e–t = 0.37 coulombs

(iii) Voltage across the capacitor

VC (t) = e–t = 0.37 volts

(iv) Energy stored in the capacitor

WC =
1

2
 C Vc

2 = 
1

2
1(e–t)2 = 

e
t−2

2
 = 0.06845 joules

(v) Voltage across the resistor at t = 0.9942 sec

VR = i(t).R = e–t = 0.37 V

2. (a) Define Magneto Motive Force (MMF); reluctance, and flux density
in a magnetic circuit. Specify the units of each of the above quanti-
ties.

Solution

Refer Section 10.11 (Chapter 10).
2. (b) Explain “dot convention” for a set of magnetically coupled coils. A

cast steel electromagnet has an air gap of length 2 mm and an iron
path of length 30 cms. Find the MMF needed to produce a flux den-
sity of 0.8T in the air gap. The relative permeability of the steel core
at this flux density is 1000. Neglect leakage and fringing.

Solution

For “dot convention” refer Section 10.4 (Chapter 10).
Refer Example 10.2 (Chapter 10).

Air-gap length lg = 2 mm = 2 ¥ 10–3 m

Iron path length li = 30 cm = 30 ¥ 10–2 m

Flux density B = 0.8T = 0.8 Wb/m2

mr = 1000

Total A.T = mmf = Hili + Hglg

B l B
li

g

g

×
+

µ µ µ0 0

=
0 8 30 10

4 10 1000

0 8 2 10

4 10

2

7

3

7

. .× ×

× ×
+

× ×

×

−

−

−

−π π

= 1464 A.T.

Hence, total MMF required to produce a flux density of 0.8T = 1464
AT.

3. (a) Find R.M.S. and average value of the following waveform.
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Solution

Refer problem 4.13 (Chapter 4)

R.M.S. value, Vr.ms. =
1

2
2 2

0
π

θ θ

π

V dm sinz

=
V

dm
2

0
2

1 2

2π

θ
θ

π
( cos )−

z

=
Vm

2

04

2

2π
θ

θ
π

−
L

NM
O

QP
sin

=
Vm

2

Average value, Vave =
1

2
0

2

π
θ θ

π

V dm sinz  = 
Vm

2 0

2

π
θ

π
− cos

=
Vm

π

3. (b) Find the total current and the power consumed by the circuit.

Solution

Total impedance of the circuit,

ZT = (5 + j5) || (t – j 8) + 10

ZT = 16.15 + j0.769
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I =
V

Z
 = 

200 0

16 5 0 769

∠

+ + j .
 = 12.35 – j0.588A

= 12.36 ––2.72°

Power consumed = I2R

= (12.36)2 ¥ 16.15 = 2467W

or VI cosq  = 200 ¥ 12.36 ¥ cos (–2.72)

= 2467 W.

4. (a) For a series RL circuit obtain the locus of current as inductance is
changed from 0 to • when the applied voltage is constant.

Solution

Refer Section 13.1(b) (Chapter 13)
4. (b) Show that for a series resonant circuit f1f2 = fr

2 where f1 and f2 are
half power frequencies and fr is the resonance frequency.

Solution

Refer Section 8.4 (Chapter 8)
4. (c) Obtain the z-parameters of the following two-parts network.

Two-port network

Solution

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

z11 =
V

I
I

1

1 02

6 2

6 2
2 35

=

=
×

+
+ = . Ω

z22 =
V

I
I

2

2 01

6 2

6 2
2 3 5

=

=
×

+
+ = . Ω

z12 =
V

I

I

I
I

1

1 0

2

2
1

2

6 2
2

0 5
=

=

×

+
×

= . Ω

z21 =
V

I

I

I
I

2

1 0

1

2
2

2

6 2
2

0 5
=

=

×

+
×

= . Ω



Appendix E E.47

The parameters of the network are

z =
Z Z

Z Z

11 12

21 22

L

N
M

O

Q
P  = 

3 5 0 5

0 5 3 5

. .

. .

L

N
M

O

Q
P

5. (a) Derive the relationship between phase quantities and line quantities
in a 3 phase balanced (i) star connected system and (ii) Delta con-
nected system. Draw phasor diagrams showing voltages and currents.

Solution

Refer Sections 9.7 and 9.8 (Chapter 9).
5. (b) A 3 phase supply with line voltage of 250V, has an unbalanced delta

connected load as shown in figure. Determine the line currents, total
active and reactive powers if the phase sequence is ABC.

Solution

Refer Problem 9.9 (Chapter 9).

IAB =
V

Z

AB

AB

=
∠ °

∠ °
= ∠ − °

250 0

25 90
10 90

IBC =
V

Z

BC

BC

=
∠ − °

∠ °
= ∠ − °

250 120

16 20
15 625 140.

ICA =
V

Z

CA

CA

=
– ∞

– ∞
= – ∞

250 120

20 0
12 5 120.

The line currents are

IA = IAB – ICA = 10––90° – 12.5–120°

IB = IBC – IAB = 15.625 ––140° – 10––90°

IC = ICA – IBC = 12.5–120° – 15.625 ––140°

ZAB = 0 + j25; ZBC = 15.03 + j5.47; ZCA = 20 + j0

Active Powers PAB = I2
AB RAB = 102 ¥ 0 = 0

PBC = I2
BC RBC = (15.625)2 ¥ 15.03 = 3669.4W
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PCA = I2
CA ¥ RCA = (12.5)2 ¥ 20 = 3125W

Total active power = PAB + PBC + PCA = 6795W

Reactive powers

QAB = I
2
AB ¥ cAB = (102) ¥ 25 = 2500 VAR

QBC = I2
BC ¥ cBC = (15.625)2 ¥ 5.47 = 1335 VAR

QCA = I2
CA cCA = (12.5)2 ¥ 0 = 0

Total reactive power = QAB + QBC + QCA = 3835 VAR

Complex power, S = P + jQ

= 6795 + j3835

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below.

Solution

Refer Section 3.8 (Chapter 3)
Rule 1 If a voltage source in the original network produces a c.w

current in the mesh, the corresponding dual element is a cur-
rent source whose direction is towards node representing the
corresponding mesh.

Rule 2 If a current source in the original network produces a cur-
rent in clockwise direction in the mesh, the voltage source in
the dual network will have a polarity such that the node rep-
resenting the corresponding mesh is positive.
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Dual of the planar circuit given in 6(a).
6. (b) Construct the incident matrix for the graph show in figure.

Solution

Refer Section 2.4 (Chapter 2)
The dimensions of incidence matrix ‘A’ is n ¥ b where n is number of
nodes and b is number of branches, hence the dimensions of the inci-
dence matrix for the above graph is 3 ¥ 4.
Incidence matrix

n — nodes
b — branches

A = 

n
p 1 2 3 4

1 1 0 1 1

2 1 1 0 0

3 0 1 1 1

− −

−

−

The incidence matrix is given by

A =

1 0 1 1

1 1 0 0

0 1 1 1

− −

−

−

L

N

M
M
M

O

Q

P
P
P
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6. (c) Use nodal analysis, to determine the voltage V1 and V2 in the circuit
shown.

Solution

Refer Section 2.12 (Chapter 2).
The nodal equation for the two nodes are

V V V V1 1 1 25

2 3 2

−
+ +

−
 = 0 ...1

V V V2 1 2

2 1

−
+  = 3 ...2

From 1 1.333 V1 – 0.5 V2 = 2.5

From 2 – 0.5 V1 + 1.5 V2 = 3

Solving the above equations for V1 and V2 yields

V1 = 3 V and V2 = 3 V.

7. (a) State and explain the Thevenin’s theorem? State for what type prob-
lems this theorem is useful.

Solution

Refer Section 3.3 (Chapter 3).
7. (b) Find the current through 10 W resistor using Thevenin’s theorem.

Solution

Refer Problem 3.6 (Chapter 3).
Let us redraw the circuit by removing 10W.
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Applying KCL at V1

V V V1 1 1100

2 10 20

−
+ +  = 0

from which V1 = 76.92 V

Vth = Va – Vb

=
V V1 1

6 4
4

15 5
5

+
× −

+
×  = 11.538 V

R1 =
6 15 15 2 2 6

2

× + × + ×
 = 66
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R2 =
132

15
 = 8.8

R3 =
132

6
 = 22

Rab = Rth = 
66 6 82

72 82

× .

.
 = 6.184 W

Thevenin’s equivalent circuit is given by

where I = 
11538

16 184

.

.
 = 0.7129A

8. (a) For R-L-C series circuit with d.c. excitation discuss the under-
damped, over-damped and critically damped cases.

Solution

Refer Section 12.4 (Chapter 12).
8. (b) Obtain the current i(t) for t ≥ 0 using tune domain approach.

Solution

Refer Example 12.3 (Chapter 12).
Writing KVL for the above circuit.
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100 = 10i + 0.5 
di

d t
i d t+

× − z
1

1 10 6

Differentiating w.r.t. t

0 = 10 0 5 10
2

2
6di

d t

d i

d t
i+ +.

d i

d t

di

d t

2

2
20+  + 2 ¥ 106

i = 0

(D2 + 20D + 2 ¥ 10–6)i = 0 where D = 
di

d t

D1, D2 =
− ± − × ×20 400 4 2 10

2

6

D1 = –10 + j1414; D2 = –10 – j1414

The roots are in the form of – K1 ± jK2

Therefore the solution for the current is given by

i(t) = e–k1t [C1 cos k2t + C2 sin k2 t]

i(t) = e–10t [C1 cos 1414 t + C2 sin 1414 t]

Substitute the initial conditions to find C1 and C2

At t = 0; the current following through the circuit is zero.

i = 0 = 1 [C1 cos 0 + C2 sin 0]

C1 = 0

i(t) = e–10t C2 sin 1414t.

di t

d t

( )
 = C2 [e–10t 1414 cos 1414 t + e–10t (–10) sin 1414t]

At t = 0, the voltage across the inductor

L
di t

d t

( )
 = 100

d i t

d t

( )
 = 200

200 = C2 e–(10 ¥ 0) 1414

C2 = 0.1414

The equation for current is given by

i(t) = e–10t (0.1414 sin 1414 t)

i(t) = 0.1414 e–10t sin 1414t
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PAPER 7

1. (a) Explain how source transformation is achieved.

Solution

Refer Section 2.15 (Chapter 2).

(b) A current of 0.5A is supplied by a source to an inductor of 1H. Cal-

culate the energy stored in the inductor. What happens to this energy

if the source is short circuited?

Solution

Energy stored 
1

2
 L I

2
 = 

1

2
 1 ¥ 1

2
 = 0.5 Joules

If the inductor has an internal resistance, the stored energy is dissi-

pated in the resistance after the short circuit as per the time constant

(1/r) of the coil.

If the coil is a perfect inductor, the current would circulate through

the shorted coil continuously.

(c) A current source i = Im sin wt is applied across (i) a 1F capacitor

(ii) 1H inductor. Assume initial conditions to be zero, show the volt-

age waveforms in the above two cases.

Solution

Refer Sections 4.6 and 4.7 (Chapter 4).

Vc(t) =
1

C z i dt = 
1

C z Im sin wt dt

=
1

ω
ω

C
I tm [ cos ]−

[\ initial conditions assumed to be zero]

=
I

C

m

ω
 sin (wt – 90)

v(t) = Vn sin (wt – 90°)

v(t) = IM [Vm ej(w t – 90°)] or Vm ––90°.

where Vm = Im/wC.
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The waveform is given by:

VL(t) = L
di t

d t

( )

= L◊
d

d t
 (Im sin wt)

= LW IM cos wt = WL Im cos wt

VL(t) = Vm cos wt or Vm sin (wt + 90°)

= IM [Vmet(w + 90°)] or Vm –90°

where Vm = WLIm

The waveform is shown in the figure above.

2. (a) Define MMF, flux density, magnetising force and permeability

specify the merits for each of the above quantities.

Solution

Refer Section 10.11 (Chapter 10).

2. (b) Two coupled coils have self induction cos L1 = 50 mH and L2 = 200

mH and a coefficient of coupling of 0.7. If coil 2 has 1000 turns and

i1 = 5.0 sin 400t. Determine the voltage across coil 2.

Solution

Refer Problem 10.3 (Chapter 10).

L1= 50 mH, L2 = 200 mH; K = 0.7

M = K L L1 2  = 0.7 50 200×  mH

= 70 mH

V2 = M
di

dt
1  (Voltage induced in coil 2)

= 70 ¥ 10
–3

 
d

dt
 (5 sin 400 t)

= 70 ¥ 10–3 ¥ 2000 cos 400 t

Total voltage induced in coil 2 is = 140 cos 400 t volts.

2. (c) Write the voltage equation for the following circuit shown.



E.56 Network Analysis

Solution

Applying KVL around the loop is given by

V(t) = L
di t

d t
M

di t

d t
M

di t

d t
R i tA C1 1

( ) ( ) ( )
( )+ − +

+ L
di t

d t
M

di t

d t
M

di t

d t C
i t d tA B2

1( ) ( ) ( )
( )+ − + z

+ L
di t

dt
M

di t

dt
M

di t

dt
R i tC B3 2

( ) ( ) ( )
( )- - +

v(t) = (L1 + L2 + L3) 
di t

d t

( )
 + (R1 + R2) i(t) + 

1

C
i t d t( )z

+ (2MA – 2MB – 2MC) 
di t

d t

( )

3. (a) Define rms value, average value, form factor and peak factor.

Solution

Refer Section 4.4 (Chapter 4).

3. (b) Find the value of R1 and X1 when a lagging current in the circuit gives

a power of 2kW.

Solution

Let us take the voltage across (10 + j13.3W) impedance as reference

and calculate the total current I.
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I = 
200 0

10 13 3

∠

+ j .
 = 7.223 – j9.606 = 12.02 ––53.06°A

Let us assume the phase angle between supply voltage and total cur-

rent as f which is equal to (q + 53.06°).

Hence, real power in the circuit 2000 = 200 ¥ 12.02 cos (q + 53.06)

Therefore, q = –19.5° and source voltage V = 200 ––19.5°

Voltage across R1 + jX1 = 200 ––195° – 200 –0°

= –11.47 – j66.76

I2 =
− −

−

11 47 66 76

20

. .j

j
 = 3.338 – j 0.5 735

I1 = I – I2

= 7.223 – J9.606 – 3.338 + J0.5735

= 9.8325 –– 66.72°

Z1 =
V

I1

 = 
− −

∠ −

1147 66 76

9 8325 66 72

. .

. .

j

= 5.776 – j3.7543

Thus, R1 = 5.776W and x1 = 3.7543W.

4. (a) For the parallel resonant circuit shown in the figure find the value of

capacitance at which maximum impedance occurs at a given fre-

quency.

Solution

Refer Section 8.8 (Chapter 8)

The parallel resonant circuit shown is generally called a tank circuit.

The impedance of the parallel resonant circuit is maximum at the

resonance frequency.

4. (b) Determine the admittance parameters of the symmetrical lattice

shown in the figure.
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Solution

Refer Section 15.12 (Chapter 15)

The lattice network can be redrawn as a bridge network as shown.

Assume I3 in AD as indicated.

Writing mesh equation ADC 1 ¢1

–4 I3 + 2 (I2 – I3) + V1 = 0

V1 = –2 I2 + 6 I3 (1)

Writing mesh equation BC D2 2¢

–4(I1 – I3 + I2) –2 (I2 – I3) + V2 = 0

V2 = 4I1 + 6I2 – 6I3 (2)

Writing mesh equation ABCDA

–2(I1 – I3) – 4(I1 – I3 + I2) – 2 (I2 – I3) + 4I3 = 0

I3 =
1

2
 (I1 + I2) (3)

Substituting equation 3 in 1

V1 = –2 I2 + 3 (I1 + I2)

V1 = 3 I1 + I2 (4)
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Substituting equation 3 in 2

V2 = 4 I1 + 6 I2 – 3 (I1 + I2)

V2 = I1 + 3 I2 (5)

From equation 4 I2 = V1 – 3I1

Substituting in equation 5

V2 = I1 + 3 (V1 – 3I1)

V2 = –8I1 + 3V1

or I1 =
3

8
 V1 – 

V2

8
(6)

From equations 4 and 5

V1 – 3V2 = – 8I2

or, I2 = − +
V

V1
2

8

3

8
(7)

Equation 6 and 7 are of the form

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Therefore, Y11 = Y22 = 
3

8
; y12 = y21 = −

1

8

Also equation 4 and 5 are of the form

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

Therefore Z11 = Z22 = 3; Z12 =Z21 = 1.

5. (a) A balanced delta connected load of 5.0 –30° W and a balanced star

connected load of 5.0 –45° W are supplied by the same balanced

240V, 3 phase ABC system. Obtain line currents IA, IB and IC.

Solution
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The two loads are connected parallel across a 240V 3 phase system.

Let us convert the star connected load into delta and redraw the cir-

cuit is as shown below.

The phase currents are given by

IAB =
V

Z

AB

AB

 = 
240 0

3 77 33 73

∠

∠. .
 = 63.5584 ––33.73

IBC = 63.5584 ––153.73

ICA = 6.35584 ––273.73

The line currents are 3  times the phase currents and lag 30° behind

their respective phase currents.

Therefore, IA = 3  ¥ 63.5584 ––33.73–30°

= 110 ––63.73°

Similarly, IB = 110 –183.73° and IC = 110 ––303.73°

5. (b) Derive phase and line relations in a balanced delta connected load.

Solution Refer Sections 9.8.1, 9.8.2 and 9.8.3.

6. (a) For the given network graph shown below, write down the basic Tie

set matrix, taking the tree consisting of edges 2, 4 and 5. Write down

the KVL network equations from the matrix.
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Solution

Refer Section 2.7 and Example 2.4 (Chapter 2)

The twigs of the tree are 2, 4 and 5. The links corresponding to the

tree are 1, 3 and 6 as shown in the figure.

Number of nodes, n = 4

Number of branches, b = 6

Number of tree branches or twigs = n – 1 = 3

Number of link branches l = b – (n – 1) = 3

For writing the tie-set matrix consider the three links one at a time,

the tie-set matrix B or fundamental loop matrix is given by.

B = 

There are three fundamental loops l1, l2 and l3 as shown by the tie

sets.
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From the tie-set matrix we can write KVL network equations as

[B][Vb] = 0

where B is an l ¥ b tie-set matrix or fundamental loop matrix and Vb

is a column vector of branch voltages of 1, 2, 3, 4, 5 and 6 respec-

tively.

1 0 0 1 1 0

0 1 1 0 1 0

0 1 0 1 1 1

1

2

3

4

5

6

−L

N

M
M
M

O

Q

P
P
P

L

N

M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P

V

V

V

V

V

V

 = 0

The KVL network Equation for the Three Tie-sets are

V1 – V4 + V5 = 0 (1)

V2 + V3 + V5 = 0 (2)

V2 + V4 + V5 + V6 = 0 (3)

6. (b) Find the voltage across the 5W resistor for the coupled network shown

in figure.

Solution

Refer Problem 10.10 (Chapter 10)

Applying KVL for loop 1

50–45° = 5i1 + j4i1 + j3 (i1 – i2) + j5(i1 – i2) + j3i1 (1)

Simplifying and rearranging the above equation yields to

50–45° = (5 + j15) i1 – j8i2 (2)

Applying KVL for loop 2

0 = –j8i2 + j5 (i2 – i1) – j3i1 (3)

Simplifying the above equation yields to

j8i1 = –j3i2 or i2 = −
8

3
 i1 (4)

Substituting equation 4 in 2
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50–45° = (5 +j15) i1 + j8
8

3

F
HG

I
KJ

 i1

From which i1 = 
150 45

15 109

∠ °

+ j
 = 1.363 ––37.165°A

Therefore voltage across 5W resistor is 5i,

= 5 ¥ 1.363 = 6.815 volts

7. (a) State and explain Millman’s theorem.

Solution

Refer Section 3.10 (Chapter 3)

(b) Using Millman’s theorem find the neutral shift voltage VON.

Solution

Refer Example 9.21 (Chapter 9)

Converting load impedances into admittances

YR =
1

10
 W; Yy = 

j

10
; YB = 

1

3 4+ j

According to Millmans theorem the neutral shift voltage VON due to

unbalanced load is given by

VON =
V Y V Y V Y

Y Y Y

RN N YN Y BN B

R B Y

+ +

+ +

VON =

100 0
1

10
100 120

10
100 120

1

3 4

1

10 10

1

3 4

∠ °
F
HG

I
KJ
+ ∠ °

F
HG

I
KJ
+ ∠ − °

+

F
HG

I
KJ

+ +
+

j

j

j

j

VON =
10 10 210 19 856 2 392

0 22 0 06

+ ∠ ° − −

−

. .

. .

j

j

=
− −

−

18 5166 7 3923

0 22 0 06

. .

. .

j

j
 = –69.81 – j52.64
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VON = 87.43 ––142.98 V

8. (a) Explain initial value theorem of Laplace transform.

For I(s) =
s

s s

+

+ +

4

2 3( ) ( )
, find I(0)

Solution

Refer Section 13.4(g) (Chapter 13)

From initial value theorem

I(0) = lt
s

sI s
Æ•

( )

I(0) = lt
s

s s

s sÆ•

+

+ +

( )

( ) ( )

4

2 3

= lt
s

s s

s
s s

Æ•

+

+
F
H

I
K +
F
H

I
K

2

2

1 4

1
2

1
3

( / )

I(•) =
( / )

/ ) ( / )

1 4

2 1 3

+ •

+ • + •(1
 = 1

8. (b) Draw the network in Laplace domain and find I(s).

Solution

Refer Problems 13.18 and 13.21 (Chapter 13).

Before the switch is opened, the voltage across the capacitor is =

voltage drop across 3W = 10 ¥ 
3

3 2+
 = 6V

Therefore, vC(0
+
) = 6V

Initial current in the inductor before the opening of switch is iL(0+) =

10

5
 = 2A
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The transformed circuit in <s-domain

Applying KVL for the loop.

10

s
 = 2I(s) + sI(s) – iL(0+) + 

I s

s s

C( ) ( )
+

+
v 0

10

s
 = I(s) s

s
+ +

L
NM

O
QP

1
2  – 2 + 

6

s

I(s) =
2 2

1 2

( )

( )

s

s

+

+
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1. (a) Differentiate between independent and dependent sources. What is

their circuit representation.

Solution

Refer Section 1.8 (Chapter 1)

1. (b) What is the value of R such that the powers supplied by both the

sources are equal?

Solution

Converting current source into voltage source

Applying KVL for both the meshes

4R = (R + 3) i1 + i2 (1)

50 = i1 + i2 (2)

The power supplied by both the sources are equal

\ 4Ri1 = 50i2

R = 12.5 
i

i

2

1

(3)

From eq 1

4R – i1R – 3i1 – i2 = 0

R(4 – i1) – 3i1 – i2 = 0 (4)

Substituting equation 3 in 4

12.5 
i

i
2

1

 (4 – i1) –3 i1 – i2 = 0 (5)

50
i

i
2

1

 – 13.5 i2 – 3 i1 = 0 (6)
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From equation 2, i2 = 50 – i1 (7)

Substituting equation 7 in 6

50 
50 1

1

−F
HG

I
KJ

i

i
 – 13.5(50 – i1) –3i1 = 0 (8)

10.5i1 – 725 i1 + 2500 = 0 (9)

from which i1 = 
725 648 556

21

± .
 = 65.407 or 3.6402 A

If i1 = 65.407A;

from equation 2 i2 = –15.407A

and R = 12.5 
( . )

.

−15 407

65 407
 = –2.945 W

If i1 = 3.6402 A,

i2 = 46.3598A

and R = 12.5 ¥ 
46 3598

3 6402

.

.
 = 159.194 W

Considering positive value of R = 159.194 W

Power supplied by current source

= 4 ¥ 159.194 ¥ 3.6402 = 2317.99 W

Power supplied by voltage source

= 50 ¥ 46.3598 = 2317.99 W

\ The value of R = 159.194 W

2. (a) State and explain Faraday’s law of electromagnetic induction. Dis-

tinguish between self and mutual induced voltages.

Solution

Refer Section 1.6 (Chapter 1).

2. (b) Explain “Dot convention” and determine  the dotted ends of the set of

coils shown in figure.

Solution

Refer Section 10.4 (Chapter 10).

2. (c) A circular iron ring having a cross section area of 5 cm2 and a length

of 4p cm in iron has an air gap of 0.1p cm made as a saw cut. The

relative permeability of iron is 800. The ring is wound with a coil of



E.68 Network Analysis

2000 turns and carries a current of 100 mA. Determine the air gap

flux. Neglect leakage and fringing.

Solution

Refer Example 10.12 (Chapter 10)

Cross section area of Iron ring, Ii = 5 ¥ 10–4m2

Length of iron ring, li = 4p ¥ 10–2m

Length of air gap, lg = 0.1p ¥ 10–2m

mr = 800

No. of turns, N = 2000

i = 100 mA

Total ampere turns (MMF) = N ¥ i

= 2000 ¥ 100 ¥ 10–3

= 200 AT

Total reluctance R =
l

a

l

a

i

i j

g

gm m m0 0

+
.

=
4 10

5 10 4 10 800

2

4 7

p

p

¥

¥ ¥ ¥ ¥

-

- -

+ 
0 1 10

5 10 4 10

2

4 7

. π

π

×

× × ×

−

− −

= 5.25 ¥ 10
6
 AT/wb

Air gap flux =
Total MMF

Reluctance
 = 

200

5 25 106. ×

fg = 3dmwb

3. (a) Define power factor, apparent power, active power and reactive

power.

Solution

Refer Sections 6.2 and 6.3 (Chapter 6).

3. (b) Find complex power in the following circuit.

Solution

Taking the source voltage as reference

V = 200 –0V
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I =
200 0

10
6 8 3 4

9 4

∠

+
+ −

+

( ) ( )

( )

i j

j

 = 13.396 + j1.886

= 13.52 –8°

Complex power = V I*

= (200–0)(13.52 ––8°)

S = VI* = 2704 ––8° VA

Complex Power (P + jQ) = 2704 ––80 = (2677.68 – j376.32)

P = 2677.68 W; Q = 376.32 VAR leading.

4. (a) Obtain the y-parameters of the following bridged T-networks.

Solution

Refer Problem 15.12 (Chapter 15).

I1 = y11 V1 + y12 V2

I2 = y21 V1 + y22 V2

Convert delta to star and redraw the circuit.

y11 =
I

V
V

1

1 02 =

 = 
I

I

1

1

3 0 5

3 5
1

¥
+

F
HG

I
KJ

.

.

 = 0.7

y12 =
I

V
V

1

2 01 =

 = 
- ¥

¥
+F

H
I
K

I
I

2

2

3

4
1 0 3

4
0 5

.
.

 = –0.6
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y21 =
I

V
V

2

1 02 =

 = 

− ×

×
+

F
HG

I
KJ

I

I

1

1

3

35

3 0 5

35
1

.

.

.

 = –0.6

y22 =
I

V
V

2

2 01 =

 = 
I

I

2

2

3 1

3 1
0 5

×

+
+

F
HG

I
KJ

.

 = 0.8

y =
y y

y y

11 12

22 21

L

N
M

O

Q
P  = 

0 7 0 6

0 6 0 8

. .

. .

−

−

L

N
M

O

Q
P

4. (b) Obtain the expression for Y-parameter in terms of transmission pa-

rameters.

Solution

Refer Section 15.8.2 (Chapter 15)

4. (c) For a series resonance circuit obtain the expression for bandwidth in

terms of resonance frequency and Q-factor.

Solution

Refer Section 8.4 (Chapter 8)

5. (a) Each phase of a balanced star connected load consists of R = 10 W
and C = 10mF. Calculate  the line currents and total real and reactive

powers when a symmetrical 400V, 50Hz, 3 phase supply is applied to

it. If two wattmeters are employed to measure total power, find W1

and W2.

Solution

R = 10W; C = 10 mF; f = 50Hz VL = 400V

Z = (R ± jX)

cc =
1

2π f C.
 = 

10

2 50 10

6

π × ×
 = 318.3W

\ Z = 10 – j318.3W = 318.466 ––88.Z°

Power factor = cos(–88.2) = 0.0314 leading.

The line currents which are also equal to phase currents are

IR =

400 0

3

318 466 88 20

–

-. .

= 0.725 –88.2°

Similarly we can write

IY =

400 120

3

318 466 88 2

– - ∞

◊ – - ◊ ∞

= 0.725 ––31.8°
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IB =

400 240

3

318 466 88 2

– - ∞

◊ – - ◊ ∞

= 0.725 ––151.8°

Readings of the two wattmeters

W1 = VL IL cos (30 + f)

= 400 ¥ 0.721 cos (30 + 88.2°)

= –136.28 W

W2 = VL IL cos (30 – f)

= 400 ¥ 0.721 cos (30 – 88.2°)

= 151.97 W

Total active power = W1 + W2

PT = 15.69mw

Total reactive power = 3  (W1– W2)

Q = 3  (–136.28 – 151.97)

= –500 VAR

or Q = 3  VL IL sin f

= 3  ¥ 400 ¥ 0.725 sin (88.2°).

5. (b) A 400V, 50 Hz, 3 phase supply of phase sequence ABC is applied to

a delta connected load consisting of 100 W between lines A & B, 318

mH inductance between lines B&C and 31.8mF capacitance between

lines C&A. Determine phase and line currents.

From the given data

R = 100W, XL = j100W; Xc = –100W

Zab = 100–0; Zbc = j100W; Zca = – j100W

Phase currents

IAB = 400 –0/100–0 = 4–0
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IBC = 400 –120°/100 –90° = 4–– 210°

ICA = 400 ––240°/100––90° = 4–– 210

Line currents

IA = IAB – ICA = 7.72 –15°A

IB = IBC – IAB = 7.727 –165°A

IC = ICA – IBC = 4 ––90°A

6. (a) In the network shown below find current I using nodal analysis.

Solution

Refer Example 7.3 (Chapter 7).

Writing node equations at node 1 and 2

V V

j

V V1

1

1 250

5 4

−
+ +

−
 = 0 (1)

V V V

j

V2 1 2

1

2

4

50 90

2

−
+ +

− ∠ °
 = 0 (2)

Simplifying equation 1 leads to

(0.45 – j) V1 – 0.25 V2 = 10 (3)

Simplifying equation 2 leads to

–0.25 V1 + (0.75 + j) V2 = 25–90° (4)

Solving equations 3 and 4

V1 = 2.732 + j13.28

V2 = 18.43 + j13.156.

Current I =
V V1 2

4

−

= –3.9245 – J0.056

I = 3.92 ––179.18°

6. (b) Obtain the basic cut-set matrix for

the given oriented graph, taking 1,

2, 3, 4 as tree branches. Write

down KCL network equations

from the matrix.
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Solution

Refer Section 2.8.2 (Chapter2).

The fundamental cut-set or basic cut-set matrix are defined for a

given tree of the graph. The procedure is to select a tree and then a

twig is selected removing this twig from the tree separates the tree

into two-parts. All the links which go from one part of the discon-

nected tree to the other, together with the twig of the selected tree will

costitute a cut-set. The fundamental cut-set matrix Qf is one in which

each row represents a cut-set with respect to a given tree of the graph,

and the columns correspond to the branches of the graph.

For each twig there will be a basic cut-set therefore for a network

graph with n nodes and b branches, there will be (n – 1) number of

basic cut-sets.

From the given graph the number of nodes are 5. The twigs of the tree

are 1, 2, 3, 4 and the links are 5, 6, 7, 8.

The number of basic cut-sets = (5 – 1 ) = 4.

The tree is represented by solid lines.

Consider twig. 3 Corresponding to

twig 3. The f-cut set is {3, 5,6}

which is cut-set C1. Its orientation

coincides with the defining twig 3.

Corresponding to twig 4, the f-cut

set is {4, 6, 7}

Which is cut-set C2 having the

same orientation as 4.

Corresponding to twig 1 the f-cut

set is {1, 6, 7, 8}

Which is cut-set C3. The orientation of C3 is coincident with the di-

rection of twig 1.

Corresponding to twig 2, the f-cut set is {2, 5, 6, 7, 8} which is cut-set

C4.

The f-cut-set matrix is written as follows:

Qf =

The basic property of the fundamental cut-sets is that they give lin-

early independent KCL equations.

Applying KCL to the f-cut-sets of the graph,

C1 : i3 – i5 – i6 = 0

C2 : i4 + i6 – i7 = 0
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C3 : i1 + i6 – i7 + i8 = 0

C4 : i2 – i5 – i6 + i7 – i8 = 0

In the matrix form

C

C

C

C

i

i

i

i

i

i

i

i

1

2

3

4

1

2

3

4

5

6

7

8

0 0 1 0 1 1 0 0

0 0 0 1 0 1 1 0

1 0 0 0 0 1 1 1

0 1 0 0 1 1 1 1

0

0

0

0

− −

−

−

− − −

L

N

M
M
M
M

O

Q

P
P
P
P

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

=

L

N

M
M
M
M

O

Q

P
P
P
P

7. (a) State and explain Millman’s theorem.

Solution

Refer Section 3.10 (Chapter 3).

7. (b) Find the current IL. Use Millman’s theorem.

Solution

Refer Example 3.10 (Chapter 3)

Millman’s theorem states that

V ¢ =
V G V G V G

G G G G

n n

n

1 1 2 2

1 2 3

+ + +

+ + + +

L

L

R¢ =
1

1 2G G Gn+ + +L

\ V¢ =

20
1

5
40

1

4
10

1

2

1

5

1

4

1

2

× + × + − ×
F
HG

I
KJ

+ +

 = 9.47736

R¢ =
1

1

5

1

4

1

2
+ +

 = 1.0526
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IL =
9 4736

1 0526 10

.

. +
 = 0.857A

7. (c) Verify the reciprocity theorem for the network shown.

Solution

Vx = 
10 5

5 4 4

×

+ − j
 (–j4) = 8.24 – j18.556

= 20.3 ––66°

Output/input =
20 3 66

10 0

. – - ∞

– ∞
 = 2.03 ––66°.

Exchanging the excitation and response

Vx =
10 0 4

5 4 4

∠ ° −

+ −

( )j

j
 ¥ 5 = 20.3 ––66°

Output/input =
20 3 66

10 0

. ∠ − °

∠ °

= 2.03 ––66°

8. (a) Explain the final value theorem of Laplace transform.

Solution

Refer Section 13.4 (h) Chapter 13.

8. (b) Find V(•) given V(s) = 
S S

S S S S

2

2

2 3

1 2 2

+ +

+ + +( ) ( )
.

Final value V• = Lt
S 0

S
Æ

(V S ) = Lt
S 0

S

Æ

( S
2

2 S+ 3)

S

+

( S 1) ( S+
2

2 S+ 2)+

Therefore, V• =
3

2
 V.
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1. (a) Write a note on source transformation.

Solution

Refer Section 2.15.

(b) Using KCL and KVL, find the currents in all the sources of the circuit

of the following figure.

Solution:

Using KVL, the loop equations can be written as

5 = 5I1 – I2 (1)

–5 = 7I2 – I1 – 2I3 (2)

5 = 6I3 – 2I2 (3)

Solving Eq.(1), Eq. (2), and Eq. (3), we get

I1 = 0.92 A

I2 = –0.38 A

I3 = 0.706 A

2. (a) Calculate the current to be passed through the coil so that a flux of

1 mwb is produced in the air gap (as shown in the following figure) the

case of square cross section over its entire length and has permeability

of 800.

f = 1 mwb

ur = 800
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Assuming no. of turns = 500
Flux produced is given by

f = 
mmf

total reluctance

f = 
mmf

1

1

l

u A

l

u A

l

u A1

2

1 2

3

3 3

+ +

L

N

M
M

O

Q

P
P

By dividing the given fig. in no. of section

1 ¥ 10–3 = 
I ¥

+

¥ ¥ ¥ ¥
+

+

+ ¥ ¥ ¥

+
¥

¥ ¥ ¥

-

- -

-

- -

-

- -

500

20 20 10

800 4 10 16 10

20 8 10

800 4 10 64 10

1 10

4 10 4 10

2

7 4

2

7 4

3

7 5

( ) ( )

p p

p

1 ¥ 10–3 = 
1 500 4 10

0 3125 0 05459 25

7¥ ¥ ¥

+ +

-
p

. .
I = 40.37 A

(b) Define the following terms
(i) Co-efficient of coupling in coupled coils

(ii) Magnetic flux density
(iii) Reluctance of magnetic path
(iv) Permeability

Solution:

Refer Sections 10.5; 10.11

3. (a) A series R-C circuit is excited
by sinusoidal voltage find the
expression for impedance
using phasor diagram.
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Solution: Refer Section 5.1

(b) Determine the supply voltage and the power factor in the following
figure network if the total power delivered is 200 W.

Solution:

zeq = 10 + (–5 j||(6 + 2 j)

= 13.33 – 3.33 j

\ zeq = 13.33 – 3.33 j = 13.74 ––14.02

but given that total power delivered is 200 W

\ 200 = I2 (13.33)

I = 3.87A

\ V = IZ = 3.87(13.33 – 3.33 j)

= 51.63 – 12.89 j

= 53.22 ––14.02

\ V = 53.22 ––14.02 V

Power factor = 
R

Z
=

1333

1374

.

.
, 0.97

\ Supply voltage is 53.22 ––14.02 V

and power factor is 0.97

4. (a) For a series RL circuit obtain the locus of current as inductance is
changed from 0 to • when the applied voltage is constant.

Solution:

Refer Section 8 :13.1

w = 0 JwL = 0 = I = 
V

R
 f = Ta–1 

wL

R

F
HG

I
KJ

w = x JwL = a, = I = 0

(b) Show that for a series resonant circuit f1 f2 = fr
2 where f1 and f2 are half

power frequencies and fr is the resonance frequency.

Solution:

Refer Section 8.4

(c) Obtain the z-parameters of the following two-port Networks.
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1

2 W

V1

I1 I2

V22 W 2 W

4 W 2 W

2

1¢ 2¢

Solution: V1 = Z11 I1 + Z12 I2
V2 = Z21 I1 + Z22 I2

2 W

V1

I1

I3 I4

I2

V22 W 2 W

4 W

when I2 = 0

V1 = I1 (3.5)

\ Z11 = 
V

I

1

1

 = 3.5

Z21 = 
V

I

2

1

V2 = I42 but I4 = 1 1(2) ( 2

4 2 2
=

+ +

I I )

8
1

4
4

=
I

\ V2 = 1

4

I

2

( 2 1)
2

=
I

Z21 = 
V

V

2

1

1

2
=  = 0.5

4 W

V1

I5I6

I2

V22 W2 W

2 W
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when I1 = 0

V2 = I2 (3.5)

\ Z22 = 
V

I

2

2

 = 3.5

and

Z12 = 
V

I

1

2

but V1 = I6 2 but I6 = 
I I2 22

8 4

( )
=

V1  = 
I I2 2

4
2

2
( ) =

Z12 = 
V

I

I1

2 2
=  = 0.5

\ Z-parameters are

Z11 = 3.5 Z12 = 0.5

Z21 = 0.5 Z22 = 3.5

5. (a) Determine the line currents and total power supplied to a delta
connected load of zab = 10–60°, zbc = 20–90° and zca = 25–30°.
Assume a 3-phase, 400 V, ABC system.

Solution: VAB = 400–0° Zab = 10 –60° = 5 + 8.66j

VBC = 400 ––120° Zbc = 20–90° = 0 + 20 j

VCA = 400 ––240° Zca = 25–30° = 21.65 + 12.5 j

z c
a
=
25

30
°

–

zbc = 20 90°–

z
a
b =

10
60°

–

I c

I3
IB

I
A

I1

I2

C

A

B

3-phase
supply

IA = 
V

Z

AB

ab

=
– ∞

– ∞

400 0

10 60
 = 20 – 34.64j = 40––60°

IB = 
V

Z

BC

bc

=
–-

– ∞

400 120

20 90
 = 20–150°
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IC = 
V

Z

CA

CA

=
–-

– ∞

400 240

25 30
 = 16–90°

Line currents

I1 = IA – IC = (40 ––60) – (16 –90) = 54.44 ––68.44 A

I2 = IB – IA = (20 –150) – (40 ––60) = 58.18 –129.89 A

I3 = IC – IB = (16 –90) – (20 –150) = 18.33 –19.10 A
Power

Power in A phase = IA
2 RA = (40)2 (5) = 8000 W

Power in B phase = IB
2 RB = (20)2 (0) = 0

Power in C phase = IC
2 RC = (16)2 (21.65) = 5542.4 W

Total power consumed by load is 8000 + 5542.4 = 13542.4 W
(b) Derive the Relationship between line and phase voltages in a balanced

three phase star connected load.

Solution:

Refer Sections 9.7.1; 9.7.2 and 9.7.3

6. (a) Explain clearly what you understand
by a cutset and tieset. Write down the
basic tieset schedule for the network
shown in the figure by taking 10 W
resistor branches as free branches.

Solution: From the N/w the graph is to be drawn.

Now select 10W-resistor branches as free branches then
tieset matrix.

1

22

1 3

4

6

4

5 3

1

22

1 3

4

6

4

5

I2 I1

I3

3

Tie set (loop) Branches Æ

B
- -

-
L

N

M
M

O

Q

P
P

1 2 3 4 5 6
0 1 1 1 0 0
0 0 0 1 1 1
1 0 1 0 1 0

1

2

3

I

I

I

(b) For the N/W shown in figure determine the ratio of I2/I1.

5 W

5
W

5 W

10 W1
0
W

1
0
W

+

V–
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Solution: VA = –I3 ¥ 1 = –I3

VB = I I I1 2 3

3

2
+ +

F
HG

I
KJ

 ¥ 1

VA – VB = 2I3

fi –I3 – I1 – 
3

2
I2 – I3 = 2 I3

fi 4I3 = –I1 – 
3

2
 I2 (1)

VC = –I2 ¥ 1 = –I2

VC – VA = –I2 + I3 = 
3

2
2I (2)

I3 = 
5

2
 I2 = 2.5I2 (3)

From Eqs (1) and (2)

4(2.5I2) = –I1 – 
3

2
 I2

10
3

2
+

F
HG

I
KJ

 I2 = –I1

I

I

2

1

2

23
=
-

7. (a) State the explain the superposition theorem?

Solution:

Refer Section 3.2

(b) Using superposition theorem find the current in 2W. Verify your result
by any other method.
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To know the current in the 2W resistor

(i) Only having voltage source i.e. current source is replaced by a open
circuit.

(6 + 3)||(4 + 6) fi 9 || 10

= 4.736 W

the circuit can be drawn as

IT = 
-

=
-12

4 73 2

12

1406( . || ) .

= –8.533

then I2 = 
4 73

4 73 2

4 73 8533

4 73 2

.

.

. ( . )

.

IT

+
=

-

+

= –5.997

ª –6.00

(ii) Only current source is present, and voltage source is replaced by short
circuit.
By this short circuit, the current flowing through the 2W resistance is
zero.

\ I = 0 A

4.73 2

I2I1

12 V

+

I

–
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4 W

3 W

6 W

2 W

6 W4 A

\ total current flowing through 2W resistor is

–6 + 0 = –6 Ar

8. (a) Derive the expression for i(t) for R–L series circuit when excited by a
sinusoidal source.

Solution:

Refer Sections 4.5, 4.6 and 5.1

(b) For R-L-C series circuit with R = 10 W, L = 0.2 H, C = 50 mF determine
the current i(t) when the switch is closed at t = 0. Applied voltage is
V(t) = 100 cos (1000t + 60°)

V(t) = 100 cos (1000t + 60)

Loop equation is

V(t) = 10 i(t) + 0.2 
di t

dt
idt

( )
+

¥ -

1

50 10 6

10i(t) + 0.2 
di

dt
idt

2 6

1

50 10
+

¥ -
= 100 cos (1000 t + 60)

10 0 2
2

di

dt

di

dt
+ .  + 2 ¥ 105 i(t) = –100 sin (1000t + 60) ¥ 1000 (2)

[0.202 + 100 + 20000]i = –105 sin (1000t + 60)

Characteristic equation

0.2D2 + 10 D + 20000 = 0
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D = –25 ± 315.23 j

complementary solution:

ic = e–25t [c1 cos 315.23t + c2 sin 315.23t]

Assume particular solution

ip = A cos (1000t + 60) + B sin (1000 t + 60)

di

dt

p
= – 1000 A sin (1000t + 60) + 1000 cos (1000t + 60)

d ip

dt

2

2
= –(1000)2 A cos (1000t + 60) – (1000)2 sin (1000t + 60)

Substituting these values in Eq. (2)

10[–1000 A sin (1000 t + 60) + 1000 cos (1000 t + 60)]

+ 0.2 [–(1000)2 A cos (1000t + 60) – (1000)2 sin (1000t + 60)] + 2 ¥ 105

[A cos (1000t + 60° + B sin (1000t + 60)] = –100 sin (1000t + 60) 1000

–B(1000)2 –  
A B( ) ( )

. . ( )

1000 10

0 2 0 2 50 10 6
+

¥ -
= 
-100 1000

0 2

( )

( . )

fi A(50.000) + B[900.000] = 500000 (3)

–A(1000)2 + 
B A( ) ( )

. . ( )

1000 10

0 2 0 2 50 10 6
+

¥ -
= 0

A[–900,000] + B 50000 = 0 (4)

Solving for (3) and (4)

A = 0.03

B = 0.55

ip = 0.03 cos (1000t + 60) + 0.55 sin (1000t + 60)

solution is

i = e–25t [c1 cos 315.23t + c2 sin 315.23 t]

+ [0.03 cos (1000t + 60) + 0.55 sin (1000t + 60)]

to evaluate, c1 and c2

i = 0 when t = 0

O = (1) [c1 + 0] + 0.03 cos (60) + 0.56 sin (60)

C1 = –[0.03 cos 60 + 0.55 sin 60] = –0.491

di

dt
= e–25t (–25) [c1 cos 315.23 t + c2 sin 315.23t]

+ e–25t [–c1 sin 315.23t (315.23) + c2 cos 315.23t (315.23)]

–0.03 sin (1000t + 60) (1000) + 0.55 cos (1000 t + 60) 1000
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when t = 0, 
di

dt
 = 250

\ 250 = (–25) [c1] + [c2 (315.23)] – 0.03 ¥ 1000 sin 60

+ 0.55 ¥ 1000 cos (60)

250 = –25 (–0.491) + c2 (315.23) – 0.03 ¥ 1000 sin 60

+ 0.55 ¥ 1000 cos 60

c2 = 0.035

\ Solution is
i (t) = e–25 t [–0.491 cos 315.23t + 0.035 sin 315.23 t]

+ 0.03 cos (1000 t + 60) + 0.55 sin (1000 t + 60)
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PAPER 10

1. (a) What are passive and active circuit elements? Explain the voltage-

current relationships of passive elements with examples.

Solution:

Refer Sections 1.4.1; 1.5,

1.6 and 1.7

(b) Reduce the network of figure

below into an equivalent network

across terminals A and B with

(i) one equivalent voltage

source

(ii) one equivalent current

source

Solution:

Using the source

transformation,

we get the N/W

2 W

2 W 2 W2 W 2 W

0.75 W

3 W 2 W1 A

4 V 4 V

2 A

2 V 2 V

B B

A A

2 A 5 A fi
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20

1

6

1 W2 W 2 W 1 A2 A

2 A

1 A

0.75 W0.75 W 2 A

BB

AA

fi

By again converting current source, into voltage source

0.15 W

1 W

1.75 W

1.5 V

0.5 V

A A

B B

1 V

fi

\ One equivalent voltage source is
1.75 W

0.5 V

A

B

1.75 W0.28 A

A

B

One equivalent current source is

2. (a) A cast steal iron core has a square

cross section of side 3 cm. Assuming

the permeability of steel to be 800,

find the mmf required to produce a

flux f = 0.2 mwb 105 the right limb

as shown in the figure.

Solution: f = 0.2 mwb

mr = 800

Hg = 3 ¥ 3 ¥ 10–4 m2

f = 0.2 ¥ 10–3 wb
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B = 
f

A
=

¥

¥

-

-

0 2 10

9 10

3

4

.
 = 0.22 wb/m2

H = 
B

o rm m p
=

¥ ¥
-

0 22

4 10 8007

.
 = 221.04 AT/m

mmf required is given by Hl = 60 ¥ 10–2 ¥ 221.04

\ (f = NI = Hl) = 132.62 AT

\ mmf required to produce 0.2 mwb in right limb is 132.62 AT

(b) Define self and mutual inductances. Establish the polarity of two
mutually coupled coils on a single magnetic core.

Solution:

Refer Section 10.3

3. (c) Find the equivalent inductance of
the following circuit figure.

Solution: V1 = Leq 
di

dt

1 (1)

but by applying mesh analysis

V1 = L
di

dt
M

di

dt
1

1 2
+

O = L
di

dt
M

di

dt
1

2 1
+

\
di

dt

2 = 
-M

L

di

dt2

1

\ V1 = L
di

dt
M

M

L

di

dt
1

1

2

1
+

-L

N
M

O

Q
P

fi L
di

dt
1

1
-

M

L

di

dt

2

2

1
fi L

M

t

di

dt
1

2

2

1
-

F

HG
I

KJ
(2)

Compare Eq. (1) with Eq. (2)

L L
M

L
eq = -1

2

2

\ Leq for the magnetic circuit is obtained.

I1 I2Leq
V1 L1

M

L2
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3. (a) Explain about active, reactive and apparent powers. Give expression
for the above. Draw the power triangle.

Solution:

Refer Sections 6.3; 6.4 and 6.5

(b) Given i = 50 sin (w t + 60)

V = 200 sin (w t + 30) find the elements of the network with
their values active, reactive and apparent power.

Solution: i = 50 sin (w t + 60)

V = 200 sin (w t + 30)

Here the current leads the voltage by 30°

\ the elements of the network are resistance and capacitance.
and the power factor of the network is, cos 30° = 0.866 (leading)
Active Power:

Pactive = Veff Ieff cos q

= 
V Im m

2 2
◊  cos q

= 
50

2

200

2
◊  cos 30 = 4330.12 W

Reactive Power,

Preactive = Veff Ieff sin q

= 
V Im m

2 2
◊  sin q

= - ◊
50

2

200

2
 sin 30 = –2500 VAR

Apparent Power

Papparent P = ~Veff Ieff

= 
V Im m

2 2

50

2

200

2
= ◊  = 5000 VA

Component in n.w. R.c.

\ Active Power = 433012 W z = 
V

I
=

–

–

200 30

50 60

Reactive Power = –2500 VAR = 3.464 – 2i

Apparent Power = 5000 VA q = 3 464. W

R = 3.464 W; C = 
1

2w
C

c
J= = +

1

2

11
2

w w
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4. (a) Obtain the expression for frequency at which the voltage across the
inductance becomes a maximum in a series RLC circuit. Explain what
is meant by voltage magnification factor.

Solution:

Refer Sections 8.3; 8.6

(b) Obtain the transmission parameters for the following figure || circuit.
Verify your result for reciprocity condition.

I1 I26j5 3

3

– 4j

1 2

1¢ 2¢

V1 V2

V1 = AV2 – BI2

I1 = CV2 – DI2

When I2 = 0

V1 = I1 (8 + 2 j)

and V2 = I1 (3 – 4j)

A = 
V

V

I j

I j

j

j

1

2

1

1

8 2

3 4

8 2

3 4
=

+

-
=
+

-

( )

( )
 = 0.64 + 1.52j

C = 
I

V

I

I j j

1

2

1

1 3 4

1

3 4
=

-
=
-( )

 = 0.12 + 0.16 j J

I1

I2

6j5

3 W

3 W
– 4j

V1

When V2 = 0

B = 
-V

I

1

2

–I2 = 
I j

j

1 3 4

6 4

( )-

-

I1 6j5

3

– 4j

V1 V2
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–I2 = + I1 (0.65 – 0.23j)

V1 = I1 [(5 + 6 j) + [(3 – 4j) || 3]

= I1 [6.96 + 5.3 j]

B = -
V

I

1

2

 = 
I j

I j

1

1

6 96 5 3

0 65 0 23

( . . )

( . . )

+

-
 = 6.95 + 10.61 j

\ B = 6.95 + 10.61j W

D = - =
-

I

I

I

I j

1

2

1

1 0 65 0 23( . . )
 = 1.367 + 0.48j

\ A = 0.64 + 1.52j

B = 6.95 + 10.61j W

C = 0.12 + 0.16j J

D = 1.367 + 0.48j

Reciprocity condition:

AD – BC = 1

(0.64 + 1.52j) (1.367 + 0.48j) – (6.95 + 10.61j) (0.12 + 0.16 j)

= 1.00 – 1.6 ¥ 10–4j

= 1.008 ––0.009 ª 1

\ Reciprocity condition is satisfied.

5. (a) Derive the relationship between line and phase voltages in a balanced
three phase delta connected load

Solution:

Refer Sections 9.8.1; 9.8.2 and 9.8.3

(b) A 3 phase 400 V, 4 wire system has a star connected load with zA =
(10 + j0) W, zB = (15 + j10) W, zC = (0 + 5j) W. Find the line currents
and current through neutral conductor. Draw the phasor diagram.

Solution:

3-phase
supply

IA

IC

IB

IN

A

C
B

Z jA = 10 + 0

Z jB = 15 + 10

Z iC = 0 + 5
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VPh = 
VL

3

400

3
=  = 230.94

VAN = 230.94 –0 V

VBN = 230.94 ––120 V

VCN = 230.94 ––240 V

IA = 
V

Z j

AN

A

=
–

+

230 94 0

10 0

.

( )

= 23.09 + 0 j A

IB = 
V

Z j

BN

B

=
– -

+

230 94 120

15 10

.

( )

= –11.48 – 5.67j A

IC = 
V

Z j

CN

C

=
–-

+

230 94 240

0 5

.

( )

= 39.99 + 23.094 j A

IN = – (IA + IB + IC)

= – [23.094 – 11.48 – 5.67 j + 39.99 + 23.094 j]

= – [51.604 + 17.424j]

= 54.46 ––161.34 A

IN phase with respect to VAN is –161.34 phasor diagram is

VCN

IC

IN
IA

IB

VBN

VAN

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below figure below.
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+

R4

R1

R2

R3

G1

G3

G2

L

L

C

V2 I2

C

I1

I

+

V1

V

Solution:

Redrawing the N/W. I2

I2

I1V

L G4 G1

G2
C

G3

+–

(b) Construct the incidence matrix for the graph shown in figure below.

Solution:

Nodes
Branches Æ

B
- -

-

-

L

N

M
M

O

Q

P
P

1 2 3 4
1
2
3

1 0 1 1
1 1 0 0
0 1 1 1

 = [Ai]
1

1

2
32

3

4

\ Incidence matrix for the given graph is constructed.
(c) Use nodal analysis, to determine the voltages V1 and V2 in the circuit

shown in figure below.
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5 V

2 W

1 W 1 W1 A

V1 V2
2 W

+

–

Apply nodal analysis,

V1 5

2

-
+ 

V V V1 1 2

1 2
+
-

 = 0 (1)

V V2 1

2

-
+ 

V2

1
 = 1 (2)

fi V1 – 5 + 2V1 + V1 – V2 = 5

4V1 – V2 = 5 (3)

V2 – V1 + 2V1 = 2

3V2 – V1 = 2 (4)

Solving equations (3) and (4) we get

V1 = 1.545 V

V2 = 1.181 V

\ V1 = 1.545 V and V2 = 1.181 V

7. (a) State and explain the Reciprocity theorem? Is this theorem valid for
N/W with two sources? Subtantiate your answers.

100 0– 5 W 10 W

j4

I

–5j

3

Solution:

Refer Section 3.5

(b) Verify the reciprocity theorem
using the N/W given below.
The N/W can be reduce to

zeq = 2.5 + 0j

IT = 
100 0

25

–
 = 40–0

100 0– 2.5 + 0i
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By using the current division the value of I can be obtained.

\ I1 = 
IT

2

40

2
=  = 20 A

100 0– 5 W 5 + 0j

I1

then I = 
-

-
=
-

-

5

10 5

5 20

10 5
1j I

j

j

j( )

( )

( )
 = 4 – 8i

Response to excitation is 
V

I i
=
-

100

4 8
 = 5 + 10 j

the N/W can be reduced

100 0–

10 W

4j

I

–5j

3

100 0–

10 W

7.5 – 2.5j

IT = 
I j

j j

j j

j

T ( )

( )

( . . ) ( )

( )

-

+ -
=

+ -

-

5

3 4 5

5 6 0 8 5

3
 = 5.6 + 0.8 j

By using the current division,

I = 
I j

j j

j j

j

T ( )

( )

( . . )( )

( )

-

+ -
=

+ -

-

5

3 4 5

56 08 5

3
 = 4 – 8 j

Response to excitation is 
V

I j
=
-

100

4 8
 = 5 + 10j

\ Reciprocity theorem is verified.
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8. (a) Compare the classical and Laplace transform method of solution of the
network.

Solution:

Refer Chapter 13

(b) Draw the network in Laplace domain and find i1(t) and i2(t) the
following figure.

5 W 4 W

10 W

2 H

2 F
100 V

t = 0

I1 I2

By applying mesh analysis,

100 = 15i1(t) + 2 
di

dt

1  – 10i2(t) – 
2 2di

dt
(1)

0 = 14i2(t) + 
2 1

2
2di

dt
+  i2dt – 10i1(t) – 

2 1di

dt
(2)

Applying Laplace transform on both sides, for the two equations

15I1(s) + 2SI1(s) – 2SI2(s) – 10I2(s) = 
100

s

–10I1(s) – 2SI1(s) + 14I2(s) + 2SI2(s) + 
I s

s

2

2

( )
 = 0

\ I2(s) 14 2
1

2
+ +

L
NM

O
QP

s
s

 = I1[10 + 2s] (1)

and I1(s) [15 + 2s] – I2(s) [10 + 2s] = 
100

s
(2)

I1(s) [15 + 2s] – I1(s) 
( )10 2

14 2
1

2

1002
+

+ +
F
HG

I
KJ
=

s

s
s

s

I1(s) 
38 111

14 2
1

2

s

s
s

+

+ +

L

N

M
M
M

O

Q

P
P
P

 = 
100

s
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I1(s) = 
50 28 4 1

38 1112

2

s

s s

s

( )

( )

+ +

+

= 
50 0 038 6 96

38 1112

( . ) ( . )

( )

s s

s s

+ +

+

Taking the partial fractions

( )

( )

28 4 1

38 111

2

2

s s

s s

+ +

+
= 

A

s

B

s

c

s
+ +

+
2 38 111

28s + 4s2 + 1 = As (38s + 111) + B (38s + 111) + cs2

Compare co-efficients of s2, s, s°

38A + C = 4

111A + 38B = 28

B111 = 1

Solving these three equation:

A = 0.249

B = 0.009

C = –5.468

\ I1(s) = 
50 0 249 50 0 009 50 5 468

38 1112

( . ) ( . ) ( . )

s s s
+ -

+

I1(s) = 
12 45 0 45 2734

383 1112

. . .

s s
+ -

+

Applying inverse. Laplace transform

I1(t) = 12.45 + 0.45t – 
2734

38

111

38
.

e
t-

= 12.45 + 0.45t – 7.19 e–2.92t

|| ly I2(s) = I1(s) 
10 2

14 2
1

2

+

+ +

s

s
s

= 
50 28 4 1

38 111

10 2

14 2
1

2

2

2

s

s s

s

s

s
s

( )

( )

( )+ +

+

+

+ +
F
H

I
K

= 
2

2

50 (10 2 ) (28 4

(38 111)

s s s

ss

+ +
◊

+ 2

1)

(28 4s s

+

+ 1)

2s

+

= 
100 10 2

38 111s

s

s

( )

( )

+

+
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Taking partial fractions.

( )

( )

10 2

38 111

+

+

s

s s
= 

A

s

B

s
+

+38 111

10 + 2s = A(38s + 111) + Bs

38A + B = 2 fi A = 0.09

A 111 = 10 B = –1.423

\ I2(s) = 
100 0 09 100 1 423

38 111

( . ) ( . )

s s
-

+

= 
9

8

142 3

38
111

38

-

+
L
NM

O
QP

.

s

take inverse Laplace transform

i2(t) = 9 – 3.744 e–2.92t

\ i1(t) = 12.45 + 0.45t – 7.19 e–2.92t

i2(t) = 9 – 3.744 e–2.92 t
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PAPER 11

1. (a) Find the equivalent resistance between terminals y and z in the

figure shown below.

10 W
y

z

9
W

6 W

5 W

Solution: The above circuit can be represented as

1
0
W

9
W

5
W 6

W

10 W

5 W

9 W

6 W

y

y

y

y

z

z

z

3.33 3.66

6.66

Req

z

(b) In the network shown in figure below, determine ix.

4 A –3 A10 W

20 W

3Ix

Solution: Apply source transformation for the current source (4A) is 3Ix

current source.
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4 A fi

fi

10 W

10 W

20 W

–3 A

10 W

20 W

5 W

40 V

40 V

60ix

3Ix

ix

60ix

In the above circuit voltage sources in series can be added and Eqn

resistance is place.

–3 A

30 W

5 W

(60 + 40)ix

ix

x

Apply nodal analysis at note x.

( )vx - 0

5W
+ 

v ix x- +
+ =

( )60 40

30
3 0

W

But vx = 59x

replacing vx by 5ix

ix +
5 60 40

30

i ix x- -
 + 3 = 0

30ix + 5ix – 60ix – 40 + 90 = 0

– 25ix + 50 = 0

ix = 
50

25
 = 2A

\ The current ix = 2A
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2. (a) Define mmf, for x and reluctance of w magnetic circuit:

Solution:

Refer Section 10.11

(b) An iron ring has a mean diameter of 25 cms,
and a cross-sectional area of 4 cms2. It is
wound with a coil of 1200 turns. An air gap
of 1.0 mm width is cut in the ring. Determine
the current required in the coil to produce a
flux of 0.48 mwb in the air gap. The relative
permeability of iron under the condition is
800. Neglect Leakage.

Solution: Given data:

Mean diameter = 25 cms = D = 0.25 mb

Cross-sectional area, A = 4 cm2 = 4 ¥ 10–4 M2

No. of turns = N = 1200

Relative permeability of iron = 800

f = 0.48 mwb

Air gap reluctance Rlg = 
l

A

g

Cm0

 = 
1 5 10

10 10

3

7 4

. ¥

¥ ¥ ¥

-

- -

mt

4p m

= 108 ¥ 0.02981

= 2.9841 ¥ 106 AT/wb

Iron core reluctance

RLC = 
l

A

C

r Cm m0

 = 
( )p

p

D lg-

¥ ¥ ¥ ¥- -4 10 800 4 107 4

= 
( .25 .5 )p

p

¥ - ¥

¥ ¥

-

-

0 1 10

16 8 10

3

9

= 1.949 ¥ 10+6 AT/wb.

Total reluctance = Rlg + Rlc

= 4.933 ¥ 106 AT/wb

mmf = flux ¥ reluctance

NI = f ◊ Rl

1200 ¥ i = 0.48 ¥ 10–3 ¥ 4.9331 ¥ 106

i = 
0 48 10 4 9331 10

1200

3 6. .¥ ¥ ¥-

\ current required = 1.973 Amp

3. (a) Get the expression for complex power and sign of the active power.

Solution:

Refer Chapter 6.

+

1.5 mm

25 cm
–
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(b) Find I1, I2, I3 and I find also the power consumed. Draw the phasor
diagram (Fig. 19)

200 V

I1

I2 I2

I3

10 W

5 Wj10

5 – 5j

Solution: Equivalent Impedance

= 5 + 10W || j10 || 5 – j5

= 5 + 
10 10

10

j¥

10 j+
 || 5 – j5

= 

5
10

1
5 5

10

1
5 5

+
+

¥ -

+
+ -

j

j
j

j

j
j

( )
 = 

(1 )
5

j+
+

50

1 j+

10
5 5

1

j
j

j
+ -

+

= 5 + 
50 1

10 1 1 5

( )

( )( )

+

+ - +

j

j j j

= 5 + 
50 1

10 10

( )+

+

j

j
 = 5 + 

5 1

1

( )

( )

+

+

j

j

Zeq = 10 W

\ I = 
200

10
 = 20 –0

\ Voltage across parallel IMD

200 – I ¥ 5

= 200 – 20 ¥ 5

= 100V

I1 I2 I3

10 W 5 W

5 W

j10

200 V

100 V 0–
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I1 = 100V 0

10

–  = 10 Amp

I2 = 
100V

10j
 = – j10 A = 10 – – 90º

I3 = 
100

5 5

V

- j
 = 

20

2
 (1 + j ) = 10 + j10

4. (a) Obtain the Y parameters for the following figure and network in
Laplace transform variable.

1 W

1 W

2 F

V1 V2

I1 I2

2 F

Solution:

Y parameter Equations

1
W

1
W

I1

I2

2F

2F

V2

V1

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2

Y11 = 
I

V
V

1

1 02 =

Y1 = I1 ¥ 2 
1 1 2

1 1 2

¥

+

F
HG

I
KJ

/

/

s

s

V1 = 
2

2 1
1I

s +
Zeq = 2

1
1

2

1
1

2

¥

¥
F
H

I
K

+
F
H

I
K

s

s

Y11 = 
I

V

1

1

 = 
( )2 1

2

s +

45°

90° I1

I

I3

I2

V
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Y21 = 
I

V

2

1

I1 = 
V s1 2 1

2

( )+

IL = Iw – Ib

Iw = 
I

s

1 1

1
1

2

¥

+
 = 

2

1 2
1sJ

s+

Ib = 
I s

s

1 1 2

1 1 2

¥

+

/

/
 = 

I

s

1

1 2+

Iw – Ib = I2 = 
I

s

1

1 2+
 (2s – 1)

= 
(2 1)

(1 2 )

s

s

-

+
(2 1)s

1
¥ +
2

1V

I2 = 
2 1

2

s -F
H

I
K

 V1

\
V

V
VL

2

1 0=

= 
( )2 1

2

s -

V22 = 
I

V
V

2

2 01=

 = 0

V2 = I2 ¥ 
2

2 1s +

I

V

2

2

= 
( )2 1

2

s +
 = Y22

and Y12 = 
I

V
V

1

2 01=

From figure I1 = Iw – Ib

Iw = 
I

s

2 1

1 1 2

¥

+ /
 = 

2

1 2

sI

s

L

+

Ib = 
I s

s

2 1 2

1 1 2

¥

+

/

/
 = 

I

s

L

1 2+

I1 = 
( )2 1

1 2

s I

s

L-

+
 = 

(2 1)

(1 2 )

s

s

-

+

(2 1)s +
¥

2

2

V

1
W

1
W

I b

I b

I2

Ia

Iq

V1

Y s/2

Y/2s

1

1

I b

1/2s

V1

I2

1/2s
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I1 = 
2 1

2
2

s
V

-

I

V

1

2

= 
2 1

2

s -
 = 1/12

\ Y matrix

Y = 

2 1

2

2 1

2
2 1

2

2 1

2

s s

s s

+ -

- +

L

N

M
M
M

O

Q

P
P
P

(b) A tuned circuit consists of a coil
having an inductance of 200 mH and
a resistance of 15 W in parallel with
a series combination of a variable
capacitance and resistor of 80 W. It
is supplied by a 60 V source. If the
supply frequency is 1 MHz what is
the value of C to give resonance.

Solution: Total admittance, Y = 
1 1

R j L R j CL C+
+

-w w( / )

Y = 
R j L

R L

R j C

R
C

L

L

C

C

-

+
+

+

+

w

w

w

w

2 2 2 2
2 2

1
/

= 
R

R L

L

L
2 2 2+w

 + 
R

R
C

C

C
2

2 2

1
+
w

+ j
C

R
C

L

R L
C

L

1
12
2 2

2 2 2

/w

w

w

w+

-
+

L

N

M
M

O

Q

P
P

at resonance, susceptance part becomes zero

w

w

r

L r

L

R L2 2 2+
= 

1

12
2 2

w

w

r

C

r

C

R
C

+

wrL R
C

C

r

2
2 2

1
+

L

N
M

O

Q
P

w
= 

1

w rC
 [RL

2 + w 2
r L

2]

w 2
r R

C
C

r

2
2 2

1
+

L

N
M

O

Q
P

w
= 

1

LC
 [R2

L + w2
r L

2]

wr = 
1 4

4

2

2
LC

R C

R C

L

C

-

-
wr = 

1

LC
 (RL = RC)

60V

L R

RC C

80W

15 W

1 MHz

200 Hm
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1

LC

L
NM

= 
1 4

4

2

2
LC

R C

R C

L

L

-

-
resonant frequency

R2
C – 

L

C
= R2

L – 
L

C

RC = RL
O
QP

(15 + j1256) 80
1

2 106
-

¥

F
HG

I
KJ

j
Cp

Imaginary part = 0 at resonance

1256 ¥ 80 = 
15

2 106pC ¥

C = 23.76 pF

5. (a) Show that a balanced star connected load can be transformed in to an
equivalent delta connected load and vice-versa.

Solution:

Refer Section 3.1

(b) 3f, 3 wire, 208 V, CBA, has Y load
ZA = 5–0, ZB = 5 –30°, ZC = 10 – – 68W, find true current voltage on
across each Load Impedance.

By converter Y N W into D form

ZBC = 
Z Z Z Z Z Z

Z

A B B C C A

A

+ +

= 
105 85 31 81

5 0

. .– -

–

= 21.17 – – 31.81º W

ZCA = 
Z Z Z Z Z Z

Z

A B B C C A

B

+ +

= 
105 85 31 81

5 30

. .

º

–-

–

= 21.17 – – 61.81º W

ZBA = 
Z Z Z Z Z Z

Z

A B B C C A

C

+ +

= 
105 85 31 81

10 60

. .

º

– -

– -

= 10.58 –28.19

Q Phase sequence h CBA

VCB = 208 –0º, VAC

VBA = 208 – – 120º
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VAC = 208 – – 240º

IC = 
V

Z

CB

BC

 = 
208 0

2117 31 81

–

– -. .
 = 9.82 –31.81 A

IB = 
V

Z

BA

AB

 = 
208 120

10 58 2819

– -

–

º

. .
 = 19.65 – – 148.19º

IA = 
V

Z

AC

AC

 = 
208 240

2117 61 81

– -

– -. .
 = 9.825 – – 179.19º

Line currents are
I1 = Ic – Ia = 9.82 –31.81 – 9.825 – – 179.19º

I1 = ICL = 18.93 –16.30

I2 = Ib – IC = 19.65 – – 148.19 – 9.82 –31.81

I2 = IBL = 29.47 – – 148.19

I3 = Ia – IB = 9.825 – – 179.19 – 19.65 – – 148.19

I3 = IAL = 12.31 –56.06

Voltage across each load Impedance are
VZC = (ICL)ZC = (18.93 –16.30) (10 – – 60º)

VZC = 189.3 – – 43.7º

VZB = (IBL
) (ZB) = (29.47 – – 148.19) (5 –30º)

VZB = 147.35 – – 118.19º

VZA = IAL ZA = I (12.31 –56.06) (5 –0º)

VZA = 61.55 –56.06

Phasor diagram

6. (a) What is duality? Explain the procedure for obtaining the dual of the
given planar network shown below in the figure.

Solution:

Refer 3.8

R4

R1 L
R2

V2I

V1

Rs

+

+

C

(b) Construct the incidence matrix for the graph shown in the figure.

Solution: Let i1, i2, i3, i4 be the current in the branches 1, 2, 3, 4.

VZA

IBL

VZB

IZC

IAL

ICL
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– i1 + i2 = 0

– i4 – i3 + i1 = 0

– i2 + i3 + i4 = 0

The incidence matrix is

[Ai] = 

Nodes  branches
1

2

3

1 0 1 1

1 1 0 0

0 1 1 1

- -

-

-

L

N

M
M
M

O

Q

P
P
P

(c) Use nodal analysis, to determine the voltage V1 ̈  VL in the circuit shown
in figure below.

+
5 V

2 W

1 W1 W

2V1

1 A

V2

–

Solution: 
( )V V V V1 1 1 25

2

0

1 2
0

-
+

-
+

-
=

4V1 – V2 – 5 = 0 (1)

1 + 
V V V1 2 2

2 1

-
+
-

 = 0

V1 – 3V2 + 2 = 0 (2)

Solving (1) and (2) V1 = 1.545 V

VL = – 1.18 V

7. (a) State and Explain the superposition theorem.

Solution:

Refer Section 3.2

(b) Is superposition valied for power? Substantiate your answer.

Solution:

Refer section 3.2

(c) Using superposition theorem find Vab volts shown in figure below

4 WA B2 W

6 W
4 V

2 V

–

–

+

+

2 A

1

1

2
32

3

4
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Solution: 2A current source alive.

4 WA B2 W

2 W

6 W

4 W

6 W

2 A

fi

Current through 2W

4

8 4
2

+
¥ = 

2

3
A

and current through 4 W

8

8 4+
 ¥ 2 = 

4

3
A

Va1
+ 

4

3
 ¥ 4 – 2 ¥ 

2

3
 = Vb1

Va1
 – Vb1

= Vab1
 = 

4

3

16

3

12

3
- =

-
 = – 4V

Within 4V voltage source alone.
Current

2 = 
4V

6 + 4 + 2
 = 

4

12

1

3
= A

VA2
+ 4 ¥ 

1

3
 + 2 ¥ 

1

3
 = VB2

VA2
 – VB2

= -
6

3
 = – 2V

Within 2V voltage source alone.

Current 2 = 
2

6 4 2+ +
 = 

2

12
 = 

1

6
A

VA3
 + (4 + 2) ¥ 

1

6
 = VB3

fi VA3
 – VB3

= Vab3
 = – 1V

\ By superposition Vab = Vab1
 + Vab2

 + Vab3

= – 4 + – 2 + – 1

Vab = – 7V

8. (a) For the ckt shown below find the inerted condition of q1, p2, 
di

dt

1 , 
dq

dt

2

and voltage across capacitor the ckt was in steady state before t = 0.

4 WA B2 W

6 W +–

4 V

4 2

A B

–+
2 V

6 W
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t = 0

100 V

20 W

10 W

2 Fm
2 H

6 W

I1 I2

Solution: t = 0–

i = 
100

10 6+
 = 6.25A

VC(0–) = 
6 100

16

¥
 = 37.5 V i1(0–) = i2(0–) = 6.25A

at t = 0, i2(0–) = 6.25 A, i1(0–) = 6.25A

100 = (i1 – i2) 20 
1

2mF
 (i1 – i2) dt (1)

100 = 6i2(t) + 2
di

dt

2 (2)

i1 = i2 = 6.25

from Eq. (2) 100 = 6(6.25) + 2 
di

dt

2

di

dt

2 0( )+

= 31.25 A sec

Taking derivative eq. (1)

0 = 
di

dt

di

dt

1 2-F
H

I
K 20 + 

1

2 10 6¥ -
 (i1 – i2)

i1 = i2 = 0

di

dt

1 0( )+

= 
di

dt

2 0( )+

 = 31.25 A

(b) Switch is opened at t = 0 find the current i(t) for t ≥ 0 in the following
figure.

at t = 0–

i = 
40

20
 = 2A

iL (0) = 2A

\ iL(0+) = 2A

10 W

6 W 6 W

P

100 V

30 W 20 W

10 i

i

2 H

40 V

t = 0
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at t = 0+

By applying K.V.L to loop

30 W

20 W

10 i

i

40 V

So 10i(t) = 30i(t) + 20i(t) + 
2di t

dt

( )

2di t

dt

( )
+ 40i(t) = 0

(D + 20) i(t) = 0

i(t) = ke–20t

at t = 0 i(t) = 2A

\ k = 2

\ i(t) = 2e–20t A

30 W 20 W

2 H I0 = 2A10 i

i (+)
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PAPER 12

1. (a) Find the equivalent resistance between terminals. y and z in the

figure given below.

Solution:

20 W

4 W

6 W

5 W

20 W

9
W

7.6 W

9 W

3.6 W

5 W 6 W

y

y

y

z

y

z

z

z

(b) In the network shown in the following, determine ix.

Solution: At node (b)

V V V1 1 2

10 20
+

-
 + 3ix = 4

At node (a)

4 A 10 W

20 W

5 W –3 A

3ix

ix

V1 V2b a

V V V1 1 2

10 20
+

-
 = 3ix – 3
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and ix = 
V2

5

V V V V1 1 2 2

10 20
3

5
+

-
+

F
H

I
K

 = 4 Solving A and B

V1 
1

10

1

20

1

20

3

5
2+

F
HG

I
KJ
+

-
+

L
NM

O
QP

v  = 4 (1) V1 = –10 V

V V V V2 1 2 2

20 5
3

5

-
+ =

L
NM

O
QP

 – 3 V2 = 10 V

-
+ + -

-L
NM

O
QP

V
V1

2
20

1

20

1

5

3

5
 = –3 (2) \ ix = 

V2

5

0.15V1 + 0.55 V2 = 4 (A) = 2A

–0.05V1 – 0.35 V2 = –3 (B)

(a) State and explain Faradays law of Electromagnetic induction. What

are statically and dynamically induced EMFs.

Solution:

Refer Section 1.6

(b) An iron ring 15 cms in diameter and 10 cm2 in area cross section. A

wand with a coil of 800 kms. Determine the current in the coil to

establish a fix density of 1 wb/m2 of

relative permeable w 500. In case if an air

gap of 2 mm is cut in the ring what is the

current in the coil to establish the same

feet density.

Solution: Given data:

b = 1 wb/m2

Diameter = 150 cm = 0.15 m

Core area AC = 10 cm2 = 10 ¥ 10–4 m2

lc = pD = p (0.15) mb

B, magnetic flux density = 
IN ◊m m0 v

cl

l = 
I ¥ ¥ / ¥ ¥

/ ¥

-
200 4 10 500

015

7p

p .

100 015

4

¥ .
= I Æ I = 3.75 Amp.

I
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B = 
mm

reluctance area

NI

reluctance area

f

¥
=

¥

If 2 mm is cut the reluctance will be sum of reluctance of air gap of

core.

e.g. (air gap flux) = 
l

AC

g

m 0

= 
2 10

4 10 10 10

3

7 4

¥

¥ ¥ ¥

-

- -p

= 0.159 ¥ 107

= 1.59 ¥ 106 AT/wb

Rlc (reluctance of core) = 
l

AC

c

rm m0

= 
( )p

p

D lg-

¥ ¥ ¥ ¥- -4 10 500 10 107 4

= 
( . )

.

p

p

¥ - ¥

¥ ¥

-

-

015 2 10

4 10 05

3

7

= 0.746 ¥ 106

Rlc + Rg = 2.336 ¥ 106 AT/wb

B = 1 = 
200 1

2 336 10 10 10
6 4

¥

¥ ¥ ¥
=

¥-
.

NI

Rl AC

I = 11.684 Amp

3. (a) Explain the significance of J-operator? What are the different forms of

expressing the sinusoidal quarter in complex form?

Solution:

Refer Appendix C

(b) Find the components of Z such that the current drawn quantity by the

circuit same at all frequencies the following figure.

RL = RC = 5 W

RL = RC = 
L

C

5 = 
0 05.

C

C = 
0 05

25

.
 = 2 ¥ 10–3 F = 2 mF

5 W

z

0.05 H
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Solution: (c) The condition is that RL = RC = 
L

C
.

\ RL = RC = 5W

from which 5 = 
0 05.

C

C = 2 ¥ 10–3 F

The components of Z are shown in figure.

4. (a) Define the following terms

(i) Bandwidth

(ii) Q-factor

(iii) half power frequencies

Solution:

Refer Sections 8.4, 8.5

(b) Obtain a p-equivalent circuit for

the following figure of 2 port

network.

Solution:

–V1 + I1R1 + (I1 + I2) RL = 0

(R1 + R2)I1 + R2I2 = V1 (1)

RL(I2 + I1) + R3(I2 – 0.2 I1) – V1 = 0

(R2 – 0.2 R3) I1 + (R3 + R2)I2 = V2 (2)

w.r.t. V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

So Z11 = R1 + R2

Z12 = R2

Z21 = R2 – 0.2 R3

Z22 = R3 + R2

D t = 
Z Z

Z Z

R R R

R R R R
11 12

21 22

1 2 2

2 3 3 20 2
=

+

- +.

Y11 = 
Z

Z

R R

Z

22 3 2

D D
= -

Y12 = 
-

= -
Z

Z

R

Z

12 2

D D

Y21 = 
-

=
-Z

t

R R

Z

21 2 30 2

D D

.

Y22 = 
Z

t

R R

Z

11 1 2

D D
=

+

5 W5 W

2 ¥ 10 F–3
0.05 H

V1

I1 I2R1 R3

R2
V2

0.2I1

+ +

– –
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Y1 = Y11 + Y21

= 
R R R R

Z

3 2 2 30 2+ + - .

D

= 
2 0 82 3R R

Z

- .

D

Y2 = –Y12 = 
-R

Z

2

D

Y3 = Y22 + Y12

= 1 2 2R R R

Z

+ -

D

= 
R

Z

1

D

5. (a) Derive the relationship between and phase quantities in a balanced star

connected system.

Solution:

Refer Sections 9.7.1, 9.7.2 and 9.7.3

(b) A 3 phase 4-wire CBA system of phase sequence, with effective line

voltage of 100 V has a star-connected impedance given by

ZA = 3.0 –0° W, ZB = 4.5 –56.31° W

ZC = 2.24 ––26.57° W, obtain the line currents and the current in

neutral wire draw the phasor diagram.

Solution:

Vph = 
100

3
 = 57.735 V

VCN = 57.735 –0°

VBN = 57.735 ––120°

VAN = 57.735 ––240°

IC = 
VCN

ZC

=
– - ∞

57 735

2 24 26 57

.

. .
 = 25.77 –26.57° = 23.048 + 11.52 j

IB = 
V

Z

BN

B

=
– - ∞

– ∞

57 735 120

4 5 56 31

.

. .
 = 12.83 ––176.31° = –12.8 – 0.825 j

IA = 
V

Z

AN

A

=
– - ∞

∞

57 735 240

3

.
 = 19.245 ––240° = –9.62 + 16.66 j

INeutral = –(IA + IB + IC) = – (0.628 + 27.355 j)

V1 V2Y1

Y2

Y3

+ +

– –
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120°

120°

26.57°

240°

120°

VAN

IC

VCN

VBN

IB

IA

6. (a) For the circuit shown below in

Fig. 31. Find the currents of

voltages in all the branches of

circuit. Use node voltage method.

Solution: Let V1 be the voltage as

shown in figure

At V1

8

1
5

3

2 1-
+ +

-V V V
 = 0

39 – 4V1 + V2 = 0 (1)

At V2

V V V2 2 18

2 3

-
+

-
 + 4V2 = 0

–2V1 + 29V2 – 24 = 0 (2)

From Eq. (1) and Eq. (2) V1 = 10.13; V2 = 1.52

Current in 2W = 
8 152

2

- .
 = 3.24 A from A to C

Current in 1W = 
8 1013

1

- .
 = –2.13 A from A to B

Current in 3W = 
1013 152

3

. .-
 = 2.87 A from B to C

Current in 4J = 1.52 ¥ 4 = 6.08 A downwards

(b) Draw the dual of the network shown in the following figure. Explain

the procedure employed.

Solution: For procedure refer Section 3.8

+

–

8 V 5 A

V1
V21 W 3 W

2 W

4 W

A
B

C
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L2

C1

C2

C1

R1

R2

G2

L1

L1

L2

R2

G1

3

2

1

V

I

+

–

Ref

C1
2

Ref

31

L1

L2
I G2

G1

C2

(c) Obtain the Expression for characteristic impedance of symmetrical T

network.

Solution:

Refer Section 15.13.

7. (a) State and explain superposition theorem.

Solution:

Refer Section 3.2

(b) Using superposition theorem find the current in 2 W resistor. Verify the

result by any other method in following figure.

Solution:

Consider source (1) current source on line.

1 W 4 W

3 A

6 W 6 W6 W 6 W

1
6
V

3 W

2 W

24 A 4 A
+

–
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Current through 2W = 0

as two point ends are shorted.

Consider voltage source alive.

4

3

6

10 V

6

1
0
V

2 W

6 W

4 W

3 W

2 W

6 W
+

– +
–

Current through 2W resistor = 
10

2

V
 = 5A

by superposition current = 0 + 5 = 5A

Verification: Consider the entire network.

1
0
V

2 W

3 W

4 W

6 W6 W4 A
+

–

By source transfer

6 W

6 W

24 V

4 A

6
V 2 W

4 W

6 W

6 W

3 W

24
+

–

Current through 2W = 
V

2
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= 
-10

2
 = –54 Downward

I = 54 upward. Hence proved.

8. (a) What are the Initial conditions? How do you need them?

Solution:

Refer Chapters 12 and 13

(b) Explain why the current in a pure Inductance cannot change in zero

time?

Solution:

Refer Section 1.6

(c) Switch is closed at t = 0. Find initial conditions at t(0+) for i, i2, VC

di

dt

di

dt

d i

dt

d i

dt

1 2
2

1

2

2
1

2
, , and  in the following figure.

t = 0 2 HF

VC

60 V 20 W

10 W

2 H

+ –

Solution:

At t = 0
–
 the circuit in un energised so all initial condition are zero.

at t = 0
+

i1(0
+) = 

60

20
 = 3A, i2(0+) = 0A

60 V

i1 i2

10 W

20 W 60 V

2 Fm

2 H

i1 i2

10 W

20 W

By writing KVL to loops

60 = 
1

2 10 6 1
¥ - z i (t) + 20[i1(t) – i2(t)] (1)

20 (i2(t) – i1(t)) + 10i2(t) + 
2 2di t

dt

( )
 = 0 (2)

By substituting Initial Coils (2)
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20(0 – 3) + 30 + 2
02di

dt

( )+
 = 0

di

dt

2 0
30

( )+
=

Differentiate (1)

0 = 
1

2 10 6¥ -
 i1(t) + 20 

di t

dt

di t

dt

1 2( ) ( )
-

F
HG

I
KJ

(3)

di

dt

1 30-
F
HG

I
KJ

= –
3

40
 ¥ 106

di

dt

1 = 30 – 
3

40
 ¥ 10

5
 = –74.97 ¥ 10

3

di

dt

1 30
74 97 10

( )
.

+

= - ¥

Differentiate (2)

20
di t

dt

di

dt

di

dt

d i

dt

v

v
2 1 2 210 2
( )

-
F
H

I
K
+ +

20 (30 + 74.97 ¥ 10
3
) + 10 ¥ 30 + 2

d i

dt

v

v

2  = 0

d i

dt

v

v

2 0( )+
= –760.15 ¥ 103

Differentiate Eq. (3)

0 = 
1

2 10
20

6
1 2

¥
+ -

F

HG
I

KJ-

di

dt

d i

dt

d i

dt

v

v

v

v

0 = 
1

2 10
6

¥
-

 (–74.97 ¥ 103) + 20 
d i

dt

v

v
+ ¥

F

HG
I

KJ
75015 103.

i1(0+) = 3A

i2(0+) = 0A
d i

dt

v
i

v
 (0+) = 1.873 ¥ 10°

di

dt

1  (0+) = –74.97 ¥ 103 d i

dt

v

v

2 0( )+
= –750.15 ¥ 103

di

dt

2  (0+) = 30
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Appendix F

Solved Question Papers

Network Analysis, May/June 2006

SET 1

1. (a) Describe the Volt-ampere relations for R, L and C Parameters.

Solution: Volt-ampere Relations for R, L and C Parameters

The passive elements R, L, C are defined by the way in which the current

and voltage are related for individual element.

(i) If the current ‘I’ and voltage ‘V’ are related by a constant for a single

element then the element is a resistance ‘R’. The Resistance ‘R’

represents the constant of proportionality.

R V

I
+

–

Fig. Set 1.1

\ Voltage, V = RI (ohms law)

Current, I =
V

R

Power, P = VI = I2R

The units of resistance ‘R’ is ohms (W).

(ii) If the current and voltage are related such that the voltage is the time

derivative of current, then the element is an inductance ‘L’. The inductance

‘L’ represents the constant of proportionality
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\    Voltage, V = L 
d I

d t

Current, I =  
1

L z V dt + K1    [K1 = constant]

Power, P = VI = LI 
d I

d t

The units of inductance ‘L’ is Henry (H).

(iii) If the voltage and current are related such that the current is the time

derivative of the voltage, then the element is a capacitance ‘C’. The

capacitance ‘C’ is the constant of proportionality

\    Current, I = C
d V

d t

Voltage, V =
1

C z I dt + K2      [K2 = constant]

Power, P = VI = VC 
dV

d t

The units of capacitance ‘C’ is Farads (F).

1. (b) Derive the expression for the energy stored in an ideal inductor?

Solution: Expression for Energy Stored in an ideal inductor

Let ‘L’ be the co-efficient of self inductance and i be the current flowing

through it.

Let ‘dw’ be the small amount of work to be expended to over come self

induced emf.

\         dw = Ei dt

dw =  
d i

d t
i dt          QE L

d i

d t
=

L

N
M

O

Q
P

from lenz law

dw = Li di (1)

Hence total work to be done in establishing a maximum current i0 is given

by integrating (1) from 0 to i0.

\         w =

0 0

0 0

=ò ò
i i

dw Li d i = L 

0

0

i

i d iò

L V

I
+

–

Fig. Set  1.2

C V

I

+

–

Fig.  Set 1.3
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= L
i1

2 1

0
2L

N
M
M

O

Q
P
P

w =
1

2
 Li0

2

\  Energy stored in an inductor w = 
1

2
 Li0

2

1. (c)  Find the Current I1 and I2 using Nodal Analysis (Fig. Set 1.4)

10 V

2 W

1 W

2 W 2 W
1 V

I2

– +
2 I

1 W

I1

I

V1 V21 2

R

Fig. Set 1.4

Solution: At node (1):

V V V V I V V1 1 1 1 1 210

2 2

1

1

2

1

-
+ +

- +
+

+ -( ) ( )
 = 0

  Þ V1 
1

2

1

2
1 1+ + +F

HG
I
KJ

 + (– 1 – 1)V2 = 
10

2
 + 1 - 2I = 6 - 2I

Þ 3V1 - 2V2 = 6 - 2I (1)

 At node 2:

V V V V I V2 2 1 2 1

2

1

1

2

1
+

+ -
+

+( ) ( )
 = 0

Þ  (- 1 - 1)V1 + 
1

2
1 1+ +F

HG
I
KJ

 V2 = - 1 + 2I

Þ - 2V1 + 
5

2
 V2 = 2I - 1 (2)

But I =
V1

2
(3)

From (3)  (1) Þ 4V1 - 2V2 = 6

(2)  Þ 3V1 - 
5

2
 V2 = 1
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Solving,
V1 = 3.25 V

V2 = 3.5 V

     \ I1 = 
10

2

1- V
 = 3.375 A; I2 =

V2

2
 = 1.75 A.

2. (a) Define Magneto Motive Force, Magnetic Flux, and Reluctance of a

Magnetic circuit. Specify the unit for the above quantities, state the

relation between the above quantities.

Solution: Magneto Motive Force (MMF)

Magneto Motive Force (MMF) is the measure of the ability of a coil

to produce a flux.

As EMF is considered to be an electric pressure, MMF is also

considered to be a magnetic pressure. A coil with N turns carrying a

current of ‘I’ amperes represents a magnetic circuit producing an

MMF of ‘NI’ ampere turns.

\ MMF = NI Ampere Turns.

The MMF is the source of flux (f) in the magnetic circuit. The length

of the circuit and the MMF determines the amount of flux produced in

the circuit.

Units of MMF = Ampere Turns (AT)

Reluctance (S)

It is the property of the medium which opposes the passage of magnetic

flux. The reluctance in the Magnetic circuit is similar to the resistance in

the electric circuit.

\ Reluctance =
MMF

flux

\ S =
MMF

f

Units of Reluctance is AT/wb.

The reluctance is the measure of the opposing offered to the set up of the

flux by a magnetic circuit.

\ S =
MMF NI

f f
= [Q f = B ´ A]

\ S =
1o r

NI NI

B A Am m
=

´ + ´
[Q B = m0 mr H]

\ S =

o r

NI

NI
A

l
m m ´

NI
H

L

é ù=ê úë û
Q
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\ S =  
o r

l

Am m
 AT/wb

\ S =
L

Am
 AT/wb

where  l = length of Magnetic Path; A = Area of cross section of magnetic
circuit; and m = m0 mr = Permeability of Medium.

Magnetic Flux (f)

The total number of lines of induction passing normally through a surface

is called Magnetic flux (f).

Flux does not actually flow in a magnetic circuit.

Magnetic flux is directly proportional to the pole strength of the magnet.

i.e. f a m

(or) f = mm

where m = Permeability of Medium.

Units of magnetic flux is weber (wb).

Relation between MMF, S and f

The Relation between MMF, Magnetic flux and Reluctance of a magnetic

circuit is given as

Magnetic flux =
Maneto Motive Force

Reluctance

i.e. f =
MMF

S

i.e. f =
NI

L

MA

2. (b) Write down the voltage equation for the following Fig. Set 1.5, and

determine the effective inductance.

+
V( )t

Mc

MA MB

L1 L2 L3

i t( )
–

Fig. Set 1.5



F.6 Network Analysis

Solution: Apply KVL in the given loop

V(t) = L1 
d i t

d t

( )
 + L2 

d i t

d t

( )
 + MA 

d i t

d t

( )
 + MA 

d i t

d t

( )
 +

L3 
d i t

d t

( )
- MB 

d i t

d t

( )
 - MB 

d i t

d t

( )
 - MC 

d i t

d t

( )
 -

MC 
d i t

d t

( )

\ V(t) = [L1 + L2 + L3 + 2MA - 2MB - 2MC] 
d i t

d t

( )

is the required voltage equation.

We have V(t) = L 
d i t

d t

( )

L 
d i t

d t

( )
 = [L1 + L2 + L3 + 2MA - 2MB - 2MC] 

d i t

d t

( )

\ L = L1 + L2 + L3 + 2MA – 2MB – 2MC  is the equivalent inductance.

2. (c) Two identical coils connected in series gave an inductance of 800 mH and

when one of the coils is reversed gave an inductance of 400 mH. Determine

self-inductance, mutual inductance between the coils and the co-efficient

of coupling.

Solution: Let ‘L’ be the self inductance of the coils and M be the Mutual

inductance between the coils.

Given Data

Two identical coils connected in series gave an inductance of 800 mH

i.e. L + L + 2M = 800 [Q identical coils L1 = L2 = L]

2L + 2M = 800 (1)

When one of the coils is reversed gave an inductance of 400 mH

i.e. L + L - 2M = 400

2L - 2M = 400 (2)
Add (1) and (2) we get 4L = 1200

L = 300 mH

Subtracting (2) from (1) we get 4M = 400 mH

M = 100 mH

\ Self inductance of each coil = L = 300 mH

Mutual inductance between the coils = M = 100 mH
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Co-efficient of coupling = K = 
M

L L1 2

\ K =
M

LL
[Q L1 = L2 = L]

\ K =
M

L

M

L2
=

\ K =
100mH

300mH

\ K = 1/3

\ co-efficient of coupling = 1/3.

3. (a) Derive the expression for i(t) when the switch is moved from position

1 to position 2 at t = 0 in the circuit (Fig. Set 1.6) shown. The switch

was in position 1 for a long time. Sketch the variation of i(t). Also

determine VC (t).

E

R1

Ct = 0

(2)

(1)
S

R2 i t( )

Fig. Set 1.6

Solution: When switch is in position 1 for a long time (steady state)

capacitor is not charged to any voltage.

i.e., VC = 0 when switch is at position (1)

Switch of position (2): Capacitor doesn’t allow sudden change in voltage

\ VC (t = 0
+
) = 0 (Here acting as short circuit initially)

\ i(t = 0
+
) =

E

R1

 (Initial conditions)

Applying KVL, E = i(t) R1 + 

0

1
t

C ò i(t) dt

Differentiating once, O = R1 
d i t

d t

i t

C

( ) ( )
+ (1)
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Þ D
R C

+
F
HG

I
KJ

1

1

i = 0 where
d

D
d t

æ ö
=ç ÷è ø

\ i(t) = Ce-t/R1C is the solution of eqn. (1)

By initial condition i(0) = 
E

R1

\ i(t) =
E

R1
e-t/R1C

VC(t) =
1

0 1 0

1

C
i t d t

E

R C
e d t

t

t R C

t

( ) /z z= -

=
E

R C1

 (- R1C) (e-t/RC - 1)

\ VC(t) = E(1 - e-t/RC)

3. (b) In the circuit (Fig. Set 1.8) shown, determine the voltage VAB to be

applied to the circuit if a current of 2.5 A is required to flow in the

capacitor. Determine also total power factor and total active and

reactive powers. Draw the phasor diagram.

2W j3W
A B

j2W4W

1W –j5W

2.5A

IT c d

I ¢

Fig. Set 1.8

Solution: Vcd = 2.5 (1 - j5) = I¢(4 + j2)

(Assuming “I” is the current through ‘4 + j2’ W)

\ I ¢ =
2 5 1 5

4 2

. ( )-
+

j

j
 = 2.85 Ð-105.25° = - 0.75 - 2.75j

\ IT = 2.5 - 0.75 - 2.75j (Q IT = 2.5 + I ¢ )

= 1.75 - 2.75j = 3.26 Ð-57.53°

\ VAB = IT (2 + j 3) + 2.5(1 - j5)

= (1.75 - 2.75j ) (2 + j 3) + 2.5(1 - j5)

= 14.25 - 12.75j = 19.12 Ð-41.82°

ZAB =
V

I

AB

T

=
Ð - °
Ð - °

1912 4182

326 57 53

. .

. .
 = 5.865 Ð15.71°

q = 15.71°

i t( )

tO

E
R1

Fig. Set 1.7



Appendix F F.9

Total power factor = cos q = cos 15.71° = 0.962

Total active power = VAB IT cos q
(Parg )

= 19.12 ´ 3.26 ´ 0.962 = 59.96 W

Total reactive power = VAB IT sin q
(Po)

= 19.12 ´ 3.26 ´ sin 15.71° = 16.87 VAR

Apparent power = VAB IT (Po) = 19.12 ´ 3.26 = 62.3312 VA

Pr
Pa

Pavg
q = 15.71°

Fig. Set 1.9

4. (a) Obtain the response of R-L-C series circuit for impulse excitation.

Use Laplace transform method

Solution:

R C
L

i t( )

V t t( ) = ( )d

Fig. Set 1.10

Apply KVL to the R-L-C series circuit

d (t) = i(t) R + L 
di t

d t

( )
  +

1

C z i(t) dt

Apply Laplace transform

L {d (t)} = L i t R L
d i t

d t C
i t d t

t

( )
( )

( )+ +
R
S
|

T|

U
V
|

W|
z1

0

1 = I (S) R + L [SI(S) - I (0)] + 
–1 ( ) (0 )é ùé ù -ê úê úë ûë û

I S I

C S S

1 = I (S) R LS
CS

+ +L
NM

O
QP

1
[Q Initial conditions are zero]
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I (S) =
1

1
R LS

CS
+ +

I (S) =
1

12L

S
S S

R

L LC
+ +L

NM
O
QP

I (S) =
S

L S S
R

L LC

2 1
+ +L

NM
O
QP

(1)

Applying partial fraction

 
( / )S L

S S
R

L LC

2 1
+ +

 = 
1

1

1

2 2

12
2 2L

S

S
R

L
S

LC

L

S

S
R

L

R

L LC
+ +

L

N

M
M

O

Q

P
P

=

+F
HG

I
KJ

- F
HG

I
KJ

-

L

N

M
M
M

O

Q

P
P
P

=
1 2 2

2 2

1
2 2L

S
R

L

R

L

S
R

L

R

L LC

+ -

+F
HG

I
KJ

- F
HG

I
KJ

-
F

H
G

I

K
J

L

N

M
M
M
M

O

Q

P
P
P
P

=
1 2

2 2

1
2 2L

S
R

L

S
R

L

R

L LC

+

+F
HG

I
KJ

- F
HG

I
KJ

-
L

N
M

O

Q
P

L

N

M
M
M
M

-

+F
HG

I
KJ

- F
H

I
K -

L

N
M

O

Q
P

O

Q

P
P
P

R

L
S

R

L

R

L LC

2

1

2 2

1
2 2

Let K1 = -
R

L2
 and K2 = 

R

L LC2

1
2F

H
I
K -

But L 
2 2( )

S k

S k w

+æ ö
ç ÷+ +è ø

 = e-kt cos w t and L 
q

qS 2 2+
F
HG

I
KJ

 = sin w t]

= 21/ 21

2 2 2 2
1 2 1 2

.1

( ) ( )

é ù-
+ê ú

- - - -ë û

kK kS K

L S k K S k K

If 

2
1

2

R

L LC

æ ö >ç ÷è ø , k2 > 0
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Applying inverse Laplace transform of (1)

i(t) = 1 11
2 2

2

1
cosh sinhk t k tk

e k t e k t
L k

é ù-ê ú
ë û

If 
R

L LC2

1
2F

H
I
K < , k2 imaginary k 2

2 ® - k 2
2

i(t) =
1

L
 [ek1t cos k2t + 

k

k

1

2

 ek1t sin k2t]

If 
R

L2

2
F
H

I
K  =

1

LC
, k2 = 0

i(t) =
1

L
 [ek1t + k1 ek1t t] = 1k

L
 ek1t (1 + k1t)

4. (b) Obtain the S domain equivalent for the following network elements.

Solution:

Fig. Set 1.11

(i) V(t) = L 
d i t

dt

( )
(1)

i(t) =
1

L z V(t) dt (2)

V(S) = L[SI(S) - I(0-)] Applying Laplace Transform to (1)

I(S) =
1

SL
 V(S) + 

–(0 )i

S
 Applying Laplace Transform to (2)
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V S( )

I S( ) i0
S

V S( )

I S( )

SL

SL

Li(0 )–

‹ ( )V S

‹ ( )I S

–+

Equivalent circuit

Fig. Set 1.12

(ii) We have

i(t) = C
d V t

dt

( )

Applying Laplace Transform

L{i(t)} = C 
d V t

dt

( )R
S
T

U
V
W

I(S) = C [SV(S) - V(0)] (1)

dV(t) =
1

C z i(t) dt

Integrating

V(t) =
1

C z i(t) dt

Apply laplace transform

L{V(t)} = { }
1

( )L i t dt
C

V(S) =
1

Cs
 I(S) + 

( )V o

S
(2)

For Eq. (2) circuit is  

S

V S( )

I S( )

I CS/

V(0)

+ –

Fig. Set 1.13
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For Eq. (1) circuit is  

V S( )

I S( ) CV(0 )+

I CS/

Fig. Set 1.14

4. (c) Define RMS Value, Average Value, form factor of a periodic quantity.

Solution: Average Value

For any alternating quantity f (t) with time period ‘T’ average value

favg is given by

favg =
1

0
T

T

z  f (t) dt

Waveforms with half-wave symmetry i.e.,

f (t) =- f t
T

+F
H

I
K2

 have zero average values. For these waveforms

favg is computed over the positive half of the period which is called as

half-cycle average.

Average value is that value of direct current which gives same

amount of the charge to the network in same amount of time as given

by the alternating current to the same electrical network.

RMS Value

For any alternating quantity f (t) with time period ‘T’, r.m.s. value

fr.m.s is given by,

fr.m.s =
1 2

0
T

f t dt

T

( )z
If f(t) = a0 + (a1 cos w t + a2 cos 2w t ...)

+ (b1 sin w t + b2 sin 2w t ...)

then fr.m.s. = a a a b b0
2

1
2

2
2

1
2

2
2

1 2
1

2

1

2
+ + + +L

NM
O
QP

L Lc h c h
/

R.M.S. value is equal to that direct current which when allowed to

flow through a given circuit for a given time, produces same amount

of heat as produced by the alternating current when allowed to flow

through the same circuit for the same time.



F.14 Network Analysis

From Factor [Kf]

The ratio of r.m.s value of an alternating quantity to its average value

is called form factor.

Kf =
f

f

r.m.s

avg

=
z

z

1

1

2

0

0

T
t t dt

T
f t dt

T

T

( )

( )

5. (a) Draw the dual network for the following circuit. Shown in Fig. Set 1.15.

Solution:

V

R1 L1 C2

R3

L2

R2
+

–

C1

Fig. Set 1.15

+

–

R1
L1 C2

R2 C1

R3

L2

V
1 2 3

0

Fig. Set 1.16

G2

I

L1

G1 C2L2

1 2 3

C1 G3

0

Fig. Set 1.17
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5. (b) Explain, what are the dual quantities?

Solution:

Refer to Set No. 2 Questions 1 (c)

5. (c) Draw the phasor diagram of R, L, C elements connected parallel

across a sinusoidal voltage source?

Solution

CR LV

I

IL ICIR

1

Fig. Set 1.18

Let Z be the equivalent impedance

Apply KCL at Node (1)

I  = I I IR L C+ +

V

Z
 =

V

R

V

jx

V

jxL C

+ +
-

1

Z
 =

1 1 1

R jx jxL C

+ -

1

Z
 =

1 1 1
2 2

R x xL C

F
H

I
K + -F

HG
I
KJ

|Y| =
1

Z
 = 

1 1 1
2 2

R x xL C

F
H

I
K + -F

HG
I
KJ

The term Z is known as complex impedance the term Y is known as

complex admittance of the parallel RLC circuit and we have three cases.
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Case (i)

if xC > xL (low freq.) or IL > IC

Current triangle

IL

I – IL C

IC

IR
V

I
I IL C–

q

IR

Fig. Set 1.19 Fig. Set 1.20

q = tan-1 R
x xL C

1 1
-F

HG
I
KJ

F
HG

I
KJ

Impendence triangle

Fig. Set 1.21

Case (ii)

if xL > xC (high freq.) of IC > IL

Impedence triangle

IL

I – IC L

IC

IR
V

Fig. Set 1.22 Fig. Set 1.23

q = tan-1 R
x xL C

1 1
-F

HG
I
KJ

F
HG

I
KJ
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Case (iii)

if xL = xC

then |Z | = |R|

The circuit is Purely Real circuit i.e. it contains only Resistive element.

V
IR

6. (a) Write the standard Y-parameter equations. Obtain the Y-parameters

in terms of Z-parameters.

Solution: Y-parameter

Y-parameters are also known as short circuit parameters.

The standard Y-parameter equations are

I1 = Y11 V1 + Y12 V2 (1)

I2 = Y21 V1 + Y22 V2 (2)

Multiply equation (1) with Y21 and equation (2) with Y11

Y21 I1 = Y11 Y21 V1 + Y21 Y12 V2

Y11 I2 = Y11 Y21 V1 + Y11 Y22 V2

Subtracting we get

(Y21 Y12 - Y11 Y22)V2 = Y21 I1 - Y11 I2 - DYV2 = Y21 I1 - Y11 I2

V2 =
Y

Y

21

- D
 I1 + 

Y

Y

11

D
 I2

We know

Z21 =
V

I
I

2

1 02 =

 = 
- Y

Y

21

D
[where DY = Y11Y22 - Y21Y12]

Z22 =
V

I

Y

Y
I

2

1 0

11

1 =

=
D

Multiply equation (1) with Y22 and equation (2) with Y12.

Y22 I1 = Y22 Y11 V1 + Y22 Y12 V2

Y12 I2 = Y12 Y21 V1 + Y12 Y22 V2

Subtracting

V1 (Y11 Y22 - Y12 Y21) = Y22 I1 - Y12 I2

V1 =
Y

Y

22

D
 I1 - 

Y

Y

12

D
 I2

and

We know

Z11 =
V

I

Y

Y
I

1

2 0

22

2 =

=
D
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Z12 =
V

I

Y

Y
I

1

2 0

12

1 =

=
-
D

\ Z-parameters interms of Y-parameters

Z11 =
Y

Y

22

D
Z12 =

- Y

Y

12

D

Z21 =
-Y

Y

21

D
Z22 =

Y

Y

11

D
Similarly we can get Y-parameters in terms of Z.

Y11 =
Z

Z

22

D
Y12 =

- Z

Z

12

D

Y21 =
- Z

Z

21

D
Y22 =

Z

Z

11

D
and Z = Y-1 (or) Y = Z -1.

6. (b) Obtain Z-parameters for the circuit shown in Figure 7 and there by

obtain ABCD parameters.

1I1

V1

+

–

V2

I2
+

–

1 1

Fig. Set 1.24

Solution:

1I1

1

1

2

V1 V21

I2

0

Fig. Set 1.25

Apply Nodal Analysis

At Node (1)

I1 =
V V V1 1 2

1 1
+

+

I1 = 2V1 - V2 (1)
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At Node (2)

I2 =
V V V2 2 1

1 1
+

-

I2 = 2V2 - V1

We get Y =
2 1

1 2

-
-

L

N
M

O

Q
P

Z = Y -1 = 
1

3

2 1

1 2

L

N
M

O

Q
P

We have

A =
Z

Z

11

21

2 3

13
=

/

/
 = 2

B =
D Z

Z 21

1 3

1 3
=

/

/
 = 1

C =
1 1

1 321Z
=

/
 = 3

D =
Z

Z

22

21

2 3

1 3
=

/

/
 = 2

\ A = 2 B = 1 C = 3 D = 2

7. (a) Figure Set 1.26 shows a resistive T network and a resistive P network

connected in parallel. Find the overall Y parameters of the

combination.

1WI1

V1

+

–

V2

I2
+

–

1W 1W

Fig. Set 1.26

1

11

2

21

2W

2W

0.5 .1W

1W 0.5W

Fig. Set 1.27
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Solution: For ‘T’ network

Fig. Set 1.28

I1T = Y11T V1T + Y12T V2T \ Y11T = 
I

V

T

T V T

1

1 02 =

 = 0.854

I2T = Y21T V1T + Y22T V2T.

+

–

0.5W 1W I2TI1T

V1T

+

–

V2T
2W

Fig. Set 1.29

V1T =
I T1

2
 + 2(I1T + I2T) Þ  V1T = 

5

2
 I1T + 2I2T

V2T = I2T + 2(I1T + I2T) Þ V2T = 2I1T + 3I2T

Z-parameters =  

5
2

2

32

æ ö
ç ÷
ç ÷è ø

Y-parameters = (Z)-1

YT =
1

35

3 2

2 5 2. /

-
-

F
HG

I
KJ

 = 
0857 0 571

0571 0 714

. .

. .

-
-

F
HG

I
KJ

For p network

Fig. Set 1.30
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I1p =
V V V1 1 2

1 2

p p p+
-

I2p =
V V V2 2 1

05 2

p p p

.
+

-

Þ I1p =
3

2 2

1 2V Vp p-

I2p =
V V2 1

2 2

p p-

YT1 =

3 1

2 2

1 5

2 2

æ ö-ç ÷
ç ÷
ç ÷-è ø

 = 
1.5 0.5

0.5 2.5

-æ ö
ç ÷-è ø

The overall Y-parameters of the combination is

YOV = YT + Yp = 

3 3 2 1

3.5 2 3.5 2

2 1 5 5

3.5 2 7 2

-æ ö+ -ç ÷
ç ÷-ç ÷- +è ø

\ Y0V =
Y Y

Y Y

11 12

21 22

2 357 1071

1071 3214

F
HG

I
KJ

=
-

-
F
HG

I
KJ

. .

. .

7. (b) Find the characteristic impedance of a symmetric T network.

Solution: T-Network

Consider a symmetrical T-network as shown in Fig. 1.

Fig. Set 1.31

If the image impedances at port 1-1¢ and port 2-2¢ are equal to each other,

the image impedance is then called the characteristic or the iterative

impedance, Z0. Thus, if the network in figure is terminated in Z0, its input

impedance will be Z0. The value of input impedance for T-network when it

is terminated in Z0 is given by
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Zin =
Z

Z
Z

Z

Z
Z Z

1
2

1
0

1
2 0

2

2

2

+
+L

NM
O
QP

+ +

Also Zin = Z0

\ Z0 =
Z

Z
Z

Z

Z Z Z

1
2

1
0

1 2 02

2
2

2 2
+

+L
NM

O
QP

+ +

Z0 =
Z Z Z Z Z

Z Z Z

1 1 2 2 0

1 2 02

2

2 2
+

+
+ +

( )

Z0 =
Z Z Z Z Z Z Z Z Z

Z Z Z

1
2

1 2 1 0 1 2 0 2

1 2 0

2 2 2 4

2 2 2

+ + + +
+ +( )

4Z 0
2 = Z1

2 + 4Z1Z2

Z0
2 =

Z1
2

4
 + Z1Z2

\ Z0T =
Z

Z Z1
2

1 2
4

+

\ The characteristic impedance of a symmetrical T-section is

Z0T  =
Z

Z Z1
2

1 2
4

+ .

8. (a) What is constant k-filter? What is the difference between constant

k-filter and m-derived filter? What are the limitations of constant

k-filter?

Solution: Refer to Text Book (Chapter 6)

8. (b) Find the circuit parameters of a constant k-band pass filter having a

pass band from 500 Hz and a characteristic resistance of 100 W.

Solution: k = 100 W, f1 = 500 Hz, F2 = ? (Not given)

Assume f2 = 10000 Hz

for band pass filter.

L1 =
k

f fp ( )2 1-
 = 

100

9500p ( )
 = 3.35 mH

C1 =
f f

k f f

2 1

1 24

-
p

 = 
9500

4 100 500 10000´ ´ ´ ´p
 = 1.512 mF

L2 = C1 k2 = 15.12 mH

C2 =
L

k

1

2
 = 0.335 mF
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Each of the two series erms of the constant h, T-section filter is given

by

L1

2
 =

3 35

2

.
 = 1.675 mH

2C1 = 2 ´ 1.512 mF = 3.024 mF

And the shunt erm elements of the network are given by

C2 = 0.335 mF and L2 = 15.12 mH

Constant-k T-section bendpass filter

Fig. Set 1.32

Constant-k p-section bandpass filter

C2

2
 = 0.1675 mF

2L2 = 30.24 mH

C2

0.1675 Fm

30.24 mH2L2
2

C2
2

1.512 Fm 3.35 Hm

2L2

30.24 mH

C1 L1

0.1675 Fm

Fig. Set 1.33
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SET 2

1. (a) For the given network (Fig. Set 2.1), draw

the oriented graph and choose one possible

tree and construct the basic cutest schedule.

Write down the network Equations from the

above matrix.

Solution:

Fig. Set 2.2

The oriented graph for the given network can be as shown in Fig. Set 2.3

7

6

1

C1 C2

C3

4

3

c

b a

5 4

2

(a) (b)

Fig. Set 2.3

Fig. Set 2.1
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C1: i1 - i5 + i6 + i7 = 0

C2: i2 - i4 + i6 + i7 = 0

C3: i3 + i4 - i5 = 0

branches

cutsetsf

a

b

c

−

−

−

−

L

N

M
M
M

O

Q

P
P
P

1 2 3 4 5 6 7

7 6 2 4

7 6 1 4

3 4 5

0 1 0 1 0 1 1

1 0 0 0 1 1 1

0 0 1 1 1 0 0

[ , , , ]

[ , , , ]

[ , , ]

1. (b) For the network shown (Fig. Set 2.4), determine the node Voltages V1

and V2. Determine the power dissipated in each resistor.

Fig. Set 2.4

Solution:

Fig. Set 2.5

Applying KCL

5 =
V V V2 2 1

1 2
+

-
 Þ V2 1

1

2 2

2+
F
H

I
K -

V
 = 5

3V2 - V1 = 10 (1)

I =
V V2 1

2

-
(2)

V V V1 1 2

3 2
+

-
 = 10 + 2I = 

-V2

2
 = 10 + 2 

V V2 1

2

-F
H

I
K

Þ V1 
1

2

1

3
+

F
H

I
K  = 10 + V2 - V1

\ 11V1 - 9V2 = 60 (3)
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Solving (1) and (3),

V1 = 11.25 volts

and V2 = 7.083 volts

Power dissipated in 1 W resistor = VI = I2R = 
V

R

V
2 2

1
=  = (7.083)2

  = 50.17 watts

Power dissipated in 2 W resistor = 
V

R

V V2
2 1

2

2
=

-( )
 = 8.682 watts

Power dissipated in 3 W resistor = 
V1

2 2

3

1125

3
=

( . )
 = 42.19 watts

1. (c) Explain cleanly what you understand by “Duality” and “Dual

network”. Illustrate the procedure for drawing the dual of a given

network.

Solution: Two circuits are duals, if the mesh equations that characterise one

of them have the same mathematical form as the nodal equations
that characterise other.

Then they are said to duals (OH) satisfy duality of property i.e., if

each mesh equation of one circuit is numerically identical with the

corresponding nodal equation of other.

Networks that satisfy duality property are called “Dual networks.”

Dual pairs:

Resistance (R) ® Conductance (G)

Inductance (L) ® Capacitance (C)

Voltage (V) ® Current (I)

Voltage Source ® Current source

Node ® Mesh

Series path ® Parallel path

Open circuit ® Short ckt

Thevenin ® Norton

Steps to construct a dual circuit:

1. Place a node at the centre of each mesh of the given ckt. Place the reference

node of the dual ckt outside the given ckt.

2. Draw dotted lines between the nodes such that each line crosses a network

element by its dual.

3. A voltage source that produces a positive (clockwise) mesh current has it

dual or current source whose reference direction is from ground to non-

reference node.
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\ Two circuits are said to be dual if they are described by the same

characterising equations with dual quantities interchanged.

2. (a) Explain the Dot Convention for mutually coupled coils.

Solution: Dot Convention

Mutual inductance is the ability of one inductor to induce voltage across

the neighbouring inductor measured in Henrys (H).

The mutually induced emf 
Mdi

dt
 may be positive (or) negative but M is

always positive.

We apply dot convention to determine the polarity of the induced emf.

Place a dot at one end of coil (1) Assume that the current enters at the

dotted end of the coil. Determine the direction of flux produced due to this

current. Then place another dot at one of the ends of coil (2) such that the

current entering at that dotted end in coil (2) produce flux in the same

direction. Consider two coils (1) and (2) as shown.

1. Place a dot at one end of coil (1) and

assume that the current enters at that dotted

end in coil (1).

2. Place another dot at one of the ends of coil

(2) such that the current entering at that end

in coil (2) establishes magnetic flux in the

same direction.

In order that the flux produced by I2

flowing in coil (2) produce flux in the same

upward direction it should enter at lower

end of coil (2). Hence place a dot at that

end of coil (2).

2. (b) Derive the Expression for coefficient coupling between pair of

magnetically coupled coils.

Solution: Coefficient of Coupling: It is a measure of the flux linkages

between the two coils.

The coefficient of coupling is defined as the fraction of the total flux

produced by one coil linking with another and it is denoted by ‘k’.

Let f1 ® flux produced by coil-1

f2 ® flux produced by coil-2

f12 ® flux produced by coil-1 linking with coil-2

f21 ® flux produced by coil-2 linking with coil-1

\ Coefficient of coupling k = 
f

f

f

f

12

1

21

2

=

k value lies between 0 and 1.

Fig. Set 2.6
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We know that M12 =
M

i

2 12

1

f
, M21 = 

M

i

1 21

2

f

M12 ´ M21 =
M M

i i

2 12 1 21

1 2

f f´

M2 =
M k

i

M k

i

2 1

1

1 2

2

´
´

´f f

M
2
 = k

2
 

M

i

M

i

1 1

1

2 2

2

f f
´  = k

2
 L1 L2

Þ k =
M

L L1 2

2. (c) Write the Loop Equations for the Coupled circuit shown in Fig. Set 2.7.

R1

M12

M13

M23

L1
L2

R3

L3

C1
i t1( ) R2

i t2( ) i t3( )

V t1( )

+

Fig. Set 2.7

Solution:

R1

M12

M13

M23

L1

R2

L3L2

R3 C1i t1( )

i f1( )Æ i1

i f2( )Æ i2

i f3( )Æ i3

i t2( )
i t3( )

V t1( )
+

–
3

Fig. Set 2.8

Loop Equations: (By Dot Rule Convention)

(1) Þ V1(t) = R1 i1(t) + L1 
d i t

d t

d i

d t

1 ( )
-

F
HG

I
KJ

 + M12

d i t

d t

d i t

d t
M

di t

d t

2 3
13

3( ) ( ) ( )
- -

F
HG

I
KJ

+ R2 (i1(t) – i2(t) = 0
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Þ V1(t) = i1(t) (R1 + R2) + L1 
d i t

d t

1( )
 - i2(t) R2 + M12 

d i t

d t

2 ( )
 –

 M13 
d i t

d t

3( )
 - L1 

d i t

d t

2 ( )
 - M12 

d i t

d t

3( )

(2) Þ R2 (i2(t) - i1(t)) + L1 
d i t

d t

d i t

d t

2 1( ) ( )
-

F
HG

I
KJ

 - M12 
d i t

d t

d i

d t

2 3( )
-

F
HG

I
KJ

 +

M13 
d i

d t

3  + L2 
d i

d t

d i

d t

2 3-
F
HG

I
KJ

 - M12 
d i

d t

d i

d t

2 1-
F
HG

I
KJ

 - M23

d i

d t

3  +

R3 (i2 - i3) = 0

(3) Þ R3 (i3 - i2) + L2 
d i

d t

d i

d t

3 2-
F
HG

I
KJ

 - M12 
d i

d t

d i

d t

1 2-
F
HG

I
KJ

 + M23 
d i

d t

3

+ L3 
d i

d t

3  - M13 
d i

d t

d i

d t

1 2-
F
HG

I
KJ

 + M23 
d i

d t

d i

d t C

3 2

1

1
-

F
HG

I
KJ
+ z  i3 dt = 0.

3. (a) What are initial conditions? Why do you need them?

Solution: Initial Conditions:

Initial conditions are those conditions that exist in the circuit immedi-

ately after switching operation.

At t = 0, one-or more switches are operated which disturb the

equilibrium of the circuit. We assume that the switch is operated in zero

time. To distinguish time immediately before and immediately after the

operation of the switch we use t = 0- and t = 0+. The initial conditions will

depend on the post history of the network before time instant t = 0-. The

initial conditions are given in terms of capacitor voltage and inductor

current.

Necessity: After switching, t = 0+, the new voltages and currents may

appear in the network, as the result of initial capacitor voltages and inductor

currents or because of the sources. The elevation of currents, voltages and

their derivative at t = 0+ constitutes the evaluation of initial conditions.

3. (b) The switch is closed at t = 0. Find the initial conditions at t = 0+ for i1,

i2, VC, di1/dt, di2/dt. (Fig. Set 2.9)

Fig. Set 2.10
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Solution: Capacitor doesn’t allow sudden changes in voltage.

t = 0

S

25 V

2 Fm

2 H20 W

10 WVC

i1 i2

Fig. Set 2.11

Inductor doesn’t allow sudden changes in current.

Since no sources are present initially (at t = 0-) VC = 0 V and i2 = 0A

\ At t = 0
+
, ‘C’ ® Shoot circuit

‘L’ ® Open circuit

Fig. Set 2.12

At t = 0+, 20i1 = 25 and i2 |t = 0+ = 0A

Þ i
t1 0= +  = 1.25 A

VC t= +0
 = 0 But VC = 

1

0
C

t

z i1 dt

Þ
dV

dt

C  =
i

C

1

Applying KVL,

25 = VC + 20iR

Differentiating

0 =
dV

d t

C  + 20 
di

d t

R

Þ 20 
di

d t

R +
i

C

1 = 0

At t = 0+, 20 
di

d t

R

t=
+

0

+
= +

i

C t

1

0

= 0 Þ 
di

d t

R  = -
´

125

2 20

.

m
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\
di

d t

R

t=
+0

 = - 31,250 A/S

Also, 10i2 + 2 
di

dt

2  = 25 Þ 10i2|t = 0+ + 2 2

0

di

dt t=
+

 = 23

Þ
di

dt t

2

0= +

 = 12.5 A/S (Since i2|t = 0+ = 0)

\
di

dt t

1

0= +

 =
di

dt

di t

dt

R

t=
+

+
0

2 ( )
 = - 31237.5 A/S

3. (c) A current of 5A flows through a non-inductive resistance in series with a

chocking coil when supplied at 250v, 50 Hz. If the voltage across the non

inductive resistance is 125 V and that across that coil 200 V, calculate the

Impedance, Reactance and Resistance of the coil, power absorbed by the

coil and the total power draw the phasor diagram.

Solution:

Given |VR| = 125 V

|VL| = 200 V

|I | = 5 A

|VR| = |I |R = 125 V Þ R = 
125

5
 = 25 W (Q I = 5 A)

|VL| = |I |XL = |I |( jwL) \ |VL| = 200 V

Þ |XL| = 40 Þ 5(2p ´ 50)L = 200

Þ L =
200

500p
 = 127.3 mH

Z = 25 + j40 = 47.16 57.99°

Power absorbed by coil =
1

2
 LI2

=
1

2
 ´ 0.1273 ´ 25

= 1.59 watts

True power Pav = VI cos q = 250 ´
5 ´ cos 57.99°

= 662.58 watts

Fig. Set 2.13

Phasor diagram:

Fig. Set 2.14
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Reactive power, Pr = I2XL = 25 ´ 40 = 1000 VAR

Apparent power, Pa = I2Z = 25 ´ 47.16 = 1179 VA

4. (a) Determine VC(t) and iL(t) in the circuit shown in the

Fig. Set 2.15. Assume Zero initial conditions. Use Laplace Transform

method.

Fig. Set 2.15

Solution: (a) Applying Nodal analysis,

2u(t) =
V

R
C

dV

dt
iC C
L+ +

But iL =
V

j

C

2 05+ .

Applying Laplace Transform on both sides,

2

5
 =

V S

R SC
SV S V

V S

S

C
C C

C( )
( ) ( )

( )

.
+ − +

+

1
0

2 0 5
a f

Assuming zero initial conditions, VC(0) = 0

Þ VC(S) 1
1

2 0 5
+ +

+

F
HG

I
KJ

S

S S( . )
 =

2

5
.

Þ VC(S) 2
1

2 5 2
+

+

F
HG

I
KJ/

 =
2

5

Þ VC(S) 1
1

4 5
+

+

F
HG

I
KJ

 =
1

5
Þ VC(S) = 

S

S S

+

+

4

5( )

\ iL(S) =
V S

S S S

C ( )

. ( )2 05

2

5+
=

+

Applying inverse Laplace Transform for

VC (S) =
S

S S S

+

+
= +

+

4

5

4 5

5

15

5( )

/ /

\ VC (t) =
4

5
 u(t) + 

1

5
 e-5t u(t)
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Þ VC (t) =
1

5
  (4 + e-5t) u(t)

Similarly  ie(S ) =
2

5

2 5

5

2 5

5S S S( )

/ /

+
- -

+

Applying inverse Laplace Transform

iL(t) =
2

5
 u(t) - 

2

5
 e-5t u(t)

4. (b) Obtain the S-Domain Equivalent for the following elements

i. Resistance R ii. Inductance with initial current-I0

iii. Capacitors

iv. Capacitors with initial Voltage V0 give the relevant equations.

Solution: S-Domain Equivalent for the elements

(i) Resistor, R

Fig. Set 2.16

V(S) = I (S)R

The ratio of V(S) to I(S) is called transform impedance, Z (S).

Z(S ) =
V S

I S

( )

( )
 = R

\ S-Domain equivalent is also = ‘R’.

(ii)

Fig. Set 2.17

Vi(t) = L
d i

d t
(1)

i(t) =
1

L z VL(t) dt (2)
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Applying Laplace Transform to (1) and (2)

VL(S) = L[SI(S) - I (0-)] (1¢)

I(S) =
1

SL
 V(S) + 

i

S

( )0
+

(2¢)

Fig. Set 2.18 Fig. Set 2.19

(iii)

Fig. Set 2.20

VC(t) =
1

C z i(t) dt (1)

i(t) = C 
dV

dt

C (2)

Apply Laplace Transform to (1)

VC (S) =
1

SC
 I (S) + 

V

S

( )0
(V(0) = 0)

Assuming initial conditions = 0

VC (S) =
1

SC
 I (S)

\ Z(S) =
1

SC

S-domain equivalent of capacitor with no initial voltage.

(iv) Capacitor with initial voltage from (1) and (2) of the above problem.

VC(S) =
1

CS

 I (S) + 
V

S

( )0
(1¢)

I(S) = C[SVC (S) - V(0-)] (2¢)

Fig. Set 2.21
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Fig. Set 2.22

5. (a) Verify Tellegen’s theorem in the network shown in the Fig. Set 2.23.

Fig. Set 2.23

Solution: Tellegens theorem states that in any arbitrary lumped network,

the algebraic sum of the powers in all the branches at any instant

is zero and all the branch currents and voltages must satisfy

Kirchoff’s law.

Verifying Tellegens theorem for the above ckt.

Fig. Set 2.24

There are 5 elements in the above circuit.

Applying mesh equations.

4i1 + 2i2 = 20

Þ 2i1 + i2 = 10 (1)

2i1 + 4i2 = 10

i1 + 2i2 = 5 (2)



F.36 Network Analysis

Solving (1) and (2)

i1 = 5, i2 = 0

k =

å
1

5

Vk Ik for this circuit is

- 100 + 50 + 50 + (0)2 (2) - (0) (10) = 0

Hence, verified.

5. (b) Verify reciprocity theorem for the network shown in Fig. Set 2.25.

Fig. Set 2.25

Solution: Reciprocity theorem states that in any passive linear bilateral

single source network interchanging the positions of ideal voltage

source and an ideal ammeter does not after the ammeter reading

(current) and interchanging then positions of current source and

ideal voltmeter does not after voltmeter reading (voltage).

Verifying theorem for the above ckt

Fig. Set 2.26

I =
20

10 5

4

3+
=   \ I2 = 

2

3

(Current divider rule)

Interchanging the voltage source.

I =
20

15

4

3
=

Þ I1 =
2

3
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10 5

5

10

20 V

I1

10 10

10
20 V

I1

I

Fig. Set 2.27 Fig. Set 2.28

\ The ratio of excitation to response when only one excitation is applied

is constant when positions of excitation and response are interchanged.

Hence reciprocity theorem is verified.

6. (a) A typical two-port network is characterised by the equation

2V1 + 4I2 = I1 and V2 + 6V1 = 8I2. Determine the values of

i. y11 ii. z21 and iii. h21

Solution: A typical two-port network is characterised by the equation

2V1 + 4I2 = I1 (1) and

V2 + 6V1 = 8I2 (2)

6V1 + 12I2 = 3I1 (1) ´ 3

6V1 + V2 = 8I2 (2)

12I2 - V2 = 3I1 - 8I2

3I1 - 20I2 = - V2 (3)

V2 = - 3I1 + 20I2

V1 =
I1

2
 - 2I2 (from (2) and (3))

\
Z Z

Z Z

11 12

21 22

F
HG

I
KJ

 = 

1

2
2

3 20

-

-

F

H
GG

I

K
JJ

(i) Y11 =
Z

Z

22

D
 (DZ = 10 - 6 = 4) = 

-20

4
 = 5

(ii) Z21 = - 3

(iii) h21 =
-

=
Z

Z

21

22

3

20
.

6. (b) Obtain the input and output impedances of an amplifier having

h11 = 2W; h12 = 1W; h21 = 5 and h22 = 2W, if it is driven by a source

having an internal resistance of 4W and is terminated through a load

which draws maximum power from the amplifier.
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Solution:

Fig. Set 2.29

Given h11 = 2 W, h12 = 1W, h21 = 5 W, h22 = 2 W

(hi) (hr) (hf) (ho)

RS = 4 W

Load draws maximum power when

ZL = ZTH. (More power Transform Theorem)

To find ZTH (Remove ZL) Output admittance

Z
V

I Y
Y

I

V
V and RL

o
o S L=

-
=
-

= = = ¥2

2

2

2

1
. with

I2 = hf I1 + h0 V2 = t

Þ y0 = hf 
I

V

1

2

+ h0 (1)

From Fig. RS I1 + hi I1 + hr V2 = 0 (or) 
I

V

1

2

 = – 
h

h R

r

i S+
(2)

(2) in (1) Þ Y0 = h0 
h h

h R

f r

i S+

\ Y0 = 2 - 
5

2 4+
 = 2

5

6

7

6
- =  = 1.167 W

ZTH = 0.857 W

ZL YL = ZTH = 0.857 W

Zi =
V

I

1

1

 V1 = hi I1 + hr V2
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Hence

Zi =
hi I h V

I

r1 2

1

+
 = hi + hr 

V

I

2

1

Substituting,

V2 = - I2 ZL = AI I1 ZL

AI =
I

I

h

h Z

f

L

2

1 01
=

-

+
\ = + -

F
HG

I
KJ

I h I h V A
I

I
f I

L
2 1 0 2

1

and

Zi = hi + hr AI ZL = hi - 
h h

Y h

f r

L + 0

= 2 - 
5

1167 2. +
 = 0.421 W

\ O/P impedance =
1

0Y
 ZL = 

0 857

2

.
 = 0.418 W

I/P impedance = 0.421 W

7. (a) Draw the circuit of an asymmetrical L-attenuator working between

tow equal impedances with a given loss. Derive the design equations

for the circuit elements in terms of

i. the iterative resistance Ri, and

ii. the current ratio N.

Solution: L-Type Attenuator:

An L-type asymmetrical attenuator is connected between a source

with source resistance RS = Ri and load resistance RL = Ri

(P-707 in Network Theory) filters and Attenuators.

Simply replace R0 ® by ‘Ri’ (iterative resistance).

7. (b) Design an asymmetrical L-attenuator to operate into a resistance of

300 W and to provide attenuation of 30 DB.

Solution: N = Antilog 
dB

20
 = Antilog 

30

20
 = 31.62

The series erm of the attenuator

R1 = Ri 
N

N

-F
H

I
K

1
 = 300 

3162 1

3162

.

.

-F
H

I
K  = 290.51 W

The shunt erm of the attenuator

R2 =
R

N

i

-
=

-1

300

3162 1.
 = 9.79 W
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The desired configuration of L-attenuator is

Fig. Set 2.30

8. (a) Explain the variation of Attenuation, phase shift and characteristic

impedance of m derived high pass filter?

Solution: (a) In P-689 in Network Theory (Filters and Attenuators).

8. (b) Draw the circuit diagram for T and P section of m-derived high pass

filter.

Solution: With both T and P sections shown in P-688 in Network Theory.



Network Analysis, May/June 2006

SET 3

1. (a) For the given network (Fig. Set 3.1) graph, Construct the Basic cutest

incidence matrix, tracking elements 1,6,8,3 as tree branches. Express

the link branch Voltage in terms of tree branch voltages.

B

C
A

E

1
2

3
4

5

6

8

D

Fig. Set 3.1

Solution:

1 2

8

6

5

7

3
4

C3

C2

C1

C4

Fig. Set 3.2

Cut set incidence matrix is

Q =

1 2 3 4 5 6 7 8

1 0 0 1 1 0 0 0

0 1 0 1 1 1 0 0

0 1 0 1 0 0 1 1

0 0 1 1 0 0 1 0

1

2

3

4

C

C

C

C

- -

- -

- -

- -

L

N

M
M
M
M

O

Q

P
P
P
P
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The link branch voltage in terms of tree branch voltages is given by

V

V

V

V

V

V

V

V

1

2

3

4

5

6

7

8

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

 =

1 0 0 0

0 1 1 0

0 0 0 1

1 1 1 1

1 1 0 0

0 1 0 0

0 0 1 1

0 0 1 0

1

2

3

4

− − − −

− −

− −

L

N

M
M
M
M
M
M
M
M
M
M
M

O

Q

P
P
P
P
P
P
P
P
P
P
P

L

N

M
M
M
M

O

Q

P
P
P
P

C

C

C

C

1. (b) Using source Transformation, reduce the network between A and B

into an equivalent voltage source. (Fig. Set 3.3)

Fig. Set 3.3

Solution: Given circuit

2W 2W

3W

3W
–

+
6V

B

A

4V
+

–

∫

2W 2W1A 2A

A

3W 1W2A 3A

B

Fig. Set 3.4
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1W

3W

B

A

∫

1W

3W
+

–

4

∫

3W

4

3

4

V

7W

4

15V

4

+

–

B
B

A
A

∫

3A

Fig. Set 3.5

1. (c) What is Duality? Explain the procedure for drawing the dual of given

network with an example.

Solution: Refer Duals and Duality; Section 3.16

2. (a) Explain the Dot Convention for mutually coupled coils.

Solution Refer Dot Convention; Section  9.14

2. (b) Derive the Expression for coefficient coupling between pair of

magnetically coupled coils.

Solution: Refer coefficient of coupling; Section  9.5

2. (c) Write the Loop Equations for the Coupled circuit shown in Fig. Set 3.6.

Fig. Set 3.6
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Solution Given circuit is

Fig. Set 3.7

The loop equations are

V1(t) = R1 i1(t) + L1 
d

d t
 [i1(t) - i2(t] - M12 

d

d t
 [i2(t) = i3(t)]

- M13 
d

d t
 [i3(t)] + R2[i1(t) - i2(t)] (1)

Loop 2

R2 [i2(t) - i1(t)] + L1 
di t

d t

di t

d t

i2 ( ) ( )
-

L

N
M

O

Q
P  - M12 

d

d t
 [i2(t) - i3(t)]

+ M13 
di t

d t

3( )
 + L2 

d i t i t

d t

[ ( ) ( )]2 3-
 - M12 

di t

d t

di t

d t

i2 ( ) ( )
-

L

N
M

O

Q
P

 - M23 
di t

d t

3( )
 + R3(i2 - i3) = 0

Loop 3

R3(i3 - i2) + L2 
d i i

d t

( )3 2-
 - M12 

d i i

d t

( )1 2-
 + M23 

d i

d t

3

 + L3 
d i

d t

3  - M13 
d

d t
 + M23 

d i i

d t

( )3 2-
 + 

1

1C z i3 dt = 0

3. (a) Explain clearly the significance of “Time Constant” in transient

analysis of R-L and R-C Circuits.

Solution: Refer 11.2, 11.3
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3. (b) In the following circuit (Fig. Set 3.8), when 220V A.C. is applied

across A and B, Current drawn is 20 Amps and power input is 3000w.

Find the value of Z and its parameters.

A B220 V

Z

5W j 10W

20 V

5W j 20W

Fig. Set 3.8

Solution:

A B220 V

Z

5W j 10W

20 A

5W j 20Wi1

i2

Fig. Set 3.9

i1 =
220

5 20+ j
 A

But i1 + i2 = 20 A

i2 = 20 - 
220

5 20+ j
(1)

Also, i2 =
220

5 10Z j+ +
(2)

From (1) and (2)

20 - 
220

5 20+ j
 =

220

5 20Z j+ +
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- +

+

120 400

5 20

j

j
 =

220

5 20+ +Z j

Z =
5700 3600

120 400

+

- +

j

j

Z = - 4.33 + j15.55

Z = 16.14 Ð105.56°

3. (c) Obtain the expression for resonant frequency for the circuit shown in

Fig. Set 3.10.

Rc

C
L

RL

Fig. Set 3.10

Solution: Refer Parallel Resonance 8.10 in Page 8.34.

4. (a) Determine VC (t) and iL(t) in the circuit shown in the Fig. Set 3.6.

Assume Zero initial conditions. Use Laplace Transform method.

i t t( ) = 2 ( )u

R = 1W

2W

0.5H

C = 1F

Fig. Set 3.11

Solution: Applying nodal analysis,

2u(t) =
V

R

C  + C 
dV

d t

C  + iL

But, iL =
V

j

C

2 05+ .
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Applying Laplace transform on both sides,

2

S
 =

V S

R SC

C ( )
+

1
 (SVC (S) - VC (0)) + 

V S

S

C ( )

.2 05+

Assuming zero initial conditions, VC(0) = 0

Þ VC(S) 1
1

2 05
+ +

+

L

N
M

O

Q
P

S

S S( . )
 =

2

S

Þ VC (S) 2
1

2
2

+

+

F

H
G
G

I

K
J
J

S
 =

2

S

Þ VC (S) =
S

S S

+

+

4

5( )

\ iL(S) =
V S

S S S

C ( )

( . ) ( )2 05

2

5+
=

+

Applying inverse Laplace transform for VC(S);

VC (S) =
S

S S S S

+

+
- +

+

4

5

4 5 15

5( )

( / ) ( / )

\ VC (t) =
4

5
 u(t) + 

1

5
 e-5t u(t)

Þ VC (t) =
1

5
 u(t) [4 + e-5t]

Similarly, iL(S) =
2

5

2 5 2 5

5S S S S( )

( / ) ( / )

( )+
= -

+

Applying inverse Laplace transform for iL(S);

iL(t) =
2

5
 u(t) [1 - e-5t]

4. (b) Obtain the S-Domain Equivalent for the following elements

i. Resistance R

ii. Inductance with initial current-I0

iii. Capacitors

iv. Capacitors with initial Voltage V0 give the relevant equations.

Solution Refer circuit element in S-Domain 13.1

5. (a) State and explain Nortion’s theorem?

Solution Refer Norton’s theorem 3.4
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5. (b) Using Thevenin’s theorem, find the current through 1 W resistor in

the circuit shown in Fig. Set 3.12.

3A

2V
+ – 2W

3W

5A2W1W

Fig. Set 3.12

Solution The given circuit is

3A

2V
+ – 2W

3W

5A2W1W

Fig. Set 3.13

To find RTH

BY keeping all the series to zero the circuit reduces to

RTH = 2||3 + 2

RTH =
6

5
 + 2

RTH =
16

5

To find VTH

Transforming current source of 5A to voltage source the circuit

reduces to

3A

+ – 2W

3W

2W

2V

10V

V1 VL

–

+

Fig. Set 3.15

2W

3W

2W

Fig. Set 3.14
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Applying Nodal analysis

V V V V1 2 1 22

2 3

- -
+

-
 = 3

V1 - V2 =
24

5
(1)

V V V V V2 1 2 1 22

2 3

10

2

- +
+

-
+

+
 = 0

(V2 - V1) + 
5

6 2

2
+

V
 + 6 = 0 (2)

From (1) and (2)

V1 = -
76

5
 V

V2 = - 20 V

6. (a) Why h-parameters are called as hybrid parameters?

Solution: Refer Hybrid Parameters 15.6

6. (b) Obtain the condition for a given network to be reciprocal as well as

symmetrical network in terms of h-parameters?

Solution: Refer 15.20

6. (c) Obtain the z-parameters of the network shown in Fig. Set 3.16.

1W

2W 2WI1

V1

+

–

V2

I2
+

–

Fig. Set 3.16

Solution:

1W

2W 2WI1

V1

+

–

V2

I2
+

–

Fig. Set 3.17
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Z11 =
V

I
I

1

1 02 =

 = 3 W

Z21 =
V

I
I

2

1 02 =

 = 1 W

Z12 =
V

I
I

1

2 01 =

 = 1 W

Z22 =
V

I
I

2

2 01 =

 = 3 W

7. (a) Fig. Set 3.18 shows a resistive T network and a resistive P network

connected in parallel. Find the overall y parameters of the

combination.

1

11

2

21

2W

2W

0.5 .1W

1W 0.5W

Fig. Set 3.18

Solution:

2W

1.75W

0.5 7W3.5 1W

11

1

21

2

Fig. Set 3.19

The upper star connection is connected into p and the circuit is

redrawn as follows

0.77W

0.93WI1

V1 VL

I2

0.47W

1 2

11 21

Fig. Set 3.20
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Y11 =
I

V
V

1

1 02 =

 = 1.7 J

Y21 =
I

V
V

2

1 02 =

 = - 0.93 J

Y22 =
I

V
V

2

2 01 =

 = 1.4 J

Y12 =
I

V
V

1

2 01 =

 = - 0.93 J

(b) Find the characteristic impedance of a symmetrical T network.

Solution: Refer Section 15.10

8. What is composite filter? Draw its circuit diagram? Give a general

procedure for its design?

Solution In the m-derived filter sections, the stop band attenuation

drastically reduces after f
¥

 in low pass section and before f
¥

 in

high pass section. This drawback of m-derived filter can be

overcome by connecting number of sections including prototype

sections and m-derived sections with terminating half sections.

Such a combination of different sections is called COMPOSITE

FILTER.

The block diagram of the composite filter is shown in Fig. Set 3.21.

Terminating
half
section

One (OR)more
prototype
sections

One (or)more
-derived
sections
m

Terminating
half
section

Fig. Set 3.21

In composite filter, cut off frequency and the design impedance are the

two important design specifications. The number of various section in

the composite filter totally depends on attenuation characteristics

required. The typical value of m for attenuation at cut off is m = 0.3 to

0.35. If it is required to maintain the attenuation at a high value in

attenuation band, we must connect either a prototype section in another

m-derived section with comparatively larger value of m. To have

proper impedance matching, and constant characteristic impedance

throughout pass band, we must connect the terminating sections with

m = 0.6.



Network Analysis, May/June 2006

SET 4

1. (a) The following current wave form i(t) is passed through a series R-

L circuit with R = 2 W and L = 2 mH. Find the Voltage across each

element and sketch the same. (Fig. Set 4.1)

Fig. Set 4.1

Solution:

5 A
A (1, 5) B (3, 5)

O (5, –5)

C (4, 0)

E (7, –5)

F (8, 0)

–5 A

i t( )

10 32

5 6

4

7 8
t

Fig. Set 4.2

For line OA, Slope =
5

1
 = 5

line equation i(t) - 0 = 5(t - 0)

Þ i(t) = 5t [Q y = mx]

For line AB, i(t) = 5 (constant)

For line BD, i(t) - 0 =
10

2-
 (t - 4)

(From line equation: y - yt = m(x - x1)

Þ i(t) = - 5t + 20

For line DE, i(t) = – 5 (constant)
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For line EF, i(t) = 5(t - 8)

Þ i(t) = 5t - 40
Voltage induced in the inductor

Along OA

VOA =
Ldi

dt
 = 2 ´ 10

–3
 ´ 

d

dt
 (5t) = 10 mV

(Q ‘t’ in m sec)
Along AB,

VAB =
Ldi

dt
 = 0 (Q i(t) = cons t = 5A)

Along BD

VBD =
Ldi

dt
 = 2 ´ 10-3 ´ 

d

dt
 (- 5t + 20) = - 10 mV

Along DE

VDE =
Ldi

dt
 = 0 (Q i(t) = const = - 5A)

Along EF

VEF =
Ldi

dt
 = 2 ´ 10-3 ´ 

d

dt
 (5t – 40) = 10 mV

Waveform:

10 mV

–10 mV

v( )t

1

3

2

5 6

4 7 8 t

Fig. Set 4.3

Voltage across the resistor is same as current through the circuit

multiplied by the resistance

N = IR = 2I
Waveform

10 V

–10 V

v( )t

1 32 5 64 7 8 t

Fig. Set 4.4
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1. (b) Using nodal analysis, determine the Power supplied by 8V Voltage

source. (Fig. Set 4.5)

2 V

8 V

6 A

4 W 3 W
5 W

2 W 6 W

1 W

Fig. Set 4.5

Solution:

2 V

8 V

6 A

V1

V2

V3

4 W 3 W
5 W

2 W 6 W

1 W

2

Fig. Set 4.6

Fig. Set 4.7

Applying KCL at node (1);

V V V1 1 32

5

8

1

-
+

- +
 = 6 Þ 5V3 - 6V1 = 8 (1)

Applying KCL at node (2);

6 + 
V V V2 2 3

4 6
+

-
 = 0 Þ 5V2 - 2V3 + 72 = 0 (2)
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Applying KCL at node (3);

V V V V V3 2 3 3 1

6 3

8

1

-
+ +

- -
 =  0 Þ 9V3 - V2 - 6V1 = 48

(3)

Solving (1), (2) and (3), we get

V1 = - 4.593 volts

V2 = 11.56 volts

V3 = - 7.11 volts

From the circuit, i =
V V1 38

1

+ -
 = 10.517 A

Power supplied by 8 V source is (8 ´ 10.517)

= 84.136 Watts

1. (c) Write the Tieset matrix for the graph shown in Fig. Set 4.8, taking

the tree consisting of branches 2,3,4.

Fig. Set 4.8

Solution

Fig. Set 4.9

0

1

–1

2

0

4

1

5

0

6

–1

3

0 0 –1 0 1–1

1 –1 –1 0 0–1

(5, 3, 2)

(6, 3, 4)

(1, 2, 3, 4)

Basictiesets
e
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2. (a) Obtain the Equivalent ‘T’ for magnetically Coupled circuit shown in

Fig. Set 4.10.

Fig. Set 4.10

Solution

Fig. Set 4.11

V1(t) = I1F2 + L1 
d I

d t

1  + M 
d I

d t

2

V2(t) = I2F2 + L2 
d I

d t

2  + M 
d I

d t

1

The equivalent ‘T’ for magnetically coupled circuit is

V1 V2

R1 L1 –M L2 –M

M

R2

I1 I2

+ +

– –

Fig. Set 4.12

2. (b) A coil of 500 turns is wound uniformly over a wooden ring having

a mean circumference of 50 cms and a cross sectional area of 500

mm
2
. If the current through the coil is 3 Amps, Calculate

(i) The magnetic field strength

(ii) The flux density and

(iii) The total flux.

Solution Given N = 500, I = 3A

A = 500 ´ 10-6 m2

Mean circumference (Magnetic path)

l = 50 ´ 10-2 m
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(i) H = 
mmt

l

But mmf = NI = 1500 AT

and l = 50 ´ 10-2

Magnetic Field Strength, H = 3000 AT/m

(ii) B =  m0 m = 4p ´ 10-7 ´ 3000 = 3.769 mwb/m2

\ flux density (B) = 3.769 mwb/m2

(iii) f = B ´ A = 3.769 ´ 10-3 ´ 500 ´ 10-6

= 1.8845 ´ 10-6 wb

\ Total flux ( f ) = 1.8845 ´ 10-6 wb

2. (c) Write down the Loop Equations for the network shown in Fig. Set 4.13.

Fig. Set 4.13

Solution: As i1 is entering at the dot terminal, and i2 is leaving the dot

terminal, sign of M (mutual inductance) is  –ve

i1(R1 = j/wC1 + jwL1) - i2 jwM = V1(t)

is loop equation for 1st mesh.

i2( jwL2 - j/wC2) - i1( jwM ) = - V2(t)

is loop equation for 2nd mesh.

3. (a) In the circuit (Fig. Set 4.14) shown, the switch is changes from

position 1 to 2 at t = 0. Determine the initial conditions i, di/dt, d2i/dt2

at t = 0+

Fig. Set 4.14
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Solution:

Fig. Set 4.15

Initially the voltage across ‘C’ = 0

Capacitor does not allow sudden charge in voltage.

Inductor does not allow sudden change in current

A position (2), using KVt

1000i(t) + 
1

1 10 6
´

- z idt + 2 0
d i

d t
= (1)

At t = 0

i(t)|t = 0 =
10

1000
 = 10 mA

Since inductor is short circuit at steady state i.e., when switch is at

position ‘1’

By inductor property

i(t)|t = 0- = i(t)|t = 0+ = 10 mA

At t = 0+, z i(t) dt = 0 (Since voltage across capacitor is zero)

(1) Þ 1000 i(t)|t = 0+ + 2 0

0

d i

d t
t =

+

= (using 2)

d i

d t
t =

+0

 = - 5 A/S (3)

Diff (1) once,

1000 
d i

d t
+

´
-

1

1 10 6
 i(t) + 2

2

2

d i

d t
 = 0

t = 0+

1000 
d i

d t
i t

d i

d t
t

t

t=

- =

=
+

+

+

+
´

+

0
6 0

2

2

0

1

1 10
2( )  = 0
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Þ
d i

d t
t

2

2

0=
+

 =
1

2
(+ 5000 - 10000) (Using 3)

\
d i

d t
t

2

2

0=
+

 = - 2500 A/S2

3. (b) In the parallel resonant circuit, determine the resonance frequency,

dynamic resistance and Band width for the circuit (Fig. Set 4.16)

shown.

Fig. Set 4.16

Solution: Total admittance

(tan k ckt)

Y =
1 1

R jwL j wc+
+

- /

=
R jwL

R w L
jwc

-

+
+

2 2 2

=
R

R w C
j C

wL

R w L
2 2 2 2 2 2

+
+ -

+

F
HG

I
KJ

w

At resonance, the susceptance part (B) becomes zero.

Reactance

Y = G + jB Z = R + jX

Conductance Susceptance Resistance

\ wr C =
w L

R t w L

r

r
2 2 2

R2 + wr
2 L2

 =
L

C
Þ wr

2 = 
1
2

2

L

L

C
R-

F
H

I
K

Þ wr
2
 =

1 2

2LC

R

L
- Þ wr = 

1 2

2LC

R

L
-

Here R = 2 W, L = 1 mH, C = 10 mF

Fig. Set 4.17
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wr =
1

10

4

10
10 96

8 6

6

- -
- = ´

= 9.79 ´ 103 Hz

\ fr =
wr

2p
 = 1.559 kHz

Dynamic resistance (R) = 
1

6

2 2 2

=
+R w L

R

r

=
R w L

R w wr

+

-

2 2

 = 2 + 
96 10 10

2

6 6
´ ´

-

 = 50 W

Bandwidth =
1

RC
 (for IId resonant ckt)

=
1

50 10´ mf
 = 2 kHz

(or) BW =
R

L mH
=

2

1
 = 2 kHz

3. (c) When an voltage of 220V A.C. supply connected across the AB

terminals, the total power input is 3.25 kw and the current is 20 Amps.

Find the current through Z3. (Fig. Set 4.18)

5 W j20 W

Z3

200 V

20 A 5 W j10 W

Fig. Set 4.18

Solution: Across IId branch

V = 20 (5 + j10) = 223.6 Ð63.43° = 100 + j200

I (5 + j20) + 100 + j200 = 220.

 (Let I be the current through 5 + j20 W branch)

I =
120 200

5 20

-

+

j

j
 = - 8 - 8i

IRs = 20 - I = 28 + 8i = 29.12 Ð15.9°
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4. (a) Find the Laplace Transform of single pulse shown in Fig. Set 4.19.

Fig. Set 4.19

Solution:

V

0 T

( , )T U

Time ( )t

v( )t

Fig. Set 4.20

f (t) =

V

T
t t T. ,

,

0

0

< <
R
S
|

T| elsewhere

L( f (t)) =

0

¥

z e-st f (t) dt =

0

T

z e-st 
V

T
 t dt

=
V

T
0

T

z  te-st dt =
V

T

t e

s

e

s

st
T

st
T

- -

-
-

L

N
M
M

O

Q
P
P0

2
0

=
V

T

T

s

e

s

e
sT

sT-
-

-F
HG

I
KJ

L

N
M

O

Q
P

-
-

1
2

=
V

T s
e

s

T

s

sT1 1
2 2

- +
F
HG

I
KJ

L

N
M

O

Q
P

-

=
V

T

e

s

Te

s

sT sT
1

2

-F
HG

I
KJ

-
L

N
M

O

Q
P

- -

L[ f (t)] =
V

T

e ST

s

sT
1 1

2

- +L

N
M

O

Q
P

-
( )

4. (b) Define RMS value, Average value, Form factor of an alternating

quantity. Also state the relationship between them.

Solution: Refer to Set-1 4(c) [AC is periodic]

4. (c) Find the RMS value of the voltage wave whose equation is v(t) =

10 + 200 sin (wt - 30°) + 100 cos 3 wt - 50 sin (5wt + 60°).
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Solution:  Vrms = 10
200

2

100

2 2

2
2 2 2

+ + +
( ) ( ) (50)

= 100 20000 5000 1250+ + +

= 162.327 V

5. (a) What is complex power? Explain in detail.

Solution: Complex power

Active power (P):

The active power or real power in an a.c. circuit is given by the

product of voltage, current and cosine of the phase angle. It is always

positive

P = VI cos f watts

Reactive power (Q):

The reactive power in an a.c. circuit is given by the product of

voltage, current and sine of the phase angle f.

If f is leading then reactive power is taken as +ve and it is capacitive.

If f is lagging then reactive power is taken as -ve and it is inductive

Q = VI sin f VARs.

Apparent power:

The apparent power in an a.c. circuit is the product of voltage and

current. It is measured in voltamps.

S = VI volt amps.

I cos f

I sin f

V

I
current

(a) Phasor diagram (b) Current Ale

I

ff

Fig. Set 4.21 Fig. Set 4.22

The component I cos f = Active component or real component or in

phase component of a current.

The product of voltage and the above component (active component)

gives active power. The component I sin f = Reactive component or

quadrature component of current)

The product of this component with voltage V gives the reactive power.

Power factor cos f = 
Read power

Apparent power

The factor sin f is called the reactive factor.

Complex power = (Active power) + j (Reactive power)
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5. (b) The current in a given circuit is I = (12 - j5) A when the applied

voltage is V = (160 - j120)V. Determine

i. the complex expression for power

ii. power factor of the circuit

iii.  the complex expression for impedance of the circuit

iv. Draw the phasor diagram.

Solution: (i) Pa = Veff Ieff VA

Par = Veff Ieff cos q watts

Pr = Veff Ieff sin q VAR

Z =
V

I
 = 

160 120

12 5

14 91 3786-

-
= -

j

j R x
j

. .

|I| = 13 A

= 15.38 Ð– 14.25°

\ Pavg = I
2
R = 2519.79 W

Pr = I2X = 639.834 VAR

Pa = I2Z = 2599.22 W

Complex power = 2519.79 + j639.834

(ii) Pf = cos f = cos (- 14.25°) = 0.969

(iii) Z = 14.91 - 3.786 j

(iv) Power D
le

f

Ieff I Xeff C

I Reff

R

P Vav ( )

Pr (VAR)

Power Dl1

(a)

(b) (c)

Phasor diagram

Pa

( )VA

2
2

2

z
z

z

Z = ÷R + X2
C

– jXC

Fig. Set 4.23
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6. (a) Why Z-parameters are known as open circuit parameters?

Solution:

Fig. Set 4.24

The Z parameters of a two-port for the positive directions of

voltages and currents may be defined by expressing the port

voltages V1 and V2 in terms of the currents I1 and I2. Here V1 and

V2 are dependent variables, and I1, I2 are independent variables.

The voltages at port 1-1¢ is the response produced by the two

currents. I1 and I2

Thus

V1 = Z11 I1 + Z12 I2

V2 = Z21 I1 + Z22 I2

The individual Z-parameters for a given network can be defined by

setting each of the port currents equal to zero. Suppose port 2-2¢ is

left open-circuited, then

I2 = 0

Thus Z11 =
V

I
I

1

1 02 =

 driving point impedance at port 1-1¢ with

port 2-2¢ open circuited. It is called open
circuit input impedance

Z21 =
V

I
I

2

1 02 =

It is called open circuit forward transfer impedance

Suppose port 1-1¢ is left open circuited then, I1 = 0

Thus Z12 =
V

I
I

1

2 01 =

It is called open circuit reverse transfer impedance

Z22 =
V

I
I

2

2 01 =

It is called open circuit output impedance.

It is observed that the individual parameters are specified only when

the current in one of the ports is zero. This corresponds to one of the

ports being open circuited from which Z-parameters also derive the

name open circuit impedance parameters.
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6. (b) What is meant by port? Explain two port network?

Solution: Port: A port is defined as any pair of terminals into which energy

is supplied, or from which energy is withdrawn, or where the

network variables may be measured.

Two port network

A two-port network is simply a network inside a black box, and the

network has only two pairs of accessible terminals; usually one pair

represents input and the other represents the output.

Fig. Set 4.25

Two ports containing no sources in their branches are called passive

ports; among them are power transmission lines and transformers.

Two ports containing sources in their branches are called active ports.

Two of these are dependent variables and the other two are

independent variables. The number of possible combinations

generated by the four variables taken two at a time sin (4C2). Thus,

there are six possible sets of equations describing a two-port network.

6. (c) Find the Y-parameters for the network shown in Fig. Set 4.26.

Fig. 4.26

Solution:

Fig. Set 4.27

Y-parameters are generally of the form

I1 = Y11 V1 + Y12 V2

I2 = Y21 V1 + Y22 V2
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By nodal analysis

I1 =
V V V1 1 1

1

4

1
+

-F
H

I
K  = V1 - 3V1

I1 = V1 - 3V1
Þ I1 = - 2V1 (1)

I2 =
V2

2
 + V2 - 4V1

Þ I2 = - 4V1 + 
3

2
 V2 (2)

\ By comparing 1 and 2 with the above equations

Y Y

Y Y

11 12

21 22

F
HG

I
KJ

 =
-

-

F
HG

I
KJ

2 0

4 3 2/

7. (a) Show that the propagation constant for P network is gA = cosh-1

1
2

1

2

+
F
HG

I
KJ

Z

Z

Solution: p-type attenuator

Fig. Set 4.28

From fundamental equations, we have

Z1 = Z0 sinh a

Z2 = Z0 coth a/2

Z

Z

1

2

 =
sinh

coth /

a

a 2

Z

Z

1

22
 =

sinh . sinh /

cosh /

a a

a

2

2 2
=

2 2 2 2

2 2

sinh / cosh / . sinh /

cosh /

a a a

a

(Q sin 2h x = 2 sinh x cosh x)

Z

Z

1

22
= sin2 h a/2 (Here g = a)

since it is symmetric

Þ1 + 
Z

Z

1

22
 =(cosh a/2)2 = 

e e
a a/ /2 2

2

2

+F
HG

I
KJ

-
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=
e ea a

+ +
- 2

4
= 

e ea a
+

+

-

4

1

2
Multiplying by 2

2 1
2

1

2

+
F
HG

I
KJ

Z

Z
 =

e ea a
+

+

-

2
1

1 + 
Z

Z

1

2

 = cosh a Þ gA = cosh-1 1 1

2

+
F
HG

I
KJ

Z

Z

If Z2 ¾® 2Z2 (replaced then gA = cosh-1 1
2

1

2

+
F
HG

I
KJ

Z

Z

7. (b) Write short note on iterative and image impedances in symmetrical

networks.

Solution: Two importance parameter for design of attenuators is image
impedance for unsymmetrical attenuator and characteristic
impedance for symmetrical attenuator and also attenuation
constant for both types of attenuators.

Z11 and Z12 are two impedances such that when terminals 2-2¢ are
terminated in Z12 the input impedance at terminals marked 1-1¢ is Z11.
Using ABCD parameters the two-terminal pair impedances and

admittances and certain algebraic expression it can be shown that Z11

= Z ZscOC1 1

where Zoc1 is the input impedance measured at terminals 1-1¢ when
the terminals 2-2¢ are kept open circuited and Zsc1is the short ckt
impedance as measured at 1-1¢

when terminals marked 22¢ shorted

Similarly Z12 = Z Zoc sc2 2

If the network is symmetrical then

Z11 = Z12 = Z0 = Z Z Z Zoc sc oc sc1 1 2 2=

Where Z0 is the characteristic impedance of the attenuating network.
The characteristic impedance or iterative impedance is defined as the
impedance of a network with which a network must be terminated so
that the input and terminating resistances are equal.
If the attenuation network is asymmetric the network will have two
different characteristic impedances known as image impedances.
The values of impedances (Z11 ¹ Z12) are different depending on
which end is used as the input.

8. What is a half section? What is its main characteristic? Why it is
used? Derive expression for impedances as seen from the two ports of
an m-derived half section.

Solution: Refer to textbook (Chapter 16).


	Title
	Contents
	1 Circuit Elements and Kirchhoff's Laws
	2 Methods of Analysing Circuits
	3 Useful Theorems in Circuit Analysis
	4 Intorduction to Alternating Currents and Voltages
	5 Complex Impedance
	6 Power and Power Factor
	7 Steady State AC Analysis
	8 Frequency Domain Analysis
	9 Coupled Circuits
	10 Differential Equations
	11 Transients
	12 Introduction to the Laplace Transform
	13 Application of the Laplace Transform in Circuit Analysis
	14 Network Functions
	15 Tow-Port Networks
	16 S-Domain Analysis
	17 Filters and Attenuators
	Appendix A Fourier Series
	Appendix B Fourier Transforms
	Appendix C The j Factor
	Appendix D Answers
	Appendix E Model Question Papers
	Appendix F Solved Question Paper

