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It’s indeed a pleasure to present before you a book on Network Theory authored by P K Satpathy,

P Kabisatpathy, S P Ghosh and A K Chakraborty. The book has been developed carefully and the

concepts have been clearly defined with the help of practical examples and exercise problems.

Difficult concepts are explained and presented in a simple and understandable way using ample

numbers of illustrations. There is an emphasis on the use of right notation and mathematics through-

out the book. Every topic has been treated in its totality and practical applications are mentioned right

through.

This book is an outcome of over twenty years of teaching and research experience of the authors.

I am sure the readers will find the book extremely useful for enhancement of their learning and

expertise in this field.

I wish the authors success and sincerely hope that more publications would emerge out of their

vast experience of teaching and research in electrical sciences.

Sabyasachi Sengupta

Vice Chancellor (WBUT)
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About the Subject

Network Theory is a foundation core course to many disciplines of Engineering and Technology such

as Electrical Engineering (EE), Electrical and Electronics Engineering (EEE), Instrumentation and

Electronics Engineering (I&EE), Electronics and Communication Engineering (ECE), Instrumenta-

tion and Control Engineering (ICE), Applied Electronics Engineering (AEE), Computer Science and

Engineering (CSE) and Information Technology (IT). Besides these branches in particular, almost all

other branches of Engineering and Technology may take this course as a professional elective or free

elective subject. A deep understanding of any electrical circuit requires the fundamentals of Network

Theory. Hence the course has been modeled to contain the basics of networks and important theorems

related to network operation in the first place. In the second place, one would find the fundamentals

of network analysis followed by network synthesis and realization in the third place.

About the Book

This book has been written to serve as a primary textbook for the revised course on Network Theory

pertaining to Biju Patnaik University of Technology (BPUT), Orissa. This book is an outcome of the

consistent work of the authors that imbibes their long-time experience in academics and research in

this area. Although a handful of books are available, yet it has been felt that none of them go

step-in-step with the requirements of this particular course. As a result, students face various diffi-

culties in following the texts taught to them in the class with the support of the available texts in these

books. This book aims at presenting the contents of the course in such a way that the students and

faculty may rely on the book as a primary resource. Provision of well-documented text material,

simple and lucid diagrams at appropriate locations of the text, chapter-end examples, solved problems

and multiple/short answer questions make the book an effective and competitive tool for the course

on Network Theory. Over and above, the book presents the concepts behind each model in a concise

and self-explanatory way which would add extra advantage for the reference and understanding of

the reader.

Preface



Scope

This book is mainly prepared to meet the credit requirements of the third and fourth semester courses

on Network Theory related to the four year B Tech program of relevant disciplines of Biju Patnaik

University of Technology (BPUT), Orissa. Besides this, it may be useful to students and faculty

members of other universities in India and abroad. However, beyond the credit requirements of

B Tech program, this book may be very helpful for the students aspiring and preparing for national-

level competitive examinations such as GATE, NET, UPSC, PSC of various states, IES, etc.

Organization

This book has a total of nine chapters. The first chapter provides information about the basic

characteristics of different types of systems. Chapter 2 deals with the fundamental laws, and circuit

components essential for network theory. Chapter 3 discusses the application of graph theory

concepts of circuit analysis. Chapter 4 is devoted to explain the usefulness of various theorems

essential for network analysis. Chapter 5 presents the frequency domain analysis of networks by

using a mathematical tool called Laplace Transform. Chapter 6 encompasses the concepts of

two-port networks which find vast application in other areas such as control and communication.

Chapter 7 focuses on the application of another powerful mathematical tool called Fourier series for

network analysis. Chapter 8 is devoted to operational amplifiers and filters. Chapter 9 presents the

basics of network synthesis through verification and possibility of realization of network functions

into network elements.
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This book can be used as a core course for many disciplines of Engineering and Technology. The

contents of this course have been designed to make the students familiar with the basic laws and

theorems governing the operation of electrical circuits subject to numerous practical situations. It is

quite challenging and exciting to learn the fundamental concepts covered in this subject. This book

has been so developed that a novice can go through its chapters comfortably. Students might well

learn more efficient methods of handling the subject by using this textbook. The authors would like

to remind the students about the following points and if you keep these ideas in mind you shall do

very well in this course.

• This course is the foundation on which most other courses in the electrical engineering

curriculum rest. For this reason, put in as much effort, time and at the same time motivate

yourself to become a master in this subject by studying the course on a regular basis.

• Problem-solving methods are essential parts of the learning process. Hence, try to solve as

many problems as you can. Begin by solving practice problems following each example,

illustrations and then proceed to the chapter-end problems. The best way to learn is to solve

a lot of problems.

• Attempt the multiple choice questions in each chapter. It will help you to discover some

problem-solving tricks and analytical thoughts. This would strengthen your learning.

• Clearly, a lot of effort has gone into making the technical details in this book compatible for

easy understanding. It also contains all the mathematics and physics necessary to understand

the subject and the same would help in higher-semester courses of Electrical Sciences.

• A core textbook is an asset. It would be useful throughout your life. Hence take care that the

book is not lost and remember that you are not selling out the book once your course is over.

Your success will surely add to the success of this book. May your success be electrifying!
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P KABISATPATHY

S P GHOSH

A K CHAKRABORTY
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CHAPTER

1
Introduction to Different

Types of Systems

1.1 INTRODUCTION

An electrical network is one of the many important physical systems. In order to understand the basic

characteristics of an electric network, we must first know the different concepts of systems. In this

chapter, the different types of systems have been discussed.

1.2 CONCEPTS OF SIGNALS AND SYSTEMS

1.2.1 Signals

A signal is defined as a function of one or more variables, which provides information on the nature

of a physical phenomenon.

When the function depends on a single variable, the signal is said to be one-dimensional, for

example, a speech signal whose amplitude varies with time, depending on the spoken word and who

speaks it.

When the function depends on two or more variables, the signal is said to be multidimensional, for

example, an image (2-D signal).

1.2.2 Systems

A system is an entity that takes an input signal and produces an output signal. It is a combination and

interconnection of several components to perform a desired task.

The system responds to one or more input quantities, called input signals or excitation, to produce

one or more output quantities, called output signals or response.



1.2 Network Theory

Figure 1.1 Block diagram representation of a system

1.3 DIFFERENT TYPES OF SYSTEMS

1. Continuous and Discrete Time Systems

2. Fixed and Time-varying Systems

3. Linear and Non-linear Systems

4. Lumped and Distributed Systems

5. Instantaneous and Dynamic Systems

6. Active and Passive Systems

7. Causal and Non-causal Systems

8. Stable and Unstable Systems

9. Invertible and Non-invertible Systems

1.3.1 Continuous and Discrete Time Systems

Signals are represented mathematically as functions of one or more independent variables. We

classify signals as being either continuous-time (functions of a real-valued variable) or discrete-time

(functions of an integer-valued variable).

In other words, a continuous-time signal has a value defined for each point in time and a discrete-

time signal is defined only at discrete points in time.

To signify the difference, we (usually) use round parenthesis around the argument for continuous

time signals, e.g., x(t) and square brackets for discrete-time signals, e.g., x[n]. We will also use the

notation xn for discrete-time signals.

Figure 1.2(a) Continuous-time signal Figure 1.2(b) Discrete-time signal



Introduction to Different Types of Systems 1.3

A continuous-time system is a system which accepts only continuous-time signal to produce

continuous-time internal and output signals. On the other hand, a discrete-time system is a system that

transforms discrete-time input(s) into discrete-time output(s).

The examples given below are common in our daily life.

Continuous-time systems
(i) Atmospheric pressure as a function of altitude

(ii) Electric circuits composed of resistors, inductors, capacitors driven by continuous-time sources.

Discrete-time systems
(i) Weekly stock market index

(ii) Balance in a bank account from month to month.

The sequence of values of the discrete-time signal shown in Fig. 1.2(b) defined at discrete points in

time are called samples and the spacing between them is called the sample spacing. For equal sample

spacing, the sequence of values are expressed as a function of the signed integer n as x[n], where n is

termed as a sequence of samples or sequence, in short.

1.3.2 Time-Invariant (Fixed) and Time-Varying Systems

A system is time-invariant or fixed if the behaviour and characteristics of the system do not change

with time. Otherwise, the system is time-varying.

Mathematically, if the input x(t) gives the output y(t), then the system is time-invariant if the input

x(t � T) gives the output y(t � T) for any delay T. Hence, a time-shift of the input gives the same time-

shift of the output.

Figure 1.3 Time-invariant system

Whether a system is time-invariant or time-varying can be seen in the differential equation (or

difference equation) describing it. Time-invariant systems are modeled with constant coefficient

equations. A constant coefficient differential (or difference) equation means that the parameters of

the system are not changing over time and an input now will give the same result as the input later.
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Example 1.1  A continuous system is modeled by the equation y(t) = tx(t) + 4 , and a discrete-

time system is modeled by y[n] = x2[n]. Are these systems time-invariant?

Solution For continuous-time system:

For input x(t) = x1(t), output y1(t) = tx1(t) + 4 (i)

For input x(t) = x1(t � T), output, y2(t) = tx1(t � T) + 4 (ii)

From the condition of time-invariance, the output should be,

y1(t � T) = (t � T)x1(t � T) + 4 (iii)

From Eqs (ii) and (iii), y2(t) ¹ y1(t � T)

Hence, the system is not time-invariant.

For discrete-time system:

For input x1[n], output y1[n] = x1
2[n]

For input x1[n � n0], output = x1
2[n � n0]

From the condition of time-invariance, the shifted output y1[n � n0] = x1
2[n � n0]

Hence, the system is time-invariant.

1.3.3 Linear and Non-Linear Systems

A system, in continuous-time or discrete-time, is said to be linear, if it obeys the properties of

superposition, i.e., additivity and homogeneity (or scaling), while a system is non-linear if it does not

obey at least any one of these properties.

The superposition principle says that the output to a linear combination of input signals is the same

linear combination of the corresponding output signals. Mathematically, the linearity condition is

based on two properties.

1. Additivity If the input signals x1(t) and x2(t) correspond to the output signals y1(t) and y2(t),

respectively, then the input signal {x1(t) + x2(t)} should correspond to the output signal {y1(t) + y2(t)}.

2. Homogeneity If the input signal x1(t) corresponds to the output signal y1(t), then the input

signal a1x1(t) should correspond to the output signal a1y1(t) for any constants a1.

Combining these two properties, the condition for a linear system can be written as, if the input

signals x1(t) and x2(t) correspond to the output signals y1(t) and y2(t), respectively, then the input

signal a1x1(t) + a2x2(t) should correspond to the output signal a1y1(t) + a2y2(t) for any constants a1
and a2.

Example 1.2 Check whether the systems with the input-output relationship given below are linear.

(a) y(t) = mx(t) + c, (b) y(t) = tx(t)

Solution (a) For an input x1(t), output, y1(t) = mx1(t) + c

For an input x2(t), output, y2(t) = mx2(t) + c

For an input {x1(t) + x2(t)}, output, y3(t) = m{x1(t) + x2(t)} + c (i)

From the condition of linearity, the output should be

{y1(t) + y2(t)} = m{x1(t) + x2(t)} + 2c (ii)

From Eqs (i) and (ii), we conclude that the system is non-linear.

(b) For an input x1(t), output, y1(t) = tx1(t)

For an input x2(t), output, y2(t) = tx2(t)
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For an input {k1x1(t) + k2x2(t)}, output, y3(t) = t{k1x1(t) + k2x2(t)} (i)

where, k1 and k2 are any arbitrary constants.

From the condition of linearity, the output should be

{k1y1(t) + k2y2(t)} = k1tx1(t) + k2tx2(t) = t{k1x1(t) + k2x2(t)} (ii)

From Eqs (i) and (ii), we conclude that the system is linear.

1.3.4 Lumped and Distributed Systems

All physical systems contain distributed parameters because of the physical size of the system compo-

nents. For example, the resistance of a resistor is distributed throughout its volume.

However, if the size of the system components is very small with respect to the wavelength of the

highest frequency present in the signals associated with it, then the system components behave as if it

all were occurring at a point. This system is said to be lumped-parameter system.

Distributed parameter systems are modeled as given below.

1. By partial differential equations if they are continuous-time systems

2. By partial difference equations if they are discrete-time systems.

Lumped parameter systems are modeled with ordinary differential or difference equations.

Example 1.3 Consider an electric power system of frequency 50 Hz. The wavelength of the signal

is obtained as,

nl = C Þ l = 
53 10

50

C

n

´
=  = 6000 km

Thus, the electrical system inside a room can be treated as a lumped-parameter

system, but will be treated as distributed system for a long-distance transmission line.

1.3.5 Instantaneous (Static or Memoryless) and Dynamic Systems

An instantaneous or static or memoryless system is a system where the output at any specific time

depends on the input at that time only. On the other hand, a dynamic system is one whose output

depends on the past or future values of the input in addition to the present time.

A static system has no memory. Physically, it contains no energy-storage elements, whereas a

dynamic system has one or more energy-storage element(s).

Example 1.4  An electrical circuit containing resistance R has the v�i relationship as, v(t) = Ri(t),

and so the system is static. But an electrical circuit containing capacitor C has the

v�i relationship as, v(t) = 
0

1
( )ò

t

i t dt
C

, and so the system is dynamic system.

1.3.6 Active and Passive Systems

A system having no source of energy is known as a passive system, for example, electric circuits

containing resistance, capacitance, inductance, diodes, etc.
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A system having source of energy together with other passive elements is known as an active

system, for example, electric circuits containing voltage source or current source or op-amp, etc.

1.3.7 Causal and Non-causal Systems

A system is said to be causal if the output of the system depends only on the input at the present time

and/or in the past, but not the future value of the input. Thus, a causal system is nonanticipative, i.e.,

output cannot come before the input.

On the other hand, the output of a non-causal system depends on the future values of the input.

Example The moving-average system described by

y[n] = 
1

3
{x[n] + x[n � 1] + x[n � 2]}

is causal, but the moving-average system described by

y[n] = 
1

3
{x[n + 1] + x[n] + x[n � 1]}

is non-causal, since the output depends on the future value of the input x[n + 1].

It is obvious that the idea of future inputs does not have any physical meaning if we take time as

our independent variable and for that reason all real-time systems are causal. However, for the case of

image processing, the independent variable may be the pixels to the left and right (the �future�) of the

current position on the image, and thus, we can have a non-causal system.

Figure 1.4(a) Causal systems Figure 1.4(b) Non-causal systems
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1.3.8 Stable and Unstable Systems

A stable system is one where the output does not diverge as long as the input does not diverge. A

bounded input produces a bounded output. For this reason, this type of system is known as bounded

input-bounded output (BIBO) stable system.

Mathematically, a stable system must have the following property:

If x(t) be the input and y(t) be the output, then the output must satisfy the condition.

| y(t) | £ My < µ; for all t

whenever the input satisfy the condition

| x(t) | £ Mx < µ; for all t

where, Mx and My both represent a set of finite positive numbers.

If these conditions are not met, i.e., the output of the system grows without limit (diverges) from a

bounded input, then the system is unstable.

1.3.9 Invertible and Non-invertible Systems

A system is referred to as an invertible system if

(i) distinct inputs lead to distinct output, and

(ii) the input can be recovered from the output.

Figure. 1.5 Invertible system

The property of invariability is important in the design of communication systems. When a trans-

mitted signal propagates through a communication channel, it becomes distorted due to the physical

characteristics of the channel. An equalizer is connected in cascade with the channel in the receiver to

compensate this distortion. By designing the equalizer to be inverse of the channel, the transmitted

signal is restored.

MULTIPLE-CHOICE QUESTIONS

1.1 The output y(t) and the input x(t) of a system are related by the equation y(t) = mx(t) + c, where m

and c are constants. The system is

(a) linear

(b) non-linear

(c) may be linear or non-linear depending on y(t) and x(t)

(d) none of the above

1.2 If the impulse response is realizable by delaying it appropriately and is bounded for bounded

excitation, then the system is said to be

(a) causal and stable (b) causal but not stable

(c) non-causal but stable (d) non-causal, not stable
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1.3 In a linear circuit, when the ac input is doubled, the ac output becomes

(a) one fourth (b) half (c) two times (d) four times

1.4 A circuit having an e.m.f. source or any energy source is

(a) active circuit (b) passive circuit (c) unilateral circuit (d) bilateral circuit

1.5 A network is said to be linear if and only if

(a) a response is proportional to the excitation function

(b) the principle of superposition applies

(c) the principle of homogeneity applies

(d) both the principles (b) and (c).

1.6 Consider the following data.

1. Input applied for t < t0 2. Input applied for t ³ t0
3. State of the network at t = t0 4. State of the network at t < t0
Among these, those needed for determining the response of a linear network for t > t0 would include

(a) 1, 3 and 4 (b) 2, 3 and 4 (c) 2 and 3 (d) 2 and 4.

1.7 An excitation is applied to a system at t = T and its response is zero for �¥ < t < T. Such a system is

(a) non-causal system (b) stable system (c) causal system (d) unstable system.

1.8 The elements which are not capable of delivering energy by its own are known as

(a) unilateral elements (b) non-linear elements

(c) passive elements (d) active elements.

1.9 The v�i characteristic of an element is shown in the given

figure. The element is

(a) non-linear, active, non-bilateral

(b) linear, active, non-bilateral

(c) non-linear, passive, non-bilateral

(d) non-linear, active, bilateral

EXERCISES

1.1 A continuous system is modeled by the equation

y(t) = t x(t) + 4

and a discrete-time system is modeled by,

y[n] = x2[n]

Are these systems time-invariant?

1.2 Consider the continuous-time system defined by,

y(t) = sin[x(t)]

Check whether the system is time-invariant?

1.3 Consider a system S with input x[n] and output y[n] related by,

y[n] = x[n]{g[n] + g[n�1]}

(a) If g[n] = 1, for all n, show that S is time-invariant.

(b) If g[n] = n, show that S is not time-invariant.

(c) If g[n] = 1+ (�1)n, show that S is time-invariant.



Introduction to Different Types of Systems 1.9

1.4 Consider the systems S whose input and output are related by,

(a) y(t) = t x(t)

(b) y(t) = x(t) x(t�1)

(c) y(t) = x2(t)

(d) y = mx + c

Check whether S is linear.

1.5 Consider the following discrete-time systems with input-output relationships as given

(a) y[n] = 2x[n] + 3

(b) y[n] = Re{x[n]}

(c) y[n] = n x[n]

Check whether the systems are linear.

SHORT-ANSWER TYPE QUESTIONS

1.1 What is a system? What are the different types of systems? Give their definitions.

1.2 Define the following and give examples of each.

(a) Continuous and discrete system.

(b) Time-invariant and time-varying system.

(c) Lumped and distributed system.

(d) Instantaneous (Static or Memoryless) and dynamic system.

(e) Causal and non-causal system.

(f) Active and passive system.

1.5 (a) What are the conditions for a system to be a linear system?

(b) Give the conditions for a BIBO stability of a system.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

1.1 (b) 1.2 (a) 1.3 (c) 1.4 (a) 1.5 (d) 1.6 (c) 1.7 (c)

1.8 (c) 1.9 (b)



CHAPTER

2
Introduction to Circuit

Theory Concepts

2.1 INTRODUCTION

The fundamental theory on which many branches of electrical engineering, such as electric power,

electric machines, control, electronics, computers, communications and instrumentation are built is

the electric circuit theory. Thus, it is essential to have a proper grounding with electric circuit theory

as the base. An electric circuit is the interconnection of electrical elements.

2.2 TERMINOLOGY

In circuit analysis, we are concerned with the four basic manifestations of electricity, namely, electric

charge [q(t)], magnetic flux [j(t)], electric potential [v(t)] and electric current [i(t)].

The most basic quantity in an electric circuit is the electric charge q. The law of conservation of

charge states that charge can neither be created nor destroyed. Thus the algebraic sum of the charges

in a system does not change. The charge on an electron is 1.602 ´ 10�19 C. [Unit of electric charge is

the coulomb (C)].

The rate of flow of electric charges or electrons constitute an electric current i. By convention (a

standard way of describing an electric current), the electric current flows in the opposite direction to

the electrons. [Unit of electric current is the ampere (A)].

i = 
dq

dt

and the charge transferred between time t0 and t is given by

q = 

0

ò
t

t

idt (2.1)
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To move an electron in a conductor in a particular direction, or to create a current, requires some

work or energy.

This work is done by the electromotive force (emf) of the source or the potential difference. This is

also known as voltage difference or voltage (with reference to a selected point such as earth).

The voltage Vab between two points a and b is the energy (or work) w required to move a unit

positive charge from a to b. [Unit of voltage is the volt (V)]

Vab = 
dw

dq
(2.2)

The potential difference between the terminals of a circuit element in a magnetic field is equal to the

time derivative of the flux j (t), i.e., rate of change of flux linkages,

so, v(t) = 
d

dt
f (t) (2.3)

2.3 DIFFERENT NOTATIONS

C Capacitance Farad, F

E Voltage source Volt, V

e Instantaneous E Volt, V

G Conductance Siemens, S

I Current Ampere, A

i Instantaneous I Ampere, A

K Coefficient number

L Inductance Henry, H

M Mutual inductance Henry, H

N Number of turns number

P Power Watt, W

Q Charge Coulomb, C

q Instantaneous Q Coulomb, C

R Resistance Ohm, W
T Time constant second, s

t Instantaneous time Second, s

V Voltage drop Volt, V

v Instantaneous V Volt, V

W Energy Joule, J

F Magnetic flux Weber, Wb

Y Magnetic linkage Weber, Wb

y Instantaneous Y Weber, Wb

2.4  BASIC CIRCUIT ELEMENTS

(i) Active and Passive Elements Electric Circuits consist of two basic types of elements. These

are the active elements and the passive elements.
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An active element is capable of generating electrical energy. (In electrical engineering, generating

or producing electrical energy actually refers to conversion of electrical energy from a non-electrical

form to electrical form. Similarly, energy loss would mean that electrical energy is converted to a non-

useful form of energy and not actually lost. Principle of Conservation of Mass and Energy).

Examples of active elements are voltage source (such as a battery or generator) and current source.

Most sources are independent of other circuit variables, but some elements are dependent (modeling

elements such as transistors and operational amplifiers would require dependent sources).

Active elements may be ideal voltage sources or current sources. In such cases, the particular

generated voltage (or current) would be independent of the connected circuit.

A passive element is one which does not generate electricity but either consumes it or stores it.

Resistors, Inductors and Capacitors are simple passive elements. Diodes, transistors etc. are also

passive elements.

Passive elements may either be linear or non-linear. Linear elements obey a straight-line law. For

example, a linear resistor has a linear voltage vs current relationship which passes through the origin

(V = R.I). A linear inductor has a linear flux vs current relationship which passes through the origin

(f = k I) and a linear capacitor has a linear charge vs voltage relationship which passes through the

origin (q = CV). [R, k and C are constants].

Resistors, inductors and capacitors may be linear or non-linear, while diodes and transistors are

always nonlinear.

(ii) Linear Element A circuit/network element is linear if the relation between current and voltage

involves a constant coefficient.

Examples Voltage-current relationship of resistor, inductor and capacitor (both with zero initial

conditions) are linear ( )1
, ,

di
v ri v L v idt

dt c
= = = ò  Hence, the elements are linear.

Diode and transistors are non-linear devices having non-linear characteristics.

(iii) Bilateral system In a bilateral system, the same relationship between current and voltage

exists for current flowing in either direction. On the other hand, a unilateral system has different

current-voltage relationships for the two possible directions of current, as in diode.

2.5 PASSIVE CIRCUIT ELEMENTS

2.5.1 Electrical Resistance

Electrical resistance is a measure of the degree to which an object opposes an electric current

through it.

The SI unit of electrical resistance is ohm (W). Its reciprocal quantity is electrical conductance

measured in Siemens. Electrical resistance shares some conceptual parallels with the mechanical

notion of friction.

The resistance of an object determines the amount of current through the object for a given voltage

across the object.
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I = 
V

R
(2.4)

where, R is the resistance of the object, measured in ohm equivalent to J.s/C2

V is the voltage across the object, measured in volt

I is the current through the object, measured in ampere

For a wide variety of materials and conditions, the electrical resistance does not depend on the

amount of current through or the amount of voltage across the object, meaning that the resistance R is

constant.

Resistance of a Conductor DC Resistance As long as the current density is totally uniform in

the conductor, the DC resistance R of a conductor of regular cross section can be computed as

R = r
l

A
(2.5)

where, l is the length of the conductor, measured in meter,

A is the cross-sectional area, measured in square meter,

r (Greek: rho) is the electrical resistivity (also called specific electrical resistance) of the

material, measured in ohm metre. Resistivity is a measure of the material�s ability to oppose

the flow of electric current.

For practical reasons, almost any connections to a real conductor will almost certainly mean the

current density is not totally uniform. However, this formula still provides a good approximation for

long thin conductors such as wires.

AC Resistance If a wire conducts high-frequency alternating current then the effective cross-

sectional area of the wire is reduced. This is because of the skin effect.

This formula applies to isolated conductors. In a conductor close to others, the actual resistance is

higher because of the proximity effect.

Resistor A resistor is a two-terminal electrical or electronic component that resists an electric

current by producing a voltage drop between its terminals in accordance with Ohm�s law:

R = 
V

I
(2.6)

The electrical resistance is equal to the voltage drop across the resistor

divided by the current through the resistor. Resistors are used as part of

electrical networks and electronic circuits.

Energy in Resistor Instantaneous power absorbed in the resistor,

p = vi = iR ´ i = i2 R (in Watt) (2.7)

Therefore, the energy converted into heat energy is given by,

W = 2

0 0

=ò ò
t t

pdt i Rdt  = i2Rt (in Joule) (2.8)

Series and Parallel Arrangements of Resistors Resistors in a parallel configuration each have

the same potential difference (voltage). To find their total equivalent resistance (Req):

Figure 2.1 Resistor symbols
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eq 1 2

1 1 1 1

nR R R R
= + +¼+ (2.9)

The parallel, property can be represented in equations by two

vertical lines �| |� (as in geometry) to simplify equations. For two

resistors,

Req = R1 | |R2 = 1 2

1 2+
R R

R R
(2.10)

The current through resistors in series stays the same, but the voltage across each resistor can be

different. The sum of the potential differences (voltage) is equal to the total voltage. To find their total

resistance:

Req = R1 + R2 + � + Rn (2.11)

Figure 2.3 Series arrangement of resistors

A resistor network that is a combination of parallel and series

can sometimes be broken up into smaller parts. For instance,

Req = (R1 | |R2) + R3 = 1 2

1 2+
R R

R R
 + R3 (2.12)

However, many resistor networks cannot be split up in this

way. Consider a cube, each edge of which has been replaced by

a resistor. For example, determining the resistance between two

opposite vertices requires matrix methods for the general case.

However, if all twelve resistors are equal, the corner-to-corner

resistance is 5/6 of any one of them.

Current Division by Parallel Resistances When a total current IP is passed through parallel

connected resistances R1 and R2, the voltage VP which appears across the parallel circuit is:

VP = IPRP = IPR1R2/(R1 + R2)

The currents I1 and I2 which pass through the respective resistances R1 and R2 are:

I1 = VP/R1 = IPRP/R1 = IPR2/(R1 + R2)

I2 = VP/R2 = IPRP /R2 = IPR1/(R1 + R2)

In general terms, for resistances R1, R2, R3, �, Rn (with conductances G1, G2, G3, �, Gn)

connected in parallel:

VP = IPRP = IP/GP = IP/(G1 + G2 + G3 + ...)

In = VP/Rn = VPGn = IPGn/GP = IPGn/(G1 + G2 + G3 + ...)

where Gn = 1/Rn and In is the current through nth resistance Rn

Note that the highest current passes through the highest conductance (with the lowest resistance).

Figure 2.2 Parallel arrangement

of resistors

Figure 2.4 Series-parallel ar-

rangement of resistors
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2.5.2 Capacitance

Capacitance is a measure of the amount of electric charge stored (or separated) for a given electric

potential. The most common form of charge storage device is a two-plate capacitor. If the charges on

the plates are +Q and �Q, and V gives the voltage difference between the plates, then the capacitance

is given by

C = 
O

V
(2.13)

The SI unit of capacitance is farad; 1 farad = 1 coulomb per volt.

The capacitance of the majority of capacitors used in electronic circuits is several orders of

magnitude smaller than the farad. The most common units of capacitance in use today are milli-farad

(mF), microfarad (mF), the nano-farad (nF) and the pico-farad (pF)

The capacitance can be calculated if the geometry of the conductors and the dielectric properties of

the insulator between the conductors are known. For example, the capacitance of a parallel-plate

capacitor constructed of two parallel plates of area A separated by a distance d is approximately equal

to the following:

C = e
A

d
(2.14)

where

C is the capacitance in farad, F

e is the permittivity of the insulator used (or e0 for a vacuum)

A is the area of each plate, measured in square meter

d is the separation between the plates, measured in meter

The equation is a good approximation if d is small compared to the other dimensions of the plates.

Capacitor A capacitor is an electrical device that can store energy in the electric field between a

pair of closely-spaced conductors (called �plates�). When current is applied to the capacitor, electric

charges of equal magnitude, but opposite polarity, build up on each plate.

Capacitors are used in electrical circuits as energy-storage devices. They can also be used to

differentiate between high-frequency and low-frequency signals and this makes them useful in elec-

tronic filters.

Capacitors are occasionally referred to as condensers. This is now considered an antiquated term.

Properties of Capacitance The relation between charge and voltage in a capacitor is written as,

Q = CV (2.15)

The current, i = = +
dQ dV dC

C V
dt dt dt

In most physical cases, the capacitance is constant with time.

\ i = C
dW

dt
(2.16)

\ dV = 
1

idt
C
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Taking integration on both sides,

0

ò
c

v

dV  = 
0

1
t

idt
C
ò

or vc(t) = 
0

1
( )ò

t

i t dt
C

 + vc(0)

where, vc(0) is the initial voltage across the capacitor. For zero initial voltage,

vc = 
0

1
t

idt
C
ò (2.17)

From equation (2.16), it is clear that for an abrupt change of voltage across the capacitor, the current

becomes infinite. Also, from equation (2.17), it is observed that for a finite change of current in zero

time the integral must be zero.

Therefore, the voltage acorss a capacitor cannot change instantaneously.

Explanation of Initial Voltage vc(0) It is possible that this capacitor might have been used in some

other circuit earlier, where it absorbed some energy and then it was disconnected. Because of its non-

dissipative nature, the energy was stored within the capacitor. Now, as this capacitor is connected to a

circuit, it gets some path to release its stored energy. Here, this stored energy is represented by the

initial voltage vc (0).

Energy Stored in Capacitors The energy (measured in joule) stored in a capacitor is equal to the

work done to charge it. Consider a capacitance C, holding a charge +q on one plate and �q on the

other. Moving a small element of charge dq from one plate to the other against the potential differ-

ence V = q/C requires the work dW.

dW = 
q

C
dq (2.18)

where, W is the work measured in joule

q is the charge measured in coulomb

C is the capacitance, measured in farad

We can find the energy stored in a capacitance by integrating this equation. Starting with an

uncharged capacitance (q = 0) and moving charge from one plate to the other until the plates have

charge +Q and �Q requires the work W.

Wcharging = 
2

2
stored

0

1 1

2 2
= = =ò

Q
q Q

dq CV W
C C

(2.19)

Combining this with the Eq. (2.14) for the capacitance of a flat-plate capacitor, we get

Wstored = 2 21 1

2 2

A
CV V

d
e= (2.20)

where W is the energy measured in joule,

C is the capacitance, measured in farad,

V is the voltage measured in volt.
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Series or Parallel Arrangements of Capacitors Capacitors

in a parallel configuration each have the same potential differ-

ence (voltage). Their total capacitance (Ceq) is given by

Ceq = C1 + C2 + � + Cn

The reason for putting capacitors in parallel is to increase the

total amount of charge stored. In other words, increasing the

capacitance also increases the amount of energy that can be

stored. Its expression is

Estored = 
1

2
CV 2 (2.21)

Figure 2.6 Series arrangement of capacitors

The current through capacitors in series stays the same, but the voltage across each capacitor can

be different. The sum of the potential differences (voltage) is equal to the total voltage. Their total

capacitance is given by

eq 1 2

1 1 1 1

nC C C C
= + +¼+ (2.22)

In parallel, the effective area of the combined capacitor has increased, increasing the overall

capacitance. In series, the distance between the plates has effectively been increased, reducing the

overall capacitance.

Voltage Division by Capacitances In series connection When a total voltage ES is applied to

series connected capacitances C1 and C2, the charge QS which accumulates in the series circuit is:

QS = iS dt = ESCS = ESC1C2/(C1 + C2)

The voltages V1 and V2 which appear across the respective capacitances C1 and C2 are

V1 = iS dt/C1 = ESCS/C1 = ESC2/(C1 + C2)

V2 = iS dt/C2 = ESCS/C2 = ESC1/(C1 + C2)

In general terms, for capacitances C1, C2, C3, � connected in series

QS = iS dt = ESCS = ES/(1/CS) = ES/(1/C1 + 1/C2 + 1/C3 + �)

Vn = iS dt/Cn = ESCS/Cn = ES/Cn(1/CS) = ES/Cn(1/C1 + 1/C2 + 1/C3 + �)

Note that the highest voltage appears across the lowest capacitance.

In parallel connection: When a voltage EP is applied to parallel connected capacitances C1 and C2,

the charge QP which accumulates in the parallel circuit is

QP = iPdt = EPCP = EP(C1 + C2)

The charges Q1 and Q2 which accumulate in the respective capacitances C1 and C2 are:

Q1 = i1dt = EPC1 = QPC1/CP = QPC1/(C1 + C2)

Q2 = i2dt = EPC2 = QPC2/CP = QPC2/(C1 + C2)

Figure 2.5 Parallel arrangement of

capacitors
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In general terms, for capacitances C1, C
2
, C3, � connected in parallel:

QP = iPdt = EPCP = EP(C1 + C2 + C3 + �)

Qn = indt = EPCn = QPCn/CP = QPCn/(C1 + C2 + C3 + �)

Note that the highest charge accumulates in the highest capacitance.

2.5.3 Inductance

An electric current i flowing round a circuit produces a magnetic field and hence a magnetic flux F

through the circuit. The ratio of the magnetic flux to the current is called the inductance, or more

accurately self-inductance of the circuit. It is customary to use the symbol L for inductance, possibly

in honour of the physicist Heinrich Lenz. The quantitative definition of the inductance is, therefore,

L = 
i

f
(2.23)

It follows that the SI unit for inductance is Webbers per ampere. In honour of Joseph Henry, the unit

of inductance has been given the name Henry (H): 1 H = 1 Wb/A.

In the above definition, the magnetic flux j is that caused by the current flowing through the

circuit concerned. There may, however, be contributions from other circuits. Consider, for example,

two circuits C1, C2, carrying the currents i1, i2. The magnetic fluxes F1 and F2 in C1 and C2,

respectively, are given by

F1 = L11i1 + L12i2,

F2 = L21i1 + L22i2

According to the above definition, L11 an L22 are the self-inductances of C1 and C2, respectively. It

can be shown (see below) that the other two coefficients are equal: L12 = L21 = M, where M is called

the mutual inductance of the pair of circuits.

Inductor An inductor is a passive electrical device employed in electrical circuits for its property

of inductance.

Properties of Inductance The equation relating inductance and flux linkages can be rearranged as

follows.

l = Li (2.24)

Taking the time derivative of both sides of the equation yields

d

dt

l
 = L

di dL
i

dt dt
+

In most physical cases, the inductance is constant with time and so

d

dt

l
 = L

di

dt

By Faraday�s Law of Induction,we have

d

dt

l
 = �E = v
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where E is the Electromotive force (emf) and v is the induced voltage. Note that the emf is opposite to

the induced voltage. Thus

v = L
di

dt
(2.25)

or i(t) = 
0

1
( ) (0)

t

v t dt i
L

+ò

where i(0) is the initial current. When initial current is zero,

i(t) = 
0

1
( )

t

v t dt
L

ò (2.26)

These equations together state that, for a steady applied voltage v, the current changes in a linear

manner, at a rate proportional to the applied voltage, but inversely proportional to the inductance.

Conversely, if the current through the inductor is changing at a constant rate, the induced voltage is

constant.

From equation (2.25), it is clear that for an abrupt change in current, the voltage across the inductor

becomes infinite. Also, from equation (2.26), it is observed that for a finite change in voltage in zero

time the integral must be zero.

Therefore, the current through an inductor cannot change instantaneously.

Explanation of Initial Current i(0) It is possible that this inductor might have been used in some

other circuit earlier, where it absorbed some energy and then it was disconnected. Because of its non-

dissipative nature, the energy was stored within the inductor core. Now, as this inductor is connected

to a circuit, it gets some path to release its stored energy. Here, this stored energy is represented by

the initial current i(0).

Series and Parallel Arrangement of Inductors Inductors in

a parallel configuration each have the same potential differ-

ence (voltage). To find their total equivalent inductance (Leq):

eq 1 2

1 1 1 1

nL L L L
= + +¼+ (2.27)

The current through inductors in series stays the same, but

the voltage across each inductor can be different. The sum of

the potential differences (voltage) is equal to the total voltage.

To find their total inductance:

Figure 2.8 Series arrangement of inductors

Leq = L1 + L2 + � + Ln (2.28)

These simple relationships hold true only when there is no mutual coupling of magnetic fields

between individual inductors.

Figure 2.7 Parallel arrangement of

inductors
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2.6 TYPES OF ELECTRICAL ENERGY SOURCES

Energy source is defined as the device that generates electrical energy. They are classified according

to the current voltage characteristics. The classification is given below.

Independent Voltage Source An ideal voltage source has the following features.

(i) It is a voltage generator whose output voltage remains absolutely constant whatever be the

value of the output current.

(ii) It has zero internal resistance so that voltage drop in the source is zero.

(iii) The power drawn by the source is zero.

Figure 2.9 Independent voltage sources and their characteristics

In practical, the voltage does not remain constant, but falls slightly. This is taken care of by

connecting a small resistance (r) in series with the ideal source. In this case, the terminal voltage will

be,

v1(t) = v(t) � ir

i.e., it will decrease with increase in current i.

Independent Current Source An ideal current source has the following features.

(i) It produces a constant current irrespective of the value of the voltage across it.

(ii) It has infinity resistance.

(iii) It is capable of supplying infinity power.
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Figure 2.10 Independent current sources and their characteristics

In practice, the output current does not remain constant but decreases with increase in voltage. So,

a practical current source is represented by an ideal current source in parallel with a high resistance

(R) and the output current becomes,

i1(t) = i(t) � 
( )v t

R

Dependent Sources In dependent sources (also referred as controlled sources), the source volt-

age or current is not fixed, but is dependent on a voltage or current at some other location in the

circuit. Thus, there are four types of dependent sources.

(a) Voltage Controlled Voltage Source (VCVS)

(b) Current Controlled Voltage Source (CCVS)

(c) Voltage Controlled Current Source (VCCS)

(d) Current Controlled Current Source (CCCS)

Figure 2.11 Symbols of dependent sources

2.7 FUNDAMENTAL LAWS

The fundamental laws that govern electric circuits are the Ohm�s Law and the Kirchhoff�s Laws.

2.7.1 Ohm�s Law

Ohm�s Law states that the voltage v(t) across a resistor R is directly proportional to

the current i(t) flowing through it.

v(t) µ  i(t)

or v (t) = R × i(t)

This general statement of Ohm�s Law can be extended to cover inductances and capacitors as well

under alternating current conditions and transient conditions. This is then known as the Generalized

Ohm�s Law. This may be stated as

v(t) = Z(p) × i(t) , where p = d/dt = differential operator
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Z(p) is known as the impedance function of the circuit, and the above equation is the differential

equation governing the behaviour of the circuit.

For a resistor, Z(p) = R

For an inductor Z(p) = L p

For a capacitor, Z(p) = 
1

Cp

In the particular case of alternating current, p = jw,  so that the equation governing circuit behaviour

may be written as

V = Z(jw) . I, and

For a resistor, Z(jw )) = R

For an inductor, Z(jw ) = jwL

For a capacitor, Z(jw ) = 
1

j Cw

2.7.2 Kirchhoff�s Current Law (KCL)

Kirchhoff�s current law is based on the principle of conservation of charge. This requires that the

algebraic sum of the charges within a system cannot change. Thus, the total rate of change of charge

must add up to zero. Rate of change of charge is current.

Figure 2.12 Illustration of KCL

This gives us our basic Kirchhoff�s current law as the algebraic sum of the currents meeting at a

point is zero,. i.e., at a node, å In = 0, where In are the currents in the branches meeting at the node.

This is also sometimes stated as the sum of the currents entering a node is equal to the sum of the

currents leaving the node.

The theorem is applicable not only to a node, but to a closed system.

i1 + i2 � i3 + i4 � i5 = 0. Also for the closed boundary, ia � ib + ic � id � ie = 0.

2.7.3 Kirchhoff�s Voltage Law (KVL)

Kirchhoff�s voltage law is based on the principle of conservation of energy. This requires that the

total work done in taking a unit positive charge around a closed path and ending up at the original

point is zero.
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This gives us our basic Kirchhoff�s law volt-

age as the algebraic sum of the potential differ-

ences taken round a closed loop is zero.

i. e., around a loop, S Vn = 0, where Vn are the

voltages across the branches in the loop.

va + vb + vc + vd � ve = 0

This is also sometimes stated as the sum of the

emfs taken around a closed loop is equal to the

sum of the voltage drops around the loop.

Although all circuits could be solved using

only Ohm�s Law and Kirchhoff�s laws, the cal-

culations would be tedious. Various network theorems have been formulated to simplify these calcu-

lations.

l Sign Conventions for applying Kirchhoff�s Laws

1. When tracing through a voltage source from positive to negative terminal, the voltage

should be given a positive sign.

2. When tracing through a voltage source from negative to positive terminal, the voltage

should be given a negative sign.

3. When tracing through a resistance in the direction of current flow, the voltage should be

given a positive sign.

4. When tracing through a resistance in a direction opposite to the direction of current flow,

the voltage should be given a negative sign.

2.8 SOURCE TRANSFORMATION

Transformation of several voltage (or current) sources into a single voltage (or current) source and a

voltage source into a current source or vice-versa is known as source transformation. This makes

circuit analysis easier.

There are some rules of source transformation.

Rule (1) Several voltage sources {V1(t), V2(t), �, Vn(t)} connected in series will be replaced by a

single voltage source of value V = V1(t) + V2(t) + �+ Vn(t). Similarly, a number of current sources

Figure 2.13 Illustration of KVL

Figure 2.14 Source transformation technique: Rule (1)
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{I1(t), I2(t), �, In(t)} connected in parallel is replaced by a single current source of value I(t) = I1(t) +

I2(t) + �+ In(t).

Rule (2) A number of voltage sources V1(t), V2(t), �, Vn(t) in parallel will result in a single voltage

source, V(t) = V1(t) = V2(t) = � =Vn(t).

Therefore, voltage sources should not be connected in parallel unless they have identical potential,

as paralleling of sources with non-similar potential waveforms will result in heavy current, which may

damage the equipment.

Similarly, a number of current sources I1(t), I2(t), �, In(t) in series will result in a single current

source of value I(t) = I1(t) = I2(t) = �= In(t) and thus, current sources cannot be connected in series

if they are not identical.

Figure 2.15 Source transformation technique: Rule (2)

Rule (3) As far as the computations in the remainder of the network are concerned, a resistor in

parallel with an ideal voltage source and a resistor in series with an ideal current source may be

ignored.

Figure 2.16 Source transformation technique: Rule (3)

Rule (4) A voltage source V(t) in series with a resistor R can be converted into a current source I(t) in

parallel with the same resistor R, where, I(t) = 
( )V t

R
.

Similarly, a voltage source V(t) in series with a capacitor C may be converted into a current source

I(t) in parallel with C, where, I(t) = 
( )dV t

C
dt

; and a voltage source V(t) in series with an inductor L

may be converted into a current source I(t) in parallel with L, where, I(t) = 
1

( )V t dt
L
ò
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2.9 NETWORK ANALYSIS TECHNIQUES

Network analysis is the determination of the response output of a network when the input excitation is

given. There are two techniques of network analysis.

1. Nodal Analysis

2. Loop or Mesh Analysis

Nodal Analysis It is based on Kirchhoff�s current law (KCL). In this method, the unknown

variables are the node voltages. It is generally used when the circuit contains several current sources.

Steps

l If there is N number of nodes in a network, all nodes are labeled. One node is treated as datum

or reference node (zero potential) and the other node voltages are treated as unknowns to be

determined with respect to this reference.

l KCL is written at each node in terms of node voltages.

n KCL is applied at N � 1 of the N nodes of the circuit using assumed current directions, as

necessary. This will create N � 1 linearly independent equations, known as node equa-

tions.

n In a circuit with independent voltage sources, if two nodes of interest are separated by a

voltage source instead of a resistor or current source, then the concept of supernode is

used that creates constraint equations.

n The current is computed based on voltage difference between two nodes. The current in

any branch is obtained via ohm�s law as,

i = mm m mV V V

R R

-
= , for D.C.

l = mm m mV V V

Z Z

-
= , for A.C.

where, Vm > Vn and current flows from node m to n.

l Solution of the N � 1 simultaneous equations (by Gaussian elimination or matrix method)

gives the unknown node voltages.

Example 2.1 Let node voltages are E1, E2 and E3 at node-1, 2 and 3 respectively.

At node �1,

I1 = I3 + I4

I1 = 1 1 2

1 2

( )E E E

R R

-
+

Figure 2.17  Source transformation technique: Rule (4)
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I1 = 2
1

1 2 2

1 1 E
E

R R R

æ ö+ -ç ÷è ø
(i)

At node-2,

I4 = I5 + I6

2 31 2 2

2 4 3

( )( ) --
= +

E EE E E

R R R

31
2

2 2 3 4 4

1 1 1
0

EE
E

R R R R R

æ ö= - + + + -ç ÷è ø
(ii)

At node-3,

I6 = I7 + I8 � I2

2 3 3 3
2

4 5 6

( )E E E E
I

R R R

-
= + -

2
2 3

4 4 5 6

1 1 1E
I E

R R R R
æ ö= - + + +ç ÷è ø

(iii)

Given the other values, solution of Equations (i), (ii), and (iii) gives the values of E1, E2 and E3.

Concept of Supernode This concept is used when a circuit contains voltage sources. A supernode

is formed by enclosing a dependent or independent voltage source connected between two non-

reference nodes and any elements connected in parallel with it. This concept is necessary for nodal

analysis with voltage source, because the current through a voltage source is unknown. We consider

the following two cases.

Case 1 When a voltage source is connected between the reference node and a non-reference node:

In this case, the voltage of the non-reference node is taken equal to the voltage of the voltage source.

For the circuit shown in Fig. 2.19(a),

V1 = 5 V (i)

Case 2 When a voltage source is connected between two non-reference nodes:

In this case, a supernode is considered enclosing the non-reference nodes. Both KCL and KVL is

written for the supernode.

Figure 2.19(a) Circuit with supernode Figure 2.19(b) KVL with supernode

Figure 2.18 Network explaining node analysis

technique
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For this example, nodes 2 and 3 are forming the supernode.

By KCL at the supernode, i1 = i2 + i3

or 31 2 2 00

5 10 20

VV V V -- -
= + (ii)

To apply KVL to the supernode, the circuit is drawn as shown in Fig. 2.19(b). By KVL,

10 + V3 � V2 = 0 (iii)

Solving equations (i), (ii) and (iii), the node voltages are obtained, V1 = 5 V, V2 = 4.2857 V, V3 =

�5.7143 V.

Properties of Supernode

(i) It provides the constraint equations.

(ii) Both KCL and KVL are written for supernode.

(iii) A supernode does not have any voltage of its own.

Loop or Mesh Analysis It is based on Kirchhoff�s voltage law (KVL). In this method, the

unknown variables are the loop currents. It is generally used when the circuit contains several voltage

sources.

Steps

l If there is �N � number of loops/meshes in a network, all loops are labeled.

l KVL is written at each loop/mesh in terms of loop/mesh currents. Loop currents are those

currents flowing in a loop; they are used to define branch currents.

n For N independent loops, total N equations are written using KVL around each loop.

These equations are known as loop/mesh equations.

n The concept of supermesh is used in case a circuit contains current source that provides

the constraint equations.

l Solution of the N simultaneous equations gives the required loop/mesh currents.

Example 2.2 Two meshes are labeled as mesh-1 and mesh-2.

Applying KVL for mesh-1,

Vs = R1I1 + R2(I1 � I2) (i)

By constraint equation,

 I2 = � Is (ii)

Solving the equations, we get I1 and I2.

Concept of Supermesh This concept is used when a

circuit contains current sources. A supermesh is formed

by excluding the branch containing a dependent or inde-

pendent current source connected in common to two

meshes and any elements connected in series with it. This

concept is necessary for loop analysis with current source,

because the voltage drop across a current source is un-

known. We consider the following two cases.
Figure 2.20 Circuit explaining loop

analysis technique
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Case-1 When a current source is in one mesh:

In this case, the mesh current is taken equal to the

current of the current source. For example, for the

circuit shown in Fig. 2.21,

i2 = �10 A

Case-2 When a current source is connected between

two meshes:

In this case, a supermesh is considered excluding

the branch with the current source and any

elements connected in series with it. Both

KCL and KVL is written for the supermesh.

For example, consider the circuit shown in

Fig. 2.22. Supermesh is formed by exclud-

ing the branch with 3A current source.

By KVL for the supermesh,

2(i1 � i2) + 4(i3 � i2) + 8i3 = 6 (i)

By KCL at any one node of the omitted

branch (say, X),

i1 = 3 + i3 (ii)

Also by KVL for second mesh,

2i2 + 4(i2 � i3) + 2(i2 � i1) = 0 (iii)

Solving equations (i), (ii) and (iii), the

mesh currents are obtained, i1 = 3.437A,

i2 = 1.1052A, i3 = 0.4737A.

Properties of Supermesh

(i) It provides the constraint equations.

(ii) Both KCL and KVL are written for supermesh.

(iii) A supermesh does not have any current of its own.

Comparison of Loop and Node Analysis In any network having N nodes and B branches, there

are 2B unknowns, i.e., B�branch currents and B�branch voltages. These unknowns can be determined

either by loop analysis or nodal analysis.

The choice of the method depends on two factors given below.

1. Nature of the network The mesh-method is generally used for circuits having many series-

connected elements, voltage sources, or supermeshes. On the other hand, nodal analysis is

more suitable for circuits having many parallel-connected elements, current sources, or

supernodes.

The main factor for selecting any one method is the minimum number of equations. If a

circuit is having fewer nodes than meshes, then nodal analysis is used, while if a circuit with

fewer meshes than nodes, then loop method is used.

Figure 2.21 Current source in one mesh

Figure 2.22 Current source connected between two

meswhes
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2. Requirement of the problem If node voltages are required, nodal analysis is used. If branch/

mesh currents are required, loop analysis is used.

However, there are some particular circuits, where only one method can be applied. For example,

in analyzing transistor circuits, mesh method is the only possible method; while for op-amp circuits

and for non-planar networks, node method is the only possible method.

2.10 DUALITY

Duality is a transformation in which currents and voltages are interchanged. Two phenomena are said

to be dual if they are described by equations of the same mathematical form.

There are a number of similarities and analogies between the two circuit analysis techniques based

on loop-current method and node voltage method. The principal quantities and concepts involved in

these two methods based on KVL and KCL are dual of each other with voltage variables substituted

by current variables, independent loop by independent node-pair, etc.

This similarity is termed as �principle of duality�.

Some dual relations are:

v = Ri i = Gv

v = 
di

L
dt

i = 
dv

C
dt

v = 
1

idt
C
ò i = 

1
vdt

L
ò

Thus, the circuit elements (R, L, C) have some dual relationship. Duality also appears as relation

between two networks. For example, an RLC series circuit with voltage excitation is dual of an RLC

parallel circuit with current excitation.

 Figure.23(a) Series RLC Circuit Figure 2.23(b) Parallel RLC Circuit

For series circuit, 
1di

v Ri L idt
dt C

= + + ò

For parallel circuit, 
1dv

i Gv C vdt
dt L

= + + ò
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Dual Quantities and Concepts

Sl No. Quantity/Concept Dual

1 Current Voltage

2 Resistance Conductance

3 Inductance Capacitance

4 Impedance Admittance

5 Reactance Susceptance

6 Branch current Branch voltage

7 Mesh or Loop Node or Node-pair

8 Mesh Current or Loop Current Node Voltage or Node-pair Voltage

9 Link Tree Branch

10 Link Current Tree Branch Voltage

11 Tree Branch Current Link Voltage

12 Tie-set Cut-set

13 Short-circuit Open-circuit

14 Parallel Paths Series Paths

Construction of Dual of a Network
1. A dot is placed inside each independent loop of the given network. These dots correspond to

the non-reference nodes of the dual network.

2. A dot is placed outside the network. This dot corresponds to the datum node.

3. All internal dots are connected by dashed lines crossing the common branches and placing the

elements which are duals of the elements the original network.

4. All internal dots are connected to the external dot by dashed lines crossing all external branches

and placing dual elements of the external branch.

Conventions for Reference Polarities of Voltage Source and Reference Directions of Current

Source

(i) A clockwise current in a loop corresponds to a positive polarity (with respect to reference

node) at the dual independent node.

(ii) A voltage rise in the direction of a clockwise loop current corresponds to a current flowing

towards the dual independent nodes.

Finally, the dual construction can be checked by writing mesh equations and node equations of two

networks.

Example 2.3 Draw the dual of the network shown in

figure.

Solution Following the steps, dual network is

drawn.

Therefore, the dual network becomes as

shown in Fig. 2.26.

By KVL to the original network,

I1(3 + 4) � I2(4) = 100

Figure 2.24 Circuit of example
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�I1(4) + I2(4 + 5 + 6) � 5I3 = 0

I3 = 5

The dual equations will be,

V1(3 + 4) � V2(4) = 100

�V1I(4) + V2(4 + 5 + 6) � 5V3 = 0

V3 = 5

These equations satisfy the dual net-

work.

2.11 STAR-DELTA CONVERSION TECHNIQUE

The Y-D transform, also written Y-delta, Wye-delta, Kennelly�s delta-star transformation, star-

mesh transformation, T-P or T-pi transform, is a mathematical technique to simplify the analysis

Figure 2.25 Figure explaining drawing dual of network of Fig. 2.24

Figure 2.26 Dual of network of Fig. 2.24

Figure 2.27 (a) Star connection (b) Delta connection
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of an electrical network. The name derives from the shapes of the circuit diagrams, which look

respectively like the letter Y and the Greek capital letter D.

The transformation is used to establish equivalence for networks with three terminals. For equiva-

lence, the impedance between any pair of terminals must be the same for both networks.

For the star connection, the impedance between terminals 1 and 2 is Z1+ Z2.

For delta connection, the the impedance between terminals 1 and 2 is

12 23 31
12 23 31

12 23 31

( )
| | ( )

Z Z Z
Z Z Z

Z Z Z

+
+ =

+ +

As the impedance between terminals 1 and 2 should be same, therefore,

12 23 31
1 2

12 23 31

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(i)

Similarly, for terminals 2 and 3 we get,

23 31 12
2 3

23 31 12

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(ii)

31 12 23
3 1

31 12 23

( )Z Z Z
Z Z

Z Z Z

+
+ =

+ +
(iii)

Delta to Star Conversion

In this case, Z1, Z2, and Z3 are to be written in terms of Z12, Z23, and Z31.

By (i) � (ii) + (iii), we get 12 31
1

12 23 31

Z Z
Z

Z Z Z
=

+ +
(iv)

Similarly we get, 23 12
2

12 23 31

Z Z
Z

Z Z Z
=

+ +
(v)

and 31 23
3

12 23 31

Z Z
Z

Z Z Z
=

+ +
(vi)

Star to Delta Conversion

In this case, Z12, Z23, and Z31 are to be written in terms of Z1, Z2, and Z3.

Let Z = Z1Z2 + Z2Z3 + Z3Z1. Then from Eq. (iv) to Eq. (vi), we get

2 2 2
12 23 31 12 23 31 12 23 31 12 23 31

2 2 2
12 23 3112 23 31 12 23 31 12 23 31( ) ( ) ( )

= + + =
+ ++ + + + + +

Z Z Z Z Z Z Z Z Z Z Z Z
Z

Z Z ZZ Z Z Z Z Z Z Z Z
(vii)

From Eq. (vii) and Eq. (iv), we get Z = Z12Z3 Þ Z12 = 
3

Z

Z

Therefore, 1 2 2 3 3 1 1 2
12 1 2

3 3

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +
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Similarly, 1 2 2 3 3 1 2 3
23 2 3

1 1

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +

and 1 2 2 3 3 1 3 1
31 3 1

2 2

Z Z Z Z Z Z Z Z
Z Z Z

Z Z

+ +
= = + +

SOLVED EXERCISES

2.1 Find the values of V, Vab and the power delivered by the 5V

source. All values of resistances are in ohm.

Solution

Current,
2 1

A
60 30

i = =

By KVL,

20i + 2 + 5 + v + 70i = 0

1
7 90 7 90 10 V

30
v i= - - = - - ´ = -

\ 20 30 50 10
abv i v i i= + + = -

1
50 10 8.33 V

30
= ´ - = -

Power drawn by the 5V source = � (Power taken source) =

�5 ´ 1

30
= �0.166 W

2.2 Find the equivalent resistance between the terminals A and B of the circuit shown below.

Solution Converting star into delta,

1 2
12 1 2

3

15
8 9.875

8

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø

2 3
23 2 3

1

40
13 26.33

3

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø

3 1
31 3 1

2

24
11 15.8

5

r r
r r r

r

æ ö
= + + = + = Wç ÷è ø
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Combining the parallel connections of 5 W and 15.8 W and 4 W and 26.33 W, we have the reduced

circuit.

Again, converting the delta made of 6 W, 4 W and 9.875 W into equivalent star,

12 31
1

1 2 3

r r
r

r r r
=
+ +

6 4
1.2075

19.875

´
= = W

2

4 9.875
1.987

19.875
r

´
= = W

3

6 9.875
2.981

19.875
r

´
= = W

So, the given circuit becomes as shown in figure.

\
6.779 5.459

1.2075 4.23
6.779 5.459ABR

´
= + = W

+
Ans.

2.3 Find the equivalent resistance between

(i) A and B,

(ii) B and C,

(iii) C and A, and

(iv) A and N of the circuit shown.

Solution Converting the star into delta,

1 2
12 1 2

3

5 4
4 5 12.33

6

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø

2 3
23 2 3

1

5 6
5 6 18.5

4

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø

3 1
31 3 1

2

6 4
6 4 14.8

5

r r
r r r

r

´æ ö
= + + = + + = Wç ÷è ø
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The circuit becomes, as shown in below figure.

(i) Equivalent resistance between A and B,

3.73 (10.06 5.52)
3.035

3.70 10.06 5.52AB
R

´ +
= = W

+ +
. Ans.

(ii)
10.06 (3.73 5.52)

4.82
10.06 3.73 5.52BCR

´ +
= = W

+ +
Ans.

(iii)
5.52 (10.06 3.73)

3.94
6.52 10.06 3.73CAR

´ +
= = W

+ +
Ans.

(iv) Converting the delta into equivalent star,

1

5 6
0.83

5 6 25
r

´
= = W

+ +

2

25 6
4.167

5 6 25
r

´
= = W

+ +

3

25 5
3.472

5 6 25
r

´
= = W

+ +

The circuit becomes:

\
4 6.288

2.4448
4 6.288ANR

´
= = W

+
Ans.
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2.4 Find the current through the galvanometer using delta-star conversion.

Solution Converting the delta consisting of 20 W,
30 W and 50 W, we get,

1

20 30
6

20 30 50
r

´
= = W

+ +

2

20 50
10

20 30 50
r

´
= = W

+ +

3

30 50
15

20 30 50
r

´
= = W

+ +

\ RAC = 16 W

Main current 
8

0.5 A
16

i = =

Now, to calculate potential difference between the points B and D ;

VXC = 10 ´ 0.5 = 5 V

\ VBD = (10 ´ 0.25 � 5 ´ 0.25) = 1.25 V

\ Currant through the galvanometer, (50 (W)

1.25
0.025 A

50Gi = = Ans.

2.5 Twelve similar conductors each of R resistance form a cubical frame. Find the resistance across two

opposite corners of the cube.
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Solution The configuration is shown in figure.

The current distribution is shown.

So, the total voltage drop between two opposite corners A and B for a total current of I is,

5
. . .
3 6 3 6AB

I I I
V R R R R I= + + = ´

Equivalent resistance, 
5

6
AB

AC

V
R R

I
= = Ans.

2.6 A regular hexagon is formed from 6 wires of R ohm each. The corners are joined to the centre by six

more wires of 2R ohm each. Calculate the resistance of the hexagon between any two nodes

diametrically opposite.

Solution The hexagon can be redrawn as shown.
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The hexagon is symmetrical about XX ¢
Equivalent resistance of the second quadrant,

1

28
(2 | | / 2 ) || 4

27
R R R R R R= + =

So, the figure is modified as,

\ 1 1 1 1 1

28
( || ) ( || )

27ABR R R R R R R= + = = Ans.

2.7 Find the input resistance of the infinite section resistive network shown below.

Solution Let the equivalent resistance be Rin.

The network can be terminated at A¢ B¢ instead of AB.

in' [ ( ) || ( )]
A B

R R R R¢ = +
By assumption,

2
in in

in
in in

2 +
= + =

+ +
R R R R R

R R
R R R R

Þ 2 2
in in in2+ = +RR R RR R

Þ 2 2
in in 0R RR R- - =

Þ
2 2

in

4
[1 5]

2 2

R R R R
R

± +
= = ±

Taking positive sign, in

5 1

2
R R

æ ö+
= ç ÷è ø

2.8 In the network shown, calculate the power input to each of

the following elements when it is connected across A and B.

(a) a resistance RAB of 59 W.

(b) a voltage source of �160 V.

Solution

(a) Converting the two deltas into star,

1

18 6
3

18 12 6
r

´
= = W

+ +
, 2

6 12
2

36
r

´
= = W ,

3

18 12
6

36
r

´
= = W

and 1 1 1
1 2 3

14 7 28 14
2 , 8 , 4

49 49
r r r

´ ´
= = W = = W = W
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\ eq

69 20
3 2 20.5

69 20
R

´æ ö= + + = Wç ÷è ø+

Main current, 
2100

102.41 A
20.5

i = =

Current in 59W resistor, 59

20
102.41 23.01A

89
i = ´ =

Power input, 2 2
59( ) 59 (23 01) 59 31248 189 W 31kWiP i= ´ = × ´ = × = Ans.

(b)

By KVL,

1 215 10 2260 0i i- + =

and 2 130 10 160 0- - =i i

Solving, 1 206.285 Ai = -

2 63.43 Ai = -

\ Power input, 1 2160 ( ) 160 ( 206 285 63 43) 17.37 kWiP v i i i= ´ = - ´ - = - ´ - × + × =
2.9 The two-dimensional network of the figure consists

of an infinite number of square meshes, each side of

which has a resistance of R. Find the effective resis-

tance between two adjacent nodes such as X and Y.

Solution Let the current flowing into the circuit at

node X be I. Since the infinite network is symmetri-

cal about X, the current I in going from X to infinity,

is divided equally along the branches XQ, XT, XP

and XY.
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The current I then returns from infinity and is taken from the network at node Y.

Again, by symmetry, the currents flowing along RY, XY, SY and TY are each I/4.

Hence, the total current flowing along XY is 
4 4 2

I I I+ = . So, the voltage between X and Y,

2XY

I
V R= ´

So, the effective resistance between X and Y, 
2

XY
XY

V R
R

I
= = Ans.

2.10 Use loop current analysis to find currents in all branches of the

network of figure. Also, find the power delivered by 5A current

source. All resistances are in ohm.

Solution By KVL,

1 2 2 4 1 35 10 5( ) 15( ) 50i i i i i i+ + - + - =

or, 1 2 3 420 15 15 5 50i i i i+ - - = (i)

and, 4 2 4 4 35( ) 30 10 20( ) 0i i i i i- + + + - =

or, 2 3 45 20 35 30i i i- - + = - (ii)

By constraint equations,

2 1( ) 5i i- = (iii)

and 3 10i = (iv)

From Equation (i) and Equation (ii),

2 2 420( 5) 15 15 10 5 50i i i- + - ´ - =
or, 2 4 2 435 5 300 7 60i i i i- = Þ - =

and, 2 4 2 45 35 170 7 34i i i i- + = Þ - + =
Solving 4 6.02083 Ai =

2 4.4583 Ai = , i2 = 9.4583 A

and 3 10i A=

Power delivered by 5A current source = 110.83 5 554.16 Wv i´ = ´ =
[To calculate the voltage across the 5A current source, v, writing KVL for Mesh (1),

1 1 35 15( ) 50i v i i+ + - = 1 350 20 15 200 20 4.4583v i iÞ = - + = - ´  = 110.83 V]

2.11 For the circuit, find the voltage Vx using nodal analysis.
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Solution

By KCL at node (1),

1 20.6 25 0
50 40
x

y y

V v v
I I

-
- + + - + = (i)

By KCL at node (2),

2 0.2 xv V= (ii)

and other constraint equation,

1and
100

x
y x

V
I v V= = (iii)

From Equation (i), 1 20 6 25 0
100 50 100 40

x x xV V V v v-
- × + + - + =

Þ 120 2 4 50 5 5 0.2 0x x x x xV V V V V- + + - + - ´ =

Þ 120
3 V

40xV = = -
-

Ans.

2.12 Use nodal analysis to find the voltages VA, VB and Vx in the circuit, in which I1 = 0.4 A.

Solution By KCL at node (A),

0.4 0.03 0
100 20

A A B
x

V V V
V

-
- + + + = (i)

By KCL at node (B),

0
20 40 40

B CB A B V VV V V --
+ + = (ii)

Constraint equations,

40
B

y

V
I = (iii)
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and 80C yV I= (iv)

and ( )A B xV V V- = (v)

From Equation (i),

0.4 0.03 0.03 0
100 20 20

A A B

A B

V V V
V V- + + - + - =

Þ (9 8 ) 40A BV V- = (vi)

From Equation (ii),

[by Eq. (iii) and Eq. (iv)]=A BV V

Thus, solving Equation (vi) 40VA BV V= =

\ ( ) 0x A BV V V= - = Ans.

2.13 For the circuit, use loop analysis to find I1 and the power absorbed by the 500 W resistor.

Solution Converting the dependent current source into

dependent voltage source,

By KVL,

1 1 1

50
800 200 50 0.083 A

600
I I I- = Þ = = Ans.

Power absorbed by the 500 resistor

2
2
1

50
500

600
I R

æ ö= = ´ç ÷è ø

500
3.47 W

144
= = Ans.

2.14 Determine the currents in all the branches of the network.



2.34 Network Theory

Solution By KVL, for Mesh (1)

1 2 1 2 15 10 10( ) 5 5I I I I I+ + - + =

Þ 1 120 5 0.25 AI I= Þ =
By KVL for Mesh (2),

2 1 2 15 10 5 ( ) 10 0I I I I+ - + - ´ =

2 115 15 10 (3.75 10) 6.25I I= - = - = -

\ 2 0.416 AI = - Ans.

2.15 Obtain the current I in the network shown.

Solution By KVL for the second mesh

3 5 4 0
R R

V I V- + + + =

or, 2 5 4 0
R

V I- + + = (i)

Also, 2 ( 2),
R

V I= ´ -  putting this in Equation (i),

2 2( 2) 5 4 0I I- ´ - + + =

Þ 4 8 5 4 0I I- + + + =

Þ 12 AI = - Ans.

MULTIPLE-CHOICE QUESTIONS

2.1 Find the odd one from the following elements.

(a) Inductor (b) Capacitor (c) Resistor (d) Transistor

2.2 Kirchhoff�s laws are valid for

(a) linear circuits only. (b) passive time-invariant circuits.

(c) non-linear circuits only. (d) both linear and non-linear circuits.

2.3 Kirchhoff�s laws are applicable to

(a) d.c. circuits.

(b) circuits with sinusoidal excitation only.

(c) circuits with d.c. and sinusoidal excitation only

(d) circuits with any excitation.

2.4 Kirchhoff�s law fails in case of

(a) linear networks. (b) non-linear networks.

(c) dual networks. (d) distributed parameter networks.
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2.5 KCL is a consequence of law of conservation of

(a) energy (b) charge (c) flux (d) all of the above.

2.6 A component that opposes the change in circuit current is

(a) resistance (b) capacitance (c) inductance (d) conductance.

2.7 A component that opposes the change in circuit voltage is

(a) resistance (b) capacitance (c) inductance (d) conductance

2.8 For a d.c. voltage, an inductor

(a) is virtually a short-circuit. (b) is an open-circuit.

(c) depends on polarity. (d) depends on voltage value.

2.9 A network N ¢ is a dual of a network N if

(a) both of them have same mesh equations.

(b) both of them have same node equations.

(c) mesh equations of one of them are node equations of the other.

(d) none of the above.

2.10 A connected planar network has 4 nodes and 5 elements. The number of meshes in its dual network

is

(a) 4 (b) 3 (c) 2 (d) 1.

2.11 Two networks can be dual when

(a) their nodal equations are the same.

(b) the loop equations of one network are the nodal equations of the other.

(c) their loop equations are the same.

(d) none of these.

2.12 The internal impedance of an ideal current source is

(a) zero (b) infinite (c) both (a) and (b) (d) none of these.

2.13 The internal impedance of an ideal voltage source is

(a) zero (b) infinite (c) both (a) and (b) (d) none of these.

2.14 The internal impedance of a dependent voltage source is

(a) zero (b) infinity (c) fraction of ohm (d) any unknown value.

2.15 An ideal voltage source will charge an ideal capacitor

(a) in infinite time (b) exponentially (c) instantaneously (d) none of the above.

2.16 A practical current source is usually represented by

(a) a resistance in series with an ideal current source.

(b) a resistance in parallel with an ideal current source.

(c) a resistance in series with an ideal voltage source.

(d) none of the above.

2.17 Energy stored in a capacitor is

(a) 21

4
CV (b) 21

2
CV (c)

0

1

2
C

¥

ò (d) 0

2.18 The node method of circuit analysis is based on

(a) KVL and Ohm�s law (b) KCL and KVL

(c) KCL, KVL and Ohm�s law (d) KCL and Ohm�s law

2.19 The loop method of circuit analysis is based on

(a) KVL and Ohm�s law. (b) KCL and KVL.

(c) KCL, KVL and Ohm�s law. (d) KCL and Ohm�s law.
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2.20 Two wires A and B of the same material and length L and 2L have radius r and 2r, respectively. The

ratio of their specific resistance will be

(a) 1 : 1 (b) 1 : 2 (b) 1 : 4 (d) 1 : 8

2.21 There are two wires A and B. A is 20 times longer than B and has half the cross-section of that of B.

If the resistance of B is 1 W, the resistance of A will be

(a) 40 W (b)
1

40
 W (c) 20 W (d) 10 W

2.22 The resistance between the opposite faces of 1 m cube is found to be 1 W. If its length is increased to

2 m, with its volume remaining the same, then its resistance between the opposite faces along its

length is

(a) 2 W (b) 4 W (c) 1 W (d) 8 W

(e)
1

2
  W

2.23 A wire of length l and of circular cross-section of radius r has a resistance R ohm. Another wire of

same material and cross-sectional radius 2r will have the same resistance R if the length is

(a) 2l (b) l/2 (c) 4l (d) l
2

2.24 Two resistances of equal value, when connected in parallel give an equivalent resistance of R. If

these resistances are connected in series, the equivalent resistance will be

(a) R (b) 4R (c) 2R (d)
2

R

2.25 A series arrangement of �n� identical resistances is changed into a parallel arrangement. The new

total resistance will become times the original resistance.

(a)
1

n
(b)

2

1

n
(c)

3

1

n
(d)

4

1

n

2.26 If a two-terminal network element in a circuit has voltage and current variables that follow the

associated reference directions and its power is negative, which of the following is true?

(a) The element is supplying energy to the rest of the circuit.

(b) The element is receiving energy from the rest of the circuit.

(c) Either (a) or (b) could be true.

2.27 If an ideal voltage source and an ideal current source are connected in parallel, what are the

properties of the combination?

(a) The same as a voltage source.

(b) The same as a current source.

(c) Different from either a voltage source or a current source.

2.28 If an ideal voltage source and an ideal current source are connected in series, what are the properties

of the combination?

(a) The same as a voltage source.

(b) The same as a current source.

(c) Different from either a voltage source or a current source.

2.29 When ideal voltage sources are connected in series, which of the following is true?

(a) The voltages add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KVL; thus it is not permitted.

(c) Neither is true.
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2.30 When ideal arbitrary voltage sources are connected in parallel, which of the following is true?

(a) The voltages add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KVL; thus it is not permitted.

(c) Neither is true.

2.31 When ideal arbitrary current sources are connected in series, which of the following is true?

(a) The currents add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KCL; thus it is not permitted.

(c) Neither is true.

2.32 When ideal current sources are connected in parallel, which of the following is true?

(a) The currents add, independent of whether the individual sources are constant valued or have

outputs that are functions of time.

(b) The connection violates KCL; thus it is not permitted.

(c) Neither is true.

2.33 In a network containing only independent current sources and resistors, if the values of all resistors

are doubled, the values of the node voltages

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.34 In a network containing only independent current sources and resistors, if the values of all the

current sources are doubled, the values of the node voltages

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.35 In a network containing only independent voltage sources and resistors, if the values of all the

voltage sources are doubled, the values of the mesh currents

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way.

2.36 In a network containing only independent voltage sources and resistors, if the values of all the

resistors are doubled, the values of the mesh currents

(a) are doubled. (b) remain the same.

(c) are halved. (d) change in some other way

2.37 If the same constant value of current is added to all the independent current sources in a network, the

node voltages

(a) will all have a constant value added. (b) will remain the same.

(c) will all have a constant value subtracted. (d) will change in some other way.

2.38 If the same constant value of voltage is added to each of the independent voltage sources in an

arbitrary network containing only resistors are independent voltage sources, the mesh currents

(a) will all have a constant value added. (b) will remain the same.

(c) will all have a constant value subtracted. (d) will change in some other way.

2.39 Two resistors R1 and R2 give combined resistance of 4.5 W when in series and 1 W when in parallel,

the resistances are

(a) 2 W and 2.5 W (b) 1 W and 3.5 W (c) 1.5 W and 3.5 W (d) 4 W and 0.5 W.
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2.40 When all the resistances in the circuit are of 1W each, the equivalent resistance across the points A

and B will be

(a) 1 W (b) 0.5 W (c) 2 W (d) 1.5 W.

2.41 Energy expanded or heat generated in Joules when a current of I flows through a conductor R for t

second is given by

(a) 2
I Rt (b) IRt (c) 2IR t (d) 2

IRt

2.42 A 2 W resistance having a current of 2A will dissipate the power of

(a) 2 W (b) 4 W (c) 8 W (d) 8 J

2.43 The ratio of resistances of a 100 W, 220 V lamp to that of a 100 W, 110 V lamp will be, at the

respective voltages

(a) 4 (b)  2 (c)
1

2
(d)

1

4
2.44 For the circuit shown in figure, the value of current I is

(a) 10 A (b) 15 A

(c) 20 A (d) 25 A

2.45. The current in the 1 W resistor is

(a) 5 A (b) 10 A

(c) 15 A (d) zero.

2.46 The current in a 5 W resistor branch in a linear network is 5 A. If this branch is replaced by a resistor

of 10 W, the current in this branch will be

(a) 5 A (b) 10 A

(c) less than 4 A (d) none of these.

2.47 The potential of the point A in the given network is

(a) 6 V

(b) 7 V

(c) 8 V

(d) none of these.
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2.48 The current through 30 W branch in the given circuit is

(a) 2.5 A (b) 2.25 A (c) 2 A (d) 10 A

2.49 The current through 8 W branch is

(a) 1 A

(b) 0.5 A

(c) 1.5 A

(d) none of these.

2.50 If the current in the 7 W resistor branch is 0.5 A as

shown in the figure and now if the source is connected

in series with 7 W branch and the terminals AB are

shorted, the current in the 5 W resistor is

(a) 1 A (b) 0.5 A

(c) 9.75 A (d) none of these.

2.51 The voltage across 5 A source in the given circuit is

(a) 25 V (b) 15 V (c) 17.5 V (d) 20 V.

2.52 In the circuit shown in figure, current I flows through the

resistance R. If a battery of e.m.f. 2 V and internal resistance

of 1 W is connected between the terminals A and A¢ with
positive terminal connected to A¢, the current through R would

be

(a) 2 A (b) 1.66 A

(c) 1 A (d) 1.5 A.

2.53 The circuit shown in the figure is linear and time-invari-

ant. The sources are ideal. The voltage across the

1 W resistor and the current through it will be

(a) �5 V and �5 A (b) 1 V and 1 A

(c) 1 1 and 6 A (d) 5 V and 5 A.

2.54 The number of 2 mF, 400 V capacitors needed to obtain

a capacitance value of 1.5 mF rated for 1600 V is

(a) 12 (b) 8 (c) 6 (d) 4.
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2.55 The value of the current I flowing in the 1 W resistor in the circuit, shown in figure will be

(a) 10 A (b) 6 A (c) 5 A (d) zero.

2.56 In the circuit shown in figure, the current I through RL is

(a) 2 A (b) zero (c) �2 A (d) �6 A.

2.57 A voltage source with an internal resistance RS, supplies power to a load RL. The power delivered to

the load varies with RL as

(a) (b)

(c) (d)

2.58 A simple equivalent circuit of the 2-terminal network shown in figure is
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(a) (b)

(c) (d)

2.59 Two condensers of 20 mF and 40 mF capacitances are connected in series across a 90 V supply.

After charging, they are removed from the supply and are connected in parallel with positive terminals

connected together and similarly the negative terminals. Then the voltage across them will be

(a) 90 V (b) 60 V (c) 40 V (d) 20 V.

2.60 The current read by the ammeter A in the a.c. circuit shown in the given figure is

(a) 9 A (b) 5 A (c) 3 A (d) 1 A

2.61 In the circuit shown in the given figure, current I is

(a)
2

5
-  A (b)

24

5
 A

(c)
18

5
 A (d)

2

5
 A

2.62 For the circuit shown in the given figure, the voltage VAB is

(a) 6 V (b) 10 V

(c) 25 V (d) 40 V
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2.63 The equivalent resistance between the terminal points X and Y in the circuit shown is

(a) 15 W (b) 45 W (c) 55 W (d) 30 W
2.64 In the circuit shown in the figure, if I = 2, then the value of the battery voltage V will be

(a) 5 V (b) 3 V (c) 2 V (d) 1 V

2.65 The effective resistance between the terminals A and B in the circuit shown in the figure is

(a) R (b) R � 1 (c) R/2 (d)
6

11
R

2.66 The current in the given circuit with a dependent source is

(a) 10 A (b) 12 A (c) 14 A (d) 16 A
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2.67 The value of the resistance R shown in the given figure is

(a) 3.5 W (b) 2.5 W (c) 1 W (d) 4.5 W .
2.68 For the circuit shown in the given figure, when the volt-

age E is 10 V, the current i is 1 A. If the applied voltage

across terminal C�D is 100 V, the short circuit current

flowing through the terminal A�B will be

(a) 0.1 A (b) 1 A

(c) 10 A (d) 100 A.

2.69 For the circuit shown in the given figure, the cur-

rent I is given by

(a) 3 A (b) 2 A

(c) 1 A (d) zero.

2.70 The value of V in the circuit shown in the given

figure is

(a) 1 V (b) 2 V (c) 3 V (d) 4 V

2.71 For the circuit given in figure, the power delivered by the 2

volt source is given by

(a) 4 W (b) 2 W

(c) �2 W (d) �4 W

2.72 The current through 120 W resistor in the circuit shown in the

figure is

(a) 1 A (b) 2 A (c) 3 A (d) 4 A
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EXERCISES

2.1 Find the current in the 10 W resistor in the network shown. All values are in ohm.

[4 A]

2.2 Find RAB in the network shown in figure below

[23.52 W]

2.3 Use loop current analysis to find the current in each battery in the network shown in figure below.

[0.793 A, 0.408 A, 0.295 A]

2.4 Find the current through 2 W resistance in the network shown below. Use loop current method.

[�0.841 A]
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2.5 Convert the circuit shown in figure to a single voltage source in series with a single resistor.

5 8
V,

3 3
V R

é ù= = Wê úë û
 [V = 104 V, R = 10 W]

2.6 Convert the circuit shown in figure to a single current source in parallel in with a single resistor.

[I = 1 A, R = 2.73 W]
2.7 Determine the voltage V in the circuit, using the source transformation technique and/or any other

method.

[V = 56.25 V]

2.8 Find the current flowing through 5W resistor using source transformation technique.

11
A

27

é ù
ê úë û
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2.9 Reduce the network shown in Fig. (a) to a form shown in Fig. (b) using successive source transfor-

mations.

Figure (a) Figure (b)

[I = 2.14 A, R = 1.75 W]

2.10 For the circuit of figure, apply source transformation and then find V1 and V2 by nodal analysis.

[V1 = 40 V, V2 = 15 V]

2.11 In the circuit shown in figure if I1 = 2 A, determine RL and the power delivered in it. [2 W; 18 W]

2.12 Use nodal analysis to determine v1 and power being supplied by the dependent current source in the

circuit shown in figure.
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[148.1 V; 178.2 W]

2.13 Use mesh analysis to find the current ix in the circuit shown in figure.

[8.33 A]

2.14 Use mesh analysis to find the current ix in the circuit shown in figure.

[2.79 A]

2.15 Construct the dual of a network shown below.

(a) (b)
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(c) (d)

(e)

(f)

2.16 Draw a circuit and its dual if the mesh equations of the circuit are

(a) 1 2 3 2 3 1 2 38 2 4 5; 14 6 3; 4 6 15 6i i i i i i i i- - = - = - - + =
(b) 1 2 3 2 3 1 2 38 2 4 6; 7 5 3; 4 5 9 5i i i i i i i i- - = - = - - - + =

(c) 1 2 3 1 2 3 1 2 34 4; 6 5 6; 5 8 2i i i i i i i i i- - = - - + - = - - + =
2.17 Draw a circuit and its dual if the node equations of the circuit are

(a) 1 2 3 1 2 3 2 34 4; 6 5 6; 5 8 2v v v v v v v v- - = - - + - = - + =

(b) 1 2 3 2 3 1 2 34 5; 3 3; 2 6v v v v v v v v- - = - = - - - + =
(c) 1 2 3 1 2 3 1 2 36 2 5; 2 8 3 4; 3 9 0v v v v v v v v v- - = - + - = - - - + =

SHORT-ANSWER TYPE QUESTIONS

2.1 Define an Electrical Network. �All circuits are networks, but all networks are not circuits.� Justify

this statement.

2.2 (a) State the basic assumptions for circuit analysis.

(b) Briefly mention the different source transformation techniques.

(c) Discuss the properties of an ideal current source and ideal voltage source.

(d) Explain how a voltage source can be converted into an equivalent current source and vice-versa.

2.3 (a) State and explain Kirchhoff�s current law (KCL) and Kirchhoff�s voltage law (KVL).

(b) Give a brief comparison of the loop method and node method of circuit analysis.

2.4 Explain �duality� in electrical engineering. How can you draw the dual of a network?

2.5 Establish the p � T transformation relations. Show that the dual of a T network is a p-network.
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ANSWERS TO MULTIPLE-CHOICE QUESTIONS

2.1 (d) 2.2 (d) 2.3 (d) 2.4 (d) 2.5 (b) 2.6 (c) 2.7 (b)

2.8 (a) 2.9 (c) 2.10 (b) 2.11 (b) 2.12 (b) 2.13 (a) 2.14 (d)

2.15 (c) 2.16 (b) 2.17 (b) 2.18 (d) 2.19 (a) 2.20 (a) 2.21 (a)

2.22 (b) 2.23 (c) 2.24 (b) 2.25 (b) 2.26 (a) 2.27 (a) 2.28 (a)

2.29 (a) 2.30 (b) 2.31 (b) 2.32 (a) 2.33 (a) 2.34 (a) 2.35 (a)

2.36 (c) 2.37 (d) 2.38 (d) 2.39 (c) 2.40 (b) 2.41 (a) 2.42 (c)

2.43 (a) 2.44 (d) 2.45 (d) 2.46 (c) 2.47 (c) 2.48 (c) 2.49 (b)

2.50 (b) 2.51 (c) 2.52 (d) 2.53 (d) 2.54 (a) 2.55 (c) 2.56 (c)

2.57 (c) 2.58 (a) 2.59 (c) 2.60 (b) 2.61 (b) 2.62 (a) 2.63 (d)

2.64 (c) 2.65 (c) 2.66 (b) 2.67 (a) 2.68 (c) 2.69 (c) 2.70 (c)

2.71 (b) 2.72 (c)



CHAPTER

3
Network Topology

(Graph Theory)

3.1 INTRODUCTION

The word topology refers to the science of place. In mathematics, topology is a branch of geometry

in which figures are considered perfectly elastic.

Network Topology refers to the properties that relate to the geometry of the network (circuit).

These properties remain unchanged even if the circuit is bent into any other shape provided that no

parts are cut and no new connections are made.

The first step in studying the topological properties of a network is to suppress the nature of the

circuit elements that make up the network. We do so by constructing a graph of the circuit.

3.2 GRAPH OF A NETWORK

A linear graph (or simply a graph) is defined as a collection of points called nodes, and line segment

called branches, the nodes being joined together by the branches.

Figure 3.1(a) Circuit Figure 3.1(b) Graph of the Circuit
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While drawing graph of a given network, the following rules are to be noted.

(i) All passive elements between the nodes are represented by lines.

(ii) The independent current sources and voltage sources are represented by their internal imped-

ances (i.e., current sources by open circuit and voltage sources by short circuit) if they are

accompanied by passive element, viz., a shunt admittance in a current source and a series

impedance in a voltage source.

(iii) If the sources are not accompanied by passive elements, an arbitrary impedance (say resistance

R) or admittance is assumed to accompany the sources and finally, we find the results by

letting the impedance R ® 0 or R ® µ as the case may be for the current or voltage sources.

3.3 TERMINOLOGY

In order to discuss the more involved methods of circuit analysis, we must define a few basic terms

necessary for a clear, concise description of important circuit features.

Figure 3.2 Circuit illustrating terminologies

(a) Node A node is a point in a circuit where two or more circuit elements join.

Example a, b, c, d, e, f and g

(b) Essential Node A node that joins three or more elements.

Example b, c, e and g

(c) Branch A branch is a path that connects two nodes.

Example v1, R1, R2, R3, v2, R4, R5, R6, R7 and I

(d) Essential branch Those paths that connect essential nodes without passing through an essen-

tial node.

Example c�a�b, c�d�e, c�f�g, b�e, e�g, b�g (through R7), and b�g (through I )

(e) Loop A loop is a complete path, i.e., it starts at a selected node, traces a set of connected basic

circuit elements and returns to the original starting node without passing through any interme-

diate node more than once.

Example a b e d c a, a b e g f c a, c d e b g f c, etc.
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(f) Mesh A mesh is a special type of loop, i.e., it does not contain any other loops within it.

Example a b e d c a, c d e g f c, g e b g (through R7) and g e b g (through I )

(g) Oriented Graph A graph whose branches are oriented is called a directed or oriented graph.

(h) Rank of Graph The rank of a graph is (n�1) where n is the number of nodes or vertices of the

graph.

(i) Planar and Non-planar Graph A graph is planar if it can be drawn in a plane such that no

two branches intersect at a point which is not a node.

Figure 3.3(a) Planar graph Figure 3.3(b) Non-planar graph

( j) Subgraph A subgraph is a subset of the branches and nodes

of a graph. The subgraph is said to be proper if it consists of

strictly less than all the branches and nodes of the graph.

(k) Path A path is a particular sub graph where only two branches

are incident at every node except the internal nodes (i.e.,

starting and finishing nodes). At the internal nodes, only one

branch is incident.

In the example in the Fig. 3.3 (c), branches 2, 3, and 4, together

with all the four nodes, constitute a path. A graph is connected if

there exists a path between any pair of vertices. Otherwise, the

graph is disconnected.

3.4 CONCEPT OF TREE

For a given connected graph of a network, a connected subgraph is known as a tree of the graph if the

subgraph has all the nodes of the graph without containing any loop.

Twigs The branches of tree are called twigs or tree-branches. The number of branches or twigs, in

any selected tree is always one less than the number of nodes, i.e.,

Twigs = (n � 1), where n is the number of nodes of the graph.

For this case, twigs = (4 � 1) = 3 twigs. These are shown by solid lines in Fig. 3.4 (b).

Links and Co-tree If a graph for a network is known and a particular tree is specified, the

remaining branches are referred to as the links. The collection of links is called a co-tree. So, co-tree

is the complement of a tree. These are shown by dotted lines in Fig. 3.4(b).

Figure 3.3(c)
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Figure 3.4(a) Circuit Figure 3.4(b) Trees and links of circuit of Fig. 3.4(a)

The branches of a co-tree may or may not be connected, whereas the branches of a tree are always

connected.

To summarize,

Number of nodes in a graph = n

Number of independent voltages = n �1

Number of tree-branches = n � 1

Number of links = L = (Total number of branches) � (Number of tree-branches)

= b � (n � 1) = b � n + 1

Total number of branches = b = L + (n � 1)

Properties of a Tree
1. In a tree, there exists one and only one path between any pairs of nodes.

2. Every connected graph has at least one tree.

3. A tree contains all the nodes of the graph.

4. There is no closed path in a tree and hence, tree is circuitless.

5. The rank of a tree is (n � 1).

3.5 INCIDENCE MATRIX [Aa]

The incidence matrix symbolically describes a network. It also facilitates the testing and identification

of the independent variables. Incidence matrix is a matrix which represents a graph uniquely.

For a given graph with n nodes and b branches, the complete incidence matrix Aa is a rectangular

matrix of order n ´ b, whose elements have the following values.

Number of columns in [Aa] = Number of branches = b

Number of rows in [Aa] = Number of nodes = n

Aij = 1, if branch j is associated with node i and oriented away from node j.

= �1, if branch j is associated with node i and oriented towards node j.

= 0, if branch j is not associated with node i.

This matrix tells us which branches are incident at which nodes and what are the orientations relative

to the nodes.
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Example

üï
ý
ïþ

Figure 3.6 Graph illustrating

incidence matrix and

KLC

Incidence matrix A
Branches

1 2 3 4 5 6

a 1 0 0 �1 0 0 Reduced

Nodes b 0 1 0 1 �1 0 Incidence

c 0 0 1 0 1 �1 Matrix A

Reference Node d �1 �1 �1 0 0 1

3.5.1 Incidence Matrix and KCL

For the above graph, Kirchhoff�s current law for the branch currents (i1, i2, �, i6) gives the equations,

i1 + i2 + i6 = 0

� i1 + i3 + i5 = 0

� i2 � i3 + i4 = 0

� i4 + i5 � i6 = 0

In matrix form, these equations can be represented as,

1

2

3

4

5

6

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

b

b

b

b

b

b

i

i

i

i

i

i

é ù
ê úé ù ê úê ú ê ú- -ê ú ê úê ú- - ê úê ú ê ú- -ê úë û ê ú
ê úë û

 = 0

or 0a bA I =

where, Aa is the complete incidence matrix of the graph.

Reduced Incidence Matrix [A] The matrix obtained from Aa by eliminating one of the rows is

called Reduced Incidence Matrix. In other words, suppression of the datum node (reference node)

from the incidence matrix results in reduced incidence matrix.

For the graph shown in Fig. 3.6, reduced incidence matrix is given as,

A = 

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

é ù
ê ú- -ê ú
ê ú- -ë û

Figure 3.5(a) Network Figure 3.5(b) Graph of network
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3.5.2 Incidence Matrix and KVL

For the graph shown in Fig. 3.6, the branch voltages (vb1, vb2, �vb6) can be represented in terms of

the node voltages (vn1, vn2, vn3, vn4) as,

vb1 = (vn1 � vn2), vb2 = (vn1 � vn3), vb3 = (vn2 � vn3), vb4 = (vn3 � vn4),

vb5 = (�vn1 + vn4), vb6 = (vn1 � vn4),

Thus, the Kirchhoff�s voltage law in matrix form can be written as,

1

2

3

4

1

2

3

4

5

6

1 1 0 0

1 0 1 0

0 1 1 0

0 0 1 1

0 1 0 1

1 0 0 1

b

n
b

n b

bn

bn

b

v

V v

V v

vV

vV

v

- é ùé ù
ê úê ú é ù- ê úê ú ê ú
ê úê ú- ê ú

= ê úê ú ê ú- ê úê ú ê ú
ê úê ú ê ú-

ë û ê úê ú
-ê ú ê úë û ë û

or T
a n bA V V=

3.5.3 Properties of Complete Incidence Matrix

(i) The sum of the entries in any column is zero.

(ii) The determinant of the incidence matrix of a closed loop is zero.

(iii) The rank of incidence matrix of a connected graph is (n�1).

3.6 NUMBER OF POSSIBLE TREES OF A GRAPH

The number of possible trees of a graph, = det {[A] ´ [A]T}

where, A is the reduced incidence matrix obtained by eliminating any one row of the complete

incidence matrix Aa, and [A]T is the transpose of the matrix [A].

Example For the graph shown in Fig. 3.6, the complete incidence matrix is,

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

aA

é ù
ê ú- -ê ú=
ê ú- -
ê ú

- -ê úë û

So, reduced incidence matrix is,

1 1 0 0 0 1

1 0 1 0 1 0

0 1 1 1 0 0

A

é ù
ê ú= - -ê ú
ê ú- -ë û
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Thus, the number of possible trees of the graph of Fig. 3.6

= det

1 1 0

1 0 1
1 1 0 0 0 1

0 1 1
1 0 1 0 1 0

0 0 1
0 1 1 1 0 0

0 1 0

1 0 0

ì ü-é ù
ï ïê ú-ï ïê úé ùï ïê ú-ï ïê ú- - ê úí ýê ú ê úï ïê ú- -ë û ê úï ï-

ê úï ï
ê úï ïë ûî þ

= 

3 1 1

1 3 1 16

1 1 3

- -
- - =
- -

3.7 TIE-SET MATRIX AND LOOP CURRENTS

Tie-Set A tie-set is a set of branches contained in a loop such that each loop contains one link or

chord and the remainder are tree branches.

Consider the graph and the tree as shown. This selected tree will result in three fundamental loops

as we connect each link, in turn to the tree.

Figure 3.7(a) Graph
Figure 3.7(b) Tree of the graph

Figure 3.7(c) Loop-1 Figure 3.7(d) Loop-2 Figure 3.7(e) Loop-3
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Fundamental Loop 1 (FL1): Connecting link 1 to the tree.

Fundamental Loop 2 (FL2): Connecting link 5 to the tree.

Fundamental Loop 3 (FL3): Connecting link 6 to the tree.

These sets of branches (1, 2, 3), (2, 4, 5) and (3, 4, 6) form three tie-sets.

3.7.1 Tie-Set Matrix or Loop Incidence Matrix or Circuit Matrix (Ba)

For a given graph having n nodes and b branches, tie-set matrix is a rectangular matrix with b

columns and as many rows as there are loops. Its elements have the following values:

Bij = 1, if branch j is in loop i and their orientations coincide (i.e., loop current and

branch current flow in the same direction);

= �1, if branch j is in loop i and their orientations do not coincide;

= 0, if branch j is not in loop i.

Example For the graph shown in Fig. 3.8(a) and tree selected in Fig. 3.8(b), the tie-set matrix

is written as follows. The entries in the Tie-set schedule are given as +1 or �1 if the

branch current is in the same direction as the link current or not. If the branch current

does not depend on the link current, then entry is zero.

Figure 3.8(a) Graph Figure 3.8(b) Formation of loops

Branch no. (i)

Links ( j ) 1 2 3 4 5 6

4 1 �1 0 1 0 0

5 0 1 �1 0 1 0

6 0 0 1 0 0 1

3.7.2 Tie-Set Matrix and KVL

For the graph shown in Fig. 3.7(a) and three loops shown in Fig. 3.7(c), (d) and (e), three fundamental

mesh KVL equations can be written as follows.

For Fundamental Loop 1 (FL1): vb1 � vb3 + vb2 = 0

For Fundamental Loop 2 (FL2): �vb2 � vb4 � vb5 = 0

For Fundamental Loop 3 (FL3): vb3 + vb6 + vb4 = 0
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These equations in matrix form is written as,

1 1 1 0 0 0

0 1 0 1 1 0

0 0 1 1 0 1

-é ù
ê ú- - -ê ú
ê úë û

1

2

3

4

5

6

b

b

b

b

b

b

v

v

v

v

v

v

é ù
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

 = 0

or 0a bB V =

3.7.3 Tie-Set Matrix and KCL

For the graph shown in Fig. 3.7(a) and three loops shown in Fig. 3.7(c), (d) and (e), the branch

currents (ib1, ib2, �, ib6) can be represented in terms of the loop currents (IL1, IL2, IL3) as,

ib1 = IL1, ib2 = (IL1 � IL2), ib3 = (�IL1 + IL3), ib4 = (�IL2 + IL3), ib5 = IL2, ib6 = IL3

In matrix form, these equations can be written as,

1

2

1
3

2
4

3
5

6

1 0 0

1 1 0

1 0 1

0 1 1

0 1 0

0 0 1

b

b
L

b
L

b
L

b

b

i

i
I

i
I

i
I

i

i

é ù é ù
ê ú ê ú-ê ú ê ú é ùê ú ê ú- ê ú=ê ú ê ú ê ú-ê ú ê ú ê úë ûê ú ê ú
ê ú ê ú

ê úê ú ë ûë û

or T
b a LI B I=

3.8 CUT-SET MATRIX AND NODE-PAIR POTENTIAL

Cut-Set A cut-set is a minimum set of elements that when cut, or removed, separates the graph into

two groups of nodes. A cut-set is a minimum set of branches of a connected graph, such that the

removal of these branches from the graph reduces the rank of the graph by one.

In other words, for a given connected graph (G), a set of branches (C) is defined as a cut-set if and

only if:

(i) the removal of all the branches of C results in an unconnected graph.

(ii) the removal of all but one of the branches of C leaves the graph still connected.

Example Consider the graph shown in Fig. 3.9(a). The rank of the graph is 3.

The removal of branches 1 and 3 reduces the graph into two connected subgraphs as

shown in Fig. 3.9(b).
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The rank of the graph of Fig. 3.9(a) = (4 � 1) = 3

The rank of the graph of Fig. 3.9(b) = Addition of the ranks of the subgraphs =

(1 + 1) = 2

So, branches [1, 3] may be a cut-set.

Also, removal of the branches 1, 3 and 5 reduces the graph into two connected

subgraphs as shown in Fig. 3.9(c) and the rank becomes 2. So, [1, 3, 5] may also be

a cut-set.

As cut-set is the minimum set of branches and [1, 3] is a subset of [1, 3, 5], so [1, 3]

is the cut-set, [1, 3, 5] is not a cut-set.

3.8.1 Fundamental Cut-Set

A fundamental cut-set (FCS) is a cut-set that cuts or contains one and only one tree branch.

Therefore, for a given tree, the number of fundamental cut-sets will be equal to the number of twigs.

3.8.2 Procedure for Finding the Fundamental Cut-sets

1. First, select a tree of the given graph.

2. Focus on a tree branch (bk).

3. Check whether removing this tree branch (bk) from

the tree disconnects the tree into two separate parts.

4. All the links which go from one part of this discon-

nected tree to the other, together with the tree branch

(bk) forms a fundamental cut-set.

Following this procedure, the fundamental cut-sets for

the graph of Fig. 3.10 will be

f-cut-set � 1: [1, 2, 6];

f-cut-set � 2: [2, 3, 5, 6];

f-cut-set � 3: [4, 5, 6]

3.8.3 Properties of Cut-Set

1. A cut-set divides the set of nodes into two subsets.

2. Each fundamental cut-set contains one tree-branch, the remaining elements being links.

3. Each branch of the cut-set has one of its terminals incident at a node in one subset and its other

terminal at a node in the other subset.

Figure 3.9(a) Graph Figure 3.9(b) Subgraphs with

removal of 1 and 3

Figure 3.9(c) Subgraphs with re-

moval of 1, 3 and 5

Figure 3.10 Graph illustrating

fundamental cut-set
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4. A cut-set is oriented by selecting an orientation from one of the two parts to the other.

Generally, the direction of cut-set is chosen same as the direction of the tree branch.

3.8.4 Cut-Set Matrix (QC)

For a given graph, a cut-set matrix (QC) is defined as a rectangular matrix whose rows correspond to

cut-sets and columns correspond to the branches of the graph. Its elements have the following values:

Qij = 1, if branch j is in the cut-set i and the orientations coincide.

= �1, if branch j is in the cut-set i and the orientations do not coincide.

= 0, if branch j is not in the cut-set i.

Example For the graph shown in Fig. 3.10, fundamental cut-sets have been identified as

follows.

f-cut-set � 1: [1, 2, 6];

f-cut-set � 2: [2, 3, 5, 6];

f-cut-set � 3: [4, 5, 6]

So, the cut-set matrix is written as,

Branch no:

f-cut-sets 1 2 3 4 5 6

1 1 1 0 0 0 1

2 0 1 1 0 1 1

3 0 0 0 1 �1 �1

3.8.5 Cut-Set Matrix and KVL

By cut-set schedule, the branch voltages can be expressed in terms of the tree-branch voltages.

A cut-set consists of one and only one branch of the tree together with any links which must be cut

to divide the network into two parts. A set of fundamental cut-sets includes those cut-sets which are

obtained by applying cut-set division for each of the branches of the network tree.

Consider the following graph.

Figure 3.11(a) Graph Figure 3.11(b) Tree

Applying cut-sets at nodes a, b, c, d, which are the fundamental cut-sets (FCS), we can write the

cut-set schedule as follows.
1 2 3 4 5 6 7 8

FCS-1 ® a �1 0 0 1 1 0 0 0

FCS-2 ® b 1 �1 0 0 0 1 0 0

FCS-3 ® c 0 1 1 0 0 0 1 0

FCS-4 ® d 0 0 �1 �1 0 0 0 1
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The tree-branch voltages are [vt5, vt6, vt7, vt8] and the branch voltages are [Vb1, Vb2, � Vb8] and the

relationship between tree-branch voltages and branch voltages are:

Vb1 = �vt5 + vt6 Vb5 = vt5
Vb2 = �vt6 + vt7 Vb6 = vt6

Vb3 = vt7 � vt8 Vb7 = vt7
Vb4 = vt5 � vt8 Vb8 = vt8

The above equations can be related by using the cut-set schedule as:

1

2

3 5

4 6

5 7

6 8

7

8

1 1 0 0

0 1 1 0

0 0 1 1

1 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

b

b

b t

b t

b t

b t

b

b

V

V

V v

V v

V v

V v

V

V

-é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú- é ù
ê ú ê ú ê ú-ê ú ê ú ê ú=ê ú ê ú ê ú
ê ú ê ú ê ú

ê úê ú ê ú ë û
ê ú ê ú
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or T
b c tV Q V=

3.8.6 Cut-Set Matrix and KCL

For the graph of Fig. 3.11, writing Kirchhoff�s current laws for the nodes, the branch currents can be

expressed as,

Node a: �ib1 + ib4 + ib5 = 0

Node b: ib1 � ib2 + ib6 = 0

Node c: ib2 + ib3 + ib7 = 0

Node d: �ib3 � ib4 + ib8 = 0

In matrix form, they can be written as,

1

2

3

4

5

6

7

8

1 0 0 1 1 0 0 0

1 1 0 0 0 1 0 0
0

0 1 1 0 0 0 1 0

0 0 1 1 0 0 0 1

b

b

b

b

b

b

b

b

i

i

i

i

i

i

i

i
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ê ú
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ê ú
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or 0c bQ I =
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There is a cut-set matrix for a given tree. If a graph contains more than one tree, there will be as many

numbers of cut-set matrices as the number of tree of the graph.

To summarize, KVL and KCL equations in three matrix forms are given below.

Matrix KCL KVL

Incidence Matrix (Aa) Aa ´ Ib = 0 Vb = Aa 
T

  ´ Vn

Tie-Set Matrix (Ba) Ib = Ba 
T

  ´ IL Ba ´ Vb = 0

Cut-Set Matrix (QC) QC ´ Ib = 0 Vb = QC 
T

  ´ Vt

3.9 FORMULATION OF NETWORK EQUILIBRIUM EQUATIONS

The network equilibrium equations are a set of equations that completely and uniquely determine the

state of a network at any instant of time. These equations are written in terms of suitably chosen

current variables or voltage variables.

These equations will be unique if the number of independent variables be equal to the number of

independent equations.

Number of Independent Variables or Equations = b � (n � 1); for loop method of analysis

= (n � 1); for node method of analysis.

The equations for a network can be formed in either of the two methods as given below.

1. Through a set of voltage law equations in which the currents are the independent variables

(Loop-Basis Method);

2. Through a set of current law equations in which the node-pair voltages are the independent

variables (Node-Basis Method).

3.9.1 Formulation of Network Equations on Loop Basis

Steps

1. Draw the directed graph of the network selecting the direction of assumed current flow to

coincide for current sources.

2. Select a tree of the graph.

3. Place all voltage sources in the tree and all current sources in the co-tree.

4. Place all control-voltage branches for voltage-controlled dependent sources in the tree and all

control-current branches for current-controlled dependent sources in the co-tree, if possible.

5. Add one link to the tree, creating a fundamental loop, and write a KVL equation for this

fundamental loop (FL). Repeat for each additional link until L (= b � n + 1) mesh equations are

obtained in the form Ba ´ Vb = 0.

6. The current sources in the cotree, if present, will provide the constraint equations.

7. The KCL equations are obtained by representing the branch currents in terms of loop currents

in the form Ib = Ba 
T ´ IL.

8. For each branch, the relationship between the voltage and current is obtained from Ohm�s law

(V = RI ).

9. Finally, the equilibrium equations are obtained in terms of loop currents by suitable substitu-

tion of the equations obtained in steps 5 to 8.
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3.9.2 Formulation of Network Equations on Node Basis

Steps

1. Draw a directed graph of the circuit under considerations, selecting the directions of assumed

current flow to coincide for current sources.

2. Select the tree of the graph so that current sources are in the co-tree and the voltage sources

are within the tree, if possible. Also, if possible, select the tree so that at least two branches of

the tree are incident at the reference node.

3. Identify (n � 1) fundamental cut-sets (FCS) and draw the FCS lines.

4. Write the (n � 1) FCS KCL equations in the form Aa ´ Ib = 0 or QC ´ Ib = 0.

5. Obtain each of the branch currents in terms of node voltages in the form Vb = Aa 
T  × Vn or,

Vb = QC 
T × Vt.

6. For each branch, the relationship between the voltage and current is obtained from Ohm�s law

(V = RI).

7. Substitute the equations of step 6 into the KVL equations of step 5 and finally into the KCL

equations of step 4, thus obtaining the (n � 1) independent node voltage equations.

3.9.3 Generalized Equations in Matrix Forms for Circuits having Sources

A general branch consisting of a voltage source Vs and a

current source Is is shown in Fig. 3.12.

Here, the branch current is (Ib + Is) and the branch

voltage is Vb = Zb(Ib + Is) � Vs.

Without sources, the KCL and KVL equations are:

Aa ´ Ib = 0 (3.1)

Ib = Ba 
T ´ IL KCL (3.2)

QC ´ Ib = 0 (3.3)

and Vb = Aa 
T ´ Vn (3.4)

Ba ´ Vb = 0 KVL (3.5)

Vb = QC 
T ´ Vt (3.6)

With the sources, the KCL and KVL equations are modified as,

Aa Ib + Aa Is = 0 (3.7)

Ib + Is = Ba 
T IL (3.8)

Qc Ib + Qc Is = 0 (3.9)

and Vb + Vs = Aa 
T Vn (3.10)

Ba Vb + Ba Vs = 0 (3.11)

Vb + Vs = Qc 
T Vt (3.12)

The branch voltage-current relations for the passive network elements are written in matrix form as,

Vb = Zb Ib (3.13)

and Ib = Yb Vb (3.14)

where, Zb is the branch impedance matrix and Yb is the branch admittance matrix, both of the order

b ´ b. On the basis of these equations the general equations can be written in terms of three matrices

as follows.

Figure 3.12

ü
ï
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ü
ï
ý
ïþ
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Node Equations From equation (3.7),

Aa Is = � Aa Ib = � Aa Yb Vb = � Aa Yb (Aa 
T Vn � Vs) {by equation (3.10)}

or Aa Yb Aa
T Vn = Aa Yb Vs � Aa Is = Aa [Yb Vs � Is�]

or [ ]-
n a b s s

YV A Y V I=

where, Y is called the nodal admittance matrix of the order of (n � 1) ´ (n � 1). The above equation

represents a set of (n � 1) number of equations, known as node equations.

Mesh Equations From equation (3.11),

Ba Vs = � Ba Vb = � Ba Zb Ib = � Ba Zb (Ba 
T IL � Is) {by equation (3.8)}

or Ba Zb Ba 
T IL = Ba [Zb Is � Vs]

or [ ]-
L a b s s

ZL B Z I V=

where, Z is the loop-impedance matrix of the order of (b � n + 1) ´ (b � n + 1). The above equation

represents a set of (b � n + 1) number of equations, known as mesh or loop equations.

Cut-set Equations From equation (3.8),

Qc Is = � Qc Ib = �Qc Yb Vb = �Qc Yb (Qc  
 T
V

t � Vs) {by equation (3.12)}

or Qc Yb Qc 
T Vt = Qc [Yb Vs � Is]

or [ ]-
c t c b s s

Y V Q Y V I=

where, Yc is the cut-set admittance matrix of the order of (n � 1) ´ (n � 1) and the set of (n � 1)

equations represented by the above equation is known as cut-set equations.

3.10 SOLUTION OF EQUILIBRIUM EQUATIONS

There are two methods of solving equilibrium equations given as follows.

(i) Elimination method: by eliminating variables until an equation with a single variable is achieved,

and then by the method of substitution.

(ii) Determinant method: by the method known as Cramer�s rule.

SOLVED EXERCISES

3.1 Draw the graph of the network shown in the figure.
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Solution The graph of the network is shown below.

3.2 From the figure, make the graph and find one tree. How many mesh currents are required for solving

the network? Find the number of possible trees.

Solution The graph of the network is shown below. One tree of the graph is shown.

Graph of the network Tree of the graph
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The complete incidence matrix is obtained as,

Nodes Branches

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 �1 0

2 �1 1 1 0 0 0 0 0 0 0

Aa = 3 0 �1 �1 1 1 0 0 0 0 0

4 0 0 0 0 �1 1 1 0 0 0

5 0 0 0 0 0 �1 0 0 0 1

6 0 0 0 0 0 0 �1 1 0 0

7 0 0 0 �1 0 0 0 �1 1 �1

Reduced incidence matrix becomes,

Nodes Branches

1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 �1 0

2 �1 1 1 0 0 0 0 0 0 0

A = 3 0 �1 �1 1 1 0 0 0 0 0

4 0 0 0 0 �1 1 1 0 0 0

5 0 0 0 0 0 �1 0 0 0 1

6 0 0 0 0 0 0 �1 1 0 0

Hence the number of possible trees is,

n = det 

1 1 0 0 0 0

0 1 1 0 0 0

1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

0 1 1 1 1 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 0 1 0

ì -é ù
ï ê ú-ï ê ú
ï ê ú- -é ù
ï ê úê ú-ï ê úê ú
ï ê úê ú- - -ï ê úê úí - -ê úê úï

ê úê úï - -ê úê ú
- ê úê úë û

ê ú-ê ú
ê úê úë ûî

ü
ï
ï
ï
ï
ï
ïï
ý
ï
ï

ï ï
ï ï
ï ï
ï ï
ï ïþ

= det 

2 1 0 0 0 0

1 3 2 0 0 0

0 2 4 0 0 0

0 0 1 3 1 1

0 0 0 1 2 0

0 0 0 1 0 2

-é ù
ê ú- -ê ú
ê ú-
ê ú

- - -ê ú
ê ú-
ê ú

-ê úë û

Þ n =12 Ans.
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3.3 Branch current and loop current relations are expressed in matrix form as,

1

2

3 1

4 2

5 3

6 4

7

8

1 0 0 1

0 1 0 1

0 1 1 0

0 1 1 0

1 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1

i

i

i I

i I

i I

i I

i

i

-é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú é ù
ê ú ê ú ê ú
ê ú ê ú ê ú=ê ú ê ú ê ú-
ê ú ê ú ê ú

- ê úê ú ê ú ë û
ê ú ê ú-ê ú ê ú
ê ú ê úë ûë û

Draw the oriented graph.

Solution We know that, [ ] [ ] [ ]T
b a LI B I= . So, the tie-set matrix, here, is,

Loop or Branches

Link 1 2 3 4 5 6 7 8

Currents

1 1 0 0 0 1 0 �1 0

Ba = 2 0 1 1 1 �1 0 0 0

3 0 0 1 1 0 �1 0 0

4 �1 �1 0 0 0 0 0 1

So, the graph consists of four loops and eight branches. Loop 1 consists of branch 1, 5 and 7. The

orientations are given following the sign +1 or �1. Following the procedure, the complete oriented

graph is shown below.
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3.4 The fundamental cut-set matrix is given as,

Twigs Links

1 2 3 4 5 6 7

1 0 0 0 �1 0 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 0 1 0

Draw the oriented graph of the network.

Solution The graph has seven branches and four fundamental cut-sets:

Cut-set-1: [1, 5]

Cut-set-2: [2, 5, 7]

Cut-set-3: [3, 6, 7]

Cut-set-4: [4, 6]

So, the oriented graph is as shown in figure.

3.5 (a) For the network of the figure, draw the graph and write a tie-set schedule. Using the tie-set

schedule obtain the loop equations and find the currents in all branches.

(b) For the network of (a), write a cut-set schedule, obtain nodal equations and find branch

currents.
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Solution The graph and one tree are shown in figure.

The tie-set matrix,

1 0 1 0 0 1

0 1 0 1 0 1

0 0 1 1 1 0

aB

-é ù
ê ú= ê ú
ê ú- -ë û

Branch impedance matrix is,

0.5 0 0 0 0 0

0 0.5 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0.2 0

0 0 0 0 0 1

bZ

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û

Thus,

0.5 0 0 0 0 0

0 0.5 0 0 0 0
1 0 1 0 0 1 0.5 0 1 0 0 1

0 0 1 0 0 0
0 1 0 1 0 1 0 0.5 0 1 0 1

0 0 0 1 0 0
0 0 1 1 1 0 0 0 1 1 0.2 0

0 0 0 0 0.2 0

0 0 0 0 0 1

é ù
ê ú
ê ú- -é ù é ùê úê ú ê ú= =é ùé ù ê úë ûë û ê ú ê úê úê ú ê ú- - - -ë û ë ûê ú
ê ú
ê úë û

a bB Z

\

1 0 0

0 1 0
0.5 0 1 0 0 1

1 0 1
0 0.5 0 1 0 1

0 1 1
0 0 1 1 0.2 0

0 0 1

1 1 0

é ù
ê ú
ê ú-é ù ê ú-ê ú=é ùé ùé ù ê úë ûë ûë û ê ú -ê úê ú- -ë û ê ú
ê ú
-ê úë û

T

a b aB Z B  

2.5 1 1

1 2.5 1

1 1 2.2

- -é ù
ê ú= - -ê ú
ê ú- -ë û
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Now,

9

0
1 0 1 0 0 1 9

0
0 1 0 1 0 1 0

0
0 0 1 1 1 0 0

0

0

a sB V

-é ù
ê ú
ê ú-é ù é ùê úê ú ê ú- = - =é ùé ù ê úë ûë û ê ú ê úê úê ú ê ú- -ë û ë ûê ú
ê ú
ê úë û

So, the loop equations are,

1

2

3

2.5 1 1 9

1 2.5 1 0

1 1 2.2 0

i

i

i

- - é ùé ù é ù
ê úê ú ê ú- - ´ =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving three equations,

1 2 38.9 A, 6.33A, 6.92 Ai i i= = = Ans.

3.6 Figure shows a d.c. network. (a) Draw a graph of the network. Which elements are not included in

the graph and why? (b) Write a loop incidence matrix and use it to obtain loop equations. (c) Find

branch currents.

Solution

(a) The graph is shown below.

The 2 W resistor in parallel with voltage source and the 2 A current source have not been

included in the graph. This is because of the reason that passive elements in parallel with a

voltage source are not included in graph and the current source in parallel with a passive

element is open-circuited while drawing graph.
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(b) The tie-set matrix for the tree chosen is,

1 0 0 1 1

0 1 1 0 1
aB

-é ù
= ê ú- -ë û

Branch impedance matrix is,

2 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 2 0

0 0 0 0 2

bZ

é ù
ê ú
ê ú
ê ú=
ê ú
ê ú
ê úë û

T
a b aB Z B = 

2 0 0 0 0 1 0

0 2 0 0 0 0 1
1 0 0 1 1

0 0 0 0 0 0 1
0 1 1 0 1

0 0 0 2 0 1 0

0 0 0 0 2 1 1

é ù é ù
ê ú ê ú
ê ú ê ú-é ù ê ú ê ú-ê ú- - ê ú ê úë û -ê ú ê ú
ê ú ê ú-ë û ë û

= 

1 0

0 1
2 0 0 2 2

0 1
0 2 0 0 2

1 0

1 1

é ù
ê ú
ê ú-é ù ê ú-ê ú- ê úë û -ê ú
ê ú-ë û

= 
6 2

2 4

-é ù
ê ú-ë û

Now,

2 0

0 0
2 0 0 2 2 1 0 0 1 1 4 0 4

0 5
0 2 0 0 2 0 1 1 0 1 0 5 5

0 0

0 0

a b s a sB Z I B V

é ù é ù
ê ú ê ú
ê ú ê ú- -é ù é ù é ù é ù é ùê ú ê ú- = - - = - =ê ú ê ú ê ú ê ú ê ú- - - -ê ú ê úë û ë û ë û ë û ë û
ê ú ê ú
ê ú ê úë û ë û

So, the loop equations are,

1

2

6 2 4

2 4 5

i

i

- é ùé ù é ù
=ê úê ú ê ú- -ë û ë ûë û

Solving these equations, 1 20.3 A, 1.1 Ai i= = - Ans.

(c) Putting these values, the branch voltages are

1 1 2 2 3 4 1 52 0.6 V, 2 2.2 V, 5 V, 2 4 3.4 V, 2.8 VV i V i V V i V= ´ = = ´ = - = - = - ´ + = =  Ans.
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Thus, the branch currents are

3.4 2.8 5 0.6 2.2
1.7 A, 1.4 A, 2.5 A, 0.3 A, 1.1 A

2 2 2 2 2AB AD AC DB DCI I I I I= = = = = = = = = =

So, the current supplied by the battery = (1.7 + 1.4 + 2.5 � 2) = 3.6 A Ans.

3.7 For the network shown in figure, draw the oriented graph and obtain the tie-set matrix. Use this

matrix to calculate i.

Solution The oriented graph and any one tree are shown.

The tie-set matrix is given as,

1 1 0 0 1 0

0 1 1 1 0 0

0 0 0 1 1 1

aB

é ù
ê ú= - -ê ú
ê ú-ë û

The branch impedance matrix,

1 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 1 0 0

0 0 0 0 3 0

0 0 0 0 0 1

bZ

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û
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\

1 0 0 0 0 0

0 2 0 0 0 0
1 1 0 0 1 0 1 2 0 0 3 0

0 0 2 0 0 0
0 1 1 1 0 0 0 2 2 1 0 0

0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 1 3 1

0 0 0 0 3 0

0 0 0 0 0 1

a bB Z

é ù
ê ú
ê úé ù é ùê úê ú ê ú= - - = - -ê úê ú ê úê úê ú ê ú- -ë û ë ûê ú
ê ú
ê úë û

\

1 0 0

1 1 0
1 2 0 0 3 0 6 2 3

0 1 0
0 2 2 1 0 0 2 5 1

0 1 1
0 0 0 1 3 1 3 1 5

1 0 1

0 0 1

T

a b aB Z B

é ù
ê ú-ê ú - -é ù é ùê úê ú ê ú= - - = - -ê úê ú ê ú-ê úê ú ê ú- - -ë û ë ûê ú-
ê ú
ê úë û

Now,

2

0
1 1 0 0 1 0 2 2

1
0 1 1 1 0 0 1 1

0
0 0 0 1 1 1 0 0

0

0

a sB V

-é ù
ê ú
ê ú -é ù é ù é ùê ú-ê ú ê ú ê ú- = - - - = - - =ê úê ú ê ú ê úê úê ú ê ú ê ú-ë û ë û ë ûê ú
ê ú
ê úë û

So, the loop equations become,

1

2

3

6 2 3 2

2 5 1 1

3 1 5 0

I

I

I

- - é ùé ù é ù
ê úê ú ê ú- - =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving for I1,

1

2 2 3

1 5 1

0 1 5
0.91A

6 2 3

2 5 1

3 1 5

- -
-

-
= =

- -
- -
- -

I

\ 1 0.91A=i
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3.8 The circuit of figure contains a voltage controlled voltage source. For this circuit, draw the oriented

graph. By selecting a proper tree obtain the tie-set matrix and hence calculate the voltage, Vx.

Solution Since the controlled voltage source is not accompanied by any passive element, we will

consider a resistance R1 in series with the controlled voltage source, and finally let R1 ® 0.

The graph of the network is shown with one tree.

The tie-set matrix is,

1 1 1 0 0 0

0 0 1 1 1 0

0 1 0 1 0 1

aB

-é ù
ê ú= -ê ú
ê ú-ë û

The branch impedance matrix,

1

5 0 0 0 0 0

0 5 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 4 0

0 0 0 0 0

bZ

R

é ù
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê úë û
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\

1

1

5 0 0 0 0 0

0 5 0 0 0 0
1 1 1 0 0 0 5 5 5 0 0 0

0 0 5 0 0 0
0 0 1 1 1 0 0 0 5 5 4 0

0 0 0 5 0 0
0 1 0 1 0 1 0 5 0 5 0

0 0 0 0 4 0

0 0 0 0 0

a bB Z

R

R

é ù
ê ú
ê ú- -é ùé ù ê ú ê úê ú= - = -ê ú ê úê ú ê ú ê úê ú- -ë û ë ûê ú
ê ú
ê úë û

\

( )1 1

1 0 0

1 0 1
5 5 5 0 0 0 15 5 5

1 1 0
0 0 5 5 4 0 5 14 5

0 1 1
0 5 0 5 0 5 5 10

0 1 0

0 0 1

T

a b aB Z B

R R

é ù
ê ú-ê ú é ù- - -é ù ê ú- ê úê ú= - = - -ê ú ê úê ú -ê ú ê úê ú- - - +ë û ë ûê ú
ê ú
ê úë û

Now,

0

0
1 1 1 0 0 0 1 1

1
0 0 1 1 1 0 1 1

0
0 1 0 1 0 1

0

a s

x x

x

B V

V V

V

é ù
ê ú
ê ú- -é ù é ùé ù ê ú- ê ú ê úê ú- = - - = - - =ê ú ê ú ê úê ú ê ú ê ú ê úê ú- -ë û ë û ë ûê ú
ê ú
-ê úë û

So, the loop equations become,

( )

1

2

1 3

15 5 5 1

5 14 5 1

5 5 10 x

I

I

R I V

é ù- - -é ù é ù
ê ú ê ú ê ú- - =ê ú ê ú ê ú
ê ú ê ú ê ú- - + ë û ë ûë û

With R1 ® 0 and Vx = 4I2, the equations reduce to,

1

2

3

15 5 5 1

5 14 5 1

5 9 10 0

I

I

I

- - -é ùé ù é ù
ê úê ú ê ú- - =ê úê ú ê ú
ê úê ú ê ú- -ë û ë ûë û

Solving for I2,

2

15 1 5

5 1 5

5 0 10 1
A

1915 5 5

5 14 5

5 9 10

I

- -
- -
-

= =
- -

- -
- -
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\ 2

1 4
4 4 V

19 19
= ´ = ´ =xV I Ans.

3.9 Determine the current i1 in the circuit using nodal analysis method and graph theory concepts.

Solution By source transformation technique, we convert the 19 V and 25 V voltage sources into

current sources.

Since the 30 V voltage source, the 4 A current source, and controlled current source are not

accompanied by the passive elements, we consider three resistors R1, R2 and R3 and finally let,

R1 ® 0, R2 ® µ, and R3 ® µ.

The graph of the network is shown.
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The complete incidence matrix is,

1 1 0 0 0 0

0 1 1 1 0 0

0 0 1 1 1 1

1 0 0 0 1 1

aA

-é ù
ê ú
ê ú=
ê ú- -
ê ú

- -ê úë û
Reduced Incidence matrix is,

1 1 0 0 0 0

0 1 1 1 0 0

0 0 1 1 1 1

A

-é ù
ê ú= ê ú
ê ú- -ë û

Branch admittance matrix is,

1

2

3

0 0 0 0 0

1
0 0 0 0 0

5
0 0 0 0 0

1
0 0 0 0 0

2
0 0 0 0 0

1
0 0 0 0 0

4

é ù
ê ú
ê ú
ê ú
ê ú

= ê ú
ê ú
ê ú
ê ú
ê ú
ê úë û

b

G

G
Y

G

where, G1 = 
1

1

R
, G2 = 

2

1

R
, G3 = 

3

1

R

\ AYb = 

1

2

3

0 0 0 0 0

1
0 0 0 0 0

5
1 1 0 0 0 0 0 0 0 0 0
0 1 1 1 0 0 1

0 0 0 0 0
0 0 1 1 1 1 2

0 0 0 0 0

1
0 0 0 0 0

4

é ù
ê ú
ê ú
ê ú-é ù ê úê ú ê úê ú ê ú- -ë û ê ú
ê ú
ê ú
ê úë û

G

G

G

= 

1

2

3

1
0 0 0 0

5
1 1

0 0 0
5 2

1 1
0 0 1

2 4

é ù-ê ú
ê ú
ê ú
ê ú
ê ú- -
ê úë û

G

G

G

\ AYbA
T = 

1

2

3

1 0 01
0 0 0 0 1 1 05

0 1 11 1
0 0 0

5 2 0 1 1
1 1 0 0 10 0 1
2 4 0 0 1

é ùé ù- ê ú-ê ú ê úê ú -ê úê ú ê ú-ê ú ê úê ú- - ê úê úë û ê úë û

G

G

G
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= 

1

1

3

1 1
0

5 5

1 1 1 1

5 5 2 2

1 1 1
0

2 2 4

é ùæ ö+ -ç ÷ê úè ø
ê ú

æ öê ú- + + -ç ÷è øê ú
ê úæ öê ú- + +ç ÷è øê úë û

G

G

G

{ }

1

1

30

0
1 1 0 0 0 0

4
0 1 1 1 0 0 0We made

9.5
0 0 1 1 1 1

1.5

6.25

b s s s s

G

AY V AI AI V

i

-é ù
ê ú
ê ú-é ù ê úê ú- = - = - =ê úê ú -ê úê ú- -ë û ê ú-
ê ú
ê úë û

Q

Now,

1

1

30

5.5

(15.75 1.5 )

-é ù
ê ú= - -ê ú
ê ú-ë û

G

i

Thus, node equations are,

1

1 1

2 2

3 1

3

1 1
0

5 5
30

1 7 1
5.5

5 10 2
1.5 15.75

1 3
0

2 4

é ùæ ö+ -ç ÷ê úè ø
ê ú é ù é ù

æ öê ú ê ú ê ú- + - =ç ÷è øê ú ê ú ê ú
-ê úê úê ú ë ûë ûæ öê ú- +ç ÷è øê úë û

G

V G

G V

V i

G

With R1 ® 0, G1 ® µ, R2 ® µ, G2 ® 0, R3 ® µ, G3 ® 0 the equations become:

1 1 2 1

1 1
30

5 5
G V V G

æ ö+ - =ç ÷è ø

1 2 2 3

1 7 1
5.5

5 10 2
V G V V

æ ö- + + - =ç ÷è ø

2 3 1

1 3
(1.5 15.75)

2 4
V V i- + = -

or

1 30=V (i)

1 2 3 2 3

1 7 1
5.5 7 5 115

5 10 2
V V V V V- + - = Þ - = (ii)

2 1
2 3 2 3

1 3
1.5 15.75 16 15 495

2 4 5

V V
V V V V

é ù-æ ö
- + = - Þ - =ê úç ÷è øë û

(iii)
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Solving equations (i), (ii), and (iii), we get,

2 330 V, 65 VV V= - =

Hence, the current, 2 1
1

30 30
12 A

5 5

V V
i

- - -æ ö= = = -ç ÷è ø
Ans.

MULTIPLE-CHOICE QUESTIONS

3.1 The number of links for a graph having n nodes and b branches are

(a) b � n + 1 (b) n � b + 1 (c) b + n � 1 (d) b + n

3.2 The tree branches of a graph are called

(a) chords (b)  links (c) twigs (d) co-tree

3.3 The tie-set matrix gives the relation between

(a) branch currents and link currents. (b) branch voltages and link currents.

(c) branch currents and link voltages. (d) none of these.

3.4 The graph of a network has six branches with three tree branches. The minimum number of equa-

tions required for the solution of the network is

(a) 2 (b) 3 (c) 4 (d) 5

3.5 For a connected planar graph of v vertices and e edges, the number of meshes is

(a) (e � v + 1) (b) (e + v + 1) (c)  (e + v �1)

3.6 The number of chords of a tree of a connected graph G of v vertices and e edges is

(a) (v � 1) (b) (e � v + 1) (c) (e � v � 1)

3.7 The table meant for the oriented graph represents

Link or Loop Current ¬ Branch ®
1 2 3

i1 +1 �1 0

i2 0 +1 +1

(a) tie-set matrix (b) cut-set matrix (c) incidence matrix (d) none of the above.

3.8 The reduced incidence matrix of a circuit is given by

1 2 3 4 5 6

1 1 1 1 0 0

0 1 0 0 1 1

0 0 1 0 1 0

i

a

A b

c

- - -é ù
ê ú= -ê ú
ê úë û

The set of branches forming a tree are

(a) 1, 2 and 3 (b) 2, 3 and 5 (c) 1, 2 and 4 (d) 1, 2 and 6.

3.9 Relative to a given fixed tree of a network

1. link currents form an independent set.
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2. branch currents form an independent set.

3. link voltages form an independent set.

4. branch voltages form an independent set.

Of these statements

(a) 1, 2, 3 and 4 are correct. (b) 1, 2 and 3 are correct.

(c) 2, 3 and 4 are correct (d) 1, 3 and 4 are correct

3.10 For a given network the incidence matrix is given as

1 2 3 4 5 6 7

1 0 0 1 0 1 1

1 1 1 0 0 0 0

0 1 0 1 1 0 0

-é ù
ê ú- -ê ú
ê ú-ë û

The series branches in the graph are

(a) 3 and 4 (b) 6 and 7 (c) 2 and 3 (d) none of the above.

3.11 For a given network the incidence matrix is given as

1 2 3 4 5 6 7

1 0 0 1 0 1 1

1 1 1 0 0 0 0

0 1 0 1 1 0 0

-é ù
ê ú- -ê ú
ê ú-ë û

The parallel branches in the graph are

(a) 1 and 2 (b) 2 and 3 (c) 6 and 7 (d) none of the above.

3.12 For a given network the incidence matrix is given as

1 2 3 4 5 6

1 0 0 1 1 0

0 1 0 1 1 1

0 0 1 0 0 1

-é ù
ê ú- -ê ú
ê úë û

The series branches in the graph are

(a) 3 and 4 (b) 3 and 5 (c) 3 and 6 (d) none of the above.

3.13 For a given network the incidence matrix is given as

1 2 3 4 5 6

1 0 0 1 1 0

0 1 0 1 1 1

0 0 1 0 0 1

-é ù
ê ú- -ê ú
ê úë û

The parallel branches in the graph are

(a) 3 and 5 (b) 4 and 5 (c) 3 and 6 (d) none of the above.
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3.14 Which one of the following represents the total number of trees in the graph given in the figure?

(a) 4 (b) 5 (c) 6 (d) 8

3.15 In the graph and the tree shown in the given figure, the fundamental cut-set for the branch 2 is

(a) 2, 1, 5 (b) 2, 6, 7, 8 (c) 2, 1, 3, 4, 5 (d) 2, 3, 4

3.16 In the graph shown in the figure, one possible tree is formed by the branches 4, 5, 6, 7. Then one

possible fundamental cut set is

(a) 1, 2, 3, 8 (b) 1, 2, 5, 6 (c) 1, 5, 6, 8 (d) 1, 2, 3, 7, 8

EXERCISES

3.1 For the network shown in the figure, draw the graph and a

possible tree. Show the links and write the tie-set matrix.

Write the equations of the branch currents in terms of loop

currents.

3.2 Find out the currents through and voltage across all branches

of the network shown in the figure with the help of its tie-set

schedule.
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3.3 Find a tree from the graph of the network shown in the figure. Make the tie-set matrix and write the

equations containing branch currents and loop currents. All the values are in ohm.

3.4 Draw the graph of the circuit shown in the fig-

ure and select a suitable tree to write tie set

matrix. Then find the three loop currents.

3.5 For the given network of the figure draw the

graph and a tree. Write the cut-sets and the cut-

set matrix of the tree. Write the equations of

link branch voltages in terms of tree branch

voltages. [i1 = 3 A, i2 = 1 A, i3 = 0.5 A]

3.6 For the given network of the figure draw the graph and a tree. Write the cut-sets and the cut-set

matrix of the tree. Write the equations of link branch voltages in terms of tree branch voltages. All

the values are in ohm.
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3.7 Calculate the branch voltage and branch currents, using the node basis method for the network given

in the figure.

3.8 The linear oriented graph is given in the figure. Considering a tree, mark all the fundamental cut-sets

and form the cut-set matrix.

SHORT-ANSWER TYPE QUESTIONS

3.1 (a) Define the following terms.

(i) Graph of a network (iv) Planar and Non-planar graph

(ii) Oriented graph (v) Subgraph

(iii) Rank of graph (vi) Path

(b)  State the advantages offered by the graph theory as applied to electric circuit problems.
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3.2 (a) Define a Tree of a graph of a network. Mention some basic properties of a �Tree�. How can you

calculate the number of possible trees of a given graph?

(b) Define the following

(i) Twigs (ii) Co-tree (iii) Links or Chords

3.3 (a) Explain what is meant by incidence matrix of a graph and indicate how the values of the

incidence matrix elements are obtained.

(b) What are the properties of an incidence matrix?

(c)  How can you determine the number of possible trees of a graph with this matrix?

3.4 (a) Explain the term �tie-set� and �tie-set matrix� of a network with an illustrative example.

(b) Show that the matrix equation,

Ib = BTIL
where, B is the tie-set matrix and Ib and IL represent branch current and loop current matrix

respectively.

3.5 (a) Define cut-set in a network graph. How can you find out a fundamental cut-set? Mention some

properties of a cut-set.

(b) Define cut-set matrix with an illustrative example and show that the matrix equation QIb = 0,

where Q is the cut-set matrix and Ib represents the branch current matrix of the graph.

(c) Briefly discuss the relation between branch voltage matrix and node voltage matrix in terms of

cut-sets.

3.6 (a) Write notes on: Network Equilibrium Equation.

(b) Establish that the independent loop equations of a network can be formulated from the tie-set

matrix of its graph, with illustrative example.

(c) Establish the formulation of node equation of a network from the cut-set matrix.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

3.1 (a) 3.2 (c) 3.3 (a) 3.4 (b) 3.5 (a) 3.6 (b) 3.7 (a)

3.8 (a) 3.9 (b) 3.10 (d) 3.11 (c) 3.12 (c) 3.13 (b) 3.14 (d)

3.15 (b) 3.16 (d)



CHAPTER

4
Network Theorems

4.1 INTRODUCTION

A theorem is a relatively simple rule used to solve a problem, derived from a more intensive analysis

using fundamental rules of mathematics. At least hypothetically, any problem in mathematics can be

solved just by using the simple rules of arithmetic, but human beings are not as consistent or as fast as

a digital computer. We need some shortcut methods in order to avoid procedural errors.

In electric network analysis, the fundamental rules are Ohm�s Law and Kirchhoff�s Laws. While

these humble laws may be applied to analyse any circuit configuration, for complex circuits, it is

sometimes necessary to simplify the network to find current or voltage in a particular branch without

solving the entire circuit. For this purpose, there are some �shortcut� methods of analysis, known as

Network Theorem. As with any theorem of geometry or algebra, the network theorems are also

derived from fundamental rules.

4.2 NETWORK THEOREMS

In this chapter, we will discuss the following network theorems:

1. Substitution Theorem

2. Superposition Theorem

3. Reciprocity Theorem

4. Thevenin�s Theorem

5. Norton�s Theorem

6. Maximum Power Transfer Theorem

7. Tellegen�s Theorem

8. Millman�s Theorem

9. Compensation Theorem
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4.2.1 Substitution Theorem

Statement Any branch in a network may be substituted by a different branch without disturbing

the voltages and currents in the entire network, provided the new branch has the same set of terminal

voltage and current as the original branch.

Proof In a network N, let the number of branches be b. The branch method requires the solution of

2b equations. Now, after substitution, 2(b�1) branch equations remain unaltered. However, as the

branch voltage and current of the replaced branch remain unaltered, it implies that the set of 2b

simultaneous equations will still be satisfied with the same voltages and currents as before. This

proves the substitution theorem.

Points to be noted

(i) The substitution theorem is a general theorem and is applicable for any arbitrary network.

(ii) The modified network must have a unique solution.

(iii) This theorem is very useful in circuit analysis of network having non-linear elements.

Example 4.1  We consider the branch xy of the circuit shown. Branch voltage Vxy = 50 V, and

branch current Ixy = 5 A. This branch can be substituted by any other branch as

shown in Figure 4.1, without altering the voltage and current in the branch.

The branch can be substituted using the relation as given below.

xy xy xyV Z I E= + , before substitution

xy xy xyV Z I E¢ ¢= + , after substitution

4.2.2 Superposition Theorem

Statement This theorem states that in a linear bilateral network, the current at any point (or voltage

between any two points) due to the simultaneous action of a number of independent sources in the

Figure 4.1 Illustration of Substitution Theorem

Figure 4.2 Illustration of Superposition Theorem
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network is equal to the summation of the component currents (or voltages). A component current (or

voltage) is defined as that due to one source acting alone in the network with all the remaining

sources removed.

Proof

Figure 4.3 Proof of Superposition Theorem

Using KVL for the above network, as shown in Fig. 4.3(a)

1 1 1 3 2 3( )E I Z Z I Z= + +

2 1 3 2 2 3( )E I Z I Z Z= + +

Solving above two equations,

2 3 3
1 1 2

1 2 2 3 3 1 1 2 2 3 3 1

Z Z Z
I E E

Z Z Z Z Z Z Z Z Z Z Z Z

+
= -

+ + + +

3 1 3
1 1 2

1 2 2 3 3 1 1 2 2 3 3 1

Z Z Z
I E E

Z Z Z Z Z Z Z Z Z Z Z Z

- +
= +

+ + + +

Making E2 inoperative then the circuit diagram becomes as shown in Fig. 4.3 (b)

Then the KVL equations are,

1 1 1 3 2 3( )E I Z Z I Z¢ ¢= + +

1 3 2 2 30 ( )I Z I Z Z¢ ¢= + +

Solving above two equations,

2 3
1 1

1 2 2 3 3 1

Z Z
I E

Z Z Z Z Z Z

+
¢=

+ +

3
2 1

1 2 2 3 3 1

Z
I E

Z Z Z Z Z Z

-
¢ =

+ +

Making E1 inoperative then the circuit diagram becomes as shown in Fig. 4.3(c)

Then the KVL equations are,

1 1 3 2 30 ( )I Z Z I Z¢¢ ¢¢= + +

2 1 3 2 2 3( )E I Z I Z Z¢¢ ¢¢= + +

Solving above two equations,

3
1 2

1 2 2 3 3 1

Z
I E

Z Z Z Z Z Z

-
¢¢=

+ +
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2 3
2 2

1 2 2 3 3 1

Z Z
I E

Z Z Z Z Z Z

+
¢¢=

+ +

So, 1 1 1I I I¢ ¢¢= + , 2 2 2I I I¢ ¢¢= + (Proved)

If an excitation e1(t) alone gives a response r1(t), and an excitation e2(t) alone gives a response r2(t),

then, by superposition theorem, the excitation e1(t) and the excitation e2(t) together would give a

response r(t) = r1(t) + r2(t).

The superposition theorem can even be stated in a more general manner, where the superposition

occurs with scaling.

Thus an excitation of k1 e1(t) and an excitation of k2 e2(t) occurring together would give a response

of k1 r1(t) + k2 r2(t).

Points to be noted

(i) This theorem is valid for all types of linear circuits.

(ii) This theorem is not valid for power relationship.

(iii) This theorem in not applicable to circuits containing only dependent sources. With dependent

sources, superposition can be used only when the controlling functions are external to the

network containing sources, so that the controls are unchanged when the sources act at a time.

4.2.3 Reciprocity Theorem

Statement In any linear time-varying network, the ratio of response to excitation remains same for

an interchange of the position of excitation and response in the network.

Proof Let us consider a network N having only one driving voltage source E = Ei in loop i and the

current source Ij in loop j, Then Ij = YjiEi; where Yij is the admittance matrix.

Next, interchanging the positions of cause and effect, i.e., placing the same voltage source E = Ej

in loop j, we get the current response Ii in loop i as, i ij jI Y E= .

Then Ii will be equal to Ij provided, ij jiY Y= .

This is the condition for reciprocity, ij jiY Y=  for all j and i, it signifies that the admittance matrix Y

is symmetric.

Points to be noted

(i) This theorem is applicable to the networks comprising of linear, time-varying, bilateral, pas-

sive elements, such as ordinary resistors, inductors, capacitors and transformers.

(ii) This theorem is inapplicable to unilateral networks, such as networks comprising of electron

tubes or other control devices.

(iii) Both dependent and independent sources are not permissible.

(iv) We have to consider only the zero-state response by taking all the initial conditions to be zero.

4.2.4 Thevenin�s Theorem

Statement A linear active bilateral network can be replaced at any two of its terminals, by an

equivalent voltage source (Thevenin�s Voltage source), Voc, in series with an equivalent Impedance

(Thevenin�s impedance), Zth.

Here, Voc is the open circuit voltage between the two terminals under the action of all sources and

initial conditions, and Zth is the impedance obtained across the terminals with all sources removed by

their internal impedance and initial conditions reduced to zero.



Network Theorems 4.5

Proof We consider a linear active circuit of Fig. 4.5(a). An external current source is applied

through the terminals a�b where we have access to the circuit.

We have to prove that the v�i relation at terminals a�b of Fig. 4.5(a) is identical with that of the

Thevenin�s Equivalent circuit of Fig. 4.5(b).

For simplicity, we assume that the circuit contains two independent voltage sources Vs1 and Vs2 and

two independent current sources Is1 and Is2.

Considering the contribution due to each independent source including the external one, the volt-

age at a�b, V, is, by Superposition theorem,

V = K0 I + K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2
where, K0, K1, K2, K3, K4 are constants.

or V = K0 I + P0 (4.1)

where, P0 = K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2 = Total Contribution due to internal independent sources

To evaluate the constants K0 and P0 of equation (4.1), two conditions are to be noted.

(i) When the terminals a and b are open-circuited

I = 0, and V = Voc = Vth

From equation (4.1), Vth = Voc = P0 Þ th 0=V P

(ii) When all the internal sources are turned off

P0 = 0 and the equivalent impedance is Zth.

From equation (4.1), V = K0I

or 0 th= =
V

K Z
I

 Þ 0 th=K Z

Thus, substituting the values of K0 and P0, the v�i relation becomes,

th th= +V Z I V

This represents the v�i relationship of Fig. 4.2(b). So, Thevenin�s theorem is proved.

(a) A current-driven circuit (b) Thevenin’s Equivalent Circuit

Figure 4.5

Figure 4.4 Illustration of Thevenin�s Theorem
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Points to be noted

(i) This theorem is applicable to any linear, bilateral, active network. The only restriction imposed

is that the network is not magnetically coupled to external circuits.

(ii) This theorem is inapplicable for non-linear and unilateral networks.

4.2.5 Norton�s Theorem

Statement A linear active bilateral network can be replaced at any two of its terminals, by an

equivalent current source (Norton�s current source), Isc, in parallel with an equivalent admittance

(Norton�s admittance), YN.

Here, Isc is the short circuit current flowing from one terminal to the other under the action of all

sources and initial conditions, and YN is the admittance obtained across the terminals with all sources

removed by their internal impedance and initial conditions reduced to zero.

Proof We consider a linear active circuit of Fig. 4.7(a). An external voltage source is applied

through the terminals a�b where we have access to the circuit.

We have to prove that the v�i relation at terminals a-b of Fig. 4.7(a) is identical with that of the

Norton�s Equivalent circuit of Fig. 4.7(b).

For simplicity, we assume that the circuit contains two independent voltage sources Vs1 and Vs2 and

two independent current sources Is1 and Is2.

Considering the contribution due to each independent source including the external one, the cur-

rent entering at a, I, is, by Superposition theorem,

I =K0 V + K1 Vs1 + K2 Vs2 + K3 Is1Is1 + K4 Is2

where, K0, K1, K2, K3, K4 are constants.

or I = K0 V + P0 (4.2)

where, P0 = K1 Vs1 + K2 Vs2 + K3 Is1 + K4 Is2
= Total contribution due to internal independent sources

(a) A volage-driven circuit (b) Norton’s Equivalent Circuit

Figure 4.7 (a) A Voltage-driven Circuit (b) Norton�s Equivalent Circuit

Figure 4.6 Illustration of Norton�s Theorem
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To evaluate the constants K0 and P0 of equation (4.2), two conditions are:

(iii) When the terminals a and b are short-circuited

V = 0, and I = �Isc = IN

From equation (4.2), �Isc = P0 Þ sc 0= -I P

(iv) When all the internal sources are turned off

P0 = 0 and the equivalent admittance is YN.

From equation (4.2), I = K0V

or 0 N
I

K Y
V

= = Þ 0 NK Y=

Thus, substituting the values of K0 and P0, the v�i relation becomes,

�N NI VY I=

This represents the v�i relationship of Fig. 4.7(b). So, Norton�s theorem is proved.

Points to be noted

(i) This theorem is applicable to any linear, bilateral, active network. The only restriction imposed

is that the network is not magnetically coupled to external circuits.

(ii) This theorem is inapplicable for non-linear and unilateral networks.

Steps for Determination of Thevenin�s/Norton�s Equivalent Circuit
1. The portion of the network across which the Thevenin�s or Norton�s equivalent circuit is to be

found out is removed from the network.

2. (a) The open circuit voltage (Voc or Vth) is calculated keeping all the sources at their normal

values.

(b) The short circuit current (Isc or IN) flowing from one terminal to the other is calculated

keeping all the sources at their normal values.

3. Calculation of Zth or YN .

Case I. When circuit contains only independent sources, the following points are to be noted.

All voltage sources are short-circuited.

All current sources are open-circuited.

Equivalent impedance or admittance is calculated looking back to the circuit with respect to

the two terminals.

Case II. When circuit contains both dependent and independent sources,the following points

are to be noted.

Open circuit voltage (Voc) is calculated with all sources alive.

Short circuit current (Isc) is calculated with all sources alive.

Thevenin�s impedance is obtained as, Zth = oc

sc

1
=

N

V

I Y

Case III. When circuit contains only dependent sources the following points are to be noted.

In this case, Voc = 0.

We connect a test voltage (or current) source at the terminals a and b and the current

flowing through a�b (voltage drop between the terminals a�b) is calculated.

Thevenin�s impedance is obtained as, Zth = test

test

1
=

N

V

I Y
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4. Finally, Thevenin�s equivalent circuit is obtained by placing Voc in series with Zth and Norton�s

equivalent is obtained by placing Isc in parallel with YN.

4.2.6 Maximum Power Transfer Theorem

Statement Maximum power is absorbed by one network from another connected to it at two

terminals, when the impedance of one is the complex conjugate of the other.

This means that for maximum active power to be delivered to the load, load impedance must

correspond to the conjugate of the source impedance (or in the case of direct quantities, be equal to

the source impedance).

Proof Let E be the voltage source, (R + jX ) the internal impedance of the source and (RL + jXL) the

load impedance.

E = 
( ) ( )L L L

E E

Z Z R R j X X
=

+ + + +
(4.3)

Power delivered to the load is,

( ) ( )

2
2

2 2

L
L

L L

E R
P I R

R R X X
= =

+ + +
(4.4)

where, Z = R + jX, ZL = RL + jXL

For maximum power, 
L

P

X

¶
¶

 must be zero.

Now,
2

2
2 2

2( ) ( )
0

( ) ( )

L L

L
L L

E R X XP

X
R R X X

- +¶
= =

¶ é ù+ + +ë û

From which, XL + X = 0 or XL = �X

i.e.,the reactance of the load impedance is of opposite sign to the reactance of the source impedance.

Putting XL = � X in equation 4.4, P = 
2

2( )

L

L

E R

R R+

For maximum power, 
2 2 2

4

( ) 2 ( )
0

( )

L L L

L L

E R R E R R Rp

R R R

+ - +¶
= =

¶ +

or E2(RL + R) �2E2 RL = 0 or RL = R

The maximum power transferred will be 
22

max

( /2)

4 L L

EE
P

R R
= =  and thus, the efficiency will be 50%.

Points to be noted

(i) It is to be noted that when maximum power is being transferred, only half the applied voltage

is available to the load and the other half drops across the source. Also, under these conditions,

half the power supplied is wasted as dissipation in the source.

Thus, the useful maximum power will be less than the theoretical maximum power derived

and will depend on the voltage required to be maintained at the load.

Figure 4.8 Circuit for Explaining

Maximum Power Transfer

Theorem



Network Theorems 4.9

(ii) For circuits having a resistive load being supplied from a source with only an internal

resistance (the case for d.c.), the maximum power will be transferred to the load when the

load resistance is equal to the source resistance.

Concept of Internal Resistance of Voltage and Current Sources A voltage source is any

device or system that produces an electromotive force between its terminals. An example of a primary

source is a common battery. Similarly, a current source is an electrical or electronic device that

delivers electric current. Examples of current sources are a large voltage source in series with a large

resistor (however, this type of current source has very poor efficiency), an active current source

involving transistors, high voltage current source like Van de Graff generator, etc. A current source is

the dual of a voltage source.

In circuit theory, an ideal voltage source is a circuit element where the voltage across it is

independent of the current through it. It only exists in mathematical models of circuits. The internal

resistance of an ideal voltage source is zero; it is able to supply any amount of current. The current

through an ideal voltage source is completely determined by the external circuit. When connected to

an open circuit, there is zero current and thus zero power. When connected to a load resistance, the

current through the source approaches infinity as the load resistance approaches zero (a short circuit).

Thus, an ideal voltage source can supply unlimited power.

Similarly, an independent current source with zero current is identical to an ideal open circuit.

For this reason, the internal resistance of an ideal current source is infinite. The voltage across an

ideal current source is completely determined by the circuit it is connected to. When connected to a

short circuit, there is zero voltage and thus zero power delivered. When connected to a load resis-

tance, the voltage across the source approaches infinity as the load resistance approaches infinity (an

open circuit). Thus, an ideal current source can supply unlimited power forever and so represents an

unlimited source of energy. Connecting an ideal open circuit to an ideal non-zero current source is not

valid in circuit analysis as the circuit equation would be paradoxical, e.g., 3 = 0.

However, no real voltage source is ideal; all have a non-zero effective internal resistance, and none

can supply unlimited current. The internal resistance of a real voltage source is effectively modeled in

linear circuit analysis by combining a non-zero resistance in series with an ideal voltage source.

Similarly, no real current source is ideal (no unlimited energy sources exist) and all have a finite

internal resistance (none can supply unlimited voltage). The internal resistance of a physical current

source is effectively modeled in circuit analysis by combining a non-zero resistance in parallel with

an ideal current source.

4.2.7 Tellegen�s Theorem

Statement Consider an arbitrary lumped network whose graph G has b branches and n nodes. Let

the associated reference polarities and directions be chosen for the branch voltages v1, v2, v3, �vb and

the branch currents i1, i2, i3. �ib, which satisfy all the constraints imposed by KVL and KCL,

respectively.

Then, the summation of instantaneous power delivered to all branches is zero.

i.e.
1

0
b

k k
k

v i
=

=å
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Proof We have to prove that,

1

0
b

k k
k

v i
=

=å

or [ ]

1

2
1 2 ... 0

.
b

b

i

i
v v v

i

é ù
ê ú
ê ú =
ê ú
ê ú
ê úë û

or [Vb]T [Ib] = 0 (4.5)

Now, by KCL and KVL using Complete Incidence Matrix, we have,

[Aa] [Ib] = 0 (4.6)

and [Vb] = [Aa]
T [Vn] (4.7)

So, [Vb]T [Ib] = [[Aa]
T [Vn]]

T [Ib] {by equation (4.7)}

= [Aa] [Ib] [Vn]
T

= 0.[Vn]
T {by equation (4.6)}

Þ [Vb]T [Ib] = 0

Thus, Tellegen�s Theorem is proved.

Points to be noted

(i) This theorem is applicable for any lumped network having elements which are linear or non-

linear, active or passive, time-varying or time-invariant.

(ii) This theorem is completely independent of the nature of the elements and is only concerned

with the graph of the network.

(iii) This theorem is based on two Kirchhoff�s laws, i.e., KVL and KCL.

(iv) This theorem implies that the power delivered by independent sources of the network must be

equal to the sum of the power absorbed (dissipated or stored) in all other elements in the

network.

(v) If the network is in sinusoidally steady-state (a.c. circuits), then Tellegen�s theorem is given as,

*

1

b

k k
k

V I
=

å  = 0

where, Vk are the phasor voltages, Ik are the phasor currents and Ik
* is the complex conjugate

of Ik.

(vi) If t1 and t2 refer to two different instants of observations, it still follows form Tellegen�s

theorem that,

1 2
1

( ) ( ) 0
=

× =å
b

k k
k

v t i t
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(vii) If N1 and N2 refer to two different circuits having the same graph, with the same reference

directions assigned to the branches in the two circuits, then by Tellegen�s theorem,

1 2 2 1
1 1

. 0 and . 0
b b

k k kk
k k

v i v i
= =

= =å å

where v1k and i1k are the voltages and currents in N1 and v2k and i2k are the voltages and

currents in N2, all satisfying the Kirchhoff�s laws.

4.2.8 Millman�s Theorem

Consider a number of admittances Y1, Y2, Y3 �Yp� Yq,�Yn are connected together at a common

point S. If the voltages of the free ends of the admittances with respect to a common reference N are

known to be V1N , V2N , V3N �VpN�VqN ,�VnN , then Millman�s theorem gives the voltage of the

common point S with respect to the reference N, as follows.

Applying Kirchhoff�s Current law at node S,

1

0, ( )
n

p p p pN sN
p

I I Y V V
=

= = -å

or
1

( ) 0
n

p pN sN
p

Y V V
=

- =å

or
1 1

n n

p pN sN p
p p

Y V V Y
= =

=å å

Þ
1

1

n

p pN
p

sN n

p
p

Y V

V

Y

=

=

=

å

å

An extension of the Millman�s theorem is the equivalent generator theorem.

Statement
(I) This theorem states that if several ideal voltage sources (V1, V2, �) in series with impedances

(Z1, Z2,�) are connected in parallel , then the circuit may be replaced by a single ideal voltage

source (V) in series with an impedance (Z) such that

1

1 1

1
and

n

i i
i

n n

i i
i i

V Y

V Z

Y Y

=

= =

= =

å

å å

Figure 4.9 Illustration of Millman�s Theorem
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(II) If several ideal current sources (I1, I2,�) in parallel with impedances (Z1, Z2�) are connected

in series, they may be replaced by a single ideal current source (I) in parallel with an imped-

ance (Z) such that

1

1

/

1/

n

i i

i

n

i

i

I Y

I

Y

=

=

=

å

å

and,

1

1

1/
n

i
i

Y

Y
=

=

å

or,
1

n

i
i

Z Z
=

= å

Proof

(I) Using Superposition theorem, the short circuit current through A�B considering only one

source acting alone and replacing other sources by their internal impedances, (i.e., short circuit

for ideal voltage sources),

1 1 1scI V Y=

2 2 2scI V Y=

scn n nI V Y=

Total short circuit current through A�B, Isc = (Isc1 + Isc2 + � + Isc n)

= V1 Y1 + V2 Y2 + � + Vn Yn

1

n

i i
i

V Y
=

= å (4.8)

Impedance looking back from A�B with all the sources removed,

1 2

1

1 1

...

=

= =
+ + +

å
n

n
i

i

Z
Y Y Y

Y

(4.9)

Figure 4.10 Voltage Source Equivalent using Millman�s Theorem

Figure 4.11 Current Source Equivalent using Millman�s Theorem
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Thus, by Thevenin�s theorem, the equivalent voltage is,

1

sc

1

=

=

= × =

å

å

n

i i
i

n

i
i

V Y

V I Z

Y

(4.10)

Form equation (4.8), (4.9) and (4.10), Millman�s Theorem is proved.

(II) Using Superposition theorem, the short circuit current through A�B considering only one

source acting alone and replacing other sources by their internal impedances, (i.e., open circuit

for ideal current sources),

1 1 2 2
sc1 sc2 sc

1 1 1

; ;

= = =

= = ¼ =

å å å

n n

nn n n

i i i

i i i

I ZI Z I Z
I I I

Z Z Z

Total short circuit current, Isc = I = (Isc1 + Isc2 + �+ Isc n )

1

1

n

i i
i

n

i
i

I Z

I

Z

=

=

=

å

å
(4.11)

Impedance looking back from A�B with all the sources removed,

1

n

i
i

Z Z
=

= å (4.12)

From equation (4.11) and (4.12), Millman�s theorem is proved.

4.2.9 Compensation Theorem

In many circuits, after the circuit is analysed, it is realised that only a small change needs to be made

to a component to get a desired result. In such a case, we would normally have to recalculate. The

compensation theorem allows us to compensate properly for such changes without sacrificing

accuracy.

Statement In any linear bilateral active network, if any branch carrying a current I has its imped-

ance Z changed by an amount dZ, the resulting changes that occur in the other branches are the same

as those which would have been caused by the injection of a voltage source of (�IdZ) in the modified

branch.

In other words, in a linear network N, if the current in a branch is I and the impedance Z of the

branch is increased by dZ, then the increment of voltage and current in each branch of the network is

that voltage or current that would be produced by an opposite voltage source of value vc(= IdZ)

introduced into the altered branch after the modification.

Proof Consider the network N, having branch impedance Z.

Let the current through Z be I and its voltage be V.
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Let dZ be the change in Z.

Then, I ¢ (the new current) can be written as,

oc

th

V
I

Z Z Zd
¢ =

+ +
;

oc oc oc

th th th th

V V V Z
I I I

Z Z Z Z Z Z Z Z Z Z

d
d

d d

æ ö æ ö¢= - = - = -ç ÷ ç ÷+ + + + + +è ø è ø

or
th th

wherec
c

VI Z
I V I Z

Z Z Z Z Z Z

d
d d

d d
= - = - =

+ + + +
How to find d I

(i) Find the product IdZ, where I is the current through the branch before changing the impedance.

(ii) Remove all the independent sources.

(iii) Connect a voltage source of magnitude Vc = IdZ, in series with the branch. The polarity of Vc

is such as to oppose the direction of current I.

(iv) Solve the network assuming current flowing to be d I and thus the value of d I.

4.3 COUPLED CIRCUITS

Coupling is an electric/magnetic phenomenon which sets up direct/mutual interaction between two or

more passive elements of a network in such a way that changes in one element or circuit affect the

performance of other elements in the same circuit or neighbouring circuits. Depending upon the

situation, coupled circuits may be classified as (i) conductively coupled circuits, and (ii) magnetically

coupled circuits. In a conductively coupled circuit, variation in one loop of a given circuit would

bring about changes in neighbouring loops of the same circuit through current conduction. However,

in case of magnetically coupled circuits, variation in one loop of a given circuit might affect the

performance of other loops in the same circuit or even in the neighbouring circuits although the

circuits remain electrically isolated. Therefore, it may be inferred that electric current plays the key

role in conductively coupled circuits through conduction of current, whereas magnetic flux plays the

key function in magnetically coupled circuits. As per the fundamentals of electromagnetism, magnetic

flux is the result of electric current flow in a conductor or a coil and it is the inductance of the

conductor or the coil in question that governs the relationship between electric current and magnetic

flux. Further, it is also known to us that according to the principles of electromagnetic induction, a

time-varying magnetic flux of a particular coil may induce voltage in the form of emf in the same coil

Figure 4.12(a) Circuit for Explaining

Compensation Theorem

Figure 4.12(b) Equivalent Circuit using

Compensation Theorem
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or neighbouring coils irrespective of the fact that these coils remain electrically connected or isolated.

The inherent property of a coil by virtue of which a time-varying magnetic flux of the coil on linking

the coil itself induces an emf across the same coil is known as self-inductance and is designated by

the symbol L (SI unit henry, H). On the contrary, the mutual property of two coils by virtue of

which a time-varying flux of one coil on linking a neighbouring coil induces an emf in the second coil

is known as mutual inductance of the second coil with respect to the first coil and is designated by

the symbol M21 (SI unit henry, H). Similarly, mutual inductance of the first coil with respect to the

second coil may be referred as M12, which may be responsible for inducing an emf in the first coil

due to linkage of a common magnetic flux produced by an exciting current flowing in the second

coil. The simplest example of magnetic coupling due to self inductance is the choke coil used as a

ballast in fluorescent tube operation and that of mutual inductance is the practical transformer used in

power systems.

4.3.1 Self-inductance

Self-inductance of a coil is defined as an inherent property of a coil which opposes any change in

flux linkage with the coil itself or any change in the current flow in the coil itself by inducing an emf

across the coil. The principles governing this are better known as Faraday�s laws of electromagnetic

induction and Lenz�s law. Accordingly, the expressions for the self-induced emf in the physical

arrangement of Fig. 4.13 consisting of a coil of N1 turns and excited by a time-varying voltage v1(t)

may be given as

e1(t) = � N1

d t

dt

f1( )
(4.13)

Also, e1(t) = � L1

di t

dt

1( )
(4.14)

On comparison of the above expressions, we may find an expression for the self-inductance of the

coil given as

L1 = N1

d t

di t

f1

1

( )

( )
 = N1

d

di

f1

1

(4.15)

where, L1 represents the self-inductance of coil-1, i1 represents the excitation current flowing in coil-

1, f1 represents the magnetic flux linking coil-1, and e1 is the self-induced emf in coil-1.

L1

N1

f1( )t

I t1( )

e t1( )

Coil-1

V t1( )

Figure 4.13 Self-induced emf and self-inductance
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4.3.2 Mutual Inductance

Mutual inductance of a coil with respect to another coil is defined as an inherent property of the coils

which would tend to oppose any change in flux linkage with the second coil due to the excitation of

the first coil by inducing an emf across the second coil. The opposition would be viable when the

second coil would provide a closed loop for a current to flow in it and the flux developed due to this

current would oppose the main flux in question. In another way, mutual inductance may also be

defined as the ability of a coil or an inductor to induce an emf across a neighbouring coil or inductor

with the help of magnetic coupling between the two coils. The principles governing this are better

known as Faraday�s laws of electromagnetic induction and Lenz�s law. Accordingly, the expressions

for the mutually induced emf in the physical arrangement of Fig. 4.14 consisting of two coils (coil-

1 having N1 turns and coil-2 having N2 turns, which are electrically isolated but magnetically coupled)

may be given under two categories as shown below.

N1

e t2( )

I t1( )

V t1( )

f11

f12

M21

N2

f f f1 12= +11

N1

e t1( )

I t2( )

V t2( )

f22

M12

f f f2 21= +22

f21

N2

(a) With coil-1 excited (a) With coil-2 excited

Figure 4.14 Mutually induced emf and mutual inductance

Case I Coil-1 is excited and mutually induced emf appears in coil-2

In view of Fig. 4.14 (a), it may be found that

e2(t) = � N2

d t

dt

f12( )
(4.16)

Also, e2(t) = � M21

di t

dt

1( )
(4.17)

On comparison of the above expressions, we may find an expression for the mutual inductance of

coil-2 with respect to coil-1 given as

M21 = N2

d t

di t

f12

1

( )

( )
 = N2

d

di

f12

1

(4.18)

where, i1 represents the excitation current flowing in coil-1, f1 represents the total magnetic flux

produced by coil-1, f11 represents the magnetic flux that does not link coil-2 which may be treated as

a leakage flux, f12 represents the common magnetic flux linking both coil-1 and coil-2 which may be

treated as the useful flux, and e2 is the mutually induced emf in coil-2. It may be noted that the total

flux is an algebraic sum of the leakage flux and useful flux, i.e., f1 = f11 + f12.
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Case II Coil-2 is excited and mutually induced emf appears in coil-1

In view of Fig. 4.14 (b), it may be found that

e1(t) = � N1

d t

dt

f21( )
(4.19)

Also, e1(t) = � M12

di t

dt

2 ( )
(4.20)

On comparison of the above expressions, we may find an expression for the mutual inductance of

coil-1 with respect to coil-2 given as

M12 = N1

d t

di t

f21

2

( )

( )
 = N1

d

di

f21

2

(4.21)

where, i2 represents the excitation current flowing in coil-2, f2 represents the total magnetic flux

produced by coil-2, f22 represents the magnetic flux that does not link coil-1 which may be treated as

a leakage flux, f21 represents the common magnetic flux linking both coil-1 and coil-2 which may be

treated as the useful flux, and e1 is the mutually induced emf in coil-1. It may be noted that the total

flux is an algebraic sum of the leakage flux and useful flux, i.e., f2 = f22 + f21. For a given physical

set-up, it may be verified that mutual inductances remain same for both the coils irrespective of the

order of their excitation. This might lead to the simplification that mutual inductance of a combination

of two neighbouring coils may be assigned one value as shown in Equation 4.22.

M12 = M21 = M (4.22)

4.4 DOT CONVENTION FOR REPRESENTING COUPLED CIRCUITS

In the previous section, we have come across the fundamental concepts behind the operation and

utility of coupled circuits and the key parameters governing them. It may be observed that two coils

coupled to each other magnetically develop a mutual property for the common set-up which is

characterized as the mutual inductance (M ) for the coupled coils. The most striking effect of mutual

inductance is reportedly the development of a mutually induced emf in one of the coils of the coupled

set-up subject to a time-varying excitation resulting from an alternating current flow in the other coil.

Unlike the self-induced emf which has an inherent property of opposition towards the cause of its

production, a mutually induced emf may exhibit dual characteristics. It would be interesting to note

something in the course of this section that sometimes the mutually induced emf may oppose the

source voltage while at other times, it might assist the source voltage depending on the physical

structure of the existing windings in the coupled set-up and the mode of coupling described by the

existing and/or desirable current flow in the individual loops of the coupled set-up. Since the polarity

of the mutually induced emf dictates the formation of KVL expression for a loop, the reader must

remain careful about the sign convention of the emfs induced in the elements of the coupled circuits

due to coupling effect. It may be well appreciated that the polarity of the mutually induced emf in the

coils depend on many factors such as (i) direction of the current flow in the coil, (ii) development

and progressive growth of the winding over the core, (iii) orientation of the coils in the space and

their proximity in the neighbourhood, and finally (iv) their connectivity in the circuit. Therefore,

unless clearly implemented otherwise, the reader may face several difficulties in finding the accurate
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polarities of mutually induced emf. It is thus mandatory on the part of the manufacturers and users as

well that they should follow a unified code for the polarity conventions of coils or inductors as

regards to the mutually induced emfs to be developed there in when used in coupled circuits.

If we look into the practical situation of a coupled circuit having two coils (coil-1 and coil-2)

placed in the neighbourhood of each other as shown in Fig.4.15, each of them carrying their own

loop currents which are time varying, then the KVL expressions for individual loops for the instant

depicted in the figure may have the structure of Equation 4.23 (for loop-1) and Equation 4.24 (for

loop-2) respectively.

M

R2L2L1

f12

I2I1

Loop-2Loop-1

R1

+

–
V1( )t

Figure 4.15

KVL for loop-1 of Fig.4.15:

v1(t) = I1R1 + L1

dI

dt

1  ± M
dI

dt

2 (4.23)

KVL for loop-2 of Fig.4.15:

0 = I2R2 + L2

dI

dt

2  ± M
dI

dt

1 (4.24)

Though both the signs (positive and negative) appear in the above equations as regards to the

mutually induced emf, yet any one of them would be valid for the particular situation. The reader may

note here that Fig.4.15 is not presented in sufficient details to explore the correct signs for the emf

terms induced in the coils under the action of mutual coupling between the two coils. While making

an attempt to clarify this situation, it may be essential to provide more information about the factors

responsible for the mutually induced emf.

In view of this, let us draw our attention to review the physical arrangements of Fig. 4.16 (a to h).

In this figure we have considered eight different situations for two magnetically coupled coils such

that each situation is unique and differs from the rest as regards to the physical get-up of the winding

structure developed over the core and direction of current flow in the loops of the two coils. With the

given allocation of loop currents it may be possible to identify the direction of magnetic flux for each

coil by the help of Ampere�s right-hand thumb rule. Then it may be observed that for the four cases

(i.e., a, d, f, and g of Fig. 4.16), the magnetic flux of coil-1 and that of coil-2 maintain same direction

of flow in the core. This would necessarily mean that the polarity of a mutually induced emf

appearing in Equations 4.23 and 4.24 for these four cases would be positive. Thus the correct form

of KVL expressions for these four cases would be as per Equations 4.25 and 4.26.
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Fig. 4.16
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KVL for loop-1 (for the cases a, d, f, and g of Fig.4.16):

v1(t) = I1R1 + L1

dI

dt

1  + M
dI

dt

2 (4.25)

KVL for loop-2 (for the cases a, d, f, and g of Fig.4.16):

0 = I2R2 + L2

dI

dt

2  + M
dI

dt

1 (4.26)
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However, for the remaining four cases (i.e., b, c, e, and h of Fig. 4.16), it may be observed that

the magnetic flux produced by coil-1 is seemingly opposite to that of the flux of coil-2, thus leading

to the inference that the polarity of mutually induced emf appearing in Equations 4.23 and 4.24 for

these four cases would be negative. Thus the correct form of KVL expressions for these four cases

would be as per Equations 4.27 and 4.28.

KVL for loop-1 (for the cases b, c, e, and h of Fig. 4.16):

v1(t) = I1R1 + L1

dI

dt

1  � M
dI

dt

2 (4.27)

KVL for loop-2 (for the cases b, c, e, and h of Fig. 4.16):

0 = I2R2 + L2

dI

dt

2  � M
dI

dt

1 (4.28)

This much of clarity in finding the polarity of the mutually induced emf could be possible only due

to a real isometric presentation of the core showing the actual progress of the winding layout over it

that facilitated the prediction of the direction of flow of magnetic flux in the core due to an impressed

current as per the schedule shown in each case of Fig. 4.16.

On the contrary, had it been a situation happening normally in most of the diagrams, where neither

the core nor the actual progress of the winding layout over it is presented clearly, the analysis would

not be so easier to predict the polarity of the mutually induced emf in the coupled coils correctly by

knowing only the current allotment in the coils. Hence, it is recommended that some practical and

easy-to-handle convention may be adopted for fulfillment of the requirements of coupled coils as

regards to identification of polarity of a mutually induced emf in them. Such a convention is known

as DOT convention.

In order to bring the dot convention into force and implement it correctly to the case of coupled

coils, let us redraw the eight cases of Fig. 4.16 in another figure (Fig. 4.17) where the core has been

removed and the coils have been marked with a dot at one end. In order to resemble the transformer

structure, the coils have been put vertically in the diagram. According to this convention, the dot

would convey the direction of the resulting magnetic flux in such a way that, �polarity of the emf

induced mutually across a neighbouring coil would be positive at the dotted end of the coil subject to

entry of a time-varying exciting current at the dotted end of the other coil�. Although identifying the

polarity of the mutually induced emf in the coils is a foolproof method, yet sometimes, the interpre-

tation of dot convention becomes comfortable and implementation of the same for formation of KVL

becomes easier by assigning a polarity for the mutual inductance (±M) instead. A thorough examina-

tion of the eight cases presented in Fig. 4.17 would reveal another modified terminology for the

linguistic presentation of the dot convention, which states that, �polarity of mutual inductance of a

coupled coil set-up may be treated as positive only if the loop currents make their entry into the

respective coils at the dotted ends of respective coils, failing which, mutual inductance may be

treated as negative�.

Thus, any coupled circuit may be viewed correctly in the absence of a core in the diagram if dot

convention is followed properly and the mutual inductance polarity is marked correctly. In view of

this, the diagram shown in Fig. 4.18 may be treated as a general diagram for representing coupled

circuits with the help of dot convention.
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4.5 COEFFICIENT OF COUPLING

While dealing with coupled circuits, it is very important to see the aspects of self inductance and

mutual inductance and the magnetic coupling between them. The degree or order or effectiveness of

this coupling is otherwise known as coefficient of coupling. This may be derived as follows.

In view of Fig. 4.14, the self-inductance and mutual inductance values of respective coils and their

coupled combinations may be given by

Self inductance of coil-1: L1 = N1

d

di

f1

1

(4.29)

Self inductance of coil-2: L2 = N2

d

di

f 2

2

(4.30)

Mutual inductance of coil-2 with respect to coil-1:

M21 = N2

d

di

f12

1

(4.31)

Mutual inductance of coil-1 with respect to coil-2:

M12 = N1

d

di

f21

2

(4.32)

Taking the product of the two sides of Equations 4.31 and 4.32, we may get

M21 M12 = N2

d

di

f12

1

 N1

d

di

f21

2

(4.33)

In view of Equation 4.22, we may simplify the above equation as shown in Equation 4.34.

M2 = N2

d

di

f12

1

 N1

d

di

f21

2

 = N1

d

di

f12

1

 N2

d

di

f21

2

(4.34)

It is also possible to express the flux distributions in respective coils as a fraction of the total flux

such that the useful flux in each coil becomes

f12 = kf1 (4.35)

And f21 = kf2 (4.36)

where, k is a fractional constant usually less than unity or ideally equal to unity. While substituting

these values in Equation 4.34 we may get

M2 = N1

d

di

f12

1

 N2

d

di

f21

2

 = N1

d k

di

( )f1

1

 N2

d k

di

( )f2

2
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= k2 N
dk

di
N

d

di
1

1

1
2

2

2

f fF
HG

I
KJ

 = k2 (L1 L2) (4.37)

Thus, the mutual inductance of the set-up may be found by taking the square root of Equation 4.37,

which results in

M = k L L1 2 (4.38)

The fractional constant (k) appearing in the above expressions for flux and inductance is called

coefficient of coupling which may be written as

k =
M

L L1 2

 =
f

f

12

1

 = 
f

f

21

2

(4.39)

For the case of two coupled coils if k = 1, then the coupling is ideal, which is never possible in

practice. However, for the range 0.5 < k < 1, the coupling may be viewed as strong and the coils are

said to be tightly coupled. On the other hand, the coupling is regarded as weak or the coils may be

treated as loosely coupled if k is found to be less than 0.5 for the given set-up. In order to improve

the coupling, one would have to be careful for enhancement in the coupling coefficient by providing

highly permeable magnetic materials in the core, arranging the coils in the close vicinity of each other

and providing the best possible orientation of the coils to facilitate flux linkage.

4.6 RESONANCE IN COUPLED CIRCUITS

Resonance is a typical state or condition of a system during which the frequency of oscillation

produced by an external forcing function matches with the natural frequency of the system thereby

causing a response of maximum amplitude. In fact, resonance does not take place in the steady state

and for its occurrence in a system, there must be some external periodic forcing function in the form

of a disturbance from outside the system that introduces some kind of forced oscillations into the

system. As the system continues with these oscillations, interchange of energy takes place between

two independent energy-storing components present within the system. Depending on the initial

condition of the system and frequency of the forcing function, system oscillations may grow or

diminish in scale as compared to the oscillations of the immediate previous state. At a particular stage

it may so happen that the frequency of the forcing function may go step-in-step with the natural

frequency of the system. This kind of a situation is certainly a rare and typical occurrence and it may

lead the system oscillations into a state of resonance thereby exhibiting a response of highest

magnitude. In mechanical systems, resonance may take place in springs, cantilevers, beams, col-

umns, bridges, and so on, leading to ultimate collapse if sustained for long. That is perhaps why a

group of soldiers marching ahead over a river bridge are often advised not to march along rhythmi-

cally. In electrical networks for the resonance to take place, it is mostly desirable that the network

should have inductors (coupled coils) and capacitors representing the two kinds of energy-storing

elements which actively take part in exchanging the energy stored in them in their magnetic and

electric fields respectively. In addition to this, there must also be a supply source that inputs a
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periodic forcing function into the system in the form of an external disturbance. Depending upon the

type of passive elements present in the electric network and their connectivity, resonance in coupled

circuits may be categorized as series resonance and parallel resonance. Both of these resonance

cases have been dealt separately in the following sections. Other salient features of resonance such as

bandwidth, quality factor and selectivity have also been covered in a concise manner.

4.6.1 Bandwidth and Q-factor During Series Resonance

When an electric network containing the passive elements (such as resistance R, inductance L and

capacitance C ) in series is excited from an external supply source having a periodic function of

frequency f, as shown in Fig. 4.19, then it is expected that with the variation in the supply frequency

resonance may occur in the circuit as and when the frequency of the periodic forcing function

matches with the natural frequency of oscillation of the system. Such a type of resonance is known

as series resonance and the frequency at which resonance occurs is called resonant frequency, given

by f0.

i

V, f

R L C

V V t= sinm w

∫ i

V, f

z

Fig. 4.19 Network for study of series resonance

During resonance it is expected that the response of the system attains highest amplitude, which

for the given network of Fig. 4.19 may be viewed as the magnitude of the circuit current attaining its

highest possible peak for a particular frequency of the supply source and the given network condi-

tions. In other words, the network becomes frequency selective during resonance and the frequency

of the source for which the circuit resonates is called the series resonant frequency ( f0). Since the

circuit current is mostly regulated by the circuit impedance (I = V/Z ), during resonance it may be

required that impedance should pass through its series lowest value in order to ensure a highest

possible peak for the current. Therefore, the expression for complex impedance of the circuit is being

presented in Equation 4.40 for a better analysis of resonant condition.

Z = R + jwL +
1

j Cw
 = R + j w

w
L

C
-

F
HG

I
KJ

1
(4.40)

Now it may be seen clearly that the impedance is also a function of supply frequency as Z is a

function of R, and w = 2p f. Thus it is permissible that the impedance may attain a value which

becomes the least in the series over a range of f, only when the term within the parentheses of

Equation 4.40 reduces zero. The frequency of the supply for which the imaginary part of Equation 4.40

becomes zero is therefore treated as resonant frequency. A detailed workout for the calculation of
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resonant frequency is performed in the following paragraph with the clue that, wL � 
1

0

wC
f f=

= 0.

This condition leads to wL = 
1

wC
.

Þ w 2 = 
1

LC
Þ w = 

1

LC
Þ 2p f0 = 

1

LC
Þ f0 = 

1

2p LC
(4.41)

The condition of resonance also reveals many other facts about the circuit performance, which are

stated categorically hereafter. These facts may be useful for finding the bandwidth and quality factor

of coupled circuits.

1. Resonant frequency is given by w0 =
1

LC
 or f0 = 

1

2p LC
.

2. At resonance, the circuit impedance is the least and is numerically equal to the resistance of

the network, given by, Z0 = R. Hence the circuit behaves as a purely resistive circuit.

3. At resonance, the power factor of the network is the highest and becomes unity.

4. At resonance, current in the circuit is the highest, and it becomes, I0 = V/R, which remains in

the same phase of the voltage.

5. At resonance, the average power consumed by the circuit is the highest, and it becomes,

P0 = 
1

2

2V

R

F

HG
I

KJ
.

Bandwidth (Bw) for series resonance

The concept of bandwidth requires the understanding of frequency response of current in the circuit

over the stretch of frequency variation from zero to infinity passing through resonant frequency.

Such a plot is shown in Fig. 4.20.

f1 f0 f2 f
(Hz)

X

Y

I A( ) I0

I0/ 2

O
f1 f0 f2 f

(Hz)

X

Y

P W( )

P0

P0/2

O

(a) I vs f (b) P vs f

Fig. 4.20 Frequency response of current and power for the circuit of Fig.4.19

As revealed from the plot of Fig. 4.20, the performance of the circuit as regards to amplitude of

current and the power consumption is highest at resonance. This property is very useful for
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frequency selectivity of circuits generally used for communication purpose. However, it may be

difficult in practice to obtain this condition for all purposes. Therefore, a range of frequency on either

side of resonant frequency for which the power consumption may reduce up to 50% of the power

consumed during resonance may be considered as a reasonable band of frequency satisfying the

frequency selectivity criterion. The corresponding power range is thus treated as the half-power zone

during which the current in the circuit may reduce up to 70% of the current at resonance. In

Fig. 4.20, extreme value of frequency on the left side of resonant frequency satisfying this half-

power limit is designated as f1 and may be referred as lower half-power frequency. Similarly, the

extreme value of frequency on the right side of resonant frequency satisfying this half-power limit is

designated as f2 which may be referred as upper half-power frequency. The frequency range between

these two extreme points expressed as a frequency band is referred as band-width. So, numerically

band-width is given by

Bw = f2 � f1 (4.42)

A detailed analysis for the series circuit of Fig.4.19 would result with the following value for

bandwidth for the case of series resonance.

Bw = f2 � f1 = 
1

2p

R

L

F
HG

I
KJ

(4.43)

Quality Factor (Q) For Series Resonance

The concept of quality factor is also derived from the frequency response of Fig. 4.20 and it defines

the sharpness of resonance for a particular network. It is often expressed as a ratio of the maximum

energy stored in the energy-storing devices to that of the energy dissipated through the resistor in a

given cycle during resonance. So, in view of the inductor L as the energy storing device,

Q =
Energy stored in  per cycle

Energy dissipated per cycle

L
 =

1

2
1 1

2

2

0

2

LI

RI
w

F
HG

I
KJ

 =
w 0L

R
 = 

2 0p f L

R
(4.44)

Since, w 0 = 
1

LC
, replacing the value of L in Equation 4.44 with L = 

1

0
2

w C
, we may find that

Q =
w0L

R
 =

w
w

0

0
2

1

C

R

F

HG
I

KJ
 =

1

0w CR
 = 

1

2 0p f CR
(4.45)

Few important relationships may also be established as shown below, which may be easily verified

by the reader. Equation 4.46 is valid for series and parallel resonance as well.

f0 = f f1 2  = Q.Bw (4.46)

4.6.2 BANDWIDTH AND Q-FACTOR DURING PARALLEL RESONANCE

When an electric network containing the passive elements (such as resistance R, inductance L and

capacitance C ) in parallel is excited from an external supply source having a periodic function of
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frequency f, as shown in Fig.4.21 then it is expected that with the variation in the supply frequency,

resonance may occur in the circuit as and when the frequency of the periodic forcing function

matches with the natural frequency of oscillation of the system. Such a type of resonance is known

as parallel resonance and the frequency at which resonance occurs is called resonant frequency,

given by f0. During resonance it is expected that the response of the system attains highest amplitude,

which for the given network of Fig.4.21 may be viewed as the magnitude of the circuit current

attaining its highest possible peak for a particular frequency of the supply source and the given

network conditions.

V, f

V V t= sinm w

∫

z

R

L

C

V, f

Fig. 4.21 Network for study of parallel resonance

In other words, the network becomes frequency selective during resonance and the frequency of

the source for which the circuit resonates is called the parallel resonant frequency ( f0). Since the

circuit current is mostly regulated by the circuit admittance (I = Y.V ), during resonance it may be

required that admittance should pass through its series highest value in order to ensure a highest

possible peak for the current. For the parallel circuit of Fig. 4.21, the expression for complex

admittance of the circuit is being presented in Equation 4.41 for a better analysis of resonant

condition.

Y = Y1 + Y2 + Y3 =
1

R
 � j

1

w
w

L
C-

F
HG

I
KJ

(4.47)

Now it may be seen clearly that the admittance is also a function of supply frequency as Y is a

function of R, and w = 2p f. Thus it is permissible that the admittance may attain a value which

becomes the highest in the series over a range of f, only when the term within the parentheses of

Equation 4.47 reduces to zero. The frequency of the supply for which the imaginary part of

Equation 4.47 becomes zero is therefore treated as resonant frequency. A detailed workout for the

calculation of resonant frequency is performed in the following paragraph with the clue that

1

0

w
w

L
C

f f

-
=

 = 0. This condition leads to wC = 
1

w L
.

Þ w 2 =
1

LC
 Þ w =

1

LC
 Þ 2p f0 =

1

LC
 Þ f0 = 

1

2p LC
(4.48)



4.28 Network Theory

The condition of resonance also reveals many other facts about the circuit performance, which are

stated categorically hereafter. These facts may be useful for finding the bandwidth and quality factor

of coupled circuits.

1. Resonant frequency is given by w0 =
1

LC
 or f0 = 

1

2p LC
.

2. At resonance, the circuit impedance is the least and is numerically equal to the resistance of

the network, given by Z0 = R. Hence the circuit behaves as a purely resistive circuit.

3. At resonance, the power factor of the network is the highest and becomes unity.

4. At resonance, current in the circuit is the highest, and it becomes, I0 = V/R, which remains in

the same phase of the voltage.

5. At resonance, the average power consumed by the circuit is the highest, and it becomes,

P0 = 
1

2

2V

R

F

HG
I

KJ
.

Bandwidth (Bw) For Parallel Resonance

The concept of bandwidth requires the understanding of frequency response of current in the circuit

over the stretch of frequency variation from zero to infinity passing through resonant frequency.

Such a plot is shown in Fig. 4.22.

Y

O X
f1 f0 f2 f Hz

I0

I A( )

(a) I vs f (b) P vs f

XO
f1 f0 f2 f Hz

Y

P
W(

) P0

P0

2
I0/ 2

Fig. 4.22 Frequency response of current and power for the circuit of Fig. 4.21

As revealed from the plot of Fig. 4.22, the performance of the circuit as regards to amplitude of

current and the power consumption is highest at resonance. This property is very useful for

frequency selectivity of circuits generally used for communication purpose. However, it may be

difficult in practice to obtain this condition for all purposes. Therefore, a range of frequency on either

side of the resonant frequency for which the power consumption may reduce up to 50% of the

power consumed during resonance may be considered as a reasonable band of frequency satisfying

the frequency selectivity criterion. The corresponding power range is thus treated as the half-power

zone during which the current in the circuit may reduce up to 70% of the current at resonance. In

Fig. 4.22, extreme value of frequency on the left side of the resonant frequency satisfying this half

power limit is designated as f1 and may be referred as lower half-power frequency. Similarly, the
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extreme value of frequency on the right side of the resonant frequency satisfying this half power limit

is designated as f2 which may be referred as upper half-power frequency. The frequency range

between these two extreme points expressed as a frequency band is referred as bandwidth. So,

numerically bandwidth is given by

Bw = f2 � f1 (4.49)

A detailed analysis for the series circuit of Fig. 4.21 would result with the following value for

bandwidth for the case of parallel resonance.

Bw = f2 � f1 = 
1

2pRC
(4.50)

Quality Factor (Q) For Parallel Resonance

The concept of quality factor is also derived from the frequency response of Fig. 4.22 and it defines

the sharpness of resonance for a particular network. In view of the finding of Equation 4.46, the

quality factor for the case of parallel resonance may be derives as follows.

Q = 
f

B

0

w

 =
f

RC

0

1

2p

 = 2p f0RC = w0 RC (4.51)

Since, w 0 = 
1

LC
, replacing the value of C in Equation 4.51 with C = 

1

0
2w L

, we may find that

Q = 2p f0RC = 2p f0R
1

0
2

w L
 =

R

f L2 0p

 = 
R

Lw 0

(4.52)

(i) Voltage Source acting alone (ii) Current Source acting alone

SOLVED EXERCISES

Superposition Theorem

4.1

Find the current I in the circuit shown in figure. using superposition theorem.

Solution
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For Figure (i) 
1

A
3

¢ = -I

For Figure (ii) 
1 1

1 A
1 2 3

¢¢ = ´ =
+

I

By superposition, 
1 1

( ) 0
3 3

I I I¢ ¢¢= + = - + = Ans.

4.2

Calculate the voltage V across the resistor R by using superposition theorem.

Solution

For Figure (i), 
1

j
V

j
¢ =

+

For Figure (ii),current through the resistor 
1

1
I

j
¢¢ =

+

\ 1
1

1
V I

j
¢¢ ¢¢= ´ =

+
So, by superposition theorem

1
( ) 1 V

1 1

j
V V V

j j
¢ ¢¢= + = + =

+ +

4.3

(i) Circuit with current source acting alone (ii) Circuit with voltage source

acting alone

Use superposition theorem on the circuit shown in figure to find I.
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Solution

For Fig. (i), by KVL, 5 2 2 10 with 2xi vx i v i¢ ¢ ¢ ¢ ¢- + = = -

Þ 7 4 10i i¢ ¢+ =

Þ 10/11Ai ¢ =
For Fig (ii), by KCL at node (x)

2
2
x

x

v
i i i

¢
¢¢ ¢¢= + = - + (i)

But loop analysis in the left loop gives,

5 3 0xi v¢¢ ¢¢+ =

or
3

5 xi v¢¢ ¢¢= -

From (i), 
3

2
2 5
x

x

v
v

¢¢
¢¢= - -

Þ 20

11xv ¢¢ = -

\ ( )3 20 12
A

5 11 11
i ¢¢ = - ´ - =

So, by superposition theorem total current

I = 
10 12 2

( ) A
11 11 11

i i
æ ö¢ ¢¢- = - = -ç ÷è ø

4.4 Determine the current in the capacitor branch by superposition theorem.

(i) Voltage source acting alone (ii) Current source acting alone
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Solution When the voltage source is acting alone:

Here, the current in the capacitor branch is,

4 0 2
0 A

(3 4) (3 4) 3

Ð °¢ = = Ð °
+ + -

I
j j

When the current source is acting alone:

Here, the current in the capacitor branch is,

( )
(3 4) 4

2 90 1 A
3(3 4) 3 4

+ æ ö¢¢ = Ð ° ´ = - +ç ÷è ø+ + -
j

I j
j j

\ Total current when both the sources are acting simultaneously, is

2 4 2
( ) 1 1 1.2 123.7 A

3 3 3

æ ö æ ö¢ ¢¢= + = - + = - + = Ð °ç ÷ ç ÷è ø è øI I I j j Ans.

4.5 Find the current i0 using superposition theorem.

(a)

(b)

(i) When voltage source acting alone (ii) When curren source acting alone
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(c)

Solution

(a) When voltage source is acting alone

The current in this case is, 0

5 1
1 A

4 2 2
i j

j

æ ö¢ = = +ç ÷è ø-

When current source is acting alone

In this case, the current is, 0

4 8 14
2 0 A

4 2 5 5
i j

j

æ ö¢¢ = Ð ° ´ = +ç ÷è ø-

\ By superposition theorem, total current is,

( )0 0 0

8 1 4
1 2.9 26.56 A

5 2 5
i i i j

æ ö æ ö¢ ¢¢= + = + + + = Ð °ç ÷ ç ÷è ø è ø Ans.

(b) When DC source is acting alone

(i) Voltage source acting alone (ii) Current source acting alone

(i) DC source acting alone (ii) AC source acting alone
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\ The current, 0

8
4 A

2
i ¢ = =

When AC source is acting alone

Equivalent impedance, 
4 2 4 6

4
2 4 1 2

j j
Z

j j

´ +æ ö= + =ç ÷+ +è ø

\ Main current, 
(1 2) 10 2010 0

10 0
4 6 4 6

+ +Ð °= = Ð ° =
+ +

j j
I

Z j j

\ The current, 0

10(1 2)2 1 10 15
A

2 4 4 6 1 2 13 13

j
i I j

j j j

+ æ ö¢¢ = ´ = ´ = -ç ÷è ø+ + +

\ By superposition theorem, total current is,

0 0

10 15
( ) 4 4.9 13.6 A

3 3oi i i j
æ ö¢ ¢¢= + = + - = Ð- °ç ÷è ø

Ans.

(c) When the voltage source is acting alone

Equivalent impedance,

4(8 2) 28 22
6

8 2 4

j j j
Z

j j

- +
= + =

+ +
\ Main current,

10 30 (4 )

28 22

j
I

j

Ð ° +
=

+
(8.66 5) (4 )

28 22

j j

j

+ +
=

+

\ The current, 0

8 2 8.66 5
0.14 8.16 A

8 2 56 44

j j
i I

j j

- +
¢ = ´ = = Ð - °

+ +
When current source is acting alone

(i) Voltage source acting alone
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Since
4 6 12

6 4 3 2

j j
Z

j j

´
= =

+ +

\ The current, 0 2 0
8 2

Z
i

j Z
¢¢ = Ð ° ´

- +

12
0.73 47.49 A

12 11

j

j
= = Ð °

+
\ By superposition theorem, total current is,

( ) ( )0 0 0( ) 0.14 8.16 0.73 47.49 0.631 0.518 0.81 39.38 Ai i i j¢ ¢¢= + = Ð- ° + Ð ° = + = Ð ° Ans.

4.6 Find v0 using Superposition Theorem.

(a)

(b)

Solution

(a) When 5 V DC source is acting alone:

0 1 Vv ¢ = -
When ac voltage source is acting alone,

0 2.498 30.79 (V)v¢¢ = Ð- °
When ac current source is acting alone,

0 2.328 80 (V)v¢¢¢= Ð- °
By superposition theorem, when all sources are acting simultaneously, the voltage is,

0 0 0 0( ) 1 2.498cos (2 30.79 ) 2.328sin (5 10 ) V¢ ¢¢ ¢¢¢= + + = - + - ° + + °v v v v t t Ans.

(b) When voltage source is acting alone:

Here, 1 and 5 1 5
5 0.2C L

j
X j X j j

-
= = - W = ´ ´ = W

´

(i) Voltage source acting alone (ii) Current soure acting alone
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By KCL,

0 0 0
0

30 30
0 4.631 81.12 (V)

8 1 5 8(0.125 0.8)

v v v
v

j j j

¢ ¢ ¢-
¢- + + = Þ = = Ð - °

- +

When current source is acting alone,

0.5 and 10 1 10
10 0.2C L

j
X j X j j

-
= = - W = ´ ´ = W

´

By KCL,

0 0

1 1 1 2
2 1.051 86.24 (V)

8 10 0.5 0.125 1.9
v v

j j j

æ ö¢¢ ¢¢= + + Þ = = Ð- °ç ÷- +è ø

By superposition theorem, when all sources are acting simultaneously, the voltage is,

0 0 0( ) 4.631sin (5 81.12 ) 1.051cos (10 86.24 ) (V)¢ ¢¢= + = - ° + - °v v v t t Ans.

Thevenin�s and Norton�s Theorems

4.7

Draw the Thevenin�s equivalent of the circuit in figure and find the load current, i. All values are in

ohm.

Solution Open circuiting the terminals,

By KVL for two meshes,

1 23 10i i- =

and 1 24 5i i- + = -

Solving, 1 5/11i = and 2 5/11i = -

\ oc 2

10 45
(5 2 ) 5 V

11 11

æ ö= + = - =ç ÷è øV i

Equivalent resistance, th

5
2

103
5/3 2 11

´
= = W

+
R

So, the load current is, oc

th

45/11 45
1.40625 A

2 10/11 2 32

V
i

R
= = = =

+ +
Ans.
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4.8

Find I in the given figure, using Thevenin�s theorem.

Solution Removing the 2 W resistor,

By KVL for the supermesh,

0 0 010 3 0cv v v- - + + =

Þ 0 010 2cv v= -
But, due to open-circuit, 1A source will circulate through

1 W resistor.

\ 0 1 1 1 V= ´ =v

\ 0 (10 2) 8 V= - =cV

Let�s short circuit the terminals x-y,

By KVL,

0 010 3 0v v- - + =

or 0 5v =
But, by KCL at node (a),

0
sc1

1
= -

v
I

sc 0(1 ) 4 A (e.g. current is flowing from to )= - = -I v y x

\ oc
th

sc

8
2

4
= = = W

V
R

I

So, the current through 2 W resistor, 
8

2 A
2 2

I = =
+

Ans.

4.9

By the iterative use of Thevenin�s theorem, reduce the circuit shown in figure to a single emf acting

in series with a single resistor. Hence, calculate the current in the 10 W resistor connected across XY.
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Solution Consider the section of the network to the left of A�B. By use of Thevenin�s theorem,

this portion is reduced to the form of Fig. (ii).

\ th

1000 100 1000

1000 100 11

´
= = W

+
R

\ th

100 1000 1000
V

1100 11

´
= =V

Applying Thevenin�s Theorem to the section left of CD of Fig. (ii),

\
(2100/11) 10 2100

(2100/11) 10 221thR
´

= = W
+

\
(1000/11) 10 1000

V
(2100/11) 10 221th

V
´

= =
+

(i)

(ii)

Applying Thevenin�s Theorem to the section left of EF of Fig. (iii),

\ th

(24200/221) 100 24200

(24200/221) 100 463

´
= = W

+
R

\ th

(1000/221) 100 1000
V

(24200/ 463) 100 463

´
= =

+
R

(iii)
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Section left to XY is put as in Fig. (iv).

\ th

24200 487200
1000

463 463
= + = WR

\ th

(1000/463) 1000 1000
V

(24200/463) 1000 4872

´
= =

+
V

Hence, the current in 10 W resistor is,

(1000/487.2)
0.0193 A

(487200/436) 10
I = =

+
Ans.

4.10

In the Operational-amplifier circuit shown in figure, find I, in the R = 4 kW resistor, using Thevenin�s

theorem.

Solution Open-circuiting the 4 kW resistor,

Here, 2 3 00,e e V= =

1 01 1

3 3 3

12
0

2 10 4 10 8 10

e Ve e--
+ + =

´ ´ ´

Þ 1 07 (48 2 )e V= + (i)

01

3 3

00
0

8 10 12 10

Ve --
+ =

´ ´

Þ 0 1

3

2
V e= - (ii)

From equation (i) and equation (ii),

Þ 1 oc4.8 V= =e e

Now, we connect a 1 A current source at the place of 4 kW resistor.

By KCL at node (1),

1 01 1

3 3 3
1

2 10 4 10 8 10

e Ve e-
+ + =

´ ´ ´

Þ 1 07 8000 2e V= +

(iv)
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By KCL at node (2),

0 1

3

2
V e= -

Þ ( )1 1

3
7 8000 2

2
e e= + -

Þ 1 800 V=e

\ 1
th 800

1
= = W

e
R

\
3

4.8 4.8
1mA

4000 800 4.8 10
i = = =

+ ´
Ans.

4.11

Find Thevenin�s equivalent about AB for the circuit shown

in figure.

Solution Open-circuiting The 4 W resistor, by KCL,

oc
oc

10
4 4(10 )

2

-
= = -

s

V
v V

Þ oc 10V=V

Short-circuiting the terminals AB, by KCL,

1 1
1

10
4 4(10 )

2 4 s

V V
v V

-
+ = = -

1

180
9.47 V

19
= =V

\ sc

9.47
2.368 A

4
= =I

\ th
th

sc

4.22= = W
V

R
I

Ans.



Network Theorems 4.41

4.12 In the network, determine the steady current in the 8 W inductor using Thevenin�s theorem.

Solution With a�b open-circuited,

100 0
( 8) 200 0 V

4 8aV j
j j

Ð °= - = Ð °
-

100 60
( 6) 300 60 V

4 6bV j
j j

Ð °= - = Ð °
-

\ th ( ) 200 0 300 60 (50 259.81) V= - = Ð °- Ð °= -a bV V V j

\ th

( 4)( 8) ( 4)( 6)
20

4 8 4 6

- -
= + = W

- -
j j j j

Z j
j j j j

\ Current in the 8 W inductor, 
th

th

(50 259.81)
9.45 169.1 A

20 8

-
= = = Ð- °

+ +L

V j
i

Z Z j j
Ans.

4.13 Obtain Thevenin�s equivalent circuit with respect to terminals A�B in the networks shown below.

(a)

(b)
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(c)

(d)

(e)

Solution

(a) With A�B open, the current is,

I = 
10 0 150 90

15
5 5 15 5 10

j
j j j

Ð ° Ð °´ =
- + +

Thevenin voltage,

Vth = ( 5)ABV I j= ´ -

= 
150 90

(5 90 )
5 10j

Ð ° ´ Ð- °
+

= 67.08 63.4 VÐ- ° Ans.

Thevenin impedance,

th

5 (5 15)
7.07 81.86

5 5 15

- ´ +
= = = Ð- ° W

- + +AB

j j
Z Z

j j
Ans.

Thus, the Thevenin�s equivalent circuit is shown in figure.
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(b) Here, Thevenin voltage,

Vth = 
20 90

(3 4)
5 10 3 4

j
j j

Ð ° ´ -
+ + -

= 
120(3 4)

8 6

j j

j

-
+

Vth = 
50 36.87

10 0 (V)
5 36.87

Ð ° = Ð °
Ð °

Thevenin impedance,

Zth = 
(5 10) (3 4)

(5 10) (3 4)

j j

j j

+ ´ -
+ + -

= 
11.8 63.43 5 53.13

10 36.87

Ð ° ´ Ð- °
Ð °

= 5.59 26.56 ( )Ð- W
Thus, the Thevenin�s equivalent circuit is shown in figure. Ans.

(c)

Here, with A�B open, equivalent impedance,

5 (13 6) 160 55
10 12.98 23.37 ( )

5 (13 6) 13 1

j j j
Z

j j j

- ´ + -
= + = W = Ð - ° W

- + + +

\ Main current, 100 0 100 0
7.7 23.37 (A)

12.98 23.37
I

Z

Ð ° Ð °= = = Ð °
Ð - °

\ Thevenin voltage,

th

5
(8 6)

5 5 8 6

-æ ö= ´ ´ +ç ÷- + + +è ø
j

V I j
j j

( )
5

7.7 23.37 8 6 29.553 34.16 (V)
13 1

j
j

j

-æ ö= Ð ° ´ ´ + = Ð - °ç ÷+è ø
Ans.

\ Thevenin impedance, th

10 ( 5)
5 | | (8 6) 5.33 0.5 ( )

10 5

´ -é ù= + + = Ð - ° Wê ú-ë û

j
Z j

j
Ans.

(d) The circuit is redrawn as shown considering two capacitors in parallel.

Q eq 1 2

1 1 1
( ) F

4 4 2

æ ö= + = + =ç ÷è ø
C C C
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Thevenin voltage is given as,

th 2

(1 2/ )2
( )

(1 2/ 1 / 2)4

+
= ´

+ + ++
ss

V s
s ss

2

4
(V)

( 4) ( 2)

s

s s
=

+ +

\ Thevenin impedance, th ( ) (1 2/ ) | | (1 /2) 1= + + = WZ s s s Ans.

(e) To find Vth
With A�B open, current of the dependent source can flow through the capacitor only.

\ 10 0
0.09995 5.7 (A)

100 10
I

j

Ð °= = Ð - °
+

\ Thevenin voltage,

 th ( 10) {5 ( 5)} 35 35 0.09995 5.7 3.48 84.3 (V)ABV V I j I j j I j= = ´ - ´ - = = ´ Ð- ° = Ð ° Ans.

To find IN

Converting the dependent current source into voltage source, by KVL,

10 0 (100 10) 10 Nj I j IÐ ° = + -

and ( 25 ) 10 ( 10 5)Nj I j I I j j- - = - + -

Solving for IN, 0.6 31 (A)NI = Ð ° Ans.

\ Thevenin impedance, 
th

th

3.48 84.3
5.8 53.3 ( )

0.6 31

Ð °= = = Ð ° W
Ð °N

V
Z

I
Ans.
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4.14 Find V0 using Thevenin�s Theorem.

Solution To find Vth

Removing the 2 W resistor and open circuiting the terminals and then converting the dependent

current source into dependent voltage source, we redraw the circuit as follows.

By KVL for the two loops, (here i0 = I1)

1 2(4 4) 4 12j I j I- + = -

1 22 ( 6) 0j I j I- + - =
Solving for I2,

2

(4 4) 12

2 0 24 3
0.6 53.13 (A)

24 24 8 4 3(4 4) 4

2 6

j

j j j
I

j jj j

j j

- -
- -

= = = = Ð °
- - - +-

- -

Therefore, Thevenin voltage is, th 2

24
( 8) 4.8 36.87 (V)

4 3
= ´ - = = Ð - °

+
V I j

j
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To find IN
Removing the 2 W resistor and short circuiting the terminals and then converting the dependent

current source into dependent voltage source, we redraw the circuit as follows.

By KVL for the two loops,

1 2(4 4) 4 12j I j I- + = -

1 22 ( 2) 0j I j I- + - =
Solving for I2,

2

(4 4) 12

2 0 24 3
1.341 63.435 (A)

8 8 8 2(4 4) 4

2 2

N

j

j j j
I I

j jj j

j j

- -
- -

= = = = = Ð °
- - - +-

- -

Therefore, Thevenin impedance is, 
th

th

4.8 36.87
3.58 100.3 ( )

1.341 63.435

Ð- °
= = = Ð- ° W

Ð °N

V
Z

I

Thus, Thevenin�s equivalent circuit becomes as shown.

Thus, the required voltage,

th
0

th

4.8 36.87
2 2 1.27 32 (V)

2 3.58 100.3 2

Ð- °æ ö æ ö= ´ = ´ = Ð °ç ÷ç ÷+ Ð- ° +è øè ø
V

v
Z

Ans.

4.15

Obtain the Norton�s equivalent circuit with respect to the terminals AB for the network shown in

figure.
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Solution Removing the sources,

\ eq

5 15 75
3.75

5 15 20

´
= = = W

+
Z

Short-circuiting AB,

sc

10 20
3.33 A

5 15
= + =I

So, Norton�s equivalent circuit is shown.

4.16 For the one port shown in figure determine the Norton�s equivalent at the termi-

nals AB, if the v�i characteristic is given by, 16v = 80 � 2i.

Solution v�i characteristic is given as,

16 80 2 1
5 40

V i
v i= - Þ + =

Thus, short circuit current,

sc 40 A=I  (where v = 0)

and open-circuit voltage,

oc 5 V=V  (whare i = 0)

\ oc

sc

5 1

40 8
= = = Wn

V
R

I

Norton�s equivalent circuit is shown accordingly.
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4.17

Find both Thevenin�s and Norton�s equivalent circuit for the network shown in figure. All values

are in ohm.

Solution Removing the sources,

Þ th

2 5
1

3 3

æ ö= = + = Wç ÷è øNR R

Short-circuiting the terminals,

By superposition theorem, when 5 V source is acting alone,

5
7 A

5/7
I = =

\ 1 4.5 AI =

\ 2 2I A=

\ 1AscI ¢ =
and when 2 A source is acting alone,

\ sc

2/3 4
2 A

2/ 3 1 5
¢¢ = ´ =

+
I



Network Theorems 4.49

\ sc sc sc

4 9
Total ( ) 1 A

5 5

æ ö¢ ¢¢= + = + =ç ÷è ø
I I I

\
th sc th

9 5
3 V

5 3
= ´ = ´ =V I R

The circuits are shown accordingly.

Maximum Power Transfer Theorem

4.18 In the network shown, the power dissipated in R when E1, E2

or E3 acting alone is

(a) 20 W, 80 W, and 5 W respectively.

(b) 30 W, 270 W, and 120 W respectively.

Calculate the maximum power that R can dissipate due to

the simultaneous action of all the sources. Calculate both for

(a) and (b).

What will be the minimum power dissipated in R when all the sources are acting simultaneously?

Solution Current for E1 at R, 1
1

P
i

R
= ±

Current for E2 at R, i2 = ± 2P

R

Current for E3 at R, i3 = ± 3P

R

\ Total current flow for simultaneous action of all the three sources is,

31 2
1 2 3

PP P
i i i i

R R R
= ± ± ± = ± ± ±

\

2

31 22 2
1 2 3Power, [ ]

PP P
P i R R P P P

R R R

é ù
= = ± ± ± = ± ± ±ê ú

ê úë û
l For maximum power,

Pmax = 2
1 2 3[ ]P P P+ +

(a) Pmax = 2 2[ 20 80 5] [2 5 4 5 5] 49 5 245 W+ + = + + = ´ = Ans.

(b) Pmax = 2 2[ 30 270 120] [4 5 3 5] 1080 W+ + = - = Ans.
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l For minimum power,

(a) Pmin = 2 2[ 20 80 5] [4 5 3 5] 5 W- + - = - = Ans.

(b) Pmin = 2 2[ 30 270 120] [ 30 3 30 2 3] 0 W- + - = - + - = Ans.

4.19 Find the value of R in the circuit of the figure such that maximum power transfer takes place. What

is the amount of this power?

(a)

(b)

(c)

Solution

(a) Removing the résistance R,

\ 1 23 2 4i i- =

and 1 22 8 0i i- + =

Solving, 2

2
A

5
i =

\ 2 oc1 6´ + =i V

Þ oc

2 32
6 V

5 5

æ ö= + =ç ÷è øV

Also, to find the Rth,
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( ) [ ]th

17
1

1 2 2 1735 | | 1 5 | | 1
1 2 3 17 20

1
3

´é ù´ æ ö= + = + = = Wç ÷ê ú è ø+ë û +
R

\ For maximum power transfer, th

17
0.85

20
= = = WR R Ans.

\ Maximum power 
2
oc

max 12 W
4

= =
V

P
R

Ans.

(b) In the network, 2 W resistor is connected in parallel with an ideal voltage source of 5 V; hence

this resistance can be removed without affecting the current flows in the other branches.

Converting the voltage source into current source,

( )5 11
2 A A

3 3
+ =

For maximum power transfer, 
7

4
R = W

Maximum Power, 

2

max

11

4
1.08 W

4 7 /4
P

æ ö
è ø

= =
´

Ans.

(c) To find Rth

th

10 5
2 5.33

10 5

´
= + = W

+
R Ans.

To find Voc

24
1.6 A

15
= - = -i

\ oc 5 10 8 10 2 V= + = - + =V i

\ max

4
0.188 W

4 5.33
= =

´
P Ans.
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4.20 In the network shown, find the value of ZL to which the maximum power can be delivered. Hence, find

the value of the maximum power.

Solution With respect to terminals A and B, the Thevenin voltage is,

th

35 0 45 0
2.236 26.56 (V)

3(3 3) 3 3 3 18 9
3

3 3 3

æ öÐ ° Ð °= ´ = = Ð - °ç ÷- + - +è ø+
- +

j
V

j j j j j

j j

and Thevenin impedance,

( )

th

3 3
3 3

3 3
3 53.12 (1.8 2.4)

3 3
3 3

3 3

´æ ö+ ´ -ç ÷+è ø
= = Ð- ° W = - W

´
+ -

+

j
j

j
Z j

j
j

j

For maximum power transfer, th
* (1.8 2.4)= = + WLZ Z j Ans.

\ Current, 
2.236 26.56

0.621 26.56 A
1.8 2

I
Ð - °= = Ð - °

´

The value of the maximum power is, 
2 2

th
max

( ) (2.236)
0.694 W

4 4 1.8
= = =

´
V

P
R

Ans.

4.21 A loudspeaker is connected across terminals A and B of the network. What should its impedance be

to obtain maximum power dissipation in it?

(a)

(b)
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Solution

(a) Equivalent impedance with respect to the terminals A and B is,

th

(3 4)( 5)
7.9 18.43 (7.5 2.5)

3 4 5

+ -
= = Ð - ° W = - W

+ -
j j

Z j
j j

For maximum power transfer, th
* (7.5 2.4)= = + WLZ Z j Ans.

(b) Equivalent impedance with respect to the terminals A and B is,

th

(10 8) 5 40 50 40 52 60 78
4 6 | | 10 | |10

10 8 5 10 13

+ - + + + + -é ù æ ö= + + = ç ÷ê ú+ + +è øë û

j j j j j
Z j

j j j

6.14 30 (5.316 3.07)j= Ð ° W = + W

For maximum power transfer, th
* 6.14 30 (5.316 3.07)= = Ð - ° W = - WLZ Z j

4.22 Two inductors each of 1 W reactance and negligible resistance are connected in series across a 2 V

a. c. source. Find the value of resistance which should be connected across one of the inductors for

maximum power dissipation. Also, find the maximum power.

Solution Here, 
1 1 2

1
1 1

R j j R
Z j

R j R j

´ - +
= + =

+ +

\ Current 
2 0 ( 1)2 0

1 2

R j
I

Z j R

Ð ° ´ +Ð °= =
- +

\ Current through the resistance, 
1 2

1 1 2R

j j
I I

R j j R
= ´ =

+ - +

\ Power, 2

2

4
| |

1 4

R
P I R

R
= =

+

For maximum power, 
2

2 2

(1 4 ) 4 4 8
0 0

(1 4 )

R R RdP

dR R

+ ´ - ´
= Þ =

+

Þ 0.5R = W Ans.

\ Maximum Power, max 2

4 0.4
1 W

1 4 (0.5)
P

´
= =

+ ´
Ans.

4.23

In the network shown, calculate the maximum power that may be dissipated in the external resistor R.

Solution Transforming the current source into voltage source,
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By KVL,

1 1 16 4 40 2 0i i i+ - - =

Þ 1 5 Ai =

\ oc 16 30 V= =e i

For maximum power, R = Req

Shorting the terminals a�b and solving by loop

method,

sc 5 A=I

\ th

30
6

5
= = WR

\
2

max

(30) 900
37.5W

4 6 24
= = =

´
P

Reciprocity Theorem

4.24 Verify the Reciprocity Theorem for the network shown in the figure using current source and a

voltmeter. All the values are in ohm.

Solution Using a current source and a voltmeter,

Let, e1, e2 be node voltages, v1 be the voltmeter reading.

By KCL,

At node (1) Þ 1 2 13 2 0e e i- - = (i)

At node (2) Þ 1 2 16 13 3 0e e v- + - = (ii)

At node (3) 1 29 5v e= (iii)

From (ii) Þ 1 1 1

9
6 13 3 0

5
e v v- + ´ - =

Þ ( )1 1

117
6 3 0

5
e v- + - =

Þ 1 1 1 1

102 17
6

5 5
e v e v+ Þ =
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From (i) Þ 1 1

17 9
3 2

5 5
v v i´ - =

Þ 1

1

21

5

i

v

æ ö æ ö= ç ÷ç ÷ è øè ø
(A)

Interchanging the positions of the current source and the voltmeter,

Now, let v2 be the voltmeter reading

By KCL,

At node (1) Þ 2 23v e= (iv)

At node (2) Þ 2 2 36 13 3 0v e e- + - =

Þ 2 2 36 13 3 3 0v v e- + ´ - =

Þ 3 211e v= (v)

At node (3) Þ 3 2 3 25 5 4 20 0e e e i- + - =

Þ 2 3 2 2 2 220 9 5 9 11 5 3 84i e e v v v= - = ´ - ´ =

Þ 2

2

21

5

i

v

æ ö æ ö= ç ÷ç ÷ è øè ø
(B)

From equation (A) and (B), Reciprocity theorem is proved.

4.25 Solve the network shown in Figure (a) and hence find the current in the 2 W resistor in Figure (b)

when an emf of 36 V is added in the branch BD as shown in Figure 7(b). All values are in ohm.

]

(a) (b)

Solution

l Solve by any method of network analysis.

l We consider the 36 V source acting alone.
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When 72 V sourer is acting alone, by network analysis,

The current in 2 W resistor = 6 A and in 18 W resistor = 1 A

(a) (b)

By Reciprocity theorem,

72 36
0 5 A

1
I

I
= Þ = × [Here, I = Current in 2 W resistor when

36 V source is acting alone]

\ Current in 2W resistor for simultaneous action of two sources

(6 0.5) 5.5 AI = - =
4.26 An e.m.f. source E, having negligible internal impedance is con-

nected in series with an impedance Z1 to the input terminals 1�

2 of a linear, bilateral four terminal network. It produces a cur-

rent I2 in impedance ZL connected across the output terminals

3�4. The emf source is now transferred so as to act, in series

with Z2, between terminal 3�4. Z1 is disconnected and the input

terminals 1�2 are short circuited. The short-circuited current tra-

versing terminals 1�2 is then I1. Prove that the impedance look-

ing into terminals 1�2 under the first condition is,

1 2
12

1 2

Z I
Z

I I
=

-

Solution Let the impedance looking into terminals 1�2 be Z12.

Thus the network becomes:

\
1 12

E
I

Z Z
=

+

\ Voltage across 1�2, 12
12

1 12

E Z
V

Z Z

´
=

+

So, the circuit becomes as shown.

The given network is linear and bilateral and according to the reciprocity theorem, if the source E is

put across terminals 1�2, the response current flowing through Z2 will be I1 as shown.

Now, if a voltage equal to V12 is applied instead of E, the current flowing through Z2 will be,
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1 1 12 12
12 1

1 12 1 12

I I E Z Z
V I

E E Z Z Z Z

´
´ = ´ = ´

+ +
But, this current is equal to I2.

\ 12
2 1

1 12

Z
I I

Z Z
=

+

Þ 1 2
12

1 2

Z I
Z

I I

æ ö= ç ÷-è ø
(Proved)

4.27 Verify the reciprocity theorem for the ladder network shown in figure.

Solution Let, the three loop currents be I1, I2, and I3. By KVL for the three loops,

1 2(20 10) 10 200 45j I j I+ - = Ð °

1 2 310 20 10 0j I I j I- + + =

2 310 (10 10) 0j I j I+ - =
Solving for I3,

3

(20 10) 10 200 45

10 20 0

0 10 0 200 45 100

(20 10)(200 200 100) 10( 100 100)(20 10) 10 0

10 20 10

0 10 (10 10)

j j

j

j
I

j j j jj j

j j

j j

+ - Ð °
-

Ð ° ´
= =

+ - + - ++ -
-

-

= 2.169 57.53 (A)Ð °
Now by interchanging the positions

of the voltage source and the re-

sponse current, we get,

By KVL,

1 2(20 10) 10 0j I j I+ - =
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1 2 310 20 10 0j I I j I- + + =

2 310 (10 10) 200 45j I j I+ - = Ð °
Solving for I1,

1

0 10 0

0 20 0

200 45 10 0
2.169 57.53 (A)

(20 10) 10 0

10 20 10

0 10 (10 10)

j

j
I

j j

j j

j j

-

Ð °
= = Ð °

+ -
-

-

Since the currents in both the cases are the same, reciprocity theorem is verified.

4.28 In this circuit, find voltage V. Interchange the current source and resulting voltage V and show that

the reciprocity theorem is verified.

Solution Here, the current 2

5 5
5 90 4.64 111.8 (A)

5 5 2 2

j
I

j j

+
= Ð ° ´ = Ð °

+ + -

\ The voltage, 2 4.64 111.8 ( 2) 9.28 21.8 (V)CV I Z j= ´ = Ð ° ´ - = Ð °
Now, interchanging the positions of the current source and the finding the resulting voltage, we get,

I1 = 
2

5 90
2 5 2 5

j

j j

-
Ð ° ´

- + + +

= 1.31 23.2 (A)Ð- °
\ The voltage,

V = 1.31 23.2 (5 5)jÐ- ° ´ +

= 1.31 23.2 7.075 45Ð- ° ´ Ð °

= 9.28 21.8 (V)Ð °
As V is same as obtained before interchanging

the position of the current source, reciprocity

theorem is verified.
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Compensation Theorem

4.29 In the network shown, the resistance R is changed from 4W to

2W. Verify compensation theorem.

Solution By KCL,

1 25 4 1i i- =

and 1 24 12 0i i- + =

Solving Þ 1

3
A

11
i =  and 2

1
A

11
i =

\ 1 1 2

2
( ) A

11
I i i= - =

After changing the value of the resistance from 4W
to 2W, by KCL

1 23 2 1i i¢ ¢- =

and 1 22 10 0i i¢ ¢- + =

Solving Þ 1

5
A

13
i ¢ =  and 2

1
A

13
i ¢ =

\ 1

4
A

13
I ¢ =

\ Change in current, 1 1

4 2 18
( ) A

13 11 143
I I Id

æ ö¢= - = - =ç ÷è ø
(I)

Using Compensation Theorem,

1

2 4
( 2) V

11 11
d= ´ = - = -cV I Z

4
1811 A

8 143
2

9

Id = =
+

(II)

From (I) and (II), the compensation theorem is proved.

4.30 Find the current flowing in the resistor R4 of the

network shown in figure If a resistance of 0.5 W is

inserted in series with R4, find, using Compensation

theorem, the current that will flow through R4. All

values are in ohm.

Solution Solving the network by any method of

network analysis, I = 0.5 A

Now dZ = 0.5 W

\ . 0.5 0.5 0.25 Vd= = ´ =cV I Z

Þ 0.25
A 0.01269 A

19.7
Id = =
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\ ( ) (0.5 0.01269) A 0.4873 AI I Id¢ = - = - = Ans.

Millman�s Theorem

4.31 Find the load current using Millman�s theorem. All

values are in ohm.

Solution Here, E1 =1 V, E2 = 2 V, E3 = 3 V

Z1 = 1 

W

, Z2 = 2 

W

, Z3 = 3 

W

\ Y1 = 1

W

, Y2 = 0.5

W

, Y3 = 
1

3

W

By Millman�s theorem, the equivalent circuit is

shown.

\

3

1

3

1

1
1 1 2 0.5 3

3 183 V
1 11 11

1 0.5
3 6

=

=

´ + ´ + ´
= = = =

+ +

å

å

i i
i

i
i

E Y

E

Y

and
3

1

1 6

11
i

i

Z

Y
=

= = W

å

\

18
18 911 A

10 6 116 58
10

11

E
I

Z
= = = =
+

+

Ans.

4.32 Obtain the potential of node F with respect to node G in the circuit of the figure. All values are in

ohm.
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Solution By Millman�s Theorem,

5

1

5

1

1 1 1 1
1 1 2 3 4 5

602 3 4 5 Volt
1 1 1 1 137

1
2 3 4 5

i i
i

FG

i
i

E Y

V

Y

=

=

´ - ´ + ´ - ´ + ´
= = =

+ + + +

å

å
Ans.

4.33 In the network, two voltage

sources act on the load imped-

ance connected to terminals a, b.

If the load is variable in both re-

actance and resistance, what

load ZL will receive the maximum

power? What is the value of the

maximum power? Use Millman�s

theorem.

Solution 1 1 1
1

1 1
50 0 50 V; (5 5) ; (0.1 0.1)

(5 5)
= Ð ° = = + W = = = -

+
V Z j Y j

Z j

W

2 2 2
2

1 1
25 90 25 V; (3 4) ; (0.12 0.16)

(3 4)
= Ð ° = = - W = = = +

-
V j Z j Y j

Z j

W

\ Millman voltage source,

1 1 2 2

1 2

50(0.1 0.1) 25(0.12 0.16)
9.807 78.65 (V)

(0.1 0.1) (0.12 0.16)m

V Y V Y j j j
V

Y Y j j

+ - + +
= = = Ð- °

+ - + +

\ Millman impedance,

1 2

1 1
4.385 15.25 (4.23 1.15)

0.22 0.06mZ j
Y Y j

= = = Ð- ° = - W
+ -

For maximum power transfer to the load, * (4.23 1.15)L mZ Z j= = + W Ans.

\ Maximum power, 
2 2

max

(9.807)
5.68 W

4 4 4.23
= = =

´
m

L

V
P

R
Ans.

Tellegen�s Theorem

4.34 Verify Tellegen�s theorem for the network shown in the figure.
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It is given that V1 = 4 V, V2 = �2 V, V3 = 2 V, V4 = 8 V, V5 = �6 V, and I1 = 2 A, I2 = 2 A, I3 = �6 A,

I4 = 4 A, I5 = 4 A.

Solution Before verifying Tellegen�s theorem, we have to check whether the voltage and current

values satisfy the KVL and KCL, respectively.

At node (A), (i1�i2) = (2 � 2) = 0

At node (B), (i2 + i3 + i4) = (2 + 2 � 4) = 0

At node (C), (i5 �i4) = (4 � 4) = 0

At node (D), (�i1 �i3 �i5) = (�2 + 6 �4) = 0

Thus, the currents satisfy KCL.

For Loop ABDA, (�v2 + v3 �v1) = (2 + 2 �4) = 0

For Loop ABCDA, (�v2 + v4 + v5 � v1) = (2 + 8 � 6 � 4) = 0

For Loop BCDB, (v4 + v5 �v3) = (8 � 6 � 2) = 0

Thus, the voltages satisfy KVL

So, by Tellegen�s theorem,

5

1

(4 2) ( 2 2) (2 6) (8 4) ( 6 4) 0k k
k

V i
=

= ´ + - ´ + ´ - + ´ + - ´ =å [Proved]

4.35 Find the value of source E2 using Tellegen�s theorem if

the power absorbed by E2 is 20 W.

Solution We have to find out the Thevenin�s equiva-

lent across XY.

Here, \ 100
5 A

20
i = =

\ oc 10 50 V= ´ =V i

 th (10||10) 10 (5 10) 15= + = + = WR

Now Applying Tellegen�s Theorem to the equivalent

circuit,

2
250 15 0I I E I- + + =

But it is given that

2
2 20 15 50 20 0E I I I= Þ - + =

Þ
23 10 4 0I I- + =
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\ I = 
210 100 4 3 4 10 5 5 13

6 6 3

± - ´ ´ ± ±
= =

= 2.8685 A or 0.4648 A

So, the value of 2

20
6.97 V or, 43.03 V= =E

I
Ans.

4.36 A set of measurements is made on a linear time-invariant resistive circuit as shown in the figure (a).

The circuit is then reconnected as shown in figure (b). Find the current through the 5 W resistance.

Figure (a) Figure (b)

Solution By Tellegen�s theorem, if the set of voltages and currents is taken corresponding to two

different instants of time t1and t2, then

1 2 2 1
1 1

( ) ( ) ( ) ( ) 0
b b

b b b b
b b

v t i t v t i t
= =

= =å å

Here, the circuits for two different instants of time are as shown below

By Tellegen�s theorem,

2 2

1 2 2 1
1 1

( ) ( ) ( ) ( )k k k k
b b

v t i t v t i t
= =

=å å

Þ 1 1 1 2 2 1 2 2 1 2 1 1 2 2 2 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v t i t v t i t v t i t v t i t+ = + (1)

Here, 1 1 1 1( ) 10 V; ( ) 4 A;v t i t= = - and 2 1 2 1( ) 4 V; ( ) 0= =v t i t

1 2 1 2( ) 5 ; ( )v t i i t i= = and 2 2 2 2( ) 0; ( ) 6 Av t i t= =
So, from (1) we get

(10 ´ i) + (4 ´ 6) = (5i ´ �4) + (0 ´ 0)

10i + 24 = �20i

Þ
24

0.8 A
30

i = - = - Ans.

4.37 Two sets of measurements are taken on a resistive

network shown. Find V2.

(a) R2 = 1 W, V1 = 5 V, I1 = 2 A, V2 = 1 V

(b) R2 = 10 W, V1 = 6 V, I1 = 6 A
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Solution Here,

1 1 1 2 2 1 2 2 1 2 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )v t i t v t i t v t i t v t i t+ = +

Þ
2 2

2 2

( ) 1
(5 6) 1 (6 2) ( )

10 1

v t
v t

é ù æ ö´ + ´ - = ´ + ´ -ç ÷ê ú è øë û

Þ
2 2 2 2 2 1

2 2 2 2 2 1
2 2 2 1

( ) ( ) ( )
30 12 ( ) ( ) and ( )

10 ( ) ( )

ì ü- = - = - = -í ý
î þ
Q

v t v t v t
v t i t i t

R t R t

Þ 2 2

18
( ) 20 V

9

10

= - = -v t Ans.

4.38 A set of coupled coils (coil-1 and coil-2) having self-inductance L1 = 0.5 H and L2 = 2 H have number

of turns as N1 = 200 and N2 = 400 respectively. If coil-1 is excited with a current of 4 A, what would

be the flux distribution for a coupling coefficient of 0.9? Also find mutual inductance for the set-up.

Solution Since, L1 = 
N

I

1 1

1

f
, we may find f1 = 

L I

N

1 1

1

 = 
05 4

200

. ×
 = 0.01 Wb.

So total flux produced by coil-1 is 0.01 Wb.

Since, coupling coefficient is given as k = 
f

f
12

1

, we may find,

f12 = k. f1 = 0.9 × 0.01 = 0.009 Wb. or 9.0 mWb.

Hence, useful flux is found to be 9.0 mWb.

Now, the mutual inductance may be found as

M = k L L1 2  = 0.90 0 5 2. ×  = 0.9 H.

4.39 Two coils having a coupling coefficient of 0.8 experience an induced emf of 100 V in coil-2 when

coil-1 is excited with a current that is reduced linearly from 4 A to zero in just 5.0 ms. If coil-1 has

200 turns and total flux is 2.0 mWb, how many turns are present in coil-2? Also, find the self and

mutual inductances for the set-up.

Solution Self-inductance of coil-1 may be found as L1 = 
N

I

1 1

1

f
 = 

200 2 10

4

8( )×
−

 = 0.1 H.

Since, e2 = M
dI

dt

1 , we may find M = 
100 5 10

4

8( )×
−

 = 0.125 H.

Since, M = k L L1 2 , we may find L2 = 
M

k L

2

2
1

 = 
0125

08 01

2

2

.

. .×

 = 0.243 H.

Useful flux may be found as f12 = k. f1 = 0.8 × 0.002 = 1.6 × 10�3 Wb. or 1.6 mWb.

Since, e2 = N2 
d

dt

f12 , we may find N2 = 
100 5 10

16 10

8

8

( )

.

×

×

−

−
 = 313 turns (approx).

4.40 Two inductor coils, coupled to each other, have self-inductances of 30 mH and 30 mH respectively.

If the mutual inductance of the combination is found to be 15 mH, find the coefficient of coupling.

Also find the total flux and useful flux if coil-1 has 100 turns and is excited with a current of 5 A.
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Solution Since, M = k L L1 2 , we may find that, k = 
M

L L1 2

 = 
15

20 30×

 = 0.61

Hence, the value of the coefficient of coupling is found to be 0.61, which means that only 61% of the

total flux may be available as useful flux for the mutual coupling of the two coils.

Since, L1 = 
N

I

1 1

1

f
,

we may find the total flux as f1 = 
L I

N

1 1

1

 = 
5 20 10

100

8( )×
−

 = 0.001 Wb. or 1.0 mWb.

Useful flux may be found as f12 = kf1 = 0.61 × 1 = 0.61 mWb.

MULTIPLE-CHOICE QUESTIONS

4.1 Which one of the following theorems is a manifestation of the law of conservation of energy?

(a) Tellegen�s Theorem (b) Reciprocity Theorem

(c) Thevenin�s Theorem (d) Norton�s Theorem

4.2 Tellegen�s theorem is applicable to

(a) circuits having passive elements.

(b) circuits having time-invariant elements only.

(c) circuits with linear elements only.

(d) circuits with active or passive, linear or non-linear and time-invariant or time-varying elements.

4.3 In any lumped network with elements in b branches, 
1

( ) ( ) 0
b

k k
k

t i tu
=

× =å  for all t, holds good accord-

ing to

(a) Norton�s theorem. (b) Thevenin�s theorem.

(c) Millman�s theorem. (d) Tellegen�s theorem.

4.4 Millman�s theorem yields

(a) equivalent voltage source. (b) equivalent voltage or current source.

(c) equivalent resistance. (d) equivalent impedance.

4.5 The superposition theorem is applicable to

(a) current only. (b) voltage only.

(c) both current and voltage. (d)current, voltage and power.

4.6 Superposition theorem is not applicable for

(a) voltage calculations. (b) bilateral elements

(c) power calculations. (d) passive elements.

4.7 Thevenin�s theorem can be applied to calculate the current in

(a) any load. (b) a passive load only.

(c) a linear load only. (d) a bilateral load only.

4.8 Norton�s equivalent circuit consists of

(a) voltage source in parallel with impedance.

(b) voltage source in series with impedance.



4.66 Network Theory

(c) current source in parallel with impedance.

(d) current source in series with impedance.

4.9 The superposition theorem is applicable to

(a) linear responses only. (b) linear and non-linear responses.

(c) linear, non-linear and time-variant responses.

4.10 When a source is delivering maximum power to a load, the efficiency of the circuit

(a) is always 50%. (b) depends on the circuit parameters.

(c) is always 75%. (d) none of these.

4.11 Maximum power transfer occurs at a

(a) 100% efficiency. (b) 50% efficiency.

(c) 25% efficiency. (d) 75% efficiency.

4.12 Which of the following statements is true?

(a) A Norton�s equivalent is a series circuit.

(b) A Thevenin�s equivalent circuit is a parallel circuit.

(c) R-L circuit is dual pair.

(d) L-C circuit is a dual pair.

4.13 For a linear network containing generators and impedances, the ratio of the voltage to the current

produced in other loop is the same as the ratio of voltage and current obtained if the position of the

voltage source and the ammeter measuring the current are interchanged. This network theorem is

known as

(a) Millman�s theorem. (b) Norton�s theorem.

(c) Tellegen�s theorem. (d) Reciprocity theorem.

4.14 Under conditions of maximum power transfer from an ac source to a variable load

(a) the load impedance must also be inductive, if the generator impedance is inductive.

(b) the sum of the source and load impedance is zero.

(c) the sum of the source reactance and load reactance is zero.

(d) the load impedance has the same phase angle as the generator impedance.

4.15 Consider the following statements

The transfer impedances and admittances of a network remain constant when the position of excita-

tion and response are interchanged if the network

1. is linear

2. consists of bilateral elements

3. has high impedance or admittance as the case may be.

4. is resonant.

Out of above these statements

(a) 1 and 2 are correct. (b) 1, 3 and 4 are correct.

(c) 2 and 4 are correct. (d) 1, 2, 3 and 4 are correct.

4.16 In a linear network, the ratio of voltage excitation to current response is unaltered when the position

of excitation and response are interchanged. This assumption stems from the

(a) principle of duality. (b) reciprocity theorem.

(c) principle of superposition. (d) equivalence theorem.

4.17 If all the elements in a particular network are linear, then the superposition theorem hold when the

excitation is

(a) dc only (b) ac only (c) either ac or dc (d) an impulse.
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4.18 An a.c source of voltage Es and an internal impedance of Zs =(Rs + jXs) is connected to a load of

impedanceZL = (RL + jXL). Consider the following conditions in this regard

1. XL = Xs, if only XL is varied.

2. XL = Xs, if only XS is varied.

3. 2 2( )L S S LR R X X= + + , if only RL is varied.

4. | | | |L SZ Z=  if the magnitude of ZL is varied, keeping the phase angle fixed.

Among these conditions, those which are to be satisfied for maximum power transfer from the source

to the load would include

(a) 2 and 3 (b) 1 and 3 (c) 1, 2 and 4 (d) 2, 3 and 4

4.19 Reciprocity theorem is applicable to a network

1. which contains R, L and C as elements.

2. which is initially relaxed system.

3. which has both independent and dependent sources.

Tick out the correct combination from the combination given above

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

4.20 Reciprocity theorem is applicable to

(a) circuits with one independent source

(b) circuits with only one independent source and no dependent source

(c) circuits with any number of independent sources

(d) circuits with any number of sources.

4.21 Substitution theorem is applicable for a network which has

1. unique solution.

2. one or two non-linear elements.

3. one non-linear or time-varying element.

Choose the correct combination from the combination given above

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

4.22 Substitution theorem applies to

(a) linear networks. (b) non-linear networks.

(c) linear time-invariant networks. (d) any networks.

4.23 Which of the following theorems is applicable for both linear and non-linear circuits?

(a) Superposition (b) Thevenin (c) Norton (d) none of these.

4.24 A network is composed of two sub-networks N1 and N2 as shown in the given figure.

If the sub-network N1 contains only linear, bilateral,

time-invariant elements, then it can be replaced by its

Thevenin equivalent even if the sub-network N2 con-

tains

(a) a two-terminal element which is non-linear

(b) a non-linear inductance mutually coupled to an element in N1

(c) an element which is linear, but mutually coupled to some element in N1

(d) a dependent source the value of which depends upon the voltage or current in some element in

N1.

4.25 A certain network consists of two ideal identical voltage sources and a large number of ideal resis-

tors. The power consumed in one of the resistors is 4W when either of the two sources is active and
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the other is replaced by a short-circuit. The power consumed by the same resistor when both the

sources are active would be

(a) zero or 16 W (b) 4 W or 8 W (c) zero or 8 W (d) 8 W or 16 W.

4.26 If a network has all linear elements except for a few non-linear ones, then superposition theorem

(a) cannot hold at all.

(b) always holds.

(c) may hold on careful selection of element values, source waveform and response.

(d) holds in case of direct current excitations.

4.27 The maximum power that can be dissipated in the load in the circuit shown in figure is

(a) 3 W (b) 6 W (c) 6.75 W (d) 13.5 W

4.28 If Rg in the circuit shown in figure is variable between 20 W and

80 W, then the maximum power transferred to the load RL will be

(a) 15 W (b) 13.33 W

(c) 6.67 W (d) 2.4 W

4.29 Thevenin impedance across the terminals AB of the given net-

work is

(a)
10

3
 W (b)

20

9
 W (c)

13

4
 W (d)

11

5
 W

4.30 The V�I relation for the network shown in the given box is V = 4I � 9.

If now a resistor R = 2 W is connected across it, then the value of I will be

(a) �4.5 A (b) �1.5 A (c) 1.5 A (d) 4.5 A
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4.31 In the network shown in the figure, the effective resistance faced by the voltage source is

(a) 4 W (b) 3 W (c) 2 W (d) 1 W

4.32 For the network shown in the figure, if Vs = V1 and V = 0, then I = �5 A and if Vs = 0 then I = 
1

2
A.

The values of ISC and R1 of the Norton�s equivalent across AB would be respectively

(a) �5 A and 2 W (b) 10 A and 0.5 W (c) 5 A and 2 W (d) 2.5 A and 5 W
4.33 In the network shown in the given figure, the Thevenin source and the impedance across terminals

A�B will be respectively

(a) 15 V and 13.33 W (b) 50 V and 15 W (c) 115 V and 20 W (d) 100 V and 25 W
4.34 Which one of the following combination of open-circuit voltage and Thevenin�s equivalent resis-

tance represents the Thevenin�s equivalent of the circuit shown in the given figure?

(a) 1 V, 10 W (b) 1 V, 1 kW (c) 1 mV, 1 kW (d) 1 mV, 10 W
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4.35 For the circuit shown in the given figure, the current through R, when VA = 0 and VB = 15 V is

I ampere. Now, if both VA and VA are increased by 15 V, then the current through R will be

(a) I ampere (b)
2

I
 ampere (c) 3I ampere (d)

3

I
 ampere

4.36 Thevenin�s equivalent circuit of the network shown in the given figure, between terminals T1 and T2

is

(a) (b)

(c) (d)

4.37 The Thevenin equivalent of the network shown in Figure (a) is 10 V in series with a resistance of 2

W. If now, resistance of 3 W is connected across AB in Figure (b), the Thevenin equivalent of the

modified network across AB will be

(a) (b)

(a) 10 V in series with 1.2 W resistance (b) 6 V in series with 1.2 W resistance

(c) 10 V in series with 5 W resistance (d) 6 V in series with 5 W resistance

4.38 A d.c. current source is connected as shown in Figure below.
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The Thevenin�s equivalent of the network at terminals a�b will be

(a)

(b)

(c)

(d) is NOT feasible

4.39 Which one of the following impedance values of load will cause maximum power to be transferred to

the load for the network shown in the given figure?

(a) (2 + j2) (b) (2 � j2) (c) � j2 (d) 2

4.40 The Thevenin�s equivalent resistance Rth for the given network is

(a) 1 W (b) 2 W (c) 4 W (d) infinity

441 The Norton�s equivalent of circuit shown in Figure (a) is drawn in the circuit shown in Figure (b).

The values of ISC and Req in Figure (b) are respectively
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(a)
5

2
 A and 2 W (b)

2

5
 A and 1 W (c)

4

5
 A and 

12

5
 W (d)

2

5
 A and 2 W

EXERCISES

Tellegen�s Theorem

4.1 The circuit of Fig. (a) is reconnected as of Fig. (b).

(a) (b)

If Vs = 2 V and Is = 1 A, find the voltage VL of Fig (b). Use Tellegen�s Theorem. [1 V]

4.2 Following readings were taken at a frequency of 50 Hz in a linear RLC network shown in figure.

5 40
1 15 12° °= =j jV e I e

20 10
2 215 8- ° °= =j jV e I e

15
3 3? 10 °= = jV I e

At a frequency of 100 Hz, the readings are:

20 25
1 110 2° °¢ ¢= =j jV e I

35 10
2 212 10 - °¢ ¢= =j jV e I e

15 68
3 35 14.93° °¢ ¢= =j jV e I e

The reading of V3 was missed. Calculate V3 using Tellegen�s Theorem. 15[18 ]°je

Reciprocity Theorem

4.3 In the network shown in figure below, verify the Reciprocity Theorem using a voltage source and an

ammeter. What are the methods of verifying the Reciprocity Theorem? All values are in ohm.
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4.4 Find the current in the 6 W resistor and the source current in Figure (a). Hence, determine the current

in the 3 W resistor when an emf of 72 V is added in series with the 6 W resistor as shown in

Figure (b). [ 0.5 A, 6 A]

(a) (b)

4.5 In this circuit, find the voltage V. Interchange the current source and resulting voltage V and show

that the reciprocity theorem is verified. [9.28Ð21.8° (V)]

4.6. Two sets of measurements are made on a linear passive resistive network in Figure (a) and (b). Find

the current through the 2W resistor. [2 A]

(a) (b)

Compensation Theorem

4.7 The 5 W resistor has been changed to an 8 W resistor in the circuit. Determine the compensation

source VC and calculate the change in current through the 3W resistor.

[4.74Ð�23.23° V; 0.271Ð159.5° A]
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4.8 If the resistance 5 W increases to 6 W, determine the compensation source and find the current

through the 6 W resistance.
20

1V; A
23

é ù
ê úë û

Millman�s Theorem

4.9 Find the load current using Millman�s theorem. All values are in ohm. [1.176 A]

4.10 Using Millman�s theorem, find the current in the load impedance, ZL =(2 + j4) W
[1.06Ð�58.46° (A)]

4.11 Determine the current through the branch AB using Millman�s theorem.
36

A
67

é ù
ê úë û
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Thevenin�s and Norton�s Theorems

4.12 Determine the Thevenin equivalent circuit with respect to the terminals A and B for the circuit shown

in the figure and hence the current flowing through 10 W resistor. [0.193 A]

4.13 Find the Thevenin equivalent circuit for the following networks

(i)

(ii)

(iii)

[(i) 0; � 0.33 W (ii) 8 V; 10 kW (iii) 25 V; 350 W]

4.14 Determine the current in the branch AB for the circuit shown in figure by using Thevenin�s theorem.

[1.818 A]
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4.15 Find Norton�s equivalent at terminals a�b. [0 A; 10.64 W]

Maximum Power Transfer Theorem

4.16 Determine the value of the resistor RL that will draw maximum power from the rest of the circuit. What

is the maximum power? [4.22 W, 2.901 W]

4.17 The circuit operates in the sinusoidal steady state with w = 1000 rad/s and 1 0 A(rms)sI = Ð ° . Find

the value of the load impedance for maximum average power transfer. Also, find the average power

absorbed by the load under this condition. [ (1500 + j1000) W; 83.33 W]

4.18 Determine ZL so that the maximum power is absorbed by it. [40Ð0° V; (8 � j20) W, 50 W]
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4.19 Determine the value of R such that the 6W resistor consumes the maximum power. [R = �18 W]

Superposition Theorem

4.20 Apply superposition theorem to the circuit to find i3. [�0.75 A]

4.21 Find the current i0 using superposition theorem. [�0.4706 A]

SHORT-ANSWER TYPE QUESTIONS

4.1 State and explain substitution theorem.

4.2 State and explain superposition theorem. Give a proof for a general n-mesh network indicating the

conditions under which it is applicable.

4.3 State reciprocity theorem as applied to a network and give a proof of the same for a general network.

Mention two networks where this theorem is not applicable.

4.4 State Thevenin�s theorem and give a proof of the same. Mention one example of a network where

this network is not applicable.

4.5 (a) State Norton�s theorem as applied to a network and give a proof of the same.

(b) What is �Dual Network�? Mention the procedure for drawing the dual of a given network.
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4.6 State and prove maximum power transfer theorem.

or

In the circuit, the source emf ES, resistance RS and reactance jXS

are fixed but both the load resistance RL and reactance jXL are

variable. Show that maximum power is consumed in the load when

XL = �XS and RL = RS.

Prove that the load impedance which absorbs the maximum power

from a source is the conjugate of the impedance of the source.

4.7 State and prove the following theorem

(a) Tellegen�s theorem.

(b) Millman�s theorem.

(c) Compensation theorem.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

4.1 (a) 4.2 (d) 4.3 (d) 4.4 (b) 4.5 (c) 4.6 (c) 4.7 (a)

4.8 (c) 4.9 (a) 4.10 (a) 4.11 (b) 4.12 (d) 4.13 (d) 4.14 (c)

4.15 (a) 4.16 (b) 4.17 (c) 4.18 (d) 4.19 (a) 4.20 (b) 4.21 (b)

4.22 (d) 4.23 (d) 4.24 (a) 4.25 (a) 4.26 (a) 4.27 (a) 4.28 (c)

4.29 (d) 4.30 (b) 4.31 (d) 4.32 (c) 4.33 (c) 4.34 (b) 4.35 (a)

4.36 (a) 4.37 (b) 4.38 (d) 4.39 (d) 4.40 (b) 4.41 (d)



CHAPTER

5
Laplace Transform

and its Applications

5.1 INTRODUCTION

Classical methods of solving differential equations become quite cumbersome when used for network

involving higher order differential equations. In such cases, Laplace Transform method is used.

The classical methods consist of three steps, as given below.

(i) Determination of complementary function

(ii) Determination of particular integral

(iii) Determination of arbitrary constants.

But these methods become difficult for the equations containing derivatives, and transform methods

prove to be superior.

The Laplace transform is an integral that transforms a time function into a new function of a

complex variable.

5.2 ADVANTAGES OF LAPLACE TRANSFORM METHOD

Laplace transforms methods offer the following advantages over the classical methods.

1. It gives complete solution.

2. Initial conditions are automatically considered in the transformed equations.

3. Much less time is involved in solving differential equations.

4. It gives systematic and routine solutions for differential equations.

5.3 DEFINITION OF LAPLACE TRANSFORM

Let f (t) be a function of time which is zero for t < 0 and which is arbitrarily defined for t > 0, subject
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to some mild conditions. Then the Laplace Transform of the function f (t), denoted by F (s) is defined

as,

0 _

[ ( )] ( ) ( )
¥

-= = òL
stf t F s f t e dt

Thus, the operator L[ ] transforms f(t), which is in time domain, into F(s), which is in the complex

frequency domain, or simply the s-domain, where,

s = Complex frequency (unit is in Hz) = (s + jw)

where, s = Real part of s = neper frequency and w = Imaginary part of s = radian frequency.

NB: The lower limit of the integration should be 0� instead of 0+ or simple 0. If f (t) is continuous at

t = 0, then the value of f (0) is well-defined. But, if f (t) is not continuous at t = 0, then the meaning of

f(0) becomes ambiguous. To consider the effect of �instantaneous energy transfer� we must use 0- as

the lower limit to include the impulses at t = 0. The use of 0 will exclude the existence of any

impulses at the origin.

So, we use 0� as the lower limit.

5.4 BASIC THEOREMS OF LAPLACE TRANSFORM

1. Linearity Theorem If Laplace transform of the functions f1(t) and f2(t) are F1(s) and F2(s)

respectively, then Laplace transform of the functions [K1 f1(t) + K2 f2(t)] will be [K1 F1(s) + K2 F2(s)].

L[K1 f1(t) + K2 f2(t)] = [K1 F1(s) + K2 F2(s)]

where, K1 and K2 are constants.

2. Scaling Theorem If Laplace transform of f (t) is F(s), then

L[f(Kt)] = ( )1 s
F

K K
, where K is a constant and K > 0.

3. Time Differentiation Theorem If Laplace transform of f (t) is F(s), then,

( )
( ) (0 )

df t
sF s f

dt -
é ù = -ê úë û

L

4. Frequency Differentiation Theorem If Laplace transform of f (t) is F(s), then,

( )
[ ( )]

dF s
L tf t

ds
= -

5. Time Integration Theorem If Laplace transform of f (t) is F(s), then,

0

( )
( )

t
F s

f t dt
s

é ù
=ê ú

ë û
òL

In general, for nth order integration,

1 2

1 2
0 0 0

( )
... ( ) ...

ntt t

n n

F s
f t dt dt dt

s

é ù
=ê ú

ë û
ò ò òL
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6. Shifting Theorem The shifting may be done with respect to time or frequency.

(a) Time Shifting Theorem

If Laplace transform of f (t) is F (s), then

[ ( )] ( )±± =L
asf t a e F s

(b) Frequency Shifting Theorem

If Laplace transform of f(t) is F(s), then

[ ( )] ( )= ±m
L

ate f t F s a

7. Initial Value Theorem If the Laplace Transform of f (t) is F (s) and the first derivative of f (t) is

Laplace transformable, then, the initial value of f (t) is,

0
(0 ) Lt ( ) Lt [ ( )]

t s
f f t sF s+

® ®¥
= =

Proof
0

( )
( )

-

¥
-é ùé ù = ê úê úë û ë û

òL
stdf td

f t e dt
dt dt

or
0

( )
( ) (0 )

-

¥
-

-
é ù

- = ê úë û
ò stdf t

sF s f e dt
dt

[by time differentiation theorem]

Taking limit s ® ¥,

0

( )
Lt [ ( ) (0 )] Lt

-

¥
-

-
®¥ ®¥

é ù
- = ê úë û

ò st

s s

df t
sF s f e dt

dt

or
0

0

0 0

( ) ( )
Lt [ ( )] (0 ) Lt st

s s

df t df t
sF s f e dt e dt

dt dt

+

+
-

¥
-

-
®¥ ®¥

é ù
- = +ê ú

ê úë û
ò ò

or
0

0

0

( )
Lt [ ( )] (0 ) Lt

s s

df t
sF s f e dt

dt

+

-

-
®¥ ®¥

é ù
- = ê ú

ê úë û
ò [as s is not a function of time t]

or
0

0

Lt [ ( )] (0 ) Lt ( ) (0 ) (0 )
s s

sF s f df t f f

+

-

+
- -

®¥ ®¥
- = = -ò

or (0 ) Lt [ ( )]
s

f sF s+

®¥
=

8. Final Value Theorem If a function f (t) and its derivatives are Laplace transformable, then the

final value of f (t) is,

0
( ) Lt ( ) Lt [ ( )]

t s
f f t sF s

®¥ ®
¥ = =

Proof
0

( )
( )

-

¥
-é ùé ù = ê úê úë û ë û

òL
stdf td

f t e dt
dt dt
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or
0

( )
( ) (0 ) stdf t

sF s f e dt
dt

-

¥
-

-
é ù

- = ê úë û
ò [by time differentiation theorem]

Taking limit s ® 0,

[ ]
0 0 0 0 0

( ) ( ) ( )
Lt ( ) (0 ) Lt Lt

- - -

¥ ¥
-

-
® ® ®¥

é ù é ù æ ö
- = = = ç ÷ê ú ê ú è øë û ë û

ò ò ò
t

st

s s t

df t df t df t
sF s f e dt dt dt

dt dt dt

or [ ] [ ]
0

Lt ( ) (0 ) Lt ( ) (0 )
s t

sF s f f t f
- -

® ®¥

- = -

or [ ] [ ]
0

Lt ( ) (0 ) Lt ( ) (0 )
s t

sF s f f t f
- -

® ®¥

- = -

or [ ] [ ]
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

=

This theorem is only applicable if the value of the function f (t) is finite as t becomes infinity, i.e.,

F (s) has all poles lying in the left half of s-plane or at most one simple pole at the origin.

5.5 LAPLACE TRANSFORM OF SOME BASIC FUNCTIONS

1. Exponential function

( ) atf t e=
By definition of Laplace transform,

( )
( )

0 0 0

1 1
( ) [ ( )] 0

( ) ( ) ( )

¥
¥ ¥ -

- -

- - -

é ù æ ö= = × = = = - =ç ÷ê ú
- - -è øë û

ò ò
a s t

at st a s t e
F s L f t e e dt e dt

a s a s s a

Similarly, for ( ) atf t e-= , 
1

( )F s
s a

=
+

2. Unit step function or, Heaviside unit function

( ) ( ) 1f t u t= =  for t > 0

= 0 for t < 0

and is undefined for t = 0.

0 0 0

( ) [ ( )] ( ) 1

1 1
0

¥
¥ ¥ -

- -

- - -

é ù
= = × = × = ê ú

-ë û

= - =
-

ò ò
st

st st e
F s L f t u t e dt e dt

s

s s

Also, the Laplace transform of step function of magnitude K is

[ ( )]
K

L Ku t
s

=

Figure 5.1(b) Shifted unit step

function

Figure 5.1(a) Unit step function
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Similarly, the Laplace transform of the shifted unit step function u(t � T) is,

[ ( )]
sTe

u t T
s

-
- =L {by differentiation theorem}

Another function, called gate function can be obtained from step function as follows.

Figure 5.2 Gate function

Therefore, g(t) ( ) ( )Ku t a Ku t b= - - -  and, [ ( )] ( )as bsK
L g t e e

s

- -= -

3. The sine function

f (t) = 
1

sin [ ]
2

j t j tt e e
j

w w
w

-= -

F(s) = 
0

1
[ ( )] [ ]

2
j t j t stL f t e e e dt

j
w w

¥
- -

-

é ù= - ×ê úë û
ò ( ) ( )

0

1
[ ]

2
j s t j s te e dt

j
w w

¥
- - +

-

= -ò

2 2

1 1 1

2 j s j s j s

w

w w w

é ù
= - =ê ú- + +ë û

4. The cosine function

f (t) = 
1

cos [ ]
2

j t j tt e ew w
w

-= +

F(s) = 
0

1
[ ( )] [ ]

2
j t j t stL f t e e e dt

j
w w

¥
- -

-

é ù= - ×ê úë û
ò

( ) ( )
2 2

0

1 1 1 1
[ ]

2 2
j s t j s t s

e e dt
s j s j s

w w

w w w

¥
- - +

-

é ù= + = + =ê ú
- + +ë û

ò

5. The hyperbolic sine function

f (t) = 
1

sinh [ ]
2

at at
at e e-= -

F(s) = 
0

1
[ ( )] [ ]

2
at at stL f t e e e dt

j

¥
- -

-

é ù= - ×ê úë û
ò

( ) ( )

2 2
0

1 1 1 1
[ ]

2 2
a s t a s t a

e e dt
s a s a s a

¥
- - +

-

é ù= - = - =ê ú- + +ë û
ò
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6. The hyperbolic cosine function

f (t) = 
1

cosh [ ]
2

at at
at e e-= +

F(s) = 
0

1
[ ( )] [ ]

2
at at stL f t e e e dt

¥
- -

-

é ù= + ×ê úë û
ò

( ) ( )

2 2
0

1 1 1 1
[ ]

2 2
a s t a s t a

e e dt
s a s a s a

¥
- - +

-

é ù= + = + =ê ú- + -ë û
ò

7. The damped sinusoidal function

f (t) = 
( ) ( )1 1

sin [ ] [ ]
2 2

at at j t j t a j t a j te t e e e e e
j j

w w w w
w

- - - - - - +ì ü ì ü
× = × - = -í ý í ý

î þ î þ

F(s) = ( ) ( )

0

1
[ ( )] [ ]

2
a j t a j t stL f t e e e dt

j
w w

¥
- - - + -

-

é ù= - ×ê úë û
ò

= ( ) ( )

0

1
[ ]

2
s a j t s a j te e dt

j
w w

¥
- + - - + +

-

- ×ò

= 
2 2

1 1 1

2 {( ) } {( ) } ( )j s a j s a j s a

w

w w w

é ù
- =ê ú+ - + + + +ë û

8. The damped cosine function

f (t) = { } { }( ) ( )1 1
cos [ ] [ ]

2 2
at at j t j t a j t a j te t e e e e ew w w w

w
- - - - - - +× = × + = +

F(s) = ( ) ( )

0

1
[ ( )] [ ]

2
a j t a j t stL f t e e e dtw w

¥
- - - + -

-

é ù= + ×ê úë û
ò

= ( ) ( )

0

1
[ ]

2
s a j t s a j te e dtw w

¥
- + - - + +

-

+ ×ò

= 
2 2

( )1 1 1

2 {( ) } {( ) } ( )

s a

s a j s a j s aw w w

+é ù+ =ê ú+ - + + + +ë û
9. The ramp function

( ) nf t t=

0

( ) [ ( )] [ ]n n stF s L f t L t t e dt
¥

-

-

= = = ×ò

Integrating by parts, let,

u = tn and dv = e�st dt

then 1ndu nt -= and
st

st e
v e dt

s

-
-= = -ò

Figure 5.3 Ramp function
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Now, F(s) = ( 1)
0 0

0 0 0

[ ( )] | [ ]
n

st n stt n
f t udv uv vdu e t e dt

s s

¥ ¥ ¥
¥ - ¥ - -

- -

- - -

= = - = - +ò ò òL

= ( 1) ( 1) ( 2)( 1)
[ ] [ ]n st n nnn n n

t e dt L t L t
s s s s

- - - -
-

× = = ×ò

= 0( 1) ( 2) 2 1
...... [ ] [ ( )]

n

n nn n
L t L u t

s s s s s s

- - Ð
× × × =

= 
1

1
n n

n n

ss s +
Ð Ð× =

For n =1, 
2

1
[ ]t

s
=L

For n =2, 2

3

2
[ ]t

s

Ð=L

10. Impulse Function or Dirac Delta Function [d (t)]

It is a function of a real variable t, such that the function is zero

everywhere except at the instant t = 0. Physically, it is a very

sharp pulse of infinitesimally small width and very large magni-

tude, the area under the curve being unity.

Consider a gate function as shown in Fig. 5.4.

The function is compressed along the time-axis and stretched along

the y-axis, keeping area under the pulse unity. As a ® 0, the

value of 
1

a
®¥  and the resulting function is known as impulse.

It is defined as, d (t) = 0 for t ¹ 0

and ( ) 1t dtd
¥

-¥

=ò

Also, d (t) = 
0

1
Lim [ ( ) ( )]
a

u t u t a
a®

- -

The Laplace transform of the impulse function is obtained as,

L [d (t)] [ ]{ }0

1
Lim ( ) ( )
a

L u t u t a
a®

= - -

0

1 1
Lim

as

a

e

a s s

-

®

é ù
= -ê ú

ë û

0

1
Lim

as

a

e

as

-

®

-
=

0
Lim [by L�Hospital�s rule]

as

a

se

s

-

®
=

= 1

Figure 5.4 Generation of impulse

function from gate

function
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5.6 LAPLACE TRANSFORM TABLE

Table 5.1 Standard Laplace Transforms

Sl. No. Functions [ f(t)] Laplace Transform [F(s)]

in Time(t) Domain in Frequency(s) Domain

Definition If f (t) is Laplace transformable then L[f(t)]=F(s)=
0

( )
St

f t dte
¥

-

-

ò

1 U(t) (unit step function)
1

s

2 U(t � T ) (unit step function shifted/delayed by T )
sTe

s

-

3 d (t) (unit impulse) 1

4 eat (exponential function)
1

s a-

5 e�at (exponential function)
1

s a+

6 sin w t (sine function)
2 2s

w

w+

7 cos wt (cosine function)
2 2

s

s w+

8 t n (n=1, 2, 3, ��) (ramp function)
1

!
n

n

s +

9 t (unit ramp function)
2

1

s

10 e�at sin wt (damped sine function)
2 2( )s a

w

w+ +

11 e�at cos wt (damped cosine function)
2 2

( )

( )

s a

s a w

+
+ +

12 e�at t n (damped ramp function)
1

!

( )n
n

s a +
+

13 ( )
d
f t

dt
 (Differentiation theorem) ( ) (0 )sF s f- -

14
0

( )
t

f t dtò  (Integration theorem)
( ) (0 )F s f

s s

-+

(Contd)
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(Contd)

15 sinh wt (hyperbolic sine function)
2 2s

w

w-

16 cosh wt (hyperbolic cosine function)
2 2

s

s w-

17 e�at sinh wt (damped hyperbolic sine function)
2 2( )s a

w

w+ -

18 e�at cosh wt (damped hyperbolic cosine function)
2 2

( )

( )

s a

s a w

+
+ -

19 Initial value theorem
0

Lt ( ) Lt ( )
t s

f t sF s
® ®¥

=

20 Final value theorem
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

=

21 Shifting theorem ( )f t a± ( )ase F s±

5.6.1 Other Important Laplace Transforms

1 d (t) 1

2 d (t � a) e�as

3 d (t � a) g(t) e�as g(a)

Note: g(a) NOT G(a)

4 2

2
sin 1

1

nz tn
ne tww

w z
z

-
-

-

2

2 2
( 1)

2

n

n ns s

w
z

zw w
<

+ +

5 2

2
1 sin ( 1 ),

1

nt

n

e
z t

zw

w q
z

-

- - +
-

2

2 2
( 1)

( 2 )

n

n ns s s

w
z

zw w
<

+ +

where q = cos�1 z

5.7 LAPLACE TRANSFORM OF PERIODIC FUNCTIONS

If f(t) is periodic with time period T (> 0), so that f(t + T) = f(t), then the Laplace transform of the

function is equal to 
1

1 Tse-
æ ö
ç ÷-è ø

 times the Laplace transform of the first cycle.

\
1

1
[ ( )] ( ) ( )

1 Ts
f t F s F s

e-
é ù= = ê ú-ë û

L

Proof

Let f(t) be the periodic function, and

T be the time period,
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Let f1(t), f2(t), � , fn(t) be the functions representing the first, second, �, nth cycle, respectively

\ f(t) = f1(t) + f2(t) + � + fn(t) + �

= f1(t) + f1(t � T) + f1(t � 2T) + �

Taking Laplace transform,

L[ f(t)] = F(s) = 1 1 1[ ( )] [ ( )] [ ( 2 )] ...L f t L f t T L f t T+ - + - +

= 2
1 1 1( ) ( ) ( )Ts TsF s e F s e F s- -+ + +¼

= 2 3
1( )[1 ]Ts Ts TsF s e e e- - -+ + + +¼

Therefore, 1

1
( ) ( )

1 Ts
F s F s

e-
é ù= ê ú-ë û

Example 5.1  Find the Laplace transform of the square wave.

Figure 5.5(a) Square wave of Example 5.1

Solution The first cycle is shown below.

It can be written as,

f1(t) = u(t) � 2u(t � T) + u(t � 2T)

Taking Laplace transform of the first cycle,

F1(s) = 
2

21 2 1
(1 )

Ts Ts
Tse e

e
s s s s

- -

-
- + = -

By the theory of time periodicity, the Laplace

transform of the square wave is given as,

F1(s) = 2

2

1 1
(1 )

1

Ts

Ts
e

s e

-

-
- ´

-

(Since time period of the square wave is 2T )

= 
11 1

tanh
21

Ts

Ts

e Ts

s se

-

-

æ ö- æ ö= ç ÷ç ÷ è ø+è ø

Figure 5.5(b) First cycle of the

square wave of

Example 5.1
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5.8 INVERSE LAPLACE TRANSFORM

Let, F(s) have the general form of

( )
( )

( )

N s
F s

D s
=

where, N(s) is the numerator polynomial and D(s) is the denominator polynomial. The roots of N(s) =

0 are called the zeros of F(s) while the roots of D(s) = 0 are the poles of F(s).

For example, for the function 
1

( )
( 2) ( 3)

s
F s

s s s

-
=

- -
, the zero is at s = 1 and the poles are at s = 0,

2 and 3.

We use Partial Fraction Expansion to break F(s) down into simple terms. Thus, there are two steps

to find inverse Laplace transform as given below.

I. Decomposition of F(s) into simple terms using Partial Fraction Expansion.

II. Evaluation of the inverse of each term comparing with the standard forms of Laplace trans-

forms.

We consider the following three cases given below.

I. Simple Poles

Let F(s) = 
1 2 3

( )

( ) ( ) ( ) ( )
n

N s

s p s p s p s p+ + + ¼ +

where, s = �p1, �p2 �p3, �, �pn are the simple poles, and pi ¹ pj for all i ¹ j (i.e. poles are distinct)

Assuming that the degree of N(s) is less than the degree of D(s),

31 2

1 2 3

( ) n

n

k kk k
F s

s p s p s p s p
= + + +¼+

+ + + +
(1)

where, expansion co-efficients k1, k2, k3, �, kn are known as the residues of F(s). These can be found

out by Residue method explained below.

Multiplying both sides of Eq. (1), by (s + p1),

1 3 11 2
1 1

2 3

( ) ( )( )
( ) ( ) n

n

s p k s p ks p k
s p F s k

s p s p s p

+ ++
+ = + + +¼+

+ + +

Putting

1 1 1( ) ( )|
is ps p s p F s k

=
= - Þ + =

In general, ( ) ( ) |
ii i s pk s p F s == + . This is known as Heaviside�s Theorem.

Once, the values of ki are known, the inverse Laplace is obtained as,

31 2
1 2 3( ) ( ) ( )n

p t p tp t p t
nf t k e k e k e k e u t- -- -= + + +¼+

Example 5.2  Find the inverse Laplace transform of the function,

2 1
( )

( 1) ( 2) ( 3)

s
F s

s s s

+
=

+ + +
.
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Solution Let F(s) = 31 22 1

( 1) ( 2) ( 3) 1 2 3

kk ks

s s s s s s

+
= + +

+ + + + + +

\ k1 = 1

1

2 1 1
( 1) ( )|

( 2) ( 3) 2s

s

s
s F s

s s=-

=-

+
+ = = -

+ +

\ k2 = 2

2

2 1
( 2) ( )| 3

( 1) ( 3)s

s

s
s F s

s s=-

=-

+
+ = =

+ +

\ k3 = 3

3

2 1 5
( 3) ( )|

( 1) ( 2) 2s

s

s
s F s

s s=-

=-

+
+ = = -

+ +

\ F(s) = 
1 3 5

2( 1) 2 2( 3)s s s
- + -

+ + +

Thus, the inverse Laplace transform is given as,

f(t) = 2 �31 5
3

2 2
t t te e e- -

- + -

II. Repeated Poles

Suppose, F(s) has n repeated poles at s = � p.

\ F(s) = 
1 2 2 1

11 2 2
( )

( )( ) ( ) ( ) ( )

n nn

n n n

k kk k k
F s

s ps p s p s p s p

- -

- -
+ + +¼+ + +

++ + + +

where, F1(s) is the remaining part of F(s) that does not have a pole at s = �p.

We find,

\ kn = ( ) ( )|n
s ps p F s = -+

To find kn� 1, kn� 2,�, kn �m, the procedure is,

kn�1 = [( ) ( )]n

s p

d
s p F s

ds =-

+

kn�1 = 
2

2

1
[( ) ( )]

2!
n

s p

d
s p F s

ds = -
+

In general, 
1

[( ) ( )]
!

m
n

n m m
s p

d
k s p F s

m ds
-

= -
= + , where, m = 1, 2, �, (n � 1).

Once, the values of k1, k2, �, kn are known, the inverse Laplace is obtained as,

f(t) = 3 2 1
1 2 1( ) ( )

3! ( 1)!
npt pt pt n ptk k

k e k te t e t e u t f t
n

- - - - -
æ ö

+ + +¼+ +ç ÷
-è ø
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Example 5.3  Find the inverse Laplace transform of the function F(s) = 
2

12

( 2) ( 4)s s+ +
.

Solution Let 31 2

2 2

12
( )

2 4( 2) ( 4) ( 2)

kk k
F s

s ss s s
= = + +

+ ++ + +

By residue method,

k1 = 2
2

2

12
( 2) ( )| 6

( 4)s
s

s F s
s=-

=-

+ = =
+

\ k2 = 
( )

2
2

2

12
[( + 2) ( )]| 3

4
s

s

d d
s F s

ds ds s
=-

=-

é ù
= = -ê ú

+ë û

k3 = 4 2
4

12
( 4) ( )| 3

( 2)
s

s

s F s
s

= -
= -

+ = =
+

Thus, F(s) = 
2

6 3 3

2 4( 2) s ss
- +

+ ++

Taking inverse Laplace transform, 4 2 2( ) 3 3 6t t tf t e e te- - -= - +

III. Complex Poles

Since N(s) and D(s) always have real co-efficients and as the complex roots of polynomials with real

co-efficients occur in conjugate form, F(s) may have the general form,

1 2 1 2
1 12

( ) ( ) ( )
A s A k k

F s F s F s
s j s js as b a b a b

+
= + = + +

+ - + ++ +

where, F1(s) is the remaining part of F(s) that does not have this pair of complex poles.

Let 2 2 2 2 2 2( ) ( 2 ) ( )s as b s s sa a b a b+ + = + + + = + +

\
2

1, 2 ( )
2 4

a a
s j j ba b= - ± = - ± -

Thus, the coefficients are,

1

*
1 1 2 1 1( ) ( )| and Complex conjugate ofs sk s s F s k k k

=
= - = =

Example 5.4  Find the inverse Laplace transform of the function 
2

2 1
( )

( 1) ( 2 5)

s
F s

s s s

+
=

+ + +
.

Solution Let F(s) = 1 2

2

2 1

1 1 2 1 2( 1) ( 2 5)

k ks A

s s j s js s s

+
= + +

+ + - + ++ + +

\ A = 1 2
1

2 1 1
( 1) ( )|

42 5
s

s

s
s F s

s s
=-

=-

+
+ = = -

+ +
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k1 = 

( )
( 1 2)

1 2

2 1 1 1
( 1 2) ( )|

( 1) ( 1 2) 8 2s j

s j

s
s j F s j

s s j= - +
= - +

+ æ ö+ - = = -ç ÷è ø+ + +

\ k2 = *
1

1 1

8 2
k j

æ ö= +ç ÷è ø

\ F(s) = 

1 1 1 1
1 1 8 2 8 2
4 1 1 2 1 2

j j

s s j s j

- +æ ö
- + +ç ÷+ + - + +è ø

Taking inverse Laplace transform,

f(t) = 21 1
[ cos 2 ] sin 2 sin sin 2

4 2
t t t t te e t e t e t e t- - - - -- - + = - +

5.9 APPLICATIONS OF LAPLACE TRANSFORM

1. Solving Integro-Differential Equations and Simultaneous Differential Equations

2. Transient Analysis of Electrical Circuits.

5.9.1 Solving Integro Differential Equations and Simultaneous Differen-
tial Equations

An integro-differential equation is an integral equation in which various derivatives of the unknown

function can also be present. Using the Laplace transform of integrals and derivatives, an integro-

differential equation can be solved.

Similarly, it is easier with the Laplace transform method to solve simultaneous differential equa-

tions by transforming both equations and then solving the two equations in the s-domain and finally

obtaining the inverse to get the solution in the time domain.

Example 5.5  (Integro-Differential Equation) Solve the equation for the response i(t), given that

0

2 5 ( )
t

di
i idt u t

dt
+ + =ò  and i(0) = 0.

Solution Let L[i(t)] = I(s).

\ ( ) (0) ( ) 0 ( )
di

sI s i sI s sI s
dt
é ù = - = - =ê úë û

L

Taking Laplace transform on both sides of the given equation,

sI(s) + 2I(s) + 
( ) 1

5
I s

s s
=

or
2 2 2

1 1 2
( )

22 5 ( 1) (2)
I s

s s s
= =

+ + + +
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Taking inverse Laplace transform, we get

1
( ) sin 2 ( ), 0

2
ti t e t A t-= >

Example 5.6  (Integro-Differential Equation) Solve the initial value problem for y(t) when

2

2
( ) 3 sin 2 and (0) 1, (0) 2

d y
y t t y y

dt
+ = = ¢ = - .

Solution  Let L[y(t)] = Y(s).

\
2

2 2

2
( ) (0) (0) ( ) 2

d y
s Y s sy y s Y s s

dt

é ù
= - - ¢ = - +ê ú

ë û
L

or Y(s) = 
2 2

2

1 4

s

s s
-

+ +

Taking inverse Laplace transform, we get, ( ) (cos sin 2 )y t t t= -

Example 5.7  (Simultaneous Differential Equations) Find the solution of the system:

6 3 8 tdx
x y e

dt
- + =  and 2 4 tdy

x y e
dt

- - =  with initial conditions x(0) = �1, y(0) = 0.

Solution Taking Laplace transform,

9
( 6) 3

1

s
s X Y

s

- +
- + =

-
(i)

4
2 ( 1)

1
X s Y

s
- + - =

-
(ii)

Solving for X and Y,

X = 
7 2 1

( 1) ( 4) 1 4

s

s s s s

- +
= - +

- - - -

Y = 
2 /3 2/32

( 1) ( 4) 1 4s s s s

-
= +

- - - -

Taking inverse Laplace transform,

x(t) = 4 42 2
2 and ( )

3 3
t t t te e y t e e- + = - +

Example 5.8  (Simultaneous Differential Equations) Solve for x(t) and y(t), given that x(0) = 4,

y(0) = 3 and

4 10 and 0
dydx

x y x y
dt dt

+ + = - - =
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Solution  Following the same procedures, as in Ex (5.7), we get,

X = 
2 2

2 2

4 2 10 3 10
and

( 3) ( 3)

s s s s
Y

s s s s

+ + + +
=

+ +
Taking inverse Laplace transform, we get the desired results.

5.10 APPLICATION OF LAPLACE TRANSFORM METHOD TO CIRCUIT
ANALYSIS

We now apply the mathematical tool for the analysis of electric circuits.

5.10.1 Transform Impedance of Network Elements

Element Time Domain s-Domain

1. Resistor (R) v(t) = Ri(t) V(s) = RI(s)

2. Inductor (L) v(t) = L
( )di t

dt
V(s) = L[sI(s) � i(0�)]

i(t) = 
1

( )
t

v t dt
L

-¥
ò I(s) = 

( ) (0 )1 V s i

L s s

-é ù+ê úë û

3. Capacitor (C) i(t) = C
( )dv t

dt
I(s) = sCV(s) � Cv(0�)

v(t) = 
1

( )
t

i t dt
C

-¥
ò V(s) = 

(0 )( ) vI s

Cs s
-+
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5.11 TRANSIENT ANALYSIS OF ELECTRIC CIRCUITS USING LAPLACE

TRANSFORM

In electrical engineering, a transient response or natural response is the electrical response of a

system to a change from equilibrium.

The condition prevailing in an electric circuit between two steady-state conditions is known as the

transient state; it lasts for a very short time. The currents and voltages during the transient state are

called transients.

In general, transient phenomena occur whenever

(i) a circuit is suddenly connected or disconnected to/from the supply,

(ii) there is a sudden change in the applied voltage from one finite value to another,

(iii) a circuit is short-circuited.

A simple example would be the output of a 5 volt DC power supply when it is turned on: the transient

response is from the time the switch is turned on and the output is a steady 5 volt. At this point the

power supply reaches its steady-state response of a constant 5 volt.

The transient response is not necessarily tied to �on/off� events but to any event that affects the

equilibrium of the system. If in an RC circuit the resistor or capacitor is replaced with a variable

resistor or variable capacitor (or both) then the transient response is the response to a change in the

resistor or capacitor.

The transient currents are not caused by any part of the supply voltage, but are entirely associated

with the changes in the stored energy in capacitor and inductors. As there is no energy stored in

resistors, there are no transients in purely resistive circuits.

Although transients last for a very short time, their study is very important because.

(i) They indicate what dangerous rises in voltage or current may happen in individual sections of

a circuit.

(ii) They indicate how signals are distored in waveform or amplitude as they pass through amplifi-

ers, filters, or other circuit elements.

We consider the transient analysis for the following circuits subject to step input, impulse input and

sinusoidal input:

1. RL Series Circuit,

2. RC Series Circuit,

3. RLC Series Circuit, and

4. RLC Parallel Circuit.

5.11.1 RL Series Circuit

1. RL Series Circuit with Step Input We consider an RL series circuit as shown in figure.

Figure 5.6 R-L series circuit
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If the switch is closed at time t = 0, the voltage across the RL combination would be v(t) which is

a step of magnitude V [or Vu(t)] and not a constant as is the supply voltage V.

v(t) = 0, for t £ 0

= V, for t ³ 0

Thus the differential equation governing the behaviour of the circuit would be

( )
( ) ( )

di t
Ri t Vu t

dt
+ =L

Taking Laplace transform, we get

( ) [ ( ) (0 )]
V

RI s sI s i
s

+ - - =L

or,

( )
(0 ) (0 )1 1

( )

V
i iVLI s

R R s R RR s s ss s
L L LL

- -æ ö= + = - +
ç ÷

+ + +ç ÷+ è ø

Taking inverse Laplace transform,

( ) 1 (0 ) 1

R R R
t t t

L L LV V
i t e i e e

R R

æ ö æ ö æ ö
- - -ç ÷ ç ÷ ç ÷è ø è ø è ø

æ ö æ ö
= - + - = -è ø è ø  with i(0�) = 0.

The transient part of the current response, [ ( ) ]
R
t

L
tr s

V
i i t i e

R

-
= - = -

From the current equation at 
L

t
R

t= = , 1(1 ) 0.63 0.63
s

V V
i e i

R R
-= - = =

When the switch is first closed, the voltage across the inductor will immediately jump to battery

voltage (acting as though it were an open-circuit) and decay down to zero over time (eventually acting

as though it were a short-circuit). Voltage across the inductor is determined by calculating how much

voltage is being dropped across R, given the current through the inductor, and subtracting that voltage

value from the battery to see what�s left. When the switch is first closed, the current is zero, then it

increases over time until it is equal to the battery voltage divided by the series resistance. This

behavior is precisely opposite that of the series resistor-capacitor circuit, where current started at a

maximum and capacitor voltage at zero.

The steady state part of the current response, 
s

V
i

R
=

The variation of the current is shown in Figure 5.7.

The quantity 
L

R
t =  is known as the Time-constant of the circuit and it is defined as follows.
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Definitions of Time-constant (t)
1. It is the time taken for the current to reach 63% of its final value. Thus, it is a measure of the

rapidity with which the steady state is reached.

Also, at t = 5t, i = 0.993is; the transient is therefore, said to be practically disappeared in five

time constants.

2. The tangent to the equation ( )1
R

t
LV

i e
R

-

= -  at t = 0, intersects the straight line, 
V

i
R

=  at

L
t

R
t= = . Thus, time-constant is the time in which steady state would be reached if the

current increases at the initial rate.

Physically, time-constant represents the speed of the response of a circuit. A low value of time-

constant represents a fast response and a high value of time-constant represents a sluggish response.

Calculations of the Voltage Across Elements

Voltage across the resistor, ( )( ) 1
R

t
L

RV Ri t V e
-

= = -

Voltage across the inductor, ( )( )
1

R R
t t

L L
L

di t d V
V L L e Ve

dt dt R

- -é ù
= = - =ê úë û

Review

l A fully �discharged� inductor (no current through it) initially acts as an open circuit (voltage

drop with no current) when faced with the sudden application of voltage. After �charging�

fully to the final level of current, it acts as a short circuit (current with no voltage drop).

l In a resistor-inductor �charging� circuit, inductor current goes from nothing to full value while

voltage goes from maximum to zero, both variables changing most rapidly at first, approaching

their final values slower and slower as time goes on.

Figure 5.7 Variation of current with time RL series circuit with step input



5.20 Network Theory

2. RL Series Circuit with Impulse Input By KVL, the mesh equation becomes,

( )
( ) ( )

di t
Ri t L V t

dt
d+ =

Taking Laplace transform,

( ) ( )RI s sLI s V+ =  with (0 ) 0i - =

or
1

( )
/

V
I s

L s R L

æ ö= ç ÷+è ø

Taking inverse Laplace transform,

( )
R
t

LV
i t e

L

-
=

Here, the plot of the current is shown in Figure 5.8.

Voltage across the resistor, ( )
R
t

L
R

VR
V Ri t e

L

-
= =

Voltage across the inductor, 
( ) R R

t t
L L

L

di t d V VR
V L L e e

dt dt L L

- -æ ö
= = = -ç ÷è ø

3. RL Series Circuit with Sinusoidal Input Here, the input voltage is given as, ( ) sinv t V tw=
By KVL,

( )
( ) sin

di t
Ri t L V t

dt
w+ = , with i(0�) = 0

or
2 2

( )[ ]
V

I s R sL
s

w

w
+ =

+

Figure 5.8 Variation of voltages with time in RL series circuit with impulse input
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or I(s) = 

( ) ( )2 2

1

( ) ( ) ( )

V
VL

LR R
s s s j s j s

L L

w
w

w w w

ì ü
ï ï

= í ý
ï ï+ + + - +
î þ

= 31 2 AA AV

L s j s j R
s

L

w
w w

é ù
+ +ê ú- +

+ê úë û

where, A1 = 
1

( )
2 ( )

( ) ( )
s j

L
s j

j R j LR
s j s j s

L
w

w
w w

w w

=

ì ü
ï ïï ï

- =í ý +æ öï ï+ - +è øï ïî þ

A2 = 

( ) ( )
1

( )
2

( ) ( )
s j

L
s j

j R j LR
s j s j s

L
w

w

w w
w w

=-

ì ü
ï ï

+ = -í ý
-ï ï+ - +

î þ

and A3 = ( )
( )

2

2 2 2

1

( )
( ) ( )

R
s

L

R L
s

L R R L
s j s j s

L
ww w

=-

ì ü
ï ï

+ =í ý
+ï ï+ - +

î þ

\ I(s) = 

( )
2

2 2 22 ( ) ( ) 2 ( ) ( )
( )

V L L L

L j R j L s j j R j L s j R
R L s

L

w
w w w w w w

w

é ù
- +ê ú+ - - +ê ú+ +

ë û
Taking inverse Laplace transform,

i(t) = 
2

2 2 22 ( ) 2 ( )

R
tj t j t LV Le Le L e

L j R j L j R j L R L

w w
w

w w w w w

--é ù
ê ú- +ê ú+ - +ë û

= 
2 2 22

R
tj t j t LV e e e

V L
j R j L R j L R L

w w

w
w w w

-
-é ù

- +ê ú+ - +ë û

Let, ( ) jR j L Ze qw+ =  and ( ) jR j L Ze qw -
- =  so that, 2 2 2( )Z R Lw= +  and 1tan

L

R

w
q - æ ö= ç ÷è ø

Putting these values,

i(t) = 
22

R
tj t j t L

j j

V e e e
V L

j Ze Ze Z

w w

q q
w

-
-

-

é ù
- +ê ú

ë û

= 

( ) ( )

22

j t j t R
t

L
e eV V L

e
Z j Z

w q w q
w

- - -
-é ù-

+ê ú
ë û
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or, finally, the current is,

2
( ) sin ( )

R
t

LV V L
i t t e

Z Z

w
w q

-

= - +

From this result, it is clear that the current in RL series circuit lags behind the voltage by an angle,

1tan
L

R

w
q - æ ö= ç ÷è ø . If the resistance R = 0, then 90q = °  as is the case for a perfect inductor.

5.11.2 RC Series Circuit

1. RC Series Circuit with Step Input We consider an RC series circuit as shown in Figure 5.9.

By KVL, 
0

1
( ) ( ) ( )

t

Ri t i t dt Vu t
C

+ =ò

Taking Laplace transform,

(0 )( )1
( )

qI s V
RI s

C s s s

-é ù
+ + =ê úë û

or
(0 )1

( )
qV

I s R
Cs s Cs

-é ù+ = -ê úë û

or

(0 ) (0 )
1

( )
( 1/ ) ( 1/ )

q q
V V

C CI s
s R Cs R s RC

- -
- -

= =
+ +

Taking inverse Laplace transform,

i(t) = 
(0 ) t

RC
qV

e
R RC

--é ù
-ê úë û

; for t ³ 0

= 
t

RCV
e

R

-
; if q (0�) = 0

The steady state part of the current response, is = 0

The transient part of the current response, itr = [i(t) � is] = 
t

RCV
e

R

-

From the current equation at t = t = RC, 1 0.37
V V

i e
R R

-= =

When the switch is first closed, the voltage across the capacitor (which we were told was fully

discharged) is zero volt; thus, it first behaves as though it were a short-circuit. Over time, the

capacitor voltage will rise to equal battery voltage, ending in a condition where the capacitor behaves

as an open-circuit. Current through the circuit is determined by the difference in voltage between the

battery and the capacitor, divided by the resistance. As the capacitor voltage approaches the battery

voltage (V), the current approaches zero. Once the capacitor voltage has reached V, the current will be

exactly zero.

Figure 5.9 RC series circuit
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The quantity t = RC is known as the Time-constant of the circuit and it is defined as follows.

Definitions of Time-constant (t)
1. It is the time in which the current decays to 37% of its initial value.

Also, at t = 5t, i = 0.07
V

R
; the transient is therefore, said to be practically disappeared in five

time constants.

2. The tangent to the equation i = 
t

RCV
e

R

-
 at t = 0, intersects the time axis at t = t = RC.

Thus, time-constant is the time in which the current would reach the steady state zero value if the

current decays at the initial rate.

Physically, time-constant represents the speed of the response of a circuit. A low value of time-

constant represents a fast response and a high value of time-constant represents a sluggish response.

Calculations of the Voltage Across Elements

Voltage across the resistor, ( )
t
RC

RV Ri t Ve
-

= =

Voltage across the capacitor, 
0 0

1 1
( ) 1

t tt t
RC RC

C
V

V i t dt e dt V e
C C R

- -æ ö
= = = -ç ÷

è ø
ò ò

2. RC Series Circuit with Impulse Input With zero initial condition, q(0�) = 0, KVL

equation becomes,

0

1
( ) ( ) ( )

t

Ri t i t dt V t
C

d+ =ò

( )
( )

I s
RI s V

Cs
+ =

The variation of current in the circuit is shown in Figure 5.10.

Figure 5.10 Variation of current with time in RC series circuit with step input
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or,

1

( ) 1
1 1 1

V V s V RCI s
R R

R s s
Cs RC RC

é ù
ê úæ ö= = = -ê úç ÷

+ + +ç ÷ ê úè ø ë û
Taking inverse Laplace transform,

1
( ) ( )

t

RCV
i t t e

R RC
d

-é ù
= -ê úë û

; for t ³ 0

Voltage across the resistor, 
1

( ) ( )

t

RC
RV Ri t V t e

RC
d

-é ù
= = -ê úë û

Voltage across the capacitor, { ( ) }
t

RC
C R

V
V V t V e

RC
d

-

= - =

These variations of the voltages are shown in Figure 5.11.

Figure 5.11 Variation of voltages with time in RC series circuit with impulse input

3. RC Series Circuit with Sinusoidal Input Here, the input voltage is given as, v(t) = V sinw t

By KVL,

0

1
( ) ( ) sin

t

Ri t i t dt V t
C

w+ =ò , with q(0�) = 0

or
2 2

1
( )

V
I s R

Cs s

w

w

é ù+ =ê úë û +

or I(s) = 

( )
2 2 1( ) (1 )

( ) ( )

V Cs V s

Rs sRC
s j s j s

RC

w w

w w w

ì ü
ï ï

= í ý
+ + ï ï+ - +

î þ

= 31 2 AA AV

L s j s j R
s

L

w
w w

é ù
+ +ê ú- +

+ê úë û
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where, A1 = 

( )
1

( )
2(1 )1

( ) ( )
s j

RC
s j

j RC
s j s j s

RC
w

w
w

w w

=

ì ü
ï ï

- =í ý +ï ï+ - +
î þ

A2 = 

( )
1

( )
2(1 )1

( ) ( )
s j

RC
s j

j RC
s j s j s

RC
w

w
w

w w

=-

ì ü
ï ï

+ = -í ý
-ï ï+ - +

î þ

and A3 = ( )
( ) 2

2 21

1
1 1

11
( ) ( )

s
RC

RCs
RC

s j s j s
RC R C

ww w
=-

ì ü
-ï ï

+ =í ý
æ öï ï ++ - + ç ÷è øî þ

\ I(s) = 
2

2 2

1

2(1 ) ( ) 2(1 ) ( ) 1 1

V RC RC RC
R j RC s j j RC s j

s
RCR C

w
w w w w

w

é ù-ê ú
- +ê ú+ - - + æ ö æ ö+ +ê úç ÷ è øè øê úë û

Taking inverse Laplace transform,

i(t) = 
2

2 2

2(1 ) 2(1 ) 1

t

j t j t RCe e Ve
V C

j RC j RC
RC R

C

w w

w
w w

w

w

-

-é ù
- -ê ú+ - æ öë û +ç ÷è ø

= 
2

2 2

2 1 1 1

t
j t j t RCV e e Ve

j
R R RC R

j C j C C

w w

w
w w

w

-
-é ù

- -ê ú æ ö+ -ê ú +ç ÷è øë û

Let, 
1 jj

R R Ze
j C C

q

w w

-æ ö æ ö
+ = - =ç ÷ ç ÷è ø è ø  and 

1 jj
R R Ze

j C C
q

w w

æ ö æ ö
- = + =ç ÷ ç ÷è ø è ø

so that, 2

2 2

1
Z R

Cw

æ ö= +ç ÷è ø  and 1 1
tan

RC
q

w
- æ ö= ç ÷è ø

Putting these values,

i(t) = 
22

tj t j t
RC

j j

V e e V
e

j Ze Ze CZ

w w

q q
w

--

-

é ù
- -ê ú

ë û

= 
( ) ( )

22

tj t j t

RC
e eV V

e
Z j CZ

w q w q

w

-+ - +é ù-
-ê ú

ê úë û



5.26 Network Theory

or, finally, the current is,

2
( ) sin ( )

t

RCV V
i t t e

Z CZ
w q

w

-

= + -

From this result, it is clear that the current in RC series circuit leads the voltage by an angle,

1 1
tan

RC
q

w
- æ ö= ç ÷è ø . If the resistance R = 0, then q = 90° as is the case for a perfect capacitor.

5.11.3 RLC Series Circuit

1. RLC Series Circuit with Step Input With zero initial conditions, the Kirchhoff�s voltage

law equation becomes,

Ri(t) + 
0

( ) 1
( ) ( )

tdi t
L i t dt Vu t

dt C
+ =ò

or RI(s) + 
1

( ) ( )
V

sLI s I s
Cs s
+ =

or I(s) = 
2 1

V

L
R

s s
L LC

+ +
(5.1)

The roots of the denominator polynomial of equation are,

s2 + 
1R

s
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+  = 0

or s1 = 
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R R

L LCL
- + - and, s2 = 
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L LCL
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Let w0 = 
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LC
and 0 2
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L
xw =  i.e. Damping Ratio
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R C

L
x = =

Then, s1 = 2
0 0 1xw w x- + - and s2 = 2
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So, I(s) = 
1 2 1 2( ) ( )

V
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s s s s s s s s
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1
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V V
VL Ls s

s s s s s s Lw x
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- = =
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and, therefore B = 
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2
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( ) ( ) ( ) 2 1

s s

V V
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s s s s s s Lw x
=

- = = -
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Figure 5.12 RLC series circuit
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Putting these values of A and B, we get,

I(s) = 
2 1 2

0

1 1

2 1

V

s s s sLw x

é ù
-ê ú- -ë û-

Taking inverse Laplace transform,

i(t) = 
2 2
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0 0

[ ] [ ]
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w x w x

- - --
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Depending upon the values of R, L and C, three cases may appear:

(a)
1

2

R

L LC
>  (Overdamped condition)

(b)
1

2

R

L LC
<  (Underdamped condition)

(c)
1

2

R

L LC
=  (Critically Damped condition)

A.Overdamped Condition The condition is, 
1

2

R

L LC
>  or, x > 1 or Q < 

1

2

0
0

1
Since, Quality Factor, and

L
Q

R LC

w
w

æ ö= =ç ÷è ø
Under this condition, the current becomes,

2 2
0 00 0

( 1) ( 1) 2
0

2 2
0 0

( ) [ ] sinh ( 1)
2 1 1

t tt tV V
i t e e e e t

L L

w x w xxw xw
w x

w x w x

- - -- -= - = -

- -

The graphical plot for the current is shown in Figure 5.13.

Figure 5.13 Current response in RLC series circuit for three different damping conditions
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B.Critically Damped Condition The condition is, 
1

2

R

L LC
=  or, x = 1 or Q = 

1

2

From equation (5.1),

2 2 2
0 0 0

1
( )

2 ( )

V
VLI s
Ls s sw w w

æ ö= = ç ÷+ + +è ø

Taking inverse Laplace transform,

0( ) tV
i t te

L
w-=

The graphical plot for the current is shown in Figure 5.13.

C. Underdamped Condition The condition is, 
1

2

R

L LC
<  or, x < 1 or Q > 

1

2

So, the current becomes,

i(t) = 
2 2

0 00
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t ttV
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0 2
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2
0

sin ( 1 )
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e t
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xw
w x

w x

-= -
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So, the circuit is oscillatory. When R = 0, x = 0, the oscillations are undamped or sustained. The

frequency of the undamped oscillation (w0) is known as undamped natural frequency.

2. RLC Series Circuit with Impulse Input With zero initial conditions, the Kirchhoff�s

voltage law equation becomes,

0

( ) 1
( ) ( ) ( )

tdi t
Ri t L i t dt V t

dt C
d+ + =ò

or
1

( ) ( ) ( )RI s sLI s I s V
Cs

+ + =

or I(s) = 
2 1

V
s

L

R
s s

L LC

æ ö
è ø

+ +
(5.2)
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The roots of the denominator polynomial of equation are,

2 1
0

R
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+ + =

or s1 = 
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- + - and, s2 = 
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Putting these values of A and B, we get,

I(s) = 1 2

2 1 2
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s sV

s s s sLw x

é ù
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Taking inverse Laplace transform,

i(t) = 
2 2

0 001 2
( 1) ( 1)

1 2 1 2
2 2

0 0

[ ] [ ]
2 1 2 1

t tts t s tV V
s e s e e s e s e

L L

w x w xxw

w x w x

- - --- = -
- -

= 
2

00
( 1)2

0 0
2

0

[( 1)
2 1

ttV
e e

L

w xxw xw w x
w x

--
- + -

-

2
0( 1)2

0 0( 1) ]te
w xxw w x - -- - - -



5.30 Network Theory

Three cases are considered:

(A)
1

2

R

L LC
>  (Overdamped condition)

(B)
1

2

R

L LC
<  (Underdamped condition)

(C)
1

2

R

L LC
=  (Critically Damped condition)

A. Overdamped Condition Here, x > 1

The current becomes,

i(t) = 
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00
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e e
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-

B. Critically Damped Condition The condition is, x = 1

From equation (5.2),
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So, I(s) = 0

2
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-ê ú+ +ë û

Taking inverse Laplace transform,

i(t) = 0
0[1 ] tV
t e

L
w

w
--
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C. Underdamped Condition The condition is, x < 1

So, the current becomes,

2
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( 1)2
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i t e e
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3. RLC Series Circuit with Sinusoidal Input Sinusoidal voltage v(t) = Vm sin (wt + q) is
applied to a series RLC circuit at time t = 0. We want to find the complete solution for the current i(t)

using Laplace transform method.

v (t ) = Vm sin (w t + q )

By KVL,

( ) 1
( ) ( ) sin ( )

t
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di t
Ri t L i t dt V t

dt C
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Taking Laplace transform with zero initial
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where, s1, s2 are the roots of the quadratic equation:
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R
s s

L LC

æ ö+ + =ç ÷è ø

Figure 5.14 RLC series circuit

with sinusoidal input

v(t)
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Thus, s1 = 
2
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So, by residue method, multiplying by (s � s1) and putting s = s1,
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Similarly, multiplying by (s + jw) and putting s = � jw,
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Hence the current response becomes,

i(t) = 1 2
1 2 3 4[ ] [ ]m s t s t j t j t

tr ss

V V
K e K e K e K e I I

L L
w w-+ + + = +
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The steady-state part of the total current is obtained as follows.
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This gives the steady-state current of the series RLC circuit to a sinusoidal voltage.

5.11.4 RLC Parallel Circuit

1. RLC Parallel Circuit with Step Current Input With zero initial conditions, the Kirchhoff�s

current law equation becomes,

0

( ) ( ) 1
( ) ( )
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(5.3)

The roots of the denominator polynomial of equation are,
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Figure 5.15 RLC parallel circuit
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Then, s1 = 2
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Putting these values of A and B, we get,

V(s) = 
2 1 2

0

1 1

2 1

I

s s s sCw x

é ù
-ê ú- -ë û-

Taking inverse Laplace transform,
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Depending upon the values of R, L and C, three cases may appear:

(a)
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>  (Overdamped condition)

(b)
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Under this condition, the current becomes,
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The graphical plot for the voltage is shown in Figure 5.16.

Figure 5.16 Voltage response in RLC parallel circuit for three different damping conditions
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Taking inverse Laplace transform,

v(t) = 0tI
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The graphical plot for the voltage is shown in Fig. 5.16.

C. Underdamped Condition The condition is, 
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Similarly we can find out the impulse response and sinusoidal response of a parallel RLC circuit

using Laplace transform method as for the series RLC circuit.

5.11.5 Response with Pulse Input Voltage

1. RC Series Circuit If a voltage pulse of width as shown in Fig. 5.17 is applied to an RC series

circuit, then by KVL,

1
( ) ( ) ( )Ri t i t dt v t

C
+ =ò

Taking Laplace transform with zero initial condition,

1
( ) ( )

sTV Ve
RI s I s

Cs s s

-
+ = -

or I(s) = 
1

1/

sT
eV

R s RC

-
-

+
Taking inverse Laplace transform,

i(t) = / ( ) /[ ]t RC t T RCV
e e

R
- - -

-

Hence the voltage across the resistance is given as,

vR(t) = / ( ) /( ) [ ]t RC t T RCRi t V e e- - -= -
and the voltage across the capacitor is given as,

vc(t) = / ( ) /( ) [ ]t RC t T RC
RV v t V e e- - -- = +

To plot the two voltages with varying time, we have the following observations:

(i) At t = 0, all the voltage appears across the resistance R and thus,

vR = V and vC = 0

Figure 5.18 Voltage response of RC series circuit with pulse input

Figure 5.17 Pulse voltage
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(ii) As the time increases, the voltage vC grows and the voltage vR decays exponentially, with time-

constant t = RC.

(iii) At t = T, voltage across the network drops abruptly to zero from V. Again this entire drop is

instantaneously felt across the resistance R.

(iv) For time t > T, total voltage across the circuit is zero. So, at any instant of time t, vR(t) + vc(t) =

0 and both vR and vC asymptotically approach zero.

Case (1) If Time-constant (t = RC) << Pulse-width (T) The voltage across the resistance vR

will consist of two trigger pulses one positive and the other negative, of height V at the points where

the voltage across the network changes abruptly (i.e., t = 0 and T).

In this case, the voltage across capacitor attains the steady state very quickly, i.e. vc = V.

\ C
R

dv dV
v Ri RC RC

dt dt
= = »  or, R

dV
v RC

dt
=

Thus, the voltage vR is the differentiation of the input voltage and hence the circuit acts as a

Differentiator.

Figure 5.19 Voltage response of RC series circuit (RC << T) with pulse input

Case (2) If Time-constant (t = RC) >> Pulse-width (T) In this case, the voltage across the

capacitor varies with time almost linearly and the value is far from the steady state value V; i.e. vR = V.

Figure 5.20 Voltage response of RC series circuit (RC >> T) with pulse input
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C C R RC
= = »ò ò ò  or, 

0

1
t

Cv Vdt
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\ » ò

Thus, the voltage vC is the integration of the input voltage and hence the circuit acts as an Integrator.

2. RL Series Circuit If a similar pulse voltage is applied to an RL series circuit, then the KVL

equation will be,

( ) ( )
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Taking Laplace transform with zero initial condition,
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Taking inverse Laplace transform,
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1 ( ) 1 ( )
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R

- - -é ù
- - - -ê úë û

The variation of the two voltages is shown in figure.

Figure 5.21 Voltage response of RL series circuit with pulse input

Case (1) If Time-constant (t = L/R) << Pulse-width (T) In this case, the voltage across

resistor attains the steady state very quickly, i.e. vR = V.

\ R
L

vdi d d V L dV
v L L L

dt dt R dt R R dt

æ ö æ ö= = = »ç ÷ç ÷ è øè ø
or, L

L dV
v

R dt
=
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Figure 5.22 Voltage response of RL series circuit ( L /R << T ) with pulse input

Thus, the voltage vL is the differentiation of the input voltage and hence the circuit acts as a

Differentiator.

Case (2) If Time-constant (t = L/R) >> Pulse-width (T) In this case, the voltage across the

resistor varies with time almost linearly and the value is far from the steady state value V; i.e. vL = V.

Figure 5.23 Voltage response of RL series circuit ( L /R >> T ) with pulse input

\
0 0

1
t t

R L
R

v Ri R v dt Vdt
L L

= = »ò ò  or, 
0

t

R
R

v Vdt
L

\ » ò

Thus, the voltage vR is the integration of the input voltage and hence the circuit acts as an Integrator.
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5.12 STEPS FOR CIRCUIT ANALYSIS USING LAPLACE TRANSFORM

METHOD

1. All circuit elements are transformed from time-domain to Laplace domain with initial condi-

tions.

2. Excitation function is transformed into Laplace domain.

3. The circuit is solved using different circuit analysis techniques, such as, mesh analysis, node

analysis, etc.

4. Time domain solution is obtained by taking inverse Laplace transform of the solution.

5.13 CONCEPT OF CONVOLUTION THEOREM

5.13.1 Convolution Integral

If h(t) is the impulse response of a linear network, then the response of the same network y(t) subject

to any arbitrary input w(t) is given by the convolution integral as,

( ) ( ) ( ) ( ) ( )y t h w t d w h t dt t t t t t
¥ ¥

-¥ -¥
= - = -ò ò

Thus, if the impulse response of any linear time-invariant system is known, we can obtain the zero-

state response of the system to any other type of input.

5.13.2 Convolution Theorem

If f1(t) and f2(t) are two functions of time which are zero for t < 0, and if their Laplace transforms are

F1(s) and F2(s), respectively, then the convolution theorem states that the Laplace transform of the

convolution of f1(t) and f2(t) is given by the product F1(s) F2(s).

Mathematically, if the convolution of f1(t) and f2(t) is written as,

1 2 1 2 1 2 2 1
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

f t f t f f t d f t f d f t f tt t t t t t* = - = - = *ò ò

where, t is a dummy variable for time t, then the convolution theorem is written as,

1 2 1 2[ ( ) ( )] ( ) ( )L f t f t F s F s* =

Proof By the definition of convolution,

1 2 1 2 1 2
0 0 0

[ ( ) ( )] ( ) ( ) ( ) ( )
t t

stL f t f t L f f t d f t f d e dtt t t t t t
¥

-
é ù é ù

* = - = -ê ú ê ú
ë û ë û
ò ò ò (i)

Also, by the definition of a shifted unit step function, using dummy variable,

( ) 1; for

0; for

u t t

t

t t
t

- = £
= >

\ 1 2 1 2
0 0

( ) ( ) ( ) ( ) ( )
t

f t f d f t u t f dt t t t t t t
¥

- = - -ò ò
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Putting this in (i), we get,

1 2 1 2
0 0

[ ( ) ( )] ( ) ( ) ( ) stL f t f t f t u t f d e dtt t t t
¥ ¥

-
é ù

* = - -ê ú
ë û
ò ò (ii)

Now, let (t � t ) = x \ dt = dx,

t 0 µ
x �t µ

From equation (ii), we get,

1 2[ ( ) ( )]L f t f t* = ( )
1 2

0

( ) ( ) ( ) s xf x u x f d e dxt

t

t t
¥ ¥

- +

-

é ù
ê ú
ë û

ò ò

= 1 2 2
0

( ) ( ) ( ) ( )sx sf x u x f e dx f d e dt

t

t t t t
¥ ¥

- -

-
ò ò

= { }1 2
0 0

( ) ( ) ( ) 0 for 0sx sf x e dx f e d u x xtt t
¥ ¥

- - = <ò ò Q

[ ]1 2 1 2[ ( ) ( )] ( ) ( )L f t f t F s F s\ * =

Thus, the convolution in time domain becomes multiplication in the frequency domain, and vise-

versa.

5.13.3 Application of Convolution Theorem

The convolution theorem is used to find the response of a linear system to any arbitrary excitation if

the impulse response of the system is known.

We know that the transfer function is defined as the ratio of response transform to excitation

transform with zero initial conditions. Thus,

all initial conditions reduced to zero

Laplace transform of Response
Transfer Function

Laplace transform of Excitation
=

or H(s) = 
0

( )

( )
IC

Y s

W s =

Thus, ( ) ( ) ( )Y s H s W s=

Here, W(s) = L[w(t)], is the input Laplace transform and Y(s) = L[y(t)], is the output Laplace

transform.

Now, if the input is an impulse function, then w(t) = d (t) or W(s) = 1

\ Y(s) = H(s)W(s) = H(s)

Taking inverse Laplace transform,

y(t) = h(t)
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Thus, h(t) is the impulse response of the system. If this impulse response of the system is known,

we can find out the response of the system due to any arbitrary input w(t) from the following

relation:

Y(s) = H(s)W(s)

or
0 0

( ) ( ) ( ) ( ) ( ) ( ) ( )
t t

y t h t w t h w t d h t w dt t t t t t= * = - = -ò ò

Example 5.9  Find the convolution integral when 1 2( ) and ( )atf t e f t t-= = .

Solution Here, the convolution integral is given as,

1 2( ) ( )f t f t* = ( )

0 0

t t
a t at ae d e e d

t tt t t t- - -=ò ò

= 
0

1

t
a a

at e e
e d

a a

t tt
t- é ù

- ×ê úë ûò

= 
2

0

t
a a

at e e
e

a a

t tt t- é ù
-ê úë û

= 
2 2

1at at
at te e

e
a a a

- é ù
- +ê ú

ë û

= 
2

1
[ 1 ]atat e

a

-- + Ans.

SOLVED PROBLEMS

5.1 (a) Find the initial value of the function whose Laplace Transform is,

V(s) = 
2 2

( )sin cos

( )

s a b
A

s a b

q q+ +
×

+ +
Check the result by solving it for v(t).

(b) Find the final value of the function whose Laplace Transform is, I(s) = 
6

( 3)

s

s s

+
+

Solution

(a) By initial value theorem,

V(0+) = lim ( )
s

sV s
®¥

= 
2 2

( ) sin cos
lim

( )s

s a b
SA

s a b

q q

®¥

+ +
+ +
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= 2 2

1 sin cos

lim

1
s

a b

s s
A

a b

s s

q q

®¥

æ ö+ +è ø

æ ö æ ö+ +è ø è ø

= A sin q Ans.

In order to check this result, we find v(t) and then put t = 0.

v(t) = 1

2 2

( ) sin cos

( )

s a b
L A

s a b

q q- é ù+ +
ê ú

+ +ë û

= 1

2 2 2 2

( ) sin cos

( ) ( )

s a b
AL

s a b s a b

q q- é ù+
+ê ú

+ + + +ë û

= [sin cos cos sin ]at atA e bt e btq q- -+

= sin ( )atAe bt q- +

At t = 0, 0(0 ) sin (0 ) sinv Ae Aq q+ = + =  [Checked]

(b) By final value theorem,

0 0 0

6 6
( ) lim ( ) lim lim 2

( 3) ( 3)s s s

s s
I sI s s

s s s® ® ®

+ +
¥ = = = =

+ +
Ans.

For checking it, 1 1 36 2 1
( ) 2

( 3) 3
ts

i t L L e
s s s s

- - -+é ù é ù= = - = -ê ú ê ú+ +ë û ë û

At t = µ, ( ) 2 2 [Checked]i e-¥¥ = - =
5.2 (a) Obtain the Laplace Transform of square wave

of unit amplitude and periodic time 2T, as shown.

(b) Find the Laplace Transform of the following

function:

Solution

(a) The equation of the square wave is,

( ) ( ) ( ) ( ) ( 2 ) ( 2 ) ( 3 )f t u t u t T u t T u t T u t T u t T= - - - - + - + - - - -¼

( ) 2 ( ) 2 ( 2 ) 2 ( 3 ) ...u t u t T u t T u t T= - - + - - - +
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Taking Laplace transform,

F(s) = 
2 31 2 2 2Ts Ts Tse e e

s s s s

- - -
- + - +¼

= 2 31
[1 2 (1 )]Ts Ts Ts Tse e e e

s
- - - -- - + - +¼

= 
1 2 1

1 sum of G.P. series
1 1

Ts

Ts Ts

e

s e e

-

- -

é ù ì ü- =ê ú í ý+ -ë û î þ
Q

= 
11

1

Ts

Ts

e

s e

-

-

é ù-
ê ú

+ë û

F(s) = 
1

tanh
2

Ts

s

æ ö
ç ÷è ø Ans.

(b) The equation can be written as,

f (t) = 2r(t) � 4r ( )1
2 ( 1)

2
t r t- + -

Taking Laplace transform,

F (s) = 

1

2
/2 � /2 2

2 2 2 2 2

1 4 2 2 2
2 [1 2 ] [1 2 ]

s s
s s se e

e e e
s s s s s

- -
- -- + = - + = -

5.3 A sinusoidal voltage 25 sin 10t is applied at time t = 0

to a circuit as shown in the figure. Find the current

i(t), by Laplace transform method. R = 5W and L = 1H.

Solution By KVL, 
2

10
( ) ( ) 25

100
RI s sLI s

s
+ =

+

with zero initial condition.

I(s) = 
2

250 250

( 5) ( 10) ( 10)( 5) ( 100) s s j s js s
=

+ + -+ +

= 
31 2250

5 10 10

AA A

s s j s j

é ù
+ +ê ú+ + -ë û

A1 = 
2

5

1 1
( 5)

125( 5) ( 100)
s

s
s s =-

+ =
+ +

where, A2 = 
10

1 1 1
( 10)

( 5) ( 10) ( 10) 20(5 10) 100(2 )
s j

s j
s s j s j j j j=-

+ = - = -
+ + - - +

A3 = 
10

1 1
( 10)

( 5) ( 10) ( 10) 100( 2 )
s j

s j
s s j s j j=

- =
+ + - - +
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Substituting these,

I(s) = 
31 2250

5 10 10

AA A

s s j s j

é ù
+ +ê ú+ + -ë û

Taking inverse Laplace transform,

i(t) = 5 10 10
1 2 3250[ ]t j t j tA e A e A e- -+ +

= 5 10 101 1
2 250

100(2 ) 100( 2 )
t j t j te e e

j j
- -ì ü+ - +í ý+ - +î þ

= 
10 10

5 (2 ) ( 2 )5
2

2 5 5

j t j t
t j e j e

e
-

- ì ü- - -ï ï- -í ý
ï ïî þ

= 5 10 10 10 101
2 {2 2 }

2
t j t j t j t j te e je e je- - -- - + +

or i(t) = 52 2 cos 10 sin 10 ( )te t t A- - +
5.4 The circuit of the figure is initially in the steady state. The switch S is closed at t = 0.

(a) Find Vc(t)

(b) Determine the final value of Vc(t) and verify it from the final value theorem of Laplace Transform.

Solution At steady-state before closing the switch, the ca-

pacitor becomes open-circuited. So, the circuit becomes as

shown above.

2
(0 ) V

3
v + =

For t > 0, by KVL,

1 1 2 1 2( ) 2
V V

RI R I I RI RI
s s

+ - = Þ - = (i)

and 2 2 1 1 2

1 2 1 2
( )

3 3

V V
I R I I RI R I

Cs s Cs s

æ ö+ - = - Þ - + + = -ç ÷è ø (ii)

Solving equations (i) and (ii),

I2 = 
2

2 /
4

2 /3 3
3 22 2 ( 1/ )

( 1/ )

R V s
VR VR

R V s V Css s
s RCsR R R R Cs R

R R Cs

- +- - æ ö= = - ç ÷+è ø- + -
- +
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\ VC (s) = 2

1 2 2 1
2

3 3 (2 ) 3 3 2

V V V V
I

Cs s s RCs s s RCs

é ù´ + = - + = -ê ú+ +ë û

= 
1

2 6 2/

V V

s s RC

æ ö+ ç ÷+è ø
Taking inverse Laplace transform,

vC (s) = 2 / (Volt), 0
2 6

t RCV V
e t-+ > Ans.

Thus, the final value of the voltage,

vC (¥) = lim ( )
2C

t

V
v t

®¥
= Ans.

By final value theorem,

vC (¥) = 
0 0

lim ( ) lim
2 ( 2/ ) 2C

s s

V Vs V
SV s

s RC® ®

æ ö= + =ç ÷+è ø
(Proved)

5.5 In the network shown in the figure, the switch S is closed and a steady state is attained. At t = 0, the

switch is opened. Determine the current through the inductor for t > 0.

Solution When the switch S is closed and the steady-state exists, the current through the inductor

is,

i(0�) = 
5

2.5

V

R
=  = 2 A

The voltage across the capacitor, VC (t) = 0 as it is shorted.

For t > 0, the switch is opened. By KVL,

0

1
0

t
di

L idt
dt C

+ =ò

Taking Laplace transform,

( )
[ ( ) (0 )] 0

I s
L sI s i

Cs
- - + =

or
1

( ) (0 )I s sL Li
Cs

é ù+ = -ê úë û
Putting the values,

2 4
( ) 2

10

s
I s

s
=

+
Taking inverse Laplace transform,

( ) 2cos100 ( ); 0i t t A t= ³ Ans.
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5.6 The circuit shown in the figure is initially in the steady state with

the switch S open. At t = 0, the switch S is closed. Obtain the

current through the inductor for t > 0. Take R1 = R2 = R4 =1W and

R3 = 2W and L = 1H.

Solution When the switch S is open and steady state exists, the

current through the inductor is,

2
3 1 2 3 1 2

1
(0 ) 1A

( ) /
i

R R R R R R
- = =

+ + +

After S is closed, for t > 0, by KVL,

2i1 � i2 � i3 = 1

�i1 + 2i2 + 2di

dt
 � i3 = 0

�i1 � i2 + 4i3 = 0

Taking Laplace transform,

2I1(s) � I2(s) � I3(s) = 
1

s

�I1(s) + I2(s)[s + 2] � I3(s) = i2(0�) = 1

�I1(s) � I2(s) + 4I3(s) = 0

By Cramer�s Rule,

I2(s) = 

2 1/ 1

1 1 1
5 1

1 0 4 6 6
62 1 1
71 ( 2) 1

1 1 4

s

s
s

s

-
- -
-

= +
- - +

- + -
- -

Taking inverse Laplace transform,

i2(t) = 6 /75 1
( ); 0

6 6
te A t-+ > Ans.

5.7 A series R-L-C circuit with R = 3W, L = 1H and C = 0.5 F is excited with a unit step voltage. Obtain

an expression for the current, using Laplace transform. Assume that the circuit is relaxed initially.

Solution By KVL,

(0 )1 1
( ) ( ) (0 ) ( )

Q
RI s sLI s Li I s

sC sC s

-
+ - - + + =

Since the circuit is initially relaxed,

\ (0 ) 0 and (0 ) 0i Q- = - =

Putting the values,

2 1
( ) 3I s s

s s

é ù+ + =ê úë û
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or I(s) = 1 2

2

1 1

( 1) ( 2) 1 23 2

A A

s s s ss s
= = +

+ + + ++ +

where, 1 2

1 2

1 1
1 and 1

2 1
s s

A A
s s=- =-

= = = = -
+ +

\ 1 1
( )

1 2
I s

s s
= -

+ +

Taking inverse Laplace transform,

i(t) = e�t + e�2t (A)

= 3 /22 sinh (A)
2

t t
e

æ ö
ç ÷è ø Ans.

5.8 The switch S in the figure is opened at t = 0. Determine the voltage v(t), for t > 0. What is the nature

of the response?

(a)

(b)

Solution

(a) By KVL,

0

( ) 1
(0 )

t
v t dv

i vdt C I
R L dt

+ - + + =ò

Taking Laplace transform,

1 1
( )

I
V s sC

R sL s

é ù+ + =ê úë û
Putting the values,

2 2
( ) 2

2

s
V s

s s

é ù+ + =ê úë û

or
2 2

4 4
( )

4 4 ( 2)
V s

s s s
= =

+ + +
Taking inverse Laplace transform,

2( ) 4 ( ), 0tv t te V t-= > Ans.

The response is critically damped (Q x = 1) Ans.
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(b) Proceeding in the same way as Prob. 5.8(a),

2 22

( 3 /2)1 2
( )

1 31 3

2 2

V s
s s

s

= = ´
+ + æ öæ ö+ + ç ÷è ø è ø

Þ /22 3
( ) sin (V); 0

23

tv t e t t- æ ö
= >ç ÷è ø

Ans.

The response is under-damped (Q x < 1) Ans.

5.9 In the R-C series circuit of figure, the capacitor has an initial

charge of 2.5 mC. At t = 0, the switch is closed and a constant

voltage source of V = 100 V is applied. Use the Laplace trans-

form method to find the current i(t) in the circuit.

Solution By KVL, after the switch is closed,

0

1
( ) (0 ) ( )

t

Ri t Q i t dt V
C

é ù
+ - + =ê ú

ë û
ò

Taking Laplace transform,

3

6 6

2.5 10( ) 100
10 ( )

50 10 50 10

I s
I s

ss s

-

- -

´
+ - =

´ ´

or
3

15
( )

2 10
I s

s
=

+ ´

Taking inverse Laplace transform,

32 10( ) 15 (A); 0ti t e t- ´= > Ans.

5.10 In the R-L circuit as shown, the switch is in position-1 long enough

to establish steady state condition and at t = 0 it is switched to

position-2. Find the resulting current, i(t).

Solution When the switch is in position 1, steady-state exists

and the initial current through the inductor is,

50
(0 ) 2 A

25
i - = =

After the switch is moved to position 2, the KVL gives, in Laplace

transform,

100
25 ( ) 0.01 ( ) 0.01 2I s sI s

s
+ - ´ =

or
4

1 210 2 2
( )

( 2500) 2500 2500 2500

A A
I s

s s s s s s
= - = + -

+ + + +

where,

4 4

1 2

0 2500

10 10
4 and 4

( 2500)
s s

A A
s s

= =-

= = = = -
+
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\ 4 4 2 4 6
( )

2500 2500 2500
I s

s s s s s
= - - = -

+ + +

Taking inverse Laplace transform,

2500( ) 4 6 (A); 0ti t e t-= - > Ans.

5.11 In the series R-L-C circuit as shown, there is no initial charge on the capacitor. If the switch is closed

at t = 0, determine the resulting current at i(t).

Solution By KVL, for t > 0,

0

1
[ (0 ) 0]

t
di

Ri L idt V i
dt C

+ + = - =ò Q

Taking Laplace transform,

( )
( ) ( )

I s V
RI s sLI s

Cs s
+ + =

Putting the values,

( ) 50
2 ( ) ( ) 2

I s
I s sI s

s s
+ + =

or
2 2

50 50 50
( )

( 1 ) ( 1 )2 ( 1) 1
I s

s j s js s s s
= = =

+ + + -+ + + +
By Partial Fraction Expansion,

25 25
( )

1 1

j j
I s

s j s j
= -

+ + + -

Taking inverse Laplace transform,

( 1 ) ( 1 )( ) 25 [ ] 50 sin (A); 0j t j t ti t j e e e t t- - - + -= - = > Ans.

5.12 In the two-mesh network shown in the figure, there is no initial charge on the capacitor. Find the

loop currents i1(t) and i2(t) which result when the switch is closed at t = 0.

Solution Writing two mesh equations,

1 1 2

0

1
10 ( ) ( ) 10 ( ) 50

0.2

t

i t i t dt i t
-

+ + =ò

and 50i2(t) + 10i1(t) = 50
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Taking Laplace transform,

1
1 2 1 2

( ) 50 5 50
10 ( ) 10 ( ) ( ) 10 10 ( )

0.2

I s
I s I s I s I s

s s s s

é ù+ + = Þ + + =ê úë û

and 1 2

50
10 ( ) 50 ( )I s I s

s
+ =

Solving, 1 2

5 1 1
( ) and ( )

0.625 0.625
I s I s

s s s
= = -

+ +
Taking inverse Laplace transform,

0.625 0.625
1 2( ) 5 (A) and ( ) 1 (A), 0t ti t e i t e t- -= = - >

5.13 Find using Final value theorem, the steady state value of I2(t) in the circuit shown in figure below.

Switch S is closed at t = 0. The inductor is initially de-energized.

Solution Circuit for t > 0 is,

By KVL, in Laplace transform,

1 3

24
( )[2 2 0.5 ] [2 0.5 ] ( )I s s s I s

s
+ + - + =

or 1 3

48
( )[ 8] [ 4] ( )I s s s I s

s
+ - + = (i)

and 1 3( )[2 0.5 ] [4 0.5 ] ( ) 0I s s s I s- + + + =

or 1 3( )[ 4] [ 8] ( ) 0I s s s I s- + + + = (ii)

Solving equations (i) and (ii),

1

48/ ( 4)

0 8 6( 8)
( )

( 8)8 ( 4)

( 4) 8

s s

s s
I s

s ss s

s s

- +
+ +

= =
++ - +

- + +

and

3

8 48/

( 4) 0 6( 4)
( )

( 6)8 ( 4)

( 4) 8

s s

s s
I s

s ss s

s s

+
- + +

= =
++ - +

- + +
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\ 2 1 3

6( 8) 6( 4) 24
( ) ( ) ( )

( 6) ( 6) ( 6)

s s
I s I s I s

s s s s s s

+ +
= - = - =

+ + +

\ 2 2
0 0

24
Final value of the current, ( ) lim ( ) lim 4 A

6s s
i sI s

s® ®
¥ = = =

+
Ans.

5.14 In a series LC circuit, the supply voltage being v = Vm cos (t), find i(t) with zero initial conditions.

Assume L = 1H, C = 1F.

Solution By KVL, for t > 0,

2

1
( )

1

msV
I s sL

Cs s

é ù+ =ê úë û +

or I(s) = 
2 2

2 2
2 ( ) ( ) ( ) ( )1 ( 1)

( 1)

m
m m

sV s s
V V

s j s j s j s js
s s

s

é ù é ù
= =ê ú ê ú+ - + -æ ö + ë ûë û+ +è ø

= 
2

2 2( ) ( )
m

s
V

s j s j

é ù
ê ú

+ -ë û

= 
* *

1 1 2 2

2 2 ( ) ( )( ) ( )
m

K K K K
V

s j s js j s j

é ù
+ + +ê ú- +- +ë û

2
1

1
( ) ( )

4s jK I s s j == ´ - =

where,
2 2

2
2 4

( ) 2 2( )1
( ) ( )

(2 1)! 4( )s j

s j s s s j jd
K s j I s

ds s j=

+ - ´ +
= - = = -

- +

\ K1
*

= *
2

1
; and

4 4

j
K =

Thus I(s) = 
2 2

1 1

4 ( ) ( )( ) ( )

mV j j

s j s js j s j

é ù
+ - +ê ú- +- +ë û

Taking inverse Laplace transform,

i(t) = �[ ] [ cos sin ] (A); 0
4 4
m mjt jt jt jtV V

te te je je t t t t-+ - + = + > Ans.

5.15 The series RC circuit of figure has a sinusoidal voltage source,

v = 180 sin (2000t + f) (V) and an initial charge on the capacitor

Q0 = 1.25 mC with polarity as shown. Determine the current if

the switch is closed at a time corresponding to f = 90o. What is

the current at time t = 0?

Solution By KVL, for t > 0,

3

6
0

1
40 ( ) 1.25 10 ( ) 180 cos 2000

25 10

t

i t i t dt t-
-

é ù
+ ´ + =ê ú

´ ë û
ò
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Taking Laplace transform,

3 4

6 2 6

1.25 10 4 10 180
40 ( ) ( )

25 10 4 10

s
I s I s

ss s

-

-

´ ´
+ + =

´ + ´

Þ
2

2 6 3 3

4.5 1.25
( )

( 4 10 ) ( 10 ) 10

s
I s

s s s
= -

+ ´ + +

Applying Heaviside expansion formula to find the first term on the right hand side, we have,

P (s) = 4.5s2,

Q (s) = s
3
 ´ 10

3
 s
2
 + 4 ´ 10

6 
s + 4 ´ 10

9
,

Q ¢ (s) = 3s2 + 2 ´ 103 s + 4 ´ 106,

a1 = 3 3 3
2 312 10 ; 2 10 and 10j a j a- ´ = ´ = -

Then, i(t) = 
3 3 3 3

3 3 3
2 10 2 10 10 10

3 3 3

( 2 10 ) ( 2 10 ) ( 10 )
1.25

( 2 10 ) ( 2 10 ) ( 10 )

j t j t t tP j P j P
e e e e

Q j Q j Q

- ´ ´ - -- ´ ´ -
+ + -

¢ - ´ ¢ ´ ¢ -

= 
3 3 32 10 2 10 10(1.8 0.9) (1.8 0.9) 0.35j t j t tj e j e e- ´ ´ -- + + -

= 
3101.8 sin 2000 3.6 cos 2000 0.35 tt t e-- + -

= 
3104.02 sin (2000 116.6 ) 0.35 (A); 0tt e t-+ ° - >

5.16 In the RL circuit of Figure, the source is 100 sin (500 )v t f= + .

Determine the resulting current if the switch is closed at a time

corresponding to f = 0.

Solution By KVL,

( ) ( ) (0 ) ( )RI s sLI s Li V s+ - - =

or
2 4

100 500
5 ( ) 0.01 ( ) [ (0 )] 0

25 10
I s sI s i

s

´
+ = - =

+ ´
Q

or
6

2 4

5 10
( )

( 25 10 ) ( 500)
I s

s s

´
=

+ ´ +

By Partial Fraction Expansion,

I(s) = 
1 1 10

5 5
500 500 500

j j

s j s j s

- + - -æ ö æ ö+ +ç ÷ ç ÷+ - +è ø è ø

Taking inverse Laplace transform,

i(t) = 50010 sin 500 10 cos 500 10 tt t e-- +

= 50014.14 sin (500 45 ) 10 (A); 0tt e t-- ° + >
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5.17 Determine the Laplace transform of the following periodic waveform.

Solution Let, for the first half sine wave, the transform is F1(s).

Now, f1(t) = sin tu(t) + sin(t � p) u(t � p)
Taking Laplace transform,

F1(s) = 
2 2 2

11

1 1 1

ss ee

s s s

pp -- +
+ =

+ + +

By the theory of periodicity of Laplace transform, the Laplace transform of the full periodic wave-

form will be,

F(s) = 1 2

11 1
( ) [ for the waveform given]

1 1 1

s

Ts s

e
F s T

e s e

p

p
p

-

- -

+
´ = ´ =

- + -
Q

= 
2

1 1

1 1

s

s

e

e s

p

p

-

-

æ ö+
ç ÷- +è ø

= 
2

1
coth

21

s

s

pæ ö
ç ÷è ø+

Ans.

5.18 Determine the Laplace transform of the sawtooth waveform as shown below.

Solution For the first cycle,

f1(t) = 
1 1
( ) ( ) ( )r t u t T r t T

T T
- - - -

Taking Laplace transform,

F1(s) = 
2 2 2

1 1 1 1 1 1
[1 (1 ) ]Ts Ts Tse e Ts e

T s Ts s Ts

- - -- - = - +

By Scalling Theorem (the theory of periodicity), Laplace transform of the given periodic function is,

F(s) = 1 2

1 1 1
( ) [1 (1 ) ]

1 1

Ts

Ts Ts
F s Ts e

e Ts e

-
- -

´ = - + ´
- -

= 
2

1

(1 )

Ts

Ts

e

Ts s e

-

--
-

Ans.
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5.19 Find the Laplace transform of the waveform shown in figure.

Solution Here, ( )1

2 4 2
( ) ( ) ( )

2

a
v t r t r t r t a

a a a
= - - + -

Taking Laplace transform,

V1(s) = 
/ 2

2 2 2

2 1 4 2as ase e

a a as s s

- -
- +

= / 2

2

2
(1 2 )as ase e

as

- -- +

= / 2 2

2

2
(1 )ase

as

--

By Scalling Theorem (the theory of periodicity), Laplace transform of the given periodic function is,

V(s) = / 2 2
1 2

1 2 1
( ) (1 )

1 1

as

Ts as
V s e

e as e

-
- -´ = - ´

- -

= 
/ 2

2 /2

12

1

as

as

e

as e

-

-

æ ö-
ç ÷+è ø

= 
2

2
tanh

4

as

as

æ ö
ç ÷è ø Ans.

5.20 The unit step response of a network is given by (1 � e�bt) . Determine the unit impulse response h(t)

of this network.

Solution Here, the input is, 
1

( ) ( ) ( )w t u t W s
s

= Þ =

and the output is 
1 1

( ) (1 ) ( )
( )

bt b
y t e Y s

s s b s s b
-= - Þ = - =

+ +
By convolution theorem,

( ) ( ) ( )Y s H s W s=

Þ 1
( )

( )

b
H s

s s b s
=

+

Þ ( )
( )

b
H s

s b
=

+
Taking inverse Laplace transform, the impulse response is,

( ) bth t be-= Ans.
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5.21 The unit impulse response of current of a circuit having R =1 ohm and C = 1 F in series is given by

[ ( ) exp( ) ( )]t t u td - - . Find the current expression when the circuit is driven by the voltage given as,

[1 exp( 2 )] ( )t u t- - .

Solution Here, the impulse response is, 
1

( ) [ ( ) exp( ) ( )] ( ) 1
1 1

s
h t t t u t H s

s s
d= - - Þ = - =

+ +
.

The input is, 
1 1 2

( ) [1 exp( 2 )] ( ) ( )
2 ( 2)

w t t u t W s
s s s s

= - - Þ = - =
+ +

By convolution theorem, the output is given by,

2 2 2 2
( ) ( ) ( )

1 ( 2) ( 1) ( 2) 1 2

s
Y s H s W s

s s s s s s s
= = ´ = = -

+ + + + + +

Taking inverse Laplace transform,

2( ) (2 2 )t ty t e e- -= - Ans.

5.22 The response of a network to an impulse is 0.32 2.1( ) 0.18( )t th t e e- -= - . Find the response of the

network to a step function using convolution theorem.

Solution By convolution theorem,

Y(s) = 
1 1 1

( ) ( ) 0.18
0.32 2.1

H s W s
s s s

é ù= - ´ê ú+ +ë û

= 
0.32

( 0.32) ( 2.1)s s s+ +

= 31 2

0.32 2.1

AA A

s s s
+ +

+ +

\ A1 = 
0

0.32
0.477

( 0.32) ( 2.1)
s

s s =

=
+ +

\ A2 = 
0.32

0.32
0.562

( 2.1)
s

s s =-
= -

+

\ A3 = 
2.1

0.32
0.0856

( 0.32)
s

s s =-
=

+

Putting these values,

Y(s) = 
0.477 0.562 0.0856

0.32 2.1s s s
- +

+ +
Taking inverse Laplace transform,

y(t) = 0.32 2.10.477 0.562 0.0856t te e- -- + Ans.
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MULTIPLE-CHOICE QUESTIONS

5.1 The condition for over-damped response of an RLC series circuit is

(a)
2

2

1

4

R

LCL
= (b)

2

2

1

4

R

LCL
> (c)

2

2

1

4

R

LCL
< (d)

2

2

1

4

R

LCL
£

5.2 Transient current in an RLC circuit is oscillatory when

(a) 2
L

R
C

= (b) 2
L

R
C

> (c) 2
L

R
C

< (d) R = 0.

5.3 Laplace transform analysis gives

(a) time domain response only (b) frequency domain response only

(c) both (a) and (b) (d) None of these.

5.4 A function f(t) is shifted by a then it is correctly represented as

(a) f (t � a)u(t) (b) f (t)u(t � a) (c) f (t � a)u(t � a) (d) f (t � a)(t � a)

5.5 Laplace transform of a delayed unit impulse function ds(t) = d (t � 1) is

(a) unity. (b) zero. (c) e�s. (d) s.

5.6 The condition for under damped response of an RLC series circuit is

(a)
2

2

1

4

R

LCL
= (b)

2

2

1

4

R

LCL
> (c)

2

2

1

4

R

LCL
< (d)

2

2

1

4

R

LCL
£

5.7 The value of the impulse function d (t) at t = 0 is

(a) 0 (b) µ (c) 1 (d) indeterminate

5.8 The value of the ramp function at t = + ¥ is

(a) infinity (b) unity (c) zero (d) indeterminate

5.9 The value of the ramp function at t = �¥ is

(a) 0 (b) ¥ (c) �¥ (d) 1

5.10 The value of the impulse function d (t) for t > 0 is

(a) zero (b) unity

(c) k, where k is a constant (d) infinity.

5.11 The free response of RL and RC series networks having a time constant t is of the form

(a)
t

A Be t
-

+ (b)

t

Ae t
-

(c)
t t

Ae Bet t
- -

+ (d) ( )
t

A Bt e t
-

+
5.12 In the complex frequency s = s + jw, w has the units of rad/s and s has the units of

(a) Hz (b) neper/s (c) rad/s (d) rad

5.13 Time constant of a series RC circuit is

(a) C/R (b) R/C (c) RC (d) 1/RC

5.14 Time constant of a series RL circuit is

(a) L/R (b) R/L (c) LR (d) 1/LR

5.15 A coil with a certain number of turns has a specified time constant. If the number of turns is doubled,

its time constant would

(a) remain unaffected (b) become doubled (c) become four-fold (d) get halved.

5.16 An RLC series circuit has R = 1W, L = 1 H and C = 1F. Damping ratio of the circuit will be

(a) more than unity (b) unity  (c) 0.5 (d) zero
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5.17 A step function voltage is applied to an RLC series circuit having R = 2W, L = 1H and C = 1F. The

transient current response of the circuit would be

(a) over-damped

(b) critically damped

(c) under damped

(d) over, under or critically damped depending upon magnitude of the step voltage.

5.18 For an RC circuit comprising a capacitor C = 2 mF in series with a resistance R = 1 MW period 6

seconds will be equal to

(a) one time constant (b) two time constants

(c) three time constants (d) four time constants

5.19 A series RL circuit with R = 100 ohm; L = 50H, is supplied to a d.c. source of 100V. The time taken

for the current to rise 70% of its steady state value is

(a) 0.3s (b) 0.6s

(c) 2.4s (d) 70% of time required to reach steady state.

5.20 If f(t) and its first derivative are Laplace transformable then the initial value of f(t) is given by

(a)
0 0

Lt ( ) Lt ( )
t s

f t sF s
® ®

= (b)
0

( )
Lt ( ) Lt
t s

F s
f t

s® ®¥
=

(c)
0 0

( )
Lt ( ) Lt
t s

F s
f t

s® ®
= (d)

0
Lt ( ) Lt ( )
t s

f t sF s
® ®¥

=

5.21 If f(t) and its first derivative are Laplace transformable then the final value of f(t) is given by

(a)
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

= (b)
( )

Lt ( ) Lt
t s

F s
f t

s®¥ ®¥
=

(c)
0

( )
Lt ( ) Lt
t s

F s
f t

s®¥ ®
= (d) Lt ( ) Lim ( )

st
f t sF s

®¥®¥
=

5.22 At t = 0
+
 with zero initial condition which of the following will act as short circuit?

(a) Inductor (b) Capacitor (c) Resistor (d) None of these

5.23 At t = 0
+
 with zero initial condition which of the following will act as open circuit?

(a) Inductor (b) Capacitor (c) Resistor (d) None of these

5.24 A capacitor at time t = 0
+
 with zero initial charge acts as a

(a) short circuit (b) open circuit (c) current source (d) voltage source.

5.25 A series RC circuit is suddenly connected to a dc voltage of V volt. The current in the series circuit

just after the switch is closed is equal to

(a) zero (b)
V

RC
 (c)

VC

R
(d)

V

R

5.26 A series LC circuit is suddenly connected to a dc voltage of V volt. The current in the series circuit

just after the switch is closed is equal to

(a)
V

L
(b)

V

C
 (c) zero (d)

V

LC

5.27 The steady state current in the RC series circuit, on the application of step voltage of magnitude E

will be

(a) zero (b)
E

R
(c) /t CRE

e
R

- (d) tE
e

RC
-
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5.28 A 10 W resistor, a 1H inductor and 1F capacitor are connected in parallel. The combination is driven

by a unit step current. Under steady state conditions, the source current flows through

(a) resistor (b) inductor (c) capacitor only (d) All of three elements.

5.29 When a unit impulse voltage is applied to an inductor of 1H, the energy supplied by the source is

(a) ¥ (b) 1 Joule (c)
1

2
 Joule (d) 0.

5.30 Which of the following conditions are necessary for validity of Initial Value Theorem:

0
Lim ( ) Lim ( )
s t

sF s f t
®¥ ®

= ?

(a) f (t) and its derivative f ¢(t)must have Laplace transform.
(b) If the Laplace transform of f (t) is F(s), then Lim sF(s) must exist.

(c) Only f (t) must have Laplace transform.

(d) (a) and (b) both.

5.31 Inverse Laplace transform of 
1

s a-
 is

(a) sin at (b) cos at  (c) eat (d) e�at

5.32 The impulse response of an RL circuit is a

(a) rising exponential function. (b) decaying exponential function.

(c) step function. (d) parabolic function.

5.33. Laplace transform of the output response of a linear system is the system transfer function when the

input is

(a) a step signal. (b) a ramp signal. (c) an impulse signal. (d) a sinusoidal signal.

5.34 An initially relaxed RC series network with R = 2MW and C = 1mF is switched on to a 10V step

input. The voltage across the capacitor after 2 seconds will be

(a) zero (b) 3.68 V (c) 6.32 V (d) 10 V

5.35 For V(s) = 
( 2)

( 1)

s

s s

+
+

, the initial and final values of v(t) will be respectively

(a) 1 and 1 (b) 2 and 2 (c) 2 and 1 (d) 1 and 2.

5.36 The Laplace transform of the function i(t) is: I(s) 
2

10 4

( 1) ( 4 5)

s

s s s s

+
+ + +

. Its final value will be

(a) 4/5 (b) 5/4  (c) 4  (d) 5

5.37 An initially relaxed 100 mH inductor is switched �ON� at t = 1 second to an ideal 2A dc current

source. The voltage across the inductor would be

(a) zero (b) 0.2d (t) V (c) 0.2d (t � 1) V (d) 0.2tu (t � 1) V

5.38 If the unit step response of a network is (1 � e�a t), then its unit impulse response will be

(a)
te aa -

(b) /1 te a

a
- (c) /1 te a

a
- (d) (1 � a) e�at

5.39 The response of an initially relaxed system to a unit ramp excitation is (1 + e�t). Its step response

will be

(a) 21

2
tt e-- (b) 1 � e�t  (c) �e�t (d) t.
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5.40 A series circuit containing R, L and C is excited by a step voltage input. The voltage across the

capacitance exhibits oscillations. Damping coefficient (ratio) of this circuit is given by

(a)
2

R

LC
x = (b)

R

LC
x = (c)

2 /

R

C L
x = (d)

2 /

R

L C
x =

5.41 Consider the following statements:

A unit impulse d (t) is mathematically defined as

1. d (t) = 0, t ¹ 0 2. ( )
0

1t dtd
¥

+
=ò 3. ( ) 1t dtd

¥

-¥
=ò

Of these statements

(a) 1, 2 and 3 are correct. (b) 1 and 2 are correct.

(c) 2 and 3 are correct. (d) 1 and 3 are correct.

5.42. With symbols having their usual meanings, the Laplace transform of u(t � a) is

(a)
1

s
(b)

1

s a-
(c)

ase

s

-
(d)

ase

s

5.43 Two coils having equal resistances but different inductances are connected in series. The time

constant of the series combination is the

(a) sum of the time constants of the individual coils.

(b) average of the time constants of the individual coils.

(c) geometric mean of the time constants of the individual coils.

(d) product of the time constants of the individual coils.

5.44 If the step response of an initially relaxed circuit is known then the ramp response can be obtained by

(a) integrating the step response. (b) differentiating the step response.

(c) integrating the step response twice. (d) differentiating the step response twice.

5.45 If a capacitor is energized by a symmetrical square wave current source, then the steady state voltage

across the capacitor will be a

(a) square wave (b) triangular wave (c) step function (d) impulse function.

5.46 A square wave is fed to an RC circuit, then

(a) voltage across R is square and across C is not square.

(b) voltage across C is not square and across R is not square.

(c) voltage across both R and C is square.

(d) voltage across both R and C is not square.

5.47 A step voltage is applied to an under-damped series RLC circuit with variable R. Which of the

following statements correctly describe the behaviour of the circuit?

1. If R is increased, the steady state voltage across C will be reduced

2. If R is increased, the frequency of transient oscillation across C will be reduced.

3. If R is reduced, the transient oscillation will die down faster.

4. If R is reduced to zero, the peak amplitude of the voltage across C will be double the input step

voltage.

Select the correct answer using the codes given below.

Codes: (a) 1 and 2 (b) 2 and 3 (c) 2 and 4 (d) 1, 3 and 4.

5.48 The number of turns of a coil having a time constant T is doubled. Then the new time constant will

be

(i ) T (b) 2T (c) 4T (d) T/2
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5.49 The response of a network is of the form kest,where s = s + jw, then s is known as

(a) radian frequency (b) neper frequency

(c) complex frequency (d) None of these.

5.50 In Laplace transform the variable �s� equals (s + jw). Which of the following represent the true

nature of s ?

1. s has a damping effect.

2. s is responsible for convergence of integral 
0

( ) stf t e dt
¥

-ò .

3. s has a value less than zero.

Select the correct answer using the coeds given below.

Codes: (a) 1, 2 and 3 (b) 1 and 2 (c) 2 and 3 (d) 1 and 3.

5.51 Laplace transform of tne�at is

(a)
1( )n

n

s a +-
(b)

1

!

( )n
n

s a ++
 (c)

!

( )n
n

s a-
(d)

1

!

( )n
n

s a +-

5.52
2 2( )

s

s w+
 is the Laplace transform of

(a) sin w t (b) cos w t (c) cosh w t (d) sinh w t
5.53 Consider the following statements regarding an RC differentiating network.

1. For an applied rectangular pulse, the output is spiky in nature for RC << pulse duration.

2. The output is a ramp for rectangular input pulse.

3. The output has zero average for all inputs.

Of these statements:

(a) 1, 2 and 3 are correct. (b) 1 and 2 are correct.

(c) 2 and 3 are correct (d) 1 and 3 are correct.

5.54 The Laplace transform method enables one to find the response in

(a) the transient state only.

(b) the steady state only.

(c) both transient and steady states.

(d) the transient state provided sinusoidal forcing functions do not exist.

5.55 The convolution of a function f (t) with the unit impulse function d (t) is
(a) d (t) (b) f (t)d (t) (c) f (t) (d) f (t )d (t)

5.56 The d.c. gain of a system represented by the transfer function 
25

( 2)( 3)s s+ +
 is

(a) 25 (b) 25/6 (c) 5 (d) 10

5.57 Consider the following statements

The impulse response of a linear network can be used to determine the

1. step response. 2. response of the sinusoidal input.

3. elements of the network uniquely. 4. interconnection of network elements.

5. Which of these statements are correct?

(a) 1 and 2 (b) 2 and 3 (c) 3 and 4 (d) 1 and 4.

5.58 Double integration of a unit step function would lead to

(a) an impulse (b) a parabola (c) a ramp (d) zero.
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5.59 Which of the following integrals represents the convolution of two functions f1(t) and f2(t)?

(a) 1 2

0

( ) ( )
t

f t f t dt t-ò (b) 1 2

0

( ) ( )
t

f t f dt t t-ò

(c) 1 2

0

( ) ( )
t

f t f t dtt-ò (d) 1 2

0

( ) ( )
t

f t f dtt t-ò

5.60 If 
( 1)1

( )
( )

s
F s

s s k

+
=

+
 and f(t) as t ®¥ is 

1

2
, then the value of k is

(a)
1

2
(b) 1 (c) 2 (d) ¥

5.61 The transient response of the initially relaxed network shown in the figure is

(a) /( ) t RCV
i t e

R
-= (b) ( ) /t RCV

i t e
R

=

(c) /( ) (1 )t RCV
i t e

R
-= - (d) /( ) (1 )t RCV

i t e
R

-= +

5.62 A first order linear system is initially relaxed. For a unit step signal u(t), the response is

3
1( ) (1 )tv t e-= -  for t > 0. If a signal 3u(t) + d (t) is applied to the same initially relaxed system, the

response will be

(a) 3(3 6 ) ( )te u t-- (b) 3(3 3 ) ( )te u t-- (c) 3 ( )u t (d) 3(3 3 ) ( )te u t-+
5.63 A unit impulse input to a linear network has a response R(t) and a unit step input to the same

network has response S(t). The response R(t)

(a) equals 
( )dS t

dt
(b) equals the integral of S(t)

(c) is the reciprocal of S(t) (d) has no relation with S(t)

5.64 The response of an initially relaxed linear circuit to a signal VS is 
2 ( )te u t-

. If the signal is changed

to 2 S
S

dV
V

dt

æ ö
+ç ÷è ø

, the response would be

(a) �4e�2t u(t) (b) �3e�2t u(t) (c) 4e�2t u(t) (d) 5e�2t u(t)
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5.65 The impulse response of a circuit is given by 
1

( ) ( )
R
t

Lh t e u t
L

-
= . Its step response is given as

(a) 1 ( )
R
t

Le u t
-æ ö

-ç ÷è ø
(b)

1
1 ( )

R
t

Le u t
R

-æ ö
-ç ÷è ø

(c) 1 ( )
R
t

LL
e u t

R

-æ ö
-ç ÷è ø

(d) None of these.

5.66 The time constant of the network shown in the figure is

(a) CR (b) 2CR

(c)
4

CR
(d)

2

CR

5.67 Non-linear system cannot be analyzed by Laplace trans-

form because

(a) it has no zero initial conditions.

(b) superposition law cannot be applied.

(c) non-linearity is generally not well defined.

(d) All of the above.

5.68 In the circuit shown in figure, the response i(t) is

(a) exp
V t

R RC

æ ö-ç ÷è ø (b) ( )
V

t
R
d

(c)
1

( ) exp
V t

t
R RC RC

d
é ùæ ö- -ç ÷ê úè øë û

(d) ( ) exp
V t

t
R RC

d
é ùæ ö- -ç ÷ê úè øë û

5.69 A voltage 2( ) 6 tv t e-=  is applied at t = 0 to a series RL circuit with L = 1H. If 2 3( ) 6[ ]t ti t e e- -= - ,

then R will have a value of

(a)
2

3
 W (b) 1 W (c) 3 W (d)

1

3
W

5.70 The Laplace transform of the signal described in figure is

(a) e
�as/s

(b) e
�bs
/s
2

(c) (e
�as

 + e
�bs
)/s (d) (e

�as
 � e

�bs
)/s
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5.71 If a pulse voltage v(t) of 4V magnitude and 2 second duration is ap-

plied to a pure inductor of 1H, with zero initial current, the current (in

A) drawn at t = 3 second, will be

(a) zero (b) 2

(c) 4 (d) 8.

5.72 At certain current, the energy stored in an iron-cored coil is 1000J and

its copper loss is 2000W. The time constant (in second) of the coil is

(a) 0.25 (b) 0.5

(c) 1.0 (d) 2.0.

5.73 Consider the voltage waveform shown in the given figure.

The equation for v(t) is

(a) ( 1) ( 2) ( 3)u t u t u t- + - + - (b) ( 1) 2 ( 2) 3 ( 3)u t u t u t- + - + -

(c) ( ) ( 1) ( 2) ( 4)u t u t u t u t+ - + - + - (d) ( 1) ( 2) ( 3) 3 ( 4)u t u t u t u t- + - + - - -

5.74 For the circuit given in the figure V0 = 2 V and inductor is initially relaxed. The switch S is closed at

t = 0. The value of v at t = 0+ is

(a) 3 V (b) 2 V (c) 0.5 V (d) 0.25 V

5.75 In the circuit shown in the given figure, S is open for a long time and steady state is reached. S is

closed at t = 0. The current I at t = 0+ is

(a) 4A (b) 3A (c) 2A (d) 2A
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5.76 The circuit shown in the given figure is in steady state with switch S open. The switch is closed at t

= 0. The values of VC (0+) and VC (¥) will be respectively

(a) 2 V, 0 V (b) 0 V, 2 V (c) 2 V, 2 V (d) 0 V, 0 V

5.77 In the circuit shown, the switch is opened at t = 0. Prior to that switch was closed, i(t) at t = 0+ is

(a)
2

3
 A (b)

3

2
 A (c)

1

3
 A (d) 1 A.

5.78 Given the Laplace transform 
0

[ ( )] ( )stv t e v t dt
¥

-= òL , the inverse transform v(t) is

(a) ( )
j

st

j

e V s ds
s

s

+ ¥

- ¥
ò (b)

1
( )

2

j
st

j

e V s ds
j

s

s
p

+ ¥

- ¥
ò

(c)
0

1
( )

2
ste V s ds

jp

¥

ò (d)
1

( )
2

j
st

j

e V s ds
j

s

s
p

+ ¥
-

- ¥
ò

5.79 In the circuit shown in the given figure, switch S is closed at t = 0. After some time when the current

in the inductor was 6A, the rate of change of current through it was 4 A/s. The value of the inductor

is

(a) indeterminate (b) 1.5 H (c) 1.0 H (d) 0.5 H
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5.80 A circuit consisting of a 1W resistor and a 2F capacitor in series is excited from a voltage source

with the voltage expressed as 3e�t, as shown in the given figure. If the i(0�) and vc(0�) are both zero,

then the values of i(0+) and i(¥) will be respectively

(a) 3 A and 1.5 A (b) 1.5 A and zero (c) 3 A and zero (d) 1.5 A and 3 A

5.81 The time constant associated with the capacitor charging in the circuit shown in the given figure is

(a) 6 ms (b) 10 ms (c) 15 ms (d) 25 ms
5.82 In the network shown in the figure, the switch S is closed and a steady state is attained. If the switch

is opened at t = 0, then the current i(t) through the inductor will be

(a) cos 50t A (b) 2 A (c) 2 cos100t A (d) 2 sin 50t A

5.83 In the network shown, the switch is opened at t = 0. Prior to that, the network was in the steady state.

Vs(t) at t = 0+ is

(a) 0 (b) 5 V (c) 10 V (d) 15 V.
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5.84 The steady state in the circuit, shown in the given figure is reached with S open. S is closed at t = 0.

The current I at t = 0+ is

(a) 1 A (b) 2 A (c) 3 A (d) 4 A

5.85 For the circuit shown in the given figure, the current through L and the voltage across C2 are

respectively

(a) zero and RI (b) I and zero (c) Zero and zero (d) I and RI

5.86 In the circuit shown in the given figure, the switch is closed at t = 0. The current through the

capacitor will decrease exponentially with a time constant

(a) 0.5 s (b) 1 s (c) 2 s (d) 10 s

5.87 The Laplace transformation of f (t) is F(s). Given 
2 2

( )F s
s

w

w
=

+
, the final value of f (t) is

(a) infinity (b) zero (c) one (d) None of the above

5.88 The v�i characteristics as seen from the terminal-pair (A, B) of the network of Figure (a) is shown in

Figure (b). If an inductance of value 6 mH is connected across the terminal-pair (A, B), the time

constant of the system will be

(a) 3 ms (b) 12 s

(c) 32 s (d) unknown, unless the actual network is specified.
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5.89 In the circuit shown in figure, it is desired to have a constant direct

current i(t) through the ideal inductor L. The nature of the voltage source

v(t) must be

(a) constant voltage (b) linearly increasing voltage

(c) an ideal impulse (d) exponentially increasing voltage.

5.90 The value of the integral 5 ( 5)te t dtd
¥

-¥
-ò  is

(a) 1 (b) (e5 � 1) (c) e25 (d) zero.

5.91 An inductor at t = 0+ with initial current I0 acts as

(a) voltage source (b) current source (c) open-circuit (d) short-circuit

5.92 A capacitor at t = 0+ with initial charge Q0 acts as

(a) voltage source (b) current source (c) open-circuit (d) short-circuit

5.93 Consider the following statements

1. Current through an inductor cannot change abruptly.

2. Voltage across the capacitor cannot change abruptly.

3. Initial value of a function f(t) is 
0

Lim ( )
s

sF s
®

4. Final value of a function f(t) is Lim ( )
s

sF s
®¥

Of these statements

(a) 3 and 4 are correct (b) 1 and 4 are correct

(c) 1 and 2 are correct (d) 2 and 3 are correct.

5.94 An inductor with inductance L and initial current I0 is shown as

The correct admittance diagram for it is

(a) (b)

(c) (d)
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5.95 An inductor with inductance L and initial current I0 is shown as

The correct impedance diagram for it is

(a) (b)

(c) (d)

5.96 A capacitor with capacitance C and initial voltage vc(t) is shown here

The correct admittance diagram for this circuit is

(a) (b)

(c) (d)

5.97
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Laplace transform of f (t) shown in the given figure is

(a)
1 2 3

( ) s sF s e e
s s s

- -= - + (b) 2 31 2 3 2
( ) s s sF s e e e

s s s s
- - -= - + -

(c) 2 31 2 2
( )

s
s se

F s e e
s s s s

-
- -= - + - (d)

1 2 3
( ) s sF s e e

s s s
- -= + -

5.98 The time constant of the circuit shown in the given figure is

(a) R C (b) R C (c) R C (d) R C

5.99 Consider the following functions for the rectangular voltage pulse shown in the given figure

(a) ( ) ( ) ( )v t u t a u t b= - - - (b) ( ) ( ) ( )v t u b t u a t= - - -

(c) ( ) ( ). ( )v t u b t u t a= - - (d) ( ) ( ). ( )v t u a t u t b= - -

EXERCISES

5.1 (a) Find the initial values of the functions

(i) ( ) cos ( )atf t e tu tw-= (ii)
2

2( 1)
( )

2 5

s
F s

s s

+
=

+ +
[(i) 1, (ii) 2]

(b) Find the final value of the functions

(i)
2

7
( )

( 3)
F s

s s
=

+
(ii)

1
( )

( 1)( 2)

s
F s

s s

-
=

+ +
7

(i) , (ii) 0
9

é ù
ê úë û
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5.2 Obtain the Laplace Transform of the following functions

(i) (ii)

2 2
(i) ( ) (1 ) (ii) (1 )Ts Ts Ts TsA A
F s e se e Ts

Ts Ts

- - - -é ù= - - - -ê úë û
5.3 In the network shown, the switch is closed and a steady state is reached in the network. At time t = 0,

the switch is opened. Find an expression for the current through the inductor i2(t).

[10 cos100t (A)]

5.4 Find for the circuit shown, the current through C using Laplace transform. The switch is closed at

t = 0 and the initial charge in the capacitor, i.e., at t = 0 is zero.

[10 sin100t (A)]

5.5 The circuit of figure was initially in the steady state with the switch S in position a. At t = 0, the

switch goes from a to b. Find an expression for the voltage v0(t) for t > 0. Take the initial current in

the inductor L2 to be zero.

3

2
0

1
v ( ) (V)

2

t
t e

-é ù
=ê úë û
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5.6 In the circuit of given figure, the applied voltage is v(t)= 10 sin (10t + p/6), R = 1 W, C = 1 F. Using

Laplace Transformation, find complete solution for current i(t). Switch K is closed at time t = 0.

Assume zero charge across the capacitor before switching.

5 100
( ) (1 10 3 ) cos(10 54 8 )(A)

101 101

ti t e t-é ù¢= - + - °ê úë û

5.7 A series RLC circuit, with R = 5 W, L = 0.1 H and C = 500 µF, has a sinusoidal voltage source,

v = 1000 sin 250t. Find the resulting current if the switch is closed at t = 0.

[i(t) = e�25t (5.42 cos 139t + 1.89 sin 139t) + 5.65 sin (250t � 73.6°)(A)]]

5.8 The two-mesh network shown in figure contains a sinusoidal voltage source, v = 100 sin (200t + f)

(V). The switch is closed at an instant when the voltage is increasing at its maximum rate. Find the

resulting mesh currents, with directions as shown in figure.

[i1(t) = 3.01e � 100t + 8.96 sin (200t � 63.4°)

i2(t) = 1.505e�100t + 4.48 sin (200t � 63.4°)]

5.9 Find i2(t) for t > 0; assume all the initial conditions to be zero.

30 10
2

10 5
( ) 5 , for 0

3 3
t ti t e e t- -é ù

= + - >ê úë û
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5.10 In the network shown,

(a) determine Va(t), using Laplace transform method if k1 = �3.

(b) determine i2(t), using Laplace transform method if k1 = 3

 [(a) va(t) = 4 � e�0.75t (1.5 cos 0.25t � 0.5 sin 0.25t)

(b) i2(t) = �5 + 16.3375e
�0.707t

 � 1.3375e
�0.707t

  (A)]

5.11 The network shown in figure, has reached steady state when the switch S moves from a to b.

(i) Determine initial values for iL(t) and Vc(t) with switch in position b.

(ii) Determine Vc(t) for t > 0. Sketch Vc(t) as a function of time.

(iii) Determine damping ratio, undamped and damped natural frequencies.

é
êë
(i) 5 A, 5 V; (ii) 15 � 10e

�t/2 3
cos

2
t

æ ö
ç ÷è ø

/220 3
sin

23

te t- æ ö- ç ÷è ø
ù
úû

5.12 Show that the Laplace transform of the square wave is,

F(s) = 
1

(1 )ass e-+

5.13 Verify that the convolution between two functions 1 2( ) 2 ( ) and ( ) exp( 3 ) ( )f t u t f t t u t= = -  is

2
[1 exp( 3 )]; 0

3
t t- - >  where u(t) is the unit step function.
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5.14 Find the response of the network shown in figure when the input voltage is: (a) unit impulse, and

(b) vi(t) = e�2t.

[(a) e
� t
; (b) (e

�t
 � e

�2t
)]

SHORT-ANSWER TYPE QUESTIONS

5.1 (a) What do you understand by Complex Frequency? Give its physical significance.

(b) Define Laplace transform of a function f (t). What are the advantages of Laplace transform?

or

Explain clearly the advantages of Laplace transform method over classical method of solving differ-

ential equation with constant co-efficient describing electrical network.

(c) State and deduce initial-value and final value theorems.

(d) Write notes on: Application of Laplace transform to network analysis.

5.2 Define unit-step, unit ramp and unit impulse functions and derive their Laplace transform from first

principles.

5.3 (a) Find the current i(t) if unit step voltage is applied to an RL circuit.

or

Derive an expression for the current response in an R�L series circuit excited with constant

voltage source.

(b) Define the term �time-constant� of a circuit. What is the physical significance of time-constant

of a circuit? Find its value for R�L series circuit.

5.4 (a) Derive an expression for the decay current in an RC circuit excited by a unit step voltage. What

is the time-constant of the circuit?

Also, determine the nature of the voltage response across the capacitor.

(b) Under what conditions an RC series circuit will act as (i) a Differentiator? (ii) an Integrator?

5.5 (a) Explain the terms critical resistance, damping ratio and frequency as applied to the study of

RLC series circuit. How they help in simplifying the analysis of the circuit?

(b) Derive an expression for the current i(t) flowing through an RLC series circuit. Explain with

suitable sketches the variation of current with time under three conditions:

(I) Under damped,

(II) Critically damped,

(III) Over damped.

5.6 What do you understand by the impulse response of a network? Briefly explain its importance in

network analysis.

5.7 What do you understand by transient and steady state parts of response? How can they be identified

in a general solution?

or

Discuss the natural and steady state response of an electrical circuit with illustrative examples.
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or

Write notes on: (a) Transient and steady state response (b) Free and forced response.

5.8 State and prove Convolution Theorem. What is the necessity of convolution theorem in circuit

analysis?

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

5.1 (b) 5.2 (c) 5.3 (a) 5.4 (c) 5.5 (c) 5.6 (c) 5.7 (c)

5.8 (a) 5.9 (a) 5.10 (a) 5.11 (a) 5.12 (b) 5.13 (c) 5.14 (a)

5.15 (b) 5.16 (c) 5.17 (b) 5.18 (c) 5.19 (b) 5.20 (d) 5.21 (a)

5.22 (b) 5.23 (a) 5.24 (a) 5.25 (d) 5.26 (c) 5.27 (a) 5.28 (b)

5.29 (c) 5.30 (d) 5.31 (c) 5.32 (b) 5.33 (c) 5.34 (c) 5.35 (d)

5.36 (a) 5.37 (a) 5.38 (a) 5.39 (c) 5.40 (d) 5.41 (d) 5.42 (d)

5.43 (b) 5.44 (a) 5.45 (b) 5.46 (d) 5.47 (c) 5.48 (b) 5.49 (b)

5.50 (b) 5.51 (b) 5.52 (b) 5.53 (d) 5.54 (c) 5.55 (c) 5.56 (b)

5.57 (a) 5.58 (b) 5.59 (b) 5.60 (c) 5.61 (a) 562 (c) 5.63 (a)

5.64 (b) 5.65 (b) 5.66 (a) 5.67 (a) 5.68 (c) 5.69 (c) 5.70 (d)

5.71 (d) 5.72 (b) 5.73 (d) 5.74 (b) 5.75 (a) 5.76 (b) 5.77 (d)

5.78 (b) 5.79 (d) 5.80 (c) 5.81 (a) 5.82 (c) 5.83 (b) 5.84 (b)

5.85 (d) 5.86 (b) 5.87 (d) 5.88 (a) 5.89 (c) 5.90 (c) 5.91 (b)

5.92 (a) 5.93 (c) 5.94 (a) 5.95 (c) 5.96 (a) 5.97 (b) 5.98 (c)

5.99 (a)



CHAPTER

6
Two-port Network

6.1 INTRODUCTION

It is convenient to develop special methods for the systematic treatment of networks. In the case of a

single port linear active network, we obtained the Thevenin�s equivalent circuit and the Norton�s

equivalent circuit. When a linear passive network is considered, it is convenient to study its behaviour

relative to a pair of designated nodes.

To represent the general nature of a network, it is normally represented by a rectangular box. If a

conductor is fastened to a node in the network and brought for access, the end of the conductor is

called a terminal. The minimum number of terminals that is useful are two.

A Port is a pair of nodes across which a device can be connected. The voltage is measured across

the pair of nodes and the current going into one node is the same as the current coming out of the

other node in the pair. These pairs are entry (or exit) points of the network.

So, a network with two input terminals and two output terminals is called a four-terminal network or

a two-port network.

Figure 6.1 Block diagram of a two-port network

6.2 RELATIONSHIPS OF TWO-PORT VARIABLES

In order to describe the relationships among the port voltages and currents of an n-port network, �n�

number of linear equations is required. However, the choice of two independent and two dependent

variables is dependent on the particular application.
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For n-port network, the number of voltage and current variables is 2n. The number of ways in

which these 2n variables can be arranged in two groups of n each is 
2

2 2

( )

n n

n n n

! !=
! ´ ! !

. So, there will be

2

2

( )

n

n

!

!
 types of port parameters.

For a two-port network (n = 2), there are six types of parameters as mentioned below:�

1. Open-Circuit Impedance Parameters (z-parameters),

2. Short-Circuit Admittance Parameters (y-parameters),

3. Transmission or Chain Parameters (T- parameters or ABCD � parameters),

4. Inverse Transmission Parameters (T ¢-parameters),

5. Hybrid Parameters (h-parameters), and

6. Inverse Hybrid Parameters (g-parameters).

Note: Inverse parameters (T ¢ & g) are not included in WBUT syllabus.

6.2.1 Open-Circuit Impedance Parameters (z-parameters)

The impedance parameters represent the relation between the voltages and the currents in the two-port

network.

The impedance parameter matrix may be written as,

1 11 12 1

2 21 22 2

V z z I

V z z I

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
In this matrix equation, it is easily seen without even expanding the individual equations, that

z11 = 

2

1

1 0I

V

I
=

 = Driving Point Impedance at Port-1.

z12 = 

1

1

2 0I

V

I
=

 = Transfer Impedance

z21 = 

2

2

1 0I

V

I
=

 = Transfer Impedance

z22 = 

1

2

2 0I

V

I
=

 = Driving Point Impedance at Port-2

It can be seen that the z-parameters correspond to the driving point and transfer impedances at each

port with the other port having zero current (i.e. open circuit). Thus these parameters are also referred

to as the open circuit parameters.

6.2.2 Short-Circuit Admittance Parameters (y-parameters)

The admittance parameters represent the relation between the currents and the voltages in the two-

port network.
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The admittance parameter matrix may be written as

1 11 12 1

2 21 22 2

I y y V

I y y V

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
The parameters y11, y12, y21, y22 can be defined in a similar manner, with either V1 or V2 on short

circuit.

y11 = 

2

1

1 0V

I

V
=

 = Driving Point Admittance at Port-1

y12 = 

1

1

2 0V

I

V
=

 = Transfer Admittance

y21 = 

2

2

1 0V

I

V
=

 = Transfer Admittance

y22 = 

1

2

2 0V

I

V
=

 = Driving Point Admittance at Port-2

It can be seen that the y-parameters correspond to the driving point and transfer admittances at each

port with the other port having zero voltage (i.e., short circuit). Thus these parameters are also

referred to as the short circuit parameters.

6.2.3 Transmission Line Parameters (ABCD-parameters)

The ABCD parameters represent the relation between the input quantities and the output quantities in

the two-port network. They are thus voltage-current pairs.

However, as the quantities are defined as an input-output relation, the output current is marked as

going out rather than as coming into the port.

Figure 6.2 Two-port current and voltage variables for calculation of transmission line parameters

The transmission parameter matrix may be written as

1 2

1 2

V VA B

I IC D

é ù é ùé ù
=ê ú ê úê ú -ë ûë û ë û

The parameters A, B, C, D can be defined in a similar manner with either port 2 on short circuit or

port 2 on open circuit.

A = 

2

1

2 0I

V

V
=

 = Open Circuit Reverse Voltage Gain
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B = 

2

1

2 0V

V

I
=

-  = Short Circuit Transfer Impedance

C = 

2

1

2 0I

I

V
=

 = Open Circuit Transfer Admittance

D = 

2

1

2 0V

I

I
=

-  = Short Circuit Reverse Current Gain

These parameters are known as transmission parameters as in a transmission line, the currents enter at

one end and leaves at the other end, and we need to know a relation between the sending end

quantities and the receiving end quantities.

6.2.4 Hybrid Parameters (h-parameters)

The hybrid parameters represent a mixed or hybrid relation between the voltages and the currents in

the two-port network.

The hybrid parameter matrix may be written as

1 11 12 1

2 21 22 2

V h h I

I h h V

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
The h-parameters can be defined in a similar manner and are commonly used in some electronic

circuit analysis.

h11 = 

2

1

1 0V

V

I
=

 = Short Circuit Impedance at Port-1

h12 = 

1

1

2 0I

V

V
=

 = Open Circuit Reverse Voltage Gain

h21 = 

2

2

1 0V

I

I
=

 = Short Circuit Current Gain

h22 = 

1

2

2 0I

I

V
=

 = Open Circuit Output Admittance

As the h-parameters are dimensionally mixed, they are also named mixed parameters. Transistor

circuit models are generally represented by these parameters as the input impedance (h11) and the

short-circuit current gain (h21) can be easily measured by making the output short-circuited.

6.3 CONDITIONS FOR RECIPROCITY AND SYMMETRY

A network is said to be reciprocal if the ratio of the response transform to the excitation transform is

invariant to an interchange of the positions of the excitation and response of the network.
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A two-port network will be reciprocal if the interchange of an ideal voltage source at one port with

an ideal current source at the other port does not alter the ammeter reading.

A two-port network is said to be symmetrical if the input and output ports can be interchanged

without altering the port voltages and currents.

1. Conditions in terms of z-parameters Condition for Reciprocity We short circuit port

2 � 2¢ and apply a voltage source Vs at port 1 � 1¢.
Therefore, V1 = Vs, V2 = 0, I2 = � I2¢
Writing the equations of z-parameters,

Vs = 11 1 12 2z I z I ¢-

0 = 21 1 22 2z I z I ¢-

Solving these two equations for I2¢,

21
2

11 22 12 21
s

z
I V

z z z z
¢ =

-
(6.1)

Now, interchanging the positions of response and

excitations, i.e., shorting port 1 � 1¢ and applying Vs

at port 2 � 2¢; V1 = 0, V2 = Vs, I1 = I1¢
Writing the equations of z-parameters,

0 = 11 1 12 2z I z I¢- +

Vs = 21 1 22 2z I z I¢- +
Solving these two equations for I1¢,

12
1

11 22 12 21
s

z
I V

z z z z
¢=

-
(6.2)

For the two-port network to be reciprocal, from Eq. (6.1) and Eq. (6.2), we have the condition as,

12 21
z = z

Condition for symmetry

Applying a voltage Vs at port 1 � 1¢ with port 2 � 2¢ open, we have the equation,

2

11 1 12 11 1 11
1 0

0 s
s

I

V
V z I z z I z

I
=

= - × = Þ = (6.3)

Now, applying a voltage Vs at port 2 � 2¢ with port 1 � 1¢ open, we have the equation,

1

21 22 2 22 2 22
2 0

0 s
s

I

V
V z z I z I z

I
=

= × + = Þ = (6.4)

For the network to be symmetrical, the voltages and currents should be same. From Eq. (6.3) and Eq.

(6.4), we have the condition for symmetry as,

11 22z = z

Fig. 6.3(a) Reciprocal network

Fig. 6.3(b) Reciprocal network
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2. Conditions in terms of y-parameters Condition for Reciprocity

From Fig. 6.3(a), writing the y-parameter equations,

1 11 2
21

2 21

s

ss

I y V I
y

VI y V

= ¢
Þ - =

¢- =
(6.5)

From Fig. 6.3(b), writing the y-parameter equations,

1 12 1
12

2 22

s

ss

I y V I
y

VI y V

¢- = ¢
Þ - =

=
(6.6)

From the principle of reciprocity, the condition for reciprocity is,

12 21y = y

Condition for symmetry

As already stated, a two-port network is said to be symmetric if the ports can be interchanged without

changing the port voltages and currents and thus the condition of symmetry becomes,

11 22y = y

3. Conditions in terms of ABCD-parameters Condition for Reciprocity

From Fig. 6.3(a), writing the ABCD-parameter equations,

2 2 2

1 2 2

0 ( ) 1

0 ( )

s

s

V A B I BI I

V BI C D I DI

¢ ¢= × - - = ¢
Þ =

¢ ¢= × - - =
(6.7)

From Fig. 6.3(b), writing the ABCD-parameter equations,

2 1

1 2

0 s

ss

AV BI I AD BC

V BI CV DI

= - ¢ -
Þ =

¢- = -
(6.8)

From the principle of reciprocity, the condition for reciprocity is, 
( )1 AD BC

B B

-
=

� )(AD BC = 1

Condition for symmetry

From Eq. (6.7), 1 2
sV

I DI D
B

¢= = (6.9)

From Eq. (6.8), 1
2

1s
s s s

I CV AD BC A
I V CV V

D D B B

¢ ì ü+ -æ ö= = + =í ýè øî þ
(6.10)

From Eq. (6.9) and Eq. (6.10), we have the condition for symmetry as,

A = D
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4. Conditions in terms of h-parameters Condition for Reciprocity

From Fig. 6.3(a), writing the h-parameter equations,

11 1 12 11 1 2 21

112 21 1 22 21 1

0

0

s

s

V h I h h I I h

V hI h I h h I

= + × = ¢
Þ = -

¢- = + × =
(6.11)

From Fig. 6.3(b), writing the h-parameter equations,

11 1 12 1 12

112 21 1 22

0 s

ss

h I h V I h

V hI h I h V

¢= - + ¢
Þ =

¢= - +
(6.12 )

From the principle of reciprocity, the condition for reciprocity is,

�
12 21

h = h

From Eq. (6.11), 1
11

sV
I

h
= (6.13)

From Eq. (6.12), 12 11 22 12 21
2 21 22

11 11
s s s

h h h h h
I h V h V V

h h

-æ ö= - + =ç ÷è ø
(6.14)

From Eq. (6.13) and Eq. (6.14), we have the condition for symmetry as,

11 22 12 21( ) 1h h h h- =

6.4 INTERRELATIONSHIPS BETWEEN TWO-PORT PARAMETERS

Each type of two-port parameter has its own utility and is suited for certain specific applications.

However, it is sometime necessary to convert one set of parameters to another. It is possible through

simple mathematical manipulations to convert one set to any of the remaining sets. It is discussed

below.

1. z-parameters in Terms of Other Parameters
(a) in terms of y-parameters

The z-parameter equations are,

V1 = 11 1 12 2z I z I+ (6.15)

V2 = 21 1 22 2z I z I+
The y-parameter equations are,

I1 = 11 1 12 2y V y V+ (6.16)

I2 = 21 1 22 2y V y V+

From Eq. (6.16), 2 21
2 1

22 22

I y
V V

y y
= - ; substituting this in first equation,

I1 = 2 21
11 1 12 1

22 22

I y
y V y V

y y

æ ö+ -ç ÷è ø
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or  
22 12

1 1 2

y y
V I I

y y
= -
D D (6.17)

where, Dy = (y11y22 � y12y21)

Substituting this value in second equation of Eq. 6.16

I2 = 
22 12

21 1 2 22 2

y y
y I I y V

y y

æ ö- +ç ÷D Dè ø

or,V2= 
21 11

1 2

y y
I I

y y
- +
D D (6.18)

Comparing Eqs (6.15), (6.17) and (6.18), we get,

22 12 21 11
11 12 21 22; ; ;

Ä Ä Ä Ä

y y y y
z z z z

y y y y
= = - = - =

(b) in terms of transmission parameters

The Transmission parameter equations are,

1 2 2

1 2 2

V AV BI

I CV DI

= -
= -

(6.19)

From second equation of Eq. (6.19),

V2 = 1 2

1 D
I I

C C

æ ö æ ö+ç ÷ ç ÷è ø è ø  (6.20)

From first equation of Eq. (6.19),

V1 = ( ) ( )1 2 2

1 D
A I I BI

C C

é ù+ -ê úë û

= 1 2

AD BCA
I I

C C

-æ öæ ö +ç ÷ ç ÷è ø è ø
(6.21)

Comparing Eq. (6.20) and (6.21) with Eq. (6.15), we get,

11 12 21 22

Ä 1
; ; ;

AD BCA T D
z z z z

C C C C C

-
= = = = =

(c) in terms of hybrid parameters

The hybrid parameter equations are,

1 11 1 12 2V h I h V= +

2 21 1 22 2I h I h V= +
(6.22)

From second equation, V2 = 21
1 2

22 22

1h
I I

h h

æ ö æ ö- +ç ÷ ç ÷è ø è ø
(6.23)

From first equation, 21 11 22 12 21 12
1 11 1 12 1 2 1 2

22 22 22 22

1h h h h h h
V h I h I I I I

h h h h

é ù -æ ö æ ö æ ö æ ö= + - + = +ê úç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è øë û
(6.24)
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Comparing Eqs (6.23) and (6.24) with Eq. (6.15), we get,

11 22 12 21 12 21
11 12 21 22

22 22 22 22 22

Ä 1
; ; ;

h h h h h hh
z z z z

h h h h h

-
= = = = - =

Similarly, the inter-relation of the other parameter in terms of the remaining parameters is obtained by

writing the remaining parameter equations in the same format as those of the other parameter; and

comparing the co-efficients of the two sets of equations, a relation is obtained.

A summary of the relationships between impedance z-parameters, admittance y-parameters, hybrid

h-parameters, and transmission ABCD-parameters is shown in Table where Dz = (z11z22 � z12z21), Dh =

(h11h22 � h12h21), DT = (AD � BC), DT¢ = (A¢D¢ � B¢C¢), and Dg = (g11g22 � g12g21).

Table 6.1 Interrelationships between Two-Port Parameters

[z] [y] [ABCD] [A¢ B¢ C¢D¢] [h] [g]

[z]
11 12

21 22

z z

z z

22 12

21 11

y y

y y

y y

y y

-
D D

-

D D

1

A T

C C

D

C C

D 1D

C C

T A

C C

¢

¢ ¢

D ¢ ¢

¢ ¢

12

22 22

21

22 22

1

hh

h h

h

h h

D

-

12

11 11

21

11 11

1 g

g g

g g

h g

-

D

[y]

22 12

21 11

z z

z z

z z

z z

-
D D

-
D D

11 12

21 22

y y

y y 1

D T

B B

A

B B

D
-

-

1A

B B

T D

B B

¢
-

¢ ¢

D ¢ ¢
-

¢ ¢

12

11 11

21

11 11

1 h

h h

h h

h h

-

D

12

22 22

21

22 22

1

gg

g g

g

g g

D

-

[ABCD]

11

21 21

22

21 21

1

z z

z z

z

z z

D 22

21 21

11

21 21

1y

y y

yy

y y

- -

D
- -

A B

C D

D B

T T

C A

T T

¢ ¢

D ¢ D ¢

¢ ¢

D ¢ D ¢

11

21 21

22

21 21

1

hh

h h

h

h h

D
- -

- -

22

21 21

11

21 21

1 g

g g

g g

g g

-

D

[A¢B¢C¢D¢]

22

12 12

11

12 12

1

z z

z z

z

z z

D 11

12 12

22

12 12

1y

y y

yy

y y

- -

D
- -

D B

T T

C A

T T

D D

D D

A B

C D

¢ ¢

¢ ¢

11

22 12

22

12 12

1 h

h h

h h

h h

D

22

12 12

11

12 12

1

gg

g g

g

g g

D
- -

- -

[h]

12

22 22

21

22 22

1

zz

z z

z

z z

D

-

12

11 11

21

11 11

1 y

y y

y y

y y

-

D 1

B T

D D

C

D D

D

-

1B

A A

T D

A B

¢

¢ ¢

D ¢ ¢
-

¢ ¢

11 12

21 22

h h

h h

22 12

211 11

g g

g g

g g

g g

-
D D

-
D D

[g]

12

11 11

21

11 11

1 z

z z

z z

z z

-

D

12

22 22

21

22 22

1

yy

y y

y

y y

D

- -
1

C T

A A

B

A A

D
-

1C

D D

T B

D D

¢
-

¢ ¢

D ¢ ¢

¢ ¢

22 12

21 11

h h

h h

h h

h h

-
D D

-
D D

11 12

21 22

g g

g g
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6.5 INTERCONNECTION OF TWO-PORT NETWORKS

In certain applications, it becomes necessary to connect the two-port networks together.

The common connections are (a) series, (b) parallel and (c) cascade.

(a) Series connection of two-port networks

As in the case of elements, a series connection is defined when the currents in the series elements are

equal and the voltages add up to give the resultant voltage.

In the case of two-port networks, this property must be applied individually to each of the ports. Thus,

if we consider 2 networks r and s connected in series

At port 1,

Ir1 = Is1 = I1, and Vr1 + Vs1 = V1

Similarly, at port 2,

Ir2 = Is2 = I2 and Vr2 + Vs2 = V2

The two networks, r and s can be connected in the following manner to be in series with each other.

Figure 6.4 Series connection of two-port networks

Under these conditions,

1 1 1 11 11 1 12 12 2( ) ( ) ( )r s r s r sV V V z z I z z I= + = + + +

2 2 2 21 21 1 22 22 2( ) ( ) ( )r s r s r sV V V z z I z z I= + = + + +

It is seen that, the resultant impedance parameter matrix for the series combination is the addition

of the two individual impedance matrices.

[Z] = [Zr] + [Zs]

Note: In the interconnection of series networks, there is a strong requirement of isolation, since the

ground node of upper network form the non-ground node of the lower network. For the port proper-

ties to be valid, the voltages Va and Vb must be identically zero for the two networks r and s to be

connected in series. If Va and Vb are not zero, then by connecting the two ports there will be a

circulating current and port property of the individual networks r and s will be violated.

(b) Parallel connection of two-port networks

As in the case of elements, a parallel connection is defined when the voltages in the parallel elements

are equal and the currents add up to give the resultant current.
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In the case of two-port networks, this property must be applied individually to each of the ports.

Thus, if we consider 2 networks r and s connected in parallel,

At port 1,

Ir1 + Is1 = I1, and Vr1 = Vs1 = V1

Similarly, at port 2,

Ir2 + Is2 = I2 and Vr1 = Vs1 = V1

The two networks, r and s can be connected in fol-

lowing manner to be in parallel with each other.

Under these conditions,

1 1 1 11 11 1 12 12 2( ) ( ) ( )r s r s r sI I I y y V y y V= + = + + +

2 2 2 21 21 1 22 22 2( ) ( ) ( )r s r s r sI I I y y V y y V= + = + + +

It is seen that, the resultant admittance parameter

matrix for the parallel combination is the addition of

the two individual admittance matrices.

[Y] = [Yr] + [Ys]

Figure 6.6(a) Vb = 0 Figure 6.6(b) Va = 0

Note: As in series connection, parallel connection is also possible under the condition that Va = Vb

= 0; otherwise they cannot be connected in parallel as that will violate the port properties.

(c) Cascade connection of two-port networks

A cascade connection is defined when the output of one network becomes the input to the next

network.

Figure 6.7 Cascade connection of two-port network

It can be easily seen that Ir2 = Is1 and Vr2 = Vs1.

Therefore it can easily be seen that the ABCD parameters are the most suitable to be used for this

connection.

1 21 2

1 21 2

,
s s s sr r r r

s s s sr r r r

V A B VV A B V

I C D II C D I

é ù é ù é ùé ù é ù é ù
= =ê ú ê ú ê úê ú ê ú ê ú

ë û ë û ë û ë û ë û ë û

Figure 6.5 Parallel connection of two-port

networks
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Thus it is seen that the overall ABCD matrix is the product of the two individual ABCD matrices.

This is a very useful property in practice, especially when analyzing transmission lines.
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6.6 NETWORK FUNCTIONS

As already discussed in this chapter, any electrical network may be

represented in the form of a black-box showing a two port network

structure as shown in Fig. 6.1. The passive elements of this net-

work transform a given excitation function at the input port into

another response function at the output port. Thus, the two port

network may also be viewed as a control block shown in Fig. 6.8

having a gain of G(s), which modifies any excitation function R(s)

into a response function C(s). In mathematical form this may be

expressed as;

C(s) = G(s).R(s) (6.25)

or G(s) = 
C s

R s

( )

( )
(6.26)

Network functions are used to describe networks which have two ports at the least. These func-

tions may be broadly classified as (i) driving point functions and (ii) transfer functions in view of

the two port network structure. In general, if a function relates the transform of a quantity at one port

to the transform of another quantity at the same port it may be regarded as a driving point function.

On the contrary, if a function relates the transform of a quantity at one port to the transform of

another quantity at the other port it may be regarded as a transfer function. In view of Eqn. (6.26),

it may be possible to express the transformed network function as the ratio of transformed response

function to the transformed excitation function. According to the degree of complexity of the passive

elements in the network, the general form of the network function F(s) may be expressed as the ratio

of two transform polynomials as shown in Eqn. (6.27).

F(s) = 
F s

D s

( )

( )
 = 

a s a s a s a s a s a

b s b s b s b s b s b

n
n

n
n

n
n

m
m

m
m

m
m

+ + + + + +

+ + + + + +

-
-

-
-

-
-

-
-

1
1

2
2

2
2

1 0

1
1

2
2

2
2

1 0

... ... ... ...

... ... ... ...
(6.27)

G s( )

C s( )R s( )

Input
excitation

Output
response

Network function

Figure 6.8 A control block

representing a network function
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Where,

a0, a1, ... ..., an represent the coefficients of the numerator polynomial N(s),

b0, b1, ... ..., bm represent the coefficients of the denominator polynomial D(s),

n represents the highest order or degree of the numerator polynomial N(s),

m represents the highest order or degree of the denominator polynomial D(s).

A careful observation of Eqn. (6.27) would reveal the following characteristics in favour of the

network function, F(s).

(1) Where, m and n are integers, the network function F(s) is a rational function of s.

(2) If the network contains only passive elements and no controlled sources, the coefficients of

numerator and denominator polynomials must be positive real numbers.

(3) As the numerator polynomial is of order n, the expression N(s) = 0 should have n roots

(z1, z2, ... ..., zn), usually called the zeros of the network function. Hence it may be possible

to express the numerator polynomial as,

N(s) = A0(s – z1)(s – z2) ... ... ... (s – zn)

(4) As the denominator polynomial is of order m, the expression D(s) = 0 should have m roots

( p1, p2, ... ..., pm), usually called the poles of the network function. Hence it may be possible

to express the denominator polynomial as,

D(s) = B0(s – p1)(s – p2) ... ... ... (s – pm)

(5) If a pole or a zero is never repeated in a network function, it is treated as simple. If repeated

twice/thrice, they may be called as double/triple, as the case may be.

(6) In any case, the number of poles and zeros of a network function must be same. Thus, the

highest degree of numerator polynomial (n) should be numerically equal to highest degree of

denominator polynomial (m). However, if the network function does not show this directly,

then some poles and zeros may be considered to be located at infinity in order to satisfy this

criterion. This condition emphasizes that, if, n > m, then the pole at infinity is of degree

(n – m), or otherwise, if, if m > n, then the zero at infinity is of degree (m – n).

(7) The roots of the network function representing the poles and zeros are called critical complex

frequencies for which the network function may be critical (zero or infinite).

(8) For any other complex frequency (w ¹ z and ¹ p) the network function would have a non zero

finite value.

In view of these observations, it may be possible to express Eqn. (6.27) in a new form as shown

in Eqn. (6.28).

F(s) = 
N s

D s

( )

( )
 = 

A s z s z s z

B s p s p s p

n

m

0 1 2

0 1 2

( )( ) ... ... ... ( )

( )( ) ... ... ... ( )

- - -

- - -

 = H
( )( ) ... ... ... ( )

( )( ) ... ... ... ( )

s z s z s z

s p s p s p

n

m

- - -

- - -

1 2

1 2

(6.28)

Where, H = 
A

B

0

0

 is called the scale factor. A pictorial view of a zero and a pole of a network

function in a complex plane are shown in Fig. 6.9 for the sake of understanding only.
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Complex plane

Zero

Pole

Figure 6.9 Location of poles and zeros in a complex plane

6.7 SIGNIFICANCE OF POLES AND ZEROS

Poles and zeros play an important role in any network function. Since these are the roots of a network

function, knowing them it may be possible to derive the structure of a network and speculate the

response for a deterministic excitation. Also, the poles and zeros contain some useful information

regarding the criticality of a network function and they may predict/regulate the stability of a network

too, as far as performance is concerned. The significance may be more appealing to the reader

through the following case studies.

Case-I: While considering the network function as driving point impedance, given by

Z11
(s) = 

V s

I s

1

1

( )

( )
,

(i) current becomes zero for a finite value of driving voltage at the location of a pole, thus

representing an open circuit condition.

(ii) voltage becomes zero for a finite value of driving point current at the location of a zero, thus

representing a short circuit condition.

Case-II: While considering the network function as driving point admittance, given by

Y11
(s) = 

I s

V s

1

1

( )

( )
,

(i) voltage becomes zero for a finite value of driving current at the location of a pole, thus

representing a short circuit condition.

(ii) current becomes zero for a finite value of driving voltage at the location of a zero, thus

representing an open circuit condition.

Case-III: While considering the network function as voltage transfer ratio, given by G21
(s) = 

V s

V s

2

1

( )

( )
,

(i) poles determine the time variation of the response, whereas,

(ii) zeros determine the magnitude variation of the response.
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6.8 RESTRICTION ON LOCATION OF POLES AND ZEROS

As we find, the network functions may be clubbed into two distinct categories, such as; (i) driving

point immittance (impedance or admittance) functions, and (ii) transfer functions. Therefore, it would

be better if we consider the restrictions imposed on the location of poles and zeros for each case

separately.

Case-I: While considering the network function as driving point immittance, given by

Z11
(s) = 

V s

I s

1

1

( )

( )
, or Y11

(s) = 
I s

V s

1

1

( )

( )
, the following restrictions may be imposed to satisfy the necessary

condition that the network driving point function is positive real;

(i) In order to ensure that the driving point impedance function is a positive real function, the

coefficients of the numerator polynomial and denominator polynomial must be positive real

numbers.

(ii) All the poles and zeros must lie on the left half of the s plane. Hence all poles and zeros should

have negative real part or zero real part, so that the network function remains positive real.

This would ensure that the response would be bounded for a bounded excitation over any

stretch of time, hence is crucial from stability point of view.

(iii) If any pole or zero happens to be a complex number, it must occur in conjugate pairs, so that

the network function remains positive real. This would ensure that the response would be

bounded for a bounded excitation over any stretch of time, hence is crucial from stability point

of view.

(iv) If any pole or zero of a network function has a zero real part, then the said pole or zero must

be simple. Hence, multiple poles and zeros are neither permitted to be located on the jw axis

nor at the origin of the s plane.

(v) Neither the numerator polynomial nor the denominator polynomial should have missing terms

in between the highest and lowest order of s, unless otherwise all the even or odd terms are

missing.

(vi) The highest order of numerator polynomial may differ from the highest order of denominator

polynomial by a margin of unity at the most.

(vii) The lowest order of numerator polynomial may differ from the lowest order of denominator

polynomial by a margin of unity at the most.

Case-II: While considering the network function as transfer functions, given by G21
(s), a21

(s),

Z21
(s), and Y21

(s) the following restrictions may be imposed to satisfy the necessary condition that the

network transfer function is positive real;

(i) In order to ensure that the driving point impedance function is a positive real function, the

coefficients of the denominator polynomial must be positive real numbers, however some of

the coefficients of the numerator polynomial may be negative.

(ii) All the poles must lie on the left half of the s plane. Hence all poles should have negative real

part or zero real part, so that the network function remains positive real. This would ensure

that the response would be bounded for a bounded excitation over any stretch of time, hence

is crucial from stability point of view.
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(iii) If any pole or zero happens to be a complex number, it must occur in conjugate pairs, so that

the network function remains positive real. This would ensure that the response would be

bounded for a bounded excitation over any stretch of time, hence is crucial from stability point

of view.

(iv) If any pole of a network function has a zero real part, then the said pole must be simple.

Hence, multiple poles are neither permitted to be located on the jw axis nor at the origin of

the s plane.

(v) The denominator polynomial should not have missing terms in between the highest and lowest

order of s, unless otherwise all the even or odd terms are missing. However, the numerator

polynomial may have missing terms in between the highest and lowest order of s.

(vi) The order of numerator polynomial may be as small as zero, and is independent of the order

of the denominator polynomial.

(vii) The highest order of numerator polynomial should be same as the highest order of the denomi-

nator polynomial for transfer functions like G21
(s), and a21

(s).

(viii) The highest order of numerator polynomial should be more than the highest order of the

denominator polynomial by a margin of unity at the most for transfer functions like Z21
(s),

and Y21
(s).

6.9 TIME DOMAIN BEHAVIOUR FROM POLE-ZERO PLOTS

Pole-zero plots indicate the location of poles with the symbol of a cross (´) and location of zeros

with the symbol of a circle (O) in the complex s plane with the help of the information obtained about

the roots of the network function described in Eqn. (6.28). A particular case of such a plot is shown

in Fig. 6.10. for the network function given by F(s) = 
s s

s s j s j

( )

( )( )( )

+

+ + + + -

3

4 2 21 1

. The information

contained in this plot may be useful for obtaining the time domain behavior of the network function

subject to deterministic inputs. In the previous section it is highlighted that poles determine the time

variation of the response, whereas, zeros determine the magnitude variation of the response.

+jw

+j2

+j1

z1
z2

–j1

–j2

–jw

S-plane

+s–s
–4 –3 –2 –1 0

p1

p3

p2

Figure 6.10 Location of poles and zeros in s-plane
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Therefore, it may be possible to find out both the variations in time domain with the help of pole-

zero plots. In addition to the information about the pole-zero location, information about the follow-

ing parameters of the network may also be necessary to obtain the time response. These additional

parameters are;

(a) Scale factor, (H),

(b) Damping ratio or damping coefficient, (x),

(c) Undamped natural frequency of the network, (wn).

The following cases may be possible regarding the pole-zero location, which depends on the

damping ratio.

Case-I: If, x = 0, then the two roots may have values, s1, s2 = ± jwn.

Case-II: If, x = 1, then the two roots may have values, s1, s2 = –wn.

Case-III: If, x < 1, then the two roots may have values,

s1, s2 = –xwn ± jwn x2 1- .

Case-IV: If, x > 1, then the two roots may have values,

s1, s2 = –xwn ± jwn 1 2
- x .

It would be worth assimilating the properties of these roots as contours in the s plane. If the roots

have constant natural frequency (wn), the corresponding contours would be concentric semicircles on

the left half of the s plane, which leads to undamped oscillatory response in the time domain. If the

roots have constant damping ratio (x ), the corresponding contours would be rays passing through the

origin of the s plane. If the roots have constant damping (xwn), the corresponding contours would

be straight lines parallel to imaginary axis on the left half of the s plane. If the roots have constant

complex frequency (w = wn 1 2
- x  or w = wn x2 1- ), the corresponding contours would be straight

lines parallel to the real axis on either side of the real axis of the s plane, which leads to damped

oscillatory response in the time domain.

If any of the poles in the pole-zero plots resemble with the contours described above, the nature

of the network function towards time domain response may be predictable. For the case of n-poles,

the total time domain response may be described as an exponential function as shown in Eqn. (6.29).

f (t) = K1ep1t + K2e
p2t + ... ... ... + Knepnt (6.29)

It may be understood that the involvement of zeros has been overlooked for the sake of clarity.

Hence the total time domain response is the superposition of individual responses due to each pole

or a pole pair. The effect of real poles contribute towards exponential damping behavior in the time

domain whereas the effect of conjugate pole pairs contribute towards damped sinusoidal oscillations

in the time domain.
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SOLVED PROBLEMS

6.1 Find the Z and Y parameter for the networks shown in figure.

(a) (b)

(c) (d)

Solution

(a) By KVL, 1 2 1( )a c cZ Z I Z I V+ + =

and 1 2 2( )c b cZ I Z Z I V+ + =

Thus, the Z-parameters are:

11 12 21 22( ), , ( )a c c b cz Z Z z z Z z Z Z= + = = = +

(b) By KCL,

I1 = 1 2
1 2

1 1V V
V V

Z Z Z

-
= -

and I2 = 2 1
1 2

1 1V V
V V

Z Z Z

-
= - +

Thus, the y-parameters are,

y11 = 22 12 21

1 1
y y y

Z Z
= = = -

Since, 11 22 12 21 0y y y y yD = - = , the z-parameters do not exist for this network.
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(c) By KVL,

V1 = 1 2
2 1 1 2 2 1 2

1 1 1 1
or, and

I I
V V I I V I I

Y Y Y Y Y

+ æ ö æ ö æ ö æ ö
= = + = +ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø

Thus, the z-parameters are,

z11 = 22 12 21

1
z z z

Y
= = =

Since, 11 22 12 21 0z z z z zD = - = , the y-parameters do not exist

for this network.

(d) By KCL,

1 1 1 2 1 2

2 2 2 1 1 2

( ) ( )

( ) ( )
a c a c c

b c c b c

I Y V V V Y V Y Y V Y

I Y V V V Y V Y V Y Y

= + - = + -

= + - = - + +

Thus, the y-parameters are:

11 12 21 22; ;a c c b cy Y Y y y Y y Y Y= + = = - = +
6.2 Obtain the z-parameters for the circuit shown in figure.

(a)

(b)

Solution

(a) The given circuit can be considered as the cascade connection of the following two networks:

(a) (b)

From Prob. 6.1(a), 11 11 22 22

12 21 12 21

3

2
a b a b

a a b b

z z z z

z z z z

= = = = W
= = = = W

So, the transmission parameters are,

\ Aa = Ab = 11

21

3

2

z

z
=
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\ Ba = Bb = 
21

9 4 5

2 2

z

z

-D
= = W

\ Ca = Cb = 
21

1 1

2z
=

W

\ Da = Db = 22

21

3

2

z

z
=

So, the transmission parameters of the resulting network are:

T = 
3/2 5/2 3/2 5/2 7/2 15/2

1/2 3/2 1/2 3/2 3/2 7/2
a bT T

é ù é ù é ù
´ = =ê ú ê ú ê ú

ë û ë û ë û
So, the z-parameters are:

11

12

21

22

7

3
2

3
1 2

3
7

3

A
z

C
T

z
C

z
C
D

z
C

ü
= = W ï

ïD
= = Wïï

ý
ï= = W
ï
ï

= = W ïþ

(b) By KVL,

V1 = 2I1 + 4I3

V2 = I1 + I2 � I3

and 2(I1 � I3) + I1 + I2 � I3 � 4I3 = 0

Eliminating I3 from above equations,

V1 = 1 2

26 4

7 7
I I+

V2 = 1 2

4 6

7 7
I I+

Thus, the z-parameters are:

[z] = 
26/7 4/7

4/7 6/7

é ù
Wê ú

ë û
6.3 For the network shown, find z and y-parameters.
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Solution From the figure, we can write the KVL equations,

V1 = I3 (i)

V2 = 2I2 � 4I1 � 2I3 (ii)

and, 2I1 � 2I3 + 2I2 � 4I1 � 2I3 � I3 = 0 Þ I3 = 2 1

2
( )

5
I I-

From (i), 1 1 2 1 2

2 2
0.4 0.4

5 5
V I I I I= - + = - +

From (ii), 2 2 1 2 1 1 2

4 4
2 4 3.2 1.2

5 5
V I I I I I I= - - + = - +

\ [z] = 
0.4 0.4

3.2 1.2

-é ù
Wê ú-ë û

Dz = ( 0.4 1.2) 0(0.4) ( 3.2) 0.8- ´ - ´ - =

\ [y] = 

0.4
1.2/0.8

0.8

0.4
3.2/0.8

0.8

é ù-ê ú
ê ú
ê ú-
ë û

W
 = 

1.5 0.5

4 0.5

-é ù
ê ú-ë û

W

6.4 Find the y-parameters for the 2-port networks shown.

(a)

(b)

(c)
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Solution

(a) We consider two cases to find out the y-parameters.

Case (I) Making port- 2 shorted and applying a voltage of V1 at port- 1

By KVL,

17I1 + 20I2 = V1

and 12I1 + 20I2 = 0

I1 = 

2

1

1
1 11

1 0

20

0 20
0.2 0.2

17 20

12 20
V

V

I
V y

V =

= Þ = =
W

Solving,

I2 = 

2

1

2
1 21

1 0

17

12 0
0.12 0.12

17 20

12 20
V

V

I
V y

V =

= - Þ = = -
W

Case (II) Making port-1 shorted and applying a voltage of V2 at port- 2

By KVL,

17I1 + 20I2 = �0.2V2

and 12I1 + 20I2 = V2

I1 = 

1

2

2 1
2 12

2 0

0.2 20

20
0.24 0.24

17 20

12 20
V

V

V I
V y

V =

-

= - Þ = = -
W
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Solving,

I2 = 

1

2

2 2
2 22

2 0

17 0.2

12
0.194 0.194

17 20

12 20
V

V

V I
V y

V =

-

= Þ = =
W

Thus, [y] = 
0.2 0.24

0.12 0.194

-é ù
ê ú-ë û

W

(b) We consider two cases.

Case (I) V1 = 0

Case (II) V2 = 0

By KCL,

1

1

2

2

2 2
1 12 2 0 12

2 2
2 22 2 0 22

1 11 1 0 1 11

1
2 21 1 0 21

0 1
|

4 12 6

5
|

3 12 12
1 1 1

|
12 12 6

1
|

12 12

V

V

V

V

V V
I y V y

V V
I y V y

I y V V y

V
I y V y

=

=

=

=

ü-æ ö= = + Þ = ïç ÷è ø ï
ï= = + Þ = ï
ý

æ ö ï= = + Þ =ç ÷è ø ï
ï

= = - Þ = - ï
þ

J

J

J

J

(c) For V1 = 0, the circuit becomes as shown.

\ 2 22 2 2 2 22(1 2) 3 3I y V V V y= = + = Þ =
W

Also, 1
2 12 1

1

I
V y- = Þ = -

W
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For V2 = 0, the circuit becomes as shown.

\ 2
13

1

I
V- = (i)

3
1 1 1 33 2

1

I
V V V I+ = Þ = - (ii)

I1 = I3 + I4 (iii)

and V1 = 4

1

I
(iv)

From (i) to (iv),

1 1 3 1 1 1 112 1I V I V V V y= + = - = - Þ = -
W

From (i), y21 = �3
W

Thus, the y-parameters are:

[y] = 
1 1

3 3

- -é ù
ê ú-ë û

W

From the interrelationship, we get the z-parameters as:

[z] = 
1 0

( )
1 1/3

-é ù
Wê ú-ë û

6.5 Measurements were made on a two-port network shown in the figure.

(i) With port-2 open, a voltage of 100Ð0° volt is applied to port-1, resulted in, I1 = 10Ð0° amp and

V2 = 25Ð0° volt.

(ii) With port-1 open, a voltage of 100Ð0° volt is applied to port-2, resulted in, I2 = 20Ð0° amp and

V1 = 50Ð0° volt.

(a) Write the loop equations for the network and also find the driving point and transfer impedance.

(b) What will be the voltage across a 10 W resistor connected across port-2 if a 100Ð0° volt source

is connected across port-1.

Solution

(a) From the given data, we get the z-parameters as:

z11 = 

2

1

1 0

100 0
10

10 0
I

V

I
=

Ð °= = W
Ð °

z21 = 

2

2

1 0

25 0
2.5

10 0
I

V

I
=

Ð °= = W
Ð °

z12 = 

1

1

2 0

50 0
2.5

20 0
I

V

I
=

Ð °= = W
Ð °
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z22 = 

1

2

2 0

100 0
5

20 0
I

V

I =

Ð °= = W
Ð °

So, the loop equations are:

1 1 2

2 1 2

10 2.5

2.5 5

V I I

V I I

= + ü
ý= + þ

(b) Here, 1 2 2 2100 0 and 10LV V I R I= Ð ° = - = -
Putting these values in loop equations,

100 = 10I1 + 2.5I2 Þ I1 = 10 � 0.25I2
and �10I2 = 2.5I1 + 5I2

or, 2 2 210 2.5(10 0.25 ) 5I I I- = - +

or, 2 215 25 0.625I I- = -

or, I2 = 
25

14.375

-
 = �1.74 A

\ Voltage across the resistor = �I2RL = 17.4 V

6.6 (a) The following equations give the voltages V1 and V2 at the two ports of a two port network,

V1 = 5I1+2I2 , V2 = 2I1+I2 ;

A load resistance of 3 W is connected across port-2. Calculate the input impedance.

(b) The z-parameters of a two port network are z11 = 5 W, z22 = 2 W, z12 = z21 = 3 W. Load resistance

of 4 W is connected across the output port. Calculate the input impedance.

Solution

(a) From the given equations,

V1 = 5I1 + 2I2 (i)

V2 = 2I1 + I2 (ii)

At the output, V2 = � I2RL = �3I2

Putting this value in (ii),

�3I2 = 2I1 + I2 Þ I2 = �I1/2

Putting in (i), V1 = 5I1 + 1

2

I-æ ö
ç ÷è ø

 = 4I1

\ Input impedance, Zin = 1

1

4
V

I
= W

(b) [Same as Prob. (a)] Zin = 1

1

V

I
 = 3.5W

6.7 Determine the h-parameter with the following data:

(i) with the output terminals short circuited, V1 = 25 V, I1 = 1 A, I2 = 2 A

(ii) with the input terminals open circuited, V1 = 10 V, V2 = 50 V, I2 = 2 A

Solution The h-parameter equations are,

V1 = h11I1 + h12V2

I2 = h21I1 + h22V2
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(a) With output short-circuited, V2 = 0, given: V1 = 25 V, I1 = 1 A and I2 = 2 A.

11
11 21

21

25 1
25 , and 2

and 2 1

h
h h

h

\ = ´ ü Þ = W =ý= ´ þ
(b) With input open-circuited, I1 = 0, given: V1 = 10 V, V2 = 50 V and I2 = 2 A.

12
12 23

22

10 50 1 1
0.2 and

and 2 50 5 25

h
h h

h

\ = ´ ü Þ = = =ý= ´ þ

W
 = 0.04

W

Thus, the h-parameters are:

[h] = 
1

25 0.2

2 0.04 -

Wé ù
ê ú

Wë û
6.8 The y-parameters for a two-port network N are given as,

[y11 = 4 
W

, y22 = 5 
W

, y12 = y21 = 4 
W

]

If a resistor of 1 ohm is connected across port-1 of N, then

find out the output impedance.

Solution Output impedance is given as,

Zout = 11 22 12 21

11 L

z z z z

z Z

-
+

Here, y11 = 1 1 1
12 21 224 , 4 , 5y y y- - -

W = = W = W

\ z11 = 22 5 5

20 16 4

y

y
= = W

D -

z12 = 12
21

4
1

4

y
z

y
= - = - = - W

D

and z22 = 11 4
1

4

y

y
= = W

D

Putting these values,

Zout = 11 22 12 21

11

5
1 ( 1) ( 1) 1 1

54
5/4 1 9L

z z z z

z Z

´ - - ´ - + ´-
= = W

+ +

6.9 (a) The h-parameters of a two-port network are h11 =

100 W, h12 = 0.0025, h21 = 20 and h22 = 1 m
W

. Find

V2/V1.

(b) The h-parameters of a two-port network are h11 =

1 W, h12 = �h21 = 2, h22 = 1 
W

. The power absorbed

by a load resistance of 1 W connected across

port-2 is 100 W. The network is excited by a

voltage source of generated voltage Vs and internal resistance 2 W. Calculate the value of Vs.

Solution

(a) The h-parameter equations are:

V1 = 100I1 + 0.0025V2 (i)
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I2 = 20I1 + 0.001V2 (ii)

By KVL at the output mesh, V2 = �2000I2 (iii)

V1 = 2 2 2
2 2 2

0.001
100 0.0025 5 0.005 0.0025

20 2000

I V V
V V V

-é ù æ ö+ = - - +ç ÷ê ú è øë û
From (i),

or 2

1

200
V

V
= -

(b) The h-parameter equations are:

V1 = I1 + 2V2 (i)

I2 = �2I1 + V2 (ii)

Since the load resistance of 1 W is connected across port-2,

\
2

2

1

V
= 100 Þ V2 = 10 V

By KVL, V2 = 2 2 2 10 ALI R I I- = - Þ = -
and 2I1 + V1 = Vs (iii)

From (ii), putting the values of I2 and V2,

�10 = 1 12 10 10 AI I- + Þ =
From (iii),

Vs = 1 1 22 10 20 2 {by (i)}V I V´ + = + +
= 20 + 10 + 2 ´ 10

or, Vs = 50 V

6.10 The z-parameters for a network N are:

2 1

2 5

é ù
ê ú
ë û

The terminal connections for the network are shown in the

adjacent figure. Calculate the voltage ratio V2/Vs, current

ratio �I2/I1 and input resistance V1/I1.

Solution The z-parameter equations are:

V1 = 2I1 + I2 (i)

V2 = 2I1 + 5I2 (ii)

By KVL at the input and output circuits,

I1 + V1 = Vs Þ 3I1 + I2 = Vs (iii) {by (i)}

and 5I2 + V2 = 0 Þ 2I1 + 10I2 = 0 (iv) {by(ii)}

Solving (iii) and (iv),

1 2

1 3

0 10 2 010 2
and

28 283 1 3 1

2 10 2 10

s s

s s

V V

I V I V= = = = -
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\ 2

1

1

5

I

I
- =

Now, 2 1 2

20 10 10
(2 5 )

28 28 28s sV I I V V
æ ö= + = - =ç ÷è ø

\ 2 5

14
s

V

V
=

Again,

V1 = (2I1 + I2) = 
20 2 18

28 28 28s sV V
æ ö- =ç ÷è ø

\ 1

1

9

14

V

I
= W

6.11 For the two-port network in figure, terminated in a 1 W

resistance, show that,  2 21

1 221

V z

I z
=

+
 and 1 11

1 221

V z z

I z

+ D
=

+

Solution The z-parameter equations are:

V1 = z11I1 + z12I2 (i)

V2 = z21I1 + z22I2 (ii)

By KVL at the output, 2 2 2 21V I I V= - ´ Þ = -

V2 = 21 1 22 2 21 1 22 2( )z I z I z I z V+ = + -

From (ii), or, 2 22 21 1(1 )V z z I+ = (iii)

or 2 21

1 221

V z

I z
=

+
(Proved)

From (i),

V1 = { }2 22
11 12 2

21

(1 )
( ) by (iii)

V z
z z V

z

+é ù + -ê úë û

= 11 11 22 12 21
2

21

z z z z z
V

z

+ -é ù
ê úë û

= 
11

2
21

z z
V

z

+ Dé ù
ê úë û

\ 1 1 2 11 21 11

1 2 1 21 22 221 1

V V V z z z z z

I V I z z z

+ D + D
= ´ = ´ =

+ +
(Proved)

6.12 Calculate the T-parameters for the block A and B separately and then using these results, calculate

the T-parameters of the whole circuit shown in the figure. Prove any formula used.
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(a)

(b)

Solution

(a) We consider the given network as a cascade connection of two networks as shown.

For Block A:

Opening the port-2,

By KCL,

1 2 1

1 1 1

2 3 3
V V I

æ ö+ - =ç ÷è ø

and 1 2

1 1
0

3 3
V s V

æ ö- + + =ç ÷è ø

Solving for V1 and V2,

V1 = 1 1
2

2 (1 3 ) 2
and

(1 5 ) (1 5 )

I s I
V

s s

+
=

+ +

2

2

1

2 0

1

2 0

(1 3 )

(1 5 )
and

2

a

I

a

I

V
A s

V

I s
C

V

=

=

ü
\ = = + ï

ï
ý

+ ï= = ï
þ

Short-circuiting port-2,

\ I1 = 1 1
1

5

2 3 6

V V
V+ =

and V1 = 

2

1
2

2 0

3 3a

V

V
I B

I
=

- Þ = - = W

and Da = 

2

1 1

2 10

5 3 5

6 2
V

I V

I V
=

- = ´ =
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For Block B:

Opening the port-2,

By KCL,

1 2 1

1 1

5 5
s V V I

æ ö+ - =ç ÷è ø

and 1 2

1 1 1
0

5 5 4
V V

æ ö- + + =ç ÷è ø

Solving for V1 and V2,

V1 = 1 1
2

9 4
and

(1 9 ) (1 9 )

I I
V

s s
=

+ +

2

2

1

2 0

1

2 0

9

4

(1 9 )
and

4

b

I

b

I

V
A

V

I s
C

V

=

=

ü
\ = = ï

ï
ý

+ ï= = ï
þ

Short-circuiting port-2,

\ I1 = 1

1

5
s V

æ ö+ç ÷è ø

and V1 = 

2

1
2

2 0

5 5b

V

V
I B

I
=

- Þ = - = W

and Db = 

2

1

2 0

(5 1)
V

I
s

I =

- = +

Since the two networks are connected in cascade, the overall transmission parameter matrix is

obtained as,

[T] = 

9/4 5(3 1) 3

[ ] [ ] 1 95 1
(5 1)5/2

42

a b

s

T T ss
s

é ù+é ù
ê úê ú´ = ´ +æ ö+æ ö ê úê ú +ç ÷è ø ê úè øê úë û ë û

 = 
(13.5 3) (30 8)

(11.25 1.75) (25 5)

s s

s s

+ +é ù
ê ú+ +ë û

(b) [Same as Prob. (a)]

Here, [Ta] = 
1 1 3/2 1

and [ ]
1/2 3/2 3/2 1

bT
é ù é ù

=ê ú ê ú
ë û ë û

\ [T] = 
3 2

[ ] [ ]
3 2

a bT T
é ù

´ = ê ú
ë û
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Two-port Network 6.31

6.13 Two identical sections of the network shown in the figure are con-

nected in parallel. Obtain the y-parameters of the resulting network and

verify by direct calculation.

Solution For the circuit, 1 1
11 12 213 , 2y y y- -= W = = - W  and

1
22 3y -= W

The y-parameters for the combination will be,

1
11 11 11

1
12 21 12 12

1
22 22 22

( ) 6

( ) 4

( ) 6

y y y

y y y y

y y y

-

-

-

ü¢ ¢¢= + = W
ï¢ ¢¢= = + = - W ý
ï¢ ¢¢= + = W þ

To find the y-parameters by direct calculation, we consider the resulting network as shown.

For the entire network, 1 1 1
11 12 21 224 2 6 ; 4 ; 4 2 6y y y y- - -= + = W = = - W = + = W (Proved)

6.14 Two networks have general ABCD parameters as shown below:

Parameter Network-1 Network-2

A 1.50 5/3

B 11W 4W
C 0.25 siemens 1 siemens

D 2.5 3.0

If the two networks are connected with their inputs and outputs in parallel, obtain the admittance

matrix of the resulting network.

Solution For network-1:

y11 = 12.5 5

11 22

D

B

-= = W

y12 = 11.5 2.5 11 0.25 1

11 11

AD BC

B
-- ´ - ´

- = - = - W

y21 = 11 1

11B

-- = - W

y22 = 11.5 3

11 22

A

B

-= = W
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6.32 Network Theory

For network-2:

y11 = 13

4

D

B

-= W

y12 = 11

4

AD BC

B
--

- = - W

y21 = 11 1

4B

-- = - W

y22 = 15 5

3 4 12

A

B
-= = W

´

So, the admittance matrix of the resulting network is:

[y] = 1
5/22 1/11 3/4 1/4 43/44 15/44

1/11 3/22 1/4 5/12 15/44 73/132

-
- - -é ù é ù é ù

+ = Wê ú ê ú ê ú
- - -ë û ë û ë û

6.15 Two identical sections of figure are connected in series. Ob-

tain the z-parameters of the resulting network and verify by

direct calculation. All values are in ohm.

Solution The z-parameters of each section:

z11 = 12 21 223 , 1 , 3z z zW = = W = W
So, the z-parameters of the combined series network are:

z11 = 12 21 22(3 3) 6 , (1 1) 2 , (3 3) 6z z z+ = W = = + = W = + = W

To find the z-parameters by direct calculation, we consider the resulting network as shown.

For the resulting network,

2 2

1 1

1 2
11 21

1 10 0

2 1
22 12

2 20 0

6 2

6 2

I I

I I

V V
z z

I I

V V
z z

I I

= =

= =

ü
= = W = = Wï

ï
ý
ï= = W = = W
ïþ
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6.16 (a) Find out the z- and h-parameters for the circuit shown in Fig. (a). All values are in ohm.

(b) Hence, obtain the hybrid parameters for the two-port network of Fig. (b).

(a) (b)

Solution

(a) For Fig. (a), the z-parameters are:

z11 = 

2 1

1 2
12 21 11

1 20 0

4 , 2 , 4
I I

V V
z z z

I I
= =

= W = = W = = W

\
11

12

12
12

22

21
21

22

1
22

12

16 4
3

4

2
0.5

4

2
0.5

4

1 1
0.25

4

z
h

z

z
h

z

z
h

z

h
z

-

- üD= = = W ï
ï
ï= = =
ï
ý
ï= - = - = -
ï
ï

= = = W ï
þ

(b) The connection is series-parallel connection. For this connection, the overall h-parameters will

be the sum of individual h-parameters.

\
11

12

21

1
22

(3 3) 6

(0.5 0.5) 1

( 0.5 0.5) 1

(0.25 0.25) 0.5

h

h

h

h -

= + = W ü
ï= + = ï
ý= - - = - ï
ï= + = W þ

6.17 (a)  Find the equivalent p-network for the T-network shown in the figure (a).

(b)  Find the equivalent T -network for the p-network shown in the figure (b).

(a) (b)
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6.34 Network Theory

Solution

(a) Let the equivalent p-network have YC as the series admittance and YA and YB as the shunt

admittances at port-1 and port-2, respectively.

Now, the z-parameters are given as:

z11 = 12 21 22( ) 7 , 5 , ( ) 7.5
A C C B C

Z Z z z Z z Z Z+ = W = = = W = + = W

\ Dz = 2(7 7.5 5 5) 27.5´ - ´ = W

\ y11 = 22 7.5

27.5

z

z
=

D
 
W

y12 = y21 = 
5

27.5
Cz

z
- = -
D

 
W

y22 = 11 7

27.5

z

z
=

D
 
W

\ YA = 11 12

2.5 1
( )

27.5 11
y y+ = =  

W

\ YB = 22 12

2
( )

27.5
y y+ =  

W

and YC = 21

5 2

27.5 11
y- = =  

W

Thus, the impedances of the equivalent p-networks are:

1
11 ,

1
13.75 ,

1
5.5

A

A

B

B

C

C

Z
Y

Z
Y

Z
Y

ü= = W ï
ï
ï= = W ý
ï
ï= = W ïþ

(b)

p-network Equivalent T-network

The y-parameters,

y11 = 1.2 
W

, y12 = y21 = �1 
W

, and y22 = 1.5 
W

\ Dy = (1.2 1.5 1) 0.8´ - =

Equivalent p-network
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Two-port Network 6.35

\ z11 = 22 12 11
12 21 22

1.5 1 1.2
, ,

0.8 0.8 0.8

y y y
z z z

y y y
= W = = - = W = = W

D D D

\ 11 12

22 12

12

0.5
( ) 0.625

0.8

0.2
( ) 0.25

0.8

1
1.25

0.8

A

B

C

Z z z

Z z z

Z z

ü= - = = Wï
ïï

= - = = W ý
ï
ï= = = W ïþ

6.18 The z-parameter of a 2-port network are:

 z11 = 10 W, z22 = 20 W, z12 = z21 = 5 W.

Find the ABCD-parameters. Also find the equivalent T-network.

Solution

From the inter-relationship, we get the ABCD parameters as:

A = 11

21

10
2

5

z

z
= =

B = 11 22 12 21

21

10 20 5 5
35

5

z Z Z Z

z

- ´ - ´
= = W

C = 
21

1 1
0.2

5z
= =  

W

D = 22

21

20
4

5

z

z
= =

To find the equivalent T-network, we have the relations,

and

11

12 21

22

( ) 10

5 5 , 15 , 5

( ) 20

A C

C A B C

B C

z Z Z

z z Z Z Z Z

z Z Z

= + = W ü
ï= = = W Þ = W = W = Wý
ï= + = Wþ

6.19 Z-parameters of the two-port network N in figure. are, z11 = 4s, z12 = z21 = 3s, z22 = 9s.

(a) Replace N by its T-equivalent.

(b) Use part (a) to find the input current I1 for Vs = cos1000t.

Equivalent T-network
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6.36 Network Theory

Solution

(a) The z-parameters are: 
4 3

[ ] ( )
3 9

s s
z

s s

é ù
= Wê ú

ë û

Since the network is reciprocal, its T-equivalent exists. Its

elements are:

ZA = 11 12 22 21( ) , ( ) 6 ,
B

z z s Z z z s- = = - =

and ZC = 21 12 3z z s= =

So, the equivalent circuit is shown in figure.

(b) We repeatedly combine the series and parallel elements of above figure, with resistors in kW
and s in Krad/s to find the input impedance, Zin in kW.

\ Zin = 
1

(6 12) (3 6)
(3 4)

(6 12) (3 6)
s

V s s
s s

I s s

+ +
= + = +

+ + +

or Zin(j) = (3 4) 5 36.9 kj + = Ð ° W
So, the current,

i(t) = 
in

( ) 1
cos (1000 36.9 ) (mA)

( ) 5
sv t

t
Z j

= - °

6.20 The z-parameters of a two-port network N are given by, z11 = (2s + 1/s ), z12 = z21 = 2s, z22 = (2s + 4).

(a) Find the T-equivalent of N.

(b) The network N is connected to a source and a load as shown in figure. Replace N by its

T-equivalent and then find I1, I2, V1, and V2.

Equivalent T-network
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Solution

(a) To find the equivalent T-network, we have the relations,

and

11

12 21

22

1
( ) 2

1
2 , 4 , 2

( ) (2 4)

A C

C A B C

B C

z Z Z s
s

z z Z s Z Z Z s
s

z Z Z s

üæ ö= + = + Wç ÷ ïè ø ï
ý= = = W Þ = W = W = Wï
ï= + = + W þ

Equivalent T-network

(b) The equivalent circuit is shown below.

By KVL, I1(3 + j) + I2( j2) = 12Ð0°

I1( j2) + I2(5 + j3) = 0

I1 = 

12 0 2 12 0 2 90

0 (5 3) 0 5.831 30.96
3.29 10.22 (A)

16 14(3 ) 2

2 (5 3)

j

j

jj j

j j

Ð ° Ð ° Ð °
+ Ð °

= = Ð- °
++

+

Solving,

and I2 = 

(3 ) 12 0

2 0
1.13 131.19 (A)

(3 ) 2

2 (5 3)

j

j

j j

j j

+ Ð °

= Ð- °
+

+

\ V1 = 112 0 3 12 3.29 3 10.22 2.28 1.75 2.88 37.504 (V)I jÐ °- ´ = - ´ Ð- °= + = Ð °

and V2 = 2 (1 ) 1.13(1 ) 131.186 1.59 93.81I j j- + = - + Ð- ° = Ð °
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6.38 Network Theory

So, the currents and voltages are:

1

2

1

2

( ) 3.29 cos ( 10.2 ) (A)

( ) 1.13 cos ( 131.2 ) (A)

( ) 2.88 cos ( 37.5 ) (A)

( ) 1.6 cos ( 93.8 ) (A)

i t t

i t t

v t t

v t t

= - ° ü
ï= - ° ï
ý= + ° ï
ï= + ° þ

6.21 For the bridge-TRC network, find the y-parameters and its equivalent p-network.

Solution The given network is the parallel combination of the two networks:

(a) Network (b) Network

For network (a), the y-parameters are: [ya] = 
/2 /2

/2 /2

s s

s s

-é ù
ê ú-ë û

W

For network (b), the z-parameters are: [zb] = 
(1 2/ ) 2/

2/ (1/2 2/ )

s s

s s

+é ù
Wê ú+ë û

\ y11b = 22

2

(1/2 2/ ) 4

6(1 2/ ) (1/2 2/ ) 4/

b

b

z s s

z ss s s

+ +
= =

D ++ + -

\ y12b = 
12

21

2/ 4

( 6)/2 6
b

b
b

z s
y

z s s s
= - = =

D + +

\ y22b = 
11 ( 2)/2 2( 2)

( 6)/2 6
b

b

z s s

z s s s

+ +
= =

D + +

For network (b), the y-parameters are: [yb] = 

4 4

6 6

2( 2)4

6 6

s

s s

s

s s

+é ù
ê ú+ +
ê ú

+ê ú
ê ú+ +ë û
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Two-port Network 6.39

Thus, the overall y-parameters are:

[y] = 

4 4

/2 /2 6 6
[ ] [ ]

/2 /2 2( 2)4

6 6

a b

s

s s s s
y y

s s s

s s

+é ù
ê ú- + +é ù ê ú+ = +ê ú- +ê úë û
ê ú+ +ë û

= 

2 2

2 2

8 8 6 8

2( 6) 2( 6)

6 8 10 8

2( 6) 2( 6)

s s s s

s s

s s s s

s s

é ù+ + + +
-ê ú+ +ê ú

ê ú+ + + +
-ê ú+ +ê úë û

Equivalent p network can be found out from the relations:

Ya = 11 12 22 12( ) ; ( )
( 6) b

s
y y Y y y

s
+ = = +

+

= 
2

12 21

6 82
;

( 6) 2( 6)c

s ss
Y y y

s s

+ +
= - = - =

+ +
6.22 For the notch-filter network, determine the y-parameters.

Solution The given network is the parallel combination of the two networks:

(a) Network (b) Network

For network (a), z11a = 12 21 22

1 2 1 21 1
1 ; 1; 1

2 2 2 2a a a

s s
z z z

s s s s

+ +æ ö æ ö+ = = = = + =ç ÷ ç ÷è ø è ø

\ Dza = 
2

1 4

4

s

s

+

\ y11a = 
22 12

12 21

2 (1 2 )
;

(1 4 )
a a

a a
a a

z zs s
y y

z s z

+
= = = -

D + D

= 
2

11
22

2 (1 2 )4
;

(1 4 ) (1 4 )
a

a
a

z s ss
y

s z s

+
- = =

+ D +
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6.40 Network Theory

For network (b), z11b = 12 21 22

1 2 1 21
(1/ 2) ; ; (1/ 2)b b b

s s
s z z z s

s s s

+ +
+ = = = = + =

\ Dzb = 
4( 1)s

s

+

\ y11b = 
22 12 11

12 21 22

(1 2 ) (1 2 )1
; ;

4( 1) 4( 1) 4( 1)
b b b

b b b
b b b

z z zs s
y y y

z s z s z s

+ +
= = = - = - = =

D + D + D +

Thus, the overall y-parameters are,

y11 = y22 = (y11a + y11b) = 
22 (1 2 ) (1 2 ) (1 2 ) (8 12 1)

1 4 4 4 4( 1) (4 1)

s s s s s s

s s s s

+ + + + +
+ =

+ + + +

and y12 = y21 = (y12a + y12b) = 
3 22 16 16 4 14 1

1 4 4( 1) 4(4 1) ( 1)

s s ss

s s s s

+ + +
- - = -

+ + + +

6.23 A network has two input terminals a, b and two output terminals c, d. The input impedance with

c-d open-circuited is (250 + j100) ohm and with c-d short-circuited is (400 + j300) ohm. The imped-

ance across c-d with a-b open-circuited is 200 ohm. Determine the equivalent T-network parameters.

Solution For c-d Terminals opened,

( ) (250 100)
A B

Z Z j+ = + (i)

But, for c-d terminals shorted,

(400 300)B C

A

B C

Z Z
Z j

Z Z
+ = +

+ (ii)

Again, with a-b terminals opened,

(ZB + ZC) = 200 (iii)

From (ii) and (i), we get,

150 200B C

B

B C

Z Z
Z j

Z Z
- = +

+

or 2 200(150 200)B C B B CZ Z Z Z Z j- - = + {by (iii)

or 2 4 2200( 150 200) 10 (1 2)BZ j j= - - = -

(100 200)

(150 300)

(100 200)

B

A

C

Z j

Z j

and Z j

\ = - W ü
ï\ = + W ý
ï= + Wþ

6.24 Find the driving point impedance at the terminals 1-1¢ of the ladder network shown in figure.

(a)
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Two-port Network 6.41

(b)

Solution

(a) The driving point impedance at 1-1¢ is

4 2

11 2

3 11

1 2
1

s s
Z s

s ss

s
s

+ +
= + =

++
+

(b) The driving point impedance at 1-1¢ is,

6 5 4 3 2

11 5 4 3 2

3 8 11 11 6 11
( 1)

1 2 5 4 3
1

( 1)
1

1
( 1)

s s s s s s
Z s

s s s s ss

s

s

s
s

+ + + + + +
= + + =

+ + + ++
+ +

+
+ +

6.25 For the Notch-filter (Twin-T) network, determine:

(a) y-parameters,

(b) the voltage ratio transfer function V2/V1 when no-

load impedance is present, and

(c) the value of the frequency at which the output volt-

age is zero.

Solution

(a) The given network is the parallel combination of the

two networks:

(a) Network (b) Network

For network (a),

11 12 21 22

2 21 1
; ;

2 2 2 2 2a a a a

RCs RCsR R R
z z z z

Cs Cs Cs Cs

+ +æ ö æ ö= + = = = = + =ç ÷ ç ÷è ø è ø

\
2 2

1
a

RCs
z

C s

+
D =
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6.42 Network Theory

\ 22
11

(2 )
;

2 (1 )
a

a
a

z RCs RCs
y

z R RCs

+
= =

D +

2 2 2
12

12 21 ;
2 (1 )

a
a a

a

z R C s
y y

z R RCs
= = - = -

D +

11
22

1
1

2

(1 )
a

a
a

Cs Cs
z

y
z RCs

æ ö+è ø
= =
D +

For network (b),

11 12 21 22

1 2 1 21 1 1
; ; 2

2 2 2 2b b b b

RCs RCs
z R z z z

Cs Cs Cs s Cs

+ +æ ö æ ö= + = = = = + =ç ÷ ç ÷è ø è ø

\
2 2

1
b

RCs
z

C s

+
D =

\ 22
11

(1 2 )
;

2 ( 1)
b

b
b

z RCs
y

z R RCs

+
= =

D +
12

12 21

1
;

2 ( 1)
b

b b
b

z
y y

z R RCs
= = - = -

D +

11
22

(1 2 )

2 ( 1)
b

b
b

z RCs
y

z R RCs

+
= =
D +

Thus, the overall y-parameters are,

y11 = 
2 2 2

22 11 11

(2 ) (1 2 ) ( 4 1)
( )

2 (1 ) 2 ( 1) 2 ( 1)a b

RCs RCs RCs R C s RCs
y y y

R RCs R RCs R RCs

+ + + +
= + = + =

+ + +

and y12 = 
2 2 22 2 2

21 12 12

11
( )

2 (1 ) 2 ( 1) 2 ( 1)a b

R C sR C s
y y y

R RCs R RCs R RCs

+
= + = - - = -

+ + +

(b) Now,
1 11 1 12 2

2 21 1 22 2

I y V y V

I y V y V

= +
= +

When no-load impedance is present, I2 = 0,

\
2 2 2 2 2 2

2 21

2 2 2 2 2 2
1 22

1 2 ( 1) 1

2 ( 1) ( 4 1) ( 4 1)

V y R C s R RCs R C s

V y R RCs R C s RCs R C s RCs

+ + += - = ´ =
+ + + + +

(c) For V2 = 0 Þ 1 + R2C2s2 = 0

Putting s = jw, 1 � w2
R

2
C

2
 = 0

\ w = 
1

RC

Thus, the notch frequency is given by, fN = 
1

2 RCp

MULTIPLE-CHOICE QUESTIONS

6.1 Which one of the following pairs is correctly matched?

(a) Symmetrical two-port network: AD � BC = 1

(b) Reciprocal two-port network: z11 = z22.

(c) Inverse hybrid parameters: A, B, C, D

(d) Hybrid parameters: (V1, I2) = f (I1, V2)
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Two-port Network 6.43

6.2 What is the condition for reciprocity in terms of h-parameters?

(a) h11 = h22 (b) h12h21 = h11h22 (c) h12 + h21 = 0 (d) h12 = h21

6.3 For a reciprocal network, the two-port ABCD parameters are related as follows

(a) AD � BC = 1 (b) AD � BC = 0 (c) AC � BD = 0 (d) AC � BD = 1

6.4 For a symmetrical two port network

(a) z11 = z22 (b) z12 = z21 (c) 2
11 22 12 0z z z- = (d) z11 = z22 and z12 = z21

6.5 For a two port network to be reciprocal, it is necessary that

(a) z11 = z22 and y12 = y21 (b) z11 = z22 and AD � BC = 0.

(c) h21 = �h12 and AD � BC = 0 (d) y12 = y21 and h21 = �h12

6.6 A two port network is symmetrical if

(a) 11 22 12 21 1z z z z- = (b) AD � BC = 1 (c) h11h22 � h12h21 = 1 (d) y11y22 � y12y21 = 1

6.7 A two port network is reciprocal if and only if

(a) z11 = z22 (b) BC � AD = �1 (c) y12 = �y21 (d) h12 = h21

6.8 In terms of ABCD parameters, a two port network is symmetrical if and only if:

(a) A = B (b) B = C (c) C = D (d) D = A

6.9 The condition for reciprocity of a two port network having different parameters are:

1. h12 = �h21 2. g12 = �g21 3. A = D

Choose the correct combination.

(a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 1, 2 and 3.

6.10 Two two-port networks with transmission parameters A1, B1, C1, D1 and A2, B2, C2, D2 respectively

are cascaded. The transmission parameter matrix of the cascaded network will be

(a)
1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù
+ê ú ê ú

ë û ë û
(b)

1 1 2 2

1 1 2 2

A B A B

C D C D

é ù é ù
ê ú ê ú
ë û ë û

(c)
1 2 1 2

1 2 1 2

A A B B

C C D D

é ù
ê ú
ë û

(d)
1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( )

( ) ( )

A A C C A A B D

C A D C C C D D

+ -é ù
ê ú- +ë û

6.11 Consider the following statements.

For a bilateral network,

1. A = D 2. z12 = z21 3. h12 = �h21

Of these statements.

(a) 1, 2 and 3 are correct (b) 1 and 2 are correct

(c) 1 and 3 are correct (d) 2 and 3 are correct.

6.12 In a two port network containing linear bilateral passive circuit elements, which one of the following

conditions for z parameters would hold?

(a) z11 = z22 (b) z12z21 = z11z22 (c) z11z12 = z22z21 (d) z12 = z21

6.13 The relation AD � BC = 1, where A, B, C and D are the elements of a transmission matrix of a

network, is valid for

(a) any type of network. (b) passive but not reciprocal network.

(c) passive and reciprocal network. (d) both active and passive network.

6.14 When a number of 2-port networks are connected in cascade, the individual:

(a) Zoc matrices are added. (b) Ysc matrices are added.

(c) chain matrices are multiplied. (d) H-matrices are multiplied.

6.15 The h parameters h11 and h22 are related to z and y parameters as

(a) h11 = z11 and 22
22

1
h

z
= (b) h11 = z11 and h22 = y22

(c) 11
22

z
h

z

D=  and 22
22

1
h

z
= (d) h11 = 

11

1

y
 and h22 = y22
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6.44 Network Theory

6.16 Two two-port networks a and b having A B C D parameters as

Aa = 4 = Da Ab = 3 = Db Ba = 5, Ca = 3 and Bb = 4, Cb = 2

are connected in cascade in the order of a, b. The equivalent A parameters of the combination is

(a) 17 (b) 22 (c) 24 (d) 31.

6.17 With the usual notation, a two-port resistive network satisfies the condition 
3 4

2 3
A D B C= = =

The z11 of the network is

(a)
5

3
(b)

4

3
(c)

2

3
(d)

1

3

6.18 The reciprocal of a network function is

(a) an immittance function, if the original function is an immittance function.

(b) a transfer function, if the original function is a transfer function.

(c) never an immittance function.

(d) never a transfer function.

6.19 A two-port network is defined by the relations 1 1 2 2 1 22 , 2 3I V V I V V= + = + . Then z12 is

(a) �2 W (b) �1 W (c)
1

2
- W (d)

1

4
- W

6.20 Consider the following statements

1. Transfer impedance is the reciprocal of transfer admittance.

2. One can derive transfer impedance of a network if its driving-point impedance and admittance

are known.

3. Driving-point impedance is the ratio of the Laplace transform of voltage and current functions

at the input.

Of these statements:

(a) 1, 2 and 3 are correct (b) 1 and 2 are correct

(c) 2 and 3 are correct (d) 3 alone is correct.

6.21 Consider the following statements

1. The two-port network shown below does NOT have an impedance matrix representation.

2. The two-port network shown below does NOT have an admittance matrix representation.
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Two-port Network 6.45

3. A two-port network is said to be reciprocal if it satisfies z12 = z21 or an equivalent relationship.

Of these statements:

(a) 1 and 2 are correct (b) 1 and 3 are correct

(c) 1 and 3 are correct (d) None is correct.

6.22 If two two-port networks are connected in series, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add. (d) None of these.

6.23 If two two-port networks are connected in parallel, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add (d) None of these.

6.24 If two two-port networks are connected in cascade, and if the port current requirement is satisfied,

which of the following is true?

(a) The z-parameter matrices add (b) The y-parameter matrices add.

(c) The ABCD-parameter matrices add (d) None of these.

6.25 The z11 and z22 parameters of the given network are

(a) 8 W, 7.75 W
(b) 13 W, 9 W
(c) 12 W, 8.5 W
(d) None of the above.

6.26 For the network shown, the parameters h11 and h21 are

(a) 5 W and �2/3 W (b) 3.4 W and �2/5 W
(c) 3.4 W and �3/5 W (d) None of the above.

6.27 The maximum value of the transmission parameter A for a pas-

sive, reciprocal, linear two-port network is

(a) 1 (b) 2

(c) 3 (d) none of the above.

6.28. The unique feature of ABCD parameters as compared to x, y

and h parameters is

(a) none (b) short-circuit functions

(c) open-circuit functions (d) reverse transverse functions

6.29. The driving point impedance of the infinite ladder network shown in the given figure is

(given R1 = 2 W and R2 = 1.5 W)

(a) 3 W (b) 3.5 W (c)
3

3.5
W (d)

3
ln 1

3.5

æ ö+ Wç ÷è ø
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6.46 Network Theory

EXERCISES

6.1 Current I1 and I2 entering at ports 1 and 2 respectively of a two-port network are given by the

following equations:

I1 = 0.5V1 � 0.2V2

I2 = �0.2V1 + V2

where V1 and V2 are the voltages at ports 1 and 2 respectively. Find the y, z and ABCD parameters

for the network. Also find its equivalent p-network.
[y11 = 0.5 

W
; y12 = �0.2 

W
; y21 = �0.2 

W
; y22 = 1 

W
;

z11 = 2.174 W; z12 = z21 = �0.435 W; z22 = 1.086 W;

A = 5, B = 5 W, C  = 2.3 
W
, D = 2.5; Y1 = 0.3 

W
; Y2 = 0.2 

W
; Y3 = 0.8 

W
]

6.2 Determine the z-and y-parameters of the networks shown in figure.

(a)

1

/120 110
120 160

( ; ( )3
160 80 /110

4

j j
j j

z y
j j j j

-
ì ü-é ù- -é ùï ïê ú= W) = Wí ýê ú ê ú- - -ë ûï ïë ûî þ

(b)
(30 40) 40

(
40 (30 80)

j j
z

j j

ì ü+é ùï ï= W)í ýê ú+ï ïë ûî þ

(c)

(1 25) 1

(1
1 1

5

z

ì ü+é ù
ï ïê ú= W)í ýæ öê ú+ç ÷ï ïè øê úë ûî þ

6.3 Obtain the z-parameters for the circuit shown in figure and hence draw the z-parameter equivalent

circuit.

14 2

5 5
(

2 6

5 5

z

ì üé ù
ï ïê úï ï= W)í ýê ú
ï ïê ú
ï ïë ûî þ
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Two-port Network 6.47

6.4 Find the open-circuit and short-circuit impedances of the network shown in figure.

31 19

44 44
; -parameters do not exist

19 23

44 44

y z

é ùé ù-ê úê ú
=ê úê ú

ê úê ú-ê úë ûë û

6.5 Find the z-parameters for the 2-port networks shown in figure containing a controlled source.

2 1

( )1 3

2 2

z

ì ü- -é ùï ïê ú= Wí ýê úï ïë ûî þ

6.6 A 2-port network made up of passive linear resistors is fed at port 1 by an ideal voltage source of V

volt. It is loaded at port 2 by a resistor R.

(i) With V = 10 volt and R = 6 W currents at ports 1 and 2 were 1.44 A and 0.2 A respectively.

(ii) With V = 15 volt and R = 8 W current at port 2 was 0.25 A.

Determine the p-equivalent circuit of the 2-port network. {YA = 0.2;  YB = 0.3; YC = 0.5 (mho)}

6.7 Calculate the T-parameters for the block A and B separately and then using these results calculate the

T-parameters of the whole circuit shown in figure. Prove any formula used.

{ 3

2

1 5
; ;

2 2

7/2 15/2

3/2 7/2

a b a b

a b a b

A A D D

C C B B

T

= = = =

= = = =

üé ùï= ýê ú
ïë ûþ

6.8 Find out the z-parameters of the two-port network shown in figure.

6 2
( )

2 6
z

ì üé ùï ï= Wí ýê ú
ï ïë ûî þ

C06C.pmd 7/18/09, 12:15 PM47



6.48 Network Theory

6.9 Find the z-parameters for the lattice network shown in Figure.

11 22 12 21

2

2

; ;
2 2

2( )1

2 2

b a b a

a b b

a b b a b

Z Z Z Z
z z z z

Z Z Z
z

Z Z Z Z Z

ì + -æ ö æ ö= = = =í ç ÷ ç ÷è ø è øî
üé ù+ ï= ê úý+ ïë ûþ

6.10 Current I1 and I2 entering at port-1 and port-2 respectively of a two port network are given by the

following equations: I1=0.5V1-0.2V2, I2=-0.2V1+V2, where V1 and V2 are the voltages at port-1 and

port-2 respectively. Find the y, z and ABCD parameters for the network. Also find the equivalent p-
network.

1
0.5 0.2 2.174 0.435

( ); ( ),
0.2 1 0.435 1.087

5 5
; 0.3 , 0.8 , 0.2

2.3 2.5
a b c

y Z

T Y Y Y

-ì -é ù é ùï = W = Wí ê ú ê ú-ï ë û ë ûî
üWé ù ï= = = = ýê ú
ïë û þ

J J J
J

6.11 Two identical sections of the circuit shown in figure are connected in series. Obtain the z-parameters

of the combination and verify by direct calculation. 11 22 12 21[ 6 ; 4 ]z z z z= = W = = W

SHORT-ANSWER TYPE QUESTIONS

6.1 (a) Consider a linear passive two-port network and explain what are meant by (i) open-circuit

impedance parameters and (ii) short-circuit admittance parameters.

(b) What are the open-circuit impedance parameters of a two-port network? How can the transmis-

sion parameters be obtained from open-circuit impedance parameters?

(c) Establish, for two-port networks, the relationship between the transmission parameters and the

open-circuit parameters.

(d) Define z- and y-parameters of a typical four terminal network. Determine the relationship

between the z and y parameters.
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Two-port Network 6.49

(e) Express h-parameters in terms of z-parameters for a two-port network.

(f) Derive expressions for the y-parameters in terms of ABCD parameters of a two-port network.

6.2 (a) What do you understand by a reciprocal network? What is a symmetrical network?

(b) Write technical note on derivation of short-circuit admittance parameter y12 of a symmetrical

and reciprocal two-port lattice network.

(c) How will you find the p-equivalent of a given network when its y-parameters are known?

6.3 (a) Explain what are meant by the transmission (ABCD) parameters of a two-port network. Derive

the conditions necessary to be satisfied for the network to be (i) reciprocal and (ii) symmetrical.

Or,

Prove that for a reciprocal two-port network,

DT = (AD � BC) = 1

(b) Prove that for a symmetrical two-port network,

Dh = (h11h22 � h12h21) = 1

6.4 (a) Two two-port networks are connected in parallel. Prove that the overall y-parameters are the

sum of corresponding individual y-parameters.

(b) Two two-port networks are connected in cascade. Prove that the overall transmission parameter

matrix is the product of individual transmission parameter matrices.

(c) Two two-port networks are connected in series. Prove that the overall z-parameters are the sum

of corresponding individual z-parameters.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

6.1 (d) 6.2 (c) 6.3 (a) 6.4 (a) 6.5 (d) 6.6 (c) 6.7 (b)

6.8 (d) 6.9 (a) 6.10 (b) 6.11 (d) 6.12 (d) 6.13 (c) 6.14 (c)

6.15 (c) 6.16 (b) 6.17 (b) 6.18 (a) 6.19 (d) 6.20 (d) 6.21 (b)

6.22 (a) 6.23 (b) 6.24 (d) 6.25 (a) 6.26 (b) 6.27 (d) 6.28 (d)

6.29 (a)
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CHAPTER

7
Fourier Series and
Fourier Transform

PART I: FOURIER SERIES

7.1 INTRODUCTION

In 1807, the French mathematician Joseph Fourier (1768�1830) submitted a paper to the Academy of

Sciences in Paris. In it, he presented a mathematical description of problems involving heat conduction.

Although the paper was at first rejected, it contained ideas that would develop into an important area

of mathematics named in honour, Fourier analysis. One surprising ramification of Fourier�s work was

that many familiar functions can be expanded in infinite series and integrals involving trigonometric

functions. The idea today is important in modeling many phenomena in physics and engineering.

Fourier Analysis is a method for analysis of steady�state response of a network subject to a

periodic input.

Periodic function A function of time f (t) is said to be periodic if f (t) = f (t ± nT ); where, n is a

positive integer and �T � is the period. Thus, a periodic function repeats itself every T second.

Figure 7.1 Periodic function



7.2 Network Theory

7.2 DEFINITION OF FOURIER SERIES

French mathematician J.B.J. Fourier first studied the periodic function in 1822 and published his

theorem which states that,

�Any arbitrary periodic function can be represented by an infinite series of sinusoids of harmoni-

cally related frequencies.� This infinite series is known as Fourier series.

Thus, if f(t) is a periodic function, then the Fourier series is,

f(t) = 0 1 2cos cos 2 cosna a t a t a n tw w w+ + +¼+ +¼

1 2sin sin 2 sinnb t b t b n tw w w+ + +¼+ +¼

= 0
1

( cos sin )n n
n

a a n t b n tw w

¥

=
+ +å

where, w is the fundamental frequency = 
2

T

p

nw is the nth harmonic of fundamental frequency

a0, an, bn are the Fourier Co-efficients

7.3 DIRICHLET�S CONDITIONS

The conditions, under which a periodic function f (t) can be expanded in a convergent Fourier series,

are known as Dirichlet�s conditions.

These are as follows:

(i) f (t) is a single valued function.

(ii) f (t) has a finite number of discontinuities in each period, T.

(iii) f (t) has a finite number of maxima and minima in each period, T.

(iv) The integral, 
0

| ( )|
T

f t dtò  exists and is finite or in other way, 2

0

[ ( )]
T

f t dt <¥ò .

Note: If f (t) is current or voltage, 2

0

[ ( )]
T

f t dtò  represents energy which would be supplied by the

source in one cycle. That means the energy in the waveform for each cycle must be finite. All

physical waveforms would, of course, satisfy this criterion.

Therefore, in practical engineering problems, it is not necessary to check whether a function

satisfies Dirichlet condition.

7.4 FOURIER ANALYSIS

This involves two operations:

1. The evaluation of the co-efficient a0, an and bn.

2. Truncation of the infinite series after a finite number of terms so that f (t) is represented within

allowable error (-Done later).



Fourier Series and Fourier Transform 7.3

7.4.1 Evaluation of Fourier Co-efficients

f(t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å (7.1)

From (7.1),

0 0
10 0 0

( ) ( cos sin )
T T T

n n
n

f t dt a dt a n t b n t dt a Tw w
¥

=

= + + =åò ò ò

0 0

0 0

sin 0 for all ; and cos 0 for all ;
t T t T

t t

m tdt m n tdt nw w
+ +ì üï ï= =í ý

ï ïî þ
ò òQ

0 0

1
( )

T
a f t dt

T
\ = ò

This shows hat a0 is the average value of f(t) over a period; therefore, called dc value of the signal.

Now from equation (7.1),

0
10 0 0

( ) cos cos ( cos cos cos sin )
T T T

n n
n

f t k tdt a k tdt a k t n t b k t n t dtw w w w w w
¥

=
= + +åò ò ò

= 0 0
2k
T

a+ +

0 0

0 0

sin sin 0 for and cos cos 0 for
t T t T

t t

n t m tdt m n n t m tdt n mw w w w
+ +ìï = ¹ = ¹í

ïî
ò òQ

for
2

T
n m= = }for

2

T
n m= =

\
0

2
( ) cos

T

ka f t k tdt
T

w= ò

Again from equation (7.1),

0

( )sin
T

f t k tdtwò = 0
10 0

sin ( sin cos sin sin )
T T

n n
n

a k tdt a k t n t b k t n t dtw w w w w
¥

=

+ +åò ò

= 0 0
2k
T

b+ +

\ bk = 
0

2
( ) sin

T

f t k tdt
T

wò
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Example 7.1  For the periodic waveform shown in figure, find the Fourier series expansion.

Figure 7.2 Periodic waveform of Example (7.1)

Solution Here, v(t) = V, for 0 < t < T/2

= 0, for T/2 < t < T

a0 = 
/ 2

0 0

1 1
( )

2

TT
V

v t dt Vdt
T T

= =ò ò

an = 
/ 2

0 0

2 2 2
( ) cos cos 0

TT

v t n tdt V n dt
T T T

p
w

æ ö= =è øò ò

and, bn = 
0

2
( ) sin

T

v t n tdt
T

wò = 
/ 2

0

2 2
sin

T

V n dt
T T

pæ ö
è øò

= (1 cos ); 1, 2, 3,
V

n n
n

p
p

- = ± ± ± ¼

= 0; for even n

= 
V

np
; for odd n

So, the Fourier series of the square wave is given as,

v(t) = 
1 2 2 2

sin sin 3 sin 5
2 3 5

V t t tw w w
p p p

é ù+ + + +¼ê úë û

Exponential Form of Fourier Series We have the trigonometric Fourier series,

f(t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å

We know that, sin
2

jn t jn te e
n t

j

w w

w
--

=  and cos
2

jn t jn te e
n t

w w

w
-+

=

Thus,

f(t) = 0
1

( ) ( )

2 2

jn t jn t jn t jn t

n n
n

e e e e
a a b

j

w w w w- -¥

=

é ù+ -
+ +ê ú

ë û
å

= 0
1

1

2
jn t jn tn n

n n
n

b b
a a e a e

j j
w w

¥
-

=

é ùæ ö æ ö
+ + + -ç ÷ ç ÷ê úè ø è øë û

å

= 0
1 2 2

jn t jn tn n n n

n

a jb a jb
a e ew w

¥
-

=

é ù- +æ ö æ ö
+ +ç ÷ ç ÷ê úè ø è øë û

å
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Let, C0 = a0, Cn = *and (or )
2 2

n n n n
n n

a jb a jb
C C-

- +æ ö æ ö=ç ÷ ç ÷è ø è ø

Thus the series becomes,

f(t) = 0
1

[ ]jn t jn t
n n

n

C C e C ew w
¥

-
-

=
+ +å

or 0( ) jn t
n

n

f t C C e w
¥

=-¥
= + å  This is the exponential form of the Fourier series.

Now, Cn = 
0 0

1 2 2
( ) cos ( ) sin

2 2

T T
n na jb

f t n tdt j f t n tdt
T T

w w
é ù-

= -ê ú
ë û

ò ò

= 
0

1
( ) (cos sin )

T

f t n t j n t dt
T

w w-ò

Thus, 
0

1
( )

T
jn t

nC f t e dt
T

w-= ò  This equation is valid for both positive, negative and zero values of n.

Example 7.2  For the square wave shown in Example 7.1, find the exponential Fourier series.

Solution f(t) = v(t) = V, for 0 < t < T/2

= 0, for T/2 < t < T

So, Cn = 
/2

0 0

1 1
( )

TT
jn t jn tf t e dt Ve dt

T T
w w- -=ò ò

For n = 0, C0 = 
/2

0

1

2

T
V

Vdt
T

=ò

For n ¹ 0 Cn =  
/2

/2

0

1 1
[ 1] [ 1]

2

T
jn t jn T jnjVV

Ve dt e e
T T jn n

w w p

w p
- - -= - = -

-ò

(since wT = 2p)

or Cn = 0 for even n

= 
jV

np
-  for odd n

Thus, the exponential Fourier series becomes,

v(t) = 5 3...
5 3 2

j t j t j t j tjV jV jV jVV
e e e ew w w w

p p p p
-+ + + + -

3 5 ... for odd
3 5

j t j tjV jV
e e nw w

p p
- -- - -
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Amplitude and Phase Spectrum From the trigonometric Fourier series,

f(t) = 0
1

( cos sin )n n
n

a a n t b n tw w
¥

=
+ +å

= 0
1

cos ( )n n
n

A A n tw f
¥

=
+ -å

where, A0 = a0, An = 2 2 1; tan n
n n n

n

b
a b

a
f - æ ö

+ = ç ÷è ø
Also, for exponential form, Cn is complex and we may write it as,

Cn = | | n
j

nC e f  and |Cn| = 2 21

2 2
n

n n

A
a b+ =  and fn = 1tan n

n

b

a
- æ ö

ç ÷è ø
The quantities An and fn are called the amplitude and the phase of the nth harmonic, respectively.

l Variation of An with n (or nw) is known as the amplitude spectrum or Frequency � spectrum.

l Variation of fn with n (or nw) is known as the phase- spectrum of the signal.

As both An and fn occurs at discrete values of the frequency, i.e., n = 1, 2, 3, etc. these spectra are

called Line spectra.

Since |Cn | = 
2
nA

; there is a scale factor of ½ for the amplitude spectrum for exponential form for

the Fourier series compared to the trigonometric form for all lines except the one for n = 0. Also, in

the case of exponential form spectral lines are drawn for both for positive and negative values of n.

Example 7.3  For the square wave shown in Example 7.1, draw the amplitude and phase spectra.

Solution From the results of Example 7.1, we have,

v(t) = 
1 2 2 2

sin sin 3 sin 5
2 3 5

V t t tw w w
p p p

é ù+ + + +¼ê úë û

Magnitudes: V0 = 
2

V Ð0°; V1 = 
2

90
V

p
Ð ° ; V2 = 0; V3 = 

2
90

3

V

p
Ð °  [since the cosine

components are all zero, the phase angle will be 1 1tan tan ( ) 90
0
nb- -æ ö = ¥ = °ç ÷è ø

]

So, the line spectra become,

(a) Amplitude Spectrum (b) Phase Spectrum

Figure 7.3 Amplitude and phase spectra of Example 7.3
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Significance for Line Spectra: The amplitude- spectrum renders valuable information as to where to

truncate the infinite series and yet maintain a good approximation to the original waveform.

Effective Value of a Periodic Function The effective (or R.M.S.) value of a periodic func-

tion f(t) is defined as,

Feff (Frms) = 

2

2
0

10 0

1 1
[ ( )] cos ( )

T T

n n
n

f t dt A A n t dt
T T

w f
¥

=

é ù
= + -ê ú

ë û
åò ò

= 2 2
0

1

1

2n
n

T
A T A

T

¥

=

é ù
+ê ú

ê úë û
å

2

2
0

1

( )
2

n
eff rms

n

A
F F A

¥

=

æ ö
= + ç ÷è ø

å

This shows that the effective value of a periodic function is the square root of the effective values of

the harmonic components and the square of the d. c. value.

Waveform Symmetry There are few methods by which the evaluation of Fourier co-efficients is

simplified by symmetry consideration.

These methods reduce the amount of labour involved in finding out the co-efficients.

Now, a0 = 
/ 20

0 /2 0

1 1
( ) ( ) ( )

TT

T

f t dt f t dt f t dt
T T -

é ù
= +ê ú

ê úë û
ò ò ò

Putting t = �x in the first integrand and t = x in the second integrand, we get

/2

0
0

1
[ ( ) ( )]

T

a f x f x dx
T

é ù
= + -ê ú

ë û
ò

 Now, an = 
/ 2 0

0 0 /2

2 2
( ) cos ( ) cos ( ) cos

TT

T

f t n tdt f t n tdt f t n tdt
T T

w w w
-

é ù
= +ê ú

ê úë û
ò ò ò

= 1 2

2
[ ]I I

T
+

Since the variable t in I1 and I2 integrals is dummy variable, let x = t in I1 and x = � t in I2.

\ an = 
/2 /2

0 0

2
( ) cos ( ) cos ( )

T T

f x n xdx f x n x dx
T

w w
é ù

- - -ê ú
ë û
ò ò

Thus,
/2

0

2
[ ( ) ( )]cos

T

na f x f x n xdx
T

w= + -ò
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Similarly,
/ 2

0

2
[ ( ) ( )] sin

T

nb f x f x n xdx
T

w= - -ò

Following symmetries are considered:

1. Odd or Rotation Symmetry,

2. Even or Mirror Symmetry,

3. Half-Wave or, Alternation Symmetry, and

4. Quarter-Wave Symmetry.

1. Odd Symmetry

A function f (x) is said to be odd if,

f (x) = � f (�x)

Figure 7.4 Odd function

Hence, for odd functions a0 = 0 and an = 0 and 
/2

0

1
( ) sin

T

nb f x n x dx
T

w= ò

Thus, the Fourier series expansion of an odd function contains only the sine terms, the constant and

the cosine terms being zero.

2. Even Symmetry

A function f (x) is said to be even, if

f (x) = f (�x)

\ a0 = 
/2

0

2
( )

T

f x dx
T ò

\ an = 
/2

0

4
( ) cos

T

f x n xdx
T

wò

and bn = 0

Thus, the Fourier series expansion of an even periodic function contains only the cosine terms plus a

constant, all sine terms being zero.

3. Half �Wave or Alternation Symmetry

A periodic function f (t) is said to have half wave symmetry if it satisfies the condition,

f (t) = � f (t ± T/2), where T � time period of the function

Figure 7.5 Even function
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\ a0 = 
/20

1 2
/2 0

1 1
( ) ( ) [ ]

T

T

f t dt f t dt I I
T T-

é ù
+ = +ê ú

ê úë û
ò ò

For I1, let x = (t + T/2); so, f(t) = f(x � T/2) = � f(x) and dt = dx

\ I1 = 
/2 /20

/2 0 0

( ) ( ) ( )
T T

T

f t dt f x dx f x dx
-

= - = -ò ò ò

\ a0 = 
/2 /2 /2 /2

0 0 0 0

1 1
( ) ( ) ( ) ( ) 0

T T T T

f x dx f t dt f x dx f x dx
T T

é ù é ù
- + = = - =ê ú ê ú

ë û ë û
ò ò ò ò

\ an = 
/2 /20

1 2
/2 /2 0

2 2 2
( ) cos ( )cos ( ) cos [ ]

T T

T T

f t n tdt f t n tdt f t n tdt I I
T T T

w w w
- -

é ù é ù
= + = +ê ú ê ú

ê ú ê úë û ë û
ò ò ò

Again putting x = (t + T/2) and following the same procedure,

I1 = 
/2 /20

/2 0 0

( ) cos ( ) cos ( /2) ( )cos( )
T T

T

f t n tdt f x n x T dx f x n x n dxw w w p
-

= - - = - -ò ò ò

= 
/2 /2

0 0

( )cos cos ( )cos cos
T T

f x n n xdx f t n n tdtp w p w- = -ò ò

an = 
/2

0

2
(1 cos ) ( ) cos

T

n f t n tdt
T

p w- ò

= 0; for even n, and

= 
/2

0

4
( ) cos

T

f t n tdt
T

wò , for odd n.

Similarly, bn = 0, for even n; and

= 
/2

0

4
( )sin

T

f t n tdt
T

wò , for odd n.

Thus, the Fourier series expansion of a periodic function having half-wave symmetry contains only

odd harmonics, the constant term being zero.

4. Quarter�Wave Symmetry

The symmetry may be regarded as a combination of first three kinds of symmetry provided that the

origin is properly chosen. For Figure 7.6(a), the wave has alternation and odd symmetry; thus the

Fourier series consists of odd sine terms only.

\ a0 = 0, an = 0 and bn = 
/4

0

8
( ) sin

T

f t n t dt
T

wò , n being odd only.

/2 0

0 /2

x T

t T-
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For Figure 7.6(b), the origin, having chosen one quarter cycle away, as in Figure 7.6(a), the wave has

alternation and even symmetry; thus the Fourier series consists of odd cosine terms only.

\ a0 = 0; bn = 0; and an = 
/4

0

8
( ) cos

T

f t n tdt
T

wò , n being odd only.

Note:

(i) The sum or product of two or more even functions is an even function, and with the addition of

a constant, the even nature of the function is still preserved.

(ii) The sum of two or more odd functions is an odd function, but the addition of a constant

removes the odd nature of the function. The product of two odd functions is an even function.

7.4.2 Truncating Fourier Series

When a periodic function is represented by a Fourier series, the series is truncated after a finite

number of terms.

So, the periodic function is approximated by a trigonometric series of (2N + 1) terms as,

SN (t) = 0
1

( cos sin )
N

n n
n

a a n t b n tw w
=

+ +å (7.2)

such that the co-efficients a0, an and bn are chosen to give the least mean square error.

The truncation error is,

eN (t) = f(t) � SN(t) (7.3)

So, the mean square error/figure of merit/the cost criterion for optimal minimal error is,

EN = 2 2

0

1
( ) [ ( )]

T

N Ne t e t dt
T

= ò (7.4)

where, EN is a function of a0 , an and bn, but not of t.

Example 7.4  Show that the mean square error is a minimum if the co- efficients in the approxi-

mated trigonometric series SN (t) are the Fourier co- efficients.

Solution In order to make �EN� minimum, the necessary conditions are,

N

n

E

a

¶
¶

= 0, for n = 0, 1, 2, � (7.5a)

Figure 7.6(b) Cos w t: combination of half-wave

and even symmetry

Figure 7.6(a) Sin w t: combination of half-wave

and odd symmtery
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and N

n

E

b

¶
¶

= 0, for n = 0, 1, 2, � (7.5b)

These two equations give (2N +1) equations from which (N+1) number of an for

n=1, 2, �, N and N number of bn for n=1, 2, �, N can be determined.

From Equations 7.4 and 7.5

0 0

( )2 2
( ) [ ( ) ( )] cos 0

T T
N N

N N
n n

E e t
e t dt f t S t n tdt

a T a T
w

¶ ¶
= = - =

¶ ¶ò ò

or
0

( ) cos
T

f t n tdtwò = 
0

( )cos
T

NS t n tdtwò

= 0
10

( cos sin ) cos
T N

n n
n

a a n t b n t n tdtw w w
=

é ù
+ +ê ú

ê úë û
åò

= 2

0

cos
T

na n tdtwò

= 
2n
T

a

or an = 
0

2
( ) cos

T

f t n tdt
T

wò  (n = 0, 1, 2, �, N)

Similarly, from equation 7.5(b), we get,

\ bn = 
0

2
( ) sin

T

f t n tdt
T

wò  (n = 0, 1, 2, �, N)

Therefore, it is proved that a Fourier series with a finite number of terms represents the best approxi-

mation for a given periodic function by any trigonometric series with the same number of terms.

However, there is no analytical method for the evaluation of estimation of error due to truncation

of infinite series; i.e., we can not predict the number of minimum terms to be retained in the series

within a prescribed accuracy. The minimisation of error is done by trial and error method, using more

terms until specifications are met.

Example 7.6  If f(t) is approximated by 
2

8
sin tw

p
, i.e., the first term in the Fourier Series, find the

mean square error.

Figure 7.7 Waveform of Example 7.6
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Solution Truncation Error, 
2

8
( ) sinNe f t tw

p
= -

Mean Square Error, EN = eN
2= 

2/4
2

2
0 0

1 4 8
( ) ( ) sin

TT

Ne t dt f t t dt
T T

w
p

é ù= -ê úë û
ò ò

(from symmetry consideration)

= 

2/4

2
0

4 4 8
sin

T
t

t dt
T T

w
p

é ù-ê úë û
ò

= 0.0047

7.5 STEADY- STATE RESPONSE OF NETWORK TO PERIODIC SIGNALS

The voltage (periodic) is,

v(t) = 0
1

cos ( )n n
n

A A n tw f
¥

=
+ -å

We want to find out the steady state current, i(t). Phasors corresponding to terms in right hand side

are,

V0 = 0
0 and n

jj
n nA e A e f-=V

Let, Z (jw) = Impedance phasor of the network at any frequency w.

So, the current phasors are,

I0 = 
0

00 0
0| |

( 0) ( 0)

j
jA e

I e
j Z j

= =
V

Z

In = 0 | |
( ) ( )

n

n

j
jn

n

A e
I e

j Z j

f
a

w w

-
-= =

V

Z

By superposition principle, the net current phasor is,

i(t) = I0 + I1 + I2 + �

So, transforming from frequency domain to time domain,

i(t) = 0
1

| | cos ( )n n
n

I I n tw a
¥

=

+ -å

7.5.1 Average Power Calculation

v(t) = 0
1

cos ( )n n
n

V V n tw f
¥

=

+ -å

i(t) = 0
1

cos ( )n n
n

I I n tw a
¥

=
+ -å

Here, V0 = DC voltage component

Vn = the amplitude of the nth harmonic voltage

 fn = the phase angle of the nth harmonic voltage
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 I0 = DC current component

 In = the amplitude of the nth harmonic current

 an = the phase angle of the nth harmonic current

Instantaneous power,

P(t) = v(t) i(t)

Average power,

Pav = 0 0
1 10 0

1 1
( ) ( ) cos ( ) cos ( )

T T

n n n n
n n

v t i t V V n t I I n t dt
T T

w f w a
¥ ¥

= =

é ùæ ö æ ö
= + - + -ê úç ÷ ç ÷è ø è øê úë û

å åò ò

or Pav = 0 0
1 0

cos ( ) cos ( )
T

n n n n
n

V I V I n t n t dtw f w a
¥

=

+ - -å ò

or Pav = 0 0
1

cos ( )
2
n n

n n
n

V I
V I f a

¥

=

+ -å

7.5.2 Steps for Application of Fourier Series to Circuit Analysis

1. Fourier series of the given periodic excitation function is obtained.

2. The circuit elements are transformed from time domain to frequency domain (i.e., R ® R, L ®

jwnL, C ® 
1

j nCw
 for nth harmonic).

3. The Fourier series of the DC and AC components of the response are calculated.

4. Using Superposition, the Fourier series of the response is obtained by summing up the indi-

vidual DC and AC response components.

7.5.3 Power Spectrum

It is the distribution of the average power over the different frequency components.

Let, Pn be the average power for the nth harmonic component.

Note: Pn is always positive so that only a magnitude spectrum is possible.

Another form of line spectrum for power is also possible [Fig. 7.8(ii)]; obtained by assuming half of

Pn to the positive frequency nw and half to the negative frequency.

Figure 7.8(i) Power Spectrum for positive w Figure 7.8(ii) Power Spectrum for both positive

and negative w
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PART II: FOURIER TRANSFORM

7.6 INTRODUCTION

The Fourier series representation of a period function describes the function in the frequency domain

in terms of amplitude and phase spectra. The Fourier transform extends this frequency domain

description to functions that are not periodic.

Fourier transform is a powerful tool in the study of power spectra, correlation functions, noise and

other advanced problems.

7.7 DEFINITION OF FOURIER TRANSFORM

The Fourier Transform or the Fourier integral of a function f (t) is denoted by F ( jw) and is defined

by,

F(jw) = F[ f(t)] = ( ) j tf t e dtw
¥

-

-¥
ò (7.5)

and the inverse Fourier transform is defined by,

f(t) = F  �1[F(jw)] = 21
( ) ( 2 )

2
j t j fF j e d F j f e dfw pw w p

p

¥ ¥

-¥ -¥
=ò ò (7.6)

Equations 7.5 and 7.6 form the Fourier transform pair.

Explanation

Consider the exponential Fourier Series,

f(t) = jn t
nC e w

¥

-¥
å (7.7)

where, Cn = 
/2

/2

1
( )

T
jn t

T

f t e dt
T

w-

-
ò (7.8)

If the period T becomes infinite, the function does not repeat itself and becomes aperiodic or non-

periodic.

So, the interval between adjacent harmonic frequencies is,

Dw = (n + 1) � nw = w = 
2

T

p

or
1

T
= 

2 2T

w w

p

D= (7.9)

As T ® ¥, Dw ® dw and the frequency goes from a discrete variable over to a continuous variable.

1

2

d

T

w

p
® and nw ® w (7.10)
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From 7.6 and 7.10,

( ) j t
nC T f t e dtw

¥
-

-¥
® ò . This is the Fourier Transform of f (t) i.e., F ( jw).

( ) [ ( )] ( ) j tF j F f t f t e dtww
¥

-

-¥
= = ò

So, from equation (7.7),

 f(t) = 
1

( ) jn t
nC T e

T
w

¥

-¥

æ ö
è øå (7.11)

As T ® ¥, CnT ® F(jw), nw ® w and 
1

2

d

T

w

p
®  and ®å ò  (summation approaches integration).

Thus, from (7.11),

1
( ) ( )

2
j tf t f j e dww w

p

¥

-¥
= ò

Spectra Let, F( jw) = |F( jw) |e jf (w)

The variation of |F( jw)| with w is referred to as the amplitude spectrum.

The variation of f (w) with w is referred to as the phase�spectrum.

Since F( jw) is a continuous function, the corresponding amplitude and phase spectra are continuous

spectra.

7.8 CONVERGENCE OF FOURIER TRANSFORM

When f (t) is a single-valued function and is different from zero over an infinite interval of time, the

behavior of f (t) as t ® ± ¥ determines the convergence of the Fourier transform.

The Fourier transform will exist, if

| ( )|f t dt
¥

-¥
< ¥ò

7.9 FOURIER TRANSFORM OF SOME FUNCTIONS

1. f(t) = Ae�at u(t), a > 0

Fourier transform will exist, if a > 0

\ F( jw) = 
( )

0 0

[ ( )] ( )
( )

a j t
j t at j t e A

f t f t e dt A e e dt A
a j a j

w
w w

w w

¥¥ ¥ - +
- - -

-¥
= = = =

- + +ò òF
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Amplitude, |F(jw)| = 
2 2

A

a w+

Phase, f( jw) = 1tan
a

w- æ ö- è ø

2. f (t) = Ke�a|t|, for all values of t

F( jw) = 
0

t ( ) ( )

0

[ ] j t a j t a j te dt Ke dt Ke dtw w w
¥ ¥

-- - - - +

-¥ -¥
= = +ò ò òa ta| |Ke KeF

= 
2 2

2K K Ka

a j a j aw w w
+ =

- + +

Note: There are some important functions which do not have Fourier transforms in a strict sense;

because they do not satisfy the Dirichlet�s condition, i.e., | ( )|f t dt
¥

-¥
ò  is infinite (such as, the step

function and sinusoidal function). However, the Fourier transforms of these function are evaluated by

approximating these functions in time domain as the limiting value of another function which pos-

sesses Fourier transform.

3. Fourier transform of some constant, K, for all values of t

Here, we can approximate the constant as,

f(t) = | |

0
Lt [ ]a t

a
Ke-

®

\ F[K] = | |

2 20 0

2
Lt Lta t j t

a a

Ka
Ke e dt

a

w

w

¥
- -

® ®-¥
=

+ò

\ F[K] = 0; for w ¹ 0

= ¥; for w = 0

[by L Hospital�s rule, i.e. differentiating both numerates and denominator with respect to a]

Thus, F [K] is an impulse function at w = 0. The strength (amplitude) of the impulse function is

obtained as,

2 2

2
[ ] 2

Ka
K d d K

a
w w p

w

¥ ¥

-¥ -¥
= =

+
ò òF

\ [ ] 2 ( )K Kp d w=F

4. Unit impulse function or Dirac Delta Function, d (t)

Some problems involve the concept of an impulse, which may be intuitively thought of as a force of

very large magnitude impacting just for an instant.

\ F[d(t)] = 0( ) ( ) ( ) 1j tt e dt t e dt t dtwd d d
¥ ¥ ¥

-

-¥ -¥ -¥
= = =ò ò ò
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5. Fourier transform of Signum Function, Sgn(t)

A signum function is defined as,

 Sgn(t) = +1 for t > 0

= 0 for  t = 0

= �1 for t < 0

\ Sgn( )t dt
¥

-¥
ò  is infinite, direct evaluation of Fourier transform is not possible.

Therefore, the given function has to be expressed as limiting case of some other function and then the

Fourier Transform is computed. Let, the Sgn(t) be multiplied by e�a|t| and a ® 0.

[Sgn( )]F t = 
0

| | ( ) ( )

0 0
0

Lim Sgn( ) Lima t j t a j t a j t

a a
e t e dt e dt e dtw w w

¥ ¥
- - - - +

® ®- ¥ - ¥

é ù
= - +ê ú

ê úë û
ò ò ò

= 
0

1 1
Lim
a a j a jw w®

-é ù
+ê ú- +ë û

or
2

[Sgn( )]F t
jw

=

6. Fourier transform of Unit Step Function, u(t)

u(t) = 1 for t > 0

= 0 for t < 0

Since ( )u t dt
¥

-¥
ò  is infinite, direct evaluation of Fourier Transform is impossible.

Let, u(t) = 
1 1

Sgn( )
2 2

t+

\ F [u(t)] = 
1 1 1 1 2

Sgn( ) 2 ( )
2 2 2 2

t
j

p d w
w

é ù é ù+ = ´ + ´ê ú ê úë û ë û
F F

or
1

[ ( )] ( )u t
j

pd w
w

= +F

Thus, the amplitude of unit step function u(t) in Frequency domain will be a combination of rectangu-

lar hyperbola and impulse function (of strength p at w = 0).

7.10 PROPERTIES OF FOURIER TRANSFORMS

1. Linearity

If a, b, Î C, then

{ ( ) ( )} { ( )} { ( )} ( ) ( )F f t g t F f t F g t F Ga b a b a w b w+ = + = +
provided the Fourier transforms of f(t) and g(t) exist.
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2. Scaling

If F{f (t)} = F(w) and c Î R, then

1
{ ( )}

| |
F cf t F

c c

wæ ö= è ø

3. Time shifting

If 0{ ( )} ( ) andF f t F t Rw= Î , then

0
0{ ( )} ( )j tF f t t e Fw w-- =

4. Frequency shifting

If { ( )} ( ) andF f t F Rw w= Î , then

0
0( ) { ( )}jF F e f tww w- =

5. Symmetry

If { ( )} ( )F f t F w= , then

{ ( )} 2 ( )F F t fp w= -

6. Modulation

If 0{ ( )} ( ) andF f t F Rw w= Î , then

0 0 0

1
{ ( ) cos ( )} [ ( ) ( )]

2
F f t t F Fw w w w w= + + -

0 0 0

1
{ ( )sin( )} [ ( ) ( )]

2
F f t t F Fw w w w w= + - -

7. Differentiation in time

Let n Î N and suppose that f (n) is piecewise continuous. Assume that 
( )Lim ( ) 0k

x
f t

®¥
= , then

( ){ ( )} ( ) ( )n nF f t j Fw w=
In particular

{ ( )} ( )F f t j Fw w¢ =
and

2{ ( )} ( )F f t Fw w² = -
8. Frequency differentiation

Let n Î N and suppose that f is piecewise continuous. Then

( ){ ( )} ( )n n nF t f t j F w=
In particular

{ ( )} ( )F tf t jF w= ¢
and

2{ ( )} ( )F t f t F w= - ²
These properties can be tabulated as follows (Table 7.1).
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Table 7.1 Properties of Fourier Transforms

Sl No. Time Domain 
1

( ) ( )
2

j tf t F j e dtw
w

p

¥

-¥

= ò Frequency Domain ( ) ( ) j tF j f t e dtw
w

¥
-

-¥

= ò

1 f (t) real F ( jw) = F* (� jw)

2 f (t) even, f (t) = f (� t) F ( jw) = F(� jw), F( jw) is real

3 f (t) odd, f (t) = � f (� t) F ( jw) = �F (� jw), F( jw) is imaginary, 

4 y(t) = tn f (t) Y ( jw) = 
( )

( )n
d F j

j
d

w

w

²
²

5 y(t) = f (at) F ( jw) = 
1

, 0
j

F a
a a

wæ ö >ç ÷è ø

6 0( ) ( )y t f t t= - 0( ) ( )j tY j e F jw
w w

-=

7 y(t) = 
( )n

n

d f t

dt
Y(jw) = ( jw)n F( jw)

8 y(t) = ( )f t dt
¥

-¥
ò Y( jw) = 

( )F j

j

w

w

9 y(t) = 0( ) j tf t e w Y( jw) = F [ j(w � w0)]

Example 7.7 Show that when f (t) is an even function of t, its Fourier transform F(jw) is a function

of w and is real; while when f(t) is an odd function of t, its Fourier transform F(jw) is

an odd function of w and is imaginary.

Solution From the definition,

F( jw) = ( ) ( )(cos sin )j tf t e dt f t t j t dtw w w
¥ ¥

-

-¥ -¥
= -ò ò

= ( )cos ( ) sin ( ) ( )f t tdt j f t tdt P jQw w w w
¥ ¥

-¥ -¥
- = +ò ò

where, P(w) = ( ) cos Even function of , i.e., ( ) ( )f t tdt P Pw w w w
¥

- ¥
= = -ò

and Q(w) = ( ) sin Odd function of , i.e., ( ) ( )f t tdt Q Qw w w w
¥

- ¥
= = - -ò

Now, F( jw) = ( )| ( )| jF j e f ww

|F(jw)| = 2 2( ) ( ) Even function ofP Qw w w+ =

and F( jw) = 1 ( )
tan Odd function of

( )

Q

P

w
w

w
- é ù =ê úë û
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l When f(t) is an even function

f(t) cos w t is an even function

f(t) sin w t is odd function.

\  P(w) = 
0

2 ( ) cosf t tdtw
¥

ò

 Q(w) = 0

so, F( jw) = P(w) = Even and Real (Proved)

l When f (t) is an odd function

f(t) cos wt is an odd function

f(t) sin wt is an even function

\ P(w) = 0

and \Q(w) = 
0

2 ( ) sinf t tdtw
¥

- ò

so, F( jw) = jQ(w) = Odd and Imaginary (Proved)

7.11 ENERGY DENSITY AND PERSEVAL�S THEOREM

This theorem states that the energy content (W) of a waveform (periodic or non-periodic) over the

whole frequency band is,

W = 2 21
( ) | ( )|

2
f t dt F j dw w

p

¥ ¥

-¥ -¥
=ò ò

Proof: We have,

W = 2 ( ) ( ) [ ( ) ]f t dt f t f t dt
¥ ¥

-¥ -¥
= ×ò ò

= 
1

( ) ( )
2

j tf t F j e dt dtww
p

¥ ¥

- ¥ - ¥

é ù
ê ú
ê úë û

ò ò

= 
1

( ) ( )
2

j tF j f t e dt dtww
p

¥ ¥

- ¥ - ¥

é ù
ê ú
ê úë û

ò ò

= 
1

( ) ( )
2

F j F j dw w w
p

¥

- ¥
× -ò

= 21
| ( )|

2
F j dw w

p

¥

-¥
ò

or W = 2 21
( ) | ( )|

2
f t dt F j dw w

p

¥ ¥

-¥ -¥
=ò ò Proved
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Note

(i) Since |F( jw)| is an even function of w,

W = 2 2

0

1
( ) | ( )|f t dt F j dw w

p

¥ ¥

-¥
=ò ò

(ii) Since w = 2p f, where f is the frequency,

W = 
22 2

0

( ) | ( 2 )| 2 ( 2 )f t dt F j f df F j f dfp p
¥ ¥ ¥

-¥ -¥
= =ò ò ò

The quantity 2| ( 2 )|F j f dfp  is the energy in an infinitesimal band of frequency df. It represents

the energy density in the frequency domain and has unit of Joule/Hertz.

Total energy content within the frequency band f1 and f2 is,

Wb = 
2

1

22 ( 2 )|
f

f

F j f dfpò

For the integration range �¥ to +¥, the total energy is,

 Wb = 
2 2

1 1

2 2| ( 2 )| | ( 2 )|
f f

f f

F j f df F j f dfp p
-

-
+ò ò

(iii) If f (t) is the voltage across a 1 W resistance or current through the same resistance, then Wb is

known as 1 W energy.

Example 7.8  The current in a 10 W resistor is 2( ) 10 ( ) ( ).ti t e u t A-

=  What is the energy associated

with the frequency band 0 £ w £ 2 rad/s?

Solution Here, f(t) = i(t) = 10e�2tu(t)

\ F(jw) = 
10

2 jw+

So, the energy associated with the given frequency band is,

W = 

2
2 2 3

2 1

2
0 0 0

10 10 100 10 1
| ( )| tan

2 24

d
F j d

w w
w w

p p pw

-
é ùæ ö= = ç ÷ê úè ø+ ë û

ò ò

= 
310

8

p

p
é ù
ê úë û

= 125 Joule Ans.
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7.12 COMPARISON BETWEEN FOURIER TRANSFORM AND LAPLACE

TRANSFORM

The defining equations are,

F(s) = 
0

( ) and ( ) ( )st j tf t e dt F j f t e dtw
w

¥ ¥
- -

-¥
=ò ò

Followings are some differences and similarities

1. Laplace Transform is one-sided in the interval 0 < t < ¥ and Fourier Transform is double-sided

in the interval �¥ < t < ¥. Thus, Laplace Transform is applicable for positive time function,

f(t), t > 0; while Fourier Transform is applicable for functions defined for all times.

2. Laplace Transform includes the initial conditions and is applicable for transient analysis; while

Fourier Transform is only applicable for steady-state analysis.

3. For functions f (t) = 0 for t < 0 and 
0

| ( )|f t dt
¥

<¥ò , the two transforms are related as,

( ) ( )|s jF j F s
w

w == . Thus, Laplace Transform is associated with entire s-plane, while, Fourier

Transform is restricted to the imaginary ( jw) axis.

4. Laplace Transform is applicable to a wider range of functions than the Fourier Transform. On

the other hand, Fourier Transforms exist for signals that are not physically realizable and have

no Laplace Transform.

7.13 STEPS FOR APPLICATION OF FOURIER TRANSFORM TO CIRCUIT

ANALYSIS

By Fourier Transform, we can find the response of a circuit due to non-periodic functions. The

general procedure is described below.

1. Fourier Transform of the given excitation function is obtained.

2. Fourier Transform of the circuit elements is obtained 
1

i.e., , , .R R L j L C
j C

w
w

æ ö® ® ®ç ÷è ø

3. The transfer function in Fourier Transform Domain is defined as, 
( )

( )
( )

Y j
H j

X j

w
w

w
=  or

( ) ( ) ( )Y j H j X jw w w= × ; where, Y( jw) is the response transform and X( jw) is the excitation

transform.

4. Taking the inverse Fourier Transform of the product ( ) ( )H j X jw w× , we get the response y(t).
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SOLVED PROBLEMS

7.1 Determine the Fourier series for the square waveform shown below and plot the magnitude and the

phase spectra.

Solution The waveform, f (t) = V; 0 < t < T/4

= �V; T/4 < t < 3T/4

= V; 3T/4 < t < T

Obviously, the given function is an even function.

\ bn = 0

Now, a0 = ( )
/2 /4 /2

0 0 /4

2 2 2
0

T T T

T

f t dt Vdt Vdt
T T T

= = - =ò ò ò

an = 
/2

0

4
( ) cos

T

f t n tdt
T

wò

= 
/4 /2

0 /4

4
cos cos

T T

T

V n tdt V n tdt
T

w w
é ù

-ê ú
ê úë û
ò ò

= 
4

sin sin sin
4 2 4

V n T n T n T

n T

w w w

w

é ùæ ö æ ö æ ö- +ç ÷ ç ÷ ç ÷ê úè ø è ø è øë û

= 
4

2sin
2 2

V n

n

p

p

é ùæ ö/ ç ÷ê úè ø/ ë û
[ 2 ]Tw p=Q

= 
4 4

sin
2

V n V

n n

p

p p
= ; for n = 1, 5, 9,���

= 
4V

np
- ; for n = 3, 7, 11,���

= 0; for n = 2, 4, 6,���

So, f (t) = 
4 1 1 1 1

cos cos 3 cos 5 cos 7 cos 9
3 5 7 9

V
t t t t tw w w w w

p
æ ö- + - + ¼¼¼ç ÷è ø Ans.
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Magnitude Spectra

Phase Spectra

7.2 Find the Fourier series of the function whose periodic waveform is shown in the below figure and

plot its frequency spectra.

Solution The function is even

\ 0nb =

\
/2 /4

0

0 0

2 2 2
( )

4 2

T T
V T V

a f t dt Vdt
T T T

= = = ´ =ò ò

\
/ 2

0

4
( )cos

T

na f t n tdt
T

w= ò

/4

0

4
( )cos

T
V

f t n tdt
T

w= ò

/4

0

4 sin
T

V n t

T n

w

w

é ùæ ö= ê úç ÷è øê úë û
[ ]2Tw p=Q
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4
sin

4

V n T

n T

w

w

é ùæ ö= ç ÷ê úè øë û

4 2
.sin

2 2

V n V

n n

p

p p

= = ; n = 1, 5, 9 �

= 
2V

np
- ; n = 3, 7, 11, �

\ 2 1 1 1
( ) cos cos3 cos5 cos 7 ...

2 3 5 7

V V
f t t t t tw w w w

p

æ ö= + - + - +ç ÷è ø Ans.

Line Spectra

7.3 Find the Fourier series for the train of pulses shown in the below figure and draw the amplitude and

the phase spectra.

Solution Here, v(t) = V; for 0 < t < T/2

= 0;  for 
2

T
t T< <

\
/ 2

0
0 0

1 1
( )

2

TT
V

a V t dt Vdt
T T

= = =ò ò
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and an

/2

0 0

2 2
( )cos cos

TT

V t n tdt V n tdt
T T

w w= =ò ò

2
sin 0

2

V n T

n T

w

w

é ùæ ö= =ç ÷ê úè øë û
 [ 2 ]Tw p=Q

and
/ 2

0 0

2 2
( ) sin sin

T T

n

V
b V t n tdt n tdt

T T
w w= =ò ò

2
1 cos (1 cos )

2

V n T V
n

n T n

w
p

w p

é ùæ ö= - = -ç ÷ê úè øë û
, [ 2 ]Tw p=Q

2V

np
= , for n odd.

= 0, for n even.

\ 1 2 2 2
( ) sin sin 3 sin 5 ...

2 3 5
V t V n t t tw w w

p p p

é ù= + + + +ê úë û
Amplitude Spectra

Phase Spectra

7.4 For the periodic function shown in the adjacent figure

determine the exponential form of Fourier series and show

the line spectra. Also find its trigonometric form.

Solution The function is defined as,

f (t) = V, 0 < t < p, [T = 2p]

= �V, p < t < 2p

Since the function is odd, the co-efficients nC  will be purely

imaginary.
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\
2

0

1
( )

2
jn t

nC f t e dt
p

w

p

-= ò

2

0

1

2
jn t jn tVe dt V e dt

p p

w w

p
p

- -é ù
= -ê ú

ë û
ò ò ; for n ¹ 0

2

0

1 1

2 2
jn t jn tV V

e e
jn jn

p p

w w

p
p w p w

- -é ù é ù= -ê ú ê ú- -ë û ë û

2(1 ) ( )
2 2

jn jn jnV V
e e e

j n j n
wp w p wp

p w p w

- -= - + - (Q T = 2p, \ w = 1)

2(1 ) ( )
2 2

jn jn jnV V
e e e

j n j n
p p p

p p

- -= - + -

Now, cos sin ( 1)jn ne n j np
p p

- = - = -

and 2 cos2 sin2 1j ne n j np
p p

- = - =

\ 2
[1 ( 1) ]

2
n

n

V
C

j np
= - - ; n ¹ 0

2V

jnp
= ; for n odd;

= 0; for n even.

2
n

V
C

jnp- = -

For n = 0, 
2 2

0

0 0

1 1
( ) 0

2 2
C f t dt Vdt Vdt

p p p

p
p p

é ù
= = - =ê ú

ë û
ò ò ò

\ Exponential form of Fourier series is,

1

2 1
( ) jn t

n

V
f t e

j n
w

p

¥

-
= å ; n odd only

 3 5 72 1 1 1
...

3 5 7
j t j t j t j tV

e e e e
j

w w w w

p

é ù= + + + +ê úë û
Ans.

To find Trigonometric form,

a0 = 0,

2 2
( ) 0n n n

V V
a C C

jn jnp p-= + = - =

2 2 4
( )n n n

V V V
b j C C j

jn jn np p p-
é ù= - = + =ê úë û

for n odd.

\ 4 1 1
( ) sin sin 3 sin 5 ...

3 5

V
f t t t tw w w

p

é ù= + + +ê úë û
Ans.
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Amplitude Spectra

Phase Spectra

7.5 The waveform shown in the following figure is used as �sweep� in radar and television circuits. Find

the Fourier series and plot the line spectra.

Solution The function, ( )
V

V t t
T

= ; 0 < t < T

\
0

1
T

jn t
n

V
C te dt

T T
w-= ò ; n ¹ 0

2
0

T
jn t jn tV te e

jn jnT

w w

w w

-é ù
= +ê ú-ë û

ò

( )
2 2

0

T
jn T jn TV Te e

jnT jn

w w

w
w

- -
é ù
ê ú= -ê ú-
ê úë û

22 2

2 2 2

( 1)

2

j nj n eV T e

j nT n

pp

p w

--é ù-
= +ê ú-ë û

[Q wT = 2p]
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2 2

2 2 2 22 4 4

j n j njV V V
e e

n n n

p p

p p p

- -= + -

Since, 2 (cos2 sin 2 ) 1j ne n j np
p p

- = - =

\
2n

jV
C

np
= ; for n ¹ 0

For n = 0, 0 2
0

2

T
V V

C tdt
T

= =ò

\ Exponential form,

3 2 2 3( ) .... ...
6 4 2 2 2 4 6

j t j t j t j t j t j tjV jV jV jV jV jVV
v t e e e e e ew w w w w w

p p p p p p

- - -= - - - + + + + +

To convert into Trigonometric form

Here,
2n

jV
C

np
= , 

2n

jV
C

np- = -

\ a0 = C0 = 
2

V
, ( ) 0n n na C C

-
= + =

and ( )n n n
V

b j C C
np-= - = -

\ 1 1
( ) sin sin 2 sin 3 ...

2 2 3

V V
V t t t tw w w

p

é ù= - + + +ê úë û
Ans.

Line Spectra
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7.6 Find the trigonometric Fourier series for the waveform shown in Figure and sketch the spectra.

Solution Here, ( )
V

f t tw
p

= ; for 0 < wt < p and

= 0; for p < w t < 2p

Þ 0 4

V
a =

Þ
0

1
cos ( )n

V
a t n td t

p

w w w

p p

= ò

2 2

2V

n p

= - ; for n odd.

= 0 ; for n even.

Þ
0

1
sin ( )n

V
b t n td t

p

w w w

p p

= ò

= 
V

np
- ; for n even.

= 
V

np
; for n odd.

\
2

2 1 1 1 1
( ) cos cos 3 cos 5 ... sin sin 2 sin 3 ...

4 9 25 2 3

V V V
f t t t t t t tw w w w w w

pp

é ù é ù= - + + + + - + -ê ú ê úë û ë û

Ans.

Line Spectra

The even harmonic amplitudes are given directly by bn
coefficients, since there are no even cosine terms.

But, the odd harmonic amplitudes are given by computa-

tion

2 2
n n nC a b= +

\
2 2

1 2

2V V
C

pp

æ ö æ ö= + ç ÷ç ÷ è øè ø
 = (0.377)V.

3 5(0.109) , (0.064)C V C V= =

and C2 = 
2

V

p

- , C4 = 
4

V

p

-  = �0.0795 V

= �0.159 V
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7.7 Find the Fourier series expansion of the rectified sine waveforms shown in the followig figure.

Solution Here, f(t) = A sin wt; for 0 < w t < p

= � A sin wt; for p < w t < 2p

Since, f(t) = f(�t) Þ The function is even.

\ bn = 0

\
/2

0

4
( )cos ( )

T

na f t n td t
T

w w= ò

0

4
sin cos ( )

2
A t n td t

p

w w w

p

= ò

0

2sin cos ( )
A

t n td t
p

w w w

p

= ò

[ ]
0

sin( 1) sin( 1) ( )
A

n t n t d t
p

w w w

p

= + - -ò

0

cos( 1) cos( 1)
;

1 1

n t n tA

n n

p

w w

p

- + -é ù= +ê ú+ -ë û
 for n ¹ 1

For odd n; 
1 1 1 1

; 1
1 1 1 1n

A
a n

n n n np

é ùæ ö æ ö= - + + - ¹ê úç ÷ ç ÷+ + - -è ø è øë û
= 0

For even n; 
2 2

1 1n
A

a
n np

é ùæ ö æ ö-= +ê úç ÷ ç ÷+ -è ø è øë û

2

2 2 2 2 4

( 1)( 1) ( 1)

n nA A

n n np p

/ /- - -é ù= = -ê ú+ + -ë û

For n = 1, 

/2

1
0

4
( )cos ( )

T

a f t td t
T

w w= ò

0

4
sin cos ( )

2
A t td t

p

w w w
p

= ò

0

sin 2 ( )
A

td t
p

w w

p

= ò
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0[cos 2 ]
2

A
t p

w

p

= -

[cos 2 1] 0
2

A
p

p

= - - =

Also,
/2

0

0 0

2 2
( ) sin ( )

2

T

a f t dt A td t
T

p

w w
p

= =ò ò

0

2
[cos ]

A A
t pw

p p
= - =

So, the Fourier series is,

2
2,4,6

2 4 cos 2 4 1 1 1
( ) cos2 cos4 cos6 ...

3 15 35( 1)n

A A n t A A
f t t t t

n

a w
w w w

p p p p=

æ ö= - = - + + +ç ÷è ø-
å

Ans.

Spectra

7.8 Determine the Fourier series of voltage response obtained at the output of a half-wave rectifier

shown in the figure. Plot the discrete spectrum of the waveform.

Solution Here, time period T = 0.4 second;

f = 
1

2.5 Hz;
T

=

w = 
2 2

5 rad s
0.4T

p p
p= =

The function, v(t) = cos 5 ; 0 0.1mV t tp £ £
= 0; 0.1 £ t £ 0.3

= cos 5 ; 0.3 0.4mV t tp £ £
If the period extending from t = �0.1 to t = 0.3 is taken, it will result in fewer equations and hence,

fewer integrals.

\ ( ) cos 5mv t V tp= ; 0.1 0.1t- £ £
= 0; 0.1 £ t £ 0.3
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\
0.3 0.1 0.3

0

0.1 0.1 0.1

1 1
( ) cos5 (0)

0.4 0.4
m

m

V
a v t dt V dt dtp

p- -

é ù
= = + =ê ú

ë û
ò ò ò

\
0.3

0.1

2
cos 5

0.4n ma V ntdtp

-
= ò ; n ¹ 1

0.1

0.1

5 cos 5 cos 5mV t ntdtp p

-
= ò

[ ]
0.1

0.1

1
5 cos 5 (1 ) cos 5 (1 )

2mV n t n t dtp p

-
= + + -ò

2

2 cos( /2)

1

mV n

n

p

p

=
-

; n ¹ 1

For, a =1, 
0.1

2
1

0.1

5 cos 5
2
m

m

V
a V tdtp

-
= =ò

Similarly, bn = 0 for any value of n, and the Fourier series thus contains no sine terms.

\
2 2 2

( ) cos5 cos10 cos20 cos30 ...
2 3 15 35

m m m m mV V V V V
v t t t t tp p p p

p p p p
= + + - + -

Spectra

7.9 Find the trigonometric Fourier series for the half-wave rectified sine-wave shown in the following

figure. and sketch the spectrum.

Solution Here, the wave is, f (t) = V sin wt; 0 < w t < p

= 0 ; p < w t < 2p

\ a0 = 
0

1
sin ( )

2

V
V t d t

p

w w

p p

=ò
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\
0

1
sin cos ( )na V t n td t

p

w w w

p

= ò ; n ¹ 1

[ ]
0

sin(1 ) sin(1 )
2

V
n t n t d t

p

w w w

p

= + + -ò

0

cos(1 ) cos(1 )

2 1 1

n t n tV

n n

p

w w

p

- + -é ù= -ê ú+ -ë û

2
(1 cos )

(1 )

V
n

n
p

p
= +

-
; n ¹ 1

= 0; for n odd

2

2

(1 )

V

np
=

-
; for n even.

For n = 1, 1

0

1
sin cos ( ) 0a V t td t

p

w w w

p

= =ò

Similarly, bn = 
0

1
sin sin ( )V t n td t

p

w w w
p
ò ; n ¹ 1

= 0

For n =1, 2
1

0

1
sin ( )

2

V
b V td t

p

w w

p

= =ò

So the series is,

2 2 2
( ) sin cos 2 cos 4 cos 6 ...

2 3 15 35

V V V
f t t t t tw w w w

p p

æ ö= + - + + +ç ÷è ø

7.10 State and prove Parseval�s theorem useful in computing the effective value of a given periodic

function, f(t).

Or,

A periodic function f(q) with period 2p is expressed in Fourier series as follows:

0

1

( ) ( cos sin )
2 n n

n

a
f a n b nq q q

¥

=
= + +å
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Prove that,

2

02 2 2

1

1 1
[ ( )] ( )

2 2 2 n n
n

a
f d a b

p

p

q q
p

¥

=-

æ ö
= + +ç ÷è ø åò

Solution

0

1

( ) ( cos sin )
2 n n

n

a
f a n b nq q q

¥

=
= + +å

Since, cos sin cos sin 0n n d n d n d
p p p

p p p

q q q q q q q

- - -
= = =ò ò ò

\  0

2

2 22 2 2

1 1

1 1
[ ( )] cos sin

2 2 2 n n
n n

a
f d a n b d

p p

p p

q q q q q
p p

¥ ¥

= =- -

é ùæ ö
ê ú= + +ç ÷ê úè øë û

å åò ò

0

2 2 2
2 2

1 1

1 1 1
2cos 2sin

2 2 2 2 2 2
n n

n n

a a b
d n d n d

p p pa a

p p p

q q q q q
p p p= =- - -

æ ö
= + +ç ÷è ø å åò ò ò

0

2 2 2

1 1

1 1 1
.2 . (1 cos 2 ) . . (1 cos2 )

2 2 2 2 2
n n

n n

a a b
n d n d

p pa a

p p

p q q q q
p p p= =- -

æ ö
= + + + -ç ÷è ø å åò ò

{ } { }
2

2 20

1

1 sin 2 sin 2

2 4 2 2n n
n

a n n
a b

n n

a p pq q
q q

p p p=

é ùæ ö
= + + + -ç ÷ ê úè ø - -ë û

å

2

0 2 2

1

1
[ (2 ) (2 )]

2 4 n n
n

a
a b

a

p p
p =

æ ö
= + +ç ÷è ø å

\  [ ] 0

2

2 2 2

1

1 1
( ) ( )

2 2 2 n n
n

a
f d a b

p

p

q q
p

¥

=-

æ ö
= + +ç ÷è ø åò [Proved]

Note: For statement and proof of this theorem consult the text earlier.

7.11 Resolve the waveform of the adjacent figure. into even and odd

components and plot the two components.

Solution Let, f0(t) and fe(t) be respectively the odd and even parts

of f (t)

\ 0( ) ( ) ( )ef t f t f t= + (i)

\ 0 0( ) ( ) ( ) ( ) ( )e ef t f t f t f t f t- = - + - = - (ii)

Solving (i) and (ii); 
1

( ) [ ( ) ( )]
2ef t f t f t= + -

and 0

1
( ) [ ( ) ( )]

2
f t f t f t= - -
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For the given waveform,

f(t) = 1; 0 < t < 1 \  fe(t) = 
2

t

and f(�t) = (t � 1); 0 < t < 1 and f0(t) = (1 � t/2)

Thus, the components are

7.12 If v(t) = 10 + 6 cos (t + 45°) + 1.8 cos(2t � 10°) volt and i(t) = 3 + 1.4 cos(t + 20°) + 0.5 cos 2t mA,

calculate the average power in Watt. Determine also the effective voltage and effective current.

Solution Average Power = 3 31 1 2 2
1 2 3cos cos cos

2 2 2
M MM M M M V IV I V I

f f f+ +

6 1.4 1.8 0.5
10 3 cos(45 20 ) cos10

2 2

´ ´
= ´ + °- ° + °

= 34.25 W

Effective Voltage = 
2 2

2 6 (1.8)
10 12.58 V

2

+
+ =

Effective current = 2 2 21
3 (1.4 0.5 ) 3.178 A

2
+ + =

7.13 Determine the effective voltage, effective current, and average power supplied to a passive network

if the supplied voltage is,

( ) 100 50cos (10 30 ) 25cos (30 60 )v t t t= + + ° + + ° V

and the resulting current is,

( ) 2 cos (10 75 ) 3cos (30 78 )i t t t= + ° + + ° A.

Solution Same as Prob. 7.12.
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7.14 (a) Find the trigonometric Fourier series of the triangular waveform shown in the following figure.

(b) If this voltage is approximated by

2

8
sin

V
tw

p

, find the mean-square error.

(c) If this voltage waveform is applied to the network in the below

figure, then find the current i(t) and draw the magnitude and

phase spectra of i(t). Take w0 = 1 radian/second for the wave-

form.

Solution

(a) The wave is an odd function and is having half wave symmetry.

\ an = 0 and a0 = 0

Now,
4

( )
V

V t t
T

= ; 0 /4t T< <

4
2

V
t V

T
= - + ; 

3
/4

4

T
T t< <

\
/4

0

8
( )sin

T

nb f t n t dt
T

w= ò ; n is odd only.

/4

0

8 4
sin

T
V

t n t dt
T T

w= ò

/4

2
0

32 cos cos
T

V t n t n t
dt

n nT

w w

w w

-é ù= +ê úë û
ò

/4

0

16 sin
cos

4 2

T
V T n n t

n T n

p w

p w

é ù
= - +ê ú

ê úë û

16
0 sin

4 2 2

T T n

n T n

p

p p

é ù= - ´ +ê úë û

2 2

8
sin

2

V n

n

p

p

= {Q wT = 2p}
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\
2 2

8
n

V
b

n p
= , n = 1, 5, 9, �

= �
2 2

8V

n p
, n = 3, 7, 11, �

Hence,

2 2 2 2

8 1 1 1
( ) sin sin3 sin5 sin 7 ...

3 5 7

V
V t t t t tw w w w

p

æ ö= - + - +ç ÷è ø
Ans.

(b) The error is, 
2

8
( ) ( ) sin

V
t v t te w

p
= -

The main square error is,

2

0

1
( )

T

NE t dt
T

e= ò

Since, the wave is having half�wave symmetry,

\
/4

2

0

4
( )

T

NE t dt
T

e= ò

Now,
4

( )
V

v t t
T

= ; for 0 < t < T/4

\
2/4

2

2
0

4 4 8
sin 0.0047 V

T

N
V V

E t t dt
T T

w
p

é ù= - =ê úë û
ò Ans.

(c) Here,

( ) ( )
( )

( ) 1 /
i iV n V n

i n
Z n j n

q q
q

q
= =

-

1

2

( )
tan (1/ )

1

inV n
n

n

q -=
+

\ 1

2 22

8
( ) sin[ tan (1/ )]

1

n V
i n nt n

nn
q

p

-= ´ +
+

 ; for n = 1, 5, 9, �

1

2 2

8
sin[ tan (1/ )]

1

V
nt n

n np

-= +
+

and 1

2 2

8
sin[ tan (1/ )]

1

V
nt n

n n
p

p

-= + +
+

; for n = 3, 7, 11, ...

\ 1 22

8 8
sin( 45 ) 0.707 sin( 45 )

2

V V
i t t

pp

= + ° = + °
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\ 3 2 22

8 8
sin (3 180 18 44 ) 0.949 sin(3 198 44 )

33 10

V V
i t t

pp
= + ° + × ° = + × °

\ 5 2 22

8 8
sin(5 11 31 ) 0.98 sin(5 11 31 )

55 26

V V
i t t

pp
= + × ° = + × °

\
2

8
( ) [0.707sin( 45 ) 0.105sin(3 198.44 ) 0.039sin(5 11.31 ) ....}

V
i t t t t

p
= + ° + + ° + + ° + Ans.

7.15 A series RL circuit with R = 10 ohm and L = 5 H contains a current

i(t) = 10 sin 1000 t + 5 sin 3000t + 3 sin 5000t A

Find the effective voltage and the average power.

Solution Here, w = 1000 rad/s and it contains three harmonics:

For fundamental harmonic

1 110 , 1000 5 5000LR X Lw= W = = ´ = W

\ 1 1 (10 5000) 5000 89.88Z R j L jw= + = + = Ð °

For third harmonic

3 310 , 3 15000LR X Lw= W = = W

\ 3 (10 15000) 15000 003 89.96Z j= + = × Ð °

For fifth harmonic

R5 510 , 5 25000LX Lw= W = = W

\ 5 (10 25000) 25000 001 89.977Z j= + = × Ð °

\ 1 3 5( ) 10 | | sin(1000 89.88 ) 5 | | sin(3000 89.96 ) 3 | | sin(5000 89.977 )v t Z t Z t Z t= - ° + - ° + - °

5000 01sin(1000 89 88 ) 75000 015sin(3000 89 96 )t t= × - × ° + × - × °

75000 003sin(5000 89 977 )t+ × - × °

\
1

2 2 2 2
1

Effective Voltage, [(5000 01) (75000 015) (75000 003) ]
2

V = × + × + ×

48 291 10 volt= × ´

82 91kV= × Ans.

Average power

1 1 2 3 3
1 2 3cos cos cos

2 2 2
m m mL m m m

av

V I V I V I
P f f f= + +

5000 01 10 75000 015 5 75000 003 3
cos89 88 cos89 96 cos89 977

2 2 2

× ´ × ´ × ´
= × ° + × ° + × °
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691 6595Watt= × Ans.

7.16 A periodic current source, i(t) = 10 + 6 cos (100t + 45°) + 3 cos (200t � 10°) + 2.1 cos (300t + 35°)

is the input to a parallel RC circuit with R = 0.5 ohm and C = 0.02 F. Calculate the steady-state

response v(t) of the circuit.

Solution {same as Prob. 7.15}

1 2 30 35 45 ; 0 22 63.43 ; 0 158 71.56Z Z Z= × Ð- ° = × Ð- ° = × Ð- ° Ans.

\ ( ) 5 2 121 cos100 0 671 cos(200 73 43 ) 0 332 cos(300 36 56 )v t t t t= + × + × - × ° + × - × °
7.17 The square wave source, v(t) shown in figure excites a series RL circuit with R = 2 ohm and L = 2 H.

Determine the current response i(t), taking w = 1 radian/second and V = 
4

p
 volt.

Solution [same as Prob 7.14]

Here, from Prob 7.1

( )4 1 1 1
( ) cos cos3 cos5 cos 7 ...

3 5 7

V
v t t t t tw w w w

p

= - + - +

Here, volt
4

V
p=

\ 1 1
( ) cos cos3 cos 5

3 5
v t t t tw w w= - + -¼

1
( )

2 2
Y jn

j n
=

+

Þ 1 10 353 45 ; 1 0Y V= × Ð- ° = Ð °

3 3

1
0 158 71.565 ; 180

3
Y V= × Ð- ° = Ð- °

5 5

1
0 098 78.69 ; 0

5
Y V= × Ð - ° = Ð °

\ 1 1 1 0 353 45I V Y= = × Ð - °

\ 3 3 3 0 0527 108.435I V Y= = × Ð °

and 5 5 5 0 0196 78.69I V Y= = × Ð- °

( ) 0 353cos( 45 ) 0 0527 cos(3 251 6 ) 0 0196cos(5 78 69 ) ...i t t t t= × - ° + × - × ° + × - × ° + Ans.

7.18 Determine the Fourier series of repetitive waveform of figure upto 5
th

 harmonic, when time of

repetition, T = 20 ms.

Calculate the fundamental frequency current in the circuit of figure, where R = 10 ohm and L =

0.0318H with voltage transform of the waveform.
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Solution The wave is having half wave symmetry.

an = bn = 0 ; for n even ; and

For n odd,

/ 2

0

4
( )sin

T

na f t n t dt
T

w= ò

/ 2

0

4
( )sin

T

nb f t n t dt
T

w= ò

and a0 = 0

Now, v(t) = 
200

; 0
2

T
t t

T
£ £

\
/

0

4 200
cos

T t

na t n t dt
T T

w= ò

= 
2

800 sin sint nwt n t
dt

n nT

w

w w

é ù-ê úë ûò

= 

/ 2

2 2 2
0

800 sin cos

2

T

T n n t

nT n

p w

w w

é ù
´ +ê ú

ê úë û

= [ ]2 2 2

800
cos 1n

n T
p

w
-

= 
2 2

800
( 2)

4n p
-

= 
2 2

400

n p
-

2

0

4 200 200
sin

T

nb t n tdt
T T n

w
p

= =ò

\
2 2 2

400 1 1 200 1 1
( ) (cos cos3 cos5 ....) (sin sin3 sin5 ...)

3 53 5
v t t t t t t tw w w w w w

pp
= - + + + + + + +
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The fundamental frequency voltage is

( )
2

2 2

200 400 400
sin cos 1

2fV t t
p

w w
p p p

æ ö= - = +ç ÷è ø
Ans.

Impedance, ( ) 10 (0 0318)Z R j L jw w= + = + ×
Current due to fundamental frequency,

( )2

400
sin cos

2(10 0 0318 )

f

f

V
I t t

Z j

p
w w

p w

= = -
+ ×

or ( )
2

1

2 2 2

400 1 0.0318
1 tan

2 10(10) (0 0318 )
fI

p w

p w

-= + ´ Ð
+ ×

Here,
3

2 2
100

20 10T

p p
w p

-
= = =

´
 rad/s

Patting this value,

\ 5 33 44.9fI = × Ð- °

\ (rms)

5 33
A 3 76 A

2
fI

×= = ×

7.19 An RLC series circuit with R = 25 ohm, L = 1 H, and C = 10 microfarad is energized with a voltage

source,

V(t) = 15 sin 100t + 10 sin 200t + 5 sin 300t (V)

Find the expression for the current i(t). Determine the effective value of the current, and the

average power consumed by the circuit.

Solution [Same as Prob. 7.16]

( )1

1
900 3 88 4Z R j L

C
w

w
= + - = × Ð + × °

( )2

1
2 301.04 85.2

2
Z R j L

C
w

w
= + - = Ð °

( )3

1
3 41 62 53 1

3
Z R j L

C
w

w

= + - = × Ð × °

\
1 2 3

15 10 5
( ) sin100 sin 200 sin300i t t t t

Z Z Z
= + +

0 0167 sin(100 88 4 ) 0 0332 sin(200 85 2 ) 0 12sin(300 53 1 ) ...t t t= × + × ° + × + × ° + × + × ° +
Ans.

\
1

2 2 2 2
rms 1 2 3

1
[ ]

2
I I I I= + +

1
2 2 2 2

1
[(0 0167) (0 0332) (0 12) ]

2
= × + × + ×

0 088 A 88 mA= × = Ans.
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\
15 0 0167 10 0 0332 5 0 12

cos88 4 cos85 2 cos53 1 0.197 W
2 2 2avP

´ × ´ × ´ ×
= × ° + × ° + × ° =

Ans.

7.20 Determine the expression for current in an impedance of R = 10 ohm, L = 0.0318 H with applied emf,

( ) 200sin314 40sin (942 30 ) 10e t t t= + + ° +  V

Also, calculate the rms value of voltage and current as well as the power factor of the circuit.

Solution [Same as Prob. 7.19]

1

200sin314
14 14sin314 44.95

10 314 0 0318

t
i t

j
= = × Ð- °

+ ´ ×

2

40sin (942 30 )
1 28sin (942 30 ) 71 54

10 942 0 0318

t
i t

j

+ °
= = × + ° Ð - × °

+ ´ ×

0

10
1

10
i = =

( ) 14 14 sin (314 44 95 ) 1 28sin (942 41.54 )i t t t= × - × ° + × - °

\
2 2
1 22

rms 0 2

V V
V V

+
= +

2 2
2 200 40

10 144 568
2

+
= + = ×  V Ans.

\
2 2
1 22

rms 0 2

I I
I I

+
= +

2 2
2 14 14 1 28
1 10.089 A

2

× + ×
= + = Ans.

\
Average Power

Power factor
Apparent Power

=

1 1 2 2
0 0 1 2

rms rms

cos cos
2 2

V I V I
V I

V I

f f+ +
=

´

200 14 14 40 1 28
10 1 cos44 95 cos71 54

2 2
144 568 10 089

´ × ´ ×
´ + × ° + × °

=
× ´ ×

= 0.69 Ans.

7.21 In a two-element series network, voltage v(t) is applied, which is given by,

( ) 50 50sin 5000 30sin10000 20sin 20000v t t t t= + + + (V)

The resulting current is given as,

( ) 11.2 sin (5000 63.4 ) 10.6 sin (10000 45 ) 8.97 sin (20000 26.6 )i t t t t= + ° + + ° + + °  (A)

Determine the network elements and the power dissipated in the circuit.
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Solution Power dissipated,

av

50 11 2 30 10 6 8 97 20
50 0 cos63 4 cos45 cos26 6 318 W

2 2 2
P

´ × ´ × × ´
= ´ + × ° + ° + × ° = Ans.

In the expression of current i(t), the d.c. term is missing though it is present in the applied voltage,

v(t). Hence, in the series network, there must be a capacitor which blocks d.c. components. Again

from the expression of i(t), we see that the current is leading by an angle less than 90°. Hence, the

conclusion is the presence of a resistive element in series with the capacitor (RC).

Now,
2 2 2

eff

11 2 10 6 8 97
12 6 A

2
I

× + × + ×
= = ×

\ 2
av eff 2

318
2

(12 6)
P I R R= Þ = = W

×
Ans.

( )1 1
Again, 10,000 / , 45 tanat rad s

CR
w f

w
-= = ° =

Þ
1 1

50 ìF
20,000

C
Rw

= = = Ans.

7.22 Calculate the impedance consisting of R and L and the power factor of a circuit whose expression

for voltage and current are,

( ) 250sin314 50sin(942 30 )v t t t= + + °  (V)

( ) 17.7sin (314 45 ) 1.583sin (942 41.6 )i t t t= - ° + - °  (A)

Solution The fundamental frequency current,

1

250sin314
17 7 sin(314 45 )

t
I t

R j Lw
= = × - °

+
(i)

The third harmonic current,

3

50sin(942 30 )
1 583sin(942 41 6 )

3

t
I t

R j Lw

+ °
= = × - × °

+
(ii)

Equating the magnitudes of (i),

2 2 2

250
17.7

R Lw
=

+

Þ 2 2 2 199.495R Lw+ = (iii)

Equating the angles of (i)

1314 tan 314 45
L

t t
R

w-- = - °

Þ 1tan 45 1
L L

L R
R R

w w
w- = ° Þ = Þ =

Putting in (iii), 
2( ) 99 747 9 987L L Rw wÞ = × Þ = × =
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\ 9 987
0 0318

314
L

×= = ×

\ 9 987R = × W
0 0318 HL = × Ans

Power factor = 

3 31 1
1 3

2 22 2
3 31 1

cos cosAverage Power 2 2
Apparent Power

2 2 2 2

V IV I

V IV I

f f+
=

+ ´ +

2 0 2 2

250 17 7 50 1 583
cos45 cos71 6

2 2

250 50 17 7 1 583

2 2

´ × ´ ×
° + × °

=
+ × + ×

´

= 0.69 Ans.

Fourier Transform

7.23 Determine the Fourier transform of one cycle of sine wave, f (t) = A sin w0 t.

Solution ( ) ( ) j tF j f t e dtww
¥

-

-¥
= ò

0

0

sin
T

j tA te dt Iww -= =ò  (say)

0 0

0 000

cos cos
( )

T
T

j t j tt t
A e j e dtw ww w

w
w w

- -
é ùæ öê ú= - -ç ÷è øê úë û

ò

0 0
0 0 0

1
( cos 1) cos

T

j t j tj
A e T te dtw ww

w w
w w

- -
é ùì üï ï= - - -ê úí ý

ï ïê úî þë û
ò

0 0

0 0 0 000

sin sin1
( 1) ( )

T
T

j t j t j tt tj
A e e j e dtw w ww ww

w
w w w w

- - -
é ùé ùì üæ ö æ öê úê ú= + - - -í ýç ÷ ç ÷ê úè ø è øê úî þê úë ûë û

ò

or, 0 0
0 0 0 0

( 1) 0 sin [ cos cos 1
T

j t j tjA A
e j t e dt T

w www
w w p

w w w
- -

é ù
= + + + = = -ê ú

ë û
ò Q ]

2

2
0 0

( 1)j tA
e Iw w

w w

-= + +

or,
2

02
0

1 ( 1)j TI A e ww
w

w

-
é ù
- = +ê ú

ë û

Þ 0

2 2
0

( 1)j TA
I e ww

w w

-= +
-

Ans.
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7.24 Find the Fourier transform of the single pulse shown in the figure.

Draw the continuous magnitude and phase spectra.

Solution Here, f(t) = A ; �a £ t £ 0;

= �A ; 0 £ t £ a

= 0 ; for all other values of t

\ ( ) ( ) j tF j f t e dtww
¥

-

-¥
= ò

0

0

a
j t j t

a

Ae dt Ae dtw w- -

-

= + -ò ò

0

0

a
j t j t

a

je je
A

w w

w w

- -

-

é ù
ê ú= -
ê úë û

[1 1]j a j ajA
e ew w

w
+ -= - - +

Þ 2
( ) (1 cos )

A
F j j aw w

w
= - Ans.

7.25 Find the Fourier transform of the single triangular pulse

shown in the adjacent figure and draw the continuous

spectra.

Solution The wave is, f(t) = 0

2
1V t

a

é ù-ê úë û

i.e., 0

2
( ) 1 ; for 0f t V t t

a

é ù= - >ê úë û

and 0

2
( ) 1 ; for 0f t V t t

a

é ù= + <ê úë û

\ 0

2
( ) ( ) 1 | |j t j tF j f t e dt V t e dt

a
w ww

¥ ¥
- -

-¥ -¥

é ù= = -ê úë ûò ò

2 2
0

0

2 2

2
| |

a a

j t j t

a a

V
V e dt t e dt

a
w w- -

- -

= -ò ò

0 2
0 02

02
2

2
a

a
j t j t j t

a
a

V V
e te dt te dt

j a
w w w

w
- -

-
-

é ùì ü
ê úï ï= - - +í ýê ú- ï ïê úî þë û

ò ò
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0 2
0 0 02 2

0
2

2 2
( )

a
a a

j j j t j t

a

V V V
e e te dt te dt

j a a

w w w w

w

- + - -

-

= - + -
- ò ò

0 22 22 2
0 0 0

00
2 2

2 2 2

2

aa aa a
j j j t j t j t j t

a a

V V Ve e te e te e
dt dt

j a j j a j j

w w w w w w

w w w w w

- - - - -

- -

é ùé ùæ ö
- ê úê úç ÷= + - - -ê úê ú- - - -è ø ë ûê úë û

ò ò

( ) 2 2
0

2
0 0 0

2 2
0

2

2 2 2
sin 0 0

2 2 2 2

a
j al j alj t j t

a

V V Va a e e a e e

j a j

w ww ww

w w ww w

+ -- -

-

é ùé ùì ü ì üê úê ú= + + + - - +í ý í ýê ú- -ê úî þ î þë ûë û

( ) ( )0 0 0 0 0/ 2 / 22 2
2 2

2 2 2
sin 1 ( 1)

2

a a
j j j a j aV V V V Va

e e e e
j ja a

w w w ww
w w ww w

+ + - -= - + - + - -

( )
/ 2 /2

0 0 0 / 2 / 2

2

2 2 2
sin (1 1)

2 2

j a j a
j a j aV V Va e e

e e
j a

w w
w ww

w w w

- +
+ -æ ö-= + + - - +ç ÷è ø

( ) ( )0 0 0 /2 / 2

2

2 2 2
sin sin (2 )

2 2
j a j aV V Va a

e e
a

w ww w

w w w

-= - + - -

/ 2 / 2
0

2

4
1 2

2

j a j aV e e

a

w w

w

+ -é ùæ ö-
= -ê úç ÷è øê úë û

( )0

2

4
1 cos

2

V a

a

w

w

é ù= -ê úë û

( )0 2

2

4
2 sin

4

V a

a

w

w

= ´

\ ( )0 2

2

8
( ) sin

4

V a
F j

a

w
w

w
=

Bringing it into standard form,

2

0

2

sin
4

( )
2

4

a
V a

F j
a

w

w
w

æ ö
è ø

=
æ ö
è ø

Ans.
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Its continuous amplitude spectrum is shown. The first zero occurs when, 
4

i.e.
4

a

a

w p
p w= = .

Spectra

7.26 Find the Fourier transform of the existing voltage,

v(t) = V0e
�t

, t ³ 0

= 0, t £ 0

and sketch approximately its amplitude and phase spectrum.

Solution 
0(1 ) (1 )

0 0( ) ( ) [ ]
(1 )

j t t j t j t j tV
F j f t e dt V e dt V e dt e

j
w w w ww

w

¥ ¥ ¥
- - - - + - + ¥

-¥
-¥ -¥ -¥

= = = =
+ò ò ò

0

1

V

jw
=

+

The amplitude and phase are 0 1

2
( ) and ( ) tan ( )

1

V
F j jw f w w

w

-= = -
+

Spectra
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7.27 In the figure, Vi(t) = 10 sgn(t) volt. Using the Fourier transform

method, find Vc(t) and sketch Vc(t) versus time, t. Given: R = 5 ohm,

C = 1F.

Solution vi(t) = 10 sgn(t)

2 20
( ) 10iV j

j j
w

w w

= ´ =
( )

( )
( )
i

e c

V j
V j X

z j

w

w

w

= ´

Transfer function of the circuit

( ) 1/ 1
( )

( ) 1/ 1
c

i

V j j C
H j

V j R j C j RC

w w
w

w w w
= = =

+ +

where, Vc(jw) is the Fourier transform of Vc(t)

\
( ) 20 20

( ) ( ) ( )
( ) (1 ) (1 5)

i
c i C

V j
V j H j V j X

Z j j j RC j j

w

w w w

w w w w w

= ´ = ´ = =
+ +

20 100 2 1
10 20

1 ( 5) (1/ 5)j j j jw w w w
æ ö= - = -ç ÷+ +è ø

Taking inverse Laplace transform,

/5( ) 10sgn( ) 20 ( ) Vt

Cv t t e u t
-= -

To plot this curve, we follow the following steps:

l From �¥ < t < 0, vi(t) = �10V, vC(t) = �10V;

l At t = 0, vi(t) jumps from �10V to 10V and thus, vC(t) approaches its final value of 10V

exponentially with time-constant of 5 second.

7.28 Find the response voltage in the network shown in the below figure. Use Fourier transform method.
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Solution By KCL, 
2 2

1 2 2

( ) ( ) 1
( ) ( ) ( )

1 1 2
1/

2

v t v t
i t v t j v t

j

w
w

= + = +

Given: 1( ) 2 ( )ti t e u t-=
Taking Fourier transform,

1 2 2

1
( ) ( ) ( )

2
I j V j j V jw w w w= +

or 2

2 1
( ) 1

1 2
V j j

j
w w

w

é ù= +ê ú+ ë û

2

4 1 1
( ) 4

(1 )(2 ) 1 2
V j

j j j j
w

w w w w

é ù= = -ê ú+ + + +ë û

Taking inverse Fourier transform,

2
2 ( ) (4 4 ) ( )t tv t e e u t

- -= - Ans.

7.29 Find the Fourier transform of the sine pulse shown in the

adjacent figure and sketch the amplitude and phase

spectra.

This voltage is applied to a series RL circuit with R = 1

ohm and L = 1.0H. Determine the amplitude and phase

spectra for the resulting current, i(t).

Solution [from Prob. 7.23] 
2 2 2

1 (1 cos ) sin
( )

1 1 1

je A A
V j A j

wp wp wp
w

w w w

-é ù+ +
Þ = = -ê ú

- - -ë û

\
( )2 2

2 2 2

cos(1 cos ) sin 2(1 cos ) 2
( ) 2

1 1 1
V j A A A

wp

wp wp wp

w

w w w

+ + +
= = =

- - -

\ [ ] ( )1 1sin
( ) Angle of ( ) tan tan tan

1 cos 2 2
j V j

wp wp wp
f w w

wp

- -- - -æ ö= = =ç ÷è ø+

The amplitude and phase spectra are shown.

The current in the RL series circuit,

2 2 2 1

( ) ( )( )
( )

tan

V j jV j
I j

R j L L
R L

R

w f ww
w

w w
w

-
= =

+ + Ð

2 1

| ( )| ( )

1 tan

V j jw f w

w w
-

Ð
=

+ Ð
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1

2 2

cos / 2 1
2 tan

21 1
A

wp wp
w

w w

-= Ð - -
- +

| ( )| ( )I j jw q w=

\
( )

2 2

cos
12

| ( ) | 2
1 1

I j A

wp

w

w w

=
- +

and 1( ) tan
2

j
wp

q w w
-= - -
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7.30 The current in a 10 ohm resistor is, i(t) = 10 e�2tu(t) A. Calculate the total energy W dissipated in the

resistor during the time interval t = 0 to ¥. What is the energy W1 associated with the frequency

band 0 £ w £ 2 rad/s?

Solution The instantaneous power, 2 4( ) ( ). 10 100 ; 0tp t i t R e t
-= = ´ >

Total energy dissipated

[ ]
4

4

0 0

1000
( ) 1000 1000 0 1 250 Joule

4 4

t
t e

W p t dt e dt

¥¥ ¥ -
-

-¥

é ù
= = = = - - =ê ú-ë û

ò ò Ans.

The Fourier transform of i(t) is,

10
( )

2
I j

j
w

w
=

+

The Energy associated,

2
2

1

0

10
( )W I j dw w

p
= ò  

2

1

1
1 Energy is, ( )W F j dw w

p

¥

W
-¥

ì üï ïW =í ý
ï ïî þ

òQ

2

2
0

10 100

4
dw

p w
=

+
ò

2
1

0

1000 1
tan

2 2

w

p

-é ù= ê úë û

1 1500
[tan (1) tan (0)]

p

- -= -

500
125 Joule

4

p

p

= ´ = Ans.

7.31 A voltage, v(t) = 100e�25t u(t) volt is applied to the input of an ideal low-pass filter having a cut-off

frequency of 25 rad/s. Calculate the percentage of the total energy transmitted through the filter.

Solution Fourier transform of v(t)

100
( )

25
V j

j
w

w
=

+

\
4

2

2

10
( )

625
V jw

w

=
+

Total 1 W energy available at the filter input is,

4

1 2
0

1 10

625
i

d
W

w

p w

¥

W =
+

ò

4

2
0

10

625

d
d

w
w

p w

¥
=

+
ò
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4
1

0

10 1
tan

25 25

w

p

¥
-é ù= ê úë û

410 1
200 Joule

25 2

p
p

= ´ ´ = Ans.

The 1 W energy available at the filter output is,

25
2

01

0

1
( )W V j dw w

p
W = ò

25254 4
1

2
00

10 10 1
tan

25 25625

dw w

p pw

-é ù= = ´ê úë û+
ò

410 1
100 Joule

25 4

p

p
= ´ ´ =

\ Percentage of the input energy appearing at the output,

01

1

100
100 100% 50%

200i

W

W
W

W
´ = ´ =

7.32 A voltage, v(t) = 4e�3t u(t) volt is applied to the input of an ideal band-pass filter having a pass-band

defined by 1 < f < 2 Hz. Calculate the total 1 W energy available at the output of the filter.

Solution Let the output voltage is v0(t). The energy in v0(t) will be equal to the energy of that part

of v(t), having frequency components in the intervals, 1 < f < 2 and �2 < f < �1.

Fourier transform of input,

( )33 4
( ) 4 ( ) 4 ( )

3
j tt j tV j e u t e dt e u t dt

j
www

w

¥ ¥
- +- -

-¥ -¥
= = =

+ò ò

So, the total 1 W energy in the input signal is,

2 6
1

0

8
( ) 16 Joule

3
tW v t dt e dt

¥ ¥
-

W
-¥

= = =ò ò

or, 1
1 2 2

00 0

16 16 16 1 16 1 8
tan Joule

3 3 3 2 39 9
i

d d
W

w w w p

p p p pw w

¥¥ ¥
-

W
é ù= = = = ´ ´ =ê úë û+ +

ò ò

Total energy in the output is,

22 2
1

0 2 2
44 0 4

1 16 16 16 1
tan

2 2 3 39 9

d d
W

pp p

pp p

w w w

p p pw w

-- -
-

-- -

é ù= = = ê úë û+ +
ò ò

1 116 1 4 2
tan tan

3 3 3

p p
p

- -é ùæ ö æ ö= ´ ´ -ç ÷ ç ÷ê úè ø è øë û

= 0.358 Joule
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7.33. The voltage, Vi(t) = 5e�5t u(t) volt is applied to the input of the RC

circuit shown in Figure. Determine the percentage of the 1 W  �energy

that is transmitted to the output.

Solution Here, the cut-off frequency,

4 6

1 1
10 rad/s

10 10 10
c RC

w
-

= = =
´ ´

Fourier transform of vi(t)

5
( )

5iV j
j

w
w

=
+

\ 2

2

25
( )

25
iV jw

w
=

+

Total 1 W energy available at the filter input is,

1 2
0

1 25

25
i

d
W d

w
w

p w

¥

W =
+

ò

2
0

25

25

d
d

w
w

p w

¥
=

+
ò

1

0

25 1
tan

5 5

w

p

¥
-é ù= ê úë û

25 1
2.5 Joule

5 2

p

p

= ´ ´ = Ans.

The 1 W energy available at the filter output is,

10
2

01

0

1
( )iW V j dw w

p
W = ò

1010
1

2
00

25 25 1
tan

5 525

dw w

p pw

-é ù= = ´ê úë û+
ò

25 1
1.107 1.762 Joule

5p

= ´ ´ =

\ Percentage of the input energy appearing at the output,

01

1

1.762
100 100% 70.48%

2.5i

W

W
W

W
´ = ´ = Ans.

7.34 (a) For the pulse shown in Figure prove that,

sin
2( )

2

F j V

wd

w d
wd

=
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(b) Draw the frequency spectra of this waveform and explain how you would use this result to

estimate the bandwidth required for the transmission of such a signal.

(c) Calculate the percentage of energy associated with this pulse that lies in the dominant portion of

the amplitude spectrum.

Solution

(a) The pulse is, ( ) , /2 /2f t V td d= - < <
So, the Fourier transform,

/2 /2

( ) ( )
j j

j t j t e e
F j f t e dt Ve dt V

j

wd wd
w ww

w

¥ ¥ -
- -

-¥ -¥

-= = =ò ò

sin
2

2V

wd

w

æ ö
è ø

=

sin
2

2
2

2

V

wd

d

wd

æ ö
è ø

= ´
æ ö
è ø

\
sin

2
( )

2

F j V

wd

w d
wd

æ ö
è ø

=
æ ö
è ø

The plot of 
sin x

x
 versus x ( )here,

2
x

wd=  is shown in the below figure.
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(b) The function goes through zero when 
2

x
wd=  is an integral multiple of p. The function is unity

at x = 0. This form is called sampling function, and it occurs frequently in modern communica-

tion theory.

From the figure, we see that the major portion of the amplitude spectrum of the rectangular

pulse spreads over the frequency range from 
2 2

to
p p
d d

- . If the pulse is carried through a

transmission system, the bandwidth (BW) of the system must accommodate the major portion of

the amplitude spectrum for reasonable fidelity in transmission; i.e. the cut-off frequency of the

system must be at least,
2

C

p
w

d
= .

Thus, 
2

2 BWC

p
w d p

d

é ù´ = =ê úë û
\ Product of the bandwidth and pulse width is a constant.

(c) We know that the dominant portion of the amplitude spectrum lies in the frequency range

2
0

p
w

d
£ £ . The Fourier transform of the rectangular voltage pulse is,

sin
2

( )

2

V j V

wd

w d
wd

æ ö
è ø

=
æ ö
è ø

The portion of the total 1W energy associated with v(t) that lies in the dominant portion of the

amplitude spectrum is,

2
2 /

2 2
1 2

0

sin
21

2

W V d
p d

wd

d w
p wd

W

æ ö
è ø

¢ =
æ ö
è ø

ò

{ }
2 2

2
0

2 sin
, ,

2 2

V x
dx let x dx d

x

p
d wd d

w
p

= = \ =ò

{ }
2

2

0 0

2 1 sin 2
sin

V x
x dx

x x

p p
d

p

é ù
= - +ê ú

ê úë û
ò

2

0

2 sin 2
0

V x
dx

x

p
d

p

é ù
= +ê ú

ë û
ò

2

0

4 sin 2

2

V x
dx

x

p
d

p
= ò
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2

0

2 sin 1
, 2 ,

2

V
d Let x dx d

p
d q

q q q
p q

é ù= = \ =ê úë ûò

22
1.418

V d
p

= ´

[The value of the integral as found from the table of sine integrals is 1.418]

\
2

1

2
1.418

V
W

d
pW¢ = ´

Total 1W energy for v(t) is,

2 2
1

0

W V d V
d

d dW = =ò

Hence the percentage of total energy contained in the dominant portion of the amplitude spec-

trum is,

1

1

2 1.418
100 100 90.2%

W

W p

W

W

¢ ´
´ = ´ = Ans.

MULTIPLE-CHOICE QUESTIONS

7.1 A current consists of a fundamental component of amplitude I1, and a third harmonic of amplitude

I3. The rms value of current will be

(a) 1 3( )/ 2I I+ (b) 1 3( )/2 2I I+ (c) 2 2
1 3I I+ (d) 2 2

1 3( )/2I I+

7.2 The Fourier series expansion of a periodic function with half wave symmetry contains only

(a) sine terms (b) cosine terms (c) odd harmonics (d) even harmonics

7.3 A periodic function f (t) is said to have a quarter wave symmetry, if it possesses

(a) even symmetry at an interval of quarter of a wave.

(b) even symmetry and half wave symmetry only

(c) even or odd symmetry without the half wave symmetry

(d) even or odd symmetry with the half wave symmetry.

7.4 If f(t) is a periodic waveform with even symmetry, then its Fourier series expansion does not contain

(a) sine terms (b) cosine terms (c) odd harmonics (d) even harmonics

7.5 Periodic signal that obeys Dirichlet�s condition can be represented by

(a) Fourier series (b) Fourier transform

(c) Inverse Fourier transform (d) None of these

7.6 Which of the following conditions is true for even function?

(i) f(t) = � f (t ± T/2) (b) f (t) = � f(� t ) (c) f (t) = f (�t) (d) f (t) = f (T)

7.7 Which of the following conditions is true for odd function?

(a) f(t) = � f(t ± T/2) (b) f (t) = � f (�t) (c) f (t) = f (�t) (d) f (t) = f (T)

7.8 A periodic function f (t) having a time period T, repeats itself after half time period T /2. The Fourier

series of f (t) would contain.

(a) cosine terms only (b) sine terms only

(c) odd harmonic terms only (d) even harmonic terms only
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7.9 Which of the following statements is true for a delayed step function u(t � T)?

(a) It has an infinite Fourier series (b) It has no Fourier series

(c) It has a finite Fourier series (d) Its Laplace transform is 1/s.

7.10 Which one of the following is the correct Fourier transform of the unit step signal u(t)?

(a) pd (w) (b)
1

jw
(c)

1
( )

j
pd w

w
+ (d)

1
2 ( )

j
pd w

w
+

7.11 If f (t) = � f (�t) and f (t) satisfy the Dirichlet�s conditions, then f (t) can be expanded in a Fourier

series containing

(a) only sine terms (b) only cosine terms

(c) cosine terms and a constant term (d) sine terms and a constant term.

7.12 Fourier transform F( jw) of an arbitrary signal has the property:

(a) F( jw) = F(� jw) (b) F( jw) = �F (�jw) (c) F( jw) = F * (�jw) (d) F( jw) = �F * (�jw)

7.13 The Fourier series expansion of an odd periodic function contains

(a) cosine terms (b) constant terms only (c) sine terms.

7.14 For the expansion of f (w t) in Fourier series a0 + a1 cos w t + � + an cos nw t + �+ b1 sin w t + �

+ ba sin nw t if f (w t) = f (�w t) then:

(a) an = 0 (b) bn = 0 for all n

(c) a0 = 0 (d) an = 0 for all n except n = 0.

7.15 Two complex waves will have the same waveform if

(a) they contain the same harmonics.

(b) harmonics are similarly spaced with respect to the fundamental.

(c) the ratio of corresponding harmonics to their respective fundamentals is the same.

(d) all of the above.

7.16 The complex wave is symmetrical when

(a) it contains only even harmonics.

(b) it contains only odd harmonics.

(c) it contains both odd and even harmonics.

(d) phase difference between even harmonics and fundamental is either 
3

or
2 2

p p
.

7.17 An even waveform when expressed in exponential Fourier series will contain:

(a) only imaginary coefficient (b) only real coefficient

(c) both (a) and (b) (d) None of these.

7.18 The current waveform in a pure resistor of 10 W is shown

in the given figure. Power dissipated in the resistor is

(a) 7.29 W (b) 52.4 W

(c) 135 W (d) 270 W.

7.19 The inverse Fourier transform of

( ) exp ( ) ( )F j j t f t dtw w

¥

-¥
= -ò  is:

(a) ( ) exp( ) ( )f t j t F j dw w w

¥

-¥
= +ò (b)

1
( ) exp( ) ( )

2
f t j t F j dw w w

p

¥

-¥
= +ò

(c)
1

( ) exp( ) ( )
2

f t j t F j dw w w
p

¥

-¥
= - +ò (d)

1
( ) exp( ) ( )

2
f t j t F j dw w w

p

¥

-¥
= - -ò
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EXERCISES

Fourier Series

7.1 Find the Fourier series expansion for the following functions and sketch the frequency spectrum.

(a)

(b)

(c)

2 2
1

2 1
(a) ( ) sin (b) ( ) cos cos3 ..

2 4 3n

A A T T
Ans. f t n t f t t t

n
w w w

p p

¥

=

é é ù
= + = - + +ê ê úë ûë

å

2
1

1 1 2 1
(c) ( ) sin cos 2

2 4 1n

f t t n t
n

w w
p p

¥

=

ù
= + - ú- û

å

7.2 A periodic waveform as shown in the below figure feeds an RL load with R = 10 ohm and L =
1

2p
H.

Calculate the power at the fundamental frequency supplied to the load.
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7.3 A waveform of the shape shown in the below figure (i) is applied to the network shown in the below

figure (ii). Calculate the power dissipated in a 20 W resistor. Take w = 1 rad/s. [1.17 W]

(i) (ii)

7.4 A series RLC circuit with R = 5 W, L = 5 mH, C = 50 mF has an applied voltage

v(t) = 150 sin 1000 t + 100 sin 2000 t + 75 sin 3000 t (V )

Determine the effective current and average power. [16.58 A; 1374 W]

Fourier Transform

7.5 Find the Fourier transform of the following functions:

 (i) f(t) = e
�at

 u(t), a > 0.

 (ii) | |( )
a tf t e-= , for all values of t.

 (iii) f(t) = 1

(iv) Unit impulse function, d (t).

(v) Signum function, sgn(t).

(vi) Unit step function, u(t).

7.6 Determine the output voltage response across the capacitor to a current source excitation ( ) ( )ti t e u t
-= ,

as shown in the below figure.

[v(t) = e� t � e�2t (V)]

7.7 Determine the response of the network shown in the below figure when a voltage having the

waveform shown in figure is applied to it., by using Fourier transform method.

(i) (ii)
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SHORT-ANSWER TYPE QUESTIONS

7.1 (a) What are the conditions which a periodic function must satisfy to have its Fourier series

expansion?

(b) Write the trigonometric form of the Fourier series for a function f(t) and explain, by deriving

necessary relations, how the values of various co-efficients are obtained.

or

What do you understand by Fourier series? Outline the general procedure of determining

Fourier series of periodic waveform.

(c) Give the exponential form of Fourier series for a periodic function.

7.2 Derive an expression for the effective value of a non-sinusoidal periodic waveform

or

Discuss the method of computing the effective value of a non-sinusoidal periodic waveform.

7.3 (a) Explain clearly the significance of the following terms used in determining Fourier series of a

given waveform:

(i) Odd symmetry or Rotation symmetry,

(ii) Even symmetry or Mirror symmetry,

(iii) Half-wave symmetry or Alternation symmetry,

(iv) Quarter-wave symmetry.

(b) Show that the Fourier series expansion of a periodic function with odd (rotation) symmetry

contains only the sine terms.

(c) Show that the Fourier series expansion of a periodic function with even (mirror) symmetry

contains only the cosine terms plus a constant.

(d) Show that the Fourier series expansion of a periodic function with half-wave symmetry contains

only the odd harmonics.

7.4 Discuss in brief the following:

(i) Fourier series and its applications to network analysis,

(ii) Method of analyzing the complex waveform by Fourier series,

(iii) Frequency and phase spectra of periodic waveform.

(iv) Truncating Fourier series.

(v) Gibb�s phenomenon.

7.5 (a) Give the definitions of a Fourier transform pair and illustrate its use in network analysis with

one example.

(b) Explain clearly the difference between Fourier transform and Laplace transform and discuss

briefly their importance in analyzing electrical network.

or

Define Fourier�s transform. How does Fourier transform differ from (i) Fourier integral and (ii)

Laplace transform?

(c) Write a brief note on the use of Fourier transform and Fourier integrals in the analysis of

circuits excited by ideal sources of non-sinusoidal waveforms.

(d) Discuss the important properties of Fourier transforms.

7.6 When do we use Fourier transform?

Discuss that Fourier integral is the limit of Fourier series, as time period T of a repetitive wave

approaches infinity as the limit.

or

How would you obtain Fourier integral from Fourier series?
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7.7 Find the amplitude-frequency distribution of a single non-repetitive voltage pulse of duration one

microsecond and explain how its frequency-bandwidth is estimated.

or

Consider a periodic voltage pulse waveform of period T (second) and width T0 (second). Find an

expression for the frequency-spectra of this waveform and explain how you would use this result to

estimate the bandwidth required for the transmission of such a signal.

7.8 State and prove Parseval�s theorem for a periodic function.

7.9 Show that when f (t) is an even function of t, its Fourier transform F( jw) is an even function of w
and is real; while when f (t) is an odd function of t, its Fourier transform F( jw) is an odd function of

w and is imaginary.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

7.1 (d) 7.2 (c) 7.3 (d) 7.4 (a) 7.5 (a) 7.6 (c) 7.7 (b)

7.8 (c) 7.9 (c) 7.10 (c) 7.11 (a) 7.12 (c) 7.13 (c) 7.14 (b)

7.15 (d) 7.16 (b) 7.17 (b) 7.18 (d) 7.19 (b)



CHAPTER

8
Active Filter

8.1 INTRODUCTION

Passive filters are built from passive components; resistors, capacitors, and inductors. Active filters

also use resistors and capacitors, but the inductors are replaced by active devices capable of produc-

ing power gain. These devices can range from single transistor to integrated circuit (IC)�controlled

sources such as the operational amplifier (op amp), and more exotic devices, such as the operational

transconductance amplifier (OTA), the generalized impedance converter (GIC), and the frequency-

dependent negative resistor (FDNR).

In this chapter, active filters with op-amp have been discussed.

8.1.1 Operational Amplifier (Op Amp)

An operational amplifier is a direct- coupled high gain, differential-input amplifier.

With the addition of suitable external feedback components, an op- amp can be used for a variety

of application, such as ac and dc signal amplification, active filters, oscilators, comparators, regula-

tors, and others.

8.1.2 Operational Amplifier Terminals

Figure 8.1 Operational amplifier
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Op-amp has five basic terminals�

(i) Two for input signals, V1 and V2 � differential input terminals.

(ii) One for output signal, V0 single-ended output.

(iii) Two for power supply, +V and �V. (Maximum V = ± 18 V)

Note The power supply has three terminals: positive, negative and power supply common. The

common terminal may or may not be wired to earth ground via the third wire of line cord. However, it

has become standard practice to show power common as a ground symbol.

Use of the term �ground� on the ground symbol is a convention which indicates that all voltage

measurements are with respect to �ground�.

8.1.3 Op- Amp Characteristics

Ideal Characteristics

(i) An infinite voltage gain

(ii) An infinite bandwidth

(iii) An infinite input impedance

(iv) Zero output impedance

(v) Perfect balance, i.e., the output is zero when equal voltages are present at the two input

terminals; and

(vi) The characteristics do not change with temperature

Practical (Actual) Characteristics

(i) The gain at low- frequency is finite and very high (of the order of 10
3
 to 10

6
). The gain is

constant upto a few hundred kHz and then decreases monotonically with the increase in

frequency.

(ii) The bandwidth is finite and very high.

(iii) The input impedance lies in the range of 150 kW to a few hundred M W.

(iv) The output impedance of a practical op-amp lies between 0.75 to 100 W.

(v) Perfect balance is not achieved with practical op-amps.

8.2 FILTER

An electric filter is a four-terminal frequency-selective network designed generally with reactive

elements to transmit freely a specified band of frequency and block or attenuate signals of frequency

outside this band.

l The band of frequency transmitted through the filter is called the Pass-band.

l The band of frequency which is severely attenuated by the filter is called the attenuated on

stop-band.

8.2.1 Classification of Filter

(i) Analog or Digital Filters,

(ii) Active or Passive Filters,

Analog filters are designed to process analog signals while digital filters process analog signals

using digital techniques.
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Passive filters consist of passive elements, i.e., R, L and C. On the other hand, active filters consist
of active components such as op-amp, transistors, in addition to R and C.

8.3 ADVANTAGES OF ACTIVE FILTERS OVER PASSIVE FILTERS

1. Less Cost Active filters are very much inexpensive than passive filters due to the variety of
cheaper op-amp and the absence of costly inductors.

2. Gain and Frequency Adjustment Flexibility Since the op-amp is capable of providing a
gain (which may also be variable), the input signal is not attenuated as it is in a passive filter.
In addition, the active filter is easier to tune or adjust.

3. No Loading Problem Active filters provide an excellent isolation between the individual
stages due to the high input impedence (ranging from a few kW to a several thousand MW) and
low output impedance (ranging from less than 1 W to a few hundred W). So, the active filter
does not cause loading of the source or load.

4. Size and Weight Active filters are small in size and less bulky (due to the absence of bulky
�L�) and are rugged.

5. Non-floating Input and Output Active filters generally have single ended inputs and out-
puts which do not �float� with respect to the system power supply or common. This property is
different from that of the passive filters.

8.4 APPLICATION OF ACTIVE FILTERS

Application of active filters is given below. They are used
(i) in the field of communication and signal processing

(ii) in almost all sophisticated electronic systems, such as radio, television, telephone, radar, space
satellites, biomedical equipments, and so on.

8.5 TYPES OF ACTIVE FILTERS

1. Low-Pass Filter It is a circuit that has a constant output (or gain) from zero to a cut-off
frequency, fc and attenuation of all frequencies above fc.

(a) (b)

Figure 8.2(a) Low-pass filter characteristics (a) Actual (b) Ideal
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2. High-Pass Filter It is a circuit that attenuates all signals of frequency below the cut-off

frequency and has a constant output (or gain) above this frequency.

3. Band�Pass Filter It is a circuit that passes a band of frequencies and attenuates all frequen-

cies outside the band.

4. Band-Rejection/Elimination Filter or Band Stop Filter or Notch Filter It rejects a speci-

fied Band of frequencies while passing all other frequencies outside the band.

5. All�Pass Filter It passes all frequencies equally well, i.e., output and input voltages are

equal in magnitude for all frequency; with the phase�shift between the two a function of

frequency.

Figure 8.3 High pass filter characteristics (a) Actual (b) Ideal

Figure 8.4 Band pass filter characteristics

Figure 8.5 Band reject filter characteristics
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This filter is also known as a phase-shift filter, time-delay filter, or simply the delay equalizer.

One major application of an all-pass filter is the simulation of a lossless transmission line. The
magnitude of the output voltage is the same as the input voltage but the output voltage is shifted in
phase with respect to the input voltage.

The highest frequency up to which the input and output amplitudes remain equal is dependent on
the unity-gain bandwidth of the op-amp. At this frequency, however, the phase-shift between the
input and output is maximum.

8.6 LOW-PASS ACTIVE FILTER

The circuit of Figure 8.7 is a commonly used low-pass active filter.
The filtering is done by the RC network, and the op-amp is used as a unity-gain amplifier. The

resistor Rf (= R) is included for DC offset.

[At DC, the capacitive reactance is infinite and the dc resistive path to ground for both terminals
should be equal.]
Here, all the voltages Vi, Vx, Vy, Vo are measured with respect to ground.
Since the input impedance of the op-amp is infinite, no current will flow into the input terminals.

Vy = 0

1 + f

V

R R
 ´ R1 (8.1)

According to the voltage divider � rule, the voltage across the capacitor,

Vx = c

c

X

R X+
Vi ; Xc = 

1

j Cw
 = 

1

2j fCp

= 
1/ 2

1

2

j fC

R
j fC

p

p
+

Vi

= 
1 2+

iV

j f RCp
(8.2)

Figure 8.6 All pass filters characteristics

Figure 8.7 First order low-pass active filter circuit
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Since the op-amp gain is infinite,

\ Vx = Vy

or, 0 1

1 f

V R

R R+
 = 

1 2+
iV

j f RCp

Þ 0

i

V

V
 = 

1(1 / )

1 2

fR R

j fRCp

+
+

or, 0

1 ( / )
F

cL
i c

V A
A

V j f f
= =

+

where, AF = 
1

1
fR

R

æ ö
+ç ÷è ø

 = pass-band gain of the filter.

f = frequency of the input signal.

fc = 
1

2 RCp
 = cut-off frequency of the filter.

AcL = Closed- loop gain of the filter as a function of frequency.

The gain magnitude,

|AcL | = 0

i

V

V
 = 

21 ( / )

F

c

A

f f+
 = 

2 2 21

FA

R Cw+
and phase angle (in degree),

f = � 1tan
c

f

f
- æ ö
ç ÷è ø

 = � 1tan ( )RCw-

8.6.1 Operation of the Filter

The operation of the low-pass filter can be verified from the gain magnitude equation as follows:

1. At very low frequencies , i.e., f << fc,

| |CL FA A@

2. At f = fC, | |
2

F
CL

A
A =  = 0.707 AF = �3dB AF , f = 45°

3. At f > fC , |AcL | < AF

Thus, the filter has a constant gain of AF from 0 Hz to the cut �off frequency fc. At fc, the gain is

0.707AF and after fc , it decreases at a constant rate with an increase in frequency.

Figure 8.8 shows that the actual response deviates from the straight dashed-line approximation at

the vicinity of �fc�.
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At w = 0.1 wC, | | 1(0dB)@CLA

At w = 10 wC, | | 0.1( 20dB)@ -CLA

The table below gives the magnitude and phase angle for different values of w between 0.1wc and

10wc.

w AcL Phase-angle (degree)

0.1wc 1.0 �6

0.25wc 0.97 �14

0.5wc 0.89 �27

wc 0.707 �45

2wc 0.445 �63

4wc 0.25 �76

10wc 0.1 �84

8.6.2 Filter Design

A low-pass active filter can be designed by implementing the following steps:-

1. A value of the cut-off frequency wc (or, fc) is chosen.

2. A value of the capacitance C is selected; usually the value is between 0.001 and 0.1mF. Mylar

or tantalum capacitors are recommended for better performance.

3. The value of the resistance R is calculated from the relation,

R(in W) = 
1

CCw
 = 

1

2 Cf Cp

Figure 8.1 Low pass filter characteristics
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fc = cut-off frequency in hertz

wc = cut-off frequency radian/second

C = in farad

4. Finally, the values of R1 and Rf are selected depending on the desired pass band gain by using

the relation AF = 
1

1
fR

R

æ ö
+ç ÷è ø

.

8.6.3 Frequency Scaling

Once a filter is designed, there may be a need to change its cut-off frequency. The procedure used to

convert an original cut-off frequency fc to a new cut-off frequency fc¢ is called �frequency- scaling�.

It is accomplished as follows:-

To change a cut-off frequency, multiply R or C, but not both by the ratio

cold

new

Old Cut-off Frequency,

New Cut-off Frequnecy,

æ ö
ç ÷è øc

f

f

Example 8.1 (a)Design a low-pass active filter at a cut-off frequency of 1kHz with a pass band

gain of 2. Using the frequency scaling technique, convert this filter to a low-pass

filter of cut-off frequency 1.6 kHz.

(b) Plot the frequency response of this low-pass active filter.

Solution (a) Here, fc = 1 kHz, AF = 2; Let, C = 0.01 mF.

3 6

1 1
15.9 k

2 2 10 0.01 10-
= = = W

´ ´ ´c

R
f Cp p

Q AF = 2 = 
1

1
fR

R

æ ö
+ç ÷è ø

Þ Rf = R1 = 10 kW

So, the complete circuit is shown in Figure 8.9(a).

To change the cut-off frequency from 1 kHz to 1.6 kHz, we multiply the

15.9 kW resistor by

Original Cut-off frequency 1
0.625

New Cut-off frequency 1.6
= =

Q New resistor, R = 15.9 ´ 0.625 = 9.94 kW

Figure 8.9(a) Circuit of Example 8.1
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(b) To plot the frequency�response, the data are obtained from the equation,

0

2in 1 ( / )
=

+
F

c

V A

V f f

Frequency (Hz) Gain Gain (in dB)

10 2 6.02

100 1.99 5.98

200 1.96 5.85

700 1.64 4.29

1,000 1.41 3.01

3,000 0.63 �3.98

7,000 0.28 �10.97

10,000 0.20 �14.02

30,000 0.07 �23.53

100,000 0.02 �33.98

8.7 HIGH-PASS ACTIVE FILTER

The circuit is shown in Fig. 8.10.

The filtering is done by the CR network and the op-amp is connected as a unity � gain follower. The

feedback resistor, Rf is included to minimize dc off-set.

Here,

Vy =V0
1

1 f

R

R R+
(8.3)

Figure 8.9(b) Filter characteristics of Example 8.1
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Voltage across the resistor R,

Vx = i
c

R
V

R X+
 = 

1 i
R

V

R
j Cw

+
 = 

1 i

j RC
V

j RC

w

w+
(8.4)

Since op-amp gain is infinite,

Vx = Vy

Þ 0 1

1f

V R

R R+
 = 

1 i

j RC
V

j RC

w

w+

Þ 0

i

V

V
 = 

1

1

fR R

R

+æ ö
ç ÷è ø 1

j RC

j RC

w

w

æ ö
ç ÷+è ø

 = 
2

1 2F

j f RC
A

j f RC

p

p
´

+

)

)

é ù= ê ú+ë û
0 ( /

1 ( /
c

F
i c

V j f f
A

V j f f

where, AF = (1 + Rf/R1) = Pass-band Gain of the filter,

f = frequency of the input signal (Hz),

fc = 
1

2 RCp
 cut-off frequency of the filter (Hz).

The gain- magnitude,

0

i

V

V
 = 

2

( / )

1 ( / )

F c

c

A f f

f f+
 = 

2 2 21
F

RC
A

R C

w

w
×

+

and phase-angle (in degree), f = 90° � tan-1 (f/fc) = 90° � tan�1 (wRC)

8.7.1 Operation of the Filter

The operation of the high-pass filter can be verified from the gain�magnitude equation as follows:

1. At very low frequencies, i.e., f < fc, 
0

i

V

V
 < AF

Figure 8.10 First order high pass active filter circuit
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2. At f = fc, 
0

i

V

V
 = 

2

FA  = 0.707 AF = �3 dB, f = 45°

3. At f >> fc, 
0

i

V

V
 @ AF

8.7.2 Filter Design

A high-pass active filter can be designed by implementing the following steps:

1. A value of the cut-off frequency, wc (or fc) is chosen.

2. A value of the capacitance C, usually between 0.001 and 0.1 µF, is selected.

3. The value of the resistance R is calculated using the relation,

R =  
1

cCw

 = 
1

2 cf Cp

4. Finally, the values of R1 and Rf are selected depending on the desired pass-band gain, using,

the relation, AF = 
1

1
fR

R

æ ö
+ç ÷è ø

.

Example 8.2 (a)Design a high-pass active filter of cut-off frequency 1 kHz with a pass-band gain

of 2.

(b) Plot the frequency response of the filter.

Figure 8.11 High pass filter characteristics
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Solution (a) Here, fc = 1kHz, AF = 2

Let, C = 0.01 mF.

\ R = 
1

2 cf Cp
 = 

3 6

1

2 10 0.01 10p -´ ´ ´
 = 15.9 k W

\ AF = 2 =  
1

1
fR

R

æ ö
+ç ÷è ø

 Þ Rf = R1 = 10 kW

So, the complete circuit is shown in Figure 8.12(a).

Figure 8.12(a) Circuit of Example (8.2)

(b) The data for the frequency response plot can be obtained by substituting the

input frequency ( f ) values from 100 Hz to 100 kHz in the equation.

0

i

V

V
 = 

2

( / )

1 ( )/+
F c

c

A f f

f f

Figure 8.12(b) Filter characteristics of Example (8.2)
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Frequency (Hz) Gain Gain (in dB)

100 0.20 �14.02

200 0.39 �8.13

400 0.74 �2.58

700 1.15 1.19

1,000 1.41 3.01

3,000 1.90 5.56

7,000 1.98 5.93

10,000 1.99 5.98

30,000 2 6.02

100,000 2 6.02

8.8 BAND�PASS ACTIVE FILTER

A band-pass filter has a pass-band between two cut-off frequencies fce (lower cut-off frequency) and

fcu (upper cut-off frequency) such that fcu > fcl. Any input frequency outside this pass-band is attenu-

ated.

8.8.1 Bandwidth (BW)

The range of frequency between fCL and fCU is called the bandwidth.

BW ( )= -CU CLf f

The bandwidth is not exactly centered on the resonant frequency (fr).

If fCU and fCL are known, the resonant frequency can be found from,

fr = CL CUf f×

If �fr� and BW are known, cut-off frequencies are found from,

( ) ( )
2

2BW BW

2 2

æ ö
= - -ç ÷
è øcl rf f

( BW)= +cu clf f

Figure 8.13 Band pass filter characteristics
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8.8.2 Quality Factor (Q)

It is defined as the ratio of resonant frequency to bandwidth, i.e., Q = 
BW

rf

Q is a measure of the selectivity. Higher the value of Q, the more selective is the filter, i.e., narrower

is the bandwidth.

Example 8.3 A band-pass voice filter has lower and upper cut-off frequencies of 300 and

3000 Hz, respectively. Find (a) Bandwidth, (b) The resonant frequency, (c) The

quality factor.

Solution (a) BW = ( fCU � fCL ) = (3000 � 300) = 2700 Hz Ans.

(b) fr = CL CUf f  = 300 3000´  = 950 Hz Ans.

(c) Q = 
BW

rf  = 
950

2700
 = 0.35 Ans.

[Note fr is below the centre frequency 
300 3000

2

+
 = 1650 Hz]

Example 8.4 A band-pass filter has a resonant frequency of 950 Hz and a bandwidth of 2700 Hz.

Find its lower and upper cut-off frequencies.

Solution fCL = 

2
2BW BW

2 2

æ öæ ö æ ö+ -ç ÷ç ÷ ç ÷è ø è øç ÷è ø
rf

= 

2
22700 3700

(950) (1650 1350)
2 2

æ öæ ö æ ö+ - = -ç ÷ç ÷ ç ÷è ø è øç ÷è ø

= 300 Hz Ans.

\ fcu = (300 + 2700) = 3000 Hz

8.8.3 Types of Band�Pass Filters

1. Wide Band Pass Filter wide-band filter has a bandwidth that is two or more times the

resonant frequency; i.e., Q £ 0.5.

It is made by cascading a low-pass and a high-pass filter circuit.

2. Narrow Band Pass Filter A narrow band filter has a quality factor, Q > 0.5.

It is made by using a single op-amp and multiple feed back circuits.

Wide Band- Pass Active Filter In general, a wide-band filter (Q £ 0.5) is made by cascading a

low-and a high-pass filter, provided the cut-off frequency of the low-pass section is greater than that

for the high-pass section.
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Characteristics

(i) The cut-off frequency of low-pass filter should be 10 or more times the cut-off frequency of

the high-pass filter.

(ii) Each section should have the same pass band gain.

(iii) The lower cut-off frequency, fcl, will be determined only by the high-pass filter.

(iv) The higher cut-off frequency, fcu, will be determined only by the low-pass filter.

(v) Gain will be maximum at the resonant frequency, fr, and equal to the pass-band gain of either

filter.

Figure 8.14(a) Wide band-pass active filter circuit

Frequency Response

Figure 8.14(b) Frequency response of wide band-pass active filter circuit

Here, 
1 1

1

2CLf
R Cp

= , 
2 2

1

2CUf
R Cp

=

The Voltage gain magnitude of the band�pass filter is equal to the product of the voltage gain

magnitudes of the high-pass and the low-pass filters.

0

2 2

( / )

[1 ( / ) ] [1 ( / ) ]
\ =

+ × +

FL FH CL

i
CL CU

V A A f f

V f f f f
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Where, AFL, AFH = Pass-band gain of low-pass and high-pass filter;

f = frequency of input signal (Hz);

fcl = lower cut-off frequency (Hz);

fcu = higher cut-off frequency (Hz);

At the centre frequency, ( )r CL CUf f f= , the Gain is, 0 CU
FL FH

i CL CU

V f
K A A

V f f
= =

+

At CLf f= , 0

2 2 2

( / )

[1 ( / ) ][1 ( / ) ] (2)[1 ( / ) ]

FL FH CL CL FL FH

i
CL CL CL CU CL CU

V A A f f A A

V f f f f f f
= =

+ + +

0

2 22

FL FH CU

i
CL CU

V A A f

V f f
=

+

At CUf f= , 0

2 2 2

( )/

(2)[1 ( / ) ] 2

FL FH CU CL FL FH CU

i
CL CL CL CU

V A A f f A A f

V f f f f
= =

+ +

At CL CUf f f= = , 0

2 2
Gain,

2

CUFL FH

i
CL CU

V fA A

V f f

é ù
ê ú=
ê ú+ë û

Þ 0

2
FL FH

i

V A A

V
=

Narrow Band-pass Active Filter In general, a narrow band-pass filter is made by using

multiple feedback circuit with a single op-amp.

Figure 8.15 Multiple feedback narrow BP active filter

Compared to all other filters, it has some unique features, as given below.

(i) It has two feedback paths, hence the name �multiple feedback filter�.

(ii) The op-amp is used in the inverting mode.

(iii) Its centre frequency can be changed without changing the gain or bandwidth.
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Performance Equations

Writing KCL at (1)

1 1 0 1 1

1 2

( ) 0
0

1/ 1/
i

r

V V V V V V

R sC sC R

- - -
+ + + =

or (V1 � Vi) Rr + (V1 � V0) sRrRC1 + V1sRRrC2 + V1R = 0

or 0 1
1

1 2( )
i r r

r r

V R V sRR C
V

R R sRR C C

+
=

+ + +
(8.5)

Again, writing KCL at (2),

0 1

2

0 0
0

1/f

V V

R sC

- -
+ =

or V0 = �V1 sRf C2

=  0 1
2

1 2( )
i r r

f
r r

V R V sRR C
sR C

R R sRR C C

+é ù
- ê ú+ + +ë û

{by the value of V1 from (8.5)}

or V0 [R + Rr + sRRr(C1 + C2) + s2RRrRf C1C2] = �VisRrRf C2

\ 20

2
1 2 1 2( )

= -
+ + + +

r f

i r f r r

sR R CV

V s RR R C C sRR C C R R

So, the gain,

0 1

2 1 2

1 2 1 2

( / )

i r

f r f

V s RC

V C C R R
s s

R C C RR R C C

= -
æ ö+ +

+ +ç ÷è ø

The general transfer function is of the form,

0

2 2
2 2

(BW)

(BW)

æ ö
ç ÷è ø

= - = -
æ ö + +

+ +ç ÷è ø

r

F

i r r
r

s
QV s A

V s s
s s

Q

w

w w
w

, where, AF = Gain

So, here, 1 2

1 2

1
BW

2

æ ö+
= ´ç ÷è øf

C C

R C C p
(in Hz) { }2 fw p=Q

With matched capacitor, i.e., C1 = C2 = C

1
BW

fR Cp
= Þ f

r

Q
R

f Cp
=

Also,
1

1 1
(BW) = =FA RC RC | with C1 = C2 = C
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\ 1

( ) 2
= = Þ =

F r F r F

Q Q
R R

BW CA CA f CAw p

BW = 
1

2 FRCAp
 Hz

Similarly, 2

2

r
r

r f

R R

RR R C
w

+
= | with C1=C2=C

or,4p2fr
2 ´ RRr Rf C

2 = R + Rr

or 2 2 24
2 2r r f r

r F r F

Q Q
f R R C R

f CA f CA
p

p p
´ ´ = + [Putting the value of Rf]

or 2
2r r f r F

r

Q
f QR R C R A

f C
p

p
= +

or 2
2r r r F

r r

Q Q
Qf R C R A

f C f C
p

p p
´ ´ = + [Putting the value of Rf]

or 22
2r F

r

Q
R Q A

f Cp
é ù- =ë û

\
2 22 (2 ) 2

F
r

r F F

AQ
R R

f C Q A Q Ap

æ ö
= = ç ÷- -è ø

Also,
2

2
f F

F
r

R frCAQ
A

R f C Q

p

p

= ´ =

\ AF = 
2

fR

R
. So, the gain is a maximum of 1 at fr if Rf = 2R

However, the gain must satisfy the condition, AF < 2Q2.

So, the narrow-band-pass active filter is designed for specific values of resonant frequency fr and Q

(or, fr and BW) by using the relations.

2 r F

Q
R

f CAp
= , f

r

Q
R

f Cp
= ,

22 (2 )
r

r F

Q
R

f C Q Ap
=

-
,

2

f

F

R
A

R
= (8.6)

Z

1 0.1591
BW (Hz) (H )

2
= = =r

F F

f

Q RCA A RCp
 and (8.7)

1 1 0.1125 1
1 1

2 2
r

F r F r

R R
f

A R RC A RRC

æ ö æ ö= + = +ç ÷ ç ÷è ø è ø
(8.8)

Note: The resonant frequency can be changed to a frequency fr¢ without changing the gain or BW, by,

changing Rr to a new value rR ¢  = so that, 

2

r
r r

r

f
R R

f

æ ö¢ = ç ÷¢è ø
.
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Example 8.5 (a)Design a wide band-pass filter with fCL = 200 Hz and fCU = 1kHz, and a pass-band

gain = 4.

(b) Draw the frequency response plot of this filter.

(c)Calculate the value of Q for the filter.

Solution (a) To design the low-pass section:

fc = 1 kHz

Let, C2 = 0.01 mF, R2 = 
2

1
15.9 k

2 cf Cp
= W

To design the high-pass section:

fc = 200 Hz

Let, C1 = 0.05 mF, R1 = 
1

1

2 cf Cp
 = 15.9 kW

Since the band-pass gain is 4, the gain of both HP and LP sections could be set

equal to 2.

\ 2 1 1
¢ ¢¢æ ö æ ö

= + = +ç ÷ ç ÷¢ ¢¢è ø è ø
f fR R

R R
Þ 10 kf fR R R R¢ ¢¢ ¢ ¢¢= = = = W

(b) The frequency response will be as shown below.

Figure 8.16 Frequency response of Example (8.5)
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(c) Resonant frequency, 200 1000 447.2 Hzrf = ´ =

So, the quality factor, 
447.2

0.56
BW (1000 200)

= = =
-

rf
Q

Example 8.6 (a)Design a narrow band-pass filter with resonant frequency fr = 1 kHz, Q = 3, and

AF = 10.

(b) Change the resonant frequency to 1.5 kHz, keeping AF and the bandwidth con-

stant.

Solution (a) Let, C1 = C2 = 0.01 mF

3 8

3
95.5 k

10 10
f

r

Q
R

f Cp p -= = = W
´ ´

;

 
3 8

3
4.77 k

2 2 10 10 10r F

Q
R

f CAp p -= = = W
´ ´ ´

2

4.77 10
5.97 k

(2 9 10)2 (2 )
r

r F

Q
R

f C Q Ap

´
= = = W

´ --

(b) To change the resonant frequency, the resistance value will be,

3 1
5.97 10 3.98 k

1.5
R

æ ö¢ = ´ ´ = Wç ÷è ø

The frequency response is shown below.

Figure 8.17 Frequency response of Example (8.6)
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Example 8.7 A band-pass filter has the component values, R = 21.12 kW, Rf = 42.42 kW, Rr = 3.03

kW and C1 = C2 = 0.015 mF. Find the resonant frequency and the bandwidth.

Solution Here, since Rf = 2R, so, AF = 1.

\
3 6

0.1125 1 0.1125 21.21
1 1 1000 Hz

3.0321.21 10 0.015 10
r

F r

R
f

RC A R -
æ ö= + = + @ç ÷è ø ´ ´ ´

3 6

0.1591 0.1591
BW 500 Hz

1 21.21 10 0.015 10-
= = @

´ ´ ´ ´FA RC

8.9 BAND- REJECT (NOTCH) ACTIVE FILTER

1. It may be obtained by the parallel connection of a high-pass section with a low-pass section.

The cut-off frequency of the high-pass section must be greater than that of the low-pass

section.

The outputs of HP and LP sections are fed to an adder whose output voltage V0 will have

the notch filter characteristics.

Figure 8.18(b) Frequency response of band reject

filter

Figure 8.18(a) Block diagram of BR filter

The circuit of the BR filter is shown in Fig. 8.19.

Obviously, the gain of the adder is set at unity; and thus,

0 0
0 4 2 3 4

2 3

V V
V R R R R

R R

¢ ¢¢æ ö
= + Þ = =ç ÷è ø

and 2 3 4OMR R R R=

So, 0

( / ) 1

1 ( / ) 1 ( / )
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j f f
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j f f j f f

é ù é ù
= +ê ú ê ú+ +ë û ë û

If AFL = AFH = A, then at the center frequency, r CL CHf f f= , the Gain is 
2

= ×
+
CL

CL CH

f
K A

f f
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Figure 8.19 Band reject active filter circuit using parallel connection of high pass and low pass filters

2. Band-reject filter may also be obtained by using the multiple-feedback band-pass filter circuit

with an adder. That is, the notch filter is made by a circuit that subtracts the output of a band

pass filter from the original signal.

Figure 8.20 Band reject active filter circuit using multiple feedback band pass filter with an adder

So, 0

i

V

V

¢
= 1

2 1 2

1 2 1 2

( / )
( )

r

f r f
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C C R R
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Now, writing KCL at (1),

0 0 0i

f

V V V

R R R

¢
+ + =
¢ ¢ ¢¢

Þ V0 = 01
f

VV
R

R R

¢¢æ ö¢- +ç ÷¢¢ ¢è ø

= 
( )1é ù

¢- +ê ú¢¢ ¢ë û
f i

T s
R V

R R

At notch frequency, the output is zero (ideally).

So, T(s) = R

R

¢-
¢¢

But, at wn (or fn), T(s) = �AF (AF = gain of the BP section)

With C1 = C2, Gain for BP section, AF = 
2

fR

R

2

f

F

R R
A

R R

¢\ = =
¢¢

So, the design equations are all those of BP section and this one.

Example 8.8 Design a notch filter having a resonant frequency,  fr = 400 Hz and Q = 10. Make the

resonant frequency gain, AF = 2.

Solution Here, fr = 400 Hz, Q =10, AF = 2

Let, C = 0.1 mF

\
6

10
19.89 k

2 2 400 0.1 10 2F

Q
R

frCAp p -= = = W
´ ´ ´ ´

Ans.

\
6

10
79.58 k

400 0.1 10
f

Q
R

f rCp p -= = = W
´ ´ ´

\
3

2

19.89 2 10
202

200 22

F
r

F

RA
R

Q A

´ ´
= = = W

--

Let, R¢ = 1 kW (arbitrary) = fR¢

R² = 
F

R

A

¢
 = 500 W Ans.

8.9.1 Applications of Notch Filters

Notch filter is used where unwanted frequencies are to be attenuated while permitting the other signal

frequencies to pass through.
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For examples, 50 Hz, 60 Hz, or 400 Hz frequencies from power lines, ripple from a full-wave

rectifiers, etc.

Example 8.9 Design an active notch filter to eliminate 120 Hz hum (noise). Take the bandwidth,

BW = 12 Hz.

Solution Hare, fr = 120 Hz, BW = 12Hz, Q = 
120

10
12

=

The gain of the filter in the pass-band will be maximum of 1,

AF = 1.

Let , C1 = C2 = 0.1 mF

R = 
6

10
132.66 k

2 120 0.1 10 1- = W
´ ´ ´ ´p

Rf = 2R = 265.32 kW

Rr = 200 1

R

-  = 663.3 kW

Now, let R¢ = fR¢  = 1 kW (arbitrary)

So, R² =  
F

R

A

¢
 = 1k W

Thus the filter will pass all frequencies from (0 � 114) Hz and 126 Hz onwards.

8.10 FILTER APPROXIMATION

In the earlier sections, we saw several examples of amplitude response curves for various filter types.

These always included an �ideal� curve with a rectangular shape, indicating that the boundary be-

tween the pass-band and the stop-band was abrupt and that the roll-off slope was infinitely steep. This

type of response would be ideal because it would allow us to completely separate signals at different

frequencies from one another. Unfortunately, such an amplitude response curve is not physically

realizable. We will have to settle for the best approximation that will still meet our requirements for a

given application. Deciding on the best approximation involves making a compromise between vari-

ous properties of the filter�s transfer function, such as, filter order, ultimate roll-off rate, attenuation

rate near the cut-off frequency, transient response, ripples, etc.

If we can define our filter requirements in terms of these parameters, we will be able to design an

acceptable filter using standard design methods.

8.10.1 Butterworth Filters

The first and probably best-known filter approximation is the Butterworth or maximally-flat response.

It exhibits a nearly flat pass-band with no ripple. The roll-off is smooth and monotonic, with a low-

pass or high-pass roll-off rate of 20 dB/decade (6 dB/octave) for every pole. Thus, a 5th-order
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Butterworth low-pass filter would have an attenuation rate of 100 dB for every factor of ten increase

in frequency beyond the cutoff frequency.

The general equation for a Butterworth filter�s amplitude response is,

2

0

1
( )

1

n
H w

w
w

=
æ ö

+ ç ÷è ø
(8.9)

where n is the order of the filter, and can be any positive whole number (1, 2, 3,�), and w0 is the -3

dB frequency of the filter.

Figure 8.21 shows the amplitude response curves for Butterworth low-pass filters of various orders.

The coefficients for the denominators of Butterworth filters of various orders are shown in Table.

Figure 8.21 Amplitude response curves for butterworth low-pass filters of different orders

Table shows the denominators factored in terms of second-order polynomials. Again, all of the

coefficients correspond to a corner frequency of 1 radian/s

Table Butterworth Polynomials

Denominator coefficients for polynomials of the form 1 2
1 2 1 0...n n n

n ns a s a s a s a- -

- -+ + + + +

n a0 a1 a2 a3 a4 a5 a6 a7 a8 a9

1 1

2 1 1.414

3 1 2.000 2.000

4 1 2.613 3.414 2.613

5 1 3.236 5.236 5.236 3.236

6 1 3.864 7.464 9.142 7.464 3.864

7 1 4.494 10.098 14.592 14.592 10.098 4.494

8 1 5.126 13.137 21.846 25.688 21.846 13.137 5.126

9 1 5.759 16.582 31.163 41.986 41.986 31.163 16.582 5.759

10 1 6.392 20.432 42.802 64.882 74.233 64.882 42.802 20.432 6.392
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Butterworth Quadratic Factors

n

1 (s � 1)

2 (s2 � 1.4142s �1)

3 (s � 1)(s2 � s � 1)

4 (s2 � 0.7654s �1)(s2 � 1.8478s � 1)

5 (s � 1)(s2 �0.6180s � 1)(s2 � 1.6180s � 1)

6 (s2 �0.5176s � 1)(s2 � 1.4142s � 1)(s2 � 1.9319)

7 (s � 1)(s2 �0.4450s � 1)(s2 � 1.2470s � 1)(s2 � 1.8019s � 1)

8 (s2 �0.3902s � 1)(s2 � 1.1111s � 1)(s2 � 1.6629s � 1)(s2 � 1.9616s � 1)

9 (s � 1)(s2 � 0.3479s � 1)(s2 � 1.0000s � 1)(s2 �1.5321s � 1)(s2 � 1.8794s � 1)

10 (s2 � 0.3129s � 1)(s2 � 0.9080s � 1)(s2 � 1.4142s � 1)(s2 � 1.7820s � 1)(s2 � 1.9754s � 1)

8.10.2 Second Order Low-pass Active Filter

The circuit is shown in Figure 8.22.

Figure 8.22 Second order low-pass active filter

Here, 0
1

1
y

f

V
V R

R R
=

+
 and Vx = Vy

Writing KCL at node V �,

0 0
1/

i xV V V V V V

R sC R

¢ ¢ ¢- - -
+ + =

or 0( ) ( ) ( ) 0i xV V V V sRC V V¢ ¢ ¢- + - + - =

or 0( 1) (2 ) ( )x iV sRC V sRC V V¢- + + + - = (8.10)

Writing KCL at node x,

0
1/

x xV V V

R sC

¢-
+ =

or 0(1 ) ( 1) (0) 0xsRC V V V¢+ + - + = (8.11)
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Writing KCL at node y,

0

1

0x x

f

V V V

R R

-
+ =

or 1 1 0( ) (0) ( ) 0f xR R V V R V¢+ + + - = (8.12)

Solving for V0 from equations (8.10), (8.11), and (8.12), we get,

1

1 1
0

12

1

1 1

1 (2 )

(1 ) 1 0 ( )

( ) 0 0

( )1 (2 )
3 1

(1 ) 1 0

( ) 0

i

f

f

i
f

f

sRC V

sRC R R

R R R
V V

R RsRC sRC
s sRC sRC

RsRC

R R R

- +

+ - +
+

= =
+æ ö- + -

+ - +ç ÷è ø+ -

+ -

or, 0

2
2

( )

( ) 3 1i

V s K

V s K
s s

RC RC

=
-æ ö æ ö+ +ç ÷ è øè ø

(8.13)

where, 
1

1

fR R
K

R

+
=  = DC gain of the amplifier.

Substituting s = jw, the transfer function is,

0

2 2 2

( )
( )

( ) 1 (3 )i

V j K
H j

V j j K RC R C

w

w

w w w

= =
+ - -

The magnitude of the transfer function is,

2
2 2

2

| ( )|

1 [3 ]
c c

K
H j

K

w

w w
w w

=
é ùæ ö æ ö

- + -ê úç ÷ ç ÷è ø è øê úë û

; where, 
1

c RC
w =

In the above equation, when w ® 0, | ( )|H j Kw = . Thus, the low frequency gain of the filter is K and

when w ® ¥, | ( )|H jw  = 0, i.e., high frequency gain is zero.

From the Table of the Butterworth Filter, the transfer function for second order (n = 2) filter is,

2

2 2 2
( )

1.414
1.414 1

c

c c

c c

KK
T s

s ss s

w

w w

w w

= =
+ +æ ö æ ö

+ +ç ÷ ç ÷è ø è ø

(8.14)

where, wc is the cut-off frequency. Comparing equations (8.13) and (8.14), we get,

1 1
or,

2c cfRC RC
w

p

= = and, (3 1.414) 1.586K = - =

The frequency response of a second order low-pass active filter is shown in Figure 8.23. It is noted

that the filter has very sharp roll-off response.



8.28 Network Theory

Filter Design
1. Choose a value of the cut-off frequency, wc (or fc).

2. Select a convenient value for the capacitors C, between 100pF and 0.1mF.

3. Calculate the value of the resistors R from the relation,

1

2 c

R
f Cp

=

4. For minimization of dc offset, the feedback resistor is calculated from the relation, Rf =

K (2R) = 3.172R.

5. Calculate the value of the resistor R1 for the value of the gain K = 1.586 from the relation,

1

1

fR R
K

R

+
= , i.e., 1 0.586

fR
R = .

Example 8.10 Design a second-order low-pass filter with a gain of 11 and cut-off frequency of

20 kHz.

Solution Let us arbitrarily select C = 200 pF.

For a cut-off frequency of 20 kHz, we need R = 
3 12

1 1

2 2 20 10 200 10cf Cp p -=
´ ´ ´ ´

= 39.789 kW
If we select a standard resistor of 39 kW for R, then the cut-off frequency is about

20.4 kHz.

The dc gain for this filter cannot be anything other than K where K = 1.586.

Thus, for a dc gain of 1.586, K = 1 + Rf /R1 = 1.586.

This in turn implies that Rf = 0.586 R1.

Imposing the dc bias-current balance condition, we obtain

0.586 R1 = 1.586 (2 R) = 123.708 kW.

Consequently, R1 = 211.11 kW and Rf = 123.708 kW.

Let us select a standard value of 130 kW for Rf. Then R1 should be about 221.8 kW.

We need another amplifying stage to obtain the needed gain of 11. The gain of this

Figure 8.23 Frequency response of the second order low-pass filter
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stage should be 11/K = 6.936. We have chosen to use non-inverting amplifier for this

stage. The output amplifier resistors are calculated as,

6.936 = 21
A

R

R

æ ö+ç ÷è ø
 and for RA = 100 kW., R2 = 593.6 kW.

Thus, the final circuit for the second order low-pass active filter becomes as shown

below.

Figure 8.24 Circuit of Example (8.10)

8.10.3 Second Order High Pass Active Filter

The circuit is shown in Figure 8.25.

Figure 8.25 Second order high-pass filter

Here, 0
1

1
y

f

V
V R

R R
=

+
 and Vx = Vy

Writing KCL at node V ¢,

0 0
1/ 1/

i xV V V V V V

sC R sC

¢ ¢ ¢- - -
+ + = (8.15)

Writing KCL at node x,

0
1/
x xV V V

sC R

¢-
+ = (8.16)
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Writing KCL at node y,

0

1

0x x

f

V V V

R R

-
+ = (8.17)

Solving for V0 from equations (8.15), (8.16), and (8.17), we get,

or,
2

0

2
2

( )

( ) 3 1i

V s Ks

V s K
s s

RC RC

=
-æ ö æ ö+ +ç ÷ è øè ø

(8.18)

where, K = 
1

1

fR R

R

+
 = DC gain of the amplifier.

Note The transfer function of the high-pass filter can also be obtained from the transfer function of

the low-pass filter by the transformation c

c LP HP

s

s

w

w

æ ö æ ö
®ç ÷ ç ÷è ø è ø

Substituting s = jw, the transfer function is,

2 2 2
0

2 2 2

( )
( )

( ) 1 (3 )i

V j KR C
H j

V j j K RC R C

w w
w

w w w

= = -
+ - -

The magnitude of the transfer function is,

2

2
2 2

2

| ( )|

1 [3 ]

c

c c

K

H j

K

w
w

w

w w
w w

æ ö
ç ÷è ø

=
é ùæ ö æ ö

- + -ê úç ÷ ç ÷è ø è øê úë û

; where, 
1

c RC
w =

In the above equation, when w ® 0, | ( )|H jw  = 0. Thus, the low frequency gain of the filter is zero.

When w ® ¥, | ( )|H jw  = K, i.e., high frequency gain is K.

Here, again, comparing with Butterworth Transfer function, we get,

1 1
or,

2c cfRC RC
w

p

= =

(3 1.414) 1.586K = - =

The frequency response of a second order low-pass active filter is shown below. It is noted that the

filter has very sharp roll-off response.

The design procedure for high-pass will be same as low-pass.

The frequency response will be a maximally flat one, i.e., having a very sharp roll-off response.
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Figure 8.26 Gain vs. frequency plot of a second-order high-pass filter

Example 8.11 A second-order high-pass filter is given in Figure 8.27. Determine its cut-off fre-

quency and high frequency gain. Sketch its gain vs. frequency response.

Figure 8.27 Circuit of Example (8.11)

Solution In the second-order filter on the left side of the figure, the gain K =
58.7

1
100

æ ö+ç ÷è ø = 1.587.

Since it is very close to 1.586, we can assume that the filter is maximally flat and its

transfer function is as given for Butterworth filters. From the given values of R and

C, the cut-off frequency is,

3 9

1 1
25,641

39 10 1 10
c RC

w -= = =
´ ´ ´

 rad/s
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The cut-off frequency in Hz, fc = 
25,641

2p
 = 4081 Hz

The gain of the non-inverting amplifier, A = 
220

1
220

æ ö+ç ÷è ø  = 2

Hence, the overall gain of the high-pass filter is,

AH = 1.587 ´ 2 = 3.174 or approximately 10 dB.

The gain vs. frequency will be as shown in Figure 8.26.

8.10.4 Second Order Band-Pass Active Filter

It can be built by the cascade connection of a second order high-pass and a second order low-pass

filter.

Figure 8.28 Second-order band-pass active filter circuit

Lower cut-off frequency, 1

1

H HR C
w =

Upper cut-off frequency, 2

1

L LR C
w =

Voltage gains, 1
f

H

R
K

R

¢é ù
= +ê ú¢ë û

 and 1
f

L

R
K

R

¢¢é ù
= +ê ú¢¢ë û

For maximally flat response (or, Butterworth) filter, KH = KL = 1.586.

\ 0.586
f fR R

R R

¢ ¢¢
= =¢ ¢¢

The overall transfer function is the product of the transfer function of the high-pass and low-pass

filters.

\ 1

2 2

1 1 2 2

( )

1 (3 ) 1 (3 )

H
L

H L

s
K

K
H s

s s s s
K K

w

w w w w

æ ö
ç ÷è ø

= ´
æ ö æ ö æ ö æ ö+ + - + + -ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø



Active Filter 8.33

Substituting the values of KH and KL, magnitude of the gain is,

2

1

4 4

2 1

2.5154

| ( )|

1 1

H j

w
w

w

w w
w w

æ ö
ç ÷è ø

=
æ ö æ ö+ +ç ÷ ç ÷è ø è ø

Note In the pass-band, the gain is 2.5154.

The frequency response is more flat near the cut-off frequencies.

Figure 8.29 Frequency response of second order band-pass filter

8.10.5 Second Order Band-Reject Active Filter

It can be built by the summation of a second order high-pass and a second order low-pass filter.

The cut-off frequency of LPF, 1

1

L LR C
w =  and the cut-off frequency of HPF, 2

1

H HR C
w = .

The magnitude of the overall transfer function is the sum of the transfer function of the high-pass

and low-pass filters,

2

22

4 41

2 1

1
| ( )| 1

2

1 1

H
L

K
R K

H j
R

w
w

w

w w
w w

é ù
æ öê úç ÷ê úè øé ù

= + +ê úê úë û ê úæ ö æ ö+ +ê úç ÷ ç ÷è ø è øê úë û

where, 1
f

H

R
K

R

¢æ ö
= +ç ÷¢è ø

 and, 1
f

L

R
K

R

¢¢æ ö
= +ç ÷¢¢è ø

 and for Butterworth filters, KH = KL = 1.586.

The roll-off frequency response will be very smooth as shown.
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Figure 8.30 Second-order band-reject active filter circuit

Figure 8.31 Frequency response of second order band-reject filter

8.11 ALL-PASS ACTIVE FILTER

This filter passes all frequency component of the input signal without attenuation and provides some

phase shifts between the input and output signals.

The circuit of an active all-pass active filter with lagging output is shown in Figure 8.32.
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Figure 8.32 Circuit of an all-pass active filter with lagging output

For the circuit, by KCL at node x,

0 0

1 1

0
2

x i x i
x

V V V V V V
V

R R

- - +
+ = Þ = (8.19)

By KCL at node y,

0
1/ 1

y i y i
y

V V V V
V

R j C j RCw w

-
+ = Þ =

+
(8.20)

Also, from Op-Amp property,

Vx = Vy

Þ 0

2 1
i iV V V

j RCw

+æ ö æ ö
=ç ÷ ç ÷+è ø è ø

Þ 0( )(1 ) 2i iV V j RC Vw+ + =

Þ 0 (1 ) [2 (1 )] (1 )i iV j RC V j RC V j RCw w w+ = - + = -

0 1

1i

V j RC

V j RC

w

w

-
\ =

+

Thus, the amplitude of the gain,

0
out in1 i.e., | | | |= =

i

V
V V

V
 throughout the entire frequency range

Also, the phase shift between the input and the output voltages is,

f = �2 tan�1 (wRC) i.e., phase-shift is a function of frequency

Figure 8.33 Characteristics of all-pass filter

By interchanging the positions of R and C in the circuit, the output can be made leading the input.
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MULTIPLE-CHOICE QUESTIONS

8.1 The two input terminals of an op-amp are labeled as

(a) high and low (b) positive and negative

(c) inverting and non-inverting (d) differential and non-differential

8.2 Consider the following statements for an ideal op-amp.

1. The differential voltage across the input terminals is zero.

2. The current into the input terminals is zero.

3. The current from the output terminals is zero.

4. The input resistance is zero.

5. The output resistance is zero.

Of these statements, those which are not true are

(a) 1 and 5 (b) 3 and 4 (c) 2 and 4 (d) 1 and 4

8.3 In a series resonant circuit, to obtain a low-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor

8.4 In a series resonant circuit, to obtain a high-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor

8.5 In a series resonant circuit, to obtain a band-pass characteristic, across which element should the

output voltage be taken?

(a) Resistor (b) Inductor (c) Capacitor

8.6 A high-pass filter circuit is basically

(a) a differentiating circuit with low time constant.

(b) a differentiating circuit with large time constant.

(c) an integrating circuit with low time constant.

(d) an integrating circuit with large time constant.

8.7 The transfer function of an electrical low-pass RC network is

(a)
1

RCs

RCs+
(b)

1

1 RCs+
(c)

1

RC

RCs+
(d)

1

s

RCs+
8.8 For a high-pass RC circuit, when subjected to a unit step input voltage, the voltage across the

capacitor will be

(a) /1 t RCe-- (b) /t RCe- (c) /t RCe (d) 1

8.9 In the magnitude plot of a low-pass filter, at what frequency does the peak of the magnitude

characteristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.

8.10 In the magnitude plot of a high-pass filter, at what frequency does the peak of the magnitude

characteristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.

8.11 In the magnitude plot of a band-pass filter, at what frequency does the peak of the magnitude

characteristic occur?

(a) At resonant frequency (b) Below resonant frequency

(c) Above resonant frequency (d) At any frequency.
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8.12 If a filter is de-normalized to a higher frequency, which of the following occurs?

(a) Inductors increase in value while capacitors decrease.

(b) Inductors decrease in value while capacitors increase.

(c) Inductors and capacitors increase in value.

(d) Inductors and capacitors decrease in value.

8.13 The transfer function 2

2
1

( ) 10

( ) 10 100

V s s

V s s s
=

+ +

 is for an active

(a) low pass filter (b) band pass filter (c) high pass filter (d) all pass filter.

8.14 The transfer function 
2

2
( )

s
T s

s as b
=

+ +

 belongs to an active

(a) low pass filter (b) high pass filter (c) band pass filter (d) band reject filter.

8.15 The voltage-ratio transfer function of an active filter is given by 
2

2

2
1

( )

( )

V s s

V s s s

d

a d

+
=

+ +
. The circuit in

question is a

(a) low pass filter (b) high pass filter (c) band pass filter (d) band reject filter.

EXERCISES

8.1 Design a second order low pass active filter having a cut-off frequency of 5 kHz.

[C = 0.03 mF; R = 1 kW; R1 = 10 kW; R2 = 5.86 kW]
8.2 Design a second order band pass active filter that has a centre frequency of 1 kHz and a bandwidth

of 100 Hz. Take the centre frequency gain to be 2.

[C1 = C2 = 0.02 mF; R1 = 40 kW; R3 = 160 kW; R2 = 400 W]
8.3 Design a second order high pass Butterworth filter with a cut-off frequency of 200 Hz.

[C = 0.053 mF; R = 1.5 kW; R1 = 10 kW; R2 = 5.86 kW]
8.4 Design a second order band pass active filter with a centre frequency gain A0 = 50. Given: f0 =

160 Hz and Q = 10. [assuming C1 = C2 = 0.1 mF; R1 = 2 kW; R3 = 200 kW; R2 = 667 W]

SHORT-ANSWER TYPE QUESTIONS

8.1 (a) What is an operational-amplifier? State the characteristics of an op-amp.

(b) What is filter? Classify them.

(c) Discuss the advantages of an active filter over a passive filter.

8.2 (a) Briefly discuss the operating principle of an active low-pass filter and derive its gain-frequency

characteristics. Explain the design procedure of a low-pass active filter.

(b) Briefly discuss the operating principle of an active high-pass filter and derive its gain-frequency

characteristics. Explain the design procedure of a high-pass active filter.

8.3 (a) Define the following terms with reference to a band-pass active filter: -

(i) Bandwidth,

(ii) Cut-off frequency,

(iii) Quality factor.
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(b) What are the different types of band-pass filters? Give the salient features and performance

equations for the following filters: -

(i) Wide Band-Pass Active Filter,

(ii) Narrow Band-Pass Active Filter.

8.4 Define Notch-frequency. Explain the operational characteristics of an active Notch filter. Where are

these filters used?

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

8.1 (c) 8.2 (b) 8.3 (c) 8.4 (b) 8.5 (a) 8.6 (a) 8.7 (b)

8.8 (a) 8.9 (b) 8.10 (c) 8.11 (a) 8.12 (d) 8.13 (c) 8.14 (b)

8.15 (c)



9.1 INTRODUCTION

While switching over from the spectrum of network analysis that has been carried out satisfactorily

in the preceding chapters to the sphere of network synthesis to be dealt in this chapter, one has to

be very assertive about the facts and findings as the principles undergo a paradigm shift in the

process. Yet, one thing that remains common to both ‘network analysis’ and ‘network synthesis’ is

the network. As regards to the most striking difference,

• In case of network analysis, the network remains defined and the response characteristic is

determined (as an output parameter) subject to an impressed excitation function that remains

predefined and is better known as the input parameter.

• On the contrary, in that of the case of network synthesis, the input parameter (that is the

impressed excitation function) and the output parameter (that is the response characteristic)

remain declared and accordingly a quest for a possible network formulation is performed with

help of various mathematical tools.

The following table would serve as a supplement for a quick reference for the notable disclosures

of the preceding paragraphs.

Table 9.1 Highlights of Network Analysis and Network Synthesis.

Item under Study Known Parameters Parameters to be Evaluated

Network Analysis • Network structure or Network Function Output parameter or

• Input parameter or Excitation Function Response Function

Network Synthesis • Output parameter or Response Function Network structure or

• Input parameter or Excitation Function Network Function

The lexicon meaning of synthesis is synonymous to production, creation, making, manufacturing

or formulation of a system to meet a specific purpose in a desirable manner. In view of this, network

synthesis also simply and directly mean the formulation of a possible electrical network by realizing

the most competitive passive elements, which would satisfy the specific correspondence between the

given set of excitation and response functions in a desirable and conducive manner. There could be

lots of logistics involved in reaching the desired goal (starting from the hard core mathematical

approach through a series of practice involving hit and trial to the soft core computer simulation

techniques available as on date), which poses a real challenge for the designer or synthesizer in order

to establish the findings as optimal.

CHAPTER

9
Network Synthesis
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9.2 ELEMENTS OF NETWORK SYNTHESIS

By this point the meaning and objectives of network synthesis might have created some impression

in the mind of the reader in a broad sense. However, it requires furthermore explanation in the true

light of the necessity and requirements associated in this process, which make network synthesis so

appealing in the area of network theory. In addition to the information supplied in the preceding

section (Table 9.1) it is mandatory in network synthesis that while formulating or synthesizing a

possible electrical network through realization of the passive elements (R, L and C) and establish-

ment of a suitable connectivity (series or parallel connection) for them the following requirements

must not be ignored. This requirement emphasizes that (i) the correspondence between input exci-

tation and output response should be satisfactory as desirable and (ii) the system performance should

remain stable. This fact explores the introduction to three most important elements of network

synthesis, which are described as (i) Causality, (ii) Stability, and (iii) Realizability. While, causality

describes the possibility of a cause for the process under study, stability ensures systematic and

bound performance of the process. In as much so realizability describes the possibility of finding a

set of passive network elements and a possible connectivity for synthesizing the required, may be

complex network.

Sometimes, it may so happen that, a number of possibilities get explored in the process of network

synthesis for a given and specific set of input excitation function and output response function and

each of them might show a justifiable stance for selection. Therefore, the synthesizer has to be often

judicious and apply his/her intuition and experience in selecting the optimal result of network syn-

thesis.

Causality is merely a certification of the cause of a fact in the merit of the findings, which is of

course the foundation of the studies related to science. As we better know, no current would ever

flow between a pair of terminals/nodes of an electrical network even having well established elec-

trical connectivity between them without mere existence of a potential difference across the said pair

of nodes/terminals. This fact verifies the causality and certifies that potential difference or electric

pressure is causal for flow of electric current in a network. A dual of this statement is also true and

may state that without a flow of electric current in a conductor or through any part of an electrical

network, no electric potential difference can exist across the ends of the said conductor or across any

pair of points of the said network. This fact too verifies the causality and certifies that flow of electric

current is causal for existence of potential difference across the ends of a conductor or a pair of points

of a network.

By principle, a causal function is realizable if it satisfies that the amplitude function maintains at

least a non zero magnitude over a finite band of frequencies in the frequency domain operation. It

is also possible that this criterion may be interpreted in a different perspective as regards to stability

of the system operation. The well known stability criteria states that, for a stable network, a bounded

excitation as input function must produce a bounded response as output function. These facts are thus

considered as the foundation of network synthesis as they equally highlight the importance of cau-

sality, stability and realizability.
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Figure 9.1 shows the block diagrammatic representation of a

two port network having a network function of G(s) in the s

plane. Assuming that an input excitation of R(s) impressed on the

network results in an output response function represented as

C(s), the relationship that holds good for the said network in the

frequency domain is given in Laplace transformation form as

shown in Eqn. (9.1). In order to have a time domain analysis of

the network, the inverse of Laplace transform may be performed over the excitation function and

response function, which would result in r(t) and c(t) respectively.

G(s) = 
C s

R s

( )

( )
(9.1)

The necessary and sufficient conditions of stability of the network should ensure that for a

bounded excitation r(t) , there must exist a well bounded response c(t) for all times. Mathematically,

this may be interpreted as, “Given a stable network G(s), a bounded excitation function expressed

as |r(t)| < A1 for 0 £ t £ ¥, when impressed on the network at the input should produce a bounded

response at the output which may be expressed as |c(t)| < A2 for 0 £ t £ ¥, where A1 and A2 represent

positive, real and finite numbers”.

Thus, the figure of merit as observed from the stability criterion of the above paragraph rests over

a quest for a positive and real function (p.r. function) for both excitation and response functions of

the network which remains finite over a considerable stretch of time frame of operation, so that these

functions remain bounded thereby yielding stability for the network. The stability criterion for elec-

trical networks can also be examined in view of the location of the poles of the network function G(s)

in the s plane. If the electrical network happens to be complex in form it may have higher order terms

in the numerator polynomial and denominator polynomial as well. In order to justify this let us

express the network function of Eqn. (9.1) as the ratio of two polynomials as shown in Eqn. (9.2)

being represented through N(s), the numerator polynomial and D(s), the denominator polynomial.

G(s) = 
N s

D s

( )

( )
= 

a s a s a s a s a s a

b s b s b s b s b s b

n
n

n
n

n
n

m
m

m
m

m
m

+ + + + + +

+ + + + + +

-

-

-

-

-

-

-

-

1
1

2
2

2
2

1 0

1
1

2
2

2
2

1 0

... ... ... ...

... ... ... ...
(9.2)

Clearly, the terms in the above expression have their usual meaning;

ai : the ith coefficients of the numerator polynomial N(s),

n : highest order or degree of the numerator polynomial N(s),

bi : the ith coefficients of the denominator polynomial D(s),

m : highest order or degree of the denominator polynomial D(s).

Now, the necessary and sufficient condition for the network to remain stable can be laid down in

view of the characteristics of the rational network function G(s) in the light of the statements given

below;

1. All the poles of the network function G(s) must be restricted to the left half of the s plane as

shown clearly by the shaded region of Fig. 9.2.

G s( ) c t( )r t( )

Figure 9.1 A two port network block

showing excitation r(t) and

response c(t)
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2. Poles of the network function G(s), if any, present on the jw axis

must be simple poles, or otherwise, no multiple poles be placed

on the jw axis.

3. The order of numerator polynomial should be higher than the

order of denominator polynomial just by unity.

Since these conditions are mostly governed by the nature and location

of the poles of the network function and poles being the characteristic

roots of the denominator polynomial of the network function, it becomes

mandatory to examine the poles thoroughly. The most convenient way of

determining the poles of the network function G(s), it is highly desirable that factorization of the

denominator polynomial D(s) be performed and it should be expressed as shown in Eqn. (9.3).

D(s) = bmsm + bm –1sm –1 + ... ... ... ... + b1s + b0

= (s + p1)(s + p2)(s + p2) ... ... ... ... ... (s + pm) (9.3)

It is also possible to establish another set of conditions for the parameters of Eqn. (9.3) in order

to satisfy the stability criteria as detailed earlier. A careful observation of Eqn. (9.3) would reveal

that the conditions laid down under stability criteria are also contained in the coefficients and roots

of the denominator polynomial, which may be expressed as;

(i) The coefficients of the denominator polynomial should have non-zero value.

(ii) The roots of the denominator polynomial should have negative real parts.

(iii) Only one root of the denominator polynomial may have a zero value.

(iv) If a root of the denominator polynomial is found to be complex, it must have a conjugate with

a negative real part.

A polynomial satisfying these four conditions (i) through (iv) is called a Hurwitz polynomial.

9.3 HURWITZ POLYNOMIAL

Hurwitz polynomial is a special type of polynomial that has numerous applications in solving prob-

lems related to network analysis, network synthesis, control systems, stability analysis, optimization

related studies and many more. Hence it is presented in this section with some more details. Let us

now declare a polynomial of nth order as shown in Eqn. (9.4), which on factorization takes the shape

of Eqn. (9.5).

P(s) = ansn + an–1sn –1 + an–2sn – 2 + ... ... + ais
i + ... ... + a1s + a0 (9.4)

P(s) = (s1 + p1)(s2 + p2)(s3 + p3) ... ... (si + pi) ... ... (sn + pn) (9.5)

The four requirements as indicated through points (i)-(iv) of the preceding section need to be

satisfied for any polynomial to be Hurwitz. These requirements may be compressed and expressed

as a set of two basic requirements for any polynomial to qualify as Hurwitz polynomial as may be

seen in this section. Therefore, a polynomial P(s) is said to be Hurwitz, if it satisfies the following

two basic requirements.

+jw

–jw

s j= planew

+s–s

Figure 9.2 Left half of the

s plane shown shaded
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I. P(s) must be real and positive for all real values of s. This criterion satisfies the requirement

of item (i) of the four conditions indicated in the preceding section.

II. The roots of P(s) must have real parts, which are either zero or negative. If any complex root

is present, it should occur as a conjugate pair. In view of this, the probable form of the roots

may be given as;

si = –ai (root having negative real part and zero imaginary part), or

si = +jbi (root having zero real part and conjugate imaginary part), or

si = –ai + jbi (root having negative real part and conjugate imaginary part).

This criterion satisfies the requirements of items (ii), (iii) and (iv) of the four conditions indicated

in the preceding section.

9.4 HURWITZ TEST ON POLYNOMIALS

In this section we would discuss about two practical approaches, which are very useful in performing

Hurwitz test on polynomials in order to access whether a given polynomial qualifies to be considered

as Hurwitz by satisfying the two basic conditions (I & II) presented in the preceding section. These

approaches are named as (i) Continued fraction expansion method, and (ii) Routh-Hurwitz array

method. Now we present them in order of their sequence.

9.4.1 Hurwitz Test by Continued Fraction Expansion

It would be interesting to observe one more property of a Hurwitz polynomial, which demonstrates

that while taking the ratio of terms of the said polynomial figuring under the odd series to that of

the terms under the even series (or vice versa), by a long division method or continued fraction

expansion method, it yields only positive quotient terms. This property may be utilized properly in

examining whether a given polynomial qualifies to be Hurwitz. Application of this method for the

purpose of conducting the Hurwitz test on polynomials may be explained as presented below.

Step-1: This step helps in separating the odd series from the even series of the given polynomial

P(s) and expressing them as an odd series x(s), and an even series y(s). Odd series means the series

of all the terms having odd powers of s, and even series means the series of all the terms having even

powers of s. In view of this separation, Eqn. (9.4) would result in Eqn. (9.6) and Eqn. (9.7), which

represent the odd and even series of terms respectively. Since P(s) = x(s) + y(s), therefore we may

separately write them as;

x(s) = a1s + a2s2 + a5s5 + a7s7 + ... ... ... ... (9.6)

y(s) = a0 + a2s2 + a4s4 + a6s6 + ... ... ... ... (9.7)

In this step one has to ensure that there should not be any missing terms in any of the polynomials

namely, P(s), x(s), and y(s). If this goes true, then the variation in the highest order of s between the

odd series and the even series should differ by unity only.

Step-2: Here we take the ratio of the both series of terms by placing the series with highest power

of s in the numerator. In case of power of s being highest in the odd series it would be proper to
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take the ratio of odd series to that of the even series by placing x(s) in the numerator and y(s) in the

denominator as shown in Eqn. (9.8).

w(s) = 
x s

y s

( )

( )
(9.8)

On the other hand, if the power of s is observed to be highest in the even series it would be proper

to take the ratio of even series to that of the odd series by placing y(s) in the numerator and x(s) in

the denominator as shown in Eqn. (9.9).

w(s) = 
y s

x s

( )

( )
(9.8)

Assuming that the polynomial satisfies the expression of Eqn. (9.8), the ratio may be taken

between x(s) and y(s) as indicated below resulting in a quotient term of q1(s) and a remainder r1(s)

in the first stage.

y(s)

x s

r s

( )

( )

- - - -

O

Q

P
P
P

L

N

M
M
M1

q1(s)

The mathematical expression of this division process may be represented as;

x(s) = q1(s), y(s) + r1(s) (9.9)

Step-3: In the previous step it may be observed that the order of s in y(s) and r1(s) differ by unity

and the order is higher with y(s). Hence the next stage of division may be carried out between y(s)

and r1(s), which requires an inversion first and division next to it. This has been demonstrated in this

step and the division results in a quotient term of q2(s) and a remainder r2(s) in the second stage.

r1(s)

y s

r s

( )

( )

- - - -

O

Q

P
P
P

L

N

M
M
M2

q2(s), which leads to Eqn. (9.10).

y(s) = q2(s), r1(s) + r2(s) (9.10)

The process of inversion first and division next to it may be continued in a repeated manner until

finally the long division converges. This method is also called as continued fraction expansion. Third

stage division results are given in Eqn. (9.11).

r2(s)

r s

r s

1

2

( )

( )

- - - -

O

Q

P
P
P

L

N

M
M
M
q2(s), which leads to Eqn. (9.11).

r1(s) = q2(s), r2(s) + r2(s) (9.11)
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nth stage division results:

rn–1(s)

r s

r s

n

n

-

- - - -

O

Q

P
P
P

L

N

M
M
M

2 ( )

( )
qn(s), which leads to Eqn. (9.12).

rn–2(s) = qn(s), rn–1(s) + rn(s) (9.12)

Step-4: In this step the summary of observations may be presented in a mathematical form in order

to express the ratio of the long division process in the form of continued fraction expansion as

indicated in Eqn. (9.12).

w(s) = 
x s

y s

( )

( )
 = q1(s) + 

1

1

1

1

2

3

4

q s

q s

q s
q sn

( )

( )

( ) ... ...
( )

+

+

+ +

(9.13)

The final inference of this method may be drawn as this;

“In order that a given polynomial P(s) = x(s) + y(s) qualifies as being Hurwitz, it must produce

only positive quotient terms [i.e. qi(s) > 0] out of the long division through the process of continued

fraction expansion of the ratio x(s): y(s) or y(s): x(s), as the case may be, where x(s) and y(s)

represent respectively the odd and even series of terms of the given polynomial P(s)”.

 Example 9.1 Examine whether the polynomial given by P(s) = s2 + 2s2 + 4s + 3, is Hurwitz by

applying continued fraction expansion method.

Solution Given that the polynomial has four terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = s3 + 4s and y(s) = 2s2 + 3

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in x(s) being higher than the order of s in y(s), it is recommended that x(s) be

put in the numerator and y(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
x s

y s

( )

( )
 = 

s s

s

2

2

4

2 3

+

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.
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w(s) = 
x s

y s

( )

( )
 = 

1

2

1

4

5

1

5

6

F
HG

I
KJ

+
F
HG

I
KJ

+
F
HG

I
KJ

s

s

s

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = 
1

2

q2 = 
4

5

q3 = 
5

6

Since all the quotient terms obtained in this process are found to be positive, it may

suffice that the given polynomial P(s) = s2 + 2s2 + 4s + 3, is a Hurwitz polynomial.

 Example 9.2 By applying continued fraction expansion method, examine whether the polynomial,

P(s) = s6 + 2s5 + 3s4 + s3 + 5s2 + s + 2, is Hurwitz.

Solution Given that the polynomial has seven terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = 2s5 + s3 + s and y(s) = s6 + 3s4 + 5s3 + 2

Clearly, the highest order of s in y(s) being 6 and the highest order of s in x(s) being

5, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

s s s

s s s

6 4 2

5 3

3 5 2

2

+ + +

+ +

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
y s

x s

( )

( )
 = 

1

2

F
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From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +
1

2

q2 = +
4

5

q3 = –
25

26

F
HG

I
KJ

q4 = –
169

255

F
HG

I
KJ

q5 = +
200

37

q6 = +
37

102

Since all the quotient terms obtained in this process are not positive, it may be

inferred that the given polynomial P(s) = s
6
 + 2s

5
 + 3s

4
 + s

3
 + 5s

2
 + s + 2, is not

a Hurwitz polynomial.

 Example 9.3 By applying continued fraction expansion method, examine whether the polynomial,

P(s) = 7s6 + s5 + 8s4 + 2s3 + 3s2 + 4s + 5, is Hurwitz.

Solution Given that the polynomial has seven terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = s5 + 2s3 + 4s and y(s) = 7s6 + 8s4 + 3s3 + 5

Clearly, the highest order of s in y(s) being 6 and the highest order of s in x(s) being

5, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

7 8 3 5

2 4

6 4 2

5 3

s s s

s s s

+ + +

+ +

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.
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w(s) = 
y s

x s

( )

( )
 = (7)s + 

1

0 166
1

2 769
1

0186
1
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1

0 78

( . )

( . )

( . )

( . )
( . )
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-
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s

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +7

q2 = –0.166

q3 = +2.769

q4 = +0.186

q5 = –2.977

q6 = +0.78

Since all the quotient terms obtained in this process are not positive, it may be

inferred that the given polynomial P(s) = 7s6 + s5 + 8s4 + 2s3 + 3s2 + 4s + 5, is not

a Hurwitz polynomial.

 Example 9.4 Examine whether the polynomial given by P(s) = 3s3 + s2 + 4s + 3, is Hurwitz by

applying continued fraction expansion method.

Solution Given that the polynomial has four terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = 3s2 + 4s and y(s) = s2 + 3

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in x(s) being higher than the order of s in y(s), it is recommended that x(s) be

put in the numerator and y(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
x s

y s

( )

( )
 = 

3 4

3

3

2

s s

s

+

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
x s

y s

( )

( )
 = (3)s + 

1

1

5

1

5

3

-
F
HG

I
KJ

+

-
F
HG

I
KJ

s

s
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From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +3

q2 = –
1

5

q3 = –
5

3

Since all the quotient terms obtained in this process are not positive, it may suffice

that the given polynomial P(s) = 3s3 + s2 + 4s + 3, is not a Hurwitz polynomial.

 Example 9.5 Examine whether the polynomial given by P(s) = s3 + 8s2 + s + 6, is Hurwitz by

applying continued fraction expansion method.

Solution Given that the polynomial has four terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = s3 + s and y(s) = 8s2 + 6

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in x(s) being higher than the order of s in y(s), it is recommended that x(s) be

put in the numerator and y(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
x s

y s

( )

( )
 = 

s s

s

3

28 6

+

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
x s

y s

( )

( )
 = (0.125)s + 

1

32
1

0 0416
( )

( . )
s

s
+

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +0.125

q2 = –32

q3 = +0.0416

Since all the quotient terms obtained in this process are positive, it may suffice that

the given polynomial P(s) = s
3
 + 8s

2
 + s + 6, is a Hurwitz polynomial.
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 Example 9.6 Examine whether the polynomial given by P(s) = 5s2 + 4s + 3, is Hurwitz by

applying continued fraction expansion method.

Solution Given that the polynomial has three terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = 4s and y(s) = 5s2 + 3

Clearly, the highest order of s in x(s) being 1 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

5 3

4

3
s

s

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
y s

x s

( )

( )
 = (1.25)s + 

1

1 33( . )s

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +1.25

q2 = +1.33

Since all the quotient terms obtained in this process are positive, it may suffice that

the given polynomial P(s) = 5s2 + 4s + 3, is a Hurwitz polynomial.

 Example 9.7 Examine whether the polynomial given by P(s) = 2s4 + 3s3 + 5s2 + 4s + 3, is

Hurwitz by applying continued fraction expansion method.

Solution Given that the polynomial has five terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = 3s
3
 + 4s and y(s) = 2s

4
 + 5s

2
 + 3

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

4, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

2 5 3

3 4

4 2

3

s s

s s

+ +

+
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The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
y s

x s

( )

( )
 = (0.666)s + 

1

1 285
1

16 33
1

0 0476

( . )

( . )
( . )

s

s
s

+

+

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +0.666

q2 = +1.285

q3 = +16.33

q4 = +0.0476

Since all the quotient terms obtained in this process are positive, it may suffice that

the given polynomial P(s) = 2s4 + 3s3 + 5s2 + 4s + 3, is a Hurwitz polynomial.

 Example 9.8 Examine whether the polynomial given by P(s) = s4 + 2s3 + 4s2 + s + 3, is Hurwitz

by applying continued fraction expansion method.

Solution Given that the polynomial has five terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by x(s) = 2s3 + s and y(s) = s4 +

4s2 + 3.

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

4, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

s s

s s

4 2

3

4 3

2

+ +

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
y s

x s

( )

( )
 = (0.5)s + 

1

0571
1

4 93
1

0236

( . )

( . )
( . )

s

s
s

+

- +
-
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From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = + 0.5

q2 = +0.571

q3 = – 4.93

q4 = –0.236

Since all the quotient terms obtained in this process are not positive, it may suffice

that the given polynomial P(s) = s
4
 + 2s

3
 + 4s

2
 + s + 3, is not a Hurwitz polynomial.

 Example 9.9 Examine whether the polynomial given by P(s) = s
2
 + 9s + 3, is Hurwitz by applying

continued fraction expansion method.

Solution Given that the polynomial has three terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = 9s and y(s) = s2 + 3

Clearly, the highest order of s in x(s) being 1 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in y(s) being higher than the order of s in x(s), it is recommended that y(s) be

put in the numerator and x(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
y s

x s

( )

( )
 = 

s

s

2 3

9

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
y s

x s

( )

( )
 = (0.111)s + 

1

3( )s

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +0.111

q2 = +3

Since all the quotient terms obtained in this process are positive, it may suffice that

the given polynomial P(s) = s2 + 9s + 3, is a Hurwitz polynomial.

 Example 9.10 Examine whether the polynomial given by P(s) = s2 + 8s2 + 6s + 2, is Hurwitz by

applying continued fraction expansion method.
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Solution Given that the polynomial has four terms, it may be rewritten as a combination of

two groups, one odd group x(s) and the other being an even group y(s). When

separated, the individual groups are represented by

x(s) = s3 + 6s and y(s) = 8s2 + 2

Clearly, the highest order of s in x(s) being 3 and the highest order of s in y(s) being

2, they differ by unity and hence there is no missing term in each series. The order

of s in x(s) being higher than the order of s in y(s), it is recommended that x(s) be

put in the numerator and y(s) be put in the denominator while taking the ratio. This

is shown as;

w(s) = 
x s

y s

( )

( )
 = 

s s

s

2

2

6

8 2

+

+

The quotient terms of this ratio may be determined by the repeated process of

inversion and division. Finally, the continued fraction expansion form of represen-

tation for the quotient terms result in the following expression.

w(s) = 
x s

y s

( )

( )
 = (0.125)s + 

1

1 391
1

2 875
( . )

( . )
s

s
+

From the above expression, the quotient terms of the ratio may be obtained in

respect of the terms shown inside the parentheses and are noted down as;

q1 = +0.125, q2 = +1.391, q2 = +2.875

Since all the quotient terms obtained in this process are positive, it may suffice that

the given polynomial P(s) = s2 + 8s2 + 6s + 2, is a Hurwitz polynomial.

9.4.2 Hurwitz Test by Routh-Hurwitz Array Formation

In the previous section we have verified the possibility of conducting Hurwitz test for polynomials

by observing the sign of the quotient terms obtained from the ratio of even terms to odd terms (or

vice versa) of the said polynomial by the application of continued fraction expansion approach.

However, in this section we would see yet another simpler technique for performing the Hurwitz test

on polynomials that is based on formulation of an array of coefficients. Such an array is known as

Routh-Hurwitz array. Formation of the Routh-Hurwitz array also requires the two (odd and even)

groups of terms of the given polynomial in the form of x(s) and y(s).

Sometimes we may come across situations where a polynomial may contain a particular type or

series of terms (either even terms only or odd terms only) and still satisfying all the requirements of

being Hurwitz. As a particular series is missing completely it becomes really difficult in such

situations to apply the continued fraction approach that determines the quotient terms through the

ratio of the even to odd terms or vice versa. However, it may be possible to generate a fictitious series

by differentiating the given polynomial with respect to s in order to find a replacement or a substitute

of the missing series. If the polynomial in question is given by P(s) that exhibits a particular series
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(either even or odd), then the missing series may be generated in the form of a derivative of the

polynomial with respect to s. This is shown in Eqn. (9.14).

P(s) = 
dP s

ds

( )
(9.14)

From the above discussion, it is learnt that, both even and odd terms are essentially required for

formation of the Routh-Hurwitz array. However, in the event of a particular series missing com-

pletely it is also possible to form the array by considering the polynomial and its derivative with

respect to s. The following steps may be followed as a guideline for the formation of Routh-Hurwitz

array.

Step-1: This step helps in separating the odd series from the even series of the given polynomial

P(s) and expressing them as an odd series x(s), and an even series y(s). Odd series means the series

of all the terms having odd powers of s, and even series means the series of all the terms having even

powers of s. In this step one has to ensure that there should not be any missing terms in any of the

polynomials namely, P(s), x(s), and y(s). If this goes true, then the variation in the highest order of

s between the odd series and the even series should differ by unity only. However, in the event of

a particular series missing completely, it may be desirable to find the derivative of the polynomial

with respect to s, as shown in Eqn. (9.14).

Step-2: In this step the coefficients of the polynomial need to be arranged in two rows with the

nomenclature of sn and sn–1, where n represents the highest order present in the polynomial. This

arrangement serves as the preliminary structure of the Routh-Hurwitz array, which may be repre-

sented as;

sn | an an–2 an–4 an–6 an–8 ... ... ... ...

sn–1 | an –1 an–3 an–5 an–7 an–9 ... ... ... ...

It may be observed that the coefficients of a particular row are alternately picked up from the

polynomial. Therefore, a particular row contains only odd coefficients and the other row contains

even coefficients only. The uppermost row would contain even (odd) coefficients if the highest order

of the polynomial is an even (odd) number, which is primarily decided by ‘n’.

Step-3: The main objective of this step is to complete the Routh-Hurwitz array by filling the

elements in the blank spaces of the array. The first two rows of the array are formed by picking up

the appropriate coefficients from the given polynomial as already discussed in the previous step.

These two rows have the nomenclature of sn and sn–1. The remaining rows of the array would have

their nomenclature according to the descending order of n as regards to the first two rows. The

skeleton structure of the array is shown in Table 9.2 for the sake of visual concept. The symbol for

the coefficients of the remaining rows may be selected according to the convenience of the reader.

In this book we make use of the alphabets for this purpose, such as ‘b’ for the coefficients of third

row, ‘c’ for the coefficients of fourth row, ‘d’ for the coefficients of fifth row, and so on until the

rows get exhausted. Therefore the complete structure of the Routh-Hurwitz array would look some-

thing like the one shown in Table 9.3.
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Table 9.2 Skeleton structure of Routh-Hurwitz array.

s
n

an an–2 an–4 an–6 an–8 L L

sn–1 an–1 an–3 an–5 an–7 an–9 L L

s
n –2

sn –3

s
n –4

M

s1

s0

Table 9.3 Complete structure of Routh-Hurwitz array.

sn an an–2 an–4 an–6 an–8 L L

sn–1 an–1 an–3 an–5 an–7 an–9 L L

sn –2 bn bn–1 bn–2 bn–3 bn–4 L L

sn –3 cn cn–1 cn –2 cn–3 cn– 4 L L

s
n –4

dn dn–1 dn–2 dn–3 dn– 4 L L

M M M M M M M M

s1 in in–1 in–2 in–3 in– 4 M M

s
0

M M M M M M M

Step-4: In this step, we would present the procedure for obtaining the remaining elements of the

Routh-Hurwitz array beyond the second row, which corresponds to all the elements in the rows with

nomenclature in between sn–2 and s0. The general formula for finding any element in this cluster may

be outlined as the one shown in the expression of Eqn. (9.15). In order to simplify the understanding

behind this general formula, let us represent the total structure of the Routh-Hurwitz array in the form

of a general n ´ n matrix structure as shown below in Table 9.4 with elements represented as A.

Table 9.4 General Matrix structure of Routh-Hurwitz array.

row-1 A1, 1 A1, 2 L A1, m A1, m+1 L A1, n

row-2 A2, 1 A2, 2 L A2, m A2, m+1 L A2, n

row-3 A3, 1 A3, 2 L A3, m A3, m+1 L A3, n

M M M M M M M M

i
th

 row Ai, 1 Ai, 2 L Ai, m Ai, m+1 L Ai, n

jth row Aj, 1 Aj, 2 L Aj, m Aj, m+1 L Aj, n

k
th

 row Ak,1 Ak,2 L Ak,m Ak,m+1 L Ak,n

M M M M M M M M

n
th

 row An, 1 An, 2 L An, m An, m+1 L An, n



9.18 Network Theory

While computing the element Ak,m in the kth row and mth column, the formula presented in

Eqn. (9.15) may be used. The other elements, which have been used in the said expression for

obtaining the required element Ak,m correspond to the elements of the same matrix in the two

immediately preceding rows (i.e. the ith row and jth row) and two columns corresponding to first

column and (m + 1)th column as shown in different shades.

Ak, m = 
A A A A

A

j i m j m i

j

, , , ,

,

1 1 1 1

1

+ +
-

(9.15)

Thus, we may now apply the general formula presented in Eqn. (9.15) for finding the unknown

elements of the Routh-Hurwitz array corresponding to Table 9.3. Since the elements in the first two

rows of Table 9.3 are known elements, we now present the expressions for the elements in the rows

following the second row, as shown below.

Elements of third row:

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 2

1

(9.16)

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

(9.17)

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

(9.18)

Elements of the fourth row:

cn = 
b a a b

b

n n n n

n

- - -
-2 1 1

(9.19)

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 2

(9.20)

Elements of the fifth row:

dn = 
c b b c

c

n n n n

n

- -
-1 1

(9.21)

dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

(9.22)

Step-5: This is the last stage of this method, in which any one of the following inferences may be

drawn from the observations of the previous steps.

I. While observing the elements present in the first column of the final Routh-Hurwitz array as

obtained in the previous step, if there is no sign change at any stage, then the given polyno-

mial qualifies to be Hurwitz. Otherwise,
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II. While observing the elements present in the first column of the final Routh-Hurwitz array as

obtained in the previous step, if there is one or multiple sign changes at any stage, then the

given polynomial does not qualify to be Hurwitz.

 Example 9.11 Form the Routh-Hurwitz array for the polynomial given by, P(s) = 4s5 + 3s4 + 2s3

+ s2 + 5s + 3, and hence examine whether the polynomial is Hurwitz?

Solution For the given polynomial P(s) = 4s5 + 3s4 + 2s3 + s2 + 5s + 3, the highest order of

s is an odd number, i.e. n = 5. Hence, there will be (n + 1 = 6) six rows in the Routh-

Hurwitz array. On separation of odd and even terms of the polynomial, we get

Odd series: x(s) = 4s
5
 + 2s

3
 + 5s, and Even series: y(s) = 3s

4
 + s

2
 + 3

Since the odd series contains the highest order of s, hence the coefficients of the odd

series form the elements of row-1 followed by the coefficients of the even series that

forms the elements of the row-2. This gives

Elements of row-1: 4, 2, 5

Elements of row-2: 3, 1, 3

In the next step, we may compute the remaining elements of row-3 to row-6 with

the help of Eqn. (9.15), which gives

Elements of row-3

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 2

1

 = 
( ) ( )3 2 4 1

3

´ - ´
 = 0.666

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

 = 
( ) ( )5 3 4 3

3

´ - ´
 = 1

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

 = 
( ) ( )3 0 4 0

3

´ - ´
 = 0

Elements of row-4

cn = 
b a a b

b

n n n n

n

- - -
-3 1 1

 = 
( . ) ( )

.

0 666 1 3 1

0 666

´ - ´
 = –3.5

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 2

 = 
( . ) ( )

.

0 666 3 3 0

0 666

´ - ´
 = 3

cn–2 = 
b a a b

b

n n n n

n

- - -
-7 1 3

 = 
( . ) ( )

.

0 666 0 3 0

0 666

´ - ´
 = 0
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Elements of row-5

dn = 
c b b c

c

n n n n

n

- -
-1 1

 = 
( . ) ( )

.

- ´ - ´

-

35 1 3 1

35
 = 1.57

dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

 = 
( . ) ( )

.

- ´ - ´

-

35 0 3 0

35
 = 0

dn–2 = 
c b b c

c

n n n n

n

- -
-3 3

 = 
( . ) ( )

.

- ´ - ´

-

35 0 3 0

35
 = 0

Elements of row-6

en = 
d c c d

d

n n n n

n

- -
-1 1

 = 
( . ) ( . )

.

157 3 3 5 0

157

´ - - ´
 = 3

en–1 = 
d c c d

d

n n n n

n

- -
-2 2

 = 
( . ) ( . )

.

1 57 0 3 5 0

157

´ - - ´
 = 0

en–2 = 
d c c d

d

n n n n

n

- -
-3 3

 = 
( . ) ( . )

.

157 0 3 5 0

157

´ - - ´
 = 0

In view of the above findings, we may now construct the complete Routh-Hurwitz

array as indicated below.

s5 4 2 5

s4 3 1 3

s
3

0.666 1 0

s
2

–3.500 3 0

s
1

1.570 1 0

s0 3 0 0

It may be observed from the elements of first column that there is a sign change at

one place as shown shaded. Hence, the given polynomial P(s) = 4s5 + 3s4 + 2s3 +

s2 + 5s + 3, does not qualify as Hurwitz.

 Example 9.12 Verify that the polynomial given by, P(s) = s4 + 12s4 + 6s3 + 3s2 + 10, is not

Hurwitz.

Solution For the given polynomial P(s) = s4 + 12s3 + 6s2 + 3s + 10, the highest order of s

is an even number, i.e. n = 4. Hence, there will be (n + 1 = 5) five rows in the Routh-

Hurwitz array. On separation of odd and even terms of the polynomial, we get

Even series: y(s) = s4 + 6s2 + 10, and Odd series: x(s) = 12s3 + 3s
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Since the even series contains the highest order of s, hence the coefficients of the

even series form the elements of row-1 followed by the coefficients of the odd series

that forms the elements of the row-2. This gives

Elements of row-1: 1, 6, 10

Elements of row-2: 12, 3, 0

In the next step, we may compute the remaining elements of row-3 to row-5 with

the help of Eqn. (9.15), which gives

Elements of row-3

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 2

1

 = 
( ) ( )12 6 3 1

12

´ - ´
 = 5.75

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

 = 
( ) ( )12 10 0 1

12

´ - ´
 = 10

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

 = 
( ) ( )12 0 0 1

12

´ - ´
 = 0

Elements of row-4

cn = 
b a a b

b

n n n n

n

- - -
-3 1 1

 = 
( . ) ( )

.

5 75 3 10 12

5 75

´ - ´
 = –17.87

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 2

 = 
( . ) ( )

.

5 75 0 0 12

5 75

´ - ´
 = 0

cn–2 = 
b a a b

b

n n n n

n

- - -
-7 1 3

 = 
( . ) ( )

.

5 75 0 0 12

5 75

´ - ´
 = 0

Elements of row-5

dn = 
c b b c

c

n n n n

n

- -
-1 1

 = 
( . ) ( . )

.

- ´ - ´

-

17 87 10 0 5 75

17 87
 = 10

dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

 = 
( . ) ( . )

.

- ´ - ´

-

17 87 0 0 5 75

17 87
 = 0

dn–2 = 
c b b c

c

n n n n

n

- -
-3 3

 = 
( . ) ( . )

.

- ´ - ´

-

17 87 0 0 5 75

17 87
 = 0

In view of the above findings, we may now construct the complete Routh-Hurwitz

array as indicated below.
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s
4

1 6 10

s
3

12 3 0

s2 5.75 10 0

s1 –17.87 0 0

s
0

10 0 0

It may be observed from the elements of first column that there is a sign change at

one place. Hence, the given polynomial P(s) = s4 + 12s3 + 6s2 + 3s + 10, does not

qualify as Hurwitz.

 Example 9.13 Examine whether the polynomial given by, P(s) = s4 + 5s3 + 5s2 + 10s + 3, is

Hurwitz?

Solution For the given polynomial P(s) = s4 + 5s3 + 5s2 + 10s + 3, the highest order of s is

an even number, i.e. n = 4. Hence, there will be (n + 1 = 5) five rows in the Routh-

Hurwitz array. On separation of odd and even terms of the polynomial, we get

Even series: y(s) = s4 + 5s2 + 3, and Odd series: x(s) = 5s3 + 10s

Since the even series contains the highest order of s, hence the coefficients of the

even series form the elements of row-1 followed by the coefficients of the odd series

that forms the elements of the row-2. This gives

Elements of row-1: 1, 5, 3

Elements of row-2: 5, 10, 0

In the next step, we may compute the remaining elements of row-3 to row-5 with

the help of Eqn. (9.15), which gives

Elements of row-3

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 2

1

 = 
( ) ( )5 5 10 1

5

´ - ´
 = 3

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

 = 
( ) ( )5 3 0 1

5

´ - ´
 = 3

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

 = 
( ) ( )5 0 0 1

5

´ - ´
 = 0

Elements of row-4

cn = 
b a a b

b

n n n n

n

- - -
-3 1 1

 = 
( ) ( )3 10 3 5

3

´ - ´
 = 5

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 3

 = 
( ) ( )3 0 0 5

3

´ - ´
 = 0
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cn–2 = 
b a a b

b

n n n n

n

- - -
-7 1 3

 = 
( ) ( )3 0 0 5

3

´ - ´
 = 0

Elements of row-5

dn = 
c b b c

c

n n n n

n

- -
-1 1

 = 
( ) ( )5 3 0 3

5

´ - ´
 = 10

dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

 = 
( ) ( )5 0 0 3

5

´ - ´
 = 0

dn–2 = 
c b b c

c

n n n n

n

- -
-3 3

 = 
( ) ( )5 0 0 3

5

´ - ´
 = 0

In view of the above findings, we may now construct the complete Routh-Hurwitz

array as indicated below.

s
4

1 5 3

s
3

5 10 0

s2 3 3 0

s1 5 0 0

s0 3 0 0

It may be observed from the elements of first column that there is no sign change

at any place. Hence, the given polynomial P(s) = s4 + 5s3 + 5s2 + 10s + 3, qualifies

as being Hurwitz.

 Example 9.14 Examine whether the polynomial given by, P(s) = 4s4 + 3s3 + 2, is Hurwitz?

Solution For the given polynomial P(s) = 4s4 + 3s3 + 2, the highest order of s is an even

number, i.e. n = 4. Hence, there will be (n + 1 = 5) five rows in the Routh-Hurwitz

array. On separation of odd and even terms of the polynomial, we find that the

polynomial contains only even terms. Hence the derivative of the polynomial with

respect to s is essential for formation of the Routh-Hurwitz array. This results in the

following expressions.

P(s) = 4s
4
 + 3s

2
 + 2

P ¢(s) = 
dP s

ds

( )
 = 

d s s

ds

( )4 3 24 2
+ +

 = 16s3 + 6s

Since the polynomial contains the highest order of s, in respect of its derivative,

hence the coefficients of the polynomial form the elements of row-1 followed by the

coefficients of the derivative polynomial that forms the elements of the row-2. This

gives

Elements of row-1: 4, 3, 2

Elements of row-2: 16, 6, 0
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In the next step, we may compute the remaining elements of row-3 to row-5 with

the help of Eqn. (9.15), which gives the following

Elements of row-3

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 3

1

 = 
( ) ( )16 3 6 4

16

´ - ´
 = 1.5

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

 = 
( ) ( )16 2 0 4

16

´ - ´
 = 2

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

 = 
( ) ( )16 0 0 4

16

´ - ´
 = 0

Elements of row-4

cn = 
b a a b

b

n n n n

n

- - -
-3 1 1

 = 
( . ) ( )

.

1 5 6 2 16

15

´ - ´
 = –15.33

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 2

 = 
( . ) ( )

.

15 0 0 16

15

´ - ´
 = 0

cn–2 = 
b a a b

b

n n n n

n

- - -
-7 1 3

 = 
( . ) ( )

.

15 0 0 16

15

´ - ´
 = 0

Elements of row-5

dn = 
c b b c

c

n n n n

n

- -
-1 1

 = 
( . ) ( . )

.

- ´ - ´

-

15 33 2 0 1 5

15 33
 = 2

dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

 = 
( . ) ( . )

.

- ´ - ´

-

15 33 0 0 15

15 33
 = 0

dn–2 = 
c b b c

c

n n n n

n

- -
-3 3

 = 
( . ) ( . )

.

- ´ - ´

-

15 33 0 0 15

15 33
 = 0

In view of the above findings, we may now construct the complete Routh-Hurwitz

array as indicated below.

s4 4 3 2

s3 16 6 0

s
2

1.5 2 0

s
1

–15.33 0 0

s0 2 0 0

It may be observed from the elements of the first column that there is a sign change

at one place as shown shaded. Hence, the given polynomial P(s) = 4s4 + 3s3 + 2 is

not Hurwitz.
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 Example 9.15 Examine if the polynomial given by, P(s) = s5 + s3 + 5s, is Hurwitz?

Solution For the given polynomial P(s) = s5 + s3 + 5s, the highest order of s is an odd number,

i.e. n = 5. Hence, there will be (n + 1 = 6) six rows in the Routh-Hurwitz array. On

separation of odd and even terms of the polynomial, we find that the polynomial

contains odd terms only. Hence the derivative of the polynomial with respect to s

is essential for the formation of the Routh-Hurwitz array. This results in the follow-

ing expressions.

P(s) = s5 + s3 + 5s and P¢(s) = 
dP s

ds

( )
 = 

d s s s

ds

( )5 3 5+ +
 = 5s4 + 3s2 + 5

Since the polynomial contains the highest order of s, in respect of its derivative,

hence the coefficients of the polynomial form the elements of row-1 followed by the

coefficients of the derivative polynomial that forms the elements of the row-2. This

gives the following:

Elements of row-1: 1, 1, 5

Elements of row-2: 5, 3, 5

In the next step, we may compute the remaining elements of row-3 to row-5 with

the help of Eqn. (9.15), which gives the following:

Elements of row-3

bn = 
a a a a

a

n n n n

n

- - -

-

-1 2 3

1

 = 
( ) ( )5 1 3 1

5

´ - ´
 = 0.4

bn–1 = 
a a a a

a

n n n n

n

- - -

-

-1 4 5

1

 = 
( ) ( )5 5 5 1

5

´ - ´
 = 4

bn–2 = 
a a a a

a

n n n n

n

- - -

-

-1 6 7

1

 = 
( ) ( )5 0 0 1

5

´ - ´
 = 0

Elements of row-4

cn = 
b a a b

b

n n n n

n

- - -
-3 1 1

 = 
( . ) ( )

.

0 4 3 4 5

0 4

´ - ´
 = –47

cn–1 = 
b a a b

b

n n n n

n

- - -
-5 1 2

 = 
( . ) ( )

.

0 4 5 0 5

0 4

´ - ´
 = 5

cn–2 = 
b a a b

b

n n n n

n

- - -
-7 1 3

 = 
( . ) ( )

.

0 4 0 0 5

0 4

´ - ´
 = 0

Elements of row-5

dn = 
c b b c

c

n n n n

n

- -
-1 1

 = 
( ) ( . )- ´ - ´

-

47 4 5 0 4

47
 = 4.04
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dn–1 = 
c b b c

c

n n n n

n

- -
-2 2

 = 
( ) ( . )- ´ - ´

-

47 0 0 0 4

47
 = 0

dn–2 = 
c b b c

c

n n n n

n

- -
-3 3

 = 
( ) ( . )- ´ - ´

-

47 0 0 0 4

47
 = 0

Elements of row-6

en = 
d c c d

d

n n n n

n

- -
-1 1

 = 
( . ) ( )

.

4 04 5 47 0

404

´ - - ´
 = 5

en–1 = 
d c c d

d

n n n n

n

- -
-2 2

 = 
( . ) ( )

.

4 04 0 47 0

4 04

´ - - ´
 = 0

en–2 = 
d c c d

d

n n n n

n

- -
-3 3

 = 
( . ) ( )

.

4 04 0 47 0

4 04

´ - - ´
 = 0

In view of the above findings, we may now construct the complete Routh-Hurwitz

array as indicated below.

s
5

1 1 5

s
4

5 3 5

s3 0.4 4 0

s2 – 47 5 0

s1 4.04 0 0

s
0

5 0 0

It may be observed from the elements of first column that there is a sign change at

one place as shown shaded. Hence, the given polynomial P(s) = s5 + s3 + 5s does

not qualify as Hurwitz.

9.5 POSITIVE REAL FUNCTION

In the preceding sections of this chapter, the significance of positive real functions (often expressed

as p.r. functions) is discussed at many places. Most importantly, it is used as a stability indicator

of network response subject to excitation. According to the stability criteria and realizability criteria,

the following two points clearly emphasize this requirement.

1. If the excitation function and response function need to be bounded over a considerable stretch

of time, both of them must be positive real functions.

2. The scale factor (if any) must be a positive real function.

3. The passive elements of a network representing the impedances and admittances may be

realized if the network function is a positive real function.
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Therefore, it becomes essential to discuss the properties of positive real functions in detail. A

polynomial function P(s) is said to be positive and real if it satisfies the following criteria.

Conditions for Positive Real Functions

I. In order to be a positive real function, P(s) must be real for all real values of s.

II. The real part of P(s) must be greater than or equal to zero for all values of the real part of

s being equal to or greater than zero. Stated mathematically, it must satisfy, Re |P(s)| ³ 0 for

all values of Re |(s)| ³ 0.

Properties of Positive Real Functions

i. The sum of two positive real functions is also a positive real function.

ii. The reciprocal of a positive real function is also a positive real function.

iii. The roots of a positive real function must lie on the left half of the s plane. Hence, the roots

of a positive real function should have negative real parts.

iv. Some roots of positive real functions may also lie on the jw axis if a conjugate pair for the

same pair of roots exists at all.

v. The highest order of the numerator (denominator) polynomial of a positive real function may

differ from the highest order of the denominator (numerator) polynomial at best by unity. This

property rules out the occurrence of multiple poles at infinity.

vi. The lowest order of the numerator (denominator) polynomial of a positive real function may

differ from the lowest order of the denominator (numerator) polynomial at best by unity. This

property rules out the occurrence of multiple poles at the origin of the s plane.

9.6 APPLICATION OF P.R. FUNCTIONS IN NETWORK SYNTHESIS

(a) Time domain

R

i t( )

v t( )

+

–

R

I s( )

V s( )

+

–

(b) s-domain

Figure 9.3 Impedance of a purely resistive network

In Section 9.4, it is mentioned that realization of the

passive network elements may be possible if the

network function happens to be a positive real func-

tion. In this section let us first focus the attention

in justifying the veracity of this statement. In

Chapter-5, Article 5.10, transfer impedances of net-

works have been discussed, which covers the high-

lights of three basic elements (R, L and C ). In case

of a resistive network as shown in Fig. 9.3, the net-

work equation is expressed by

V(s) = R.I(s) (9.23)

Eqnuation (9.23) can also be represented in the form of a transfer function, which is shown in

Eqn. (9.24).

V s

I s

( )

( )
= R (9.24)

However, it is obvious that the transfer function on the left-hand side of Eqn. (9.24) describes an

impedance function Z(s) which may be expressed in the manner of Eqn. (9.25).
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V s

I s

( )

( )
= Z(s) (9.25)

Analysis of these two equations, Eqn. (9.24) and Eqn. (9.25), may reveal that the existence of the

transfer function F(s) = V(s)/I(s) necessarily means one thing, i.e., F(s) must be a positive real

function. A corollary of this statement may be put up as follows:

(i) If F(s) is a positive real function representing an impedance function then the impedance

function is positive and real too.

(ii) If F(s) is a positive real function representing an impedance function of a purely resistive

network, it is implied that the impedance would be numerically same as the resistance (R) of

the network, and the resistance would be a positive real number.

Therefore, in order to justify that the passive resistance of a network is a positive real number, it

is mandatory to see that the concerned impedance function or the network transfer function

F(s) = V(s)/I(s) is a positive real function. The

above justification can possibly be extended for

networks consisting of other two types of net-

work elements, such as inductance and capaci-

tance.

In case of a purely inductive network as

shown in Fig. 9.4, the network equation may be

expressed by

V(s) = L[s.I (s) – i(0_)] (9.26)

Where, the initial conditions happen to be zero, Eqn. (9.26) may be reduced to the form of

Eqn. (9.27).

V(s) = L[s.I (s)] (9.27)

Eqnuation (9.27) can also be represented in the form of a transfer function, which is shown in

Eqn. (9.28).

V s

I s

( )

( )
= L.s (9.28)

However, it is obvious that the transfer function on the left hand side of Eqn. (9.28) describes an

impedance function Z(s) which may be expressed in the manner of Eqn. (9.29).

V s

I s

( )

( )
= Z(s) (9.29)

Analysis of these two equations, (9.28) and (9.29) may reveal that the existence of the transfer

function F(s) = V(s)/I(s) necessarily means one thing, i.e., F(s) must be a positive real function. A

corollary of this statement may be put up as follows:

(i) If F(s) is a positive real function representing an impedance function, then the impedance

function is positive and real too.

(ii) If F(s) is a positive real function representing an impedance function of a purely inductive

network, it must be implied that for all positive and real values of s, the inductance (L) must

be a positive real number.

(a) Time domain (b) s-domain

L

i t( )

v t( )

+

–

L.sI s( )

V s( )

+

–

L.i o( )–

Figure 9.4 Impedance of purely inductive network
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Therefore, in order to justify that the passive

inductance of a network is a positive real number,

it is mandatory to see that the concerned impedance

function or the network transfer function F(s) =

V(s)/I(s) is a positive real function.

In case of a purely capacitive network as shown

in Fig. 9.5, the network equation may be expressed

by

V(s) = 
I s

C s

v

s

( )

.

( _ )
+

0
(9.30)

Where, the initial conditions happen to be zero, Eqn. (9.30) may be reduced to the form of

Eqn. (9.31).

V(s) = 
I s

C s

( )

.
(9.31)

Eqnuation (9.31) can also be represented in the form of a transfer function, which is shown in

Eqn. (9.32).

V s

I s

( )

( )
= 

1

C s.
(9.32)

However, it is obvious that the transfer function on the left-hand side of Eqn. (9.32) describes an

impedance function Z(s) which may be expressed in the manner of Eqn. (9.33).

V s

I s

( )

( )
= Z(s) (9.33)

Analysis of these two equations, Eqn. (9.32) and Eqn. (9.33), may reveal that the existence of the

transfer function F(s) = V(s)/I(s) necessarily means one thing, i.e., F(s) must be a positive real

function. A corollary of this statement may be put up as follows:

(i) If F(s) is a positive real function representing an impedance function then the impedance

function is positive and real too.

(ii) If F(s) is a positive real function representing an impedance function of a purely capacitive

network, it must be implied that for all positive and real values of s, the capacitance (C ) must

be a positive real number.

Therefore, in order to justify that the passive capacitance of a network is a positive real number,

it is mandatory to see that the concerned impedance function or the network transfer function

F(s) = V(s)/I(s) is a positive real function.

So far, the discussion was centered on one thing, i.e., the justification of passive network elements

for positive real numbers and it is conditionally dependent on the positive realness of the concerned

network transfer function given by F(s) = V(s)/I(s). However, another way of interpreting the facts

and findings of the above discussion may be very useful in the perspective of network synthesis

through realization of these elements. This may be as stated below.

(a) Time domain (b) s-domain

C

i t( )

v t( )

I s( )

V s( )

+

–

1
C.s

V

s

(0 )–

Figure 9.5 Impedance of a purely capacitive network
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I. If F(s) = V(s)/I(s), is a positive real function representing the impedance of a network and

bears an expression of the form F(s) = R then it is obvious and true that R is a positive real

number such that the passive impedance element of the network becomes Z(s) = R; hence

realizable in form of a resistance.

II. If F(s) = V(s)/I(s) is a positive real function representing the impedance of a network and

bears an expression of the form F(s) = L.s then it is obvious and true that L is a positive real

number such that the passive impedance element of the network becomes Z(s) = L.s; hence

realizable in form of an inductance.

III. If F(s) = V(s)/I(s) is a positive real function representing the impedance of a network and

bears an expression of the form F(s) = 1/C.s then it is obvious and true that C is a positive

real number such that the passive impedance element of the network becomes Z(s) = 1/C.s;

hence realizable in form of a capacitance.

IV. A dual statement of condition-I would mean the same thing in respect of an admittance

function. Hence, if F(s) = I(s)/V(s) is a positive real function representing the admittance of

a network and bears an expression of the form F(s) = 1/R then it is obvious and true that R

is a positive real number such that the passive admittance element of the network becomes

Y(s) = 1/R; hence realizable.

V. A dual statement of condition-II would mean the same thing in respect of an admittance

function. Hence, if F(s) = I(s)/V(s) is a positive real function representing the admittance of

a network and bears an expression of the form F(s) = 1/L.s then it is obvious and true that

L is a positive real number such that the passive admittance element of the network becomes

Y(s) = 1/L.s; hence realizable.

VI. A dual statement of condition-III would mean the same thing in respect of an admittance

function. Hence, if F(s) = I(s)/V(s) is a positive real function representing the admittance of

a network and bears an expression of the form F(s) = C.s then it is obvious and true that C

is a positive real number such that the passive admittance element of the network becomes

Y(s) = C.s; hence realizable.

Thus, it is verified that both impedance and admittance elements (imittances) of electrical net-

works are positive real functions and may be realizable for network synthesis.

 Example 9.16 Prove that the equivalent impedance resulting out of the series combination of two

impedances gives a positive real function.

Solution Let the two impedances which are to be connected in series are given as Z1(s) and

Z2(s). The equivalent impedance resulting out of their series combination may be

given by Z(s), such that Z(s) = Z1(s) + Z2(s). This is also shown in Fig. 9.6.

According to the property the sum of

two positive real functions must be

positive real too. Since basic imped-

ances would be positive real, hence

their sum (series equivalent) should

also qualify to be positive real. Figure 9.6 Series combination of impedances

Z ( )sZ ( )s

Z1( )s Z2( )s
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 Example 9.17 Prove that the equivalent impedance resulting out of the parallel combination of two

impedances gives a positive real function.

Solution Let the two impedances which are to be connected in parallel are given as Z1(s) and

Z2(s). The equivalent impedance resulting out of their parallel combination may be

given by Z(s), such that 
1

Z s( )
 = 

1 1

1 2Z s Z s( ) ( )
+ . This may also have an admittance

form of representation such that Y(s) = Y1(s) + Y2(s). This is also shown in Fig. 9.7.

According to the property the sum

of two positive real functions must

be positive real too. Since basic ad-

mittances would be positive real,

hence their sum (parallel equiva-

lent) should also qualify to be posi-

tive real.

 Example 9.18 According to the property, reciprocal and sum of positive real functions must be

positive real. Does this also satisfy for the difference of two positive real numbers?

Give one example in support of your justification.

Solution Let a positive real function be taken as s. Its reciprocal 1/s is also positive real.

While taking the sum of the two, it would also give a positive real function. How-

ever the difference of the two may be analyzed further before giving any justifica-

tion in support of positive realness.

F(s) = s – 
1

s
 = 

s

s

2 1-
 = 

( )( )s s

s

+ -1 1

From the above it may be observed that all the roots of the polynomial are not

strictly on the left half of the s plane. Hence, it may not be always true that the

difference of two positive real functions would result in a positive real function.

9.7 TESTING A GIVEN FUNCTION FOR POSITIVE REALNESS

The necessary conditions for a function to be positive real and the inherent properties of positive real

functions have been enumerated in the previous section precisely. However, it is often desirable on

the face of network synthesis to examine the given network function for positive realness, as it forms

one of the necessary criterion of realizability. Therefore, it would be proper to throw some light on

the testing procedures available for verifying the behavior of functions for positive realness. In this

section, we will first see the necessary and sufficient conditions for a function with real coefficients

to be positive real as outlined below.

Figure 9.7 Parallel combination of impedances

Y s( )Y s( ) Y s1( ) Y s2( )
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1. For a function F(s) with real coefficients to be positive real, it

is necessary that all the poles and zeros of the said function

should lie on the left half of the s plane. The left half of this

plane is shown shaded in Fig. 9.8.

2. If some poles/zeros of the function are found on the jw axis or

at the origin of the s plane, the necessary condition as indicated

in item-1 above may not be sufficient to guarantee the positive

realness of the function. Under such circumstances, the suffi-

cient condition for positive realness may be stated as follows:

(a) The poles of the function located on the jw axis must be

simple and must have real and positive residues.

(b) For all values of w, the real part of the function F( jw ) must

be equal to or greater than zero. This implies Re |F( jw)| ³ 0 for all values of w.

Given a function F(s) = 
N s

D s

( )

( )
, with numerator polynomial N(s) and denominator polynomial D(s),

the necessary criterion for positive realness (item-1) may be tested by identifying and locating all

possible roots of numerator and denominator functions in the s plane. Alternatively, a simple Hurwitz

test may be conducted on the given function either by the continued fraction expansion method or

by the formation of Routh–Hurwitz array. This has been discussed earlier in this section.

In order to check the sufficient criterion as indicated in item-2(a) of this section, let us consider

a situation where a function has a pole on the jw axis. In this event the poles must be simple and

should occur in conjugate pairs. Assuming that such a pole is located at s = ± jw0, the transfer

function of the network would look like the expression in Eqn. (9.34).

F(s) = 
N s

s j s j

( )

( )( )+ -w w0 0

(9.34)

The partial fraction expansion of the function would result in the following expression.

F(s) = 
K

s j

K

s j

0

0

0

0( ) ( )

*

+
+

-w w

(9.35)

In the above equation, K*
0 is the conjugate of K0. This also satisfies that the residues of complex

conjugate poles are conjugate themselves. However, for the function F(s) to be positive real, the

residues must be positive real too. This condition demands that K*
0 and K0 must be equal to each other

(say K*
0 = K0 = K). Replacing these values in Eqn. (9.35) we may get Eqn. (9.36).

F(s) = 
K

s j

K

s j

0

0

0

0( ) ( )

*

+
+

-w w

 = 
2

2 2
0
2

Ks

s j- w

 = 
2

2
0
2

Ks

s +w

(9.36)

The above equation may be treated as an alternate proof for the sufficiency condition mentioned

in item-2(a). Next to this, let us examine the requirements for satisfying the sufficiency condition

mentioned in item-2(b). This would require the computation of Re |F( jw)| from the given network

function F(s). For this purpose, we may have to express the given function as a separate combination

of odd terms (Nx , Dx) and even terms (Ny , Dy) as shown in Eqn. (9.37).

+jw

– jw

s j= planew

+s–s

Figure 9.8 Shaded region

suitable for locating poles

and zeros.
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F(s) = 
N s

D s

( )

( )
 = 

N s N s

D s D s

x y

x y

( ) ( )

( ) ( )

+

+
(9.37)

Now multiplying a term {Dy(s) – Dx(s)} both in the numerator and denominator of Eqn. (9.37),

the parent equation does not change, which results in

F(s) = 
{ ( ) ( )}{ ( ) ( )}

( ) ( )

N s N s D s D s

D s D s

x y y x

y x

+ -

-
2 2

(9.38)

In order to maintain simplicity in the derivations, let us temporarily remain silent about the

mention of s within parentheses of each term on the right-hand side of expression, which would result

in

F(s) = 
( )( )

( )

N N D D

D D

x y y x

y x

+ -

-
2 2

 = 
N D N D N D N D

D D

y y x x x y y x

y x

- + -

-( )2 2
(9.39)

Now let us apply the following basic properties of odd and even functions to the above expression.

(i) Multiplication of two even terms results in an even function

(ii) Multiplication of two odd terms results in an even function

(iii) Multiplication of an even term with an odd term results in an odd function.

Application of these thumb rules in Eqn. (9.39) results in two distinct terms, one being the even

part of F(s) and the other being the odd part of F(s). Thus, we get

F(s) = 
N D N D

D D

y y x x

y x

-

-( )2 2
 + 

N D N D

D D

x y y x

y x

-

-( )2 2
 = Even F(s) + Odd F(s) (9.40)

where, Even F(s) = 
N D N D

D D

y y x x

y x

-

-( )2 2
(9.41)

and, Odd F(s) = 
N D N D

D D

x y y x

y x

-

-( )2 2
(9.42)

Now, it would be appropriate to replace the term s, which was kept silent for a while. This would

result in obtaining the real part of F(s) from the even part and the imaginary part of F(s) from the

odd part. Thus we may write the following terms as

Re |F( jw )| = Even F(s)s = jw = 
N s D s N s D s

D s D s

y y x x

y x
s j

( ) ( ) ( ) ( )

( ( ) ( ))

-

-
=

2 2

w

(9.43)

Im |F( jw)| = Odd F(s)s = jw = 
N s D s N s D s

D s D s

x y y x

y x
s j

( ) ( ) ( ) ( )

( ( ) ( ))

-

-
=

2 2

w

(9.44)

Due to squaring effect, the denominator would be always positive. Hence, for positive realness of

F(s), the least requirement to be fulfilled reduces to the criterion that the numerator of Eqn. (9.43)
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should be equal to or greater than zero for all values of w. This may be written as a new function

P(w 2);

P(w
2
) = Ny(s)Dy(s) – Nx(s)Dx(s)

s j= w

 ³ 0 for all values of w. (9.45)

Equation (9.45) may be used as the governing expression for satisfying the sufficient condition

of item-2(b).

 Example 9.19 Examine whether the network function given by F(s) = 
s s

s s

2

2

4 3

6 8

+ +

+ +

 is positive real.

Solution The given network function may be written as

F(s) = 
s s

s s

2

2

4 3

6 8

+ +

+ +

 = 
( )( )

( )( )

s s

s s

+ +

+ +

3 1

4 2

By observing individual factor terms of the numerator and denominator, we may

find that the poles of the function are located at s = –4, s = –2, and the zeros of

the function are located at s = –3, s = –1 respectively. The following points need

to be examined for positive realness.

i. All the roots have negative real parts. Hence all are located on the left half of

the s plane.

ii. As there is no pole on the jw axis, no residue is to be calculated.

iii. In order to check that Re |F( jw)| ³ 0, for all values of w, we may verify for

P(w2) = Nx(s) Dx(s) – Ny(s)Dy(s)
s j= w

 for all values of w.

For the given polynomial, N(s) = s2 + 4s + 3 and D(s) = s2 + 6s + 8

where, Ny(s) = s2 + 3, Nx(s) = 4s, Dy(s) = s2 + 8, Dx(s) = 6s

So, P(w2) = Ny(s)Dy(s) – Nx(s)Dx(s)
s j= w

= {(s2 + 3)(s2 + 8) – (4s)(6s)}
s j= w

= s4 – 13s2 + 24
s j= w

= w 4 + 13w
2 + 24 ³ 0 for all values of w

So, this condition is satisfied.

Since, all the above conditions are satisfied, the function is positive real.

 Example 9.20 Examine whether the network function given by F(s) = 
s

s

+

+

3

8
 is positive real.

Solution By observing individual terms of the numerator and denominator, we may find that

the pole of the function is located at s = –8, and the zero of the function is located

at s = –3 respectively. The following points need to be examined for positive

realness.

i. All the roots have negative real parts. Hence all are located on the left half of

the s plane.
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ii. As there is no pole on the jw axis, no residue is to be calculated.

iii. In order to check that Re |F( jw)| ³ 0, for all values of w , we may verify for

P(w2) = Nx(s) Dx(s) – Ny(s)Dy(s)
s j= w

 ³ 0 for all values of w .

For the given polynomial, N(s) = s + 3 and D(s) = s + 8

where, Ny(s) = 3, Nx(s) = s, Dy(s) = 8, Dx(s) = s

So, P(w2) = Ny(s) Dy(s) – Nx(s)Dx(s)
s j= w

= {(3)(8) – (s)(s)}
s j= w

= 24 – s2

s j= w

= 24 + w 2 ³ 0 for all values of w

So, this condition is satisfied.

Since all the above conditions are satisfied, the function is positive real

9.8 CONCEPTS OF NETWORK SYNTHESIS

Fundamentally speaking, network synthesis is the art of finding the passive elements (impedances

and admittances) of a network from the given network function satisfying the required excitation–

response relationship, and to represent them with proper connectivity (series or parallel) by realizing

the basic rules covered so far in this chapter. The following few guidelines may be useful for the

reader in this regard.

• It may be noted that a network function F(s) forms the basic requirement for network synthe-

sis, which may be decomposed by partial fraction expansion to obtain the component func-

tions.

• In most of the cases, F(s) may be composed of passive functions (driving point impedances

and admittances).

• Since the impedances and admittances are inherently positive and real, hence the network

function should be a positive real function. Therefore, a formal test for positive realness of

F(s) may be viewed as a mandatory requirement before decomposing the function into com-

ponent terms.

• If F(s) is taken as an impedance function then a series connection of component elements is

preferable, i.e., Z(s) = Z1(s) + Z2(s). Thus, removal of one component from the parent function

would result in the other component.

• If, F(s) is taken as an admittance function then a parallel connection of component elements

is preferable, i.e., Y(s) = Y1(s) + Y2(s). Thus, removal of one component from the parent

function would result in the other component.

• While removing one positive real function from the parent function which is also positive real,

it should be borne in mind that the poles and zeros of the component are completely removed
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from the overall pole-zero listing of the parent function. Removal of these poles and zeros

require careful analysis of the situation. This will be dealt subsequently.

9.8.1 Removal of a Pole at Infinity

When a network function is said to have pole at infinity (¥) then it is obvious that the highest degree

of s in the numerator polynomial exceeds the highest degree of s in the denominator polynomial by

a margin of unity. Such a function is shown in the following expression.

F(s) = 
a s a s a s a s a

b s b s b s b

n
n

n
n

n
n

n
n

n
n

+

+

-

-

-

-

+ + + + +

+ + + +

1
1

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.46)

By partial fraction expansion this may be decomposed into

F(s) = 
a

b

n

n

+1
 = 

c s c s c s c

d s d s d s d

n
n

n
n

n
n

n
n

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.47)

or, F(s) = K.s + 
c s c s c s c

d s d s d s d

n
n

n
n

n
n

n
n

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.48)

Two possible cases may arise for interpretation of Eqn. (9.48) in this process of network synthesis.

In the first case, F(s) may be treated as an impedance function and would give a particular network

structure. In the second case, F(s) may be treated as an admittance function which would give another

network structure. These two cases have been dealt here separately.

Case-I If F(s) represents an impedance function then it may be possible to represent Eqn. (9.48)

as a series combination of two impedances, Z(s) = Z1(s) + Z11(s), such that

Z1(s) = K.s = 
a

b

n

n

+1
(9.49)

and, Z11(s) = 
c s c s c s c

d s d s d s d

n
n

n
n

n
n

n
n

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.50)

This would give the scope for removal of Z1(s) from Z(s), thereby leaving Z11(s) for further

decomposition. Since Z1(s) is in the form of K.s, as an impedance it would represent an inductor of

value L = K. Network structure for the expressions represented by

Eqns. (9.48) to (9.50) may be shown by drawing a series circuit of the

two impedances as shown in Fig. 9.9. However, this may not be the

final result of network synthesis.

Then Z11(s) may be decomposed further through partial fraction

expansion in order to split it into a series combination of another two

impedances given by Z11(s) = Z2(s) + Z22(s), thereby enabling the re-

moval of another series element Z2(s) from Z11(s). This process would

continue until the last series element Zn(s) is obtained. A circuit

diagram containing all the impedances in series, i.e., Z1(s), Z2(s),

Figure 9.9 Network structure

for impedance function

Z11( )s

Z1( )s

Z( )s
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Z3(s), ........, and Zn(s) may be drawn for representing the result of network synthesis. This is shown

in Fig. 9.10.

Z( )s

Z1  1( )s

Z1( )s Z2( )s Z3( )s

Zn( )s

L K=

Y s11( )Y s1( )Y s( )

Figure 9.10 Final network structure for Figure 9.11 Network structure for

impedance function admittance function

Case-II If F(s) represents an admittance function, then it may be possible to represent Eqn. (9.48)

as a parallel combination of two admittances, Y(s) = Y1(s) + Y11(s), such that

Y1(s) = K.s = 
a

b

n

n

+1
(9.51)

and, Y11(s) = 
c s c s c s c

d s d s d s d

n
n

n
n

n
n

n
n

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.52)

This would give the scope for removal of Y1(s) from Y(s), thereby leaving Y11(s) for further

decomposition. Since Y1(s) is in the form of K.s, as an admittance it would represent a capacitor of

value C = K. Network structure for the expressions represented by Eqns. (9.48), (9.51) and (9.52)

may be shown by drawing a parallel circuit of the two admittances as shown in Fig. 9.11. However,

this may not be the final result of network synthesis.

Then Y11(s) may be decomposed further through partial

fraction expansion in order to split it into a parallel com-

bination of two admittances, Y11(s) = Y2(s) + Y22(s),

thereby enabling the removal of another parallel element

Y2(s) from Y11(s). This process would continue until the

last parallel element Yn(s) is obtained. A circuit diagram

containing all the admittances in parallel, i.e., Y1(s), Y2(s),

Y3(s), ........, and Yn(s) may be drawn for representing the

result of network synthesis. This is shown in Fig. 9.12.

9.8.2 Removal of a Pole at the Origin

When a network function is said to have a pole at the origin (0,0) of the s plane then it is obvious

that the lowest degree of s in the numerator polynomial exceeds the lowest degree of s in the

denominator polynomial by a margin of unity. Such a function is shown in the following expression.

F(s) = 
a a s a s a s a s

b s b s b s b s

n
n

n
n

n
n

n
n

0 1 2
2

1
1

1 2
2

1
1

+ + + + +

+ + + +

-

-

-

-

.........

.........
(9.53)

Y s( )

Y s11( )

Y s2( ) Y s3( )

Y sn( )

C K=

Y s1( )

Figure 9.12 Final network structure for

admittance function
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By partial fraction expansion this may be decomposed into

F(s) = 
a

b

c c s c s c s

d d s d s d s

n
n

n
n

n
n

n
n

0

1

1 2 1
2 1

1 2 1
2 1

+

+ + + +

+ + + +

-

- -

-

- -

.........

.........
(9.54)

or, F(s) = 
K

s

c c s c s c s

d d s d s d s

n
n

n
n

n
n

n
n

+

+ + + +

+ + + +

-

- -

-

- -

1 2 1
2 1

1 2 1
2 1

.........

.........
(9.55)

Two possible cases may arise for interpretation of Eqn. (9.55) in this process of network synthesis.

In the first case, F(s) may be treated as an impedance function and would give a particular network

structure. In the second case, F(s) may be treated as an admittance function which would give another

network structure. These two cases have been dealt here separately.

Case-I If F(s) represents an impedance function, then it may be possible to represent Eqn. (9.55)

as a series combination of two impedances, Z(s) = Z1(s) + Z11(s), such that

Z1(s) = 
K

s
 = 

a

b

0

1

(9.56)

and, Z11(s) = 
c c s c s c s

d d s d s d s

n
n

n
n

n
n

n
n

1 2 1
2 1

1 2 1
2 1

+ + + +

+ + + +

-

- -

-

- -

.........

.........
(9.57)

This would give the scope for removal of Z1(s) from Z(s), thereby leaving Z11(s) for further

decomposition. Since Z1(s) is in the form of K/s, as an impedance it would represent a capacitor of

value C = 1/K. Network structure for the expressions represented by Eqns. (9.55) to (9.57) may be

shown by drawing a series circuit of the two impedances as shown in Fig. 9.13. However, this may

not be the final result of network synthesis.

Then Z11(s) may be decomposed further through partial fraction expansion in order to split it into

a series combination of another two impedances given by Z11(s) = Z2(s) + Z22(s), thereby enabling

the removal of another series element Z2(s) from Z11(s). This process would continue until the last

series element Zn(s) is obtained. A circuit diagram containing all the impedances in series, i.e., Z1(s),

Z2(s), Z3(s), …….., and Zn(s) may be drawn for representing the result of network synthesis. This is

shown in Fig. 9.14.

Z11( )s

Z1( )s

Z( )s Z( )s

Z11( )s
Z1( )s

Z2( )s Z3( )s

Zn( )s
C =

1
K

Figure 9.13 Network structure for Figure 9.14 Final network structure for

impedance function impedance function
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Case-II If F(s) represents an admittance function then it may be possible to represent Eqn. (9.55)

as a parallel combination of two admittances, Y(s) = Y1(s) + Y11(s), such that

Y1(s) = 
K

s
 = 

a

b

0

1

(9.58)

And, Y11(s) = 
c c s c s c s

d d s d s d s

n
n

n
n

n
n

n
n

1 2 1
2 1

1 2 1
2 1

+ + + +

+ + + +

-

- -

-

- -

.........

.........
(9.59)

This would give the scope for removal of Y1(s) from Y(s), thereby leaving Y11(s) for further

decomposition. Since Y1(s) is in the form of K/s, as an admittances, it would represent an inductor

of value L = 1/K. Network structure for the expressions represented by Eqns. (9.55), (9.58) and (9.59)

may be shown by drawing a parallel circuit of the two admittances as shown in Fig. 9.15. However,

this may not be the final result of network synthesis.

Then Y11(s) may be decomposed further through partial fraction expansion in order to split it into

a parallel combination of two admittances, Y11(s) = Y2(s) + Y22(s), thereby enabling the removal of

another parallel element Y2(s) from Y11(s). This process would continue until the last parallel element

Yn(s) is obtained. A circuit diagram containing all the admittances in parallel, i.e., Y1(s), Y2(s), Y3(s),

........, and Yn(s) may be drawn for representing the result of network synthesis. This is shown in

Fig. 9.16.

Y s11( )Y s1( )Y s( ) Y s( )

Y s11( )

Y s2( ) Y s3( )

Y sn( )
Y s1( )

L = 1
K

Figure 9.15 Network structure for Figure 9.16 Final network structure for

admittance function admittance function

9.8.3 Removal of Conjugate Imaginary Poles from jw Axis

When a network function is said to have pairs of poles on the jw axis of the s plane then it is obvious

that the roots may have a value in the form of s = ± jw. Assuming that the exact location of these

roots have a value s = ± jw0, then the denominator polynomial must contain two factors in the form

(s – jw0) and (s+ jw0). Such a network function may be represented as the one shown in Eqn. (9.60).

F(s) = 
N s

D s

( )

( )
 = 

p s

s j s j q s

( )

( )( ) ( )- +w w0 0

(9.60)

By partial fraction expansion this may be decomposed into

F(s) = 
K

s j

K

s j

0

0

0

0( ) ( )

*

+
+

-w w

 + F2(s) (9.61)



9.40 Network Theory

where, K0 and K0
* are the residues and are conjugate of each other. A similar analysis is available

in Section 9.6, which substantiates the condition that K0 and K0
* must be identical and be real,

i.e., K0 = K0
* = K, in order to give positive real residues. In view of this, Eqn. (9.61) reduces to

F(s) = 
2

2
0
2

Ks

s +w

 + F2(s) (9.62)

Two possible cases may arise for interpretation of Eqn. (9.62) in this process of network synthesis.

In the first case, F(s) may be treated as an impedance function and would give a particular network

structure. In the second case, F(s) may be treated as an admittance function which would give another

network structure. These two cases have been dealt here separately.

Case-I If F(s) represents an impedance function then it may be possible to represent Eqn. (9.62)

as a series combination of two impedances, Z(s) = Z1(s) + Z11(s), such that

Z1(s) = 
2

2
0
2

Ks

s +w

 = 
1

2 2
0
2

s

K Ks
+

w

(9.63)

and, Z11(s) = F2(s) (9.64)

This would give the scope for removal of Z1(s) from Z(s), thereby leaving Z11(s) for further

decomposition. Since, Z1(s) is in the form of 1/Y1(s), as an impedance, it would represent a parallel

combination of an inductor of value L = 
2

0
2

Ks

w

 and a capacitor of value C = 
1

2K
. Network structure

for the expressions represented by Eqns. (9.62) to (9.64) may be shown by drawing a series circuit

of the two impedances as shown in Fig. 9.17. However, this may not be the final result of network

synthesis.

Then Z11(s) may be decomposed further through partial fraction expansion in order to split it into

a series combination of another two impedances given by Z11(s) = Z2(s) + Z22, thereby enabling the

removal of another series element Z2(s) from Z11(s). This process would continue until the last series

element Zn(s) is obtained. A circuit diagram containing all the impedances in series, i.e., Z1(s), Z2(s),

Z3(s), ........, and Zn(s) may be drawn for representing the result of network synthesis. This is shown

in Fig. 9.18.

Z11( )s

Z1( )s

Z s( )
Z( )s

Z11( )s

Z1( )s

Z2( )s Z3( )s

Zn( )sC =
1

2K

L =
2K

w
2

0

Figure 9.17 Network structure for Figure 9.18 Final network structure for

impedance function impedance function
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Case-II If F(s) represents an admittance function then it may be possible to represent Eqn. (9.62)

as a parallel combination of two admittances, Y(s) = Y1(s) + Y11(s), such that

Y1(s) = 
2

2
0
2

Ks

s +w

 = 
1

2 2
0
2

s

K Ks
+

w

(9.65)

And, Y11(s) = F2(s) (9.66)

This would give the scope for removal of Y1(s) from Y(s), thereby leaving Y11(s) for further

decomposition. Since Y1(s) is in the form of 1/Z1(s), as an admittance it would represent a series

combination of a capacitor of value C = 
2

0
2

Ks

w

 and an inductor of value L = 
1

2K
. Network structure

for the expressions represented by Eqns. (9.62), (9.65) and (9.66) may be shown by drawing a

parallel circuit of the two admittances as shown in Fig. 9.19. However, this may not be the final result

of network synthesis.

Then Y11(s) may be decomposed further through partial fraction expansion in order to split it into

a parallel combination of two admittances, Y11(s) = Y2(s) + Y22(s), thereby enabling the removal of

another parallel element Y2(s) from Y11(s). This process would continue until the last parallel element

Yn(s) is obtained. A circuit diagram containing all the admittances in parallel, i.e., Y1(s), Y2(s), Y3(s),

…….., and Yn(s) may be drawn for representing the result of network synthesis. This is shown in

Fig. 9.20.

Y s11( )Y s1( )Y s( ) Y s( )

Y s11( )

Y s2( ) Y s3( )

Y sn( )
Y s1( )C =

2K

w
2

0

L =
1

2K

Figure 9.19 Network structure for Figure 9.20 Final network structure for

admittance function admittance function

It may be inferred from the above case that removal of a pair of complex conjugate poles from

the network function, which are situated on the jw axis of the s plane, is equivalent to a

(i) serial removal of an L–C parallel combination from the parent network if the network repre-

sents an impedance function, or otherwise

(ii) parallel removal of an L–C series combination from the parent network if the network rep-

resents an admittance function.

9.8.4 Removal of a Constant

When a network function contains a constant term K , it may be expressed as

F(s) = K + F2(s) (9.67)
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Two possible cases may arise for interpretation of Eqn. (9.67) in this process of network synthesis.

In the first case, F(s) may be treated as an impedance function and would give a particular network

structure. In the second case, F(s) may be treated as an admittance function which would give another

network structure. These two cases have been dealt here separately.

Case-I If F(s) represents an impedance function then it may be possible to represent Eqn. (9.67)

as a series combination of two impedances, Z(s) = Z1(s) + Z11(s), such that

Z1(s) = K (9.68)

and, Z11(s) = F2(s) (9.69)

This would give the scope for removal of Z1(s) from Z(s), thereby leaving Z11(s) for further

decomposition. Since Z1(s) is in the form of a positive real constant K, as an impedance it would

represent a pure resistance of value R = K. Network structure for the expressions represented by

Eqns. (9.67) to (9.69) may be shown by drawing a series circuit of the two impedances as shown in

Fig. 9.21. However, this may not be the final result of network synthesis.

Then Z11(s) may be decomposed further through partial fraction expansion in order to split it into

a series combination of another two impedances given by Z11(s) = Z2(s) + Z22(s), thereby enabling

the removal of another series element Z2(s) from Z11(s). This process would continue until the last

series element Zn(s) is obtained. A circuit diagram containing all the impedances in series, i.e., Z1(s),

Z2(s), Z3(s), ........, and Zn(s) may be drawn for representing the result of network synthesis. This is

shown in Fig. 9.22.

Z11( )s

Z1( )s

Z s( ) Z s( )

Z11( )s

Z1( )s

R K=

Figure 9.21 Network structure for Figure 9.22 Final network structure for

impedance function impedance function

Case-II If F(s) represents an admittance function then it may be possible to represent Eqn. (9.67)

as a parallel combination of two admittances, Y(s) = Y1(s) + Y11(s), such that

Y1(s) = K (9.70)

and, Y11(s) = F2(s) (9.71)

This would give the scope for removal of Y1(s) from Y(s), thereby leaving Y11(s) for further

decomposition. Since Y1(s) is in the form of a positive real constant K, as an admittance, it would

represent a pure conductance of value G = K. Network structure for the expressions represented by

Eqns. (9.67), (9.70) and (9.71) may be shown by drawing a parallel circuit of the two admittances

as shown in Fig. 9.23. However, this may not be the final result of network synthesis.

Then Y11(s) may be decomposed further through partial fraction expansion in order to split it into

a parallel combination of two admittances, Y11(s) = Y2(s) + Y22(s), thereby enabling the removal of
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another parallel element Y2(s) from Y11(s). This process would continue until the last parallel element

Yn(s) is obtained. A circuit diagram containing all the admittances in parallel, i.e., Y1(s), Y2(s), Y3(s),

........, and Yn(s) may be drawn for representing the result of network synthesis. This is shown in

Fig. 9.24.

Y s11( )Y s1( )Y s( ) Y s( )

Y s11( )

Y s2( ) Y s3( )

Y sn( )Y s1( )
G K=

Figure 9.23 Network structure for Figure 9.24 Final network structure

admittance function for admittance function

9.9 REALIZATION OF ELEMENTS BY CAUER AND FOSTER FORMS

In the preceding section we have come across various schemes for conducting a step-by-step removal

of passive network elements from the original network, which is based on removal of network poles

from various locations of the s plane. Two basic mathematical tools involved in decomposing the

network function into component functions are (i) continued fraction expansion method, and

(ii) partial fraction expansion method.

In this section, we would see similar workouts in a different nomenclature, i.e.,

(i) Cauer form or Ladder form of representation of results of network synthesis, which has two

classifications:

• Cauer-I form

• Cauer-II form

(ii) Foster form of representation of results of network synthesis, which has two classifications:

• Foster-I form

• Foster-II form

A systematic approach for realization of the passive network elements with various possible

combinations or grouping (i.e., R–L, R–C and L–C) based on the Cauer and Foster forms is presented

below.

9.9.1 Realization of Elements by Cauer-I Form

Cauer-I form of network realization is primarily based on the continued fraction expansion technique,

which is applied to decompose a given network function by adopting repeated inversion and division

about the pole located at infinity. In order to understand the mechanism followed in this method, let

us assume a network function in the form of Eqn. (9.72).
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F(s) = 
N s

D s

( )

( )
 = 

a s a s a s a

b s b s b s b

n
n

n
n

m
m

m
m

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.72)

The quotient terms may be found from division with repeat inversion by applying the continued

fraction expansion, which has been explained earlier in this chapter. The quotient terms resulting in

this process are Q1(s), Q2(s), Q3(s), ....... so on. The following few guidelines may be helpful while

dealing with the continued fraction expansion and analyzing the results of this process.

1. F(s) may be treated as an impedance function or an admittance function,

2. The numerator and denominator polynomials described by N(s) and D(s) must be arranged in

order of decreasing power of s.

3. Continued fraction expansion should be performed with N(s) treated as dividend and D(s) as

the divisor.

4. If F(s) happens to be an impedance function then the first quotient term, i.e., Q1(s) will be

having the properties of impedance with subsequent quotient terms having alternate properties

of admittance and impedances.

5. If F(s) happens to be an admittance function then the first quotient term, i.e., Q1(s) will be

having the properties of admittance with subsequent quotient terms having alternate properties

of impedance and admittances.

6. In the course of continued fraction expansion, if any remainder term acquires negative sign

of computation then the process should not be carried forward any further. Rather, the whole

process of continued fraction expansion should be restarted by mutually interchanging the

positions of numerator and denominator polynomials, as shown below. In this case D(s)

should be treated as dividend and N(s) as the divisor.

7. While showing the connectivity of elements in the circuit diagram, impedances should be

connected in series branch, and admittances should be connected in parallel branches.

 Example 9.21 Realize the network function given by Z(s) = 
6 42 48

18 48

4 2

2 3

s s

s s s

+ +

+ +

 in Cauer-I form.

Solution In Cauer-I form, the function may be treated as an impedance or admittance as well.

However, in this case, since the denominator has a higher order than the numerator,

we have to find the quotient terms from the continued fraction expansion of 1/Z(s)

and may treat it as an admittance.

Y(s) = 
1

F s( )
 = 

s s s

s s

2 3

4 2

18 48

6 42 48

+ +

+ +

which gives,

Y(s) = (0.166)s + 
1

0 545
1

0 545
1

1 458
1

0 288

( . )

( . )

( . )
( . )

s

s

s
s

+

+

+
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Realization of quotient terms

• The first quotient term is 0.166s, which as an admittance represents a capaci-

tance in a parallel branch having a value C = 0.166 F.

• The second quotient term is 0.545s, which as an impedance represents an

inductance in a series branch having a value L = 0.545 H.

• The third quotient term is 0.545s, which as an admittance represents a capaci-

tance in a parallel branch having a value C = 0.545 F.

• The fourth quotient term is 1.458s, which as an impedance represents an

inductance in a series branch having a value L = 1.458 H.

• The fifth quotient term is 0.288s, which as an admittance represents a capaci-

tance in a parallel branch having a value C = 0.288 F.

The circuit diagram and connectivity for these elements is shown in Fig. 9.25.

L2 = 1.458 HL1 = 0.545 H

C3 = 0.288 FC2 = 0.545 FC1 = 0.166 F

Figure 9.25

9.9.2 Realization of Elements by Cauer-II Form

The Cauer-II form of network realization is primarily based on continued fraction expansion tech-

nique, which is applied to decompose a given network function by adopting repeated inversion and

division about the pole located at the origin. In order to understand the mechanism followed in this

method, let us assume a network function in the form of Eqn. (9.72).

F(s) = 
N s

D s

( )

( )
 = 

a s a s a s a

b s b s b s b

n
n

n
n

m
m

m
m

+ + + +

+ + + +

-

-

-

-

1
1

1 0

1
1

1 0

... ... ...

... ... ...
(9.72)

The quotient terms may be found from division with repeat inversion by applying the continued

fraction expansion, which has been explained earlier in this chapter. The quotient terms resulting in

this process are Q1(s), Q2(s), Q3(s), ........ so on. The following few guidelines may be helpful while

dealing with the continued fraction expansion and analyzing the results of this process.

1. F(s) may be treated as an impedance function or an admittance function.

2. The numerator and denominator polynomials described by N(s) and D(s) must be arranged in

order of increasing power of s.

3. Continued fraction expansion should be performed with N(s) treated as dividend and D(s) as

the divisor.
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4. If F(s) happens to be an impedance function then the first quotient term, i.e., Q1(s) will be

having the properties of impedance with subsequent quotient terms having alternate properties

of admittance and impedances.

5. If F(s) happens to be an admittance function then the first quotient term, i.e., Q1(s) will be

having the properties of admittance with subsequent quotient terms having alternate properties

of impedance and admittances.

6. In the course of continued fraction expansion, if any remainder term acquires negative sign

of computation then the process should not be carried forward any further. Rather, the whole

process of continued fraction expansion should be restarted by mutually interchanging the

positions of numerator and denominator polynomials, as shown below. In this case D(s)

should be treated as dividend and N(s) as the divisor.

7. While showing the connectivity of elements in the circuit diagram, impedances should be

connected in series branch and admittances should be connected in parallel branches.

 Example 9.22 Realize the network function given by Z(s) = 
s s s

s s

5 3

4 2

3

3 4 1

+ +

+ +
 in Cauer-II form as an

admittance.

Solution In the Cauer-II form, the function may be treated as an impedance or admittance as

well. According to the question, we have to realize the network considering the

given function as an admittance. Hence, the quotient terms may be obtained from

the continued fraction expansion of Y(s) = 1/Z(s). By arranging the order of poly-

nomials in increasing order of s, we get

Y(s) = 
1

Z s( )
 = 

1 4 3

3

2 4

3 5

+ +

+ +

s s

s s s

Continued fraction expansion of this gives,

Y(s) = 1/s + 
1

1
1

1
1

1
1

1

/

/

/
/

s

s

s
s

+

+

+

Realization of quotient terms

• The first quotient term is 1/s, which as an admittance represents an induc-

tance in a parallel branch having a value L = 1 H.

• The second quotient term is 1/s, which as an impedance represents a capaci-

tance in a series branch having a value C = 1 F.

• The third quotient term is 1/s, which as an admittance represents an induc-

tance in a parallel branch having a value L = 1 H.

• The fourth quotient term is 1/s, which as an impedance represents a capaci-

tance in a series branch having a value C = 1 F.
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• The fifth quotient term is 1/s, which as an admittance represents an induc-

tance in a parallel branch having a value L = 1 H.

The circuit diagram and connectivity for these elements is shown in Fig. 9.26.

L2 = 1 HL1 = 1 H L3 = 1 H

C2 = 1 FC1 = 1 F

Figure 9.26

9.9.3 Realization of Elements by Foster-I Form

The Foster-I form of network realization is primarily based on the partial fraction expansion tech-

nique, which is applied to decompose network functions F(s) representing impedance functions Z(s)

only into component functions. In this process the main objective is to obtain the residues of partial

fraction expansion. If, at any stage, a residue acquires a negative sign of computation, then the

process should be terminated at once and another partial fraction expansion should be performed for

the function, F¢(s) = 
F s

s

( )
. Finally, s may be multiplied to each term of the result so obtained in order

to compensate for the factor s in F¢(s). Each component term of the partial fraction expansion

represents a particular type of network element and may be shown in the circuit diagram with proper

connectivity in order to realize the said network. While showing the connectivity of elements in the

circuit diagram, impedances should be connected in a series branch and admittances should be

connected in parallel branches.

 Example 9.23 Realize the network function given by Y(s) = 
s s

s

2 8 12

4

+ +

+
 in Foster-I form.

Solution In the Foster-I form, the network function is to be treated as an impedance. Since

the given function is in the form of an admittance, we better take the inverse and

express it as an impedance for application of partial fraction expansion. So,

Z(s) = 
1

Y s( )
 = 

s

s s

+

+ +

4

8 122
 = 

( )

( )( )

s

s s

+

+ +

4

2 6
 = 

A

s

1

2( )+
 + 

A

s

2

6( )+
, On solving this, we

may get, A1 = A2 = 1/2. On substitution of the values, we find that

Z(s) = 

1

2

2( )s +
 + 

1

2

6( )s +
 = 

1

2 4s +
 + 

1

2 12s +
 = Z1 + Z2 (say)
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This would lead to series combination of two impedances Z1 = 
1

2 4s +
 and

Z2 = 
1

2 12s +
. When viewed separately, each impedance may be realized as a parallel

combination of two elements.

When Z1 is viewed as 1/(Ya + Yb) then the first admittance element corresponding

to Ya = 2s would represent a capacitance of value C1 = 2 F, and the second element

corresponding to Yb = 4 would mean a conductance with a value of 4 mho or a

resistance of value R1 = 1/4 W.

In a similar way, while viewing Z2 as 1/(Yc + Yd), the first admittance element

corresponding to Yc = 2s would repre-

sent a capacitance of value C2 = 2 F, and

the second element corresponding to

Yd = 12 would mean a conductance with

a value of 12 mho or a resistance of

value R2 = 1/12 W.

The above break up indicates the series

combination of two parallel branches,

each parallel branch having an R–C

combination. The network diagram for

this realization is shown in Fig. 9.27.

9.9.4 Realization of Elements by Foster-II Form

The Foster-II form of network realization is primarily based on partial fraction expansion technique,

which is applied to decompose network functions F(s) representing admittance functions Y(s) only

into component functions. In this process the main objective is to obtain the residues of partial

fraction expansion. If, at any stage, a residue acquires a negative sign of computation then the process

should be terminated at once and another partial fraction expansion should be performed for the

function, F¢(s) = 
F s

s

( )
. Finally, s may be multiplied to each term of the result so obtained in order

to compensate for the factor s in F¢(s). Each component term of the partial fraction expansion

represents a particular type of network element and may be shown in the circuit diagram with proper

connectivity in order to realize the said network. While showing the connectivity of elements in the

circuit diagram, impedances should be connected in a series branch and admittances should be

connected in parallel branches.

 Example 9.24 Realize the network function given by Y(s) = 
( )( )

( )( )

s s

s s

+ +

+ +

1 3

2 2 4
 in the Foster-II form.

Solution In the Foster-II form, the network function is to be treated as an admittance and the

function is to be decomposed by partial fraction expansion. So, by taking the partial

fraction of Y(s)/s, we may represent the function as

R1 =

C2 = 2 FC1 = 2 F

1
4
W R2 =

1
12
W

Figure 9.27
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Y s

s

( )
= 

A

s

A

s

A

s

0 1 2

2 4
+
+
+
+( ) ( )

The coefficients A0, A1, and A2 are found to be 3/16, 1/8, and 3/16 respectively. On

substitution of these values and multiplying s on both sides of the function, we get

Y(s) = 
3

16

8

2

3

16

4
+
+
+
+

s

s

s

s( ) ( )
 = 

3

16

1

8
16

1

16

3

64

3

+

+
F
HG

I
KJ
+

+
F
HG

I
KJs s

= Y1 + Y2 + Y3 (say)

The break-up in the last expression indicates the parallel combination of three

branches having admittances Y1, Y2, and Y3 respectively. When viewed separately,

each admittance may be realized as some combination of passive elements.

When Y1 is viewed as a constant of value 3/16, it would represent a conductance of

3/16 mho or a resistance of R1 = 16/3 W.

In a similar way, while viewing Y2 as 1/(Za + Zb), the first impedance element

corresponding to Za = 8, would mean a resistance of value R2 = 8 W in series with

the second element corresponding to Zb = 16/s that would represent a capacitance

of value C2 = 1/16 F.

In a similar way, while viewing Y3 as 1/(Zc + Zd), the first impedance element

corresponding to Zc = 16/3,

would mean a resistance of

value R3 = 16/3 W in series

with the second element corre-

sponding to Zd = 64/3s that

would represent a capacitance

of value C3 = 3/64 F. The net-

work diagram for this realiza-

tion is shown in Fig. 9.28.

SOLVED PROBLEMS

9.1 Realize the network function given by F(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2
 in the Foster-I form.

Solution In the Foster-I form, the network function is to be treated as an impedance. So, the

function may be written as

Z(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2
 = A0 + 

A

s

A

s

1 2

2
+
+( )

 (say)

On solving this, we may get, A0 = 1, A1 = 3/2, and A2 = 1/2. On substitution of the values,

we find that

C1 =
1
16

F C2 =
3

64
F

R1 = 8 W R2 =
16
3
W

R =
16
3
W

Figure 9.28
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Z(s) = 1 + 
3 2/

s
 + 

1 2

2

/

( )s +
 = 1 + 

1

2

3

s
 + 

1

2 4( )s +
 = Z1 + Z2 + Z3 (say)

This would lead to a series combination of three impedances; Z1 = 1, Z2 = 
1

2

3

s
 and Z3 =

1

2 4( )s +
. When viewed separately, each impedance may be realized as some combination of

passive elements.

When Z1 is viewed as a constant, it would represent a resistance of value R1 = 1 W.

In a similar way, while viewing Z2 as 1/C.s, it would represent a capacitance of value C2 =

2/3 F.

In a similar way, while viewing Z3 as 1/(Ya + Yb), the first admittance element corresponding

to Ya = 2s would represent a capacitance of value C3 = 2 F, and the second element corre-

sponding to Yb = 4 would mean a conductance with a value of 4 mho or a resistance of value

R3 = 1/4 W. The network diagram for this realization is shown in Fig. 9.29.

R1

C3

R3

C1

Z s1( ) Z s2( )
Z s3( )

Z s( )

Figure 9.29

9.2 Realize the network function given by F(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2
 in the Foster-II form.

Solution In the Foster-II form, the network function is to be treated as an admittance. So,

the function may be written as

Y(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2
 = A0 + 

A

s

A

s

1 2

2
+
+( )

 (say).

On solving this, we may get, A0 = 1, A1 = 3/2, and A2 = 1/2. On substitution of the values,

we find that

Y(s) = 1 + 
3 2/

s
 + 

1 2

2

/

( )s +
 = 1 + 

1

2

3

s
 + 

1

2 4( )s +
 = Y1 + Y2 + Y3 (say)
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This would lead to parallel combination of three admittances; Y1 = 1, Y2 = 
1

2

3

s
 and

Y3 = 
1

2 4( )s +
. When viewed separately, each admittance may be realized as some combination

of passive elements.

When Y1 is viewed as a constant, it would represent a conductance with a value of 1 mho,

which is equivalent to a resistance of value R1 = 1 W.

In a similar way, while viewing Y2 as 1/L.s, it would represent an inductance of value L2 =

2/3 H.

In a similar way, while viewing Y3 as 1/(Za + Zb), the first impedance element corresponding

to Za = 2s would represent an inductance of value L3 = 2 H, and the second element corre-

sponding to Zb = 4 would mean a resistance of value R3 = 4 W. The network diagram for this

realization is shown in Fig. 9.30.

L3

R3

L2R1

Y s( )

Y s1( ) Y s2( )

Y s3( )

Figure 9.30

9.3 Realize the network function given by F(s) = 
( )

( )( )

s

s s

+

+ +

2

1 3
 in the Foster-I form.

Solution In the Foster-I form, the network function is to be treated as an impedance. So, the

function may be written as

Z(s) = 
( )

( )( )

s

s s

+

+ +

2

1 3
 = 

A

s

A

s

1 2

1 3( ) ( )+

+

+

 (say).

On solving this, we may get, A1 = 1/2, and A2 = 1/2. On substitution of the values, we find

that

Z(s) = 
1 2

1

1 2

3

/

( )

/

( )s s+

+

+

 = 
1

2 2

1

2 6( ) ( )s s+

+

+

 = Z1 + Z2 (say)

This would lead to a series combination of two impedances; Z1 = 
1

2 2( )s +
, and Z2 = 

1

2 6( )s +
.

When viewed separately, each impedance may be realized as some combination of passive

elements.
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While viewing Z1 as 1/(Ya + Yb), the first admittance element corresponding to Ya = 2s would

represent a capacitance of value C1 = 2 F, and the second element corresponding to Yb = 2

would mean a conductance with a value of 2 mho or a resistance of value R1 = 1/2 W.

In a similar way, while viewing Z2 as 1/(Yc + Yd), the first admittance element corresponding

to Yc = 2s would represent a capacitance of value C2 = 2 F, and the second element corre-

sponding to Yb = 6 would mean a conductance value of 6 mho or a resistance of value R2 =

1/6 W. The network diagram for this realization is shown in Fig. 9.31.

R1

C2C1

R2

Z s( )

Z s1( ) Z s2( )

Figure 9.31

9.4 Realize the network function given by 
F s

s

( )
 = 

( )

( )( )

s

s s

+

+ +

2

1 3
 in the Foster-II form.

Solution In the Foster-II form, the network function is to be treated as an admittance. So,

the function may be written as

Y s

s

( )
= 

( )

( )( )

s

s s

+

+ +

2

1 3
 = 

A

s

A

s

1 2

1 3( ) ( )+
+
+

 (say).

On solving this, we may get, A1=1/2, and A2=1/2. On substitution of the values, we find that

Y s

s

( )
= 

1 2

1

1 2

3

/

( )

/

( )s s+
+
+

 = 
1

2 2

1

2 6( ) ( )s s+
+

+

Þ Y(s) = 
s

s

s

s( ) ( )2 2 2 6+
+

+
 = 

1

2
2

1

2
6

+
F
HG

I
KJ
+

+
F
HG

I
KJs s

 = Y1(s) + Y2(s) (say)

This would lead to parallel combination of two admittances; Y1 = 
1

2
2
+

F
HG

I
KJs

 = 
1

Z Za b+
, and

Y2 = 
1

2
6
+

F
HG

I
KJs

 = 
1

Z Zc d+
. When viewed separately, each admittance may be realized as some

combination of passive elements.
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When Y1 is viewed as 
1

Z Za b+

, it would represent a series combination of a resistance of

value R1 = 2 W and a capacitance of value C1 = 1/2 F.

In a similar way, while viewing Y2 as 
1

Z Zc d+

, it would represent a series combination of a

resistance of value R2 = 2 W and a capacitance of value C2 = 1/6 F. The network diagram for

this realization is shown in Fig. 9.32.

C1 C2

R1 R2

Y s( )

Y s1( ) Y s2( )

Figure 9.32

9.5 Realize the network function given by F(s) = 
s s s

s s

( )( )

( )

+ +

+

1 3

2
 in the Foster-II form.

Solution In the Foster-II form, the network function is to be treated as an admittance. So,

the function may be written as

Y s

s

( )
= 

s s s

s s

( )( )

( )

+ +

+

1 3

2
 = A0 + 

A

s

A

s

1 2

2
+

+( )
 (say).

On solving this, we may get, A0 = 1, A1 = 3/2, and A2 = 1/2. On substitution of the values,

we find that

Y s

s

( )
= 1 + 

3 2/

s
 + 

1 2

2

/

( )s +
 = 1 + 

1

2

3

1

2 4s s
+

+( )

Þ Y(s) = s + 
s

s

s

s2

3

2 4
+

+( )
 = s + 

3

2

1

2
4

+

+
F
HG

I
KJs

 = Y1(s) + Y2(s) + Y3(s) (say)

This would lead to parallel combination of three admittances; Y1 = S, Y2 = 
3

2
 and Y3 =

1

2
4
+

F
HG

I
KJs

. When viewed separately, each admittance may be realized as some combination of

passive elements.
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When Y1 is viewed as C.s, it would represent a capacitance of value C1 = 1 F. When Y2 is

viewed as a constant, it would represent a conductance value of 3/2 mho, which is equivalent

to a resistance of value R2 = 2/3 W. In a similar way, while viewing Y3 as 1/(Za + Zb), the first

impedance element corresponding to Za = 2 would represent a resistance of value R3 = 2 W,

and the second element corresponding to Zb = 4/s would mean a capacitance of value C3 =

1/4 F. The network diagram for this realization is shown in Fig. 9.33.

C1

C3

R3

R2
Y s( )

Y s2( ) Y s1( )
Y s3( )

Figure 9.33

9.6 Realize the network function given by F(s) = 
s s

s s

2

2

4 3

2

+ +

+
 in the Cauer-I form by assuming that

F(s) represents an impedance function.

Solution In the Cauer-I form, the function is expanded through continued fraction expansion

by performing alternate division and inversion for obtaining the quotient terms. Since, the

function is to be treated as an impedance function, hence the first quotient term must represent

an impedance followed by alternate terms of admittance and impedance in the subsequent

quotient terms. While performing the continued fraction expansion in the Cauer-I form, the

polynomials in the numerator and denominator must be arranged in an increasing order of s.

Thus we may get the quotient terms of the division as

Z(s) = Z1(s) + 
1

1

11

2

2

Y s

Z s
Y s

( )

( )
( ) ...

+

+
+

The general circuit for this network may be as shown in Fig. 9.34.

Y s1( ) Y s2( ) Y s3( )

so on

Z s1( ) Z s2( ) Z s3( )

Figure 9.34
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The actual result of continued fraction expansion would give the following form.

Z(s) = 
s s

s s

2

2

4 3

2

+ +

+
 = 1 + 

1

2

1

4
1

6

s

s

+

+

On comparison of the result with the general form indicated above, we may find that the first

series element represents a resistance of value R1 = 1 W. The second element is connected in

a parallel branch and happens to be a capacitance of value C1 = 1/2 F. The third element

represents a resistance in the series branch of value R2 = 4 W, and the fourth element con-

nected in a parallel branch happens to be a capacitance of value C2 = 1/6 F. The circuit model

for this network may be as shown in Fig. 9.35.

C2Z s( )

Y s1( ) Y s2( )

C1

R2R1 Z s2( )Z s1( )

Figure 9.35

9.7 Realize the network function given by F(s) = 
s s

s s

2

2

4 3

2

+ +

+
 in the Cauer-I form by assuming that

F(s) represents an admittance function.

Solution In the Cauer-I form, the function is expanded through continued fraction expansion

by performing alternate division and inversion for obtaining the quotient terms. Since, the

function is to be treated as an admittance function, hence the first quotient term must represent

an admittance followed by alternate terms of impedance and admittance in the subsequent

quotient terms. While performing the continued fraction expansion in the Cauer-I form, the

polynomials in the numerator and denominator must be arranged in an increasing order of s.

Thus we may get the quotient terms of the division as

F(s) = Y1(s) + 
1

1

11

2

2

Z s

Y s
Z s

( )

( )
( ) ...

+

+
+

The general circuit for this network may be as shown in Fig. 9.36.
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Y s1( ) Y s2( ) Y s3( )

Z s1( ) Z s2( ) Z s3( )

Y s( )

so on

Figure 9.36

The actual result of continued fraction expansion would give the following form.

Y(s) = 
s s

s s

2

2

4 3

2

+ +

+
 = 1 + 

1

2

1

4
1

6

s

s

+

+

On comparison of the result with the general form indicated above, we may find that the first

parallel element represents a conductance value of 1 mho, which is equivalent to a resistance

of value R1 = 1 W. The second element is connected in a series branch and happens to be an

inductance of value L1 = 1/2 H. The third element represents a conductance value of 4 mho,

which is equivalent to a resistance in the parallel branch of value R2 = 1/4 W, and the fourth

element connected in a series branch happens to be an inductor of value L2 = 1/6 H. The

circuit model for this network may be as shown in Fig. 9.37.

Y s1( ) Y s2( )

Z s1( ) Z s2( )

Y s( )
R1 R2

L1 L2

Figure 9.37

9.8 Realize the network function given by F(s) = 
s s

s s

2

2

4 3

2

+ +

+
 in the Cauer-II form by assuming

that F(s) represents an impedance function.

Solution In the Cauer-II form, the function is expanded through continued fraction expan-

sion by performing alternate division and inversion for obtaining the quotient terms. Since the

function is to be treated as an impedance function hence the first quotient term must represent

an impedance followed by alternate terms of admittance and impedance in the subsequent

quotient terms. While performing the continued fraction expansion in the Cauer-II form, the
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polynomials in the numerator and denominator must be arranged in a decreasing order of s.

Thus we may get the quotient terms of the division as;

Z(s) = Z1(s) + 
1

1

11

2

2

Y s

Z s
Y s

( )

( )
( ) ...

+

+
+

The general circuit for this network may be as shown in Fig. 9.38.

Y s1( ) Y s2( ) Y s3( )

Z s1( ) Z s2( ) Z s3( )

so on

Figure 9.38

The actual result of continued fraction expansion would give the following form.

Z(s) = 
3 4

2

2

2

+ +

+

s s

s s
 = 

3

2

1

4

5

1

25

2

1

1

5

s

s

+

+

+

On comparison of the result with the general form indicated above, we may find that the first

series element represents an inductance of value L1 = 3/2 H. The second element is connected

in a parallel branch and happens to be a conductance value of 4/5 mho, which is equivalent

to a resistance of value R1 = 5/4 W. The third element represents an inductance in the series

branch of value L2 = 25/2 H, and the fourth element connected in a parallel branch happens

to be a conductance value of 1/5 mho, which is equivalent to a resistance of value R2 = 5 W.

The circuit model for this network may be as shown in Fig. 9.39.

R2Z s( )

Y s1( ) Y s2( )

R1

L2L1

Z s1( ) Z s2( )

Figure 9.39
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9.9 Realize the network function given by F(s) = 
s s

s s

2

2

4 3

2

+ +

+
 in the Cauer-II form by assuming

that F(s) represents an admittance function.

Solution In the Cauer-II form, the function is expanded through continued fraction expan-

sion by performing alternate division and inversion for obtaining the quotient terms. Since the

function is to be treated as an admittance function, hence the first quotient term must represent

an admittance followed by alternate terms of impedance and admittance in the subsequent

quotient terms. While performing the continued fraction expansion in the Cauer-II form, the

polynomials in the numerator and denominator must be arranged in an decreasing order of s.

Thus we may get the quotient terms of the division as

Y(s) = Y1(s) + 
1

1

11

2

2

Z s

Y s
Z s

( )

( )
( ) ...

+

+
+

The general circuit for this network may be as shown in Fig. 9.40.

Y s1( ) Y s2( ) Y s3( )

Z s1( ) Z s2( ) Z s3( )

Y s( )

so on

Figure 9.40

The actual result of continued fraction expansion would give the following form.

Y(s) = 
3 4

2

2

2

+ +

+

s s

s s
 = 

3

2

1

4

5

1

25

2

1

1

5

s

s

+

+

+

On comparison of the result with the general form indicated above, we may find that the first

parallel element represents a capacitance of value C1 = 3/2 F. The second element is connected

in a series branch and happens to be a resistance of value R1 = 4/5 W. The third element

represents a capacitance of value C2 = 25/2 F, and the fourth element connected in a series

branch happens to be a resistor of value R2 = 1/5 W. The circuit model for this network may

be as shown in Fig. 9.41.
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Y s1( ) Y s2( )

Z s1( ) Z s2( )

Y s( ) C1

R1 R2

C2

Figure 9.41

MULTIPLE-CHOICE QUESTIONS

9.1 A root of a polynomial has a negative real part of 7 and zero imaginary part. What should be

the value of s for this root?

(a) –7 (b) 7 (c) +j7 (d) –j 7

9.2 A root of a polynomial has a zero real part and a conjugate imaginary part of 5. What should

be the value of s for this root?

(a) –5 (b) 5 (c) +j5 (d) ± j5

9.3 For the function F(s) = s3 + 5s2 + 7s + 3, how many roots possibly lie on the left half of s-

plane?

(a) 0 (b) 1 (c) 2 (d) 3

9.4 Which test can confirm a polynomial to be Hurwitz?

(a) Cauer-I (b) Cauer-II (c) Foster-I (d) none

9.5 Which test can confirm a polynomial to be positive real?

(a) Cauer-I (b) Cauer-II (c) Foster-I (d) Hurwitz

9.6 If a polynomial is positive real then one of its roots on jw axis must be,

(a) real (b) imaginary (c) simple (d) complex

9.7 In network synthesis, what is the unknown?

(a) excitation (b) response (c) network (d) none

9.8 In network analysis, what is the unknown?

(a) excitation (b) response (c) network (d) none

9.9 In network synthesis, passive elements can be realized if, transfer function is

(a) Hurwitz (b) positive (c) negative (d) positive real

EXERCISES

9.1 A network function is given as F(s) = s7 + 4s5 + 3s3 + s. Check this function for Hurwitz

polynomial.
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9.2 Examine whether the network function F(s) = s7 + 3s6 + 4s5 + 2s4 + 3s3 + 5s2 + s + 3 is

Hurwitz.

9.3 A network function is given as F(s) = 10s5 + 7s4 + 2s3 + s2 + 8s + 6. Verify this function

for Hurwitz polynomial.

9.4 A network function is given as F(s) = 2s6 + 3s5 + 5s4 + 3s3 + 7s2 + 9s + 4. Check this function

for Hurwitz polynomial.

9.5 Examine whether the network function F(s) = 4s6 + 5s5 + 3s4 + 8s3 + 3s2 + 2s + 7 is Hurwitz.

9.6 Examine whether the network function F(s) = 
s s

s s

2 2 4

2 4

+ +

+ +( )( )
 is positive real.

9.7 Examine whether the network function F(s) = 
s

s s

+

+ +

4

3 1( )( )
 is positive real.

9.8 Examine whether the network function F(s) = 
3 2 4

2 4

3 2s s s

s s

+ + +

+ +( )( )
 is positive real.

9.9 Realize the functions in Cauer-I form:

(i) Z(s) = 
s s

s s

3

4 2

2

4 3

+

+ +
(ii) Y(s) = 

s s

s s

( )

( )( )

+

+ +

3

6 2 4

9.10 Realize the functions in Cauer-II form:

(i) Z(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2
(ii) Y(s) = 

( )( )

( )( )

s s

s s

+ +

+ +

2 6

2 1 3

9.11 Realize the function in Foster-I form: Z(s) = 
( )( )

( )

s s

s s

+ +

+

1 3

2

9.12 Realize the function in Foster-II form: Y(s) = 
( )( )

( )( )

s s

s s

+ +

+ +

2 6

2 1 3

SHORT ANSWER TYPE QUESTIONS

9.1 Give a comparison between network analysis and network synthesis.

9.2 What is the significance of Hurwitz test on polynomials?

9.3 Describe the necessary condition for positive realness.

9.4 Describe the sufficient condition for positive realness.

9.5 What should be the properties of a positive real function?

9.6 What do you mean by removal of poles from a function in a physical sense?

9.7 What are the important elements of network synthesis?

9.8 How is stability related to network synthesis?
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9.9 What is the correspondence between causality and realizability?

9.10 What does removal of a constant from a function mean?

9.11 What do you mean by continued fraction expansion method?

9.12 Why can a function with missing terms fail to be positive real?

9.13 Explain the Cauer-I form of network realization.

9.14 Explain the Cauer-II form of network realization.

9.15 Explain the Foster-I form of network realization.

9.16 Explain the Foster-II form of network realization.

ANSWERS TO MULTIPLE-CHOICE QUESTIONS

9.1 (a) 9.2 (d) 9.3 (a) 9.4 (d) 9.5 (d) 9.6 (c) 9.7 (c)

9.8 (b) 9.9 (d)



Model Question Paper I

1. Choose the correct answer.

(a) The parameter A of a two-port network is equal to

(i) V2/V1 with I1 = 0 (ii) V1/I2 with V2 = 0

(iii) I1/I2 with V2 = 0 (iv) V1/V2 with I2 = 0

(b) An R-L series circuit has a time constant given by

(i) RL (ii) L/R (iii) R/L (iv) 1/RL

(c) In a linear network, when the a.c. input is doubled, the a.c. output becomes

(i) one fourth (ii) half

(iii) two times (iv) four times

(d) The Laplace transform of the signal described in figure below is

(i) e�as/s (ii) e�bs/s2 (iii) (e�as + e�bs)/s (iv) (e�as � e�bs)/s

(e) The step response of a series R-C circuit with applied voltage V is

(i) /( ) t RCV
i t e

R

-= (ii) /( ) (1 )t RCV
i t e

R

=

= -

(iii) /( ) 1 -
æ ö

= -ç ÷è ø
t RCV

i t e
R

(iv) /( ) 1 t RCV
i t e

R

-= -

(f) Norton�s equivalent circuit consists of

(i) voltage source in parallel with impedance

(ii) voltage source in series with impedance
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(iii) current source in parallel with impedance

(iv) current source in series with impedance

(g) The number of links for a graph having �n� nodes and V branches are

(i) b � n + 1 (ii) n �b + 1 (iii) b + n�l (iv) b + n

(h) For an R-C circuit comprising a capacitor C = 2 uF in series with a resistance R = 1

M W, the period 6 sec will be equal to

(i) one time constant (ii) two time constants

(iii) three time constants (iv) four time constants.

(i) For a symmetrical network

(i) Z11 = Z22 (ii) Z12 = Z21

(iii) Z11Z12 �Z12Z21 = 0 (iv) Z11 = Z22 and Z12 = Z21

(j) The impedance of a 1 Henry inductor at 50 Hz is

(i) 1 W (ii) 31.4 W (iii) 50 W (iv) 314 W
Solution

(a) (iv) (b) (ii) (c) (iii) (d) (iv) (e) (i) (f) (iii) (g) (i) (h) (iii)

(i) (i) (j) (iv)

2. (a) State Superposition Theorem.

(b) Using superposition theorem, calculate the current through the (2 + j3) W impedance

branch of the circuit shown in the figure below.

Solution

(a) Superposition Theorem

This theorem states that in a linear bilateral network, the current at any point (or voltage

between any two points) due to the simultaneous action of a number of independent

sources in the network is equal to the summation of the component currents (or voltages).

A component current (or voltage) is defined as that due to one source acting alone in the

network with all the remaining sources removed.
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(b) Case (I) 30 V source is acting alone

Impedance, 
(4.4 3) 5

5 (6.32 2.6)
4.4 3 5

j j
Z j

j j

+ ´
= + = + W

+ +

\ 30 30
' (4.06 1.67) A

6.32 2.6
I j

Z j
= = = -

+

5
' ' (2.39 0.27) A

4.4 3 5

j
i I j

j j
= ´ = +

+ +

Case (II) 20 V source is acting alone

Impedance, 
(4.5 5.5) 6

4 (7.31 1.41)
4.5 5.5 6

j
Z j

j

+ ´
= + = + W

+ +

\ 20 20
" (2.64 0.509) A

7.31 1.41
I

Z j
= = = -

+

6
" " (1.064 0.848) A

4.5 5.5 6
i I j

j
= - ´ = - -

+ +

By superposition theorem, total current flowing through the (2 + j3) impedance is,

( ' ") (2.39 0.27) (1.064 0.848) (1.325 1.117) A 1.733 40.14 Ai i i j j j= + = + - - = + = Ð °
3. (a) Define the ABCD parameters of a 4-terminal network.

(b) Calculate the ABCD parameters of the network shown in the figure below.
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Solution

(a) ABCD Parameters

The ABCD parameters represent the

relation between the input quantities

and the output quantities in the two-

port network. They are thus volt-

age-current pairs.

However, as the quantities are defined as an input-output relation, the output current is

marked as going out rather than as coming into the port.

The impedance parameter matrix may be written as

1 2

1 2

V VA B

I IC D

é ù é ùé ù
=ê ú ê úê ú -ë ûë û ë û

The parameters A, B, C, D can be defined in a similar manner with either port 2 on short

circuit or port 2 on open circuit.

2

1

2 0I

V
A

V
=

=  = Open Circuit Reverse Voltage Gain

2

1

2 0V

V
B

I
=

= -  = Short Circuit Transfer Impedance

2

1

2 0I

I
C

V
=

=  = Open Circuit Transfer Admittance

2

1

2 0V

I
D

I
=

= -  = Short Circuit Reverse Current Gain

(b) For this T-circuit, the z-parameters

are given as,

z11 = z22 = (30 + j20) W
z12 = z21 = 30 W

\ Dz = (z11 z22 �z12 z21) = (30 +j20)
2
 �30

2

= (60 +j20)j20 = (�400 + j1200)

11

21

12

22

12

30 20 2
1

(60 20) 20 3

(60 20) 20 40
40

30 3

1 1

30

30 20 2
1

30 3

z j
A j

z j j

j jz
B j

z

C
z

z j
D j

z

+ üæ ö\ = = = +ç ÷ ïè øD +
ï+D æ ö ï\ = = = - + Wç ÷è ø ï
ý
ï\ = =
ï
ï+ æ ö\ = = = +ç ÷ ïè ø þ

Ans.W
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4. Determine the Fourier series of the wave form shown in the figure below.

Solution

Here, ( ) ; for 0 /2f t A t T= < <

0; for /2T t T= < <

\
/ 2

0
0 0

1 1
( )

2

TT
A

a f t dt Adt
T T

= = =ò ò

and
/ 2

0 0

2 2
( )cos cos

T T

na f t n tdt A n tdt
T T

w w= =ò ò

2
sin 0

2

é ùæ ö= =ç ÷ê úè øë û
A n T

n T

w

w

 [Q wT = 2p]

and
/ 2

0 0

2 2
( )sin sin

T T

n
A

b f t n tdt n tdt
T T

w w= =ò ò

2
1 cos (1 cos )

2

A n T A
n

n T n

w
p

w p

é ùæ ö= - = -ç ÷ê úè øë û
, for n odd.

= 0, for n even.

\ 1 2 2 2
( ) sin sin 3 sin 5 ...

2 3 5
f t A n t t tw w w

p p p

é ù= + + + +ê úë û
Ans.

5. (a) Find the Laplace transform of the triangular waveform shown in figure below:

(b) Find the inverse Laplace transform of the function

2

10( 4)
( )

( 3)( 1)

s
V s

s s s

+
=

+ +
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Solution

(a) Here, 1

2 4 2
( ) ( ) ( /2) ( )v t r t r t a r t a

a a a
= - - + -

Taking Laplace transform,

/2

1 2 2 2

2 1 4 2
( )

as ase e
V s

a a as s s

- -

= - +

/ 2

2

2
(1 2 )as ase e

as

- -= - +

/2 2

2

2
(1 )ase

as

-= -

By Scalling Theorem (the theory of periodicity), Laplace transform of the given periodic

function is,

/2 2
1 2

1 2 1
( ) ( ) (1 )

1 1

as

Ts as
V s V s e

e as e

-

- -

= ´ = - ´
- -

/ 2

2 /2

2 1

1

as

as

e

as e

-

-

æ ö-= ç ÷è ø+

2

2
tanh

4

as

as

æ ö= ç ÷è ø Ans.

(b)
2

10( 4)
( )

( 3)( 1)

s
V s

s s s

+
=

+ +
We have to use Heaviside theorem,

2 2

( ) 10( 4)
( )

( ) 3 ( 1)( 3)( 1) ( 1)

P s s A B C D
V s

Q s s s ss s s s

+
= = = + + +

+ ++ + +
By Heaviside theorem,

2
0 0

( ) 10( 4) 40

( ) 3( 3)( 1)s s

P s s
A s

Q s s s
=

=

+é ù
= = =ê ú + +ë û

2
3 3

( ) 10( 4) 5
( 3)

( ) 6( 1)s s

P s s
B s

Q s s s
= -

= -

+é ù
= + = = -ê ú +ë û

2

1 1

( ) 10( 4)
( 1) 15

( ) ( 3)
= = -

+é ù
= + = = -ê ú +ë ûs s

P s s
C s

Q s s s

2

1 1

( ) 10( 4) 25
( 1)

( ) ( 3) 2
s s

P s sd d
D s

ds Q s ds s s
=- = -

é ù +ì ü ì ü
= + = = -í ý í ýê ú +î þ î þë û
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So, the partial fraction expansion of the given function V(s) will be,

2

40/3 5/6 25/215
( )

3 ( 1)( 1)
V s

s s ss
= - - -

+ ++
Taking inverse Laplace transform,

340 5 25
( ) ( ) 15

3 6 2
t t tv t u t e te e- - -= - - - Ans.

6. (a) What is an oriented graph?

(b) What is a sub-graph? Give example.

(c) The reduced incidence matrix of a network is given below.

A = 

1 0 0 0 1 0 0 1

0 1 0 0 1 1 0 0

0 0 1 0 0 1 1 1

0 0 0 1 0 0 1 0

é ù
ê ú-ê ú
ê ú- -
ê ú

-ê úë û
Draw the graph of the network.

Solution

(a) Oriented Graph

A graph is defined as a collection of points called

nodes, and line segment called branches, the nodes

being joined together by the branches. A graph

whose branches are oriented is called a directed or

oriented graph. The orientation is indicated by an

arrow head in each of the branch representing the

direction of current flow in the branch.

Figure shows an oriented graph.

(b) Sub-graph

A subgraph is a subset of the branches and nodes

of a graph. For example, for the graph shown in

figure, some subgraphs are shown below.

The subgraph is said to be proper if it consists of strictly less than all the branches and

nodes of the graph.
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(c) From the reduced incidence matrix, we obtain the complete incidence matrix as,

Branches ®

(1) 1 0 0 0 1 0 0 1

(2) 0 1 0 0 1 1 0 0

(3) 0 0 1 0 0 1 1 1

(4) 0 0 0 1 0 0 1 0

(5) 1 1 1 1 0 0 0 0

a b c d e f g h

é ù
ê ú-ê ú
ê ú- -
ê ú

-ê ú
ê ú- - - -ë û

So, the graph has 5 nodes and 8 branches. The oriented graph is shown below.

7. (a) Differentiate between active and passive filters.

(b) Write the SPICE input file for the circuit shown in the figure below.

Solution

(a) Difference between Active and Passive Filter

(1) Active filters are very much inexpensive than passive filters due to the variety of

cheaper op-amp and the absence of costly inductors.

(2) Since the op-amp is capable of providing a gain (which may also be variable), the

input signal is not attenuated as it is in a passive filter. In addition, the active filter is

easier to tune or adjust.

(3) Active filters provide an excellent isolation between the individual stages due to the

high input impedence (ranging from a few kW to a several thousand MW) and low

output impedance (ranging from less than 1W to a few hundred W). So, the active

filter does not cause loading of the source or load.

(4) Active filters are small in size and less bulky (due to the absence of bulky �L�) and

are rugged.

N
o
d
es ®
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(5) Active filters generally have single ended inputs and outputs which do not �float�

with respect to the system power supply or common. This property is different from

that of the passive filters.

(b) The Input File is written below.

*Title*

VS 0 1 DC 15

IS 0 3 DC 10M

R12 1 2 500

R20A 0 2 1.2K

R20B 0 2 2K

R5 0 2 4K

END

8. (a) Define Fourier transform of a function f(t).

(b) Find the Fourier transform of a voltage waveform as defined below:

v(t) = 0, for t < �r

= A, for �r ³ t < 0

= 0, for t > r

Solution

(a) Definition of Fourier Transform

The Fourier Transform of a function f(t) is denoted by F(jw) and is defined by,

F(jw) = F [f(t)] = ( ) j tf t e dtw

¥
-

-¥
= ò (i)

and the inverse Fourier transform is defined by,

f(t) = F �1 [F (jw)] = 21
( ) ( 2 )

2

¥ ¥

-¥ -¥
=ò òj t j fF j e d F j f e dfw p

w w p
p

(ii)

Equations (i) and (ii) form the Fourier transform pair.

(b) The voltage waveform is shown in figure.

\
0

0

( ) ( )
r r

j t j t j t

r r

F j v t e dt Ae dt Ae dtw w w
w

- - -

- -

= = + -ò ò ò

0

0

r
j t j t

r

je je
A

w w

w w

- -

-

é ù
ê ú= -
ê úë û

[1 1]j r j rjA
e ew w

w

+ -= - - +

Þ 2
( ) (1 cos )

A
F j j rw w

w

= - Ans.

9. Explain clearly with the help of suitable examples the following terms used in network analy-

sis:

(a) Cut set matrix.
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(b) Tie set matrix

(c) Incidence matrix and its properties.

Solution

(a) Cut Set Matrix

For a given graph, a cut-set matrix (QC) is de-

fined as a rectangular matrix whose rows cor-

respond to cut-sets and columns correspond to

the branches of the graph. Its elements have the

following values:

Qij = 1, if branch j is in the cut-set i and the

orientations coincide.

= �1, if branch j is in the cut-set i and

the orientations do not coincide.

= 0, if branch j is not in the cut-set i.

Example A cut-set is a minimum set of ele-

ments that when cut, or removed, separates the

graph into two groups of nodes. For the graph

shown in figure, for the particular tree considered (tree-branches: 1, 2, 3), fundamental

cut-sets have been identified as:

f-cut-set � 1: [1, 2, 6];

f-cut-set � 2: [2, 3, 5, 6];

f-cut-set � 3: [4, 5, 6]

So, the cut-set matrix is written as,

Branch no.

f-cut-sets 1 2 3 4 5 6

1 1 1 0 0 0 1

2 0 1 1 0 1 1

3 0 0 0 1 �1 �1

(b) Tie Set Matrix

For a given graph having n nodes and b branches, tie-set matrix is a rectangular matrix

with b columns and as many rows as there are loops. Its elements have the following

values:

Bij = 1, if branch j is in loop i and their orientations coincide (i.e. loop current and

branch current flows in the same direction);

= �1, if branch j is in loop i and their orientations do not coincide;

= 0, if branch j is not in loop i.

Example For the graph shown in Fig. (a) and tree selected in Fig. (b), the tie-set matrix is

written as follows. The entries in the Tie-set schedule are given as +1 or �1 if the branch

current is in the same direction as the link current or not. If the branch current does not

depend on the link current, then entry is zero.
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(a) Graph (b) Formation of Loops

Branch no. (i)

Links (j) 1 2 3 4 5 6

4 1 �1 0 1 0 0

4 0 1 �1 0 1 0

6 0 0 1 0 0 1

(c) Incidence Matrix and its Properties

The incidence matrix symbolically describes a network. It also facilitates the testing and

identification of the independent variables. Incidence matrix is a matrix which represents a

graph uniquely.

For a given graph with n nodes and b branches, the complete incidence matrix Aa is a

rectangular matrix of order n ´ b, whose elements have the following values:

Number of columns in [A] = Number of branches = b

Number of rows in [A] = Number of nodes = n

Aij = 1, if branch j is associated with node i and oriented away from node j.

= �1, if branch j is associated with node i and oriented towards node j.

= 0, if branch j is not associated with node i.

This matrix tells us which branches are incident at which nodes and what orientations

relative to the nodes are.

Example

(a) Network (b) Graph of Network
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Incidence matrix A

Branches

1 2 3 4 5 6

a �1 0 0 1 0 0

Nodes b 0 �1 0 �1 1 0

c 0 0 �1 0 �1 1

Reference Node d 1 1 1 0 0 �1

l Properties of Incidence Matrix

(i) The sum of the entries in any column is zero.

(ii) The determinant of the incidence matrix of a closed loop is zero.

(iii) The rank of incidence matrix of a connected graph is (n � 1).

10. Explain under what condition, an RC series circuit behaves as

(a) differentiator

(b) low pass filter

(c) coupling network

(d) integrator.

Solution

We consider the RC series circuit.

(a) RC Series Circuit as Differentiator

We have an AC source with voltage vin(t), input to an RC

series circuit. This time the output is the voltage across the

resistor.

We consider only low frequencies w << 1/RC, so that the

capacitor has time to charge up until its voltage almost equals

that of the source.

2
2

in

1æ ö= = + ç ÷è øV IZ I R
Cw

But, in

1
, so<< = I

R V
C Cw w

For frequencies, in

1
,<< @ CV V

RC
w

\ out = = = =R C

dq d
V V iR R R CV

dt dt

\ out @ in
d

V RC V
dt

Thus, the output is the differentiation of the input and the RC series circuit acts as

Differentiator.

(b) RC Series Circuit as Low Pass Filter

If the RC series circuit is supplied with a frequency varying source, then it will act as a

low pass filter if the output is taken as the voltage across the capacitor.



Model Question Paper I MQPI.13

The voltage across the capacitor is 1/CIX Cw= .

The voltage across the series combination is:

2
2 1

IZ I R
Cw

æ ö= + ç ÷è ø , so the gain is:

( )
2

2

1

1

out C

in

V IX Cg
V IZ

R
C

w

w

º = =
+

\
( )

2

1

1

g

RCw

=
+

Here, at low frequencies capacitive reactance (Xc = 1/2p fC) is very high and therefore

the circuit can be considered as an open circuit. Under these conditions, input signal is

equal to output signal. At very high frequencies, the capacitive reactance (Xc = 1/2p f C) is

very low and therefore the output signal is very small as compared with the input signal.

Thus, the circuit acts as low pass filter with the frequency characteristics as shown in

figure.

(c) RC Series Circuit as Coupling Network

A coupling network is used for coupling a signal at a frequency from a voltage source to a

load. The voltage source has a source resistance. The load has a load resistance and a load

reactance. The ratio of the load reactance to the load resistance is greater than 100. The

coupling network includes a reactive element and a delay circuit. The reactive element is

arranged in series with the load to resonate with the load reactance at the frequency. The delay

circuit is between the reactive element and the source, has a delay equivalent to a quarter wave

length transmission line at the frequency and has a characteristic impedance equal to the

square root of the product of the values of the load resistance and the source required resis-

tance.

Thus, an RC series circuit will act as coupling network only when the ratio of load resis-

tance to load reactance is greater than 100 and the suply frequency is such that the capacitor

resonates at that frequency.

(d) RC Series Circuit as Integrator

We have an AC source with voltage vin(t), input to an RC series circuit. The output is the

voltage across the capacitor.

We consider only high frequencies w >> 1/RC, so that the capacitor has insufficient time to

charge up, its voltage is small, so the input voltage approximately equals the voltage across the

resistor.

2
2

in

1æ ö= = + ç ÷è øV IZ I R
Cw

But in1/ , so>> @C R V IRw
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For frequencies, in

1
,>> @ RV V

RC
w

\ in
out

1 1= = @ò òC

V
V V idt dt

C C R

\ out

1@ ò inV V dt
RC

Thus, the voltage vC is the integration of the input voltage and hence the RC series circuit

acts as an Integrator.



Model Question Paper II

1. Answer any five questions by choosing the right answer from the following: 2 ´ 5

(a) The reduced incidence matrix of a circuit is given by

1 2 3 4 5 6

1 1 1 1 0 0

0 1 0 0 1 1

0 0 1 0 1 0

i

a

A b

c

- - -é ù
ê ú= -ê ú
ê úë û

The set of branches forming a tree are

(i) 1, 2 and 3 (ii) 2, 3 and 5

(iii) 1, 2 and 4 (iv) 1, 2 and 6.

(b) In the circuit shown in Fig. 1, the potential be-

tween points P and Q is

(i) 12 V (ii) 10 V

(iii) �6 V (iv) 8 V

(c) If f(t) and its first derivative is Laplace transform-

able then the initial value of f(t) is given by

(i)
0 0

Lt ( ) Lt ( )
t s

f t sF s
® ®

= (ii)
0

( )
Lt ( ) Lt
t s

F s
f t

s® ®¥
=

(iii)
0 0

( )
Lt ( ) Lt
t s

F s
f t

s® ®
= (iv)

0
Lt ( ) Lt ( )
t s

f t sF s
® ®¥

=

(d) In a four terminal network containing linear, bilateral, passive elements the following

condition for Z parameters generally holds.

(i) Z11 = Z22 (ii) Z12 = Z21

(iii) Z11Z22 � Z12Z21 = 0 (iv) Z11 = Z22 and Z12 = Z21

Figure 1
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(e) The value of the impulse function d (t) at t = 0 is

(i) 0 (ii) ¥ (iii) 1 (iv) Indeterminate.

(f) A network has seven nodes and five independent loops, the number of branches in the

network is:

(i) 7 (ii) 5 (iii) 11 (iv) 12

(g) The dc gain of a system having the transfer function 
12

( )
( 2) ( 3)

H s
s s

=
+ +

 is:

(i) 1 (ii) 12 (iii) 3 (iv) 2

Solution

(a) (i) 1, 2 and 3 (b) (iii) �6 V (c) (iv) 
0

Lt ( ) Lt [ ( )]
t s

f t sF s
® ®¥

=

(d) (ii) z12 = z21 (e) (ii) µ (f) (iii) 11

(g) (iv)

2. (a) The circuit given in figure is excited by a unit step volt-

age. Find the expression for the current i(t) if the circuit

is initially relaxed. What is the steady state value of the

current? Find the rise time and the time constant. What is

their significance?

(b) Find the expression of steady state current I(P) of a series

R-L-C circuit., when it is excited by a sinusoidal voltage

V(P). Under what condition the system will behave as resistive?

Solution

(a) Here, ( ) 0, for 0

1, for 0

v t t

t

= £
= >

Thus the differential equation governing the behaviour of the circuit would be

( )
( ) ( )

di t
Ri t L u t

dt
+ =

Taking Laplace transform, we get

[ ]
1

( ) ( ) (0 )RI s L sI s i
s

+ - - =

or
( )

1/ 1 1 1
( )

//

æ ö= = -ç ÷
+è ø+

L
I s

R s s R Ls s R L
 {since i(0_) = 0}

Taking inverse Laplace transform,

( / )1
( ) (1 )-

= -
R L ti t e

R

Putting the values of R =1 kW and L =1 mH, we get,

3 3 6(1 10 /1 10 ) 10
3

1
( ) (1 ) (1 ) mA

1 10

-- ´ ´ -= - = -
´

tti t e e Ans.

The steady-state value of the current, 
3

1 1
1mA

1 10
= = =

´si R
Ans.
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Rise time is the time taken by the current to reach 90% of the steady-state value starting

from 10%. It is given as,

�3

3

1 10
ln9 2.2 2.2 2.2 ìs

1 10
r

L L
T

R R

´
= = = ´ =

´
Ans.

Time constant,
3

3

1 10
1 ìs

1 10

L

R
t

-´
= = =

´
Ans.

Significance of Rise Time and Time Constant

Time constant is the time taken for the current to reach 63% of its final value. Thus, it is a

measure of the rapidity with which the steady state is reached.

Also, at t = 5t, i = 0.993i; the transient is therefore, said to be practically disappeared in

five time constants.

Physically, time-constant represents the speed of the response of a circuit. A low value

of time-constant represents a fast response and a high value of time-constant represents a

sluggish response.

Similarly, rise time also gives indication of the system speed of operation.

(b) Steady-state Current in RLC Series Circuit with Sinusoidal Input

Sinusoidal voltage v(t) = Vm sin (w t + q) is applied to a series RLC circuit at time t = 0.

We want to find the steady-state part for the current i(t) using Laplace transform method.

By KVL,

( ) 1
( ) ( ) sin( )

-¥
+ + = +ò

t

m

di t
Ri t L i t dt V t

dt C
w q

Taking Laplace transform with zero initial conditions,

2 2

( sin cos )1
( ) m

s
I s R sL V

Cs s

q w q

w

+é ù+ + =ê úë û +

or
2 2 2

( sin cos )
( )

1
( )

mV s s
I s

R
L s s s

L LC

q w q

w

+
=

æ ö+ + +è ø

1 2

( sin cos )

( )( )( ) ( )
mV s s

L s j s j s s s s

q w q

w w

+
=

+ - - -
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where, s1, s2 are the roots of the quadratic equation:

2 1
0

R
s s

L LC

æ ö+ + =ç ÷è ø

Thus, 
2

1 2

1

2 4

R R
s

L LCL
= - + - and,

2

2 2

1

2 4

R R
s

L LCL
= - - -

Now, let 31 2 4

1 2 1 2

( sin cos )

( )( )( )( )

KK K Ks s

s j s j s s s s s s s s s j s j

q w q

w w w w

+
= + + +

+ - - - - - + -

So, by residue method, multiplying by (s � s1) and putting s = s1,

1 1 2 2
1 2

1 1 1 2 2 2 2 1

( sin cos ) ( sin cos )
and

( )( )( ) ( )( ) ( )

s s s s
K K

s j s j s s s j s j s s

q w q q w q

w w w w

+ +
= =

+ - - + - -

Similarly, multiplying by (s + jw) and putting s = � jw,

3
1 2 1 2

( sin cos ) (cos sin )

( )( ) ( ) 2( )( )

j j j
K

j j j s j s s j s j

w w q w q w q q

w w w w w w

- - + -
= =

- - - - - - + +

and, 4
1 2 1 2

( sin cos ) (cos sin )

( )( )( ) 2( )( )

j j
K

j j j s j s s j s j

w w q w q w q q

w w w w w w

- + +
= =

+ - - - -

Hence the current response becomes,

1 2
1 2 3 4( ) [ ] [ ]m s t s t j t j t

tr ss

V V
i t K e K e K e K e I I

L L
w w-= + + + = +

Thus, steady-state part of the total current is obtained as follows.

1 2 1 22 ( )( ) ( )( )

j j t j j t
m

ss

V e e e e
I

L s j s j s j s j

q w q w
w w

w w w w

- -é ù
= +ê ú+ + - -ë û

( ) ( )

1 2 1 22 ( )( ) ( )( )

j t j t
mV e e

L s j s j s j s j

w q w qw

w w w w

- + +é ù
= +ê ú

+ + - -ë û

( ) 2
1 2 1 22 2 2 2

1 2

( )
2 ( )( )

m j t

ss

V
I e s s j s j s

L s s

w q
w

w w w
w w

- +é ù= - - -ë û
+ +

or 2
1 2 1 22 2 2 2

1 2

( )2cos( ) ( )2sin( )
2 ( )( )

mV
s s t s s t

L s s

w
w w q w w w q

w w
é ù= - + - + +ë û+ +

2
2 2 2 2
1 2

1 1
cos( ) sin( )

( )( )

mV R
t t

L LC Ls s

w w
w w q w q

w w

é ùæ ö æ ö= - + - - +ç ÷ ç ÷ê úè ø è ø+ + ë û

or

2

2 2 2 2
1 2

1
sin( ) cos( )

( )( )

m
ss

R
t t

L LCV
I

L s s

w
w q w w q

w

w w

é ùæ ö+ - - +ê úè øë û=
+ +
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1

2 2 2 2
1 2

1
1

sin tan
( )( )

m
LV Ct

L Rs s

w
w w

w q
w w

-

ì üæ öï ï-
í ýç ÷= + - è øï ïî þ+ +

2
2 1

R L
L C

w
w

w

æ ö´ + -ç ÷è ø

or
1

2
2

1

sin tan

1

m
ss

LV CI t
R

R L
C

w
w

w q

w
w

-

ì üæ öï ï-
í ýç ÷= + - è øï ïî þæ ö+ -è ø

This gives the steady-state current of the series RLC circuit to a sinusoidal voltage. If wL =

1

Lw
, then the system will behave as resistive and under this condition, the current will

become,

ISS = 
V

R
 sin (w t + q)

3. (a) The circuit given in the figure is ini-

tially at steady state with the switch K

open. If the switch is closed at time t

= 0, find the voltage VC(t) across the

capacitor.

(b) How does the Fourier Transform dif-

fer from the Laplace Transform? Find

the Fourier transform of the current,

0 for 0
( )

0 for 0

atI e t
i t

t

-ì ³= í <î
and a > 0. Sketch the magnitude spectrum |I(jw )|

Solution

(a) At steady-state before closing the switch, the capaci-

tor becomes open-circuited. So, the circuit becomes

as shown above.

2
(0 ) 6 4 V

3
- = ´ =v

For t > 0, by KVL,

3 3
1 1 2 1 2

6 6
1 10 1 10 ( ) 2000 1000I I I I I

s s
´ ´ + ´ ´ - = Þ - = (i)

and
6 6

3
2 2 1 1 2

10 4 10 4
1 10 ( ) 1000 1000I I I I I

s s s s

æ ö
+ ´ ´ - = - Þ - + + = -ç ÷è ø (ii)
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Solving equations (i) and (ii),

( )

2

6

2000 6/

1000 4/ 2 1

1000 20002000 1000

1000 1000 10 /

s

s
I

s

Cs

- - æ ö= = - ç ÷è ø+-

- +

\
( )

6

2

10 4 2000 4
( )

2000
cV s I

s s ss s
= ´ + = - +

+

3 1

2000s s
= +

+

Taking inverse Laplace transform,

2000( ) 3 (V), 0-= + >t

cv t e t

(b) Difference between Fourier Transform and Laplace Transform

The defining equations are,

0

( ) ( ) and ( ) ( )st j tF s f t e dt F j f t e dtw
w

¥ ¥
- -

-¥
= =ò ò

Following are some differences and similarities:

1. Laplace Transform is one-sided in the interval 0 < t < ¥ and Fourier Transform is

double-sided in the interval �¥ < t < ¥. Thus, Laplace Transform is applicable for

positive time function, f(t), t > 0; while Fourier Transform is applicable for functions

defined for all times.

2. Laplace Transform includes the initial conditions and is applicable for transient analysis,

while Fourier Transform is only applicable for steady-state analysis.

3. For functions f (t) = 0 for t < 0 and 
0

( )f t dt
¥

< ¥ò , the two transforms are related as,

( ) ( )
s j

F j F s
w

w == . Thus, Laplace Transform is associated with entire s-plane, while

Fourier Transform is restricted to the imaginary (jw) axis.

4. Laplace Transform is applicable to a wider range of functions than the Fourier Trans-

form. On the other hand, Fourier Transforms exist for signals that are not physically

realisable and have no Laplace Transform.

l Solution to the numerical problem

Here, 0 for 0
( )

0 for 0

-ì ³= í <î

atI e t
i t

t
with a > 0

( ) 0
0 0( ) ( )

¥ ¥ ¥
- +- - -

¥ ¥ ¥
= = = =

+ò ò ò a j tj t at j t I
F j i t e dt I e e dt I e dt

a j

ww w
w

w
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The amplitude is, w

w

=

+

0

2 2
( )

I
I j

a

The magnitude spectrum is shown below.

4. (a) Find the Thevenin’s equivalent between the points a and b for the circuit given in the

figure.

What should be the value of impedance connected between a and b for maximum power

to be transferred from the sources?

(b) Find the current through the 1 W resistor in the circuit in figure using Tellegen’s Theorem.

Solution

(a) Here,

= Ð ° = = Ð ° =1 2
50 0 50 V; and 25 90 25 VV V j

Current in the circuit, 
- -

= =
+ + - +

50 25 50 25
A

5 5 3 4 8 1

j j
I

j j j
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Thevenin voltage,

Th

50 25 25 75
50 (5 5) 50 (5 5)

8 1 8 1

- -æ ö= - ´ + = - ´ + =ç ÷+ +è ø
j j

V I j j
j j

9.8 78.7= Ð - °

( )1.923 9.615 V= - j Ans.

Thevenin impedance,

Th

(5 5) (3 4) 35 5
(4.23 1.154)

(5 5) (3 4) 8 1

+ ´ - -
= = = - W

+ + - +
j j j

Z j
j j j

Thus, the Thevenin�s equivalent circuit is shown in the fig-

ure.

For maximum power transfer to the load,

*
Th (4.23 1.154)= = + WLZ Z j Ans.

(b) To find the current, using Tellegen�s theorem, we first find

the Thevenin�s equivalent circuit with respect to terminals a and b.

Thevenin voltage,

Th

3 4
4 V

3 4 2 3
= ´ =

+ +
V

Thevenin impedance,

Th

5 4 20

5 4 9

´
= = W

+
Z

Thus, the equivalent circuit is shown.
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Now, applying Tellegen�s Theorem,

4 20
1 0 0.414 A

3 9
I I I I I I- ´ + ´ ´ + ´ ´ = Þ = Ans.

5. (a) Write the loop equations and the node equations for the circuit in the below figure.

(b) Find all the node voltages and the loop currents in the circuit as given in the below figure.

Solution

(a) Let the four mesh currents be I1, I2, I3, and I4 , and the node voltages be VA, VB, VC, VD.

The loop equations in matrix form are given as,
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1 1 1

1 2 1 2 1 1
1

2

32 2 2
2 2

4

2
2 2

( ) ( ) 0 0

1
( ) ( ) 0

0
1 1

0 ( )

0
1 1

0 0

R sL sL

sL R sL R I V
sC

I

IR R V
sC sC

I

sL
sC sC

+ -é ù
ê ú

æ öê ú- + + - é ù é ùç ÷ê úè ø ê ú ê úê ú ê ú ê ú´ =æ ö æ öê ú ê ú ê ú- + - -ç ÷ ç ÷ê úè ø è ø ê ú ê úê ú ê úê ú ë ûë û
ê úæ ö æ ö- +ç ÷ ç ÷ê úè ø è øê úë û

Similarly, the node equations are given in matrix form as,

KCL at node A: 1 1
1 1 1

1 1 1
( ) 0A B CV sC V sC V

R sL R

æ ö æ ö+ + + - + - =ç ÷ ç ÷è ø è ø

Constraints equations are: 1 2and ( )C B DV V V V V= - =
KCL for the supernode is

2 1
2 2

( ) 0D C B
D B A

V V V
V sC V V sC

sL R

-
+ + + - =

Þ 1 1 2
2 2 2

1 1 1
( ) 0A B C DV sC V sC V V sC

R sL sL

æ ö æ ö æ ö
- + + + - + + =ç ÷ ç ÷ ç ÷è ø è ø è ø

1 1
1 1 1

1

2

1 1 2
2 2 2

1 1 1
0

0

0 0 1 0

0 1 0 1

01 1 1

A

B

C

D

SC SC
R SL R V

V V

V V

V
SC SC SC

R SL SL

é ùæ ö+ + - -ê úç ÷è ø é ù é ùê ú ê ú ê úê ú ê ú ê ú´ =ê ú ê ú ê ú-ê ú ê ú ê úê ú ê úê úæ ö æ ö ë ûë ûê ú- + - +ç ÷ ç ÷è ø è øê úë û

(b)

By KVL for the three meshes,

1 2 3(21 24) ( 24) 21 10j I j I I+ + - - = - (i)

1 2 324 99 15 0j I j I j I- + - = (ii)

1 2 321 15 (71 15) 0I j I j I- - + + = (iii)
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Solving Eqs (i) to (iii),

1

10 24 21

0 99 15

0 15 (71 15)

(21 24) 24 21

24 99 15

21 15 (71 15)

j

j j

j j
I

j j

j j j

j j

- - -
-

- +
=

+ - -
- -
- - +

2

(21 24) 10 21

24 0 15

21 0 (71 15)

(21 24) 24 21

24 99 15

21 15 (71 15)

j

j j

j
I

j j

j j j

j j

+ - -
- -
- +

=
+ - -
- -
- - +

3

(21 24) 24 10

24 99 0

21 15 0

(21 24) 24 21

24 99 15

21 15 (71 15)

j j

j j

j
I

j j

j j j

j j

+ - -
-
- -

=
+ - -
- -
- - +

From these equations all loop currents and node voltages can be evaluated.

6. (a) Consider the circuit shown in Q. 5(a). Draw the corresponding graph. Find the complete

incidence matrix and the reduced incidence matrix. Find the possible number of trees.

(b) Consider the same circuit. Indicate the branch currents by ij, j = 1, 2, � and Loop currents

by Ij , j = 1, 2, � Find the tie-set matrix and express the Loop currents in terms of branch

currents.

(c) Find the f-cutset matrix for the same circuit.

Solution

(a) The graph of the network is shown.

The complete incidence matrix is obtained as,

1 2 3 4 5 6 7 8

A �1 1 1 0 0 0 0 0

B 0 0 �1 0 1 0 0 �1

Aa = C 1 0 0 �1 0 1 0 0

D 0 0 0 0 0 �1 �1 1

E 0 �1 0 1 �1 0 1 0
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Taking E as the datum node, the reduced incidence matrix is,

�1 1 1 0 0 0 0 0

0 0 �1 0 1 0 0 �1
A =

1 0 0 �1 0 1 0 0

0 0 0 0 0 �1 �1 1

Number of possible tree is,

det{[ ] [ ]}TN A A= ´  = 

1 0 1 0

1 0 0 0

1 1 1 0 0 0 0 0 1 1 0 0

0 0 1 0 1 0 0 1 0 0 1 0
det

1 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 1 1 1 0 0 1 1

0 0 0 1

0 1 0 1

ì ü-é ù
ï ïê ú
ï ïê ú
ï ïê ú- -é ù
ï ïê úê ú- - -ï ïê úê ú ´í ýê úê ú-ï ïê úê úï ï- - -ê ú ê úë ûï ïê ú
ï ïê ú
ï ï-ê úë ûî þ

= 

3 1 1 0

1 3 0 1
det 45

1 0 3 1

0 1 1 3

ì ü- -é ù
ï ïê ú- -ï ïê ú =í ýê ú- -ï ïê úï ï- -ê úë ûî þ

Ans.

(b) We consider a tree as shown.

Here, branch currents are: i1, i2, i3, �, i8.

Loop currents are: I1, I2, I3 and I4.

Tie set matrix is given as,

1 2 3 4 5 6 7 8

L1 1 1 0 1 0 0 0 0

L2 0 �1 1 0 1 0 0 0
B =

L3 0 0 0 0 1 0 1 1

L4 0 0 0 1 0 1 �1 0

Thus, the branch currents are given in terms of loop

current as,

[ ] [ ] [ ]
T

b LI B I= ´
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1

2

3 1

4 2

5 3

6 4

7

8

1 0 0 0

1 1 0 0

0 1 0 0

1 0 0 1

0 1 1 0

0 0 0 1

0 0 1 1

0 0 1 0

i

i

i I

i I

i I

i I

i

i

é ù é ù
ê ú ê ú-ê ú ê ú
ê ú ê ú é ù
ê ú ê ú ê ú
ê ú ê ú ê ú= ´ê ú ê ú ê ú
ê ú ê ú ê ú

ê úê ú ê ú ë û
ê ú ê ú-ê ú ê ú
ê ú ê úë ûë û

(c) We consider the same tree as in part (b),

The fundamental cut sets are:

C1: [1, 2, 3] C2: [3, 5, 8] C3: [6, 7, 8] C4: [1, 4, 6]

Thus, the cut set matrix is given as,

1 2 3 4 5 6 7 8

C1 �1 1 1 0 0 0 0 0

C2 0 0 �1 0 1 0 0 �1
Q =

C3 0 0 0 0 0 1 1 �1

C4 �1 0 0 1 0 �1 0 0

7. (a) Find the open-circuit impedance parameters of the cir-

cuit given in the figure.

(b) Find the h-parameters of the circuit.

(c) Indicate how these parameters (obtained in parts (a)

and (b)) are related.

Solution

(a) By KVL,

1 2 1( 10 5) 5j I I V+ + = (i)

and 1 2 25 ( 15 5)I j I V+ + = (ii)

Thus, the z-parameters are:

11 12 21 22(5 10) 5 (5 15)z j z z Z j= + W = = W = + W Ans.

(b) The hybrid parameter matrix may be written as

1 11 12 1

2 21 22 2

V h h I

I h h V

é ù é ù é ù
=ê ú ê ú ê ú

ë û ë û ë û
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From Eq (ii), we get,

2
2 1

5

5 15 5 15

V
I I

j j
= - +

+ +

1 2

1 1

1 3 5 15
I V

j j
= - +

+ +
(iii)

Putting this value of I2 in Eq. (i), we get,

2
1 1 1

5
(5 10) 5

5 15 5 15

V
j I I V

j j

é ù+ + - + =ê ú+ +ë û

Þ 1 1 2

(5 10) (5 15) 25 5

(5 15) 5 15

j j
V I V

j j

+ ´ + -
= +

+ +

1 2

30 25 1

1 3 1 3

j
I V

j j

+
= +

+ +
(iv)

Comparing Eqs (iii) and (iv) with the standard equations of h-parameters, we get,

11 12 21 22

30 25 1 1 1
; ; ;

1 3 1 3 1 3 5 15

j
h h h h

j j j j

+
= = = - =

+ + + +
Ans.

(c) Relation between z-parameters and h-parameters

The relationship between them is given in matrix form as,

12

22 2211 12

21 22 21

22 22

1

zz

z zh h

h h z

z z

é ùD
ê úé ù ê ú=ê ú ê úë û -ê úë û

8. (a) The circuit in the figure is a low-pass second order active filter. Analyze the circuit and

find the cut-off frequency.

(b) Draw the circuit diagram of a first order high-pass active filter and find out the expression

of the cut-off frequency.
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Solution

(a) The circuit is shown below.

Here, 0
1

1
y

f

V
V R

R R
=

+
 and Vx = Vy

Writing KCL at node V ¢,

0 0
1/

i xV V V V V V

R sC R

¢ ¢ ¢- - -
+ + =

or 0 0( ) ( ) ( ) 0iV V V V sRC V V¢ ¢ ¢- + - + - =

or 0( 1) (2 ) ( )x iV sRC V sRC V V¢- + + + - = (1)

Writing KCL at node x,

0
1/

x xV V V

R sC

¢-
+ =

or 0(1 ) ( 1) (0) 0xsRC V V V¢+ + - + = (2)

Writing KCL at node y,

0

1

0x x

f

V V V

R R

-
+ =

or 1 1 0( ) (0) ( ) 0f xR R V V R V¢+ + + - = (3)

Solving for V0 from equations (1), (2), and (3), we get,

1

1 1
0

12

1

1 1

1 (2 )

(1 ) 1 0 ( )

( ) 0 0

( )1 (2 )
3 1

(1 ) 1 0

( ) 0

i

f

f

i
f

f

sRC V

sRC R R

R R R
V V

R RsRC sRC
s sRC sRC

RsRC

R R R

- +
+ - +
+

= =
+æ ö- + -

+ - +ç ÷è ø+ -
+ -
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or 0

2
2

( )

( ) 3 1i

V s K

V s K
s s

RC RC

=
-æ ö æ ö+ +ç ÷ è øè ø

(4)

where K = 
1

1

fR R

R

+
 = D. C. gain of the amplifier.

Substituting s = jw, the transfer function is,

0

2 2 2

( )
( )

( ) 1 (3 )i

V j K
H j

V j j K RC R C

w
w

w w w
= =

+ - -

The magnitude of the transfer function is,

[ ]

2
2 2

2

| ( )|

1 3
c c

K
H j

K

w

w w

w w

=
é ùæ ö æ ö- + -ê úç ÷ ç ÷è ø è øê úë û

; where, 
1

c RC
w =

In the above equation, when w ® 0, | ( )|H j Kw = . Thus, the low frequency gain of the

filter is K and when w ® ¥, | ( )| 0H jw = , i.e., high frequency gain is zero.

From the Table of the Butterworth Filter, the transfer function for second order (n = 2)

filter is,

2

2 2 2
( )

1.414
1.414 1

c

c c

c c

KK
T s

s ss s

w

w w

w w

= =
+ +æ ö æ ö+ +ç ÷ ç ÷è ø è ø

(5)

where, wc is the cut-off frequency. Comparing equations (4) and (5), we get,

1 1
or,

2c cfRC RC
w

p
= =

Putting the value R = 10 kW and C = 0.1 mF,

10 rad/s or, 1.59 Hzc cfw = =
(b) First Order High-Pass Active Filter

The circuit is shown in figure.
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The filtering is done by the CR network and the op-amp is connected as a unity � gain

follower. The feedback resistor, Rf is included to minimize dc off-set.

Here,

Vy = V0
1

1 f

R

R R+
(1)

Voltage across the resistor R,

Vx = i
c

R
V

R X+
 = 

1 i
R

V

R
j Cw

+
 = 

1 i

j RC
V

j RC

w

w+
(2)

Since op-amp gain is infinite,

Vx = Vy

Þ
0 1

1f

V R

R R+  = 
1 i

j RC
V

j RC

w

w+

Þ 0

i

V

V
 = 

1

1 1

fR R j RC

R j RC

w

w

+æ ö æ ö
ç ÷ç ÷ +è øè ø

 = 
2

1 2F

j f RC
A

j f RC

p

p
´
+

where, AF = (1 + Rf/R1) = Pass-band Gain of the filter,

f = frequency of the input signal (Hz),

fc = 
1

2 RCp
 cut-off frequency of the filter (Hz).

The gain-magnitude,

0

i

V

V
 = 

2

(2 )

1 (2 )

FA f RC

f RC

p

p+
 = 

2 2 21
F

RC
A

R C

w

w

×
+

For this magnitude to be 
2

FA
 at f = fc , we have,

2

(2 )

2 1 (2 )

F cF

c

A f RCA

f RC

p

p

=
+

or
1

2cf RCp
=

This is the cut-off frequency of the high-pass filter.
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9. (a) Write the input file in SPICE to find the node

voltages in the circuit in figure.

(b) Write the input file in SPICE to plot the ca-

pacitor voltage and capacitor current (initial

voltage for the capacitor is 1 volt) in the circuit

given in figure.

(c) What is the statement in SPICE for a damped sine wave

V(t) with a delay and offset as given below:

( )V t = 5 volt for 0 5 secondt< <

= 5 10 exp[ 0.1( 5)]sin(2 100 ) voltt tp+ - -
for 5 second t T< <

Solution

(a) To write the input file, we first label the nodes and give the reference name for the

resistors.

The input file is shown below:

*DC Analysis*

VS 1 0 DC 10V

R1 1 2 5

R2 2 3 5

R3 0 2 10

R4 0 3 10

.DC VS 10 10 1

.PRINT DC V(1) V(2) V(3)

.END

(b) To write the input file, we first label the nodes and give the reference name for the

resistors.

The input file is shown below:

*DC Analysis*

VS 1 0 DC 5V

R 1 2 50

C 0 2 1F IC = 1V

.DC VS 5 5 1

.PRINT DC V(2) I(C)

.PLOT DC V(2) I(C)

.END

(c) SPICE Statement of Damped Sine Wave

The statement is,

SIN (PO PA FREQ TD ALPHA THETA)

where , PO � dc offset value for the sinusoid;

PA � peak amplitude (taken from the dc offset value);
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FREQ � frequency in Hz;

TD � delay time before the start of the sinusoid;

ALPHA � damping factor, it is the inverse of time�constant;

THETA � phase delay in degree.

The mathematical description of the function defined by this function is,

( )( ) sin[{2 ( )} ] ( )ALPHA t TDf t PO PAe FEREQ t TD THETA u t TDp
- -= + - - -

10. Answer any four.

(a) Compare lumped and distributed networks.

(b) f (t) has the Fourier Transform F(jw). What will

be the Fourier Transform of time-scaled function

f (at), a > 0?

(c) What is the value of the voltage V in the given

circuit in the figure?

(d) What are transmission parameters? Where are

they most effectively used?

(e) What is Compensation Theorem?

(f) Convert a voltage source V with internal resistance R to a corresponding current source.

Can you convert a voltage source V with zero internal resistance to a corresponding

current source?

Solution

(a) Lumped and Distributed Networks

All physical systems contain distributed parameters because of the physical size of the

system components. For example, the resistance of a resistor is distributed throughout its

volume.

However, if the size of the system components is very small with respect to the wave-

length of the highest frequency present in the signals associated with it, then the system

components behave as if it all were occurring at a point. This system is said to be lumped-

parameter system.

For Example, we consider an electric power system of frequency 50 Hz. The wavelength

of the signal is obtained as,

53 10
km 6000 km

50

C
n C

n
l l

´
= Þ = = =

Thus, the electrical network inside a room can be treated as a lumped-parameter

network, but will be treated as distributed network for a long-distance transmission

lines.

Therefore, if the size of all the components of any network is very small compared to the

wavelength of the highest frequency of the source, then the network is said to be lumped,

otherwise it will be a distributed network.

(b) If { ( )} ( )F f t F jw= , then 
1

{ ( )} , 0
j

F f at F a
a a

wæ ö= >ç ÷è ø

Proof Let, 
x dx

at x t dt
a a

= Þ = \ =
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1 1
{ ( )} ( ) ( ) ( ) , 0j at j x j x jdx

F f at f at e dt f x e f x e dx F a
a a a a

w w w
w

¥ ¥ ¥
- - -

-¥ -¥ -¥

æ ö= = = = >ç ÷è øò ò ò

(c) By the voltage division principle for capacitor, the voltage across the capacitor 2C is,

1
sin sin

2 3

C
V A t A t

C C
w w= =

+

(d) Transmission Parameters

The ABCD parameters represent the rela-

tion between the input quantities and the

output quantities in the two-port network.

They are thus voltage-current pairs.

However, as the quantities are defined as an input-output relation, the output current is

marked as going out rather than as coming into the port.

The transmission parameter matrix may be written as

1 2

1 2

V VA B

I IC D

é ù é ùé ù
=ê ú ê úê ú -ë ûë û ë û

The parameters A, B, C, D can be defined in a similar manner with either port 2 on short

circuit or port 2 on open circuit.

2

1

2 0I

V
A

V
=

= = Open Circuit Reverse Voltage Gain

2

1

2 0V

V
B

I
=

= - = Short Circuit Transfer Impedance

2

1

2 0I

I
C

V
=

= = Open Circuit Transfer Admittance

2

1

2 0V

I
D

I
=

= - = Short Circuit Reverse Current Gain

These parameters are most effectively used in transmission lines. In a transmission line,

the currents enter at one end and leaves at the other end, and we need to know a relation

between the sending end quantities and the receiving end quantities.

(e) Compensation Theorem

In any linear bilateral active network, if any branch carrying a current I has its impedance

Z changed by an amount dZ, the resulting changes that occur in the other branches are the

same as those which would have been caused by the injection of a voltage source of (�IdZ)

in the modified branch.

We consider the network N, having branch impedance Z.

Let the current through Z be I and its voltage be V.
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Let dZ be the change in Z.

Then, I ¢ can be written as,

oc oc oc oc

th th th th th

;
V V V V Z

I I I I
Z Z Z Z Z Z Z Z Z Z Z Z Z

d
d

d d d

æ ö æ ö¢ ¢= = - = - = -ç ÷ ç ÷
+ + + + + + + +è ø è ø

th th

wherec
c

VI Z
V I Z

Z Z Z Z Z Z

d
d

d d
= - = - =

+ + + +

(f) Conversion of Voltage Source into Current Source

A voltage source V(t) with an internal resistance R can be converted into a current source

I(t) in parallel with the same resistance R, where, I(t) = 
( )V t

R
.

Figure Conversion of Voltage Source into Current Source

A voltage source can be converted into a current source and vise-versa if and only if their

respective open circuit voltage and short circuit current are same. However, an ideal

voltage source can never be open-circuited and an ideal current source can never be short-

circuited, as this is in contrary to the definitions of ideal voltage and current sources. Thus,

we cannot convert a voltage source V with zero internal resistance to a corresponding

current source.
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1. Choose the correct answer.

(a) Which of the following constitutes a bilateral element?

(i) MOSFET (ii) metal rectifier (iii) a resistor (iv) diode

(b) Two resistors are connected in parallel and each dissipates 20 watt. What is the total

power dissipated across the two resistors:

(i) 40 Watt (ii) 80 Watt

(iii) 100 Watt (iv) none of the above

(c) The equivalent resistance of the Figure between x and y is

(i) 30 W (ii) 50 W (iii) 60 W (iv) 10 W
(d) A dc voltage V is applied to a series R-L circuit. The steady state current is

(i)
2 2

V

R L+
(ii) 0 (iii)

V

L
(iv)

V

R

(e) If f (t) and its first derivative are Laplace transformable, then final value theorem is

(i)
0

Lt ( ) Lt ( )
t s

f t F s
®¥ ®

= (ii) Lt ( ) Lt ( )
t s

f t sF s
®¥ ®¥

=

(iii)
0

Lt ( ) Lt ( )
s s

f t sF s
® ®¥

= (iv) none of the above.

(f) A network has 7 nodes and five independent loops. The number of branches is:

(i) 11 (ii) 10 (iii) 13 (iv) 19

(g) Superposition theorem is not applicable to networks having

(i) transformers (ii) dependent voltage sources

(iii) non-linear elements (iv) dependent current sources
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(h) A 2-port network is shown in the figure. The parameter

h21 for this network can be given by

(i)
1

2
- (ii)

1

2
+

(iii)
3

2
+ (iv)

3

2
-

(i) The resonant frequency of the series circuit shown in the figure. is

(i)
1

Hz
4 3p

(ii)
1

Hz
4p

(iii)
1

Hz
4 2p

(iv)
1

Hz
2 5p

(j) A ramp function

(i) has both Laplace and Fourier transforms.

(ii) has Laplace transform but not Fourier transform.

(iii) has Fourier transform but not Laplace transform.

(iv) none of these.

Solution

(a) (iii) resistor (b) (iii) 40 Watt (c) (iv) 10 W

(d) (ii) /V R (e) (ii) [ ]
0

Lt ( ) Lt ( )
t s

f t sF s
®¥ ®

= (f) (iii) 11

(g) (i) non-linear (h)
1

2
- (i) both (iii) 

1

4 3p
 and (i) 

1

4p

(j) (ii) has Laplace transform but not Fourier transform

2. (a) State KCL and KVL 3

(b) For the circuit shown in figure, 7

(i) Determine the KVL equations.

(ii) Find the two loop currents I1 and I2.

(iii) Find the power supplied by the source and the power dissipated in each resistor.

Solution

(a) Kirchhoff�s Current Law (KCL)

Kirchhoff�s current law is based on the principle of conservation of charge. This requires

that the algebraic sum of the charges within a system cannot change. Thus the total rate of

change of charge must add up to zero. Rate of change of charge is current.
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Figure Illustration of KCL

This gives us our basic Kirchhoff’s current law as the algebraic sum of the currents

meeting at a point is zero i.e., at a node, SIr = 0, where Ir are the currents in the branches

meeting at the node

This is also sometimes stated as the sum of the currents entering a node is equal to the

sum of the current leaving the node.

The theorem is applicable not only to a node, but to a closed system.

i1 + i2 – i4 – i5 = 0; Also for the closed boundary, ia – ib + ic – id – ie = 0

Kirchhoff’s Voltage Law (KVL)

Kirchhoff’s voltage law is based on the principle of conservation of energy. This requires

that the total work done in taking a unit positive charge around a closed path and ending

up at the original point is zero.

This gives us our basic Kirchhoff’s law as the algebraic sum of the potential differences

taken around a closed loop is zero.

i.e., around a loop, SVr = 0, where Vr are the voltages across the branches in the loop.

va + vb + vc + vd –ve = 0

Figure Illustration of KVL

This is also sometimes stated as the sum of the emfs taken around a closed loop is equal

to the sum of the voltage drops around the loop.

(b) (i) KVL Equations

- = ü
ý- + - = þ

1 2

1 2

2 2 10

and 2 (4 3) 0

I j I

j I j I
Ans.
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(ii) Solving for the currents,

1

10 2

0 (4 3) 40 30
6.933 19.44 A

4 62 2

2 (4 3)

j

j j
I

jj

j j

-
- -= = = Ð °

--
- -

Ans.

and
2

2 10

2 0 20
2.773 143.31 A

4 62 2

2 (4 3)

j j
I

jj

j j

-
= = = Ð °

--
- -

Ans.

(iii) Power supplied by the source,

1 1cos 10 6.933cos (19.44 ) 65.28 WattsP VI f= = ´ ° =
Power dissipated in resistors,

2
2 1

2
3 2

2
1 2

| | 2 96.15 W

| | 3 23.08 W

| | 1 7.69 W

P I

P I

P I

W

W

W

ü= ´ =
ï= ´ = ý
ï= ´ = þ

Ans.

3. (a) For the circuit shown below, determine the voltage v using nodal analysis. 5

(b) The following circuit has a dependent current source and an independent voltage source.

Find the Thevenin equivalent network of the circuit across the terminals a and b. 5
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Solution

(a)

Let the node voltages be V1 and V2. Here, V2 = v

By KCL,

1 1 1 2
1

100
0 17 12 300

8 12 2

V V V V
V v

- -
+ + = Þ - = (i)

and

2 1 2
110 0 3 4 60

2 6

V V V
V v

-
+ - = Þ - + = (ii)

Solving Eqs (i) and (ii), we get,

17 300

3 60 1920
60 Volt

3217 12

3 4

v
-

= = =
-

-

Ans.

(b)

With open circuit, v1 = voc. By KCL,

oc oc
oc oc oc

100
0 500 5 0 125 Volt

100 20

v v
v v v

+
- + = Þ - + + = Þ = -

With short-circuit, v1 = 0 and the dependent current source is open, so that, Isc = �5 A

Thus, Thevenin impedance, oc
Th

sc

125
25

5

v
R

I

-= = = W
-

So, the Thevenin�s equivalent circuit is shown in figure below.
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4. (a) Find the z-parameters in terms of h-parameters. 5

(b) Find the open circuit impedance parameters for the two-port network shown in figure

below. 5

Solution

(a) z-parameters in terms of h-parameters

The z-parameter equations are,

1 11 1 12 2V z I z I= +

2 21 1 22 2V z I z I= +
(i)

The hybrid parameter equations are,

1 11 1 12 2V h I h V= +

2 21 1 22 2I h I h V= +
(ii)

From second equation of (ii), 21
2 1 2

22 22

1h
V I I

h h

æ ö æ ö= - +ç ÷ ç ÷è ø è ø
(iii)

From first equation of (ii),

21
1 11 1 12 1 2

22 22

1h
V h I h I I

h h

é ùæ ö æ ö= + - +ê úç ÷ ç ÷è ø è øë û

11 22 12 21 12
1 2

22 22

h h h h h
I I

h h

-æ ö æ ö= +ç ÷ ç ÷è ø è ø
(iv)

Comparing Eq. (iii) and (iv) with Eq. (i), we get,

11 22 12 21 12 21
11 12 21 22

22 22 22 22 22

Ä 1
; ; ;

h h h h h hh
z z z z

h h h h h

-
= = = = - =

(b)

For this p-network, the y-parameters are given as,

11

1 1 100
0.2 ;

5 0.01
y

s s

æ ö æ ö= + = +ç ÷ ç ÷è ø è ø
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12 21

1 100
;

0.01
y y

s s
= = - = -

22

1 1 100
0.1

10 0.01
y

s s

æ ö æ ö= + = +ç ÷ ç ÷è ø è ø

\
2

11 22 12 21

100 100 100
( ) 0.2 0.1y y y y y

s s s

æ ö æ ö æ öD = - = + ´ + - -ç ÷ ç ÷ ç ÷è ø è ø è ø

2 2
30 100 100

0.02
s s s

æ ö æ ö= + + - -ç ÷ ç ÷è ø è ø

30
0.02

s

æ ö= +ç ÷è ø

Thus, the z-parameters are,

22
11

12
12 21

11
22

0.1 100/ 0.1 100 5 5000

0.02 30/ 0.02 30 1500

100/ 100 5000

0.02 30/ 0.02 30 1500

0.2 100/ 0.2 100 10 5000

0.02 30/ 0.02 30 1500

y s s s
z

y s s s

y s
z z

y s s s

y s s s
z

y s s s

+ + + ü= = = = W ïD + + +
ï- ï= = - = - = = WýD + + + ï

+ + + ï= = = = W ïD + + + þ

Ans.

5. (a) Find the current i(t) flowing through the circuit if the circuit is initially relaxed. Find the

voltage across the capacitor vc(t) also. What is the value of the steady state current? 6

(b) Derive an expression of the resonant frequency wo for the cir-
cuit shown in figure below.

4

Solution

(a)

By KVL,

1 10
5 ( ) ( )(5 2) 10

/2
I s I s s

s s

æ ö+ = Þ + =ç ÷è ø

\ 10 2
( )

5 2 2/5
I s

s s
= =

+ +
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Taking inverse Laplace transform, the current in the circuit,

2 /5( ) 2 (A)ti t e-= Ans.

Voltage across the capacitor is,

( )
1 2 2 4 1 1

( ) ( ) 10
1 2/5 2/52/5
2

CV s I s
s s s ss s

s

æ ö= ´ = ´ = = -ç ÷+ +è ø+

Taking inverse Laplace transform,

2 /5( ) 10 [1 ] (V)t
CV t e-= - Ans.

From the current expression, as t ® µ, i(t) ® 0. So, the steady state value of the current is,

I
ss

 = 0 Ans.

(b)

Here,

1 ( )Z R j Lw= +

2

1
Z

j Cw
=

2 2 2 2 2 2

1 R L
Y j C j C

R j L R L R L

w
w w

w w w

æ ö æ ö
= + = + -ç ÷ ç ÷+ + +è ø è ø

For resonance to occur, the imaginary part of the admittance should be zero.

0 2 2 2
0

L
C

R L

w
w

w

æ ö
- =ç ÷+è ø

Þ
2

0 2

1 R

LC L
w = -

Thus, the resonant frequency is,

2

0

1
1 LCR

LC L
w

æ ö
= -ç ÷è ø

6. (a) Find the inverse Laplace transform of the function given below.

2

2

( 1)

s

s s

+
+

4
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(b) The circuit was in steady state with switch in position 1. Find the current i(t) for t > 0 if

the switch is moved from position 1 to 2 at t = 0. 6

Solution

(a) Let, F(s) = 
2 2

2

( 1)( 1) ( 1)

s A B C

s ss s s

+
= + +

++ +
By residue method,

2 2
11 10

2 2 2 2
2; 1; 2

( 1) ss ss

s s sd
A B C

s ds ss s = -= - = -=

+ + +é ù= = = = - = = - = -ê ú+ ë û

\
2 2

2 2 1 2
( )

1( 1) ( 1)

s
F s

s ss s s

+
= = - -

++ +
Taking inverse Laplace transform,

( ) [2 ( ) 2 ]t tf t u t e te- -= - - Ans.

(b) When the switch is in position 1, steady-state ex-

ists and the initial current through the inductor is,

10
(0 ) 1A

10
i - = =

After the switch is moved to position 2, the KVL

gives, in Laplace transform,

50
10 ( ) 0.5 ( ) 0.5 1I s sI s

s
+ - ´ =

or,
100 1 1 1 1

( ) 5
( 20) 20 20 20

I s
s s s s s s

é ù= + = - +ê ú+ + + +ë û
Taking inverse Laplace transform,

20( ) 5 4 (A); 0ti t e t-= - > Ans.

7. (a) Define tree and cotree of a graph. 3

(b) Explain the complete and reduced incidence matrix with suitable example. 3

(c) The following graph has 4 nodes and 6 branches. Find the reduced incidence matrix taking

d as datum node. 4



Network CircuitMQPIII.10

Solution

(a) Tree of a Graph

For a given connected graph of a network, a connected subgraph is known as a tree of

the graph if the subgraph has all the nodes of the graph without containing any loop.

(a) Circuit (b) Trees and Links of Circuit of Figure (a)

The branches of tree are called twigs or tree-branches. These are shown by solid lines in

Fig. (b).

Cotree of a Graph

If a graph for a network is known and a particular tree is specified, the remaining

branches are referred to as the links. The collection of links is called a co-tree. So, co-tree

is the complement of a tree. These are shown by dotted lines in Fig. (b).

The branches of a co-tree may or may not be connected, whereas the branches of a tree are

always connected.

(b) Complete Incidence Matrix

The incidence matrix symbolically describes a network. It also facilitates the testing and

identification of the independent variables. Incidence matrix is a matrix which represents a

graph uniquely.

For a given graph with n nodes and b branches, the complete incidence matrix Aa is a

rectangular matrix of order n ´ b, whose elements have the following values:

Number of columns in [A] = Number of branches = b

Number of rows in [A] = Number of nodes = n
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Aij = 1, if branch j is associated with node i and oriented away from node j.

 = –1, if branch j is associated with node i and oriented towards node j.

 = 0, if branch j is not associated with node i.

Example

(a) Incidence matrix network (b) Graph of Network

Branches

1 2 3 4 5 6

a 1 0 0 –1 0 0 Reduced

Nodes b 0 1 0 1 –1 0 Incidence

c 0 0 1 0 1 –1 Matrix AI

Reference Node d –1 –1 –1 0 0 1

Reduced incidence matrix [A]

The matrix obtained from Aa by eliminating one of the rows is called Reduced Incidence

Matrix. In other words, suppression of the datum node (reference node) from the inci-

dence matrix results in reduced incidence matrix.

For the graph shown above, reduced incidence matrix is given as,

A = 

1 0 0 1 0 0

0 1 0 1 1 0

0 0 1 0 1 1

-é ù
ê ú-ê ú
ê ú-ë û

(c) For the graph shown, the complete incidence matrix is given as,

Aa = 

1 1 0 0 0 0

0 1 1 1 1 0

0 0 1 1 0 1

1 0 0 0 1 1

a

b

c

d

-é ù
ê ú- -ê ú
ê ú- - -
ê ú
ê úë û

Taking d as datum node, the reduced incidence matrix is given as,

A = 

1 1 0 0 0 0

0 1 1 1 1 0

0 0 1 1 0 1

-é ù
ê ú- -ê ú
ê ú- - -ë û

Ans.
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8. (a) What is SPICE? 2

(b) Write SPICE input file for the circuit shown below. 4

(c) Write SPICE input file for the circuit shown below to find the node voltage. 4

Solution

(a) SPICE

Spice (Simulation Program with Integrated Circuit Emphasis) is a software package de-

veloped in the 1970 at the University of California at Berkeley for simulating electronic

circuits. It is used as a tool for analysis, design and testing of integrated circuits as well as

a wide range of other electronic and electrical circuits.

The commercially supported versions of SPICE can be divided into two types:

(I) Mainframe versions, and

(II) PC � based versions.

(b)

For this circuit, we first label the nodes.

The source file is,

*AC Analysis*

VIN 1 0 SIN (0 100 50 0 0 15)

R1 1 2 1K

L1 2 3 5M

C1 0 3 5UF

.END
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(c) Labeling the nodes and names of the elements, the input file is written as follows.

*DC ANALYSIS*

V1 1 2 20

R1 1 2 10

R2 0 2 20

R3 2 3 5

R4 0 3 10

.DC V1 20 20 1

.PRINT DC V(1) V(2) V(3)

.END

9 (a) Find the Fourier transform of unit impulse function. 4

(b) Find the Fourier series expansion of the triangular wave shown below. 6

Solution

(a) Fourier Transform of Unit Impulse Function, d (t)

We know that, impulse function is defined as,

( ) 0 for 0t td = ¹

and ( ) 1t dtd
¥

-¥
=ò

\ 0( )] ( ) ( ) ( ) 1j tt t e dt t e dt t dtwd d d d
¥ ¥ ¥

-

-¥ -¥ -¥
= = = =ò ò òF[

(b)

The wave is an odd function and is having half wave symmetry.

\ an = 0 and a0 = 0
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Now, V(t) = 
4
t

T
; 0 /4t T< <

= 
4

2t
T

- + ; 
3

/4
4

T
T t< <

\ bn 

/4

0

8
( ) sin

T

f t n tdt
T

w= ò ; n is odd only.

/4

0

8 4
sin

T

t n tdt
T T

w= ò

/4

2
0

cos32 cos
T

t n t n t
dt

n nT

w w
w w

-é ù= +ê úë û
ò

/4

0

16 sin
cos

4 2

T
T n n t

n T n

p w
p w

é ù
= - +ê ú

ê úë û

16
0 sin

4 2 2

T T n

n T n

p
p p

é ù= - ´ +ê úë û

2 2

8
sin

2

n

n

p

p
= {Q wT = 2p}

\
2 2

8
nb

n p
= , n = 1, 5, 9, �

= 
2 2

8

n p
- , n = 3, 7, 11, �

Hence,

2 2 2 2

8 1 1 1
( ) sin sin3 sin 5 sin 7 ...

3 5 7
V t t t t tw w w w

p

æ ö= - + - +ç ÷è ø
Ans.
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GROUP�A
(Multiple-Choice Questions)

1. Choose the most appropriate answers for any ten of the following: 10 ´ 1 = 10

(i) A capacitor of 0.01 farad has a leakage resistance 100 ohm across its terminals. The

quality factor of it at 10 rad/s should be

(a)
1

10
(b) 1 (c) 10 (d) 100

(ii) An RLC series circuit consists of a resistance of 1 kilo-ohm, an inductance of 0.1H and

capacitance of 10 micro micro-farad. The Q-factor of the circuit will be

(a) 100 (b) 50 (c) 10 (d)
1

100

(iii) The superposition theorem is applicable to

(a) linear responses only

(b) linear and non-linear responses

(c) linear, non-linear and time-variant responses.

(iv) A circuit having neither an e.m.f. source or any energy source is

(a) active circuit (b) passive circuit (c) unilateral circuit (d) bilateral circuit

(v) What should be the internal impedance of an ideal current source?

(a) Zero (b) Infinite (c) Both (a) and (b) (d) None of these

(vi) A two port network is reciprocal if and only if

(a) z11 = z22 (b) BC � AD = �1 (c) y12 = �y21 (d) h12 = h21

(vii) A series RLC circuit is over-damped when

(a)
2

2

1

( )(4 )

R

LCL

é ù é ù>ê ú ê úë ûë û
(b)

2

2

1

( )(4 )

R

LCL

é ù é ù=ê ú ê úë ûë û
(c)

2

2

1

( )(4 )

R

LCL

é ù é ù<ê ú ê úë ûë û
(d) none of these.
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(viii) Laplace transform analysis gives

(a) time domain response only (b) frequency domain response only

(c) both (a) and (b) (d) None of these

(ix) The value of the ramp function t.u(t) at t = �¥ is

(a) 0 (b) ¥ (c) �¥ (d) 1

(x) The Fourier series expansion of a periodic function having half wave symmetry contains

only

(a) cosine terms (b) sine terms (c) even harmonics (d) odd harmonics

(xi) The number of links for a graph having n nodes and b branches are

(a) b � n + 1 (b) n � b + 1 (c) b + n � 1 (d) b + n

(xii) The dc gain of a system having the transfer function 
12

( )
( 2)( 3)

H s
s s

=

+ +
 is

(a) 2 (b) 1 (c) 12 (d) 3

(e) 0.

(xiii) A R-C series circuit has a time constant given by

(a) R/C (b) C/R (c) 1/(RC) (d) RC.

(xiv) If a function f(t) is shifted by a then it is correctly represented as

(a) f (t � a)u(t) (b) f (t)u(t � a) (c) f (t � a)u(t � a) (d) f (t � a)(t � a)

(xv) In a four terminal network containing linear bilateral passive circuit elements, which one

of the following conditions for z parameters generally holds?

(a) 11 22z z= (b) 12 21z z= (c) 12 21 11 22z z z z= (d) 2
11 21 22z z z=

(xvi) Two networks can be dual when

(a) their nodal equations are the same.

(b) the loop equations of one network are the nodal equations of the other.

(c) their loop equations are the same.

(d) none of these.

Solution

(i) (a)
1

10
(ii) (a) 100

(iii) (a) linear responses only (iv) (b) passive circuit

(v) (b) Infinite (vi) both (b) BC � AD = �1 and (c) y12 = �y21

(vii) (a)
2

2

1

( )(4 )

R

LCL

é ù é ù>ê ú ê úë ûë û
(viii) (c) both (a) and (b)

(ix) (a) 0 (x) (d) odd harmonics

(xi) (a) b � n + 1 (xii) (a) 2

(xiii) (d) RC (xiv) (c) f (t � a)u(t � a)

(xv) (b) z12 = z21

(xvi) (b) the loop equations of one network are the nodal equations of the other.
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GROUP�B
Answer any three questions 3 ´ 5 = 15

2. (a) What is compensation theorem? 2½

(b) Convert a voltage source V with internal resistance R to a corresponding current source.

Can you convert a voltage source V with zero internal resistance to a corresponding

current source? 2½

Solution

(a) Consult WBUT 2004, Q. 10 (e).

(b) Consult WBUT 2004, Q. 10 (f)

3. Find the Laplace transform of the square wave shown in the below figure. 5

Solution

The equation of the square wave is,

( ) ( ) ( ) ( ) ( 2 ) ( 2 ) ( 3 ) ...f t u t u t a u t a u t a u t a u t a= - - - - + - + - - - -
( ) 2 ( ) 2 ( 2 ) 2 ( 3 ) ...u t u t a u t a u t a= - - + - - - +

Taking Laplace transform,

2 31 2 2 2
( ) ...

as as ase e e
F s

s s s s

- - -

= - + - +

2 31
[1 2 (1 ...)]as as as ase e e e

s
- - - -= - - + - +

1 2 1
1 sum of G.P. series

1 1

as

as as

e

s e e

-

- -

é ù ì ü
= - =í ýê ú+ +ï ïë û î þ

Q

11

1

as

as

e

s e

-

-

é ù-
= ê ú+ë û

1
( ) tanh

2

as
F s

s

æ ö= ç ÷è ø Ans.

4 Define tie-set. With the help of a suitable example, explain the term �tie-set matrix� used in

network analysis. 5

Solution

Tie-set

A tie-set is a set of branches contained in a loop such that each loop contains one link or chord

and the remainder are tree branches.
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Consider the graph and the tree as shown. This selected tree will result in three fundamen-

tal loops as we connect each link, in turn to the tree.

Fundamental Loop 1 (FL1): Connecting link 1 to the tree.

Fundamental Loop 2 (FL2): Connecting link 5 to the tree.

Fundamental Loop 3 (FL3): Connecting link 6 to the tree.

These sets of branches (1, 2, 3), (2, 4, 5) and (3, 4, 6) form three tie-sets.

Tie-Set Matrix: Consult WBUT 2003, Q. 9 (b)

5. Explain under what condition, an RC series circuit behaves as

(i) low pass filter

(ii) integrator. 5

Solution

Consult WBUT 2003, Q. 10 (b) and (d).

6. Write the input file in SPICE to find the node voltages in the circuit in the below figure. 5
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Solution

To write the SPICE input file, we label the nodes and give the reference nodes of the elements.

The input file is written below.

* INPUT FILE*

VS 1 0 DC 5V

R1 1 3 5

R2 1 2 2

R3 2 3 3

R4 0 2 5

R5 0 3 10

.END

GROUP-C
Answer any three questions 3 ´ 15 = 45

7. (a) State maximum power transfer theorem. 2

(b) Find the Thevenin�s equivalent between the points a and b for the circuit given in figure.

What should be the value of impedance connected between a and b for maximum power

to be transferred from the sources? Obtain the amount of the maximum power. 8

(c) Determine the voltage v in the network in the below figure using nodal analysis. 5
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Solution

(a) Maximum Power Transfer Theorem

Maximum power is absorbed by one network from

another connected to it at two terminals, when the

impedance of one is the complex conjugate of the

other.

This means that for maximum active power to be

delivered to the load, load impedance must corre-

spond to the conjugate of the source impedance

(or in the case of direct quantities, be equal to the

source impedance).

Let E be the voltage source, (R + jX) the internal impedance of the source and (RL + jXL)

the load impedance.

Then, according to Maximum Power Transfer Theorem maximum power will be trans-

ferred to the load if:

R = RL and X = �XL

(b) Here the current I is,

100 100
(10 10) A

2 3 5 5 5
I j

j j
= = = -

+ + +

\ VTh = (3 5) (10 10) (3 5)I j j j´ + = - ´ +

= (80 20)j+

= 82.46 14 VÐ °

Th

2 (3 5)
6 (1.6 6.4)

2 3 5

j
Z j j

j

´ +
= + = + W

+ +

Thevenin�s equivalent circuit is shown.

For maximum power transfer, the impedance

should be complex conjugate of Thevenin

Impedance.

\ (1.6 6.4)
LZ j= - W Ans.

Amount of the maximum power is, 
2 2
Th

max

(82.46)
1062.5 W

4 4 1.6

V
P

R
= = =

´
Ans.

(c)
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Converting the current source into equivalent voltage source, we get the following circuit.

By KVL,

1 214 12 100I I- =

1 212 20 60I I- + = -

Solving for I2,

2

14 100

12 60 840 1200 360
2.64 A

280 144 13614 12

12 20

I
- - - +

= = = =
--

-

\ 2(6 60) 75.88 Vv I= + =
8. (a) State and explain Millman�s theorem. Calculate the load current I in the circuit in figure

by Millman�s theorem. 2 + 6

(b) Using Superposition theorem determine V1, the voltage across the 3 ohm resistor in the

below figure. 7



Network TheoryMQPIV.8

Solution

(a) Millman�s Theorem

Statement

(I) This theorem states that if several ideal voltage sources (V1, V2, �) in series with

impedances (Z1, Z2,�) are connected in parallel, then the circuit may be replaced by a

single ideal voltage source (V) in series with an impedance (Z); where,

1

1

n

i i
i

n

i
i

V Y

V

Y

=

=

=
å

å
and,

1

1
n

i
i

Z

Y
=

=
å

(II) If several ideal current sources (I1, I2,�) in parallel with impedances (Z1, Z2, �) are

connected in series, then the circuit may be replaced by a single ideal current source

(I) in parallel with an impedance (Z); where,

1

1

1

n
i

ii

n

ii

I

Y
I

Y

=

=

=
å

å
and,

1

1

1n

ii

Y

Y=

=
å

or,
1

n

i
i

Z Z
=

= å

Solution to Numerical Problem

By Millman�s Theorem,

2 3 5
352 2 5 2.91667 V

1 1 1 12

2 2 5

EY
V

Y

+ +
= = = =

+ +

å
å
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1 1 10
0.833

1 1 1 12

2 2 5

Z
Y

= = = = W
+ +å

\ 2.91667
0.184 A

15 0.833 15

V
I

Z
= = =

+ +
Ans.

(b) Case (I) When 8 A current source is acting alone

By KVL for the Super mesh, 1 1

1
3 2 4 0

2
i i i i i¢ ¢ ¢+ - = Þ =

By KCL at node x, 1

1
(8 ) 8 16 A

2
i i i i i¢ ¢ ¢ ¢= + Þ = + Þ = -

\ 1 3 3 ( 16) 48VV i¢ ¢= = ´ - = -

Case (II) When 2 A current source is acting alone

By KVL,

2 2 23( 2) 2 4 0 5 6 4 0i i i i i¢¢ ¢¢+ + - = Þ + - =

Now, 2( 2)i i¢¢ = +

\ 2 2 25 6 4( 2) 0 2 Ai i i+ - + = Þ =

\ 2( 2) (2 2) 4 Ai i¢¢ = + = + =

\ 1 3 3 4 12 VV i¢¢ ¢¢= = ´ =
Case (III) When 10 V voltage source is acting alone

By KVL,

3 10 2 4 0 10 Ai i i i¢¢¢ ¢¢¢ ¢¢¢ ¢¢¢- + - = Þ =

\ 1 10 3 30 VV ¢¢¢ = ´ =

When all the sources are acting simultaneously, by superposition theorem the voltage is

given as,

1 1 1 1( ) ( 48 12 30) 6 VV V V V¢ ¢¢ ¢¢¢= + + = - + + = -
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9. (a) A potential difference of 200 200 2 sin314t+  is applied to a circuit having a resistance

of 15 ohm in series with a reactance of 20 ohm. Find the power consumed in the circuit

and the impedance and p. f. of the circuit. 8

(b) In the network in the figure two voltage sources act on the load impedance connected to

the terminal A and B. If the load is variable in both reactance and resistance, for what load,

ZL will receive maximum power? What is the value of maximum power? 7

Solution

(a) Applied voltage, ( ) 200 200 2 sin314v t t= + ,

Impedance of the circuit, (15 20) 25 53.13Z j= + = Ð ° W

Power Factor of the circuit, = cos (53.13 ) 0.6 (lagging)° =

For the D.C. component of the voltage, the current, 0

200
13.33 A

15
I = =

For the sinusoidal component of the voltage, the current is,

1

200 2 0 200 2 0
8 2 53.13 A

15 20 25 53.13
I

j

Ð ° Ð °
= = = Ð- °

+ Ð °

Thus, the power consumed in the circuit,

2 2 2 2
0 1rms (13.33 8 ) 15 3626.67 WP I R I R= ´ + ´ = + ´ =

(b) Consult WBUT 2004, Q. 4 (a).

The value of the maximum power is, 
2 2
Th

max

9.8
5.676 W

4 4 4.23

V
P

R
= = =

´

10. (a) 4 wires are joined at a node. The current entering this node through 3 of them are 5 cos tw ,

6 sin ( /6)tw p+  and 2 cos ( /3)tw p+ . Using the phasor method, determine the current

leaving this junction through the 4 wire. 8

(b) A 3 ohm resistor and a 4 ohm (at a frequency f) capacitor are in parallel. This combination

is in series with a pure inductor. An alternating voltage at a frequency f when impressed in

this combination delivers current at unity power factor. Keeping the same voltage but

doubling the frequency, what will be the percentage change in the current drawn by the

circuit based on the current at lower frequency? 7



Model Question Paper IV MQPIV.11

Solution

(a) Here,

1 2 35 cos 5 0 ; 6 sin 6 60 ; 2 cos 2 60
6 3

I t I t I t
p p

w w w
æ ö æ ö

= = Ð ° = + = Ð- ° = + = Ð °ç ÷ ç ÷è ø è ø

\ Current leaving this node is,

4 5 0 6 60 2 60 5 3 5.196 1 1.732 (9 3.464) 9.643 21I j j j= Ð ° + Ð- ° + Ð ° = + - + + = - = Ð- °

\ 4 ( ) 9.643 cos ( 21 ) Ai t tw= - ° Ans.

(b) As the current at lower frequency, (f) is at unity power factor, the circuit is at resonance at

this frequency.

Given: 
at resonance

1
3 ; 4C

r

R X
Cw

= W = = W

For this circuit, the impedance at resonance,

2

1 2 2 2 2 2 2

1

1 1 1 1

r
r r r

r r r
r

CRR R
Z j L j L j L

j CR C R C Rj C
R

w

w w w
w w w

w

æ ö
= + = + = + -ç ÷+ + +è ø+

At resonance, the inductive reactance is obtained as,

2 2 2

2 2 2 2 2 2 2 2

3 /4 36
0

251 1 1 3 /4

r r
r r

r r

CR CR
L L

C R C R

w w

w w

w w

æ ö
- = Þ = = = Wç ÷+ + +è ø

\ 1 2 2 2 2 2

3 48
1.92

251 1 3 /4r

R
Z

C Rw

= = = W = W
+ +

If the frequency is doubled the capacitive reactance will become half and the inductive

reactance will be twice. So, the impedance at the higher frequency is,

2 2

2 2 2 2 2 2 2 2 2 2 2

3 /23 72

251 1 1 3 /2 1 3 /2

r
r

r r

CRR
Z j L j

C R C R

w

w

w w

æ ö æ ö
= + - = + -ç ÷ ç ÷+ + + +è øè ø

(0.923 1.49)j= + W

3.088 58.22= Ð °W
Since the voltage is kept constant the current is inversely proportional to the impedance.

\ 2 1

1 2

I Z

I Z
=

\ The percentage change in the current drawn by the circuit based on the current at lower

frequency is,

2 1 1 2

1 2

1.92 3.088
100 100 37.82%

3.088

I I Z Z

I Z

- - -
= ´ = ´ = - Ans.
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11. (a) Determine the voltage V using source transformation and simplification in the figure. 6

(b) In the circuit shown in figure. The switch S has been thrown to position 1 for a long period

of time. Find the complete expression for the current after throwing the switch S to 2

which removes R1 from the circuit. 5

(c) If the values of V, R1, R2 and L be 10 V, 1 ohm, 2 ohm and 1 H respectively, calculate

(i) steady state current

(ii) the energy stored in the inductance at steady state period

(iii) time constant of the circuit for both the positions of the switch S.

Also calculate the voltage across the resistor R2 and inductor L, at 0.05 second after the

switch S has been thrown to position 2. 4

Solution

(a) By KVL,

1 1 1

32
4( 6) 8 3 0 A

7
i i+ + + = Þ = -

and 2 2

28
9 36 8 0 A

9
i i+ - = Þ = -

Thus, the voltage is,

1 24( 6) 6( 6)V i i= + + +

32 28
4 6 6 6 23.05 V

7 9

æ ö æ ö
= - + + - + =ç ÷ ç ÷è ø è ø

(b) For t < 0, as the circuit was in steady state with the switch in position 1, the circuit

becomes as shown below.

\
1 2

(0 )
V

i
R R

- =
+
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For t > 0, the circuit becomes as shown.

By KVL,

2 ( ) ( ) (0 )
V

R I s sLI s Li
s

+ - - =

Þ 2
1 2

[ ] ( )
V VL

R sL I s
s R R

+ = +
+

Þ
2 2 1 2 2

1 1
( )

( / ) ( / )

V V
I s

R s s R L R R s R L

é ù æ ö= + ç ÷ê ú+ + +è øë û
Taking inverse Laplace transform,

2 2( / ) ( / )

2 1 2

( ) (1 ) ( ), 0R L t R L tV V
i t e e A t

R R R

- -
= - + >

+
Ans.

(c) V = 10 V, R1 = 1 W, R2 = 2 W and L = 1 H

(i) Steady state current, 
2

10
5 A

2ss

V
I

R
= = = Ans.

(ii) Energy stored in the inductance at steady state period,

2 21 1
1 5 12.5 W

2 2
W LI= = ´ ´ = Ans.

(iii) Time constant of the circuit for switch in position 1 is,

1
1 2

1
0.33 s

1 2

L

R R
t = = =

+ +
Ans.

Time constant of the circuit for switch in position 2 is,

2
2

1
0.5 s

2

L

R
t = = = Ans.

For t = 0.05, voltage across the resistor, 
2

2
2 0.055(1 ) | 2t

R tV i R e-
== ´ = - ´

2
0.05

10
| 2

3
t

te- =+ ´  = 7 V

and voltage across the inductor, (10 7) 3VLV = - =

12. (a) Find the Fourier series of the voltage response at the output of a half-wave rectifier shown

in the below figure. Plot the discrete spectrum of the waveform. 7
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(b) Define Fourier transform of an aperiodic function f(t). Obtain the Fourier transform of a

single pulse of magnitude V and duration T. Show that as f(t) changes from periodic to

aperiodic, the amplitude spectrum changes from a line spectrum to a continuous spectrum,

keeping their envelopes of the same shape. 8

Solution

(a) Here, time period T = 0.4 s;

f = 
1

2.5 Hz
T

= ;

w = 
2 2

5 rad/s
0.4T

p p
p= =

The function, v(t) = cos5 ; 0 0.1mV t tp £ £

= 0; 0.1 0.3t£ £

= cos5 ; 0.3 0.4mV t tp £ £
If the period extending from t = �0.1 to t = 0.3 is taken, it will result in fewer equations

and hence, fewer integrals.

\ v(t) = cos 5 ; 0.1 0.1mV t tp - £ £
= 0 ; 0.1 0.3t£ £

\ a0 = 

0.3 0.1 0.3

0.1 0.1 0.1

1 1
( ) cos 5 (0)

0.4 0.4
m

m

V
v t dt V dt dtp

p
- -

é ù
= + =ê ú

ë û
ò ò ò

\ an = 
0.3

0.1

2
cos 5 ; 1

0.4 mV ntdt np

-

¹ò

= 
0.1

0.1

5 cos 5 cos 5mV t ntdtp p

-

ò

= 
0.1

0.1

1
5 [cos 5 (1 ) cos 5 (1 ) ]

2mV n t n xt dtp p

-

+ + -ò

= 
2

2 cos( /2)
; 1

1

mV n
n

n

p

p

¹
-

For, a =1, 
0.1

2
1

0.1

5 cos 5
2
m

m

V
a V tdtp

-

= =ò

Similarly, bn = 0 for any value of n, and the Fourier series thus contains no sine terms.

\
2 2 2

( ) cos 5 cos 10 cos 20 cos 30 ...
2 3 15 35

m m m m mV V V V V
v t t t t tp p p p

p p p p

= + + - + -
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Spectra:

(b) Definition of Fourier Transform

The Fourier Transform or the Fourier integral of a function f(t) is denoted by F(jw) and is

defined by,

F(jw) = F [f(t)] = ( ) j tf t e dt
w

¥
-

-¥
ò (i)

and the inverse Fourier transform is defined by,

f(t) = F �1 [F(jw)] = 21
( ) ( 2 )

2
j t j fF j e d F j f e dfw p

w w p

p

¥ ¥

-¥ -¥
=ò ò (ii)

Equations (i) and (ii) form the Fourier transform pair.

Fourier Transform of Single Pulse

The pulse is, ( ) ,
2 2

f t V t
t t

= - < <

So, the Fourier transform,

( )F jw = 
/2 / 2/ 2

/ 2

( )
j j

j t j t e e
f t e dt Ve dt V

j

wt wtt

w w

t
w

-¥
- -

-¥ -

-

= =ò ò

= 

sin
2

2V

wt

w

æ ö
è ø

= 

sin
2

2
2

2

V

wt

t

wt

æ ö
è ø

´
æ ö
è ø

\ ( )F jw = 

sin
2

2

V

wt

t

wt

æ ö
è ø

æ ö
è ø

(iii) Ans.

The plot of 
sin x

x
 versus x here,

2
x

wtæ ö
=ç ÷è ø  is shown in the following figure.
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We consider the periodic function, f(t) as shown below, consisting of a train of pulses.

Here,

f (t) = ; for
2 2

V t
t t- < <

= 0, for and
2 2 2 2

T T
t t

t t- < < - < <

where T is the period of the periodic function.

The Fourier co-efficients of f(t) is given by,

0 0

0

0
/2 /2 /2

0/2

sin
2( )1

2

2

jn jn
jn t

n

n

e eV V
C Ve dt

T n j T n

t w t w t

w

t

w t

t

p w t

-

-

-

æ ö
ç ÷è ø-

= = =
æ ö
ç ÷è ø

ò

This Cn has values only at discrete frequencies, nw0 so that the plot of the magnitude of Cn

versus n (or nw0) will be a line spectrum. The envelope of Cn is a continuous function of

frequency given by,

Envelope of

0

0

sin
2

2

n

n

V
C

T n

w t

t

w t

æ ö
ç ÷è ø

=
æ ö
ç ÷è ø

(iv)
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However, when T approaches infinity, the train of pulses will become a single pulse. The

Fourier transform of that single pulse is given in Eq (iii).

Comparing Equations (iii) and (iv), we conclude that as f(t) changes from periodic to

aperiodic, the amplitude spectrum changes from a line spectrum to a continuous spectrum.

The envelope of the continuous spectrum is of the same shape as that of the line spectrum.

13. (a) A voltage source has a generated voltage V and an internal resistance R. How can it be

converted into a current source? 3

(b) Convert the current sources into the equivalent voltage source given in figure. And hence

find the voltage V0. 4

(c) In the network shown in the below figure determine the voltage Vb which result in a zero

current through the (2 + j3) W impedance in a branch. 8

Solution

(a) Consult WBUT 2004, Q. 10 (f).

(b)

Converting the current sources into voltage sources, we get the following circuit.
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\ 20 10
A

6 3
i = - = -

\ 0

10 10
2 10 2 10 3.33V

3 3
V i

æ ö
= + = ´ - + = =ç ÷è ø Ans.

(c) When the 30 V source is acting alone, let the current through the branch (2 3)j+ W  be I1.

Impedance,

Z = 
5 (4.4 3) 7 62

5
4.4 8 4.4 8

j j j

j j

´ + +æ ö+ = Wç ÷+ +è ø

I = 
30(4.4 8)30

7 62

j

Z j

+
=

+

I1 = 
30(4.4 8)5 5 150

A
4.4 8 7 62 4.4 8 7 62

jj j j
I

j j j j

+ æ ö´ = ´ =ç ÷+ + + +è ø

When Vb source is acting alone, let the current through the branch (2 3)j+ W  be I2.

Impedance,

Z = 
6 (4.5 5.5) 69 55

4
10.5 5.5 10.5 5.5

j j

j j

´ + +æ ö+ = Wç ÷+ +è ø

\ I¢ = 
(10.5 5.5)

69 55
b bV V j

Z j

+
=

+

\ I2 = 
(10.5 5.5) 66 6

A
10.5 5.5 69 55 10.5 5.5 69 55

b bV j V
I

j j j j

+ æ ö¢ ´ = ´ =ç ÷+ + + +è ø

Current through the branch (2 3)j+ W  will be zero, if

I1 = I2

Þ
6150

7 62 69 55
bVj

j j
=

+ +

Þ (25 25) V 35.35 45 VbV j= + = Ð °
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GROUP�A
(Multiple Choice Questions)

1. Choose the correct alternatives for any ten of the following: 10 ´ 1 = 10

(i) A 1 mF capacitor is connected across a 4 V battery. The steady state current will be:

(a) 64 10 Amp-´ (b) 610 /4 Amp (c) zero (d) 4 Amp

(ii) The internal impedance of a dependent voltage source is

(a) zero (b) infinity

(c) fraction of ohms (d) any unknown value.

(iii) Periodic signal that obeys Dirichlet�s condition can be represented by

(a) Fourier series (b) Fourier transform

(c) Inverse Fourier transform (d) none of these.

(iv) An initially relaxed RC series network with R = 2  MW and C = 1 mF is switched to a

10 V step input. The voltage across the capacitor after 2 seconds will be

(a) zero (b) 3.68 V (c) 6.32 V (d) 10 V.

(v) When a source is delivering maximum power to a load, the efficiency of the circuit:

(a) is always 50% (b) depends on the circuit parameters

(c) is always 75% (d) none of these.

(vi) The output y and the input x of a system is related by the relation y = ax + b where a and

b are constants. The system is

(a) linear (b) non-linear (c) bilateral (d) none of these.

(vii) A periodic function f(t) of time period T repeats itself after T/2. The Fourier series of f(t)

will posses only

(a) sine terms (b) cosine terms (c) even harmonics (d) odd harmonics

(viii) When a unit impulse voltage is applied to an inductor of 1 H, the energy supplied by the

source is

(a) µ (b) 1 J (c) 1/2 J (d) 0.
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(ix) The Tie-Set matrix gives the relation between

(a) branch currents and link currents (b) branch voltages and link currents

(c) branch currents and link voltages (d) none of these.

(x) Transient current in an RLC circuit is oscillatory when

(a) 2
L

R
C

= (b) 2
L

R
C

> (c) 2
L

R
C

< (d) R = 0

(xi) The Laplace transform of the signal described in

figure is

(a) /ase s- (b) 2/bse s-

(c) ( )/as bse e s- -+ (d) ( )/as bse e s- --
(xii) The Thevenin�s equivalent with respect to the ter-

minals A and B would be only a resistance Rth equal

to

(a) 2.66 W (b) 3.2 W (c) 8 W (d) 12 W.

Solution

(i) (c) zero (ii) (d) any unknown value

(iii) (a) Fourier series (iv) (c) 6.32 V

(v) (a) is always 50% (vi) (b) non-linear

(vii) (d) odd harmonics (viii) (b) 1 J

(ix) (a) branch currents and link currents (x) (c) 2
L

R
C

<

(xi) (d) ( )/as bse e s- -- (xii) (b) 3.2 W

GROUP�B
(Short Answer Type Questions)

Answer any three of the following questions. 3 ´ 5 = 15

2. Use Node voltage method to find V in the circuit.
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Solution

Converting the voltage source into current source, we get the circuit shown in the figure given

below.

By KCL,

2.68 41.56 6 30
40 20 30 50

V V V

j j
+ + = Ð- ° - Ð °

+ -

Þ [0.022 26.56 0.033 0.02] 2 1.78 5.196 3V j j jÐ ° + + = - - -

Þ
3.196 4.78 3.196 4.78

0.02 0.01 0.033 0.02 0.04 0.043

j j
V

j j j

- - - -
= =

+ + + +

Þ 97.62 8.94 VV = - Ð °
3. Determine the hybrid parameters for the network in the figure shown below.

Solution

for this p-network, the y-parameters are given as,

2 31 2
11 12 21 22

1 2 1 2 2 2 3 2 3

1 1 1 1 1
; ;

r rr r
y y y y

r r r r r r r r r

++ æ ö æ öæ ö æ ö= + = = = - = + =ç ÷ ç ÷ ç ÷ ç ÷è ø è ø è ø è ø

By inter-relationship, the h-parameters are obtained as,

1 2
11

11 1 2

1 r r
h

y r r

æ ö= = ç ÷+è ø

12 2 1
12

11 1 21 2

1 2

1

y r r
h

y r rr r

r r

-
= - = - =

++æ ö
ç ÷è ø

21 2 1
21

11 1 21 2

1 2

1

y r r
h

y r rr r

r r

-
= = = -

++æ ö
ç ÷è ø
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1 2 2 3 1 3 1 2 2 3 1 31 2
22 2

11 1 2 2 1 21 2 3

( )( ) ( )( )

( )

r r r r r r r r r r r rr ry
h

y r r r r rr r r

ì ü+ + - + + -D æ öï ï= = ´ =í ý ç ÷+ +è øï ïî þ
4. (a) What are the advantages of an active filter? 2

(b) Determine the Laplace transform of the sawtooth waveform in

the figure shown below. 3

Solution

(a) Advantages of Active Filter

1. Less cost Active filters are inexpensive as compared to

passive filters, due to the variety of cheaper op-amp and the

absence of costly inductors.

2. Gain and frequency adjustment flexibility Since op-amp is capable of providing a

gain (which may also be variable), the input signal is not attenuated as it is in a

passive filter. In addition, the active filter is easier to tune or adjust.

3. No loading problem Active filters provide an excellent isolation between the indi-

vidual stages due to the high input impendence (ranging from a few kW to a several

thousand MW) and low output impedance (ranging from less than 1W to a few hun-

dred W). So, the active filter does not cause loading of the source or load.

4. Size and Weight Active filters are small in size and less bulky (due to the absence

of bulky �L�) and are rugged.

5. Non-floating Input and Output Active filters generally

have single ended inputs and outputs which do not �float�

with respect to the system power supply or common. This

property is different from that of the passive filters.

(b) Here, the function can be written as,

( ) ( ) ( ) ( )
V V

f t r t r t T Vu t T
T T

= - - - -

Taking Laplace transform, we get,

2 2 2
( ) (1 )Ts Ts Ts TsV V V V V

F s e e e e
s sTs Ts Ts

- - - -= - - = - - Ans.

5. Find the y-parameters for the following network.

Solution

This two-port network can be considered as the parallel connection of two two-port networks

as shown below.
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(a) (b)

For network (a), the z-parameters are

2
11 12 21 2250 ; 40 ; 45 ; (50 45 40 ) 650a a a az z z z z= W = = W = W \D = ´ - =

Thus, the y-parameters are

22
11

45 9

650 130
a

a

z
y

z
= = =

D
J

12
12 21

40 4

650 65a a

z
y y

z
= = - = - = -

D
J

11
22

50 1

650 13
a

a

z
y

z
= = =

D
J

For network (b), the y-parameters are

11 22

1

20b by y= = J ; 12 21

1

20b by y= = - J

We know that for parallel connection of two two-port networks the over all y-parameters are

the summation of individual y-parameters. Thus,

11 11 11

12 21 12 12

22 22 22

9 1
( ) 0.119

130 20

4 1
( ) 0.111

65 20

1 1
( ) 0.127

13 20

a b

a b

a b

y y y

y y y y

y y y

üæ ö= + = + =ç ÷ ïè ø
ïïæ ö= = + = - - = - ýç ÷è ø ï

æ ö ï= + = + =ç ÷ ïè ø þ

Ans.

6. Define incidence matrix. The reduced incidence matrix of an oriented graph is

[ ]

0 1 1 1 0

0 0 1 1 1

1 0 0 0 1

A

-é ù
ê ú= - - -ê ú
ê ú-ë û

Draw the graph.

Solution

l Incidence Matrix: Consult WBUT 2005 Q.

7(b).

l Solution to Numerical Problem:

From the property that for complete incidence ma-

trix, the summation of all entries in any column must

be zero, the complete incidence is obtained as,

W

W

W



Some Typical Short Answer
Type Questions

1. Explain the limitations of ohm�s law.

Answer: Limitations of Ohm�s Law

(a) It is not applicable to non-linear circuits, like circuits with powdered carbon, thyrite, etc.

(b) It is not applicable to unilateral circuits, like circuits with electron tubes, transistors, etc.

2. How ideal voltage sources can be converted into ideal current sources and vise-versa?

Answer: A voltage source V(t) with an internal resistance R can be converted into a current

source I(t) in parallel with the same resistance R, where, I(t) = 
( )V t

R
.

Figure Conversion of Voltage Source into Current Source

A voltage source can be converted into a current source and vise-versa if and only if their

respective open-circuit voltage and short circuit current are same. However, an ideal voltage

source can never be open-circuited and an ideal current source can never be short-circuited, as

this is in contrary to the definitions of ideal voltage and current sources.

Thus, we cannot convert a voltage source V with zero internal resistance to a corresponding

current source.

3. What is the difference between circuits and networks?

Answer: Any combination and interconnection of network elements like resistor or inductor or

capacitor or electrical energy sources are known as �networks�. However, a closed energised

network is known as �circuit�. A network need not contain an energy source; but a circuit must

contain energy source.
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4. What is the difference between loop and mesh?

Answer: A loop or mesh denote a closed path obtained by starting at a node and returning back

to the same node through a set of connected circuit elements without passing through any

intermediate node more than once. However, the difference between mesh and loop is that a

mesh does not contain any other loop within it, i.e., mesh is the smallest loop.

5. What do you understand by transient and steady-state response? How can they be identified in

a general solution?

Answer: In electrical engineering, a transient response or natural response is the electrical

response of a system to a change from equilibrium.

The condition prevailing in an electric circuit between two steady-state conditions is known

as the transient state; it lasts for a very short time. The currents and voltages during the

transient state are called transients.

In general, transient phenomena occur whenever

(i) a circuit is suddenly connected or disconnected to/from the supply,

(ii) there is a sudden change in the applied voltage from one finite value to another,

(iii) a circuit is short-circuited.

The transient currents are not caused by any part of the supply voltage, but are entirely

associated with the changes in the stored energy in capacitor and inductors. As there is no

energy stored in resistors, there are no transients in purely resistive circuits.

When the transient phenomena die out the circuit becomes steady and the state of the circuit

is called �steady state�.

In electrical engineering, a simple example would be the output of a 5 volt DC power supply

when it is turned on: the transient response is from the time the switch is turned on and the

output is a steady 5 volt. At this point, the power supply reaches its steady-state response of a

constant 5 volt.

Another practical example will be an RC series circuit. When it is suddenly switched to a d.

c. supply, the transient current through the circuit is the maximum and it gradually decreases

so that the steady state current in the circuit becomes zero.

In a general solution, the part of the solution that diminishes with time is identified as the

transient part and the part that exists with time is identified as the steady state part. For

example, for the general solution, ( ) tf t A Be-= + , the transient response is tBe-  and steady

state response is A.
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6. What do you understand by initial conditions before and after switching.

Answer: It is possible that a capacitor or an inductor might have been used in some other

circuit earlier, where it absorbed some energy and then it was disconnected. Because of its

non-dissipative nature, the energy was stored within the capacitor (or the inductor). Now, as

this capacitor (or inductor) is connected to a circuit, it gets some path to release its stored

energy. This stored energy is represented by the initial voltage VC(0) or initial current IL(0).

7. Explain the following

(a) The current through an inductor cannot change instantaneously.

(b) The voltage across a capacitor cannot change instantaneously.

Answer:

(a) The equation relating inductance and flux linkages can be rearranged as follows:

Lil = (1)

Taking the time derivative of both sides of the equation yields

d di dL
L i

dt dt dt

l
= +

In most physical cases, the inductance is constant with time and so

d di
L

dt dt

l =

By Faraday�s Law of Induction, we have

d
E v

dt

l
= - =

where E is the electromotive force (emf) and v is the induced voltage. Note that the emf is

opposite to the induced voltage. Thus

di
v L

dt
= (2)

or
0

1
( ) ( ) (0)

t

i t v t dt i
L

= +ò

where i(0) is the initial curent. When initial current is zero,

0

1
( ) ( )

t

i t v t dt
L

= ò (3)

These equations together state that, for a steady applied voltage v, the current changes in a

linear manner, at a rate proportional to the applied voltage, but inversely proportional to

the inductance. Conversely, if the current through the inductor is changing at a constant

rate, the induced voltage is constant.

From equation (2), it is clear that for an abrupt change in current, the voltage across the

inductor becomes infinite. Also, from equation (3), it is observed that for a finite change in

voltage in zero time the integral must be zero.

Therefore, the curerent through an inductor cannot change instantaneously.

(b) The relation between charge and voltage in a capacitor is written as,

Q CV= (4)
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The current,
dQ dV dC

i C V
dt dt dt

= = +

In most physical cases, the capacitance is constant with time

\ dV
i C

dt
= (5)

\ 1
dV i dt

C
=

Taking integration on both sides,

0 0

1c
v t

dV i dt
C

=ò ò

or
0

1
( ) ( ) (0)

t

c cv t i t dt v
C

= +ò

where, vc(0) is the initial voltage across the capacitor. For zero initial voltage,

0

1
t

cv i dt
C

= ò (6)

From equation (5), it is clear that for an abrupt change of voltage across the capacitor, the

current becomes infinite. Also, from equation (6), it is observed that for a finite change of

current in zero time the integral must be zero.

Therefore, the voltage acorss a capacitor cannot change instantaneously.

8. What is the difference between a Fourier series and Fourier integral?

Answer: Differences between Fourier Series and Fourier Integral

(a) Fourier Series is applicable for periodic functions, whereas Fourier Integral (transform) is

applicable for non-periodic functions.

(b) Amplitude spectrum in case of Fourier series is line spectrum, whereas in case of Fourier

transform, the amplitude spectrum is a continuous spectrum.

9. How does Fourier transform differ from Laplace transform?

Answer: Differences between Fourier Transform and Laplace Transform are given below.

The defining equations are,

0

( ) ( ) and ( ) ( )st j tF s f t e dt F j f t e dtw
w

¥ ¥
- -

-¥
= =ò ò

Followings are some differences and similarities:

(a) Laplace Transform is one-sided in the interval 0 < t < ¥ and Fourier Transform is double-

sided in the interval �¥ < t < ¥. Thus, Laplace Transform is applicable for positive time

function, f(t), t > 0; while Fourier Transform is applicable for functions defined for all

times.

(b) Laplace Transform includes the initial conditions and is applicable for transient analysis;

while Fourier Transform is only applicable for steady-state analysis.
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(c) For functions f(t) = 0 for t < 0 and 
0

( )f t dt
¥

< ¥ò , the two transforms are related as,

( ) ( )
s j

F j F s
w

w
=

= . Thus, Laplace Transform is associated with entire s-plane, while,

Fourier Transform is restricted to the imaginary (jw) axis.

(d) Laplace Transform is applicable to a wider range of functions than the Fourier Transform.

On the other hand, Fourier Transforms exist for signals that are not physically realizable

and have no Laplace Transform.

10. Explain �Network Topology� and �Graph� of a network.

Answer:

Network Topology The word topology refers to the science of place. In mathematics, topol-

ogy is a branch of geometry in which figures are considered perfectly elastic. Therefoere,

Network Topology refers to the properties that relate to the geometry of the network (circuit).

These properties remain unchanged even if the circuit is bent into any other shape provided

that no parts are cut and no new connections are made.

Graph of Network A linear graph (or simply a graph) is defined as a collection of points

called nodes, and line segment called branches, the nodes being joined together by the

branches.

11. Mention some examples where Thevenin�s theorem cannot be applied.

Answer: Limitations of Thevenin�s Theorem:

(i) This theorem is inapplicable to magnetically coupled circuits.

(ii) This theorem is inapplicable for non-linear and unilateral networks.

12. Why are the ABCD parameters termed as �Transmission Parameters�?

Answer: The ABCD parameters represent the relation between the input quantities and the

output quantities in the two-port network. They are thus voltage-current pairs.

These parameters are known as transmission parameters as in a transmission line, the cur-

rents enter at one end and leaves at the other end, and we need to know a relation between the

sending end quantities and the receiving end quantities.

13. Show that under the condition of maximum power transfer, the efficiency of a circuit is 50%.

Answer: Let E be the voltage source, (R + jX) the internal impedance of the source and (RL +

jXL) the load impedance.

( ) ( )L L L

E E
E

Z Z R R j X X
= =

+ + + +
(1)
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Power delivered to the load is,

2
2

2 2
| |

( ) ( )

L
L

L L

E R
P I R

R R X X
= =

+ + +
(2)

where, Z R jX= + , L L LZ R jX= +

For maximum power, 
L

P

X

¶
¶

 must be zero.

Now,
2

2 2 2

2( ) ( )
0

[( ) ( ) ]

L L

L L L

E R X XP

X R R X X

- +¶ = =
¶ + + +

from which, 0LX X+ =  or LX X= -

i.e., the reactance of the load impedance is of opposite

sign to the reactance of the source impedance.

Putting LX X= -  in equation no. (2) 
2

2( )

L

L

E R
P

R R
=

+

For maximum power, 
2 2 2

4

( ) 2 ( )
0

( )

L L L

L L

E R R E R R RP

R R R

+ - +¶ = =
¶ +

or, 2 2( ) 2 0
L LE R R E R+ - =  or LR R=

The maximum power transferred will be 
22

max

( /2)

4 L L

EE
P

R R
= =

Thus, the efficiency of the circuit is be 50%.

14. Explain why the lower limit of the Laplace transform integral 
0

( ) stf t e dt
¥

-

-

æ ö
ç ÷è ø

ò  is taken as 0-

instead of 0+.

Answer: The lower limit of the integration should be 0 � instead of 0+ or simple 0. If f(t) is

continuous at t = 0, then the value of f(0) is well-defined. But, if f(t) is not continuous at t = 0,

then the meaning of f(0) becomes ambiguous. To consider the effect of �instantaneous energy

transfer�, we must use 0- as the lower limit to include the impulses at t = 0. The use of 0+ will

exclude the existence of any impulses at the origin.

So, we use 0- as the lower limit.

15. All pass filters pass all the frequencies; still it is termed as �filter� why?

Answer: All pass filter passes all frequencies equally well, i.e., output and input voltages are

equal in magnitude for all frequency; but the output voltage is shifted in phase with respect to

the input voltage, with the phase�shift between the two being a function of frequency.
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This filter is also known as a phase-shift filter, time-delay filter, or simply the delay

equalizer. One major application of an all-pass filter is the simulation of a lossless transmis-

sion line. The magnitude of the output voltage is the same as the input voltage but the output

voltage is shifted in phase with respect to the input voltage.

The highest frequency up to which the input and output amplitudes remain equal is depen-

dent on the unity-gain bandwidth of the op-amp. At this frequency, however, the phase-shift

between the input and output is maximum.

16. Explain why a capacitor is considered as a linear circuit element.

Answer: Let 
1CV  and 

2CV  individually excite a relaxed capacitor, producing the respective

currents,

1

1

C

C

dV
i C

dt
=  and 2

2

C

C

dV
i C

dt
=

Let iC be the current induced by a voltage 
1 2

( )C CV V+

\ 1 2

1 2 1 2
( ) ( )

C C

C C C C C

dV dVd
i C V V C C i i

dt dt dt
= + = + = +

This shows that the v-i characteristic of a capacitor obeys the superposition principles. There-

fore, capacitor is considered as a linear element.

17. Explain why an inductor is considered as a linear circuit element.

Answer: Let 
1LV  and 

2LV  individually excite a relaxed inductor, producing the respective

currents,

1 1

1
L Li V dt

L
= ò  and 

2 2

1
L Li V dt

L
= ò

Let iL be the current induced by a voltage 
1 2

( )L LV V+

\
1 2 1 2

1 1
( ) ( )L L L L L Li V dt V V dt i i

L L
= = + = +ò ò

This shows that the v-i characteristic of an inductor obeys the superposition principles. There-

fore, inductor is considered as a linear element.

18. What is the Laplace transform of a function which is nonzero for t < 0?

Answer: As the lower limit of integration of Laplace transform is 0�, the Laplace transform

does not distinguish between functions that are different for t < 0 bur identical for t ³ 0.

For example, the Laplace transforms of u(t) and u(t + 1) will be same.

However, t = 0 is physically the starting time of a circuit or system and all the signals

considered are usually zero for t < 0. For this reason, all will have a unique (one-sided)

Laplace transform. Conversely, all Laplace transform F(s) will have a unique time function,

such that f(t) = 0 for t = 0.

19. Does every signal f(t), such that f(t) = 0 for t < 0, have a Laplace transform?

Answer: The existence of Laplace transform X(s) of a given x(t) depends on whether the

transform integral converges

( ) ( ) ( )st t j tX s x t e dt x t e e dts w
¥ ¥

- - -

-¥ -¥
= = < ¥ò ò
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which in turn depends on the duration and magnitude of x(t) as well as the real part of s,

Re[ ]s s=  (the imaginary part of s Im[ ]s jw=  determines the frequency of a sinusoid which is

bounded and has no effect on the convergence of the integral).

This limits the variable s = (s + jw) to a part of the complex plane. The subset of values of

s for which the Laplace transform exists is called the region of convergence (ROC) or the

domain of convergence.

Thus, the Laplace transform F(s) typically exists for all complex numbers such that Re{s} >

a, where a is a real constant which depends on the growth behavior of f(t) or precisely the

condition is given as,
2

1| ( )| k tf t k e=  where, k1 and k2 are some constants

For example, for the function, 
2

( ) ( )tf t e u t= , Laplace transform integral becomes,

2 2 2

0 0 0

t st t st t t j te e dt e dt e dts w
¥ ¥ ¥

- - - -

- - -
= =ò ò ò

As t approaches infinity, the area under the curve 2( )t ts-  goes to infinity. Thus, the Laplace

transform of this function does not exist.

20. Discuss the advantages of Laplace transform method over the conventional classical methods

of solving the linear differential equations with constant coefficients.

Answer: Advantages of Laplace Transform Method are given below.

1. It gives complete solution.

2. Initial conditions are automatically considered in the transformed equations.

3. Much less time involved in solving differential equations.

4. It gives systematic and routine solutions for differential equations.

21. What do you understand by �Complex Frequency�? Give its physical significance.

Answer: Complex Frequency

The complex frequency (s) is the sum of two frequencies the real and imaginary.

 s = Complex frequency

= (s + jw)

Where, s = Real part of s = neper frequency

w = Imaginary part of s = radian frequency.

The general solution of the differential equation in time-domain is,

0( ) sti t I e= , where s = (s + jw)

Since e
st
 is a dimensionless quantity and so, also, the product st a dimensionless quantity, the

unit of s must be (time)
-1

 or Hz.

Here, w is interpreted as radian frequency; as radian is a ratio of two lengths, w is effectively

(time)-1, i.e. frequency in Hz.

Also, as s and w must have the same dimension, i.e., the dimension of s should be

(time)�1. Also, with w = 0,

0( ) ti t I es= Þ
0

( )1
ln

i t

t I
s

é ù
= ê úë û

Since the unit of ln of some number is neper, the unit of s is neper per second.

Physical significance of Complex Frequency

We have,

( )
0 0 0( ) [cos sin ]st j t ti t I e I e I e t j ts w s

w w
+= = = +
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If s = 0, then the variation of the real and imaginary parts of the function is shown below.

If s < 0, then the variation of the real and imaginary parts of the function is shown below.

If s > 0, then the variation of the real and imaginary parts of the function is shown below.

From these figures, it is clear that,

w decides the number of oscillations per second,

s decides the magnitude of these oscillations.
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